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Introduction

What? Yet another statistics book? Well . . . this is a statistics book, all 

right, but in my humble (and thoroughly biased) opinion, it’s not just 
another statistics book. 

What? Yet another Excel book? Same thoroughly biased opinion — it’s not 

just another Excel book. What? Yet another edition of a book that’s not just 

another statistics book and not just another Excel book? Well . . . yes. You got 

me there.

So here’s the deal — for the previous edition and for this one. Many statistics 

books teach you the concepts but don’t give you a way to apply them. That 

often leads to a lack of understanding. With Excel, you have a ready-made 

package for applying statistics concepts. 

Looking at it from the opposite direction, many Excel books show you Excel’s 

capabilities but don’t tell you about the concepts behind them. Before I tell 

you about an Excel statistical tool, I give you the statistical foundation it’s 

based on. That way, you understand the tool when you use it — and you use 

it more effectively. 

I didn’t want to write a book that’s just “select this menu” and “click this 

button.” Some of that is necessary, of course, in any book that shows you 

how to use a software package. My goal was to go way beyond that.

I also didn’t want to write a statistics “cookbook”: When-faced-with-problem-

#310-use-statistical-procedure-#214. My goal was to go way beyond that, too.

Bottom line: This book isn’t just about statistics or just about Excel — it sits 

firmly at the intersection of the two. In the course of telling you about statis-

tics, I cover every Excel statistical feature. (Well . . . almost. I left one out. I left 

it out of the first edition, too. It’s called “Fourier Analysis.” All the necessary 

math to understand it would take a whole book, and you might never use this 

tool, anyway.)

About This Book
Although statistics involves a logical progression of concepts, I organized 

this book so you can open it up in any chapter and start reading. The idea is 
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for you to find what you’re looking for in a hurry and use it immediately — 

whether it’s a statistical concept or an Excel tool. 

On the other hand, cover to cover is okay if you’re so inclined. If you’re a sta-

tistics newbie and you have to use Excel for statistical analysis, I recommend 

you begin at the beginning — even if you know Excel pretty well.

What You Can Safely Skip
Any reference book throws a lot of information at you, and this one is no 

exception. I intended it all to be useful, but I didn’t aim it all at the same level. 

So if you’re not deeply into the subject matter, you can avoid paragraphs 

marked with the Technical Stuff icon.

Every so often, you’ll run into sidebars. They provide information that elabo-

rates on a topic, but they’re not part of the main path. If you’re in a hurry, 

you can breeze past them.

Because I wrote this book so you can open it up anywhere and start using 

it, step-by-step instructions appear throughout. Many of the procedures I 

describe have steps in common. After you go through some of the procedures, 

you can probably skip the first few steps when you come to a procedure you 

haven’t been through before.

Foolish Assumptions
This is not an introductory book on Excel or on Windows, so I’m assuming:

 ✓ You know how to work with Windows. I don’t go through the details of 

pointing, clicking, selecting, and so forth.

 ✓ You have Excel installed on your computer and you can work along with 

the examples. I don’t take you through the steps of Excel installation. 

Incidentally, I use Excel 2007 (running in Windows Vista). If you’re using 

Excel 97, Excel 2000, or Excel 2003, that’s okay. The statistical functional-

ity is the same. Some of the screen shots in the book will look a little dif-

ferent from what appears on your computer, however. 

  Also, Excel 2007 has an entirely new user interface, so getting to the sta-

tistical functionality is somewhat different from previous versions.

 ✓ You’ve worked with Excel before, and you understand the essentials of 

worksheets and formulas.

If you don’t know much about Excel, consider looking into Greg Harvey’s excel-

lent Excel books in the For Dummies series. His latest work covers Excel 2007.
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3 Introduction

How This Book Is Organized
I organized this book into five parts and three appendixes. 

Part I: Statistics and Excel: A Marriage 
Made in Heaven
In Part I, I provide a general introduction to statistics and to Excel’s statisti-

cal capabilities. I discuss important statistical concepts and describe useful 

Excel techniques. If it’s a long time since your last course in statistics or if 

you never had a statistics course at all, start here. If you haven’t worked with 

Excel’s built-in functions (of any kind) definitely start here. 

Part II: Describing Data
Part of statistics is to take sets of numbers and summarize them in meaningful 

ways. Here’s where you find out how to do that. We all know about averages 

and how to compute them. But that’s not the whole story. In this part, I tell you 

about additional statistics that fill in the gaps, and I show you how to use Excel 

to work with those statistics. I also introduce Excel graphics in this part.

Part III: Drawing Conclusions from Data
Part III addresses the fundamental aim of statistical analysis: to go beyond 

the data and help decision-makers make decisions. Usually, the data are mea-

surements of a sample taken from a large population. The goal is to use these 

data to figure out what’s going on in the population. 

This opens a wide range of questions: What does an average mean? What 

does the difference between two averages mean? Are two things associated? 

These are only a few of the questions I address in Part III, and I discuss the 

Excel functions and tools that help you answer them.

Part IV: Working with Probability
Probability is the basis for statistical analysis and decision-making. In Part IV, 

I tell you all about it. I show you how to apply probability, particularly in the 

area of modeling. Excel provides a rich set of built-in capabilities that help 

you understand and apply probability. Here’s where you find them. 
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Part V: The Part of Tens
Part V meets two objectives. First, I get to stand on the soapbox and rant 

about statistical peeves and about helpful hints. The peeves and hints total 

up to ten. Also, I discuss ten (okay, twelve) Excel things I couldn’t fit in any 

other chapter. They come from all over the world of statistics. If it’s Excel 

and statistical, and if you can’t find it anywhere else in the book, you’ll find 

it here. 

As I said in the first edition — pretty handy, this Part of Tens.

Appendix A: When Your Worksheet 
Is a Database
In addition to performing calculations, Excel serves another purpose: record-

keeping. Although it’s not a dedicated database, Excel does offer some 

database functions. Some of them are statistical in nature. I introduce Excel 

database functions in Appendix A, along with pivot tables that allow you to 

turn your database inside out and look at your data in different ways.

Appendix B: The Analysis of Covariance
This is new in this edition. The Analysis of Covariance (ANCOVA) is a statisti-

cal technique that combines two other techniques — analysis of variance and 

regression analysis. If you know how two variables are related, you can use 

that knowledge in some nifty ways, and this is one of the ways. The kicker is 

that Excel doesn’t have a built-in tool for ANCOVA — but I show you how to 

use what Excel does have so you can get the job done. 

Appendix C: Of Stems, Leaves, Boxes, 
Whiskers, and Smoothies
This is another addition to this edition. Statisticians often use special tech-

niques to explore and visualize data, and Appendix C covers some of those 

techniques. They’re not built into Excel. As is the case with ANCOVA, how-

ever, I show you how to use Excel’s capabilities to implement them.
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5 Introduction

Icons Used in This Book
As is the case with all For Dummies books, icons appear all over. Each one is 

a little picture in the margin that lets you know something special about the 

paragraph it’s next to.

 This icon points out a hint or a shortcut that helps you in your work and 

makes you an all-around better human being.

 This one points out timeless wisdom to take with you long after you finish this 

book, grasshopper.

 Pay attention to this icon. It’s a reminder to avoid something that might gum 

up the works for you.

 As I mentioned in “What You Can Safely Skip,” this icon indicates material you 

can blow past if statistics and Excel aren’t your passion. 

Where to Go from Here
You can start the book anywhere, but here are a few hints. Want to learn the 

foundations of statistics? Turn the page. Introduce yourself to Excel’s statisti-

cal features? That’s Chapter 2. Want to start with graphics? Hit Chapter 3. For 

anything else, find it in the Table of Contents or in the Index and go for it.

Same final admonition as in the first edition: If you have half as much fun 

reading and using this book as I had writing it, you’ll have a blast. 
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Part I
Statistics and 

Excel: A Marriage 
Made in Heaven
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In this part . . . 

Part I deals with the foundations of statistics and with 

the statistics-related things that Excel can do. On the 

statistics side, this part introduces samples and popula-

tions, hypothesis testing, the two types of errors in deci-

sion-making, independent and dependent variables, and 

probability. It’s a brief introduction to all the statistical 

concepts I explore in the rest of the book. On the Excel 

side, I focus on cell referencing and on how to use work-

sheet functions, array functions, and data analysis tools. 

My objective is to get you thinking about statistics con-

ceptually and about Excel as a statistical analysis tool.
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Chapter 1

Evaluating Data in the Real World
In This Chapter
▶ Introducing statistical concepts 

▶ Generalizing from samples to populations

▶ Getting into probability

▶ Making decisions

▶ New features in Excel 2007

▶ Understanding important Excel Fundamentals

▶ New features in this edition

The field of statistics is all about decision-making — decision-making 

based on groups of numbers. Statisticians constantly ask questions: 

What do the numbers tell us? What are the trends? What predictions can we 

make? What conclusions can we draw?

To answer these questions, statisticians have developed an impressive array 

of analytical tools. These tools help us to make sense of the mountains of 

data that are out there waiting for us to delve into, and to understand the 

numbers we generate in the course of our own work.

The Statistical (And Related) Notions 
You Just Have to Know

Because intensive calculation is often part and parcel of the statistician’s 

toolset, many people have the misconception that statistics is about number 

crunching. Number crunching is just one small part of the path to sound deci-

sions, however.
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By shouldering the number-crunching load, software increases our speed of 

traveling down that path. Some software packages are specialized for statisti-

cal analysis and contain many of the tools that statisticians use. Although 

not marketed specifically as a statistical package, Excel provides a number of 

these tools, which is why I wrote this book.

I said that number crunching is a small part of the path to sound decisions. 

The most important part is the concepts statisticians work with, and that’s 

what I talk about for most of the rest of this chapter.

Samples and populations
On election night, TV commentators routinely predict the outcome of elec-

tions before the polls close. Most of the time they’re right. How do they 

do that?

The trick is to interview a sample of voters after they cast their ballots. 

Assuming the voters tell the truth about whom they voted for, and assuming 

the sample truly represents the population, network analysts use the sample 

data to generalize to the population of voters. 

This is the job of a statistician — to use the findings from a sample to make a 

decision about the population from which the sample comes. But sometimes 

those decisions don’t turn out the way the numbers predicted. History buffs 

are probably familiar with the memorable picture of President Harry Truman 

holding up a copy of the Chicago Daily Tribune with the famous, but wrong, 

headline “Dewey Defeats Truman” after the 1948 election. Part of the statisti-

cian’s job is to express how much confidence he or she has in the decision.

Another election-related example speaks to the idea of the confidence in 

the decision. Pre-election polls (again, assuming a representative sample of 

voters) tell you the percentage of sampled voters who prefer each candidate. 

The polling organization adds how accurate they believe the polls are. When 

you hear a newscaster say something like “accurate to within three percent,” 

you’re hearing a judgment about confidence.

Here’s another example. Suppose you’ve been assigned to find the average 

reading speed of all fifth-grade children in the U.S., but you haven’t got the 

time or the money to test them all. What would you do? 

Your best bet is to take a sample of fifth-graders, measure their reading 

speeds (in words per minute), and calculate the average of the reading 

speeds in the sample. You can then use the sample average as an estimate of 

the population average. 
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11 Chapter 1: Evaluating Data in the Real World

Estimating the population average is one kind of inference that statisticians 

make from sample data. I discuss inference in more detail in the upcoming 

section “Inferential Statistics.” 

 Now for some terminology you have to know: Characteristics of a population 

(like the population average) are called parameters, and characteristics of a 

sample (like the sample average) are called statistics. When you confine your 

field of view to samples, your statistics are descriptive. When you broaden 

your horizons and concern yourself with populations, your statistics are 

inferential.

 Now for a notation convention you have to know: Statisticians use Greek let-

ters (μ, σ, ρ) to stand for parameters, and English letters , s, r) to stand for 

statistics. Figure 1-1 summarizes the relationship between populations and 

samples, and parameters and statistics.

 

Figure 1-1: 
The rela-
tionship 

between 
populations, 

samples, 
parameters, 

and 
statistics.

 Statistics

Parameters

Select
individuals

Make
inferences
about

Population

Sample

Variables: Dependent and independent
Simply put, a variable is something that can take on more than one value. 

(Something that can have only one value is called a constant.) Some variables 

you might be familiar with are today’s temperature, the Dow Jones Industrial 

Average, your age, and the value of the dollar against the euro.

Statisticians care about two kinds of variables, independent and dependent. 
Each kind of variable crops up in any study or experiment, and statisticians 

assess the relationship between them.

For example, imagine a new way of teaching reading that’s intended to 

increase the reading speed of fifth-graders. Before putting this new method 

into schools, it would be a good idea to test it. To do that, a researcher would 

randomly assign a sample of fifth-grade students to one of two groups: One 
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group receives instruction via the new method, the other receives instruction 

via traditional methods. Before and after both groups receive instruction, 

the researcher measures the reading speeds of all the children in this study. 

What happens next? I get to that in the upcoming section entitled “Inferential 

Statistics: Testing Hypotheses.”

For now, understand that the independent variable here is Method of 

Instruction. The two possible values of this variable are New and Traditional. 

The dependent variable is reading speed — which we might measure in 

words per minute.

 In general, the idea is to try and find out if changes in the independent variable 

are associated with changes in the dependent variable.

 In the examples that appear throughout the book, I show you how to use Excel 

to calculate various characteristics of groups of scores. Keep in mind that 

each time I show you a group of scores, I’m really talking about the values of a 

dependent variable.

Types of data
Data come in four kinds. When you work with a variable, the way you work 

with it depends on what kind of data it is. 

The first variety is called nominal data. If a number is a piece of nominal data, 

it’s just a name. Its value doesn’t signify anything. A good example is the 

number on an athlete’s jersey. It’s just a way of identifying the athlete and 

distinguishing him or her from teammates. The number doesn’t indicate the 

athlete’s level of skill. 

Next comes ordinal data. Ordinal data are all about order, and numbers begin 

to take on meaning over and above just being identifiers. A higher number 

indicates the presence of more of a particular attribute than a lower number. 

One example is Moh’s Scale. Used since 1822, it’s a scale whose values are 1 

through 10. Mineralogists use this scale to rate the hardness of substances. 

Diamond, rated at 10, is the hardest. Talc, rated at 1, is the softest. A sub-

stance that has a given rating can scratch any substance that has a lower 

rating.

What’s missing from Moh’s Scale (and from all ordinal data) is the idea of 

equal intervals and equal differences. The difference between a hardness of 

10 and a hardness of 8 is not the same as the difference between a hardness 

of 6 and a hardness of 4.
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13 Chapter 1: Evaluating Data in the Real World

Interval data provides equal differences. Fahrenheit temperatures provide an 

example of interval data. The difference between 60 degrees and 70 degrees 

is the same as the difference between 80 degrees and 90 degrees.

Here’s something that might surprise you about Fahrenheit temperatures: 

A temperature of 100 degrees is not twice as hot as a temperature of 50 

degrees. For ratio statements (twice as much as, half as much as) to be valid, 

zero has to mean the complete absence of the attribute you’re measuring. A 

temperature of 0 degrees F doesn’t mean the absence of heat — it’s just an 

arbitrary point on the Fahrenheit scale.

The last data type, ratio data, includes a meaningful zero point. For tempera-

tures, the Kelvin scale gives us ratio data. One hundred degrees Kelvin is 

twice as hot as 50 degrees Kelvin. This is because the Kelvin zero point is 

absolute zero, where all molecular motion (the basis of heat) stops. Another 

example is a ruler. Eight inches is twice as long as four inches. A length of 

zero means a complete absence of length.

 Any of these types can form the basis for an independent variable or a depen-

dent variable. The analytical tools you use depend on the type of data you’re 

dealing with.

A little probability
When statisticians make decisions, they express their confidence about those 

decisions in terms of probability. They can never be certain about what they 

decide. They can only tell you how probable their conclusions are.

So what is probability? The best way to attack this is with a few examples. 

If you toss a coin, what’s the probability that it comes up heads? Intuitively, 

you know that if the coin is fair, you have a 50-50 chance of heads and a 50-50 

chance of tails. In terms of the kinds of numbers associated with probability, 

that’s 1/2.

How about rolling a die? (One member of a pair of dice.) What’s the prob-

ability that you roll a 3? Hmmm . . . a die has six faces and one of them is 3, so 

that ought to be 1/6, right? Right.

Here’s one more. You have a standard deck of playing cards. You select one 

card at random. What’s the probability that it’s a club? Well . . . a deck of 

cards has four suits, so that answer is 1/4.

I think you’’re getting the picture. If you want to know the probability that an 

event occurs, figure out how many ways that event can happen and divide by 
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the total number of events that can happen. In each of the three examples, 

the event we were interested in (head, 3, or club) only happens one way. 

Things can get a bit more complicated. When you toss a die, what’s the prob-

ability you roll a 3 or a 4? Now you’re talking about two ways the event you’re 

interested in can occur, so that’s (1 + 1)/6 = 2/6 = 1/3. What about the probabil-

ity of rolling an even number? That has to be 2, 4, or 6, and the probability is 

(1 + 1 + 1)/6 = 3/6 = 1/2.

On to another kind of probability question. Suppose you roll a die and toss a 

coin at the same time. What’s the probability you roll a 3 and the coin comes 

up heads? Consider all the possible events that could occur when you roll a 

die and toss a coin at the same time. Your outcome could be a head and 1-6, 

or a tail and 1-6. That’s a total of 12 possibilities. The head-and-3 combination 

can only happen one way. So the answer is 1/12. 

In general the formula for the probability that a particular event occurs is

I began this section by saying that statisticians express their confidence 

about their decisions in terms of probability, which is really why I brought 

up this topic in the first place. This line of thinking leads us to conditional 
probability — the probability that an event occurs given that some other 

event occurs. For example, suppose I roll a die, take a look at it (so that you 

can’t see it), and I tell you that I’ve rolled an even number. What’s the prob-

ability that I’ve rolled a 2? Ordinarily, the probability of a 2 is 1/6, but I’ve 

narrowed the field. I’ve eliminated the three odd numbers (1, 3, and 5) as pos-

sibilities. In this case, only the three even numbers (2, 4, and 6) are possible, 

so now the probability of rolling a 2 is 1/3.

Exactly how does conditional probability plays into statistical analysis? 

Read on. 

Inferential Statistics: Testing Hypotheses
In advance of doing a study, a statistician draws up a tentative explanation — 

a hypothesis — as to why the data might come out a certain way. After the 

study is complete and the sample data are all tabulated, he or she faces the 

essential decision a statistician has to make — whether or not to reject the 

hypothesis. 
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15 Chapter 1: Evaluating Data in the Real World

That decision is wrapped in a conditional probability question — what’s 

the probability of obtaining the data, given that this hypothesis is correct? 

Statistical analysis provides tools to calculate the probability. If the probabil-

ity turns out to be low, the statistician rejects the hypothesis. 

Here’s an example. Suppose you’re interested in whether or not a particular 

coin is fair — whether it has an equal chance of coming up heads or tails. 

To study this issue, you’d take the coin and toss it a number of times — say 

a hundred. These 100 tosses make up your sample data. Starting from the 

hypothesis that the coin is fair, you’d expect that the data in your sample of 

100 tosses would show 50 heads and 50 tails. 

If it turns out to be 99 heads and 1 tail, you’d undoubtedly reject the fair coin 

hypothesis. Why? The conditional probability of getting 99 heads and 1 tail 

given a fair coin is very low. Wait a second. The coin could still be fair and 

you just happened to get a 99-1 split, right? Absolutely. In fact, you never 

really know. You have to gather the sample data (the results from 100 tosses) 

and make a decision. Your decision might be right, or it might not.

Juries face this all the time. They have to decide among competing hypoth-

eses that explain the evidence in a trial. (Think of the evidence as data.) One 

hypothesis is that the defendant is guilty. The other is that the defendant is 

not guilty. Jury-members have to consider the evidence and, in effect, answer 

a conditional probability question: What’s the probability of the evidence 

given that the defendant is not guilty? The answer to this question deter-

mines the verdict. 

Null and alternative hypotheses
Consider once again that coin-tossing study I just mentioned. The sample 

data are the results from the 100 tosses. Before tossing the coin, you might 

start with the hypothesis that the coin is a fair one, so that you expect an 

equal number of heads and tails. This starting point is called the null hypoth-
esis. The statistical notation for the null hypothesis is H 

0
. According to this 

hypothesis, any heads-tails split in the data is consistent with a fair coin. 

Think of it as the idea that nothing in the results of the study is out of the 

ordinary.

An alternative hypothesis is possible — that the coin isn’t a fair one, and it’s 

loaded to produce an unequal number of heads and tails. This hypothesis 

says that any heads-tails split is consistent with an unfair coin. The alterna-

tive hypothesis is called, believe it or not, the alternative hypothesis. The sta-

tistical notation for the alternative hypothesis is H
1
.
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With the hypotheses in place, toss the coin 100 times and note the number 

of heads and tails. If the results are something like 90 heads and 10 tails, it’s 

a good idea to reject H
0
. If the results are around 50 heads and 50 tails, don’t 

reject H 
0
. 

Similar ideas apply to the reading-speed example I gave earlier. One sample 

of children receives reading instruction under a new method designed to 

increase reading speed, the other learns via a traditional method. Measure 

the children’s reading speeds before and after instruction, and tabulate the 

improvement for each child. The null hypothesis, H 
0
, is that one method 

isn’t different from the other. If the improvements are greater with the new 

method than with the traditional method — so much greater that it’s unlikely 

that the methods aren’t different from one another — reject H 
0
. If they’re not, 

don’t reject H 
0
. 

 Notice that I didn’t say “accept H
0
.” The way the logic works, you never accept 

a hypothesis. You either reject H
0
 or don’t reject H

0
. 

Notice also that in the coin-tossing example I said around 50 heads and 50 

tails. What does “around” mean? Also, I said if it’s 90-10, reject H
0
. What about 

85-15? 80-20? 70-30? Exactly how much different from 50-50 does the split 

have to be for you reject H
0
? In the reading-speed example, how much greater 

does the improvement have to be to reject H
0
? 

I won’t answer these questions now. Statisticians have formulated decision 

rules for situations like this, and we’ll explore those rules throughout the 

book.

Two types of error
Whenever you evaluate the data from a study and decide to reject H

0
 or to 

not reject H
0
, you can never be absolutely sure. You never really know what 

the true state of the world is. In the context of the coin-tossing example, that 

means you never know for certain if the coin is fair or not. All you can do is 

make a decision based on the sample data you gather. If you want to be cer-

tain about the coin, you’d have to have the data for the entire population of 

tosses — which means you’d have to keep tossing the coin until the end 

of time.

Because you’re never certain about your decisions, it’s possible to make an 

error regardless of what you decide. As I mentioned before, the coin could be 

fair and you just happen to get 99 heads in 100 tosses. That’s not likely, and 

that’s why you reject H
0
. It’s also possible that the coin is biased, and yet you 

just happen to toss 50 heads in 100 tosses. Again, that’s not likely and you 

don’t reject H
0
 in that case.
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Although not likely, those errors are possible. They lurk in every study that 

involves inferential statistics. Statisticians have named them Type I and 

Type II.

If you reject H
0
 and you shouldn’t, that’s a Type I error. In the coin example, 

that’s rejecting the hypothesis that the coin is fair, when in reality it is a fair 

coin.

If you don’t reject H
0
 and you should have, that’s a Type II error. That hap-

pens if you don’t reject the hypothesis that the coin is fair, and in reality it’s 

biased. 

How do you know if you’ve made either type of error? You don’t — at least 

not right after you make your decision to reject or not reject H
0
. (If it’s pos-

sible to know, you wouldn’t make the error in the first place!) All you can do 

is gather more data and see if the additional data are consistent with your 

decision.

If you think of H
0
 as a tendency to maintain the status quo and not interpret 

anything as being out of the ordinary (no matter how it looks), a Type II error 

means you missed out on something big. Looked at in that way, Type II errors 

form the basis of many historical ironies.

Here’s what I mean: In the 1950s, a particular TV show gave talented young 

entertainers a few minutes to perform on stage and a chance to compete for a 

prize. The audience voted to determine the winner. The producers held audi-

tions around the country to find people for the show. Many years after the 

show went off the air, the producer was interviewed. The interviewer asked 

him if he had ever turned down anyone at an audition that he shouldn’t have. 

“Well,” said the producer, “once a young singer auditioned for us and he 

seemed really odd.”

“In what way?” asked the interviewer.

“In a couple of ways,” said the producer. “He sang really loud, gyrated his 

body and his legs when he played the guitar, and he had these long side-

burns. We figured this kid would never make it in show business, so we 

thanked him for showing up, but we sent him on his way.”

“Wait a minute, are you telling me you turned down . . .”

“That’s right. We actually said ‘no’ . . . to Elvis Presley!”

Now that’s a Type II error. 
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What’s New in Excel?
The big news in Excel 2007 — throughout Microsoft Office 2007, in fact — is 

the user interface. Where a bar of menus once ruled, you now find a tabbed 

band. Appearing near the top of the worksheet window, this band is called 

the Ribbon. Figure 1-2 shows the appearance of the Ribbon after I select the 

Insert tab.

 

Figure 1-2: 
The Insert 
Tab in the 
Ribbon in 

Excel 2007.
 

The Ribbon exposes Excel’s capabilities in a way that’s much easier to under-

stand than in previous versions. Each tab presents groups of icon-labeled 

command buttons rather than menu choices. Mouseover help adds still 

more information when you’re trying to figure out the capability a particular 

button activates. 

Clicking a button typically opens up a whole category of possibilities. Buttons 

that do this are called category buttons. 

Microsoft has developed shorthand for describing a mouse-click on a com-

mand button in the Ribbon, and I use that shorthand throughout this book. 

The shorthand is 

Tab | Command Button

To indicate clicking on the Insert tab’s Other Charts category button, for 

example, I write

Insert | Other Charts

By the way, when I click that button, the gallery in Figure 1-3 appears. 

I can extend the shorthand. To select the first chart in that gallery (it’s called 

High-Low-Close, as mouseover help would tell you), I write

Insert | Other Charts | High-Low-Close
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Figure 1-3: 
Clicking 
Insert | 

Other Charts 
opens this 

gallery.
 

The downside to all this, of course, is the Ribbon’s newness. If you’ve spent 

years with previous versions, you’ve developed an overall sense of where fre-

quently used capabilities reside. Now you have to reorient: The switch from 

the menu bar to the Ribbon relocates almost everything.

It’s worth your while to reorient. After you get accustomed to the Ribbon, 

you’ll see that everything takes just a few steps now.

Wait a second. Figure 1-3 shows a gallery of charts to insert into a worksheet. 

What happened to the Chart Wizard? It’s gone from Excel 2007. In keeping 

with everything-takes-just-a-few-steps-now, to create a chart you

 1. Select the data to include in the chart.

 2. Insert the chart into the worksheet.

 3. Use the Design tab and the Layout tab to make modifications.

I’ve oversimplified, but not by much, as Chapter 3 shows. Creating a chart is 

more intuitive than it used to be. You’re no longer confined to the order of 

steps specified in the Chart Wizard.

Wait another second. Design tab? Layout tab? They’re not in Figure 1-2. After 

you insert a chart and select it, they appear. Tabs that appear when needed 

are called contextual tabs.

Also in keeping with everything-takes-just-a-few-steps-now, to use a statistical 

function you

 1. Select a cell for the result of the function.
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 2. Select a function from the Statistical Functions menu to open a dialog 

box for that function.

 3. Enter the required information into the dialog box.

 4. Close the dialog box.

Again I’ve oversimplified, and again not by much, as you see throughout 

the book.

