
by Allen G. Taylor

SQL®

FOR

DUMmIES
‰

5TH EDITION

by Allen G. Taylor

SQL®

FOR

DUMmIES
‰

5TH EDITION

C1.jpg

SQL For Dummies®, 5th Edition
Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030
www.wiley.com

Copyright © 2003 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate licensing fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8700.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, e-mail: permcoord
inator@wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com and related trade
dress are trademarks or registered trademarks of Wiley Publishing, Inc., in the United States and other
countries, and may not be used without written permission All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this
book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE USED
THEIR BEST EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR WAR-
RANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK
AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTA-
TIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT
BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A PROFESSIONAL WHERE APPRO-
PRIATE. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR
ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CON-
SEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax
317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2003105668

ISBN: 07645-4075-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

is a trademark of Wiley Publishing, Inc.

About the Author
Allen G. Taylor is a 30-year veteran of the computer industry and the author
of 22 books, including Crystal Reports 9 For Dummies, Database Development
For Dummies, Access Power Programming with VBA, and SQL Weekend Crash
Course. He lectures internationally on databases, networks, innovation, and
entrepreneurship. He also teaches database development through a leading
online education provider and teaches digital electronics at Portland State
University. He teaches computer hardware via distance learning at the
International Institute for Information, Science & Technology in Shanghai,
China. For the latest news on Allen’s activities, check out allengtaylor.com.
You can contact Allen at allen.taylor@ieee.org.

Dedication
This book is dedicated to all the seekers who are trying to find their way in
the world. May you find what you seek.

Acknowledgments
First and foremost, I would like to acknowledge the help of Jim Melton, editor
of the ISO/ANSI specification for SQL. Without his untiring efforts, this book,
and indeed SQL itself as an international standard, would be of much less
value. Andrew Eisenberg has also contributed to my knowledge of SQL
through his writing. I would also like to thank my project editor, Kala
Schrager, and my acquisitions editor, Terri Varveris, for their key contribu-
tions to the production of this book. As always, thanks to my agent, Matt
Wagner of Waterside Productions, for his support of my career.

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.
Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Kala Schrager

Acquisitions Editor: Terri Varveris

Copy Editor: Kim Darosett

Technical Editor: Tom Farrington

Editorial Manager: Kevin Kirschner

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant:

Cartoons: Rich Tennant (www.the5thwave.com)

Production

Project Coordinator: Ryan Steffen

Layout and Graphics: Jennifer Click,
Seth Conley, Stephanie D. Jumper,
Kristin McMullan,Tiffany Muth,
Jacque Schneider, Mary Gillot Virgin

Proofreaders: Brian H. Walls, Kathy Simpson,
TECHBOOKS Production Services

Indexer: TECHBOOKS Production Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

Contents at a Glance
Introduction ..1

Part I: Basic Concepts ..5
Chapter 1: Relational Database Fundamentals ..7
Chapter 2: SQL Fundamentals ...21
Chapter 3: The Components of SQL ..45

Part II: Using SQL to Build Databases71
Chapter 4: Building and Maintaining a Simple Database Structure73
Chapter 5: Building a Multitable Relational Database ..91

Part III: Retrieving Data ..119
Chapter 6: Manipulating Database Data ...121
Chapter 7: Specifying Values ..139
Chapter 8: Advanced SQL Value Expressions ..161
Chapter 9: Zeroing In on the Data You Want ..173
Chapter 10: Relational Operators ..199
Chapter 11: Delving Deep with Nested Queries ...223
Chapter 12: Recursive Queries ..241
Chapter 13: Providing Database Security ...251

Part IV: Controlling Operations265
Chapter 14: Protecting Data ...267
Chapter 15: Using SQL Within Applications ...285

Part V: SQL in the Real World295
Chapter 16: ODBC and JDBC ..297
Chapter 17: SQL:2003 and XML ..307

Part VI: Advanced Topics ...321
Chapter 18: Cursors ..323
Chapter 19: Persistent Stored Modules ..333
Chapter 20: Error-Handling ..351

Part VII: The Part of Tens ...363
Chapter 21: Ten Common Mistakes ..365
Chapter 22: Ten Retrieval Tips ..369

Part VIII: Appendixes ...373
Appendix A: SQL:2003 Reserved Words ...375
Appendix B: Glossary ...379

Index ...387

SQL For Dummies, 5th Edition viii

Table of Contents
Introduction ...1

About This Book ..1
Who Should Read This Book? ..2
How This Book Is Organized ..2

Part I: Basic Concepts ...2
Part II: Using SQL to Build Databases ...2
Part III: Retrieving Data ...3
Part IV: Controlling Operations ...3
Part V: SQL in the Real World ...3
Part VI: Advanced Topics ...3
Part VII: The Part of Tens ...4
Part VIII: Appendixes ..4

Icons Used in This Book ...4
Getting Started ..4

Part I: Basic Concepts ..5

Chapter 1: Relational Database Fundamentals .7
Keeping Track of Things ..7
What Is a Database? ..9
Database Size and Complexity ..9
What Is a Database Management System? ...10
Flat Files ...11
Database Models ...12

Relational model ..13
Why relational is better ..13
Components of a relational database ...14
Guess who’s coming to dinner? ...14
Enjoy the view ..15
Schemas, domains, and constraints ...18
The object model challenges the relational model19
Object-relational model ..20

Database Design Considerations ..20

Chapter 2: SQL Fundamentals .21
What SQL Is and Isn’t ..21
A (Very) Little History ..23
SQL Commands ...24
Reserved Words ..25

Data Types ...25
Exact numerics ..26
Approximate numerics ...28
Character strings ...30
Booleans ...31
Datetimes ..31
Intervals ..33
ROW types ..33
Collection types ...34
REF types ..35
User-defined types ..36
Data type summary ...38

Null Values ..40
Constraints ...40
Using SQL in a Client/Server System ..41

The server ..41
The client ..42

Using SQL on the Internet/Intranet ...43

Chapter 3: The Components of SQL .45
Data Definition Language ...46

Creating tables ...46
A room with a view ..48
Collecting tables into schemas ..53
Ordering by catalog ...54
Getting familiar with DDL commands ...55

Data Manipulation Language ..56
Value expressions ..57
Predicates ...60
Logical connectives ...61
Set functions ..61
Subqueries ..63

Data Control Language ...63
Transactions ..63
Users and privileges ..65
Referential integrity constraints can jeopardize your data67
Delegating responsibility for security ..69

Part II: Using SQL to Build Databases71

Chapter 4: Building and Maintaining a Simple
Database Structure .73

Building a Simple Database Using a RAD Tool ..74
Deciding what to track ..74
Creating the table with Design View ...75
Altering the table structure ..79

SQL For Dummies, 5th Edition x

Identifying a primary key ...80
Creating an index ...82
Deleting a table ..84

Building PowerDesign with SQL’s DDL ...85
Using SQL with Microsoft Access ..85
Creating a table ..86
Creating an index ...87
Altering the table structure ..87
Deleting a table ..88
Deleting an index ...88

Portability Considerations ...88

Chapter 5: Building a Multitable Relational Database 91
Designing the Database ..91

Step 1: Defining objects ..92
Step 2: Identifying tables and columns ...92
Step 3: Defining tables ..93
Domains, character sets, collations, and translations97
Getting into your database fast with keys ..97

Working with Indexes ...100
What’s an index, anyway? ..100
Why would I want an index? ..102
Maintaining an index ...102

Maintaining Integrity ..103
Entity integrity ...103
Domain integrity ..104
Referential integrity ..105
Potential problem areas ...108
Constraints ...110

Normalizing the Database ..112
First normal form ...114
Second normal form ..115
Third normal form ...116
Domain-key normal form (DK/NF) ...117
Abnormal form ...118

Part III: Retrieving Data ...119

Chapter 6: Manipulating Database Data .121
Retrieving Data ..121
Creating Views ...123

From tables ...124
With a selection condition ...125
With a modified attribute ...126

Updating Views ..127

xiTable of Contents

Adding New Data ...127
Adding data one row at a time ...128
Adding data only to selected columns ...129
Adding a block of rows to a table ..130

Updating Existing Data ...132
Transferring Data ..135
Deleting Obsolete Data ...137

Chapter 7: Specifying Values .139
Values ..139

Row values ...140
Literal values ..140
Variables ...142
Special variables ..144
Column references ..144

Value Expressions ...145
String value expressions ...146
Numeric value expressions ..147
Datetime value expressions ...147
Interval value expressions ...148
Conditional value expressions ...148

Functions ..149
Summarizing by using set functions ...149
Value functions ..152

Chapter 8: Advanced SQL Value Expressions 161
CASE Conditional Expressions ..161

Using CASE with search conditions ..162
Using CASE with values ..164
A special CASE — NULLIF ...166
Another special CASE — COALESCE ...168

CAST Data-Type Conversions ..168
Using CAST within SQL ...170
Using CAST between SQL and the host language170

Row Value Expressions ...171

Chapter 9: Zeroing In on the Data You Want .173
Modifying Clauses ...173
FROM Clauses ..175
WHERE Clauses ...175

Comparison predicates ..177
BETWEEN ...177
IN and NOT IN ..178
LIKE and NOT LIKE ..180
SIMILAR ...182
NULL ..182
ALL, SOME, ANY ..183
EXISTS ...186

SQL For Dummies, 5th Edition xii

UNIQUE ...186
DISTINCT ..187
OVERLAPS ..187
MATCH ..188
Referential integrity rules ...189

Logical Connectives ..191
AND ...192
OR ..192
NOT ...193

GROUP BY Clauses ..193
HAVING Clauses ...195
ORDER BY Clauses ..196

Chapter 10: Relational Operators .199
UNION ...199
INTERSECT ...202
EXCEPT ...203
JOINS ...204

Basic JOIN ...204
Equi-join ..206
Cross join ..208
Natural join ...208
Condition join ..209
Column-name join ...209
Inner join ..210
Outer join ...211
Union join ...214

ON versus WHERE ...221

Chapter 11: Delving Deep with Nested Queries 223
Why Use a Subquery? ...224
What Subqueries Do ...225

Nested queries that return sets of rows ...225
Nested queries that return a single value229
The ALL, SOME, and ANY quantifiers ...231
Nested queries that are an existence test233
Other correlated subqueries ...234
UPDATE, DELETE, and INSERT statements238

Chapter 12: Recursive Queries .241
What Is Recursion? ...241

Houston, we have a problem ...243
Failure is not an option ...243

What Is a Recursive Query? ...244
Where Might I Use a Recursive Query? ..244

Querying the hard way ...246
Saving time with a recursive query ...247

Where Else Might I Use a Recursive Query? ..249

xiiiTable of Contents

Chapter 13: Providing Database Security .251
The SQL Data Control Language ...252
User Access Levels ...252

The database administrator ..252
Database object owners ...253
The public ..254

Granting Privileges to Users ..255
Roles ..256
Inserting data ...256
Looking at data ..257
Modifying table data ...257
Deleting obsolete rows from a table ...258
Referencing related tables ..258
Using domains, character sets, collations, and translations259
Causing SQL statements to be executed ..260

Granting the Power to Grant Privileges ...261
Taking Privileges Away ...262
Using GRANT and REVOKE Together Saves Time and Effort263

Part IV: Controlling Operations265

Chapter 14: Protecting Data .267
Threats to Data Integrity ..267

Platform instability ..268
Equipment failure ..268
Concurrent access ...269

Reducing Vulnerability to Data Corruption ...271
Using SQL transactions ...271
The default transaction ..273
Isolation levels ...273
The implicit transaction-starting statement275
SET TRANSACTION ...276
COMMIT ..277
ROLLBACK ..277
Locking database objects ...277
Backing up your data ..278
Savepoints and subtransactions ...279

Constraints within Transactions ...280

Chapter 15: Using SQL Within Applications .285
SQL in an Application ...286

SQL strengths and weaknesses ...286
Procedural language strengths and weaknesses287
Problems in combining SQL with a procedural language287

SQL For Dummies, 5th Edition xiv

Hooking SQL into Procedural Languages ...288
Embedded SQL ..288
Module language ...291
Object-oriented RAD tools ...293

Part V: SQL in the Real World295

Chapter 16: ODBC and JDBC .297
ODBC ...297

ODBC interface ..298
Components of ODBC ...298

ODBC in a Client/Server Environment ..299
ODBC and the Internet ...300

Server extensions ..300
Client extensions ...301

ODBC and an Intranet ...304
JDBC ..304

Chapter 17: SQL:2003 and XML .307
How XML Relates to SQL ..307
The XML Data Type ...308

When to use the XML type ...308
When not to use the XML type ..309

Mapping SQL to XML and XML to SQL ...309
Mapping character sets ..309
Mapping identifiers ...309
Mapping data types ...310
Mapping tables ..311
Handling null values ..312
Generating the XML Schema ..312

SQL Operators That Produce an XML Result ..313
XMLELEMENT ..313
XMLFOREST ...314
XMLGEN ..314
XMLCONCAT ..315
XMLAGG ...316

Mapping Non-Predefined Data Types to XML ..316
Domain ..316
Distinct UDT ...318
Row ..318
Array ...319
Multiset ...320

xvTable of Contents

Part VI: Advanced Topics ..321

Chapter 18: Cursors .323
Declaring a Cursor ..324

The query expression ...324
The ORDER BY clause ...325
The updatability clause ..326
Sensitivity ...327
Scrollability ..328

Opening a Cursor ..328
Fetching Data from a Single Row ...329

Syntax ..330
Orientation of a scrollable cursor ...330
Positioned DELETE and UPDATE statements331

Closing a Cursor ..331

Chapter 19: Persistent Stored Modules .333
Compound Statements ...333

Atomicity ..334
Variables ...336
Cursors ...336
Conditions ..336
Handling conditions ..338
Conditions that aren’t handled ..340
Assignment ...340

Flow of Control Statements ..341
IF...THEN...ELSE...END IF ...341
CASE...END CASE ...342
LOOP...ENDLOOP ...343
LEAVE ..343
WHILE...DO...END WHILE ..344
REPEAT...UNTIL...END REPEAT ..344
FOR...DO...END FOR ...345
ITERATE ..345

Stored Procedures ..346
Stored Functions ...347
Privileges ..348
Stored Modules ...348

Chapter 20: Error-Handling .351
SQLSTATE ...351
WHENEVER Clause ..353
Diagnostics Areas ..354

The diagnostics header area ..354
The diagnostics detail area ..356

SQL For Dummies, 5th Edition xvi

Constraint violation example ...358
Adding constraints to an existing table ..359
Interpreting the information returned by SQLSTATE359

Handling Exceptions ...360

Part VII: The Part of Tens ..363

Chapter 21: Ten Common Mistakes .365
Assuming That Your Clients Know What They Need365
Ignoring Project Scope ...366
Considering Only Technical Factors ...366
Not Asking for Client Feedback ...366
Always Using Your Favorite Development Environment367
Using Your Favorite System Architecture Exclusively367
Designing Database Tables in Isolation ..367
Neglecting Design Reviews ..368
Skipping Beta Testing ...368
Not Documenting ..368

Chapter 22: Ten Retrieval Tips .369
Verify the Database Structure ..369
Try Queries on a Test Database ..370
Double-Check Queries with JOINs ..370
Triple-Check Queries with Subselects ..370
Summarize Data with GROUP BY ..370
Watch GROUP BY Clause Restrictions ...371
Use Parentheses with AND, OR, and NOT ..371
Control Retrieval Privileges ...371
Back Up Your Databases Regularly ...372
Handle Error Conditions Gracefully ...372

Part VIII: Appendixes ...373

Appendix A: SQL:2003 Reserved Words .375

Appendix B: Glossary .379

Index..387

xviiTable of Contents

SQL For Dummies, 5th Edition xviii

Introduction

Welcome to database development using the industry standard query
language (SQL). Many database management system (DBMS) tools

run on a variety of hardware platforms. The differences among the tools can
be great, but all serious products have one thing in common: They support
SQL data access and manipulation. If you know SQL, you can build relational
databases and get useful information out of them.

About This Book
Relational database management systems are vital to many organizations.
People often think that creating and maintaining these systems are extremely
complex activities — the domain of database gurus who possess enlighten-
ment beyond that of ordinary mortals. This book sweeps away the database
mystique. In this book, you

� Get to the roots of databases.

� Find out how a DBMS is structured.

� Discover the major functional components of SQL.

� Build a database.

� Protect a database from harm.

� Operate on database data.

� Determine how to get the information you want out of a database.

The purpose of this book is to help you build relational databases and get
valuable information out of them by using SQL. SQL is the international stan-
dard language used around the world to create and maintain relational data-
bases. This edition covers the latest version of the standard, SQL:2003.

This book doesn’t tell you how to design a database (I do that in Database
Development For Dummies, also published by Wiley Publishing, Inc.). Here I
assume that you or somebody else has already created a valid design. I then
illustrate how you implement that design by using SQL. If you suspect that
you don’t have a good database design, by all means, fix your design before
you try to build the database. The earlier you detect and correct problems in
a development project, the cheaper the corrections will be.

Who Should Read This Book?
If you need to store or retrieve data from a DBMS, you can do a much better job
with a working knowledge of SQL. You don’t need to be a programmer to use
SQL, and you don’t need to know programming languages, such as COBOL, C,
or BASIC. SQL’s syntax is like English.

If you are a programmer, you can incorporate SQL into your programs. SQL
adds powerful data manipulation and retrieval capability to conventional lan-
guages. This book tells you what you need to know to use SQL’s rich assort-
ment of tools and features inside your programs.

How This Book Is Organized
This book contains eight major parts. Each part contains several chapters.
You may want to read this book from cover to cover once, although you don’t
have to. After that, this book becomes a handy reference guide. You can turn
to whatever section is appropriate to answer your questions.

Part I: Basic Concepts
Part I introduces the concept of a database and distinguishes relational data-
bases from other types. It describes the most popular database architec-
tures, as well as the major components of SQL.

Part II: Using SQL to Build Databases
You don’t need SQL to build a database. This part shows how to build a data-
base by using Microsoft Access, and then you get to build the same database
by using SQL. In addition to defining database tables, this part covers other
important database features: domains, character sets, collations, transla-
tions, keys, and indexes.

Throughout this part, I emphasize protecting your database from corruption,
which is a bad thing that can happen in many ways. SQL gives you the tools
to prevent corruption, but you must use them properly to prevent problems
caused by bad database design, harmful interactions, operator error, and
equipment failure.

2 SQL For Dummies, 5th Edition

Part III: Retrieving Data
After you have some data in your database, you want to do things with it:
Add to the data, change it, or delete it. Ultimately, you want to retrieve useful
information from the database. SQL tools enable you to do all this. These
tools give you low-level, detailed control over your data.

Part IV: Controlling Operations
A big part of database management is protecting the data from harm, which
can come in many shapes and forms. People may accidentally or intention-
ally put bad data into database tables, for example. You can protect yourself
by controlling who can access your database and what they can do. Another
threat to data comes from unintended interaction of concurrent users’ opera-
tions. SQL provides powerful tools to prevent this too. SQL provides much of
the protection automatically, but you need to understand how the protection
mechanisms work so you get all the protection you need.

Part V: SQL in the Real World
SQL is different from most other computer languages in that it operates on a
whole set of data items at once, rather than dealing with them one at a time.
This difference in operational modes makes combining SQL with other lan-
guages a challenge, but you can face it by using the information in this book.
You can exchange information with nondatabase applications by using XML. I
also describe in depth how to use SQL to transfer data across the Internet or
an intranet.

Part VI: Advanced Topics
In this part, you discover how to include set-oriented SQL statements in your
programs and how to get SQL to deal with data one item at a time.

This part also covers error handling. SQL provides you with a lot of informa-
tion whenever something goes wrong in the execution of an SQL statement,
and you find out how to retrieve and interpret that information.

3Introduction

Part VII: The Part of Tens
This section provides some important tips on what to do, and what not to do,
in designing, building, and using a database.

Part VIII: Appendixes
Appendix A lists all of SQL:2003’s reserved words. These are words that have
a very specific meaning in SQL and cannot be used for table names, column
names, or anything other than their intended meaning. Appendix B gives you
a basic glossary on some frequently used terms.

Icons Used in This Book
Tips save you a lot of time and keep you out of trouble.

Pay attention to the information marked by this icon — you may need
it later.

Heeding the advice that this icon points to can save you from major grief.
Ignore it at your peril.

This icon alerts you to the presence of technical details that are interesting
but not absolutely essential to understanding the topic being discussed.

Getting Started
Now for the fun part! Databases are the best tools ever invented for keeping
track of the things you care about. After you understand databases and can
use SQL to make them do your bidding, you wield tremendous power.
Coworkers come to you when they need critical information. Managers seek
your advice. Youngsters ask for your autograph. But most importantly, you
know, at a very deep level, how your organization really works.

4 SQL For Dummies, 5th Edition

Part I
Basic Concepts

In this part . . .

In Part I, I present the big picture. Before talking about
SQL itself, I explain what databases are and how

they’re different from data that early humans used to
store in crude, unstructured, Stone Age–style files. I go
over the most popular database models and discuss the
physical systems on which these databases run. Then I
move on to SQL itself. I give you a brief look at what SQL
is, how the language came about, and what it is today,
based on the latest international standard, SQL:2003.

Chapter 1

Relational Database
Fundamentals

In This Chapter
� Organizing information

� Defining database

� Defining DBMS

� Comparing database models

� Defining relational database

� Considering the challenges of database design

SQL (short for structured query language) is an industry-standard language
specifically designed to enable people to create databases, add new data

to databases, maintain the data, and retrieve selected parts of the data.
Various kinds of databases exist, each adhering to a different conceptual
model. SQL was originally developed to operate on data in databases that
follow the relational model. Recently, the international SQL standard has
incorporated part of the object model, resulting in hybrid structures called
object-relational databases. In this chapter, I discuss data storage, devote a
section to how the relational model compares with other major models, and
provide a look at the important features of relational databases.

Before I talk about SQL, however, first things first: I need to nail down what I
mean by the term database. Its meaning has changed as computers have
changed the way people record and maintain information.

Keeping Track of Things
Today, people use computers to perform many tasks formerly done with
other tools. Computers have replaced typewriters for creating and modifying
documents. They’ve surpassed electromechanical calculators as the best

way to do math. They’ve also replaced millions of pieces of paper, file folders,
and file cabinets as the principal storage medium for important information.
Compared to those old tools, of course, computers do much more, much
faster — and with greater accuracy. These increased benefits do come at a
cost, however. Computer users no longer have direct physical access to their
data.

When computers occasionally fail, office workers may wonder whether com-
puterization really improved anything at all. In the old days, a manila file
folder only “crashed” if you dropped it — then you merely knelt down, picked
up the papers, and put them back in the folder. Barring earthquakes or other
major disasters, file cabinets never “went down,” and they never gave you an
error message. A hard drive crash is another matter entirely: You can’t “pick
up” lost bits and bytes. Mechanical, electrical, and human failures can make
your data go away into the Great Beyond, never to return.

Taking the necessary precautions to protect yourself from accidental data
loss allows you to start cashing in on the greater speed and accuracy that
computers provide.

If you’re storing important data, you have four main concerns:

� Storing data needs to be quick and easy, because you’re likely to do it
often.

� The storage medium must be reliable. You don’t want to come back later
and find some (or all) of your data missing.

� Data retrieval needs to be quick and easy, regardless of how many items
you store.

� You need an easy way to separate the exact information that you want
from the tons of data that you don’t want.

8 Part I: Basic Concepts

Small is beautiful
Computers really shine in the area of data stor-
age, packing away all kinds of information —
text, numbers, sounds, graphic images, TV pro-
grams, or animations — as binary data. A com-
puter can store data at very high densities,
enabling you to keep large quantities of infor-
mation in a very small space. As technology
continues to advance, more and more data can
occupy smaller and smaller spaces. These

days, computers continue to pop up every-
where — gas pumps, your new car, and a
bewildering array of toys. Before long, we could
see computerized shoes that alter the resilience
of their soles depending on whether you’re
walking, running, or taking a jump shot. If you’re
a basketball star, maybe you can get shoes that
store records of all your endorsement accounts
in a tiny database. . . .

State-of-the-art computer databases satisfy these four criteria. If you store
more than a dozen or so data items, you probably want to store those items
in a database.

What Is a Database?
The term database has fallen into loose use lately, losing much of its original
meaning. To some people, a database is any collection of data items (phone
books, laundry lists, parchment scrolls . . . whatever). Other people define
the term more strictly.

In this book, I define a database as a self-describing collection of integrated
records. And yes, that does imply computer technology, complete with lan-
guages such as SQL.

A record is a representation of some physical or conceptual object. Say, for
example, that you want to keep track of a business’s customers. You assign a
record for each customer. Each record has multiple attributes, such as name,
address, and telephone number. Individual names, addresses, and so on are
the data.

A database consists of both data and metadata. Metadata is the data that
describes the data’s structure within a database. If you know how your data
is arranged, then you can retrieve it. Because the database contains a descrip-
tion of its own structure, it’s self-describing. The database is integrated because
it includes not only data items but also the relationships among data items.

The database stores metadata in an area called the data dictionary, which
describes the tables, columns, indexes, constraints, and other items that
make up the database.

Because a flat file system (described later in this chapter) has no metadata,
applications written to work with flat files must contain the equivalent of the
metadata as part of the application program.

Database Size and Complexity
Databases come in all sizes, from simple collections of a few records to mam-
moth systems holding millions of records.

A personal database is designed for use by a single person on a single com-
puter. Such a database usually has a rather simple structure and a relatively
small size. A departmental or workgroup database is used by the members of a
single department or workgroup within an organization. This type of database

9Chapter 1: Relational Database Fundamentals

is generally larger than a personal database and is necessarily more complex;
such a database must handle multiple users trying to access the same data at
the same time. An enterprise database can be huge. Enterprise databases may
model the critical information flow of entire large organizations.

What Is a Database Management
System?

Glad you asked. A database management system (DBMS) is a set of programs
used to define, administer, and process databases and their associated appli-
cations. The database being “managed” is, in essence, a structure that you
build to hold valuable data. A DBMS is the tool you use to build that structure
and operate on the data contained within the database.

Many DBMS programs are on the market today. Some run only on mainframe
computers, some only on minicomputers, and some only on personal com-
puters. A strong trend, however, is for such products to work on multiple
platforms or on networks that contain all three classes of machines.

A DBMS that runs on platforms of multiple classes, large and small, is called
scalable.

Whatever the size of the computer that hosts the database — and regardless
of whether the machine is connected to a network — the flow of information
between database and user is the same. Figure 1-1 shows that the user com-
municates with the database through the DBMS. The DBMS masks the physi-
cal details of the database storage so that the application need only concern
itself with the logical characteristics of the data, not how the data is stored.

10 Part I: Basic Concepts

The value is not in the data, but in the structure
Years ago, some clever person calculated that
if you reduce human beings to their compo-
nents of carbon, hydrogen, oxygen, and nitro-
gen atoms (plus traces of others), they would be
worth only 97 cents. However droll this assess-
ment, it’s misleading. People aren’t composed
of mere isolated collections of atoms. Our atoms
combine into enzymes, proteins, hormones, and
many other substances that would cost millions

of dollars per ounce on the pharmaceutical
market. The precise structure of these combi-
nations of atoms is what gives them that value.
By analogy, database structure makes possible
the interpretation of seemingly meaningless
data. The structure brings to the surface pat-
terns, trends, and tendencies in the data.
Unstructured data — like uncombined atoms —
has little or no value.

Flat Files
Where structured data is concerned, the flat file is as simple as it gets. No, a
flat file isn’t a folder that’s been squashed under a stack of books. Flat files
are so called because they have minimal structure. If they were buildings,
they’d barely stick up from the ground. A flat file is simply a collection of one
data record after another in a specified format — the data, the whole data,
and nothing but the data — in effect, a list. In computer terms, a flat file is
simple. Because the file doesn’t store structural information (metadata), its
overhead (stuff in the file that is not data) is minimal.

Say that you want to keep track of the names and addresses of your com-
pany’s customers in a flat file system. The system may have a structure some-
thing like this:

Harold Percival26262 S. Howards Mill Rd Westminster CA92683
Jerry Appel 32323 S. River Lane Rd Santa Ana CA92705
Adrian Hansen 232 Glenwood Court Anaheim CA92640
John Baker 2222 Lafayette St Garden GroveCA92643
Michael Pens 77730 S. New Era Rd Irvine CA92715
Bob Michimoto 25252 S. Kelmsley Dr Stanton CA92610
Linda Smith 444 S.E. Seventh St Costa Mesa CA92635
Robert Funnell 2424 Sheri Court Anaheim CA92640
Bill Checkal 9595 Curry Dr Stanton CA92610
Jed Style 3535 Randall St Santa Ana CA92705

As you can see, the file contains nothing but data. Each field has a fixed
length (the Name field, for example, is always exactly 15 characters long),
and no structure separates one field from another. The person who created
the database assigned field positions and lengths. Any program using this file
must “know” how each field was assigned, because that information is not
contained in the database itself.

Application
Program

User
User

Interface

DBMS Database

Figure 1-1:
Block

diagram of a
DBMS-

based
information

system.

11Chapter 1: Relational Database Fundamentals

Such low overhead means that operating on flat files can be very fast. On the
minus side, however, application programs must include logic that manipu-
lates the file’s data at a very low level of complexity. The application must
know exactly where and how the file stores its data. Thus, for small systems,
flat files work fine. The larger a system is, however, the more cumbersome a
flat file system becomes. Using a database instead of a flat file system elimi-
nates duplication of effort. Although database files themselves may have
more overhead, the applications can be more portable across various hard-
ware platforms and operating systems. A database also makes writing appli-
cation programs easier because the programmer doesn’t need to know the
physical details of where and how the files store their data.

Databases eliminate duplication of effort, because the DBMS handles the
data-manipulation details. Applications written to operate on flat files must
include those details in the application code. If multiple applications all
access the same flat file data, these applications must all (redundantly)
include that data manipulation code. By using a DBMS, you don’t need to
include such code in the applications at all.

Clearly, if a flat file-based application includes data-manipulation code that
only runs on a particular hardware platform, then migrating the application
to a new platform is a headache waiting to happen. You have to change all
the hardware-specific code — and that’s just for openers. Migrating a similar
DBMS-based application to another platform is much simpler — fewer com-
plicated steps, fewer aspirin consumed.

Database Models
Different as databases may be in size, they are generally always structured
according to one of three database models:

� Relational: Nowadays, new installations of database management sys-
tems are almost exclusively of the relational type. Organizations that
already have a major investment in hierarchical or network technology
may add to the existing model, but groups that have no need to maintain
compatibility with “legacy systems” nearly always choose the relational
model for their databases.

� Hierarchical: Hierarchical databases are aptly named because they have
a simple hierarchical structure that allows fast data access. They suffer
from redundancy problems and a structural inflexibility that makes data-
base modification difficult.

� Network: Network databases have minimal redundancy but pay for that
advantage with structural complexity.

The first databases to see wide use were large organizational databases that
today would be called enterprise databases, built according to either the

12 Part I: Basic Concepts

hierarchical or the network model. Systems built according to the relational
model followed several years later. SQL is a strictly modern language; it
applies only to the relational model and its descendant, the object-relational
model. So here’s where this book says, “So long, it’s been good to know ya,”
to the hierarchical and network models.

New database management systems that are not based on the relational
model probably conform to the newer object model or the hybrid object-
relational model.

Relational model
Dr. E. F. Codd of IBM first formulated the relational database model in 1970,
and this model started appearing in products about a decade later. Ironically,
IBM did not deliver the first relational DBMS. That distinction went to a small
start-up company, which named its product Oracle.

Relational databases have replaced databases built according to earlier
models because the relational type has valuable attributes that distinguish
relational databases from those other database types. Probably the most
important of these attributes is that, in a relational database, you can change
the database structure without requiring changes to applications that were
based on the old structures. Suppose, for example, that you add one or more
new columns to a database table. You don’t need to change any previously
written applications that will continue to process that table, unless you alter
one or more of the columns used by those applications.

Of course, if you remove a column that an existing application references,
you experience problems no matter what database model you follow. One of
the best ways to make a database application crash is to ask it to retrieve a
kind of data that your database doesn’t contain.

Why relational is better
In applications written with DBMSs that follow the hierarchical or network
model, database structure is hard-coded into the application — that is, the
application is dependent on the specific physical implementation of the data-
base. If you add a new attribute to the database, you must change your appli-
cation to accommodate the change, whether or not the application uses the
new attribute.

Relational databases offer structural flexibility; applications written for those
databases are easier to maintain than similar applications written for hierar-
chical or network databases. That same structural flexibility enables you to
retrieve combinations of data that you may not have anticipated needing at
the time of the database’s design.

13Chapter 1: Relational Database Fundamentals

Components of a relational database
Relational databases gain their flexibility because their data resides in tables
that are largely independent of each other. You can add, delete, or change
data in a table without affecting the data in the other tables, provided that
the affected table is not a parent of any of the other tables. (Parent-child table
relationships are explained in Chapter 5, and no, it doesn’t mean discussing
allowances over dinner.) In this section, I show what these tables consist of
and how they relate to the other parts of a relational database.

Guess who’s coming to dinner?
At holiday time, many of my relatives come to my house and sit down at my
table. Databases have relations, too, but each of their relations has its own
table. A relational database is made up of one or more relations.

A relation is a two-dimensional array of rows and columns, containing single-
valued entries and no duplicate rows. Each cell in the array can have only
one value, and no two rows may be identical.

Most people are familiar with two-dimensional arrays of rows and columns, in
the form of electronic spreadsheets such as Microsoft Excel. The offensive
statistics listed on the back of a major-league baseball player’s baseball card
are another example of such an array. On the baseball card are columns for
year, team, games played, at-bats, hits, runs scored, runs batted in, doubles,
triples, home runs, bases on balls, steals, and batting average. A row covers
each year that the player has played in the major leagues. You can also store
this data in a relation (a table), which has the same basic structure. Figure 1-2
shows a relational database table holding the offensive statistics for a single
major-league player. In practice, such a table would hold the statistics for an
entire team or perhaps the whole league.

14 Part I: Basic Concepts

Historical perspectives
In the early 1980s, personal databases appeared
for the first time on personal computers. The
earliest products were based on flat file sys-
tems, but some early products attempted to
follow the relational model. As they evolved, the
most popular PC DBMSs came ever closer to
being truly relational, as defined by Dr. Codd.
Since the late 1980s, more and more PCs in

organizations are hooked together into work-
groups or departmental networks. To fill this
new market niche, relational DBMSs that origi-
nated on large mainframe computers have
migrated down to — and relational PC DBMSs
have migrated up from — stand-alone personal
computers.

Columns in the array are self-consistent, in that a column has the same mean-
ing in every row. If a column contains a player’s last name in one row, the
column must contain a player’s last name in all rows. The order in which the
rows and columns appear in the array has no significance. As far as the DBMS
is concerned, it doesn’t matter which column is first, which is next, and
which is last. The DBMS processes the table the same way regardless of the
order of the columns. The same is true of rows. The order of the rows simply
doesn’t matter to the DBMS.

Every column in a database table embodies a single attribute of the table.
The column’s meaning is the same for every row of the table. A table may, for
example, contain the names, addresses, and telephone numbers of all an
organization’s customers. Each row in the table (also called a record, or a
tuple) holds the data for a single customer. Each column holds a single
attribute, such as customer number, customer name, customer street, cus-
tomer city, customer state, customer postal code, or customer telephone
number. Figure 1-3 shows some of the rows and columns of such a table.

The things called relations in a database model correspond to tables in a data-
base based on the model. Try to say that ten times fast.

Enjoy the view
One of my favorite views is the Yosemite Valley viewed from the mouth of the
Wawona Tunnel, late on a spring afternoon. Golden light bathes the sheer
face of El Capitan, Half Dome glistens in the distance, and Bridal Veil Falls
forms a silver cascade of sparkling water, while a trace of wispy clouds
weaves a tapestry across the sky. Databases have views as well — even if
they’re not quite that picturesque. The beauty of database views is their
sheer usefulness when you’re working with your data.

Tables can contain many columns and rows. Sometimes all of that data inter-
ests you, and sometimes it doesn’t. Only some columns of a table may interest
you or only rows that satisfy a certain condition. Some columns of one table
and some other columns of a related table may interest you. To eliminate data

Roberts
Roberts
Roberts

1988
1989
1990

Padres
Padres
Padres

5
117
149

9
329
556

3
99

172

 0
15
36

0
8
3

0
3
9

.333

.301

.309

Year
At
BatPlayer Team Game Hits

1
81

104

Runs

0
25
44

RBI 2B 3B HR

 1
49
55

Walk

 0
21
46

Steals
Bat.
Avg.

Figure 1-2:
A table

showing a
baseball
player’s

offensive
statistics.

15Chapter 1: Relational Database Fundamentals

that is not relevant to your current needs, you can create a view. A view is a
subset of a database that an application can process. It may contain parts of
one or more tables.

Views are sometimes called virtual tables. To the application or the user,
views behave the same as tables. Views, however, have no independent exis-
tence. Views allow you to look at data, but views are not part of the data.

Say, for example, that you’re working with a database that has a CUSTOMER
table and an INVOICE table. The CUSTOMER table has the columns
CustomerID, FirstName, LastName, Street, City, State, Zipcode, and
Phone. The INVOICE table has the columns InvoiceNumber, CustomerID,
Date, TotalSale, TotalRemitted, and FormOfPayment.

A national sales manager wants to look at a screen that contains only the
customer’s first name, last name, and telephone number. Creating from the
CUSTOMER table a view that contains only those three columns enables the
manager to view only the needed information without having to see all the
unwanted data in the other columns. Figure 1-4 shows the derivation of the
national sales manager’s view.

A branch manager may want to look at the names and phone numbers of all
customers whose zip codes fall between 90000 and 93999 (Southern and
Central California). A view that places a restriction on the rows it retrieves as
well as the columns it displays does the job. Figure 1-5 shows the sources for
the branch manager’s views columns.

ColumnsRow

Figure 1-3:
Each

database
row

contains a
record;

each
database

column
holds a

single
attribute.

16 Part I: Basic Concepts

The accounts payable manager may want to look at customer names from the
CUSTOMER table and Date, TotalSale, TotalRemitted, and FormOfPayment
from the INVOICE table, where TotalRemitted is less than TotalSale. The
latter would be the case if full payment hasn’t yet been made. This need
requires a view that draws from both tables. Figure 1-6 shows data flowing
into the accounts payable manager’s view from both the CUSTOMER and
INVOICE tables.

CUSTOMER Table

Customer ID
FirstName
LastName
Street
City
State
Zipcode
Phone

BRANCH_MGR View

FirstName
LastName
Phone

INVOICE Table

InvoiceNumber
CustomerID
Date
TotalSale
TotalRemitted
FormOfPayment

Zipcode > = 90000 AND Zipcode < = 93999

Figure 1-5:
The branch
manager’s

view
includes

only certain
rows from

the
CUSTOMER

table.

CUSTOMER Table

Customer ID
FirstName
LastName
Street
City
State
Zipcode
Phone

SALES_MGR View

FirstName
LastName
Phone

INVOICE Table

InvoiceNumber
CustomerID
Date
TotalSale
TotalRemitted
FormOfPayment

Figure 1-4:
The sales

manager’s
view derives

from the
CUSTOMER

table.

17Chapter 1: Relational Database Fundamentals

Views are useful because they enable you to extract and format database
data without physically altering the stored data. Chapter 6 illustrates how to
create a view by using SQL.

Schemas, domains, and constraints
A database is more than a collection of tables. Additional structures, on sev-
eral levels, help to maintain the data’s integrity. A database’s schema provides
an overall organization to the tables. The domain of a table column tells you
what values you may store in the column. You can apply constraints to a data-
base table to prevent anyone (including yourself) from storing invalid data in
the table.

Schemas
The structure of an entire database is its schema, or conceptual view. This
structure is sometimes also called the complete logical view of the database.
The schema is metadata — as such, it’s part of the database. The metadata
itself, which describes the database’s structure, is stored in tables that are
just like the tables that store the regular data. Even metadata is data; that’s
the beauty of it.

Domains
An attribute of a relation (that is, a column of a table) can assume some finite
number of values. The set of all such values is the domain of the attribute.

CUSTOMER Table

Customer ID
FirstName
LastName
Street
City
State
Zipcode
Phone

FirstName
LastName
Date
Total Sale
TotalRemitted
FormOfPayment

ACCTS_PAY View

INVOICE Table

InvoiceNumber
CustomerID
Date
TotalSale
TotalRemitted
FormOfPayment

Figure 1-6:
The

accounts
payable

manager’s
view draws

from two
tables.

18 Part I: Basic Concepts

Say, for example, that you’re an automobile dealer who handles the newly
introduced Curarri GT 4000 sports coupe. You keep track of the cars you have
in stock in a database table that you name INVENTORY. You name one of the
table columns Color, which holds the exterior color of each car. The GT 4000
comes in only four colors: blazing crimson, midnight black, snowflake white,
and metallic gray. Those four colors are the domain of the Color attribute.

Constraints
Constraints are an important, although often overlooked, component of a
database. Constraints are rules that determine what values the table attrib-
utes can assume.

By applying tight constraints to a column, you can prevent people from enter-
ing invalid data into that column. Of course, every value that is legitimately in
the domain of the column must satisfy all the column’s constraints. As I men-
tion in the preceding section, a column’s domain is the set of all values that
the column can contain. A constraint is a restriction on what a column may
contain. The characteristics of a table column, plus the constraints that apply
to that column, determine the column’s domain. By applying constraints, you
can prevent the entry into a column of data that falls outside the column’s
domain.

In the auto dealership example, you can constrain the database to accept
only those four values in the Color column. If a data entry operator then
tries to enter in the Color column a value of, for example, forest green,
the system refuses to accept the entry. Data entry can’t proceed until the
operator enters a valid value into the Color field.

The object model challenges
the relational model
The relational model has been fantastically successful in a wide variety of
application areas. However, it is not problem free. The problems have been
made more visible by the rise in popularity of object-oriented programming
languages such as C++, Java, and C#. Such languages are capable of handling
more complex problems than traditional languages due to such features as
user-extensible type systems, encapsulation, inheritance, dynamic binding of
methods, complex and composite objects, and object identity. I am not going
to explain what all those things mean in this book (although I do touch on
some of them later). Suffice it to say that the classic relational model does
not mesh well with many of these features. As a result, database management
systems based on the object model have been developed and are available
on the market. As yet their market share is relatively small.

19Chapter 1: Relational Database Fundamentals

Object-relational model
Database designers, like everyone else, are constantly searching for the best
of all possible worlds. They mused, “Wouldn’t it be great if we could have the
advantages of an object-oriented database system, and still retain compatibil-
ity with the relational system that we have come to know and love?” This
kind of thinking led to the hybrid object-relational model. Object-relational
DBMSs extend the relational model to include support for object-oriented
data modeling. Object-oriented features have been added to the international
SQL standard, allowing relational DBMS vendors to transform their products
into object-relational DBMSs, while retaining compatibility with the standard.
Thus, whereas the SQL-92 standard describes a purely relational database
model, SQL:1999 describes an object-relational database model. SQL:2003 has
even more object-oriented features.

In this book, I describe ISO/IEC international standard SQL. This is primarily
a relational database model. I also include the object-oriented extensions to
the standard that were introduced in SQL:1999, and the additional extensions
included in SQL:2003. The object-oriented features of the new standard allow
developers to apply SQL databases to problems that are too complex to
address with the older, purely relational, paradigm. (Ah, paradigms. Ya gotta
love ’em.)

Database Design Considerations
A database is a representation of a physical or conceptual structure, such as
an organization, an automobile assembly, or the performance statistics of all
the major-league baseball clubs. The accuracy of the representation depends
on the level of detail of the database design. The amount of effort that you put
into database design should depend on the type of information you want to get
out of the database. Too much detail is a waste of effort, time, and hard drive
space. Too little detail may render the database worthless. Decide how much
detail you need now and how much you may need in the future — and then
provide exactly that level of detail in your design (no more and no less) — but
don’t be surprised if you have to adjust it to meet real-world needs.

Today’s database management systems, complete with attractive graphical
user interfaces and intuitive design tools, can give the would-be database
designer a false sense of security. These systems make designing a database
seem comparable to building a spreadsheet or engaging in some other rela-
tively straightforward task. No such luck. Database design is difficult. If you
do it incorrectly, you get a database that becomes gradually more corrupt as
time goes on. Often the problem doesn’t turn up until after you devote a great
deal of effort to data entry. By the time you know that you have a problem,
it’s already serious. In many cases, the only solution is to completely redesign
the database and reenter all the data. The up side is that you get better at it.

20 Part I: Basic Concepts

Chapter 2

SQL Fundamentals
In This Chapter
� Understanding SQL

� Clearing up SQL misconceptions

� Taking a look at the different SQL standards

� Getting familiar with standard SQL commands and reserved words

� Representing numbers, characters, dates, times, and other data types

� Exploring null values and constraints

� Putting SQL to work in a client/server system

� Considering SQL on a network

SQL is a flexible language that you can use in a variety of ways. It’s the most
widely used tool for communicating with a relational database. In this

chapter, I explain what SQL is and isn’t — specifically, what distinguishes SQL
from other types of computer languages. Then I introduce the commands and
data types that standard SQL supports and explain key concepts: null values
and constraints. Finally, I give an overview of how SQL fits into the client/server
environment, as well as the Internet and organizational intranets.

What SQL Is and Isn’t
The first thing to understand about SQL is that SQL isn’t a procedural lan-
guage, as are FORTRAN, BASIC, C, COBOL, Pascal, and Java. To solve a prob-
lem in one of those procedural languages, you write a procedure that
performs one specific operation after another until the task is complete. The
procedure may be a linear sequence or may loop back on itself, but in either
case, the programmer specifies the order of execution.

SQL, on the other hand, is nonprocedural. To solve a problem using SQL, simply
tell SQL what you want (as if you were talking to Aladdin’s genie) instead of
telling the system how to get you what you want. The database management
system (DBMS) decides the best way to get you what you request.

All right. I just told you that SQL is not a procedural language. This is essen-
tially true. However, millions of programmers out there (and you are proba-
bly one of them) are accustomed to solving problems in a procedural manner.
So, in recent years, there has been a lot of pressure to add some procedural
functionality to SQL. Thus the latest version of the SQL specification,
SQL:2003, incorporates procedural language facilities, such as BEGIN blocks,
IF statements, functions, and procedures. These facilities have been added
so you can store programs at the server, where multiple clients can use these
programs repeatedly.

To illustrate what I mean by “tell the system what you want,” suppose that
you have an EMPLOYEE table and you want to retrieve from that table the
rows that correspond to all your senior people. You want to define a senior
person as anyone older than age 40 or anyone earning more than $60,000 per
year. You can make the desired retrieval by using the following query:

SELECT * FROM EMPLOYEE WHERE Age>40 OR Salary>60000 ;

This statement retrieves all rows from the EMPLOYEE table where either the
value in the Age column is greater than 40 or the value in the Salary column
is greater than 60,000. In SQL, you don’t need to specify how the information
is retrieved. The database engine examines the database and decides for itself
how to fulfill your request. You need only to specify what data you want to
retrieve.

A query is a question you ask the database. If any of the data in the database
satisfies the conditions of your query, SQL retrieves that data.

Current SQL implementations lack many of the basic programming constructs
fundamental to most other languages. Real-world applications usually require
at least some of these programming constructs, which is why SQL is actually
a data sublanguage. Even with the extensions that were added in SQL:1999
and the additional extensions added in SQL:2003, you still need to use SQL
in combination with a procedural language, such as C, to create a complete
application.

You can extract information from a database in one of two ways:

� Make an ad hoc query from a computer console by just typing an SQL
statement and reading the results from the screen. Console is the tradi-
tional term for the computer hardware that does the job of the keyboard
and screen used in current PC-based systems. Queries from the console
are appropriate when you want a quick answer to a specific question. To
meet an immediate need, you may require information that you never
needed before from a database. You’re likely never to need that informa-
tion again either, but you need it now. Enter the appropriate SQL query
statement from the keyboard, and in due time, the result appears on
your screen.

22 Part I: Basic Concepts

� Execute a program that collects information from the database and
then reports on the information, either on-screen or in a printed
report. You can use SQL either way. Incorporating an SQL query directly
into a program is a good way to run a complex query that you’re likely
to run again in the future. That way, you need to formulate the query
only once. Chapter 15 explains how to incorporate SQL code into pro-
grams written in another language.

A (Very) Little History
SQL originated in one of IBM’s research laboratories, as did relational database
theory. In the early 1970s, as IBM researchers performed early development
on relational DBMS (or RDBMS) systems, they created a data sublanguage to
operate on these systems. They named the prerelease version of this sublan-
guage SEQUEL (Structured English QUEry Language). However, when it came
time to formally release their query language as a product, they wanted to
make sure that people understood that the released product was different
from and superior to the prerelease DBMS. Therefore, they decided to give
the released product a name that was different from SEQUEL but still recog-
nizable as a member of the same family. So they named it SQL.

IBM’s work with relational databases and SQL was well known in the industry
even before IBM introduced its SQL/DS RDBMS in 1981. By that time,
Relational Software, Inc. (now Oracle Corporation) had already released its
first RDBMS. These early products immediately set the standard for a new
class of database management systems. They incorporated SQL, which
became the de facto standard for data sublanguages. Vendors of other rela-
tional database management systems came out with their own versions of
SQL. These other implementations typically contained all the core functional-
ity of the IBM products but were extended in ways that took advantage of the
particular strengths of the underlying RDBMS. As a result, although nearly all
vendors used some form of SQL, compatibility across platforms was poor.

An implementation is a particular RDBMS running on a specific hardware
platform.

Soon a movement began, to create a universally recognized SQL standard to
which everyone could adhere. In 1986, ANSI released a formal standard it
named SQL-86. ANSI updated that standard in 1989 to SQL-89 and again in
1992 to SQL-92. As DBMS vendors proceed through new releases of their
products, they try to bring their implementations ever closer to this stan-
dard. This effort has brought true SQL portability much closer to reality.

The most recent version of the SQL standard is SQL:2003 (ISO/IEC 9075-X:2003).
In this book, I describe SQL as SQL:2003 defines the language. Any specific SQL
implementation differs from the standard to a certain extent. Because the full

23Chapter 2: SQL Fundamentals

SQL:2003 standard is very comprehensive, currently available implementa-
tions are unlikely to support it fully. However, DBMS vendors are working to
support a core subset of the standard SQL language. The full ISO/IEC stan-
dards are available for purchase at webstore.ansi.org.

SQL Commands
The SQL command language consists of a limited number of commands that
specifically relate to data handling. Some of these commands perform data-
definition functions; some perform data-manipulation functions; and others
perform data-control functions. I cover the data-definition commands and
data-manipulation commands in Chapters 4 through 12, and the data-control
commands in Chapters 13 and 14.

To comply with SQL:2003, an implementation must include all the core fea-
tures. It may also include extensions to the core set (which the SQL:2003
specification also describes). But back to basics. Table 2-1 lists the core
SQL:2003 commands.

Table 2-1 Core SQL:2003 Commands
ALTER DOMAIN DECLARE CURSOR FREE LOCATOR

ALTER TABLE DECLARE TABLE GET DIAGNOSTICS

CALL DELETE GRANT

CLOSE DISCONNECT HOLD LOCATOR

COMMIT DROP ASSERTION INSERT

CONNECT DROP CHARACTER SET OPEN

CREATE ASSERTION DROP COLLATION RELEASE
SAVEPOINT

CREATE CHARACTER SET DROP DOMAIN RETURN

CREATE COLLATION DROP ORDERING REVOKE

CREATE DOMAIN DROP ROLE ROLLBACK

CREATE FUNCTION DROP SCHEMA SAVEPOINT

CREATE METHOD DROP SPECIFIC SELECT
FUNCTION

CREATE ORDERING DROP SPECIFIC SET CONNECTION
PROCEDURE

24 Part I: Basic Concepts

CREATE PROCEDURE DROP SPECIFIC SET CONSTRAINTS
ROUTINE

CREATE ROLE DROP TABLE SET ROLE

CREATE SCHEMA DROP TRANSFORM SET SESSION
AUTHORIZATION

CREATE TABLE DROP TRANSLATION SET SESSION
CHARACTERISTICS

CREATE TRANSFORM DROP TRIGGER SET TIME ZONE

CREATE TRANSLATION DROP TYPE SET TRANSACTION

CREATE TRIGGER DROP VIEW START
TRANSACTION

CREATE TYPE FETCH UPDATE

CREATE VIEW

If you’re among those programmers who love to try out new capabilities,
rejoice.

Reserved Words
In addition to the commands, a number of other words have a special signifi-
cance within SQL. These words, along with the commands, are reserved for
specific uses, so you can’t use them as variable names or in any other way
that differs from their intended use. You can easily see why tables, columns,
and variables should not be given names that appear on the reserved word
list. Imagine the confusion that a statement such as the following would cause:

SELECT SELECT FROM SELECT WHERE SELECT = WHERE ;

A complete list of SQL:2003 reserved words appears in Appendix A.

Data Types
Depending on their histories, different SQL implementations support a vari-
ety of data types. The SQL:2003 specification recognizes only five predefined
general types:

� Numerics

� Strings

25Chapter 2: SQL Fundamentals

� Booleans

� Datetimes

� Intervals

Within each of these general types may be several subtypes (exact numerics,
approximate numerics, character strings, bit strings, large object strings). In
addition to the built-in, predefined types, SQL:2003 supports collection types,
constructed types, and user-defined types.

If you use an SQL implementation that supports one or more data types that
the SQL:2003 specification doesn’t describe, you can keep your database
more portable by avoiding these undescribed data types. Before you decide
to create and use a user-defined data type, make sure that any DBMS you may
want to port to in the future also supports user-defined types.

Exact numerics
As you can probably guess from the name, the exact numeric data types
enable you to express the value of a number exactly. Five data types fall into
this category:

� INTEGER

� SMALLINT

� BIGINT

� NUMERIC

� DECIMAL

INTEGER data type
Data of the INTEGER type has no fractional part, and its precision depends on
the specific SQL implementation. The database developer can’t specify the
precision.

The precision of a number is the maximum number of digits the number can
have.

SMALLINT data type
The SMALLINT type is also for integers, but the precision of a SMALLINT in a
specific implementation can’t be any larger than the precision of an INTEGER
on the same implementation. Implementations on IBM System/370 computers
commonly represent SMALLINT and INTEGER with 16-bit and 32-bit binary
numbers respectively. In many implementations, SMALLINT and INTEGER are
the same.

26 Part I: Basic Concepts

If you’re defining a database table column to hold integer data and you
know that the range of values in the column won’t exceed the precision of
SMALLINT data on your implementation, assign the column the SMALLINT
type rather than the INTEGER type. This assignment may enable your DBMS
to conserve storage space.

BIGINT data type
The BIGINT data type is new with SQL:2003. It is also an integer type, and it is
defined as a type whose precision is at least as great as that of the INTEGER
type and could be greater. The exact precision of a BIGINT data type is imple-
mentation dependent.

NUMERIC data type
NUMERIC data can have a fractional component in addition to its integer com-
ponent. You can specify both the precision and the scale of NUMERIC data.
(Precision, remember, is the maximum number of digits possible.)

The scale of a number is the number of digits in its fractional part. The scale
of a number can’t be negative or larger than that number’s precision.

If you specify the NUMERIC data type, your SQL implementation gives you
exactly the precision and scale that you request. You may specify NUMERIC
and get a default precision and scale, or NUMERIC (p) and get your specified
precision and the default scale, or NUMERIC (p,s) and get both your speci-
fied precision and your specified scale. The parameters p and s are place-
holders that would be replaced by actual values in a data declaration.

Say, for example, that the NUMERIC data type’s default precision for your SQL
implementation is 12 and the default scale is 6. If you specify a database
column as having a NUMERIC data type, the column can hold numbers up to
999,999.999999. If, on the other hand, you specify a data type of NUMERIC
(10) for a column, that column can hold only numbers with a maximum
value of 9,999.999999. The parameter (10) specifies the maximum number of
digits possible in the number. If you specify a data type of NUMERIC (10,2)
for a column, that column can hold numbers with a maximum value of
99,999,999.99. In this case, you may still have ten total digits, but only two of
the digits can fall to the right of the decimal point.

NUMERIC data is for values such as 595.72. That value has a precision of 5
(the total number of digits) and a scale of 2 (the number of digits to the right
of the decimal point). A data type of NUMERIC (5,2) is appropriate for such
numbers.

DECIMAL data type
The DECIMAL data type is similar to NUMERIC. This data type can have a frac-
tional component, and you can specify its precision and scale. The difference

27Chapter 2: SQL Fundamentals

is that the precision your implementation supplies may be greater than what
you specify, and if so, the implementation uses the greater precision. If you
do not specify precision or scale, the implementation uses default values, as
it does with the NUMERIC type.

An item that you specify as NUMERIC (5,2) can never contain a number with
an absolute value greater than 999.99. An item that you specify as DECIMAL
(5,2) can always hold values up to 999.99, but if the implementation permits
larger values, the DBMS doesn’t reject values larger than 999.99.

Use the NUMERIC or DECIMAL type if your data has fractional positions, and
use the INTEGER, SMALLINT, or BIGINT type if your data always consists of
whole numbers. Use the NUMERIC type if you want to maximize portability,
because a value that you define as NUMERIC (5,2), for example, holds the
same range of values on all systems.

Approximate numerics
Some quantities have such a large range of possible values (many orders of
magnitude) that a computer with a given register size can’t represent all the
values exactly. (Examples of register sizes are 32 bits, 64 bits, and 128 bits.)
Usually in such cases, exactness isn’t necessary, and a close approximation is
acceptable. SQL:2003 defines three approximate numeric data types to
handle this kind of data.

REAL data type
The REAL data type gives you a single-precision floating-point number, the
precision of which depends on the implementation. In general, the hardware
you’re using determines precision. A 64-bit machine, for example, gives you
more precision than does a 32-bit machine.

A floating-point number is a number that contains a decimal point. The decimal
point “floats” or appears in different locations in the number, depending on the
number’s value. 3.1, 3.14, and 3.14159 are examples of floating-point numbers.

DOUBLE PRECISION data type
The DOUBLE PRECISION data type gives you a double-precision floating-
point number, the precision of which again depends on the implementation.
Surprisingly, the meaning of the word DOUBLE also depends on the implemen-
tation. Double-precision arithmetic is primarily employed by scientific users.
Different scientific disciplines have different needs in the area of precision.
Some SQL implementations cater to one category of users, and other imple-
mentations cater to other categories of users.

28 Part I: Basic Concepts

In some systems, the DOUBLE PRECISION type has exactly twice the capacity of
the REAL data type for both mantissa and exponent. (In case you’ve forgotten
what you learned in high school, you can represent any number as a mantissa
multiplied by ten raised to the power given by an exponent. You can write
6,626, for example, as 6.626E3. The number 6.626 is the mantissa, which you
multiply by ten raised to the third power; in that case, 3 is the exponent.) You
gain no benefit by representing numbers that are fairly close to one (such as
6,626 or even 6,626,000) with an approximate numeric data type. Exact
numeric types work just as well, and after all, they’re exact. For numbers that
are either very near zero or much larger than one, however, such as 6.626E-34
(a very small number), you must use an approximate numeric type. The
exact numeric types can’t hold such numbers. On other systems, the DOUBLE
PRECISION type gives you somewhat more than twice the mantissa capacity
and somewhat less than twice the exponent capacity as the REAL type. On
yet another type of system, the DOUBLE PRECISION type gives double the
mantissa capacity but the same exponent capacity as the REAL type. In this
case, accuracy doubles, but range does not.

The SQL:2003 specification does not try to arbitrate or establish by fiat what
DOUBLE PRECISION means. The specification requires only that the precision
of a DOUBLE PRECISION number be greater than the precision of a REAL
number. This constraint, though rather weak, is perhaps the best possible in
light of the great differences you encounter in hardware.

FLOAT data type
The FLOAT data type is most useful if you think that your database may some-
day migrate to a hardware platform with different register sizes than the one
on which you originally design it. By using the FLOAT data type, you can spec-
ify a precision — for example, FLOAT (5). If your hardware supports the
specified precision with its single-precision circuitry, single-precision arith-
metic is what your system uses. If the specified precision requires double-
precision arithmetic, the system uses double-precision arithmetic.

Using FLOAT rather than REAL or DOUBLE PRECISION makes porting your
databases to other hardware easier, because the FLOAT data type enables you
to specify precision. The precision of REAL and DOUBLE PRECISION numbers
is hardware-dependent.

If you aren’t sure whether to use the exact numeric data types (NUMERIC/
DECIMAL) or the approximate numeric data types (FLOAT/REAL), use the exact
numeric types. The exact data types are less demanding of system resources
and, of course, give exact rather than approximate results. If the range of pos-
sible values of your data is large enough to require the use of the approximate
data types, you can probably determine this fact in advance.

29Chapter 2: SQL Fundamentals

Character strings
Databases store many types of data, including graphic images, sounds, and
animations. I expect odors to come next. Can you imagine a three-dimensional
1600 x 1200 24-bit color image of a large slice of pepperoni pizza on your screen,
while an odor sample taken at DiFilippi’s Pizza Grotto replays through your
super-multimedia card? Such a setup may get frustrating — at least until you
can afford to add taste-type data to your system as well. Alas, you can expect
to wait a long time before odor and taste become standard SQL data types.
These days, the data types that you use most commonly — after the numeric
types, of course — are the character-string types.

You have three main types of character data: fixed character data (CHARACTER
or CHAR), varying character data (CHARACTER VARYING or VARCHAR), and
character large object data (CHARACTER LARGE OBJECT or CLOB). You also
have three variants of these types of character data: NATIONAL CHARACTER,
NATIONAL CHARACTER VARYING, and NATIONAL CHARACTER LARGE OBJECT.

CHARACTER data type
If you define the data type of a column as CHARACTER or CHAR, you can specify
the number of characters the column holds by using the syntax CHARACTER
(x), where x is the number of characters. If you specify a column’s data type
as CHARACTER (16), for example, the maximum length of any data you can
enter in the column is 16 characters. If you don’t specify an argument (that is,
you don’t provide a value in place of the x), SQL assumes a field length of one
character. If you enter data into a CHARACTER field of a specified length and
you enter fewer characters than the specified number, SQL fills the remaining
character spaces with blanks.

CHARACTER VARYING data type
The CHARACTER VARYING data type is useful if entries in a column can vary in
length, but you don’t want SQL to pad the field with blanks. This data type
enables you to store exactly the number of characters that the user enters.
No default value exists for this data type. To specify this data type, use the
form CHARACTER VARYING (x) or VARCHAR (x), where x is the maximum
number of characters permitted.

CHARACTER LARGE OBJECT data type
The CHARACTER LARGE OBJECT (CLOB) data type was introduced with
SQL:1999. As its name implies, it is used with huge character strings that are
too large for the CHARACTER type. CLOBs behave much like ordinary character
strings, but there are a number of restrictions on what you can do with them.
A CLOB may not be used in a PRIMARY KEY, FOREIGN KEY, or UNIQUE predicate.
Furthermore, it may not be used in a comparison other than one for either
equality or inequality. Because of their large size, applications generally do

30 Part I: Basic Concepts

not transfer CLOBs to or from a database. Instead, a special client-side type
called a CLOB locator is used to manipulate the CLOB data. It is a parameter
whose value identifies a character large object.

NATIONAL CHARACTER, NATIONAL CHARACTER VARYING,
and NATIONAL CHARACTER LARGE OBJECT data types
Different languages have some characters that differ from any characters
in another language. For example, German has some special characters
not present in the English language character set. Some languages, such
as Russian, have a very different character set from the English one. If you
specify, for example, the English character set as the default for your system,
you can use alternate character sets because the NATIONAL CHARACTER,
NATIONAL CHARACTER VARYING, and NATIONAL CHARACTER LARGE OBJECT
data types function the same as the CHARACTER, CHARACTER VARYING, and
CHARACTER LARGE OBJECT data types, except that the character set you’re
specifying is different from the default character set. You can specify the
character set as you define a table column. If you want, each column can use
a different character set. The following example of a table-creation statement
uses multiple character sets:

CREATE TABLE XLATE (
LANGUAGE_1 CHARACTER (40),
LANGUAGE_2 CHARACTER VARYING (40) CHARACTER SET GREEK,
LANGUAGE_3 NATIONAL CHARACTER (40),
LANGUAGE_4 CHARACTER (40) CHARACTER SET KANJI
) ;

The LANGUAGE_1 column contains characters in the implementation’s default
character set. The LANGUAGE_3 column contains characters in the implemen-
tation’s national character set. The LANGUAGE_2 column contains Greek char-
acters. And the LANGUAGE_4 column contains kanji characters.

Booleans
The BOOLEAN data type comprises the distinct truth values true and false, as
well as unknown. If either a Boolean true or false value is compared to a NULL
or unknown truth value, the result will have the unknown value.

Datetimes
The SQL:2003 standard defines five data types that deal with dates and
times. These data types are called datetime data types, or simply datetimes.
Considerable overlap exists among these data types, so some implementa-
tions you encounter may not support all five.

31Chapter 2: SQL Fundamentals

Implementations that do not fully support all five data types for dates and
times may experience problems with databases that you try to migrate from
another implementation. If you have trouble with a migration, check how both
the source and the destination implementations represent dates and times.

DATE data type
The DATE type stores year, month, and day values of a date, in that order. The
year value is four digits long, and the month and day values are both two
digits long. A DATE value can represent any date from the year 0001 to the
year 9999. The length of a DATE is ten positions, as in 1957-08-14.

Because SQL explicitly represents all four digits of a year in the DATE type,
SQL data was never subject to the much-hyped Year 2000 (Y2K) problem.

TIME WITHOUT TIME ZONE data type
The TIME WITHOUT TIME ZONE data type stores hour, minute, and second
values of time. The hours and minutes occupy two digits. The seconds value
may be only two digits but may also expand to include an optional fractional
part. This data type, therefore, represents a time of 32 minutes and 58.436
seconds past 9 a.m., for example, as 09:32:58.436.

The precision of the fractional part is implementation-dependent but is at
least six digits long. A TIME WITHOUT TIME ZONE value takes up eight posi-
tions (including colons) when the value has no fractional part, or nine posi-
tions (including the decimal point) plus the number of fractional digits when
the value does include a fractional part. You specify TIME WITHOUT TIME
ZONE type data either as TIME, which gives you the default of no fractional
digits, or as TIME WITHOUT TIME ZONE (p), where p is the number of digit
positions to the right of the decimal. The example in the preceding paragraph
represents a data type of TIME WITHOUT TIME ZONE (3).

TIMESTAMP WITHOUT TIME ZONE data type
TIMESTAMP WITHOUT TIME ZONE data includes both date and time informa-
tion. The lengths and the restrictions on the values of the components of
TIMESTAMP WITHOUT TIME ZONE data are the same as they are for DATE and
TIME WITHOUT TIME ZONE data, except for one difference: The default length
of the fractional part of the time component of a TIMESTAMP WITHOUT TIME
ZONE is six digits rather than zero. If the value has no fractional digits, the
length of a TIMESTAMP WITHOUT TIME ZONE is 19 positions — ten date posi-
tions, one space as a separator, and eight time positions, in that order. If frac-
tional digits are present (six digits is the default), the length is 20 positions
plus the number of fractional digits. The twentieth position is for the decimal
point. You specify a field as TIMESTAMP WITHOUT TIME ZONE type by using
either TIMESTAMP WITHOUT TIME ZONE or TIMESTAMP WITHOUT TIME ZONE
(p), where p is the number of fractional digit positions. The value of p can’t
be negative, and the implementation determines its maximum value.

32 Part I: Basic Concepts

TIME WITH TIME ZONE data type
The TIME WITH TIME ZONE data type is the same as the TIME WITHOUT
TIME ZONE data type except this type adds information about the offset from
universal time (UTC, also known as Greenwich Mean Time or GMT). The value
of the offset may range anywhere from –12:59 to +13:00. This additional infor-
mation takes up six more digit positions following the time — a hyphen as a
separator, a plus or minus sign, and then the offset in hours (two digits) and
minutes (two digits) with a colon in between the hours and minutes. A TIME
WITH TIME ZONE value with no fractional part (the default) is 14 positions
long. If you specify a fractional part, the field length is 15 positions plus the
number of fractional digits.

TIMESTAMP WITH TIME ZONE data type
The TIMESTAMP WITH TIME ZONE data type functions the same as the
TIMESTAMP WITHOUT TIME ZONE data type except that this data type also
adds information about the offset from universal time. The additional infor-
mation takes up six more digit positions following the timestamp (see the
preceding section for the form of the time zone information). Including time
zone data sets up 25 positions for a field with no fractional part and 26 posi-
tions plus the number of fractional digits for fields that do include a frac-
tional part (six digits is the default number of fractional digits).

Intervals
The interval data types relate closely to the datetime data types. An interval
is the difference between two datetime values. In many applications that deal
with dates, times, or both, you sometimes need to determine the interval
between two dates or two times. SQL recognizes two distinct types of inter-
vals: the year-month interval and the day-time interval. A year-month interval
is the number of years and months between two dates. A day-time interval is
the number of days, hours, minutes, and seconds between two instants
within a month. You can’t mix calculations involving a year-month interval
with calculations involving a day-time interval, because months come in
varying lengths (28, 29, 30, or 31 days long).

ROW types
The ROW data type was introduced with SQL:1999. It’s not that easy to under-
stand, and as a beginning to intermediate SQL programmer, you may never
use it. After all, people got by without it just fine between 1986 and 1999.

One notable thing about the ROW data type is that it violates the rules of normal-
ization that E.F. Codd declared in the early days of relational database theory.
I talk more about those rules in Chapter 5. One of the defining characteristics

33Chapter 2: SQL Fundamentals

of first normal form is that a field in a table row may not be multivalued. A
field may contain one and only one value. However, the ROW data type allows
you to declare an entire row of data to be contained within a single field in a
single row of a table — in other words, a row nested within a row.

Consider the following SQL statement, which defines a ROW type for a
person’s address information:

CREATE ROW TYPE addr_typ (
Street CHARACTER VARYING (25)
City CHARACTER VARYING(20)
State CHARACTER (2)
PostalCode CHARACTER VARYING (9)
) ;

After it’s defined, the new ROW type can be used in a table definition:

CREATE TABLE CUSTOMER (
CustID INTEGER PRIMARY KEY,
LastName CHARACTER VARYING (25),
FirstName CHARACTER VARYING (20),
Address addr_typ
Phone CHARACTER VARYING (15)
) ;

The advantage here is that if you are maintaining address information for
multiple entities — such as customers, vendors, employees, and stockhold-
ers — you only have to define the details of the address specification once, in
the ROW type definition.

Collection types
After SQL broke out of the relational straightjacket with SQL:1999, types that
violate first normal form became possible. It became possible for a field to
contain a whole collection of objects rather than just one. The ARRAY type
was introduced in SQL:1999, and the MULTISET type was introduced in
SQL:2003.

Two collections may be compared to each other only if they are both the
same type, either ARRAY or MULTISET, and if their element types are compa-
rable. Because arrays have a defined element order, corresponding elements
from the arrays can be compared. Multisets do not have a defined element
order, but can be compared if an enumeration exists for each multiset being
compared and the enumerations can be paired.

ARRAY type
The ARRAY data type violates first normal form (1NF) but in a different way
than the way the ROW type violates 1NF. The ARRAY type, a collection type, is

34 Part I: Basic Concepts

not a distinct type in the same sense that CHARACTER or NUMERIC are distinct
data types. An ARRAY type merely allows one of the other types to have multi-
ple values within a single field of a table. For example, say it is important to
your organization to be able to contact your customers whether they are at
work, at home, or on the road. You want to maintain multiple telephone num-
bers for them. You can do this by declaring the Phone attribute as an array,
as shown in the following code:

CREATE TABLE CUSTOMER (
CustID INTEGER PRIMARY KEY,
LastName CHARACTER VARYING (25),
FirstName CHARACTER VARYING (20),
Address addr_typ
Phone CHARACTER VARYING (15) ARRAY [3]
) ;

The ARRAY [3] notation allows you to store up to three telephone numbers
in the CUSTOMER table. The three telephone numbers represent an example
of a repeating group. Repeating groups are a no-no according to classical rela-
tional database theory, but this is one of several examples of cases where
SQL:1999 broke the rules. When Dr. Codd first enunciated the rules of normal-
ization, he traded off functional flexibility for data integrity. SQL:1999 took
back some of that functional flexibility, at the cost of some added structural
complexity. The increased structural complexity could translate into compro-
mised data integrity if you are not fully aware of all the effects of actions you
perform on your database. Arrays are ordered in that each element in an
array is associated with exactly one ordinal position in the array.

Multiset type
A multiset is an unordered collection. Specific elements of the multiset may
not be referenced, because they are not assigned a specific ordinal position
in the multiset.

REF types
REF types are not part of core SQL. This means that a DBMS may claim com-
pliance with SQL:2003 without implementing REF types at all. The REF type is
not a distinct data type in the sense that CHARACTER and NUMERIC are. Instead,
it is a pointer to a data item, row type, or abstract data type that resides in a
row of a table (a site). Dereferencing the pointer can retrieve the value stored
at the target site. If you’re confused, don’t worry, because you’re not alone.
Using the REF types requires a working knowledge of object-oriented pro-
gramming (OOP) principles. This book refrains from wading too deeply into
the murky waters of OOP. In fact — because the REF types are not a part of
core SQL — you may be better off if you don’t use them. If you want maxi-
mum portability across DBMS platforms, stick to core SQL.

35Chapter 2: SQL Fundamentals

User-defined types
User-defined types (UDTs) represent another example of features that arrived
in SQL:1999 that come from the object-oriented programming world. As an
SQL programmer, you are no longer restricted to the data types defined in the
SQL:2003 specification. You can define your own data types, using the princi-
ples of abstract data types (ADTs) found in such object-oriented program-
ming languages as C++.

One of the most important benefits of UDTs is the fact that they can be used
to eliminate the “impedance mismatch” between SQL and the host language
that is “wrapped around” the SQL. A long-standing problem with SQL has
been the fact the SQL’s predefined data types do not match the data types of
the host languages within which SQL statements are embedded. Now, with
UDTs, a database programmer can create data types within SQL that match
the data types of the host language. A UDT has attributes and methods,
which are encapsulated within the UDT. The outside world can see the
attribute definitions and the results of the methods, but the specific imple-
mentations of the methods are hidden from view. Access to the attributes
and methods of a UDT can be further restricted by specifying that they are
public, private, or protected. Public attributes or methods are available to all
users of a UDT. Private attributes or methods are available only to the UDT
itself. Protected attributes or methods are available only to the UDT itself or
its subtypes. You see from this that a UDT in SQL behaves much like a class
in an object-oriented programming language. Two forms of user-defined types
exist: distinct types and structured types.

Distinct types
Distinct types are the simpler of the two forms of user-defined types. A dis-
tinct type’s defining feature is that it is expressed as a single data type. It is
constructed from one of the predefined data types, called the source type.
Multiple distinct types that are all based on a single source type are distinct
from each other and are thus not directly comparable. For example, you can
use distinct types to distinguish between different currencies. Consider the
following type definition:

CREATE DISTINCT TYPE USdollar AS DECIMAL (9,2) ;

This creates a new data type for U.S. dollars, based on the predefined
DECIMAL data type. You can create another distinct type in a similar manner:

CREATE DISTINCT TYPE Euro AS DECIMAL (9,2) ;

You can now create tables that use these new types:

CREATE TABLE USInvoice (
InvID INTEGER PRIMARY KEY,
CustID INTEGER,

36 Part I: Basic Concepts

EmpID INTEGER,
TotalSale USdollar,
Tax USdollar,
Shipping USdollar,
GrandTotal USdollar
) ;

CREATE TABLE EuroInvoice (
InvID INTEGER PRIMARY KEY,
CustID INTEGER,
EmpID INTEGER,
TotalSale Euro,
Tax Euro,
Shipping Euro,
GrandTotal Euro
) ;

The USdollar type and the Euro type are both based on the DECIMAL type,
but instances of one cannot be directly compared with instances of the other
or with instances of the DECIMAL type. In SQL as in the real world, it is possi-
ble to convert U.S. dollars into Euros, but this requires a special operation
(CAST). After the conversion has been made, comparisons become possible.

Structured types
The second form of user-defined type, the structured type, is expressed as a
list of attribute definitions and methods instead of being based on a single
predefined source type.

Constructors
When you create a structured UDT, the DBMS automatically creates a con-
structor function for it, giving it the same name as the UDT. The constructor’s
job is to initialize the attributes of the UDT to their default values.

Mutators and observers
When you create a structured UDT, the DBMS automatically creates a muta-
tor function and an observer function. A mutator, when invoked, changes the
value of an attribute of a structured type. An observer function is the opposite
of a mutator function. Its job is to retrieve the value of an attribute of a struc-
tured type. You can include observer functions in SELECT statements to
retrieve values from a database.

Subtypes and supertypes
A hierarchical relationship can exist between two structured types. For exam-
ple, a type named MusicCDudt has a subtype named RockCDudt and another
subtype named ClassicalCDudt. MusicCDudt is the supertype of those two
subtypes. RockCDudt is a proper subtype of MusicCDudt if there is no subtype
of MusicCDudt that is a supertype of RockCDudt. If RockCDudt has a subtype
named HeavyMetalCDudt, HeavyMetalCDudt is also a subtype of MusicCDudt,
but it is not a proper subtype of MusicCDudt.

37Chapter 2: SQL Fundamentals

A structured type that has no supertype is called a maximal supertype, and a
structured type that has no subtypes is called a leaf subtype.

Example of a structured type
You can create structured UDTs in the following way:

/* Create a UDT named MusicCDudt */
CREATE TYPE MusicCDudt AS
/* Specify attributes */
Title CHAR(40),
Cost DECIMAL(9,2),
SuggestedPrice DECIMAL(9,2)
/* Allow for subtypes */
NOT FINAL ;

CREATE TYPE RockCDudt UNDER MusicCDudt NOT FINAL ;

The subtype RockCDudt inherits the attributes of its supertype MusicCDudt.

CREATE TYPE HeavyMetalCDudt UNDER RockCDudt FINAL ;

Now that you have the types, you can create tables that use them. For example:

CREATE TABLE METALSKU (
Album HeavyMetalCDudt,
SKU INTEGER) ;

Now you can add rows to the new table:

BEGIN
/* Declare a temporary variable a */
DECLARE a = HeavyMetalCDudt ;
/* Execute the constructor function */
SET a = HeavyMetalCDudt() ;

/* Execute first mutator function */
SET a = a.title(‘Edward the Great’) ;
/* Execute second mutator function */
SET a = a.cost(7.50) ;
/* Execute third mutator function */
SET a = a.suggestedprice(15.99) ;
INSERT INTO METALSKU VALUES (a, 31415926) ;

END

Data type summary
Table 2-2 lists various data types and displays literals that conform to each
type.

38 Part I: Basic Concepts

Table 2-2 Data Types
Data Type Example Value

CHARACTER (20) ‘Amateur Radio ‘

VARCHAR (20) ‘Amateur Radio’

CLOB (1000000) ‘This character string is a million
characters long . . .’

SMALLINT, BIGINT 7500
or INTEGER

NUMERIC or DECIMAL 3425.432

REAL, FLOAT, or DOUBLE 6.626E-34
PRECISION

BLOB (1000000) ‘1001001110101011010101010101. . .’

BOOLEAN ‘true’

DATE DATE ‘1957-08-14’

TIME (2) WITHOUT TIME ‘12:46:02.43’ WITHOUT TIME ZONE
TIME ZONE1

TIME (3) WITH TIME ‘12:46:02.432-08:00’ WITH
TIME ZONE TIME ZONE

TIMESTAMP WITHOUT TIMESTAMP ‘1957-08-14 12:46:02’
TIME ZONE (0) WITHOUT TIME ZONE

TIMESTAMP WITH TIMESTAMP ‘1957-08-14 12:46:02-08:00’
TIME ZONE (0) WITH TIME ZONE

INTERVAL DAY INTERVAL ‘4’ DAY

ROW ROW (Street VARCHAR (25), City
VARCHAR (20), State CHAR (2),
PostalCode VARCHAR (9))

ARRAY INTEGER ARRAY [15]

MULTISET No literal applies to the MULTISET type.

REF Not a type, but a pointer

USER DEFINED TYPE Currency type based on DECIMAL
1 Argument specifies number of fractional digits.

39Chapter 2: SQL Fundamentals

Your SQL implementation may not support all the data types that I describe
in this section. Furthermore, your implementation may support nonstandard
data types that I don’t describe here. (Your mileage may vary, and so on. You
know the drill.)

Null Values
If a database field contains a data item, that field has a specific value. A field
that does not contain a data item is said to have a null value. In a numeric
field, a null value is not the same as a value of zero. In a character field, a null
value is not the same as a blank. Both a numeric zero and a blank character
are definite values. A null value indicates that a field’s value is undefined —
its value is not known.

A number of situations exist in which a field may have a null value. The fol-
lowing list describes a few of these situations and gives an example of each:

� The value exists, but you don’t know what the value is yet. You set
MASS to null in the Top row of the QUARK table before the mass of the
top quark is accurately determined.

� The value doesn’t exist yet. You set TOTAL_SOLD to null in the SQL For
Dummies, 5th Edition row of the BOOKS table because the first set of
quarterly sales figures is not yet reported.

� The field isn’t applicable for this particular row. You set SEX to null in
the C-3PO row of the EMPLOYEE table because C-3PO is a droid who has
no gender.

� The value is out of range. You set SALARY to null in the Oprah Winfrey
row of the EMPLOYEE table because you designed the SALARY column
as type NUMERIC (8,2) and Oprah’s contract calls for pay in excess of
$999,999.99.

A field can have a null value for many different reasons. Don’t jump to any
hasty conclusions about what any particular null value means.

Constraints
Constraints are restrictions that you apply to the data that someone can enter
into a database table. You may know, for example, that entries in a particular
numeric column must fall within a certain range. If anyone makes an entry
that falls outside that range, then that entry must be an error. Applying a
range constraint to the column prevents this type of error from happening.

40 Part I: Basic Concepts

Traditionally, the application program that uses the database applies any
constraints to a database. The most recent DBMS products, however, enable
you to apply constraints directly to the database. This approach has several
advantages. If multiple applications use the same database, you need to apply
the constraints only once rather than multiple times. Additionally, adding
constraints at the database level is usually simpler than adding them to an
application. In many cases, you need only to tack a clause onto your CREATE
statement.

I discuss constraints and assertions (which are constraints that apply to more
than one table) in detail in Chapter 5.

Using SQL in a Client/Server System
SQL is a data sublanguage that works on a stand-alone system or on a multi-
user system. SQL works particularly well in a client/server system. On such a
system, users on multiple client machines that connect to a server machine
can access — via a local area network (LAN) or other communications chan-
nel — a database that resides on the server to which they’re connected. The
application program on a client machine contains SQL data-manipulation
commands. The portion of the DBMS residing on the client sends these com-
mands to the server across the communications channel that connects the
server to the client. At the server, the server portion of the DBMS interprets
and executes the SQL command and then sends the results back to the client
across the communication channel. You can encode very complex operations
into SQL at the client and then decode and perform those operations at the
server. This type of setup results in the most effective use of the bandwidth
of that communication channel.

If you retrieve data by using SQL on a client/server system, only the data you
want travels across the communication channel from the server to the client.
In contrast, a simple resource-sharing system, with minimal intelligence at
the server, must send huge blocks of data across the channel to give you the
small piece of data that you want. This sort of massive transmission can slow
operations considerably. The client/server architecture complements the
characteristics of SQL to provide good performance at a moderate cost on
small, medium, and large networks.

The server
Unless it receives a request from a client, the server does nothing. It just
stands around and waits. If multiple clients require service at the same time,
however, servers need to respond quickly. Servers generally differ from client

41Chapter 2: SQL Fundamentals

machines in that they have large amounts of very fast disk storage. Servers
are optimized for fast data access and retrieval. And because they must
handle traffic coming in simultaneously from multiple client machines,
servers need a fast processor, or even multiple processors.

What the server is
The server (short for database server) is the part of a client/server system
that holds the database. The server also holds the server portion of a data-
base management system. This part of the DBMS interprets commands
coming in from the clients and translates these commands into operations in
the database. The server software also formats the results of retrieval
requests and sends the results back to the requesting client.

What the server does
The server’s job is relatively simple and straightforward. All a server needs
to do is read, interpret, and execute commands that come to it across the
network from clients. Those commands are in one of several data sublan-
guages. A sublanguage doesn’t qualify as a complete language — it imple-
ments only part of a language. A data sublanguage deals only with data
handling. The sublanguage has operations for inserting, updating, deleting,
and selecting data but may not have flow control structures such as DO loops,
local variables, functions, procedures, or I/O to printers. SQL is the most
common data sublanguage in use today and has become an industry stan-
dard. Proprietary data sublanguages have been supplanted by SQL on
machines in all performance classes. With SQL:1999, SQL acquired many of
the features missing from traditional sublanguages. However, SQL:2003 is still
not a complete general-purpose programming language, so it must be com-
bined with a host language to create a database application.

The client
The client part of a client/server system consists of a hardware component
and a software component. The hardware component is the client computer
and its interface to the local area network. This client hardware may be very
similar or even identical to the server hardware. The software is the distin-
guishing component of the client.

What the client is
The client’s primary job is to provide a user interface. As far as the user is
concerned, the client machine is the computer, and the user interface is the
application. The user may not even realize that the process involves a server.
The server is usually out of sight — often in another room. Aside from the
user interface, the client also contains the application program and the client

42 Part I: Basic Concepts

part of the DBMS. The application program performs the specific task you
require, such as accounts receivable or order entry. The client part of the
DBMS executes the application program commands and exchanges data and
SQL data-manipulation commands with the server part of the DBMS.

What the client does
The client part of a DBMS displays information on the screen and responds to
user input transmitted via the keyboard, mouse, or other input device. The
client may also process data coming in from a telecommunications link or
from other stations on the network. The client part of the DBMS does all the
application-specific “thinking.” To a developer, the client part of a DBMS is
the interesting part. The server part just handles the requests of the client
part in a repetitive, mechanical fashion.

Using SQL on the Internet/Intranet
Database operation on the Internet and on intranets differs fundamentally
from operation in a traditional client/server system. The difference is primar-
ily on the client end. In a traditional client/server system, much of the func-
tionality of the DBMS resides on the client machine. On an Internet-based
database system, most or all of the DBMS resides on the server. The client
may host nothing more than a Web browser. At most, the client holds a
browser and a browser extension, such as a Netscape plug-in or an ActiveX
control. Thus the conceptual “center of mass” of the system shifts toward the
server. This shift has several advantages, as noted in the following list:

� The client portion of the system (browser) is low cost.

� You have a standardized user interface.

� The client is easy to maintain.

� You have a standardized client/server relationship.

� You have a common means of displaying multimedia data.

The main disadvantages of performing database manipulations over the
Internet involve security and data integrity, as the following list describes:

� To protect information from unwanted access or tampering, both the
Web server and the client browser must support strong encryption.

� Browsers don’t perform adequate data-entry validation checks.

� Database tables residing on different servers may become
desynchronized.

43Chapter 2: SQL Fundamentals

Client and server extensions designed to address these concerns make the
Internet a feasible location for production database applications. The archi-
tecture of intranets is similar to that of the Internet, but security is less of a
concern. Because the organization maintaining the intranet has physical con-
trol over all the client machines as well as the servers and the network that
connects these components together, an intranet suffers much less exposure
to the efforts of malicious hackers. Data-entry errors and database desyn-
chronization, however, do remain concerns.

44 Part I: Basic Concepts

Chapter 3

The Components of SQL
In This Chapter
� Creating databases

� Manipulating data

� Protecting databases

SQL is a special-purpose language designed for the creation and mainte-
nance of data in relational databases. Although the vendors of relational

database management systems have their own SQL implementations, an
ISO/ANSI standard (revised in 2003) defines and controls what SQL is. All
implementations differ from the standard to varying degrees. Close adher-
ence to the standard is the key to running a database (and its associated
applications) on more than one platform.

Although SQL isn’t a general-purpose programming language, it contains
some impressive tools. Three languages-within-a-language offer everything
you need to create, modify, maintain, and provide security for a relational
database:

� The Data Definition Language (DDL): The part of SQL that you use to
create (completely define) a database, modify its structure, and destroy
it when you no longer need it.

� The Data Manipulation Language (DML): Performs database mainte-
nance. Using this powerful tool, you can specify what you want to do
with the data in your database — enter it, change it, or extract it.

� The Data Control Language (DCL): Protects your database from becom-
ing corrupted. Used correctly, the DCL provides security for your data-
base; the amount of protection depends on the implementation. If your
implementation doesn’t provide sufficient protection, you must add that
protection to your application program.

This chapter introduces the DDL, DML, and DCL.

Data Definition Language
The Data Definition Language (DDL) is the part of SQL you use to create,
change, or destroy the basic elements of a relational database. Basic ele-
ments include tables, views, schemas, catalogs, clusters, and possibly other
things as well. In this section, I discuss the containment hierarchy that
relates these elements to each other and look at the commands that operate
on these elements.

In Chapter 1, I mention tables and schemas, noting that a schema is an overall
structure that includes tables within it. Tables and schemas are two elements
of a relational database’s containment hierarchy. You can break down the con-
tainment hierarchy as follows:

� Tables contain columns and rows.

� Schemas contain tables and views.

� Catalogs contain schemas.

The database itself contains catalogs. Sometimes the database is referred to
as a cluster.

Creating tables
A database table is a two-dimensional array made up of rows and columns.
You can create a table by using the SQL CREATE TABLE command. Within the
command, you specify the name and data type of each column.

After you create a table, you can start loading it with data. (Loading data is a
DML, not a DDL, function.) If requirements change, you can change a table’s
structure by using the ALTER TABLE command. If a table outlives its useful-
ness or becomes obsolete, you can eliminate it with the DROP command. The
various forms of the CREATE and ALTER commands, together with the DROP
command, make up SQL’s DDL.

Say that you’re a database designer and you don’t want your database tables
to turn to guacamole as you make updates over time. You decide to structure
your database tables according to the best-normalized form to ensure main-
tenance of data integrity. Normalization, an extensive field of study in its own
right, is a way of structuring database tables so that updates don’t introduce
anomalies. Each table you create contains columns that correspond to attri-
butes that are tightly linked to each other.

You may, for example, create a CUSTOMER table with the attributes CUSTOMER.
CustomerID, CUSTOMER.FirstName, CUSTOMER.LastName, CUSTOMER.Street,

46 Part I: Basic Concepts

CUSTOMER.City, CUSTOMER.State, CUSTOMER.Zipcode, and CUSTOMER.Phone.
All of these attributes are more closely related to the customer entity than to
any other entity in a database that may contain many tables. These attributes
contain all the relatively permanent customer information that your organiza-
tion keeps on file.

Most database management systems provide a graphical tool for creating
database tables. You can also create such tables by using an SQL command.
The following example demonstrates a command that creates your CUSTOMER
table:

CREATE TABLE CUSTOMER (
CustomerID INTEGER NOT NULL,
FirstName CHARACTER (15),
LastName CHARACTER (20) NOT NULL,
Street CHARACTER (25),
City CHARACTER (20),
State CHARACTER (2),
Zipcode INTEGER,
Phone CHARACTER (13)) ;

For each column, you specify its name (for example, CustomerID), its data
type (for example, INTEGER), and possibly one or more constraints (for
example, NOT NULL).

Figure 3-1 shows a portion of the CUSTOMER table with some sample data.

If the SQL implementation you use doesn’t fully implement SQL:2003, the
syntax you need to use may differ from the syntax that I give in this book.
Read your DBMS’s user documentation for specific information.

Say that you need to create a database for your organization. Excited by the
prospect of building a useful, valuable, and totally righteous structure of
great importance to your company’s future, you sit down at your computer
and start entering SQL CREATE commands. Right?

Figure 3-1:
Use the
CREATE
TABLE

command to
create this

CUSTOMER
table.

47Chapter 3: The Components of SQL

Well, no. Not quite. In fact, that’s a prescription for disaster. Many database
development projects go awry from the start as excitement and enthusiasm
overtake careful planning. Even if you have a clear idea of how to structure
your database, write everything down on paper before touching your key-
board. Keep in mind the following procedures when planning your database:

� Identify all tables.

� Define the columns that each table must contain.

� Give each table a primary key that you can guarantee is unique. (I dis-
cuss primary keys in Chapters 4 and 5.)

� Make sure that every table in the database has at least one column in
common with one other table in the database. These shared columns
serve as logical links that enable you to relate information in one table
to the corresponding information in another table.

� Put each table in third normal form (3NF) or better to ensure the preven-
tion of insertion, deletion, and update anomalies. (I discuss database
normalization in Chapter 5.)

After you complete the design on paper and verify that it is sound, you’re
ready to transfer the design to the computer by using SQL CREATE commands.

A room with a view
At times, you want to retrieve specific information from the CUSTOMER table.
You don’t want to look at everything — only specific columns and rows. What
you need is a view.

A view is a virtual table. In most implementations, a view has no independent
physical existence. The view’s definition exists only in the database’s meta-
data, but the data comes from the table or tables from which you derive the
view. The view’s data is not physically duplicated somewhere else in online
disk storage. Some views consist of specific columns and rows of a single
table. Others, known as multitable views, draw from two or more tables.

Single-table view
Sometimes when you have a question, the data that gives you the answer
resides in a single table in your database. If the information you want exists
in a single table, you can create a single-table view of the data. For example,
say that you want to look at the names and telephone numbers of all cus-
tomers who live in the state of New Hampshire. You can create a view from
the CUSTOMER table that contains only the data you want. The following SQL
command creates this view:

48 Part I: Basic Concepts

CREATE VIEW NH_CUST AS
SELECT CUSTOMER.FirstName,

CUSTOMER.LastName,
CUSTOMER.Phone

FROM CUSTOMER
WHERE CUSTOMER.State = ‘NH’ ;

Figure 3-2 shows how you derive the view from the CUSTOMER table.

This code is correct, but a little on the wordy side. You can accomplish the
same thing with less typing if your SQL implementation assumes that all table
references are the same as the ones in the FROM clause. If your system makes
that reasonable default assumption, you can reduce the command to the
following lines:

CREATE VIEW NH_CUST AS
SELECT FirstName, LastName, Phone

FROM CUSTOMER
WHERE STATE = ‘NH’;

Although the second version is easier to write and read, it’s more vulnerable
to disruption from ALTER TABLE commands. Such disruption isn’t a problem
for this simple case, which has no JOIN, but views with JOINs are more
robust when they use fully qualified names. I cover JOINs in Chapter 10.

Creating a multitable view
Typically, you need to pull data from two or more tables to answer your ques-
tion. For example, say that you work for a sporting goods store, and you want
to send a promotional mailing to all the customers who have bought ski
equipment since the store opened last year. You need information from the
CUSTOMER table, the PRODUCT table, the INVOICE table, and the INVOICE_
LINE table. You can create a multitable view that shows the data you need.
After you create the view, you can use that same view again and again. Each
time you use the view, it reflects any changes that occurred in the underlying
tables since you last used the view.

CUSTOMER Table

Customer ID
FirstName
LastName
Street
City
State
Zipcode
Phone

NH_CUST View

FirstName
LastName

Phone

WHERE State = ‘NH’

Figure 3-2:
You derive

the
NH_CUST

view
from the

CUSTOMER
table.

49Chapter 3: The Components of SQL

The sporting goods store database contains four tables: CUSTOMER, PRODUCT,
INVOICE, and INVOICE_LINE. The tables are structured as shown in Table 3-1.

Table 3-1 Sporting Goods Store Database Tables
Table Column Data Type Constraint

CUSTOMER CustomerID INTEGER NOT NULL

FirstName CHARACTER (15)

LastName CHARACTER (20) NOT NULL

Street CHARACTER (25)

City CHARACTER (20)

State CHARACTER (2)

Zipcode INTEGER

Phone CHARACTER (13)

PRODUCT ProductID INTEGER NOT NULL

Name CHARACTER (25)

Description CHARACTER (30)

Category CHARACTER (15)

VendorID INTEGER

VendorName CHARACTER (30)

INVOICE InvoiceNumber INTEGER NOT NULL

CustomerID INTEGER

InvoiceDate DATE

TotalSale NUMERIC (9,2)

TotalRemitted NUMERIC (9,2)

FormOfPayment CHARACTER (10)

INVOICE_LINE LineNumber INTEGER NOT NULL

InvoiceNumber INTEGER

ProductID INTEGER

Quantity INTEGER

SalePrice NUMERIC (9,2)

50 Part I: Basic Concepts

Notice that some of the columns in Table 3-1 contain the constraint NOT
NULL. These columns are either the primary keys of their respective tables or
columns that you decide must contain a value. A table’s primary key must
uniquely identify each row. To do that, the primary key must contain a non-
null value in every row. (I discuss keys in detail in Chapter 5.)

The tables relate to each other through the columns that they have in common.
The following list describes these relationships (as shown in Figure 3-3):

� The CUSTOMER table bears a one-to-many relationship to the INVOICE
table. One customer can make multiple purchases, generating multiple
invoices. Each invoice, however, deals with one and only one customer.

� The INVOICE table bears a one-to-many relationship to the INVOICE_LINE
table. An invoice may have multiple lines, but each line appears on one
and only one invoice.

� The PRODUCT table also bears a one-to-many relationship to the
INVOICE_LINE table. A product may appear on more than one line on
one or more invoices. Each line, however, deals with one, and only one,
product.

The CUSTOMER table links to the INVOICE table by the common CustomerID
column. The INVOICE table links to the INVOICE_LINE table by the common
InvoiceNumber column. The PRODUCT table links to the INVOICE_LINE
table by the common ProductID column. These links are what makes this
database a relational database.

Figure 3-3:
A sporting

goods store
database
structure.

51Chapter 3: The Components of SQL

To access the information about customers who bought ski equipment, you
need FirstName, LastName, Street, City, State, and Zipcode from the
CUSTOMER table; Category from the PRODUCT table; InvoiceNumber from
the INVOICE table; and LineNumber from the INVOICE_LINE table. You can
create the view you want in stages by using the following commands:

CREATE VIEW SKI_CUST1 AS
SELECT FirstName,

LastName,
Street,
City,
State,
Zipcode,
InvoiceNumber

FROM CUSTOMER JOIN INVOICE
USING (CustomerID) ;

CREATE VIEW SKI_CUST2 AS
SELECT FirstName,

LastName,
Street,
City,
State,
Zipcode,
ProductID

FROM SKI_CUST1 JOIN INVOICE_LINE
USING (InvoiceNumber) ;

CREATE VIEW SKI_CUST3 AS
SELECT FirstName,

LastName,
Street,
City,
State,
Zipcode,
Category

FROM SKI_CUST2 JOIN PRODUCT
USING (ProductID) ;

CREATE VIEW SKI_CUST AS
SELECT DISTINCT FirstName,

LastName,
Street,
City,
State,
Zipcode

FROM SKI_CUST3
WHERE CATEGORY = ‘Ski’ ;

These CREATE VIEW statements combine data from multiple tables by using
the JOIN operator. Figure 3-4 diagrams the process.

52 Part I: Basic Concepts

Here’s a rundown of the four CREATE VIEW statements:

� The first statement combines columns from the CUSTOMER table with a
column of the INVOICE table to create the SKI_CUST1 view.

� The second statement combines SKI_CUST1 with a column from the
INVOICE_LINE table to create the SKI_CUST2 view.

� The third statement combines SKI_CUST2 with a column from the
PRODUCT table to create the SKI_CUST3 view.

� The fourth statement filters out all rows that don’t have a category of Ski.
The result is a view (SKI_CUST) that contains the names and addresses
of all customers who bought at least one product in the Ski category.

The DISTINCT keyword in the fourth CREATE VIEW’s SELECT clause
ensures that you have only one entry for each customer, even if some
customers made multiple purchases of ski items. (I cover JOINs in detail
in Chapter 10.)

Collecting tables into schemas
A table consists of rows and columns and usually deals with a specific type of
entity, such as customers, products, or invoices. Useful work generally requires
information about several (or many) related entities. Organizationally, you
collect the tables that you associate with these entities according to a logical
schema. A logical schema is the organizational structure of a collection of
related tables.

CUSTOMER Table

Customer ID
FirstName
LastName
Street
City
State
Zipcode
Phone

INVOICE Table

InvoiceNumber
CustomerID
Date
TotalSale
TotalRemitted
FormOfPayment

PRODUCT Table

ProductID
Name
Description
Category
VendorID
VendorName

INVOICE_LINE Table

LineNumber
InvoiceNumber
ProductID
Quantity
SalePrice

SKI_CUST1 View

FirstName
LastName
Street
City
State
Zipcode
InvoiceNumber

SKI_CUST2 View

FirstName
LastName
Street
City
State
Zipcode
ProductID

SKI_CUST3 View

FirstName
LastName
Street
City
State
Zipcode
Category

SKI_CUST View

FirstName
LastName
Street
City
State
Zipcode

Figure 3-4:
Creating a
multitable

view by
using

JOINs.

53Chapter 3: The Components of SQL

A database also has a physical schema. The physical schema is the way the
data and its associated items, such as indexes, are physically arranged on the
system’s storage devices. When I mention the schema of a database, I’m
referring to the logical schema, not the physical schema.

On a system where several unrelated projects may co-reside, you can assign
all related tables to one schema. You can collect other groups of tables into
schemas of their own.

You want to name schemas to ensure that no one accidentally mixes tables
from one project with tables of another. Each project has its own associated
schema, which you can distinguish from other schemas by name. Seeing cer-
tain table names (such as CUSTOMER, PRODUCT, and so on) appear in multi-
ple projects, however, isn’t uncommon. If any chance exists of a naming
ambiguity, qualify your table name by using its schema name as well (as in
SCHEMA_NAME.TABLE_NAME). If you don’t qualify a table name, SQL assigns
that table to the default schema.

Ordering by catalog
For really large database systems, multiple schemas may not be sufficient. In
a large distributed database environment with many users, you may even
find duplication of a schema name. To prevent this situation, SQL adds
another level to the containment hierarchy: the catalog. A catalog is a named
collection of schemas.

You can qualify a table name by using a catalog name and a schema name.
This ensures that no one confuses that table with a table of the same name in
a schema with the same schema name. The catalog-qualified name appears in
the following format:

CATALOG_NAME.SCHEMA_NAME.TABLE_NAME

A database’s containment hierarchy has clusters at the highest level, but rarely
will a system require use of the full scope of the containment hierarchy. Going
to catalogs is enough in most cases. A catalog contains schemas; a schema
contains tables and views; tables and views contain columns and rows.

The catalog also contains the information schema. The information schema
contains the system tables. The system tables hold the metadata associated
with the other schemas. In Chapter 1, I define a database as a self-describing
collection of integrated records. The metadata contained in the system tables
is what makes the database self-describing.

Because you distinguish catalogs by their names, you can have multiple cata-
logs in a database. Each catalog can have multiple schemas, and each schema

54 Part I: Basic Concepts

can have multiple tables. Of course, each table can have multiple columns and
rows. The hierarchical relationships are shown in Figure 3-5.

Getting familiar with DDL commands
SQL’s Data Definition Language (DDL) deals with the structure of a database,
whereas the Data Manipulation Language (described later) deals with the data
contained within that structure. The DDL consists of these three commands:

� CREATE: You use the various forms of this command to build the essen-
tial structures of the database.

� ALTER: You use this command to change structures that you create.

� DROP: If you apply this command to a table, it destroys not only the
table’s data, but its structure as well.

In the following sections, I give you brief descriptions of the DDL commands.
In Chapters 4 and 5, I use these commands in examples.

CREATE
You can apply the SQL CREATE command to several SQL objects, including
schemas, domains, tables, and views. By using the CREATE SCHEMA state-
ment, you can create a schema, identify its owner, and specify a default char-
acter set. An example of such a statement appears as follows:

CREATE SCHEMA SALES
AUTHORIZATION SALES_MGR
DEFAULT CHARACTER SET ASCII_FULL ;

Use the CREATE DOMAIN statement to apply constraints to column values or
to specify a collation order. The constraints you apply to a domain determine

Figure 3-5:
The

hierarchical
structure of

a typical
SQL

database.

55Chapter 3: The Components of SQL

what objects the domain can and cannot contain. You can create domains
after you establish a schema. The following example shows how to use this
command:

CREATE DOMAIN Age AS INTEGER
CHECK (AGE > 20) ;

You create tables by using the CREATE TABLE statement, and you create
views by using the CREATE VIEW statement. Earlier in this chapter, I show
you examples of these two statements. When you use CREATE TABLE to
create a new table, you can specify constraints on its columns at the same
time. Sometimes, you may want to specify constraints that don’t specifically
attach to a table but that apply to an entire schema. You can use the CREATE
ASSERTION statement to specify such constraints.

You also have CREATE CHARACTER SET, CREATE COLLATION, and CREATE
TRANSLATION statements, which give you the flexibility of creating new char-
acter sets, collation sequences, or translation tables. (Collation sequences
define the order in which you carry out comparisons or sorts. Translation
tables control the conversion of character strings from one character set to
another.)

ALTER
After you create a table, you’re not necessarily stuck with that exact table for-
ever. As you use the table, you may discover that it’s not everything you need
it to be. You can use the ALTER TABLE command to change the table by
adding, changing, or deleting a column in the table. In addition to tables, you
can also ALTER columns and domains.

DROP
Removing a table from a database schema is easy. Just use a DROP TABLE
<tablename> command. You erase all the table’s data as well as the meta-
data that defines the table in the data dictionary. It’s almost as if the table
never existed.

Data Manipulation Language
The DDL is the part of SQL that creates, modifies, or destroys database struc-
tures; it doesn’t deal with the data. The Data Manipulation Language (DML)
is the part of SQL that operates on the data. Some DML statements read like
ordinary English-language sentences and are easy to understand. Because SQL
gives you very fine control of data, other DML statements can be fiendishly
complex. If a DML statement includes multiple expressions, clauses, predi-
cates, or subqueries, understanding what that statement is trying to do can

56 Part I: Basic Concepts

be a challenge. After you deal with some of these statements, you may even
consider switching to an easier line of work, such as brain surgery or quantum
electrodynamics. Fortunately, such drastic action isn’t necessary. You can
understand complex SQL statements by breaking them down into their basic
components and analyzing them one chunk at a time.

The DML statements you can use are INSERT, UPDATE, DELETE, and SELECT.
These statements can consist of a variety of parts, including multiple clauses.
Each clause may incorporate value expressions, logical connectives, predi-
cates, aggregate functions, and subqueries. You can make fine discrimina-
tions among database records and extract more information from your data
by including these clauses in your statements. In Chapter 6, I discuss the
operation of the DML commands, and in Chapters 7 through 12, I delve into
the details of these commands.

Value expressions
You can use value expressions to combine two or more values. Nine different
kinds of value expressions exist, corresponding to the different data types:

� Numeric

� String

� Datetime

� Interval

� Boolean

� User-defined

� Row

� Collection

The Boolean, user-defined, row, and collection types were introduced with
SQL:1999. Some implementations may not support them yet. If you want to
use one of these data types, make sure your implementation includes it.

Numeric value expressions
To combine numeric values, use the addition (+), subtraction (-), multiplica-
tion (*), and division (/) operators. The following lines are examples of
numeric value expressions:

12 – 7
15/3 - 4
6 * (8 + 2)

57Chapter 3: The Components of SQL

The values in these examples are numeric literals. These values may also be
column names, parameters, host variables, or subqueries — provided that
those column names, parameters, host variables, or subqueries evaluate to a
numeric value. The following are some examples:

SUBTOTAL + TAX + SHIPPING
6 * MILES/HOURS
:months/12

The colon in the last example signals that the following term (months) is
either a parameter or a host variable.

String value expressions
String value expressions may include the concatenation operator (||). Use
concatenation to join two text strings, as shown in Table 3-2.

Table 3-2 Examples of String Concatenation
Expression Result

‘military ‘ || ‘intelligence’ ‘military intelligence’

‘oxy’ || ‘moron’ ‘oxymoron’

CITY|| ‘ ‘ ||STATE|| ‘ ‘||ZIP A single string with city, state, and
zip code, each separated by a single
space

Some SQL implementations use + as the concatenation operator rather than ||.

Some implementations may include string operators other than concatena-
tion, but SQL:2003 doesn’t support such operators.

Datetime and interval value expressions
Datetime value expressions deal with (surprise!) dates and times. Data of
DATE, TIME, TIMESTAMP, and INTERVAL types may appear in datetime value
expressions. The result of a datetime value expression is always another
datetime. You can add or subtract an interval from a datetime and specify
time zone information.

One example of a datetime value expression appears as follows:

DueDate + INTERVAL ‘7’ DAY

58 Part I: Basic Concepts

A library may use such an expression to determine when to send a late notice.
Another example, specifying a time rather than a date, appears as follows:

TIME ‘18:55:48’ AT LOCAL

The AT LOCAL keywords indicate that the time refers to the local time zone.

Interval value expressions deal with the difference (how much time passes)
between one datetime and another. You have two kinds of intervals: year-
month and day-time. You can’t mix the two in an expression.

As an example of an interval, say that someone returns a library book after the
due date. By using an interval value expression such as that of the following
example, you can calculate how many days late the book is and assess a fine
accordingly:

(DateReturned - DateDue) DAY

Because an interval may be of either the year-month or the day-time variety,
you need to specify which kind to use. In the preceding example, I specify DAY.

Boolean value expressions
A Boolean value expression tests the truth value of a predicate. The following
is an example of a Boolean value expression:

(Class = SENIOR) IS TRUE

If this were a condition on the retrieval of rows from a student table, only
rows containing the records of seniors would be retrieved. To retrieve the
records of all non-seniors, you could use the following:

NOT (Class = SENIOR) IS TRUE

Alternatively, you could use:

(Class = SENIOR) IS FALSE

To retrieve all rows that have a null value in the CLASS column, use:

(Class = SENIOR) IS UNKNOWN

User-defined type value expressions
User-defined types are described in Chapter 2. With this facility, you can
define your own data types instead of having to settle for those provided by
“stock” SQL. Expressions that incorporate data elements of such a user-
defined type must evaluate to an element of the same type.

59Chapter 3: The Components of SQL

Row value expressions
A row value expression, not surprisingly, specifies a row value. The row value
may consist of one value expression, or two or more comma-delimited value
expressions. For example:

(‘Joseph Tykociner’, ‘Professor Emeritus’, 1918)

This is a row in a faculty table, showing a faculty member’s name, rank, and
year of hire.

Collection value expressions
A collection value expression evaluates to an array.

Reference value expressions
A reference value expression evaluates to a value that references some other
database component, such as a table column.

Predicates
Predicates are SQL equivalents of logical propositions. The following state-
ment is an example of a proposition:

“The student is a senior.”

In a table containing information about students, the domain of the CLASS
column may be SENIOR, JUNIOR, SOPHOMORE, FRESHMAN, or NULL. You can use
the predicate CLASS = SENIOR to filter out rows for which the predicate is
false, retaining only those for which the predicate is true. Sometimes, the
value of a predicate in a row is unknown (NULL). In those cases, you may
choose either to discard the row or to retain it. (After all, the student could
be a senior.) The correct course depends on the situation.

Class = SENIOR is an example of a comparison predicate. SQL has six com-
parison operators. A simple comparison predicate uses one of these opera-
tors. Table 3-3 shows the comparison predicates and examples of their use.

Table 3-3 Comparison Operators and Comparison Predicates
Operator Comparison Expression

= Equal to Class = SENIOR

<> Not equal to Class <> SENIOR

< Less than Class < SENIOR

60 Part I: Basic Concepts

Operator Comparison Expression

> Greater than Class > SENIOR

<= Less than or equal to Class <= SENIOR

>= Greater than or equal to Class >= SENIOR

In the preceding example, only the first two entries in Table 3-3 (Class =
SENIOR and Class < > SENIOR) make sense. SOPHOMORE is considered
greater than SENIOR because SO comes after SE in the default collation
sequence, which sorts in ascending alphabetical order. This interpretation,
however, is probably not the one you want.

Logical connectives
Logical connectives enable you to build complex predicates out of simple
ones. Say, for example, that you want to identify child prodigies in a database
of high school students. Two propositions that could identify these students
may read as follows:

“The student is a senior.”

“The student’s age is less than 14 years.”

You can use the logical connective AND to create a compound predicate that
isolates the student records that you want, as in the following example:

Class = SENIOR AND Age < 14

If you use the AND connective, both component predicates must be true for
the compound predicate to be true. Use the OR connective when you want
the compound predicate to evaluate to true if either component predicate is
true. NOT is the third logical connective. Strictly speaking, NOT doesn’t con-
nect two predicates, but instead reverses the truth value of the single predi-
cate to which you apply it. Take, for example, the following expression:

NOT (Class = SENIOR)

This expression is true only if Class is not equal to SENIOR.

Set functions
Sometimes, the information that you want to extract from a table doesn’t relate
to individual rows but rather to sets of rows. SQL:2003 provides five set (or

61Chapter 3: The Components of SQL

aggregate) functions to deal with such situations. These functions are COUNT,
MAX, MIN, SUM, and AVG. Each function performs an action that draws data
from a set of rows rather than from a single row.

COUNT
The COUNT function returns the number of rows in the specified table. To
count the number of precocious seniors in my example high school database,
use the following statement:

SELECT COUNT (*)
FROM STUDENT
WHERE Grade = 12 AND Age < 14 ;

MAX
Use the MAX function to return the maximum value that occurs in the speci-
fied column. Say that you want to find the oldest student enrolled in your
school. The following statement returns the appropriate row:

SELECT FirstName, LastName, Age
FROM STUDENT
WHERE Age = (SELECT MAX(Age) FROM STUDENT);

This statement returns all students whose ages are equal to the maximum
age. That is, if the age of the oldest student is 23, this statement returns the
first and last names and the age of all students who are 23 years old.

This query uses a subquery. The subquery SELECT MAX(Age) FROM
STUDENT is embedded within the main query. I talk about subqueries (also
called nested queries) in Chapter 11.

MIN
The MIN function works just like MAX except that MIN looks for the minimum
value in the specified column rather than the maximum. To find the youngest
student enrolled, you can use the following query:

SELECT FirstName, LastName, Age
FROM STUDENT
WHERE Age = (SELECT MIN(Age) FROM STUDENT);

This query returns all students whose age is equal to the age of the youngest
student.

SUM
The SUM function adds up the values in a specified column. The column must
be one of the numeric data types, and the value of the sum must be within the
range of that type. Thus, if the column is of type SMALLINT, the sum must be

62 Part I: Basic Concepts

no larger than the upper limit of the SMALLINT data type. In the retail database
from earlier in this chapter, the INVOICE table contains a record of all sales.
To find the total dollar value of all sales recorded in the database, use the SUM
function as follows:

SELECT SUM(TotalSale) FROM INVOICE;

AVG
The AVG function returns the average of all the values in the specified
column. As does the SUM function, AVG applies only to columns with a
numeric data type. To find the value of the average sale, considering all trans-
actions in the database, use the AVG function like this:

SELECT AVG(TotalSale) FROM INVOICE

Nulls have no value, so if any of the rows in the TotalSale column contain null
values, those rows are ignored in the computation of the value of the average
sale.

Subqueries
Subqueries, as you can see in the “Set functions” section earlier in this chapter,
are queries within a query. Anywhere you can use an expression in an SQL
statement, you can also use a subquery. Subqueries are a powerful tool for
relating information in one table to information in another table because you
can embed a query into one table, within a query to another table. By nesting
one subquery within another, you enable the access of information from two
or more tables to generate a final result. When you use subqueries correctly,
you can retrieve just about any information you want from a database.

Data Control Language
The Data Control Language (DCL) has four commands: COMMIT, ROLLBACK,
GRANT, and REVOKE. These commands protect the database from harm, either
accidental or intentional.

Transactions
Your database is most vulnerable to damage while you or someone else is
changing it. Even in a single-user system, making a change can be dangerous
to a database. If a software or hardware failure occurs while the change is in

63Chapter 3: The Components of SQL

progress, a database may be left in an indeterminate state between where it
was before the change started and where it would be if it were able to finish.

SQL protects your database by restricting operations that can change the
database so that these operations occur only within transactions. During a
transaction, SQL records every operation on the data in a log file. If anything
interrupts the transaction before the COMMIT statement ends the transaction,
you can restore the system to its original state by issuing a ROLLBACK state-
ment. The ROLLBACK processes the transaction log in reverse, undoing all the
actions that took place in the transaction. After you roll back the database to
its state before the transaction began, you can clear up whatever caused the
problem and then attempt the transaction again.

As long as a hardware or software problem can possibly occur, your database
is susceptible to damage. To minimize the chance of damage, today’s DBMSs
close the window of vulnerability as much as possible by performing all oper-
ations that affect the database within a transaction and then committing all
these operations at one time. Modern database management systems use log-
ging in conjunction with transactions to guarantee that hardware, software,
or operational problems will not damage data. After a transaction has been
committed, it’s safe from all but the most catastrophic of system failures.
Prior to commitment, incomplete transactions can be rolled back to their
starting point and applied again, after the problem is corrected.

In a multi-user system, database corruption or incorrect results are possible
even if no hardware or software failures occur. Interactions between two or
more users who access the same table at the same time can cause serious
problems. By restricting changes so that they occur only within transactions,
SQL addresses these problems as well.

By putting all operations that affect the database into transactions, you can
isolate the actions of one user from those of another user. Such isolation is
critical if you want to make sure that the results you obtain from the data-
base are accurate.

You may wonder how the interaction of two users can produce inaccurate
results. For example, say that Donna reads a record in a database table. An
instant later (more or less) David changes the value of a numeric field in that
record. Now Donna writes a value back into that field, based on the value that
she read initially. Because Donna is unaware of David’s change, the value
after Donna’s write operation is incorrect.

Another problem can result if Donna writes to a record and then David reads
that record. If Donna rolls back her transaction, David is unaware of the roll-
back and bases his actions on the value that he read, which doesn’t reflect
the value that’s in the database after the rollback. It makes for good comedy,
but lousy data management.

64 Part I: Basic Concepts

Users and privileges
Another major threat to data integrity is the users themselves. Some people
should have no access to the data. Others should have only restricted access
to some of the data but no access to the rest. Some should have unlimited
access to everything. You need a system for classifying users and for assign-
ing access privileges to the users in different categories.

The creator of a schema specifies who is considered its owner. As the owner
of a schema, you can grant access privileges to the users you specify. Any
privileges that you don’t explicitly grant are withheld. You can also revoke
privileges that you’ve already granted. A user must pass an authentication
procedure to prove his identity before he can access the files you authorize
him to use. That procedure is implementation-dependent.

SQL gives you the capability to protect the following database objects:

� Tables

� Columns

� Views

� Domains

� Character sets

� Collations

� Translations

I discuss character sets, collations, and translations in Chapter 5.

SQL:2003 supports several different kinds of protection: seeing, adding, modi-
fying, deleting, referencing, and using databases, as well as protections associ-
ated with the execution of external routines.

You permit access by using the GRANT statement and remove access by using
the REVOKE statement. By controlling the use of the SELECT command, the
DCL controls who can see a database object such as a table, column, or view.
Controlling the INSERT command determines who can add new rows in a
table. Restricting the use of the UPDATE command to authorized users con-
trols who can modify table rows, and restricting the DELETE command con-
trols who can delete table rows.

If one table in a database contains as a foreign key a column that is a primary
key in another table in the database, you can add a constraint to the first table
so that it references the second table. When one table references another, the
owner of the first table may be able to deduce information about the contents
of the second. As the owner of the second table, you may want to prevent such

65Chapter 3: The Components of SQL

snooping. The GRANT REFERENCES statement gives you that power. The fol-
lowing section discusses the problem of a renegade reference and how the
GRANT REFERENCES statement prevents it. By using the GRANT USAGE state-
ment, you can control who can use or even see the contents of a domain,
character set, collation, or translation. (I cover provisions for security in
Chapter 13.)

Table 3-4 summarizes the SQL statements that you use to grant and revoke
privileges.

Table 3-4 Types of Protection
Protection Operation Statement

Enable to see a table GRANT SELECT

Prevent from seeing a table REVOKE SELECT

Enable to add rows to a table GRANT INSERT

Prevent from adding rows to a table REVOKE INSERT

Enable to change data in table rows GRANT UPDATE

Prevent from changing data REVOKE UPDATE
in table rows

Enable to delete table rows GRANT DELETE

Prevent from deleting table rows REVOKE DELETE

Enable to reference a table GRANT REFERENCES

Prevent from referencing a table REVOKE REFERENCES

Enable to use a domain, GRANT USAGE ON DOMAIN, GRANT
character translation, USAGE ON CHARACTER SET, GRANT
or set collation USAGE ON COLLATION, GRANT USAGE

ON TRANSLATION

Prevent the use of a domain, REVOKE USAGE ON DOMAIN, REVOKE
character set, collation, USAGE ON CHARACTER SET, REVOKE
or translation USAGE ON COLLATION, REVOKE

USAGE ON TRANSLATION

You can give different levels of access to different people, depending on their
needs. The following commands offer a few examples of this capability:

GRANT SELECT
ON CUSTOMER
TO SALES_MANAGER;

66 Part I: Basic Concepts

The preceding example enables one person, the sales manager, to see the
CUSTOMER table.

The following example enables anyone with access to the system to see the
retail price list:

GRANT SELECT
ON RETAIL_PRICE_LIST
TO PUBLIC;

The following example enables the sales manager to modify the retail price list.
She can change the contents of existing rows, but she can’t add or delete rows:

GRANT UPDATE
ON RETAIL_PRICE_LIST
TO SALES_MANAGER;

This following example enables the sales manager to add new rows to the
retail price list:

GRANT INSERT
ON RETAIL_PRICE_LIST
TO SALES_MANAGER;

Now, thanks to this last example, the sales manager can delete unwanted
rows from the table, too:

GRANT DELETE
ON RETAIL_PRICE_LIST
TO SALES MANAGER;

Referential integrity constraints can
jeopardize your data
You may think that if you can control the seeing, creating, modifying, and
deleting functions on a table, you’re well protected. Against most threats, you
are. A knowledgeable hacker, however, can still ransack the house by using
an indirect method.

A correctly designed relational database has referential integrity, which means
that the data in one table in the database is consistent with the data in all the
other tables. To ensure referential integrity, database designers apply con-
straints to tables that restrict what someone can enter into the tables. If you
have a database with referential integrity constraints, a user can possibly
create a new table that uses a column in a confidential table as a foreign key.
That column then serves as a link through which someone can possibly steal
confidential information.

67Chapter 3: The Components of SQL

Say, for example, that you’re a famous Wall Street stock analyst. Many people
believe in the accuracy of your stock picks, so whenever you recommend a
stock to your subscribers, many people buy that stock, and its value increases.
You keep your analysis in a database, which contains a table named FOUR_
STAR. Your top recommendations for your next newsletter are in that table.
Naturally, you restrict access to FOUR_STAR so that word doesn’t leak out to
the investing public before your paying subscribers receive the newsletter.

You’re still vulnerable, however, if anyone other than yourself can create a
new table that uses the stock name field of FOUR_STAR as a foreign key, as
shown in the following command example:

CREATE TABLE HOT_STOCKS (
Stock CHARACTER (30) REFERENCES FOUR_STAR
);

The hacker can now try to insert the name of every stock on the New York
Stock Exchange, American Stock Exchange, and NASDAQ into the table.
Those inserts that succeed tell the hacker which stocks match the stocks
that you name in your confidential table. It doesn’t take long for the hacker to
extract your entire list of stocks.

You can protect yourself from hacks such as the one in the preceding example
by being very careful about entering statements similar to the following:

GRANT REFERENCES (Stock)
ON FOUR_STAR
TO SECRET_HACKER;

Avoid granting privileges to people who may abuse them. True, people don’t
come with guarantees printed on their foreheads. But if you wouldn’t lend
your new car to a person for a long trip, you probably shouldn’t grant him
the REFERENCES privilege on an important table either.

The preceding example offers one good reason for maintaining careful con-
trol of the REFERENCES privilege. The following list describes two other rea-
sons for careful control of REFERENCES:

� If the other person specifies a constraint in HOT STOCKS by using a
RESTRICT option and you try to delete a row from your table, the DBMS
tells you that you can’t, because doing so would violate a referential
constraint.

� If you want to use the DROP command to destroy your table, you find that
you must get the other person to first drop his constraint (or his table).

68 Part I: Basic Concepts

The bottom line is that enabling another person to specify integrity con-
straints on your table not only introduces a potential security breach, but
also means that the other user sometimes gets in your way.

Delegating responsibility for security
To keep your system secure, you must severely restrict the access privileges
you grant and the people to whom you grant these privileges. But people
who can’t do their work because they lack access are likely to hassle you
constantly. To preserve your sanity, you’ll probably need to delegate some of
the responsibility for maintaining database security. SQL provides for such
delegation through the WITH GRANT OPTION clause. Consider the following
example:

GRANT UPDATE
ON RETAIL_PRICE_LIST
TO SALES_MANAGER WITH GRANT OPTION

This statement is similar to the previous GRANT UPDATE example in that the
statement enables the sales manager to update the retail price list. The state-
ment also gives her the right to grant the update privilege to anyone she
wants. If you use this form of the GRANT statement, you must not only trust
the grantee to use the privilege wisely, but also trust her to choose wisely in
granting the privilege to others.

The ultimate in trust, and therefore the ultimate in vulnerability, is to execute
a statement such as the following:

GRANT ALL PRIVILEGES
ON FOUR_STAR
TO BENEDICT_ARNOLD WITH GRANT OPTION;

Be extremely careful about using statements such as this one.

69Chapter 3: The Components of SQL

70 Part I: Basic Concepts

Part II
Using SQL to Build

Databases

In this part . . .

The database life cycle encompasses the following four
important stages:

� Creating the database

� Filling the database with data

� Manipulating and retrieving selected data

� Deleting the data

I cover all these stages in this book, but in Part II, I focus
on database creation. SQL includes all the facilities you
need to create relational databases of any size or com-
plexity. I explain what these facilities are and how to use
them. I also describe some common problems that rela-
tional databases suffer from and tell you how SQL can
help you prevent such problems — or at least minimize
their effects.

Chapter 4

Building and Maintaining a
Simple Database Structure

In This Chapter
� Using RAD to build, change, and remove a database table

� Using SQL to build, change, and remove a database table

� Migrating your database to another DBMS

Computer history changes so fast that sometimes the rapid turnover of
technological “generations” can be confusing. High-level (so-called third-

generation) languages such as FORTRAN, COBOL, BASIC, Pascal, and C were
the first languages used with large databases. Later, languages specifically
designed for use with databases, such as dBASE, Paradox, and R:BASE (third-
and-a-half-generation languages?) came into use. The latest step in this progres-
sion is the emergence of development environments such as Access, Delphi,
and C++Builder (fourth-generation languages, or 4GLs), which build applica-
tions with little or no procedural programming. You can use these graphical
object-oriented tools (also known as rapid application development, or RAD,
tools) to assemble application components into production applications.

Because SQL is not a complete language, it doesn’t fit tidily into one of the gen-
erational categories I just mentioned. It makes use of commands in the manner
of a third-generation language but is essentially nonprocedural, like a fourth-
generation language. The bottom line is that how you classify SQL doesn’t
really matter. You can use it in conjunction with all the major third- and fourth-
generation development tools. You can write the SQL code yourself, or you
can move objects around on-screen and have the development environment
generate equivalent code for you. The commands that go out to the remote
database are pure SQL in either case.

In this chapter, I take you through the process of building, altering, and drop-
ping a simple table by using a RAD tool, and then discuss how to build, alter,
and drop the same table using SQL.

Building a Simple Database
Using a RAD Tool

People use databases because they want to keep track of important
information. Sometimes, the information that they want to track is simple,
and sometimes it’s not. A good database management system provides what
you need in either case. Some DBMSs give you SQL. Others, such as RAD tools,
give you an object-oriented graphical environment. Some DBMSs support both
approaches. In the following sections, I show you how to build a simple single-
table database by using a graphical database design tool so that you can see
what the process involves. I use Microsoft Access, but the procedure is similar
for other Windows-based development environments.

Deciding what to track
The first step toward creating a database is to decide what you want to track.
For example, imagine that you have just won $101 million in the Powerball lot-
tery. (It’s OK to imagine something like this. In real life, it’s about as likely as
finding your car squashed by a meteorite.) People you haven’t heard from in
years, and friends you’d forgotten you had, are coming out of the woodwork.
Some have surefire, can’t-miss business opportunities in which they want you
to invest. Others represent worthy causes that could benefit from your sup-
port. As a good steward of your new wealth, you realize that some business
opportunities aren’t as good as others, and some causes aren’t as worthy as
others. You decide to put all the options into a database so you can keep
track of them and make fair and equitable judgments.

You decide to track the following items:

� First name

� Last name

� Address

� City

� State or province

� Postal code

� Phone

74 Part II: Using SQL to Build Databases

� How known (your relationship to the person)

� Proposal

� Business or charity

You decide to put all the listed items into a single database table; you don’t
need something elaborate. You fire up your Access 2003 development envi-
ronment and stare at the screen shown in Figure 4-1.

Creating the table with Design View
The screen shown in Figure 4-1 contains much more information than what
previous-generation DBMS products displayed. In the old days (the 1980s),
the typical DBMS presented you with a blank screen punctuated by a single-
character prompt. Database management has come a long way since then,
and determining what you should do first is much easier now. On the right
side of the window, a number of options are displayed:

� The Open pane lists databases that have been used recently.

� The New pane enables you to launch a new blank database or select
from a library of database templates.

� The Search facility gives you access to several Microsoft resources.

� The Spotlight section lists several things that you might want to do,
such as enter a bug report or join a newsgroup.

Follow these steps to create a single database table in Access:

1. Open Access and then select Blank Database from the New pane.

The File New Database dialog box appears.

2. Name the database you’re creating and save it in a folder.

The My Documents folder is the default choice, but you can save the
database to any folder you want. For this example, choose the name
POWER because you’re tracking data related to your Powerball winnings.

The POWER Database window opens.

3. Select Create Table in Design View.

The second choice, Create Table Using Wizard, isn’t very flexible. The
table-creating wizard builds tables from a list of predefined columns.
The third choice, Create Table by Entering Data, makes many default
assumptions about your data and is not the best choice for serious
application development.

After double-clicking the Create Table in Design View option, the table
creation window appears, as shown in Figure 4-2.

75Chapter 4: Building and Maintaining a Simple Database Structure

4. Fill in the Field Name, Data Type, and Description information for
each attribute for your table.

After you make an entry in the Field Name column, a drop-down menu
appears in the Data Type column. Select the appropriate data types you
want to use from the drop-down menu.

The bottom left of Figure 4-3 shows the default values for some of the
field properties. You may want to make entries for all the fields you can
identify.

Access uses the term field rather than column. The original file-processing
systems weren’t relational and used the file, field, and record terminol-
ogy common for flat-file systems.

You may want to retain these values, or change them as appropriate.
For example, the default value for the FirstName field is 50 characters,
which is probably more characters than you need. You can save storage
space by changing the value to something more reasonable, such as 15
characters. Figure 4-4 shows the table creation window after all field
entries are made.

Figure 4-1:
Microsoft

Access
opening
screen.

76 Part II: Using SQL to Build Databases

5. Now that you’ve defined your table, save it by choosing File➪Save.

The Save As dialog box, shown in Figure 4-5, appears. Enter the name of
the table you want to save. I named my table PowerDesign. The table is
about your Powerball winnings, and it was created in Design view.

When you try to save your new table, another dialog box appears (see
Figure 4-6), which tells you that you haven’t defined a primary key and
asks if you want to define one now. I discuss primary keys in the section
“Identifying a primary key,” later in this chapter. For now, just click the
No button to save your table.

After you save your table, you may find that you need to tweak your original
design, as I describe in the next section, “Altering the table structure.” So
many people have offered you enticing business deals that a few of these
folks have the same first and last names as other people in the group. To
keep them straight, you decide to add a unique proposal number to each
record in the database table. This way, you can tell one David Lee from
another.

Figure 4-2:
The table
creation
window.

77Chapter 4: Building and Maintaining a Simple Database Structure

Figure 4-4:
The table
creation
window,

with all
fields

defined.

Figure 4-3:
The table
creation
window

shows
default

entries for
FirstName

field
properties.

78 Part II: Using SQL to Build Databases

Altering the table structure
Often, the database tables you create need some tweaking. If you’re working for
someone else, your client may come to you after you create the database and
tell you she wants to keep track of another data item — perhaps several more.

If you’re building a database for your own use, deficiencies in your structure
inevitably become apparent after you create the structure. For example, say
you start getting proposals from outside the United States and need to add a
Country column. Or you decide that you want to include e-mail addresses. In
any case, you must go back in and restructure what you created. All RAD tools
have a restructure capability. To demonstrate a typical one, I show you how
to use Access to modify a table. Other tools have comparable capabilities
and work in a similar fashion.

You may need to add unique proposal numbers so that you can distinguish
between proposals from different people who have the same name. While
you’re at it, you may as well add a second Address field for people with com-
plex addresses, and a Country field for proposals from other countries.

To insert a new row and accommodate the changes, do the following:

1. In the table creation window, put the cursor in the top row, as shown
in Figure 4-7, and choose Insert➪Rows.

A blank row appears at the cursor position and pushes down all the
existing rows.

Figure 4-6:
The primary

key
message

box.

Figure 4-5:
The Table

Name text
box in the

Save As
dialog box.

79Chapter 4: Building and Maintaining a Simple Database Structure

2. Enter the column headings you wish to add to your table.

I used ProposalNumber as the Field Name, AutoNumber as the Data
Type, and a unique identifier for each row of the PowerDesign table
as the Description. The AutoNumber data type is a numeric type that is
automatically incremented for each succeeding row in a table. In a simi-
lar way, I added an Address2 field below the Address field and a Country
field below the PostalCode field. Figure 4-8 shows the result.

Identifying a primary key
A table’s primary key is a field that uniquely identifies each row.
ProposalNumber is a good candidate for PowerDesign’s primary key because
it uniquely identifies each row in the table. It’s the only field that you can be
sure isn’t duplicated somewhere in the table. To designate it as the table’s
primary key, place the cursor in the ProposalNumber row of the table cre-
ation window, and then click the Primary Key icon in the center of the Table
Design toolbar (it’s the icon with the key on it). The key icon is now in the
left-most column of the table creation window, as shown in Figure 4-9. This
indicates that ProposalNumber is the primary key of the PowerDesign table.

Figure 4-7:
A new row

will be
inserted

in the
Power
Design

table.

80 Part II: Using SQL to Build Databases

Figure 4-9:
Proposal
Number

is declared
as the

primary key.

Figure 4-8:
Your revised

table
definition

should look
similar to

this.

81Chapter 4: Building and Maintaining a Simple Database Structure

Creating an index
Because the number of investment and charitable proposals you receive
could easily grow into the thousands, you need a quick way to access records
of interest. You can accomplish this task in a variety of ways. Say, for exam-
ple, that you want to look at all the proposals from your brothers. Assuming
none of your brothers have changed their last names for theatrical or profes-
sional reasons, you can isolate these offers by basing your retrieval on the
contents of the LastName field, as shown in the following example:

SELECT * FROM PowerDesign
WHERE LastName = ‘Marx’ ;

That strategy doesn’t work for the proposals made by your brothers-in-law,
so you need to look at a different field, as shown in the following example:

SELECT * FROM PowerDesign
WHERE HowKnown = ‘brother-in-law’ ;

SQL scans the table a row at a time, looking for entries that satisfy the WHERE
clause. If PowerDesign is large (tens of thousands of records), these queries
may not work quickly. You can speed things up by applying indexes to the
PowerDesign table. (An index is a table of pointers. Each row in the index
points to a corresponding row in the data table.)

You can define an index for all the different ways that you may want to access
your data. If you add, change, or delete rows in the data table, you don’t need
to re-sort the table — you need only to update the indexes. You can update
an index much faster than you can sort a table. After you establish an index
with the desired ordering, you can use that index to access rows in the data
table almost instantaneously.

Because ProposalNumber is unique as well as short, using that field is the
quickest way to access an individual record. For that reason, the primary
key of any table should always be indexed; Access does this automatically.
To use this field, however, you must know the ProposalNumber of the record
you want. You may want to create additional indexes based on other fields,
such as LastName, PostalCode, or HowKnown. For a table that you index on
LastName, after a search finds the first row containing a LastName of Marx,
the search has found them all. The index keys for all the Marx rows are stored
one right after another. You can retrieve Chico, Groucho, Harpo, Zeppo, and
Karl almost as fast as Chico alone.

Indexes add overhead to your system, which slows down operations. You
must balance this slowdown against the speed you gain by accessing records
through an index. It usually pays off to index fields that you frequently use to
access records. Creating indexes for fields that you never use as retrieval
keys costs you something, but you gain nothing. Creating indexes for fields

82 Part II: Using SQL to Build Databases

that don’t differentiate one record from another also makes no sense. The
BusinessOrCharity field, for example, merely divides the table records into
two categories; it doesn’t make a good index.

The effectiveness of an index varies from one implementation to another.
If you migrate a database from one platform to another, the indexes that
gave the best performance on the first system may not perform the best on
the new platform. In fact, the performance may be worse than if you hadn’t
indexed the database at all. You must optimize your indexes for each DBMS
and hardware configuration. Try various indexing schemes to see which one
gives you the best overall performance, and consider both retrieval speed
and update speed.

To create indexes for the PowerDesign table, click the Indexes icon located to
the right of the Primary Key icon in the Table Design toolbar. The Indexes
dialog box appears and already has entries for PostalCode and
ProposalNumber. Figure 4-10 shows the Indexes dialog box.

Access automatically creates an index for PostalCode because that field is
often used for retrievals. It automatically indexes the primary key as well.

You can see that PostalCode isn’t a primary key and isn’t necessarily
unique; the opposite is true for ProposalNumber. Create additional indexes
for LastName and HowKnown, because they’re likely to be used for retrievals.
Figure 4-11 shows how these new indexes are specified.

Figure 4-11:
Defining
indexes

for the
LastName

and
HowKnown

fields.

Figure 4-10:
The Indexes

dialog box.

83Chapter 4: Building and Maintaining a Simple Database Structure

After you create all your indexes, you can save the new table structure by
choosing File➪Save or by clicking the diskette icon on the Table Definition
toolbar.

If you use a RAD tool other than Microsoft Access, the specifics that I
describe in this section don’t apply to you. You would execute a roughly
equivalent procedure, however, to create a database table and its indexes
with a different RAD tool.

Deleting a table
In the course of creating a table such as PowerDesign with the exact structure
you want, you may create a few intermediate versions along the way. Having
these variant tables on your system may confuse people later, so delete them
now while they’re still fresh in your mind. To do so, select the table that you
want to delete and click the X icon in the menu bar of the database window,
as shown in Figure 4-12.

Access asks you whether you really want to delete the selected table. Say you
do, and it’s permanently deleted.

If Access deletes a table, it deletes all subsidiary tables as well, including any
indexes the table may have.

Figure 4-12:
You can
delete a
table by

selecting its
name and

clicking the
X icon.

84 Part II: Using SQL to Build Databases

Building PowerDesign with SQL’s DDL
All the database definition functions you can perform by using a RAD tool,
such as Access, you can also accomplish by using SQL. Instead of clicking
menu choices with the mouse, you enter commands from the keyboard.
People who prefer to manipulate visual objects find the RAD tools easy to
understand and use. People who are more oriented toward stringing words
together into logical statements find SQL commands easier. Becoming profi-
cient at using both methods is worthwhile because some things are more
easily represented by using the object paradigm and others are more easily
handled by using SQL.

In the following sections, I use SQL to perform the same table creation, alter-
ation, and deletion operations that I used the RAD tool to perform in the first
part of this chapter.

Using SQL with Microsoft Access
Access is designed as a rapid application development (RAD) tool that
does not require programming. You can write and execute SQL statements
in Access, but you have to use a “back door” method to do it. To open a basic
editor that you can use to enter SQL code, follow these steps:

1. Open your database and select Queries from the Objects list.

2. In the task pane on the right, select Create Query in Design view.

The Show Table dialog box appears.

3. Select any table. Click the Add button and then the Close button.

The cursor blinks in the Query window that you just created, but you
can ignore it.

4. From the main Access menu, choose View➪SQL View.

An editor window appears with the beginnings of an SQL SELECT
statement.

5. Delete the SELECT statement and then enter the SQL statement
you want.

6. When you’re finished, click the Save icon.

Access asks you for a name for the query you have just created.

7. Enter a name and then click OK.

Your statement is saved and will be executed as a query later. Unfortunately,
Access doesn’t execute the full range of SQL statements. For example, it won’t
execute a CREATE TABLE statement. But after your table is created, you can
perform just about any manipulation of your table’s data that you want.

85Chapter 4: Building and Maintaining a Simple Database Structure

Creating a table
If you’re working with a full-featured DBMS — such as Microsoft SQL Server,
Oracle 9i, or IBM DB2 — to create a database table with SQL, you must enter
the same information that you’d enter if you created the table with a RAD tool.
The difference is that the RAD tool helps you by providing a table creation
dialog box (or some similar data-entry skeleton) and by preventing you from
entering invalid field names, types, or sizes. SQL doesn’t give you as much
help. You must know what you’re doing at the onset instead of figuring things
out along the way. You must enter the entire CREATE TABLE statement before
SQL even looks at it, let alone gives you any indication as to whether you
made any errors in the statement.

The statement that creates a proposal-tracking table identical to the one cre-
ated earlier in the chapter uses the following syntax:

CREATE TABLE PowerSQL (
ProposalNumber SMALLINT,
FirstName CHAR (15),
LastName CHAR (20),
Address CHAR (30),
City CHAR (25),
StateProvince CHAR (2),
PostalCode CHAR (10),
Country CHAR (30),
Phone CHAR (14),
HowKnown CHAR (30),
Proposal CHAR (50),
BusinOrCharity CHAR (1));

The information in the SQL statement is essentially the same as what you
enter into the RAD tool (discussed earlier in this chapter). Which method
you use is largely a matter of personal preference. The nice thing about SQL
is that the language is universal. The same standard syntax works regardless
of what database management system you use.

Becoming proficient in SQL has long-term payoffs because it will be around
for a long time. The effort you put into becoming an expert in a particular
development tool is likely to yield a lower return on investment. No matter
how wonderful the latest RAD tool may be, it will be superseded by newer
technology within three to five years. If you can recover your investment in
the tool in that time, great! Use it. If not, you may be wise to stick with the
tried and true. Train your people in SQL, and your training investment will
pay dividends over a much longer period.

86 Part II: Using SQL to Build Databases

Creating an index
Indexes are an important part of any relational database. They serve as point-
ers into the tables that contain the data of interest. By using an index, you can
go directly to a particular record without having to scan the table sequentially,
one record at a time, to find that record. For really large tables, indexes are a
necessity; without indexes, you may need to wait years rather than seconds
for a result. (Well, I suppose you wouldn’t actually wait years. Some retrievals,
however, may actually take that long if you let them keep running. Unless you
have nothing better to do with your computer’s time, you’d probably just
abort the retrieval and do without the result. Life goes on.)

Amazingly, the SQL:2003 specification doesn’t provide a means to create an
index. The DBMS vendors provide their own implementations of the function.
Because these implementations aren’t standardized, they may differ from one
another. Most vendors provide the index creation function by adding a CREATE
INDEX command to SQL. Even though two vendors may use the same words
(CREATE INDEX), the way the command operates may not be the same. You’re
likely to find quite a few implementation-dependent clauses. Carefully study
your DBMS documentation to determine how to use that particular DBMS to
create indexes.

Altering the table structure
To change the structure of an existing table, you can use SQL’s ALTER TABLE
command. Interactive SQL at your client station is not as convenient as a RAD
tool. The RAD tool displays your table’s structure, which you can then modify.
Using SQL, you must know in advance the table’s structure and how you want
to modify it. At the screen prompt, you must enter the appropriate command
to perform the alteration. If, however, you want to embed the table alteration
instructions in an application program, using SQL is usually the easiest way
to do so.

To add a second address field to the PowerSQL table, use the following DDL
command:

ALTER TABLE PowerSQL
ADD COLUMN Address2 CHAR (30);

You don’t need to be an SQL guru to decipher this code. Even professed com-
puter illiterates can probably figure this one out. The command alters a table
with the name PowerSQL by adding a column to the table. The column is

87Chapter 4: Building and Maintaining a Simple Database Structure

named Address2, is of the CHAR data type, and is 30 characters long. This
example demonstrates how easily you can change the structure of database
tables by using SQL DDL commands.

SQL:2003 provides this statement for adding a column to a table and allows
you to drop an existing column in a similar manner, as in the following code:

ALTER TABLE PowerSQL
DROP COLUMN Address2;

Deleting a table
Deleting database tables that you no longer need is easy. Just use the DROP
TABLE command, as follows:

DROP TABLE PowerSQL ;

What could be simpler? If you drop a table, you erase all its data and its meta-
data. No vestige of the table remains.

Deleting an index
If you delete a table by issuing a DROP TABLE command, you also delete any
indexes associated with that table. Sometimes, however, you may want to keep
a table but remove an index from it. SQL:2003 doesn’t define a DROP INDEX
command, but most implementations include that command anyway. Such a
command comes in handy if your system slows to a crawl and you discover
that your tables aren’t optimally indexed. Correcting an index problem can
dramatically improve performance, which will delight users who’ve become
accustomed to response times reminiscent of pouring molasses on a cold day
in Vermont.

Portability Considerations
Any SQL implementation that you’re likely to use may have extensions that
give it capabilities that the SQL:2003 specification doesn’t cover. Some of
these features will likely appear in the next release of the SQL specification.
Others are unique to a particular implementation and probably destined to
stay that way.

88 Part II: Using SQL to Build Databases

Often, these extensions make creating an application that meets your needs
easier, and you’ll find yourself tempted to use them. Using the extensions may
be your best course, but if you do, be aware of the trade-offs. If you ever want
to migrate your application to another SQL implementation, you may need to
rewrite those sections in which you used extensions that your new environ-
ment doesn’t support. Think about the probability of such a migration in the
future and also about whether the extension you’re considering is unique to
your implementation or fairly widespread. Forgoing use of an extension may
be better in the long run, even if its use saves you some time. On the other
hand, you may find no reason not to use the extension. Consider each case
carefully. The more you know about existing implementations and develop-
ment trends, the better the decisions you’ll make.

89Chapter 4: Building and Maintaining a Simple Database Structure

90 Part II: Using SQL to Build Databases

Chapter 5

Building a Multitable
Relational Database

In This Chapter
� Deciding what to include in a database

� Determining relationships among data items

� Linking related tables with keys

� Designing for data integrity

� Normalizing the database

In this chapter, I take you through an example of how to design a multitable
database. The first step to designing this database type is to identify what to

include and what not to include. The next steps are deciding how the included
items relate to each other and setting up tables accordingly. I also discuss how
to use keys, which enable you to access individual records and indexes quickly.

A database must do more than merely hold your data. It must also protect
the data from becoming corrupted. In the latter part of this chapter, I discuss
how to protect the integrity of your data. Normalization is one of the key meth-
ods you can use to protect the integrity of a database. I discuss the various
“normal” forms and point out the kinds of problems that normalization solves.

Designing the Database
To design a database, follow these basic steps (I go into detail about each
step in the sections that follow this list):

1. Decide what objects you want to include in your database.

2. Determine which of these objects should be tables and which should
be columns within those tables.

3. Define tables according to your determination of how you need to
organize the objects.

Optionally, you may want to designate a table column or a combination
of columns as a key. Keys provide a fast way of locating a row of interest
in a table.

The following sections discuss these steps in detail, as well as some other
technical issues that arise during database design.

Step 1: Defining objects
The first step in designing a database is deciding which aspects of the system
are important enough to include in the model. Treat each aspect as an object
and create a list containing the names of all the objects you can think of. At
this stage, don’t try to decide how these objects relate to each other. Just try
to list them all.

You may find it helpful to gather a team of people who are familiar with the
system you’re modeling. These people can brainstorm and respond to each
other’s ideas. Working together, you’ll probably develop a more complete and
accurate set of objects.

When you have a reasonably complete set of objects, move on to the next
step: deciding how these objects relate to each other. Some of the objects are
major entities, crucial to giving you the results that you want. Others are sub-
sidiary to those major entities. You ultimately may decide that some objects
don’t belong in the model at all.

Step 2: Identifying tables and columns
Major entities translate into database tables. Each major entity has a set of
associated attributes, which translate into the table columns. Many business
databases, for example, have a CUSTOMER table that keeps track of cus-
tomers’ names, addresses, and other permanent information. Each attribute
of a customer, such as name, street, city, state, zip code, phone number, and
e-mail address, becomes a column in the CUSTOMER table.

No rules exist about what to identify as tables and which of the attributes in
the system belong to which table. You may have some reasons for assigning a
particular attribute to one table and other reasons for assigning the attribute
to another table. You must make a judgment based on what information you
want to get from the database and how you want to use that information.

92 Part II: Using SQL to Build Databases

93Chapter 5: Building a Multitable Relational Database

In deciding how to structure database tables, involve the future users of the
database as well as the people who will make decisions based on database
information. If the “reasonable” structure you arrive at isn’t consistent with
the way that people will use the information, your system will turn out to be
frustrating to use at best — and could even produce wrong information,
which is even worse. Don’t let this happen! Put careful effort into deciding
how to structure your tables.

Take a look at an example to demonstrate the thought process that goes into
creating a multitable database. Say that you just established VetLab, a clinical
microbiology laboratory that tests biological specimens sent in by veterinari-
ans. You want to track several things, such as the items in the following list:

� Clients

� Tests that you perform

� Employees

� Orders

� Results

Each of these entities has associated attributes. Each client has a name,
address, and other contact information. Each test has a name and a standard
charge. Employees have contact information as well as a job classification
and pay rate. For each order, you need to know who ordered it, when it was
ordered, and what test was ordered. For each test result, you need to know
the outcome of the test, whether the results were preliminary or final, and
the test order number.

Step 3: Defining tables
Now you want to define a table for each entity and a column for each
attribute. Table 5-1 shows how you may define the VetLab tables.

Table 5-1 VetLab Tables
Table Columns

CLIENT Client Name

Address 1

Address 2

City

(continued)

Table 5-1 (continued)
Table Columns

State

Postal Code

Phone

Fax

Contact Person

TESTS Test Name

Standard Charge

EMPLOYEE Employee Name

Address 1

Address 2

City

State

Postal Code

Home Phone

Office Extension

Hire Date

Job Classification

Hourly/Salary/Commission

ORDERS Order Number

Client Name

Test Ordered

Responsible Salesperson

Order Date

RESULTS Result Number

Order Number

Result

Date Reported

Preliminary/Final

94 Part II: Using SQL to Build Databases

95Chapter 5: Building a Multitable Relational Database

You can create the tables defined in Table 5-1 by using either a rapid applica-
tion development (RAD) tool or by using SQL’s Data Definition Language
(DDL), as shown in the following code:

CREATE TABLE CLIENT (
ClientName CHARACTER (30) NOT NULL,
Address1 CHARACTER (30),
Address2 CHARACTER (30),
City CHARACTER (25),
State CHARACTER (2),
PostalCode CHARACTER (10),
Phone CHARACTER (13),
Fax CHARACTER (13),
ContactPerson CHARACTER (30)) ;

CREATE TABLE TESTS (
TestName CHARACTER (30) NOT NULL,
StandardCharge CHARACTER (30)) ;

CREATE TABLE EMPLOYEE (
EmployeeName CHARACTER (30) NOT NULL,
Address1 CHARACTER (30),
Address2 CHARACTER (30),
City CHARACTER (25),
State CHARACTER (2),
PostalCode CHARACTER (10),
HomePhone CHARACTER (13),
OfficeExtension CHARACTER (4),
HireDate DATE,
JobClassification CHARACTER (10),
HourSalComm CHARACTER (1)) ;

CREATE TABLE ORDERS (
OrderNumber INTEGER NOT NULL,
ClientName CHARACTER (30),
TestOrdered CHARACTER (30),
Salesperson CHARACTER (30),
OrderDate DATE) ;

CREATE TABLE RESULTS (
ResultNumber INTEGER NOT NULL,
OrderNumber INTEGER,
Result CHARACTER(50),
DateReported DATE,
PrelimFinal CHARACTER (1)) ;

These tables relate to each other by the attributes (columns) that they share,
as the following list describes:

� The CLIENT table links to the ORDERS table by the ClientName column.

� The TESTS table links to the ORDERS table by the TestName
(TestOrdered) column.

� The EMPLOYEE table links to the ORDERS table by the EmployeeName
(Salesperson) column.

� The RESULTS table links to the ORDERS table by the OrderNumber
column.

For a table to serve as an integral part of a relational database, link that table
to at least one other table in the database by using a common column. Figure
5-1 illustrates the relationships between the tables.

The links in Figure 5-1 illustrate four different one-to-many relationships. The
single arrowhead points to the “one” side of the relationship, and the double
arrowhead points to the “many” side.

� One client can make many orders, but each order is made by one, and
only one, client.

� Each test can appear on many orders, but each order calls for one, and
only one, test.

� Each order is taken by one, and only one, employee (or salesperson),
but each salesperson can (and, you hope, does) take multiple orders.

� Each order can produce several preliminary test results and a final
result, but each result is associated with one, and only one, order.

CLIENT TESTS EMPLOYEE

ORDERS

RESULTS

SALESPERSON/EMPLOYEE_NAMECLIENT_NAME/CLIENT_NAME

TEST_NAME/TEST_ORDERED

ORDER_NUMBER/ORDER_NUMBER

Figure 5-1:
VetLab

database
tables and

links.

96 Part II: Using SQL to Build Databases

97Chapter 5: Building a Multitable Relational Database

As you can see in the figure, the attribute that links one table to another can
have a different name in each table. Both attributes must, however, have
matching data types.

Domains, character sets, collations,
and translations
Although tables are the main components of a database, additional elements
play a part, too. In Chapter 1, I define the domain of a column in a table as the
set of all values that the column may assume. Establishing clear-cut domains
for the columns in a table, through the use of constraints, is an important
part of designing a database.

People who communicate in standard American English aren’t the only ones
who use relational databases. Other languages — even some that use other
character sets — work equally well. Even if your data is in English, some appli-
cations may still require a specialized character set. SQL:2003 enables you to
specify the character set you want to use. In fact, you can use a different char-
acter set for each column in a table. This flexibility is generally unavailable in
languages other than SQL.

A collation, or collating sequence, is a set of rules that determines how strings
in a character set compare with one another. Every character set has a default
collation. In the default collation of the ASCII character set, A comes before B,
and B comes before C. A comparison, therefore, considers A as less than B
and considers C as greater than B. SQL:2003 enables you to apply different
collations to a character set. Again, this degree of flexibility isn’t generally
available in other languages.

Sometimes, you encode data in a database in one character set, but you
want to deal with the data in another character set. Perhaps you have data
in the German character set, for example, but your printer doesn’t support
German characters that the ASCII character set doesn’t include. A translation
is a SQL:2003 facility that enables you to translate character strings from
one character set to another. The translation may translate one character
into two, such as a German ü to an ASCII ue, or the translation may translate
lowercase characters to uppercase. You can even translate one alphabet into
another, such as Hebrew into ASCII.

Getting into your database fast with keys
A good rule for database design is to make sure that every row in a database
table is distinguishable from every other row; each row should be unique.
Sometimes, you may want to extract data from your database for a specific

purpose, such as a statistical analysis, and in doing so, you create tables
where rows aren’t necessarily unique. For your limited purpose, this sort of
duplication doesn’t matter. Tables that you may use in more than one way,
however, should not contain duplicate rows.

A key is an attribute or a combination of attributes that uniquely identifies a
row in a table. To access a row in a database, you must have some way of dis-
tinguishing that row from all the other rows. Because keys must be unique,
they provide such an access mechanism. Furthermore, a key must never con-
tain a null value. If you use null keys, two rows that each contain a null key
field may not be distinguishable from each other.

In the veterinary lab example, you can designate appropriate columns as
keys. In the CLIENT table, ClientName is a good key. This key can distinguish
each client from all others. Entering a value in this column becomes manda-
tory for every row in the table. TestName and EmployeeName make good keys
for the TESTS and EMPLOYEE tables. OrderNumber and ResultNumber make
good keys for the ORDERS and RESULTS tables. Make sure that you enter a
unique value for every row.

You can have two kinds of keys: primary keys and foreign keys. The keys that I
discuss in the preceding paragraph are primary keys. Primary keys guarantee
uniqueness. I discuss primary and foreign keys in the next two sections.

Primary keys
To incorporate the idea of keys into the VetLab database, you can specify the
primary key of a table as you create the table. In the following example, a single
column is sufficient (assuming that all of VetLab’s clients have unique names):

CREATE TABLE CLIENT (
ClientName CHARACTER (30) PRIMARY KEY,
Address1 CHARACTER (30),
Address2 CHARACTER (30),
City CHARACTER (25),
State CHARACTER (2),
PostalCode CHARACTER (10),
Phone CHARACTER (13),
Fax CHARACTER (13),
ContactPerson CHARACTER (30)
) ;

The constraint PRIMARY KEY replaces the constraint NOT NULL, given in the
earlier definition of the CLIENT table. The PRIMARY KEY constraint implies
the NOT NULL constraint, because a primary key can’t have a null value.

98 Part II: Using SQL to Build Databases

Although most DBMSs will allow you to create a table without one, all tables
in a database should have a primary key. With that in mind, replace the NOT
NULL constraint in the TESTS, EMPLOYEE, ORDERS, and RESULTS tables with
the PRIMARY KEY constraint, as in the following example:

CREATE TABLE TESTS (
TestName CHARACTER (30) PRIMARY KEY,
StandardCharge CHARACTER (30)) ;

Sometimes, no single column in a table can guarantee uniqueness. In such
cases, you can use a composite key. A composite key is a combination of
columns that, together, guarantee uniqueness. Imagine that some of VetLab’s
clients are chains that have offices in several cities. ClientName isn’t suffi-
cient to distinguish two branch offices of the same client. To handle this situ-
ation, you can define a composite key as follows:

CREATE TABLE CLIENT (
ClientName CHARACTER (30) NOT NULL,
Address1 CHARACTER (30),
Address2 CHARACTER (30),
City CHARACTER (25) NOT NULL,
State CHARACTER (2),
PostalCode CHARACTER (10),
Phone CHARACTER (13),
Fax CHARACTER (13),
ContactPerson CHARACTER (30),
CONSTRAINT BranchPK PRIMARY KEY
(ClientName, City)

) ;

Foreign keys
A foreign key is a column or group of columns in a table that correspond to or
reference a primary key in another table in the database. A foreign key doesn’t
have to be unique, but it must uniquely identify the column(s) in the table
that the key references.

If the ClientName column is the primary key in the CLIENT table, every
row in the CLIENT table must have a unique value in the ClientName column.
ClientName is a foreign key in the ORDERS table. This foreign key corresponds
to the primary key of the CLIENT table, but the key doesn’t have to be unique
in the ORDERS table. In fact, you hope the foreign key isn’t unique. If each of
your clients gave you only one order and then never ordered again, you’d go
out of business rather quickly. You hope that many rows in the ORDERS table
correspond with each row in the CLIENT table, indicating that nearly all your
clients are repeat customers.

99Chapter 5: Building a Multitable Relational Database

The following definition of the ORDERS table shows how you can add the
concept of foreign keys to a CREATE statement:

CREATE TABLE ORDERS (
OrderNumber INTEGER PRIMARY KEY,
ClientName CHARACTER (30),
TestOrdered CHARACTER (30),
Salesperson CHARACTER (30),
OrderDate DATE,
CONSTRAINT BRANCHFK FOREIGN KEY (ClientName)
REFERENCES CLIENT (ClientName),

CONSTRAINT TestFK FOREIGN KEY (TestOrdered)
REFERENCES TESTS (TestName),

CONSTRAINT SalesFK FOREIGN KEY (Salesperson)
REFERENCES EMPLOYEE (EmployeeName)

) ;

Foreign keys in the ORDERS table link that table to the primary keys of the
CLIENT, TESTS, and EMPLOYEE tables.

Working with Indexes
The SQL:2003 specification doesn’t address the topic of indexes, but that
omission doesn’t mean that indexes are rare or even optional parts of a data-
base system. Every SQL implementation supports indexes, but no universal
agreement exists on how to support them. In Chapter 4, I show you how to
create an index by using Microsoft Access, a rapid application development
(RAD) tool. You must refer to the documentation for your particular database
management system (DBMS) to see how the system implements indexes.

What’s an index, anyway?
Data generally appears in a table in the order in which you originally entered
the information. That order may have nothing to do with the order in which
you later want to process the data. Say, for example, that you want to process
your CLIENT table in ClientName order. The computer must first sort the
table in ClientName order. These sorts take time. The larger the table, the
longer the sort takes. What if you have a table with 100,000 rows? Or a table
with a million rows? In some applications, such table sizes are not rare. The
best sort algorithms would have to make some 20 million comparisons and
millions of swaps to put the table in the desired order. Even with a very fast
computer, you may not want to wait that long.

Indexes can be a great timesaver. An index is a subsidiary or support table
that goes along with a data table. For every row in the data table, you have a
corresponding row in the index table. The order of the rows in the index table
is different.

100 Part II: Using SQL to Build Databases

101Chapter 5: Building a Multitable Relational Database

Table 5-2 shows a small example data table.

Table 5-2 CLIENT Table
ClientName Address1 Address2 City State

Butternut 5 Butternut Lane Hudson NH
Animal Clinic

Amber 470 Kolvir Circle Amber MI
Veterinary, Inc.

Vets R Us 2300 Geoffrey Road Suite 230 Anaheim CA

Doggie Doctor 32 Terry Terrace Nutley NJ

The Equestrian Veterinary 7890 Paddock Gallup NM
Center Parkway

Dolphin Institute 1002 Marine Drive Key West FL

J. C. Campbell, 2500 Main Street Los Angeles CA
Credit Vet

Wenger’s 15 Bait Boulevard Sedona AZ
Worm Farm

The rows are not in alphabetical order by ClientName. In fact, they aren’t in
any useful order at all. The rows are simply in the order in which somebody
entered the data.

An index for this CLIENT table may look like Table 5-3.

Table 5-3 Client Name Index for the CLIENT Table
ClientName Pointer to Data Table

Amber Veterinary, Inc. 2

Butternut Animal Clinic 1

Doggie Doctor 4

Dolphin Institute 6

J. C. Campbell, Credit Vet 7

The Equestrian Center 5

Vets R Us 3

Wenger’s Worm Farm 8

The index contains the field that forms the basis of the index (in this case,
ClientName) and a pointer into the data table. The pointer in each index row
gives the row number of the corresponding row in the data table.

Why would I want an index?
If I want to process a table in ClientName order, and I have an index arranged
in ClientName order, I can perform my operation almost as fast as I could if
the data table itself was in ClientName order. I can work through the index
sequentially, moving immediately to each index row’s corresponding data
record by using the pointer in the index.

If you use an index, the table processing time is proportional to N, where N
is the number of records in the table. Without an index, the processing time
for the same operation is proportional to N lg N, where lg N is the logarithm
of N to the base 2. For small tables, the difference is insignificant, but for
large tables, the difference is great. On large tables, some operations aren’t
practical to perform without the help of indexes.

As an example, say that you have a table containing 1,000,000 records (N =
1,000,000), and processing each record takes one millisecond (one-thousandth
of a second). If you have an index, processing the entire table takes only 1,000
seconds — less than 17 minutes. Without an index, you need to go through
the table approximately 1,000,000 × 20 times to achieve the same result. This
process would take 20,000 seconds — more than five and a half hours. I think
you can agree that the difference between 17 minutes and five and a half hours
is substantial. That’s the difference that indexing makes on processing records.

Maintaining an index
After you create an index, something must maintain it. Fortunately, your
DBMS maintains your indexes for you by updating them every time you
update the corresponding data tables. This process takes some extra time,
but it’s worth it. After you create an index and your DBMS maintains it, the
index is always available to speed up your data processing, no matter how
many times you need to call on it.

The best time to create an index is at the same time you create its corre-
sponding data table. If you create the index at the start and begin maintaining
it at the same time, you don’t need to undergo the pain of building the index
later, with the entire operation taking place in a single, long session. Try to
anticipate all the ways that you may want to access your data and then
create an index for each possibility.

102 Part II: Using SQL to Build Databases

103Chapter 5: Building a Multitable Relational Database

Some DBMS products give you the capability to turn off index maintenance.
You may want to do so in some real-time applications where updating indexes
takes a great deal of time and you have precious little to spare. You may even
elect to update the indexes as a separate operation during off-peak hours.

Don’t fall into the trap of creating an index for retrieval orders that you’re
unlikely ever to use. Index maintenance is an extra operation that the com-
puter must perform every time it modifies the index field or adds or deletes a
data table row, which affects performance. For optimal performance, create
only those indexes that you expect to use as retrieval keys — and only for
tables containing a large number of rows. Otherwise, indexes can degrade
performance.

You may need to compile something such as a monthly or quarterly report
that requires the data in an odd order that you don’t ordinarily need. Create
an index just before running that periodic report, run the report, and then
drop the index so that the DBMS isn’t burdened with maintaining the index
during the long period between reports.

Maintaining Integrity
A database is valuable only if you’re reasonably sure that the data it contains
is correct. In medical, aircraft, and spacecraft databases, for example, incor-
rect data can lead to loss of life. Incorrect data in other applications may
have less severe consequences but can still prove damaging. The database
designer must make sure that incorrect data never enters the database.