Statistical Functions menu? Yep. This time around, you have a Statistical 

Functions menu that wasn’t in the earlier incarnations. It’s buried under 

Formulas | More Functions | Statistical

In Chapter 2 I show you how to make that menu more accessible.

Excel 2007’s statistical functionality is by and large the same as in previous 

versions. The new version adds three statistical functions: COUNTIFS (counts 

the number of cells that meet a set of conditions), AVERAGEIF (finds the aver-

age of cells that meet a condition), AVERAGEIFS (finds the average of cells 

that meet a set of conditions).

Some Things about Excel You 
Absolutely Have to Know

Although I’m assuming you’re not new to Excel, I think it’s wise to take a 

little time and space up front to discuss a few Excel fundamentals that figure 

prominently in statistical work. Knowing these fundamentals helps you work 

efficiently with Excel formulas.

Autofilling cells
The first is autofill, Excel’s capability for repeating a calculation throughout 

a worksheet. Insert a formula into a cell, and you can drag that formula into 

adjoining cells. 

Figure 1-4 is a worksheet of expenditures for R&D in science and engineer-

ing at colleges and universities for the years shown. The data, taken from a 

U.S. National Science Foundation report, are in millions of dollars. Column H 

holds the total for each field, and row 11 holds the total for each year. (More 

about column I in a moment.)
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Figure 1-4: 
Expenditures 

for R&D in 
science and 
engineering.

 

I started with column H blank and with row 11 blank. How did I get the totals 

into column H and row 11?

If I want to create a formula to calculate the first row total (for Physical 

Sciences), one way (among several) is to enter

= D2 + E2 + F2 + G2

into cell H2. (A formula always begins with “=”.) Press Enter and the total 

appears in H2.

Now, to put that formula into cells H3 through H10, the trick is to position the 

cursor on the lower right corner of H2 until a “+” appears, hold down the left 

mouse button, and drag the mouse through the cells. That “+” is called the 

cell’s fill handle.

When you finish dragging, release the mouse button and the row totals 

appear. This saves huge amounts of time, because you don’t have to reenter 

the formula eight times.

Same thing with the column totals. One way to create the formula that sums 

up the numbers in the first column (1990) is to enter

=D2 + D3 + D4 + D5 + D6 + D7 + D8 + D9 + D10

into cell D11. Position the cursor on D11’s fill handle, drag through row 11 

and release in column H, and you autofill the totals into E11 through H11.
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Dragging isn’t the only way to do it. Another way is to select the array of cells 

you want to autofill (including the one that contains the formula), and click 

the down arrow next to 

Home | Fill

This opens the Fill pop-up menu (see Figure 1-5). Select Down and you 

accomplish the same thing as dragging and dropping. 

 

Figure 1-5: 
The Fill 
pop-up 
menu.

 

Still another way is to select Series from the Fill pop-up menu. Doing this 

opens the Series dialog box (see Figure 1-6). In this dialog box, click the 

AutoFill radio button, click OK, and you’re all set. This does take one more 

step, but the Series dialog box is a bit more compatible with earlier versions 

of Excel.

 

Figure 1-6: 
The Series 
dialog box.

 

I bring this up because statistical analysis often involves repeating a formula 

from cell to cell. The formulas are usually more complex than the ones in this 

section, and you might have to repeat them many times, so it pays to know 

how to autofill.

Referencing cells
The second important fundamental is the way Excel references worksheet 

cells. Consider again the worksheet in Figure 1-4. Each autofilled formula is 

slightly different from the original. This, remember, is the formula in cell H2:
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= D2 + E2 + F2 + G2

After autofill, the formula in H3 is

= D3 + E3 + F3 + G3

and the formula in H4 is . . . well, you get the picture.

This is perfectly appropriate. I want the total in each row, so Excel adjusts 

the formula accordingly as it automatically inserts it into each cell. This is 

called relative referencing — the reference (the cell label) gets adjusted rela-

tive to where it is in the worksheet. Here, the formula directs Excel to total up 

the numbers in the cells in the four columns immediately to the left.

Now for another possibility. Suppose I want to know each row total’s propor-

tion of the grand total (the number in H11). That should be straightforward, 

right? Create a formula for I2, and then autofill cells I3 through I10.

Similar to the earlier example, I’d start by entering this formula into I2:

=H2/H11

Press Enter and the proportion appears in I2. Position the cursor on the fill 

handle, drag through column I, release in I10, and . . . D’oh!!! Figure 1-7 shows 

the unhappy result — the extremely ugly #/DIV0! in I3 through I10. What’s the 

story?

 

Figure 1-7: 
Whoops! 
Incorrect 

autofill!
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The story is this: unless you tell it not to, Excel uses relative referencing 

when you autofill. So the formula inserted into I3 is not 

=H3/H11

Instead, it’s

=H3/H12

Why does H11 become H12? Relative referencing assumes that the formula 

means divide the number in the cell by whatever number is nine cells south 

of here in the same column. Because H12 has nothing in it, the formula is tell-

ing Excel to divide by zero, which is a no-no. 

The idea is to tell Excel to divide all the numbers by the number in H11, not 

by whatever number is nine cells south of here. To do this, you work with 

absolute referencing. You show absolute referencing by adding $-signs to the 

cell ID. The correct formula for I2 is

= H2/$H$11

This tells Excel not to adjust the column and not to adjust the row when you 

autofill. Figure 1-8 shows the worksheet with the proportions. 

 

Figure 1-8: 
Autofill 

based on 
absolute 

referencing.
 

 To convert a relative reference into absolute reference format, select the 

cell address (or addresses) you want to convert, and press the F4 key. F4 is 

a toggle that goes between relative reference (H11, for example), absolute 
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reference for both the row and column in the address ($H$11), absolute refer-

ence for the row-part only (H$11), and absolute reference for the column-part 

only ($H11).

What’s New in This Edition?
Although Excel’s statistical functions haven’t changed, I’ve restructured the 

instructions for every statistical function. The instructions in this edition fit 

in with the steps I outlined in the preceding section.

With the disappearance of the Chart Wizard I’ve restructured the instruc-

tions for creating a chart, too. (See Chapter 3.)

One of my points in both editions is that when you report an average, you 

should also report variability. For this reason I believe Excel 2007 should also 

offer the functions STDEVIF and STDEVIFS in addition to the new functions 

AVERAGEIF and AVERAGEIFS. Unfortunately, these functions do not exist in 

Excel 2007. To fill the void, I show you how to do what these functions would 

do, and in the process take you through some of Excel’s Logical Functions. 

(See Chapter 5.)

It’s easier to assign a name to a cell range in Excel 2007 (it takes . . . you 

guessed it . . . just-a-few-steps-now). So I rely much more on named cell 

ranges in this edition. (See Chapter 2.)

In the Part of Tens, I’ve added a section on importing data from the Web. (See 

Chapter 20.)

I pointed out in the Introduction that I’ve added Appendix B and Appendix C. 

Each one shows how to do some nifty statistical work that doesn’t come pre-

packaged in Excel.
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Chapter 2

Understanding Excel’s Statistical 
Capabilities

In This Chapter
� Working with worksheet functions

� Creating a shortcut to statistical functions

� Getting an array of results

� Naming arrays

� Tooling around with analysis

� Using Excel’s Quick Statistics feature

In this chapter, I introduce you to Excel’s statistical functions and data 

analysis tools. If you’ve used Excel, and I’m assuming you have, you’re 

aware of Excel’s extensive functionality, of which statistical capabilities are a 

subset. Into each worksheet cell you can enter a piece of data, instruct Excel 

to carry out calculations on data that reside in a set of cells, or use one of 

Excel’s worksheet functions to work on data. Each worksheet function is a 

built-in formula that saves you the trouble of having to direct Excel to per-

form a sequence of calculations. As newbies and veterans know, formulas are 

the business end of Excel. The data analysis tools go beyond the formulas. 

Each tool provides a set of informative results.

Getting Started 
Many of Excel’s statistical features are built into its worksheet functions. In 

previous versions, you accessed the worksheet functions by using the Excel 

Insert Function button, labeled with the symbol fx. Clicking this button opens 

the Insert Function dialog box, which presents a list of Excel’s functions and 

a capability for searching for Excel functions. Although Excel 2007 provides 
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easier ways to access the worksheet functions, this latest version preserves 

this button and offers additional ways to open the Insert Function dialog box. 

I discuss all of this in more detail in a moment.

Figure 2-1 shows the location of the Insert Function button and the Formula 

Bar. They’re on the right of the Name Box. All three are just below the 

Ribbon. Inside the Ribbon, in the Formulas tab, is the Function Library.

The Formula Bar is like a clone of a cell you select: Information entered into 

the Formula Bar goes into the selected cell, and information entered in the 

selected cell appears in the Formula Bar. 

Figure 2-1 shows Excel with the Formulas tab open. This shows you another 

location for the Insert Function button. Labeled fx, it’s in the extreme left 

of the Ribbon, in the Function Library area. As I mention earlier in this sec-

tion, when you click the Insert Function button, you open the Insert Function 

dialog box. (See Figure 2-2.)

 

Figure 2-1: 
The 

Function 
Library, the 
Name Box, 

the Formula 
Bar, and 

the Insert 
Function 

button. 

Formula Bar

Function Library

Insert Function Button

Name Box

Formulas | Insert Function
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Figure 2-2: 
The Insert 

Function 
dialog box.

 

This dialog box enables you to search for a function that fits your needs, or 

to scroll through a list of Excel functions.

So in addition to clicking the Insert Function button next to the Formula bar, 

you can open the Insert Function dialog box by selecting

Formulas | Insert Function

 To open the Insert Function dialog box, you can also press Shift+F3.

Because of the way earlier versions of Excel were organized, the Insert 

Function dialog box was extremely useful. In Excel 2007, however, it’s mostly 

helpful if you’re not sure which function to use or where to find it. 

The Function Library presents the categories of formulas you can use and 

makes it convenient for you to access them. Clicking a category button in this 

area opens a menu of the functions in that category.

Most of the time, I work with Statistical Functions that are easily accessible 

through the Statistical Functions menu. Sometimes I work with Math functions 

in the Math & Trig Functions menu. (You see a couple of these later in the 

chapter.) In Chapter 5, I work with a couple of Logic functions.

 The final selection of each category menu (like the Statistical Functions menu) 

is called Insert Function. Selecting this option is still another way to open the 

Insert Function dialog box.

The Name Box is something like a running record of what you do in the work-

sheet. Select a cell, and the cell’s address appears in the Name Box. Click 

the Insert Function button and the name of the function you selected most 

recently appears in the Name Box.
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In addition to the statistical functions, Excel provides a number of data analy-

sis tools you access through the Data tab’s Analysis area. 

Setting Up for Statistics
In this section, I show you how to use the worksheet functions and the analy-

sis tools.

Worksheet functions in Excel 2007
Because the Ribbon exposes so many of Excel’s capabilities, it’s not neces-

sary to bury them in menus any more. As I point out in the preceding section, 

the Function Library area of the Formulas tab shows all the categories of 

worksheet functions.

The steps in using a worksheet function are:

 1. Type your data into a data array and select a cell for the result.

 2. Select the appropriate formula category and choose your function 

from its pop-up menu. 

  Doing this opens the Function Arguments dialog box.

 3. In the Function Arguments dialog box, type the appropriate values for 

the function’s arguments.

  Argument is a term from mathematics. It has nothing to do with debates, 

fights, or confrontations. In mathematics, an argument is a value on 

which a function does its work.

 4. Click OK to put the result into the selected cell.

Yes, that’s all there is to it.

To give you an example, I explore a function that typifies how Excel’s work-

sheet functions work. This function, SUM, adds up the numbers in cells you 

specify and returns the sum in still another cell that you specify. Although 

adding numbers together is an integral part of statistical number crunching, 

SUM is not in the Statistical category. It is, however, a typical worksheet func-

tion and it shows a familiar operation. 

Here, step by step, is how to use SUM.
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 1. Enter your numbers into an array of cells and select a cell for the 

result. 

  In this example, I’ve entered 45, 33, 18, 37, 32, 46, 39 into cells C2 

through C8, and selected C9 to hold the sum.

 2. Select the appropriate formula category and choose your function 

from its pop-up menu. 

  This opens the Function Arguments dialog box.

  I selected Formulas | Math & Trig

  and scrolled down to find and choose SUM.

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments. 

  Excel guesses that you want to sum the numbers in cells C2 through C8 

and identifies that array in the Number1 box. Excel doesn’t keep you in 

suspense: The Function Arguments dialog box shows the result of apply-

ing the function. In this example, the sum of the numbers in the array is 

250. (See Figure 2-3.) 

 4. Click OK to put the sum into the selected cell.

 

Figure 2-3: 
Using SUM.
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Note a couple of points. First, as Figure 2-3 shows, the Formula Bar holds

=SUM(C2:C8)

This formula indicates that the value in the selected cell equals the sum of 

the numbers in cells C2 through C8.

 After you get familiar with a worksheet function and its arguments, you can 

bypass the menu and type the function directly into the cell or into the for-

mula bar, beginning with “=”. When you do, Excel opens a helpful menu as you 

type the formula. (See Figure 2-4.) The menu shows possible formulas begin-

ning with the letter(s) you type, and you can select one by double-clicking it.

 

Figure 2-4: 
As you type 

a formula, 
Excel opens 

a helpful 
menu.

 

Another noteworthy point is the set of boxes in the Function Arguments 

dialog box in Figure 2-3. In the figure you see just two boxes, Number1 and 

Number2. The data array appears in Number1. So what’s Number2 for?

The Number2 box allows you to include an additional argument in the sum. 

And it doesn’t end there. Click in the Number2 box and the Number3 box 

appears. Click in the Number3 box, and the Number4 box appears . . . and on 

and on. The limit is 255 boxes, with each box corresponding to an argument. 

A value can be another array of cells anywhere in the worksheet, a number, 

an arithmetic expression that evaluates to a number, a cell ID, or a name 

that you have attached to a range of cells. (Regarding that last one: Read the 

upcoming section “What’s in a name? An array of possibilities.”) As you type 

in values, the SUM dialog box shows the updated sum. Clicking OK puts the 

updated sum into the selected cell.

 You won’t find this multiargument capability on every worksheet function. 

Some are designed to work with just one argument. For the ones that do work 

with multiple arguments, however, you can incorporate data that resides all 

over the worksheet. Figure 2-5 shows a worksheet with a Function Arguments 

dialog box that includes data from two arrays of cells, two arithmetic expres-

sions, and one cell. Notice the format of the function in the Formula Bar 

(a comma separates successive arguments).
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Figure 2-5: 
Using SUM 

with five 
arguments.

 

 If you select a cell in the same column as your data and just below the last 

data cell, Excel correctly guesses the data array that you want to work on. 

Excel doesn’t always guess what you want to do, however. Sometimes when 

Excel does guess, its guess is incorrect. When either of those things happens, 

it’s up to you to enter the appropriate values into the Function Arguments 

dialog box.

Quickly accessing statistical functions
In the preceding example, I show you a function that’s not in the category of 

statistical functions. In this section, I show you how to create a shortcut to 

Excel’s statistical functions.

You can get to Excel’s statistical functions by selecting 

Formulas | More Functions | Statistical 

and then choosing from the resulting pop-up menu. (See Figure 2-6.)
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Figure 2-6: 
Accessing 

Excel’s 
Statistical 
Functions.

 

Although Excel has buried the statistical functions several layers deep, you 

can use a handy Excel 2007 technique to make them as accessible as any of 

the other categories: You add them to the Quick Access Toolbar in the upper-

left corner. (Every Office 2007 application has one.)

To do this, select 

Formulas | More Functions 

and right-click on Statistical. On the pop-up menu, pick the first option; Add 

to Quick Access Toolbar. (See Figure 2-7.) Doing this adds a button to the 

Quick Access Toolbar. Clicking the new button’s down arrow opens the 

pop-up menu of statistical functions. (See Figure 2-8.) 

 

Figure 2-7: 
Adding the 
Statistical 

functions to 
the Quick 

Access 
Toolbar.
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Figure 2-8: 
The 

Statistical 
Functions 

menu.
 

From now on, when I deal with a statistical function, I assume that you’ve cre-

ated this shortcut, so you can quickly open the menu of statistical functions. 

The next section provides an example.

Array functions
Most of Excel’s built-in functions are formulas that calculate a single value 

(like a sum) and put that value into a worksheet cell. Excel has another type 

of function. It’s called an array function because it calculates multiple values 

and puts those values into an array of cells, rather than into a single cell.

FREQUENCY is a good example of an array function (and it’s an Excel statisti-

cal function, too). Its job is to summarize a group of scores by showing how 

the scores fall into a set of intervals that you specify. For example, given 

these scores

77, 45, 44, 61, 52, 53, 68, 55

and these intervals

50, 60, 70, 80
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FREQUENCY shows how many are less than or equal to 50 (2 in this exam-

ple), how many are greater than 50 and less than or equal to 60 (that would 

be 3), and so on. The number of scores in each interval is called a frequency. 

A table of the intervals and the frequencies is called a frequency distribution. 

Here’s an example of how to use FREQUENCY:

 1. Enter the scores into an array of cells.

  Figure 2-9 shows a group of scores in cells B2 through B16. 

 2. Enter the intervals into an array.

  I’ve put the intervals in C2 through C9. 

 3. Select an array for the frequencies. 

  I’ve put Frequency as the label at the top of column D, so I select D2 

through D10 for the resulting frequencies. Why the extra cell? FREQUENCY 

returns a vertical array that has one more cell than the frequencies array.

 4. From the Statistical Functions menu, select FREQUENCY to open the 

Function Arguments dialog box.

  I used the shortcut I installed on the Quick Access Toolbar to open this 

menu and select FREQUENCY.

 

Figure 2-9: 
Working 

with 
FREQUENCY.
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 5. In the Function Arguments dialog box, enter the appropriate values 

for the arguments.

  I begin with the Data_array box. In this box I entered the cells that hold 

the scores. In this example, that’s B2:B16. I’m assuming you know Excel 

well enough to know how to do this in several ways. 

  Next, I identify the intervals array. FREQUENCY refers to intervals as 

“bins,” and holds the intervals in the Bins_array box. For this example, 

C2:C9 goes into the Bins_array box. After identifying both arrays, the Insert 

Function dialog box shows the frequencies inside a pair of curly brackets.

 6. Press Ctrl+Shift+Enter to Close the Function Arguments dialog box 

and put the values in the selected array.

  This is VERY important. Because the dialog box has an OK button, the 

tendency is to click OK, thinking that puts the results into the work-

sheet. That doesn’t get the job done when you work with an array func-

tion, however. Always use the keystroke combination Ctrl+Shift+Enter to 

close the Function Arguments dialog box for an array function.

After closing the Function Arguments dialog box, the frequencies go into the 

appropriate cells, as Figure 2-10 shows.

 

Figure 2-10: 
The finished 
frequencies.

 

Note the formula in the Formula Bar:

{= FREQUENCY(B2:B16,C2:C9)}

The curly brackets are Excel’s way of telling you that this is an array function.

 I’m not one to repeat myself, but in this case I’ll make an exception. As I said in 

Step 6, press Ctrl+Shift+Enter whenever you work with an array function. Keep 

this in mind because the Arguments Function dialog box doesn’t provide any 

reminders. If you click OK after you enter your arguments into an array func-

tion, you’ll be very frustrated. Trust me.
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What’s in a name? An array 
of possibilities
As you get more into Excel’s statistical features, you work increasingly with 

formulas that have multiple arguments. Oftentimes, these arguments refer to 

arrays of cells, as in the preceding examples. 

If you apply meaningful names to these arrays, it helps you keep straight 

what you’re doing. Also, if you come back to a worksheet after being away 

from it for a while, meaningful array names can help you quickly get back into 

the swing of things. Another benefit: If you have to explain your worksheet 

and its formulas to others, meaningful array names are tremendously helpful.

Excel gives you an easy way to attach a name to a group of cells. In Figure 2-11, 

column C is named Revenue_Millions, indicating “Revenue in millions of dol-

lars.” As it stands, that just makes it a bit easier to read the column. If I explicitly 

tell Excel to treat Revenue_Millions as the name of the array of cells C2 through 

C13, however, I can use Revenue_Millions whenever I refer to that array of cells.

 

Figure 2-11: 
Defining 

names for 
arrays of 

cells.
 

Why did I use Revenue_Millions and not Revenue (Millions) or Revenue In 

Millions or Revenue: Millions? Excel doesn’t like blank spaces or symbols 

in its names. In fact, here are four rules to follow when you supply a name 

for a range of cells:

 ✓ Begin a name with an alphabetic character — a letter rather than a 

number or a punctuation mark.

 ✓ As I just mentioned, make sure that the name contains no spaces or sym-

bols. Use an underscore to denote a space between words in the name. 
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 ✓ Be sure that the name is unique within the worksheet.

 ✓ Be sure that the name doesn’t duplicate any cell reference in the 

 worksheet.

Here’s how to define a name:

 1. Put a descriptive name at the top of a column (or to the left of a row) 

you want to name.

  Figure 2-10 shows this.

 2. Select the range of cells you want to name. 

  For this example, that’s cells C2 through C13. Why not include C1? I 

explain in a second.

 3. Right-click on the selected range.

  This opens the menu shown in Figure 2-12. 

 

Figure 2-12: 
Right-

clicking a 
selected 

cell range 
opens this 

pop-up 
menu.

 

 4. From the pop-up menu, select Name a Range.

  This selection opens the New Name dialog box (see Figure 2-13). As you 

can see, Excel knows that Revenue_Millions is the name for the array, 

and that Revenue_Millions refers to cells C2 through C13. When pre-

sented with a selected range of cells to name, Excel looks for a nearby 

name — just above a column or just to the left of a row. If no name is 

present, you get to supply one in the New Name dialog box. (The New 

Name dialog box is also accessible by choosing Formula | Define Name.)
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Figure 2-13: 
The New 

Name dialog 
box.

 

  When you select a range of cells like a column with a name at the top, 

you can include the cell with the name in it and Excel attaches the 

name to the range. I strongly advise against doing this. Why? If I select C1 

through C13, the name Revenue_Millions refers to cells C1 through C13, 

not C2 through C13. In that case, the first value in the range is text and 

the others are numbers. 

  For a formula like SUM (or SUMIF or SUMIFS, which I discuss next), this 

doesn’t make a difference: In those formulas, Excel just ignores values 

that aren’t numbers. If you have to use the whole array in a calculation, 

however, it makes a huge difference: Excel thinks the name is part of the 

array and tries to use it in the calculation. You’ll see this in the next sec-

tion on creating your own array formulas.

 5. Click OK.

  Excel attaches the name to the range of cells.

Now I have the convenience of using the name in a formula. Here, selecting 

a cell (like C14) and entering the SUM formula directly into C14 opens the 

boxes in Figure 2-14. 

 

Figure 2-14: 
Entering 

a formula 
directly into 
a cell opens 

these boxes.
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As the figure shows, the boxes open as I type. Pressing the Tab key fills in the 

formula in a way that Excel understands. I have to supply the close parenthe-

sis (see Figure 2-15) and type Enter to see the result.

Using the named array, then, the formula is 

=SUM(Revenue_Millions)

which is more descriptive than

=SUM(C2:C13)

A couple of Excel 2007’s new formulas show just how convenient this naming 

capability is. These formulas, SUMIF and SUMIFS, add a set of numbers if 

specific conditions in one cell range (SUMIF) or in more than one cell range 

(SUMIFS) are met. SUMIFS is new in Excel 2007.

To take full advantage of naming, I name both column A (Year) and column B 

(Region) in the same way I named column C. 

 

Figure 2-15: 
Completing 

the formula.
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 When you define a name for a cell range like B2:B13 in this example, beware: 

Excel can be a bit quirky when the cells hold names. Excel might guess that 

the name in the uppermost cell is the name you want to assign to the cell 

range. In this case, Excel guesses “North” for the name, rather than “Region.” 

If that happens, you make the change in the New Name dialog box.

To keep track of the names in a worksheet, selecting 

Formula | Name Manager 

opens the Name Manager box shown in Figure 2-16. The nearby buttons in 

the Defined Names area are also useful.

 

Figure 2-16: 
Managing 

the Defined 
Names in a 
worksheet.

 

Next, I sum the data in column C, but only for the North Region. That is, I only 

consider a cell in column C if the corresponding cell in column B contains 

“North.” To do this, I followed these steps:

 1. Select a cell for the formula result.

  My selection here is C15.

 2. Select the appropriate formula category and choose your function 

from its pop-up menu. 

  This opens the Function Arguments dialog box.

  I selected Formulas | Math & Trig

  and scrolled down the menu to find and choose SUMIF. This selection 

opens the Function Arguments dialog box shown in Figure 2-17. 
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Figure 2-17: 
The 

Function 
Arguments 
dialog box 
for SUMIF.

 

  SUMIF has three arguments. The first, Range, is the range of cells to eval-

uate for the condition to include in the sum (North, South, East, or West 

in this example). The second, Criteria, is the specific value in the Range 

(North, for this example). The third, Sum_range, holds the values I sum.

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments.

  Here’s where another Defined Names button comes in handy. In that 

Ribbon area, click the down arrow next to Use in Formula to open the 

drop-down list shown in Figure 2-18. 

 

Figure 2-18: 
The Use 

In Formula 
drop-down 

list.
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  Selecting from this list fills in the Function Arguments dialog box, as 

shown in Figure 2-19. I had to type North into the Criteria box. Excel 

adds the double quotes.

 4. Click OK.

  The result appears in the selected cell. For this example, that’s 78.

 

Figure 2-19: 
Completing 

the Function 
Arguments 
dialog box 
for SUMIF.

 

In the formula bar, 

=SUMIF(Region,”North”, Revenue_Millions) 

appears. I can type it exactly that way into the formula bar, without the 

dialog box or the drop-down list. 

The formula in the formula bar is easier to understand than

= SUMIF(B2:B13,”North”, C2:C13)

isn’t it?

Incidentally, the same cell range can be both the Range and the Sum_range. 

For example, to sum just the cells for which Revenue_Millions is less than 25, 

that’s

=SUMIF(Revenue_Millions, “< 25”, Revenue_Millions)

The second argument (Criteria) is always in double-quotes.

What about SUMIFS? That one is useful if I want to find the sum of revenues 

for North but only for the years 2006 and 2007. Follow these steps to use 

SUMIFS to find this sum:
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 1. Select a cell for the formula result.

  The selected cell is C17.

 2. Select the appropriate formula category and choose your function 

from its pop-up menu. 

  This opens the Function Arguments dialog box.

  For this example, the selection is SUMIFS from the 

  Formulas | Math & Trig

  menu, opening the Functions Arguments dialog box shown in Figure 2-20.

 3.  In the Function Arguments dialog box, enter the appropriate values 

for the arguments.

  Notice that in SUMIFS the Sum_range argument appears first. In SUMIF, 

it appears last. The appropriate values for the arguments appear in 

Figure 2-20.

 4. The formula in the Formula bar is

=SUMIFS(Revenue_Millions,Year,”<2008”,Region,”North”)

 5. Click OK.

  The answer, 46, appears in the selected cell.

With unnamed arrays, the formula would have been

=SUMIFS(C2:C13,A2:A13,”<2008”,B2:B13,”North”)

which seems much harder to comprehend.

 

Figure 2-20: 
The 

Completed 
Function 

Arguments 
dialog box 

for SUMIFS.
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 A defined name involves absolute referencing. (See Chapter 1.) Therefore, if 

you try to autofill from a named array, you’ll be in for an unpleasant surprise: 

Rather than autofilling a group of cells, you’ll be copying a value over and over 

again.