Some problems can’t be stopped at the database level. The application pro-
grammer must intercept these problems before they can damage the data-
base. Everyone responsible for dealing with the database in any way must
remain conscious of the threats to data integrity and take appropriate action
to nullify those threats.

Databases can experience several distinctly different kinds of integrity — and
a number of problems that can affect integrity. In the following sections, I dis-
cuss three types of integrity: entity, domain, and referential. I also look at
some of the problems that can threaten database integrity.

Entity integrity
Every table in a database corresponds to an entity in the real world. That
entity may be physical or conceptual, but in some sense, the entity’s exis-
tence is independent of the database. A table has entity integrity if the table is

entirely consistent with the entity that it models. To have entity integrity, a
table must have a primary key. The primary key uniquely identifies each row
in the table. Without a primary key, you can’t be sure that the row retrieved
is the one you want.

To maintain entity integrity, you need to specify that the column or group of
columns that comprise the primary key are NOT NULL. In addition, you must
constrain the primary key to be UNIQUE. Some SQL implementations enable
you to add such a constraint to the table definition. With other implementa-
tions, you must apply the constraint later, after you specify how to add,
change, or delete data from the table. The best way to ensure that your pri-
mary key is both NOT NULL and UNIQUE is to give the key the PRIMARY KEY
constraint when you create the table, as shown in the following example:

CREATE TABLE CLIENT (
ClientName CHARACTER (30) PRIMARY KEY,
Address1 CHARACTER (30),
Address2 CHARACTER (30),
City CHARACTER (25),
State CHARACTER (2),
PostalCode CHARACTER (10),
Phone CHARACTER (13),
Fax CHARACTER (13),
ContactPerson CHARACTER (30)
) ;

An alternative is to use NOT NULL in combination with UNIQUE, as shown in
the following example:

CREATE TABLE CLIENT (
ClientName CHARACTER (30) NOT NULL,
Address1 CHARACTER (30),
Address2 CHARACTER (30),
City CHARACTER (25),
State CHARACTER (2),
PostalCode CHARACTER (10),
Phone CHARACTER (13),
Fax CHARACTER (13),
ContactPerson CHARACTER (30),
UNIQUE (ClientName)) ;

Domain integrity
You usually can’t guarantee that a particular data item in a database is cor-
rect, but you can determine whether a data item is valid. Many data items
have a limited number of possible values. If you make an entry that is not one

104 Part II: Using SQL to Build Databases

105Chapter 5: Building a Multitable Relational Database

of the possible values, that entry must be an error. The United States, for
example, has 50 states plus the District of Columbia, Puerto Rico, and a few
possessions. Each of these areas has a two-character code that the U.S. Postal
Service recognizes. If your database has a State column, you can enforce
domain integrity by requiring that any entry into that column be one of the rec-
ognized two-character codes. If an operator enters a code that’s not on the list
of valid codes, that entry breaches domain integrity. If you test for domain
integrity, you can refuse to accept any operation that causes such a breach.

Domain integrity concerns arise if you add new data to a table by using either
the INSERT or the UPDATE statements. You can specify a domain for a column
by using a CREATE DOMAIN statement before you use that column in a
CREATE TABLE statement, as shown in the following example:

CREATE DOMAIN LeagueDom CHAR (8)
CHECK (LEAGUE IN (‘American’, ‘National’));

CREATE TABLE TEAM (
TeamName CHARACTER (20) NOT NULL,
League LeagueDom NOT NULL
) ;

The domain of the League column includes only two valid values: American
and National. Your DBMS doesn’t enable you to commit an entry or update
to the TEAM table unless the League column of the row you’re adding has a
value of either ‘American’ or ‘National’.

Referential integrity
Even if every table in your system has entity integrity and domain integrity,
you may still have a problem because of inconsistencies in the way one table
relates to another. In most well-designed databases, every table contains at
least one column that refers to a column in another table in the database.
These references are important for maintaining the overall integrity of the
database. The same references, however, make update anomalies possible.

Update anomalies are problems that can occur after you update the data in a
row of a database table.

The relationships among tables are generally not bi-directional. One table is
usually dependent on the other. Say, for example, that you have a database
with a CLIENT table and an ORDERS table. You may conceivably enter a client
into the CLIENT table before she makes any orders. You can’t, however, enter
an order into the ORDERS table unless you already have an entry in the CLIENT
table for the client who’s making that order. The ORDERS table is dependent
on the CLIENT table. This kind of arrangement is often called a parent-child

relationship, where CLIENT is the parent table and ORDERS is the child table.
The child is dependent on the parent. Generally, the primary key of the parent
table is a column (or group of columns) that appears in the child table. Within
the child table, that same column (or group) is a foreign key. A foreign key
may contain nulls and need not be unique.

Update anomalies arise in several ways. A client moves away, for example,
and you want to delete her from your database. If she has already made some
orders, which you recorded in the ORDERS table, deleting her from the CLIENT
table could present a problem. You’d have records in the ORDERS (child) table
for which you have no corresponding records in the CLIENT (parent) table.
Similar problems can arise if you add a record to a child table without making
a corresponding addition to the parent table. The corresponding foreign keys
in all child tables must reflect any changes to the primary key of a row in a
parent table; otherwise, an update anomaly results.

You can eliminate most referential integrity problems by carefully controlling
the update process. In some cases, you need to cascade deletions from a
parent table to its children. To cascade a deletion, when you delete a row
from a parent table, you also delete all the rows in its child tables that have
foreign keys that match the primary key of the deleted row in the parent
table. Take a look at the following example:

CREATE TABLE CLIENT (
ClientName CHARACTER (30) PRIMARY KEY,
Address1 CHARACTER (30),
Address2 CHARACTER (30),
City CHARACTER (25) NOT NULL,
State CHARACTER (2),
PostalCode CHARACTER (10),
Phone CHARACTER (13),
Fax CHARACTER (13),
ContactPerson CHARACTER (30)
) ;

CREATE TABLE TESTS (
TestName CHARACTER (30) PRIMARY KEY,
StandardCharge CHARACTER (30)
) ;

CREATE TABLE EMPLOYEE (
EmployeeName CHARACTER (30) PRIMARY KEY,
ADDRESS1 CHARACTER (30),
Address2 CHARACTER (30),
City CHARACTER (25),
State CHARACTER (2),
PostalCode CHARACTER (10),
HomePhone CHARACTER (13),
OfficeExtension CHARACTER (4),
HireDate DATE,
JobClassification CHARACTER (10),

106 Part II: Using SQL to Build Databases

107Chapter 5: Building a Multitable Relational Database

HourSalComm CHARACTER (1)
) ;

CREATE TABLE ORDERS (
OrderNumber INTEGER PRIMARY KEY,
ClientName CHARACTER (30),
TestOrdered CHARACTER (30),
Salesperson CHARACTER (30),
OrderDate DATE,
CONSTRAINT NameFK FOREIGN KEY (ClientName)
REFERENCES CLIENT (ClientName)

ON DELETE CASCADE,
CONSTRAINT TestFK FOREIGN KEY (TestOrdered)
REFERENCES TESTS (TestName)

ON DELETE CASCADE,
CONSTRAINT SalesFK FOREIGN KEY (Salesperson)
REFERENCES EMPLOYEE (EmployeeName)

ON DELETE CASCADE
) ;

The constraint NameFK names ClientName as a foreign key that references
the ClientName column in the CLIENT table. If you delete a row in the CLIENT
table, you also automatically delete all rows in the ORDERS table that have the
same value in the ClientName column as those in the ClientName column of
the CLIENT table. The deletion cascades down from the CLIENT table to the
ORDERS table. The same is true for the foreign keys in the ORDERS table that
refer to the primary keys of the TESTS and EMPLOYEE tables.

You may not want to cascade a deletion. Instead, you may want to change the
child table’s foreign key to a NULL value. Consider the following variant of the
previous example:

CREATE TABLE ORDERS (
OrderNumber INTEGER PRIMARY KEY,
ClientName CHARACTER (30),
TestOrdered CHARACTER (30),
SalesPerson CHARACTER (30),
OrderDate DATE,
CONSTRAINT NameFK FOREIGN KEY (ClientName)
REFERENCES CLIENT (ClientName),

CONSTRAINT TestFK FOREIGN KEY (TestOrdered)
REFERENCES TESTS (TestName),

CONSTRAINT SalesFK FOREIGN KEY (Salesperson)
REFERENCES EMPLOYEE (EmployeeName)

ON DELETE SET NULL
) ;

The constraint SalesFK names the Salesperson column as a foreign key
that references the EmployeeName column of the EMPLOYEE table. If a sales-
person leaves the company, you delete her row in the EMPLOYEE table. New

salespeople are eventually assigned to her accounts, but for now, deleting
her name from the EMPLOYEE table causes all of her orders in the ORDER
table to receive a null value in the Salesperson column.

Another way to keep inconsistent data out of a database is to refuse to permit
an addition to a child table until a corresponding row exists in its parent table.
Yet another possibility is to refuse to permit changes to a table’s primary key.
If you refuse to permit rows in a child table without a corresponding row in a
parent table, you prevent the occurrence of “orphan” rows in the child table.
This refusal helps maintain consistency across tables. If you refuse to permit
changes to a table’s primary key, you don’t need to worry about updating for-
eign keys in other tables that depend on that primary key.

Potential problem areas
Data integrity is subject to assault from a variety of quarters. Some of these
problems arise only in multitable databases, whereas others can happen even
in databases that contain only a single table. You want to recognize and mini-
mize all these potential threats.

Bad input data
The source documents or data files that you use to populate your database
may contain bad data. This data may be a corrupted version of the correct
data, or it may not be the data you want. Range checks tell you whether the
data has domain integrity. This type of check catches some problems but not
all. Field values that are within the acceptable range, but are nonetheless
incorrect, aren’t identified as problems.

Operator error
Your source data may be correct, but the data entry operator incorrectly
transcribes the data. This type of error can lead to the same kinds of prob-
lems as bad input data. Some of the solutions are the same, too. Range checks
help, but they’re not foolproof. Another solution is to have a second operator
independently validate all the data. This approach is costly, because indepen-
dent validation takes twice the number of people and twice the time. But in
some cases where data integrity is critical, the extra effort and expense may
prove worthwhile.

Mechanical failure
If you experience a mechanical failure, such as a disk crash, the data in the
table may be destroyed. Good backups are your main defense against this
problem.

108 Part II: Using SQL to Build Databases

Malice
Consider the possibility that someone may want to intentionally corrupt
your data. Your first line of defense is to deny database access to anyone who
may have a malicious intent, and restrict everyone else’s access only to what
they need. Your second defense is to maintain data backups in a safe place.
Periodically reevaluate the security features of your installation. Being just
a little paranoid doesn’t hurt.

Data redundancy
Data redundancy is a big problem with the hierarchical database model, but
the problem can plague relational databases, too. Not only does such redun-
dancy waste storage space and slow down processing, but it can also lead
to serious data corruption. If you store the same data item in two different
tables in a database, the item in one of those tables may change, while the
corresponding item in the other table remains the same. This situation gener-
ates a discrepancy, and you may have no way of determining which version
is correct. A good idea is to hold data redundancy to a minimum. A certain
amount of redundancy is necessary for the primary key of one table to serve
as a foreign key in another. Try to avoid any redundancy beyond that.

After you eliminate most redundancy from a database design, you may find
that performance is now unacceptable. Operators often purposefully use
redundancy to speed up processing. In the previous example, the ORDERS
table contains only the client’s name to identify the source of each order. If
you prepare an order, you must join the ORDERS table with the CLIENT table
to get the client’s address. If this joining of tables makes the program that
prints orders run too slowly, you may decide to store the client’s address
redundantly in the ORDERS table. This redundancy offers the advantage of
printing the orders faster but at the expense of slowing down and complicat-
ing any updating of the client’s address.

A common practice is to initially design a database with little redundancy
and with high degrees of normalization and then, after finding that important
applications run slowly, to selectively add redundancy and denormalize. The
key word here is selectively. The redundancy that you add back in has a spe-
cific purpose, and because you’re acutely aware of both the redundancy and
the hazard it represents, you take appropriate measures to ensure that the
redundancy doesn’t cause more problems than it solves.

Exceeding the capacity of your DBMS
A database system might work properly for years and then intermittently
start experiencing errors, which become progressively more serious. This
may be a sign that you are approaching one of the system’s capacity limits.
There are limits to the number of rows that a table may have. There are also

109Chapter 5: Building a Multitable Relational Database

limits on columns, constraints, and other things. Check the current size and
content of your database against the specifications of your DBMS. If you’re
near the limit in any area, consider upgrading to a higher capacity system. Or,
you may want to archive older data that is no longer active and then delete it
from your database.

Constraints
Earlier in this chapter, I talk about constraints as mechanisms for ensuring
that the data you enter into a table column falls within the domain of that
column. A constraint is an application rule that the DBMS enforces. After you
define a database, you can include constraints (such as NOT NULL) in a table
definition. The DBMS makes sure that you can never commit any transaction
that violates a constraint.

You have three different kinds of constraints:

� A column constraint imposes a condition on a column in a table.

� A table constraint is a constraint on an entire table.

� An assertion is a constraint that can affect more than one table.

Column constraints
An example of a column constraint is shown in the following Data Definition
Language (DDL) statement:

CREATE TABLE CLIENT (
ClientName CHARACTER (30) NOT NULL,
Address1 CHARACTER (30),
Address2 CHARACTER (30),
City CHARACTER (25),
State CHARACTER (2),
PostalCode CHARACTER (10),
Phone CHARACTER (13),
Fax CHARACTER (13),
ContactPerson CHARACTER (30)
) ;

The statement applies the constraint NOT NULL to the ClientName column
specifying that ClientName may not assume a null value. UNIQUE is another
constraint that you can apply to a column. This constraint specifies that
every value in the column must be unique. The CHECK constraint is particu-
larly useful in that it can take any valid expression as an argument. Consider
the following example:

110 Part II: Using SQL to Build Databases

111Chapter 5: Building a Multitable Relational Database

CREATE TABLE TESTS (
TestName CHARACTER (30) NOT NULL,
StandardCharge NUMERIC (6,2)

CHECK (StandardCharge >= 0.0
AND StandardCharge <= 200.0)

) ;

VetLab’s standard charge for a test must always be greater than or equal to
zero. And none of the standard tests costs more than $200. The CHECK clause
refuses to accept any entries that fall outside the range 0 <= StandardCharge
<= 200. Another way of stating the same constraint is as follows:

CHECK (StandardCharge BETWEEN 0.0 AND 200.0)

Table constraints
The PRIMARY KEY constraint specifies that the column to which it applies is
a primary key. This constraint is thus a constraint on the entire table and is
equivalent to a combination of the NOT NULL and the UNIQUE column con-
straints. You can specify this constraint in a CREATE statement, as shown in
the following example:

CREATE TABLE CLIENT (
ClientName CHARACTER (30) PRIMARY KEY,
Address1 CHARACTER (30),
Address2 CHARACTER (30),
City CHARACTER (25),
State CHARACTER (2),
PostalCode CHARACTER (10),
Phone CHARACTER (13),
Fax CHARACTER (13),
ContactPerson CHARACTER (30)
) ;

Assertions
An assertion specifies a restriction for more than one table. The following exam-
ple uses a search condition drawn from two tables to create an assertion:

CREATE TABLE ORDERS (
OrderNumber INTEGER NOT NULL,
ClientName CHARACTER (30),
TestOrdered CHARACTER (30),
Salesperson CHARACTER (30),
OrderDate DATE
) ;

CREATE TABLE RESULTS (
ResultNumber INTEGER NOT NULL,
OrderNumber INTEGER,

Result CHARACTER(50),
DateOrdered DATE,
PrelimFinal CHARACTER (1)
) ;

CREATE ASSERTION
CHECK (NOT EXISTS (SELECT * FROM ORDERS, RESULTS
WHERE ORDERS.OrderNumber = RESULTS.OrderNumber
AND ORDERS.OrderDate > RESULTS.DateReported)) ;

This assertion ensures that test results aren’t reported before the test is
ordered.

Normalizing the Database
Some ways of organizing data are better than others. Some are more logical.
Some are simpler. Some are better at preventing inconsistencies when you
start using the database.

A host of problems — called modification anomalies — can plague a database
if you don’t structure the database correctly. To prevent these problems, you
can normalize the database structure. Normalization generally entails split-
ting one database table into two simpler tables.

Modification anomalies are so named because they are generated by the addi-
tion of, change to, or deletion of data from a database table.

To illustrate how modification anomalies can occur, consider the table shown
in Figure 5-2.

1024

1010

1007

1001

Customer_ID

SALES

Laundry detergent

Toothpaste

Product

Chlorine bleach

Toothpaste

12

3

Price

4

3

Figure 5-2:
This SALES

table
leads to

modification
anomalies.

112 Part II: Using SQL to Build Databases

113Chapter 5: Building a Multitable Relational Database

Your company sells household cleaning and personal-care products, and
you charge all customers the same price for each product. The SALES table
keeps track of everything for you. Now assume that customer 1001 moves
out of the area and no longer is a customer. You don’t care what he’s bought
in the past, because he’s not going to buy again. You want to delete his row
from the table. If you do so, however, you don’t just lose the fact that cus-
tomer 1001 has bought laundry detergent; you also lose the fact that
laundry detergent costs $12. This situation is called a deletion anomaly.
In deleting one fact (that customer 1001 bought laundry detergent), you
inadvertently delete another fact (that laundry detergent costs $12).

You can use the same table to illustrate an insertion anomaly. For example,
say that you want to add stick deodorant to your product line at a price of $2.
You can’t add this data to the SALES table until a customer buys stick
deodorant.

The problem with the SALES table in the figure is that this table deals with
more than one thing. The table covers which products customers buy and
what the products cost. You need to split the SALES table into two tables,
each one dealing with only one theme or idea, as shown in Figure 5-3.

Figure 5-3 shows that the SALES table is divided into two tables:

� CUST_PURCH, which deals with the single idea of customer purchases

� PROD_PRICE, which deals with the single idea of product pricing

You can now delete the row for customer 1001 from CUST_PURCH without
losing the fact that laundry detergent costs $12. That fact is now stored in
PROD_PRICE. You can also add stick deodorant to PROD_PRICE, whether
anyone has bought the product or not. Purchase information is stored else-
where, in the CUST_PURCH table.

1001

1007

Customer_ID

1010

1024

Laundry detergent

Toothpaste

Product Product

Chlorine bleach

Toothpaste

Laundry detergent

Toothpaste

Chlorine bleach

12

3

Price

4

CUST_PURCH PROD_PRICE

Figure 5-3:
The SALES

table is split
into two

tables.

The process of breaking up a table into multiple tables, each of which has a
single theme, is called normalization. A normalization operation that solves
one problem may not affect others. You may need to perform several succes-
sive normalization operations to reduce each resulting table to a single theme.
Each database table should deal with one — and only one — main theme.
Sometimes, determining that a table really deals with two or more themes
is difficult.

You can classify tables according to the types of modification anomalies to
which they’re subject. In E. F. Codd’s 1970 paper, the first to describe the rela-
tional model, Codd identified three sources of modification anomalies and
defined first, second, and third normal forms (1NF, 2NF, 3NF) as remedies to
those types of anomalies. In the ensuing years, Codd and others discovered
additional types of anomalies and specified new normal forms to deal with
them. The Boyce-Codd normal form (BCNF), the fourth normal form (4NF),
and the fifth normal form (5NF) each afforded a higher degree of protection
against modification anomalies. Not until 1981, however, did a paper, written
by Ronald Fagin, describe domain/key normal form (DK/NF). Using this last
normal form enables you to guarantee that a table is free of modification
anomalies.

The normal forms are nested in the sense that a table that’s in 2NF is automati-
cally also in 1NF. Similarly, a table in 3NF is automatically in 2NF, and so on. For
most practical applications, putting a database in 3NF is sufficient to ensure a
high degree of integrity. To be absolutely sure of its integrity, you must put the
database into DK/NF.

After you normalize a database as much as possible, you may want to make
selected denormalizations to improve performance. If you do, be aware of the
types of anomalies that may now become possible.

First normal form
To be in first normal form (1NF), a table must have the following qualities:

� The table is two-dimensional, with rows and columns.

� Each row contains data that pertains to some thing or portion of a thing.

� Each column contains data for a single attribute of the thing it’s
describing.

� Each cell (intersection of a row and a column) of the table must have
only a single value.

� Entries in any column must all be of the same kind. If, for example, the
entry in one row of a column contains an employee name, all the other
rows must contain employee names in that column, too.

114 Part II: Using SQL to Build Databases

115Chapter 5: Building a Multitable Relational Database

� Each column must have a unique name.

� No two rows may be identical (that is, each row must be unique).

� The order of the columns and the order of the rows is not significant.

A table (relation) in first normal form is immune to some kinds of modifi-
cation anomalies but is still subject to others. The SALES table shown in
Figure 5-2 is in first normal form, and as discussed previously, the table is
subject to deletion and insertion anomalies. First normal form may prove
useful in some applications but unreliable in others.

Second normal form
To appreciate second normal form, you must understand the idea of functional
dependency. A functional dependency is a relationship between or among attri-
butes. One attribute is functionally dependent on another if the value of the
second attribute determines the value of the first attribute. If you know the
value of the second attribute, you can determine the value of the first attribute.

Suppose, for example, that a table has attributes (columns)
StandardCharge, NumberOfTests, and TotalCharge, which relate through
the following equation:

TotalCharge = StandardCharge * NumberOfTests

TotalCharge is functionally dependent on both StandardCharge and
NumberOfTests. If you know the values of StandardCharge and
NumberOfTests, you can determine the value of TotalCharge.

Every table in first normal form must have a unique primary key. That key may
consist of one or more than one column. A key consisting of more than one
column is called a composite key. To be in second normal form (2NF), all non-
key attributes (columns) must depend on the entire key. Thus, every relation
that is in 1NF with a single attribute key is automatically in second normal
form. If a relation has a composite key, all non-key attributes must depend
on all components of the key. If you have a table where some non-key attri-
butes don’t depend on all components of the key, break the table up into
two or more tables so that, in each of the new tables, all non-key attributes
depend on all components of the primary key.

Sound confusing? Look at an example to clarify matters. Consider a table
like the SALES table back in Figure 5-2. Instead of recording only a single pur-
chase for each customer, you add a row every time a customer buys an item
for the first time. An additional difference is that “charter” customers (those
with CustomerID values of 1001 to 1009) get a discount from the normal
price. Figure 5-4 shows some of this table’s rows.

In Figure 5-4, CustomerID does not uniquely identify a row. In two rows,
CustomerID is 1001. In two other rows, CustomerID is 1010. The combina-
tion of the CustomerID column and the Product column uniquely identifies a
row. These two columns together are a composite key.

If not for the fact that some customers qualify for a discount and others
don’t, the table wouldn’t be in second normal form, because Price (a non-
key attribute) would depend only on part of the key (Product). Because
some customers do qualify for a discount, Price depends on both
CustomerID and Product, and the table is in second normal form.

Third normal form
Tables in second normal form are subject to some types of modification
anomalies. These anomalies come from transitive dependencies.

A transitive dependency occurs when one attribute depends on a second
attribute, which depends on a third attribute. Deletions in a table with such a
dependency can cause unwanted information loss. A relation in third normal
form is a relation in second normal form with no transitive dependencies.

Look again at the SALES table in Figure 5-2, which you know is in first
normal form. As long as you constrain entries to permit only one row for
each CustomerID, you have a single-attribute primary key, and the table is in
second normal form. However, the table is still subject to anomalies. What if
customer 1010 is unhappy with the chlorine bleach, for example, and returns

1024

1010

1001

1010

1007

1001

Customer_ID

SALES_TRACK

Laundry detergent

Toothpaste

Product

Chlorine bleach

Toothpaste

Laundry detergent

Toothpaste

11.00

2.70

Price

4.00

3.00

12.00

2.70

Figure 5-4:
In the

SALES_
TRACK

table, the
Customer_

ID and
Product

columns
constitute a

composite
key.

116 Part II: Using SQL to Build Databases

117Chapter 5: Building a Multitable Relational Database

the item for a refund? You want to remove the third row from the table, which
records the fact that customer 1010 bought chlorine bleach. You have a prob-
lem: If you remove that row, you also lose the fact that chlorine bleach has a
price of $4. This situation is an example of a transitive dependency. Price
depends on Product, which, in turn, depends on the primary key CustomerID.

Breaking the SALES table into two tables solves the transitive dependency
problem. The two tables shown in Figure 5-3, CUST_PURCH and PROD_PRICE,
make up a database that’s in third normal form.

Domain-key normal form (DK/NF)
After a database is in third normal form, you’ve eliminated most, but not all,
chances of modification anomalies. Normal forms beyond the third are defined
to squash those few remaining bugs. Boyce-Codd normal form (BCNF), fourth
normal form (4NF), and fifth normal form (5NF) are examples of such forms.
Each form eliminates a possible modification anomaly but doesn’t guarantee
prevention of all possible modification anomalies. Domain-key normal form
(DK/NF), however, provides such a guarantee.

A relation is in domain-key normal form (DK/NF) if every constraint on the
relation is a logical consequence of the definition of keys and domains. A con-
straint in this definition is any rule that’s precise enough that you can evalu-
ate whether or not it’s true. A key is a unique identifier of a row in a table. A
domain is the set of permitted values of an attribute.

Look again at the database in Figure 5-2, which is in 1NF, to see what you
must do to put that database in DK/NF.

Table: SALES (CustomerID, Product, Price)

Key: CustomerID

Constraints: 1. CustomerID determines Product
2. Product determines Price
3. CustomerID must be an integer > 1,000

To enforce Constraint 3 (that CustomerID must be an integer greater than
1,000), you can simply define the domain for CustomerID to incorporate this
constraint. That makes the constraint a logical consequence of the domain of
the CustomerID column. Product depends on CustomerID, and CustomerID
is a key, so you have no problem with Constraint 1, which is a logical conse-
quence of the definition of the key. Constraint 2 is a problem. Price depends
on (is a logical consequence of) Product, and Product isn’t a key. The solu-
tion is to divide the SALES table into two tables. One table uses CustomerID
as a key, and the other uses Product as a key. This setup is what you have in
Figure 5-3. The database in Figure 5-3, besides being in 3NF, is also in DK/NF.

Design your databases so they’re in DK/NF if possible. If you do so, enforcing
key and domain restrictions causes all constraints to be met. Modification
anomalies aren’t possible. If a database’s structure is designed so that you
can’t put it into domain-key normal form, you must build the constraints into
the application program that uses the database. The database doesn’t guar-
antee that the constraints will be met.

Abnormal form
Sometimes being abnormal pays off. You can get carried away with normal-
ization and go too far. You can break up a database into so many tables that
the entire thing becomes unwieldy and inefficient. Performance can plummet.
Often, the optimal structure is somewhat denormalized. In fact, practical data-
bases are almost never normalized all the way to DK/NF. You want to normal-
ize the databases you design as much as possible, however, to eliminate the
possibility of data corruption that results from modification anomalies.

After you normalize the database as far as you can, make some retrievals. If
performance isn’t satisfactory, examine your design to see whether selective
denormalization would improve performance without sacrificing integrity. By
carefully adding redundancy in strategic locations and denormalizing, you
can arrive at a database that’s both efficient and safe from anomalies.

118 Part II: Using SQL to Build Databases

Part III
Retrieving Data

In this part . . .

SQL provides a rich set of tools for manipulating data in
a relational database. As you may expect, SQL has

mechanisms for adding new data, updating existing data,
retrieving data, and deleting obsolete data. Nothing’s par-
ticularly extraordinary about these capabilities (heck,
human brains use ’em all the time). Where SQL shines is in
its capability to isolate the exact data you want from all the
rest — and present that data to you in an understandable
form. SQL’s comprehensive Data Manipulation Language
(DML) provides this critically important capability.

In this part, I delve deep into the riches of DML. You dis-
cover how to use SQL tools to massage raw data into a
form suitable for your purposes — and then to retrieve
the result as useful information (what a concept).

Chapter 6

Manipulating Database Data
In This Chapter
� Dealing with data

� Retrieving the data you want from a table

� Displaying only selected information from one or more tables

� Updating the information in tables and views

� Adding a new row to a table

� Changing some or all of the data in a table row

� Deleting a table row

Chapters 3 and 4 reveal that creating a sound database structure is criti-
cal to data integrity. The stuff that you’re really interested in, however, is

the data itself — not its structure. You want to do four things with data: Add
it to tables, retrieve and display it, change it, and delete it from tables.

In principle, database manipulation is quite simple. Understanding how to
add data to a table isn’t difficult — you can add your data either one row at a
time or in a batch. Changing, deleting, or retrieving table rows is also easy in
practice. The main challenge to database manipulation is selecting the rows
that you want to change, delete, or retrieve. Sometimes, retrieving data is like
trying to put together a jigsaw puzzle with pieces that are mixed in with pieces
from a hundred other puzzles. The data that you want may reside in a database
containing a large volume of data that you don’t want. Fortunately, if you can
specify what you want by using an SQL SELECT statement, the computer does
all the searching for you.

Retrieving Data
The data manipulation task that users perform most frequently is retrieving
selected information from a database. You may want to retrieve the contents
of one row out of thousands in a table. You may want to retrieve all the rows
that satisfy a condition or a combination of conditions. You may even want to
retrieve all the rows in the table. One particular SQL statement, the SELECT
statement, performs all these tasks for you.

The simplest use of the SELECT statement is to retrieve all the data in all the
rows of a specified table. To do so, use the following syntax:

SELECT * FROM CUSTOMER ;

The asterisk (*) is a wildcard character that means everything. In this context,
the asterisk is a shorthand substitute for a listing of all the column names of the
CUSTOMER table. As a result of this statement, all the data in all the rows and
columns of the CUSTOMER table appear on-screen.

SELECT statements can be much more complicated than the statement in this
example. In fact, some SELECT statements can be so complicated that they’re
virtually indecipherable. This potential complexity is a result of the fact that
you can tack multiple modifying clauses onto the basic statement. Chapter 9
covers modifying clauses in detail. In this chapter, I briefly discuss the WHERE
clause, which is the most commonly used method to restrict the rows that a
SELECT statement returns.

A SELECT statement with a WHERE clause has the following general form:

SELECT column_list FROM table_name
WHERE condition ;

122 Part III: Retrieving Data

SQL in proprietary tools
SQL SELECT statements are not the only way
to retrieve data from a database. If you’re inter-
acting with your database through a DBMS, this
system probably already has proprietary tools
for manipulating data. You can use these tools
(many of which are quite intuitive) to add to,
delete from, change, or query your database.

In a client/server system, the relational data-
base on the server generally understands only
SQL. If you develop a database application by
using a DBMS or RAD tool, you can create data-
entry screens that contain fields corresponding
to database table fields. You can group the
fields logically on-screen and explain the fields
by using supplemental text. The user, sitting at a
client machine, can easily examine or change
the data in these fields.

Suppose that the user changes the value of
some fields. The DBMS front end on the client
takes the input that the user types into the screen

form, translates that text into an SQL UPDATE
statement, and then sends the UPDATE state-
ment to the server. The DBMS back end on the
server executes the statement. Users who
manipulate data on a relational database are
using SQL whether they realize it or not. These
people may use SQL directly, or indirectly
through a translation process.

Many DBMS front ends give you the choice of
using either their proprietary tools or SQL. In
some cases, the proprietary tools can’t express
everything that you can express by using SQL.
If you need to perform an operation that the pro-
prietary tool can’t handle, you may need to use
SQL. So becoming familiar with SQL is a good
idea, even if you use a proprietary tool most of
the time. To successfully perform an operation
that’s too complex for your proprietary tool, you
need a clear understanding of how SQL works
and what it can do.

The column list specifies which columns you want to display. The statement
displays only the columns that you list. The FROM clause specifies from which
table you want to display columns. The WHERE clause excludes rows that do
not satisfy a specified condition. The condition may be simple (for example,
WHERE CUSTOMER_STATE = ‘NH’), or it may be compound (for example,
WHERE CUSTOMER_STATE=’NH’ AND STATUS=’Active’).

The following example shows a compound condition inside a SELECT
statement:

SELECT FirstName, LastName, Phone FROM CUSTOMER
WHERE State = ‘NH’
AND Status = ‘Active’ ;

This statement returns the names and phone numbers of all active customers
living in New Hampshire. The AND keyword means that for a row to qualify for
retrieval, that row must meet both conditions: State = ‘NH’ and Status =
‘Active’.

Creating Views
The structure of a database that’s designed according to sound principles —
including appropriate normalization — maximizes the integrity of the data.
This structure, however, is often not the best way to look at the data. Several
applications may use the same data, but each application may have a differ-
ent emphasis. One of the most powerful features of SQL is its capability to
display views of the data that are structured differently from how the data-
base tables store the data. The tables you use as sources for columns and
rows in a view are the base tables. Chapter 3 discusses views as part of the
Data Definition Language (DDL). This section looks at views in the context of
retrieving and manipulating data.

A SELECT statement always returns a result in the form of a virtual table. A
view is a special kind of virtual table. You can distinguish a view from other
virtual tables because the database’s metadata holds the definition of a view.
This distinction gives a view a degree of persistence that other virtual tables
don’t possess. You can manipulate a view just as you can manipulate a real
table. The difference is that a view’s data doesn’t have an independent exis-
tence. The view derives its data from the table or tables from which you draw
the view’s columns. Each application can have its own unique views of the
same data.

Consider the VetLab database described in Chapter 5. That database con-
tains five tables: CLIENT, TESTS, EMPLOYEE, ORDERS, and RESULTS. Suppose
the national marketing manager wants to see from which states the com-
pany’s orders are coming: Part of this information lies in the CLIENT table,
part lies in the ORDERS table. Suppose the quality-control officer wants to

123Chapter 6: Manipulating Database Data

compare the order date of a test to the date on which the final test result
came in. This comparison requires some data from the ORDERS table and
some from the RESULTS table. To satisfy needs such as these, you can create
views that give you exactly the data you want in each case.

From tables
For the marketing manager, you can create the view shown in Figure 6-1.

The following statement creates the marketing manager’s view:

CREATE VIEW ORDERS_BY_STATE
(ClientName, State, OrderNumber)

AS SELECT CLIENT.ClientName, State, OrderNumber
FROM CLIENT, ORDERS
WHERE CLIENT.ClientName = ORDERS.ClientName ;

The new view has three columns: ClientName, State, and OrderNumber.
ClientName appears in both the CLIENT and ORDERS tables and serves as
the link between the two tables. The new view draws State information from
the CLIENT table and takes the OrderNumber from the ORDERS table. In the

CLIENT Table

ClientName
Address1
Address2
City
State
PostalCode
Phone
Fax
ContactPerson ORDERS_BY_STATE View

ClientName
State
OrderNumberORDERS Table

OrderNumber
ClientName
TestOrdered
Salesperson
OrderDate

Figure 6-1:
The

ORDERS_
BY_STATE

view for the
marketing
manager.

124 Part III: Retrieving Data

preceding example, you explicitly declare the names of the columns in the
new view. This declaration is not necessary if the names are the same as the
names of the corresponding columns in the source tables. The example in the
following section shows a similar CREATE VIEW statement but with the view
column names implied rather than explicitly stated.

With a selection condition
The quality-control officer requires a different view from the one that the
marketing manager uses, as shown by the example in Figure 6-2.

Here’s the code that creates the view in Figure 6-2:

CREATE VIEW REPORTING_LAG
AS SELECT ORDERS.OrderNumber, OrderDate, DateReported
FROM ORDERS, RESULTS
WHERE ORDERS.OrderNumber = RESULTS.OrderNumber
AND RESULTS.PreliminaryFinal = ‘F’ ;

This view contains order-date information from the ORDERS table and final-
report-date information from the RESULTS table. Only rows that have an ‘F’
in the PreliminaryFinal column of the RESULTS table appear in the
REPORTING LAG view.

ORDERS Table

OrderNumber
ClientName
TestOrdered
Salesperson
OrderDate REPORTING_LAG View

OrderNumber
OrderDate
DateReportedRESULTS Table

ResultNumber
OrderNumber
Result
DateReported
PreliminaryFinal

Figure 6-2:
The

REPORTING_
LAG view

for the
quality-
control
officer.

125Chapter 6: Manipulating Database Data

With a modified attribute
The SELECT clauses in the examples in the two preceding sections contain
only column names. You can include expressions in the SELECT clause as
well. Suppose VetLab’s owner is having a birthday and wants to give all his
customers a 10-percent discount to celebrate. He can create a view based on
the ORDERS table and the TESTS table. He may construct this table as shown
in the following code example:

CREATE VIEW BIRTHDAY
(ClientName, Test, OrderDate, BirthdayCharge)
AS SELECT ClientName, TestOrdered, OrderDate,

StandardCharge * .9
FROM ORDERS, TESTS
WHERE TestOrdered = TestName ;

Notice that the second column in the BIRTHDAY view — Test — corresponds
to the TestOrdered column in the ORDERS table, which also corresponds to
the TestName column in the TESTS table. Figure 6-3 shows how to create this
view.

You can build a view based on multiple tables, as shown in the preceding
examples, or you can build a view based on only one table. If you don’t
need some of the columns or rows in a table, create a view to remove these
elements from sight and then deal with the view rather than the original table.
This approach ensures that users see only the parts of the table that are rele-
vant to the task at hand.

Another reason for creating a view is to provide security for its underlying
tables. You may want to make some columns in your tables available for
inspection while hiding others. You can create a view that includes only those
columns that you want to make available and then grant broad access to that
view, while restricting access to the tables from which you draw the view.
Chapter 13 explores database security and describes how to grant and
revoke data-access privileges.

ORDERS Table

OrderNumber
ClientName
TestOrdered
Salesperson
OrderDate

ClientName
Test
OrderDate
BirthdayCharge

TestName
StandardCharge

*0.9

BIRTHDAY View

TESTS Table

Figure 6-3:
The view

created to
show

birthday
discounts.

126 Part III: Retrieving Data

Updating Views
After you create a table, that table is automatically capable of accommodat-
ing insertions, updates, and deletions. Views don’t necessarily exhibit the same
capability. If you update a view, you’re actually updating its underlying table.
Here are a few potential problems when updating views:

� Some views may draw components from two or more tables. If you update
such a view, how do you know which of its underlying tables gets
updated?

� A view may include an expression for a SELECT list. How do you update
an expression?

Suppose that you create a view by using the following statement:

CREATE VIEW COMP AS
SELECT EmpName, Salary+Comm AS Pay
FROM EMPLOYEE ;

Can you update Pay by using the following statement?

UPDATE COMP SET Pay = Pay + 100 ;

No, this approach doesn’t make any sense because the underlying table
has no Pay column. You can’t update something that doesn’t exist in the
base table.

Keep the following rule in mind whenever you consider updating views:
You can’t update a column of a view unless it corresponds to a column of
an underlying base table.

Adding New Data
Every database table starts out empty. After you create a table, either by
using SQL’s DDL or a RAD tool, that table is nothing but a structured shell
containing no data. To make the table useful, you must put some data into it.
You may or may not have that data already stored in digital form.

� If your data is not already in digital form, someone will probably have to
enter the data manually, one record at a time. You can also enter data by
using optical scanners and voice recognition systems, but the use of such
devices for data entry is relatively rare.

127Chapter 6: Manipulating Database Data

� If your data is already in digital form but perhaps not in the format of the
database tables that you use, you need to translate the data into the
appropriate format and then insert the data into the database.

� If your data is already in digital form and in the correct format, it’s ready
for transferring to a new database.

Depending on the current form of the data, you may be able to transfer it to
your database in one operation, or you may need to enter the data one
record at a time. Each data record that you enter corresponds to a single row
in a database table.

Adding data one row at a time
Most DBMSs support form-based data entry. This feature enables you to
create a screen form that has a field for every column in a database table.
Field labels on the form enable you to determine easily what data goes into
each field. The data-entry operator enters all the data for a single row into
the form. After the DBMS accepts the new row, the system clears the form to
accept another row. In this way, you can easily add data to a table one row at
a time.

Form-based data entry is easy and less susceptible to data-entry errors than
is a list of comma-delimited values. The main problem with form-based data
entry is that it is nonstandard; each DBMS has its own method of creating
forms. This diversity, however, is not a problem for the data-entry operator.
You can make the form look generally the same from one DBMS to another.
The application developer is the person who must return to the bottom of
the learning curve every time he or she changes development tools. Another
possible problem with form-based data entry is that some implementations
may not permit a full range of validity checks on the data that you enter.

The best way to maintain a high level of data integrity in a database is to keep
bad data out of the database. You can prevent the entry of some bad data by
applying constraints to the fields on a data-entry form. This approach enables
you to make sure that the database accepts only data values of the correct
type and that fall within a predefined range. Applying such constraints can’t
prevent all possible errors, but it does catch some of them.

If the form-design tool in your DBMS doesn’t enable you to apply all the validity
checks that you need to ensure data integrity, you may want to build your own
screen, accept data entries into variables, and check the entries by using appli-
cation program code. After you’re sure that all the values entered for a table
row are valid, you can then add that row by using the SQL INSERT command.

128 Part III: Retrieving Data

If you enter the data for a single row into a database table, the INSERT com-
mand uses the following syntax:

INSERT INTO table_1 [(column_1, column_2, ..., column_n)]
VALUES (value_1, value_2, ..., value_n) ;

As indicated by the square brackets ([]), the listing of column names is
optional. The default column list order is the order of the columns in the
table. If you put the VALUES in the same order as the columns in the table,
these elements go into the correct columns — whether you explicitly specify
those columns or not. If you want to specify the VALUES in some order other
than the order of the columns in the table, you must list the column names,
putting the columns in an order that corresponds to the order of the VALUES.

To enter a record into the CUSTOMER table, for example, use the following
syntax:

INSERT INTO CUSTOMER (CustomerID, FirstName, LastName,
Street, City, State, Zipcode, Phone)
VALUES (:vcustid, ‘David’, ‘Taylor’, ‘235 Nutley Ave.’,
‘Nutley’, ‘NJ’, ‘07110’, ‘(201) 555-1963’) ;

The first VALUE, vcustid, is a variable that you increment with your program
code after you enter each new row of the table. This approach guarantees that
you have no duplication of the CustomerID. CustomerID is the primary key
for this table and, therefore, must be unique. The rest of the values are data
items rather than variables that contain data items. Of course, you can hold
the data for these columns in variables, too, if you want. The INSERT state-
ment works equally well either with variables or with an explicit copy of the
data itself as arguments of the VALUES keyword.

Adding data only to selected columns
Sometimes you want to note the existence of an object, even if you don’t
have all the facts on it yet. If you have a database table for such objects, you
can insert a row for the new object without filling in the data in all the columns.
If you want the table in first normal form, you must insert enough data to dis-
tinguish the new row from all the other rows in the table. (For a discussion of
first normal form, see Chapter 5.) Inserting the new row’s primary key is suffi-
cient for this purpose. In addition to the primary key, insert any other data that
you have about the object. Columns in which you enter no data contain nulls.

The following example shows such a partial row entry:

INSERT INTO CUSTOMER (CustomerID, FirstName, LastName)
VALUES (:vcustid, ‘Tyson’, ‘Taylor’) ;

129Chapter 6: Manipulating Database Data

You insert only the customer’s unique identification number and name into
the database table. The other columns in this row contain null values.

Adding a block of rows to a table
Loading a database table one row at a time by using INSERT statements can
be tedious, particularly if that’s all you do. Even entering the data into a care-
fully human-engineered ergonomic screen form gets tiring after a while. Clearly,
if you have a reliable way to enter the data automatically, you’ll find occa-
sions in which automatic entry is better than having a person sit at a key-
board and type.

Automatic data entry is feasible, for example, if the data already exists in elec-
tronic form because somebody has already manually entered the data. If so,
you have no compelling reason to repeat history. The transfer of data from
one data file to another is a task that a computer can perform with a minimum
of human involvement. If you know the characteristics of the source data and
the desired form of the destination table, a computer can (in principle) per-
form the data transfer automatically.

Copying from a foreign data file
Suppose that you’re building a database for a new application. Some data
that you need already exists in a computer file. The file may be a flat file or a
table in a database created by a DBMS different from the one you use. The data
may be in ASCII or EBCDIC code or in some arcane proprietary format. What
do you do?

The first thing you do is hope and pray that the data you want is in a widely
used format. If the data is in a popular format, you have a good chance of find-
ing a format conversion utility that can translate the data into one or more
other popular formats. Your development environment can probably import
at least one of these formats. If you’re really lucky, your development envi-
ronment can handle the data’s current format directly. On personal comput-
ers, the Access, dBASE, and Paradox formats are probably the most widely
used. If the data that you want is in one of these formats, conversion should
be easy. If the format of the data is less common, you may need to go through
a two-step conversion.

As a last resort, you can turn to one of the professional data-translation
services. These businesses specialize in translating computer data from
one format to another. They have the capability of dealing with hundreds of
formats — most of which nobody has ever heard of. Give one of these ser-
vices a tape or disk containing the data in its original format, and you get
back the same data translated into whatever format you specify.

130 Part III: Retrieving Data

Transferring all rows between tables
A less severe problem than dealing with foreign data is taking data that
already exists in one table in your database and combining that data with
data in another table. This process works great if the structure of the second
table is identical to the structure of the first table — that is, every column in
the first table has a corresponding column in the second table, and the data
types of the corresponding columns match. If so, you can combine the con-
tents of the two tables by using the UNION relational operator. The result is a
virtual table containing data from both source tables. I discuss the relational
operators, including UNION, in Chapter 10.

Transferring selected columns and rows between tables
Generally, the structure of the data in the source table isn’t identical to the
structure of the table into which you want to insert the data. Perhaps only
some of the columns match — and these are the columns that you want to
transfer. By combining SELECT statements with a UNION, you can specify
which columns from the source tables to include in the virtual result table.
By including WHERE clauses in the SELECT statements, you can restrict the
rows that you place into the result table to those that satisfy specific condi-
tions. I cover WHERE clauses extensively in Chapter 9.

Suppose that you have two tables, PROSPECT and CUSTOMER, and you want
to list everyone living in the state of Maine who appears in either table. You
can create a virtual result table with the desired information by using the fol-
lowing command:

SELECT FirstName, LastName
FROM PROSPECT
WHERE State = ‘ME’

UNION
SELECT FirstName, LastName

FROM CUSTOMER
WHERE State = ‘ME’ ;

Here’s a closer look:

� The SELECT statements specify that the columns included in the result
table are FirstName and LastName.

� The WHERE clauses restrict the rows included to those with the value
‘ME’ in the State column.

� The State column isn’t included in the results table but is present in
both the PROSPECT and CUSTOMER tables.

� The UNION operator combines the results from the SELECT on
PROSPECT with the results of the SELECT on CUSTOMER, deletes any
duplicate rows, and then displays the result.

131Chapter 6: Manipulating Database Data

Another way to copy data from one table in a database to another is to nest a
SELECT statement within an INSERT statement. This method (a subselect)
doesn’t create a virtual table but instead duplicates the selected data. You can
take all the rows from the CUSTOMER table, for example, and insert those rows
into the PROSPECT table. Of course, this only works if the structures of the
CUSTOMER and PROSPECT tables are identical. Later, if you want to isolate
those customers who live in Maine, a simple SELECT with one condition in
the WHERE clause does the trick, as shown in the following example:

INSERT INTO PROSPECT
SELECT * FROM CUSTOMER
WHERE State = ‘ME’ ;

Even though this operation creates redundant data (you’re now storing cus-
tomer data in both the PROSPECT table and the CUSTOMER table), you may
want to do it anyway to improve the performance of retrievals. Beware of the
redundancy, however, and to maintain data consistency, make sure that you
don’t insert, update, or delete rows in one table without inserting, updating,
or deleting the corresponding rows in the other table. Another potential prob-
lem is the possibility that the INSERT might generate duplicate primary keys.
If even one prospect has a primary key ProspectID that matches the corre-
sponding primary key, CustomerID, of a customer that is inserted into the
PROSPECT table, the insert operation will fail.

Updating Existing Data
You can count on one thing in this world — change. If you don’t like the
current state of affairs, just wait a while. Before long, things will be different.
Because the world is constantly changing, the databases used to model
aspects of the world also need to change. A customer may change her address.
The quantity of a product in stock may change (because, you hope, someone
buys one now and then). A basketball player’s season performance statistics
change each time he plays in another game. These are the kinds of events that
require you to update a database.

SQL provides the UPDATE statement for changing data in a table. By using a
single UPDATE statement, you can change one, some, or all the rows in a
table. The UPDATE statement uses the following syntax:

UPDATE table_name
SET column_1 = expression_1, column_2 = expression_2,
..., column_n = expression_n
[WHERE predicates] ;

132 Part III: Retrieving Data

The WHERE clause is optional. This clause specifies the rows that you’re updat-
ing. If you don’t use a WHERE clause, all the rows in the table are updated. The
SET clause specifies the new values for the columns that you’re changing.

Consider the CUSTOMER table shown in Table 6-1.

Table 6-1 CUSTOMER Table
Name City Area Code Telephone

Abe Abelson Springfield (714) 555-1111

Bill Bailey Decatur (714) 555-2222

Chuck Wood Philo (714) 555-3333

Don Stetson Philo (714) 555-4444

Dolph Stetson Philo (714) 555-5555

Customer lists change occasionally — as people move, change their phone
numbers, and so on. Suppose that Abe Abelson moves from Springfield to
Kankakee. You can update his record in the table by using the following
UPDATE statement:

UPDATE CUSTOMER
SET City = ‘Kankakee’, Telephone = ‘666-6666’
WHERE Name = ‘Abe Abelson’ ;

This statement causes the changes shown in Table 6-2.

Table 6-2 CUSTOMER Table after UPDATE to One Row
Name City Area Code Telephone

Abe Abelson Kankakee (714) 666-6666

Bill Bailey Decatur (714) 555-2222

Chuck Wood Philo (714) 555-3333

Don Stetson Philo (714) 555-4444

Dolph Stetson Philo (714) 555-5555

133Chapter 6: Manipulating Database Data

You can use a similar statement to update multiple rows. Assume that Philo
is experiencing explosive population growth and now requires its own area
code. You can change all rows for customers who live in Philo by using a
single UPDATE statement, as follows:

UPDATE CUSTOMER
SET AreaCode = ‘(619)’
WHERE City = ‘Philo’ ;

The table now looks like the one shown in Table 6-3.

Table 6-3 CUSTOMER Table after UPDATE to Several Rows
Name City Area Code Telephone

Abe Abelson Kankakee (714) 666-6666

Bill Bailey Decatur (714) 555-2222

Chuck Wood Philo (619) 555-3333

Don Stetson Philo (619) 555-4444

Dolph Stetson Philo (619) 555-5555

Updating all the rows of a table is even easier than updating only some of
the rows. You don’t need to use a WHERE clause to restrict the statement.
Imagine that the city of Rantoul has acquired major political clout and has
now annexed not only Kankakee, Decatur, and Philo, but also all the cities
and towns in the database. You can update all the rows by using a single
statement, as follows:

UPDATE CUSTOMER
SET City = ‘Rantoul’ ;

Table 6-4 shows the result.

Table 6-4 CUSTOMER Table after UPDATE to All Rows
Name City Area Code Telephone

Abe Abelson Rantoul (714) 666-6666

Bill Bailey Rantoul (714) 555-2222

Chuck Wood Rantoul (619) 555-3333

Don Stetson Rantoul (619) 555-4444

Dolph Stetson Rantoul (619) 555-5555

134 Part III: Retrieving Data

The WHERE clause that you use to restrict the rows to which an UPDATE state-
ment applies can contain a subselect. A subselect enables you to update rows
in one table based on the contents of another table.

For example, suppose that you’re a wholesaler and your database includes a
VENDOR table containing the names of all the manufacturers from whom you
buy products. You also have a PRODUCT table containing the names of all the
products that you sell and the prices that you charge for them. The VENDOR
table has columns VendorID, VendorName, Street, City, State, and Zip.
The PRODUCT table has ProductID, ProductName, VendorID, and
SalePrice.

Your vendor, Cumulonimbus Corporation, decides to raise the prices of all its
products by 10 percent. To maintain your profit margin, you must raise your
prices on the products that you obtain from Cumulonimbus by 10 percent.
You can do so by using the following UPDATE statement:

UPDATE PRODUCT
SET SalePrice = (SalePrice * 1.1)
WHERE VendorID IN

(SELECT VendorID FROM VENDOR
WHERE VendorName = ‘Cumulonimbus Corporation’) ;

The subselect finds the VendorID that corresponds to Cumulonimbus. You
can then use the VendorID field in the PRODUCT table to find the rows that
you need to update. The prices on all Cumulonimbus products increase by
10 percent, whereas the prices on all other products stay the same. I discuss
subselects more extensively in Chapter 11.

Transferring Data
In addition to using the INSERT and UPDATE statements, you can add data
to a table or view by using the MERGE statement. You can MERGE data from a
source table or view into a destination table or view. The MERGE can either
insert new rows into the destination table or update existing rows. MERGE is a
convenient way to take data that already exists somewhere in a database and
copy it to a new location.

For example, consider the VetLab database described in Chapter 5. Suppose
some people in the EMPLOYEE table are salespeople who have taken orders,
whereas others are non-sales employees or salespeople who have not yet
taken an order. The year just concluded has been profitable, and you want to
share some of that success with the employees. You decide to give a bonus of
$100 to everyone who has taken at least one order and a bonus of $50 to every-
one else. First, you create a BONUS table and insert into it a record for each
employee who appears at least once in the ORDERS table, assigning each
record a bonus value of $100 by default.

135Chapter 6: Manipulating Database Data

Next, you want to use the MERGE statement to insert new records for those
employees who have not taken orders, giving them $50 bonuses. Here’s some
code that builds and fills the BONUS table:

CREATE TABLE BONUS (
EmployeeName CHARACTER (30) PRIMARY KEY,
Bonus NUMERIC DEFAULT 100) ;

INSERT INTO BONUS (EmployeeName)
(SELECT EmployeeName FROM EMPLOYEE, ORDERS
WHERE EMPLOYEE.EmployeeName = ORDERS.Salesperson
GROUP BY EMPLOYEE.EmployeeName) ;

You can now query the BONUS table to see what it holds:

SELECT * FROM BONUS ;

EmployeeName Bonus
------------ -------------
Brynna Jones 100
Chris Bancroft 100
Greg Bosser 100
Kyle Weeks 100

Now by executing a MERGE statement, you can give $50 bonuses to the rest of
the employees:

MERGE INTO BONUS
USING EMPLOYEE
ON (BONUS.EmployeeName = EMPLOYEE.EmployeeName)
WHEN NOT MATCHED THEN INSERT

(BONUS.EmployeeName, BONUS,bonus)
VALUES (EMPLOYEE.EmployeeName, 50) ;

Records for people in the EMPLOYEE table that do not match records for
people already in the BONUS table are now inserted into the BONUS table.
Now a query of the BONUS table gives the following:

SELECT * FROM BONUS ;

EmployeeName Bonus
-------------- -----------
Brynna Jones 100
Chris Bancroft 100
Greg Bosser 100
Kyle Weeks 100
Neth Doze 50
Matt Bak 50
Sam Saylor 50
Nic Foster 50

136 Part III: Retrieving Data

The first four records, which were created with the INSERT statement, are in
alphabetical order by employee name. The rest of the records, added by the
MERGE statement, are in whatever order they were in, in the EMPLOYEE table.

Deleting Obsolete Data
As time passes, data can get old and lose its usefulness. You may want to
remove this outdated data from its table. Unneeded data in a table slows per-
formance, consumes memory, and can confuse users. You may want to trans-
fer older data to an archive table and then take the archive offline. That way,
in the unlikely event that you ever need to look at that data again, you can
recover it. In the meantime, it doesn’t slow down your everyday processing.
Whether you decide that obsolete data is worth archiving or not, you eventu-
ally come to the point where you want to delete that data. SQL provides for
the removal of rows from database tables by use of the DELETE statement.

You can delete all the rows in a table by using an unqualified DELETE state-
ment, or you can restrict the deletion to only selected rows by adding a WHERE
clause. The syntax is similar to the syntax of a SELECT statement, except that
you use no specification of columns. If you delete a table row, you remove all
the data in that row’s columns.

For example, suppose that your customer, David Taylor, just moved to Tahiti
and isn’t going to buy anything from you anymore. You can remove him from
your CUSTOMER table by using the following statement:

DELETE FROM CUSTOMER
WHERE FirstName = ‘David’ AND LastName = ‘Taylor’ ;

Assuming that you have only one customer named David Taylor, this state-
ment makes the intended deletion. If any chance exists that you have two
customers who share the name David Taylor, you can add more conditions
to the WHERE clause (such as STREET or PHONE or CUSTOMER_ID) to make
sure that you delete only the customer you want to remove.

137Chapter 6: Manipulating Database Data

138 Part III: Retrieving Data

Chapter 7

Specifying Values
In This Chapter
� Using variables to eliminate redundant coding

� Extracting frequently required information from a database table field

� Combining simple values to form complex expressions

This book emphasizes the importance of database structure for maintain-
ing database integrity. Although the significance of database structure is

often overlooked, you must never forget that the most important thing is the
data itself. After all, the values held in the cells that form the intersections of
the database table’s rows and columns are the raw materials from which you
can derive meaningful relationships and trends.

You can represent values in several ways. You can represent them directly, or
you can derive them with functions or expressions. This chapter describes
the various kinds of values, as well as functions and expressions.

Functions examine data and calculate a value based on the data. Expressions
are combinations of data items that SQL evaluates to produce a single value.

Values
SQL recognizes several kinds of values:

� Row values

� Literal values

� Variables

� Special variables

� Column references

Row values
The most visible values in a database are table row values. These are the
values that each row of a database table contains. A row value is typically
made up of multiple components, because each column in a row contains a
value. A field is the intersection of a single column with a single row. A field
contains a scalar, or atomic, value. A value that’s scalar or atomic has only a
single component.

Literal values
In SQL, either a variable or a constant may represent a value. Logically
enough, the value of a variable may change from time to time, but the value
of a constant never changes. An important kind of constant is the literal value.
You may consider a literal to be a WYSIWYG value, because What You See Is
What You Get. The representation is itself the value.

Just as SQL has many data types, it also has many types of literals. Table 7-1
shows some examples of literals of the various data types.

Notice that single quotes enclose the literals of the nonnumeric types. These
marks help to prevent confusion; they can, however, also cause problems, as
you can see in Table 7-1.

140 Part III: Retrieving Data

Atoms aren’t indivisible either
In the nineteenth century, scientists believed that
an atom was the irreducible smallest possible
piece of matter. That’s why they named it atom,
which comes from the Greek word atomos,
which means indivisible. Now scientists know
that atoms aren’t indivisible — they’re made up
of protons, neutrons, and electrons. Protons and
neutrons, in turn, are made up of quarks, gluons,
and virtual quarks. Even these things may not be
indivisible. Who knows?

The value of a field in a database table is called
atomic, even though many fields aren’t indivisi-
ble. A DATE value has components of month,
year, and day. A TIMESTAMP value has compo-
nents of hour, minute, second, and so on. A
REAL or FLOAT value has components of expo-
nent and mantissa. A CHAR value has compo-
nents that you can access by using SUBSTRING.
Therefore, calling database field values atomic
is true to the analogy of atoms of matter. Neither
modern application of the term atomic, how-
ever, is true to the word’s original meaning.

Table 7-1 Example Literals of Various Data Types
Data Type Example Literal

BIGINT 8589934592

INTEGER 186282

SMALLINT 186

NUMERIC 186282.42

DECIMAL 186282.42

REAL 6.02257E23

DOUBLE PRECISION 3.1415926535897E00

FLOAT 6.02257E23

CHARACTER(15) 'GREECE '

Note: Fifteen total characters and spaces are between the quote marks above.

VARCHAR (CHARACTER VARYING) 'lepton'

NATIONAL CHARACTER(15) 'Ε←m←mΑσ ' 1

Note: Fifteen total characters and spaces are between the quote marks above.

NATIONAL CHARACTER VARYING 'λεπτον' 2

CHARACTER LARGE OBJECT (CLOB) (A really long character string)

BINARY LARGE OBJECT (BLOB) (A really long string of ones and zeros)

DATE DATE '1969-07-20'

TIME(2) TIME '13.41.32.50'

TIMESTAMP(0) TIMESTAMP '1998-05-17-13.03.16.000000'

TIME WITH TIMEZONE(4) TIME '13.41.32.5000-08.00'

TIMESTAMP WITH TIMEZONE(0) TIMESTAMP
'1998-05-17-13.03.16.0000+02.00'

INTERVAL DAY INTERVAL '7' DAY
1This term is the word that Greeks use to name their own country in their own language. (The
English equivalent is ‘Hellas.’)
2This term is the word ‘lepton’ in Greek national characters.

141Chapter 7: Specifying Values

What if a literal is a character string that itself contains a single quote? In that
case, you must type two single quotes to show that one of the quote marks
that you’re typing is a part of the character string and not an indicator of the
end of the string. You’d type ‘Earth’’s atmosphere’, for example, to repre-
sent the character literal ‘Earth’s atmosphere’.

Variables
The ability to manipulate literals and other kinds of constants while dealing
with a database is great, but it is helpful to have variables, too. In many cases,
you’d need to do much more work if you didn’t have variables. A variable, by
the way, is a quantity that has a value that can change. Look at the following
example to see why variables are valuable.

Suppose that you’re a retailer who has several classes of customers. You give
your high-volume customers the best price, your medium-volume customers
the next best price, and your low-volume customers the highest price. You
want to index all prices to your cost of goods. For your F-117A product, you
decide to charge your high-volume customers (Class C) 1.4 times your cost of
goods. You charge your medium-volume customers (Class B) 1.5 times your
cost of goods, and you charge your low-volume customers (Class A) 1.6 times
your cost of goods.

You store the cost of goods and the prices that you charge in a table named
PRICING. To implement your new pricing structure, you issue the following
SQL commands:

UPDATE PRICING
SET Price = Cost * 1.4
WHERE Product = ‘F-117A’

AND Class = ‘C’ ;
UPDATE PRICING

SET Price = Cost * 1.5
WHERE Product = ‘F-117A’

AND Class = ‘B’ ;
UPDATE PRICING

SET Price = Cost * 1.6
WHERE Product = ‘F-117A’

AND Class = ‘A’ ;

This code is fine and meets your needs — for now. But what if aggressive
competition begins to eat into your market share? You may need to reduce
your margins to remain competitive. You need to enter something along the
lines of the following commands:

142 Part III: Retrieving Data

UPDATE PRICING
SET Price = Cost * 1.25
WHERE Product = ‘F-117A’

AND Class = ‘C’ ;
UPDATE PRICING

SET Price = Cost * 1.35
WHERE Product = ‘F-117A’

AND Class = ‘B’ ;
UPDATE PRICING

SET Price = Cost * 1.45
WHERE Product = ‘F-117A’

AND Class = ‘A’ ;

If you’re in a volatile market, you may need to rewrite your SQL code repeat-
edly. This task can become tedious, particularly if prices appear in multiple
places in your code. You can minimize this problem if you replace literals
(such as 1.45) with variables (such as :multiplierA). Then you can per-
form your updates as follows:

UPDATE PRICING
SET Price = Cost * :multiplierC
WHERE Product = ‘F-117A’

AND Class = ‘C’ ;
UPDATE PRICING

SET Price = Cost * :multiplierB
WHERE Product = ‘F-117A’

AND Class = ‘B’ ;
UPDATE PRICING

SET Price = Cost * :multiplierA
WHERE Product = ‘F-117A’

AND Class = ‘A’ ;

Now whenever market conditions force you to change your pricing, you need
to change only the values of the variables :multiplierC, :multiplierB,
and :multiplierA. These variables are parameters that pass to the SQL
code, which then uses the variables to compute new prices.

Sometimes, you see variables that you use in this way called parameters and,
at other times, host variables. Variables are called parameters if they are in
applications written in SQL module language and host variables if they’re
used in embedded SQL.

Embedded SQL means that SQL statements are embedded into the code of an
application written in a host language. Alternatively, you can use SQL module
language to create an entire module of SQL code. The host language applica-
tion then calls the module. Either method can give you the capabilities that
you want. The approach that you use depends on your SQL implementation.

143Chapter 7: Specifying Values

Special variables
If a user on a client machine connects to a database on a server, this connec-
tion establishes a session. If the user connects to several databases, the ses-
sion associated with the most recent connection is considered the current
session; previous sessions are considered dormant. SQL:2003 defines several
special variables that are valuable on multiuser systems. These variables
keep track of the different users. The special variable SESSION_USER, for
example, holds a value that’s equal to the user authorization identifier of the
current SQL session. If you write a program that performs a monitoring func-
tion, you can interrogate SESSION_USER to find out who is executing SQL
statements.

An SQL module may have a user-specified authorization identifier associated
with it. The CURRENT_USER variable stores this value. If a module has no such
identifier, CURRENT_USER has the same value as SESSION_USER.

The SYSTEM_USER variable contains the operating system’s user identifier.
This identifier may differ from that user’s identifier in an SQL module. A
user may log onto the system as LARRY, for example, but identify himself to a
module as PLANT_MGR. The value in SESSION_USER is PLANT_MGR. If he makes
no explicit specification of the module identifier, and CURRENT_USER also con-
tains PLANT_MGR, SYSTEM_USER holds the value LARRY.

One use of the SYSTEM_USER, SESSION_USER, and CURRENT_USER special
variables is to track who is using the system. You can maintain a log table and
periodically insert into that table the values that SYSTEM_USER, SESSION_USER,
and CURRENT_USER contain. The following example shows how:

INSERT INTO USAGELOG (SNAPSHOT)
VALUES (‘User ‘ || SYSTEM_USER ||

‘ with ID ‘ || SESSION_USER ||
‘ active at ‘ || CURRENT_TIMESTAMP) ;

This statement produces log entries similar to the following example:

User LARRY with ID PLANT_MGR active at 2003-03-07-23.50.00

Column references
Columns contain values, one in each row of a table. SQL statements often
refer to such values. A fully qualified column reference consists of the table
name, a period, and then the column name (for example, PRICING.Product).
Consider the following statement:

144 Part III: Retrieving Data

SELECT PRICING.Cost
FROM PRICING
WHERE PRICING.Product = ‘F-117A’ ;

PRICING.Product is a column reference. This reference contains the value
‘F-117A’. PRICING.Cost is also a column reference, but you don’t know its
value until the preceding SELECT statement executes.

Because it only makes sense to reference columns in the current table, you
don’t generally need to use fully qualified column references. The following
statement, for example, is equivalent to the previous one:

SELECT Cost
FROM PRICING
WHERE Product = ‘F-117A’ ;

Sometimes, you may be dealing with more than one table. Two tables in a
database may contain one or more columns with the same name. If so, you
must fully qualify column references for those columns to guarantee that you
get the column you want.

For example, suppose that your company maintains facilities at Kingston
and at Jefferson, and you maintain separate employee records for each site.
You name the employee table at Kingston EMP_KINGSTON, and you name the
Jefferson employee table EMP_JEFFERSON. You want a list of employees who
work at both sites, so you need to find the employees whose names appear in
both tables. The following SELECT statement gives you what you want:

SELECT EMP_KINGSTON.FirstName, EMP_KINGSTON.LastName
FROM EMP_KINGSTON, EMP_JEFFERSON
WHERE EMP_KINGSTON.EmpID = EMP_JEFFERSON.EmpID ;

Because the employee’s ID number is unique and is the same regardless of
work site, you can use this ID as a link between the two tables. This retrieval
returns only the names of employees who appear in both tables.

Value Expressions
An expression may be simple or complex. The expression can contain literal
values, column names, parameters, host variables, subqueries, logical con-
nectives, and arithmetic operators. Regardless of its complexity, an expres-
sion must reduce to a single value.

145Chapter 7: Specifying Values

For this reason, SQL expressions are commonly known as value expressions.
Combining multiple value expressions into a single expression is possible, as
long as the component value expressions reduce to values of compatible data
types.

SQL has five kinds of value expressions:

� String value expressions

� Numeric value expressions

� Datetime value expressions

� Interval value expressions

� Conditional value expressions

String value expressions
The simplest string value expression is a single string value specification.
Other possibilities include a column reference, a set function, a scalar
subquery, a CASE expression, a CAST expression, or a complex string value
expression. I discuss CASE and CAST value expressions in Chapter 8. Only
one operator is possible in a string value expression: the concatenation opera-
tor. You may concatenate any of the expressions I mention in the preceding
bulleted list with another expression to create a more complex string value
expression. A pair of vertical lines (||) represents the concatenation opera-
tor. The following table shows some examples of string value expressions.

Expression Produces

‘Peanut ‘ || ‘brittle’ ‘Peanut brittle’

‘Jelly’ || ‘ ‘ || ‘beans’ ‘Jelly beans’

FIRST_NAME || ‘ ‘ || LAST_NAME ‘Joe Smith’

B’1100111’ || B’01010011’ B’110011101010011’

‘’ || ‘Asparagus’ ‘Asparagus’

‘Asparagus’ || ‘’ ‘Asparagus’

‘As’ || ‘’ || ‘par’ || ‘’ || ‘agus’ ‘Asparagus’

As the table shows, if you concatenate a string to a zero-length string, the
result is the same as the original string.

146 Part III: Retrieving Data

Numeric value expressions
In numeric value expressions, you can apply the addition, subtraction, multi-
plication, and division operators to numeric-type data. The expression must
reduce to a numeric value. The components of a numeric value expression
may be of different data types as long as all are numeric. The data type of the
result depends on the data types of the components from which you derive
the result. The SQL:2003 standard doesn’t rigidly specify the type that results
from any specific combination of source expression components because of
differences among hardware platforms. Check the documentation for your
specific platform when mixing numeric data types.

Here are some examples of numeric value expressions:

� -27

� 49 + 83

� 5 * (12 - 3)

� PROTEIN + FAT + CARBOHYDRATE

� FEET/5280

� COST * :multiplierA

Datetime value expressions
Datetime value expressions perform operations on data that deal with dates
and times. These value expressions can contain components that are of the
types DATE, TIME, TIMESTAMP, or INTERVAL. The result of a datetime value
expression is always a datetime type (DATE, TIME, or TIMESTAMP). The follow-
ing expression, for example, gives the date one week from today:

CURRENT_DATE + INTERVAL ‘7’ DAY

Times are maintained in Universal Time Coordinated (UTC) — known in Great
Britain as Greenwich Mean Time — but you can specify an offset to make the
time correct for any particular time zone. For your system’s local time zone,
you can use the simple syntax given in the following example:

TIME ‘22:55:00’ AT LOCAL

Alternatively, you can specify this value the long way:

TIME ‘22:55:00’ AT TIME ZONE INTERVAL ‘-08.00’ HOUR TO MINUTE

147Chapter 7: Specifying Values

This expression defines the local time as the time zone for Portland, Oregon,
which is eight hours earlier than that of Greenwich, England.

Interval value expressions
If you subtract one datetime from another, you get an interval. Adding one
datetime to another makes no sense, so SQL doesn’t permit you to do so. If
you add two intervals together or subtract one interval from another inter-
val, the result is an interval. You can also either multiply or divide an interval
by a numeric constant.

SQL has two types of intervals: year-month and day-time. To avoid ambigui-
ties, you must specify which to use in an interval expression. The following
expression, for example, gives the interval in years and months until you
reach retirement age:

(BIRTHDAY_65 - CURRENT_DATE) YEAR TO MONTH

The following example gives an interval of 40 days:

INTERVAL ‘17’ DAY + INTERVAL ‘23’ DAY

The example that follows approximates the total number of months that a
mother of five has been pregnant (assuming that she’s not currently expect-
ing number six!):

INTERVAL ‘9’ MONTH * 5

Intervals can be negative as well as positive and may consist of any value
expression or combination of value expressions that evaluates to an interval.

Conditional value expressions
The value of a conditional value expression depends on a condition. The con-
ditional value expressions CASE, NULLIF, and COALESCE are significantly
more complex than the other kinds of value expressions. In fact, these three
conditional value expressions are so complex that I don’t have enough room
to talk about them here. I give conditional value expressions extensive cover-
age in Chapter 8.

148 Part III: Retrieving Data

Functions
A function is a simple to moderately complex operation that the usual SQL
commands don’t perform but that comes up often in practice. SQL provides
functions that perform tasks that the application code in the host language
(within which you embed your SQL statements) would otherwise need to per-
form. SQL has two main categories of functions: set (or aggregate) functions
and value functions.

Summarizing by using set functions
The set functions apply to sets of rows in a table rather than to a single
row. These functions summarize some characteristic of the current set of
rows. The set may include all the rows in the table or a subset of rows that a
WHERE clause specifies. (I discuss WHERE clauses extensively in Chapter 9.)
Programmers sometimes call set functions aggregate functions because these
functions take information from multiple rows, process that information in
some way, and deliver a single-row answer. That answer is an aggregation of
the information in the rows making up the set.

To illustrate the use of the set functions, consider Table 7-2, a list of nutrition
facts for 100 grams of certain selected foods.

Table 7-2 Nutrition Facts for 100 Grams of Selected Foods
Food Calories Protein Fat Carbohydrate

(Grams) (Grams) (Grams)

Almonds, 627 18.6 57.7 19.6
roasted

Asparagus 20 2.2 0.2 3.6

Bananas, raw 85 1.1 0.2 22.2

Beef, 219 27.4 11.3
lean hamburger

Chicken, 166 31.6 3.4
light meat

Opossum, 221 30.2 10.2
roasted

(continued)

149Chapter 7: Specifying Values

Table 7-2 (continued)
Food Calories Protein Fat Carbohydrate

(Grams) (Grams) (Grams)

Pork, ham 394 21.9 33.3

Beans, lima 111 7.6 0.5 19.8

Cola 39 10.0

Bread, white 269 8.7 3.2 50.4

Bread, 243 10.5 3.0 47.7
whole wheat

Broccoli 26 3.1 0.3 4.5

Butter 716 0.6 81.0 0.4

Jelly beans 367 0.5 93.1

Peanut brittle 421 5.7 10.4 81.0

A database table named FOODS stores the information in Table 7-2. Blank
fields contain the value NULL. The set functions COUNT, AVG, MAX, MIN, and
SUM can tell you important facts about the data in this table.

COUNT
The COUNT function tells you how many rows are in the table or how many
rows in the table meet certain conditions. The simplest usage of this function
is as follows:

SELECT COUNT (*)
FROM FOODS ;

This function yields a result of 15, because it counts all rows in the FOODS
table. The following statement produces the same result:

SELECT COUNT (Calories)
FROM FOODS ;

Because the Calories column in every row of the table has an entry, the
count is the same. If a column contains nulls, however, the function doesn’t
count the rows corresponding to those nulls.

The following statement returns a value of 11, because 4 of the 15 rows in the
table contain nulls in the Carbohydrate column.

SELECT COUNT (Carbohydrate)
FROM FOODS ;

150 Part III: Retrieving Data

A field in a database table may contain a null value for a variety of reasons. A
common reason for this is that the actual value is not known or not yet
known. Or the value may be known but not yet entered. Sometimes, if a value
is known to be zero, the data entry operator doesn’t bother entering anything
in a field — leaving that field a null. This is not a good practice because zero
is a definite value, and you can include it in computations. Null is not a defi-
nite value, and SQL doesn’t include null values in computations.

You can also use the COUNT function, in combination with DISTINCT, to deter-
mine how many distinct values exist in a column. Consider the following
statement:

SELECT COUNT (DISTINCT Fat)
FROM FOODS ;

The answer that this statement returns is 12. You can see that a 100-gram
serving of asparagus has the same fat content as 100 grams of bananas (0.2
grams) and that a 100-gram serving of lima beans has the same fat content as
100 grams of jelly beans (0.5 grams). Thus the table has a total of only 12 dis-
tinct fat values.

AVG
The AVG function calculates and returns the average of the values in the spec-
ified column. Of course, you can use the AVG function only on columns that
contain numeric data, as in the following example:

SELECT AVG (Fat)
FROM FOODS ;

The result is 15.37. This number is so high primarily because of the presence
of butter in the database. You may wonder what the average fat content may
be if you didn’t include butter. To find out, you can add a WHERE clause to
your statement, as follows:

SELECT AVG (Fat)
FROM FOODS
WHERE Food <> ‘Butter’ ;

The average fat value drops down to 10.32 grams per 100 grams of food.

MAX
The MAX function returns the maximum value found in the specified column.
The following statement returns a value of 81 (the fat content in 100 grams of
butter):

SELECT MAX (Fat)
FROM FOODS ;

151Chapter 7: Specifying Values

MIN
The MIN function returns the minimum value found in the specified column.
The following statement returns a value of 0.4, because the function doesn’t
treat the nulls as zeros:

SELECT MIN (Carbohydrate)
FROM FOODS ;

SUM
The SUM function returns the sum of all the values found in the specified
column. The following statement returns 3,924, which is the total caloric con-
tent of all 15 foods:

SELECT SUM (Calories)
FROM FOODS ;

Value functions
A number of operations apply in a variety of contexts. Because you need to
use these operations so often, incorporating them into SQL as value func-
tions makes good sense. SQL offers relatively few value functions compared
to PC database management systems such as Access or dBASE, but the few
that SQL does have are probably the ones that you’ll use most often. SQL
uses the following three types of value functions:

� String value functions

� Numeric value functions

� Datetime value functions

String value functions
String value functions take one character string as an input and produce
another character string as an output. SQL has six such functions:

� SUBSTRING

� UPPER

� LOWER

� TRIM

� TRANSLATE

� CONVERT

152 Part III: Retrieving Data

SUBSTRING
Use the SUBSTRING function to extract a substring from a source string. The
extracted substring is of the same type as the source string. If the source
string is a CHARACTER VARYING string, for example, the substring is also a
CHARACTER VARYING string. Following is the syntax of the SUBSTRING
function:

SUBSTRING (string_value FROM start [FOR length])

The clause in square brackets ([]) is optional. The substring extracted from
string_value begins with the character that start represents and contin-
ues for length characters. If the FOR clause is absent, the substring extracted
extends from the start character to the end of the string. Consider the fol-
lowing example:

SUBSTRING (‘Bread, whole wheat’ FROM 8 FOR 7)

The substring extracted is ‘whole w’. This substring starts with the eighth
character of the source string and has a length of seven characters. On the
surface, SUBSTRING doesn’t seem like a very valuable function; if I have a lit-
eral like ‘Bread, whole wheat’, I don’t need a function to figure out char-
acters 8 through 14. SUBSTRING really is a valuable function, however,
because the string value doesn’t need to be a literal. The value can be any
expression that evaluates to a character string. Thus, I could have a variable
named fooditem that takes on different values at different times. The follow-
ing expression would extract the desired substring regardless of what charac-
ter string the fooditem variable currently represents:

SUBSTRING (:fooditem FROM 8 FOR 7)

All the value functions are similar in that these functions can operate on
expressions that evaluate to values as well as on the literal values themselves.

You need to watch out for a couple of things if you use the SUBSTRING func-
tion. Make sure that the substring that you specify actually falls within the
source string. If you ask for a substring starting at character eight but the
source string is only four characters long, you get a null result. You must,
therefore, have some idea of the form of your data before you specify a sub-
string function. You also don’t want to specify a negative substring length,
because the end of a string can’t precede the beginning.

If a column is of the VARCHAR type, you may not know how far the field
extends for a particular row. This lack of knowledge doesn’t present a prob-
lem for the SUBSTRING function. If the length that you specify goes beyond
the right edge of the field, SUBSTRING returns whatever it finds. It doesn’t
return an error.

153Chapter 7: Specifying Values

Say that you have the following statement:

SELECT * FROM FOODS
WHERE SUBSTRING (Food FROM 8 FOR 7) = ‘white’ ;

This statement returns the row for white bread from the FOODS table, even
though the value in the Food column (‘Bread, white’) is less than 14 char-
acters long.

If any operand in the substring function has a null value, SUBSTRING returns a
null result.

UPPER
The UPPER value function converts a character string to all uppercase charac-
ters, as in the examples shown in the following table.

This Statement Returns

UPPER (‘e. e. cummings’) ‘E. E. CUMMINGS’

UPPER (‘Isaac Newton, Ph.D’) ‘ISAAC NEWTON, PH.D.’

The UPPER function doesn’t affect a string that’s already in all uppercase
characters.

LOWER
The LOWER value function converts a character string to all lowercase charac-
ters, as in the examples in the following table.

This Statement Returns

LOWER (‘TAXES’) ‘taxes’

LOWER (‘E. E. Cummings’) ‘e. e. cummings’

The LOWER function doesn’t affect a string that’s already in all lowercase
characters.

TRIM
Use the TRIM function to trim off leading or trailing blanks (or other charac-
ters) from a character string. The following examples show how to use TRIM.

154 Part III: Retrieving Data

This Statement Returns

TRIM (LEADING ‘ ‘ FROM ‘ treat ‘) ‘treat ‘

TRIM (TRAILING ‘ ‘ FROM ‘ treat ‘) ‘ treat’

TRIM (BOTH ‘ ‘ FROM ‘ treat ‘) ‘treat’

TRIM (BOTH ‘t’ from ‘treat’) ‘rea’

The default trim character is the blank, so the following syntax also is legal:

TRIM (BOTH FROM ‘ treat ‘)

This syntax gives you the same result as the third example in the table —
‘treat’.

TRANSLATE and CONVERT
The TRANSLATE and CONVERT functions take a source string in one character
set and transform the original string into a string in another character set.
Examples may be English to Kanji or Hebrew to French. The conversion func-
tions that specify these transformations are implementation-specific. Consult
the documentation of your implementation for details.

If translating from one language to another was as easy as invoking an SQL
TRANSLATE function, that would be great. Unfortunately, the task is not that
easy. All TRANSLATE does is translate a character in the first character set to
the corresponding character in the second character set. The function can,
for example, translate ‘Ελλασ’ to ‘Ellas’. But it can’t translate ‘Ελλασ’ to
‘Greece’.

Numeric value functions
Numeric value functions can take a variety of data types as input, but the
output is always a numeric value. SQL has 13 types of numeric value functions:

� Position expression (POSITION)

� Extract expression (EXTRACT)

� Length expression (CHAR_LENGTH, CHARACTER_LENGTH, OCTET_LENGTH)

� Cardinality expression (CARDINALITY)

� Absolute value expression (ABS)

� Modulus expression (MOD)

155Chapter 7: Specifying Values

� Natural logarithm (LN)

� Exponential function (EXP)

� Power function (POWER)

� Square root (SQRT)

� Floor function (FLOOR)

� Ceiling function (CEIL, CEILING)

� Width bucket function (WIDTH_BUCKET)

POSITION
POSITION searches for a specified target string within a specified source
string and returns the character position where the target string begins. The
syntax is as follows:

POSITION (target IN source)

The following table shows a few examples.