Here’s what I mean. Suppose you assign the name Series_1 to A2:A11 and 

Series_2 to B2:B11. In A12, you calculate SUM(Series_1). Being clever, you 

figure you’ll just drag the result from A12 to B12 to calculate SUM(Series_2). 

What do you find in B12? SUM(Series_1), that’s what.

Creating your own array formulas 
In addition to Excel’s built-in array formulas, you can create your own. To 

help things along, you can incorporate named arrays.

Figure 2-21 shows two named arrays, X and Y in columns C and D. X refers 

to C2 through C5 (not C1 through C5!) and Y refers to D2 through D5 (not D1 

through D5!) XY is the column header for column F. Each cell in column F will 

store the product of the corresponding cell in column C and the correspond-

ing cell in column D.

 

Figure 2-21: 
Two named 

arrays.
 

An easy way to enter the products, of course, is to just set F2 equal to C2*E2 

and then autofill the remaining applicable cells in column F.

Just to illustrate array formulas, though, I follow these steps to work on the 

data in the worksheet in Figure 2-21.

 1. Select the array that will hold the answers to the array formula.

  That would be F2 through F5, or F2:F5 in Excel-speak. Figure 2-21 shows 

the array selected.

 2. Into the selected array, type the formula.

  The formula here is =X * Y
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 3. Press Ctrl+Shift+Enter (not Enter).

  The answers appear in F2 through F5, as Figure 2-22 shows. Note the for-

mula {=X*Y} 

  in the formula bar. As I told you earlier, the curly brackets indicate an 

array formula.

 

Figure 2-22: 
The results 
of the array 

formula 
{=X * Y}.

 

Another thing I mention earlier in this chapter: When you name a range of 

cells, make sure that the named range does not include the cell with the name 

in it. If it does, an array formula like {=X * Y} tries to multiply the letter X by 

the letter Y to produce the first value, which is impossible and results in the 

exceptionally ugly #VALUE! error. 

Using data analysis tools
Excel has a set of sophisticated tools for data analysis. Table 2-1 lists the 

tools I cover. (The one I don’t cover, Fourier Analysis, is extremely techni-

cal.) Some of the terms in the table may be unfamiliar to you, but you’ll know 

them by the time you finish this book.

Table 2-1 Excel’s Data Analysis Tools
Tool What It Does

Anova: Single Factor Analysis of variance for two or more samples

Anova: Two Factor 
with Replication

Analysis of variance with two independent variables, and 
multiple observations in each combination of the levels of 
the variables

Anova: Two Factor 
without Replication

Analysis of variance with two independent variables, and 
one observation in each combination of the levels of the 
variables

(continued)
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Table 2-1 (continued)
Tool What It Does

Correlation With more than two measurements on a sample of indi-
viduals, calculates a matrix of correlation coefficients for 
all possible pairs of the measurements 

Covariance With more than two measurements on a sample of indi-
viduals, calculates a matrix of covariances for all pos-
sible pairs of the measurements 

Descriptive Statistics Generates a report of central tendency, variability, and 
other characteristics of values in the selected range of 
cells

Exponential 
Smoothing 

In a sequence of values, calculates a prediction based 
on a preceding set of values, and on a prior prediction for 
those values

F-Test Two Sample 
for Variances

Performs an F-test to compare two variances

Histogram Tabulates individual and cumulative frequencies for 
values in the selected range of cells

Moving Average In a sequence of values, calculates a prediction which is 
the average of a specified number of preceding values

Random Number 
Generation

Provides a specified amount of random numbers gener-
ated from one of seven possible distributions

Rank and Percentile Creates a table that shows the ordinal rank and the 
 percentage rank of each value in a set of values

Regression Creates a report of the regression statistics based 
on linear regression through a set of data containing 
one dependent variable and one or more independent 
 variables

Sampling Creates a sample from the values in a specified range of 
cells

t-Test: Two Sample Three t-test tools test the difference between two means. 
One assumes equal variances in the two samples. 
Another assumes unequal variances in the two samples. 
The third assumes matched samples.

z-Test: Two Sample 
for Means

Performs a two-sample z-test to compare two means 
when the variances are known

In order to use these tools, you first have to load them into Excel. 
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To start, click the Office Button and select Excel Options. Doing this opens 

the Excel Options dialog box. Then follow these steps:

 1. In the Excel Options dialog box, select Add-Ins. 

  Oddly enough, this opens a list of add-ins. 

 2. Near the bottom of the list, you see a drop-down list labeled Manage. 

From this list, select Excel Add-Ins. 

 3. Click Go. 

  This opens the Add-Ins dialog box. (See Figure 2-23.) 

 4. Click the check box next to Analysis Toolpak and then click OK.

 

Figure 2-23: 
The Add-Ins 

dialog box.
 

When Excel finishes loading the Toolpak, you’ll find a Data Analysis button in 

the Analysis area of the Data tab. In general, the steps for using a data analy-

sis tool are:

 1. Enter your data into an array.

 2. Click Data | Data Analysis to open the Data Analysis dialog box.

 3. In the Data Analysis dialog box select the data analysis tool you want 

to work with.

 4. Click OK (or just double-click the selection) to open the dialog box for 

the selected tool.

 5. In the tool’s dialog box, enter the appropriate information. 

  I know this sounds like a cop-out, but each tool is different.

 6. Click OK to close the dialog box and see the results.
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Here’s an example to get you accustomed to using these tools. In this exam-

ple, I go through the Descriptive Statistics tool. This tool calculates a number 

of statistics that summarize a set of scores.

 1. Enter your data into an array.

  Figure 2-24 shows an array of numbers in cells B2 through B9, with a 

column header in B1.

 2. Click Data | Data Analysis to open the Data Analysis dialog box.

 3. Click Descriptive Statistics and click OK (or just double-click 

Descriptive Statistics) to open the Descriptive Statistics dialog box. 

 4. Identify the data array.

  In the Input Range box, enter the cells that hold the data. For this 

example, that’s B1 through B9. The easiest way to do this is to move 

the cursor to the top cell (B1), press the Shift key, and click the bottom 

cell (B9). That puts the absolute reference format $B$1:$B$9 into Input 

Range.

 5. Click the Columns radio button to indicate that the data are organized 

by columns.

 6. Check the Labels in First Row checkbox, because the Input Range 

includes the column heading.

 7. Click the New Worksheet Ply radio button, if it isn’t already selected.

  This tells Excel to create a new tabbed sheet within the current work-

sheet, and to send the results to the newly created sheet.

 

Figure 2-24: 
Working 
with the 

Descriptive 
Statistics 
Analysis 

tool.
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 8. Click the Summary Statistics checkbox and leave the others 

unchecked. Click OK.

  The new tabbed sheet (ply) opens, displaying statistics that summarize 

the data. Figure 2-25 shows the new ply, after I widened Column A.

 

Figure 2-25: 
The out-

put of the 
Descriptive 

Statistics 
Analysis 

tool.
 

For now, I won’t tell you the meaning of each individual statistic in the 

Summary Statistics display. I leave that for Chapter 7 when I delve more 

deeply into descriptive statistics. 

Accessing Commonly Used Functions
Need quick access to a few commonly used Statistical functions? You can get 

to AVERAGE, MIN (minimum value in a selected cell range), and MAX (maxi-

mum value in a selected range) by clicking the down arrow next to a button 

on the Home tab. Clicking this down arrow also gets you to the Mathematical 

functions SUM and COUNT NUMBERS (counts the numerical values in a cell 

range).

For some reason, this button is in the Editing area. It’s labeled Σ. Figure 2-26 

shows you exactly where it is and the menu its down arrow opens. 

By the way, if you just click the button

Home | Σ

and not the down arrow, you get SUM.

The last selection on that menu is yet another way to open the Insert 

Function dialog box.
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Figure 2-26: 
The Home 
| Σ button 

and the 
menu its 

down arrow 
opens.

 

 One nice thing about using this menu — it eliminates a step: When you select 

a function, you don’t have to select a cell for the result. Just select the cell 

range and the function inserts the value in a cell immediately after the range.
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Describing Data
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In this part . . . 

Here’s where you learn how to use statistics to sum-

marize and describe data. I begin by showing you 

how to use the Excel graphics capabilities to produce the 

kinds of graphs statisticians use. From there, I move on 

to descriptive statistics — average, variance, standard 

deviation, and some others. I tell you how to combine a 

couple of these statistics to standardize scores. Finally, 

I describe the normal distribution, a very important topic 

in statistics. Along the way, you find out about Excel func-

tions and data analysis tools that cover all the statistical 

ideas in this part.

07 454060-pp02.indd   5407 454060-pp02.indd   54 4/21/09   7:19:29 PM4/21/09   7:19:29 PM



Chapter 3

Show and Tell: Graphing Data
In This Chapter
▶ Introducing graphs

▶ Working with Excel’s graphics capabilities

▶ Creating graphs for statistical work

The visual presentation of data is extremely important in statistics. Visual 

presentation enables you to discern relationships and trends you might 

not see if you just look at numbers. Visual presentation helps in another way: 

It’s valuable for presenting ideas to groups and making them understand 

your point of view. 

Graphs come in many varieties. In this chapter, I explore the types of graphs 

you use in statistics and when it’s advisable to use them. I also show you how 

to use Excel to create those graphs.

Why Use Graphs?
Suppose you have to make a pitch to a Congressional committee about com-

mercial space revenues in the early 1990s.

Which would you rather present? The data in Table 3-1, or the graph in 

Figure 3-1 that shows the same data? (The data, by the way, are from the U.S. 

Department of Commerce, via the Statistical Abstract of the U.S.) 
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56 Part II: Describing Data 

Table 3-1 US Commercial Space Revenues from 1990
 through 1994 (In Millions of Dollars)
Industry 1990 1991 1992 1993 1994

Commercial 
Satellites 
Delivered

1,000 1,300 1,300 1,100 1,400

Satellite 
Services

800 1,200 1,500 1,850 2,330

Satellite 
Ground 
Equipment

860 1,300 1,400 1,600 1,970

Commercial 
Launches

570 380 450 465 580

Remote 
Sensing Data 

155 190 210 250 300

Commercial 
R&D 
Infrastructure

0 0 0 30  60

Total 3,385 4,370 4,860 5,295 6,640

 

Figure 3-1: 
Graphing 

the data in 
Table 3-1.
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Which one would have a greater and more lasting impact? Although the 

table is certainly informative, most would argue that the graph gets the point 

across better and more memorably. Eyes that glaze over when looking at 

numbers often shine brighter when looking at pictures. 

The graph shows you trends you might not see as quickly on the table. 

(Satellite services rose fastest. Commercial launches, not so much.) Bottom 

line: Tables are good, graphs are better.

Graphs help bring concepts to life that might otherwise be difficult to under-

stand. In fact, I do that throughout the book. I illustrate points by . . . well . . . 

illustrating points! 

Some Fundamentals
Like the graph in Figure 3-1, most graph formats have a horizontal axis and 

a vertical axis. The pie graph, a format I show you later in this chapter, does 

not. By convention, the horizontal axis is also called the x-axis and the verti-

cal axis is also called the y-axis. 

Also, by convention, what goes on the horizontal axis is called the indepen-
dent variable and what goes on the vertical axis is called the dependent vari-
able. One of Excel’s graph formats reverses that convention, and I bring that 

to your attention when I cover it. 

 Just to give you a heads up, Excel calls that reversed-axis format a bar graph. 

You might have seen the graph in Figure 3-1 referred to as a bar graph. So 

have I. Excel calls Figure 3-1 a column graph, so I use “columns” from here on.

Getting back to “independent” and “dependent,” those terms imply that 

changes in the vertical direction depend (at least partly) on changes in the 

horizontal direction.

Another fundamental principle of creating a graph: Don’t wear out the view-

er’s eyes! If you put too much into a graph in the way of information or spe-

cial effects, you defeat the whole purpose of the graph. 

For example, in Figure 3-1 I had to make some choices about filling in the 

columns. Color-coded columns would have been helpful, but the page you’re 

looking at only shows black, white, and shades of gray. 

A lot of graph creation comes with experience, and you just have to use 

your judgment. In this case, my judgment came into play with the horizontal 

gridlines. In most graphs, I prefer not to have them. Here, they seem to add 
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structure and help the viewer figure out the dollar value associated with each 

column. But then again, that’s just my opinion.

Excel’s Graphics Capabilities
As I mention a couple of paragraphs ago, the graph in Figure 3-1 is a column 

graph. It’s one of many types of graphs you can create with Excel. Of all the 

graphics possibilities Excel provides, however, only a few are useful for sta-

tistical work. Those are the ones I cover in this chapter.

In addition to the column graph, I show you how to create pie graphs, bar 

graphs, line graphs, and scatter plots. Excel refers to each one as a chart 
rather than a “graph.” In this chapter, I use the two terms interchangeably.

Inserting a chart
In Excel 2007, you insert a chart into a spreadsheet. This immediately clues 

you that the chart creation tools are in the Charts area of the Insert tab. (See 

Figure 3-2.)

 

Figure 3-2: 
The Charts 
area of the 
Insert tab.

 

In Excels past a Chart Wizard guided you step by step through chart creation. 

The chart took shape within the wizard as you worked. You didn’t see the full 

chart on the worksheet (or on a separate page) until you closed the wizard. 

Excel 2007 turns the process inside out and simplifies it. Instead of making 

decisions within the wizard (which is no longer available), you immediately 

insert a chart into your spreadsheet. Then you use Design and Layout capa-

bilities to modify the chart and make it look just the way you want it.

You follow these steps:

 1. Enter your data into a worksheet.

 2. Select the data that go into the chart.
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 3. In the Charts area of the Insert tab, select the chart type.

  When you select a chart type, a box opens that presents a variety of sub-

types. Choose one and Excel creates a chart in your worksheet.

 4. Modify the chart.

  Click on the chart, and Excel adds a Design tab and a Layout tab to the 

Ribbon. These tabs allow you to make all kinds of changes to your chart.

It’s really that simple. The next section shows what I mean.

 By the way, here’s one more important concept about Excel graphics. In Excel, 

a chart is dynamic. This means that after you create a chart, changing its work-

sheet data results in an immediate change in the chart.

Becoming a Columnist
In this section, I show you how to create that spiffy graph in Figure 3-1. 

Follow these steps:

 1. Enter your data into a worksheet. 

  Figure 3-3 shows the data from Table 3-1 entered into a worksheet. 

 

Figure 3-3: 
Table 3-1 

data entered 
into a 

worksheet.
 

 2. Select the data that go into the chart.

  I selected A1:F7. The selection includes the labels for the axes but 

doesn’t include row G, which holds the column totals.

 3. In the Charts area of the Insert tab, select the chart type.

  For this example, the chart type is Column. Selecting Insert | Charts | 

Column opens the gallery in Figure 3-4. Here, you select the specific type 

of column chart for the data. I selected the first choice in the top row 

(Clustered Column).
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Figure 3-4: 
The gallery 

for a column 
chart.

 

 4. Modify the chart.

  Figure 3-5 shows the resulting chart, as well as the Design tab and the 

Layout tab. As you can see, I have to do some heavyweight modifying. 

Why? Excel has guessed wrong about how I wanted to design the chart. 

It looks okay, but it’s not. Rather than the years on the x-axis, Excel laid 

out the industry types. In other words, it interchanged the rows and 

columns.

 

Figure 3-5: 
The semi-

finished 
graph — 

based on a 
bad guess 

By Excel.
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  Fortunately, Excel provides a quick fix. Figure 3-5 shows the Design tab 

selected. In the Design | Data area, the choice on the left is Switch Row/

Column. So . . . selecting Design | Data | Switch Row/Column does the 

trick.

  Some work remains. The axes aren’t labeled yet, and the graph has no 

title. Here’s where the Layout tab comes into play. Figure 3-6 shows 

Layout | Axis Titles selected, along with the drop-down menu that 

allows you to add the title for each axis. Primary Horizontal Axis Title 

and Primary Vertical Axis Title provide options for laying out the axis 

titles. Layout | Chart Title does the same for the title of the chart. 

  Adding the titles finishes things off. The result looks like the chart in 

Figure 3-1.

 

Figure 3-6: 
The Layout 

tab enables 
you to add 

titles.
 

Stacking the columns
If I had selected Column’s second subtype — Stacked Column — I would have 

created a set of columns that presents the same information in a slightly dif-

ferent way. Each column represents the total of all the data series at a point 

on the x-axis. Each column is divided into segments. Each segment’s size is 

proportional to how much it contributes to the total. Figure 3-7 shows this. 
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Figure 3-7: 
A stacked 

column 
graph of 

the data in 
Table 3-1.

 

Notice that the data series are in reverse order from the way they’re set up 

in the first column graph. Excel sets them up in this order for the stacked col-

umns, and in the other order for the clustered columns. 

I inserted each graph into the worksheet. Excel also allows you to move a 

graph to a separate page in the workbook. Select Design | Location | Move 

Chart (it’s on the extreme right of the Design tab) to open the Move Chart 

dialog box. Click the New Sheet radio button to add a worksheet and move 

the chart there. Figure 3-8 shows how the chart looks on its own page.

In Appendix C, by the way, I show you another use for the stacked column 

chart.

This is a nice way of showing percentage changes over the course of time. If 

you just want to focus on percentages in one year, another type of graph is 

more effective. I discuss it in a moment, but first I want to tell you . . . 
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Figure 3-8: 
The stacked 

column 
chart on its 

own 
worksheet.

 

One more thing 
Statisticians often use column graphs to show how frequently something occurs. 

For example, in a thousand tosses of a pair of dice how many times does a 6 come 

up? How many tosses result in a 7? The x-axis shows each possible outcome 

of the dice-tosses, and the heights of the columns represent the frequencies. 

Whenever the heights represent frequencies, your column graph is a histogram.

It’s easy enough to use Excel’s graphics capabilities to set up a histogram, 

but Excel makes it easier still. Excel provides a data analysis tool that does 

everything you need to create a histogram. It’s called — believe it or not — 

Histogram. You provide an array of cells that hold all the data — like the 

outcomes of many dice-tosses, and an array that holds a list of intervals — 

like the possible outcomes of the tosses (the numbers 2–12). Histogram goes 

through the data array, counts the frequencies within each interval, and then 

draws the column graph. I describe this tool in greater detail in Chapter 7.
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Slicing the Pie
On to the next chart type. To show the percentages that make up one total, a 

pie graph gets the job done effectively. 

Suppose you want to focus on the U.S. commercial space revenues in 1994 — 

that is, on the last column of data in Table 3-1. You’ll catch people’s attention 

if you present the data in the form of a pie graph, like the one in Figure 3-9.

 

Figure 3-9: 
A pie graph 

of the last 
column 

of data in 
Table 3-1.

 

Here’s how to create this graph:

 1. Enter your data into a worksheet.

  Pretty easy, as I’ve already done this.

 2. Select the data that go into the chart.

  I want the names in column A and the data in column F. The trick is to 

select column A (cells A2 through A7)in the usual way and then press 

and hold the CTRL key. While holding this key, drag the cursor through 

F2 through F7. Voilà — two nonadjoining columns are selected 

 3. In the Charts area of the Insert tab, select the chart type.

  I selected Insert | Pie and then chose the first subtype.
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 4. Modify the chart.

  Figure 3-10 shows the initial pie chart on its own page. To get it to look 

like Figure 3-9, I had to do a lot of modifying. 

 

Figure 3-10: 
The initial 
pie chart 

on its own 
page.

 

  The little slice filled in black represents 1 percent of the pie (Commercial 

R&D Infrastructure) and might be hard to see. I changed the fill color 

from black to white and added a border. How? I clicked on that slice 

and several slices were selected. Clicking again isolated it. Then I right-

clicked to open the menu in Figure 3-11. Choosing Format Data Point 

opens the Format Data Point dialog box (Figure 3-12). I worked with Fill 

and Border to change the slice to a white fill with a black border.

 

Figure 3-11: 
Right-

clicking an 
isolated pie 
chart slice 
opens this 

menu.
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Figure 3-12: 
The Format 
Data Point 
dialog box.

 

  I selected Layout | Data Labels | Best Fit to add the data to each slice. 

  With the data labels selected, I right-clicked to open a couple of menus 

(Figure 3-13) that enabled me to manipulate the color and size of the 

data label font. After I made them all white, the label outside the small 

slice became invisible, but right-clicking in its area allowed me to reset 

its font to black. Right-clicking on the legend brings up the same menus 

for modifying the size of the font in the legend.

 

Figure 3-13: 
Menus for 
manipulat-

ing the color 
and size of 

the data 
label font.

 

Pulling the slices apart
One variant of the pie chart is to explode the slices. I’m not particularly fond 

of this type of graph, but you might be. In some circumstances, it might come 

in handy. 
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One of the nice things about Excel’s graphics capabilities is that you can 

“what-if” to your heart’s content. So . . . after I finish creating the pie chart, 

I can explode it. To do that, I click on the chart and select Design | Change 

Chart Type. This opens the Change Chart Type dialog box shown in Figure 

3-14. Selecting the pie chart subtype that separates the slices (Exploded Pie) 

creates the chart in Figure 3-15.

 

Figure 3-14: 
The Change 

Chart Type 
dialog box.

 

Whenever you set up a pie graph — whether intact or exploded — always 

keep in mind . . . .

 

Figure 3-15: 
The 

exploded 
version of 
Figure 3-9.
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A word from the wise
Social commentator, raconteur, and former baseball player Yogi Berra once 

went to a restaurant and ordered a whole pizza. 

“How many slices should I cut,” asked the waitress, “four or eight?” 

 “Better make it four,” said Yogi, “I’m not hungry enough to eat eight.”

Yogi’s insightful analysis leads to a useful guideline about pie graphs: They’re 

more digestible if they have fewer slices. If you cut a pie graph too fine, 

you’re likely to leave your audience with information overload.

Drawing the Line
In the preceding example, I focused on one column of data from Table 3-1. In 

this one, I focus on one row. The idea is to trace the progress of one space-

related industry across the years 1990–1994. In this example, I graph the 

revenues from Satellite Services. The final product, shown on its own page, is 

Figure 3-16.

 

Figure 3-16: 
A line graph 

of the sec-
ond Row 

of Data in 
Table 3-1.

 

A line graph is a good way to show change over time, when you aren’t deal-

ing with too many data series. If you try to graph all six industries on one line 

graph, it begins to look like spaghetti. 
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How do you create a graph like Figure 3-16? Follow along:

 1. Enter your data into a worksheet.

  Once again, already done.

 2. Select the data that go into the chart.

  For this example, that’s cells B3 through F3.

  Whoa! Did I forget something? What about that little trick I showed you 

before where you hold down the CTRL key and select additional cells? 

Couldn’t I do that and select the top row of years for the x-axis?

  Nope. Not this time. If I do that, Excel thinks 1990, 1991, 1992, 1993, and 

1994 are just another series of data points to plot on the graph. I’ll show 

you another way to put those years on the x-axis.

 3. In Charts area of the Insert tab, select the chart type.

  This time, it’s Insert | Line and then the fourth subtype, Line with 

Markers. This creates the chart in Figure 3-17.

 

Figure 3-17: 
Insert | Line 
| Line With 

Markers 
creates the 

line chart.
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 4. Modify the chart. 

  The line on the chart is a little hard to see. Selecting Design | Chart 

Styles and the leftmost option makes the line darker.

  Next, I added the titles for the chart and for the axes. Clicking the down 

arrow of Design | Chart Layouts opens a box with 12 possibilities. 

Selecting the tenth one creates text boxes for the titles on the chart.

  I still have to put the years on the x-axis. To do this, I right-clicked inside 

the chart to open the menu in Figure 3-18. 

 

Figure 3-18: 
Right-

clicking 
inside the 

chart opens 
this menu.

 

  Clicking Select Data opens the Select Data Source dialog box. (See Figure 

3-19.) In the box labeled Horizontal (Category) Axis Labels, clicking 

the Edit button opens the Axis Labels dialog box (Figure 3-20). A blink-

ing cursor in the Axis label range box shows it’s ready for business. 

Selecting cells B1 through F1 and clicking OK closes this dialog box. 

Clicking OK closes the Select Source dialog box and puts the years on 

the x-axis.

 

Figure 3-19: 
The Select 

Source dia-
log box.

 

  One more modification completes the graph. The legend (showing 

“Series 1”) isn’t necessary. Right-click on it and choose Delete from the 

pop-up menu.
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Figure 3-20: 
The Axis 

Labels 
dialog box.

 

Passing the Bar 
Excel’s bar chart is a column chart laid on its side. This is the one that 

reverses the horizontal-vertical convention. Here, the vertical axis holds the 

independent variable, and it’s referred to as the x-axis. The horizontal axis is 

the y-axis and it tracks the dependent variable.

When would you use the bar graph? This type of graph fits the bill when you 

want to make a point about reaching a goal, or about the inequities in attain-

ing one. 

Table 3-2 shows the data on (what I feel, anyway) is an important social issue. 

The data, from the U.S. Census Bureau (via the U.S. Statistical Abstract), are 

for the year 2000. Percent means the percentage of children in each income 

group.

Table 3-2 Children’s Use of the Internet at Home (2000)
Family Income Percent 

Under $15,000 7.7

$15,000-$19,999 12.9

$20,000-$24,999 15.2

$25,000-$34,999 21.0

$35,000-$49,999 31.8

$50,000-$74,999 39.9

Over $75,000 51.7

The numbers in the table are pretty dramatic. Casting them into a bar chart 

renders them even more so, as Figure 3-21 shows.
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Figure 3-21: 
A bar chart 
of the data 

in Table 3-2.
 

Children’s Home Use of the Internet (2000)

$75,000 and over
Fa

m
ily

 In
co

m
e

$50,000 - $74,999

$35,000 - $49,999

$25,000 - $34,999

$20,000 - $24,999

$15,000 - $19,999

Under $15,000

0 10 20 30
Percent

40 50 60

To create this graph, follow these steps:

 1. Enter your data into a worksheet.

  Figure 3-22 shows the data entered into a worksheet.

 

Figure 3-22: 
Table 3-2 
data in a 

worksheet.
 

 2. Select the data that go into the chart.

  For this example, the data are cells A1 through B8.

 3. In the Charts area of the Insert tab, select the chart type.

  I clicked the down arrow for Insert | Bar and selected the first subtype 

(Clustered Bar). The result appears in Figure 3-23. The title is wrong and 

the legend is unnecessary, but I deal with that in Step 4.
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Figure 3-23: 
The Initial 
Excel bar 

chart. 
 

 4. Modify the chart.

  The first modification is to select a layout. This is a little confusing, 

because Design | Chart Layouts holds the desired look, rather than 

a ribbon area within the Layout tab. Go figure. The trick is to select a 

layout that puts text boxes for the titles onto the graph. The option that 

does this (Layout 8) is shown selected in Figure 3-24. (The other way to 

do this is with Layout | Labels as I showed you earlier.)

 

Figure 3-24: 
The layout 
for adding 
axis titles 
and chart 
title to the 
bar chart.

 

  After entering the labels, I deleted the legend. Then I darkened the bars 

via Design | Chart Styles. Right-clicking on each label brings up the 

menu for increasing the font size. 
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The Plot Thickens
You use an important statistical technique called linear regression to deter-

mine the relationship between one variable, x, and another variable, y. For 

more information on linear regression, see Chapter 14.

The basis of the technique is a graph that shows individuals measured on 

both x and y. The graph represents each individual as a point. Because the 

points seem to scatter around the graph, the graph is called a scatterplot.

Suppose you’re trying to find out how well a test of aptitude for sales pre-

dicts salespeople’s productivity. You administer the test to a sample of sales-

persons and you tabulate how much money they make in commissions over a 

two-month period. Each person’s pair of scores (test score and commissions) 

locates him or her within the scatterplot. 

To create a scatterplot, follow the steps:

 1. Enter your data into a worksheet. 

  Figure 3-25 shows the entered data.

 

Figure 3-25: 
Scatterplot 

data.
 

 2. Select the data that go into the chart.

  Figure 3-25 shows the selected cells — B2 through C21. (Including B1 

creates the same chart, but with an incorrect title.) The cells in Column 

A are just placeholders that organize the data.

 3. In the Charts area of the Insert tab, select the chart type.

  I chose the first subtype of Insert | Scatter, resulting in the chart shown 

in Figure 3-26.

08 454060-ch03.indd   7408 454060-ch03.indd   74 4/21/09   7:20:01 PM4/21/09   7:20:01 PM



75 Chapter 3: Show and Tell: Graphing Data

 

Figure 3-26: 
The initial 

scatterplot.
 

 4. Modify the chart.

  Clicking Design | Chart Layouts and selecting the first layout puts the 

text box on the chart for each title. I typed the title for the chart and the 

titles for the axes and then deleted the legend. The result is the scatter-

plot in Figure 3-27.

 

Figure 3-27: 
The almost-

finished 
scatterplot.

 

For the other graphs, that would just about do it, but this one’s special. 

Right-clicking any of the points in the scatterplot opens the pop-up menu in 

Figure 3-28.
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Figure 3-28: 
Right-

clicking any 
point on the 
scatterplot 
opens this 

menu.
 

Selecting Add Trendline opens the Format Trendline dialog box. I selected 

the Linear radio button and clicked the two bottom checkboxes. They’re 

labeled Display Equation on Chart and Display R-Squared Value on Chart 

(Figure 3-29).

 

Figure 3-29: 
The Format 

Trendline 
dialog box.

 

Clicking OK closes the Format Trendline dialog box. A couple of additional 

items are now on the scatterplot, as Figure 3-30 shows. A line passes through 

the points. Excel refers to it as a trendline, but it’s really called a regression 
line. A couple of equations are there, too. (For clarity, I dragged them from 

their original locations.) What do they mean? What are those numbers all 

about?
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You’ll just have to read Chapter 14 to find out.

 

Figure 3-30: 
The scat-

terplot, with 
additional 

information.
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Chapter 4

Finding Your Center
In This Chapter
▶ Working within your means

▶ Meeting conditions

▶ The median is the message

▶ Getting into the mode

Statisticians deal with groups of numbers. They often find it helpful to use 

a single number to summarize a group of numbers. Where would a single 

summary number come from?

The best bet is to find a number that’s somewhere in the middle, and use 

that number to stand for the whole group. If you look at a group of numbers 

and try to find one that’s somewhere in the middle, you’re dealing with that 

group’s central tendency. Like good ice cream, central tendency comes in sev-

eral flavors.

Means: The Lore of Averages
Just about everyone uses averages. The statistical term for an average is 

mean. Sometime in your life, you’ve undoubtedly calculated one. The mean is 

a quick way of characterizing your grades, your money, or perhaps your per-

formance in some task or sport over time. 

Another reason for calculating means concerns the kind of work that sci-

entists do. Typically, a scientist applies some kind of procedure to a small 

sample of people or things and measures the results in some way. He or she 

uses the results from the sample to estimate the effects of the procedure 

on the population that produced the sample. As it happens, the mean of the 

sample is the best estimate of the population mean.
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Calculating the mean
You probably don’t need me to tell you how to calculate a mean, but I’m 

going to do it anyway. Then I’ll show you the statistical formula. My goal is to 

help you understand statistical formulas in general, and then set you up for 

how Excel calculates means.

A mean is just the sum of a bunch of numbers divided by the amount of num-

bers you added up. Here’s an example. Suppose you measure the reading 

speeds of six children in words per minute, and you find that their speeds are

56, 78, 45, 49, 55, 62

The average reading speed of these six children is

That is, the mean of this sample is 57.5 words per minute.

A first try at a formula might be

This is unwieldy as formulas go, so statisticians use abbreviations. A com-

monly used abbreviation for “Number” is x. A typical abbreviation for 

“Amount of Numbers You Added Up” is N. With these abbreviations, the for-

mula becomes

Another abbreviation, used throughout statistics, stands for Sum of. It’s the 

uppercase Greek letter for S. It’s pronounced “sigma” and it looks like this: Σ. 

Here’s the formula with the sigma:

What about “mean”? Statisticians abbreviate that, too. M would be a good 

abbreviation, and some statisticians use it, but most use  (pronounced “X 

bar”) to represent the mean. So here’s the formula:
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Is that it? Well . . . not quite. English letters, like , represent characteristics 

of samples. For characteristics of populations, the abbreviations are Greek 

letters. For the population mean, the abbreviation is the Greek equivalent of 

M, which is μ (pronounced like “you” but with “m” in front of it). The formula 

for the population mean, then, is

AVERAGE and AVERAGEA
Excel’s AVERAGE worksheet function calculates the mean of a set of numbers. 

Figure 4-1 shows the data and Function Arguments dialog box for AVERAGE.

 

Figure 4-1: 
Working 

with 
AVERAGE.

 

Here are the steps:

 1. In your worksheet, enter your numbers into an array of cells and 

select the cell where you want AVERAGE to place the result. 

  For this example, I entered 56, 78, 45, 49, 55, 62 into cells B2 through B7, 

and I selected B8 for the result. 
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 2. From the Statistical Functions menu, choose AVERAGE to open the 

AVERAGE Function Arguments dialog box.

 3. In the Function Arguments dialog box, enter the values for the 

arguments.

  If the array of number-containing cells isn’t already in the Number1 box, 

I enter it into that box. The mean (57.5 for this example) appears in this 

dialog box. 

 4. Click OK to close the AVERAGE Function Arguments dialog box.

  This puts the mean into the cell selected in the worksheet. In this exam-

ple, that’s B8.

As you can see in Figure 4-1, the formula in the Formula bar is

=AVERAGE(B2:B7)

Had I defined Number as the name of B2 through B7 (see Chapter 2), the for-

mula would be

=AVERAGE(Number)

AVERAGEA does the same thing as AVERAGE, but with one important difference. 

When AVERAGE calculates a mean, it ignores cells that contain text and it ignores 

cells that contain the expressions TRUE or FALSE. AVERAGEA takes text and 

expressions into consideration when it calculates a mean. As far as AVERAGEA is 

concerned, if a cell has text or FALSE, it has a value of 0. If a cell holds the word 

TRUE, it has a value of 1. AVERAGEA includes these values in the mean.

I’m not sure that you’ll use this capability during everyday statistical work 

(I never have), but Excel has worksheet functions like AVERAGEA, VARA, and 

STDEVA, and I want you to know how they operate. So here are the steps for 

AVERAGEA.

 1. Type the numbers into the worksheet and select a cell for the result.

  For this example, I entered the numbers 56, 78, 45, 49, 55, 62 in cells B2 

through B7 and select B9. This leaves B8 blank. I did this because I’m going 

to put different values into B8 and show you the effect on AVERAGEA.

 2. From the Statistical Functions menu, select AVERAGEA to open the 

AVERAGEA Function Arguments dialog box.

 3. In the Function Arguments dialog box, enter the values for the 

arguments. 

  This time I entered B2:B8 into the Number1 box. The mean (57.5) 

appears in this dialog box. AVERAGEA ignores blank cells, just as 

AVERAGE does.

 4. Click OK to close the Function Arguments dialog box and the answer 

appears in the selected cell.
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Now for some experimentation. In B8, if I type xxx, the mean in B9 changes 

from 57.5 to 49.28571. Next, typing TRUE into B8 changes the mean in B9 to 

49.42857. Finally, after typing FALSE into B8, the mean changes to 49.28571. 

Why the changes? AVERAGEA evaluates a text string like xxx as zero. Thus, 

the average in this case is based on seven numbers (not six), one of which 

is zero. AVERAGEA evaluates the value TRUE as 1. So the average with TRUE 

in B8 is based on seven numbers, one of which is 1.00. AVERAGEA evaluates 

FALSE as zero, and calculates the same average as when B8 holds xxx.

AVERAGEIF and AVERAGEIFS
These two functions are new in Excel 2007. They calculate average condition-

ally. AVERAGEIF includes numbers in the average if a particular condition is 

met. AVERAGEIFS includes numbers in the average if more than one condi-

tion is met.

To show you how these two new functions work, I set up the worksheet in 

Figure 4-2. The entries represent the data from a fictional psychology experi-

ment. In this experiment, a person sits in front of a screen and a color-filled 

shape appears. The color is either red or green and the shape is either a 

square or a circle. The combination for each trial is random, and all combina-

tions appear an equal number of times. In the lingo of the field, each appear-

ance of a color-filled shape is called a trial. So the worksheet shows the 

outcomes of 16 trials.

 

Figure 4-2: 
Data from 
16 trials of 
a fictional 

psychology 
experiment.

 

The person sitting in front of the screen presses a button as soon as he or she 

sees the shape. Column D (labeled RT msec) presents one person’s reaction 
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time in milliseconds (thousandths of a second) for each trial. Columns B 

and C show the characteristics of the shape presented on that trial. So, for 

example, row 2 tells you that on the first trial, a red circle appeared and the 

person responded in 410 msec (milliseconds).

For each column, I defined the name in the top cell of the column to refer 

to the data in that column. If you don’t remember how to do that, reread 

Chapter 2.

I’ve calculated three averages. The first, Average Overall (in cell D19) is just

=AVERAGE(RT_msec)

What about those other two? Cell D20 holds the average of trials that dis-

played a circle. That’s what I mean by a conditional average. It’s the average 

of trials that meet the condition Shape = Circle.

Figure 4-3 shows the completed Function Arguments dialog box for 

AVERAGEIF. The formula created after clicking OK is

=AVERAGEIF(Shape,”Circle”,RT_msec)

What the dialog box and the formula are telling you is this: Excel includes a 

cell in column D (RT_msec) in the average if the corresponding cell in column 

B (Shape) holds the value “Circle.” If not, the cell is not included.

 

Figure 4-3: 
The 

completed 
dialog 

box for 
AVERAGEIF.

 

To create this formula, follow these steps:

 1. Type the numbers into the worksheet and select a cell for the result.

  The cell I selected is D20.

 2. From the Statistical Functions menu select AVERAGEIF to open the 

AVERAGEIF Function Arguments dialog box.
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 3. In the Function Arguments dialog box, enter the values for the 

arguments.

  For AVERAGEIF in this example the Range is Shape, the Criteria is 

“Circle” (Excel types the double-quotes), and the Average_range is 

RT_msec.

 4. Click OK to close the Function Arguments dialog box and the answer 

appears in the selected cell.

Some more on AVERAGEIF: To find the average of the first eight trials, the 

formula is

=AVERAGEIF(Trial,”<9”,RT_msec)

To find the average of reaction times faster than 400 msec the formula is 

=AVERAGEIF(RT_msec,”<400”,RT_msec)

 For each of these last two, the operator “<” precedes the numeric value. If you 

try to somehow set it up so that the value precedes the operator, the formula 

won’t work.

What about the average for Green Squares in cell D21? Figure 4-4 shows the 

completed dialog box for AVERAGEIFS, which can work with more than one 

criterion. The formula for calculating the average of trials on which Color = 

Green and Shape = Square is

=AVERAGEIFS(RT_msec,Color,”Green”,Shape,”Square”)

 

Figure 4-4: 
The 

completed 
dialog 

box for 
AVERAGEIFS.

 

Notice that RT_msec is the first argument in AVERAGEIFS but the last argu-

ment in AVERAGEIF.
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To create this formula, follow these steps:

 1. Type the numbers into the worksheet and select a cell for the result.

  The cell I selected is D21.

 2. From the Statistical Functions menu select AVERAGEIFS to open the 

AVERAGEIFS Function Arguments dialog box.

 3. In the Function Arguments dialog box, enter the values for the 

arguments.

  For AVERAGEIFS in this example the Average_range is RT_msec. 

Criteria_range1 is “Color” and Criteria1 is “Green”. Criteria_range2 is 

Shape, the Criteria is “Square”. (Excel types the double-quotes.)

 4. Click OK to close the Function Arguments dialog box and the answer 

appears in the selected cell.

Given what you just saw, you may be wondering why it’s necessary for Excel 

to have both AVERAGEIF and AVERAGEIFS. After all, 

=AVERAGEIF(Shape,”Circle”,RT_msec)

gives the same answer as

=AVERAGEIFS(RT_msec, Shape,”Circle”)

So why two functions? Short answer: I don’t know. Long answer: I don’t know.

TRIMMEAN
In a retake on a famous quote about statistics, someone said “There are three 

kinds of liars: liars, darned liars, and statistical outliers.” An outlier is an 

extreme value in a set of scores — so extreme, in fact, that the person who 

gathered the scores believes that something is amiss.

One example of outliers involves psychology experiments that measure a 

person’s time to make a decision. Measured in thousandths of a second, 

these “reaction times” depend on the complexity of the decision. The more 

complex the decision, the longer the reaction time. 

Typically, a person in this kind of experiment goes through many experimen-

tal trials — one decision per trial. A trial with an overly fast reaction time 

(way below the average) might indicate that the person made a quick guess 

without really considering what he or she was supposed to do. A trial with a 

very slow reaction time (way above the average) might mean that the person 

wasn’t paying attention at first and then buckled down to the task at hand. 
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Either kind of outlier can get in the way of conclusions based on averaging 

the data. For this reason, it’s often a good idea to eliminate them before you 

calculate the mean. Statisticians refer to this as “trimming the mean,” and 

Excel’s TRIMMEAN function does this.

Here’s how you use TRIMMEAN:

 1. Type the scores into a worksheet and select a cell for the result. 

  For this example, I put these numbers into cells B2 through B11:

  500, 280, 550, 540, 525, 595, 620, 1052, 591, 618

  These scores might result from a psychology experiment that measures 

reaction time in thousandths of a second (milliseconds). I selected B12 

for the result.

 2. From the Statistical Functions menu, select TRIMMEAN to open the 

TRIMMEAN Function Arguments dialog box.

 3. In the Function Arguments dialog box, type the values for the 

arguments. 

  The data array goes into the Array box. For this example, that’s B2:B11. 

  Next, I have to identify the percent of scores I want to trim. In the Percent 

box, I enter .2. This tells TRIMMEAN to eliminate the extreme 20 percent 

of the scores before calculating the mean. The extreme 20 percent means 

the highest 10 percent of scores and the lowest 10 percent of scores. 

Figure 4-5 shows the dialog box, the array of scores, and the selected 

cell. The dialog box shows the value of the trimmed mean, 567.375. 

 

Figure 4-5: 
The 

TRIMMEAN 
Function 

Arguments 
dialog box 
along with 

the array 
of cells and 

the selected 
cell.

 

 4. Click OK to close the dialog box and the answer appears in the 

selected cell.
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 The label Percent is a little misleading here. You have to express the percent 

as a decimal. So you enter .2 rather than 20 in the Percent box if you want to 

trim the extreme 20 percent. (Quick question: If you enter 0 in the Percent 

box, what’s the answer equivalent to? Answer: AVERAGE(B2:B11)

 What percentage of scores should you trim? That’s up to you. It depends on 

what you’re measuring, how extreme your scores can be, and how well you 

know the area you’re studying. When you do trim scores and report a mean, 

it’s important to let people know that you’ve done this and to let them know 

the percentage you’ve trimmed.

In the upcoming section on the median, I show you another way to deal with 

extreme scores.

Other means to an end
This section deals with two types of averages that are different from the one 

you’re familiar with. I tell you about them because you might run into them 

as you go through Excel’s statistical capabilities. (How many different kinds 

of averages are possible? Ancient Greek mathematicians came up with 11!)

Geometric mean
Suppose you have a two-year investment that yields 25 percent the first year 

and 75 percent the second year. (If you do, I want to know about it!) What’s 

the average annual rate of return?

To answer that question, you might be tempted to find the mean of 25 and 75 

(which averages out to 50). But that misses an important point: At the end of 

the first year, you multiply your investment by 1.25 — you don’t add 1.25 to it. 

At the end of the second year, you multiply the first-year result by 1.75. 

The regular everyday garden-variety mean won’t give you the average rate of 

return. Instead, you calculate the mean this way:

The average rate of return is about 65.4 percent, not 50 percent. This kind of 

average is called the geometric mean. 

In this example, the geometric mean is the square root of the product of two 

numbers. For three numbers, the geometric mean is the cube root of the product 

of the three. For four numbers, it’s the fourth root of their product, and so on. 

In general, the geometric mean of N numbers is the Nth root of their product. 

The Excel worksheet function GEOMEAN calculates the geometric mean of 

a group of numbers. Follow the same steps as you would for AVERAGE, but 

select GEOMEAN from the Statistical Functions menu.
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Harmonic mean
Still another mean is something you run into when you have to solve the 

kinds of problems that live in algebra textbooks. 

Suppose, for example, you’re in no particular hurry to get to work in the morn-

ing, and you drive from your house to your job at the rate of 40 miles per hour. 

At the end of the day you’d like to get home quickly, so on the return trip (over 

exactly the same distance) you drive from your job to your house at 60 miles 

per hour. What is your average speed for the total time you’re on the road?

It’s not 50 miles per hour, because you’re on the road a different amount of 

time on each leg of the trip. Without going into this in too much detail, the 

formula for figuring this one out is

The average here is 48. This kind of average is called a harmonic mean. I 

show it to you for two numbers, but you can calculate it for any amount of 

numbers. Just put each number in the denominator of a fraction with 1 as the 

numerator. Mathematicians call this the reciprocal of a number. (So 1/40 is 

the reciprocal of 40.) Add all the reciprocals together and take their average. 

The result is the reciprocal of the harmonic mean. 

In the rare event you ever have to figure one of these out in the real world, Excel 

saves you from the drudgery of calculation. The worksheet function HARMEAN 

calculates the harmonic mean of a group of numbers. Follow the same steps as 

you would for AVERAGE, but in the Statistical Functions menu select HARMEAN.

Medians: Caught in the Middle
 The mean is a useful way to summarize a group of numbers. It’s sensitive to 

extreme values, however: If one number is out of whack relative to the others, 

the mean quickly gets out of whack, too. When that happens, the mean might 

not be a good representative of the group.

For example, with these numbers as reading speeds (in words per minute) 

for a group of children

56, 78, 45, 49, 55, 62

the mean is 57.5. Suppose the child who reads at 78 words per minute leaves 

the group and an exceptionally fast reader replaces him. Her reading speed is 

180 words per minute. Now the group’s reading speeds are

56, 180, 45, 49, 55, 62
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The new average is 74.5. It’s misleading because except for the new child, no 

one else in the group reads nearly that fast. In a case like this, it’s a good idea 

to turn to a different measure of central tendency — the median.

Simply put, the median is the middle value in a group of numbers. Arrange 

the numbers in order, and the median is the value below which half the 

scores fall and above which half the scores fall.

Finding the median
In our example, the first group of reading speeds (in increasing order) is:

45, 49, 55, 56, 62, 78

The median is right in the middle of 55 and 56 — it’s 55.5

What about the group with the new child? That’s

45, 49, 55, 56, 62, 180

The median is still 55.5. The extreme value doesn’t change the median. 

MEDIAN
The worksheet function MEDIAN (you guessed it) calculates the median of a 

group of numbers. Here are the steps:

 1. Type your data into a worksheet and select a cell for the result. 

  I used 45, 49, 55, 56, 62, 78 for this example, in cells B2 through B7, with 

cell B8 selected for the median. I arranged the numbers in increasing 

order, but you don’t have to do that to use MEDIAN.

 2. From the Statistical Functions menu, select MEDIAN to open the 

MEDIAN Function Arguments dialog box.

 3. In the Function Arguments dialog box, enter the values for the 

arguments.

  The Function Arguments dialog box opens with the data array in the 

Number1 box. The median appears in that dialog box. (It’s 55.5 for this 

example.) Figure 4-6 shows the dialog box along with the array of cells 

and the selected cell.

 4. Click OK to close the dialog box and the answer appears in the 

selected cell.
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Figure 4-6: 
The MEDIAN 

Function 
Arguments 
dialog box 
along with 

the array 
of cells and 

the selected 
cell.

 

As an exercise, replace 78 with 180 in A6, and you’ll see that the median 

doesn’t change.

In Appendix C, I explore an application of the median.

Statistics À La Mode
One more measure of central tendency is important. This one is the score 

that occurs most frequently in a group of scores. It’s called the mode.

Finding the mode
Nothing is complicated about finding the mode. Look at the scores, find the 

one that occurs most frequently, and you’ve found the mode. Two scores tie 

for that honor? In that case, your set of scores has two modes. (The technical 

name is bimodal.) 

Can you have more than two modes? Absolutely. 

Suppose every score occurs equally often. When that happens, you have no 

mode.

Sometimes, the mode is the most representative measure of central tendency. 

Imagine a small company that consists of 30 consultants and two high-ranking 

officers. Each consultant has an annual salary of $40,000. Each officer has an 

annual salary of $250,000. The mean salary in this company is $53,125. 

Does the mean give you a clear picture of the company’s salary structure? If 

you were looking for a job with that company, would the mean influence your 

09 454060-ch04.indd   9109 454060-ch04.indd   91 4/21/09   7:20:41 PM4/21/09   7:20:41 PM



92 Part II: Describing Data 

expectations? You’re probably better off if you consider the mode, which in 

this case is $40,000. 

MODE
Excel’s MODE function finds the mode for you. 

 1. Type your data into a worksheet and select a cell for the result. 

  I use 56, 23, 77, 75, 57, 75, 91, 59, and 75 in this example. The data are in 

cells B2 through B10, with B11 as the selected cell for the mode.

 2. From the Statistical Functions menu, select MODE to open the MODE 

Function Arguments dialog box. (See Figure 4-7).

 3. In the Function Arguments dialog box, type the values for the 

arguments.

  The Function Arguments dialog box opens with an array highlighted in 

the Number1 box. For this example the highlighted array is correct, and 

the mode (75 for this example) appears in the dialog box.

 

Figure 4-7: 
The MODE 

Function 
Arguments 
dialog box 
along with 

the array 
of cells and 

the selected 
cell.

 

 4. Click OK to close the dialog box and the answer appears in the 

selected cell.

09 454060-ch04.indd   9209 454060-ch04.indd   92 4/21/09   7:20:41 PM4/21/09   7:20:41 PM



Chapter 5

Deviating from the Average
In This Chapter
▶ What variation is all about

▶ Variance and standard deviation

▶ Excel worksheet functions that calculate variation

▶ Workarounds for missing worksheet functions

▶ Additional worksheet functions for variation

Here are three pieces of wisdom about statisticians:

Piece of Wisdom #1: “A statistician is a person who stands in a bucket of ice 

water, sticks their head in an oven and says ‘on average, I feel fine.’” 

(K. Dunning)

Piece of Wisdom #2: “A statistician drowned crossing a stream with an aver-

age depth of 6 inches.” (Anonymous)

Piece of Wisdom #3: “Three statisticians go deer hunting with bows and 

arrows. They spot a big buck and take aim. One shoots and his arrow flies 

off ten feet to the left. The second shoots and his arrow goes ten feet to the 

right. The third statistician jumps up and down yelling, ‘We got him! We got 

him!’” (Bill Butz, quoted by Diana McLellan in Washingtonian)

What’s the common theme? Calculating the mean is a great way to summa-

rize a group of numbers, but it doesn’t supply all the information you typi-

cally need. If you just rely on the mean, you might miss something important.

To avoid missing important information, another type of statistic is necessary — 

a statistic that measures variation. It’s a kind of average of how much each 

number in a group differs from the group mean. Several statistics are avail-

able for measuring variation. All of them work the same way: The larger the 

value of the statistic, the more the numbers differ from the mean. The smaller 

the value, the less they differ.
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Measuring Variation
Suppose you measure the heights of a group of children and you find that 

their heights (in inches) are

48, 48, 48, 48, 48

Then you measure another group and find that their heights are

50, 47, 52, 46, 45

If you calculate the mean of each group, you’ll find they’re the same — 48 inches. 

Just looking at the numbers tells you the two groups of heights are different: 

The heights in the first group are all the same, while the heights in the second 

vary quite a bit.

Averaging squared deviations: Variance 
and how to calculate it
One way to show the dissimilarity between the two groups is to examine the 

deviations in each one. Think of a “deviation” as the difference between a 

score and the mean of all the scores in a group. 

Here’s what I’m talking about. Table 5-1 shows the first group of heights and 

their deviations.

Table 5-1 The First Group of Heights and Their Deviations
Height Height-Mean Deviation

48 48-48 0

48 48-48 0

48 48-48 0

48 48-48 0

48 48-48 0

One way to proceed is to average the deviations. Clearly, the average of the 

numbers in the Deviation column is zero.

Table 5-2 shows the second group of heights and their deviations. 
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Table 5-2 The Second Group of Heights and Their Deviations
Height Height-Mean Deviation

50 50-48   2

47 47-48 –1

52 52-48   4

46 46-48 –2

45 45-48 –3

What about the average of the deviations in Table 5-2? That’s . . . zero!

Hmmm . . . Now what? 

 Averaging the deviations doesn’t help us see a difference between the two 

groups, because the average of deviations from the mean in any group of num-

bers is always zero. In fact, veteran statisticians will tell you that’s a defining 

property of the mean. 

The joker in the deck here is the negative numbers. How do statisticians deal 

with them?

The trick is to use something you might recall from algebra: A minus times a 

minus is a plus. Sound familiar?

So . . . does this mean that you multiply each deviation times itself, and then 

average the results? Absolutely. Multiplying a deviation times itself is called 

squaring a deviation. The average of the squared deviations is so important 

that it has a special name: variance.

Table 5-3 shows the group of heights from Table 5-2, along with their devia-

tions and squared deviations.

Table 5-3 The Second Group of Heights and
 Their Squared Deviations
Height Height-Mean Deviation Squared 

Deviation

50 50-48   2   4

47 47-48 –1   1

52 52-48   4 16

46 46-48 –2   4

45 45-48 –3   9
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The variance — the average of the squared deviations for this group — is  

(4 + 1 + 16 + 4 + 9)/5 = 34/5 = 6.8. This, of course, is very different from the 

first group, whose variance is zero.

To develop the variance formula for you and show you how it works, I use 

symbols to show all this.  represents the Height heading in the first column 

of the table and  represents the mean. Because a deviation is the result of 

subtracting the mean from each number, 

represents a deviation. Multiplying a deviation by itself? That’s just 

To calculate variance you square each deviation, add them up, and find the 

average of the squared deviations. If N represents the amount of squared 

deviations you have (in our example, five), then the formula for calculating 

the variance is

Σ is the uppercase Greek letter sigma and it stands for the sum of. 

What’s the symbol for Variance? As I say in Chapter 1, Greek letters represent 

population parameters and English letters represent statistics. Imagine that 

our little group of five numbers is an entire population. Does the Greek alpha-

bet have a letter that corresponds to V in the same way that μ (the symbol 

for the population mean) corresponds to M?

 As a matter of fact, it doesn’t. Instead, we use the lowercase sigma! It looks like 

this: σ. Not only that, but because we’re talking about squared quantities, the 

symbol is σ2. 