This Statement Returns

POSITION (‘B’ IN ‘Bread, whole wheat’) 1

POSITION (‘Bre’ IN ‘Bread, whole wheat’) 1

POSITION (‘wh’ IN ‘Bread, whole wheat’) 8

POSITION (‘whi’ IN ‘Bread, whole wheat’) 0

POSITION (‘’ IN ‘Bread, whole wheat’) 1

If the function doesn’t find the target string, the POSITION function returns a
zero value. If the target string has zero length (as in the last example), the
POSITION function always returns a value of one. If any operand in the func-
tion has a null value, the result is a null value.

EXTRACT
The EXTRACT function extracts a single field from a datetime or an interval.
The following statement, for example, returns 08:

EXTRACT (MONTH FROM DATE ‘2000-08-20’)

CHARACTER_LENGTH
The CHARACTER_LENGTH function returns the number of characters in a char-
acter string. The following statement, for example, returns 16:

CHARACTER_LENGTH (‘Opossum, roasted’)

156 Part III: Retrieving Data

As I note in regard to the SUBSTRING function (in the “Substring” section,
earlier in the chapter), this function is not particularly useful if its argument
is a literal like ‘Opossum, roasted’. I can just as easily write 16 as I can
CHARACTER_LENGTH (‘Opossum, roasted’). In fact, writing 16 is easier.
This function is more useful if its argument is an expression rather than a
literal value.

OCTET_LENGTH
In music, a vocal ensemble made up of eight singers is called an octet.
Typically, the parts that the ensemble represents are first and second
soprano, first and second alto, first and second tenor, and first and
second bass. In computer terminology, an ensemble of eight data bits is
called a byte. The word byte is clever in that the term clearly relates to bit
but implies something larger than a bit. A nice wordplay — but, unfortu-
nately, nothing in the word byte conveys the concept of “eightness.” By
borrowing the musical term, a more apt description of a collection of eight
bits becomes possible.

Practically all modern computers use eight bits to represent a single
alphanumeric character. More complex character sets (such as Chinese)
require 16 bits to represent a single character. The OCTET_LENGTH function
counts and returns the number of octets (bytes) in a string. If the string is a
bit string, OCTET_LENGTH returns the number of octets you need to hold that
number of bits. If the string is an English-language character string (with one
octet per character), the function returns the number of characters in the
string. If the string is a Chinese character string, the function returns a
number that is twice the number of Chinese characters. The following
string is an example:

OCTET_LENGTH (‘Beans, lima’)

This function returns 11, because each character takes up one octet.

Some character sets use a variable number of octets for different characters.
In particular, some character sets that support mixtures of Kanji and Latin
characters use escape characters to switch between the two character sets.
A string that contains both Latin and Kanji may have, for example, 30 charac-
ters and require 30 octets if all the characters are Latin; 62 characters if all
the characters are Kanji (60 characters plus a leading and trailing shift char-
acter); and 150 characters if the characters alternate between Latin and Kanji
(because each Kanji character needs two octets for the character and one
octet each for the leading and trailing shift characters). The OCTET_LENGTH
function returns the number of octets you need for the current value of
the string.

157Chapter 7: Specifying Values

CARDINALITY
Cardinality deals with collections of elements such as arrays or multisets,
where each element is a value of some data type. The cardinality of the collec-
tion is the number of elements that it contains. One use of the CARDINALITY
function might be:

CARDINALITY (TeamRoster)

This function would return 12, for example, if there were 12 team members
on the roster. TeamRoster, a column in the TEAM table, can be either an
array or a multiset. An array is an ordered collection of elements, and a multi-
set is an unordered collection of elements. For a team roster, which changes
frequently, multiset makes more sense.

ABS
The ABS function returns the absolute value of a numeric value expression.

ABS (-273)

This returns 273.

MOD
The MOD function returns the modulus of two numeric value expressions.

MOD (3,2)

This function returns 1, the modulus of three divided by two.

LN
The LN function returns the natural logarithm of a numeric value expression.

LN (9)

This function returns something like 2.197224577. The number of digits
beyond the decimal point is implementation dependent.

EXP
This function raises the base of the natural logarithms e to the power speci-
fied by a numeric value expression.

EXP (2)

This function returns something like 7.389056. The number of digits beyond
the decimal point is implementation dependent.

158 Part III: Retrieving Data

POWER
This function raises the value of the first numeric value expression to the
power of the second numeric value expression.

POWER (2,8)

This function returns 256, which is two raised to the eighth power.

SQRT
This function returns the square root of the value of the numeric value
expression.

SQRT (4)

This function returns 2, the square root of four.

FLOOR
This function rounds the numeric value expression to the largest integer not
greater than the expression.

FLOOR (3.141592)

This function returns 3.0.

CEIL or CEILING
This function rounds the numeric value expression to the smallest integer
not less than the expression.

CEIL (3.141592)

This function returns 4.0.

WIDTH_BUCKET
The WIDTH_BUCKET function, used in online application processing (OLAP), is
a function of four arguments, returning an integer between 0 (zero) and the
value of the final argument plus 1 (one). It assigns the first argument to an
equiwidth partitioning of the range of numbers between the second and third
arguments. Values outside this range are assigned to either 0 (zero) or the
value of the final argument plus 1 (one).

For example:

WIDTH_BUCKET (PI, 0, 9, 5)

Suppose PI is a numeric value expression with a value of 3.141592. The exam-
ple partitions the interval from zero to nine into five equal buckets, each with
a width of two. The function returns a value of 2, because 3.141592 falls into
the second bucket, which covers the range from two to four.

159Chapter 7: Specifying Values

Datetime value functions
SQL includes three functions that return information about the current date,
current time, or both. CURRENT_DATE returns the current date; CURRENT_TIME
returns the current time; and CURRENT_TIMESTAMP returns (surprise!) both
the current date and the current time. CURRENT_DATE doesn’t take an argu-
ment, but CURRENT_TIME and CURRENT_TIMESTAMP both take a single argu-
ment. The argument specifies the precision for the seconds part of the time
value that the function returns. Datetime data types and the precision con-
cept are described in Chapter 2.

The following table offers some examples of these datetime value functions.

This Statement Returns

CURRENT_DATE 2000-12-31

CURRENT_TIME (1) 08:36:57.3

CURRENT_TIMESTAMP (2) 2000-12-31 08:36:57.38

The date that CURRENT_DATE returns is DATE type data. The time that
CURRENT_TIME (p) returns is TIME type data, and the timestamp that
CURRENT_TIMESTAMP(p) returns is TIMESTAMP type data. Because SQL
retrieves date and time information from your computer’s system clock, the
information is correct for the time zone in which the computer resides.

In some applications, you may want to deal with dates, times, or timestamps
as character strings to take advantage of the functions that operate on char-
acter data. You can perform a type conversion by using the CAST expression,
which is described in Chapter 8.

160 Part III: Retrieving Data

Entering SQL statements into a
Microsoft Access database

Access doesn’t make it easy to enter SQL state-
ments. You have to enter all SQL statements as
queries. Other products such as SQL Server,
Oracle, MySQL, or PostgreSQL provide editors
you can use to enter SQL statements. In SQL
Server, you can use the Query Analyzer. For
others, consult their documentation.

You can enter SQL statements into Access, but
the path to doing so is obscure. Refer to Chapter
4 for a step-by-step description of how to enter
SQL statements into Access.

Chapter 8

Advanced SQL Value Expressions
In This Chapter
� Using the CASE conditional expressions

� Converting a data item from one data type to another

� Saving data entry time by using row value expressions

SQL is described in Chapter 2 as a data sub-language. In fact, the sole func-
tion of SQL is to operate on data in a database. SQL lacks many of the fea-

tures of a conventional procedural language. As a result, developers who use
SQL must switch back and forth between SQL and its host language to con-
trol the flow of execution. This repeated switching complicates matters at
development time and negatively affects performance at run time.

The performance penalty exacted by SQL’s limitations prompts the addition of
new features to SQL every time a new version of the international specification
is released. One of those new features, the CASE expression, provides a long-
sought conditional structure. A second feature, the CAST expression, facilitates
data conversion in a table from one type of data to another. A third feature, the
row value expression, enables you to operate on a list of values where, previ-
ously, only a single value was possible. For example, if your list of values is a
list of columns in a table, you can now perform an operation on all those
columns by using a very simple syntax.

CASE Conditional Expressions
Every complete computer language has some kind of conditional statement
or command. In fact, most have several kinds. Probably the most common con-
ditional statement or command is the IF...THEN...ELSE...ENDIF structure.
If the condition following the IF keyword evaluates to True, the block of com-
mands following the THEN keyword executes. If the condition doesn’t evaluate
to True, the block of commands after the ELSE keyword executes. The ENDIF
keyword signals the end of the structure. This structure is great for any deci-
sion that goes one of two ways. The structure is less applicable to decisions
that can have more than two outcomes.

Most complete languages have a CASE statement that handles situations in
which you may want to perform more than two tasks based on more than two
conditions.

SQL:2003 has a CASE statement and a CASE expression. A CASE expression is
only part of a statement — not a statement in its own right. In SQL, you can
place a CASE expression almost anywhere a value is legal. At run time, a CASE
expression evaluates to a value. SQL’s CASE statement doesn’t evaluate to a
value; rather, it executes a block of statements.

You can use the CASE expression in the following two ways:

� Use the expression with search conditions. CASE searches for rows in a
table where specified conditions are True. If CASE finds a search condition
to be True for a table row, the statement containing the CASE expression
makes a specified change to that row.

� Use the expression to compare a table field to a specified value.
The outcome of the statement containing the CASE expression depends
on which of several specified values in the table field is equal to each
table row.

The next two sections, “Using CASE with search conditions” and “Using
CASE with values,” help make these concepts more clear. In the first section,
two examples use CASE with search conditions. One example searches a table
and makes changes to table values, based on a condition. The second section
explores two examples of the value form of CASE.

Using CASE with search conditions
One powerful way to use the CASE expression is to search a table for rows in
which a specified search condition is True. If you use CASE this way, the
expression uses the following syntax:

CASE
WHEN condition1 THEN result1
WHEN condition2 THEN result2
...
WHEN conditionn THEN resultn
ELSE resultx

END

CASE examines the first qualifying row (the first row that meets the conditions
of the enclosing WHERE clause, if any) to see whether condition1 is True. If it
is, the CASE expression receives a value of result1. If condition1 is not

162 Part III: Retrieving Data

True, CASE evaluates the row for condition2. If condition2 is True, the
CASE expression receives the value of result2, and so on. If none of the stated
conditions are True, the CASE expression receives the value of resultx. The
ELSE clause is optional. If the expression has no ELSE clause and none of the
specified conditions are True, the expression receives a null value. After the
SQL statement containing the CASE expression applies itself to the first quali-
fying row in a table and takes the appropriate action, it processes the next row.
This sequence continues until the SQL statement finishes processing the
entire table.

Updating values based on a condition
Because you can embed a CASE expression within an SQL statement almost
anywhere a value is possible, this expression gives you tremendous flexibil-
ity. You can use CASE within an UPDATE statement, for example, to make
changes to table values — based on certain conditions. Consider the
following example:

UPDATE FOODS
SET RATING = CASE

WHEN FAT < 1
THEN ‘very low fat’

WHEN FAT < 5
THEN ‘low fat’

WHEN FAT < 20
THEN ‘moderate fat’

WHEN FAT < 50
THEN ‘high fat’

ELSE ‘heart attack city’
END ;

This statement evaluates the WHEN conditions in order until the first True value
is returned, after which the statement ignores the rest of the conditions.

Table 7-2 in Chapter 7 shows the fat content of 100 grams of certain foods. A
database table holding this information can contain a RATING column that
gives a quick assessment of the fat content’s meaning. If you run the preced-
ing UPDATE on the FOODS table in Chapter 7, the statement assigns asparagus
a value of very low fat, gives chicken a value of low fat, and puts roasted
almonds into the heart attack city category.

Avoiding conditions that cause errors
Another valuable use of CASE is exception avoidance — checking for condi-
tions that cause errors.

163Chapter 8: Advanced SQL Value Expressions

Consider a case that determines compensation for salespeople. Companies
that compensate their salespeople by straight commission often pay their
new employees by giving them a “draw” against commission. In the following
example, new salespeople receive a draw against commission that’s phased
out gradually as their commissions rise:

UPDATE SALES_COMP
SET COMP = COMMISSION + CASE

WHEN COMMISSION <> 0
THEN DRAW/COMMISSION

WHEN COMMISSION = 0
THEN DRAW

END ;

If the salesperson’s commission is zero, the structure in this example avoids
a division by zero operation, which causes an error. If the salesperson has a
nonzero commission, total compensation is the commission plus a draw that
is reduced proportionately to the size of the commission.

All of the THEN expressions in a CASE expression must be of the same type —
all numeric, all character, or all date. The result of the CASE expression is also
of the same type.

Using CASE with values
You can use a more compact form of the CASE expression if you’re comparing
a test value for equality with a series of other values. This form is useful within
a SELECT or UPDATE statement if a table contains a limited number of values
in a column and you want to associate a corresponding result value to each
of those column values. If you use CASE in this way, the expression has the
following syntax:

CASE valuet
WHEN value1 THEN result1
WHEN value2 THEN result2
...
WHEN valuen THEN resultn
ELSE resultx

END

If the test value (valuet) is equal to value1, the expression takes on the value
result1. If valuet is not equal to value1 but is equal to value2, the expres-
sion takes on the value result2. The expression tries each comparison value
in turn, all the way down to valuen, until it achieves a match. If none of the
comparison values equal the test value, the expression takes on the value
resultx. Again, if the optional ELSE clause isn’t present and none of the
comparison values match the test value, the expression receives a null value.

164 Part III: Retrieving Data

To understand how the value form works, consider a case in which you have
a table containing the names and ranks of various military officers. You want
to list the names preceded by the correct abbreviation for each rank. The fol-
lowing statement does the job:

SELECT CASE RANK
WHEN ‘general’ THEN ‘Gen.’
WHEN ‘colonel’ THEN ‘Col.’
WHEN ‘lieutenant colonel’ THEN ‘Lt. Col.’
WHEN ‘major’ THEN ‘Maj.’
WHEN ‘captain’ THEN ‘Capt.’
WHEN ‘first lieutenant’ THEN ‘1st. Lt.’
WHEN ‘second lieutenant’ THEN ‘2nd. Lt.’
ELSE ‘Mr.’

END,
LAST_NAME

FROM OFFICERS ;

The result is a list similar to the following example:

Capt. Midnight
Col. Sanders
Gen. Schwarzkopf
Maj. Disaster
Mr. Nimitz

Chester Nimitz was an admiral in the United States Navy during World War II.
Because his rank isn’t listed in the CASE expression, the ELSE clause deter-
mines his title.

For another example, suppose that Captain Midnight gets a promotion to
major and you want to update the OFFICERS database accordingly. Assume
that the variable officer_last_name contains the value ‘Midnight’ and
that the variable new_rank contains an integer (4) that corresponds to
Midnight’s new rank, according to the following table.

new_rank Rank

1 general

2 colonel

3 lieutenant colonel

4 major

5 captain

6 first lieutenant

7 second lieutenant

8 Mr.

165Chapter 8: Advanced SQL Value Expressions

You can record the promotion by using the following SQL code:

UPDATE OFFICERS
SET RANK = CASE :new_rank

WHEN 1 THEN ‘general’
WHEN 2 THEN ‘colonel’
WHEN 3 THEN ‘lieutenant colonel’
WHEN 4 THEN ‘major’
WHEN 5 THEN ‘captain’
WHEN 6 THEN ‘first lieutenant’
WHEN 7 THEN ‘second lieutenant’
WHEN 8 THEN ‘Mr.’

END
WHERE LAST_NAME = :officer_last_name ;

An alternative syntax for the CASE with values is as follows:

CASE
WHEN valuet = value1 THEN result1
WHEN valuet = value2 THEN result2
...
WHEN valuet = valuen THEN resultn
ELSE resultx

END

A special CASE — NULLIF
The one thing you can be sure of in this world is change. Sometimes things
change from one known state to another. Other times, you think that you know
something but later you find out that you didn’t know it after all. Classical ther-
modynamics, as well as modern chaos theory, tells us that systems naturally
migrate from a well-known, ordered state into a disordered state that no one
can predict. Anyone who has ever monitored the status of a teenager’s room
for a one-week period after the room is cleaned can vouch for the accuracy of
these theories.

Database tables have definite values in fields containing known contents.
Usually, if the value of a field is unknown, the field contains the null value.
In SQL, you can use a CASE expression to change the contents of a table field
from a definite value to a null. The null indicates that you no longer know the
field’s value. Consider the following example.

Imagine that you own a small airline that offers flights between southern
California and Washington state. Until recently, some of your flights stopped
at San Jose International Airport to refuel before continuing on. Unfortunately,
you just lost your right to fly into San Jose. From now on, you must make your
refueling stop at either San Francisco International or Oakland International. At

166 Part III: Retrieving Data

this point, you don’t know which flights stop at which airport, but you do
know that none of the flights are stopping at San Jose. You have a FLIGHT
database that contains important information about your routes, and now
you want to update the database to remove all references to San Jose. The
following example shows one way to do this:

UPDATE FLIGHT
SET RefuelStop = CASE

WHEN RefuelStop = ‘San Jose’
THEN NULL

ELSE RefuelStop
END ;

Because occasions like this one, in which you want to replace a known value
with a null, frequently arise, SQL offers a shorthand notation to accomplish
this task. The preceding example, expressed in this shorthand form, appears
as follows:

UPDATE FLIGHT
SET RefuelStop = NULLIF(RefuelStop, ‘San Jose’) ;

You can read this expression as, “Update the FLIGHT table by setting column
RefuelStop to null if the existing value of RefuelStop is ‘San Jose’.
Otherwise, make no change.”

NULLIF is even handier if you’re converting data that you originally accumu-
lated for use with a program written in a standard programming language such
as COBOL or FORTRAN. Standard programming languages don’t have nulls, so
a common practice is to represent the “not known” or “not applicable” concept
by using special values. A numeric –1 may represent a not known value for
SALARY, for example, and a character string “***” may represent a not known
or not applicable value for JOBCODE. If you want to represent these not known
and not applicable states in an SQL-compatible database by using nulls, you
need to convert the special values to nulls. The following example makes this
conversion for an employee table, in which some salary values are unknown:

UPDATE EMP
SET Salary = CASE Salary

WHEN -1 THEN NULL
ELSE Salary

END ;

You can perform this conversion more conveniently by using NULLIF, as
follows:

UPDATE EMP
SET Salary = NULLIF(Salary, -1) ;

167Chapter 8: Advanced SQL Value Expressions

Another special CASE — COALESCE
COALESCE, like NULLIF, is a shorthand form of a particular CASE expression.
COALESCE deals with a list of values that may or may not be null. If one of the
values in the list is non-null, the COALESCE expression takes on that value. If
more than one value in the list is non-null, the expression takes on the value
of the first non-null item in the list. If all the values in the list are null, the
expression takes on the null value.

A CASE expression with this function has the following form:

CASE
WHEN value1 IS NOT NULL

THEN value1
WHEN value2 IS NOT NULL

THEN value2
...
WHEN valuen IS NOT NULL

THEN valuen
ELSE NULL

END

The corresponding COALESCE shorthand appears as follows:

COALESCE(value1, value2, ..., valuen)

You may want to use a COALESCE expression after you perform an OUTER
JOIN operation (discussed in Chapter 10). In such cases, COALESCE can save
you a lot of typing.

CAST Data-Type Conversions
Chapter 2 covers the data types that SQL recognizes and supports. Ideally,
each column in a database table has a perfect choice of data type. In this
non-ideal world, however, exactly what that perfect choice may be isn’t always
clear. In defining a database table, suppose you assign a data type to a column
that works perfectly for your current application. Later, you want to expand
your application’s scope or write an entirely new application that uses the
data differently. This new use could require a data type different from the
one you originally chose.

You may want to compare a column of one type in one table with a column of
a different type in a different table. For example, you could have dates stored

168 Part III: Retrieving Data

as character data in one table and as date data in another table. Even if both
columns contain the same things (dates, for example), the fact that the types
are different may prevent you from making the comparison. In SQL-86 and
SQL-89, type incompatibility posed a big problem. SQL-92, however, intro-
duced an easy-to-use solution in the CAST expression.

The CAST expression converts table data or host variables of one type to
another type. After you make the conversion, you can proceed with the
operation or analysis that you originally envisioned.

Naturally, you face some restrictions when using the CAST expression.
You can’t just indiscriminately convert data of any type into any other
type. The data that you’re converting must be compatible with the new
data type. You can, for example, use CAST to convert the CHAR(10) character
string ‘1998-04-26’ to the DATE type. But you can’t use CAST to convert the
CHAR(10) character string ‘rhinoceros’ to the DATE type. You can’t con-
vert an INTEGER to the SMALLINT type if the former exceeds the maximum
size of a SMALLINT.

You can convert an item of any character type to any other type (such as
numeric or date) provided that the item’s value has the form of a literal of the
new type. Conversely, you can convert an item of any type to any of the char-
acter types, provided that the value of the item has the form of a literal of the
original type.

The following list describes some additional conversions you can make:

� Any numeric type to any other numeric type. If converting to a type of
less fractional precision, the system rounds or truncates the result.

� Any exact numeric type to a single component interval, such as
INTERVAL DAY or INTERVAL SECOND.

� Any DATE to a TIMESTAMP. The time part of the TIMESTAMP fills in with
zeros.

� Any TIME to a TIME with a different fractional-seconds precision or a
TIMESTAMP. The date part of the TIMESTAMP fills in with the current date.

� Any TIMESTAMP to a DATE, a TIME, or a TIMESTAMP with a different
fractional-seconds precision.

� Any year-month INTERVAL to an exact numeric type or another year-
month INTERVAL with different leading-field precision.

� Any day-time INTERVAL to an exact numeric type or another day-time
INTERVAL with different leading-field precision.

169Chapter 8: Advanced SQL Value Expressions

Using CAST within SQL
Suppose that you work for a sales company that keeps track of prospective
employees as well as employees whom you’ve actually hired. You list the
prospective employees in a table named PROSPECT, and you distinguish them
by their Social Security numbers, which you store as a CHAR(9) type. You list
the employees in a table named EMPLOYEE, and you distinguish them by their
Social Security numbers, which are of the INTEGER type. You now want to
generate a list of all people who appear in both tables. You can use CAST to
perform the task, as follows:

SELECT * FROM EMPLOYEE
WHERE EMPLOYEE.SSN =

CAST(PROSPECT.SSN AS INTEGER) ;

Using CAST between SQL
and the host language
The key use of CAST is to deal with data types that are in SQL but not in the
host language that you use. The following list offers some examples of these
data types:

� SQL has DECIMAL and NUMERIC, but FORTRAN and Pascal don’t.

� SQL has FLOAT and REAL, but standard COBOL doesn’t.

� SQL has DATETIME, which no other language has.

Suppose that you want to use FORTRAN or Pascal to access tables with
DECIMAL(5,3) columns, and you don’t want the inaccuracies that result
from converting those values to the REAL data type of FORTRAN and Pascal.
You can perform this task by CASTing the data to and from character-
string host variables. You retrieve a numeric salary of 198.37 as a CHAR(10)
value of ‘0000198.37’. Then if you want to update that salary to 203.74,
you can place that value in a CHAR(10) as ‘0000203.74’. First, you use
CAST to change the SQL DECIMAL(5,3) data type to the CHAR(10) type for
the employee whose ID number you’re storing in the host variable
:emp_id_var, as follows:

SELECT CAST(Salary AS CHAR(10)) INTO :salary_var
FROM EMP
WHERE EmpID = :emp_id_var ;

170 Part III: Retrieving Data

Then the application examines the resulting character string value in
:salary_var, possibly sets the string to a new value of ‘000203.74’,
and then updates the database by using the following SQL code:

UPDATE EMP
SET Salary = CAST(:salary_var AS DECIMAL(5,3))

WHERE EmpID = :emp_id_var ;

Dealing with character-string values like ‘000198.37’ is awkward in
FORTRAN or Pascal, but you can write a set of subroutines to do the neces-
sary manipulations. You can then retrieve and update any SQL data from any
host language and get and set exact values.

The general idea is that CAST is most valuable for converting between host
types and the database rather than for converting within the database.

Row Value Expressions
In SQL-86 and SQL-89, most operations deal with a single value or a single
column in a table row. To operate on multiple values, you must build complex
expressions by using logical connectives (which I discuss in Chapter 9).

SQL-92 introduced row value expressions, which operate on a list of values or
columns rather than a single value or column. A row value expression is a list
of value expressions that you enclose in parentheses and separate by commas.
You can operate on an entire row at once or on a selected subset of the row.

Chapter 6 covers how to use the INSERT statement to add a new row to an
existing table. To do so, the statement uses a row value expression. Consider
the following example:

INSERT INTO FOODS
(FOODNAME, CALORIES, PROTEIN, FAT, CARBOHYDRATE)
VALUES
(‘Cheese, cheddar’, 398, 25, 32.2, 2.1) ;

In this example, (‘Cheese, cheddar’, 398, 25, 32.2, 2.1) is a row
value expression. If you use a row value expression in an INSERT statement
this way, it can contain null and default values. (A default value is the value
that a table column assumes if you specify no other value.) The following
line, for example, is a legal row value expression:

(‘Cheese, cheddar’, 398, NULL, 32.2, DEFAULT)

171Chapter 8: Advanced SQL Value Expressions

You can add multiple rows to a table by putting multiple row value expres-
sions in the VALUES clause, as follows:

INSERT INTO FOODS
(FOODNAME, CALORIES, PROTEIN, FAT, CARBOHYDRATE)
VALUES
(‘Lettuce’, 14, 1.2, 0.2, 2.5),
(‘Margarine’, 720, 0.6, 81.0, 0.4),
(‘Mustard’, 75, 4.7, 4.4, 6.4),
(‘Spaghetti’, 148, 5.0, 0.5, 30.1) ;

You can use row value expressions to save typing in comparisons. Suppose
you have two tables of nutritional values, one compiled in English and the
other in Spanish. You want to find those rows in the English language table
that correspond exactly to the rows in the Spanish language table. Without a
row value expression, you may need to formulate something like the follow-
ing example:

SELECT * FROM FOODS
WHERE FOODS.CALORIES = COMIDA.CALORIA

AND FOODS.PROTEIN = COMIDA.PROTEINA
AND FOODS.FAT = COMIDA.GORDO
AND FOODS.CARBOHYDRATE = COMIDA.CARBOHIDRATO ;

Row value expressions enable you to code the same logic as follows:

SELECT * FROM FOODS
WHERE (FOODS.CALORIES, FOODS.PROTEIN, FOODS.FAT,

FOODS.CARBOHYDRATE)
=

(COMIDA.CALORIA, COMIDA.PROTEINA, COMIDA.GORDO,
COMIDA.CARBOHIDRATO) ;

In this example, you don’t save much typing. You would benefit slightly more
if you were comparing more columns. In cases of marginal benefit like this
example, you may be better off sticking with the older syntax because its
meaning is clearer.

You gain one benefit by using a row value expression instead of its coded
equivalent — the row value expression is much faster. In principle, a clever
implementation can analyze the coded version and implement it as the row
value version, but in practice, this operation is a difficult optimization that no
DBMS currently on the market can perform.

172 Part III: Retrieving Data

Chapter 9

Zeroing In on the Data You Want
In This Chapter
� Specifying the tables you want to work with

� Separating rows of interest from the rest

� Building effective WHERE clauses

� Handling null values

� Building compound expressions with logical connectives

� Grouping query output by column

� Putting query output in order

A database management system has two main functions: storing data and
providing easy access to that data. Storing data is nothing special; a file

cabinet can perform that chore. The hard part of data management is provid-
ing easy access. For data to be useful, you must be able to separate the (usu-
ally) small amount you want from the huge amount you don’t want.

SQL enables you to use some characteristics of the data to determine whether
a particular table row is of interest to you. The SELECT, DELETE, and UPDATE
statements convey to the database engine (the part of the DBMS that directly
interacts with the data) which rows to select, delete, or update. You add modi-
fying clauses to the SELECT, DELETE, and UPDATE statements to refine the
search to your specifications.

Modifying Clauses
The modifying clauses available in SQL are FROM, WHERE, HAVING, GROUP BY,
and ORDER BY. The FROM clause tells the database engine which table or tables
to operate on. The WHERE and HAVING clauses specify a data characteristic that
determines whether or not to include a particular row in the current opera-
tion. The GROUP BY and ORDER BY clauses specify how to display the retrieved
rows. Table 9-1 provides a summary.

Table 9-1 Modifying Clauses and Functions
Modifying Clause Function

FROM Specifies from which tables to take data

WHERE Filters out rows that don’t satisfy the search condition

GROUP BY Separates rows into groups based on the values in the
grouping columns

HAVING Filters out groups that don’t satisfy the search condition

ORDER BY Sorts the results of prior clauses to produce final output

If you use more than one of these clauses, they must appear in the following
order:

SELECT column_list
FROM table_list
[WHERE search_condition]
[GROUP BY grouping_column]
[HAVING search_condition]
[ORDER BY ordering_condition] ;

Here’s the lowdown on the execution of these clauses:

� The WHERE clause is a filter that passes rows that meet the search condi-
tion and rejects rows that don’t meet the condition.

� The GROUP BY clause rearranges the rows that the WHERE clause passes
according to the value of the grouping column.

� The HAVING clause is another filter that takes each group that the GROUP
BY clause forms and passes those groups that meet the search condi-
tion, rejecting the rest.

� The ORDER BY clause sorts whatever remains after all the preceding
clauses process the table.

As the square brackets ([]) indicate, the WHERE, GROUP BY, HAVING, and
ORDER BY clauses are optional.

SQL evaluates these clauses in the order FROM, WHERE, GROUP BY, HAVING,
and finally SELECT. The clauses operate in a “pipeline” manner, in which each
clause receives the result of the prior clause and produces an output for the
next clause. In functional notation, this order of evaluation appears as follows:

SELECT(HAVING(GROUP BY(WHERE(FROM...))))

174 Part III: Retrieving Data

ORDER BY operates after SELECT, which explains why ORDER BY can only ref-
erence columns in the SELECT list. ORDER BY can’t reference other columns
in the FROM table(s).

FROM Clauses
The FROM clause is easy to understand if you specify only one table, as in the
following example:

SELECT * FROM SALES ;

This statement returns all the data in all the rows of every column in the
SALES table. You can, however, specify more than one table in a FROM clause.
Consider the following example:

SELECT *
FROM CUSTOMER, SALES ;

This statement forms a virtual table that combines the data from the
CUSTOMER table with the data from the SALES table. Each row in the
CUSTOMER table combines with every row in the SALES table to form the
new table. The new virtual table that this combination forms contains the
number of rows in the CUSTOMER table multiplied by the number of rows in
the SALES table. If the CUSTOMER table has 10 rows and the SALES table has
100, then the new virtual table has 1,000 rows.

This operation is called the Cartesian product of the two source tables. The
Cartesian product is a type of JOIN. I cover JOIN operations in detail in
Chapter 10.

In most applications, the majority of the rows that form as a result of taking
the Cartesian product of two tables are meaningless. In the case of the virtual
table that forms from the CUSTOMER and SALES tables, only the rows where
the CustomerID from the CUSTOMER table matches the CustomerID from the
SALES table are of interest. You can filter out the rest of the rows by using a
WHERE clause.

WHERE Clauses
I use the WHERE clause many times throughout this book without really explain-
ing it because its meaning and use are obvious: A statement performs an opera-
tion (such as a SELECT, DELETE, or UPDATE) only on table rows WHERE a stated
condition is True. The syntax of the WHERE clause is as follows:

175Chapter 9: Zeroing In on the Data You Want

SELECT column_list
FROM table_name
WHERE condition ;

DELETE FROM table_name
WHERE condition ;

UPDATE table_name
SET column1=value1, column2=value2, ..., columnn=valuen
WHERE condition ;

The condition in the WHERE clause may be simple or arbitrarily complex. You
may join multiple conditions together by using the logical connectives AND, OR,
and NOT (which I discuss later in this chapter) to create a single condition.

The following statements show you some typical examples of WHERE clauses:

WHERE CUSTOMER.CustomerID = SALES.CustomerID
WHERE FOODS.Calories = COMIDA.Caloria
WHERE FOODS.Calories < 219
WHERE FOODS.Calories > 3 * base_value
WHERE FOODS.Calories < 219 AND FOODS.Protein > 27.4

The conditions that these WHERE clauses express are known as predicates. A
predicate is an expression that asserts a fact about values.

The predicate FOODS.Calories < 219, for example, is True if the value for the
current row of the column FOODS.Calories is less than 219. If the assertion is
True, it satisfies the condition. An assertion may be True, False, or unknown.
The unknown case arises if one or more elements in the assertion are null. The
comparison predicates (=, <, >, <>, <=, and >=) are the most common, but SQL
offers several others that greatly increase your capability to distinguish, or
“filter out,” a desired data item from others in the same column. The follow-
ing list notes the predicates that give you that filtering capability:

� Comparison predicates

� BETWEEN

� IN [NOT IN]

� LIKE [NOT LIKE]

� NULL

� ALL, SOME, ANY

� EXISTS

� UNIQUE

� OVERLAPS

� MATCH

176 Part III: Retrieving Data

� SIMILAR

� DISTINCT

Comparison predicates
The examples in the preceding section show typical uses of comparison predi-
cates in which you compare one value to another. For every row in which the
comparison evaluates to a True value, that value satisfies the WHERE clause,
and the operation (SELECT, UPDATE, DELETE, or whatever) executes upon that
row. Rows that the comparison evaluates to FALSE are skipped. Consider the
following SQL statement:

SELECT * FROM FOODS
WHERE Calories < 219 ;

This statement displays all rows from the FOODS table that have a value of
less than 219 in the Calories column.

Six comparison predicates are listed in Table 9-2.

Table 9-2 SQL’s Comparison Predicates
Comparison Symbol

Equal =

Not equal <>

Less than <

Less than or equal <=

Greater than >

Greater than or equal >=

BETWEEN
Sometimes, you want to select a row if the value in a column falls within a
specified range. One way to make this selection is by using comparison predi-
cates. For example, you can formulate a WHERE clause to select all the rows in
the FOODS table that have a value in the Calories column greater than 100
and less than 300, as follows:

WHERE FOODS.Calories > 100 AND FOODS.Calories < 300

177Chapter 9: Zeroing In on the Data You Want

This comparison doesn’t include foods with a calorie count of exactly 100 or
300 — only those values that fall in between these two numbers. To include
the end points, you can write the statement as follows:

WHERE FOODS.Calories >= 100 AND FOODS.Calories <= 300

Another way of specifying a range that includes the end points is to use a
BETWEEN predicate in the following manner:

WHERE FOODS.Calories BETWEEN 100 AND 300

This clause is functionally identical to the preceding example, which uses
comparison predicates. This formulation saves some typing and is a little
more intuitive than the one that uses two comparison predicates joined by
the logical connective AND.

The BETWEEN keyword may be confusing because it doesn’t tell you explicitly
whether the clause includes the end points. In fact, the clause does include
these end points. BETWEEN also fails to tell you explicitly that the first term
in the comparison must be equal to or less than the second. If, for example,
FOODS.Calories contains a value of 200, the following clause returns a
True value:

WHERE FOODS.Calories BETWEEN 100 AND 300

However, a clause that you may think is equivalent to the preceding example
returns the opposite result, False:

WHERE FOODS.Calories BETWEEN 300 AND 100

If you use BETWEEN, you must be able to guarantee that the first term in your
comparison is always equal to or less than the second term.

You can use the BETWEEN predicate with character, bit, and datetime data
types as well as with the numeric types. You may see something like the fol-
lowing example:

SELECT FirstName, LastName
FROM CUSTOMER
WHERE CUSTOMER.LastName BETWEEN ‘A’ AND ‘Mzzz’ ;

This example returns all customers whose last names are in the first half of
the alphabet.

IN and NOT IN
The IN and NOT IN predicates deal with whether specified values (such as
OR, WA, and ID) are contained within a particular set of values (such as the

178 Part III: Retrieving Data

states of the United States). You may, for example, have a table that lists sup-
pliers of a commodity that your company purchases on a regular basis. You
want to know the phone numbers of those suppliers located in the Pacific
Northwest. You can find these numbers by using comparison predicates,
such as those shown in the following example:

SELECT Company, Phone
FROM SUPPLIER
WHERE State = ‘OR’ OR State = ‘WA’ OR State = ‘ID’ ;

You can also use the IN predicate to perform the same task, as follows:

SELECT Company, Phone
FROM SUPPLIER
WHERE State IN (‘OR’, ‘WA’, ‘ID’) ;

This formulation is a more compact than the one using comparison predi-
cates and logical OR.

The NOT IN version of this predicate works the same way. Say that you have
locations in California, Arizona, and New Mexico, and to avoid paying sales
tax, you want to consider using suppliers located anywhere except in those
states. Use the following construction:

SELECT Company, Phone
FROM SUPPLIER
WHERE State NOT IN (‘CA’, ‘AZ’, ‘NM’) ;

Using the IN keyword this way saves you a little typing. Saving a little typing,
however, isn’t that great of an advantage. You can do the same job by using
comparison predicates as shown in this section’s first example.

You may have another good reason to use the IN predicate rather than com-
parison predicates, even if using IN doesn’t save much typing. Your DBMS
probably implements the two methods differently, and one of the methods
may be significantly faster than the other on your system. You may want to
run a performance comparison on the two ways of expressing inclusion in (or
exclusion from) a group and then use the technique that produces the quicker
result. A DBMS with a good optimizer will probably choose the more efficient
method, regardless of which kind of predicate you use. A performance com-
parison gives you some idea of how good your DBMS’s optimizer is. If a signif-
icant difference between the run times of the two statements exists, the quality
of your DBMS’s optimizer is called into question.

The IN keyword is valuable in another area, too. If IN is part of a subquery, the
keyword enables you to pull information from two tables to obtain results that
you can’t derive from a single table. I cover subqueries in detail in Chapter 11,
but following is an example that shows how a subquery uses the IN keyword.

179Chapter 9: Zeroing In on the Data You Want

Suppose that you want to display the names of all customers who’ve bought
the F-117A product in the last 30 days. Customer names are in the CUSTOMER
table, and sales transaction data is in the TRANSACT table. You can use the
following query:

SELECT FirstName, LastName
FROM CUSTOMER
WHERE CustomerID IN

(SELECT CustomerID
FROM TRANSACT
WHERE ProductID = ‘F-117A’
AND TransDate >= (CurrentDate - 30)) ;

The inner SELECT of the TRANSACT table nests within the outer SELECT of
the CUSTOMER table. The inner SELECT finds the CustomerID numbers of
all customers who bought the F-117A product in the last 30 days. The outer
SELECT displays the first and last names of all customers whose CustomerID
is retrieved by the inner SELECT.

LIKE and NOT LIKE
You can use the LIKE predicate to compare two character strings for a partial
match. Partial matches are valuable if don’t know the exact form of the string
for which you’re searching. You can also use partial matches to retrieve mul-
tiple rows that contain similar strings in one of the table’s columns.

To identify partial matches, SQL uses two wildcard characters. The percent
sign (%) can stand for any string of characters that have zero or more charac-
ters. The underscore (_) stands for any single character. Table 9-3 provides
some examples that show how to use LIKE.

Table 9-3 SQL’s LIKE Predicate
Statement Values Returned

WHERE Word LIKE ‘intern%’ intern

internal

international

internet

interns

WHERE Word LIKE ‘%Peace%’ Justice of the Peace

Peaceful Warrior

180 Part III: Retrieving Data

Statement Values Returned

WHERE Word LIKE ‘t_p_‘ tape

taps

tipi

tips

tops

type

The NOT LIKE predicate retrieves all rows that don’t satisfy a partial match,
including one or more wildcard characters, as in the following example:

WHERE Phone NOT LIKE ‘503%’

This example returns all the rows in the table for which the phone number
starts with something other than 503.

You may want to search for a string that includes a percent sign or an under-
score. In this case, you want SQL to interpret the percent sign as a percent sign
and not as a wildcard character. You can conduct such a search by typing an
escape character just prior to the character you want SQL to take literally. You
can choose any character as the escape character, as long as that character
doesn’t appear in the string that you’re testing, as shown in the following
example:

SELECT Quote
FROM BARTLETTS
WHERE Quote LIKE ‘20#%’

ESCAPE ‘#’ ;

The % character is escaped by the preceding # sign, so the statement inter-
prets this symbol as a percent sign rather than as a wildcard. You can escape
an underscore or the escape character itself, in the same way. The preceding
query, for example, would find the following quotation in Bartlett’s Familiar
Quotations:

20% of the salespeople produce 80% of the results.

The query would also find the following:

20%

181Chapter 9: Zeroing In on the Data You Want

SIMILAR
SQL:1999 added the SIMILAR predicate, which offers a more powerful way of
finding partial matches than the LIKE predicate provides. With the SIMILAR
predicate, you can compare a character string to a regular expression. For
example, say you’re searching the OperatingSystem column of a software
compatibility table to look for Microsoft Windows compatibility. You could
construct a WHERE clause such as the following:

WHERE OperatingSystem SIMILAR TO
‘(‘Windows ‘(3.1|95|98|ME|CE|NT|2000|XP))’

This predicate retrieves all rows that contain any of the specified Microsoft
operating systems.

NULL
The NULL predicate finds all rows where the value in the selected column is
null. In the FOODS table in Chapter 7, several rows have null values in the
Carbohydrate column. You can retrieve their names by using a statement
such as the following:

SELECT (Food)
FROM FOODS
WHERE Carbohydrate IS NULL ;

This query returns the following values:

Beef, lean hamburger
Chicken, light meat
Opossum, roasted
Pork, ham

As you may expect, including the NOT keyword reverses the result, as in the
following example:

SELECT (Food)
FROM FOODS
WHERE Carbohydrate IS NOT NULL ;

This query returns all the rows in the table except the four that the preceding
query returns.

The statement Carbohydrate IS NULL is not the same as Carbohydrate =
NULL. To illustrate this point, assume that, in the current row of the FOODS
table, both Carbohydrate and Protein are null. From this fact, you can draw
the following conclusions:

182 Part III: Retrieving Data

� Carbohydrate IS NULL is True.

� Protein IS NULL is True.

� Carbohydrate IS NULL AND Protein IS NULL is True.

� Carbohydrate = Protein is unknown.

� Carbohydrate = NULL is an illegal expression.

Using the keyword NULL in a comparison is meaningless because the answer
always returns as unknown.

Why is Carbohydrate = Protein defined as unknown, even though
Carbohydrate and Protein have the same (null) value? Because NULL
simply means “I don’t know.” You don’t know what Carbohydrate is, and
you don’t know what Protein is; therefore, you don’t know whether those
(unknown) values are the same. Maybe Carbohydrate is 37, and Protein
is 14, or maybe Carbohydrate is 93, and Protein is 93. If you don’t know
both the carbohydrate value and the protein value, you can’t say whether
the two are the same.

ALL, SOME, ANY
Thousands of years ago, the Greek philosopher Aristotle formulated a system
of logic that became the basis for much of Western thought. The essence of
this logic is to start with a set of premises that you know to be true, apply
valid operations to these premises, and, thereby, arrive at new truths. An
example of this procedure is as follows:

Premise 1: All Greeks are human.

Premise 2: All humans are mortal.

Conclusion: All Greeks are mortal.

Another example:

Premise 1: Some Greeks are women.

Premise 2: All women are human.

Conclusion: Some Greeks are human.

Another way of stating the same logical idea of this second example is as
follows:

If any Greeks are women and all women are human, then some Greeks are
human.

183Chapter 9: Zeroing In on the Data You Want

The first example uses the universal quantifier ALL in both premises, enabling
you to make a sound deduction about all Greeks in the conclusion. The second
example uses the existential quantifier SOME in one premise, enabling you to
make a deduction about some Greeks in the conclusion. The third example
uses the existential quantifier ANY, which is a synonym for SOME, to reach the
same conclusion you reach in the second example.

Look at how SOME, ANY, and ALL apply in SQL.

Consider an example in baseball statistics. Baseball is a physically demand-
ing sport, especially for pitchers. A pitcher must throw the baseball from the
pitcher’s mound to home plate between 90 and 150 times during a game. This
effort can be very tiring, and many times, the pitcher becomes ineffective, and
a relief pitcher must replace him before the game ends. Pitching an entire game
is an outstanding achievement, regardless of whether the effort results in a
victory.

Suppose that you’re keeping track of the number of complete games that all
major-league pitchers pitch. In one table, you list all the American League
pitchers, and in another table, you list all the National League pitchers. Both
tables contain the players’ first names, last names, and number of complete
games pitched.

The American League permits a designated hitter (DH) (who isn’t required to
play a defensive position) to bat in place of any of the nine players who play
defense. Usually the DH bats for the pitcher, because pitchers are notoriously
poor hitters. Pitchers must spend so much time and effort on perfecting their
pitching that they do not have as much time to practice batting as the other
players do.

184 Part III: Retrieving Data

ANY can be ambiguous
The original SQL used the word ANY for exis-
tential quantification. This usage turned out to
be confusing and error-prone, because the
English language connotations of any are some-
times universal and sometimes existential:

� “Do any of you know where Baker Street is?”

� “I can eat more eggs than any of you.”

The first sentence is probably asking whether
at least one person knows where Baker Street

is. Any is used as an existential quantifier. The
second sentence, however, is a boast that’s
stating that I can eat more eggs than the biggest
eater among all you people can eat. In this case,
any is used as a universal quantifier.

Thus, for the SQL-92 standard, the developers
retained the word ANY for compatibility with
early products but added the word SOME as a
less confusing synonym. SQL:2003 continues to
support both existential quantifiers.

Say that you have a theory that, on average, American League starting pitchers
throw more complete games than do National League starting pitchers. This
is based on your observation that designated hitters enable hard-throwing,
but weak-hitting, American League pitchers to stay in close games. Because
the DH is already batting for them, the fact that they are poor hitters is not a
liability. In the National League, however, a pinch hitter would replace a com-
parable National League pitcher in a close game, because he would have a
better chance at getting a hit. To test your theory, you formulate the follow-
ing query:

SELECT FirstName, LastName
FROM AMERICAN_LEAGUER
WHERE CompleteGames > ALL

(SELECT CompleteGames
FROM NATIONAL_LEAGUER) ;

The subquery (the inner SELECT) returns a list, showing for every National
League pitcher, the number of complete games he pitched. The outer query
returns the first and last names of all American Leaguers who pitched more
complete games than ALL of the National Leaguers. The query returns the
names of those American League pitchers who pitched more complete games
than the pitcher who has thrown the most complete games in the National
League.

Consider the following similar statement:

SELECT FirstName, LastName
FROM AMERICAN_LEAGUER
WHERE CompleteGames > ANY

(SELECT CompleteGames
FROM NATIONAL_LEAGUER) ;

In this case, you use the existential quantifier ANY instead of the universal
quantifier ALL. The subquery (the inner, nested query) is identical to the sub-
query in the previous example. This subquery retrieves a complete list of the
complete game statistics for all the National League pitchers. The outer query
returns the first and last names of all American League pitchers who pitched
more complete games than ANY National League pitcher. Because you can be
virtually certain that at least one National League pitcher hasn’t pitched a
complete game, the result probably includes all American League pitchers
who’ve pitched at least one complete game.

If you replace the keyword ANY with the equivalent keyword SOME, the result
is the same. If the statement that at least one National League pitcher hasn’t
pitched a complete game is a true statement, you can then say that SOME
National League pitcher hasn’t pitched a complete game.

185Chapter 9: Zeroing In on the Data You Want

EXISTS
You can use the EXISTS predicate in conjunction with a subquery to deter-
mine whether the subquery returns any rows. If the subquery returns at least
one row, that result satisfies the EXISTS condition, and the outer query exe-
cutes. Consider the following example:

SELECT FirstName, LastName
FROM CUSTOMER
WHERE EXISTS
(SELECT DISTINCT CustomerID
FROM SALES
WHERE SALES.CustomerID = CUSTOMER.CustomerID);

The SALES table contains all of your company’s sales transactions. The table
includes the CustomerID of the customer who makes each purchase, as well
as other pertinent information. The CUSTOMER table contains each cus-
tomer’s first and last names, but no information about specific transactions.

The subquery in the preceding example returns a row for every customer
who has made at least one purchase. The outer query returns the first and
last names of the customers who made the purchases that the SALES table
records.

EXISTS is equivalent to a comparison of COUNT with zero, as the following
query shows:

SELECT FirstName, LastName
FROM CUSTOMER
WHERE 0 <>
(SELECT COUNT(*)
FROM SALES
WHERE SALES.CustomerID = CUSTOMER.CustomerID);

For every row in the SALES table that contains a CustomerID that’s equal to a
CustomerID in the CUSTOMER table, this statement displays the FirstName
and LastName columns in the CUSTOMER table. For every sale in the SALES
table, therefore, the statement displays the name of the customer who made
the purchase.

UNIQUE
As you do with the EXISTS predicate, you use the UNIQUE predicate with a
subquery. Although the EXISTS predicate evaluates to True only if the sub-
query returns at least one row, the UNIQUE predicate evaluates to True only
if no two rows that the subquery returns are identical. In other words, the
UNIQUE predicate evaluates to True only if all rows that its subquery returns
are unique. Consider the following example:

186 Part III: Retrieving Data

SELECT FirstName, LastName
FROM CUSTOMER
WHERE UNIQUE
(SELECT CustomerID FROM SALES

WHERE SALES.CustomerID = CUSTOMER.CustomerID);

This statement retrieves the names of all new customers for whom the SALES
table records only one sale. Two null values are considered to be not equal to
each other and thus unique. When the UNIQUE keyword is applied to a result
table that only contains two null rows, the UNIQUE predicate evaluates to True.

DISTINCT
The DISTINCT predicate is similar to the UNIQUE predicate, except in the way
it treats nulls. If all the values in a result table are UNIQUE, then they’re also
DISTINCT from each other. However, unlike the result for the UNIQUE predi-
cate, if the DISTINCT keyword is applied to a result table that contains only
two null rows, the DISTINCT predicate evaluates to False. Two null values are
not considered distinct from each other, while at the same time they are con-
sidered to be unique. This strange situation seems contradictory, but there’s
a reason for it. In some situations, you may want to treat two null values as dif-
ferent from each other, whereas in other situations, you want to treat them as
if they’re the same. In the first case, use the UNIQUE predicate. In the second
case, use the DISTINCT predicate.

OVERLAPS
You use the OVERLAPS predicate to determine whether two time intervals over-
lap each other. This predicate is useful for avoiding scheduling conflicts. If the
two intervals overlap, the predicate returns a True value. If they don’t overlap,
the predicate returns a False value.

You can specify an interval in two ways: either as a start time and an end
time or as a start time and a duration. Following are a few examples:

(TIME ‘2:55:00’, INTERVAL ‘1’ HOUR)
OVERLAPS
(TIME ‘3:30:00’, INTERVAL ‘2’ HOUR)

The preceding example returns a True, because 3:30 is less than one hour
after 2:55.

(TIME ‘9:00:00’, TIME ‘9:30:00’)
OVERLAPS
(TIME ‘9:29:00’, TIME ‘9:31:00’)

187Chapter 9: Zeroing In on the Data You Want

The preceding example returns a True, because you have a one-minute over-
lap between the two intervals.

(TIME ‘9:00:00’, TIME ‘10:00:00’)
OVERLAPS
(TIME ‘10:15:00’, INTERVAL ‘3’ HOUR)

The preceding example returns a False, because the two intervals don’t
overlap.

(TIME ‘9:00:00’, TIME ‘9:30:00’)
OVERLAPS
(TIME ‘9:30:00’, TIME ‘9:35:00’)

This example returns a False, because even though the two intervals are con-
tiguous, they don’t overlap.

MATCH
In Chapter 5, I discuss referential integrity, which involves maintaining con-
sistency in a multitable database. You can lose integrity by adding a row to a
child table that doesn’t have a corresponding row in the child’s parent table.
You can cause similar problems by deleting a row from a parent table if rows
corresponding to that row exist in a child table.

Say that your business has a CUSTOMER table that keeps track of all your cus-
tomers and a SALES table that records all sales transactions. You don’t want
to add a row to SALES until after you enter the customer making the purchase
into the CUSTOMER table. You also don’t want to delete a customer from the
CUSTOMER table if that customer made purchases that exist in the SALES
table. Before you perform an insertion or deletion, you may want to check
the candidate row to make sure that inserting or deleting that row doesn’t
cause integrity problems. The MATCH predicate can perform such a check.

Examine the use of the MATCH predicate through an example that employs
the CUSTOMER and SALES tables. CustomerID is the primary key of the
CUSTOMER table and acts as a foreign key in the SALES table. Every row in
the CUSTOMER table must have a unique, nonnull CustomerID. CustomerID
isn’t unique in the SALES table, because repeat customers buy more than
once. This situation is fine and does not threaten integrity because
CustomerID is a foreign key rather than a primary key in that table.

Seemingly, CustomerID can be null in the SALES table, because someone can
walk in off the street, buy something, and walk out before you get a chance to
enter his or her name and address into the CUSTOMER table. This situation
can create a row in the child table with no corresponding row in the parent
table. To overcome this problem, you can create a generic customer in the
CUSTOMER table and assign all such anonymous sales to that customer.

188 Part III: Retrieving Data

Say that a customer steps up to the cash register and claims that she bought
an F-117A Stealth fighter on May 18, 2003. She now wants to return the plane
because it shows up like an aircraft carrier on opponent radar screens. You
can verify her claim by searching your SALES database for a match. First, you
must retrieve her CustomerID into the variable vcustid; then you can use
the following syntax:

... WHERE (:vcustid, ‘F-117A’, ‘2003-05-18’)
MATCH
(SELECT CustomerID, ProductID, SaleDate

FROM SALES)

If a sale exists for that customer ID for that product on that date, the MATCH
predicate returns a True value. Give the customer her money back. (Note: If
any values in the first argument of the MATCH predicate are null, a True value
always returns.)

SQL’s developers added the MATCH predicate and the UNIQUE predicate for
the same reason — they provide a way to explicitly perform the tests defined
for the implicit referential integrity (RI) and UNIQUE constraints.

The general form of the MATCH predicate is as follows:

Row_value MATCH [UNIQUE] [SIMPLE| PARTIAL | FULL] Subquery

The UNIQUE, SIMPLE, PARTIAL, and FULL options relate to rules that come
into play if the row value expression R has one or more columns that are null.
The rules for the MATCH predicate are a copy of corresponding referential
integrity rules.

Referential integrity rules
Referential integrity rules require that the values of a column or columns
in one table match the values of a column or columns in another table. You
refer to the columns in the first table as the foreign key and the columns in
the second table as the primary key or unique key. For example, you may
declare the column EmpDeptNo in an EMPLOYEE table as a foreign key that
references the DeptNo column of a DEPT table. This matchup ensures that if
you record an employee in the EMPLOYEE table as working in department
123, a row appears in the DEPT table where DeptNo is 123.

This situation is fairly straightforward if the foreign key and primary key
both consist of a single column. The two keys can, however, consist of multi-
ple columns. The DeptNo value, for example, may be unique only within a
Location; therefore, to uniquely identify a DEPT row, you must specify both a
Location and a DeptNo. If both the Boston and Tampa offices have a depart-
ment 123, you need to identify the departments as (‘Boston’, ‘123’) and

189Chapter 9: Zeroing In on the Data You Want

(‘Tampa’, ‘123’). In this case, the EMPLOYEE table needs two columns to
identify a DEPT. Call those columns EmpLoc and EmpDeptNo. If an employee
works in department 123 in Boston, the EmpLoc and EmpDeptNo values are
‘Boston’ and ‘123’. And the foreign key declaration in EMPLOYEE is as
follows:

FOREIGN KEY (EmpLoc, EmpDeptNo)
REFERENCES DEPT (Location, DeptNo)

Drawing valid conclusions from your data is complicated immensely if the
data contains nulls. Sometimes you want to treat null-containing data one
way, and sometimes you want to treat it another way. The UNIQUE, SIMPLE,
PARTIAL, and FULL keywords specify different ways of treating data that con-
tains nulls. If your data does not contain any null values, you can save yourself
a lot of head scratching by merely skipping from here to the next section of this
book, “Logical Connectives.” If your data does contain null values, drop out of
Evelyn Woods speed-reading mode now and read the following paragraphs
slowly and carefully. Each paragraph presents a different situation with
respect to null values and tells how the MATCH predicate handles it.

If the values of EmpLoc and EmpDeptNo are both nonnull or both null, the
referential integrity rules are the same as for single-column keys with values
that are null or nonnull. But if EmpLoc is null and EmpDeptNo is nonnull — or
EmpLoc is nonnull and EmpDeptNo is null — you need new rules. What should
the rules be if you insert or update the EMPLOYEE table with EmpLoc and
EmpDeptNo values of (NULL, ‘123’) or (‘Boston’, NULL)? You have six
main alternatives, SIMPLE, PARTIAL, and FULL, each either with or without
the UNIQUE keyword. The UNIQUE keyword, if present, means that a matching
row in the subquery result table must be unique in order for the predicate
to evaluate to a True value. If both components of the row value expression
R are null, the MATCH predicate returns a True value regardless of the con-
tents of the subquery result table being compared.

If neither component of the row value expression R is null, SIMPLE is specified,
UNIQUE is not specified, and at least one row in the subquery result table
matches R, then the MATCH predicate returns a True value. Otherwise, it
returns a False value.

If neither component of the row value expression R is null, SIMPLE is speci-
fied, UNIQUE is specified, and at least one row in the subquery result table is
both unique and matches R, then the MATCH predicate returns a True value.
Otherwise, it returns a False value.

If any component of the row value expression R is null and SIMPLE is speci-
fied, then the MATCH predicate returns a True value.

If any component of the row value expression R is nonnull, PARTIAL is speci-
fied, UNIQUE is not specified, and the nonnull parts of at least one row in the
subquery result table matches R, then the MATCH predicate returns a True
value. Otherwise, it returns a False value.

190 Part III: Retrieving Data

If any component of the row value expression R is nonnull, PARTIAL is speci-
fied, UNIQUE is specified, and the nonnull parts of R match the nonnull parts
of at least one unique row in the subquery result table, then the MATCH predi-
cate returns a True value. Otherwise, it returns a False value.

If neither component of the row value expression R is null, FULL is specified,
UNIQUE is not specified, and at least one row in the subquery result table
matches R, then the MATCH predicate returns a True value. Otherwise, it
returns a False value.

If neither component of the row value expression R is null, FULL is specified,
UNIQUE is specified, and at least one row in the subquery result table is both
unique and matches R, then the MATCH predicate returns a True value.
Otherwise, it returns a False value.

If any component of the row value expression R is null and FULL is specified,
then the MATCH predicate returns a False value.

Logical Connectives
Often, as a number of previous examples show, applying one condition in a
query isn’t enough to return the rows that you want from a table. In some
cases, the rows must satisfy two or more conditions. In other cases, if a row
satisfies any of two or more conditions, it qualifies for retrieval. On other occa-
sions, you want to retrieve only rows that don’t satisfy a specified condition. To
meet these needs, SQL offers the logical connectives AND, OR, and NOT.

191Chapter 9: Zeroing In on the Data You Want

Rule by committee
The SQL-89 version of the standard specified
the UNIQUE rule as the default, before anyone
proposed or debated the alternatives. During
development of the SQL-92 version of the stan-
dard, proposals appeared for the alternatives.
Some people strongly preferred the PARTIAL
rules and argued that they should be the only
rules. These people thought that the SQL-89
(UNIQUE) rules were so undesirable that they
wanted those rules considered a bug and the
PARTIAL rules specified as a correction. Other

people preferred the UNIQUE rules and thought
that the PARTIAL rules were obscure, error-
prone, and inefficient. Still other people pre-
ferred the additional discipline of the FULL
rules. The issue was finally settled by providing
all three keywords so that users could choose
whichever approach they preferred. SQL:1999
added the SIMPLE rules. The proliferation of
rules makes dealing with nulls anything but
simple. If SIMPLE, PARTIAL, or FULL is not
specified, the SIMPLE rules are followed.

AND
If multiple conditions must all be True before you can retrieve a row, use the
AND logical connective. Consider the following example:

SELECT InvoiceNo, SaleDate, SalesPerson, TotalSale
FROM SALES
WHERE SaleDate >= ‘2003-05-18’

AND SaleDate <= ‘2003-05-24’ ;

The WHERE clause must meet the following two conditions:

� SaleDate must be greater than or equal to May 18, 2003.

� SaleDate must be less than or equal to May 24, 2003.

Only rows that record sales occurring during the week of May 18 meet both
conditions. The query returns only these rows.

Notice that the AND connective is strictly logical. This restriction can some-
times be confusing because people commonly use the word and with a looser
meaning. Suppose, for example, that your boss says to you, “I’d like to see
the sales for Ferguson and Ford.” He said, “Ferguson and Ford,” so you may
write the following SQL query:

SELECT *
FROM SALES
WHERE Salesperson = ‘Ferguson’

AND Salesperson = ‘Ford’;

Well, don’t take that answer back to your boss. The following query is more
like what he had in mind:

SELECT *
FROM SALES
WHERE Salesperson IN (‘Ferguson’, ‘Ford’) ;

The first query won’t return anything, because none of the sales in the SALES
table were made by both Ferguson and Ford. The second query will return the
information on all sales made by either Ferguson or Ford, which is probably
what the boss wanted.

OR
If any one of two or more conditions must be True to qualify a row for
retrieval, use the OR logical connective, as in the following example:

192 Part III: Retrieving Data

SELECT InvoiceNo, SaleDate, Salesperson, TotalSale
FROM SALES

WHERE Salesperson = ‘Ford’
OR TotalSale > 200 ;

This query retrieves all of Ford’s sales, regardless of how large, as well as all
sales of more than $200, regardless of who made the sales.

NOT
The NOT connective negates a condition. If the condition normally returns a
True value, adding NOT causes the same condition to return a False value. If a
condition normally returns a False value, adding NOT causes the condition to
return a True value. Consider the following example:

SELECT InvoiceNo, SaleDate, Salesperson, TotalSale
FROM SALES

WHERE NOT (Salesperson = ‘Ford’) ;

This query returns rows for all sales transactions that salespeople other than
Ford completed.

When you use AND, OR, or NOT, sometimes the scope of the connective isn’t
clear. To be safe, use parentheses to make sure that SQL applies the connec-
tive to the predicate you want. In the preceding example, the NOT connective
applies to the entire predicate (Salesperson = ‘Ford’).

GROUP BY Clauses
Sometimes, rather than retrieving individual records, you want to know some-
thing about a group of records. The GROUP BY clause is the tool you need.

Suppose you’re the sales manager and you want to look at the performance
of your sales force. You could do a simple SELECT such as the following:

SELECT InvoiceNo, SaleDate, Salesperson, TotalSale
FROM SALES;

You would receive a result similar to that shown in Figure 9-1.

This result gives you some idea of how well your salespeople are doing
because so few total sales are involved. However, in real life, a company
would have many more sales, and it wouldn’t be as easy to tell whether sales

193Chapter 9: Zeroing In on the Data You Want

objectives were being met. To do that, you can combine the GROUP BY clause
with one of the aggregate functions (also called set functions) to get a quanti-
tative picture of sales performance. For example, you can see which salesper-
son is selling more of the profitable high-ticket items by using the average
(AVG) function as follows:

SELECT Salesperson, AVG(TotalSale)
FROM SALES
GROUP BY Salesperson;

You would receive a result similar to that shown in Figure 9-2.

As shown in Figure 9-2, Ferguson’s average sale is considerably higher than
that of the other two salespeople. You compare total sales with a similar
query:

SELECT Salesperson, SUM(TotalSale)
FROM SALES
GROUP BY Salesperson;

Figure 9-2:
Average
sales for

each
salesperson.

Figure 9-1:
Result set

for retrieval
of sales

from
07/01/2001

to
07/07/2001.

194 Part III: Retrieving Data

This gives the result shown in Figure 9-3.

Ferguson also has the highest total sales, which is consistent with having the
highest average sales.

HAVING Clauses
You can analyze the grouped data further by using the HAVING clause. The
HAVING clause is a filter that acts similar to a WHERE clause, but on groups of
rows rather than on individual rows. To illustrate the function of the HAVING
clause, suppose the sales manager considers Ferguson to be in a class by
himself. His performance distorts the overall data for the other salespeople.
You can exclude Ferguson’s sales from the grouped data by using a HAVING
clause as follows:

SELECT Salesperson, SUM(TotalSale)
FROM SALES
GROUP BY Salesperson
HAVING Salesperson <> ‘Ferguson’;

This gives the result shown in Figure 9-4. Only rows where the salesperson is
not Ferguson are considered.

Figure 9-4:
Total sales

for all
salespeople

except
Ferguson.

Figure 9-3:
Total sales

for each
salesperson.

195Chapter 9: Zeroing In on the Data You Want

ORDER BY Clauses
Use the ORDER BY clause to display the output table of a query in either
ascending or descending alphabetical order. Whereas the GROUP BY clause
gathers rows into groups and sorts the groups into alphabetical order, ORDER
BY sorts individual rows. The ORDER BY clause must be the last clause that
you specify in a query. If the query also contains a GROUP BY clause, the clause
first arranges the output rows into groups. The ORDER BY clause then sorts
the rows within each group. If you have no GROUP BY clause, then the state-
ment considers the entire table as a group, and the ORDER BY clause sorts
all its rows according to the column (or columns) that the ORDER BY clause
specifies.

To illustrate this point, consider the data in the SALES table. The SALES table
contains columns for InvoiceNo, SaleDate, Salesperson, and TotalSale.
If you use the following example, you see all the SALES data, but in an arbi-
trary order:

SELECT * FROM SALES ;

On one implementation, this order may be the one in which you inserted the
rows in the table, and on another implementation, the order may be that of
the most recent updates. The order can also change unexpectedly if anyone
physically reorganizes the database. Usually, you want to specify the order in
which you want the rows. You may, for example, want to see the rows in
order by the SaleDate, as follows:

SELECT * FROM SALES ORDER BY SaleDate ;

This example returns all the rows in the SALES table, in order by SaleDate.

For rows with the same SaleDate, the default order depends on the imple-
mentation. You can, however, specify how to sort the rows that share the
same SaleDate. You may want to see the SALES for each SaleDate in order
by InvoiceNo, as follows:

SELECT * FROM SALES ORDER BY SaleDate, InvoiceNo ;

This example first orders the SALES by SaleDate; then for each SaleDate, it
orders the SALES by InvoiceNo. But don’t confuse that example with the fol-
lowing query:

SELECT * FROM SALES ORDER BY InvoiceNo, SaleDate ;

This query first orders the SALES by INVOICE_NO. Then for each different
INVOICE_NO, the query orders the SALES by SALE_DATE. This probably won’t
yield the result you want, because it is unlikely that multiple sale dates will
exist for a single invoice number.

196 Part III: Retrieving Data

The following query is another example of how SQL can return data:

SELECT * FROM SALES ORDER BY Salesperson, SaleDate ;

This example first orders by SALESPERSON and then by SALE_DATE. After you
look at the data in that order, you may want to invert it, as follows:

SELECT * FROM SALES ORDER BY SaleDate, Salesperson ;

This example orders the rows first by SaleDate and then by Salesperson.

All these ordering examples are ascending (ASC), which is the default
sort order. The last SELECT shows earlier SALES first and, within a given
date, shows SALES for ‘Adams’ before ‘Baker’. If you prefer descending
(DESC) order, you can specify this order for one or more of the order
columns, as follows:

SELECT * FROM SALES
ORDER BY SaleDate DESC, Salesperson ASC ;

This example specifies a descending order for sales date, showing the more
recent sales first, and an ascending order for salespeople, putting them in
normal alphabetical order.

197Chapter 9: Zeroing In on the Data You Want

198 Part III: Retrieving Data

Chapter 10

Relational Operators
In This Chapter
� Combining tables with similar structures

� Combining tables with different structures

� Deriving meaningful data from multiple tables

SQL is a query language for relational databases. In previous chapters, I
present simple databases, and in most cases, my examples deal with only

one table. It’s now time to put the relational in relational database. After all,
relational databases are so named because they consist of multiple, related
tables.

Because the data in a relational database is distributed across multiple tables,
a query usually draws data from more than one table. SQL:2003 has operators
that combine data from multiple sources into a single result table. These are
the UNION, INTERSECTION, and EXCEPT operators, as well as a family of JOIN
operators. Each operator combines data from multiple tables in a different way.

UNION
The UNION operator is the SQL implementation of relational algebra’s union
operator. The UNION operator enables you to draw information from two or
more tables that have the same structure. Same structure means

� The tables must all have the same number of columns.

� Corresponding columns must all have identical data types and lengths.

When these criteria are met, the tables are union compatible. The union of
two tables returns all the rows that appear in either table and eliminates
duplicates.

Say that you create a baseball statistics database (like the one in Chapter 9).
It contains two union-compatible tables named AMERICAN and NATIONAL.
Both tables have three columns, and corresponding columns are all the same
type. In fact, corresponding columns have identical column names (although
this condition isn’t required for union compatibility).

NATIONAL lists the names and number of complete games pitched by National
League pitchers. AMERICAN lists the same information about pitchers in the
American League. The UNION of the two tables gives you a virtual result table
containing all the rows in the first table plus all the rows in the second table.
For this example, I put just a few rows in each table to illustrate the operation:

SELECT * FROM NATIONAL ;
FirstName LastName CompleteGames
--------- -------- -------------
Sal Maglie 11
Don Newcombe 9
Sandy Koufax 13
Don Drysdale 12

SELECT * FROM AMERICAN ;

FirstName LastName CompleteGames
--------- -------- -------------
Whitey Ford 12
Don Larson 10
Bob Turley 8
Allie Reynolds 14

SELECT * FROM NATIONAL
UNION
SELECT * FROM AMERICAN ;

FirstName LastName CompleteGames
--------- -------- -------------
Allie Reynolds 14
Bob Turley 8
Don Drysdale 12
Don Larson 10
Don Newcombe 9
Sal Maglie 11
Sandy Koufax 13
Whitey Ford 12

The UNION DISTINCT operator functions identically to the UNION operator
without the DISTINCT keyword. In both cases duplicate rows are eliminated
from the result set.

I’ve been using the asterisk (*) as shorthand for all the columns in a table.
This shortcut is fine most of the time, but it can get you into trouble when
you use relational operators in embedded or module-language SQL. What if
you add one or more new columns to one table and not to another, or you

200 Part III: Retrieving Data

add different columns to the two tables? The two tables are then no longer
union-compatible, and your program will be invalid the next time it’s recom-
piled. Even if the same new columns are added to both tables so that they are
still union-compatible, your program is probably not prepared to deal with
this additional data. So, explicitly listing the columns that you want rather
than relying on the * shorthand is generally a good idea. When you’re enter-
ing ad hoc SQL from the console, the asterisk will probably work fine because
you can quickly display table structure to verify union compatibility if your
query isn’t successful.

As mentioned previously, the UNION operation normally eliminates any dupli-
cate rows that result from its operation, which is the desired result most of the
time. Sometimes, however, you may want to preserve duplicate rows. On those
occasions, use UNION ALL.

Referring to the example, suppose that “Bullet” Bob Turley had been
traded in midseason from the New York Yankees in the American League to
the Brooklyn Dodgers in the National League. Now suppose that during the
season, he pitched eight complete games for each team. The ordinary UNION
displayed in the example throws away one of the two lines containing Turley’s
data. Although he seemed to pitch only eight complete games in the season, he
actually hurled a remarkable 16 complete games. The following query gives
you the true facts:

SELECT * FROM NATIONAL
UNION ALL
SELECT * FROM AMERICAN ;

You can sometimes form the UNION of two tables even if they are not union-
compatible. If the columns you want in your result table are present and com-
patible in both tables, you can perform a UNION CORRESPONDING operation.
Only the specified columns are considered, and they are the only columns
displayed in the result table.

Baseball statisticians keep different statistics on pitchers than they keep on
outfielders. In both cases, first name, last name, putouts, errors, and fielding
percentage are recorded. Outfielders, of course, don’t have a won/lost record,
a saves record, or a number of other things that pertain only to pitching. You
can still perform a UNION that takes data from the OUTFIELDER table and from
the PITCHER table to give you some overall information about defensive skill:

SELECT *
FROM OUTFIELDER

UNION CORRESPONDING
(FirstName, LastName, Putouts, Errors, FieldPct)

SELECT *
FROM PITCHER ;

201Chapter 10: Relational Operators

The result table holds the first and last names of all the outfielders and
pitchers, along with the putouts, errors, and fielding percentage of each
player. As with the simple UNION, duplicates are eliminated. Thus, if a player
spent some time in the outfield and also pitched in one or more games, the
UNION CORRESPONDING operation loses some of his statistics. To avoid this
problem, use UNION ALL CORRESPONDING.

Each column name in the list following the CORRESPONDING keyword must
be a name that exists in both unioned tables. If you omit this list of names, an
implicit list of all names that appear in both tables is used. But this implicit list
of names may change when new columns are added to one or both tables.
Therefore, explicitly listing the column names is better than omitting them.

INTERSECT
The UNION operation produces a result table containing all rows that appear
in any of the source tables. If you want only rows that appear in all the source
tables, you can use the INTERSECT operation, which is the SQL implementa-
tion of relational algebra’s intersect operation. I illustrate INTERSECT by return-
ing to the fantasy world in which Bob Turley was traded to the Dodgers in
midseason:

SELECT * FROM NATIONAL;
FirstName LastName CompleteGames
--------- -------- -------------
Sal Maglie 11
Don Newcombe 9
Sandy Koufax 13
Don Drysdale 12
Bob Turley 8

SELECT * FROM AMERICAN;
FIRST_NAME LAST_NAME COMPLETE_GAMES
---------- --------- --------------
Whitey Ford 12
Don Larson 10
Bob Turley 8
Allie Reynolds 14

Only rows that appear in all source tables show up in the INTERSECT opera-
tion’s result table:

SELECT *
FROM NATIONAL

INTERSECT
SELECT *

202 Part III: Retrieving Data

FROM AMERICAN;

FirstName LastName CompleteGames
--------- -------- -------------
Bob Turley 8

The result table tells us that Bob Turley was the only pitcher to throw the
same number of complete games in both leagues. (A rather obscure distinc-
tion for old Bullet Bob.) Note that, as was the case with UNION, INTERSECT
DISTINCT produces the same result as the INTERSECT operator used alone.
In this example, only one of the identical rows featuring Bob Turley is
returned.

The ALL and CORRESPONDING keywords function in an INTERSECT operation
the same way they do in a UNION operation. If you use ALL, duplicates are
retained in the result table. If you use CORRESPONDING, the intersected tables
need not be union-compatible, although the corresponding columns need to
have matching types and lengths.

Consider another example: A municipality keeps track of the pagers
carried by police officers, firefighters, street sweepers, and other city
employees. A database table called PAGERS contains data on all pagers in
active use. Another table named OUT, with an identical structure, contains
data on all pagers that have been taken out of service. No pager should ever
exist in both tables. With an INTERSECT operation, you can test to see
whether such an unwanted duplication has occurred:

SELECT *
FROM PAGERS

INTERSECT CORRESPONDING (PagerID)
SELECT *

FROM OUT ;

If the result table contains any rows, you know you have a problem. You
should investigate any PagerID entries that appear in the result table. The
corresponding pager is either active or out of service; it can’t be both. After
you detect the problem, you can perform a DELETE operation on one of the
two tables to restore database integrity.

EXCEPT
The UNION operation acts on two source tables and returns all rows that
appear in either table. The INTERSECT operation returns all rows that appear
in both the first and the second table. In contrast, the EXCEPT (or EXCEPT
DISTINCT) operation returns all rows that appear in the first table but that
do not also appear in the second table.

203Chapter 10: Relational Operators

Returning to the municipal pager database example, say that a group of pagers
that had been declared out of service and returned to the vendor for repairs
have now been fixed and placed back into service. The PAGERS table was
updated to reflect the returned pagers, but the returned pagers were not
removed from the OUT table as they should have been. You can display the
PagerID numbers of the pagers in the OUT table, with the reactivated ones
eliminated, using an EXCEPT operation:

SELECT *
FROM OUT

EXCEPT CORRESPONDING (PagerID)
SELECT *

FROM PAGERS;

This query returns all the rows in the OUT table whose PagerID is not also
present in the PAGERS table.

JOINS
The UNION, INTERSECT, and EXCEPT operators are valuable in multitable
databases in which the tables are union-compatible. In many cases, however,
you want to draw data from multiple tables that have very little in common.
JOINs are powerful relational operators that combine data from multiple tables
into a single result table. The source tables may have little (or even nothing)
in common with each other.

SQL:2003 supports a number of types of JOINs. The best one to choose in a
given situation depends on the result you’re trying to achieve.

Basic JOIN
Any multitable query is a type of JOIN. The source tables are joined in the
sense that the result table includes information taken from all the source
tables. The simplest JOIN is a two-table SELECT that has no WHERE clause
qualifiers. Every row of the first table is joined to every row of the second
table. The result table is the Cartesian product of the two source tables. (I
discuss the notion of Cartesian product in Chapter 9, in connection with the
FROM clause.) The number of rows in the result table is equal to the number
of rows in the first source table multiplied by the number of rows in the
second source table.

For example, imagine that you’re the personnel manager for a company and
that part of your job is to maintain employee records. Most employee data,
such as home address and telephone number, is not particularly sensitive.

204 Part III: Retrieving Data

But some data, such as current salary, should be available only to authorized
personnel. To maintain security of the sensitive information, keep it in a sepa-
rate table that is password protected. Consider the following pair of tables:

EMPLOYEE COMPENSATION
-------- ------------
EmpID Employ
FName Salary
LName Bonus
City
Phone

Fill the tables with some sample data:

EmpID FName LName City Phone
----- ----- ----- ---- -----

1 Whitey Ford Orange 555-1001
2 Don Larson Newark 555-3221
3 Sal Maglie Nutley 555-6905
4 Bob Turley Passaic 555-8908

Employ Salary Bonus
------ ------ -----

1 33000 10000
2 18000 2000
3 24000 5000
4 22000 7000

Create a virtual result table with the following query:

SELECT *
FROM EMPLOYEE, COMPENSATION ;

Producing:

EmpID FName LName City Phone Employ Salary Bonus
----- ----- ----- ---- ----- ------ ------ -----

1 Whitey Ford Orange 555-1001 1 33000 10000
1 Whitey Ford Orange 555-1001 2 18000 2000
1 Whitey Ford Orange 555-1001 3 24000 5000
1 Whitey Ford Orange 555-1001 4 22000 7000
2 Don Larson Newark 555-3221 1 33000 10000
2 Don Larson Newark 555-3221 2 18000 2000
2 Don Larson Newark 555-3221 3 24000 5000
2 Don Larson Newark 555-3221 4 22000 7000
3 Sal Maglie Nutley 555-6905 1 33000 10000
3 Sal Maglie Nutley 555-6905 2 18000 2000
3 Sal Maglie Nutley 555-6905 3 24000 5000
3 Sal Maglie Nutley 555-6905 4 22000 7000
4 Bob Turley Passaic 555-8908 1 33000 10000
4 Bob Turley Passaic 555-8908 2 18000 2000
4 Bob Turley Passaic 555-8908 3 24000 5000
4 Bob Turley Passaic 555-8908 4 22000 7000

205Chapter 10: Relational Operators

The result table, which is the Cartesian product of the EMPLOYEE and
COMPENSATION tables, contains considerable redundancy. Furthermore, it
doesn’t make much sense. It combines every row of EMPLOYEE with every
row of COMPENSATION. The only rows that convey meaningful information are
those in which the EmpID number that came from EMPLOYEE matches the
Employ number that came from COMPENSATION. In those rows, an employee’s
name and address are associated with that same employee’s compensation.

When you’re trying to get useful information out of a multitable database, the
Cartesian product produced by a basic JOIN is almost never what you want,
but it’s almost always the first step toward what you want. By applying con-
straints to the JOIN with a WHERE clause, you can filter out the unwanted rows.
The most common JOIN that uses the WHERE clause filter is the equi-join.

Equi-join
An equi-join is a basic join with a WHERE clause containing a condition specify-
ing that the value in one column in the first table must be equal to the value
of a corresponding column in the second table. Applying an equi-join to the
example tables from the previous section brings a more meaningful result:

SELECT *
FROM EMPLOYEE, COMPENSATION
WHERE EMPLOYEE.EmpID = COMPENSATION.Employ ;

This produces:

EmpID FName LName City Phone Employ Salary Bonus
----- ------ ----- ---- ----- ------ ------ -----

1 Whitey Ford Orange 555-1001 1 33000 10000
2 Don Larson Newark 555-3221 2 18000 2000
3 Sal Maglie Nutley 555-6905 3 24000 5000
4 Bob Turley Passaic 555-8908 4 22000 7000

In this result table, the salaries and bonuses on the right apply to the
employees named on the left. The table still has some redundancy because the
EmpID column duplicates the Employ column. You can fix this problem with a
slight reformulation of the query:

SELECT EMPLOYEE.*,COMPENSATION.Salary,COMPENSATION.Bonus
FROM EMPLOYEE, COMPENSATION
WHERE EMPLOYEE.EmpID = COMPENSATION.Employ ;

This produces:

EmpID FName LName City Phone Salary Bonus
----- ----- ----- ---- ----- ------ -----

1 Whitey Ford Orange 555-1001 33000 10000

206 Part III: Retrieving Data

2 Don Larson Newark 555-3221 18000 2000
3 Sal Maglie Nutley 555-6905 24000 5000
4 Bob Turley Passaic 555-8908 22000 7000

This table tells you what you want to know, but doesn’t burden you with any
extraneous data. The query is somewhat tedious to write, however. To avoid
ambiguity, qualify the column names with the names of the tables they came
from. Writing those table names repeatedly provides good exercise for the
fingers but has no merit otherwise.

You can cut down on the amount of typing by using aliases (or correlation
names). An alias is a short name that stands for a table name. If you use
aliases in recasting the preceding query, it comes out like this:

SELECT E.*, C.Salary, C.Bonus
FROM EMPLOYEE E, COMPENSATION C
WHERE E.EmpID = C.Employ ;

In this example, E is the alias for EMPLOYEE, and C is the alias for
COMPENSATION. The alias is local to the statement it’s in. After you declare
an alias (in the FROM clause), you must use it throughout the statement. You
can’t use both the alias and the long form of the table name.

Mixing the long form of table names with aliases creates confusion. Consider
the following example, which is confusing:

SELECT T1.C, T2.C
FROM T1 T2, T2 T1
WHERE T1.C > T2.C ;

In this example, the alias for T1 is T2, and the alias for T2 is T1. Admittedly,
this isn’t a smart selection of aliases, but it isn’t forbidden by the rules. If you
mix aliases with long-form table names, you can’t tell which table is which.