So the formula for calculating variance is:
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97 Chapter 5: Deviating from the Average

 Variance is large if the numbers in a group vary greatly from their mean. 

Variance is small if the numbers are very similar to their mean.

The variance you just worked through is appropriate if the group of five 

measurements is a population. Does this mean that variance for a sample is 

different? It does, and you’ll see why in a minute. First, I turn your attention 

back to Excel.

VARP and VARPA
Excel’s two worksheet functions, VARP and VARPA, calculate the population 

variance. 

Start with VARP. Figure 5-1 shows the Function Arguments dialog box for 

VARP along with data. Here are the steps to follow:

 

Figure 5-1: 
Working 

with VARP.
 

 1. Put your data into a worksheet and select a cell to display the result. 

  Figure 5-1 shows that for this example, I’ve put the numbers 50, 47, 52, 

46, 45 into cells B2 through B6 and selected B8 for the result.

 2. From the Statistical Functions menu, select VARP to open the VARP 

Function Arguments dialog box.

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments.

  I entered B2:B6 in the Number1 field. The population variance, 6.8, 

appears in the Function Arguments dialog box.

 4. Click OK to close the dialog box and put the result in the selected cell.
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Had I defined Score as the name of B2:B6 (see Chapter 2), the formula in the 

formula bar would be

=VARP(Score)

When VARP calculates the variance in a range of cells, it only sees numbers. 

If text or logical values are in some of the cells, VARP ignores them. 

VARPA, on the other hand, does not. VARPA takes text and logical values into 

consideration and includes them in its variance calculation. How? If a cell 

contains text, VARPA sees that cell as containing a value of zero. If a cell con-

tains the logical value FALSE, that’s also zero as far as VARPA is concerned. 

In VARPA’s view of the world, the logical value TRUE is one. Those zeros and 

ones get added into the mix and affect the mean and the variance.

To see this in action, I keep the numbers in cells B2 through B6 and again 

select cell B8. I follow the same steps as for VARP, but this time open the 

VARPA Function Arguments dialog box. In the Value1 field of the VARPA 

dialog box I type B2:B7 (that’s B7, not B6) and click OK. Cell B8 shows the 

same result as before because VARPA evaluates the blank cell B7 as no entry. 

Typing TRUE into Cell B7 changes the result in B8 because VARPA evaluates 

B7 as 1. (See Figure 5-2.)

 

Figure 5-2: 
VARPA 

evaluates 
TRUE as 1.0, 

changing 
the vari-

ance from 
the value in 
Figure 5-1.

 

Typing FALSE (or any other string of letters except TRUE) into B7 changes 

the value in B8 once again. This time, VARPA evaluates B7 as zero. 
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Sample variance
Earlier, I mentioned that you use this formula to calculate population 

variance:

I also said that sample variance is a little different. Here’s the difference. 

If your set of numbers is a sample drawn from a large population, you’re 

probably interested in using the variance of the sample to estimate the vari-

ance of the population. 

The formula you used for the variance doesn’t quite work as an estimate of 

the population variance. Although the sample mean works just fine as an 

estimate of the population mean, this doesn’t hold true with variance, for rea-

sons way beyond the scope of this book.

 How do you calculate a good estimate of the population variance? It’s pretty 

easy. You just use N-1 in the denominator rather than N. (Again, for reasons 

way beyond our scope.)

Also, because we’re working with a characteristic of a sample (rather than 

of a population), we use the English equivalent of the Greek letter — s rather 

than σ. This means that the formula for the sample variance is

The value of s2, given the squared deviations in our set of five numbers is 

(4 + 1 + 16 + 4 + 9)/4 = 34/4 = 8.5

So, if these numbers

50, 47, 52, 46, 45

are an entire population, their variance is 6.4. If they’re a sample drawn from 

a larger population, our best estimate of that population’s variance is 8.5.
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VAR and VARA
The worksheet functions VAR and VARA calculate the sample variance.

Figure 5-3 shows the Function Arguments dialog box for VAR with 50, 47, 52, 

46, 45 entered into cells B2 through B6. Cell B7 is part of the cell range, but I 

left it empty.

 

Figure 5-3: 
Working 

with VAR.
 

 The relationship between VAR and VARA is the same as the relationship 

between VARP and VARPA: VAR ignores cells that contain logical values 

(TRUE and FALSE) and text. VARA includes those cells. Once again, TRUE 

evaluates to 1.0 and FALSE evaluates to 0. Text in a cell causes VARA to see 

that cell’s value as 0. 

This is why I left B7 blank. If you experiment a bit with VARA and logical 

values or text in B7, you’ll see exactly what VARA does.

Back to the Roots: Standard Deviation
After you calculate the variance of a set of numbers, you have a value whose 

units are different from your original measurements. For example, if your 

original measurements are in inches, their variance is in square inches. This 

is because you square the deviations before you average them.

Often, it’s more intuitive if you have a variation statistic that’s in the same 

units as the original measurements. It’s easy to turn variance into that kind 

of statistic. All you have to do is take the square root of the variance. 
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Like the variance, this square root is so important that we give it a special 

name: standard deviation.

Population standard deviation
The standard deviation of a population is the square root of the population 

variance. The symbol for the population standard deviation is σ (sigma). Its 

formula is

For these measurements (in inches)

50, 47, 52, 46, 45

the population variance is 6.8 square inches, and the population standard 

deviation is 2.61 inches (rounded off).

STDEVP and STDEVPA
The Excel worksheet functions STDEVP and STDEVPA calculate the popula-

tion standard deviation. After entering your numbers into your worksheet 

and selecting a cell

 1. Type your data into an array and select a cell for the result.

 2. In the Statistical Functions menu, select STDEVP to open the STDEVP 

Function Arguments dialog box.

 3. In the Function Arguments dialog box, type the appropriate values for 

the arguments.

  After you enter the data array, the dialog box shows the value of the pop-

ulation standard deviation for the numbers in the data array. Figure 5-4 

shows this.

10 454060-ch05.indd   10110 454060-ch05.indd   101 4/21/09   7:21:14 PM4/21/09   7:21:14 PM



102 Part II: Describing Data 

 

Figure 5-4: 
The 

Function 
Arguments 
dialog box 

for STDEVP, 
along with 

the data.
 

 4. Click OK to close the dialog box and put the result into the 

selected cell.

Like VARPA, STDEVPA uses any logical values and text values it finds when 

it calculates the population standard deviation. TRUE evaluates to 1.0 and 

FALSE evaluates to 0. Text in a cell gives that cell a value of 0.

Sample standard deviation
The standard deviation of a sample — an estimate of the standard deviation 

of a population — is the square root of the sample variance. Its symbol is s 
and its formula is

For these measurements (in inches)

50, 47, 52, 46, 45

the population variance is 8.4 square inches, and the population standard 

deviation is 2.92 inches (rounded off).

STDEV and STDEVA
The Excel worksheet functions STDEV and STDEVA calculate the sample stan-

dard deviation. To work with STDEV
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 1. Type your data into an array and select a cell for the result.

 2. In the Statistical Functions menu, select STDEV to open the STDEV 

Function Arguments dialog box.

 3. In the Function Arguments dialog box, type the appropriate values for 

the arguments.

  With the data array entered, the dialog box shows the value of the popu-

lation standard deviation for the numbers in the data array. Figure 5-5 

shows this.

 4. Click OK to close the dialog box and put the result into the 

selected cell.

STDEVA uses text and logical values in its calculations. Cells with text have 

values of 0, and cells whose values are FALSE also evaluate to 0. Cells that 

evaluate to TRUE have values of 1.0.

 

Figure 5-5: 
The 

Function 
Arguments 
dialog box 
for STDEV.

 

The missing functions: STDEVIF and 
STDEVIFS
Here’s a rule of thumb: Whenever you present a mean, provide a standard 

deviation. Use AVERAGE and STDEV in tandem.

Remember that Excel 2007 offers two new functions, AVERAGEIF and 

AVERAGEIFS, for calculating means conditionally. (See Chapter 4.) Two 

additional new functions would have been helpful: STDEVIF and STDEVIFS 

for calculating standard deviations conditionally when you calculate means 

conditionally.
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Excel 2007, however, doesn’t provide these functions. Instead, I show you 

a couple of workarounds that enable you to calculate standard deviations 

conditionally.

The workarounds filter out data that meet a set of conditions, and then 

calculate the standard deviation of the filtered data. Figure 5-6 shows what 

I mean. The data are from the fictional psychology experiment I describe in 

Chapter 4.

Here, once again, is the description:

A person sits in front of a screen and a color-filled shape appears. The color 

is either red or green and the shape is either a square or a circle. The combi-

nation for each trial is random, and all combinations appear an equal number 

of times. In the lingo of the field, each appearance of a color-filled shape is 

called a trial. So the worksheet shows the outcomes of 16 trials.

 

Figure 5-6: 
Filtering 
data to 

calculate 
standard 
deviation 

conditionally.
 

The person sitting in front of the screen presses a button as soon as he or she 

sees the shape. Column A presents the trial number. Columns B and C show 

the color and shape, respectively, presented on that trial. Column D (labeled 

RT_msec) presents one person’s reaction time in milliseconds (thousandths 

of a second) for each trial. So, for example, row 2 tells you that on the first trial, 

a red circle appeared and the person responded in 410 msec (milliseconds).

For each column, I defined the name in the top cell of the column to refer 

to the data in that column. If you don’t remember how to do that, reread 

Chapter 2.

Cell D19 displays the overall average of RT_msec. The formula for that aver-

age, of course, is

=AVERAGE(RT_msec)

10 454060-ch05.indd   10410 454060-ch05.indd   104 4/21/09   7:21:15 PM4/21/09   7:21:15 PM



105 Chapter 5: Deviating from the Average

Cell D20 shows the average for all trials on which a circle appeared. The for-

mula that calculates that conditional average is

=AVERAGEIF(Shape,”Circle”,RT_msec)

Cell D21 presents the average for trials on which a green square appeared. 

That formula is

=AVERAGEIFS(RT_msec, Color,”Green”, Shape,”Square”)

Columns H and K hold filtered data. Column H shows the data for trials that 

displayed a circle. Cell H19 presents the standard deviation for those trials 

and is the equivalent of

=STDEVIF(Shape,”Circle”,RT_msec)

if this function existed.

Column K shows the data for trials that displayed a green square. Cell K19 

presents the standard deviation for those trials, and is the equivalent of

=STDEVIFS(RT_msec, Color,”Green”,Shape,”Square”)

if that function existed. 

How did I filter the data? I’ll let you in on it in a moment, but first I have to tell 

you about . . . 

A little logic
In order to proceed, you have to know about two of Excel’s logic functions: IF 

and AND. You access them by clicking

Formulas | Logical Functions

and selecting them from the Logical Functions menu.

IF takes three arguments:

 ✓ A logical condition to be satisfied

 ✓ The action to take if the logical condition is satisfied (that is, if the value 

of the logical condition is TRUE)

 ✓ An optional argument that specifies the action to take if the logical 

condition is not satisfied (that is, if the value of the logical condition 

is FALSE)

Figure 5-7 shows the Function Arguments dialog box for IF.
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Figure 5-7: 
The 

Function 
Arguments 
dialog box 

for IF.
 

AND can take up to 255 arguments. AND checks to see if all of its arguments 

meet each specified condition — that is, if each condition is TRUE. If they all 

do, AND returns the value TRUE. If not, AND returns FALSE.

Figure 5-8 shows the Function Arguments dialog box for AND.

 

Figure 5-8: 
The 

Function 
Arguments 
dialog box 

for AND.
 

And now, back to the show
In this example, I use IF to set the value of a cell in column H to the corre-

sponding value in column D if the value in the corresponding cell in column C 

is “Circle”. The formula in cell H2 is 

=IF(C2=”Circle”,D2,” “)

If this were a phrase it would be, “If the value in C2 is ‘Circle’, then set the 

value of this cell to the value in D2. If not, leave this cell blank.” Autofilling the 

next 15 cells of column H yields the filtered data in column H in Figure 5-6. 

The standard deviation in cell H19 is the value STDEVIF would have provided.
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 I could have omitted the third argument (the two double-quotes) without 

affecting the value of the standard deviation. Without the third argument, 

Excel fills in FALSE for cells that don’t meet the condition instead of leaving 

them blank.

I use AND along with IF for the cells in column K. Each one holds the value 

from the corresponding cell in column D if two conditions are true:

 ✓ The value in the corresponding cell in column B is “Green” 

 ✓ The value in the corresponding cell in column C is “Square”

The formula for cell K2 is

=IF(AND(B2=”Green”,C2=”Square”),D2,” “)

If this was a phrase it would be, “If the value in B2 is ‘Green’ and the value in 

C2 is ‘Square’, then set the value of this cell to the value in D2. If not, leave 

this cell blank.” Autofilling the next 15 cells in column K results in the filtered 

data in column K in Figure 5-6. The standard deviation in cell K19 is the value 

STDEVIFS would have provided.

Related Functions
Before we move on, take a quick look at a couple of other variation-related 

worksheet functions.

DEVSQ
DEVSQ calculates the sum of the squared deviations from the mean (without 

dividing by N or by N-1). For these numbers

50, 47, 52, 46, 45

that’s 34, as Figure 5-9 shows.
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Figure 5-9: 
The DEVSQ 
dialog box.

 

Average deviation
One more Excel function deals with deviations in a way other than squaring 

them. 

The variance and standard deviation deal with negative deviations by squar-

ing all the deviations before averaging them. How about if we just ignore the 

minus signs? This is called taking the absolute value of each deviation. (That’s 

the way mathematicians say “How about if we just ignore the minus signs?”). 

If we do that for the heights

50, 47, 52, 46, 45

we can put the absolute values of the deviations into a table like Table 5-4.

Table 5-4 A Group of Numbers and Their Absolute Deviations
Height Height-Mean |Deviation|

50 50-48 2

47 47-48 1

52 52-48 4

46 46-48 2

45 45-48 3
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 In Table 5-4, notice the vertical lines around Deviation in the heading for the 

third column. Vertical lines around a number symbolize its absolute value. 

That is, the vertical lines are the mathematical symbol for “How about if we 

just ignore the minus signs?” 

The average of the numbers in the third column is 2.4. This average is called 

the average absolute deviation, and it’s a quick and easy way to characterize 

the spread of measurements around their mean. It’s in the same units as the 

original measurements. So if the heights are in inches, the absolute average 

deviation is in inches, too.

Like variance and standard deviation, a large average absolute deviation 

signifies a lot of spread. A small average absolute deviation signifies little 

spread. 

 This statistic is less complicated than variance or standard deviation, but is 

rarely used. Why? For reasons that are (once again) beyond our scope, statis-

ticians can’t use it as the foundation for additional statistics you’ll meet later. 

Variance and standard deviation serve that purpose.

AVEDEV
Excel’s AVEDEV worksheet function calculates the average absolute devia-

tion of a group of numbers. Figure 5-10 shows the AVEDEV dialog box, which 

presents the average absolute deviation for the cells in the indicated range.

 

Figure 5-10: 
The AVEDEV 

Function 
Arguments 
dialog box.
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Chapter 6

Meeting Standards and Standings
In This Chapter
▶ How to standardize scores

▶ Making comparisons

▶ Ranks in files

▶ Rolling in the percentiles

In my left hand I hold 15 Argentine pesos. In my right, I hold 100 Chilean 

pesos. Which is worth more? Both currencies are called pesos, right? So 

shouldn’t the 100 be greater than the 15? Not necessarily. “Peso” is just word 

magic — a coincidence of names. Each one comes out of a different country, 

and each country has its own economy. To compare the two amounts of 

money, you have to convert each currency into a standard unit. The most 

intuitive standard for us is our own currency. How much is each amount 

worth in dollars and cents? As I write this, 15 Argentine pesos are worth 

more than $4. One hundred Chilean pesos are worth about 15 cents. 

In this chapter, I show you how to use statistics to create standard units. 

Standard units show you where a score stands in relation to other scores in a 

group, and I show you additional ways to determine a score’s standing within 

a group. 

Catching Some Zs
As the previous paragraph shows, a number in isolation doesn’t really tell 

a story. In order to fully understand what a number means, you have to 

consider the process that produced it. In order to compare one number to 

another, they both have to be on the same scale. 

In some cases, like currency conversion, it’s easy to figure out a standard. In 

others, like temperature conversion or conversion into the metric system, a 

formula guides you.
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When it’s not all laid out for you, you can use the mean and the standard 

deviation to standardize scores that come from different processes. The idea 

is to take a set of scores and use its mean as a zero-point and its standard 

deviation as a unit of measure. Then you compare the deviation of each score 

from the mean to the standard deviation. You’re asking “how big is a particu-

lar deviation relative to (something like) an average of all the deviations?”

To do this, you divide the score’s deviation by the standard deviation. In 

effect, you transform the score into another kind of score. The transformed 

score is called a standard score, or a z-score. 

 The formula for this is

if you’re dealing with a sample, and

if you’re dealing with a population. In either case, x represents the score 

you’re transforming into a z-score. 

Characteristics of z-scores
A z-score can be positive, negative, or zero. A negative z-score represents a 

score that’s less than the mean and a positive z-score represents a score that’s 

greater than the mean. When the score is equal to the mean, its z-score is zero.

When you calculate the z-score for every score in the set, the mean of the 

z-scores is 0, and the standard deviation of the z-scores is 1.

After you do this for several sets of scores, you can legitimately compare 

a score from one set to a score from another. If the two sets have different 

means and different standard deviations, comparing without standardizing is 

like comparing apples with kumquats.

In the examples that follow, I show how to use z-scores to make comparisons.

Bonds versus The Bambino
Here’s an important question that often comes up in the context of serious 

metaphysical discussions: Who is the greatest home run hitter of all time, 

11 454060-ch06.indd   11211 454060-ch06.indd   112 4/21/09   7:21:57 PM4/21/09   7:21:57 PM



113 Chapter 6: Meeting Standards and Standings

Barry Bonds or Babe Ruth? Although this is a difficult question to answer, 

one way to get your hands around it is to look at each player’s best season 

and compare the two. Bonds hit 73 home runs in 2001, and Ruth hit 60 in 

1927. On the surface, Bonds appears to be the more productive hitter. 

The year 1927 was very different from 2001, however. Baseball (and every-

thing else) went through huge changes in the intervening years, and player 

statistics reflect those changes. A home run was harder to hit in the 20s than 

in the 00s. Still, 73 versus 60? Hmmm . . .

Standard scores can help us decide whose best season was better. To stan-

dardize, I took the top 50 home run hitters of 1927 and the top 50 from 2001. 

I calculated the mean and standard deviation of each group, and then turned 

Ruth’s 60 and Bonds’s 73 into z-scores. 

The average from 1927 is 12.68 homers with a standard deviation of 10.49. 

The average from 2001 is 37.02 homers with a standard deviation of 9.64. 

Although the means differ greatly, the standard deviations are pretty close.

And the z-scores? Ruth’s is

Bonds’s is

The clear winner in the z-score best-season home run derby is Babe Ruth. 

Period.

Just to show you how times have changed, Lou Gehrig hit 47 home runs in 

1927 (finishing second to Ruth) for a z-score of 3.27. In 2001, 47 home runs 

amounted to a z-score of 1.04. 

Exam scores
Getting away from sports debates, one practical application of z-scores is the 

assignment of grades to exam scores. Based on percentage scoring, instruc-

tors traditionally evaluate a score of 90 points or higher (out of 100) as an A, 

80–89 points as a B, 70–79 points as a C, 60–69 points as a D, and less than 

60 points as an F. Then they average scores from several exams together to 

assign a course grade. 
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Is that fair? Just as a peso from Argentina is worth more than a peso from Chile, 

and a home run was harder to hit in 1927 than in 2001, is a point on one exam 

worth the same as a “point” on another? Like peso, isn’t that just word magic? 

Indeed it is. A point on a difficult exam is, by definition, harder to come by 

than a point on an easy exam. Because points might not mean the same thing 

from one exam to another, the fairest thing to do is convert scores from each 

exam into z-scores before averaging them. That way, you’re averaging num-

bers on a level playing field.

In the courses I teach, I do just that. I often find that a lower numerical score 

on one exam results in a higher z-score than a higher numerical score from 

another exam. For example, on an exam where the mean is 65 and the stan-

dard deviation is 12, a score of 71 results in a z-score of .5. On another exam, 

with a mean of 69 and a standard deviation of 14, a score of 75 is equivalent 

to a z-score of .429. (Yes, it’s like Ruth’s 60 home runs versus Bonds’s 73.) 

Moral of the story: Numbers in isolation tell you very little. You have to 

understand the process that produces them.

STANDARDIZE
Excel’s STANDARDIZE worksheet function calculates z-scores. Figure 6-1 

shows a set of exam scores along with their mean and standard devia-

tion. I used AVERAGE and STDEVP to calculate the statistics. The Function 

Arguments dialog box for STANDARDIZE is also in the figure. 

 

Figure 6-1: 
Exam 

scores and 
the Function 

Arguments 
dialog 

box for 
STANDARD-

IZE.
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Here are the steps:

 1. Enter the data into an array and select a cell. 

  The data are in C2:C32. I selected D2 to hold the z-score for the score 

in C2. Ultimately, I’ll autofill column D and line up all the z-scores next to 

the corresponding exam scores.

 2. From the Statistical Functions menu, select STANDARDIZE to open the 

Function Arguments dialog box for STANDARDIZE.

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments.

  First, I entered the cell that holds the first exam score into the X box. In 

this example, that’s D2. 

  In the Mean box, I entered the cell that holds the mean — C33 for this 

example. It has to be in absolute reference format, so the entry is $C$33. 

Caching some z’s
Because negative z-scores might have con-
notations that are, well, negative, educators 
sometimes change the z-score when they 
evaluate students. In effect, they’re hiding the 
z-score, but the concept is the same — stan-
dardization with the standard deviation as the 
unit of measure.

One popular transformation is called the 
T-score. The T-score eliminates negative 
scores because a set of T-scores has a mean 
of 50 and a standard deviation of 10. The idea 
is to give an exam, grade all the tests, and cal-
culate the mean and standard deviation. Next, 
turn each score into a z-score. Then follow this 
formula:

  

People who use the T-score often like to round 
to the nearest whole number.

SAT scores are another transformation of the 
z-score. (Some refer to the SAT as a C-score.) 

The SAT has a mean of 500 and a standard devi-
ation of 100. After the exams are graded, and 
their mean and standard deviation calculated, 
each exam score becomes a z-score in the 
usual way. This formula converts the z-score 
into a SAT score:

  

Rounding to the nearest whole number is part of 
the procedure here, too.

The IQ score is still another transformed z. Its 
mean is 100 and (in the Stanford-Binet version) 
its standard deviation is 16. What’s the proce-
dure for computing an IQ score? You guessed 
it. In a group of IQ scores, calculate the mean 
and standard deviation, and then calculate the 
z-score. Then it’s 

  

As with the other two, IQ scores are rounded to 
the nearest whole number.
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You can type it that way, or you select C33 and then highlight the Mean 

box and press the F4 key.

  In the Standard_dev box, I entered the cell that holds the standard devi-

ation. The appropriate cell in this example is C34. This also has to be in 

absolute reference format, so the entry is $C$34.

 4. Click OK to close the Function Arguments dialog box and put the 

z-score for the first exam score into the selected cell.

To finish up, I positioned the cursor on the selected cell’s autofill handle, 

hold the left mouse button down, and drag the cursor to autofill the remain-

ing z-scores. 

Figure 6-2 shows the autofilled array of z-scores.

 

Figure 6-2: 
The auto-

filled array 
of z-scores.

 

Where Do You Stand?
Standard scores are designed to show you how a score stands in relation to 

other scores in the same group. To do this, they use the standard deviation 

as a unit of measure.
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If you don’t want to use the standard deviation, you can show a score’s rela-

tive standing in a simpler way. You can determine the score’s rank within the 

group: The highest score has a rank of 1, the second highest has a rank of 2, 

and so on. 

RANK
With Excel’s RANK function you can quickly determine the ranks of all the 

scores in a group. Figure 6-3 shows the Function Arguments dialog box for 

RANK along with a group of scores. I’ve also set up a column for the ranks. 

 

Figure 6-3: 
Working 

with RANK.
 

Here are the steps for using RANK:

 1. Enter the data into an array and select a cell. 

  For this example, I entered the scores into cells C2 through C16, and 

selected cell D2.

 2. From the Statistical Functions menu select RANK to open the Function 

Arguments dialog box for RANK.

 3. In the Function Arguments dialog box, type the appropriate values for 

the arguments.

  In the Number box, I entered the cell that holds the score whose rank I 

want to insert into the selected cell. For this example, that’s C2. 

  In the Ref box, I entered the array that contains the scores. I enter 

C2:C16 into the Ref box.

  This part is important. After I insert RANK into D2 I’m going to drag the 

cursor through column D and autofill the ranks of the remaining scores. 

To set up for this, I have to let Excel know I want C2 through C16 to be 

the array for every score, not just the first one. 
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  That means the array in the Ref box has to look like this: $C$2:$C$16. I 

can either add the $-signs manually, or highlight the Ref box and then 

press the F4 key.

  In the Order box, I indicate the order for sorting the scores. To rank the 

scores in descending order, I can either leave the Order box alone or 

type 0 (zero) into that box. To rank the scores in ascending order, I type 

a non-zero value into the Order box. I left this box alone.

 4. Click OK to put the rank into the selected cell.

I then position the cursor on the selected cell’s autofill handle, hold the left 

mouse button down, and drag the cursor to autofill the ranks of the remain-

ing scores. (See Figure 6-4.)

 

Figure 6-4: 
The auto-

filled ranks.
 

LARGE and SMALL
You can turn the ranking process inside out by supplying a rank and asking 

which score has that rank. The worksheet functions LARGE and SMALL 

handle this from either end. They tell you the fifth largest score or the third 

smallest score, or any other rank you’re interested in.

Figure 6-5 shows the Function Arguments dialog box for LARGE. In the Array 

box you enter the array of cells that holds the group of scores. In the K box 

you enter the position whose value you want to find. To find the seventh larg-

est score in the array, for example, type 7 into the K box. 

SMALL does the same thing, except it finds score positions from the lower 

end of the group. The Function Arguments dialog box for SMALL also has an 

Array box and a K box. Entering 7 in this K box returns the seventh lowest 

score in the array.
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Figure 6-5: 
The 

Function 
Arguments 
dialog box 
for LARGE.

 

PERCENTILE and PERCENTRANK
Closely related to rank is the percentile, which represents a score’s standing 

in the group as the percent of scores below it. If you’ve taken standardized 

tests like the SAT, you’ve encountered percentiles. An SAT score in the 80th 

percentile is higher than 80 percent of the other SAT scores.

Excel’s PERCENTILE function enables you to find the value at any percentile. 

Figure 6-6 shows the Function Arguments dialog box PERCENTILE. The dialog 

box shows the 75th percentile (the value that’s greater than 75 percent of 

the scores) for the numbers in cells C2 through C16. In this example, the 75th 

percentile is 72.5.

 

Figure 6-6: 
The 

Function 
Arguments 

dialog 
box for 

PERCENT-
ILE. 

 

 In the PERCENTILE dialog box, you enter the percentile into the K box. Enter it 

as a decimal, so that the 75th percentile is .75.
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In contrast to percentiles, you might be interested in the flip side: Given a 

value, what percent of scores falls below it? PERCENTRANK handles this. In 

Figure 6-7 the Function Arguments dialog box for PERCENTRANK shows the 

percent rank of 65 for the scores in cells C2 through C16. (It’s 0.642, or 64.2 

percent.) The Array box holds the array of cells and the X box holds the score 

(65). The Significance box is optional: You can enter the amount of significant 

figures in which you would like the answer to appear, or you can leave it blank.

 

Figure 6-7: 
The 

Function 
Arguments 

dialog 
box for 

PERCENT-
RANK. 

 

Drawn and quartiled
A few specific percentiles are often used to 
summarize a group of scores. The median— 
the 50th percentile (because it’s higher than 50 
percent of the scores) — is one of them. Three 
others are the 25th percentile, the 75th and the 
100th percentile (the maximum score). Because 

they divide a group of scores into fourths, these 
particular four percentiles are called quartiles. 
Excel’s QUARTILE function calculates them. 
Selecting QUARTILE from the Insert Function 
dialog box opens the QUARTILE dialog box 
shown in the figure.

The trick is to enter the right kind of numbers 
into the Quart box — 1 for the 25th percentile, 
2 for the 50th, 3 for the 75th, and 4 for the 100th. 

Entering 0 into the Quart box gives you the 
lowest score in the group.
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 For the X box, you can enter either the value of a score or the label of the 

cell in which it appears. In this example, C10 in the X box gives you the same 

result as putting 65 in the X box.

Data analysis tool: Rank and Percentile
As the name of this section indicates, Excel provides a data analysis tool 

that calculates ranks and percentiles of each score in a group. The Rank and 

Percentiles tool calculates both at the same time, so it saves you some steps 

versus using the separate worksheet functions. (See Chapter 2 to install 

Excel’s data analysis tools.) In Figure 6-8, I take the exam scores from the 

z-score example and open the Rank and Percentile dialog box. 

 

Figure 6-8: 
The Rank 

and 
Percentile 

analysis 
tool. 

 

Here are the steps for using Rank and Percentile:

 1. Type your data into an array.

  In this example, the data are in cells C2 through C32. 

 2. In the Tools menu, choose Data Analysis to open the Data Analysis 

dialog box.

 3. In the Data Analysis dialog box, select Rank and Percentile.

 4. Click OK to open the Rank and Percentile dialog box.
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 5. In the Rank and Percentile dialog box, enter the data array into the 

Input Range box. Make sure that it’s in absolute reference format.

  In this example, a label is in the first row (in cell C1). I want the label 

included in the output, so I enter $C$1:$C$32 in the Input Range box, 

and I check the Labels in First Row checkbox.

 6. Click the Columns radio button to indicate that the data are organized 

by columns.

 7. Click the New Ply radio button to create a new tabbed page in the 

worksheet, and to send the results to the newly created page.

 8. Click OK to close the dialog box. Open the newly created page to see 

the results.

Figure 6-9 shows the new page with the results. The table orders the scores 

from highest to lowest, as the Score column shows along with the Rank 

column. The Point column tells you the score’s position in the original group-

ing. For example, the 98 in cell B2 is the 12th score in the original data. The 

Percent column gives the percentile for each score.

 

Figure 6-9: 
The Output 

of the 
Rank and 

Percentile 
analysis 

tool. 
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Chapter 7

Summarizing It All
In This Chapter
▶ Things great and small

▶ Symmetry, peaks, and plateaus

▶ Getting descriptive

▶ Statistics served up on a tray

Measures of central tendency and variability are excellent ways of sum-

marizing a set of scores. They aren’t the only ways. Central tendency 

and variability make up a subset of descriptive statistics. Some descriptive 

statistics are intuitive — like count, maximum, and minimum. Some are not — 

like skewness and kurtosis. 

In this chapter, I discuss descriptive statistics, and I show you Excel’s capa-

bilities for calculating them and visualizing them.

Counting Out
The most fundamental descriptive statistic I can imagine is the number of 

scores in a set of scores. Excel offers five ways to determine that number. 

Yes, five ways. Count them.

COUNT, COUNTA, COUNTBLANK, 
COUNTIF, COUNTIFS
Given an array of cells, COUNT gives you the amount of those cells that 

contain numerical data. Figure 7-1 shows that I’ve entered a group of scores, 

selected a cell to hold COUNT’s result, and opened the Function Arguments 

dialog box for COUNT. Here are the steps:
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Figure 7-1: 
The 

Function 
Arguments 
Dialog Box 
for COUNT, 

showing 
multiple 

arguments.
 

 1. Enter your data into the worksheet and select a cell for the result. 

  I entered data into columns C, D, and E to show off COUNT’s multi-argu-

ment capability. I selected cell C14 to hold the count.

 2. From the Statistical Functions menu, select COUNT and click OK to 

open the Function Arguments dialog box for COUNT. 

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments.

  In the Number1 box I entered one of the data columns for this example, 

like C1:C12. 

  I clicked in the Number2 box and entered another data column. I entered 

D1:D6. 

  I clicked in the Number3 box and entered the last column, which in this 

example is E1:E2.

 4. Click OK to put the result in the selected cell.

COUNTA works like COUNT, except that its tally includes cells that contain 

text and logical values in its tally. 

COUNTBLANK counts the number of blank cells in an array. In Figure 7-2, 

I use the numbers from the preceding example, but I extend the array to 

include cells D7 through D12 and E3 through E12. The array in the Range box 

is C1:E12. The Argument Functions dialog box for COUNTBLANK shows the 

number of blank cells (16 for this example).
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Figure 7-2: 
COUNT
BLANK 

tallies the 
blank cells 
in a speci-
fied array.

 

COUNTIF shows the number of cells whose value meets a specified crite-

rion. Figure 7-3 reuses the data once again, showing the Arguments Function 

dialog box for COUNTIF. Although the range is C1:E12, COUNTIF doesn’t 

include blank cells. 

 

Figure 7-3: 
COUNTIF 
tallies the 
amount of 

cells whose 
data meet 

a specified 
criterion.

 

The criterion I used, >= 89, tells COUNTIF to count only the cells whose 

values are greater than or equal to 89. For this example, that count is 1.

 This probably won’t make much difference as you use this function, but a 

little quirk of Excel shows up here. If you put double quotes around the cri-

terion, the result appears in the dialog box before you click OK. If you don’t, 

it doesn’t. If you click OK without quoting, Excel supplies the quotes and the 

result appears in the selected cell, and Excel applies the quotes. 

COUNTIFS is new in Excel 2007. This function can use multiple criteria to 

determine the count. If the criteria come from two arrays, they must have 

the same number of cells. This is because COUNTIFS counts pairs of cells. It 

includes a pair of cells in the count if one of the cells meets a criterion and 

the other meets a criterion. Take a look at Figure 7-4.
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Figure 7-4: 
Working 

with 
COUNTIFS.

 

In this example, COUNTIFS operates in C1:C6 and D1:D6. The criterion for the 

cells in column C is >=40. The criterion for the cells in column D is >50. This 

means that COUNTIFS counts cell-pairs whose C cell holds a value greater 

than or equal to 40 and whose D cell holds a value greater than 50. Only two 

cell-pairs meet these conditions, as the dialog box shows.

You can use a cell range more than once in COUNTIFS. For example

=COUNTIFS(C1:C12,”>30”,C1:C12,”<60”)

gives the number of cells in which the value is between 30 and 60 (not includ-

ing 30 and 60).

The Long and Short of It
Two more descriptive statistics that probably require no introduction are the 

maximum and the minimum. These, of course, are the largest value and the 

smallest value in a group of scores. 

MAX, MAXA, MIN, and MINA 
Excel has worksheet functions that determine a group’s largest and smallest 

values. I show you what MAX is all about. The others work in a similar fashion.

Figure 7-5 reuses the scores from the preceding examples. I selected a cell to 

hold their maximum value, and opened the Function Arguments dialog box 

for MAX. Here are the steps:
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Figure 7-5: 
The 

Function 
Arguments 
dialog box 

for MAX.
 

 1. Type your data into the worksheet and select a cell to hold the result. 

  I entered data into columns C, D, and E to show off MAX’s multi-argu-

ment capability. For this example, I selected cell C14.

 2. From the Statistical Functions menu select MAX to open the Function 

Arguments dialog box for MAX. 

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments. 

  In the Number1 box, I entered one of the data columns, C1:C12. 

  Clicking the Number2 box creates and opens the Number3 box. In the 

Number2 box, I entered another array, D1:D6. 

  I clicked in the Number3 box and entered the last array, E1:E2.

 4.  Click OK to put the result in the selected cell.

MAX ignores any text or logical values it encounters along the way. MAXA 

takes text and logical values into account when it finds the maximum. If 

MAXA encounters the logical value TRUE, it converts that value to 1. MAXA 

converts FALSE, or any text other than “TRUE”, to 0. 

MIN and MINA work the same way as MAX and MAXA, except that they find 

the minimum rather than the maximum. Take care when you use MINA, 

because the conversions of logical values and text to 0 and 1 influence the 

result. With the numbers in the preceding example, the minimum is 22. If you 

enter FALSE or other text into a cell in any of the arrays, MINA gives 0 as the 

minimum. If you enter TRUE, MINA gives 1 as the minimum.
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Getting Esoteric
In this section, I discuss some little-used statistics that are related to the 

mean and the variance. For most people, the mean and the variance are 

enough to describe a set of data. These other statistics, skewness and kurto-
sis, go just a bit further. You might use them someday if you have a huge set 

of data and you want to provide some in-depth description.

Think of the mean as locating a group of scores by showing you where their 

center is. This is the starting point for the other statistics. With respect to the 

mean

 ✓ The variance tells you how spread out the scores are. 

 ✓ Skewness indicates how symmetrically the scores are distributed. 

 ✓ Kurtosis shows you whether or not your scores are distributed with a 

peak in the neighborhood of the mean.

 Skewness and kurtosis are related to the mean and variance in fairly involved 

mathematical ways. The variance involves the sum of squared deviations 

of scores around the mean. Skewness depends on cubing the deviations 

around the mean before you add them all up. Kurtosis takes it all to a higher 

power — the fourth power, to be exact. I get more specific in the subsections 

that follow.

SKEW
Figure 7-6 shows three histograms. The first is symmetric, the other two are 

not. The symmetry and the asymmetry are reflected in the skewness statistic. 

For the symmetric histogram, the skewness is 0. For the second histogram — 

the one that tails off to the right — the value of the skewness statistic is posi-

tive. It’s also said to be skewed to the right. For the third histogram (which 

tails off to the left), the value of the skewness statistic is negative. It’s also 

said to be skewed to the left.

 Where do zero, positive, and negative skew come from? They come from this 

formula:

In the formula,  is the mean of the scores, N is the number of scores, and s 

is the standard deviation.
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Figure 7-6: 
Three his-

tograms 
showing 

three kinds 
of skew-

ness.
 

Symmetric: Skewness = 0 

Skewed to the right: Skewness is positive 

Skewed to the left: Skewness is negative 

I include this formula for completeness. If you’re ever concerned with skew-

ness, you probably won’t use this formula anyway because Excel’s SKEW 

function does the work for you. 

To use SKEW:

 1. Type your numbers into a worksheet and select a cell for the result. 

  For this example, I’ve entered scores into the first ten rows of columns 

C, D, E, and F. (See Figure 7-7.) I selected cell I2 for the result.

 2. From the Statistical Functions menu, select SKEW to open the Function 

Arguments dialog box for SKEW. 

 3. In the Function Arguments dialog box, type the appropriate values for 

the arguments. 

  In the Number1 box, enter the array of cells that holds the data. For this 

example, the array is C1:F10. With the data array entered, the Function 

Arguments dialog box shows the skewness, which for this example is 

negative. 

 4. Click OK to put the result into the selected cell.
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Figure 7-7: 
Using the 

SKEW 
function to 

calculate 
skewness.

 

KURT 
Figure 7-8 shows two histograms. The first has a peak at its center, the 

second is flat. The first is said to be leptokurtic. Its kurtosis is positive. The 

second is platykurtic. Its kurtosis is negative. 

 

Figure 7-8: 
Two his-
tograms 
showing 

two kinds of 
kurtosis.

 

Leptokurtic: Kurtosis is positive

Platykurtic: Kurtosis is negative
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 Negative? Wait a second. How can that be? I mentioned earlier that kurtosis 

involves the sum of fourth powers of deviations from the mean. Because four 

is an even number, even the fourth power of a negative deviation is positive. If 

you’re adding all positive numbers, how can kurtosis ever be negative?

Here’s how. The formula for kurtosis is

where  is the mean of the scores, N is the number of scores, and s is the 

standard deviation.

Uh . . . why 3? The 3 comes into the picture because that’s the kurtosis of 

something special called the standard normal distribution. (I discuss the 

normal distribution at length in Chapter 8.) Technically, statisticians refer to 

this formula as kurtosis excess — meaning that it shows the kurtosis in a set 

of scores that’s in excess of the standard normal distribution’s kurtosis. If 

you’re about to ask the question “Why is the kurtosis of the standard normal 

distribution equal to 3?” don’t ask.

This is another formula you’ll probably never use because Excel’s KURT func-

tion takes care of business. Figure 7-9 shows the scores from the preceding 

example, a selected cell, and the Function Arguments dialog box for KURT. 

 

Figure 7-9: 
Using KURT 
to calculate 

kurtosis.
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To use KURT:

 1. Enter your numbers into a worksheet and select a cell for the result. 

  For this example, I entered scores into the first ten rows of columns C, 

D, E, and F. I selected cell I2 for the result.

 2. From the Statistical Functions menu, select KURT to open the Function 

Arguments dialog box for KURT. 

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments. 

  In the Number1 box, I entered the array of cells that holds the data. 

Here, the array is C1:F10. With the data array entered, the Function 

Arguments dialog box shows the kurtosis, which for this example is 

negative. 

 4. Click OK to put the result into the selected cell.

Tuning In the Frequency
Although the calculations for skewness and kurtosis are all well and good, 

it’s helpful to see how the scores are distributed. To do this, you create a fre-
quency distribution, a table that divides the possible scores into intervals and 

shows the number (the frequency) of scores that fall into each interval.

Excel gives you two ways to create a frequency distribution. One is a work-

sheet function, the other is a data analysis tool.

FREQUENCY
I show you the FREQUENCY worksheet function in Chapter 2 when I intro-

duce array functions. Here, I give you another look. In the upcoming example, 

I reuse the data from the skewness and kurtosis discussions so you can see 

what the distribution of those scores looks like.

Figure 7-10 shows the data once again, along with a selected array, labeled 

Frequency. I’ve also added the label Intervals to a column, and in that column 

I put the interval boundaries. Each number in that column is the upper bound 

of an interval. The figure also shows the Function Arguments dialog box for 

FREQUENCY.
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Figure 7-10: 
Finding the 

frequencies 
in an array 

of cells.
 

This is an array function, so the steps are a bit different from the functions I 

showed you so far in this chapter.

 1. Enter the scores into an array of cells.

  The array, as in the preceding examples is C1:F10.

 2. Enter the intervals into an array.

  I entered 5, 10, 15, 20, 25, and 30 into H2:H7.

 3. Select an array for the resulting frequencies. 

  I put Frequency as the label at the top of column I, so I selected I2 

through I7 to hold the resulting frequencies. 

 4. From the Statistical Functions menu, select FREQUENCY to open the 

Function Arguments dialog box for FREQUENCY.

 5. In the Function Arguments dialog box, enter the appropriate values 

for the arguments. 

  In the Data_array box I entered the cells that hold the scores. In this 

example, that’s C1:F10. 

  FREQUENCY refers to intervals as “bins,” and holds the intervals in the 

Bins_array box. For this example, H2:H7 goes into the Bins_array box. 

  After I identified both arrays, the Function Arguments dialog box shows 

the frequencies inside a pair of curly brackets. Look closely at Figure 7-10 

and you see that Excel adds a frequency of zero to the end of the set of 

frequencies.
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 6. Press Ctrl+Shift+Enter to close the Function Arguments dialog box.

  Use this keystroke combination because FREQUENCY is an array function.

When you close the Function Arguments dialog box, the frequencies go into 

the appropriate cells, as Figure 7-11 shows.

 

Figure 7-11: 
FREQUENCY’s 
frequencies.

 

 If I had assigned the name Data to C1:F10 and the name Interval to H2:H7, and 

used those names in the Function Arguments dialog box, the resulting formula 

would have been 

=FREQUENCY(Data,Interval)

which might be easier to understand than 

=FREQUENCY(C1:F10,H2:H7)

(Don’t remember how to assign a name to a range of cells? Take another look 

at Chapter 2.)

Data analysis tool: Histogram
Here’s another way to create a frequency distribution — with the Histogram 

data analysis tool. To show you that the two methods are equivalent, I use 

the data from the FREQUENCY example. Figure 7-12 shows the data along 

with the Histogram dialog box.

The steps are:

 1. Enter the scores into an array, and enter intervals into another array.

 2. Click on Data | Data Analysis to open the Data Analysis dialog box.

 3. From the Data Analysis dialog box, select Histogram to open the 

Histogram dialog box.
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Figure 7-12: 
The 

Histogram 
analysis 

tool.
 

 4. In the Histogram dialog box, enter the appropriate values. 

  The data are in cells C1 through F10, so C1:F10 goes into the Input Range 

box. The easiest way to enter this array is to click on C1, press and 

hold the Shift key, and then click F10. Excel puts the absolute reference 

format ($C$1:$F$10) into the Input Range box. 

  In the Bin Range box, I enter the array that holds the intervals. In this 

example, that’s H2 through H7. I click on H2, press and hold the Shift 

key, and then click H7. The absolute reference format ($H$2:$H$7) 

appears in the Bin Range box.

 5. Click the New Worksheet Ply radio button to create a new tabbed 

page and to put the results on the new page.

 6. Click the Chart Output checkbox to create a histogram and visualize 

the results. 

 7. Click OK to close the dialog box.

Figure 7-13 shows Histogram’s output. The table matches up with what 

FREQUENCY produces. Notice that Histogram adds “More” to the Bin column. 

The size of the histogram is somewhat smaller when it first appears. I used 

the mouse to stretch the histogram and give it the appearance you see in the 

figure. The histogram shows that the distribution does tail off to the left (con-

sistent with the negative skewness statistic) and seems to not have a distinc-

tive peak (consistent with the negative kurtosis statistic). 
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Figure 7-13: 
The 

Histogram 
tool’s out-
put (after I 
stretched 

the chart).
 

By the way, the other checkbox options on the Histogram dialog box are 

Pareto chart and Cumulative percentage. The Pareto chart sorts the inter-

vals in order from highest frequency to lowest before creating the graph. 

Cumulative percentage shows the percentage of scores in an interval com-

bined with the percentages in all the preceding intervals. Checking this box 

also puts a cumulative percentage line in the histogram.

Can You Give Me a Description?
If you’re dealing with individual descriptive statistics, the worksheet func-

tions I’ve discussed get the job done nicely. If you want an overall report that 

presents just about all the descriptive statistical information in one place, 

use the Data Analysis tool I describe in the next section.

Data analysis tool: Descriptive Statistics
In Chapter 2, I show you the Descriptive Statistics tool to introduce Excel’s 

data analysis tools. Here’s a slightly more complex example. Figure 7-14 

shows three columns of scores and the Descriptive Statistics dialog box. I’ve 

labeled the columns First, Second, and Third so you can see how this tool 

incorporates labels. 

Here are the steps for using this tool:

 1. Enter the data into an array.

12 454060-ch07.indd   13612 454060-ch07.indd   136 4/21/09   7:22:40 PM4/21/09   7:22:40 PM



137 Chapter 7: Summarizing It All

 

Figure 7-14: 
The 

Descriptive 
Statistics 

tool at work.
 

 2. Select Data | Data Analysis to open the Data Analysis dialog box.

 3. Choose Descriptive Statistics to open the Descriptive Statistics 

dialog box.

 4. In the Descriptive Statistics dialog box, enter the appropriate values.

  In the Input Range box, I enter the data. The easiest way to do this is to 

move the cursor to the upper-left cell (B1), press the Shift key, and click 

the lower-right cell (D9). That puts $B$1:$D$9 into Input Range.

 5. Click the Columns radio button to indicate that the data are organized 

by columns.

 6. Check the Labels in First Row checkbox, because the Input Range 

includes the column headings.

 7. Click the New Worksheet Ply radio button to create a new tabbed 

sheet within the current worksheet, and to send the results to the 

newly created sheet.

 8. Click the Summary Statistics checkbox, and leave the others 

unchecked.

 9. Click OK to close the dialog box.

  The new tabbed sheet (ply) opens, displaying statistics that summarize 

the data. 

  As Figure 7-15 shows, the statistics summarize each column separately. 

When this page first opens, the columns that show the statistic names 

are too narrow, so the figure shows what the page looks like after I wid-

ened the columns.
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Figure 7-15: 
The 

Descriptive 
Statistics 

tool’s 
output.

 

The Descriptive Statistics tool gives values for these statistics: mean, stan-

dard error, median, mode, standard deviation, sample variance, kurtosis, 

skewness, range, minimum, maximum, sum, and count. Except for standard 

error and range, I’ve discussed all of them. 

Range is just the difference between the maximum and the minimum. 

Standard error is more involved, and I defer the explanation until Chapter 9. 

For now, I’ll just say that standard error is the standard deviation divided by 

the square root of the sample size and leave it at that.

By the way, one of the checkboxes left unchecked in the example’s Step 6 

provides something called the Confidence Limit of the Mean, which I also 

defer until Chapter 9. The remaining two checkboxes, Kth Largest and Kth 

Smallest, work like the functions LARGE and SMALL.

Instant Statistics 
Suppose you’re working with a cell range full of data. You might like to 

quickly know the status of the average and perhaps some other descrip-

tive statistics about the data without going to the trouble of using several 

Statistical functions. 

You can customize the Status bar at the bottom of the worksheet to track 

these values for you and display them whenever you select the cell range. 

To do this, right-click the status bar to open the Customize Status Bar menu. 

(See Figure 7-16.) In the area second from the bottom, checking all the items 

displays the values I mention in the preceding section (along with the count 

of items in the range — numerical and non-numerical).
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Figure 7-16: 
The 

Customize 
Status Bar 

menu.
 

Figure 7-17 shows these values displayed on the Status bar for the cells I 

selected.

 

Figure 7-17: 
Displaying 
values on 
the status 

bar.
 

12 454060-ch07.indd   13912 454060-ch07.indd   139 4/21/09   7:22:41 PM4/21/09   7:22:41 PM



140 Part II: Describing Data 

12 454060-ch07.indd   14012 454060-ch07.indd   140 4/21/09   7:22:41 PM4/21/09   7:22:41 PM



Chapter 8

What’s Normal?
In This Chapter
▶ Meet the normal distribution

▶ Standard deviations and the normal distribution

▶ Excel’s normal distribution-related functions

A main job of statisticians is to estimate population characteristics. 

The job becomes easier if they can make some assumptions about the 

populations they study.

One particular assumption works over and over again: A specific attribute, 

trait, or ability is distributed throughout a population so that most people 

have an average or near-average amount of the attribute, and progressively 

fewer people have increasingly extreme amounts of the attribute. In this 

chapter, I discuss this assumption and what it means for statistics. I also 

describe Excel functions related to this assumption.

Hitting the Curve
When you measure something in the physical world like length or weight, 

you deal with objects you can see and touch. Statisticians, social scientists, 

market researchers, and businesspeople, on the other hand, often have to 

measure something they can’t see or put their hands around. Traits like 

intelligence, musical ability, or willingness to buy a new product fall into this 

category. 

These kinds of traits are usually distributed throughout the population so 

that most people are around the average — with progressively fewer people 

represented toward the extremes. Because this happens so often, it’s become 

an assumption about how most traits are distributed. 
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It’s possible to capture the most-people-are-about-average assumption in a 

graphic way. Figure 8-1 shows the familiar bell curve that characterizes how a 

variety of attributes are distributed. The area under the curve represents the 

population. The horizontal axis represents measurements of the ability under 

consideration. A vertical line drawn down the center of the curve would cor-

respond to the average of the measurements. 

 

Figure 8-1: 
The Bell 

curve.
 

f(x)

x

So if we assume that it’s possible to measure a trait like intelligence and if 

we assume this curve represents how intelligence is distributed in the popu-

lation, we can say this: The bell curve shows that most people have about 

average intelligence, very few have very little intelligence, and very few are 

geniuses. That seems to fit nicely with our intuitions about intelligence, 

doesn’t it? 

Digging deeper
On the horizontal axis of Figure 8-1 you see x, and on the vertical axis f(x). 

What do these symbols mean? The horizontal axis, as I just mentioned, repre-

sents measurements, so think of each measurement as an x. 
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The explanation of f(x) is a little more involved. A mathematical relationship 

between x and f(x) creates the bell curve and enables us to visualize it. The 

relationship is rather complex, and I won’t burden you with it. Just under-

stand that f(x) represents the height of the curve for a specified value of x. 

You supply a value for x (and for a couple of other things), and that complex 

relationship I mentioned returns a value of f(x).

Now for some specifics. The bell curve is formally called the normal distribu-
tion. The term f(x) is called probability density, so the normal distribution is 

an example of a probability density function. Rather than give you a technical 

definition of probability density, I ask you to think of probability density as 

something that turns the area under the curve into probability. Probability 

of . . . what? I discuss that in the next section.

Parameters of a normal distribution
People often speak of the normal distribution. That’s a misnomer. It’s really a 

family of distributions. The members of the family differ from one another in 

terms of two parameters — yes, parameters because I’m talking about popu-

lations. Those two parameters are the mean (μ) and the standard deviation 

(σ). The mean tells you where the center of the distribution is, and the stan-

dard deviation tells you how spread out the distribution is around the mean. 

The mean is in the middle of the distribution. Every member of the normal 

distribution family is symmetric — the left side of the distribution is a mirror 

image of the right.

The characteristics of the normal distribution are well known to statisticians. 

More important, you can apply those characteristics to your work.

How? This brings me back to probability. You can find some useful probabili-

ties if you can do four things:

 ✓ If you can lay out a line that represents the scale of the attribute you’re 

measuring 

 ✓ If you can indicate on the line where the mean of the measurements is

 ✓ If you know the standard deviation

 ✓ If you know (or if you can assume) the attribute is normally distributed 

throughout the population 

I’ll work with IQ scores to show you what I mean. Scores on the Stanford-

Binet IQ test follow a normal distribution. The mean of the distribution of 

these scores is 100 and the standard deviation is 16. Figure 8-2 shows this 

distribution. 
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Figure 8-2: 
The normal 

distribu-
tion of IQ 

divided into 
standard 

deviations.
 

f(x)

x
100 116846852 132 148

.3413.3413

.1359.1359 .0215.0215
.0013.0013

As the figure shows, I’ve laid out a line for the IQ scale. Each point on the 

line represents an IQ score. With 100 (the mean) as the reference point, I’ve 

marked off every 16 points (the standard deviation). I’ve drawn a dotted line 

from the mean up to f(100) (the height of the normal distribution where x = 

100), and a dotted line from each standard deviation point.

The figure also shows the proportion of area bounded by the curve and the 

horizontal axis, and by successive pairs of standard deviations. It also shows 

the proportion beyond 3 standard deviations on either side (52 and 148). Note 

that the curve never touches the horizontal. It gets closer and closer, but it 

never touches. (Mathematicians say the curve is asymptotic to the horizontal.)

So between the mean and one standard deviation — between 100 and 116 — 

are .3413 (or 34.13 percent) of the scores in the population. Another way to 

say this: The probability that an IQ score is between 100 and 116 is .3413. At 

the extremes, in the tails of the distribution, .0013 (.13 percent) of the scores 

are on each side.