The preceding example with aliases is equivalent to the following SELECT
with no aliases:

SELECT T2.C, T1.C
FROM T1 , T2
WHERE T2.C > T1.C ;

SQL:2003 enables you to join more than two tables. The maximum number
varies from one implementation to another. The syntax is analogous to the
two-table case:

SELECT E.*, C.Salary, C.Bonus, Y.TotalSales
FROM EMPLOYEE E, COMPENSATION C, YTD_SALES Y
WHERE E.EmpID = C.Employ

AND C.Employ = Y.EmpNo ;

207Chapter 10: Relational Operators

This statement performs an equi-join on three tables, pulling data from
corresponding rows of each one to produce a result table that shows the sales-
people’s names, the amount of sales they are responsible for, and their com-
pensation. The sales manager can quickly see whether compensation is in
line with production.

Storing a salesperson’s year-to-date sales in a separate YTD_SALES table
ensures better performance and reliability than keeping that data in the
EMPLOYEE table. The data in the EMPLOYEE table is relatively static. A
person’s name, address, and telephone number don’t change very often.
In contrast, the year-to-date sales change frequently (you hope). Because
YTD_SALES has fewer columns than EMPLOYEE, you may be able to update it
more quickly. If, in the course of updating sales totals, you don’t touch the
EMPLOYEE table, you decrease the risk of accidentally modifying EMPLOYEE
information that should stay the same.

Cross join
CROSS JOIN is the keyword for the basic join without a WHERE clause.
Therefore,

SELECT *
FROM EMPLOYEE, COMPENSATION ;

can also be written as:

SELECT *
FROM EMPLOYEE CROSS JOIN COMPENSATION ;

The result is the Cartesian product (also called the cross product) of the two
source tables. CROSS JOIN rarely gives you the final result you want, but it
can be useful as the first step in a chain of data manipulation operations that
ultimately produce the desired result.

Natural join
The natural join is a special case of an equi-join. In the WHERE clause of an equi-
join, a column from one source table is compared with a column of a second
source table for equality. The two columns must be the same type and length
and must have the same name. In fact, in a natural join, all columns in one
table that have the same names, types, and lengths as corresponding columns
in the second table are compared for equality.

208 Part III: Retrieving Data

Imagine that the COMPENSATION table from the preceding example has
columns EmpID, Salary, and Bonus rather than Employ, Salary, and Bonus.
In that case, you can perform a natural join of the COMPENSATION table with
the EMPLOYEE table. The traditional JOIN syntax would look like this:

SELECT E.*, C.Salary, C.Bonus
FROM EMPLOYEE E, COMPENSATION C
WHERE E.EmpID = C.EmpID ;

This query is a natural join. An alternate syntax for the same operation is the
following:

SELECT E.*, C.Salary, C.Bonus
FROM EMPLOYEE E NATURAL JOIN COMPENSATION C ;

Condition join
A condition join is like an equi-join, except the condition being tested doesn’t
have to be equal (although it can be). It can be any well-formed predicate. If
the condition is satisfied, the corresponding row becomes part of the result
table. The syntax is a little different from what you have seen so far, in that
the condition is contained in an ON clause rather than a WHERE clause.

Say that a baseball statistician wants to know which National League pitchers
have pitched the same number of complete games as one or more American
League pitchers. This question is a job for an equi-join, which can also be
expressed with condition join syntax:

SELECT *
FROM NATIONAL JOIN AMERICAN
ON NATIONAL.CompleteGames = AMERICAN.CompleteGames ;

Column-name join
The column-name join is like a natural join, but it’s more flexible. In a natural
join, all the source table columns that have the same name are compared
with each other for equality. With the column-name join, you select which
same-name columns to compare. You can choose them all if you want, making
the column-name join effectively a natural join. Or you may choose fewer
than all same-name columns. In this way, you have a great degree of control
over which cross product rows qualify to be placed into your result table.

209Chapter 10: Relational Operators

Say that you’re a chess set manufacturer and have one inventory table that
keeps track of your stock of white pieces and another that keeps track of
black pieces. The tables contain data as follows:

WHITE BLACK
----- -----
Piece Quant Wood Piece Quant Wood
----- ----- ---- ----- ----- ----
King 502 Oak King 502 Ebony
Queen 398 Oak Queen 397 Ebony
Rook 1020 Oak Rook 1020 Ebony
Bishop 985 Oak Bishop 985 Ebony
Knight 950 Oak Knight 950 Ebony
Pawn 431 Oak Pawn 453 Ebony

For each piece type, the number of white pieces should match the number of
black pieces. If they don’t match, some chessmen are being lost or stolen,
and you need to tighten security measures.

A natural join compares all columns with the same name for equality. In this
case, a result table with no rows is produced because no rows in the WOOD
column in the WHITE table match any rows in the WOOD column in the BLACK
table. This result table doesn’t help you determine whether any merchandise
is missing. Instead, do a column-name join that excludes the WOOD column
from consideration. It can take the following form:

SELECT *
FROM WHITE JOIN BLACK
USING (Piece, Quant) ;

The result table shows only the rows for which the number of white pieces in
stock equals the number of black pieces:

Piece Quant Wood Piece Quant Wood
----- ----- ---- ----- ----- ----
King 502 Oak King 502 Ebony
Rook 1020 Oak Rook 1020 Ebony
Bishop 985 Oak Bishop 985 Ebony
Knight 950 Oak Knight 950 Ebony

The shrewd person can deduce that Queen and Pawn are missing from the
list, indicating a shortage somewhere for those piece types.

Inner join
By now, you’re probably getting the idea that joins are pretty esoteric and
that it takes an uncommon level of spiritual discernment to deal with them
adequately. You may have even heard of the mysterious inner join and specu-
lated that it probably represents the core or essence of relational operations.

210 Part III: Retrieving Data

Well, ha! The joke is on you. There’s nothing mysterious about inner joins. In
fact, all the joins covered so far in this chapter are inner joins. I could have
formulated the column-name join in the last example as an inner join by using
the following syntax:

SELECT *
FROM WHITE INNER JOIN BLACK
USING (Piece, Quant) ;

The result is the same.

The inner join is so named to distinguish it from the outer join. An inner join
discards all rows from the result table that don’t have corresponding rows in
both source tables. An outer join preserves unmatched rows. That’s the dif-
ference. There is nothing metaphysical about it.

Outer join
When you’re joining two tables, the first one (call it the one on the left) may
have rows that don’t have matching counterparts in the second table (the one
on the right). Conversely, the table on the right may have rows that don’t have
matching counterparts in the table on the left. If you perform an inner join on
those tables, all the unmatched rows are excluded from the output. Outer joins,
however, don’t exclude the unmatched rows. Outer joins come in three types:
the left outer join, the right outer join, and the full outer join.

Left outer join
In a query that includes a join, the left table is the one that precedes the key-
word JOIN, and the right table is the one that follows it. The left outer join pre-
serves unmatched rows from the left table but discards unmatched rows
from the right table.

To understand outer joins, consider a corporate database that maintains
records of the company’s employees, departments, and locations. Tables
10-1, 10-2, and 10-3 contain the database’s example data.

Table 10-1 LOCATION
LOCATION_ID CITY

1 Boston

3 Tampa

5 Chicago

211Chapter 10: Relational Operators

Table 10-2 DEPT
DEPT_ID LOCATION_ID NAME

21 1 Sales

24 1 Admin

27 5 Repair

29 5 Stock

Table 10-3 EMPLOYEE
EMP_ID DEPT_ID NAME

61 24 Kirk

63 27 McCoy

Now suppose that you want to see all the data for all employees, including
department and location. You get this with an equi-join:

SELECT *
FROM LOCATION L, DEPT D, EMPLOYEE E
WHERE L.LocationID = D.LocationID

AND D.DeptID = E.DeptID ;

This statement produces the following result:

1 Boston 24 1 Admin 61 24 Kirk
5 Chicago 27 5 Repair 63 27 McCoy

This result table gives all the data for all the employees, including their loca-
tion and department. The equi-join works because every employee has a
location and a department.

Suppose now that you want the data on the locations, with the related
department and employee data. This is a different problem because a loca-
tion without any associated departments may exist. To get what you want,
you have to use an outer join, as in the following example:

SELECT *
FROM LOCATION L LEFT OUTER JOIN DEPT D

ON (L.LocationID = D.LocationID)
LEFT OUTER JOIN EMPLOYEE E

ON (D.DeptID = E.DeptID);

212 Part III: Retrieving Data

This join pulls data from three tables. First, the LOCATION table is joined
to the DEPT table. The resulting table is then joined to the EMPLOYEE
table. Rows from the table on the left of the LEFT OUTER JOIN operator
that have no corresponding row in the table on the right are included in the
result. Thus, in the first join, all locations are included, even if no department
associated with them exists. In the second join, all departments are included,
even if no employee associated with them exists. The result is as follows:

1 Boston 24 1 Admin 61 24 Kirk
5 Chicago 27 5 Repair 63 27 McCoy
3 Tampa NULL NULL NULL NULL NULL NULL
5 Chicago 29 5 Stock NULL NULL NULL
1 Boston 21 1 Sales NULL NULL NULL

The first two rows are the same as the two result rows in the previous
example. The third row (3 Tampa) has nulls in the department and employee
columns because no departments are defined for Tampa and no employees
are stationed there. The fourth and fifth rows (5 Chicago and 1 Boston)
contain data about the Stock and the Sales departments, but the employee
columns for these rows contain nulls because these two departments have
no employees. This outer join tells you everything that the equi-join told you
plus the following:

� All the company’s locations, whether they have any departments or not

� All the company’s departments, whether they have any employees or not

The rows returned in the preceding example aren’t guaranteed to be in the
order you want. The order may vary from one implementation to the next. To
make sure that the rows returned are in the order you want, add an ORDER
BY clause to your SELECT statement, like this:

SELECT *
FROM LOCATION L LEFT OUTER JOIN DEPT D

ON (L.LocationID = D.LocationID)
LEFT OUTER JOIN EMPLOYEE E

ON (D.DeptID = E.DeptID)
ORDER BY L.LocationID, D.DeptID, E.EmpID;

You can abbreviate the left outer join language as LEFT JOIN because there’s
no such thing as a left inner join.

Right outer join
I bet you figured out how the right outer join behaves. Right! The right outer
join preserves unmatched rows from the right table but discards unmatched
rows from the left table. You can use it on the same tables and get the same
result by reversing the order in which you present tables to the join:

213Chapter 10: Relational Operators

SELECT *
FROM EMPLOYEE E RIGHT OUTER JOIN DEPT D

ON (D.DeptID = E.DeptID)
RIGHT OUTER JOIN LOCATION L

ON (L.LocationID = D.LocationID) ;

In this formulation, the first join produces a table that contains all depart-
ments, whether they have an associated employee or not. The second join
produces a table that contains all locations, whether they have an associated
department or not.

You can abbreviate the right outer join language as RIGHT JOIN because
there’s no such thing as a right inner join.

Full outer join
The full outer join combines the functions of the left outer join and the right
outer join. It retains the unmatched rows from both the left and the right
tables. Consider the most general case of the company database used in the
preceding examples. It could have

� Locations with no departments

� Departments with no locations

� Departments with no employees

� Employees with no departments

To show all locations, departments, and employees, regardless of whether
they have corresponding rows in the other tables, use a full outer join in the
following form:

SELECT *
FROM LOCATION L FULL JOIN DEPT D

ON (L.LocationID = D.LocationID)
FULL JOIN EMPLOYEE E

ON (D.DeptID = E.DeptID) ;

You can abbreviate the full outer join language as FULL JOIN because there’s
no such thing as a full inner join.

Union join
Unlike the other kinds of join, the union join makes no attempt to match a
row from the left source table with any rows in the right source table. It cre-
ates a new virtual table that contains the union of all the columns in both

214 Part III: Retrieving Data

source tables. In the virtual result table, the columns that came from the left
source table contain all the rows that were in the left source table. For those
rows, the columns that came from the right source table all have the null value.
Similarly, the columns that came from the right source table contain all the
rows that were in the right source table. For those rows, the columns that
came from the left source table all have the null value. Thus, the table result-
ing from a union join contains all the columns of both source tables, and the
number of rows that it contains is the sum of the number of rows in the two
source tables.

The result of a union join by itself is not immediately useful in most cases; it
produces a result table with many nulls in it. But you can get useful informa-
tion from a union join when you use it in conjunction with the COALESCE
expression discussed in Chapter 8. Look at an example.

Suppose that you work for a company that designs and builds experimental
rockets. You have several projects in the works. You also have several design
engineers who have skills in multiple areas. As a manager, you want to know
which employees, having which skills, have worked on which projects.
Currently, this data is scattered among the EMPLOYEE table, the PROJECTS
table, and the SKILLS table.

The EMPLOYEE table carries data about employees, and EMPLOYEE.EmpID is
its primary key. The PROJECTS table has a row for each project that an
employee has worked on. PROJECTS.EmpID is a foreign key that references
the EMPLOYEE table. The SKILLS table shows the expertise of each
employee. SKILLS.EmpID is a foreign key that references the EMPLOYEE
table.

The EMPLOYEE table has one row for each employee; the PROJECTS table
and the SKILLS table have zero or more rows.

Tables 10-4, 10-5, and 10-6 show example data in the three tables.

Table 10-4 EMPLOYEE Table
EmpID Name

1 Ferguson

2 Frost

3 Toyon

215Chapter 10: Relational Operators

Table 10-5 PROJECTS Table
ProjectName EmpID

X-63 Structure 1

X-64 Structure 1

X-63 Guidance 2

X-64 Guidance 2

X-63 Telemetry 3

X-64 Telemetry 3

Table 10-6 SKILLS Table
Skill EmpID

Mechanical Design 1

Aerodynamic Loading 1

Analog Design 2

Gyroscope Design 2

Digital Design 3

R/F Design 3

From the tables, you can see that Ferguson has worked on X-63 and X-64
structure design and has expertise in mechanical design and aerodynamic
loading.

Now suppose that, as a manager, you want to see all the information about all
the employees. You decide to apply an equi-join to the EMPLOYEE, PROJECTS,
and SKILLS tables:

SELECT *
FROM EMPLOYEE E, PROJECTS P, SKILLS S
WHERE E.EmpID = P.EmpID

AND E.EmpID = S.EmpID ;

You can express this same operation as an inner join by using the following
syntax:

216 Part III: Retrieving Data

SELECT *
FROM EMPLOYEE E INNER JOIN PROJECTS P

ON (E.EmpID = P.EmpID)
INNER JOIN SKILLS S

ON (E.EmpID = S.EmpID) ;

Both formulations give the same result, as shown in Table 10-7.

Table 10-7 Result of Inner Join
E.EmpID Name P.EmpID ProjectName S.EmpID Skill

1 Ferguson 1 X-63 Structure 1 Mechanical
Design

1 Ferguson 1 X-63 Structure 1 Aerodynamic
Loading

1 Ferguson 1 X-64 Structure 1 Mechanical
Design

1 Ferguson 1 X-64 Structure 1 Aerodynamic
Loading

2 Frost 2 X-63 Guidance 2 Analog Design

2 Frost 2 X-63 Guidance 2 Gyroscope Design

2 Frost 2 X-64 Guidance 2 Analog Design

2 Frost 2 X-64 Guidance 2 Gyroscope Design

3 Toyon 3 X-63 Telemetry 3 Digital Design

3 Toyon 3 X-63 Telemetry 3 R/F Design

3 Toyon 3 X-64 Telemetry 3 Digital Design

3 Toyon 3 X-64 Telemetry 3 R/F Design

This data arrangement is not particularly enlightening. The employee ID
numbers appear three times, and the projects and skills are duplicated for
each employee. The inner joins are not well suited to answering this type of
question. You can put the union join to work here, along with some strategi-
cally chosen SELECT statements, to produce a more suitable result. You begin
with the basic union join:

SELECT *
FROM EMPLOYEE E UNION JOIN PROJECTS P

UNION JOIN SKILLS S ;

217Chapter 10: Relational Operators

Notice that the union join has no ON clause. It doesn’t filter the data, so an ON
clause isn’t needed. This statement produces the result shown in Table 10-8.

Table 10-8 Result of Union Join
E.EmpID Name P.EmpID ProjectName S.EmpID Skill

1 Ferguson NULL NULL NULL NULL

NULL NULL 1 X-63 Structure NULL NULL

NULL NULL 1 X-64 Structure NULL NULL

NULL NULL NULL NULL 1 Mechanical
Design

NULL NULL NULL NULL 1 Aerodynamic
Loading

2 Frost NULL NULL NULL NULL

NULL NULL 2 X-63 Guidance NULL NULL

NULL NULL 2 X-64 Guidance NULL NULL

NULL NULL NULL NULL 2 Analog Design

NULL NULL NULL NULL 2 Gyroscope
Design

3 Toyon NULL NULL NULL NULL

NULL NULL 3 X-63 Telemetry NULL NULL

NULL NULL 3 X-64 Telemetry NULL NULL

NULL NULL NULL NULL 3 Digital Design

NULL NULL NULL NULL 3 R/F Design

Each table has been extended to the right or left with nulls, and those null-
extended rows have been unioned. The order of the rows is arbitrary and
depends on the implementation. Now you can massage the data to put it in
a more useful form.

Notice that the table has three ID columns, only one of which is nonnull in
any row. You can improve the display by coalescing the ID columns. As I note
in Chapter 8, the COALESCE expression takes on the value of the first nonnull
value in a list of values. In the present case, it takes on the value of the only
nonnull value in a column list:

218 Part III: Retrieving Data

SELECT COALESCE (E.EmpID, P.EmpID, S.EmpID) AS ID,
E.Name, P.ProjectName, S.Skill

FROM EMPLOYEE E UNION JOIN PROJECTS P
UNION JOIN SKILLS S

ORDER BY ID ;

The FROM clause is the same as in the previous example, but now you’re coa-
lescing the three EMP_ID columns into a single column named ID. You’re also
ordering the result by ID. Table 10-9 shows the result.

Table 10-9 Result of Union Join with COALESCE Expression
ID Name ProjectName Skill

1 Ferguson X-63 Structure NULL

1 Ferguson X-64 Structure NULL

1 Ferguson NULL Mechanical Design

1 Ferguson NULL Aerodynamic Loading

2 Frost X-63 Guidance NULL

2 Frost X-64 Guidance NULL

2 Frost NULL Analog Design

2 Frost NULL Gyroscope Design

3 Toyon X-63 Telemetry NULL

3 Toyon X-64 Telemetry NULL

3 Toyon NULL Digital Design

3 Toyon NULL R/F Design

Each row in this result has data about a project or a skill, but not both. When
you read the result, you first have to determine what type of information is in
each row (project or skill). If the ProjectName column has a nonnull value, the
row names a project the employee has worked on. If the Skill column is non-
null, the row names one of the employee’s skills.

You can make the result a little clearer by adding another COALESCE to the
SELECT statement, as follows:

SELECT COALESCE (E.EmpID, P.EmpID, S.EmpID) AS ID,
E.Name, COALESCE (P.Type, S.Type) AS Type,
P.ProjectName, S.Skill

219Chapter 10: Relational Operators

FROM EMPLOYEE E
UNION JOIN (SELECT “Project” AS Type, P.*

FROM PROJECTS) P
UNION JOIN (SELECT “Skill” AS Type, S.*

FROM SKILLS) S
ORDER BY ID, Type ;

In this union join, the PROJECTS table in the previous example has been
replaced with a nested SELECT that appends a column named P.Type with
a constant value “Project” to the columns coming from the PROJECTS
table. Similarly, the SKILLS table has been replaced with a nested SELECT
that appends a column named S.Type with a constant value “Skill” to the
columns coming from the SKILLS table. In each row, P.Type is either null or
“Project”, and S.Type is either null or “Skill”.

The outer SELECT list specifies a COALESCE of those two Type columns into
a single column named Type. You then specify Type in the ORDER BY clause,
which sorts the rows that all have the same ID so that all projects are first,
followed by all the skills. The result is shown in Table 10-10.

Table 10-10 Refined Result of Union Join with
COALESCE Expressions

ID Name Type ProjectName Skill

1 Ferguson Project X-63 Structure NULL

1 Ferguson Project X-64 Structure NULL

1 Ferguson Skill NULL Mechanical Design

1 Ferguson Skill NULL Aerodynamic Loading

2 Frost Project X-63 Guidance NULL

2 Frost Project X-64 Guidance NULL

2 Frost Skill NULL Analog Design

2 Frost Skill NULL Gyroscope Design

3 Toyon Project X-63 Telemetry NULL

3 Toyon Project X-64 Telemetry NULL

3 Toyon Skill NULL Digital Design

3 Toyon Skill NULL R/F Design

220 Part III: Retrieving Data

The result table now presents a very readable account of the project experi-
ence and the skill sets of all the employees in the EMPLOYEE table.

Considering the number of JOIN operations available, relating data from dif-
ferent tables shouldn’t be a problem, regardless of the tables’ structure. Trust
that if the raw data exists in your database, SQL:2003 has the means to get it
out and display it in a meaningful form.

ON versus WHERE
The function of the ON and WHERE clauses in the various types of joins is
potentially confusing. These facts may help you keep things straight:

� The ON clause is part of the inner, left, right, and full joins. The cross join
and union join don’t have an ON clause because neither of them does any
filtering of the data.

� The ON clause in an inner join is logically equivalent to a WHERE clause;
the same condition could be specified either in the ON clause or a WHERE
clause.

� The ON clauses in outer joins (left, right, and full joins) are different from
WHERE clauses. The WHERE clause simply filters the rows that are returned
by the FROM clause. Rows that are rejected by the filter are not included
in the result. The ON clause in an outer join first filters the rows of a
cross product and then includes the rejected rows, extended with nulls.

221Chapter 10: Relational Operators

222 Part III: Retrieving Data

Chapter 11

Delving Deep with Nested Queries
In This Chapter
� Pulling data from multiple tables with a single SQL statement

� Finding data items by comparing a value from one table with a set of values from
another table

� Finding data items by comparing a value from one table with a single value SELECTed
from another table

� Finding data items by comparing a value from one table with all the corresponding
values in another table

� Making queries that correlate rows in one table with corresponding rows in
another table

� Determining which rows to update, delete, or insert by using a subquery

One of the best ways to protect your data’s integrity is to avoid modifica-
tion anomalies by normalizing your database. Normalization involves

breaking up a single table into multiple tables, each of which has a single
theme. You don’t want product information in the same table with customer
information, for example, even if the customers have bought products.

If you normalize a database properly, the data is scattered across multiple
tables. Most queries that you want to make need to pull data from two or
more tables. One way to do this is to use a JOIN operator or one of the other
relational operators (UNION, INTERSECT, or EXCEPT). The relational operators
take information from multiple tables and combine it all into a single table.
Different operators combine the data in different ways. Another way to pull
data from two or more tables is to use a nested query.

In SQL, a nested query is one in which an outer enclosing statement contains
within it a subquery. That subquery may serve as an enclosing statement for
a lower-level subquery that is nested within it. There are no theoretical limits
to the number of nesting levels that a nested query may have, although
implementation-dependent practical limits do exist.

Subqueries are invariably SELECT statements, but the outermost enclosing
statement may also be an INSERT, UPDATE, or DELETE.

Because a subquery can operate on a different table than the table operated
on by its enclosing statement, nested queries give you another way to extract
information from multiple tables.

For example, suppose that you want to query your corporate database to
find all department managers who are more than 50 years old. With the
JOINs I discuss in Chapter 10, you may use a query like this:

SELECT D.Deptno, D.Name, E.Name, E.Age
FROM DEPT D, EMPLOYEE E
WHERE D.ManagerID = E.ID AND E.Age > 50 ;

D is the alias for the DEPT table, and E is the alias for the EMPLOYEE table.
The EMPLOYEE table has an ID column that is the primary key, and the DEPT
table has a column ManagerID that is the ID value of the employee who is
the department’s manager. I use a simple JOIN (the list of tables in the FROM
clause) to pair related tables, and a WHERE clause to filter all rows except
those that meet the criterion. Note that the SELECT statement’s parameter
list includes the Deptno and Name columns from the DEPT table and the Name
and Age columns from the EMPLOYEE table.

Next, suppose that you’re interested in the same set of rows but you want
only the columns from the DEPT table. In other words, you’re interested in
the departments whose managers are 50 or older, but you don’t care who
those managers are or exactly how old they are. You could then write the
query with a subquery rather than a JOIN:

SELECT D.Deptno, D.Name
FROM DEPT D
WHERE EXISTS (SELECT * FROM EMPLOYEE E

WHERE E.ID = D.ManagerID AND E.Age > 50) ;

This query has two new elements: the EXISTS keyword and the SELECT * in
the WHERE clause of the first SELECT. The second SELECT is a subquery (or
subselect), and the EXISTS keyword is one of several tools for use with a sub-
query that is described in this chapter.

Why Use a Subquery?
In many instances, you can accomplish the same result with a subquery as
you can with a JOIN. In most cases, the complexity of the subquery syntax is
comparable to the complexity of the corresponding JOIN operation. It comes
down to a matter of personal preference. Some people prefer formulating a
retrieval in terms of JOIN operations, whereas others prefer nested queries.
Sometimes, obtaining the results that you want isn’t possible by using JOIN.
In those cases, you must either use a nested query or break the problem up
into multiple SQL statements and execute them one at a time.

224 Part III: Retrieving Data

What Subqueries Do
Subqueries are located within the WHERE clause of their enclosing statement.
Their function is to set the search conditions for the WHERE clause. Different
kinds of subqueries produce different results. Some subqueries produce a list of
values that is then used as input by the enclosing statement. Other subqueries
produce a single value that the enclosing statement then evaluates with a com-
parison operator. A third kind of subquery returns a value of True or False.

Nested queries that return sets of rows
To illustrate how a nested query returns a set of rows, suppose that you
work for a systems integrator of computer equipment. Your company, Zetec
Corporation, assembles systems from components that you buy, and then it
sells them to companies and government agencies. You keep track of your
business with a relational database. The database consists of many tables,
but right now you’re concerned with only three of them: the PRODUCT
table, the COMP_USED table, and the COMPONENT table. The PRODUCT
table (shown in Table 11-1) contains a list of all your standard products.
The COMPONENT table (shown in Table 11-2) lists components that go
into your products, and the COMP_USED table (shown in Table 11-3) tracks
which components go into each product. The tables are defined as follows:

Table 11-1 PRODUCT Table
Column Type Constraints

Model Char (6) PRIMARY KEY

ProdName Char (35)

ProdDesc Char (31)

ListPrice Numeric (9,2)

Table 11-2 COMPONENT Table
Column Type Constraints

CompID CHAR (6) PRIMARY KEY

CompType CHAR (10)

CompDesc CHAR (31)

225Chapter 11: Delving Deep with Nested Queries

Table 11-3 COMP_USED Table
Column Type Constraints

Model CHAR (6) FOREIGN KEY (for
PRODUCT)

CompID CHAR (6) FOREIGN KEY (for
COMPONENT)

A component may be used in multiple products, and a product can contain
multiple components (a many-to-many relationship). This situation can cause
integrity problems. To circumvent the problems, create the linking table
COMP_USED to relate COMPONENT to PRODUCT. A component may appear
in many COMP_USED rows, but each COMP_USED row references only one
component (a one-to-many relationship). Similarly, a product may appear in
many COMP_USED rows, but each COMP_USED row references only one
product (another one-to-many relationship). By adding the linking table, a
troublesome many-to-many relationship has been transformed into two rela-
tively simple one-to-many relationships. This process of reducing the com-
plexity of relationships is one example of normalization.

Subqueries introduced by the keyword IN
One form of a nested query compares a single value with the set of values
returned by a SELECT. It uses the IN predicate with the following syntax:

SELECT column_list
FROM table
WHERE expression IN (subquery) ;

The expression in the WHERE clause evaluates to a value. If that value is IN
the list returned by the subquery, then the WHERE clause returns a True value,
and the specified columns from the table row being processed are added to
the result table. The subquery may reference the same table referenced by
the outer query, or it may reference a different table.

I use Zetec’s database to demonstrate this type of query. Assume that there is
a shortage of computer monitors in the computer industry. When you run out
of monitors, you can no longer deliver products that include them. You want
to know which products are affected. Enter the following query:

SELECT Model
FROM COMP_USED
WHERE CompID IN

(SELECT CompID
FROM COMPONENT
WHERE CompType = ‘Monitor’) ;

226 Part III: Retrieving Data

SQL processes the innermost query first, so it processes the COMPONENT
table, returning the value of CompID for every row where CompType is
‘Monitor’. The result is a list of the ID numbers of all monitors. The outer
query then compares the value of CompID in every row in the COMP_USED
table against the list. If the comparison is successful, the value of the Model
column for that row is added to the outer SELECT’s result table. The result is
a list of all product models that include a monitor. The following example
shows what happens when you run the query:

Model

CX3000
CX3010
CX3020
MB3030
MX3020
MX3030

You now know which products will soon be out of stock. It’s time to go to the
sales force and tell them to slow down on promoting these products.

When you use this form of nested query, the subquery must specify a single
column, and that column’s data type must match the data type of the argu-
ment preceding the IN keyword.

Subqueries introduced by the keyword NOT IN
Just as you can introduce a subquery with the IN keyword, you can do the
opposite and introduce it with the NOT IN keyword. In fact, now is a great
time for Zetec management to make such a query. By using the query in the
preceding section, Zetec management found out what products not to sell.
That is valuable information, but it doesn’t pay the rent. What Zetec manage-
ment really wants to know is what products to sell. Management wants to
emphasize the sale of products that don’t contain monitors. A nested query
featuring a subquery introduced by the NOT IN keyword provides the
requested information:

SELECT Model
FROM COMP_USED
WHERE Model NOT IN

(SELECT Model
FROM COMP_USED
WHERE CompID IN

(SELECT CompID
FROM COMPONENT
WHERE CompType = ‘Monitor’)) ;

227Chapter 11: Delving Deep with Nested Queries

This query produces the following result:

Model

PX3040
PB3050
PX3040
PB3050

A couple things are worth noting here:

� This query has two levels of nesting. The two subqueries are identical
to the previous query statement. The only difference is that a new
enclosing statement has been wrapped around them. The enclosing
statement takes the list of products that contain monitors and applies a
SELECT introduced by the NOT IN keyword to that list. The result is
another list that contains all product models except those that have
monitors.

� The result table does contain duplicates. The duplication occurs
because a product containing several components that are not monitors
has a row in the COMP_USED table for each component. The query cre-
ates an entry in the result table for each of those rows.

In the example, the number of rows does not create a problem because the
result table is short. In the real world, however, such a result table may have
hundreds or thousands of rows. To avoid confusion, you need to eliminate
the duplicates. You can do so easily by adding the DISTINCT keyword to the
query. Only rows that are distinct (different) from all previously retrieved
rows are added to the result table:

SELECT DISTINCT Model
FROM COMP_USED
WHERE Model NOT IN

(SELECT Model
FROM COMP_USED
WHERE CompID IN

(SELECT CompID
FROM COMPONENT
WHERE CompType = ‘Monitor’)) ;

As expected, the result is as follows:

Model

PX3040
PB3050

228 Part III: Retrieving Data

Nested queries that return a single value
Introducing a subquery with one of the six comparison operators (=, <>, <,
<=, >, >=) is often useful. In such a case, the expression preceding the opera-
tor evaluates to a single value, and the subquery following the operator must
also evaluate to a single value. An exception is the case of the quantified com-
parison operator, which is a comparison operator followed by a quantifier
(ANY, SOME, or ALL).

To illustrate a case in which a subquery returns a single value, look at
another piece of Zetec Corporation’s database. It contains a CUSTOMER table
that holds information about the companies that buy Zetec products. It also
contains a CONTACT table that holds personal data about individuals at each
of Zetec’s customer organizations. The tables are structured as shown in
Tables 11-4 and 11-5:

Table 11-4 CUSTOMER Table
Column Type Constraints

CustID INTEGER PRIMARY KEY

Company CHAR (40)

CustAddress CHAR (30)

CustCity CHAR (20)

CustState CHAR (2)

CustZip CHAR (10)

CustPhone CHAR (12)

ModLevel INTEGER

Table 11-5 CONTACT Table
Column Type Constraints

CustID INTEGER FOREIGN KEY

ContFName CHAR (10)

ContLName CHAR (16)

ContPhone CHAR (12)

ContInfo CHAR (50)

229Chapter 11: Delving Deep with Nested Queries

Say that you want to look at the contact information for Olympic Sales, but
you don’t remember that company’s CustID. Use a nested query like this one
to recover the information you want:

SELECT *
FROM CONTACT

WHERE CustID =
(SELECT CustID

FROM CUSTOMER
WHERE Company = ‘Olympic Sales’) ;

The result looks something like this:

CustID ContFName ContLName ContPhone ContInfo
------ --------- --------- --------- --------

118 Jerry Attwater 505-876-3456 Will play
major role in
coordinating
the
wireless
Web.

You can now call Jerry at Olympic and tell him about this month’s special
sale on Web-enabled cell phones.

When you use a subquery in an “=” comparison, the subquery’s SELECT list
must specify a single column (CustID in the example). When the subquery is
executed, it must return a single row in order to have a single value for the
comparison.

In this example, I assume that the CUSTOMER table has only one row with a
Company value of ‘Olympic Sales’. If the CREATE TABLE statement for
CUSTOMER specified a UNIQUE constraint for Company, such a statement
guarantees that the subquery in the preceding example returns a single
value (or no value). Subqueries like the one in the example, however, are
commonly used on columns that are not specified to be UNIQUE. In such
cases, you are relying on some other reasons for believing that the column
has no duplicates.

If more than one CUSTOMER has a value of ‘Olympic Sales’ in the Company
column (perhaps in different states), the subquery raises an error.

If no Customer with such a company name exists, the subquery is treated as if it
were null, and the comparison becomes unknown. In this case, the WHERE clause
returns no row (because it returns only rows with the condition True and filters
rows with the condition False or unknown). This would probably happen, for
example, if someone misspelled the COMPANY as ‘Olumpic Sales’.

Although the equals operator (=) is the most common, you can use any of the
other five comparison operators in a similar structure. For every row in the
table specified in the enclosing statement’s FROM clause, the single value

230 Part III: Retrieving Data

returned by the subquery is compared to the expression in the enclosing
statement’s WHERE clause. If the comparison gives a True value, a row is
added to the result table.

You can guarantee that a subquery will return a single value if you include an
aggregate function in it. Aggregate functions always return a single value.
(Aggregate functions are described in Chapter 3.) Of course, this way of return-
ing a single value is helpful only if you want the result of an aggregate function.

Say that you are a Zetec salesperson and you need to earn a big commission
check to pay for some unexpected bills. You decide to concentrate on selling
Zetec’s most expensive product. You can find out what that product is with a
nested query:

SELECT Model, ProdName, ListPrice
FROM PRODUCT

WHERE ListPrice =
(SELECT MAX(ListPrice)

FROM PRODUCT) ;

This is an example of a nested query where both the subquery and the
enclosing statement operate on the same table. The subquery returns a
single value: the maximum list price in the PRODUCT table. The outer query
retrieves all rows from the PRODUCT table that have that list price.

The next example shows a comparison subquery that uses a comparison
operator other than =:

SELECT Model, ProdName, ListPrice
FROM PRODUCT

WHERE ListPrice <
(SELECT AVG(ListPrice)

FROM PRODUCT) ;

The subquery returns a single value: the average list price in the PRODUCT
table. The outer query retrieves all rows from the PRODUCT table that have a
list price less than the average list price.

In the original SQL standard, a comparison could have only one subquery,
and it had to be on the right side of the comparison. SQL:1999 allowed either
or both operands of the comparison to be subqueries, and SQL:2003 retains
that expansion of capability.

The ALL, SOME, and ANY quantifiers
Another way to make sure that a subquery returns a single value is to intro-
duce it with a quantified comparison operator. The universal quantifier ALL

231Chapter 11: Delving Deep with Nested Queries

and the existential quantifiers SOME and ANY, when combined with a comparison
operator, process the list returned by a subquery, reducing it to a single value.

You’ll see how these quantifiers affect a comparison by looking at the base-
ball pitchers complete game database from Chapter 10, which is listed next.

The contents of the two tables are given by the following two queries:

SELECT * FROM NATIONAL

FirstName LastName CompleteGames
--------- -------- -------------
Sal Maglie 11
Don Newcombe 9
Sandy Koufax 13
Don Drysdale 12
Bob Turley 8

SELECT * FROM AMERICAN

FirstName LastName CompleteGames
--------- -------- -------------
Whitey Ford 12
Don Larson 10
Bob Turley 8
Allie Reynolds 14

The theory is that the pitchers with the most complete games should be in
the American League because of the presence of designated hitters in that
league. One way to verify this theory is to build a query that returns all
American League pitchers who have thrown more complete games than all
the National League pitchers. The query can be formulated as follows:

SELECT *
FROM AMERICAN
WHERE CompleteGames > ALL

(SELECT CompleteGames FROM NATIONAL) ;

This is the result:

FirstName LastName CompleteGames
---------- --------- --------------
Allie Reynolds 14

The subquery (SELECT CompleteGames FROM NATIONAL) returns the
values in the CompleteGames column for all National League pitchers.
The > ALL quantifier says to return only those values of CompleteGames
in the AMERICAN table that are greater than each of the values returned by
the subquery. This condition translates into “greater than the highest value
returned by the subquery.” In this case, the highest value returned by the
subquery is 13 (Sandy Koufax). The only row in the AMERICAN table
higher than that is Allie Reynolds’s record, with 14 complete games.

232 Part III: Retrieving Data

What if your initial assumption was wrong? What if the major league leader in
complete games was a National League pitcher, in spite of the fact that the
National League has no designated hitter? If that were the case, the query

SELECT *
FROM AMERICAN
WHERE CompleteGames > ALL

(SELECT CompleteGames FROM NATIONAL) ;

would return a warning stating that no rows satisfy the query’s conditions,
meaning that no American League pitcher has thrown more complete games
than the pitcher who has thrown the most complete games in the National
League.

Nested queries that are an existence test
A query returns data from all table rows that satisfy the query’s conditions.
Sometimes many rows are returned; sometimes only one. Sometimes none of
the rows in the table satisfy the conditions, and no rows are returned. You
can use the EXISTS and NOT EXISTS predicates to introduce a subquery.
That structure tells you whether any rows in the table located in the sub-
query’s FROM clause meet the conditions in its WHERE clause.

Subqueries introduced with EXISTS and NOT EXISTS are fundamentally dif-
ferent from the subqueries in this chapter so far. In all the previous cases,
SQL first executes the subquery and then applies that operation’s result to
the enclosing statement. EXISTS and NOT EXISTS subqueries, on the other
hand, are examples of correlated subqueries.

A correlated subquery first finds the table and row specified by the enclosing
statement and then executes the subquery on the row in the subquery’s table
that correlates with the current row of the enclosing statement’s table.

The subquery either returns one or more rows or it returns none. If it returns
at least one row, the EXISTS predicate succeeds, and the enclosing statement
performs its action. In the same circumstances, the NOT EXISTS predicate
fails, and the enclosing statement does not perform its action. After one row
of the enclosing statement’s table is processed, the same operation is per-
formed on the next row. This action is repeated until every row in the enclos-
ing statement’s table has been processed.

EXISTS
Say that you are a salesperson for Zetec Corporation and you want to call
your primary contact people at all of Zetec’s customer organizations in
California. Try the following query:

233Chapter 11: Delving Deep with Nested Queries

SELECT *
FROM CONTACT
WHERE EXISTS

(SELECT *
FROM CUSTOMER
WHERE CustState = ‘CA’

AND CONTACT.CustID = CUSTOMER.CustID) ;

Notice the reference to CONTACT.CustID, which is referencing a column from
the outer query and comparing it with another column, CUSTOMER.CustID
from the inner query. For each candidate row of the outer query, you evalu-
ate the inner query, using the CustID value from the current CONTACT row of
the outer query in the WHERE clause of the inner query.

The CustID column links the CONTACT table to the CUSTOMER table.
SQL looks at the first record in the CONTACT table, finds the row in the
CUSTOMER table that has the same CustID, and checks that row’s CustState
field. If CUSTOMER.CustState = ‘CA’, then the current CONTACT row is
added to the result table. The next CONTACT record is then processed in the
same way, and so on, until the entire CONTACT table has been processed.
Because the query specifies SELECT * FROM CONTACT, all the contact table’s
fields are returned, including the contact’s name and phone number.

NOT EXISTS
In the previous example, the Zetec salesperson wanted to know the names
and numbers of the contact people of all the customers in California. Imagine
that a second salesperson is responsible for all of the United States except
California. She can retrieve her contact people by using NOT EXISTS in a
query similar to the preceding one:

SELECT *
FROM CONTACT
WHERE NOT EXISTS

(SELECT *
FROM CUSTOMER
WHERE CustState = ‘CA’

AND CONTACT.CustID = CUSTOMER.CustID) ;

Every row in CONTACT for which the subquery does not return a row is
added to the result table.

Other correlated subqueries
As noted in a previous section of this chapter, subqueries introduced by IN
or by a comparison operator need not be correlated queries, but they can be.

234 Part III: Retrieving Data

Correlated subqueries introduced with IN
In the earlier section “Subqueries introduced by the keyword IN,” I discuss
how a noncorrelated subquery can be used with the IN predicate. To show
how a correlated subquery may use the IN predicate, ask the same question
that came up with the EXISTS predicate: What are the names and phone
numbers of the contacts at all of Zetec’s customers in California? You can
answer this question with a correlated IN subquery:

SELECT *
FROM CONTACT
WHERE ‘CA’ IN

(SELECT CustState
FROM CUSTOMER
WHERE CONTACT.CustID = CUSTOMER.CustID) ;

The statement is evaluated for each record in the CONTACT table. If, for that
record, the CustID numbers in CONTACT and CUSTOMER match, then the
value of CUSTOMER.CustState is compared to ‘CA’. The result of the sub-
query is a list that contains, at most, one element. If that one element is ‘CA’,
the WHERE clause of the enclosing statement is satisfied, and a row is added
to the query’s result table.

Subqueries introduced with comparison operators
A correlated subquery can also be introduced by one of the six comparison
operators, as shown in the next example.

Zetec pays bonuses to its salespeople based on their total monthly sales
volume. The higher the volume is, the higher the bonus percentage is. The
bonus percentage list is kept in the BONUSRATE table:

MinAmount MaxAmount BonusPct
--------- --------- --------

0.00 24999.99 0.
25000.00 49999.99 0.001
50000.00 99999.99 0.002
100000.00 249999.99 0.003
250000.00 499999.99 0.004
500000.00 749999.99 0.005
750000.00 999999.99 0.006

If a person’s monthly sales are between $100,000.00 and $249,999.99, the
bonus is 0.3 percent of sales.

235Chapter 11: Delving Deep with Nested Queries

Sales are recorded in a transaction master table named TRANSMASTER:

TRANSMASTER

Column Type Constraints
------ ---- -----------
TransID INTEGER PRIMARY KEY
CustID INTEGER FOREIGN KEY
EmpID INTEGER FOREIGN KEY
TransDate DATE
NetAmount NUMERIC
Freight NUMERIC
Tax NUMERIC
InvoiceTotal NUMERIC

Sales bonuses are based on the sum of the NetAmount field for all of a
person’s transactions in the month. You can find any person’s bonus rate
with a correlated subquery that uses comparison operators:

SELECT BonusPct
FROM BONUSRATE

WHERE MinAmount <=
(SELECT SUM (NetAmount)

FROM TRANSMASTER
WHERE EmpID = 133)

AND MaxAmount >=
(SELECT SUM (NetAmount)

FROM TRANSMASTER
WHERE EmpID = 133) ;

This query is interesting in that it contains two subqueries, making use of the
logical connective AND. The subqueries use the SUM aggregate operator,
which returns a single value: the total monthly sales of employee number
133. That value is then compared against the MinAmount and the MaxAmount
columns in the BONUSRATE table, producing the bonus rate for that
employee.

If you had not known the EmpID but had known the person’s name, you could
arrive at the same answer with a more complex query:

SELECT BonusPct
FROM BONUSRATE

WHERE MinAmount <=
(SELECT SUM (NetAmount)

FROM TRANSMASTER
WHERE EmpID =

(SELECT EmpID
FROM EMPLOYEE

WHERE EmplName = ‘Coffin’))
AND MaxAmount >=

(SELECT SUM (NetAmount)

236 Part III: Retrieving Data

FROM TRANSMASTER
WHERE EmpID =

(SELECT EmpID
FROM EMPLOYEE

WHERE EmplName = ‘Coffin’));

This example uses subqueries nested within subqueries, which in turn are
nested within an enclosing query, to arrive at the bonus rate for the employee
named Coffin. This structure works only if you know for sure that the com-
pany has one, and only one, employee whose last name is Coffin. If you know
that more than one employee is named Coffin, you can add terms to the WHERE
clause of the innermost subquery until you’re sure that only one row of the
EMPLOYEE table is selected.

Subqueries in a HAVING clause
You can have a correlated subquery in a HAVING clause just as you can in a
WHERE clause. As I mention in Chapter 9, a HAVING clause is normally pre-
ceded by a GROUP BY clause. The HAVING clause acts as a filter to restrict the
groups created by the GROUP BY clause. Groups that don’t satisfy the condi-
tion of the HAVING clause are not included in the result. When used in this
way, the HAVING clause is evaluated for each group created by the GROUP BY
clause. In the absence of a GROUP BY clause, the HAVING clause is evaluated
for the set of rows passed by the WHERE clause, which is considered to be a
single group. If neither a WHERE clause nor a GROUP BY clause is present, the
HAVING clause is evaluated for the entire table:

SELECT TM1.EmpID
FROM TRANSMASTER TM1

GROUP BY TM1.EmpID
HAVING MAX (TM1.NetAmount) >= ALL

(SELECT 2 * AVG (TM2.NetAmount)
FROM TRANSMASTER TM2
WHERE TM1.EmpID <> TM2.EmpID) ;

This query uses two aliases for the same table, enabling you to retrieve the
EmpID number of all salespeople who had a sale of at least twice the average
sale of all the other salespeople. The query works as follows:

1. The outer query groups TRANSMASTER rows by the EmpID. This is done
with the SELECT, FROM, and GROUP BY clauses.

2. The HAVING clause filters these groups. For each group, it calculates the
MAX of the NetAmount column for the rows in that group.

3. The inner query evaluates twice the average NetAmount from all rows of
TRANSMASTER whose EmpID is different from the EmpID of the current
group of the outer query. Note that in the last line you need to reference
two different EmpID values, so in the FROM clauses of the outer and inner
queries, you use different aliases for TRANSMASTER.

237Chapter 11: Delving Deep with Nested Queries

4. You then use those aliases in the comparison of the query’s last line to
indicate that you’re referencing both the EmpID from the current row of
the inner subquery (TM2.EmpID) and the EmpID from the current group
of the outer subquery (TM1.EmpID).

UPDATE, DELETE, and INSERT statements
In addition to SELECT statements, UPDATE, DELETE, and INSERT statements
can also include WHERE clauses. Those WHERE clauses can contain subqueries
in the same way that SELECT statement WHERE clauses do.

For example, Zetec has just made a volume purchase deal with Olympic Sales
and wants to retroactively provide Olympic with a 10-percent credit for all its
purchases in the last month. You can give this credit with an UPDATE statement:

UPDATE TRANSMASTER
SET NetAmount = NetAmount * 0.9
WHERE CustID =

(SELECT CustID
FROM CUSTOMER
WHERE Company = ‘Olympic Sales’) ;

You can also have a correlated subquery in an UPDATE statement. Suppose
the CUSTOMER table has a column LastMonthsMax, and Zetec wants to give
such a credit for purchases that exceed LastMonthsMax for the customer:

UPDATE TRANSMASTER TM
SET NetAmount = NetAmount * 0.9
WHERE NetAmount >

(SELECT LastMonthsMax
FROM CUSTOMER C
WHERE C.CustID = TM.CustID) ;

Note that this subquery is correlated: The WHERE clause in the last line refer-
ences both the CustID of the CUSTOMER row from the subquery and the
CustID of the current TRANSMASTER row that is a candidate for updating.

A subquery in an UPDATE statement can also reference the table that is being
updated. Suppose that Zetec wants to give a 10-percent credit to customers
whose purchases have exceeded $10,000:

UPDATE TRANSMASTER TM1
SET NetAmount = NetAmount * 0.9
WHERE 10000 < (SELECT SUM(NetAmount)

FROM TRANSMASTER TM2
WHERE TM1.CustID = TM2.CustID);

238 Part III: Retrieving Data

The inner subquery calculates the SUM of the NetAmount column for all
TRANSMASTER rows for the same customer. What does this mean? Suppose
that the customer with CustID = 37 has four rows in TRANSMASTER with
values for NetAmount: 3000, 5000, 2000, and 1000. The SUM of NetAmount for
this CustID is 11000.

The order in which the UPDATE statement processes the rows is defined by
your implementation and is generally not predictable. The order may differ
depending on how the rows are arranged on the disk. Assume that the
implementation processes the rows for this CustID in this order: first the
TRANSMASTER with a NetAmount of 3000, then the one with NetAmount =
5000, and so on. After the first three rows for CustID 37 have been updated,
their NetAmount values are 2700 (90 percent of 3000), 4500 (90 percent of
5000), and 1800 (90 percent of 2000). Then when you process the last
TRANSMASTER row for CustID 37, whose NetAmount is 1000, the SUM
returned by the subquery would seem to be 10000 — that is, the SUM of the
new NetAmount values of the first three rows for CustID 37, and the old
NetAmount value of the last row for CustID 37. Thus it would seem that the
last row for CustID 37 isn’t updated, because the comparison with that SUM
is not True (10000 is not less than SELECT SUM (NetAmount)). But that is
not how the UPDATE statement is defined when a subquery references the
table that is being updated. All evaluations of subqueries in an UPDATE state-
ment reference the old values of the table being updated. In the preceding
UPDATE for CustID 37, the subquery returns 11000 — the original SUM.

The subquery in a WHERE clause operates the same as a SELECT statement or
an UPDATE statement. The same is true for DELETE and INSERT. To delete all
of Olympic’s transactions, use this statement:

DELETE TRANSMASTER
WHERE CustID =

(SELECT CustID
FROM CUSTOMER
WHERE Company = ‘Olympic Sales’) ;

As with UPDATE, DELETE subqueries can also be correlated and can also refer-
ence the table being deleted. The rules are similar to the rules for UPDATE
subqueries. Suppose you want to delete all rows from TRANSMASTER for cus-
tomers whose total NetAmount is larger than $10,000:

DELETE TRANSMASTER TM1
WHERE 10000 < (SELECT SUM(NetAmount)

FROM TRANSMASTER TM2
WHERE TM1.CustID = TM2.CustID) ;

239Chapter 11: Delving Deep with Nested Queries

This query deletes all rows from TRANSMASTER that have CustID 37, as
well as any other customers with purchases exceeding $10,000. All references
to TRANSMASTER in the subquery denote the contents of TRANSMASTER
before any deletes by the current statement. So even when you are deleting
the last TRANSMASTER row for CustID 37, the subquery is evaluated on the
original TRANSMASTER table and returns 11000.

When you update, delete, or insert database records, you risk making
a table’s data inconsistent with other tables in the database. Such an
inconsistency is called a modification anomaly, discussed in Chapter 5.
If you delete TRANSMASTER records and a TRANSDETAIL table depends
on TRANSMASTER, you must delete the corresponding records from
TRANSDETAIL, too. This operation is called a cascading delete, because
the deletion of a parent record must cascade to its associated child records.
Otherwise, the undeleted child records become orphans. In this case, they
would be invoice detail lines that are in limbo because they are no longer
connected to an invoice record.

INSERT can include a SELECT clause. A use for this statement is filling “snap-
shot” tables. For a table with the contents of TRANSMASTER for October 27,
do this:

CREATE TABLE TRANSMASTER_1027
(TransID INTEGER, TransDate DATE,
...) ;

INSERT INTO TRANSMASTER_1027
(SELECT * FROM TRANSMASTER

WHERE TransDate = 2003-10-27) ;

Or you may want to save rows only for large NetAmounts:

INSERT INTO TRANSMASTER_1027
(SELECT * FROM TRANSMASTER TM
WHERE TM.NetAmount > 10000

AND TransDate = 2003-10-27) ;

240 Part III: Retrieving Data

Chapter 12

Recursive Queries
In This Chapter
� Understanding recursive processing

� Defining recursive queries

� Finding ways to use recursive queries

One of the major criticisms of SQL, up through and including SQL-92, was
its inability to implement recursive processing. Many important prob-

lems that are difficult to solve by other means yield readily to recursive solu-
tions. Extensions included in SQL:1999 allow recursive queries, greatly
expanding the language’s power. If your SQL implementation includes the
recursion extensions, you can efficiently solve a large new class of problems.
However, because recursion is not a part of core SQL:2003, many implementa-
tions currently available do not include it.

What Is Recursion?
Recursion is a feature that’s been around for years in programming languages
such as Logo, LISP, and C++. In these languages, you can define a function (a
set of one or more commands) that performs a specific operation. The main
program invokes the function by issuing a command called a function call. If
the function calls itself as a part of its operation, you have the simplest form
of recursion.

A simple program that uses recursion in one of its functions provides an illus-
tration of the joys and pitfalls of recursion. The following program, written in
C++, draws a spiral on the computer screen. It assumes that the drawing tool
is initially pointing toward the top of the screen, and includes three functions:

� The function line(n) draws a line n units long.

� The function left_turn(d) rotates the drawing tool d degrees
counterclockwise.

� You can define the function spiral(segment) as follows:

void spiral(int segment)
{

line(segment)
left_turn(90)
spiral(segment + 1)

} ;

If you call spiral(1) from the main program, the following actions take place:

spiral(1) draws a line one unit long toward the top of the screen.

spiral(1) turns left 90 degrees.

spiral(1) calls spiral(2).

spiral(2) draws a line 2 units long toward the left side of the screen.

spiral(2) turns left 90 degrees.

spiral(2) calls spiral(3).

And so on. . . .

Eventually the program generates the spiral curve shown in Figure 12-1.

Figure 12-1:
Result of

calling
spiral

(1).

242 Part III: Retrieving Data

Houston, we have a problem
Well, okay, the situation here is not as serious as it was for Apollo 13 when its
main oxygen tank exploded into space while en route to the moon. Your prob-
lem is that the spiral-drawing program keeps calling itself and drawing longer
and longer lines. It will continue to do that until the computer executing it
runs out of resources and (if you’re lucky) puts an obnoxious error message
on the screen. If you’re unlucky, the computer just crashes.

Failure is not an option
This scenario shows one of the dangers of using recursion. A program written
to call itself invokes a new instance of itself — which in turn calls yet another
instance, ad infinitum. This is generally not what you want. To address this
problem, programmers include a termination condition within the recursive
function — a limit on how deep the recursion can go — so the program per-
forms the desired action and then terminates gracefully. You can include a
termination condition in your spiral-drawing program to save computer
resources and prevent dizziness in programmers:

void spiral2(int segment)
{

if (segment <= 10)
{

line(segment)
left_turn(90)
spiral2(segment + 1)

}
} ;

When you call spiral2(1), it executes and then (recursively) calls itself
until the value of segment exceeds 10. At the point where segment equals 11,
the if (segment <=10) construct returns a False value, and the code within
the interior braces is skipped. Control returns to the previous invocation of
spiral2 and, from there, returns all the way up to the first invocation, after
which the program terminates. Figure 12-2 shows the sequence of calls and
returns that occurs.

Every time a function calls itself, it takes you one level farther away from the
main program that was the starting point of the operation. For the main pro-
gram to continue, the deepest iteration must return control to the iteration
that called it. That iteration will have to do likewise, continuing all the way
back to the main program that made the first call to the recursive function.

243Chapter 12: Recursive Queries

Recursion is a powerful tool for repeatedly executing code when you don’t
know at the outset how many times the code should be repeated. It’s ideal for
searching through tree-shaped structures such as family trees, complex elec-
tronic circuits, or multilevel distribution networks.

What Is a Recursive Query?
A recursive query is a query that is functionally dependent on itself. The
simplest form of such functional dependence is the case where a query Q1
includes an invocation of itself in the query expression body. A more complex
case is where query Q1 depends on query Q2, which in turn depends on
query Q1. There is still a functional dependency, and recursion is still
involved, no matter how many queries lie between the first and the second
invocation of the same query.

Where Might I Use a Recursive Query?
Recursive queries may help save time and frustration in various kinds of
problems. Suppose, for example, that you have a pass that gives you free air
travel on any flight of the (fictional) Vannevar Airlines. Way cool. The next
question is, “Where can I go for free?” The FLIGHT table contains all the
flights that Vannevar runs. Table 12-1 shows the flight number and the source
and destination of each flight.

call spiral2(1)

call spiral2(2)

call spiral2(3)

call spiral2(4)

call spiral2(5)

call spiral2(6)

call spiral2(7)

call spiral2(8)

call spiral2(9)

call spiral2(10)

call spiral2(11)

Figure 12-2:
Descending

through
recursive
calls, and

then
climbing

back up to
terminate.

244 Part III: Retrieving Data

Table 12-1 Flights Offered by Vannevar Airlines
Flight No. Source Destination

3141 Portland Orange County

2173 Portland Charlotte

623 Portland Daytona Beach

5440 Orange County Montgomery

221 Charlotte Memphis

32 Memphis Champaign

981 Montgomery Memphis

Figure 12-3 illustrates the routes on a map of the United States.

To get started on your vacation plan, create a database table for FLIGHT by
using SQL as follows:

CREATE TABLE FLIGHT (
FlightNo INTEGER NOT NULL,
Source CHARACTER (30),
Destination CHARACTER (30)

);

North
Pacific Ocean

North
Atlantic Ocean

Gulf of MexicoMEXICO

CANADACANADA

Washington DC

Memphis

Buffalo

New York City

Atlantic City

Boston

Columbus

Albany

Montpelier

Hartford

Augusta

NewarkDetroit

Concord

Chicago

Atlanta

Nashville

Charleston

Columbia

Tallahassee

Miami

Montgomery

Baton Rouge

Dallas

Little Rock

Houston

St. Louis
Topeka

Lincoln

Springfield

Lansing

Des Moines

Oklahoma City

Seattle

Salem

Boise

Sacramento

Phoenix

Los Angeles

Las Vegas

Salt Lake City
Cheyenne

Denver

Santa Fe

Helena

Richmond

Indianapolis

Providence

Jackson

Raleigh

Madison

St. Paul

Bismarck

Trenton

Dover
Annapolis

Greenville

Austin

San Francisco

Frankfort

Philadelphia
Harrisburg

Toronto

Vancouver

Regina

Winnipeg Quebec

Montreal

Kingston
Ottawa

Olympia

New Orleans

Jefferson City

Carson City

Mexicali

Monterrey

Chihuahua

Hermosillo

Memphis

Buffalo

New York City

Atlantic City

Boston

Columbus

Albany

Montpelier

Hartford

Augusta

NewarkDetroit

Concord

Chicago

Atlanta

Nashville

Charleston

Columbia

Tallahassee

Miami

Montgomery

Baton Rouge

Dallas

Little Rock

Houston

St. Louis
Topeka

Lincoln

Springfield

Lansing

Des Moines

Oklahoma City

Seattle

Salem

Boise

Sacramento

Phoenix

Los Angeles

Las Vegas

Salt Lake City
Cheyenne

Denver

Santa Fe

Helena

Richmond

Indianapolis

Providence

Jackson

Raleigh

Madison

St. Paul

Bismarck

Trenton

Dover
Annapolis

Greenville

Austin

San Francisco

Frankfort

Philadelphia
Harrisburg

Toronto

Vancouver

Regina

Winnipeg Quebec

Montreal

Kingston
Ottawa

Olympia

New Orleans

Jefferson City

Carson City

Mexicali

Monterrey

Chihuahua

Hermosillo

Figure 12-3:
Route map

for
Vannevar

Airlines.

245Chapter 12: Recursive Queries

After the table is created, you can populate it with the data shown in
Table 12-1.

Suppose you’re starting from Portland and you want to visit a friend in
Montgomery. Naturally you wonder, “What cities can I reach via Vannevar if I
start from Portland?” and “What cities can I reach via the same airline if I
start from Montgomery?” Some cities are reachable in one hop; others are not.
Some might require two or more hops. You can find all the cities that Vannevar
will take you to, starting from any given city on its route map — but if you do
it one query at a time, you’re . . .

Querying the hard way
To find out what you want to know — provided you have the time and
patience — you can make a series of queries, starting with Portland as the
starting city:

SELECT Destination FROM FLIGHT WHERE Source = “Portland”;

The first query returns Orange County, Charlotte, and Daytona Beach.
Your second query uses the first of these results as a starting point:

SELECT Destination FROM FLIGHT WHERE Source = “Orange
County”;

The second query returns Montgomery. Your third query returns to the
results of the first query and uses the second result as a starting point:

SELECT Destination FROM FLIGHT WHERE Source = “Charlotte”;

The third query returns Memphis. Your fourth query goes back to the results
of the first query and uses the remaining result as a starting point:

SELECT Destination FROM FLIGHT WHERE Source = “Daytona
Beach”;

Sorry, the fourth query returns a null result because Vannevar offers no out-
going flights from Daytona Beach. But the second query returned another
city (Montgomery) as a possible starting point, so your fifth query uses that
result:

SELECT Destination FROM FLIGHT WHERE Source = “Montgomery”;

This query returns Memphis, but you already know it’s among the cities you
can get to (in this case, via Charlotte). But you go ahead and try this latest
result as a starting point for another query:

246 Part III: Retrieving Data

SELECT Destination FROM FLIGHT WHERE Source = “Memphis”;

The query returns Champaign — which you can add to the list of reachable
cities (even if you have to get there in two hops). As long as you’re consider-
ing multiple hops, you plug in Champaign as a starting point:

SELECT Destination FROM FLIGHT WHERE Source = “Champaign’;

Oops. This query returns a null value; Vannevar offers no outgoing flights
from Champaign. (Seven queries so far. Are you fidgeting yet?)

Vannevar doesn’t offer a flight out of Daytona Beach, either, so if you go
there, you’re stuck — which might not be a hardship if it’s Spring Break week.
(Of course, if you use up a week running individual queries to find out where
to go next, you might get a worse headache than you’d get from a week of
partying.) Or you might get stuck in Champaign — in which case, you could
enroll in the University of Illinois and take a few database courses. (They
might even help you figure out how to get out of Daytona or Champaign.)

Granted, this method will (eventually) answer the question, “What cities
are reachable from Portland?” But running one query after another, making
each one dependent on the results of a previous query, is complicated, time-
consuming, and fidgety.

Saving time with a recursive query
A simpler way to get the info you need is to craft a single recursive query that
does the entire job in one operation. Here’s the syntax for such a query:

WITH RECURSIVE
ReachableFrom (Source, Destination)

AS (SELECT Source, Destination
FROM FLIGHT

UNION
SELECT in.Source, out.Destination

FROM ReachableFrom in, FLIGHT out
WHERE in.Destination = out.Source

)
SELECT * FROM ReachableFrom
WHERE Source = “Portland”;

The first time through the recursion, FLIGHT has seven rows, and
ReachableFrom has none. The UNION takes the seven rows from FLIGHT and
copies them into ReachableFrom. At this point, ReachableFrom has the data
shown in Table 12-2.

247Chapter 12: Recursive Queries

Table 12-2 ReachableFrom After One Pass through Recursion
Source Destination

Portland Orange County

Portland Charlotte

Portland Daytona Beach

Orange County Montgomery

Charlotte Memphis

Memphis Champaign

Montgomery Memphis

The second time through the recursion, things start to get interesting. The
WHERE clause (WHERE in.Destination = out.Source) means that you’re
looking only at rows where the Destination field of the ReachableFrom
table equals the Source field of the FLIGHT table. For those rows, you’re
taking the Source field from ReachableFrom and the Destination field from
FLIGHT, and adding those two fields to ReachableFrom as a new row. Table
12-3 shows the result of this iteration of the recursion.

Table 12-3 ReachableFrom After Two Passes
through the Recursion

Source Destination

Portland Orange County

Portland Charlotte

Portland Daytona Beach

Orange County Montgomery

Charlotte Memphis

Memphis Champaign

Montgomery Memphis

Portland Montgomery

Portland Memphis

Orange County Memphis

Charlotte Champaign

248 Part III: Retrieving Data

The results are looking more useful. ReachableFrom now contains all the
Destination cities that are reachable from any Source city in two hops or
less. Next, the recursion processes three-hop trips, and so on, until all possi-
ble destination cities have been reached.

After the recursion is complete, the third and final SELECT statement (which
is outside the recursion) extracts from ReachableFrom only those cities you
can reach from Portland by flying Vannevar. In this example, all six other
cities are reachable from Portland — in few enough hops that you won’t feel
like you’re going by pogo stick.

If you scrutinize the code in the recursive query, it doesn’t look any simpler
than the seven individual queries that it replaces. It does, however, have two
advantages:

� When you set it in motion, it completes the entire operation without any
further intervention.

� It can do the job fast.

Imagine a real-world airline with many more cities on its route map. The more
possible destinations, the bigger the advantage of using the recursive method.

What makes this query recursive? The fact that you’re defining
ReachableFrom in terms of itself. The recursive part of the definition is the
second SELECT statement, the one just after the UNION. ReachableFrom is a
temporary table that progressively is filled with data as the recursion pro-
ceeds. Processing continues until all possible destinations have been added
to ReachableFrom. Any duplicates are eliminated, because the UNION opera-
tor doesn’t add duplicates to the result table. After the recursion completes,
ReachableFrom contains all the cities that are reachable from any starting
city. The third and final SELECT statement returns only those destination
cities that you can reach from Portland. Bon voyage.

Where Else Might I Use a
Recursive Query?

Any problem that you can lay out as a tree-like structure can potentially be
solved by using a recursive query. The classic industrial application is materi-
als processing (the process of turning raw stuff into finished things). Suppose
your company is building a new gasoline-electric hybrid car. Such a machine
is built of subassemblies — engine, batteries, and so on — which are con-
structed from smaller subassemblies (crankshaft, electrodes, and so on) —
which are made of even smaller parts. Keeping track of all the various parts

249Chapter 12: Recursive Queries

can be difficult in a relational database that does not use recursion.
Recursion enables you to start with the complete machine and ferret your
way along any path to get to the smallest part. Want to find out the specs for
the fastening screw that holds the clamp to the negative electrode of the aux-
iliary battery? The WITH RECURSIVE structure gives SQL the capability to
address such problems.

Recursion is also a natural for ‘What if?’ processing. In the Vannevar Airlines
example, what if management discontinues service from Portland to
Charlotte? How does that affect the cities that are reachable from Portland?
A recursive query quickly gives you the answer.

250 Part III: Retrieving Data

Chapter 13

Providing Database Security
In This Chapter
� Controlling access to database tables

� Deciding who has access to what

� Granting access privileges

� Taking access privileges away

� Defeating attempts at unauthorized access

� Passing on the power to grant privileges

A system administrator must have special knowledge of how a database
works. That’s why, in preceding chapters, I discuss the parts of SQL that

create databases and manipulate data — and then (in Chapter 3) introduce
SQL’s facilities for protecting databases from harm or misuse. In this chapter,
I go into more depth on the subject of misuse.

The person in charge of a database can determine who has access to the data-
base — and can set users’ access levels, granting or revoking access to aspects
of the system. The system administrator can even grant — or revoke — the
right to grant and revoke access privileges. If you use them correctly, the
security tools that SQL provides are powerful protectors of important data.
Used incorrectly, these same tools can tie up the efforts of legitimate users in
a big knot of red tape when they’re just trying to do their jobs.

Because databases often contain sensitive information that you shouldn’t
make available to everyone, SQL provides different levels of access — from
complete to none, with several levels in between. By controlling which opera-
tions each authorized user can perform, the database administrator can
make available all the data that the users need to do their jobs — but restrict
access to parts of the database that not everyone should see or change.

The SQL Data Control Language
The SQL statements that you use to create databases form a group known as
the Data Definition Language (DDL). After you create a database, you can use
another set of SQL statements — known collectively as the Data Manipulation
Language (DML) — to add, change, and remove data from the database. SQL
includes additional statements that don’t fall into either of these categories.
Programmers sometimes refer to these statements collectively as the Data
Control Language (DCL). DCL statements primarily protect the database from
unauthorized access, from harmful interaction among multiple database
users, and from power failures and equipment malfunctions. In this chapter,
I discuss protection from unauthorized access.

User Access Levels
SQL:2003 provides controlled access to nine database management functions:

� Creating, seeing, modifying, and deleting: These functions correspond
to the INSERT, SELECT, UPDATE, and DELETE operations that I discuss in
Chapter 6.

� Referencing: Using the REFERENCES keyword (which I discuss in
Chapters 3 and 5) involves applying referential integrity constraints to a
table that depends on another table in the database.

� Using: The USAGE keyword pertains to domains, character sets, colla-
tions, and translations. (I define domains, character sets, collations, and
translations in Chapter 5.)

� Defining new data types: You deal with user-defined type names with
the UNDER keyword.

� Responding to an event: The use of the TRIGGER keyword causes an
SQL statement or statement block to be executed whenever a predeter-
mined event occurs.

� Executing: Using the EXECUTE keyword causes a routine to be executed.

The database administrator
In most installations with more than a few users, the supreme database
authority is the database administrator (DBA). The DBA has all rights and
privileges to all aspects of the database. Being a DBA can give you a feeling of
power — and responsibility. With all that power at your disposal, you can

252 Part III: Retrieving Data

easily mess up your database and destroy thousands of hours of work. DBAs
must think clearly and carefully about the consequences of every action they
perform.

The DBA not only has all rights to the database, but also controls the rights
that other users have. This way, highly trusted individuals can access more
functions — and, perhaps, more tables — than can the majority of users.

The best way to become a DBA is to install the database management system.
The installation manual gives you an account, or login, and a password. That
login identifies you as a specially privileged user. Sometimes, the system calls
this privileged user the DBA, sometimes the system administrator, and some-
times the super user (sorry, no cape and boots provided). As your first official
act after logging in, you should change your password from the default to a
secret one of your own. If you don’t change the password, anyone who reads
the manual can also log in with full DBA privileges. After you change the pass-
word, only people who know the new password can log in as DBA.

I suggest that you share the new DBA password with only a small number of
highly trusted people. After all, a falling meteor could strike you tomorrow;
you could win the lottery; or you may become unavailable to the company in
some other way. Your colleagues must be able to carry on in your absence.
Anyone who knows the DBA login and password becomes the DBA after using
that information to access the system.

If you have DBA privileges, log in as DBA only if you need to perform a spe-
cific task that requires DBA privileges. After you finish, log out. For routine
work, log in by using your own personal login ID and password. This
approach may prevent you from making mistakes that have serious conse-
quences for other users’ tables (as well as for your own).

Database object owners
Another class of privileged user, along with the DBA, is the database object
owner. Tables and views, for example, are database objects. Any user who
creates such an object can specify its owner. A table owner enjoys every pos-
sible privilege associated with that table, including the privilege to grant
access to the table to other people. Because you can base views on underly-
ing tables, someone other than a table’s owner can create a view based on
that owner’s table. However, the view owner only receives privileges that he
normally has for the underlying table. The bottom line is that a user can’t cir-
cumvent the protection on another user’s table simply by creating a view
based on that table.

253Chapter 13: Providing Database Security

The public
In network terms, “the public” consists of all users who are not specially priv-
ileged users (that is, either DBAs or object owners) and to whom a privileged
user hasn’t specifically granted access rights. If a privileged user grants cer-
tain access rights to PUBLIC, then everyone who can access the system gains
those rights.

In most installations, a hierarchy of user privilege exists, in which the DBA
stands at the highest level and the public at the lowest. Figure 13-1 illustrates
the privilege hierarchy.

Database administrator

Table owner Table owner

Grantee Grantee Grantee Grantee

The Public

Grantee with
grant option

Grantee with
grant option

Figure 13-1:
The access

privilege
hierarchy.

254 Part III: Retrieving Data

It’s a tough job, but . . .
You’re probably wondering how you can
become a DBA (database administrator) and
accrue for yourself all the status and admiration
that goes with the title. The obvious answer is
to kiss up to the boss in the hope of landing this
plum assignment. Demonstrating competence,
integrity, and reliability in the performance of
your everyday duties may help. (Actually, the

key requisite is that you’re sucker enough to
take the job. I was kidding when I said that stuff
about status and admiration. Mostly, the DBA
gets the blame if anything goes wrong with the
database — and invariably, something does.) It
helps to have the fortitude of a superhero, even
if you don’t have the cape and boots.

Granting Privileges to Users
The DBA, by virtue of his or her position, has all privileges on all objects in
the database. After all, the owner of an object has all privileges with respect
to that object — and the database itself is an object. No one else has any
privileges with respect to any object, unless someone who already has those
privileges (and the authority to pass them on) specifically grants the privi-
leges. You grant privileges to someone by using the GRANT statement, which
has the following syntax:

GRANT privilege-list
ON object
TO user-list
[WITH GRANT OPTION] ;

In this statement, privilege-list is defined as follows:

privilege [, privilege] ...

or

ALL PRIVILEGES

Here privilege is defined as follows:

SELECT
| DELETE
| INSERT [(column-name [, column-name]...)]
| UPDATE [(column-name [, column-name]...)]
| REFERENCES [(column-name [, column-name]...)]
| USAGE
| UNDER
| TRIGGER
| EXECUTE

In the original statement, object is defined as follows:

[TABLE] <table name>
| DOMAIN <domain name>
| COLLATION <collation name>
| CHARACTER SET <character set name>
| TRANSLATION <transliteration name>
| TYPE <schema-resolved user-defined type name>
| SEQUENCE <sequence generator name>
| <specific routine designator>

And user-list in the statement is defined as follows:

login-ID [, login-ID]...
| PUBLIC

255Chapter 13: Providing Database Security

The preceding syntax considers a view to be a table. The SELECT, DELETE,
INSERT, UPDATE, TRIGGER, and REFERENCES privileges apply to tables and
views only. The USAGE privilege applies to domains, character sets, collations,
and translations. The UNDER privilege applies only to types, and the EXECUTE
privilege applies only to routines. The following sections give examples of the
various ways you can use the GRANT statement and the results of those uses.

Roles
A user name is one type of authorization identifier but not the only one. It
identifies a person (or a program) who is authorized to perform one or more
functions on a database. In a large organization with many users, granting
privileges to every individual employee can be tedious and time-consuming.
SQL:2003 addresses this problem by introducing the notion of roles.

A role, identified by a role name, is a set of zero or more privileges that can
be granted to multiple people who all require the same level of access to the
database. For example, everyone who performs the role SecurityGuard has
the same privileges. These privileges are different from those granted to the
people who have the role SalesClerk.

As always, not every feature mentioned in the SQL:2003 specification is avail-
able in every implementation. Check your DBMS documentation before you
try to use roles.

You can create roles by using syntax similar to the following:

CREATE ROLE SalesClerk ;

After you’ve created a role, you can assign people to the role with the GRANT
statement, similar to the following:

GRANT SalesClerk to Becky ;

You can grant privileges to a role in exactly the same way that you grant priv-
ileges to users, with one exception: It won’t argue or complain.

Inserting data
To grant a role the privilege of adding data to a table, follow this example:

GRANT INSERT
ON CUSTOMER
TO SalesClerk ;

256 Part III: Retrieving Data

This privilege enables any clerk in the sales department to add new customer
records to the CUSTOMER table.

Looking at data
To enable people to view the data in a table, use the following example:

GRANT SELECT
ON PRODUCT
TO PUBLIC ;

This privilege enables anyone with access to the system (PUBLIC) to view the
PRODUCT table’s contents.

This statement can be dangerous. Columns in the PRODUCT table may con-
tain information that not everyone should see, such as CostOfGoods. To
provide access to most information while withholding access to sensitive
information, define a view on the table that doesn’t include the sensitive
columns. Then grant SELECT privileges on the view rather than the underly-
ing table. The following example shows the syntax for this procedure:

CREATE VIEW MERCHANDISE AS
SELECT Model, ProdName, ProdDesc, ListPrice

FROM PRODUCT ;
GRANT SELECT

ON MERCHANDISE
TO PUBLIC ;

Using the MERCHANDISE view, the public doesn’t get to see the PRODUCT
table’s CostOfGoods column or any other column except the four listed in
the CREATE VIEW statement.

Modifying table data
In any active organization, table data changes over time. You need to grant to
some people the right and power to make changes and to prevent everyone
else from doing so. To grant change privileges, follow this example:

GRANT UPDATE (BonusPct)
ON BONUSRATE
TO SalesMgr ;

The sales manager can adjust the bonus rate that salespeople receive for
sales (the BonusPct column), based on changes in market conditions. The
sales manager can’t, however, modify the values in the MinAmount and

257Chapter 13: Providing Database Security

MaxAmount columns that define the ranges for each step in the bonus sched-
ule. To enable updates to all columns, you must specify either all column
names or no column names, as shown in the following example:

GRANT UPDATE
ON BONUSRATE
TO VPSales ;

Deleting obsolete rows from a table
Customers go out of business or stop buying for some other reason.
Employees quit, retire, are laid off, or die. Products become obsolete. Life
goes on, and things that you tracked in the past may no longer be of interest
to you. Someone needs to remove obsolete records from your tables. You
want to carefully control who can remove which records. Regulating such
privileges is another job for the GRANT statement, as shown in the following
example:

GRANT DELETE
ON EMPLOYEE
TO PersonnelMgr ;

The personnel manager can remove records from the EMPLOYEE table. So
can the DBA and the EMPLOYEE table owner (who’s probably also the DBA).
No one else can remove personnel records (unless another GRANT statement
gives that person the power to do so).

Referencing related tables
If one table includes a second table’s primary key as a foreign key, information
in the second table becomes available to users of the first table. This situation
potentially creates a dangerous “back door” through which unauthorized
users can extract confidential information. In such a case, a user doesn’t need
access rights to a table to discover something about its contents. If the user
has access rights to a table that references the target table, those rights often
enable him to access the target table as well.

Suppose, for example, that the table LAYOFF_LIST contains the names of the
employees who will be laid off next month. Only authorized management has
SELECT access to the table. An unauthorized employee, however, deduces
that the table’s primary key is EmpID. The employee then creates a new table
SNOOP, which has EmpID as a foreign key, enabling him to sneak a peek at
LAYOFF_LIST. (I describe how to create a foreign key with a REFERENCES
clause in Chapter 5. It’s high on the list of techniques every system adminis-
trator should know.)

258 Part III: Retrieving Data

CREATE TABLE SNOOP
(EmpID INTEGER REFERENCES LAYOFF_LIST) ;

Now all that the employee needs to do is try to INSERT rows corresponding
to all employee ID numbers into SNOOP. The table accepts the inserts for only
the employees on the layoff list. All rejected inserts are for employees not on
the list.

SQL:2003 prevents this kind of security breach by requiring that a privileged
user explicitly grant any reference rights to other users, as shown in the fol-
lowing example:

GRANT REFERENCES (EmpID)
ON LAYOFF_LIST
TO PERSONNEL_CLERK ;

Using domains, character sets, collations,
and translations
Domains, character sets, collations, and translations also have an effect on
security issues. Created domains, in particular, must be watched closely to
avoid their use as a way to undermine your security measures.

You can define a domain that encompasses a set of columns. In doing so, you
want all these columns to have the same type and to share the same con-
straints. The columns you create in your CREATE DOMAIN inherit the type
and constraints of the domain. You can override these characteristics for
specific columns, if you want, but domains provide a convenient way to apply
numerous characteristics to multiple columns with a single declaration.

Domains come in handy if you have multiple tables that contain columns
with similar characteristics. Your business database, for example, may con-
sist of several tables, each of which contains a Price column that should
have a type of DECIMAL(10,2) and values that are nonnegative and no
greater than 10,000. Before you create the tables that hold these columns,
create a domain that specifies the columns’ characteristics, as does the fol-
lowing example:

CREATE DOMAIN PriceTypeDomain DECIMAL (10,2)
CHECK (Price >= 0 AND Price <= 10000) ;

Perhaps you identify your products in multiple tables by ProductCode,
which is always of type CHAR (5), with a first character of X, C, or H and a
last character of either 9 or 0. You can create a domain for these columns,
too, as in the following example:

259Chapter 13: Providing Database Security

CREATE DOMAIN ProductCodeDomain CHAR (5)
CHECK (SUBSTR (VALUE, 1,1) IN (‘X’, ‘C’, ‘H’)
AND SUBSTR (VALUE, 5, 1) IN (9, 0)) ;

With the domains in place, you can now proceed to create tables, as follows:

CREATE TABLE PRODUCT
(ProductCode ProductCodeDomain,
ProductName CHAR (30),
Price PriceTypeDomain) ;

In the table definition, instead of giving the data type for ProductCode and
Price, specify the appropriate domain. This action gives those columns the
correct type and also applies the constraints you specify in your CREATE
DOMAIN statements.

Certain security implications go with the use of domains. What if someone
wants to use the domains you create — can this cause problems? Yes.
What if someone creates a table with a column that has a domain of
PriceTypeDomain? That person can assign progressively larger values to
that column until it rejects a value. By doing so, the person can determine the
upper bound on PriceType that you specify in the CHECK clause of your
CREATE DOMAIN statement. If you consider that upper bound private informa-
tion, you don’t want to enable others to use the PriceType domain. To pro-
tect you in situations such as this example, SQL enables only those to whom
the domain owner explicitly grants permission to use domains. Thus only the
domain owner (as well as the DBA) can grant such permission. You can grant
permission by using a statement such as the one shown in the following
example:

GRANT USAGE ON DOMAIN PriceType TO SalesMgr ;

Different security problems may arise if you DROP domains. Tables that con-
tain columns that you define in terms of a domain cause problems if you try
to DROP the domain. You may need to DROP all such tables first. Or you may
find yourself unable to DROP the domain. How a domain DROP is handled may
vary from one implementation to another. SQL Server may do it one way,
whereas Oracle does it another way. At any rate, you may want to restrict
who can DROP domains. The same applies to character sets, collations, and
translations.

Causing SQL statements to be executed
Sometimes the execution of one SQL statement triggers the execution of
another SQL statement, or even a block of statements. SQL:2003 supports
triggers. A trigger specifies a trigger event, a trigger action time, and one or

260 Part III: Retrieving Data

more triggered actions. The trigger event causes the trigger to execute or
“fire.” The trigger action time determines when the triggered action occurs,
either just before or just after the trigger event. The triggered action is the
execution of one or more SQL statements. If more than one SQL statement is
triggered, the statements must all be contained within a BEGIN ATOMIC...
END structure. The trigger event can be an INSERT, UPDATE, or DELETE
statement.

For example, you can use a trigger to execute a statement that checks the
validity of a new value before an UPDATE is allowed. If the new value is found
to be invalid, the update can be aborted.