 The proportions in Figure 8-2 hold for every member of the normal distribu-

tion family, not just for Stanford-Binet IQ scores. For example, in a sidebar in 

Chapter 6, I mention SAT scores, which have a mean of 500 and a standard 

deviation of 100. They’re normally distributed, too. That means 34.13 percent 

of SAT scores are between 500 and 600, 34.13 percent between 400 and 500, 

and . . . well, you can use Figure 8-2 as a guide for other proportions.
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NORMDIST 
Figure 8-2 only shows areas partitioned by scores at the standard deviations. 

What about the proportion of IQ scores between 100 and 125? Or between 

75 and 91? Or greater than 118? If you’ve ever taken a course in statistics, 

you might remember homework problems that involve finding proportions 

of areas under the normal distribution. You might also remember relying on 

tables of the normal distribution to solve them. 

Excel’s NORMDIST worksheet function enables you to find normal distribu-

tion areas without relying on tables. NORMDIST finds a cumulative area. You 

supply a score, a mean, and a standard deviation for a normal distribution, and 

NORMDIST returns the proportion of area to the left of the score (also called 

cumulative proportion or cumulative probability). For example, Figure 8-2 shows 

that in the IQ distribution .8413 of the area is to the left of 116. 

How did I get that proportion? All the proportions to the left of 100 add up to 

.5000. (All the proportions to the right of 100 add up to .5000, too.) Add that 

.5000 to the .3413 between 100 and 116 and you have .8413.

Restating this another way, the probability of an IQ score less than or equal 

to 116 is .8413.

In Figure 8-3, I use NORMDIST to find this proportion. Here are the steps:

 1. Select a cell for NORMDIST’s answer.

  For this example, I selected C2. 

 2. From the Statistical Functions menu, select NORMDIST to open the 

Function Arguments dialog box for NORMDIST.

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments.

  In the X box, I entered the score for which I want to find the cumulative 

area. In this example, that’s 116.

  In the Mean box, I entered the mean of the distribution, and in the 

Standard_dev box, I enter the standard deviation. Here, the mean is 100 

and the standard deviation is 116.

  In the Cumulative box, I entered TRUE. This tells NORMDIST to find the 

cumulative area. The dialog box shows the result.

 4. Click OK to see the result in the selected cell.

Figure 8-3 shows that the cumulative area is .84134476 (in the dialog box). If 

you enter FALSE in the Cumulative box, NORMDIST returns the height of the 

normal distribution at 116.
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Figure 8-3: 
Working 

With 
NORMDIST.

 

To find the proportion of IQ scores greater than 116, subtract the result from 

1.0. (Just for the record, that’s .15865524.)

How about the proportion of IQ scores between 116 and 125? Apply NORMDIST 

for each score and subtract the results. For this particular example, the for-

mula is

=NORMDIST(125,100,16,TRUE)-NORMDIST(116,100,16,TRUE)

The answer, by the way, is .09957.

NORMINV
NORMINV is the flip side of NORMDIST. You supply a cumulative probability, 

a mean, and a standard deviation, and NORMINV returns the score that cuts 

off the cumulative probability. For example, if you supply .5000 along with a 

mean and a standard deviation, NORMINV returns the mean. 

This function is useful if you have to calculate the score for a specific per-

centile in a normal distribution. Figure 8-4 shows the Function Arguments 

dialog box for NORMINV with .75 as the cumulative probability, 500 as the 

mean, and 100 as the standard deviation. Because the SAT follows a normal 

distribution with 500 as its mean and 100 as its standard deviation, the result 

corresponds to the score at the 75th percentile for the SAT. (For more on 

percentiles, see Chapter 6.)
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Figure 8-4: 
Working 

With 
NORMINV.

 

A Distinguished Member of the Family
To standardize a set of scores so that you can compare them to other sets of 

scores, you convert each one to a z-score. (See Chapter 6.) The formula for 

converting a score to a z-score (also known as a standard score) is:

The idea is to use the standard deviation as a unit of measure. For example, 

the Stanford-Binet version of the IQ test has a mean of 100 and a standard 

deviation of 16. The Wechsler version has a mean of 100 and a standard 

deviation of 15. How does a Stanford-Binet score of, say, 110, stack up against 

a Wechsler score of 110? 

An easy way to answer this question is to put the two versions on a level 

playing field by standardizing both scores. For the Stanford-Binet

For the Wechsler

So 110 on the Wechsler is a slightly higher score than 110 on the Stanford-Binet.

Now, if you convert all the scores in a normal distribution (such as either ver-

sion of the IQ), you have a normal distribution of z-scores. Any set of z-scores 
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(normally distributed or not) has a mean of 0 and a standard deviation of 1. If 

a normal distribution has those parameters it’s a standard normal distribution — 

a normal distribution of standard scores. 

 This is the member of the normal distribution family that most people have 

heard of. It’s the one they remember most from statistics courses, and it’s the 

one that most people are thinking about when they say the normal distribu-

tion. It’s also what people think of when they hear z-scores. This distribution 

leads many to the mistaken idea that converting to z-scores somehow trans-

forms a set of scores into a normal distribution. 

Figure 8-5 shows the standard normal distribution. It looks like Figure 8-2, 

except that I’ve substituted 0 for the mean and standard deviation units in 

the appropriate places.

 

Figure 8-5: 
The stan-

dard normal 
distribution 
divided up 

by standard 
deviations.

 

f(x)

x
0 10-10-20-30 20 30

.3413.3413

.1359.1359 .0215.0215
.0013.0013

In the next two sections, I describe Excel’s functions for working with the 

standard normal distribution.

NORMSDIST 
NORMSDIST is like its counterpart NORMDIST, except that it’s designed for 

a normal distribution whose mean is 0 and whose standard deviation is 1.00. 
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You supply a z-score and it returns the area to the left of the z-score — the 

probability that a z-score is less than or equal to the one you supplied.

Figure 8-6 shows the Function Arguments dialog box with 1 as the z-score. 

The dialog box presents .841344746, the probability that a z-score is less 

than or equal to 1.00 in a standard normal distribution. Clicking OK puts that 

result into a selected cell.

 

Figure 8-6: 
Working 

with 
NORMSDIST.

 

NORMSINV
NORSMINV is the flip side of NORMSDIST. You supply a cumulative probabil-

ity and NORMSINV returns the z-score that cuts off the cumulative probabil-

ity. For example, if you supply .5000, NORMSINV returns 0, the mean of the 

standard normal distribution. 

Figure 8-7 shows the Function Arguments dialog box for NORMSINV, with .75 

as the cumulative probability. The dialog box shows the answer, .67448975, 

the z-score at the 75th percentile of the standard normal distribution.

 

Figure 8-7: 
Working 

with 
NORMSIVV
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Okay, just because you asked . . . 
The relationship between x and f(x) for the 
normal distribution is, as I mention, a pretty 
complex one. Here’s the equation:

  

If you supply values for μ (the mean), σ (the stan-
dard deviation), and x (a score), the equation 
gives you back a value for f(x), the height of the 
normal distribution at x. π and e are important 
constants in mathematics. π is approximately 
3.1416 (the ratio of a circle’s circumference to its 
diameter). e is approximately 2.71828. It’s related 
to something called natural logarithms and to a 
variety of other mathematical concepts. (I tell 
you more about e in Chapter 20.)

In a standard normal distribution, μ = 0 and 
σ = 1, so the equation becomes

  

I changed the x to z because you deal with 
z-scores in this member of the normal distribu-
tion family.

In Excel, you can set up a range of cells that 
contain standard scores, create a formula that 
captures the preceding equation, and autofill 
another range of cells with the formula results. 
Next, select the range with the formula results. 
Then you can select 

  Insert | Line 

from the Chart area on the Ribbon and choose 
the Line with Markers layout. (See Chapter 2.) 
As the accompanying figure shows, this layout 
nicely traces out the standard normal distri-
bution. The figure also shows the autofilled 
values.
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The Formula Bar shows the Excel formula 
that corresponds to the normal distribution 
equation: 

=((1/SQRT(2*PI())))*
EXP(-(B2^2)/2)

PI() is an Excel function that gives the value 
of π. The function EXP() raises e to the power 
indicated by what’s in the parentheses that 
follow it.

I show you all of this because I want you to 
see the equation of the normal distribution as 
an Excel formula. The NORMDIST worksheet 
function offers a much easier way to supply the 
f(z) values. Enter this formula into C2

=NORMDIST(B2,0,1,FALSE)

autofill column C and you have the same values 
as in the figure.

13 454060-ch08.indd   15113 454060-ch08.indd   151 4/21/09   7:27:34 PM4/21/09   7:27:34 PM



152 Part II: Describing Data 

13 454060-ch08.indd   15213 454060-ch08.indd   152 4/21/09   7:27:34 PM4/21/09   7:27:34 PM



Part III
Drawing 

Conclusions 
from Data

14 454060-pp03.indd   15314 454060-pp03.indd   153 4/21/09   7:28:12 PM4/21/09   7:28:12 PM



In this part . . .

Part III deals with using statistical methods to make 

inferences about data. This is all aimed at using the 

data from samples to draw conclusions about popula-

tions, and it’s the essence of statistical analysis. I begin 

with the extremely important concept of sampling distri-

butions. I move on to estimation and confidence limits 

and then to statistical tests geared at one sample, two 

samples, and more. Part III ends with discussions of 

regression and correlation — the statistics of relationships. 

The statistical methods in this part are computationally 

intensive. Fortunately, Excel has specialized features 

for doing the calculations. The seven chapters in this 

part describe Excel functions and tools for inferential 

statistics.
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Chapter 9

The Confidence Game: Estimation
In This Chapter
▶ Introducing sampling distributions

▶ Understanding standard error

▶ Simulating the sampling distribution of the mean

▶ Attaching confidence limits to estimates

Populations and samples are pretty straightforward ideas. A popula-

tion is a huge collection of individuals, from which you draw a sample. 

Assess the members of the sample on some trait or attribute, calculate statis-

tics that summarize that sample, and you’re in business. 

In addition to summarizing the scores in the sample, you can use the sta-

tistics to create estimates of the population parameters. This is no small 

accomplishment. On the basis of a small percentage of individuals from the 

population, you can draw a picture of the population. 

A question emerges, however: How much confidence can you have in the 

estimates you create? In order to answer this, you have to have a context in 

which to place your estimates. How probable are they? How likely is the true 

value of a parameter to be within a particular lower bound and upper bound?

In this chapter, I introduce the context for estimates, show how that plays 

into confidence in those estimates, and describe an Excel function that 

enables you to calculate your confidence level.

What is a Sampling Distribution?
Imagine that you have a population, and you draw a sample from this popula-

tion. You measure the individuals of the sample on a particular attribute and 

calculate the sample mean. Return the sample members to the population. 

Draw another sample, assess the new sample’s members, and then calcu-

late their mean. Repeat this process again and again, always using the same 

number of individuals as you had in the original sample. If you could do this 

an infinite amount of times (with the same-size sample each time), you’d have 
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an infinite amount of sample means. Those sample means form a distribution 

of their own. This distribution is called the sampling distribution of the mean. 

For a sample mean, this is the context I mention at the beginning of this chap-

ter. Like any other number, a statistic makes no sense by itself. You have to 

know where it comes from in order to understand it. Of course, a statistic 

comes from a calculation performed on sample data. In another sense, a sta-

tistic is part of a sampling distribution. 

 

In general, a sampling distribution is the distribution of all possible values of a 
statistic for a given sample size. 

I italicize that definition for a reason: It’s extremely important. After many years 

of teaching statistics, I can tell you that this concept usually sets the boundary 

line between people who understand statistics and people who don’t. 

So . . . if you understand what a sampling distribution is, you’ll understand what 

the field of statistics is all about. If you don’t, you won’t. It’s almost that simple. 

If you don’t know what a sampling distribution is, statistics will be a cook-

book type of subject for you: Whenever you have to apply statistics, you’ll 

plug numbers into formulas and hope for the best. On the other hand, if 

you’re comfortable with the idea of a sampling distribution, you’ll grasp the 

big picture of inferential statistics.

To help clarify the idea of a sampling distribution, take a look at Figure 9-1. It 

summarizes the steps in creating a sampling distribution of the mean. 

 

Figure 9-1: 
The 

sampling 
distribution 

of the mean. 
 

Population

Sampling Distribution of the Mean

Sample
1

Sample
2 Sample

3

Sample
4

Sample

. . .

1x 2x 3x 4x x. . .
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A sampling distribution — like any other group of scores — has a mean and a 

standard deviation. The symbol for the mean of the sampling distribution of 

the mean (yes, I know that’s a mouthful) is . 

 The standard deviation of a sampling distribution is a pretty hot item. It has a 

special name — standard error. For the sampling distribution of the mean, the 

standard deviation is called the standard error of the mean. Its symbol is . 

An EXTREMELY Important Idea: 
The Central Limit Theorem 

The situation I ask you to imagine is one that never happens in the real 

world. You never take an infinite amount of samples and calculate their 

means, and you never create a sampling distribution of the mean. Typically, 

you draw one sample and calculate its statistics. 

So if you have only one sample how can you ever know anything about a sam-

pling distribution — a theoretical distribution that encompasses an infinite 

number of samples? Is this all just a wild-goose chase?

No, it’s not. You can figure out a lot about a sampling distribution because of 

a great gift from mathematicians to the field of statistics. This gift is called the 
Central Limit Theorem.

 According to the Central Limit Theorem

 ✓ The sampling distribution of the mean is approximately a normal distri-

bution if the sample size is large enough. 

  Large enough means about 30 or more.

 ✓ The mean of the sampling distribution of the mean is the same as the 

population mean. 

  In equation form that’s 

 ✓ The standard deviation of the sampling distribution of the mean (also 

known as the standard error of the mean) is equal to the population 

standard deviation divided by the square root of the sample size. 

  The equation here is

Notice that the Central Limit theorem says nothing about the population. All 

it says is that if the sample size is large enough, the sampling distribution of 
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the mean is a normal distribution, with the indicated parameters. The popu-

lation that supplies the samples doesn’t have to be a normal distribution for 

the Central Limit Theorem to hold. 

What if the population is a normal distribution? In that case, the sampling dis-

tribution of the mean is a normal distribution regardless of the sample size.

Figure 9-2 shows a general picture of the sampling distribution of the mean, 

partitioned into standard error units.

 

Figure 9-2: 
The 

sampling 
distribution 

of the mean.
 

f(x)

x
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Simulating the Central Limit Theorem
It almost doesn’t sound right. How can a population that’s not normally dis-

tributed result in a normally distributed sampling distribution?

To give you an idea of how the Central Limit Theorem works, I created a 

simulation. This simulation creates something like a sampling distribution of 

the mean for a very small sample, based on a population that’s not normally 

distributed. As you’ll see, even though the population is not a normal distri-

bution, and even though the sample is small, the sampling distribution of the 

mean looks quite a bit like a normal distribution.
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Imagine a huge population that consists of just three scores — 1, 2, and 3 

and each one is equally likely to appear in a sample. (That kind of population 

is definitely not a normal distribution.) Imagine also that you can randomly 

select a sample of three scores from this population. Table 1 shows all the 

possible samples and their means. 

Table 9-1 All Possible Samples of Three Scores 
 (And Their Means) From a Population 
 Consisting of the Scores 1, 2, and 3
Sample Mean Sample Mean Sample Mean

1,1,1 1.00 2,1,1 1.33 3,1,1 1.67

1,1,2 1.33 2,1,2 1.67 3,1,2 2.00

1,1,3 1.67 2,1,3 2.00 3,1,3 2.33

1,2,1 1.33 2,2,1 1.67 3,2,1 2.00

1,2,2 1.67 2,2,2 2.00 3,2,2 2.33

1,2,3 2.00 2,2,3 2.33 3,2,3 2.67

1,3,1 1.67 2,3,1 2.00 3,3,1 2.33

1,3,2 2.00 2,3,2 2.33 3,3,2 2.67

1,3,3 2.33 2,3,3 2.67 3,3,3 3.00

If you look closely at the table, you can almost see what’s about to happen in 

the simulation. The sample mean that appears most frequently is 2.00. The 

sample means that appear least frequently are 1.00 and 3.00. Hmmm . . . 

In the simulation, I randomly select a score from the population, and then ran-

domly select two more. That group of three scores is a sample. Then I calculate 

the mean of that sample. I repeat this process for a total of 60 samples, result-

ing in 60 sample means. Finally, I graph the distribution of the sample means.

What does the simulated sampling distribution of the mean look like? Figure 

9-3 shows a worksheet that answers that question.

In the worksheet, each row is a sample. The columns labeled x1, x2, and x3 

show the three scores for each sample. Column G shows the average for the 

sample in each row. Column I shows all the possible values for the sample 

mean, and column J shows how often each mean appears in the 60 samples. 

Columns I and J, and the graph, show that the distribution has its maximum 

frequency when the sample mean is 2.00. The frequencies tail off as the 

sample means get farther and farther away from 2.00. 

15 454060-ch09.indd   15915 454060-ch09.indd   159 4/21/09   7:28:42 PM4/21/09   7:28:42 PM



160 Part III: Drawing Conclusions from Data 

 

Figure 9-3: 
Simulating 

the sampling 
distribution 

of the mean 
(N=3) from a 

population 
consist-

ing of the 
scores 1, 2, 
and 3. The 
simulation 
consists of 

60 samples.
 

The point of all this is that the population looks nothing like a normal distri-

bution and the sample size is very small. Even under those constraints, the 

sampling distribution of the mean based on 60 samples begins to look very 

much like a normal distribution.

What about the parameters the Central Limit Theorem predicts for the sam-

pling distribution? Start with the population. The population mean is 2.00, the 

population variance is .67, and the population standard deviation is .82. (This 

kind of population requires some slightly fancy mathematics for figuring out 

the parameters. The math is a little beyond where we are, so I’ll leave it at 

that.)

On to the sampling distribution. The mean of the 60 means is 1.91, and their 

standard deviation (an estimate of the standard error of the mean) is .48. 

Those numbers closely approximate the Central Limit Theorem–predicted 

parameters for the sampling distribution of the mean, 2.00 (equal to the pop-

ulation mean) and .47 (the population standard deviation, .82, divided by the 

square root of 3, the sample size). 

In case you’re interested in doing this simulation, here are the steps:

 1. Select a cell for your first randomly selected number.

  I selected cell D2.

 2. Use the worksheet function RANDBETWEEN to select 1, 2, or 3.

  This simulates drawing a number from a population consisting of the 

numbers 1, 2, and 3 where you have an equal chance of selecting each 

number. You can either select Formulas | Math & Trig | RANDBETWEEN 

and use the Function Arguments dialog box, or just type 

=RANDBETWEEN(1,3)
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161 Chapter 9: The Confidence Game: Estimation

  in D2 and press Enter. The first argument is the smallest number 

RANDBETWEEN returns, and the second argument is the largest number.

 3. Select the cell to the right of the original cell and pick another 

random number between one and three. Do this again for a third 

random number in the cell to the right of the second one.

  The easiest way to do this is to autofill the two cells to the right of the 

original cell. In my worksheet those two cells are E2 and F2.

 4. Consider these three cells to be a sample and calculate their mean in 

the cell to the right of the third cell.

  The easiest way to do this is just type 

=AVERAGE(D2:F2)

  in cell G2 and press Enter.

 5. Repeat this process for as many samples as you want to include in the 

simulation. Have each row correspond to a sample.

  I used 60 samples. The quick and easy way to get this done is to select 

the first row of three randomly selected numbers and their mean, and 

then autofill the remaining rows. The set of sample means in column G 

is the simulated sampling distribution of the mean. Use AVERAGE and 

STDEVP to find its mean and standard deviation.

To see what this simulated sampling distribution looks like, use the array 

function FREQUENCY on the sample means in column G. Follow these steps:

 1. Enter the possible values of the sample mean into an array.

  I used column I for this. I expressed the possible values of the sample 

mean in fraction form (3/3, 4/3, 5/3, 6/3, 7/3, 8/3, and 9/3) as I entered 

them into the cells I3 through I9. Excel converts them to decimal form.

 2. Select an array for the frequencies of the possible values of the 

sample mean. 

  I used column J to hold the frequencies, selecting cells J3 through J9. 

 3. From the Statistical Functions menu, select FREQUENCY to open the 

Function Arguments dialog box for FREQUENCY.

 4. In the Function Arguments dialog box, enter the appropriate values 

for the arguments. 

  In the Data_array box, I entered the cells that hold the sample means. In 

this example, that’s G2:G61. 

 5. Identify the array that holds the possible values of the sample mean. 

  FREQUENCY holds this array in the Bins_array box. For my worksheet, 

I3:I9 goes into the Bins_array box. After you identify both arrays, the 

Function Arguments dialog box shows the frequencies inside a pair of 

curly brackets. (See Figure 9-4.)
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Figure 9-4: 
The 

Function 
Arguments 

dialog 
box for 

FREQUENCY 
in the 

Simulated 
Sampling 

Distribution 
Worksheet.

 

 6. Press Ctrl+Shift+Enter to close the Function Arguments dialog box and 

show the frequencies.

  Use this keystroke combination because FREQUENCY is an array func-

tion. (For more on FREQUENCY, see Chapter 7.)

Finally, with I3:I9 highlighted, select 

Insert | Column 

and choose the Clustered Column layout to produce the graph of the fre-

quencies. (See Chapter 3.) Your graph will probably look somewhat different 

from mine.

By the way, Excel repeats the random selection process whenever you do 

something that causes Excel to recalculate the worksheet. The effect is that 

the numbers can change as you work through this. For example, if you go 

back and autofill one of the rows again, the numbers change and the graph 

changes.

The Limits of Confidence 
I told you about sampling distributions because they help you answer the 

question I pose at the beginning of this chapter: How much confidence can 

you have in the estimates you create? 

The idea is to calculate a statistic, and then use that statistic to establish 

upper and lower bounds for the population parameter with, say, 95 percent 
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163 Chapter 9: The Confidence Game: Estimation

confidence. You can only do this if you know the sampling distribution of the 

statistic and the standard error. In the next section, I show how to do this for 

the mean.

Finding confidence limits for a mean
The FarBlonJet Corporation, a manufacturer of navigation systems, has 

developed a new battery to power their portable model. To help market their 

system, FarBlonJet wants to know how long, on average, each battery lasts 

before it burns out. 

They’d like to estimate that average with 95 percent confidence. They test 

a sample of 100 batteries, and find that the sample mean is 60 hours, with a 

standard deviation of 20 hours. The Central Limit Theorem, remember, says 

that with a large enough sample (30 or more), the sampling distribution of 

the mean approximates a normal distribution. The standard error of the 

mean (the standard deviation of the sampling distribution of the mean) is

The sample size, N, is 100. What about σ? That’s unknown, so you have to 

estimate it. If you know σ, that would mean you know μ, and establishing con-

fidence limits would be unnecessary.

The best estimate of σ is the standard deviation of the sample. In this case 

that’s 20. This leads to an estimate of the standard error of the mean

The best estimate of the population mean is the sample mean, 60. Armed 

with this information, — estimated mean, estimated standard error of the 

mean, normal distribution — you can envision the sampling distribution of 

the mean, which I’ve done in Figure 9-5. Consistent with Figure 9-2, each stan-

dard deviation is a standard error of the mean.

Now that you have the sampling distribution, you can establish the 95 per-

cent confidence limits for the mean. This means that, starting at the center 

of the distribution, how far out to the sides do you have to extend until you 

have 95 percent of the area under the curve? (For more on area under the 

normal distribution and what it means, see Chapter 8.)
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Figure 9-5: 
The 

sampling 
distribu-

tion of the 
mean for the 

FarBlonJet 
battery.
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x
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One way to answer this question is to work with the standard normal distri-

bution and find the z-score that cuts off 47.5 percent on the right side and 

47.5 percent on the left side (yes, Chapter 8 again). The one on the right is a 

positive z-score, the one on the left is a negative z-score. Then multiply each 

z-score by the standard error. Add each result to the sample mean to get the 

upper confidence limit and the lower confidence limit. 

It turns out that the z-score is 1.96 for the boundary on the right side of the 

standard normal distribution, and –1.96 for the boundary on the left. You 

can calculate those values (difficult), get them from a table of the normal 

distribution that you typically find in a statistics textbook (easier), or use the 

Excel worksheet function I describe in the next section to do all the calcula-

tions (much easier). The point is that the upper bound in the sampling distri-

bution is 63.92 (60 + 1.96 ), and the lower bound is 56.08 (60 – 1.96 ). Figure 

9-6 shows these bounds on the sampling distribution.

This means you can say with 95 percent confidence that the FarBlonJet 

battery lasts, on the average, between 56.08 hours and 63.92 hours. Want a 

narrower range? You can either reduce your confidence level (to, say, 90 per-

cent) or test a larger sample of batteries.
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Figure 9-6: 
The 95 

percent 
confidence 

limits on the 
FarBlonJet 

sampling 
distribution. 
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CONFIDENCE
The CONFIDENCE worksheet function does the lion’s share of the work in 

constructing confidence intervals. You supply the confidence level, the 

standard deviation, and the sample size. CONFIDENCE returns the result of 

multiplying the appropriate z-score by the standard error of the mean. To 

determine the upper bound of the confidence limit, you add that result to the 

sample mean. To determine the lower bound, you subtract that result from 

the sample mean.

To show you how it works, I’ll go through the FarBlonJet batteries example 

again. Here are the steps:

 1. Select a cell.

 2. From the Statistical Functions menu, select CONFIDENCE to open the 

Function Arguments dialog box for CONFIDENCE. (See Figure 9-7.)

  The Alpha box holds the result of subtracting the desired confidence 

level from 1.00. 
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Figure 9-7: 
The 

Function 
Arguments 

dialog 
box for 

CONFIDENCE. 
 

  Yes, that’s a little confusing. Instead of typing .95 for the 95 percent 

confidence limit, I have to type .05. Think of it as the percentage of area 

beyond the confidence limits rather than the area within the confidence 

limits. And why is it labeled “Alpha”? I get into that in Chapter 10. 

 3. In the Standard_dev box, I typed the standard deviation of the sample. 

For this example, the standard deviation is 20.

  The Size box holds the number of individuals in the sample. The exam-

ple specifies 100 batteries tested. After I typed that number, the answer 

(3.919928) appears in the dialog box.

 4. Click OK to put the answer into your selected cell.

To finish things off, I add the answer to the sample mean (60) to determine 

the upper confidence limit (63.92) and subtract the answer from the mean to 

determine the lower confidence limit (56.08).

Fit to a t 
The Central Limit Theorem specifies (approximately) a normal distribution 

for large samples. Many times, however, you don’t have the luxury of large 

sample sizes, and the normal distribution isn’t appropriate. What do you do?

For small samples, the sampling distribution of the mean is a member of a 

family of distributions called the t-distribution. The parameter that distin-

guishes members of this family from one another is called degrees of freedom. 

 Think of degrees of freedom as the denominator of your variance estimate. For 

example, if your sample consists of 25 individuals, the sample variance that 

estimates population variance is
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The number in the denominator is 24, and that’s the value of the degrees of 

freedom parameter. In general, degrees of freedom (df) = N– 1 (N is the sample 

size) when you use the t-distribution the way I’m about to in this section.

Figure 9-8 shows two members of the t-distribution family (df =3 and df = 10), 

along with the normal distribution for comparison. As the Figure shows, the 

greater the df, the more closely t approximates a normal distribution.