A user or role must have the TRIGGER privilege in order to create a trigger. An
example might be:

CREATE TRIGGER CustomerDelete BEFORE DELETE
ON CUSTOMER FOR EACH ROW
WHEN State = NY
INSERT INTO CUSTLOG VALUES (‘deleted a NY customer’) :

Whenever a New York customer is deleted from the CUSTOMERS table, an
entry in the log table CUSTLOG will record the deletion.

Granting the Power to Grant Privileges
The DBA can grant any privileges to anyone. An object owner can grant any
privileges on that object to anyone. But users who receive privileges this way
can’t in turn grant those privileges to someone else. This restriction helps
the DBA or table owner retain control. Only users the DBA or object owner
empowers to do so can gain access to the object in question.

From a security standpoint, putting limits on the capability to delegate
access privileges makes a lot of sense. Many occasions arise, however, in
which users need such delegation authority. Work can’t come to a screeching
halt every time someone is ill, on vacation, or out to lunch. You can trust
some users with the power to delegate their access rights to reliable desig-
nated alternates. To pass such a right of delegation to a user, the GRANT uses
the WITH GRANT OPTION clause. The following statement shows one example
of how you can use this clause:

GRANT UPDATE (BonusPct)
ON BONUSRATE
TO SalesMgr
WITH GRANT OPTION ;

Now the sales manager can delegate the UPDATE privilege by issuing the fol-
lowing statement:

261Chapter 13: Providing Database Security

GRANT UPDATE (BonusPct)
ON BONUSRATE
TO AsstSalesMgr ;

After the execution of this statement, the assistant sales manager can make
changes to the BonusPct column in the BONUSRATE table — a power she
didn’t have before.

A tradeoff exists between security and convenience. The owner of the
BONUSRATE table relinquishes considerable control in granting the UPDATE
privilege to the sales manager by using the WITH GRANT OPTION. The table
owner hopes that the sales manager takes this responsibility seriously and is
careful about passing on the privilege.

Taking Privileges Away
If you have a way to give access privileges to people, you better also have a
way of taking those privileges away. People’s job functions change, and with
these changes, their need for access to data changes. People may even leave
the organization to join a competitor. You should probably revoke all the
access privileges of such people. SQL provides for the removal of access
privileges by using the REVOKE statement. This statement acts like the GRANT
statement does, except that it has the reverse effect. The syntax for this
statement is as follows:

REVOKE [GRANT OPTION FOR] privilege-list
ON object
FROM user-list [RESTRICT|CASCADE] ;

You can use this structure to revoke specified privileges while leaving others
intact. The principal difference between the REVOKE statement and the GRANT
statement is the presence of the optional RESTRICT or CASCADE keyword in
the REVOKE statement. If you used WITH GRANT OPTION to grant the privi-
leges you’re revoking, using CASCADE in the REVOKE statement revokes privi-
leges for the grantee and also for anyone to whom that person granted those
privileges as a result of the WITH GRANT OPTION clause. On the other hand,
the REVOKE statement with the RESTRICT option works only if the grantee
hasn’t delegated the specified privileges. In the latter case, the REVOKE state-
ment revokes the grantee’s privileges. If the grantee passed on the specified
privileges, the REVOKE statement with the RESTRICT option doesn’t revoke
anything and instead returns an error code.

You can use a REVOKE statement with the optional GRANT OPTION FOR clause
to revoke only the grant option for specified privileges while enabling the
grantee to retain those privileges for himself. If the GRANT OPTION FOR

262 Part III: Retrieving Data

clause and the CASCADE keyword are both present, you revoke all privileges
that the grantee granted, along with the grantee’s right to bestow such privi-
leges — as if you’d never granted the grant option in the first place. If the
GRANT OPTION FOR clause and the RESTRICT clause are both present, one of
two things happens:

� If the grantee didn’t grant to anyone else any of the privileges you’re
revoking, then the REVOKE statement executes and removes the
grantee’s ability to grant privileges.

� If the grantee has already granted at least one of the privileges you’re
revoking, the REVOKE doesn’t execute and returns an error code instead.

The fact that you can grant privileges by using WITH GRANT OPTION, com-
bined with the fact that you can also selectively revoke privileges, makes
system security much more complex than it appears at first glance. Multiple
grantors, for example, can conceivably grant a privilege to any single user. If
one of those grantors then revokes the privilege, the user still retains that
privilege because of the still-existing grant from another grantor. If a privilege
passes from one user to another by way of the WITH GRANT OPTION, this sit-
uation creates a chain of dependency, in which one user’s privileges depend
on those of another user. If you’re a DBA or object owner, always be aware
that, after you grant a privilege by using the WITH GRANT OPTION clause,
that privilege may show up in unexpected places. Revoking the privilege from
unwanted users while letting legitimate users retain the same privilege may
prove challenging. In general, the GRANT OPTION and CASCADE clauses
encompass numerous subtleties. If you use these clauses, check both the
SQL:2003 standard and your product documentation carefully to ensure that
you understand how the clauses work.

Using GRANT and REVOKE Together
Saves Time and Effort

Multiple privileges for multiple users on selected table columns may require
a lot of typing. Consider this example: The vice president of sales wants
everyone in sales to see everything in the CUSTOMER table. But only sales
managers should update, delete, or insert rows. Nobody should update the
CustID field. The sales managers’ names are Tyson, Keith, and David. You
can grant appropriate privileges to these managers with GRANT statements,
as follows:

GRANT SELECT, INSERT, DELETE
ON CUSTOMER
TO Tyson, Keith, David ;

GRANT UPDATE
ON CUSTOMER (Company, CustAddress, CustCity,

263Chapter 13: Providing Database Security

CustState, CustZip, CustPhone, ModLevel)
TO Tyson, Keith, David ;

GRANT SELECT
ON CUSTOMER
TO Jenny, Valerie, Melody, Neil, Robert, Sam,

Brandon, MichelleT, Allison, Andrew,
Scott, MichelleB, Jaime, Linleigh, Matthew, Amanda;

That should do the trick. Everyone has SELECT rights on the CUSTOMER
table. The sales managers have full INSERT and DELETE rights on the table,
and they can update any column but the CustID column. Here’s an easier
way to get the same result:

GRANT SELECT
ON CUSTOMER
TO SalesReps ;

GRANT INSERT, DELETE, UPDATE
ON CUSTOMER
TO Tyson, Keith, David ;

REVOKE UPDATE
ON CUSTOMER (CustID)
FROM Tyson, Keith, David ;

You still take three statements in this example for the same protection of the
three statements in the preceding example. No one may change data in the
CustID column; only Tyson, Keith, and David have INSERT, DELETE, and
UPDATE privileges. These latter three statements are significantly shorter
than those in the preceding example because you don’t name all the users in
the sales department and all the columns in the table. (The time you spend
typing names is also significantly shorter. That’s the idea.)

264 Part III: Retrieving Data

Part IV
Controlling
Operations

In this part . . .

After creating a database and filling it with data, you
want to protect your new database from harm or

misuse. In this part, I discuss in detail SQL’s tools for main-
taining the safety and integrity of your data. SQL’s Data
Control Language (DCL) enables you to protect your data
from misuse by selectively granting or denying access to the
data. You can protect your database from other threats —
such as interference from simultaneous access by multiple
users — by using SQL’s transaction-processing facilities. You
can use constraints to help prevent users from entering bad
data in the first place. Of course, even SQL can’t defend you
against bad application design — that’s strictly a live-and-
learn proposition. But if you take full advantage of the tools
that SQL provides, SQL can protect your data from most
problems.

Chapter 14

Protecting Data
In This Chapter
� Avoiding database damage

� Understanding the problems caused by concurrent operations

� Dealing with concurrency problems through SQL mechanisms

� Tailoring protection to your needs with SET TRANSACTION
� Protecting your data without paralyzing operations

Everyone has heard of Murphy’s Law — usually stated, “If anything can go
wrong, it will.” We joke about this pseudo-law because most of the time

things go fine. At times, we feel lucky because we’re untouched by one of the
basic laws of the universe. When unexpected problems arise, we usually rec-
ognize what has happened and deal with it.

In a complex structure, the potential for unanticipated problems shoots way
up (a mathematician might say it “increases approximately as the square of
the complexity”). Thus large software projects are almost always delivered
late and are often loaded with bugs. A nontrivial, multiuser DBMS application
is a large, complex structure. In the course of operation, many things can go
wrong. Methods have been developed for minimizing the impact of these
problems, but the problems can never be eliminated completely. This is good
news for professional database maintenance and repair people, because
automating them out of a job will probably never be possible.

Threats to Data Integrity
Cyberspace (including your network) is a nice place to visit, but for the data
living there, it’s no picnic. Data can be damaged or corrupted in a variety of
ways. Chapter 5 discusses problems resulting from bad input data, operator
error, and deliberate destruction. Poorly formulated SQL statements and
improperly designed applications can also damage your data, and figuring
out how doesn’t take much imagination. Two relatively obvious threats —

platform instability and equipment failure — can also trash your data. Both
hazards are detailed in this section as well as problems that can be caused by
concurrent access.

Platform instability
Platform instability is a category of problem that shouldn’t even exist, but
alas, it does. It is most prevalent when you’re running one or more new and
relatively untried components in your system. Problems can lurk in a new
DBMS release, a new operating system version, or new hardware. Conditions
or situations that have never appeared before show up while you’re running
a critical job. Your system locks up, and your data is damaged. Beyond direct-
ing a few choice words at your computer and the people who built it, you
can’t do much except hope that your latest backup was a good one.

Never put important production work on a system that has any unproven
components. Resist the temptation to put your bread-and-butter work on an
untried beta release of the newest, most function-laden version of your DBMS
or operating system. If you must gain some hands-on experience with some-
thing new, do so on a machine that is completely isolated from your produc-
tion network.

Equipment failure
Even well-proven, highly reliable equipment fails sometimes, sending your
data to the great beyond. Everything physical wears out eventually — even
modern, solid-state computers. If such a failure happens while your database
is open and active, you can lose data — and sometimes (even worse) not
realize it. Such a failure will happen sooner or later. If Murphy’s Law is in
operation that day, the failure will happen at the worst possible time.

One way to protect data against equipment failure is redundancy. Keep extra
copies of everything. For maximum safety (provided your organization can
swing it financially), have duplicate hardware configured exactly like your pro-
duction system. Have database and application backups that can be loaded
and run on your backup hardware when needed. If cost constraints keep you
from duplicating everything (which effectively doubles your costs), at least
be sure to back up your database and applications frequently enough that an
unexpected failure doesn’t require you to reenter a large amount of data.

Another way to avoid the worst consequences of equipment failure is to use
transaction processing — a topic that takes center stage later in this chapter.
A transaction is an indivisible unit of work. Either the entire transaction is

268 Part IV: Controlling Operations

executed or none of it is. If this all-or-nothing approach seems drastic, remem-
ber that the worst problems arise when a series of database operations is only
partially processed.

Concurrent access
Assume that you’re running on proven hardware and software, your data is
good, your application is bug-free, and your equipment is inherently reliable.
Data utopia, right? Not quite. Problems can still arise when multiple people
try to use the same database table at the same time (concurrent access) and
their computers argue about who gets to go first (contention). Multiple-user
database systems must be able to handle the ruckus efficiently.

Transaction interaction trouble
Contention troubles can lurk even in applications that seem straightforward.
Consider this example. You’re writing an order-processing application that
involves four tables: ORDER_MASTER, CUSTOMER, LINE_ITEM, and INVEN-
TORY. The following conditions apply:

� The ORDER_MASTER table has OrderNumber as a primary key and
CustomerNumber as a foreign key that references the CUSTOMER table.

� The LINE_ITEM table has LineNumber as a primary key, ItemNumber as
a foreign key that references the INVENTORY table, and Quantity as
one of its columns.

� The INVENTORY table has ItemNumber as a primary key; it also has a
field named QuantityOnHand.

� All three tables have other columns, but they don’t enter into this
example.

Your company policy is to ship each order completely or not at all. No partial
shipments or back orders are allowed. (Relax. It’s a hypothetical situation.)
You write the ORDER_PROCESSING application to process each incoming
order in the ORDER_MASTER table as follows: It first determines whether
shipping all the line items is possible. If so, it writes the order and then decre-
ments the QuantityOnHand column of the INVENTORY table as required.
(This deletes the affected entries from the ORDER_MASTER and LINE_ITEM
tables.) So far, so good. You set up the application to process orders in one
of two ways:

� Method 1 processes the INVENTORY row that corresponds to each row
in the LINE_ITEM table. If QuantityOnHand is large enough, the applica-
tion decrements that field. If QuantityOnHand is not large enough, it
rolls back the transaction to restore all inventory reductions made to
other LINE_ITEMs in this order.

269Chapter 14: Protecting Data

� Method 2 checks every INVENTORY row that corresponds to a row in
the order’s LINE_ITEMs. If they are all big enough, then it processes
those items by decrementing them.

Normally, Method 1 is more efficient when you succeed in processing the
order; Method 2 is more efficient when you fail. Thus, if most orders can be
filled most of the time, you’re better off using Method 1. If most orders can’t
be filled most of the time, you’re better off with Method 2. Suppose this hypo-
thetical application is up and running on a multiuser system that doesn’t
have adequate concurrency control. Yep. Trouble is brewing, all right. It looks
like this:

� User 1 starts using Method 1 to process an order: Ten pieces of Item 1
are in stock, and User 1’s order takes them all. The order-processing
function chugs along, decrementing the quantity of Item 1 to zero. Then
things get (as the Chinese proverb says) interesting. User 2 processes a
small order for one piece of Item 1 — and finds that not enough Item 1s
are in stock to fill the order. User 2’s order is rolled back because it can’t
be filled. Meanwhile, User 1 tries to order five pieces of Item 37, but only
four are in stock. User 1’s order is rolled back because it can’t be com-
pletely filled. The INVENTORY table is now back to the state it was in
before either user started operating. Neither order is filled, even though
User 2’s order could be.

� Method 2 fares no better, although for a different reason. User 1 checks
all the items ordered and decides that all the items ordered are avail-
able. Then User 2 comes in and processes an order for one of those
items before User 1 performs the decrement operation; User 1’s transac-
tion fails.

Serialization eliminates harmful interactions
No conflict occurs if transactions are executed serially rather than concur-
rently. (Taking turns — what a concept.) In the first example, if User 1’s
unsuccessful transaction was completed before User 2’s transaction started,
the ROLLBACK function would have made the item ordered by User 2 available
during User 2’s transaction. If the transactions had run serially in the second
example, User 2 would have had no opportunity to change the quantity of
any item until User 1’s transaction was complete. User 1’s transaction com-
pletes, either successfully or unsuccessfully — and User 2 can see how much
of the desired item is really on hand.

If transactions are executed serially, one after the other, they have no chance
of interacting destructively. Execution of concurrent transactions is serializ-
able if the result is the same as it would be if the transactions were executed
serially.

270 Part IV: Controlling Operations

Serializing concurrent transactions isn’t a cure-all. Tradeoffs exist between
performance and protection from harmful interactions. The more you isolate
transactions from each other, the more time it takes to perform a function. (In
cyberspace as in real life, waiting in line takes time.) Be aware of the tradeoffs
so you can configure your system for adequate protection — but not more
protection than you need. Controlling concurrent access too tightly can kill
overall system performance.

Reducing Vulnerability to
Data Corruption

You can take precautions at several levels to reduce the chances of losing
data through some mishap or unanticipated interaction. You can set up your
DBMS to take some of these precautions for you. Like guardian angels, the
precautionary actions you take protect you from harm and operate behind
the scenes; you don’t see them and probably don’t even know they’re helping
you. Your database administrator (DBA) can take other precautions at his or
her discretion. You may or may not be aware of them directly. As the devel-
oper, you can take precautions as you write your code. To avoid a lot of grief,
get into the habit of adhering to a few simple principles automatically so they
are always included in your code or in your interactions with your database:

� Use SQL transactions.

� Tailor the level of isolation to balance performance and protection.

� Know when and how to set transactions, lock database objects, and per-
form backups.

Details coming right up.

Using SQL transactions
The transaction is one of SQL’s main tools for maintaining database integrity.
An SQL transaction encapsulates all the SQL statements that can have an
effect on the database. An SQL transaction is completed with either a COMMIT
or ROLLBACK statement:

� If the transaction finishes with a COMMIT, the effects of all the statements
in the transaction are applied to the database in one rapid-fire sequence.

� If the transaction finishes with a ROLLBACK, the effects of all the state-
ments are rolled back (that is, undone), and the database returns to the
state it was in before the transaction began.

271Chapter 14: Protecting Data

In this discussion, the term application means either an execution of a pro-
gram (whether in COBOL, C, or some other programming language) or a
series of actions performed at a terminal during a single logon.

An application can include a series of SQL transactions. The first SQL trans-
action begins when the application begins; the last SQL transaction ends
when the application ends. Each COMMIT or ROLLBACK that the application
performs ends one SQL transaction and begins the next. For example, an
application with three SQL transactions has the following form:

Start of the application
Various SQL statements (SQL transaction-1)

COMMIT or ROLLBACK
Various SQL statements (SQL transaction-2)

COMMIT or ROLLBACK
Various SQL statements (SQL transaction-3)

COMMIT or ROLLBACK
End of the application

“SQL transaction” is used because the application may be using other facili-
ties (such as for network access) that do other sorts of transactions. In the
following discussion, transaction is used to mean SQL transaction specifically.

A normal SQL transaction has an access mode that is either READ-WRITE or
READ-ONLY; it has an isolation level that is SERIALIZABLE, REPEATABLE
READ, READ COMMITTED, or READ UNCOMMITTED. (Find transaction character-
istics in the “Isolation levels” section, later in this chapter.) The default char-
acteristics are READ-WRITE and SERIALIZABLE. If you want any other
characteristics, you have to specify them with a SET TRANSACTION state-
ment such as the following:

SET TRANSACTION READ ONLY ;

or

SET TRANSACTION READ ONLY REPEATABLE READ ;

or

SET TRANSACTION READ COMMITTED ;

You can have multiple SET TRANSACTION statements in an application, but
you can specify only one in each transaction — and it must be the first SQL
statement executed in the transaction. If you want to use a SET TRANSACTION
statement, execute it either at the beginning of the application or after a
COMMIT or ROLLBACK. You must perform a SET TRANSACTION at the beginning
of every transaction for which you want non-default properties, because each
new transaction after a COMMIT or ROLLBACK is automatically given the
default properties.

272 Part IV: Controlling Operations

A SET TRANSACTION statement can also specify a DIAGNOSTICS SIZE, which
determines the number of error conditions for which the implementation
should be prepared to save information. (Such a numerical limit is necessary
because an implementation can detect more than one error during a state-
ment.) The SQL default for this limit is implementation-defined, and that
default is almost always adequate.

The default transaction
The default SQL transaction has characteristics that are satisfactory for most
users most of the time. If necessary, you can specify different transaction
characteristics with a SET TRANSACTION statement, as described in the pre-
vious section. (SET TRANSACTION gets its own spotlight treatment later in
the chapter.)

The default transaction makes a few other implicit assumptions:

� The database will change over time.

� It’s always better to be safe than sorry.

It sets the mode to READ-WRITE which, as you may expect, enables you to
issue statements that change the database. It also sets the isolation level to
SERIALIZABLE, which is the highest level of isolation possible (thus the
safest). The default diagnostics size is implementation-dependent. Look at
your SQL documentation to see what that size is for your system.

Isolation levels
Ideally, the work that the system performs for your transaction is completely
isolated from anything being done by other transactions that happen to exe-
cute concurrently with yours. On a real-world, multiuser system, however,
complete isolation is not always feasible. It may exact too large a perfor-
mance penalty. A tradeoff question arises: “How much isolation do you really
want, and how much are you willing to pay for it in terms of performance?”

Getting mucked up by a dirty read
The weakest level of isolation is called READ UNCOMMITTED, which allows the
sometimes-problematic dirty read. A dirty read is a situation in which a change
made by one user can be read by a second user before the first user COMMITs
(that is, finalizes) the change. The problem arises when the first user aborts
and rolls back his transaction. The second user’s subsequent operations are
now based on an incorrect value. The classic example of this foul-up can
appear in an inventory application: One user decrements inventory; a second

273Chapter 14: Protecting Data

user reads the new (lower) value. The first user rolls back his transaction
(restoring the inventory to its initial value), but the second user, thinking
inventory is low, orders more stock and possibly creates a severe overstock.
And that’s if you’re lucky.

Don’t use the READ UNCOMMITTED isolation level unless you don’t care about
accurate results.

You can use READ UNCOMMITTED if you want to generate approximate statisti-
cal data, such as:

� Maximum delay in filling orders

� Average age of salespeople who don’t make quota

� Average age of new employees

In many such cases, approximate information is sufficient; the extra (perfor-
mance) cost of the concurrency control required to give an exact result may
not be worthwhile.

Getting bamboozled by a nonrepeatable read
The next highest level of isolation is READ COMMITTED: A change made by
another transaction isn’t visible to your transaction until the other user has
COMMITted the other transaction. This level gives you a better result than
you can get from READ UNCOMMITTED, but it’s still subject to a nonrepeatable
read — a serious problem that happens like a comedy of errors.

To illustrate, consider the classic inventory example. User 1 queries the data-
base to see how many items of a particular product are in stock. The number
is ten. At almost the same time, User 2 starts — and then COMMITs — a trans-
action that records an order for ten units of that same product, decrementing
the inventory, leaving none. Now User 1, having seen that ten are available,
tries to order five of them. Five are no longer left, however. User 2 has, in
effect, raided the pantry. User 1’s initial read of the quantity available is not
repeatable. The quantity has changed out from under User 1; any assump-
tions made on the basis of the initial read are not valid.

Risking the phantom read
An isolation level of REPEATABLE READ guarantees that the nonrepeatable-
read problem doesn’t happen. This isolation level, however, is still haunted
by the phantom read — a problem that arises when the data a user is reading
changes in response to another transaction (and does not show the change
on-screen) while the user is reading it.

Suppose, for example, that User 1 issues a command whose search condition
(the WHERE clause or HAVING clause) selects a set of rows, and, immediately
afterward, User 2 performs and commits an operation that changes the data

274 Part IV: Controlling Operations

in some of those rows. Those data items met User 1’s search condition at the
start of this snafu, but now they no longer do. Maybe some other rows that
first did not meet the original search condition now do meet it. User 1, whose
transaction is still active, has no inkling of these changes; the application
behaves as if nothing has happened. The hapless User 1 issues another SQL
statement with the same search conditions as the original one, expecting to
retrieve the same rows. Instead, the second operation is performed on rows
other than those used in the first operation. Reliable results go out the
window, spirited away by the phantom read.

Getting a reliable (if slower) read
An isolation level of SERIALIZABLE is not subject to any of the problems that
beset the other three levels. At this level, concurrent transactions can (in
principle) be run serially — one after the other — rather than in parallel, and
the results come out the same. If you’re running at this isolation level, hard-
ware or software problems can still cause your transaction to fail, but at least
you don’t have to worry about the validity of your results if you know that
your system is functioning properly.

Of course, superior reliability may come at the price of slower performance,
so we’re back in Tradeoff City. Table 14-1 sums up the tradeoff terms, show-
ing the four isolation levels and the problems they solve.

Table 14-1 Isolation Levels and Problems Solved
Isolation Level Problems Solved

READ UNCOMMITTED None

READ COMMITTED Dirty read

REPEATABLE READ Dirty read

Nonrepeatable read

SERIALIZABLE Dirty read

Nonrepeatable read

Phantom read

The implicit transaction-starting statement
Some SQL implementations require that you signal the beginning of a transac-
tion with an explicit statement, such as BEGIN or BEGIN TRAN. SQL:2003 does
not. If you don’t have an active transaction and you issue a statement that
calls for one, SQL:2003 starts a default transaction for you. CREATE TABLE,

275Chapter 14: Protecting Data

SELECT, and UPDATE are examples of statements that require the context of
a transaction. Issue one of these statements, and SQL starts a transaction
for you.

SET TRANSACTION
On occasion, you may want to use transaction characteristics that are differ-
ent from those set by default. You can specify different characteristics with a
SET TRANSACTION statement before you issue your first statement that actu-
ally requires a transaction. The SET TRANSACTION statement enables you to
specify mode, isolation level, and diagnostics size.

To change all three, for example, you may issue the following statement:

SET TRANSACTION
READ ONLY,
ISOLATION LEVEL READ UNCOMMITTED,
DIAGNOSTICS SIZE 4 ;

With these settings, you can’t issue any statements that change the database
(READ ONLY), and you have set the lowest and most hazardous isolation level
(READ UNCOMMITTED). The diagnostics area has a size of 4. You are making
minimal demands on system resources.

In contrast, you may issue this statement:

SET TRANSACTION
READ WRITE,
ISOLATION LEVEL SERIALIZABLE,
DIAGNOSTICS SIZE 8 ;

These settings enable you to change the database, give you the highest level
of isolation, and give you a larger diagnostics area. This setting makes larger
demands on system resources. Depending on your implementation, these set-
tings may turn out to be the same as those used by the default transaction.
Naturally, you can issue SET TRANSACTION statements with other choices for
isolation level and diagnostics size.

Set your transaction isolation level as high as you need to, but no higher.
Always setting your isolation level to SERIALIZABLE just to be on the safe
side may seem reasonable, but it isn’t so for all systems. Depending on your
implementation and what you’re doing, you may not need to do so, and per-
formance can suffer significantly if you do. If you don’t intend to change the
database in your transaction, for example, set the mode to READ ONLY.
Bottom line: Don’t tie up any system resources that you don’t need.

276 Part IV: Controlling Operations

COMMIT
Although SQL:2003 doesn’t have an explicit transaction-starting keyword, it
has two that terminate a transaction: COMMIT and ROLLBACK. Use COMMIT
when you have come to the end of the transaction and you want to make per-
manent the changes that you have made to the database (if any). You may
include the optional keyword WORK (COMMIT WORK) if you want. If an error is
encountered or the system crashes while a COMMIT is in progress, you may
have to roll the transaction back and try it again.

ROLLBACK
When you come to the end of a transaction, you may decide that you don’t
want to make permanent the changes that have occurred during the transac-
tion. In fact, you want to restore the database to the state it was in before the
transaction began. To do this, issue a ROLLBACK statement. ROLLBACK is a fail-
safe mechanism. Even if the system crashes while a ROLLBACK is in progress,
you can restart the ROLLBACK after the system is restored, and it restores the
database to its pretransaction state.

Locking database objects
The isolation level set either by default or by a SET TRANSACTION statement
tells the DBMS how zealous to be in protecting your work from interaction
with the work of other users. The main protection from harmful transactions
that the DBMS gives to you is its application of locks to the database objects
you’re using. Here are a few examples:

� The table row you’re accessing is locked, preventing others from access-
ing that record while you’re using it.

� An entire table is locked, if you’re performing an operation that could
affect the whole table.

� Reading but not writing is allowed. Sometimes, neither is allowed.

Each implementation handles locking in its own way. Some implementations
are more bulletproof than others, but most up-to-date systems protect you
from the worst problems that can arise in a concurrent-access situation.

277Chapter 14: Protecting Data

Backing up your data
Backup is a protective action that your DBA should perform on a regular
basis. All system elements should be backed up at intervals that depend on
how frequently they’re updated. If your database is updated daily, it should
be backed up daily. Your applications, forms, and reports may change, too,
though less frequently. Whenever you make changes to them, your DBA
should back up the new versions.

Keep several generations of backups. Sometimes, database damage doesn’t
become evident until some time has passed. To return to the last good ver-
sion, you may have to go back several backup versions.

Many different ways exist to perform backups:

� Use SQL to create backup tables and copy data into them.

� Use an implementation-defined mechanism that backs up the whole
database or portions of it. This mechanism is generally more convenient
and efficient than using SQL.

� Your installation may have a mechanism in place for backing up every-
thing, including databases, programs, documents, spreadsheets, utili-
ties, and computer games. If so, you may not have to do anything
beyond assuring yourself that the backups are performed frequently
enough to protect you.

You may hear database designers say they want their databases to have
ACID. Well, no, they’re not planning to zonk their creations with a 1960s psy-
chedelic, or dissolve the data they contain into a bubbly mess. ACID is simply
an acronym for Atomicity, Consistency, Isolation, and Durability. These four
characteristics are necessary to protect a database from corruption:

� Atomicity: Database transactions should be atomic, in the classic sense
of the word: The entire transaction is treated as an indivisible unit.
Either it is executed in its entirety (committed), or the database is
restored (rolled back) to the state it would have been in if the transac-
tion had not been executed.

� Consistency: Oddly enough, the meaning of consistency is not consistent;
it varies from one application to another. When you transfer funds from
one account to another in a banking application, for example, you want
the total amount of money in both accounts at the end of the transaction
to be the same as it was at the beginning of the transaction. In a different
application, your criterion for consistency might be different.

278 Part IV: Controlling Operations

� Isolation: Ideally, database transactions should be totally isolated from
other transactions that execute at the same time. If the transactions are
serializable, then total isolation is achieved. If the system has to process
transactions at top speed, sometimes lower levels of isolation can
enhance performance.

� Durability: After a transaction has committed or rolled back, you should
be able to count on the database being in the proper state: well stocked
with uncorrupted, reliable, up-to-date data. Even if your system suffers
a hard crash after a commit — but before the transaction is stored to
disk — a durable DBMS can guarantee that upon recovery from the
crash, the database can be restored to its proper state.

Savepoints and subtransactions
Ideally, transactions should be atomic — as indivisible as the ancient Greeks
thought atoms were. However, atoms are not really indivisible, and starting
with SQL:1999, database transactions are not really atomic. A transaction is
divisible into multiple subtransactions. Each subtransaction is terminated by a
SAVEPOINT statement. The SAVEPOINT statement is used in conjunction with
the ROLLBACK statement. Before the introduction of savepoints (the point in
the program where the SAVEPOINT statement takes effect), the ROLLBACK
statement could be used only to cancel an entire transaction. Now it can be
used to roll back a transaction to a savepoint within the transaction. What
good is this, you might ask?

Granted, the primary use of the ROLLBACK statement is to prevent data cor-
ruption if a transaction is interrupted by an error condition. And no, rolling
back to a savepoint does not make sense if an error occurred while a transac-
tion was in progress; you’d want to roll back the entire transaction to bring
the database back to the state it was in before the transaction started. But
such a situation isn’t the whole story; you might have other reasons for
rolling back part of a transaction.

Say you’re performing a complex series of operations on your data. Partway
through the process, you receive results that lead you to conclude that
you’re going down an unproductive path. If you put a SAVEPOINT statement
just before you started on that path, you can roll back to the savepoint and
try another option. Provided the rest of your code was in good shape before
you set the savepoint, this approach works better than aborting the current
transaction and starting a new one just to try a new path.

To insert a savepoint into your SQL code, use the following syntax:

SAVEPOINT savepoint_name ;

279Chapter 14: Protecting Data

You can cause execution to roll back to that savepoint with code such as the
following:

ROLLBACK TO SAVEPOINT savepoint_name ;

Some SQL implementations may not include the SAVEPOINT statement. If
your implementation is one of those, you won’t be able to use it.

Constraints within Transactions
Ensuring the validity of the data in your database means doing more than just
making sure the data is of the right type. Perhaps some columns, for example,
should never hold a null value — and maybe others should hold only values
that fall within a certain range. Such restrictions are constraints, as discussed
in Chapter 5.

Constraints are relevant to transactions because they can conceivably pre-
vent you from doing what you want. For example, suppose that you want to
add data to a table that contains a column with a NOT NULL constraint. One
common method of adding a record is to append a blank row to your table
and then insert values into it later. The NOT NULL constraint on one column,
however, causes the append operation to fail. SQL doesn’t allow you to add a
row that has a null value in a column with a NOT NULL constraint, even
though you plan to add data to that column before your transaction ends. To
address this problem, SQL:2003 enables you to designate constraints as
either DEFERRABLE or NOT DEFERRABLE.

Constraints that are NOT DEFERRABLE are applied immediately. You can set
DEFERRABLE constraints to be either initially DEFERRED or IMMEDIATE. If a
DEFERRABLE constraint is set to IMMEDIATE, it acts like a NOT DEFERRABLE
constraint — it is applied immediately. If a DEFERRABLE constraint is set to
DEFERRED, it is not enforced. (No, your code doesn’t have an attitude prob-
lem; it’s simply following orders.)

To append blank records or perform other operations that may violate
DEFERRABLE constraints, you can use a statement similar to the following:

SET CONSTRAINTS ALL DEFERRED ;

This statement puts all DEFERRABLE constraints in the DEFERRED condition. It
does not affect the NOT DEFERRABLE constraints. After you have performed
all operations that could violate your constraints, and the table reaches a
state that doesn’t violate them, you can reapply them. The statement that
reapplies your constraints looks like this:

SET CONSTRAINTS ALL IMMEDIATE ;

280 Part IV: Controlling Operations

If you made a mistake and any of your constraints are still being violated, you
find out as soon as this statement takes effect.

If you do not explicitly set your DEFERRED constraints to IMMEDIATE, SQL
does it for you when you attempt to COMMIT your transaction. If a violation is
still present at that time, the transaction does not COMMIT; instead, SQL gives
you an error message.

SQL’s handling of constraints protects you from entering invalid data (or an
invalid absence of data — which is just as important) while giving you the
flexibility to violate constraints temporarily while a transaction is still active.

Consider a payroll example to see why being able to defer the application of
constraints is important.

Assume that an EMPLOYEE table has columns EmpNo, EmpName, DeptNo, and
Salary. DeptNo is a foreign key referencing the DEPT table. Assume also
that the DEPT table has columns DeptNo and DeptName. DeptNo is the pri-
mary key.

In addition, you want to have a table like DEPT that also contains a Payroll
column that holds the sum of the Salary values for employees in each
department.

You can create the equivalent of this table with the following view:

CREATE VIEW DEPT2 AS
SELECT D.*, SUM(E.Salary) AS Payroll

FROM DEPT D, EMPLOYEE E
WHERE D.DeptNo = E.DeptNo
GROUP BY D.DeptNo ;

You can also define this same view as follows:

CREATE VIEW DEPT3 AS
SELECT D.*,

(SELECT SUM(E.Salary)
FROM EMPLOYEE E
WHERE D.DeptNo = E.DeptNo) AS Payroll

FROM DEPT D ;

But suppose that, for efficiency, you don’t want to calculate the SUM every
time you reference DEPT.Payroll. Instead, you want to store an actual
Payroll column in the DEPT table. You will then update that column every
time you change a Salary.

281Chapter 14: Protecting Data

To make sure that the Salary column is accurate, you can include a
CONSTRAINT in the table definition:

CREATE TABLE DEPT
(DeptNo CHAR(5),
DeptName CHAR(20),
Payroll DECIMAL(15,2),
CHECK (Payroll = (SELECT SUM(Salary)

FROM EMPLOYEE E WHERE E.DeptNo= DEPT.DeptNo)));

Now, suppose that you want to increase the Salary of employee 123 by 100.
You can do it with the following update:

UPDATE EMPLOYEE
SET Salary = Salary + 100
WHERE EmpNo = ‘123’ ;

And you must remember to do the following as well:

UPDATE DEPT D
SET Payroll = Payroll + 100
WHERE D.DeptNo = (SELECT E.DeptNo

FROM EMPLOYEE E
WHERE E.EmpNo = ‘123’) ;

(You use the subquery to reference the DeptNo of employee 123.)

But there’s a problem: Constraints are checked after each statement. In prin-
ciple, all constraints are checked. In practice, implementations check only
the constraints that reference the values modified by the statement.

After the first preceding UPDATE statement, the implementation checks all
constraints that reference values that the statement modifies. This includes
the constraint defined in the DEPT table, because that constraint references
the Salary column of the EMPLOYEE table and the UPDATE statement is
modifying that column. After the first UPDATE statement, that constraint is
violated. You assume that before you execute the UPDATE statement the data-
base is correct, and each Payroll value in the DEPT table equals the sum of
the Salary values in the corresponding columns of the EMPLOYEE table.
When the first UPDATE statement increases a Salary value, this equality is no
longer true. The second UPDATE statement corrects this and again leaves the
database values in a state for which the constraint is True. Between the two
updates, the constraint is False.

The SET CONSTRAINTS DEFERRED statement lets you temporarily disable or
suspend all constraints, or only specified constraints. The constraints are
deferred until either you execute a SET CONSTRAINTS IMMEDIATE statement,

282 Part IV: Controlling Operations

or you execute a COMMIT or ROLLBACK statement. So you surround the previ-
ous two UPDATE statements with SET CONSTRAINTS statements. The code
looks like this:

SET CONSTRAINTS DEFERRED ;
UPDATE EMPLOYEE
SET Salary = Salary + 100
WHERE EmpNo = ‘123’ ;

UPDATE DEPT D
SET Payroll = Payroll + 100
WHERE D.DeptNo = (SELECT E.DeptNo

FROM EMPLOYEE E
WHERE E.EmpNo = ‘123’) ;

SET CONSTRAINTS IMMEDIATE ;

This procedure defers all constraints. If you insert new rows into DEPT, the
primary keys won’t be checked; you have removed protection that you may
want to keep. Specifying the constraints that you want to defer is preferable.
To do this, name the constraints when you create them:

CREATE TABLE DEPT
(DeptNo CHAR(5),
DeptName CHAR(20),
Payroll DECIMAL(15,2),
CONSTRAINT PayEqSumsal
CHECK (Payroll = SELECT SUM(Salary)
FROM EMPLOYEE E WHERE E.DeptNo = DEPT.DeptNo)) ;

With constraint names in place, you can then reference your constraints
individually:

SET CONSTRAINTS PayEqSumsal DEFERRED;
UPDATE EMPLOYEE

SET Salary = Salary + 100
WHERE EmpNo = ‘123’ ;

UPDATE DEPT D
SET Payroll = Payroll + 100
WHERE D.DeptNo = (SELECT E.DeptNo

FROM EMPLOYEE E
WHERE E.EmpNo = ‘123’) ;

SET CONSTRAINTS PayEqSumsal IMMEDIATE;

Without a constraint name in the CREATE statement, SQL generates one
implicitly. That implicit name is in the schema information (catalog) tables.
But specifying the names explicitly is more straightforward.

Now suppose that, in the second UPDATE statement, you mistakenly
specified an increment value of 1000. This value is allowed in the UPDATE
statement because the constraint has been deferred. But when you execute

283Chapter 14: Protecting Data

SET CONSTRAINTS . . . IMMEDIATE, the specified constraints are
checked. If they fail, SET CONSTRAINTS raises an exception. If, instead
of a SET CONSTRAINTS . . . IMMEDIATE statement, you execute COMMIT
and the constraints are found to be False, COMMIT instead performs a
ROLLBACK.

Bottom line: You can defer the constraints only within a transaction. When
the transaction is terminated by a ROLLBACK or a COMMIT, the constraints are
both enabled and checked. The SQL capability of deferring constraints is
meant to be used within a transaction. If used properly, it doesn’t create any
data that violates a constraint available to other transactions.

284 Part IV: Controlling Operations

Chapter 15

Using SQL Within Applications
In This Chapter
� Using SQL within an application

� Combining SQL with procedural languages

� Avoiding interlanguage incompatibilities

� Embedding SQL in your procedural code

� Calling SQL modules from your procedural code

� Invoking SQL from a RAD tool

Previous chapters address SQL statements mostly in isolation. For exam-
ple, questions are asked about data, and SQL queries are developed

that retrieve answers to the questions. This mode of operation, interactive
SQL, is fine for discovering what SQL can do, but it’s not the way SQL is typi-
cally used.

Even though SQL syntax can be described as similar to English, it isn’t an
easy language to master. The overwhelming majority of computer users are
not fluent in SQL. You can reasonably assume that the overwhelming majority
of computer users will never be fluent in SQL, even if this book is wildly suc-
cessful. When a database question comes up, Joe User probably won’t sit
down at his terminal and enter an SQL SELECT statement to find the answer.
Systems analysts and application developers are the people who are likely to
be comfortable with SQL, and they typically don’t make a career out of enter-
ing ad hoc queries into databases. They develop applications that make
queries.

If you plan to perform the same operation repeatedly, you shouldn’t have to
rebuild it every time from the console. Write an application to do the job and
then run it as often as you like. SQL can be a part of an application, but when
it is, it works a little differently from the way it does in an interactive mode.

SQL in an Application
In Chapter 2, SQL is set forth as an incomplete programming language. To use
SQL in an application, you have to combine it with a procedural language
such as Pascal, FORTRAN, Visual Basic, C, C++, Java, or COBOL. Because of
the way it’s structured, SQL has some strengths and weaknesses. Procedural
languages, which are structured differently, have different strengths and weak-
nesses. Happily, the strengths of SQL tend to make up for the weaknesses of
procedural languages, and the strengths of the procedural languages are in
those areas where SQL is weak. By combining the two, you can build power-
ful applications with a broad range of capabilities. Recently, object-oriented
rapid application development (RAD) tools, such as Borland’s Delphi and C++
Builder, have appeared, which incorporate SQL code into applications devel-
oped by manipulating objects instead of writing procedural code.

In the interactive SQL discussions in previous chapters, the asterisk (*) is
used as a shorthand substitute for “all columns in the table.” If the table has
numerous columns, the asterisk can save a lot of typing. However, it can be
problematic to use the asterisk this way when you use SQL in an application
program. After your application is written, you or someone else may add new
columns to a table or delete old ones. Doing so, changes the meaning of “all
columns.” Your application, when it specifies “all columns” with an asterisk,
may retrieve columns other than those it thinks it’s getting.

Such a change to a table doesn’t affect existing programs until they have to
be recompiled to fix a bug or make some change. Then the effect of the *
wildcard expands to include all the now-current columns. This change may
cause the application to fail in a way unrelated to the bug fix (or other change
made), causing a debugging nightmare.

To be safe, specify all column names explicitly in an application, instead of
using the asterisk.

SQL strengths and weaknesses
SQL is strong in data retrieval. If important information is buried somewhere
in a single-table or multitable database, SQL gives you the tools you need to
retrieve it. You don’t need to know the order of the table’s rows or columns
because SQL doesn’t deal with rows or columns individually. The SQL
transaction-processing facilities ensure that your database operations are
unaffected by any other users who may be simultaneously accessing the
same tables that you are.

A major weakness of SQL is its rudimentary user interface. It has no provision
for formatting screens or reports. It accepts command lines from the key-
board and sends retrieved values to the terminal, one row at a time.

286 Part IV: Controlling Operations

Sometimes a strength in one context is a weakness in another. One strength
of SQL is that it can operate on an entire table at once. Whether the table has
one row, a hundred rows, or a hundred thousand rows, a single SELECT state-
ment can extract the data you want. SQL can’t easily operate on one row of a
multirow table at a time, however, and sometimes you do want to deal with
each row individually. In such cases, you can use SQL’s cursor facility,
described in Chapter 18, or you can use a procedural host language.

Procedural language strengths
and weaknesses
In contrast to SQL, procedural languages are designed for one-row-at-a-time
operation, which allows the application developer precise control over the
way a table is processed. This detailed control is a great strength of proce-
dural languages. But a corresponding weakness is that the application devel-
oper must have detailed knowledge of the way data is stored in the database
tables. The order of the database’s columns and rows is significant and must
be taken into account.

Because of the step-by-step nature of procedural languages, they have the
flexibility to produce user-friendly screens for data entry and viewing. You
can also produce sophisticated printed reports, with any desired layout.

Problems in combining SQL with a
procedural language
It makes sense to try to combine SQL and procedural languages in such a way
that you can benefit from their strengths and not be penalized by their weak-
nesses. As valuable as such a combination may be, some challenges must be
overcome before it can be achieved practically.

Contrasting operating modes
A big problem in combining SQL with a procedural language is that SQL oper-
ates on tables a set at a time, whereas procedural languages work on them a
row at a time. Sometimes this isn’t a big deal. You can separate set operations
from row operations, doing each with the appropriate tool. But if you want to
search a table for records meeting certain conditions and perform different
operations on the records depending on whether they meet the conditions,
you may have a problem. Such a process requires both the retrieval power of
SQL and the branching capability of a procedural language. Embedded SQL
gives you this combination of capabilities by enabling you to embed SQL
statements at strategic locations within a program that you have written in a
conventional procedural language.

287Chapter 15: Using SQL Within Applications

Data type incompatibilities
Another hurdle to the smooth integration of SQL with any procedural lan-
guage is that SQL’s data types are different from those of all major procedural
languages. This circumstance shouldn’t be surprising, because the data
types defined for any procedural language are different from the types for the
other procedural languages. No standardization of data types exists across
languages. In releases of SQL prior to SQL-92, data type incompatibility was
a major concern. In SQL-92 (and also in SQL:1999 and SQL:2003), the CAST
statement addresses the problem. Chapter 8 explains how you can use CAST
to convert a data item from the procedural language’s data type to one recog-
nized by SQL, as long as the data item itself is compatible with the new data
type.

Hooking SQL into Procedural Languages
Though many potential difficulties exist with integrating SQL into procedural
languages, it can be done. In many instances, it must be done to produce the
desired result in the allotted time — or at all. Luckily, several methods for
combining SQL with procedural languages are available to you. Three of the
methods — embedded SQL, module language, and RAD tools — are outlined
in the next few sections.

Embedded SQL
The most common method of mixing SQL with procedural languages is called
embedded SQL. The name is descriptive: SQL statements are dropped into the
middle of a procedural program, wherever they’re needed. As you may expect,
an SQL statement that suddenly appears in the middle of a C program, for
example, can present a challenge for a compiler that isn’t expecting it. For
that reason, programs containing embedded SQL are usually passed through
a preprocessor before being compiled or interpreted. The preprocessor is
warned of the imminent appearance of SQL code by the EXEC SQL directive.

As an example of embedded SQL, look at a program written in Oracle’s Pro*C
version of the C language. The program, which accesses a company’s
employee table, prompts the user for an employee name and then displays
that employee’s salary and commission. It then prompts the user for new
salary and commission data and updates the employee table with it:

EXEC SQL BEGIN DECLARE SECTION;
VARCHAR uid[20];
VARCHAR pwd[20];
VARCHAR ename[10];
FLOAT salary, comm;

288 Part IV: Controlling Operations

SHORT salary_ind, comm_ind;
EXEC SQL END DECLARE SECTION;
main()
{

int sret; /* scanf return code */
/* Log in */
strcpy(uid.arr,”FRED”); /* copy the user name */
uid.len=strlen(uid.arr);
strcpy(pwd.arr,”TOWER”); /* copy the password */
pwd.len=strlen(pwd.arr);
EXEC SQL WHENEVER SQLERROR STOP;
EXEC SQL WHENEVER NOT FOUND STOP;

EXEC SQL CONNECT :uid;
printf(“Connected to user: percents \n”,uid.arr);

printf(“Enter employee name to update: “);
scanf(“percents”,ename.arr);
ename.len=strlen(ename.arr);
EXEC SQL SELECT SALARY,COMM INTO :salary,:comm

FROM EMPLOY
WHERE ENAME=:ename;

printf(“Employee: percents salary: percent6.2f comm:
percent6.2f \n”,
ename.arr, salary, comm);

printf(“Enter new salary: “);
sret=scanf(“percentf”,&salary);
salary_ind = 0;
if (sret == EOF !! sret == 0) /* set indicator */

salary_ind =-1; /* Set indicator for NULL */
printf(“Enter new commission: “);
sret=scanf(“percentf”,&comm);
comm_ind = 0; /* set indicator */
if (sret == EOF !! sret == 0)

comm_ind=-1; /* Set indicator for NULL */
EXEC SQL UPDATE EMPLOY

SET SALARY=:salary:salary_ind
SET COMM=:comm:comm_ind
WHERE ENAME=:ename;

printf(“Employee percents updated. \n”,ename.arr);
EXEC SQL COMMIT WORK;
exit(0);

}

You don’t have to be an expert in C to understand the essence of what this
program is doing and how the program does it. Here’s a rundown of the order
in which the statements execute:

1. SQL declares host variables.

2. C code controls the user login procedure.

3. SQL sets up error handling and connects to the database.

289Chapter 15: Using SQL Within Applications

4. C code solicits an employee name from the user and places it in a
variable.

5. An SQL SELECT statement retrieves the named employee’s salary and
commission data and stores them in the host variables :salary and
:comm.

6. C then takes over again and displays the employee’s name, salary, and
commission and then solicits new values for salary and commission. It
also checks to see that an entry has been made, and if one has not, it
sets an indicator.

7. SQL updates the database with the new values.

8. C then displays an “operation complete” message.

9. SQL commits the transaction, and C finally exits the program.

You can mix the commands of two languages like this because of the pre-
processor. The preprocessor separates the SQL statements from the host lan-
guage commands, placing the SQL statements in a separate external routine.
Each SQL statement is replaced with a host language CALL of the correspond-
ing external routine. The language compiler can now do its job. The way the
SQL part is passed to the database is implementation-dependent. You, as the
application developer, don’t have to worry about any of this. The preproces-
sor takes care of it. You should be concerned about a few things, however,
that do not appear in interactive SQL — things such as host variables and
incompatible data types.

Declaring host variables
Some information must be passed between the host language program and
the SQL segments. You do this with host variables. In order for SQL to
recognize the host variables, you must declare them before you use them.
Declarations are included in a declaration segment that precedes the program
segment. The declaration segment is announced by the following directive:

EXEC SQL BEGIN DECLARE SECTION ;

The end of the declaration segment is signaled by:

EXEC SQL END DECLARE SECTION ;

Every SQL statement must be preceded by an EXEC SQL directive. The end of
an SQL segment may or may not be signaled by a terminator directive. In
COBOL, the terminator directive is “END-EXEC”; in FORTRAN, it’s the end of a
line; and in Ada, C, Pascal, and PL/I, it’s a semicolon.

290 Part IV: Controlling Operations

Converting data types
Depending on the compatibility of the data types supported by the host lan-
guage and those supported by SQL, you may have to use CAST to convert
certain types. You can use host variables that have been declared in the
DECLARE SECTION. Remember to prefix host variable names with a colon (:)
when you use them in SQL statements, as in the following example:

INSERT INTO FOODS
(FOODNAME, CALORIES, PROTEIN, FAT, CARBOHYDRATE)
VALUES
(:foodname, :calories, :protein, :fat, :carbo) ;

Module language
Module language provides another method of using SQL with a procedural
programming language. With module language, you explicitly put all the SQL
statements into a separate SQL module.

An SQL module is simply a list of SQL statements. Each SQL statement is
called an SQL procedure and is preceded by a specification of the procedure’s
name and the number and types of parameters.

Each SQL procedure contains one or more SQL statements. In the host pro-
gram, you explicitly call an SQL procedure at whatever point in the host pro-
gram you want to execute the SQL statement in that procedure. You call the
SQL procedure as if it were a host language subprogram.

Thus, an SQL module and the associated host program are essentially a way
of explicitly hand-coding the result of the SQL preprocessor for embedded
syntax.

Embedded SQL is much more common than module language. Most vendors
offer some form of module language, but few emphasize it in their documen-
tation. Module language does have several advantages:

� Because the SQL is completely separated from the procedural language,
you can hire the best SQL programmers available to write your SQL
modules, whether they have any experience with your procedural lan-
guage or not. In fact, you can even defer deciding on which procedural
language to use until after your SQL modules are written and debugged.

� You can hire the best programmers who work in your procedural lan-
guage, even if they know nothing about SQL.

� Most importantly, no SQL is mixed in with the procedural code, so your
procedural language debugger works — which can save you consider-
able development time.

291Chapter 15: Using SQL Within Applications

Once again, what can be looked at as an advantage from one perspective may
be a disadvantage from another. Because the SQL modules are separated
from the procedural code, following the flow of the logic isn’t as easy as it is
in embedded SQL when you’re trying to understand how the program works.

Module declarations
The syntax for the declarations in a module is as follows:

MODULE [module-name]
[NAMES ARE character-set-name]
LANGUAGE {ADA|C|COBOL|FORTRAN|MUMPS|PASCAL|PLI|SQL}
[SCHEMA schema-name]
[AUTHORIZATION authorization-id]
[temporary-table-declarations...]
[cursor-declarations...]
[dynamic-cursor-declarations...]
procedures...

As indicated by the square brackets, the module name is optional. Naming it
anyway is a good idea, to help keep things from getting too confusing. The
optional NAMES ARE clause specifies a character set. If you don’t include a
NAMES ARE clause, the default set of SQL characters for your implementation
is used. The LANGUAGE clause tells the module which language it will be
called from. The compiler must know what the calling language is, because it
will make the SQL statements appear to the calling program as if they are
subprograms in that program’s language.

Although the SCHEMA clause and the AUTHORIZATION clause are both
optional, you must specify at least one of them. Or you can specify both. The
SCHEMA clause specifies the default schema, and the AUTHORIZATION clause
specifies the authorization identifier. The authorization identifier establishes
the privileges you have. If you don’t specify an authorization ID, the DBMS
uses the authorization ID associated with your session to determine the privi-
leges your module is allowed. If you don’t have the privilege to perform the
operation your procedure calls for, your procedure isn’t executed.

If your procedure requires temporary tables, declare them with the tempo-
rary table declaration clause. Declare cursors and dynamic cursors before
any procedures that use them. Declaring a cursor after a procedure is permis-
sible as long as that procedure doesn’t use the cursor. Doing this for cursors
used by later procedures may make sense. You can find more in-depth infor-
mation on cursors in Chapter 18.

Module procedures
Finally, after all these declarations, the functional parts of the module are the
procedures. An SQL module language procedure has a name, parameter dec-
larations, and executable SQL statements. The procedural language program

292 Part IV: Controlling Operations

calls the procedure by its name and passes values to it through the declared
parameters. Procedure syntax is as follows:

PROCEDURE procedure-name
(parameter-declaration [, parameter-declaration]...)
SQL statement ;
[SQL statements] ;

The parameter declaration should take the following form:

parameter-name data-type

or

SQLSTATE

The parameters you declare may be input parameters, output parameters, or
both. SQLSTATE is a status parameter through which errors are reported. To
delve deeper into parameters, head to Chapter 20.

Object-oriented RAD tools
By using state-of-the-art RAD tools, you can develop sophisticated applica-
tions without knowing how to write a single line of code in C, Pascal, COBOL,
or FORTRAN. Instead, you choose objects from a library and place them in
appropriate spots on the screen.

Objects of different standard types have characteristic properties, and
selected events are appropriate for each object type. You can also associate a
method with an object. The method is a procedure written in a procedural
language. Building useful applications without writing any methods is possi-
ble, however.

Although you can build complex applications without using a procedural lan-
guage, sooner or later you will probably need SQL. SQL has a richness of
expression that is difficult, if not impossible, to duplicate with the object par-
adigm. As a result, full-featured RAD tools offer you a mechanism for injecting
SQL statements into your object-oriented applications. Borland C++Builder is
an example of an object-oriented development environment that offers SQL
capability. Microsoft Access is another application development environment
that enables you to use SQL in conjunction with its procedural language VBA.

Chapter 4 shows you how to create database tables with Access. That opera-
tion represents only a small fraction of Access’s capabilities. The tool’s pri-
mary purpose is the development of applications that process the data in
database tables. The developer places objects on forms and then customizes

293Chapter 15: Using SQL Within Applications

the objects by giving them properties, events, and possibly methods. You can
manipulate the forms and objects with VBA code, which can contain embed-
ded SQL.

Although RAD tools such as Access can deliver high-quality applications in
less time, they are usually specific to one platform — or to only a few plat-
forms. Access, for instance, runs only under Microsoft Windows operating
systems. Keep that in mind if you think you may want to migrate your appli-
cation to a different platform.

RAD tools such as Access represent the beginning of the eventual merger of
relational and object-oriented database design. The structural strengths of
relational design and SQL will both survive. They will be augmented by the
rapid — and comparatively bug-free — development that comes from object-
oriented programming.

294 Part IV: Controlling Operations

Part V
SQL in the Real

World

In this part . . .

If you’ve been reading this book from the beginning,
enthralled by the unfolding saga of SQL:2003, then

you’ve looked at SQL in isolation — you may even have
begun to dream that you can solve all your data-handling
problems by using SQL alone. Alas, reality intrudes.
Doesn’t it always? There are many things you simply can’t
do with SQL, at least not with SQL by itself. By combining
SQL with traditional procedural languages such as
COBOL, FORTRAN, Visual Basic, Java, or C++, you can
achieve results that you can’t get with SQL alone. In this
part, I show you how to combine SQL with procedural lan-
guages. Then I describe how to operate on external SQL
databases that may be located out on the Internet or
somewhere on your organizational intranet. Suddenly,
reality starts to look pretty good.

Chapter 16

ODBC and JDBC
In This Chapter
� Finding out about ODBC

� Taking a look at the parts of ODBC

� Using ODBC in a client/server environment

� Using ODBC on the Internet

� Using ODBC on an intranet

� Using JDBC

In the last several years, computers have become increasingly intercon-
nected, both within and between organizations. With this connection

comes the need for sharing database information across networks. The major
obstacle to the free sharing of information across networks is the incompati-
bility of the operating software and applications running on different
machines. A major step toward overcoming this incompatibility has been the
creation and ongoing evolution of SQL.

Unfortunately, “standard” SQL is not all that standard. Even DBMS vendors
who claim to comply with the international SQL standard have included
extensions in their implementations that make them incompatible with the
extensions in other vendors’ implementations. The vendors are loath to give
up their extensions because their customers have designed them into their
applications and have become dependent on them. User organizations, par-
ticularly large ones, need another way to make cross-DBMS communication
possible — something that does not require vendors to “dumb down” their
implementations to the lowest common denominator. This other way is
ODBC (Open DataBase Connectivity).

ODBC
ODBC is a standard interface between a database and an application that
accesses the data in the database. Having a standard enables any application
front end to access any database back end by using SQL. The only

requirement is that the front end and the back end both adhere to the ODBC
standard. ODBC 4.0 is the current version of the standard.

An application accesses a database by using a driver that is specifically
designed to interface with that particular database. The driver’s front end,
the side that goes to the application, rigidly adheres to the ODBC standard. It
looks the same to the application, regardless of what database engine is on
the back end. The driver’s back end is customized to the specific database
engine that it is addressing. With this architecture, applications don’t have to
be customized to — or even aware of — which back-end database engine
controls the data they’re using. The driver masks the differences between
back ends.

ODBC interface
The ODBC interface is essentially a set of definitions that is accepted as stan-
dard. The definitions cover everything that is needed to establish communi-
cation between an application and the database that holds its data. The
ODBC interface defines the following:

� A function call library

� Standard SQL syntax

� Standard SQL data types

� Standard protocol for connecting to a database engine

� Standard error codes

The ODBC function calls provide for connecting to a back-end database
engine, executing SQL statements, and passing results back to the application.

To perform an operation on a database, include the appropriate SQL state-
ment as an argument of an ODBC function call. As long as you use the ODBC-
specified standard SQL syntax, the operation works — regardless of what
database engine is on the back end.

Components of ODBC
The ODBC interface consists of four functional components. Each component
plays a role in giving ODBC the flexibility that enables it to provide transpar-
ent communication from any compatible front end to any compatible back
end. The four layers of the ODBC interface are between the user and the data
that the user wants, as follows:

298 Part V: SQL in the Real World

� Application: The application is the part of the ODBC interface that is
closest to the user. Of course, even systems that don’t use ODBC include
an application. Nonetheless, including the application as a part of the
ODBC interface makes sense. The application must be cognizant that it
is communicating with its data source through ODBC. It must connect
smoothly with the ODBC driver manager, in strict accordance with the
ODBC standard.

� Driver manager: The driver manager is a dynamic link library (DLL),
which is generally supplied by Microsoft. It loads appropriate drivers for
the system’s (possibly multiple) data sources and directs function calls
coming in from the application to the appropriate data sources via their
drivers. The driver manager also handles some ODBC function calls
directly and detects and handles some types of errors.

� Driver: Because data sources can be different from each other (in some
cases, very different), you need a way to translate standard ODBC func-
tion calls into the native language of each data source. Translation is the
job of the driver DLL. Each driver DLL accepts function calls through the
standard ODBC interface and then translates them into code that is
understandable to its associated data source. When the data source
responds with a result set, the driver reformats it in the reverse direc-
tion into a standard ODBC result set. The driver is the key element that
enables any ODBC-compatible application to manipulate the structure
and the contents of an ODBC-compatible data source.

� Data source: The data source may be one of many different things. It
may be a relational DBMS and associated database residing on the same
computer as the application. It may be such a database on a remote
computer. It may be an ISAM (Indexed Sequential Access Method) file
with no DBMS, either on the local or a remote computer. It may or may
not include a network. The myriad of different forms that the data
source can take requires that a custom driver be available for each one.

ODBC in a Client/Server Environment
In a client/server system, the interface between the client part and the server
part is called the application programming interface (API). An API can be
either proprietary or standard. A proprietary API is one in which the client
part of the interface has been specifically designed to work with one particu-
lar back end on the server. The actual code that forms this interface is a
driver, and in a proprietary system, it’s called a native driver. A native driver
is optimized for use with a specific front-end client and its associated back-
end data source. Because native drivers are optimized for both the specific
front-end application and the specific DBMS back end that they’re working
with, the drivers tend to pass commands and information back and forth
quickly, with a minimum of delay.

299Chapter 16: ODBC and JDBC

If your client/server system always accesses the same type of data source,
and you’re sure that you’ll never need to access data on another type of data
source, then you may want to use the native driver that is supplied with your
DBMS. However, if you may need to access data that is stored in a different
form sometime in the future, then using an ODBC interface now could save
you from a great deal of rework later.

ODBC drivers are also optimized to work with specific back-end data sources,
but they all have the same front-end interface to the driver manager. Any
driver that hasn’t been optimized for a particular front end, therefore, is
probably not as fast as a native driver that is specifically designed for that
front end. A major complaint about the first generation of ODBC drivers was
their poor performance compared to native drivers. Recent benchmarks,
however, have shown that ODBC 4.0 drivers are quite competitive in perfor-
mance to native drivers. The technology is mature enough that it is no longer
necessary to sacrifice performance to gain the advantages of standardization.

ODBC and the Internet
Database operations over the Internet are different in several important ways
from database operations on a client/server system. The most visible differ-
ence from the user’s point of view is the client portion of the system, which
includes the user interface. In a client/server system, the user interface is
part of an application that communicates with the data source on the server
via ODBC-compatible SQL statements. Over the World Wide Web, the client
portion of the system is a Web browser, which communicates with the data
source on the server via HTML (HyperText Markup Language).

Because anyone with a Web browser can access data that is accessible on the
Web, the act of putting a database on the Web is called database publishing.
Databases that are placed on the Web are potentially accessible by many
more people than can access data on a LAN server. Furthermore, on the Web,
you usually don’t have very strict control over who those people are. Thus,
the act of putting data on the Web is more akin to publishing the data to the
world than it is to sharing the data with a few coworkers. See Figure 16-1 for
illustrations comparing client/server systems with Web-based systems.

Server extensions
In the Web-based system, communication between the browser on the client
machine and the Web server on the server machine takes place in HTML. A
system component called a server extension translates the HTML into ODBC-
compatible SQL. Then the database server acts on the SQL, which in turn

300 Part V: SQL in the Real World

deals directly with the data source. In the reverse direction, the data source
sends the result set that is generated by a query through the database server
to the server extension, which then translates it into a form that the Web
server can handle. The results are then sent over the Web to the Web
browser on the client machine, where they’re displayed to the user. Figure
16-2 shows the architecture of this type of system.

Client extensions
Web browsers were designed — and are now optimized — to be easy-to-
understand and easy-to-use interfaces to Web sites of all kinds. The most
popular browsers, Netscape Navigator, Microsoft Internet Explorer, and
Apple’s Safari, were not designed or optimized to be database front ends. In
order for meaningful interaction with a database to occur over the Internet,
the client side of the system needs functionality that the browser does not
provide. To fill this need, several types of client extensions have been devel-
oped. These extensions include helper applications, Navigator plug-ins,
ActiveX controls, Java applets, and scripts. The extensions communicate
with the server via HTML, which is the language of the Web. Any HTML code
that deals with database access is translated into ODBC-compatible SQL by
the server extension before being forwarded to the data source.

Web
Browser

Data
Source

Database
Server

Web
Server

World Wide
Web

Database
Client

Data
Source

Database
Server

Local Area
Network

Figure 16-1:
Client/
server

system
versus a

Web-based
database

system.

301Chapter 16: ODBC and JDBC

Helper applications
The first client extensions were called helper applications. A helper applica-
tion is a stand-alone program that runs on the user’s PC. It is not integrated
with a Web page, and it does not display in a browser window. You can use a
helper application as a viewer for graphics file formats that the browser
doesn’t support. To use a helper application, the user must first download it
from its source site and install it on his or her browser. From then on, when
the user downloads a file in that format, the browser automatically prompts
the viewer to display the file. One downside to this scheme is that the entire
data file must be downloaded into a temporary file before the helper applica-
tion starts. Thus, for large files, you may have to wait quite a while before you
see any part of your downloaded file.

Netscape Navigator plug-ins
Netscape Navigator plug-ins are similar to helper applications in that they
help process and display information that the browser can’t handle alone.
They differ in that they work only with Netscape browsers and are much
more closely integrated with them. The tighter integration enables a browser
that is enhanced by plug-ins to start displaying the first part of a file before

Web
Browser

Data
Source

Database
Server

Server
Extension
Program

Web
Server

World Wide
Web

Figure 16-2:
A Web-

based
database

system with
server

extension.

302 Part V: SQL in the Real World

the download operation is complete. The ability to display early output while
later output is still being downloaded is a significant advantage. The user
doesn’t have to wait nearly as long before beginning work. A large and ever-
growing number of Netscape plug-ins enable enhancements such as sound,
chats with similarly equipped users, animation, video, and interactive 3-D vir-
tual reality. Aside from these uses, some plug-ins facilitate accessing remote
databases over the Web.

ActiveX controls
Microsoft’s ActiveX controls provide similar functionality to Netscape’s plug-
ins, but they operate by a different technology. ActiveX is based on Microsoft’s
earlier OLE technology. Netscape has committed to support ActiveX as well
as other strategic Microsoft technologies in the Netscape environment. Of
course, Microsoft’s own Internet Explorer is also compatible with ActiveX.
Between the two, Netscape and Microsoft control an overwhelming majority
of the browser market.

Java applets
Java is a C++-like language that was developed by Sun Microsystems specifi-
cally for the development of Web client extensions. After a connection is
made between a server and a client over the Web, the appropriate Java
applet is downloaded to the client, where the applet commences to run. The
applet, which is embedded in an HTML page, provides the database-specific
functionality that the client needs to provide flexible access to server data.
Figure 16-3 is a schematic representation of a Web database application with
a Java applet running on the client machine.

A major advantage to using Java applets is that they’re always up-to-date.
Because the applets are downloaded from the server every time they’re used
(as opposed to being retained on the client), the client is always guaranteed
to have the latest version whenever it runs one. If you are responsible for the
server, you never have to worry about losing compatibility with some of your
clients when you upgrade the server software. Just make sure that your
downloadable Java applet is compatible with the new server configuration,
and all your clients automatically become compatible, too.

Scripts
Scripts are the most flexible tools for creating client extensions. Using a
scripting language, such as Netscape’s JavaScript or Microsoft’s VBScript,
gives you maximum control over what happens at the client end. You can put
validation checks on data entry fields, thus enabling the rejection or correc-
tion of invalid entries without ever going out onto the Web. This can save you
time as well as reduce traffic on the Web, thus benefiting other users as well.
As with Java applets, scripts are embedded in an HTML page and execute as
the user interacts with that page.

303Chapter 16: ODBC and JDBC

ODBC and an Intranet
An intranet is a local or wide area network that operates like a simpler ver-
sion of the Internet. Because an intranet is contained within a single organiza-
tion, you don’t need complex security measures such as firewalls. All the
tools that are designed for application development on the World Wide Web
operate equally well as development tools for intranet applications. ODBC
works on an intranet in the same way that it does on the Internet. If you have
multiple data sources, clients using Web browsers and the appropriate client
and server extensions can communicate with them with SQL that passes
through HTML and ODBC stages. At the driver, the ODBC-compliant SQL is
translated into the database’s native command language and executed.

JDBC
JDBC (Java DataBase Connectivity) is similar to ODBC, but it differs in a few
important respects. One such difference is hinted at by its name. JDBC is a

Web
Browser

Java
Applet

Java
Classes

Data
Source

Database
Server

Server
Extension
Program

Web
Server

World Wide
Web

Figure 16-3:
A Web

database
application

using a Java
applet.

304 Part V: SQL in the Real World

database interface that looks the same to the client program — regardless of
what data source is sitting on the server (back end). The difference is that
JDBC expects the client application to be written in the Java language, rather
than another language such as C++ or Visual Basic. Another difference is
that Java and JDBC were both designed from the start to run on the World
Wide Web.

Java is a full-featured programming language, and it is entirely possible to
write robust applications with Java that can access databases in some kind of
client/server system. When used this way, a Java application that accesses a
database via JDBC is similar to a C++ application that accesses a database via
ODBC. The major difference between a Java application and a C++ application
concerns the Internet (or an intranet).

When the system that you’re interested in is on the Net, the operating condi-
tions are different from the conditions in a client/server system. The client
side of an application that operates over the Internet is a browser, with mini-
mal computational capabilities. These capabilities must be augmented in
order for significant database processing to be done; Java applets provide
these capabilities.

An applet is a small application that resides on a server. When a client con-
nects to that server over the Web, the applet is downloaded and starts run-
ning in the client computer. Java applets are specially designed so that they
run in a sandbox. A sandbox is a well-defined area in the client computer’s
memory where the downloaded applet can run. The applet is not allowed to
affect anything outside the sandbox. This architecture is designed to protect
the client machine from potentially hostile applets that may try to extract
sensitive information or cause malicious damage.

You face a certain amount of danger when you download anything from
a server that you do not know to be trustworthy. If you download a Java
applet, that danger is greatly reduced, but not completely eliminated.
Be wary about letting executable code enter your machine from a
questionable server.

Like ODBC, JDBC passes SQL statements from the front-end application
(applet) running on the client to the data source on the back end. It also
serves to pass result sets or error messages from the data source back to the
application. The value of using JDBC is that the applet writer can write to the
standard JDBC interface, without needing to know or care what database is
located at the back end. JDBC performs whatever conversion is necessary for
accurate two-way communication to take place.

305Chapter 16: ODBC and JDBC

306 Part V: SQL in the Real World

Chapter 17

SQL:2003 and XML
In This Chapter
� Using SQL with XML

� XML, databases, and the Internet

The most significant new feature in SQL:2003 is its support of XML. XML
(Extensible Markup Language) files are rapidly becoming a universally

accepted standard of exchanging data between dissimilar platforms. With
XML, it doesn’t matter if the person you’re sharing data with has a different
application environment, a different operating system, or even different hard-
ware. XML can form a data bridge between the two of you.

How XML Relates to SQL
XML, like HTML, is a markup language, which means it’s not a full-function
language such as C++ or Java. It’s not even a data sublanguage such as SQL.
However, it is cognizant of the content of the data it transports. Where HTML
deals only with formatting the text and graphics in a document, XML gives
structure to the document’s content. XML itself does not deal with format-
ting. To do that, you have to augment XML with a style sheet. As it does with
HTML, a style sheet applies formatting to an XML document.

SQL and XML provide two different ways of structuring data so that you can
save it and retrieve selected information from it:

� SQL is an excellent tool for dealing with numeric and text data that can
be categorized by data type and have a well-defined size. SQL was cre-
ated as a standard way to maintain and operate on data kept in rela-
tional databases.

� XML is better at dealing with free-form data that cannot be easily catego-
rized. The driving motivations for the creation of XML were to provide a
universal standard for transferring data between dissimilar computers
and for displaying it on the World Wide Web.

The strengths and goals of SQL and XML are complementary. Each reigns
supreme in its own domain and forms alliances with the other to give users
the information they want, when they want it, and where they want it.

The XML Data Type
SQL:2003 introduces a new data type to SQL: the XML type. This means that
conforming implementations can store and operate on XML-formatted data
directly, without first converting to XML from one of the other SQL data types.

The XML data type, although intrinsic to any implementation that supports
it, acts like a user-defined type (UDT). The XML type brings SQL and XML
into close contact because it enables applications to perform SQL operations
on XML content, and XML operations on SQL content. You can include a
column of the XML type with columns of any predefined types covered in
Chapter 2 in a join operation in the WHERE clause of a query. In true relational
database fashion, your DBMS will determine the optimal way to execute the
query, and then will do it.

When to use the XML type
Whether or not you should store data in XML format depends on what you
plan to do with that data. Here are some instances where it makes sense to
store data in XML format:

� When you want to store an entire block of data and retrieve the whole
block later.

� When you want to be able to query the whole XML document. Some
implementations have expanded the scope of the EXTRACT operator to
enable extracting desired content from an XML document.

� When you need strong typing of data inside SQL statements. Using the
XML type guarantees that data values are valid XML values and not just
arbitrary text strings.

� To ensure compatibility with future, as yet unspecified, storage systems
that might not support existing types such as CLOB. (See Chapter 2 for
more information on CLOB.)

� To take advantage of future optimizations that will support only the
XML type.

308 Part V: SQL in the Real World

When not to use the XML type
On many occasions, it doesn’t make sense to use the XML type. Most data in
relational databases today is better off in its current format than it is in XML
format. Here are a couple of examples of when not to use the XML type:

� When the data breaks down naturally into a relational structure with
tables, rows, and columns

� When you will need to update pieces of the document, rather than deal
with the document as a whole

Mapping SQL to XML and XML to SQL
To exchange data between SQL databases and XML documents, the various
elements of an SQL database must be translatable into equivalent elements of
an XML document, and vice versa. This translation needs to happen for sev-
eral kinds of things, as described in the following sections.

Mapping character sets
In SQL, the character sets supported are implementation dependent. This
means that IBM’s DB2 may support character sets that are not supported by
Microsoft’s SQL Server. SQL Server may support character sets not supported
by Oracle. Although the most common character sets are almost universally
supported, use of a less common character set may make it difficult to
migrate your database and application from one RDBMS platform to another.

XML has no compatibility issue with character sets — it supports only one,
Unicode. This is a good thing from the point of view of exchanging data
between any given SQL implementation and XML. All the RDBMS vendors
have to define a mapping between strings of each of their character sets and
Unicode, as well as a reverse mapping from Unicode to each of their charac-
ter sets. Luckily, XML does not also support multiple character sets. If it did,
vendors would have a many-to-many problem, requiring many more map-
pings and reverse mappings.

Mapping identifiers
XML is much stricter than SQL in the characters it allows in identifiers.
Characters that are legal in SQL but illegal in XML must be mapped to some-
thing legal before they can become part of an XML document. SQL supports

309Chapter 17: SQL:2003 and XML

delimited identifiers. This means that all sorts of odd characters such as %, $,
and & are legal, as long as they’re enclosed within double quotes. Such char-
acters are not legal in XML. Furthermore, XML Names that begin with the
characters XML in any combination of cases, are reserved and thus cannot be
used with impunity. SQL identifiers that begin with those letters have to be
changed.

An agreed-upon mapping bridges the identifier gap between SQL and XML. In
moving from SQL to XML, all SQL identifiers are converted to Unicode. From
there, any SQL identifiers that are also legal XML Names are left unchanged.
SQL identifier characters that are not legal XML names are replaced with a
hexadecimal code that either takes the form “_xHHHH_” or “_xHHHHHHHH_”,
where H represents an uppercase hexadecimal digit. For example, the under-
score “_” will be represented by “_x005F_”. The colon will be represented
by “_x003A_”. These representations are the codes for the Unicode charac-
ters for the underscore and colon. The case where an SQL identifier starts
with the characters x, m, and l is handled by prefixing all such instances with
a code in the form “_xFFFF_”.

Conversion from XML to SQL is much easier. All you need to do is scan the
characters of an XML name for a sequence of “_xFFFF_” or “_xFFFFFFFF_”.
Whenever you find such a sequence, replace it with the character that the
Unicode corresponds to. If an XML Name begins with the characters
“_xFFFF_”, ignore them.

By following these simple rules, you can map an SQL identifier to an XML
Name and then back to an SQL identifier again. However, this happy situation
does not hold for a mapping from XML Name to SQL identifier and back to
XML Name.

Mapping data types
SQL:2003 specifies that an SQL data type be mapped to the closest possible
XML Schema data type. The designation closest possible means that all values
allowed by the SQL type will be allowed by the XML Schema type, and the
fewest possible values not allowed by the SQL type will be allowed by the
XML Schema type. XML facets, such as maxInclusive and minInclusive,
can restrict the values allowed by the XML Schema type to the values
allowed by the corresponding SQL type. For example, if the SQL data
type restricts values of the INTEGER type to the range -2157483648<
value<2157483647, in XML the maxInclusive value can be set to
2157483647, and the minInclusive value can be set to -2157483648.
Here’s an example of such a mapping:

310 Part V: SQL in the Real World

<xsd:simpleType>
<xsd:restriction base=”xsd:integer>

<xsd:maxInclusive value=”2157483647”/>
<xsd:minInclusive value=”-2157483648”/>
<xsd:annotation>

<sqlxml:sqltype name=”INTEGER”/>
</xsd:annotation>

</xsd:restriction>
</xsd:simpleType>

The annotation section retains information from the SQL type definition that
is not used by XML but may be of value later if this document is mapped back
to SQL.

Mapping tables
You can map a table to an XML document. Similarly, you can map all the tables
in a schema or all the tables in a catalog. Privileges are maintained by the map-
ping. A person who has the SELECT privilege on only some table columns will be
able to map only those columns to the XML document. The mapping actually
produces two documents, one that contains the data in the table and the other
that contains the XML Schema that describes the first document. Here’s an
example of the mapping of an SQL table to an XML data-containing document:

<CUSTOMER>
<row>

<FirstName>Abe</FirstName>
<LastName>Abelson</LastName>
<City>Springfield</City>
<AreaCode>714</AreaCode>
<Telephone>555-1111</Telephone>

</row>
<row>

<FirstName>Bill</FirstName>
<LastName>Bailey</LastName>
<City>Decatur</City>
<AreaCode>714</AreaCode>
<Telephone>555-2222</Telephone>

</row>
.
.
.
</CUSTOMER>

The root element of the document has been given the name of the table. Each
table row is contained within a <row> element, and each row element contains
a sequence of column elements, each named after the corresponding column
in the source table. Each column element contains a data value.

311Chapter 17: SQL:2003 and XML

Handling null values
Because SQL data might include null values, you must decide how to repre-
sent them in an XML document. You can represent a null value either as nil
or absent. If you choose the nil option, then the attribute xsi:nil=”true”
marks the column elements that represent null values. It might be used in the
following way:

<row>
<FirstName>Bill</FirstName>
<LastName>Bailey</LastName>
<City xsi:nil=”true” />
<AreaCode>714</AreaCode>
<Telephone>555-2222</Telephone>

</row>

If you choose the absent option, you could implement it as follows:

<row>
<FirstName>Bill</FirstName>
<LastName>Bailey</LastName>
<AreaCode>714</AreaCode>
<Telephone>555-2222</Telephone>

</row>

In this case, the row containing the null value is absent. There is no reference
to it.

Generating the XML Schema
When mapping from SQL to XML, the first document generated is the one
that contains the data. The second contains the schema information. As an
example, consider the schema for the CUSTOMER document shown in the
“Mapping tables” section, earlier in this chapter.

<xsd:schema>
<xsd:simpleType name=”CHAR_15”>

<xsd:restriction base=”xsd:string”>
<xsd:length value = “15”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=”CHAR_25”>
<xsd:restriction base=”xsd:string”>

<xsd:length value = “25”/>
</xsd:restriction>

</xsd:simpleType>

312 Part V: SQL in the Real World

<xsd:simpleType name=”CHAR_3”>
<xsd:restriction base=”xsd:string”>

<xsd:length value = “3”/>
</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name=”CHAR_8”>
<xsd:restriction base=”xsd:string”>

<xsd:length value = “8”/>
</xsd:restriction>

</xsd:simpleType>

<xsd:sequence>
<xsd:element name=”FirstName” type=”CHAR_15”/>
<xsd:element name=”LastName” type=”CHAR_25”/>
<xsd:element

name=”City” type=”CHAR_25 nillable=”true”/>
<xsd:element

name=”AreaCode” type=”CHAR_3” nillable=”true”/>
<xsd:element

name=”Telephone” type=”CHAR_8” nillable=”true”/>
</xsd:sequence>

</xsd:schema>

This schema is appropriate if the nil approach to handling nulls is used. The
absent approach requires a slightly different element definition. For example:

<xsd:element
name=”City” type=”CHAR_25 minOccurs=”0”/>

SQL Operators That Produce an
XML Result

SQL:2003 defines five operators that, when applied to an SQL database, pro-
duce an XML result. They are XMLELEMENT, XMLFOREST, XMLGEN, XMLCONCAT,
and XMLAGG.

XMLELEMENT
The XMLELEMENT operator creates an XML element. You can use the operator
in a SELECT statement to pull data in XML format from an SQL database.
Here’s an example:

313Chapter 17: SQL:2003 and XML

SELECT c.LastName
XMLELEMENT (NAME “City”, c.City) AS “Result”

FROM CUSTOMER c
WHERE LastName=”Abelson” ;

Here is the result returned:

LastName Result

Abelson <City>Springfield</City>

XMLFOREST
The XMLFOREST operator produces a forest of elements from the list of argu-
ments. Each of the operator’s arguments produces a new element. Here’s an
example of this operator:

SELECT c.LastName
XMLFOREST (c.City,
c.AreaCode,
c.Telephone) AS “Result”

FROM CUSTOMER c
WHERE LastName=”Abelson” OR LastName=”Bailey” ;

This produces the following output:

LastName Result

Abelson <City>Springfield</City>

<AreaCode>714</AreaCode>

<Telephone>555-1111</Telephone>

Bailey <City>Decatur</City>

<AreaCode>714</AreaCode>

<Telephone>555-2222</Telephone>

XMLGEN
XMLGEN’s first argument is a template that contains placeholders for values
that will be supplied later. The placeholders have the form “{$name}”.
Subsequent arguments supply values and associated names that instantiate
the template. Here’s an example of the use of this operator:

314 Part V: SQL in the Real World

SELECT c.LastName
XMLGEN (‘<CUSTOMER Name=”{$LASTNAME}”>

<City>{$CITY}</City>
</CUSTOMER>’,
c.LastName AS Name,
c.City) AS “Result”

FROM CUSTOMER c
WHERE LastName= “Abelson” OR LastName = “Bailey” ;

This produces:

LastName Result

Abelson <CUSTOMER Name=”Abelson”

<City>Springfield</City>

</CUSTOMER>

Bailey <CUSTOMER Name=”Bailey”

<City>Decatur</City>

</CUSTOMER>

XMLCONCAT
XMLCONCAT provides an alternate way to produce a forest of elements. It does
so by concatenating its XML arguments. For example:

SELECT c.LastName,
XMLCONCAT(

XMLELEMENT (NAME “first”, c.FirstName,
XMLELEMENT (NAME “last”, c.LastName)
) AS “Result”

FROM CUSTOMER c ;

This produces:

LastName Result

Abelson <first>Abe</first>

<last>Abelson</last>

Bailey <first>Bill</first>

<last>Bailey</last>

315Chapter 17: SQL:2003 and XML

XMLAGG
XMLAGG, the aggregate function, takes XML documents or fragments of XML
documents as input and produces a single XML document as output. The
aggregation contains a forest of elements. To illustrate the concept:

SELECT XMLELEMENT
(NAME “City”,

XMLATTRIBUTES (c.City AS “name”) ,
XMLAGG (XMLELEMENT (NAME “last” c.LastName)

)
) AS “CityList”

FROM CUSTOMER c
GROUP BY City ;

When run against the CUSTOMER table, this query produces:

CityList

<City name=”Decatur”>
<last>Bailey</last>

</City>
<City name=”Philo”>

<last>Stetson</last>
<last>Stetson</last>
<last>Wood</last>

</City
<City name=”Springfield”>

<last>Abelson</last>
</City>

Mapping Non-Predefined Data
Types to XML

In SQL:2003, the non-predefined data types include domain, distinct UDT, row,
array, and multiset. You can map each of these to XML-formatted data, using
appropriate XML code. The next few sections show examples of how to map
these types.

Domain
To map an SQL domain to XML, you must first have a domain. For this exam-
ple, create one by using a CREATE DOMAIN statement.

316 Part V: SQL in the Real World

CREATE DOMAIN WestCoast AS CHAR (2)
CHECK (State IN (‘CA’, ‘OR’, ‘WA’, ‘AK’)) ;

Now, create a table that uses that domain.

CREATE TABLE WestRegion (
ClientName Character (20) NOT NULL,
State WestCoast NOT NULL
) ;

Here’s the XML Schema to map the domain into XML:

<xsd:simpleType>
Name=’DOMAIN.Sales.WestCoast’>

<xsd:annotation>
<xsd:appinfo>

<sqlxml:sqltype kind=’DOMAIN’
schemaName=’Sales’
typeName=’WestCoast’
mappedType=’CHAR_2’
final=’true’/>

<xsd:appinfo>
</xsd:annotation>

<xsd:restriction base=’CHAR_2’/>

</xsd:simpleType>

When this mapping is applied, it results in an XML document that contains
something like the following:

<WestRegion>
<row>
.
.
.
<State>AK</State>
.
.
.
</row>
.
.
.

</WestRegion>

317Chapter 17: SQL:2003 and XML

Distinct UDT
With a distinct UDT, you can do much the same as what you can do with a
domain, but with stronger typing. Here’s how:

CREATE TYPE WestCoast AS Character (2) FINAL ;

The XML Schema to map this type to XML is as follows:

<xsd:simpleType>
Name=’UDT.Sales.WestCoast’>

<xsd:annotation>
<xsd:appinfo>

<sqlxml:sqltype kind=’DISTINCT’
schemaName=’Sales’
typeName=’WestCoast’
mappedType=’CHAR_2’
final=’true’/>

<xsd:appinfo>
</xsd:annotation>

<xsd:restriction base=’CHAR_2’/>

</xsd:simpleType>

This creates an element that is the same as the one created for the preceding
domain.

Row
The ROW type enables you to cram a whole row’s worth of information into a
single field of a table row. You can create a ROW type as part of the table defin-
ition, in the following manner:

CREATE TABLE CONTACTINFO (
Name CHARACTER (30)
Phone ROW (Home CHAR (13), Work CHAR (13))

) ;

You can now map this type to XML with the following Schema:

<xsd:complexType Name=’ROW.1’>

<xsd:annotation>
<xsd:appinfo>

<sqlxml:sqltype kind=’ROW’>
<sqlxml:field name=’Home’

mappedType=’CHAR_13’/>
<sqlxml:field name=’Work’

318 Part V: SQL in the Real World

mappedType=’CHAR_13’/>
</sqlxml:sqltype>

<xsd:appinfo>
</xsd:annotation>

<xsd:sequence>
<xsd:element Name=’Home’ nillable=’true’

Type=’CHAR_13’/>
<xsd:element Name=’Work’ nillable=’true’

Type=’CHAR_13’/>
</xsd:sequence>

</xsd:complexType>

This mapping could generate the following XML for a column:

<Phone>
<Home>(888)555-1111</Home>
<Work>(888)555-1212</Work>

</Phone>

Array
You can put more than one element in a single field by using an Array rather
than the ROW type. For example, in the CONTACTINFO table, declare Phone as
an array and then generate the XML Schema that will map the array to XML.

CREATE TABLE CONTACTINFO (
Name CHARACTER (30),
Phone CHARACTER (13) ARRAY [4]

) ;

You can now map this type to XML with the following Schema:

<xsd:complexType Name=’ARRAY_4.CHAR_13’>

<xsd:annotation>
<xsd:appinfo>

<sqlxml:sqltype kind=’ARRAY’
maxElements=’4’
mappedElementType=’CHAR_13’/>

</xsd:appinfo>
</xsd:annotation>

<xsd:sequence>
<xsd:element Name=’element’
minOccurs=’0’ maxOccurs=’4’
nillable=’true’ type=’CHAR_13’/>

</xsd:sequence>

</xsd:complexType>

319Chapter 17: SQL:2003 and XML

This would generate something like this:

<Phone>
<element>(888)555-1111</element>
<element>xsi:nil=’true’/>
<element>(888)555-3434</element>

</Phone>

The element in the array containing xsi:nil=’true’ reflects the fact that
the second phone number in the source table contains a null value.

Multiset
The phone numbers in the preceding example could just as well be stored in a
multiset as in an array. To map a multiset, use something akin to the following:

CREATE TABLE CONTACTINFO (
Name CHARACTER (30),
Phone CHARACTER (13) MULTISET

) ;

You can now map this type to XML with the following Schema:

<xsd:complexType Name=’MULTISET.CHAR_13’>

<xsd:annotation>
<xsd:appinfo>

<sqlxml:sqltype kind=’MULTISET’
mappedElementType=’CHAR_13’/>

</xsd:appinfo>
</xsd:annotation>

<xsd:sequence>
<xsd:element Name=’element’
minOccurs=’0’ maxOccurs=’unbounded’
nillable=’true’ type=’CHAR_13’/>

</xsd:sequence>

</xsd:complexType>

This would generate something like:

<Phone>
<element>(888)555-1111</element>
<element>xsi:nil=’true’/>
<element>(888)555-3434</element>

</Phone>

320 Part V: SQL in the Real World

Part VI
Advanced Topics

In this part . . .
You can approach SQL on many levels. In earlier parts

of this book, I cover the major topics that you’re
likely to encounter in most applications. This part deals
with subjects that are significantly more complex. SQL
deals with data a set at a time. Cursors come into play
only if you want to violate that paradigm and grapple with
the data a row at a time. Error handling is important to
every application, whether simple or sophisticated, but
you can approach it either simplistically or on a much
deeper level. (Hint: The more depth you give to your error
handling, the better off your users are if problems arise.)
In this part, I give you a view of the depths as well as of
the shallows. The Persistent Stored Modules update that
was added in SQL:1999 gives SQL some hefty new powers
without making programmers revert to a host language
for procedural operations.

The SQL:2003 international standard continues the object-
oriented enhancements added in SQL:1999. Folks who are
schooled in traditional procedural programming have to
make a major mental shift to handle object-oriented pro-
gramming. After you make that mental shift, however, you
can make your code perform in ways that were not possi-
ble when you were playing by the old rules.

Chapter 18

Cursors
In This Chapter
� Specifying cursor scope with the DECLARE statement

� Opening a cursor

� Fetching data one row at a time

� Closing a cursor

Amajor incompatibility between SQL and the most popular application
development languages is that SQL operates on the data of an entire set

of table rows at a time, whereas the procedural languages operate on only a
single row at a time. A cursor enables SQL to retrieve (or update, or delete) a
single row at a time so that you can use SQL in combination with an applica-
tion written in any of the popular languages.

A cursor is like a pointer that locates a specific table row. When a cursor is
active, you can SELECT, UPDATE, or DELETE the row at which the cursor is
pointing.

Cursors are valuable if you want to retrieve selected rows from a table, check
their contents, and perform different operations based on those contents.
SQL can’t perform this sequence of operations by itself. SQL can retrieve the
rows, but procedural languages are better at making decisions based on field
contents. Cursors enable SQL to retrieve rows from a table one at a time and
then feed the result to procedural code for processing. By placing the SQL
code in a loop, you can process the entire table row by row.

In embedded SQL, the most common flow of execution looks like this:

EXEC SQL DECLARE CURSOR statement
EXEC SQL OPEN statement
Test for end of table
Procedural code
Start loop

Procedural code
EXEC SQL FETCH
Procedural code
Test for end of table

End loop
EXEC SQL CLOSE statement
Procedural code

The SQL statements in this listing are DECLARE, OPEN, FETCH, and CLOSE.
Each of these statements is discussed in detail in this chapter.

If you can perform the operation that you want with normal SQL (set-at-a-
time) statements, then do so. Declare a cursor, retrieve table rows one at a
time, and use your system’s host language only when normal SQL can’t do
what you want.

Declaring a Cursor
To use a cursor, you first must declare its existence to the DBMS. You do this
with a DECLARE CURSOR statement. The DECLARE CURSOR statement doesn’t
actually cause anything to happen; it just announces the cursor’s name to the
DBMS and specifies what query the cursor will operate on. A DECLARE
CURSOR statement has the following syntax:

DECLARE cursor-name [<cursor sensitivity>]
[<cursor scrollability>]
CURSOR [<cursor holdability>] [<cursor returnability>]
FOR query expression

[ORDER BY order-by expression]
[FOR updatability expression] ;

Note: The cursor name uniquely identifies a cursor, so it must be unlike that
of any other cursor name in the current module or compilation unit.

To make your application more readable, give the cursor a meaningful name.
Relate it to the data that the query expression requests or to the operation
that your procedural code performs on the data.

Cursor sensitivity may be SENSITIVE, INSENSITIVE, or ASENSITIVE. Cursor
scrollability may be either SCROLL or NO SCROLL. Cursor holdability may be
either WITH HOLD or WITHOUT HOLD. Cursor returnability may be either
WITH RETURN or WITHOUT RETURN.

The query expression
The query expression can be any legal SELECT statement. The rows that the
SELECT statement retrieves are the ones that the cursor steps through one at
a time. These rows are the scope of the cursor.

324 Part VI: Advanced Topics

The query is not actually performed when the DECLARE CURSOR statement is
read. You can’t retrieve data until you execute the OPEN statement. The row-
by-row examination of the data starts after you enter the loop that encloses
the FETCH statement.

The ORDER BY clause
You may want to process your retrieved data in a particular order, depending
on what your procedural code will do with the data. You can sort the
retrieved rows before processing them by using the optional ORDER BY
clause. The clause has the following syntax:

ORDER BY sort-specification [, sort-specification]...

You can have multiple sort specifications. Each has the following syntax:

(column-name) [COLLATE BY collation-name] [ASC | DESC]

You sort by column name, and to do so, the column must be in the select
list of the query expression. Columns that are in the table but not in the
query select list do not work as sort specifications. For example, you want
to perform an operation that is not supported by SQL on selected rows of
the CUSTOMER table. You can use a DECLARE CURSOR statement like this:

DECLARE cust1 CURSOR FOR
SELECT CustID, FirstName, LastName, City, State, Phone

FROM CUSTOMER
ORDER BY State, LastName, FirstName ;

In this example, the SELECT statement retrieves rows sorted first by state,
then by last name, and then by first name. The statement retrieves all cus-
tomers in Alaska (AK) before it retrieves the first customer from Alabama
(AL). The statement then sorts customer records from Alaska by the cus-
tomer’s last name (Aaron before Abbott). Where the last name is the same,
sorting then goes by first name (George Aaron before Henry Aaron).

Have you ever made 40 copies of a 20-page document on a photocopier with-
out a collator? What a drag! You must make 20 stacks on tables and desks,
and then walk by the stacks 40 times, placing a sheet on each stack. This
process is called collation. A similar process plays a role in SQL.

A collation is a set of rules that determines how strings in a character set
compare. A character set has a default collation sequence that defines the
order in which elements are sorted. But, you can apply a collation sequence
other than the default to a column. To do so, use the optional COLLATE BY
clause. Your implementation probably supports several common collations.
Pick one and then make the collation ascending or descending by appending
an ASC or DESC keyword to the clause.

325Chapter 18: Cursors

In a DECLARE CURSOR statement, you can specify a calculated column that
doesn’t exist in the underlying table. In this case, the calculated column
doesn’t have a name that you can use in the ORDER BY clause. You can give
it a name in the DECLARE CURSOR query expression, which enables you to
identify the column later. Consider the following example:

DECLARE revenue CURSOR FOR
SELECT Model, Units, Price,

Units * Price AS ExtPrice
FROM TRANSDETAIL

ORDER BY Model, ExtPrice DESC ;

In this example, no COLLATE BY clause is in the ORDER BY clause, so the
default collation sequence is used. Notice that the fourth column in the select
list comes from a calculation on the data in the second and third columns. The
fourth column is an extended price named ExtPrice. In the ORDER BY clause,
I first sort by model name and then by ExtPrice. The sort on ExtPrice is
descending, as specified by the DESC keyword; transactions with the highest
dollar value are processed first.

The default sort order in an ORDER BY clause is ascending. If a sort specifica-
tion list includes a DESC sort and the next sort should also be in descending
order, you must explicitly specify DESC for the next sort. For example:

ORDER BY A, B DESC, C, D, E, F

is equivalent to

ORDER BY A ASC, B DESC, C ASC, D ASC, E ASC, F ASC

The updatability clause
Sometimes, you may want to update or delete table rows that you access
with a cursor. Other times, you may want to guarantee that such updates or
deletions can’t be made. SQL gives you control over this issue with the
updatability clause of the DECLARE CURSOR statement. If you want to prevent
updates and deletions within the scope of the cursor, use the clause:

FOR READ ONLY

For updates of specified columns only — leaving all others protected — use:

FOR UPDATE OF column-name [, column-name]...

Any columns listed must appear in the DECLARE CURSOR’s query expression.
If you don’t include an updatability clause, the default assumption is that all
columns listed in the query expression are updatable. In that case, an UPDATE
statement can update all the columns in the row to which the cursor is point-
ing, and a DELETE statement can delete that row.

326 Part VI: Advanced Topics

Sensitivity
The query expression in the DECLARE CURSOR statement determines the
rows that fall within a cursor’s scope. Consider this possible problem: What if
a statement in your program, located between the OPEN and the CLOSE state-
ments, changes the contents of some of those rows so that they no longer
satisfy the query? What if such a statement deletes some of those rows
entirely? Does the cursor continue to process all the rows that originally
qualified, or does it recognize the new situation and ignore rows that no
longer qualify or that have been deleted?

Changing the data in columns that are part of a DECLARE CURSOR query
expression after some — but not all — of the query’s rows have been
processed results in a big mess. Your results are likely to be inconsistent and
misleading. To avoid this problem, make your cursor insensitive to any
changes that statements within its scope may make. Add the INSENSITIVE
keyword to your DECLARE CURSOR statement. As long as your cursor is open,
it is insensitive to table changes that otherwise affect rows qualified to be
included in the cursor’s scope. A cursor can’t be both insensitive and updata-
ble. An insensitive cursor must be read-only.

Think of it this way: A normal SQL statement, such as UPDATE, INSERT, or
DELETE, operates on a set of rows in a database table (perhaps the entire
table). While such a statement is active, SQL’s transaction mechanism pro-
tects it from interference by other statements acting concurrently on the
same data. If you use a cursor, however, your window of vulnerability to
harmful interaction is wide open. When you open a cursor, you are at risk
until you close it again. If you open one cursor, start processing through a
table, and then open a second cursor while the first is still active, the actions
you take with the second cursor can affect what the statement controlled by
the first cursor sees. For example, suppose that you write these queries:

DECLARE C1 CURSOR FOR SELECT * FROM EMPLOYEE
ORDER BY Salary ;

DECLARE C2 CURSOR FOR SELECT * FROM EMPLOYEE
FOR UPDATE OF Salary ;

Now, suppose you open both cursors and fetch a few rows with C1 and then
update a salary with C2 to increase its value. This change can cause a row
that you have fetched with C1 to appear again on a later fetch of C1.

The peculiar interactions that are possible with multiple open cursors, or
open cursors and set operations, are the sort of concurrency problems that
transaction isolation avoids. If you operate this way, you’re asking for trou-
ble. So remember: Don’t operate with multiple open cursors.

The default condition of cursor sensitivity is ASENSITIVE. The meaning of
ASENSITIVE is implementation dependent. For one implementation it could

327Chapter 18: Cursors

be equivalent to SENSITIVE and for another it could be equivalent to INSENSI-
TIVE. Check your system documentation for its meaning in your own case.

Scrollability
Scrollability is a capability that cursors didn’t have prior to SQL-92. In imple-
mentations adhering to SQL-86 or SQL-89, the only allowed cursor movement
was sequential, starting at the first row retrieved by the query expression and
ending with the last row. SQL-92’s SCROLL keyword in the DECLARE CURSOR
statement gives you the capability to access rows in any order that you want.
SQL:2003 retains this capability. The syntax of the FETCH statement controls
the cursor’s movement. I describe the FETCH statement later in this chapter.

Opening a Cursor
Although the DECLARE CURSOR statement specifies which rows to include in
the cursor, it doesn’t actually cause anything to happen because DECLARE is a
declaration and not an executable statement. The OPEN statement brings the
cursor into existence. It has the following form:

OPEN cursor-name ;

To open the cursor that I use in the discussion of the ORDER BY clause (ear-
lier in this chapter), use the following:

DECLARE revenue CURSOR FOR
SELECT Model, Units, Price,

Units * Price AS ExtPrice
FROM TRANSDETAIL

ORDER BY Model, ExtPrice DESC ;
OPEN revenue ;

You can’t fetch rows from a cursor until you open the cursor. When you open
a cursor, the values of variables referenced in the DECLARE CURSOR state-
ment become fixed, as do all current date-time functions. Consider the follow-
ing example:

DECLARE CURSOR C1 FOR SELECT * FROM ORDERS
WHERE ORDERS.Customer = :NAME

AND DueDate < CURRENT_DATE ;
NAME := ‘Acme Co’; //A host language statement
OPEN C1;
NAME := ‘Omega Inc.’; //Another host statement
...
UPDATE ORDERS SET DueDate = CURRENT_DATE;

328 Part VI: Advanced Topics

The OPEN statement fixes the value of all variables referenced in the declare
cursor and also fixes a value for all current date-time functions. Thus the
second assignment to the name variable (NAME := ‘Omega Inc.’) has no
effect on the rows that the cursor fetches. (That value of NAME is used the
next time you open C1.) And even if the OPEN statement is executed a minute
before midnight and the UPDATE statement is executed a minute after mid-
night, the value of CURRENT_DATE in the UPDATE statement is the value of that
function at the time the OPEN statement executed. This is true even if
DECLARE CURSOR doesn’t reference the date-time function.

Fetching Data from a Single Row
Whereas the DECLARE CURSOR statement specifies the cursor’s name and
scope, and the OPEN statement collects the table rows selected by the
DECLARE CURSOR query expression, the FETCH statement actually retrieves
the data. The cursor may point to one of the rows in the cursor’s scope, or to
the location immediately before the first row in the scope, or to the location
immediately after the last row in the scope, or to the empty space between
two rows. You can specify where the cursor points with the orientation
clause in the FETCH statement.

329Chapter 18: Cursors

The fix is in (for date-times)
A similar “fixing” of date-time values exists in
set operations. Consider this example:

UPDATE ORDERS SET RecheckDate =
CURRENT_DATE WHERE....;

Now suppose that you have a bunch of orders.
You begin executing this statement at a minute
before midnight. At midnight, the statement is
still running, and it doesn’t finish executing until
five minutes after midnight. It doesn’t matter. If
a statement has any reference to
CURRENT_DATE (or TIME or TIMESTAMP),
the value is fixed when the statement begins, so
all the ORDERS rows in the statement get the
same RecheckDate. Similarly, if a statement
references TIMESTAMP, the whole statement

uses only one timestamp value, no matter how
long the statement runs.

Here’s an interesting example of an implication
of this rule:

UPDATE EMPLOYEE SET KEY =
CURRENT_TIMESTAMP;

You may expect that statement to set a unique
value in the key column of each EMPLOYEE.
You’d be disappointed; it sets the same value in
every row.

So when the OPEN statement fixes date-time
values for all statements referencing the cursor,
it treats all these statements like an extended
statement.

Syntax
The syntax for the FETCH command is

FETCH [[orientation] FROM] cursor-name
INTO target-specification [, target-specification]... ;

Seven orientation options are available:

� NEXT

� PRIOR

� FIRST

� LAST

� ABSOLUTE

� RELATIVE

� <simple value specification>

The default option is NEXT, which was the only orientation available in ver-
sions of SQL prior to SQL-92. It moves the cursor from wherever it is to the
next row in the set specified by the query expression. If the cursor is located
before the first record, it moves to the first record. If it points to record n, it
moves to record n+1. If the cursor points to the last record in the set, it
moves beyond that record, and notification of a no data condition is returned
in the SQLSTATE system variable. (Chapter 20 details SQLSTATE and the rest
of SQL’s error-handling facilities.)

The target specifications are either host variables or parameters, respec-
tively, depending on whether embedded SQL or module language is using the
cursor. The number and types of the target specifications must match the
number and types of the columns specified by the query expression in the
DECLARE CURSOR. So in the case of embedded SQL, when you fetch a list of
five values from a row of a table, five host variables must be there to receive
those values, and they must be the right types.

Orientation of a scrollable cursor
Because the SQL cursor is scrollable, you have other choices besides NEXT. If
you specify PRIOR, the pointer moves to the row immediately preceding its
current location. If you specify FIRST, it points to the first record in the set,
and if you specify LAST, it points to the last record.

An integer value specification must accompany ABSOLUTE and RELATIVE. For
example, FETCH ABSOLUTE 7 moves the cursor to the seventh row from the

330 Part VI: Advanced Topics

beginning of the set. FETCH RELATIVE 7 moves the cursor seven rows
beyond its current position. FETCH RELATIVE 0 doesn’t move the cursor.

FETCH RELATIVE 1 has the same effect as FETCH NEXT. FETCH RELATIVE –1
has the same effect as FETCH PRIOR. FETCH ABSOLUTE 1 gives you the first
record in the set, FETCH ABSOLUTE 2 gives you the second record in the set,
and so on. Similarly, FETCH ABSOLUTE –1 gives you the last record in the
set, FETCH ABSOLUTE –2 gives you the next-to-last record, and so on. Spec-
ifying FETCH ABSOLUTE 0 returns the no data exception condition code, as
does FETCH ABSOLUTE 17 if only 16 rows are in the set. FETCH <simple
value specification> gives you the record specified by the simple value
specification.

Positioned DELETE and
UPDATE statements
You can perform delete and update operations on the row that the cursor is
currently pointing to. The syntax of the DELETE statement is as follows:

DELETE FROM table-name WHERE CURRENT OF cursor-name ;

If the cursor doesn’t point to a row, the statement returns an error condition.
No deletion occurs.

The syntax of the UPDATE statement is as follows:

UPDATE table-name
SET column-name = value [,column-name = value]...
WHERE CURRENT OF cursor-name ;

The value you place into each specified column must be a value expression
or the keyword DEFAULT. If an attempted positioned update operation
returns an error, the update isn’t performed.

Closing a Cursor
After you finish with a cursor, make a habit of closing it immediately. Leaving
a cursor open as your application goes on to other issues may cause harm.
Also, open cursors use system resources.

If you close a cursor that was insensitive to changes made while it was open,
when you reopen it, the reopened cursor reflects any such changes.

331Chapter 18: Cursors

332 Part VI: Advanced Topics

Chapter 19

Persistent Stored Modules
In This Chapter
� Tooling up compound statements with atomicity, cursors, variables, and conditions

� Regulating the flow of control statements

� Doing loops that do loops that do loops

� Retrieving and using stored procedures and stored functions

� Assigning privileges with practical panache

� Creating and using stored modules

Some of the leading practitioners of database technology have been work-
ing on the standards process for years. Even after a standard has been

issued and accepted by the worldwide database community, progress toward
the next standard does not slow down. Such was the case for SQL-92. A
seven-year gap separated the issuance of SQL-92 and the release of the first
component of SQL:1999. The intervening years were not without activity,
however. During this interval, ANSI and ISO issued an addendum to SQL-92,
called SQL-92/PSM (Persistent Stored Modules). The release of this adden-
dum formed the basis for a part of SQL:1999 with the same name. SQL/PSM,
now part of SQL:2003, defines a number of statements that give SQL flow of
control structures comparable to the flow of control structures available in
full-featured programming languages. The features that SQL/PSM added to
SQL allow you to do many things entirely within SQL. Earlier versions of SQL
would have required repeated swapping between SQL and its procedural
host language.

Compound Statements
Throughout this book, SQL is set forth as a non-procedural language that
deals with data a set at a time rather than a record at a time. With the addi-
tion of the facilities covered in this chapter, however, this statement is not as
true as it used to be. SQL is becoming more procedural, although it still deals
with data a set at a time. Because archaic SQL (that defined by SQL-92) does
not follow the procedural model — where one instruction follows another in

a sequence to produce a desired result — early SQL statements were stand-
alone entities, perhaps embedded in a C++ or Visual Basic program. With
these early versions of SQL, users typically did not pose a query or perform
some other operation by executing a series of SQL statements. If users did
execute such a series of statements, they suffered a performance penalty.
Every SQL statement that is executed requires a message to be sent from the
client where the user is located, to the server where the database is located,
and then a response to be sent in the reverse direction. This network traffic
slows operations as the network becomes congested.

SQL:1999 and SQL:2003 allow compound statements, made up of individual
SQL statements, that execute as a unit. This capability eases network conges-
tion because all the individual SQL statements in the compound statement
are sent to the server as a unit and executed as a unit, and a single response
is sent back to the client.

All the statements included in a compound statement are enclosed between a
BEGIN keyword at the beginning of the statement and an END keyword at the
end of the statement. For example, to insert data into multiple related tables,
you use syntax similar to the following:

void main {
EXEC SQL

BEGIN
INSERT INTO students (StudentID, Fname, Lname)

VALUES (:sid, :sfname, :slname) ;
INSERT INTO roster (ClassID, Class, StudentID)

VALUES (:cid, :cname, :sid) ;
INSERT INTO receivable (StudentID, Class, Fee)

VALUES (:sid, :cname, :cfee)
END ;

/* Check SQLSTATE for errors */
}

This little fragment from a C program includes an embedded compound SQL
statement. The comment about SQLSTATE deals with error handling. If the
compound statement does not execute successfully, an error code is placed
in the status parameter SQLSTATE. Of course, placing a comment after the
END keyword doesn’t correct the error. The comment is placed there simply
to remind you that in a real program, error-handling code belongs in that
spot. Error handling is described in detail in Chapter 20.

Atomicity
Compound statements introduce a possibility for error that does not exist for
simple SQL statements. A simple SQL statement either completes success-
fully or doesn’t. If it doesn’t complete successfully, the database is
unchanged. This is not necessarily the case for a compound statement.

334 Part VI: Advanced Topics

Consider the example in the preceding section. What if the INSERT to the stu-
dents table and the INSERT to the roster table both took place, but because
of interference from another user, the INSERT to the receivable table failed? A
student would be registered for a class but would not be billed. This kind of
error can be hard on a university’s finances. The concept that is missing in
this scenario is atomicity. An atomic statement is indivisible — it either exe-
cutes completely or not at all. Simple SQL statements are atomic by nature,
but compound SQL statements are not. However, you can make a compound
SQL statement atomic by specifying it as such. In the following example, the
compound SQL statement is safe by introducing atomicity:

void main {
EXEC SQL

BEGIN ATOMIC
INSERT INTO students (StudentID, Fname, Lname)

VALUES (:sid, :sfname, :slname) ;
INSERT INTO roster (ClassID, Class, StudentID)

VALUES (:cid, :cname, :sid) ;
INSERT INTO receivable (StudentID, Class, Fee)

VALUES (:sid, :cname, :cfee)
END ;

/* Check SQLSTATE for errors */
}

By adding the keyword ATOMIC after the keyword BEGIN, you can ensure that
either the entire statement executes, or — if an error occurs — the entire
statement rolls back, leaving the database in the state it was in before the
statement began executing.

335Chapter 19: Persistent Stored Modules

What’s in a name?
As a name for an SQL feature, persistent stored
modules is pretty descriptive — so descriptive,
in fact, that you may already have deduced
what it probably means. You already know what
a module is; if not, sneak a peek at Chapter 15.
(Not to worry. All quizzes in this book are open-
book.) Logic may then lead you to presume that
a stored module is one that’s kept somewhere
till it’s needed, and that a persistent stored
module is one that sticks around for an
extended time. And that’s gotta be what this
chapter is about — right?

You’re close, but logic has led you a little astray.
Granted, you can find some handy facts about

such modules in this chapter. But the part of
SQL:2003 known as Persistent Stored Modules
(PSM) is mostly concerned with other SQL fea-
tures. In SQL:2003, the bulk of PSM defines
important functions that should have made it
into SQL-92 but didn’t. These functions dramat-
ically increase SQL’s power and utility — and
hey, they had to put ’em somewhere. And some
of these functions do have the word stored in
their names (in particular, stored functions and
stored procedures). So much for pure logic.
What’s important is that it’s good stuff and
it works.

Variables
One feature that full computer languages such as C or BASIC offer that SQL
didn’t offer until SQL/PSM is variables. Variables are symbols that can take on
a value of any given data type. Within a compound statement, you can
declare a variable and assign it a value. The variable can then be used within
the compound statement. After you exit a compound statement, all the vari-
ables declared within it are destroyed. Thus, variables in SQL are local to the
compound statement within which they are declared. Here is an example:

BEGIN
DECLARE prezpay NUMERIC ;
SELECT salary
INTO prezpay
FROM EMPLOYEE
WHERE jobtitle = ‘president’ ;

END;

Cursors
You can declare a cursor within a compound statement. You use cursors to
process a table’s data one row at a time (see Chapter 18 for details). Within a
compound statement, you can declare a cursor, use it, and then forget it
because the cursor is destroyed when you exit the compound statement.
Here’s an example of this usage:

BEGIN
DECLARE ipocandidate CHARACTER(30) ;
DECLARE cursor1 CURSOR FOR

SELECT company
FROM biotech ;

OPEN CURSOR1 ;
FETCH cursor1 INTO ipocandidate ;
CLOSE cursor1 ;

END;

Conditions
When people say that a person has a “condition,” they usually mean that
something is wrong with that person — he or she is sick or injured. People
usually don’t bother to mention that a person is in good condition; rather, we
talk about people who are in serious condition or, even worse, in critical con-
dition. This idea is similar to the way programmers talk about the condition
of an SQL statement. The execution of an SQL statement leads to a successful
result, a questionable result, or an outright erroneous result. Each of these
possible results corresponds to a condition.

336 Part VI: Advanced Topics

Every time an SQL statement executes, the database server places a value
into the status parameter SQLSTATE. SQLSTATE is a five-character field. The
value that is placed into SQLSTATE indicates whether the preceding SQL
statement executed successfully. If it did not execute successfully, the value
of SQLSTATE provides some information about the error.

The first two of the five characters of SQLSTATE (the class value) give you the
major news as to whether the preceding SQL statement executed success-
fully, returned a result that may or may not have been successful, or pro-
duced an error. Table 19-1 shows the four possible results.

Table 19-1 SQLSTATE Class Values
Class Description

00 Successful completion

01 Warning

Class Description

02 Not Found

other Exception

A class value of 00 indicates that the preceding SQL statement executed suc-
cessfully. This is a very happy and welcome result — most of the time.

A class value of 01 indicates a warning. This means that something unusual
happened during the execution of the SQL statement. This occurrence may
or may not be an error — the DBMS can’t tell. The warning is a heads-up to
the developer, suggesting that perhaps he or she should check the preceding
SQL statement carefully to ensure that it is operating correctly.

A class value of 02 indicates that no data was returned as a result of the exe-
cution of the preceding SQL statement. This may or may not be good news,
depending on what the developer was trying to do with the statement. For
example, sometimes an empty result table is exactly what the developer
wanted the SQL statement to return.

Any class code other than 00, 01, or 02 indicates an error condition. An indi-
cation of the nature of the error appears in the three characters that hold the
subclass value. The two characters of the class code, plus the three charac-
ters of the subclass code, together comprise the five characters of SQLSTATE.

337Chapter 19: Persistent Stored Modules

Handling conditions
You can have your program look at SQLSTATE after the execution of every
SQL statement. What do you do with the knowledge that you gain?

� If you find a class code of 00, you probably don’t want to do anything.
You want execution to proceed as you originally planned.

� If you find a class code of 01 or 02, you may or may not want to take
special action. If you expected the “Warning” or “Not Found” indication,
then you probably want to let execution proceed normally. If you didn’t
expect either of these class codes, then you probably want to have exe-
cution branch to a procedure that is specifically designed to handle the
unexpected, but not totally unanticipated, warning or not found result.

� If you receive any other class code, something is wrong. You should
branch to an exception-handling procedure. The specific procedure that
you choose to branch to depends on the contents of the three subclass
characters, as well as the two class characters of SQLSTATE. If multiple
different exceptions are possible, there should be an exception-handling
procedure for each one because different exceptions often require different
responses. Some errors may be correctable, or you may find a work-around.
Other errors may be fatal, calling for termination of the application.

Handler declarations
You can put a condition handler within a compound statement. To create a
condition handler, you must first declare the condition that it will handle. The
condition declared can be some sort of exception, or it can just be something
that is true. Table 19-2 lists the possible conditions and includes a brief
description of what causes each type of condition.

Table 19-2 Conditions That May Be Specified in a
Condition Handler

Condition Description

SQLSTATE VALUE ‘xxyyy’ Specific SQLSTATE value

SQLEXCEPTION SQLSTATE class other than 00, 01, or 02

SQLWARNING SQLSTATE class 01

NOT FOUND SQLSTATE class 02

338 Part VI: Advanced Topics

The following is an example of a condition declaration:

BEGIN
DECLARE constraint_violation CONDITION

FOR SQLSTATE VALUE ‘23000’ ;
END ;

This example is not realistic because typically, the SQL statement that may
cause the condition to occur — as well as the handler that would be invoked
if the condition did occur — would also be enclosed within the BEGIN...END
structure.

Handler actions and handler effects
If a condition occurs that invokes a handler, the action specified by the han-
dler executes. This action is an SQL statement, which can be a compound
statement. If the handler action completes successfully, then the handler
effect executes. The following is a list of the three possible handler effects:

� CONTINUE: Continue execution immediately after the statement that
caused the handler to be invoked.

� EXIT: Continue execution after the compound statement that contains
the handler.

� UNDO: Undo the work of the previous statements in the compound state-
ment, and continue execution after the statement that contains the
handler.

If the handler was able to correct whatever problem invoked the handler,
then the CONTINUE effect may be appropriate. The EXIT effect may be appro-
priate if the handler didn’t fix the problem, but the changes made to the com-
pound statement do not need to be undone. The UNDO effect is appropriate if
you want to return the database to the state it was in before the compound
statement started execution. Consider the following example:

BEGIN ATOMIC
DECLARE constraint_violation CONDITION

FOR SQLSTATE VALUE ‘23000’ ;
DECLARE UNDO HANDLER

FOR constraint_violation
RESIGNAL ;

INSERT INTO students (StudentID, Fname, Lname)
VALUES (:sid, :sfname, :slname) ;

INSERT INTO roster (ClassID, Class, StudentID)
VALUES (:cid, :cname, :sid) ;

END ;

339Chapter 19: Persistent Stored Modules

If either of the INSERT statements causes a constraint violation, such as
adding a record with a primary key that duplicates a primary key already in
the table, SQLSTATE assumes a value of 23000, thus setting the constraint_
violation condition to a true value. This action causes the handler to UNDO
any changes that have been made to any tables by either INSERT command.
The RESIGNAL statement transfers control back to the procedure that called
the currently executing procedure.

If both INSERT statements execute successfully, execution continues with the
statement following the END keyword.

The ATOMIC keyword is mandatory whenever a handler’s effect is UNDO. This
is not the case for handlers whose effect is either CONTINUE or EXIT.

Conditions that aren’t handled
In the preceding example, consider this possibility: What if an exception
occurred that returned an SQLSTATE value other than ‘23000’? Something is
definitely wrong, but the exception handler that you coded can’t handle it.
What happens now? Because the current procedure doesn’t know what to do,
a RESIGNAL occurs. This bumps the problem up to the next higher level of
control. If the problem does not get handled there, it continues to be elevated
to higher levels until either it is handled or it causes an error condition in the
main application.

The idea that I want to emphasize here is that if you write an SQL statement
that may cause exceptions, then you should write exception handlers for all
such possible exceptions. If you don’t, you will have more difficulty isolating
the source of the problem when it inevitably occurs.

Assignment
With SQL/PSM, SQL finally gains a function that even the lowliest procedural
languages have had since their inception: the ability to assign a value to a
variable. Essentially, an assignment statement takes the following form:

SET target = source ;

In this usage, target is a variable name, and source is an expression.
Several examples might be:

SET vfname = ‘Brandon’ ;

340 Part VI: Advanced Topics

SET varea = 3.1416 * :radius * :radius ;

SET vhiggsmass = NULL ;

Flow of Control Statements
Since its original formulation in the SQL-86 standard, one of the main draw-
backs that has prevented people from using SQL in a procedural manner has
been its lack of flow of control statements. Until SQL/PSM was included in the
SQL standard, you couldn’t branch out of a strict sequential order of execu-
tion without reverting to a host language like C or BASIC. SQL/PSM intro-
duces the traditional flow of control structures that other languages provide,
thus allowing SQL programs to perform needed functions without switching
back and forth between languages.

IF...THEN...ELSE...END IF
The most basic flow of control statement is the IF...THEN...ELSE...END
IF statement. IF a condition is true, then execute the statements following
the THEN keyword. Otherwise, execute the statements following the ELSE key-
word. For example:

IF
vfname = ‘Brandon’

THEN
UPDATE students

SET Fname = ‘Brandon’
WHERE StudentID = 314159 ;

ELSE
DELETE FROM students

WHERE StudentID = 314159 ;
END IF

In this example, if the variable vfname contains the value ‘Brandon’, then
the record for student 314159 is updated with ‘Brandon’ in the Fname field.
If the variable vfname contains any value other than ‘Brandon’, then the
record for student 314159 is deleted from the students table.

The IF...THEN...ELSE...END IF statement is great if you want to take one
of two actions, based on the value of a condition. Often, however, you want to
make a selection from more than two choices. At such times, you should
probably use a CASE statement.

341Chapter 19: Persistent Stored Modules

CASE...END CASE
CASE statements come in two forms: the simple CASE statement and the
searched CASE statement. Both kinds allow you to take different execution
paths, based on the values of conditions.

Simple CASE statement
A simple CASE statement evaluates a single condition. Based on the value of
that condition, execution may take one of several branches. For example:

CASE vmajor
WHEN ‘Computer Science’
THEN INSERT INTO geeks (StudentID, Fname, Lname)

VALUES (:sid, :sfname, :slname) ;
WHEN ‘Sports Medicine’
THEN INSERT INTO jocks (StudentID, Fname, Lname)

VALUES (:sid, :sfname, :slname) ;
ELSE INSERT INTO undeclared (StudentID, Fname, Lname)

VALUES (:sid, :sfname, :slname) ;
END CASE

The ELSE clause handles everything that doesn’t fall into the explicitly
named categories in the THEN clauses.

The ELSE clause is optional. However, if it is not included, and the CASE state-
ment’s condition is not handled by any of the THEN clauses, SQL returns an
exception.

Searched CASE statement
A searched CASE statement is similar to a simple CASE statement, but it evalu-
ates multiple conditions rather than just one. For example:

CASE
WHEN vmajor

IN (‘Computer Science’, ‘Electrical Engineering’)
THEN INSERT INTO geeks (StudentID, Fname, Lname)

VALUES (:sid, :sfname, :slname) ;
WHEN vclub

IN (‘Amateur Radio’, ‘Rocket’, ‘Computer’)
THEN INSERT INTO geeks (StudentID, Fname, Lname)

VALUES (:sid, :sfname, :slname) ;
ELSE

INSERT INTO poets (StudentID, Fname, Lname)
VALUES (:sid, :sfname, :slname) ;

END CASE

342 Part VI: Advanced Topics

You avoid an exception by putting all students who are not geeks into the
poets table. Because not all nongeeks are poets, this may not be strictly accu-
rate in all cases. If it isn’t, you can always add a few more WHEN clauses.

LOOP...ENDLOOP
The LOOP statement allows you to execute a sequence of SQL statements mul-
tiple times. After the last SQL statement enclosed within the LOOP...ENDLOOP
statement executes, control loops back to the first such statement and makes
another pass through the enclosed statements. The syntax is as follows:

SET vcount = 0 ;
LOOP

SET vcount = vcount + 1 ;
INSERT INTO asteroid (AsteroidID)

VALUES (vcount) ;
END LOOP

This code fragment preloads your asteroid table with unique identifiers. You
can fill in other details about the asteroids as you find them, based on what
you see through your telescope when you discover them.

Notice the one little problem with the code fragment in the preceding exam-
ple: It is an infinite loop. No provision is made for leaving the loop, so it will
continue inserting rows into the asteroid table until the DBMS fills all avail-
able storage with asteroid table records. If you’re lucky, the DBMS will raise
an exception at that time. If you’re unlucky, the system will merely crash.

For the LOOP statement to be useful, you need a way to exit loops before you
raise an exception. That way is the LEAVE statement.

LEAVE
The LEAVE statement works just like you might expect it to work. When exe-
cution encounters a LEAVE statement embedded within a labeled statement,
it proceeds to the next statement beyond the labeled statement. For example:

AsteroidPreload:
SET vcount = 0 ;
LOOP

SET vcount = vcount + 1 ;
IF vcount > 10000

THEN

343Chapter 19: Persistent Stored Modules

LEAVE AsteroidPreload ;
END IF ;
INSERT INTO asteroid (AsteroidID)

VALUES (vcount) ;
END LOOP AsteroidPreload

The preceding code inserts 10000 sequentially numbered records into the
asteroids table, and then passes out of the loop.

WHILE...DO...END WHILE
The WHILE statement provides another method of executing a series of SQL
statements multiple times. While a designated condition is true, the WHILE
loop continues to execute. When the condition becomes false, looping stops.
For example:

AsteroidPreload2:
SET vcount = 0 ;
WHILE

vcount < 10000 DO
SET vcount = vcount + 1 ;
INSERT INTO asteroid (AsteroidID)

VALUES (vcount) ;
END WHILE AsteroidPreload2

This code does exactly the same thing that AsteroidPreload did in the pre-
ceding section. This is just another example of the often-cited fact that with
SQL, you usually have multiple ways to accomplish any given task. Use
whichever method you feel most comfortable with, assuming your implemen-
tation allows both.

REPEAT...UNTIL...END REPEAT
The REPEAT loop is very much like the WHILE loop, except that the condition is
checked after the embedded statements execute rather than before. Example:

AsteroidPreload3:
SET vcount = 0 ;
REPEAT

SET vcount = vcount + 1 ;
INSERT INTO asteroid (AsteroidID)

VALUES (vcount) ;
UNTIL X = 10000

END REPEAT AsteroidPreload3

344 Part VI: Advanced Topics

Although I perform the same operation three different ways in the preceding
example (with LOOP, WHILE, and REPEAT), you will encounter some instances
where one of these structures is clearly better than the other two. It is good to
have all three methods in your bag of tricks so that when a situation like this
arises, you can decide which one is the best tool available for the situation.

FOR...DO...END FOR
The SQL FOR loop declares and opens a cursor, fetches the rows of the
cursor, executes the body of the FOR statement once for each row, and then
closes the cursor. This loop makes processing possible entirely within SQL,
instead of switching out to a host language. If your implementation supports
SQL FOR loops, you can use them as a simple alternative to the cursor pro-
cessing described in Chapter 18. Here’s an example:

FOR vcount AS Curs1 CURSOR FOR
SELECT AsteroidID FROM asteroid

DO
UPDATE asteroid SET Description = ‘stony iron’

WHERE CURRENT OF Curs1 ;
END FOR

In this example, you update every row in the asteroid table by putting
‘stony iron’ into the Description field. This is a fast way to identify the
compositions of asteroids, but the table may suffer some in the accuracy
department. Perhaps you’d be better off checking the spectral signatures of
the asteroids and then entering their types individually.

ITERATE
The ITERATE statement provides a way to change the flow of execution
within an iterated SQL statement. The iterated SQL statements are LOOP,
WHILE, REPEAT, and FOR. If the iteration condition of the iterated SQL state-
ment is true or not specified, then the next iteration of the loop commences
immediately after the ITERATE statement executes. If the iteration condition
of the iterated SQL statement is false or unknown, then iteration ceases after
the ITERATE statement executes. For example:

AsteroidPreload4:
SET vcount = 0 ;
WHILE

vcount < 10000 DO
SET vcount = vcount + 1 ;

345Chapter 19: Persistent Stored Modules

INSERT INTO asteroid (AsteroidID)
VALUES (vcount) ;

ITERATE AsteroidPreload4 ;
SET vpreload = ‘DONE’ ;

END WHILE AsteroidPreload4

Execution loops back to the top of the WHILE statement immediately after the
ITERATE statement each time through the loop until vcount equals 9999. On
that iteration, vcount increments to 10000, the INSERT performs, the ITERATE
statement ceases iteration, vpreload is set to ‘DONE’, and execution pro-
ceeds to the next statement after the loop.

Stored Procedures
Stored procedures reside in the database on the server, rather than execute
on the client — where all procedures were located before SQL/PSM. After you
define a stored procedure, you can invoke it with a CALL statement. Keeping
the procedure located on the server rather than the client reduces network
traffic, thus speeding performance. The only traffic that needs to pass from
the client to the server is the CALL statement. You can create this procedure
in the following manner:

EXEC SQL
CREATE PROCEDURE MatchScore

(IN white CHAR (20),
IN black CHAR (20),
IN result CHAR (3),
OUT winner CHAR (5))

BEGIN ATOMIC
CASE result

WHEN ‘1-0’ THEN
SET winner = ‘white’ ;

WHEN ‘0-1’ THEN
SET winner = ‘black’ ;

ELSE
SET winner = ‘draw’ ;

END CASE
END ;

After you have created a stored procedure like the one in this example, you
can invoke it with a CALL statement similar to the following statement:

CALL MatchScore (‘Kasparov’, ‘Karpov’, ‘1-0’, winner) ;

346 Part VI: Advanced Topics

The first three arguments are input parameters that are fed to the
MatchScore procedure. The fourth argument is the output parameter that
the MatchScore uses to return its result to the calling routine. In this case, it
returns ‘white’.

Stored Functions
A stored function is similar in many ways to a stored procedure. Collectively,
the two are referred to as stored routines. They are different in several ways,
including the way in which they are invoked. A stored procedure is invoked
with a CALL statement, and a stored function is invoked with a function call,
which can replace an argument of an SQL statement. The following is an exam-
ple of a function definition, followed by an example of a call to that function:

CREATE FUNCTION PurchaseHistory (CustID)
RETURNS CHAR VARYING (200)

BEGIN
DECLARE purch CHAR VARYING (200)

DEFAULT ‘’ ;
FOR x AS SELECT *

FROM transactions t
WHERE t.customerID = CustID

DO
IF a <> ‘’

THEN SET purch = purch || ‘, ‘ ;
END IF ;
SET purch = purch || t.description ;

END FOR
RETURN purch ;

END ;

This function definition creates a comma-delimited list of purchases made by
a customer that has a specified customer number, taken from the transac-
tions table. The following UPDATE statement contains a function call to
PurchaseHistory that inserts the latest purchase history for customer
number 314259 into her record in the customer table:

SET customerID = 314259 ;
UPDATE customer

SET history = PurchaseHistory (customerID)
WHERE customerID = 314259 ;

347Chapter 19: Persistent Stored Modules

Privileges
The various privileges that you can grant to users are discussed in Chapter 13.
The database owner can grant the following privileges to other users:

� The right to DELETE rows from a table

� The right to INSERT rows into a table

� The right to UPDATE rows in a table

� The right to create a table that REFERENCES another table

� The right of USAGE on a domain

SQL/PSM adds one more privilege that can be granted to a user — the
EXECUTE privilege. Here are two examples:

GRANT EXECUTE on MatchScore to TournamentDirector ;

GRANT EXECUTE on PurchaseHistory to SalesManager ;

These statements allow the tournament director of the chess match to exe-
cute the MatchScore procedure, and the sales manager of the company to
execute the PurchaseHistory function. People lacking the EXECUTE privi-
lege for a routine aren’t able to use it.

Stored Modules
A stored module can contain multiple routines (procedures and/or functions)
that can be invoked by SQL. Anyone who has the EXECUTE privilege for a
module has access to all the routines in the module. Privileges on routines
within a module can’t be granted individually. The following is an example of
a stored module:

CREATE MODULE mod1
PROCEDURE MatchScore

(IN white CHAR (20),
IN black CHAR (20),
IN result CHAR (3),
OUT winner CHAR (5))

BEGIN ATOMIC
CASE result

WHEN ‘1-0’ THEN
SET winner = ‘white’ ;

WHEN ‘0-1’ THEN

348 Part VI: Advanced Topics

SET winner = ‘black’ ;
ELSE

SET winner = ‘draw’ ;
END CASE

END ;

FUNCTION PurchaseHistory (CustID)
RETURNS CHAR VARYING (200)
BEGIN

DECLARE purch CHAR VARYING (200)
DEFAULT ‘’ ;

FOR x AS SELECT *
FROM transactions t
WHERE t.customerID = CustID

DO
IF a <> ‘’

THEN SET purch = purch || ‘, ‘ ;
END IF ;
SET purch = purch || t.description ;

END FOR
RETURN purch ;

END ;
END MODULE ;

The two routines in this module don’t have much in common, but they don’t
have to. You can gather related routines into a single module, or you can
stick all the routines you are likely to use into a single module, regardless of
whether they have anything in common.

349Chapter 19: Persistent Stored Modules

350 Part VI: Advanced Topics

Chapter 20

Error-Handling
In This Chapter
� Flagging error conditions

� Branching to error-handling code

� Determining the exact nature of an error

� Determining which DBMS generated an error condition

Wouldn’t it be great if every application you wrote worked perfectly
every time? Yeah, and it would also be really cool to win $57 million in

the Oregon state lottery. Unfortunately, both possibilities are equally likely to
happen. Error conditions of one sort or another are inevitable, so it’s helpful
to know what causes them. SQL:2003’s mechanism for returning error infor-
mation to you is the status parameter (or host variable) SQLSTATE. Based on
the contents of SQLSTATE, you can take different actions to remedy the error
condition.

For example, the WHENEVER directive enables you to take a predetermined
action whenever a specified condition (if SQLSTATE has a non-zero value, for
example) is met. You can also find detailed status information about the SQL
statement that you just executed in the diagnostics area. In this chapter, I
explain these helpful error-handling facilities and how to use them.

SQLSTATE
SQLSTATE specifies a large number of anomalous conditions. SQLSTATE is a
five-character string in which only the uppercase letters A through Z and the
numerals 0 through 9 are valid characters. The five-character string is
divided into two groups: a two-character class code and a three-character
subclass code. Figure 20-1 illustrates the SQLSTATE layout.

The SQL:2003 standard defines any class code that starts with the letters A
through H or the numerals 0 through 4; therefore, these class codes mean the
same thing in any implementation. Class codes that start with the letters I
through Z or the numerals 5 through 9 are left open for implementors

(the people who build database management systems) to define because the
SQL specification can’t anticipate every condition that may come up in every
implementation. However, implementors should use these nonstandard class
codes as little as possible to avoid migration problems from one DBMS to
another. Ideally, implementors should use the standard codes most of the
time and the nonstandard codes only under the most unusual circumstances.

In SQLSTATE, a class code of 00 indicates successful completion. Class code
01 means that the statement executed successfully but produced a warning.
Class code 02 indicates a no-data condition. Any SQLSTATE class code other
than 00, 01, or 02 indicates that the statement did not execute successfully.

Because SQLSTATE updates after every SQL operation, you can check it after
every statement executes. If SQLSTATE contains 00000 (successful comple-
tion), you can proceed with the next operation. If it contains anything else,
you may want to branch out of the main line of your code to handle the situa-
tion. The specific class code and subclass code that an SQLSTATE contains
determines which of several possible actions you should take.

To use SQLSTATE in a module language program (described in Chapter 15),
include a reference to it in your procedure definitions, as the following exam-
ple shows:

PROCEDURE NUTRIENT
(SQLSTATE, :foodname CHAR (20), :calories SMALLINT,

:protein DECIMAL (5,1), :fat DECIMAL (5,1),
:carbo DECIMAL (5,1))

INSERT INTO FOODS
(FoodName, Calories, Protein, Fat, Carbohydrate)
VALUES
(:foodname, :calories, :protein, :fat, :carbo) ;

At the appropriate spot in your procedural language program, you can make
values available for the parameters (perhaps by soliciting them from the
user) and then call up the procedure. The syntax of this operation varies
from one language to another, but it looks something like this:

Class code Subclass code
Figure 20-1:
SQLSTATE

status
parameter

layout.

352 Part VI: Advanced Topics

foodname = “Okra, boiled” ;
calories = 29 ;
protein = 2.0 ;
fat = 0.3 ;
carbo = 6.0 ;
NUTRIENT(state, foodname, calories, protein, fat, carbo);

The state of SQLSTATE is returned in the variable state. Your program can
examine this variable and then take the appropriate action based on the vari-
able’s contents.

WHENEVER Clause
What’s the point of knowing that an SQL operation didn’t execute success-
fully if you can’t do anything about it? If an error occurs, you don’t want your
application to continue executing as if everything is fine. You need to be able
to acknowledge the error and do something to correct it. If you can’t correct
the error, at the very least you want to inform the user of the problem and
bring the application to a graceful termination. The WHENEVER Directive is the
SQL mechanism for dealing with execution exceptions.

The WHENEVER Directive is actually a declaration and is therefore located in
your application’s SQL declaration section, before the executable SQL code.
The syntax is as follows:

WHENEVER condition action ;

The condition may be either SQLERROR or NOT FOUND. The action may be
either CONTINUE or GOTO address. SQLERROR is True if SQLSTATE has a class
code other than 00, 01, or 02. NOT FOUND is True if SQLSTATE is 02000.

If the action is CONTINUE, nothing special happens, and the execution contin-
ues normally. If the action is GOTO address (or GO TO address), execution
branches to the designated address in the program. At the branch address,
you can put a conditional statement that examines SQLSTATE and takes differ-
ent actions based on what it finds. Here are some examples of this scenario:

WHENEVER SQLERROR GO TO error_trap ;

or

WHENEVER NOT FOUND CONTINUE ;

353Chapter 20: Error-Handling

The GO TO option is simply a macro: The implementation (that is, the embed-
ded language precompiler) inserts the following test after every EXEC SQL
statement:

IF SQLSTATE <> ‘00000’
AND SQLSTATE <> ‘00001’
AND SQLSTATE <> ‘00002’

THEN GOTO error_trap;

The CONTINUE option is essentially a NO-OP that says “ignore this.”

Diagnostics Areas
Although SQLSTATE can give you some information about why a particular
statement failed, the information is pretty brief. So SQL:2003 provides for the
capture and retention of additional status information in diagnostics areas.
Multiple diagnostics areas are maintained in the form of a last-in-first-out
(LIFO) stack. Information on the most recent error can be found at the top of
the stack. The additional status information in a diagnostics area can be par-
ticularly helpful in cases in which the execution of a single SQL statement
generates multiple warnings followed by an error. SQLSTATE only reports the
occurrence of one error, but the diagnostics area has the capacity to report
on multiple (hopefully all) errors.

The diagnostics area is a DBMS-managed data structure that has two
components:

� Header: The header contains general information about the last SQL
statement that was executed.

� Detail area: The detail area contains information about each code
(error, warning, or success) that the statement generated.

The diagnostics header area
In the SET TRANSACTION statement (described in Chapter 14), you can spec-
ify DIAGNOSTICS SIZE. The SIZE that you specify is the number of detail
areas allocated for status information. If you don’t include a DIAGNOSTICS
SIZE clause in your SET TRANSACTION statement, your DBMS assigns its
default number of detail areas, whatever that happens to be.

The header area contains eight items, as listed in Table 20-1.

354 Part VI: Advanced Topics

Table 20-1 Diagnostics Header Area
Fields Data Type

NUMBER INTEGER

ROW_COUNT INTEGER

COMMAND_FUNCTION VARCHAR (>=128)

COMMAND_FUNCTION_CODE INTEGER

MORE INTEGER

TRANSACTIONS_COMMITTED INTEGER

TRANSACTIONS_ROLLED_BACK INTEGER

TRANSACTION_ACTIVE INTEGER

The following list describes these items in more detail:

� The NUMBER field is the number of detail areas that have been filled with
diagnostic information about the current exception.

� The ROW_COUNT field holds the number of rows affected if the previous
SQL statement was an INSERT, UPDATE, or DELETE.

� The COMMAND_FUNCTION field describes the dynamic SQL statement that
was just executed (if, in fact, the last SQL statement to be executed was
a dynamic SQL statement).

� The COMMAND_FUNCTION_CODE field gives the code number for the
dynamic SQL statement that was just executed (if the last SQL statement
executed was a dynamic SQL statement). Every dynamic function has an
associated numeric code.

� The MORE field may be either a ‘Y’ or an ‘N’. ‘Y’ indicates that there
are more status records than the detail area can hold. ‘N’ indicates that
all the status records generated are present in the detail area. Depending
on your implementation, you may be able to expand the number of
records you can handle by using the SET TRANSACTION statement.

� The TRANSACTIONS_COMMITTED field holds the number of transactions
that have been committed.

� The TRANSACTIONS_ROLLED_BACK field holds the number of transac-
tions that have been rolled back.

� The TRANSACTION_ACTIVE field holds a ‘1’ if a transaction is currently
active and a ‘0’ otherwise. A transaction is deemed to be active if a
cursor is open or if the DBMS is waiting for a deferred parameter.

355Chapter 20: Error-Handling

The diagnostics detail area
The detail areas contain data on each individual error, warning, or success
condition. Each detail area contains 26 items, as Table 20-2 shows.

Table 20-2 Diagnostics Detail Area
Fields Data Type

CONDITION_NUMBER INTEGER

RETURNED_SQLSTATE CHAR (6)

MESSAGE_TEXT VARCHAR (>=128)

MESSAGE_LENGTH INTEGER

MESSAGE_OCTET_LENGTH INTEGER

CLASS_ORIGIN VARCHAR (>=128)

SUBCLASS_ORIGIN VARCHAR (>=128)

CONNECTION_NAME VARCHAR (>=128)

SERVER_NAME VARCHAR (>=128)

CONSTRAINT_CATALOG VARCHAR (>=128)

CONSTRAINT_SCHEMA VARCHAR (>=128)

CONSTRAINT_NAME VARCHAR (>=128)

CATALOG_NAME VARCHAR (>=128)

SCHEMA_NAME VARCHAR (>=128)

TABLE_NAME VARCHAR (>=128)

COLUMN_NAME VARCHAR (>=128)

CURSOR_NAME VARCHAR (>=128)

CONDITION_IDENTIFIER VARCHAR (>=128)

PARAMETER_NAME VARCHAR (>=128)

ROUTINE_CATALOG VARCHAR (>=128)

ROUTINE_SCHEMA VARCHAR (>=128)

ROUTINE_NAME VARCHAR (>=128)

356 Part VI: Advanced Topics

Fields Data Type

SPECIFIC_NAME VARCHAR (>=128)

TRIGGER_CATALOG VARCHAR (>=128)

TRIGGER_SCHEMA VARCHAR (>=128)

TRIGGER_NAME VARCHAR (>=128)

CONDITION_NUMBER holds the sequence number of the detail area. If a state-
ment generates five status items that fill up five detail areas, the CONDITION_
NUMBER for the fifth detail area is five. To retrieve a specific detail area for
examination, use a GET DIAGNOSTICS statement (described later in this
chapter in the “Interpreting the information returned by SQLSTATE” section)
with the desired CONDITION_NUMBER. RETURNED_SQLSTATE holds the
SQLSTATE value that caused this detail area to be filled.

CLASS_ORIGIN tells you the source of the class code value returned in
SQLSTATE. If the SQL standard defines the value, the CLASS_ORIGIN is ‘ISO
9075’. If your DBMS implementation defines the value, CLASS_ORIGIN holds
a string identifying the source of your DBMS. SUBCLASS_ORIGIN tells you the
source of the subclass code value returned in SQLSTATE.

CLASS_ORIGIN is important. If you get an SQLSTATE of ‘22012’, for
example, the values indicate that it is in the range of standard SQLSTATEs,
so you know that it means the same thing in all SQL implementations.
However, if the SQLSTATE is ‘22500’, the first two characters are in the
standard range and indicate a data exception, but the last three characters
are in the implementation-defined range. And if SQLSTATE is ‘900001’, it’s
completely in the implementation-defined range. SQLSTATE values in the
implementation-defined range can mean different things in different
implementations, even though the code itself may be the same.

So how do you find out the detailed meaning of ‘22500’ or the meaning of
‘900001’? You must look in the implementor’s documentation. Which imple-
mentor? If you’re using CONNECT, you may be connecting to various products.
To determine which one produced the error condition, look at CLASS_ORIGIN
and SUBCLASS_ORIGIN: They have values that identify each implementation.
You can test the CLASS_ORIGIN and SUBCLASS_ORIGIN to see whether they
identify implementors for which you have the SQLSTATE listings. The actual
values placed in CLASS_ORIGIN and SUBCLASS_ORIGIN are implementor-
defined, but they also are expected to be self-explanatory company names.

If the error reported is a constraint violation, the CONSTRAINT_CATALOG,
CONSTRAINT_SCHEMA, and CONSTRAINT_NAME identify the constraint being
violated.

357Chapter 20: Error-Handling

Constraint violation example
The constraint violation information is probably the most important informa-
tion that GET DIAGNOSTICS provides. Consider the following EMPLOYEE
table:

CREATE TABLE EMPLOYEE
(ID CHAR(5) CONSTRAINT EmpPK PRIMARY KEY,
Salary DEC(8,2) CONSTRAINT EmpSal CHECK Salary > 0,
Dept CHAR(5) CONSTRAINT EmpDept,
REFERENCES DEPARTMENT) ;

And this DEPARTMENT table:

CREATE TABLE DEPARTMENT
(DeptNo CHAR(5),
Budget DEC(12,2) CONSTRAINT DeptBudget,
CHECK(Budget >= SELECT SUM(Salary) FROM EMPLOYEE,

WHERE EMPLOYEE.Dept=DEPARTMENT.DeptNo),
...);

Now consider an INSERT as follows:

INSERT INTO EMPLOYEE VALUES(:ID_VAR, :SAL_VAR, :DEPT_VAR);

Now suppose that you get an SQLSTATE of ‘23000’. You look it up in your
SQL documentation, and it says “integrity constraint violation.” Now what?
That SQLSTATE value means that one of the following situations is true:

� The value in ID_VAR is a duplicate of an existing ID value: You have
violated the PRIMARY KEY constraint.

� The value in SAL_VAR is negative: You have violated the CHECK con-
straint on Salary.

� The value in DEPT_VAR isn’t a valid key value for any existing row of
DEPARTMENT: You have violated the REFERENCES constraint on Dept.

� The value in SAL_VAR is large enough that the sum of the employees’
salaries in this department exceeds the BUDGET: You have violated the
CHECK constraint in the BUDGET column of DEPARTMENT. (Recall that if
you change the database, all constraints that may be affected are
checked, not just those defined in the immediate table.)

Under normal circumstances, you would need to do a great deal of testing to
figure out what is wrong with that INSERT. But you can find out what you
need to know by using GET DIAGNOSTICS as follows:

358 Part VI: Advanced Topics

DECLARE ConstNameVar CHAR(18) ;
GET DIAGNOSTICS EXCEPTION 1

ConstNameVar = CONSTRAINT_NAME ;

Assuming that SQLSTATE is ‘23000’, this GET DIAGNOSTICS sets
ConstNameVar to ‘EmpPK’, ‘EmpSal’, ‘EmpDept’, or ‘DeptBudget’. Notice
that, in practice, you also want to obtain the CONSTRAINT_SCHEMA and
CONSTRAINT_CATALOG to uniquely identify the constraint given by
CONSTRAINT_NAME.

Adding constraints to an existing table
This use of GET DIAGNOSTICS — determining which of several constraints
has been violated — is particularly important in the case where ALTER
TABLE is used to add constraints that didn’t exist when you wrote the
program:

ALTER TABLE EMPLOYEE
ADD CONSTRAINT SalLimit CHECK(Salary < 200000) ;

Now if you insert data into EMPLOYEE or update the Salary column of
EMPLOYEE, you get an SQLSTATE of ‘23000’ if Salary exceeds 200000. You
can program your INSERT statement so that, if you get an SQLSTATE of
‘23000’ and you don’t recognize the particular constraint name that GET
DIAGNOSTICS returns, you can display a helpful message, such as Invalid
INSERT: Violated constraint SalLimit.

Interpreting the information returned
by SQLSTATE
CONNECTION_NAME and ENVIRONMENT_NAME identify the connection and envi-
ronment to which you are connected at the time the SQL statement is
executed.

If the report deals with a table operation, CATALOG_NAME, SCHEMA_NAME, and
TABLE_NAME, identify the table. COLUMN_NAME identifies the column within
the table that caused the report to be made. If the situation involves a cursor,
CURSOR_NAME gives its name.

359Chapter 20: Error-Handling

Sometimes a DBMS produces a string of natural language text to explain a
condition. The MESSAGE_TEXT item is for this kind of information. The con-
tents of this item depend on the implementation; SQL:2003 doesn’t explicitly
define them. If you do have something in MESSAGE_TEXT, its length in charac-
ters is recorded in MESSAGE_LENGTH, and its length in octets is recorded in
MESSAGE_OCTET_LENGTH. If the message is in normal ASCII characters,
MESSAGE_LENGTH equals MESSAGE_OCTET_LENGTH. If, on the other hand, the
message is in kanji or some other language whose characters require more
than an octet to express, MESSAGE_LENGTH differs from MESSAGE_OCTET_
LENGTH.

To retrieve diagnostic information from a diagnostics area header, use the
following:

GET DIAGNOSTICS status1 = item1 [, status2 = item2]... ;

Statusn is a host variable or parameter; itemn can be any of the keywords
NUMBER, MORE, COMMAND_FUNCTION, DYNAMIC_FUNCTION, or ROW_COUNT.

To retrieve diagnostic information from a diagnostics detail area, the syntax
is as follows:

GET DIAGNOSTICS EXCEPTION condition-number
status1 = item1 [, status2 = item2]... ;

Again statusn is a host variable or parameter, and itemn is any of the 26
keywords for the detail items listed in Table 20-2. The condition number is
(surprise!) the detail area’s CONDITION_NUMBER item.

Handling Exceptions
When SQLSTATE indicates an exception condition by holding a value other
than 00000, 00001, or 00002, you may want to handle the situation by

� Returning control to the parent procedure that called the subprocedure
that raised the exception.

� Using a WHENEVER clause to branch to an exception-handling routine or
perform some other action.

� Handing the exception on the spot with a compound SQL statement. A
compound SQL statement consists of one or more simple SQL state-
ments, sandwiched between BEGIN and END keywords.

360 Part VI: Advanced Topics

The following is an example of a compound-statement exception handler:

BEGIN
DECLARE ValueOutOfRange EXCEPTION FOR SQLSTATE ‘73003’ ;
INSERT INTO FOODS

(Calories)
VALUES
(:cal) ;

SIGNAL ValueOutOfRange ;
MESSAGE ‘Process a new calorie value.’
EXCEPTION

WHEN ValueOutOfRange THEN
MESSAGE ‘Handling the calorie range error’ ;

WHEN OTHERS THEN
RESIGNAL ;

END

With one or more DECLARE statements, you can give names to specific
SQLSTATE values that you suspect may arise. The INSERT statement is the
one that might cause an exception to occur. If the value of :cal exceeds the
maximum value for a SMALLINT data item, SQLSTATE is set to “73003”. The
SIGNAL statement signals an exception condition. It clears the top diagnos-
tics area. It sets the RETURNED_SQLSTATE field of the diagnostics area to the
SQLSTATE for the named exception. If no exception has occurred, the series
of statements represented by the MESSAGE ‘Process a new calorie
value’ statement is executed. However, if an exception has occurred, that
series of statements is skipped, and the EXCEPTION statement is executed.

If the exception was a ValueOutOfRange exception, then the series of state-
ments represented by the MESSAGE ‘Handling the calorie range
error’ statement is executed. If it was any other exception, the RESIGNAL
statement is executed. RESIGNAL merely passes control of execution to the
calling parent procedure. That procedure may have additional error-handling
code to deal with exceptions other than the expected value out-of-range error.

361Chapter 20: Error-Handling

362 Part VI: Advanced Topics

Part VII
The Part of Tens

In this part . . .

If you’ve read all the previous parts of this book, congrat-
ulations! You may now consider yourself an SQL weenie

(spicy mustard optional). To raise your status that final
degree from weenie to wizard, you must master two sets of
ten rules. But don’t make the mistake of just reading the
section headings. Taking some of these headings at face
value could have dire consequences. All the tips in this part
are short and to the point, so reading them all (in their
entirety, if you please) shouldn’t be too much trouble. Put
them into practice, and you can be a true SQL wizard.

Chapter 21

Ten Common Mistakes
In This Chapter
� Assuming that your clients know what they need

� Not worrying about project scope

� Considering only technical factors

� Never asking for user feedback

� Always using your favorite development environment

� Only using your favorite system architecture

� Designing database tables in isolation

� Skipping design reviews

� Skipping beta testing

� Skipping documentation

If you’re reading this book, you must be interested in building relational
database systems. Let’s face it — nobody studies SQL for the fun of it. You

use SQL to build database applications, but before you can build one, you need
a database for it to work on. Unfortunately, many projects go awry before the
first line of the application is coded. If you don’t get the database definition
right, your application is doomed — no matter how well you write it. Here are
ten common database-creation mistakes that you should be on the lookout for.

Assuming That Your Clients
Know What They Need

Generally, clients call you in to design a database system when they have a
problem and their current methods aren’t working. Clients often believe that
they have identified the problem and its solution. They figure that all they
need to do is tell you what to do.

Giving clients exactly what they ask for is usually a sure-fire prescription for
disaster. Most users (and their managers) don’t possess the knowledge or

skills necessary to accurately identify the problem, so they have little chance
of determining the best solution.

Your job is to tactfully convince your client that you are the expert in sys-
tems analysis and design and that you must do a proper analysis to uncover
the real cause of the problem. Usually the real cause of the problem is hidden
behind the more obvious symptoms.

Ignoring Project Scope
Your client tells you what he or she expects from the new application at the
beginning of the development project. Unfortunately, the client almost always
forgets to tell you something — usually several things. Throughout the job,
these new requirements crop up and are tacked onto the project. If you’re
being paid on a project basis rather than an hourly basis, this growth in
scope can change what was once a profitable project into a loser. Make sure
that everything you’re obligated to deliver is specified in writing before you
start the project. Any new requirements that emerge during a project justify
additional time and money.

Considering Only Technical Factors
Application developers often consider potential projects in terms of their
technical feasibility, and they base their time and effort estimates on that
determination. However, issues of cost maximums, resource availability,
schedule requirements, and organization politics can have a major effect on
the project. These issues may turn a project that is technically feasible into a
nightmare. Make sure that you understand all relevant factors before you
start any development project. You may decide that it makes no sense to pro-
ceed; you’re better off reaching that conclusion at the beginning of the pro-
ject than after you have expended considerable effort.

Not Asking for Client Feedback
Your first inclination might be to listen to the managers who hire you. The
users themselves don’t have any clout. On the other hand, there may be good
reason to ignore the managers, too. They usually don’t have a clue about
what the users really need. Wait a minute! Don’t automatically assume that
you know more than your client groups about what they need. Data-entry
clerks don’t typically have much organizational clout, and many managers
have only a dim understanding of some aspects of their areas of responsibil-
ity. But isolating yourself from either group is almost certain to result in a

366 Part VII: The Part of Tens

system that solves a problem that nobody has. An application that works per-
fectly, but solves the wrong problem, is of no value to anybody.

Always Using Your Favorite
Development Environment

You’ve probably spent months or even years becoming proficient in the use
of a particular DBMS or application development environment. But your
favorite environment — no matter what it is — has strengths and weak-
nesses. Occasionally, you come across a development task that makes heavy
demands in an area where your preferred development environment is weak.
So rather than kludge together something that isn’t really the best solution,
bite the bullet. You have two options: Either climb the learning curve of a
more appropriate tool and then use it, or candidly tell your clients that their
job would best be done with a tool that you’re not an expert at using. Then
suggest that they hire someone who can be productive with that tool right
away. Professional conduct of this sort garners your clients’ respect.
(Unfortunately, if you work for a company instead of for yourself, that con-
duct may also get you laid off or fired.)

Using Your Favorite System
Architecture Exclusively

Nobody can be an expert at everything. Database management systems that
work in a teleprocessing environment are different from systems that work in
client/server, resource sharing, or distributed database environments. The
one or two systems that you are expert in may not be the best for the job at
hand. Choose the best architecture anyway, even if it means passing on the
job. Not getting the job is better than getting it and producing a system that
doesn’t serve the client’s needs.

Designing Database Tables in Isolation
Incorrectly identifying data objects and their relationships to each other
leads to database tables that tend to introduce errors into the data, which
can destroy the validity of any results. To design a sound database, you must
consider the overall organization of the data objects and carefully determine
how they relate to each other. Usually, no single right design exists. You must
determine what is appropriate, considering your client’s present and pro-
jected needs.

367Chapter 21: Ten Common Mistakes

Neglecting Design Reviews
Nobody’s perfect. Even the best designer and developer can miss important
points that are evident to someone looking at the situation from a different per-
spective. Actually, if you must present your work before a formal design review,
it makes you more disciplined in your work — probably helping you avoid
numerous problems that you may otherwise have experienced. Have a compe-
tent professional review your proposed design before you start development.

Skipping Beta Testing
Any database application complex enough to be truly useful is also complex
enough to contain bugs. Even if you test it in every way you can think of, the
application is sure to contain failure modes that you didn’t uncover. Beta
testing means giving the application to people who don’t understand it as
well as you do. They’re likely to have problems that you never encountered
because you know too much about the application. You need to fix anything
that others find before the product goes officially into use.

Not Documenting
If you think your application is so perfect that it never needs to be looked at,
even once more, think again. The only thing you can be absolutely sure of in
this world is change. Count on it. Six months from now, you won’t remember
why you designed things the way you did, unless you carefully document
what you did and why you did it that way. If you transfer to a different depart-
ment or win the lottery and retire, your replacement has almost no chance of
modifying your work to meet new requirements if you didn’t document your
design. Without documentation, your replacement may need to scrap the
whole thing and start from scratch. Don’t just document your work ade-
quately — over-document your work. Put in more detail than you think is rea-
sonable. If you come back to this project after six or eight months away from
it, you’ll be glad you documented it.

368 Part VII: The Part of Tens

Chapter 22

Ten Retrieval Tips
In This Chapter
� Verifying database structure

� Using test databases

� Scrutinizing any queries containing JOINs

� Examining queries containing subselects

� Using GROUP BY with the SET functions

� Being aware of restrictions on the GROUP BY clause

� Using parentheses in expressions

� Protecting your database by controlling privileges

� Backing up your database regularly

� Anticipating and handling errors

A database can be a virtual treasure trove of information, but like the
treasure of the Caribbean pirates of long ago, the stuff that you really

want is probably buried and hidden from view. The SQL SELECT statement is
your tool for digging up this hidden information. Even if you have a clear idea
of what you want to retrieve, translating that idea into SQL can be a challenge.
If your formulation is just a little off, you may end up with the wrong results —
but results that are so close to what you expected that they mislead you. To
reduce your chances of being misled, use the following ten principles.

Verify the Database Structure
If you retrieve data from a database and your results don’t seem reasonable,
check the database design. Many poorly designed databases are in use, and if
you’re working with one, fix the design before you try any other remedy.
Remember — good design is a prerequisite of data integrity.

Try Queries on a Test Database
Create a test database that has the same structure as your production data-
base, but with only a few representative rows in the tables. Choose the data
so that you know in advance what the result of your query should be. Run
the query on the test data and see whether the result matches your expecta-
tions. If it doesn’t, you may need to reformulate your query. If the query is
properly formulated, you may need to restructure your database.

Build several sets of test data and be sure to include odd cases, such as
empty tables and extreme values at the very limit of allowable ranges. Try to
think of unlikely scenarios and check for proper behavior when they occur. In
the course of checking for unlikely cases, you may gain insight into problems
that are more likely to happen.

Double-Check Queries with JOINs
JOINs are notorious for being counterintuitive. If your query contains one,
make sure that it’s doing what you expect before you add WHERE clauses or
other complicating factors.

Triple-Check Queries with Subselects
Because subselects can entangle data taken from one table with data taken
from another, they are frequently misapplied. Make sure the data that the
inner SELECT retrieves is the data that the outer SELECT needs to produce
the desired result. If you have two or more levels of subselects, you need to
be even more careful.

Summarize Data with GROUP BY
Say that you have a table (NATIONAL) giving the name (Player), team
(Team), and number of home runs hit (Homers) by every baseball player in
the National League. You can retrieve the team homer total for all teams with
a query like this:

SELECT Team, SUM (Homers)
FROM NATIONAL
GROUP BY Team ;

370 Part VII: The Part of Tens

371Chapter 22: Ten Retrieval Tips

This query lists each team, followed by the total number of home runs hit by
all that team’s players.

Watch GROUP BY Clause Restrictions
Suppose that you want a list of National League power hitters. Consider the
following query:

SELECT Player, Team, Homers
FROM NATIONAL
WHERE Homers >= 20
GROUP BY Team ;

In most implementations, this query returns an error. Generally, only
columns used for grouping or columns used in a set function may appear in
the select list. The following formulation works:

SELECT Player, Team, Homers
FROM NATIONAL
WHERE Homers >= 20
GROUP BY Team, Player, Homers ;

Because all the columns you want to display appear in the GROUP BY clause,
the query succeeds and delivers the desired results. This formulation sorts
the resulting list first by Team, then by Player, and finally by Homers.

Use Parentheses with AND, OR, and NOT
Sometimes when you mix AND and OR, SQL doesn’t process the expression in
the order that you expect. Use parentheses in complex expressions to make
sure that you get the desired result. The few extra keystrokes are a small
price to pay for better results. Parentheses also help to ensure that the NOT
keyword is applied to the term or expression that you want it to apply to.

Control Retrieval Privileges
Many people don’t use the security features available on their DBMS. They don’t
want to bother with them, and they consider misuse and misappropriation of
data to be something that only happens to other people. Don’t wait to get
burned. Establish and maintain security for all databases that have any value.

Back Up Your Databases Regularly
Data is hard to retrieve after a power surge, fire, or earthquake destroys your
hard drive. Make frequent backups and remove the backup media to a safe
place. What constitutes a safe place depends on how critical your data is. It
might be a fireproof safe in the same room as your computer. It might be in
another building. It might be in a concrete bunker under a mountain that has
been hardened to withstand a nuclear attack. Decide what level of safety is
appropriate for your data.

Handle Error Conditions Gracefully
Whether you’re making ad hoc queries from the console or embedding
queries in an application, occasionally SQL returns an error message rather
than the desired results. At the console, you can decide what to do next
based on the message returned and then take appropriate action. In an appli-
cation, the situation is different. The application user probably doesn’t know
what action is appropriate. Put extensive error handling into your applica-
tions to cover every conceivable error that may occur. Creating error-
handling code takes a great deal of effort, but it’s better than having the user
stare quizzically at a frozen screen.

372 Part VII: The Part of Tens

Part VIII
Appendixes

In this part . . .

For completeness, and as a potentially valuable refer-
ence, this part contains an appendix that lists

SQL:2003’s reserved words. These words are reserved for
specific purposes in SQL; you may not use them for any
other purpose in your applications. This part also con-
tains a glossary of important terms.

Appendix A

SQL:2003 Reserved Words

ABS

ALL

ALLOCATE

ALTER

AND

ANY

ARE

ARRAY

AS

ASENSITIVE

ASYMMETRIC

AT

ATOMIC

AUTHORIZATION

AVG

BEGIN

BETWEEN

BIGINT

BINARY

BLOB

BOOLEAN

BOTH

BY

CALL

CALLED

CARDINALITY

CASCADED

CASE

CAST

CEIL

CEILING

CHAR

CHAR_LENGTH

CHARACTER

CHARACTER_
LENGTH

CHECK

CLOB

CLOSE

COALESCE

COLLATE

COLUMN

COMMIT

CONDITION

CONNECT

CONSTRAINT

CONVERT

CORR

CORRESPONDING

COUNT

COVAR_POP

COVAR_SAMP

CREATE

CROSS

CUBE

CUME_DIST

CURRENT

CURRENT_
COLLATION

CURRENT_DATE

CURRENT_
DEFAULT_
TRANSFORM_
GROUP

CURRENT_PATH

CURRENT_ROLE

CURRENT_TIME

CURRENT_
TIMESTAMP

CURRENT_
TRANSFORM_
GROUP_FOR_TYPE

CURRENT_USER

CURSOR

CYCLE

DATE

DAY

DEALLOCATE

DEC

DECIMAL

DECLARE

DEFAULT

DELETE

DENSE_RANK

DEREF

DESCRIBE

DETERMINISTIC

DISCONNECT

DISTINCT

DOUBLE

DROP

DYNAMIC

EACH

ELEMENT

ELSE

END

END-EXEC

ESCAPE

EVERY

EXCEPT

EXEC

EXECUTE

EXISTS

EXP

EXTERNAL

EXTRACT

FALSE

FETCH

FILTER

FLOAT

FLOOR

FOR

FOREIGN

FREE

FROM

FULL

FUNCTION

FUSION

GET

GLOBAL

GRANT

GROUP

GROUPING

HAVING

HOLD

HOUR

IDENTITY

IN

INDICATOR

INNER

INOUT

INSENSITIVE

INSERT

INT

INTEGER

INTERSECT

INTERSECTION

INTERVAL

INTO

IS

JOIN

LANGUAGE

LARGE

LATERAL

LEADING

LEFT

LIKE

LN

LOCAL

LOCALTIME

LOCALTIMESTAMP

LOWER

MATCH

MAX

MEMBER

MERGE

METHOD

MIN

MINUTE

MOD

MODIFIERS

MODULE

MONTH

MULTISET

NATIONAL

NATURAL

NCHAR

376 Part VIII: Appendixes

NCLOB

NEW

NO

NONE

NORMALIZE

NOT

NULL

NULLIF

NUMERIC

OCTET_LENGTH

OF

OLD

ON

ONLY

OPEN

OR

ORDER

OUT

OUTER

OVER

OVERLAPS

OVERLAY

PARAMETER

PARTITION

PERCENT_RANK

PERCENTILE_
CONT

PERCENTILE_
DISC

POSITION

POWER

PRECISION

PREPARE

PRIMARY

PROCEDURE

RANGE

RANK

READS

REAL

RECURSIVE

REF

REFERENCES

REFERENCING

REGR_AVGX

REGR_AVGY

REGR_COUNT

REGR_
INTERCEPT

REGR_R2

REGR_SLOPE

REGR_SXX

REGR_SXY

REGR_SYY

RELEASE

RESULT

RETURN

RETURNS

REVOKE

RIGHT

ROLLBACK

ROLLUP

ROW

ROW_NUMBER

ROWS

SAVEPOINT

SCOPE

SCROLL

SEARCH

SECOND

SELECT

SENSITIVE

SESSION_USER

SET

SIMILAR

SMALLINT

SOME

SPECIFIC

SPECIFICTYPE

SQL

SQLEXCEPTION

SQLSTATE

SQLWARNING

SQRT

START

STATIC

STDDEV_POP

STDDEV_SAMP

SUBMULTISET

SUBSTRING

SUM

SYMMETRIC

SYSTEM

SYSTEM_USER

377Appendix A: SQL:2003 Reserved Words

TABLE

TABLESAMPLE

THEN

TIME

TIMESTAMP

TIMEZONE_HOUR

TIMEZONE_
MINUTE

TO

TRAILING

TRANSLATE

TRANSLATION

TREAT

TRIGGER

TRIM

TRUE

UNION

UNIQUE

UNKNOWN

UNNEST

UPDATE

UPPER

USER

USING

VALUE

VALUES

VAR_POP

VAR_SAMP

VARCHAR

VARYING

WHEN

WHENEVER

WHERE

WIDTH_BUCKET

WINDOW

WITH

WITHIN

WITHOUT

YEAR

378 Part VIII: Appendixes

Appendix B

Glossary

ActiveX control: A reusable software component that can be added to an
application, reducing development time in the process. ActiveX is a

Microsoft technology; ActiveX components can be used only by developers
who work on Windows development systems.

aggregate function: A function that produces a single result based on the
contents of an entire set of table rows. Also called a set function.

alias: A short substitute or nickname for a table name.

applet: A small application, written in the Java language, stored on a Web
server that is downloaded to and executed on a Web client that connects to
the server.

application program interface (API): A standard means of communicating
between an application and a database or other system resource.

assertion: A constraint that is specified by a CREATE ASSERTION statement
(rather than by a clause of a CREATE TABLE statement). Assertions com-
monly apply to more than one table.

atomic: Incapable of being subdivided.

attribute: A component of a structured type or relation.

back end: That part of a DBMS that interacts directly with the database.

catalog: A named collection of schemas.

client: An individual user workstation that represents the front end of a
DBMS — the part that displays information on a screen and responds to user
input.

client/server system: A multiuser system in which a central processor (the
server) is connected to multiple intelligent user workstations (the clients).

cluster: A named collection of catalogs.

CODASYL DBTG database model: The network database model. Note: This
use of the term network refers to the structuring of the data (network as
opposed to hierarchy), rather than to network communications.

collating sequence: The ordering of characters in a character set. All collat-
ing sequences for character sets that have the Latin characters (a, b, c)
define the obvious ordering (a, b, c, . . .). They differ, however, in the ordering
of special characters (+, -, <, ?, and so on) and in the relative ordering of the
digits and the letters.

collection type: A data type that allows a field of a table row to contain multi-
ple objects.

column: A table component that holds a single attribute of the table.

composite key: A key made up of two or more table columns.

conceptual view: The schema of a database.

concurrent access: Two or more users operating on the same rows in a data-
base table at the same time.

constraint, deferred: A constraint that is not applied until you change its
status to immediate or until you COMMIT the encapsulating transaction.

constraint: A restriction you specify on the data in a database.

cursor: An SQL feature that specifies a set of rows, an ordering of those rows,
and a current row within that ordering.

Data Control Language (DCL): That part of SQL that protects the database
from harm.

Data Definition Language (DDL): That part of SQL used to define, modify,
and eradicate database structures.

Data Manipulation Language (DML): That part of SQL that operates on data-
base data.

data redundancy: Having the same data stored in more than one place in a
database.

data source: A source of data used by a database application. It may be a
DBMS or a data file.

data sublanguage: A subset of a complete computer language that deals
specifically with data handling. SQL is a data sublanguage.

380 Part VIII: Appendixes

data type: A set of representable values.

database administrator (DBA): The person ultimately responsible for the
functionality, integrity, and safety of a database.

database engine: That part of a DBMS that directly interacts with the data-
base (serving as part of the back end).

database publishing: The act of making the database contents available on
the Internet or over an intranet.

database server: The server component of a client/server system.

database, enterprise: A database containing information used by an entire
enterprise.

database, personal: A database designed for use by one person on a single
computer.

database, workgroup: A database designed to be used by a department or
workgroup within an organization.

database: A self-describing collection of integrated records.

DBMS: A database management system.

deletion anomaly: An inconsistency in a multitable database that occurs
when a row is deleted from one of its tables.

descriptor: An area in memory used to pass information between an applica-
tion’s procedural code and its dynamic SQL code.

diagnostics area: A data structure, managed by the DBMS, that contains
detailed information about the last SQL statement executed and any errors
that occurred during its execution.

distributed data processing: A system in which multiple servers handle data
processing.

domain integrity: A property of a database table column where all data items
in that column fall within the domain of the column.

domain: The set of all values that a database item can assume.

driver manager: A component of an ODBC-compliant database interface. On
Windows machines, the driver manager is a dynamic link library (DLL) that
coordinates the linking of data sources with appropriate drivers.

381Appendix B: Glossary

driver: That part of a database management system that interfaces directly
with a database. Drivers are part of the back end.

entity integrity: A property of a database table that is entirely consistent
with the real-world object that it models.

file server: The server component of a resource-sharing system. It does not
contain any database management software.

firewall: A piece of software (or a combination of hardware and software)
that isolates an intranet from the Internet, allowing only trusted traffic to
travel between them.

flat file: A collection of data records having minimal structure.

foreign key: A column or combination of columns in a database table that
references the primary key of another table in the database.

forest: A collection of elements in an XML document.

front end: That part of a DBMS (such as the client in a client/server system)
that interacts directly with the user.

functional dependency: A relationship between or among attributes of a
relation.

hierarchical database model: A tree-structured model of data.

host variable: A variable passed between an application written in a proce-
dural host language and embedded SQL.

HTML (HyperText Markup Language): A standard formatting language for
Web documents.

implementation: A particular relational DBMS running on a specific hardware
platform.

index: A table of pointers used to locate rows rapidly in a data table.

information schema: The system tables, which hold the database’s metadata.

insertion anomaly: An inconsistency introduced into a multitable database
when a new row is inserted into one of its tables.

Internet: The worldwide network of computers.

intranet: A network that uses World Wide Web hardware and software, but
restricts access to users within a single organization.

382 Part VIII: Appendixes

IPX/SPX: A local area network protocol.

Java: A platform-independent compiled language designed specifically for
Web application development.

JavaScript: A script language that gives some measure of programmability to
HTML-based Web pages.

JDBC (Java DataBase Connectivity): A standard interface between a Java
applet or application and a database. The JDBC standard is modeled after the
ODBC standard.

join: A relational operator that combines data from multiple tables into a
single result table.

logical connectives: Used to connect or change the truth value of predicates
to produce more complex predicates.

mapping: The translation of data in one format to another format.

metadata: Data about the structure of the data in a database.

modification anomaly: A problem introduced into a database when a modifi-
cation (insertion, deletion, or update) is made to one of the database tables.

module language: A form of SQL in which SQL statements are placed in mod-
ules, which are called by an application program written in a host language.

mutator function: A function associated with a user-defined type (UDT),
having two parameters whose definition is implied by the definition of some
attribute of the type. The first parameter (the result) is of the same type as
the UDT. The second parameter has the same type as the defining attribute.

nested query: A statement that contains one or more subqueries.

NetBEUI: A local area network protocol.

Netscape plug-in: A software component downloaded from a Web server to a
Web client, where it is integrated with the client’s browser, providing addi-
tional functions.

network database model: A way of organizing a database to get minimum
redundancy of data items by allowing any data item (node) to be directly con-
nected to any other.

normalization: A technique that reduces or eliminates the possibility that a
database is subject to modification anomalies.

383Appendix B: Glossary

object: Any uniquely identifiable thing.

ODBC (Object DataBase Connectivity): A standard interface between a data-
base and an application that is trying to access the data in that database.
ODBC is defined by an international (ISO) and a national (ANSI) standard.

Oracle: A relational database management system marketed by Oracle
Corporation.

parameter: A variable within an application written in SQL module language.

precision: The maximum number of digits allowed in a numeric data item.

predicate: A statement that may be either logically true or logically false.

primary key: A column or combination of columns in a database table that
uniquely identifies each row in the table.

procedural language: A computer language that solves a problem by execut-
ing a procedure in the form of a sequence of steps.

query: A question you ask about the data in a database.

rapid application development (RAD) tool: A proprietary graphically ori-
ented alternative to SQL. A number of such tools are on the market.

record: A representation of some physical or conceptual object.

reference type: A data type whose values are all potential references to sites
of one specified data type.

referential integrity: A state in which all the tables in a database are consis-
tent with each other.

relation: A two-dimensional array of rows and columns, containing single-
valued entries and no duplicate rows.

reserved words: Words that have a special significance in SQL and cannot be
used as variable names or in any other way that differs from their intended
use.

row value expression: A list of value expressions enclosed in parentheses
and separated by commas.

row: A sequence of (field name, value) pairs.

scale: The number of digits in the fractional part of a numeric data item.

384 Part VIII: Appendixes

schema owner: The person who was designated as the owner when the
schema was created.

schema: The structure of an entire database. The information that describes
the schema is the database’s metadata.

SEQUEL: A data sublanguage created by IBM that was a precursor of SQL.

set function: A function that produces a single result based on the contents
of an entire set of table rows. Also called an aggregate function.

SQL: An industry standard data sublanguage, specifically designed to create,
manipulate, and control relational databases. SQL:2003 is the latest version of
the standard.

SQL, dynamic: A means of building compiled applications that does not
require all data items to be identifiable at compile time.

SQL, embedded: An application structure in which SQL statements are
embedded within programs written in a host language.

SQL, interactive: A real-time conversation with a database.

SQL/DS: A relational database management system marketed by IBM
Corporation.

structured type: A user defined type that is expressed as a list of attribute
definitions and methods rather than being based on a single predefined
source type.

subquery: A query within a query.

subtype: A data type is a subtype of a second data type if every value of the
first type is also a value of the second type.

supertype: A data type is a supertype of a second data type if every value of
the second type is also a value of the first type.

table: A relation.

TCP/IP (Transmission Control Protocol/Internet Protocol): The network
protocol used by the Internet and intranets.

teleprocessing system: A powerful central processor connected to multiple
dumb terminals.

385Appendix B: Glossary

transaction: A sequence of SQL statements whose effect is not accessible to
other transactions until all the statements are executed.

transitive dependency: One attribute of a relation depends on a second
attribute, which in turn depends on a third attribute.

translation table: Tool for converting character strings from one character
set to another.

trigger: A small piece of code that tells a DBMS what other actions to perform
after certain SQL statements have been executed.

update anomaly: A problem introduced into a database when a table row is
updated.

user-defined type: A type whose characteristics are defined by a type
descriptor specified by the user.

value expression, conditional: A value expression that assigns different
values to arguments, based on whether a condition is logically true.

value expression, datetime: A value expression that deals with DATE, TIME,
TIMESTAMP, or INTERVAL data.

value expression, numeric: A value expression that combines numeric
values using the addition, subtraction, multiplication, or division operators.

value expression, string: A value expression that combines character strings
with the concatenation operator.

value expression: An expression that combines two or more values.

value function: A function that performs an operation on a single character
string, number, or date/time.

view: A database component that behaves exactly like a table but has no
independent existence of its own.

virtual table: A view.

World Wide Web: An aspect of the Internet that has a graphical user inter-
face. The Web is accessed by applications called Web browsers, and informa-
tion is provided to the Web by installations called Web servers.

XML: A widely accepted markup language used as a means of exchanging
data between dissimilar systems.

386 Part VIII: Appendixes

• Symbols and
Numerics •
* (asterisk)

all columns in table indicator, 200–201, 286
multiplication operator, 56–57

: (colon), host variable name prefix, 291
|| (concatenation operator), 58, 146
= (equal to comparison operator), 60, 177
/ (forward slash), division operator, 56–57
> (greater than comparison operator),

61, 177
>= (greater than or equal to comparison

operator), 61, 177
< (less than comparison operator), 60, 177
<= (less than or equal to comparison

operator), 61, 177
- (minus sign), subtraction operator, 56–57
<> (not equal to comparison operator),

60, 177
% (percent sign), wildcard, 180–181
+ (plus sign), addition operator, 56–57
(pound sign), escape character, 181
[] (square brackets), 174
_ (underscore), wildcard, 180
1NF (first normal form), 34, 114–115
2NF (second normal form), 114–116
3NF (third normal form), 48, 114, 116–117
4NF (fourth normal form), 114
4GL (fourth-generation language), 73
5NF (fifth normal form), 114
00 class code, SQLSTATE, 352
01 class code, SQLSTATE, 352
02 class code, SQLSTATE, 352

• A •
abnormal form, 118
ABS, 158, 375

ABSOLUTE, 330
abstract data type (ADT), 36
Access, 73, 75, 293. See also database

creation using RAD
ACCTS_PAY view, 18
ACID. See Atomicity, Consistency, Isolation,

and Durability
ActiveX control

definition, 379
Open Database Connectivity, 303

ad hoc query, 22
adding data

importance of, 127–128
multiple rows, 130–132
one row at a time, 128–129
selected columns only, 129–130
VALUES, 129

ADT. See abstract data type
AGE, 62
aggregate functions
AVG, 63
COUNT, 62
Data Manipulation Language, 61–64
definition, 379
importance of, 61–62
MAX, 62
MIN, 62
subquery, 231
SUM, 62
XML, 316

alias, 207, 379
ALL

examples, 183–185
INTERSECT, 203
reserved word, 375
UNION, 201

ALLOCATE, 375
ALTER, 55–56, 375
ALTER DOMAIN, 24
ALTER TABLE, 24, 46, 49, 56, 359

Index

AND
importance of, 61
reserved word, 375
syntax, 192
using parentheses with, 371

ANY, 183–185, 375
API. See application program interface
applet, 379
application
CAST, 288
combining procedural language with SQL,

287–288
data retrieval, 286
data type incompatibility, 288
definition, 272
embedded SQL, 288–291
module language, 291–293
rapid application development tools,

293–294
transaction, 272
user interface, 286
using SQL in, 286

Application component, Open Database
Connectivity, 299

application program interface (API),
299, 379

ARE, 375
ARRAY, 34–35, 39, 319–320, 375
AS, 375
ASC, 197, 325
ASCII character set, 97
ASENSITIVE, 324, 327–328, 375
assertions, 41, 111, 379
assignment, Persistent Stored Modules,

340–341
asterisk (*)

all columns in table indicator, 200–201, 286
multiplication operator, 56–57

ASYMMETRIC, 375
AT, 375
atomic, 140, 379
ATOMIC, 335, 375
Atomicity, Consistency, Isolation, and

Durability (ACID), 278
atomicity, Persistent Stored Modules,

334–335
attribute, 9, 15, 76, 92–93, 379
AUTHORIZATION, 292, 375
AVG, 63, 151, 194, 375

• B •
back end, 379
backing up data, 278–279, 372
bad input data, 108
base table, 123
BASIC, 21, 73
BCNF. See Boyce-Codd normal form
BEGIN, 22, 275–276, 339, 375
BEGIN TRAN, 275–276
beta testing, 368
BETWEEN, 174, 177–178, 375
BIGINT, 26–28, 39, 141, 375
BINARY, 375
BINARY LARGE OBJECT (BLOB), 39, 141, 375
bit, 157
BOOLEAN, 31, 39, 375
Boolean value expressions, Data

Manipulation Language, 59
BOTH, 375
Boyce-Codd normal form (BCNF), 114
BRANCH_MGR view, 17
BY, 375
byte, 157

• C •
C++ Builder, 73, 286, 293
C language, 21, 73, 286, 288–290
CALL, 24, 288–290, 375
CALLED, 375
CARDINALITY, 158, 375
CASCADED, 375
cascading delete, 106–107, 240
CASE
COALESCE, 168
exception avoidance, 163–164
importance of, 146, 148, 161–162
NULLIF, 166–167
reserved word, 375
search conditions, 162–163
updating values, 163
values, 164–166

CASE...END CASE, 342–343
CAST

application, 288
data type conversion, 37, 291
host language, 170–171

388 SQL For Dummies, 5th Edition

importance of, 146, 168–169
using with SQL, 170

catalog, 54–55, 379
CATALOG_NAME, 356, 359
CEILING (CEIL), 159, 375
chapters, organization of, 2–4
CHARACTER (CHAR), 30–31, 35, 39, 141, 375
CHARACTER LARGE OBJECT (CLOB), 30–31,

39, 141
CHARACTER SET, 255
character set mapping, Extensible Markup

Language, 309
CHARACTER VARYING, 30–31
CHARACTER_LENGTH, 156–157, 375
CHAR_LENGTH, 375
CHECK, 375
CLASS, 59–60
class codes, SQLSTATE, 351–353
CLASS_ORIGIN, 356–357
client, 42–43
client extension, 301–303
clients

feedback, requesting, 366–367
requirements, 365–366

client/server environment, 41, 299–300, 379
CLOB. See CHARACTER LARGE OBJECT
CLOSE, 24, 375
closing cursors, 331
cluster, 46, 380
COALESCE, 148, 168, 375
COBOL, 21, 73, 286
CODASYL DBTG database model, 380
Codd, Dr. E. F. (relational database

creator), 13, 114
COLLATE, 375
COLLATE BY, 325–326
collating sequence, 55, 97, 380
collation, 97, 325
COLLATION, 255
collection type, 380
collection value expressions, Data

Manipulation Language, 60
colon (:), host variable name prefix, 291
column

adding to existing table, 80
constraints, 110–111
definition, 15, 76, 380
links between tables, 95–96

names, specifying, 286
reference, 144–146

COLUMN, 375
COLUMN_NAME, 356, 359
column-name join, 209–210
COMMAND_FUNCTION, 355, 360
COMMAND_FUNCTION_CODE, 355
COMMIT

Data Control Language, 63–64
importance of, 24
reserved word, 375
transactions, 271–272, 277

common mistakes
beta testing, 368
client feedback, requesting, 366–367
client requirements, 365–366
cost maximums, 366
design reviews, 368
development environment, 367
documentation, 368
organizational politics, 366
project scope, ignoring, 366
resource availability, 366
schedule requirements, 366
scope, ignoring, 366
system architecture, 367
table design, 367
technical factors, 366

comparison predicates
ALL, 183–185
ANY, 183–185
BETWEEN, 174, 177–178
DISTINCT, 174, 187
= (equal to), 60, 177
EXISTS, 186
> (greater than), 61, 177
> (greater than or equal to), 61, 177
importance of, 60
IN, 174, 178–180
< (less than), 60, 177
<= (less than or equal to), 61, 177
LIKE, 180–181
MATCH, 174, 188–189
<> (not equal to), 60, 177
NOT IN, 178–180
NOT LIKE, 180–181
NULL, 182–183
OVERLAPS, 174, 187–188

389Index

comparison predicates (continued)
SIMILAR, 182
SOME, 183–185
subquery, 229–231
UNIQUE, 174, 186–187

complete logical view, 18
composite key, 115, 380
compound statements, Persistent Stored

Modules, 333–334
concatenation operator (||), 58, 146
conceptual view, 18, 380
concurrent access

definition, 380
serialization, 270–271
transaction interaction trouble, 269–270

CONDITION, 375
condition join, 209
CONDITION_IDENTIFIER, 356
CONDITION_NUMBER, 356–357
conditions, Persistent Stored Modules,

336–341
CONNECT, 24, 375
CONNECTION_NAME, 356, 359
console, 22
CONSTRAINT, 282, 375
CONSTRAINT_CATALOG, 356–357
CONSTRAINT_NAME, 356–357
constraints, 280–284

applying on data entry form, 128
assertions, 111–112
column, 110–111
deferred, 380
definition, 380
importance of, 18–19, 21, 40
table, 111
VALUES, 129
violation example, SQLSTATE, 358–359

CONSTRAINT_SCHEMA, 356–357
constructor, 37
containment hierarchy, 46
CONTINUE, 339, 353
CONVERT, 155, 375
converting data types, 168–171
copying data

from foreign data file, 130
MERGE, 135–137

CORR, 375
correlation name, 207

CORRESPONDING
INTERSECT, 203
reserved word, 375
UNION, 201–202

cost maximums, 366
COUNT, 62, 150–151, 375
COVAR_POP, 375
COVAR_SAMP, 375
create. See also database creation using

RAD; database creation using SQL
multitable view, 49–53
single-table view, 48–49
table, 46–48

CREATE, 41, 55, 375
CREATE ASSERTION, 24, 55
CREATE CHARACTER SET, 24
CREATE CHARTER SET, 55
CREATE COLLATION, 24, 55
CREATE DOMAIN, 24, 55
CREATE FUNCTION, 24
CREATE METHOD, 24
CREATE ORDERING, 24
CREATE PROCEDURE, 25
CREATE ROLE, 25
CREATE SCHEMA, 25, 55
CREATE TABLE, 25, 46, 55, 95
Create Table in Design View, 75
CREATE TRANSFORM, 25
CREATE TRANSLATION, 25, 55
CREATE TRIGGER, 25
CREATE TYPE, 25
CREATE VIEW, 25, 52–53, 55, 124–127
CROSS, 375
cross join, 208
CUBE, 375
CUME_DIST, 375
CURRENT, 375
current session, 144
CURRENT_COLLATION, 375
CURRENT_DATE, 160, 375
CURRENT_DEFAULT_TRANSFORM_GROUP, 375
CURRENT_PATH, 375
CURRENT_ROLE, 375
CURRENT_TIME, 160, 375
CURRENT_TIMESTAMP, 160, 375
CURRENT_TRANSFORM_GROUP_FOR_TYPE, 375
CURRENT_USER, 144, 375
CURSOR, 375

390 SQL For Dummies, 5th Edition

CURSOR_NAME, 356, 359
cursors
ABSOLUTE, 330
ASC, 325
ASENSITIVE, 324, 327–328
closing, 331
COLLATE BY, 325–326
collation, 325
CURSOR, 375
date-time, 329
DECLARE CURSOR, 324
definition, 323, 380
DELETE, 331
DESC, 325–326
embedded SQL example, 323–324
FETCH, 328–331
FIRST, 330
INSENSITIVE, 324, 328
LAST, 330
NEXT, 330
NO SCROLL, 324
opening, 328–329
ORDER BY, 325–326
Persistent Stored Modules, 336
PRIOR, 330
query expression, 324–325
RELATIVE, 330–331
SCROLL, 324, 328
scrollable, 328, 330–331
SENSITIVE, 324, 328
sensitivity, 327–328
updatability clause, 326
UPDATE, 331
WITH HOLD, 324
WITH RETURN, 324
WITHOUT HOLD, 324
WITHOUT RETURN, 324

CUSTOMER table, 16–18
CustomerID, 50
CYCLE, 375

• D •
data, 9
Data Control Language (DCL)
ALL PRIVILEGES, 255
character set, 259–260
collation, 259–260

COMMIT, 63–64
CREATE DOMAIN, 259
CREATE ROLE, 256
database administrator, 252–253
database management functions, 252
database object owner, 253
definition, 63, 380
DELETE, 65, 252, 255
domain, 259–260
DROP, 68
EXECUTE, 252, 255
GRANT, 63, 65, 69, 255
GRANT DELETE, 66
GRANT INSERT, 66, 257
GRANT REFERENCES, 66
GRANT SELECT, 66, 256
GRANT UPDATE, 66, 69, 257–258
GRANT USAGE, 66
GRANT USAGE ON CHARACTER SET, 66
GRANT USAGE ON COLLATION, 66
GRANT USAGE ON DOMAIN, 66
GRANT USAGE ON TRANSLATION, 66
granting privileges, 262–264
importance of, 252
INSERT, 252, 255–256
privileges, 65–67
REFERENCES, 68, 252, 255
referential integrity, 67–69
related tables, referencing, 258–269
removing privileges, 262–264
RESTRICT, 68
REVOKE, 63, 65
REVOKE DELETE, 66
REVOKE INSERT, 66
REVOKE REFERENCES, 66
REVOKE SELECT, 66
REVOKE UPDATE, 66
REVOKE USAGE ON CHARACTER SET, 66
REVOKE USAGE ON COLLATION, 66
REVOKE USAGE ON DOMAIN, 66
REVOKE USAGE ON TRANSLATION, 66
role, 256
ROLLBACK, 63–64
security, 69
SELECT, 252
transactions, 63–64
translation, 259–260
TRIGGER, 252, 255, 260–261

391Index

Data Control Language (DCL) (continued)
UNDER, 252, 255
UPDATE, 252, 255
USAGE, 252, 255
user name, 256
users, 65–67
WITH GRANT OPTION, 69

data conversion, 169
Data Definition Language (DDL)

definition, 46, 380
multitable view, 49–53
single-table view, 48–49
tables, creating, 46–48

data dictionary, 9
Data Manipulation Language (DML)

Boolean value expressions, 59
collection value expressions, 60
datetime and interval value expressions,

58–59
definition, 380
logical connectives, 61
numeric value expressions, 57–58
overview, 56–57
predicates, 60–61
reference value expressions, 60
row value expressions, 60
set functions, 61–64
string value expressions, 58
subqueries, 61–64
user-defined type value expressions, 59

data redundancy, 109, 380
data retrieval, 286
Data source component, 299, 380
data storage concerns, 8
data sublanguage, 161, 380
Data Type attribute, 76
data type conversion, embedded SQL, 291
data type mapping, Extensible Markup

Language, 310–311
data types

abstract, 36
ARRAY, 34–35, 39
BIGINT, 26–28, 39, 141
BINARY LARGE OBJECT (BLOB), 39, 141
BOOLEAN, 31, 39
CAST, 37
CHARACTER (CHAR), 30–31, 35, 39, 141

CHARACTER LARGE OBJECT (CLOB), 30–31,
39, 141

CHARACTER VARYING, 30–31
constructor, 37
converting, 168–171
CREATE PROCEDURE, 25
CREATE ROLE, 25
CREATE SCHEMA, 25
CREATE TABLE, 25
CREATE TRANSFORM, 25
CREATE TRANSLATION, 25
CREATE TRIGGER, 25
CREATE TYPE, 25
CREATE VIEW, 25
DATE, 32, 39, 141
datetime, 31
day-time interval, 33
DECIMAL, 26–29, 39, 141
definition, 381
distinct types, 36–37
DOUBLE PRECISION, 28–29, 39, 141
DROP SPECIFIC ROUTINE, 25
DROP TABLE, 25
DROP TRANSFORM, 25
DROP TRANSLATION, 25
DROP TRIGGER, 25
DROP TYPE, 25
DROP VIEW, 25
Euro, 36–37
exact numeric, 26
false, 31
FETCH, 25
FLOAT, 29, 39, 141
floating-point number, 28
FOREIGN KEY, 30
INTEGER, 26–28, 39, 141
interval, 33
INTERVAL DAY, 39, 141
leaf subtype, 38
mantissa, 29
maximal supertype, 38
MULTISET, 34–35, 39
mutator, 37
NATIONAL CHARACTER, 30–31, 141
NATIONAL CHARACTER LARGE OBJECT,

30–31
NATIONAL CHARACTER VARYING, 30–31, 141

392 SQL For Dummies, 5th Edition

NULL, 31
NUMERIC, 26–29, 35, 39, 141
observer functions, 37
PRIMARY KEY, 30
REAL, 28–29, 39, 141
REF, 35, 39
register size, 28
ROW, 33–34, 39
SMALLINT, 26–28, 39, 141
source type, 36
START TRANSACTION, 25
structured type, 37–38
subtype, 37–38
supertype, 37–38
TIME, 32
TIME WITH TIME ZONE, 33, 39, 141
TIME WITHOUT TIME ZONE, 32–33, 39
TIMESTAMP WITH TIME ZONE, 33, 39, 141
TIMESTAMP WITHOUT TIME ZONE, 32, 39
true, 31
UNIQUE, 30
unknown, 31
UPDATE, 25
USdollar, 36–37
user-defined types, 36–39
VARCHAR, 30, 39, 141
Year 2000, 32
year-month interval, 33

database administrator (DBA), 252–253
database creation using RAD

Access 2003 development environment, 75
altering table, 79–80
creating a table, 75–79
deciding what to track, 74–75
deleting table, 84
index, 82–84
New panel, 75
Open panel, 75
primary key, 80–81
Search facility, 75
Spotlight section, 75

database creation using SQL
ALTER TABLE, 87–88
compared to Access, 85
CREATE INDEX, 87
CREATE TABLE, 86
DROP TABLE, 88

database, definition, 9
database design, 20, 91–92
Database Development For Dummies

(Taylor, Allen G.), 1
database engine

connection standards, 298
definition, 381

database management system (DBMS),
10, 381

database object owner, 253
database publishing, 300, 381
database server, 41–42
database structure, verifying, 369
DATE, 32, 39, 58, 141, 169
datetime

data types, 31
value expression, 147–148

datetime and interval value expressions,
Data Manipulation Language, 58–59

date-time, cursors, 329
DAY, 59, 376
day-time interval, 33, 59, 148
DBA. See database administrator
dBASE, 73
DBMS. See database management system
DCL. See Data Control Language
DDL. See Data Definition Language
DEALLOCATE, 376
DEC, 376
DECIMAL, 26–29, 39, 141, 376
DECLARE, 376
DECLARE CURSOR, 24, 324
DECLARE TABLE, 24
DEFAULT, 376
default transaction, 273
default value, 171
DEFERRABLE, 280
DEFERRED, 280
defining tables, 93–97
DELETE

cursors, 331
Data Control Language, 252
Data Manipulation Language, 57
importance of, 24, 137
privileges, 65
reserved word, 376
subquery, 239

393Index

deletion anomaly, 381
Delphi, 73, 286
DENSE_RANK, 376
departmental database, 9
DEREF, 376
DESC, 197, 325–326
DESCRIBE, 376
Description information attribute, 76
descriptor, 381
design process overview, 91–92
design reviews, 368
DETERMINISTIC, 376
development environment, 367
diagnostics area, 381
diagnostics detail area
CATALOG_NAME, 356
CLASS_ORIGIN, 356
COLUMN_NAME, 356
CONDITION_IDENTIFIER, 356
CONDITION_NUMBER, 356
CONNECTION_NAME, 356
CONSTRAINT_CATALOG, 356
CONSTRAINT_NAME, 356
CONSTRAINT_SCHEMA, 356
CURSOR_NAME, 356
MESSAGE_LENGTH, 356
MESSAGE_OCTET_LENGTH, 356
MESSAGE_TEXT, 356
PARAMETER_NAME, 356
RETURNED_SQLSTATE, 356
ROUTINE_CATALOG, 356
ROUTINE_NAME, 356
ROUTINE_SCHEMA, 356
SCHEMA_NAME, 356
SERVER_NAME, 356
SPECIFIC_NAME, 357
SUBCLASS_ORIGIN, 356
TABLE_NAME, 356
TRIGGER_CATALOG, 357
TRIGGER_NAME, 357
TRIGGER_SCHEMA, 357

diagnostics header area
COMMAND_FUNCTION, 355
COMMAND_FUNCTION_CODE, 355
MORE, 355
NUMBER, 355
ROW_COUNT, 355
TRANSACTION_ACTIVE, 355

TRANSACTIONS_COMMITTED, 355
TRANSACTIONS_ROLLED_BACK, 355

DIAGNOSTICS SIZE, 273, 354
DISCONNECT, 24, 376
DISTINCT, 53, 151, 174, 187, 376
INTERSECT, 203
subquery, 227–228
UNION, 200

distinct types, 36–37
distinct UDT, Extensible Markup

Language, 318
distributed data processing, 381
DK/NF. See domain/key normal form
DLL. See dynamic link library
DML. See Data Manipulation Language
DO, 42
documentation, 368
domain, 18–19, 97, 381
DOMAIN, 255
domain integrity, 104–105, 381
domain mapping, Extensible Markup

Language, 316–317
domain/key normal form (DK/NF), 114,

117–118
DOUBLE, 376
DOUBLE PRECISION, 28–29, 39, 141
driver, 298, 381
Driver component, Open Database

Connectivity, 299
Driver manager, 299, 381
DROP, 46, 55, 68, 376
DROP ASSERTION, 24
DROP CHARTER SET, 24
DROP COLLATION, 24
DROP DOMAIN, 24
DROP ORDERING, 24
DROP ROLE, 24
DROP SCHEMA, 24
DROP SPECIFIC FUNCTION, 24
DROP SPECIFIC PROCEDURE, 24
DROP SPECIFIC ROUTINE, 25
DROP TABLE, 25, 56
DROP TRANSFORM, 25
DROP TRANSLATION, 25
DROP TRIGGER, 25
DROP TYPE, 25
DROP VIEW, 25
DYNAMIC, 376

394 SQL For Dummies, 5th Edition

dynamic link library (DLL), 299
dynamic SQL, 385
DYNAMIC_FUNCTION, 360

• E •
EACH, 376
ELEMENT, 376
element, XML, 313–314
ELSE, 376
embedded language precompiler, 354
embedded SQL

C language example, 288–290
CALL, 288–290
CAST, 291
cursors, 323–324
data type conversion, 291
definition, 143, 288, 385
EXEC, 290
host variables, 290

END, 339, 376
END-EXEC, 290, 376
English data, 97
enterprise database, 10, 381
entity integrity, 103–104, 382
ENVIRONMENT_NAME, 359
equal to comparison operator (=), 60, 177
equi-join, 206–208
equipment failure, 268–269
error conditions, handling gracefully, 372
ESCAPE, 376
escape character, 157, 181
EVERY, 376
exact numeric, 26
exceeding capacity of DBMS, 109–110
EXCEPT, 203–204, 376
exceptions, SQLSTATE, 360–361
EXEC, 290, 376
EXECUTE, 252, 376
EXISTS, 186, 376
EXIT, 339
EXP, 158, 376
expressions, 139
Extensible Markup Language (XML)
ARRAY type, 319–320
benefits of using with SQL, 307
character sets, mapping, 309
data types, mapping, 310–311

definition, 307, 386
distinct UDT, 318
domain, mapping, 316–317
EXTRACT, 308
mapping identifiers, 309–310
maxInclusive, 310
minInclusive, 310
MULTISET type, 320
null values, 312
ROW type, 318–319
style sheet, 307
tables, mapping, 311
Unicode, 310
when to use, 308–309
XML data type, 308
XML facet, 310
XML Name, 310
XML Schema, 310, 312–313
XMLAGG, 316
XMLCONCAT, 315
XMLELEMENT, 313–314
XMLFOREST, 314
XMLGEN, 314–315

EXTERNAL, 376
EXTRACT, 156, 308, 376

• F •
false, 31
FALSE, 376
FETCH, 25, 328–331, 376
field, 76, 140
Field Name attribute, 76
field size, changing, 76–77
5NF (fifth normal form), 114
File New Database dialog box, 75
file server, 382
FILTER, 376
firewall, 382
FIRST, 330
1NF (first normal form), 34, 114–115
flat files, 11–12, 382
FLOAT, 29, 39, 141, 376
floating-point number, 28
FLOOR, 159, 376
FOR, 376
FOR...DO...END FOR, 345
FOREIGN, 376

395Index

foreign character set, 97
foreign data file, copying data from, 130
foreign key, 189, 382
FOREIGN KEY, 30, 99–100
forest of elements, XML, 314–315, 382
FORTRAN, 21, 73, 286
forward slash (/), division operator, 56–57
4GL (fourth-generation language), 73
4NF (fourth normal form), 114
FREE, 376
FREE LOCATOR, 24
FROM, 49, 376
front end, 382
FULL, 189–191, 376
FULL JOIN, 214
FULL OUTER JOIN, 214
FUNCTION, 376
function call library, Open Database

Connectivity, 298
functional dependency, 115, 382
functions
ABS, 158
AVG, 151
CARDINALITY, 158
CEILING (CEIL), 159
CHARACTER_LENGTH, 156–157
CONVERT, 155
COUNT, 150–151
CURRENT_DATE, 160
CURRENT_TIME, 160
CURRENT_TIMESTAMP, 160
definition, 139, 149, 242
DISTINCT, 151
EXP, 158
EXTRACT, 156
FLOOR, 159
LN, 158
LOWER, 154
MAX, 151
MIN, 152
MOD, 158
OCTET_LENGTH, 157
POSITION, 156
POWER, 159
set, 149–152
SQRT, 159
SUBSTRING, 154
SUM, 152

TRANSLATE, 155
TRIM, 154–155
UPPER, 153–154
value, 152–160
WIDTH_BUCKET, 159

FUSION, 376
future compatibility, 308

• G •
GET, 376
GET DIAGNOSTICS, 24, 356, 358–359
GLOBAL, 376
GOTO, 354
GRANT, 24, 63, 65, 69, 376
GRANT DELETE, 66
GRANT INSERT, 66
GRANT REFERENCES, 66
GRANT SELECT, 66
GRANT UPDATE, 66, 69
GRANT USAGE, 66
GRANT USAGE ON CHARACTER SET, 66
GRANT USAGE ON COLLATION, 66
GRANT USAGE ON DOMAIN, 66
GRANT USAGE ON TRANSLATION, 66
greater than comparison operator (>),

61, 177
greater than or equal to comparison

operator (>=), 61, 177
Greenwich Mean Time, 147
GROUP, 376
GROUP BY, 370–371
GROUPING, 376

• H •
handler actions, Persistent Stored

Modules, 339–340
handler declarations, Persistent Stored

Modules, 338–339
handler effects, Persistent Stored Modules,

339–340
hard-coded database structure, 13
HAVING, 195, 376
helper applications, Open Database

Connectivity, 302
hierarchical database model, 12, 382

396 SQL For Dummies, 5th Edition

history
relational database model, 13
structured query language, 23–24

HOLD, 376
HOLD LOCATOR, 24
host variable, 143, 290, 351, 382
HOUR, 376
HyperText Markup Language (HTML),

300, 382

• I •
IBM, 13, 23
icons used in book, 4
IDENTITY, 376
IF, 22
IF...THEN...ELSE...END IF, 341
IMMEDIATE, 280–281
impedance mismatch, 36
implementation, 23, 354, 382
IN, 174, 178–180, 226–227, 376
index

benefits of using, 102
creating, 82–84
definition, 100, 382
deleting, 88
example, 101
maintaining, 102–103

Indexed Sequential Access Method
(ISAM), 299

INDICATOR, 376
information schema, 54, 382
INNER, 376
inner join, 210–211
INOUT, 376
INSENSITIVE, 324, 328, 376
INSERT

controlling use of, 65
Data Control Language, 252
Data Manipulation Language, 57
importance of, 24
multiple rows, 130–132
one row at a time, 128–129
privileges, 65
reserved word, 376
row value expressions, 171–172
SELECT, 132

selected columns, 129–130
subquery, 240

insertion anomaly, 382
INT, 376
INTEGER, 26–28, 39, 47, 141, 376
integrated database, 9
integrity

cascading deletions, 106–107
concurrent access, 269–271
domain, 104–105
entity, 103–104
equipment failure, 268–269
importance of maintaining, 103
parent-child relationship, 106
platform instability, 268
redundancy, 268
referential, 105–108
threats to, 267–268
update anomalies, 105

interactive SQL, 285, 385
interface, Open Database Connectivity, 298
Internet

definition, 382
Open Database Connectivity, 300–304
using SQL on, 43–44

INTERSECT, 202–203, 376
INTERSECTION, 376
interval

day-time, 33, 59, 148
value expression, 148
year-month, 33, 59, 148

INTERVAL, 58, 169, 376
INTERVAL DAY, 39, 141
INTO, 376
intranet

definition, 382
Open Database Connectivity, 304
using SQL on, 43–44

INVOICE table, 16–18, 49, 51–53
INVOICE_LINE table, 49, 51–52
IPX/SPX, 383
IS, 376
ISAM. See Indexed Sequential Access

Method
ISO/IEC international standard SQL, 20
isolation level, transaction, 273
ITERATE, 345–346

397Index

• J •
Java, 21, 286, 305, 383
Java applets, 303–304
Java DataBase Connectivity (JDBC), 304, 383
JavaScript, 303, 383
JOIN

alias, 207
basic example, 204–206
column-name join, 209–210
condition join, 209
cross join, 208
definition, 383
double-checking, 370
equi-join, 206–208
FULL OUTER JOIN, 214
importance of, 49, 52
inner join, 210–211
LEFT OUTER JOIN, 211–213
natural join, 208–209
ON, 221
reserved word, 376
RIGHT OUTER JOIN, 213–214
UNION JOIN, 214–221
WHERE, 221

JUNIOR, 60

• K •
key

composite key, 115–116
FOREIGN KEY, 99–100
PRIMARY KEY, 98–99
reasons to use, 97–98

• L •
LAN. See local area network
LANGUAGE, 376
LARGE, 376
LAST, 330
last-in-first-out (LIFO), 354
LATERAL, 376
LEADING, 376
leaf subtype, 38
LEAVE, 343–344

LEFT, 376
LEFT JOIN, 213
LEFT OUTER JOIN, 211–213
less than comparison operator (<), 60, 177
less than or equal to comparison operator

(<=), 60, 177
LIFO. See last-in-first-out
LIKE, 180–181, 376
literal value, 140–142
LN, 158, 376
LOCAL, 59, 376
local area network (LAN), 41
LOCALTIME, 376
LOCALTIMESTAMP, 376
locking database objects, transaction, 277
logical connectives
AND, 61, 192
Data Manipulation Language, 61
definition, 383
importance of, 191
NOT, 61, 193–195
OR, 61, 192–193

logical schema, 53
login, 253
LOOP...ENDLOOP, 343
LOWER, 154, 376

• M •
major entity, 92
mantissa, 29
mapping identifiers, Extensible Markup

Language, 309–310, 383
MATCH, 174, 188–191, 376
MAX, 62, 151, 231, 376
maximal supertype, 38
maxInclusive, 310
mechanical failure, 108
MEMBER, 376
MERGE, 135–137, 376
MESSAGE_LENGTH, 356, 359
MESSAGE_OCTET_LENGTH, 356, 359
MESSAGE_TEXT, 356, 359
metadata, 9, 383
METHOD, 376
Microsoft Access, 73, 75, 293. See also

database creation using RAD

398 SQL For Dummies, 5th Edition

MIN, 62, 152, 376
minInclusive, 310
minus sign (-), subtraction operator, 56–57
MINUTE, 376
MOD, 158, 376
modification anomaly, 112–113, 240, 383
MODIFIERS, 376
modifying clauses
FROM, 174–175
GROUP BY, 174
HAVING, 174
ORDER BY, 174
overview, 173–175
WHERE, 174–177

MODULE, 376
module language
AUTHORIZATION, 292
definition, 291, 383
example, 352–353
module declaration, 292
module procedure, 292–293
NAMES ARE, 292
SCHEMA, 292
SQL procedure, 291
SQLSTATE, 292, 352

MONTH, 376
MORE, 355, 360
multiplication operator (*), 56–57
MULTISET, 34–35, 39, 320, 376
mutator function, 37, 383
My Documents folder, 75

• N •
name, database, 75
NAMES ARE, 292
NATIONAL, 376
NATIONAL CHARACTER, 30–31, 141
NATIONAL CHARACTER LARGE OBJECT, 30–31
NATIONAL CHARACTER VARYING, 30–31, 141
native driver, Open Database

Connectivity, 299
NATURAL, 376
natural join, 208–209
natural logarithm function, 158
Navigator plug-ins, 301
NCHAR, 376

NCLOB, 377
nested query

aggregate function, 231
comparison operator, 229–231, 235–237
correlated, 235
Data Manipulation Language (DML), 61–64
definition, 223, 383
DELETE, 239
DISTINCT, 227–228
EXISTS, 233–234
HAVING, 237–238
IN, 179–180, 226–227
INSERT, 240
NOT EXISTS, 233–234
NOT IN, 227–228
quantified comparison operator, 229,

231–233
sets of rows, returning, 225–226
single value, returning, 229–231
UPDATE, 238
when to use, 224

NetBEUI, 383
Netscape Navigator plug-ins, 302–303, 383
network database model, 12, 383
NEW, 377
NEXT, 330
NO, 377
NO SCROLL, 324
NONE, 377
nonprocedural, 21
nonrepeatable read, 274
NO-OP, 354
normalization

1NF (first normal form), 114–115
2NF (second normal form), 114–116
3NF (third normal form), 114, 116–117
4NF (fourth normal form), 114
5NF (fifth normal form), 114
abnormal form, 118
Boyce-Codd normal form, 114
definition, 383
domain/key normal form, 114, 117–118
importance of, 46, 144
protecting data integrity, 223

NORMALIZE, 377
NOT, 61, 193–195, 371, 377
NOT DEFERRABLE, 280

399Index

NOT DEFERRED, 280–281
not equal to comparison operator (<>),

60, 177
NOT FOUND, 353
NOT IN, 178–180, 227–228
NOT LIKE, 180–181
NOT NULL, 47, 51
NULL, 31, 60, 182–183, 377
null value, 21, 40, 312
NULLIF, 148, 166–167, 377
NUMBER, 355, 360
NUMERIC, 26–29, 35, 39, 141, 161, 377
numeric literals, 58
numeric value expression, 57–58, 147

• O •
object, 92, 383
Object Database Connectivity (ODBC), 297,

300, 384
object model, 7, 19
object-oriented principles (OOP), 35, 294
object-relational database, 7, 20
observer, 37
obsolete data, deleting, 137
octet, 157
OCTET_LENGTH, 157, 377
ODBC. See Object Database Connectivity
ODBC 4.0 driver, 300
OF, 377
OLD, 377
ON, 221, 377
1NF. See first normal form
one-to-many relationship, 96
ONLY, 377
OOP. See object-oriented principles
OPEN, 24, 377
Open Database Connectivity (ODBC)

ActiveX controls, 303
Application component, 299
application programming interface, 299
client extension, 301–303
client/server environment, 299–300
Data source component, 299
database engine connection

standards, 298
database publishing, 300
definition, 297

driver, 298
Driver component, 299
Driver manager component, 299
dynamic link library, 299
function call library, 298
helper applications, 302
Hypertext Markup Language, 300
interface, 298
Internet, 300–304
intranet, 304
Java applets, 303–304
Java DataBase Connectivity,

compared to, 305
native driver, 299
Netscape Navigator plug-ins, 302–303
proprietary API, 299
scripts, 303
server extension, 300–301
standard error codes, 298
standard SQL data types, 298
standard SQL syntax, 298

opening cursors, 328–329
operator error, 108
OR, 61, 192–193, 371, 377
Oracle database product, 13, 23, 384
ORDER, 377
ORDER BY, 196–197, 325–326
organizational politics, 366
OUT, 377
OUTER, 377
OVER, 377
OVERLAPS, 174, 187–188, 377
OVERLAY, 377

• P •
Paradox, 73
parameter, 143, 384
PARAMETER, 377
PARAMETER_NAME, 356
parent, 14
parent-child relationship, 106
parentheses, using in complex

expressions, 371
PARTIAL, 189–191
partial match, 180
PARTITION, 377
Pascal, 21, 73, 286

400 SQL For Dummies, 5th Edition

percent sign (%), wildcard, 180–181
PERCENTILE_CONT, 377
PERCENTILE_DISC, 377
PERCENT_RANK, 377
Persistent Stored Modules (PSM)

assignment, 340–341
atomicity, 334–335
BEGIN, 339
CASE...END CASE, 342–343
compound statements, 333–334
conditions, 336–341
CONTINUE, 339
cursors, 336
definition, 333
END, 339
EXIT, 339
FOR...DO...END FOR, 345
handler actions, 339–340
handler declarations, 338–339
handler effects, 339–340
IF...THEN...ELSE...END IF, 341
ITERATE, 345–346
LEAVE, 343–344
LOOP...ENDLOOP, 343
privileges, 348
REPEAT...UNTIL...END REPEAT,

344–345
RESIGNAL, 339
SQLSTATE, 337–340
stored functions, 347
stored modules, 348–349
stored procedures, 346–347
UNDO, 339
variables, 336
WHILE...DO...END WHILE, 344

personal database, 9, 14, 381
phantom read, 274–275
physical schema, 54
placeholders, XML, 314–315
platform instability, 268
plus sign (+), addition operator, 57–57
pointer. See cursors
portability, 88–89
POSITION, 156, 377
pound sign (#), escape character, 181
POWER, 159, 377
Powerball database example, 74–83

precautionary action, transaction, 271
precision, 384
PRECISION, 377
predicates, Data Manipulation Language,

60–61
PREPARE, 377
previous session, 144
pricing structure example, 142–143
PRIMARY, 377
primary key, 48, 80–81, 189, 384
PRIMARY KEY, 30, 98–99
Primary Key icon, 80
PRIOR, 330
privileges. See also Data Control Language

controlling, 371
Persistent Stored Modules, 348

problems
bad input data, 108
data redundancy, 109
exceeding capacity of DBMS, 109–110
malice, 109
mechanical failure, 108
operator error, 108

procedural language, 21, 286–287, 384
PROCEDURE, 377
PRODUCT table, 49, 51, 53
project scope, ignoring, 366
proprietary API, 299
PSM. See Persistent Stored Modules
PUBLIC, 254

• Q •
quantified comparison operator,

subquery, 229
query, 22, 370, 384. See also SELECT
query expression, cursors, 324–325
querying entire XML document, 308

• R •
RANGE, 377
RANK, 377
rapid application development (RAD)

definition, 73, 286, 384
method, 293
platform portability, 294

401Index

R:BASE, 73
RDBMS. See relational DBMS
READ COMMITTED, 272, 274
READ UNCOMMITTED, 272–274
READ-ONLY, 272
READS, 377
READ-WRITE, 272
REAL, 28–29, 39, 141, 377
record, 9, 15, 384
recursion

C++ spiral drawing program, 241–242
RECURSIVE, 247, 250, 377
recursive query example, 244–249
termination condition, 243–244

redundancy, 268
REF, 35, 39, 377
reference type, 384
reference value expressions, Data

Manipulation Language, 60
REFERENCES, 68, 252, 377
REFERENCING, 377
referential integrity (RI), 67, 105–108,

189–191, 384
register size, 28
REGR_AVGX, 377
REGR_AVGY, 377
REGR_COUNT, 377
REGR_INTERCEPT, 377
REGR_R2, 377
REGR_SLOPE, 377
REGR_SXX, 377
REGR_SXY, 377
REGR_SYY, 377
relation, 14–15, 384
relational database, 51
relational database model

benefits of using, 13
components, 14
definition, 12
history, 13

relational DBMS (RDBMS), 23
relational model, 7
Relational Software, Inc. (renamed Oracle

Corporation), 23
RELATIVE, 330–331
RELEASE, 377

RELEASE SAVEPOINT, 24
REPEATABLE READ, 272, 274
REPEAT...UNTIL...END REPEAT, 344–345
reserved words, 25, 375–378, 384
RESIGNAL, 339, 361
resource availability, 366
RESTRICT, 68
RESULT, 377
retrieving data. See also SELECT

entire block of data, 308
examples, 121–123
tips, 369–372

RETURN, 24, 377
RETURNED_SQLSTATE, 356–357
RETURNS, 377
REVOKE, 24, 63, 65, 377
REVOKE DELETE, 66
REVOKE INSERT, 66
REVOKE REFERENCES, 66
REVOKE SELECT, 66
REVOKE UPDATE, 66
REVOKE USAGE ON CHARACTER SET, 66
REVOKE USAGE ON COLLATION, 66
REVOKE USAGE ON DOMAIN, 66
REVOKE USAGE ON TRANSLATION, 66
RI. See referential integrity
RIGHT, 377
RIGHT OUTER JOIN, 213–214
ROLLBACK

Data Control Language, 63–64
importance of, 24
SAVEPOINT, 279–280
transactions, 271–272, 277

ROLLUP, 377
ROUTINE_CATALOG, 356
ROUTINE_NAME, 356
ROUTINE_SCHEMA, 356
row, 15, 384
ROW, 33–34, 39, 318–319, 377
row value expressions

Data Manipulation Language, 60
definition, 384
history, 171
INSERT, 171–172
SELECT, 171–172

row values, 140

402 SQL For Dummies, 5th Edition

ROW_COUNT, 355, 360
ROW_NUMBER, 377
ROWS, 377

• S •
SALES_MGR view, 17
Save As dialog box, 77
SAVEPOINT, 24, 279–280, 377
scalable, 10
scalar subquery, 146
scalar value, 140
scale, 384
schedule requirements, 366
schema

definition, 18, 385
importance of, 46
information, 54
logical, 53
owner, 385
physical, 54

SCHEMA, 292
SCHEMA_NAME, 356, 359
SCHEMA_NAME.TABLE_NAME, 54
SCOPE, 377
scope, ignoring, 366
scripts, Open Database Connectivity, 303
SCROLL, 324, 328, 377
scrollable, cursors, 328, 330–331
SEARCH, 377
SECOND, 377
2NF (second normal form), 114–116
security, importance of, 251. See also Data

Control Language
SELECT. See also subquery
AND, 123
basic syntax, 122
BETWEEN, 178
controlling use of, 65
CREATE VIEW, 53, 124–127
Data Control Language, 252
FROM, 62, 123, 175
GROUP BY, 194
HAVING, 195
importance of, 24, 57
IN, 179–180

INSERT, 132
MAX, 62
NOT, 193
observer functions, 37
ORDER BY, 196–197
reserved word, 377
retrieving data with, 121
row value expressions, 171–172
subselect, 135
UNION, 131
WHERE, 122–123, 131, 176

self-consistent, 15
self-describing database, 9
SENSITIVE, 324, 328, 377
sensitivity, cursors, 327–328
SEQUEL. See Structured English Query

Language
SEQUENCE, 255
SERIALIZABLE, 272, 275
serialization, 270–271
server, 41–42
server extension, Open Database

Connectivity, 300–301
SERVER_NAME, 356
session, 144
SESSION_USER, 144, 377
SET, 377
SET CONNECTION, 24
SET CONSTRAINTS, 25
SET CONSTRAINTS DEFERRED, 282–283
SET CONSTRAINTS IMMEDIATE, 284
set functions
AVG, 63
COUNT, 62
Data Manipulation Language, 61–64
definition, 385
importance of, 61–62
MAX, 62
MIN, 62
SUM, 62
summarizing with, 149–152

SET ROLE, 25
SET SESSION AUTHORIZATION, 25
SET SESSION CHARACTERISTICS, 25
SET TIME ZONE, 25
SET TRANSACTION, 25, 272–273, 276, 354

403Index

SIMILAR, 182, 377
SIMPLE, 189–191
SMALLINT, 26–28, 39, 62–63, 141, 377
SOME, 183–185, 377
sorting output, 196–197
source type, 36
SPECIFIC, 377
SPECIFIC_NAME, 357
SPECIFICTYPE, 377
sporting good store database example,

50–53
SQL. See structured query language
SQL procedure, 291
SQL-86, 23
SQL-89, 23
SQL-92, 20, 23, 333
SQL:1999 standard, 20, 34, 333
SQL:2003 standard, 20, 22–24, 34, 333
SQL/DS, 23, 385
SQLERROR, 353
SQLEXCEPTION, 377
SQLSTATE
ALTER TABLE, 359
CATALOG_NAME, 356, 359
class codes, 351–352
Class Values, 337
CLASS_ORIGIN, 356–357
COLUMN_NAME, 356, 359
COMMAND_FUNCTION, 355, 360
COMMAND_FUNCTION_CODE, 355
CONDITION_IDENTIFIER, 356
CONDITION_NUMBER, 356–357
CONNECTION_NAME, 356, 359
constraint violation example, 358–359
CONSTRAINT_CATALOG, 356–357
CONSTRAINT_NAME, 356–357
CONSTRAINT_SCHEMA, 356–357
CONTINUE, 353
CURSOR_NAME, 356, 359
diagnostics detail area, 356–357
diagnostics header area, 354–355
DIAGNOSTICS SIZE, 354
DYNAMIC_FUNCTION, 360
ENVIRONMENT_NAME, 359
exceptions, 360–361
GET DIAGNOSTICS, 356, 358–359
GOTO, 354

implementation, 354
MESSAGE_LENGTH, 356, 359
MESSAGE_OCTET_LENGTH, 356, 359
MESSAGE_TEXT, 356, 359
module language example, 352–353
MORE, 355, 360
NOT FOUND, 353
NUMBER, 355, 360
PARAMETER_NAME, 356
Persistent Stored Modules, 334, 337–340
reserved word, 377
RETURNED_SQLSTATE, 356–357
ROUTINE_CATALOG, 356
ROUTINE_NAME, 356
ROUTINE_SCHEMA, 356
ROW_COUNT, 355, 360
SCHEMA_NAME, 356, 359
SERVER_NAME, 356
SET TRANSACTION, 354
SPECIFIC_NAME, 357
SQLERROR, 353
SUBCLASS_ORIGIN, 356–357
TABLE_NAME, 356, 359
TRANSACTION_ACTIVE, 355
TRANSACTIONS_COMMITTED, 355
TRANSACTIONS_ROLLED_BACK, 355
TRIGGER_CATALOG, 357
TRIGGER_NAME, 357
TRIGGER_SCHEMA, 357
WHENEVER, 353–354, 360

SQLWARNING, 377
SQRT, 159, 377
square brackets ([]), 174
standard error codes, Open Database

Connectivity, 298
standard SQL data types, Open Database

Connectivity, 298
standard SQL syntax, Open Database

Connectivity, 298
START, 377
START TRANSACTION, 25
STATIC, 377
status parameter, 351
STDDEV_POP, 377
STDDEV_SAMP, 377
stored functions, Persistent Stored

Modules, 347

404 SQL For Dummies, 5th Edition

stored modules, Persistent Stored
Modules, 348–349

stored procedures, Persistent Stored
Modules, 346–347

string value expression, 58, 146
strong typing, 308
Structured English Query Language

(SEQUEL), 23, 385
structured query language (SQL)

definition, 7, 385
history, 23–24

structured type, 37–38, 385
style sheet, Extensible Markup

Language, 307
SUBCLASS_ORIGIN, 356–357
sublanguage, 22
subquery. See also SELECT

aggregate function, 231
comparison operator, 229–231, 235–237
correlated, 234
Data Manipulation Language, 61–64
definition, 223, 385
DELETE, 239
DISTINCT, 227–228
EXISTS, 233–234
HAVING, 237–238
IN, 179–180, 226–227
INSERT, 240
NOT EXISTS, 233–234
NOT IN, 227–228
quantified comparison operator, 229,

231–233
sets of rows, returning, 225–226
single value, returning, 229–231
UPDATE, 238
when to use, 224

subselect, 135, 370
SUBSTRING, 154, 377
subtype, 37–38, 385
SUM, 62, 152, 377
supertype, 37–38, 385
SYMMETRIC, 377
SYSTEM, 377
system administrator, 253
system architecture, 367
SYSTEM_USER, 144, 377

• T •
table

altering structure of, 79–80
base compared to virtual, 123
constraints, 111
controlling access to, 65–67
copying data from foreign data file, 130
creating, 46–48, 75–79
defining, 93–97
definition, 15, 385
deleting, 84
design, 367
index, 82–84
major entities, 92
primary key, 70–81
transferring all rows between, 131
transferring selected columns and rows

between, 131–132
TABLE, 378
table creation window, 78
Table Design toolbar, 80
table mapping, Extensible Markup

Language, 311
Table Name text box, 79
TABLE_NAME, 356, 359
TABLESAMPLE, 378
Taylor, Allen G., (Database Development

For Dummies), 1
TCP/IP. See Transmission Control

Protocol/Internet Protocol
teleprocessing system, 385
template, XML, 314–315
test database, 370
THEN, 378
3NF (third normal form), 48, 114, 116–117
threats to data integrity, 267–268
TIME, 32, 58, 141, 169, 378
TIME WITH TIME ZONE, 33, 39, 141
TIME WITHOUT TIME ZONE, 32–33, 39
TIMESTAMP, 58, 141, 169, 378
TIMESTAMP WITH TIME ZONE, 33, 39, 141
TIMESTAMP WITHOUT TIME ZONE, 32, 39
TIMEZONE_HOUR, 378
TIMEZONE_MINUTE, 378
TO, 378

405Index

TRAILING, 378
transaction

application, 272
backing up data, 278–279
BEGIN, 275–276
BEGIN TRAN, 275–276
COMMIT, 271–272, 277
CONSTRAINT, 282
default, 273
DEFERRABLE, 280
DEFERRED, 280
definition, 268, 386
DIAGNOSTICS SIZE, 273
IMMEDIATE, 280–281
isolation level, 273
locking database objects, 277
nonrepeatable read, 274
NOT DEFERRABLE, 280
NOT DEFERRED, 280–281
phantom read, 274–275
precautionary action, 271
READ COMMITTED, 272, 274
READ UNCOMMITTED, 272–274
READ-ONLY, 272
READ-WRITE, 272
REPEATABLE READ, 272, 274
ROLLBACK, 271–272, 277, 279–280
SAVEPOINT, 279–280
SERIALIZABLE, 272, 275
SET CONSTRAINTS DEFERRED, 282–283
SET CONSTRAINTS IMMEDIATE, 284
SET TRANSACTION, 272–273, 276

transaction interaction trouble, 269–270
TRANSACTION_ACTIVE, 355
TRANSACTIONS_COMMITTED, 355
TRANSACTIONS_ROLLED_BACK, 355
transferring all rows between tables, 131
transferring selected columns and rows

between tables, 131–132
transitive dependency, 116–117, 386
TRANSLATE, 155, 378
translation, 97, 259–260
TRANSLATION, 255, 378
translation table, 55, 386
Transmission Control Protocol/Internet

Protocol (TCP/IP), 385
TREAT, 378

trigger, 386
TRIGGER, 252, 255, 260–261, 378
TRIGGER_CATALOG, 357
TRIGGER_NAME, 357
TRIGGER_SCHEMA, 357
TRIM, 154–155, 378
true, 31
TRUE, 378
tuple, 15
TYPE, 255
type conversion. See CAST

• U •
UDT. See user-defined type
UNDER, 252, 255
underscore (_), wildcard, 180
UNDO, 339
Unicode, 310
UNION
ALL, 201
CORRESPONDING, 201–202
DISTINCT, 200
reserved word, 378
SELECT, 131
tables with same structure, 199

UNION JOIN
COALESCE, 219–221
example, 215–218
overview, 214–215

UNIQUE
importance of, 30
null data, 190–191
reserved word, 378
subquery, 186–187

unique key, 189
Universal Time Coordinated (UTC), 147
UNKNOWN, 378
unknown value, 31
UNNEST, 378
updatability clause, cursors, 326
UPDATE

basic syntax, 132
controlling use of, 65
cursors, 331
Data Control Language, 252
Data Manipulation Language, 57

406 SQL For Dummies, 5th Edition

importance of, 25
multiple rows, 134
NULLIF, 166–168
privileges, 65, 252, 255
reserved word, 378
single row, 133
subquery, 238
subselect, 135
WHERE, 132–135

update anomaly, 105, 386
UPPER, 153–154, 378
USAGE, 252, 255
USdollar, 36–37
USER, 378
user name, 256
user privileges. See Data Control Language
user-defined type (UDT), 36–38, 59,

308, 386
USING, 378
UTC. See Universal Time Coordinated

• V •
VALUE, 378
value expression

conditional, 148, 386
datetime, 147–148
definition, 145–146, 386
interval, 148
numeric, 147, 386
string, 146

value function, 152–160, 386
VALUES, 129, 378
VARCHAR, 30, 39, 141, 378
variable

definition, 140
Persistent Stored Modules, 336
special, 144
user-created, 142–143

VAR_POP, 378
VAR_SAMP, 378
VARYING, 378
VBScript, 303
VetLab database example, 93–100
view

basic example, 15–18
creating from tables, 124–125

creating with modified attribute, 126
creating with selection condition, 125
definition, 48, 386
multitable, 49–53
single-table, 48–49
updating, 126
VetLab database example, 123–124

virtual table, 16, 123, 386
Visual Basic, 286, 293

• W •
What You See Is What You Get

(WYSIWYG), 140
WHEN, 378
WHENEVER, 351, 353–354, 360, 378
WHERE
DELETE, 137
JOIN, 221
reserved word, 378
SELECT, 122–123, 131
UPDATE, 132–135

WHILE...DO...END WHILE, 344
WIDTH_BUCKET, 159, 378
wildcard characters, 180
WINDOW, 378
WITH, 378
WITH GRANT OPTION, 69
WITH HOLD, 324
WITH RECURSIVE, 247, 250
WITH RETURN, 324
WITHIN, 378
WITHOUT, 378
WITHOUT HOLD, 324
WITHOUT RETURN, 324
workgroup database, 9–10, 381
World Wide Web, 386
WYSIWYG. See What You See Is What

You Get

• X •
XML. See Extensible Markup Language
XML data type, 308
XML facet, 310
XML Name, 310
XML Schema, 310, 312–313

407Index

XMLAGG, 316
XMLCONCAT, 315
XMLELEMENT, 313–314
XMLFOREST, 314
XMLGEN, 314–315

• Y •
YEAR, 378
Year 2000 (Y2K), 32
year-month interval, 33, 59, 148

• Z •
zero-length string, 146
01 class code, SQLSTATE, 352
02 class code, SQLSTATE, 352
00 class code, SQLSTATE, 352

408 SQL For Dummies, 5th Edition

PERSONAL FINANCE

Also available:

Estate Planning For Dummies
(0-7645-5501-4)
401(k)s For Dummies
(0-7645-5468-9)
Frugal Living For Dummies
(0-7645-5403-4)
Microsoft Money “X” For
Dummies
(0-7645-1689-2)
Mutual Funds For Dummies
(0-7645-5329-1)

Personal Bankruptcy For
Dummies
(0-7645-5498-0)
Quicken “X” For Dummies
(0-7645-1666-3)
Stock Investing For Dummies
(0-7645-5411-5)
Taxes For Dummies 2003
(0-7645-5475-1)

Also available:

Business Plans Kit For
Dummies
(0-7645-5365-8)
Consulting For Dummies
(0-7645-5034-9)
Cool Careers For Dummies
(0-7645-5345-3)
Human Resources Kit For
Dummies
(0-7645-5131-0)
Managing For Dummies
(1-5688-4858-7)

QuickBooks All-in-One Desk
Reference For Dummies
(0-7645-1963-8)
Selling For Dummies
(0-7645-5363-1)
Small Business Kit For
Dummies
(0-7645-5093-4)
Starting an eBay Business For
Dummies
(0-7645-1547-0)

The easy way to get more done and have more fun

Available wherever books are sold.
Go to www.dummies.com or call 1-877-762-2974 to order direct.

BUSINESS & CAREERS

Also available:

Controlling Cholesterol For
Dummies
(0-7645-5440-9)
Dieting For Dummies
(0-7645-5126-4)
High Blood Pressure For
Dummies
(0-7645-5424-7)
Martial Arts For Dummies
(0-7645-5358-5)
Menopause For Dummies
(0-7645-5458-1)

Nutrition For Dummies
(0-7645-5180-9)
Power Yoga For Dummies
(0-7645-5342-9)
Thyroid For Dummies
(0-7645-5385-2)
Weight Training For Dummies
(0-7645-5168-X)
Yoga For Dummies
(0-7645-5117-5)

HEALTH, SPORTS & FITNESS

0-7645-5231-7 0-7645-2431-3 0-7645-5331-3

0-7645-5314-3 0-7645-5307-0 0-7645-5471-9

0-7645-5167-1 0-7645-5146-9 0-7645-5154-X

Also available:

America’s National Parks For
Dummies
(0-7645-6204-5)
Caribbean For Dummies
(0-7645-5445-X)
Cruise Vacations For
Dummies 2003
(0-7645-5459-X)
Europe For Dummies
(0-7645-5456-5)
Ireland For Dummies
(0-7645-6199-5)
France For Dummies
(0-7645-6292-4)

London For Dummies
(0-7645-5416-6)
Mexico’s Beach Resorts For
Dummies
(0-7645-6262-2)
Paris For Dummies
(0-7645-5494-8)
RV Vacations For Dummies
(0-7645-5443-3)
Walt Disney World & Orlando
For Dummies
(0-7645-5444-1)

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct.

A world of resources to help you grow

HOME, GARDEN & HOBBIES

Also available:

Auto Repair For Dummies
(0-7645-5089-6)
Chess For Dummies
(0-7645-5003-9)
Home Maintenance For
Dummies
(0-7645-5215-5)
Organizing For Dummies
(0-7645-5300-3)
Piano For Dummies
(0-7645-5105-1)

Poker For Dummies
(0-7645-5232-5)
Quilting For Dummies
(0-7645-5118-3)
Rock Guitar For Dummies
(0-7645-5356-9)
Roses For Dummies
(0-7645-5202-3)
Sewing For Dummies
(0-7645-5137-X)

Also available:

Bartending For Dummies
(0-7645-5051-9)
Chinese Cooking For
Dummies
(0-7645-5247-3)
Christmas Cooking For
Dummies
(0-7645-5407-7)
Diabetes Cookbook For
Dummies
(0-7645-5230-9)

Grilling For Dummies
(0-7645-5076-4)
Low-Fat Cooking For
Dummies
(0-7645-5035-7)
Slow Cookers For Dummies
(0-7645-5240-6)

FOOD & WINE

TRAVEL

0-7645-5295-3 0-7645-5130-2 0-7645-5106-X

0-7645-5250-3 0-7645-5390-9 0-7645-5114-0

0-7645-5453-0 0-7645-5438-7 0-7645-5448-4

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct.

Plain-English solutions for everyday challenges

COMPUTER BASICS

Also available:

PCs All-in-One Desk
Reference For Dummies
(0-7645-0791-5)
Pocket PC For Dummies
(0-7645-1640-X)
Treo and Visor For Dummies
(0-7645-1673-6)
Troubleshooting Your PC For
Dummies
(0-7645-1669-8)

Upgrading & Fixing PCs For
Dummies
(0-7645-1665-5)
Windows XP For Dummies
(0-7645-0893-8)
Windows XP For Dummies
Quick Reference
(0-7645-0897-0)

Also available:

Excel Data Analysis For
Dummies
(0-7645-1661-2)
Excel 2002 All-in-One Desk
Reference For Dummies
(0-7645-1794-5)
Excel 2002 For Dummies
Quick Reference
(0-7645-0829-6)
GoldMine “X” For Dummies
(0-7645-0845-8)

Microsoft CRM For Dummies
(0-7645-1698-1)
Microsoft Project 2002 For
Dummies
(0-7645-1628-0)
Office XP For Dummies
(0-7645-0830-X)
Outlook 2002 For Dummies
(0-7645-0828-8)

BUSINESS SOFTWARE

0-7645-0838-5 0-7645-1663-9 0-7645-1548-9

0-7645-0822-9 0-7645-0839-3 0-7645-0819-9

• Find listings of even more For Dummies titles

• Browse online articles

• Sign up for Dummies eTips™

• Check out For Dummies fitness videos and other products

• Order from our online bookstore

Get smart! Visit www.dummies.com

™

Also available:

Adobe Acrobat 5 PDF For
Dummies
(0-7645-1652-3)
Fireworks 4 For Dummies
(0-7645-0804-0)
Illustrator 10 For Dummies
(0-7645-3636-2)

QuarkXPress 5 For Dummies
(0-7645-0643-9)
Visio 2000 For Dummies
(0-7645-0635-8)

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct.

Helping you expand your horizons and realize your potential

INTERNET

Also available:

America Online 7.0 For
Dummies
(0-7645-1624-8)
Genealogy Online For
Dummies
(0-7645-0807-5)
The Internet All-in-One Desk
Reference For Dummies
(0-7645-1659-0)
Internet Explorer 6 For
Dummies
(0-7645-1344-3)

The Internet For Dummies
Quick Reference
(0-7645-1645-0)
Internet Privacy For Dummies
(0-7645-0846-6)
Researching Online For
Dummies
(0-7645-0546-7)
Starting an Online Business
For Dummies
(0-7645-1655-8)

Also available:

CD and DVD Recording For
Dummies
(0-7645-1627-2)
Digital Photography
All-in-One Desk Reference
For Dummies
(0-7645-1800-3)
Digital Photography For
Dummies Quick Reference
(0-7645-0750-8)
Home Recording for
Musicians For Dummies
(0-7645-1634-5)

MP3 For Dummies
(0-7645-0858-X)
Paint Shop Pro “X” For
Dummies
(0-7645-2440-2)
Photo Retouching &
Restoration For Dummies
(0-7645-1662-0)
Scanners For Dummies
(0-7645-0783-4)

DIGITAL MEDIA

GRAPHICS

0-7645-0894-6 0-7645-1659-0 0-7645-1642-6

0-7645-1664-7 0-7645-1675-2 0-7645-0806-7

0-7645-0817-2 0-7645-1651-5 0-7645-0895-4

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct.

The advice and explanations you need to succeed

Also available:

Chemistry For Dummies
(0-7645-5430-1)
English Grammar For
Dummies
(0-7645-5322-4)
French For Dummies
(0-7645-5193-0)
The GMAT For Dummies
(0-7645-5251-1)
Inglés Para Dummies
(0-7645-5427-1)

Italian For Dummies
(0-7645-5196-5)
Research Papers For
Dummies
(0-7645-5426-3)
The SAT I For Dummies
(0-7645-5472-7)
U.S. History For Dummies
(0-7645-5249-X)
World History For Dummies
(0-7645-5242-2)

SELF-HELP, SPIRITUALITY & RELIGION

Also available:

The Bible For Dummies
(0-7645-5296-1)
Buddhism For Dummies
(0-7645-5359-3)
Christian Prayer For Dummies
(0-7645-5500-6)
Dating For Dummies
(0-7645-5072-1)
Judaism For Dummies
(0-7645-5299-6)

Potty Training For Dummies
(0-7645-5417-4)
Pregnancy For Dummies
(0-7645-5074-8)
Rekindling Romance For
Dummies
(0-7645-5303-8)
Spirituality For Dummies
(0-7645-5298-8)
Weddings For Dummies
(0-7645-5055-1)

Also available:

Aquariums For Dummies
(0-7645-5156-6)
Birds For Dummies
(0-7645-5139-6)
Dogs For Dummies
(0-7645-5274-0)
Ferrets For Dummies
(0-7645-5259-7)

German Shepherds For
Dummies
(0-7645-5280-5)

Golden Retrievers For
Dummies
(0-7645-5267-8)
Horses For Dummies
(0-7645-5138-8)
Jack Russell Terriers For
Dummies
(0-7645-5268-6)
Labrador Retrievers For
Dummies
(0-7645-5281-3)
Puppies Raising & Training
Diary For Dummies
(0-7645-0876-8)

PETS

EDUCATION & TEST PREPARATION

0-7645-5302-X 0-7645-5418-2 0-7645-5264-3

0-7645-5255-4 0-7645-5286-4 0-7645-5275-9

0-7645-5194-9 0-7645-5325-9 0-7645-5210-4

WEB DEVELOPMENT

Also available:

ASP.NET For Dummies
(0-7645-0866-0)
Building a Web Site For
Dummies
(0-7645-0720-6)
ColdFusion “MX” For
Dummies (0-7645-1672-8)
Creating Web Pages
All-in-One Desk Reference
For Dummies
(0-7645-1542-X)

FrontPage 2002 For Dummies
(0-7645-0821-0)
HTML 4 For Dummies Quick
Reference
(0-7645-0721-4)
Macromedia Studio “MX”
All-in-One Desk Reference
For Dummies
(0-7645-1799-6)
Web Design For Dummies
(0-7645-0823-7)

Also available:

Beginning Programming For
Dummies
(0-7645-0835-0)
Crystal Reports “X”
For Dummies
(0-7645-1641-8)
Java & XML For Dummies
(0-7645-1658-2)
Java 2 For Dummies
(0-7645-0765-6)
JavaScript For Dummies
(0-7645-0633-1)
Oracle9i For Dummies
(0-7645-0880-6)

Perl For Dummies
(0-7645-0776-1)
PHP and MySQL For
Dummies
(0-7645-1650-7)
VisualBasic .NET For
Dummies
(0-7645-0867-9)
Visual Studio .NET All-in-One
Desk Reference For Dummies
(0-7645-1626-4)

We take the mystery out of complicated subjects

Available wherever books are sold.
Go to www.dummies.com or call 1-877-762-2974 to order direct.

PROGRAMMING & DATABASES

Also available:

CCNP All-in-One Certification
For Dummies
(0-7645-1648-5)
Cisco Networking For
Dummies
(0-7645-1668-X)
CISSP For Dummies
(0-7645-1670-1)
CIW Foundations For
Dummies with CD-ROM
(0-7645-1635-3)

Firewalls For Dummies
(0-7645-0884-9)
Home Networking For
Dummies
(0-7645-0857-1)
Red Hat Linux All-in-One
Desk Reference For Dummies
(0-7645-2442-9)
TCP/IP For Dummies
(0-7645-1760-0)
UNIX For Dummies
(0-7645-0419-3)

LINUX, NETWORKING & CERTIFICATION

0-7645-1643-4 0-7645-0723-0 0-7645-1630-2

0-7645-0746-X 0-7645-1657-4 0-7645-0818-0

0-7645-1545-4 0-7645-0772-9 0-7645-0812-1

	SQL For Dummies 5th Edition
	About the Author
	Dedication
	Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Who Should Read This Book?
	How This Book Is Organized
	Icons Used in This Book
	Getting Started

	Part I: Basic Concepts
	Chapter 1: Relational Database Fundamentals
	Keeping Track of Things
	What Is a Database?
	Database Size and Complexity
	What Is a Database Management System?
	Flat Files
	Database Models
	Database Design Considerations

	Chapter 2: SQL Fundamentals
	What SQL Is and Isn’t
	A (Very) Little History
	SQL Commands
	Reserved Words
	Data Types
	Null Values
	Constraints
	Using SQL in a Client/Server System
	Using SQL on the Internet/Intranet

	Chapter 3: The Components of SQL
	Data Definition Language
	Data Manipulation Language
	Data Control Language

	Part II: Using SQL to Build Databases
	Chapter 4: Building and Maintaining a Simple Database Structure
	Building a Simple Database Using a RAD Tool
	Building PowerDesign with SQL’s DDL
	Portability Considerations

	Chapter 5: Building a Multitable Relational Database
	Designing the Database
	Working with Indexes
	Maintaining Integrity
	Normalizing the Database

	Part III: Retrieving Data
	Chapter 6: Manipulating Database Data
	Retrieving Data
	Creating Views
	Updating Views
	Adding New Data
	Updating Existing Data
	Transferring Data
	Deleting Obsolete Data

	Chapter 7: Specifying Values
	Values
	Value Expressions
	Functions

	Chapter 8: Advanced SQL Value Expressions
	CASE Conditional Expressions
	CAST Data-Type Conversions
	Row Value Expressions

	Chapter 9: Zeroing In on the Data You Want
	Modifying Clauses
	FROM Clauses
	WHERE Clauses
	Logical Connectives
	GROUP BY Clauses
	HAVING Clauses
	ORDER BY Clauses

	Chapter 10: Relational Operators
	UNION
	INTERSECT
	EXCEPT
	JOINS
	ON versus WHERE

	Chapter 11: Delving Deep with Nested Queries
	Why Use a Subquery?
	What Subqueries Do

	Chapter 12: Recursive Queries
	What Is Recursion?
	What Is a Recursive Query?
	Where Might I Use a Recursive Query?
	Where Else Might I Use a Recursive Query?

	Chapter 13: Providing Database Security
	The SQL Data Control Language
	User Access Levels
	Granting Privileges to Users
	Granting the Power to Grant Privileges
	Taking Privileges Away
	Using GRANT and REVOKE Together Saves Time and Effort

	Part IV: Controlling Operations
	Chapter 14: Protecting Data
	Threats to Data Integrity
	Reducing Vulnerability to Data Corruption
	Constraints within Transactions

	Chapter 15: Using SQL Within Applications
	SQL in an Application
	Hooking SQL into Procedural Languages

	Part V: SQL in the Real World
	Chapter 16: ODBC and JDBC
	ODBC
	ODBC in a Client/Server Environment
	ODBC and the Internet
	ODBC and an Intranet
	JDBC

	Chapter 17: SQL: 2003 and XML
	How XML Relates to SQL
	The XML Data Type
	Mapping SQL to XML and XML to SQL
	SQL Operators That Produce an XML Result
	Mapping Non-Predefined Data Types to XML

	Part VI: Advanced Topics
	Chapter 18: Cursors
	Declaring a Cursor
	Opening a Cursor
	Fetching Data from a Single Row
	Closing a Cursor

	Chapter 19: Persistent Stored Modules
	Compound Statements
	Flow of Control Statements
	Stored Procedures
	Stored Functions
	Privileges
	Stored Modules

	Chapter 20: Error-Handling
	SQLSTATE
	WHENEVER Clause
	Diagnostics Areas
	Handling Exceptions

	Part VII: The Part of Tens
	Chapter 21: Ten Common Mistakes
	Assuming That Your Clients Know What They Need
	Ignoring Project Scope
	Considering Only Technical Factors
	Not Asking for Client Feedback
	Always Using Your Favorite Development Environment
	Using Your Favorite System Architecture Exclusively
	Designing Database Tables in Isolation
	Neglecting Design Reviews
	Skipping Beta Testing
	Not Documenting

	Chapter 22: Ten Retrieval Tips
	Verify the Database Structure
	Try Queries on a Test Database
	Double-Check Queries with JOINs
	Triple-Check Queries with Subselects
	Summarize Data with GROUP BY
	Watch GROUP BY Clause Restrictions
	Use Parentheses with AND, OR, and NOT
	Control Retrieval Privileges
	Back Up Your Databases Regularly
	Handle Error Conditions Gracefully

	Part VIII: Appendixes
	Appendix A: SQL: 2003 Reserved Words
	Appendix B: Glossary

	Index