 

Figure 9-8: 
Some mem-

bers of the 
t-distribu-

tion family. 
 

f(t)

t
-4 -3 -2 -1 0 1 2 3 4

So to determine the 95 percent confidence level if you have a small sample, 

work with the member of the t-distribution family that has the appropriate 

df. Find the value that cuts off 47.5 percent of the area on the right side of the 

distribution and 47.5 percent of the area on the left side of the distribution. 

The one on the right is a positive value, the one on the left is negative. Then 

multiply each value by the standard error. Add each result to the mean to get 

the upper confidence limit and the lower confidence limit. 

In the FarBlonJet batteries example, suppose the sample consists of 25 bat-

teries, with a mean of 60 and a standard deviation of 20. The estimate for the 

standard error of the mean is

The df = N – 1 = 24. The value that cuts off 47.5 percent of the area on the 

right of this distribution is 2.064, and on the left it’s –2.064. As I said earlier, 

you can calculate these values (difficult), look them up in a table that’s in 

statistics textbooks (easier), or use the Excel function I describe in the next 

section (much easier). 
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The point is that the upper confidence limit is 68.256 (60 + 2.064 ) and the 

lower confidence limit is 51.744 (60 – 2.064). With a sample of 25 batteries, 

you can say with 95 percent confidence that the average life of a FarBlonJet 

battery is between 51.744 hours and 68.256 hours. Notice that with a smaller 

sample, the range is wider for the same level of confidence that I used in the 

previous example.

TINV
Excel’s TINV worksheet function finds the value in the t-distribution that cuts 

off the desired area. Working with it is short and sweet:

 1. Select a cell.

 2. From the Statistical Functions menu, select TINV to open the Function 

Arguments dialog box for TINV.

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments.

 4. In the Probability box, enter the result of subtracting your confidence 

level from 1.00.

  As I say in the description of the CONFIDENCE function, that’s a bit con-

fusing. Instead of typing .95 for the 95 percent confidence limit, I typed 

.05 in the Probability box. Think of it as the percentage of area beyond 

the confidence limits rather than the area within the confidence limits. 

 5. In the Deg_freedom box I type the degrees of freedom. 

  For this example, df = 24. The answer appears in the dialog box.

 6. Click OK to close the dialog box and put the answer in the selected 

cell. (See Figure 9-9.)

 

Figure 9-9: 
The 

Function 
Arguments 
dialog box 

for TINV. 
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You still have to multiply TINV’s answer by the standard error of the mean 

and do the arithmetic to find the upper and lower limits. 

 I advise against using the CONFIDENCE worksheet function if your sample size 

is less than 30 and if you can’t assume your population is a normal distribu-

tion. Why? CONFIDENCE always assumes a normally distributed sampling 

distribution, and that’s not always appropriate. So if your confidence level is 

95 percent, for example, CONFIDENCE multiplies the standard error by 1.96 

regardless of the sample size. The result is that the confidence interval is too 

narrow for a small sample size.
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Chapter 10

One-Sample Hypothesis Testing
In This Chapter
▶ Introducing hypothesis tests

▶ Testing hypotheses about means

▶ Testing hypotheses about variances

Whatever your occupation, you often have to assess whether some-

thing out of the ordinary has happened. Sometimes you start with a 

sample from a population about whose parameters you know a great deal. 

You have to decide whether that sample is like the rest of the population or 

if it’s different. 

Measure that sample and calculate its statistics. Finally, compare those sta-

tistics with the population parameters. Are they the same? Are they different? 

Does the sample represent something that’s off the beaten path? Proper use of 

statistics helps you decide. 

Sometimes you don’t know the parameters of the population you’re dealing 

with. Then what? In this chapter, I discuss statistical techniques and work-

sheet functions for dealing with both cases.

Hypotheses, Tests, and Errors
A hypothesis is a guess about the way the world works. It’s a tentative expla-

nation of some process, whether that process is natural or artificial. Before 

studying and measuring the individuals in a sample, a researcher formulates 

hypotheses that predict what the data should look like. 

Generally, one hypothesis predicts that the data won’t show anything new 

or interesting. Dubbed the null hypothesis (abbreviated H
0
), this hypothesis 

holds that if the data deviate from the norm in any way, that deviation is due 

strictly to chance. Another hypothesis, the alternative hypothesis (abbrevi-

ated H
1
), explains things differently. According to the alternative hypothesis, 

the data show something important.
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After gathering the data, it’s up to the researcher to make a decision. The 

way the logic works, the decision centers around the null hypothesis. The 

researcher must decide to either reject the null hypothesis or to not reject 

the null hypothesis. Hypothesis testing is the process of formulating hypoth-

eses, gathering data, and deciding whether to reject or not reject the null 

hypothesis. 

 Nothing in the logic involves accepting either hypothesis. Nor does the logic 

entail any decisions about the alternative hypothesis. It’s all about rejecting or 

not rejecting H
0
. 

Regardless of the reject-don’t-reject decision, an error is possible. One type 

of error occurs when you believe that the data show something important 

and you reject H
0
, and in reality the data are due just to chance. This is called 

a Type I error. At the outset of a study, you set the criteria for rejecting H
0
. In 

so doing, you set the probability of a Type I error. This probability is called 

alpha (α)

The other type of error occurs when you don’t reject H
0
 and the data are 

really due to something out of the ordinary. For one reason or another, you 

happened to miss it. This is called a Type II error. Its probability is called 

beta (β). Table 10-1 summarizes the possible decisions and errors.

Table 10-1 Decisions and Errors in Hypothesis Testing
 “True State” of the World

Ho is True H1 is True

Reject H0 Type I Error Correct Decision

Decision

Do Not Reject H0 Correct Decision Type II Error

Note that you never know the true state of the world. All you can ever do is 

measure the individuals in a sample, calculate the statistics, and make a deci-

sion about H
0
.

Hypothesis tests and sampling 
 distributions
In Chapter 9, I discuss sampling distributions. A sampling distribution, remem-

ber, is the set of all possible values of a statistic for a given sample size. 
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Also in Chapter 9, I discuss the Central Limit Theorem. This theorem tells 

you that the sampling distribution of the mean approximates a normal dis-

tribution if the sample size is large (for practical purposes, at least 30). This 

holds whether or not the population is normally distributed. If the population 

is a normal distribution, the sampling distribution is normal for any sample 

size. Two other points from the Central Limit Theorem: 

 ✓ The mean of the sampling distribution of the mean is equal to the popu-

lation mean.

  The equation for this is

 ✓ The standard error of the mean (the standard deviation of the sampling 

distribution) is equal to the population standard deviation divided by 

the square root of the sample size.

  This equation is

x =
N

The sampling distribution of the mean figures prominently into the type of 

hypothesis testing I discuss in this chapter. Theoretically, when you test a 

null hypothesis versus an alternative hypothesis, each hypothesis corre-

sponds to a separate sampling distribution. 

Figure 10-1 shows what I mean. The figure shows two normal distributions. 

I placed them arbitrarily. Each normal distribution represents a sampling 

 distribution of the mean. The one on the left represents the distribution of 

possible sample means if the null hypothesis is truly how the world works. 

The one on the right represents the distribution of possible sample means if 

the alternative hypothesis is truly how the world works. 

Of course, when you do a hypothesis test, you never know which distribution 

produces the results. You work with a sample mean — a point on the hori-

zontal axis. It’s your job to decide which distribution the sample mean is part 

of. You set up a critical value — a decision criterion. If the sample mean is on 

one side of the critical value, you reject H
0
. If not, you don’t. 

In this vein, the Figure also shows α and β. These, as I mention earlier, are 

the probabilities of decision errors. The area that corresponds to α is in the 

H
0
 distribution. I shaded it in dark gray. It represents the probability that a 

sample mean comes from the H
0 
distribution, but it’s so extreme that you 

reject H
0
. 
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Figure 10-1: 
H0 and H1 
each cor-

respond to 
a sampling 

distribution.
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 Where you set the critical value determines α. In most hypothesis testing, you 

set α at .05. This means that you’re willing to tolerate a Type I error (incor-

rectly rejecting H
0
) 5 percent of the time. Graphically, the critical value cuts off 

5 percent of the area of the sampling distribution. By the way, if you’re talking 

about the 5 percent of the area that’s in the right tail of the distribution (as in 

Figure 10-1), you’re talking about the upper 5 percent. If it’s the 5 percent in 

the left tail you’re interested in, that’s the lower 5 percent.

The area that corresponds to β is in the H
1
 distribution. I shaded it in light 

gray. This area represents the probability that a sample mean comes from 

the H
1
 distribution, but it’s close enough to the center of the H

0
 distribution 

that you don’t reject H
0
. You don’t get to set β. The size of this area depends 

on the separation between the means of the two distributions, and that’s up 

to the world we live in — not up to you. 

These sampling distributions are appropriate when your work corresponds 

to the conditions of the Central Limit Theorem: if you know the population 

you’re working with is a normal distribution, or if you have a large sample.
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Catching Some Zs Again 
Here’s an example of a hypothesis test that involves a sample from a nor-

mally distributed population. Because the population is normally distributed, 

any sample size results in a normally distributed sampling distribution. 

Because it’s a normal distribution, you use z-scores in the hypothesis test:

One more “because”: Because you use the z-score in the hypothesis test, the 

z-score here is called the test statistic. 

Suppose you think that people living in a particular zip code have higher-

than-average IQs. You take a sample of 16 people from that zip code, give 

them IQ tests, tabulate the results, and calculate the statistics. For the popu-

lation of IQ scores, μ = 100 and σ = 16 (for the Stanford-Binet version).

The hypotheses are:

H
0
: μ

ZIP code
 ≤ 100

H
1
: μ

ZIP code
 > 100

Assume α = .05. That’s the shaded area in the tail of the H
0
 distribution in 

Figure 10-1.

Why the ≤ in H
0
? You use that symbol because you’ll only reject H

0
 if the 

sample mean is larger than the hypothesized value. Anything else is evidence 

in favor of not rejecting H
0
.

Suppose the sample mean is 107.75. Can you reject H
0
?

The test involves turning 107.75 into a standard score in the sampling distri-

bution of the mean:

Is the value of the test statistic large enough to enable you to reject H
0
 with 

α = .05? It is. The critical value — the value of z that cuts off 5 percent of the 
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area in a standard normal distribution — is 1.645. (After years of working 

with the standard normal distribution, I happen to know this. Read Chapter 8, 

find out about Excel’s NORMSINV function, and you can have information like 

that at your fingertips, too.) The calculated value, 1.94, exceeds 1.645, so it’s 

in the rejection region. The decision is to reject H
0
. 

This means that if H
0
 is true, the probability of getting a test statistic value 

that’s at least this large is less than .05. That’s strong evidence in favor of 

rejecting H
0
. In statistical parlance, any time you reject H

0
 the result is said to 

be “statistically significant.”

This type of hypothesis testing is called one-tailed because the rejection 

region is in one tail of the sampling distribution. 

A hypothesis test can be one-tailed in the other direction. Suppose you had 

reason to believe that people in that zip code had lower than average IQ. In 

that case, the hypotheses are:

H
0
: μ

ZIP code
 ≥ 100

H
1
: μ

ZIP code
 < 100

For this hypothesis test, the critical value of the test statistic is –1.645 if 

α=.05.

A hypothesis test can be two-tailed, meaning that the rejection region is in 

both tails of the H
0
 sampling distribution. That happens when the hypotheses 

look like this:

H
0
: μ

ZIP code
 = 100

H
1
: μ

ZIP code
 ≠ 100

In this case, the alternate hypothesis just specifies that the mean is differ-

ent from the null-hypothesis value, without saying whether it’s greater or 

whether it’s less. Figure 10-2 shows what the two-tailed rejection region looks 

like for α = .05. The 5 percent is divided evenly between the left tail (also 

called the lower tail) and the right tail (the upper tail).

For a standard normal distribution, incidentally, the z-score that cuts off 2.5 

percent in the right tail is 1.96. The z-score that cuts off 2.5 percent in the left 

tail is –1.96. (Again, I happen to know these values after years of working with 

the standard normal distribution.) The z-score in the preceding example, 

1.94, does not exceed 1.96. The decision, in the two-tailed case, is to not 
reject H

0.
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Figure 10-2: 
The two-

tailed 
rejection 

region for 
α = .05.

 

Sampling Distribution
H0

Critical
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Critical
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0

0Do Not Reject H 0Reject H0Reject H

Rejection Region
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 This brings up an important point. A one-tailed hypothesis test can reject H
0
, 

while a two-tailed test on the same data might not. A two-tailed test indicates 

that you’re looking for a difference between the sample mean and the null-

hypothesis mean, but you don’t know in which direction. A one-tailed test 

shows that you have a pretty good idea of how the difference should come 

out. For practical purposes, this means you should try to have enough knowl-

edge to be able to specify a one-tailed test.

ZTEST 
Excel’s ZTEST worksheet function does the calculations for hypothesis tests 

involving z-scores in a standard normal distribution. You provide sample 

data, a null hypothesis value, and a population standard deviation. ZTEST 

returns the probability in one tail of the H
0
 sampling distribution. 

This is a bit different from the way things work when you apply the formulas 

I just showed you. The formula calculates a z-score. Then it’s up to you to 

see where that score stands in a standard normal distribution with respect 

to probability. ZTEST eliminates the middleman (the need to calculate the 

z-score) and goes right to the probability.
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Figure 10-3 shows the data and the Function Arguments dialog box for ZTEST. 

The data are IQ scores for 16 people in the zip code example in the preceding 

section. That example, remember, tests the hypothesis that people in a par-

ticular zip code have a higher than average IQ. 

 

Figure 10-3: 
Data 

and The 
Function 

Arguments 
dialog box 
for ZTEST. 

 

Here are the steps:

 1. Enter your data into an array of cells and select a cell for the result.

  The data in this example are in cells C3 through C18.

 2. From the Statistical Functions menu, select ZTEST to open the 

Function Arguments dialog box for ZTEST. (See Figure 10-3.)

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments.

  In the Array box, I enter the array of cells that hold the data. For this 

example, that’s C3:C18. 

  In the X box, type the H
0
 mean. For this example, the mean is 100— 

the mean of IQ scores in the  population. 

  In the Sigma box, type the population standard deviation. The popu-

lation standard deviation for IQ is 16. After typing that number, the 

answer (0.026342) appears in the dialog box.

 4. Click OK to put the answer into the selected cell.

With α = .05, and a one-tailed test (H
1
: μ > 100), the decision is to reject H

0
, 

because the answer (0.026) is less than .05. Note that with a two-tailed test 

(H
1
: μ ≠ 100), the decision is to not reject H

0
. That’s because 2 × 0.026 is 

greater than .05 — just barely greater (.052) — but if you draw the line at .05, 

you cannot reject H
0
.
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t for One
In the preceding example, I worked with IQ scores. The population of IQ 

scores is a normal distribution with a well-known mean and standard devia-

tion. This enabled me to work with the Central Limit Theorem and describe 

the sampling distribution of the mean as a normal distribution. I was then 

able to use z as the test statistic.

In the real world, however, you typically don’t have the luxury of working 

with such well-defined populations. You usually have small samples, and 

you’re typically measuring something that isn’t as well known as IQ. The 

bottom line is that you often don’t know the population parameters, nor do 

you know whether or not the population is normally distributed.

When that’s the case, you use the sample data to estimate the population 

standard deviation, and you treat the sampling distribution of the mean as a 

member of a family of distributions called the t-distribution. You use t as a test 

statistic. In Chapter 9, I introduce this distribution, and mention that you dis-

tinguish members of this family by a parameter called degrees of freedom (df). 

The formula for the test statistic is

Think of df as the denominator of the estimate of the population variance. 

For the hypothesis tests in this section, that’s N-1, where N is the number of 

scores in the sample. The higher the df, the more closely the t-distribution 

resembles the normal distribution. 

Here’s an example. FarKlempt Robotics, Inc., markets microrobots. They 

claim their product averages four defects per unit. A consumer group 

believes this average is higher. The consumer group takes a sample of 9 

FarKlempt microrobots and finds an average of 7 defects, with a standard 

deviation of 3.16. The hypothesis test is:

H
0
: μ ≤ 4

H
1
: μ > 4

α = .05
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The formula is:

Can you reject H
0
? The Excel function in the next section tells you.

TDIST 
You use the worksheet function TDIST to decide whether or not your calcu-

lated t value is in the region of rejection. You supply a value for t, a value for 

df, and determine whether the test is one-tailed or two-tailed. TDIST returns 

the probability of obtaining a t value at least as high as yours if H
0
 is true. If 

that probability is less than your α, you reject H
0
.

The steps are:

 1. Select a cell to store the result.

 2. From the Statistical Functions menu, select TDIST to open the Function 

Arguments dialog box for TDIST. (See Figure 10-4.)

 

Figure 10-4: 
The 

Function 
Arguments 
dialog box 
for TDIST. 

 

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments. 

  The calculated t value goes in the X box. For this example, the calculated 

t value is 2.85.

  The degrees of freedom go in the Deg_freedom box. The degrees of free-

dom for this example is 8 (9 scores – 1).
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  In the Tails box, the idea is to type 1 (for a one-tailed test) or 2 (for a 

two-tailed test). In this example, it’s a one-tailed test. After I typed 1, the 

dialog box shows the probability in the tail of the t-distribution beyond 

the t value. 

 4. Click OK to close the dialog box and put the answer in the selected cell.

The value in the dialog box in Figure 10-4 is less than .05, so the decision is to 

reject H
0
.

Testing a Variance
So far, I’ve told you about one-sample hypothesis testing for means. You can 

also test hypotheses about variances. 

This sometimes comes up in the context of manufacturing. For example, sup-

pose FarKlempt Robotics, Inc, produces a part that has to be a certain length 

with a very small variability. You can take a sample of parts, measure them, 

find the sample variability and perform a hypothesis test against the desired 

variability.

The family of distributions for the test is called chi-square. Its symbol is χ2. I 

won’t go into all the mathematics. I’ll just tell you that, once again, df is the 

parameter that distinguishes one member of the family from another. Figure 

10-5 shows two members of the chi-square family. 

The formula for this test statistic is

N is the number of scores in the sample, s2 is the sample variance, and σ2 is 

the population variance specified in H
0
.

With this test, you have to assume that what you’re measuring has a normal 

distribution.

Suppose the process for the FarKlempt part has to have at most a standard 

deviation of 1.5 inches for its length. (Notice I said standard deviation. This 

allows me to speak in terms of inches. If I said variance the units would be 

square inches.). After measuring a sample of 26 parts, you find a standard 

deviation of 1.8 inches.
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Figure 10-5: 
Two mem-
bers of the 
chi-square 

family. 
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The hypotheses are:

H
0
: σ2 ≤ 2.25 (remember to square the “at-most” standard deviation of 1.5 

inches)

H
1
: σ2 > 2.25

α = .05

Working with the formula,

Can you reject H
0
? Read on.

CHIDIST 
After calculating a value for your chi-square test statistic, you use the 

CHIDIST worksheet function to make a judgment about it. You supply the 
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 chi-square value and the df, and it tells you the probability of obtaining a 

value at least that high if H
0
 is true. If that probability is less than your α, 

reject H
0
.

To show you how it works, I apply the information from the example in the 

preceding section. Follow these steps:

 1. Select a cell to store the result.

 2. From the Statistical Functions menu, select CHIDIST to open the 

Function Arguments dialog box for CHIDIST. (See Figure 10-6.)

 

Figure 10-6: 
The 

Function 
Arguments 
dialog box 

for CHIDIST. 
 

 3. In the Function Arguments dialog box, type the appropriate values for 

the arguments. 

  In the X box, I typed the calculated chi-square value. For this example, 

that value is 36.

  In the Deg_freedom box, I typed the degrees of freedom. The degrees 

of freedom for this example is 25 (26 – 1). After typing the df, the dialog 

box shows the one-tailed probability of obtaining at least this value of 

chi-square if H
0
 is true. 

 4. Click OK to close the dialog box and put the answer in the selected cell.

The value in the dialog box in Figure 10-6 is greater than .05, so the decision 

is to not reject H
0
. (Can you conclude that the process is within acceptable 

limits of variability? See the nearby sidebar “A point to ponder.”)

CHIINV
CHIINV is the flip side of CHIDIST. You supply a probability and df, and 

CHIINV tells you the corresponding value of chi-square. If you want to know 
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the value you have to exceed in order to reject H
0
 in the preceding example, 

follow these steps:

 1. Select a cell to store the result.

 2. From the Statistical Functions menu, select CHIINV and click OK to 

open the Function Arguments dialog box for CHIINV. (See Figure 10-7.)

 

Figure 10-7: 
The 

Function 
Arguments 
dialog box 

for CHIINV. 
 

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments. 

  In the Probability box, I typed .05, the probability I’m interested in for 

this example.

  In the Deg_freedom box, I typed the degrees of freedom. The value for 

degrees of freedom in this example is 25 (26 – 1). After I typed the df, 

the dialog box shows the value (37.65248) that cuts off the upper 5 per-

cent of the area in this chi-square distribution. 

 4. Click OK to close the dialog box and put the answer in the selected cell.

As the dialog box in Figure 10-7 shows, the calculated value (36) didn’t miss 

the cutoff value by much. A miss is still a miss (to paraphrase “As Time Goes 

By”), and you cannot reject H
0
.
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A point to ponder
Retrace the preceding example. FarKlempt 
Robotics wants to show that its manufactur-
ing process is within acceptable limits of vari-
ability. The null hypothesis, in effect, says the 
process is acceptable. The data do not pres-
ent evidence for rejecting Ho. The value of the 
test statistic just misses the critical value. Does 
that mean the manufacturing process is within 
acceptable limits? 

Statistics are an aid to common sense, not 
a substitute. If the data are just barely within 
acceptability, that should set off alarms.

Usually, you try to reject H0. This is a rare 
case when not rejecting H0 is more desir-
able, because nonrejection implies something 

 positive — the manufacturing process is work-
ing properly. Can you still use hypothesis testing 
techniques in this situation?

Yes, you can — with a notable change. Rather 
than a small value of α, like .05, you choose 
a large value, like .20. This stacks the deck 
against not rejecting H0 — small values of the 
test statistic can lead to rejection. If α is .20 in 
this example, the critical value is 30.6752. (Use 
CHINV to verify that.) Because the obtained 
value, 36, is higher than this critical value the 
decision with this α is to reject H0.

Using a high α is not often done. When the 
desired outcome is to not reject H0, I strongly 
advise it.
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Chapter 11

Two-Sample Hypothesis Testing
In This Chapter
▶ Testing differences between means of two samples

▶ Testing means of paired samples

▶ Testing hypotheses about variances

In business, in education, and in scientific research the need often arises 

to compare one sample with another. Sometimes the samples are inde-

pendent, sometimes they’re matched in some way. Each sample comes from 

a different population. The objective is to decide whether or not the popula-

tions they come from are different from one another. 

Usually, this involves tests of hypotheses about population means. You can 

also test hypotheses about population variances. In this chapter, I show you 

how to carry out these tests. I also discuss useful worksheet functions and 

data analysis tools that help you get the job done.

Hypotheses Built for Two
As in the one-sample case (Chapter 10), hypothesis testing with two samples 

starts with a null hypothesis (H
0 
) and an alternative hypothesis (H

1
). The null 

hypothesis specifies that any differences you see between the two samples 

are due strictly to chance. The alternative hypothesis says, in effect, that any 

differences you see are real and not due to chance. 

It’s possible to have a one-tailed test, in which the alternative hypothesis 

specifies the direction of the difference between the two means, or a two-
tailed test in which the alternative hypothesis does not specify the direction 

of the difference.
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For a one-tailed test, the hypotheses look like this:

H
0
: μ

1 
- μ

2
 = 0

H
1
: μ

1 
- μ

2
 > 0

or like this:

H
0
: μ

1 
- μ

2
 = 0

H
1
: μ

1 
- μ

2
 < 0

For a two-tailed test, the hypotheses are:

H
0
: μ

1 
- μ

2
 = 0

H
1
: μ

1 
- μ

2
 ≠ 0

The zero in these hypotheses is the typical case. It’s possible, however, to test 

for any value — just substitute that value for zero. 

To carry out the test, you first set α, the probability of a Type I error that 

you’re willing to live with (see Chapter 9). Then you calculate the mean and 

standard deviation of each sample, subtract one mean from the other, and 

use a formula to convert the result into a test statistic. Compare the test sta-

tistic to a sampling distribution of test statistics. If it’s in the rejection region 

that α specifies (see Chapter 10), reject H
0
. If not, don’t reject H

0
.

Sampling Distributions Revisited
In Chapter 9, I introduce the idea of a sampling distribution — a distribution 

of all possible values of a statistic for a particular sample size. In that chap-

ter, I describe the sampling distribution of the mean. In Chapter 10, I show its 

connection with one-sample hypothesis testing.

For this type of hypothesis testing, another sampling distribution is neces-

sary. This one is the sampling distribution of the difference between means. 

 The sampling distribution of the difference between means is the distribution 

of all possible values of differences between pairs of sample means with the 

sample sizes held constant from pair to pair. (Yes, that’s a mouthful.) Held 
constant from pair to pair means that the first sample in the pair always has the 

same size, and the second sample in the pair always has the same size. The 

two sample sizes are not necessarily equal.
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Within each pair, each sample comes from a different population. All the 

samples are independent of one another, so that picking individuals for one 

sample has no effect on picking individuals for another.

Figure 11-1 shows the steps in creating this sampling distribution. This is 

something you never do in practice. It’s all theoretical. As the figure shows, 

the idea is to take a sample out of one population and a sample out of another, 

calculate their means, and subtract one mean from the other. Return the 

samples to the populations, and repeat over and over and over. The result 

of the process is a set of differences between means. This set of differences 

is the sampling distribution.

 

Figure 11-1: 
Creating the 

sampling 
distribu-

tion of the 
difference 

between 
means.
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2
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Applying the Central Limit Theorem
Like any other set of numbers, this sampling distribution has a mean and a 

standard deviation. As is the case with the sampling distribution of the mean 

(Chapters 9 and 10), the Central Limit Theorem applies here. 

According to the Central Limit Theorem, if the samples are large, the sampling 

distribution of the difference between means is approximately a normal distri-

bution. If the populations are normally distributed, the sampling distribution is 

a normal distribution even if the samples are small.
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The Central Limit Theorem also has something to say about the mean and 

standard deviation of this sampling distribution. Suppose the parameters for 

the first population are μ
1
 and σ

1
, and the parameters for the second popula-

tion are μ
2
 and σ

2
. The mean of the sampling distribution is 

The standard deviation of the sampling distribution is

N
1
 is the number of individuals in the sample from the first population, N

2
 is 

the number of individuals in the sample from the second. 

 This standard deviation is called the standard error of the difference between 
means.

Figure 11-2 shows the sampling distribution along with its parameters, as 

specified by the Central Limit Theorem.

 

Figure 11-2: 
The 

sampling 
distribu-

tion of the 
difference 

between 
means 

accord-
ing to the 

Central Limit 
Theorem.
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Zs once more
Because the Central Limit Theorem says that the sampling distribution is 

approximately normal for large samples (or for small samples from normally 

distributed populations), you use the z-score as your test statistic. Another 

way to say “use the z-score as your test statistic” is “perform a z-test.” Here’s 

the formula:

The term (μ
1
–μ

2
) represents the difference between the means in H

0
.

This formula converts the difference between sample means into a standard 

score. Compare the standard score against a standard normal distribution — 

a normal distribution with μ = 0 and σ = 1. If the score is in the rejection region 

defined by α, reject H
0
. If it’s not, don’t reject H

0
.

You use this formula when you know the value of σ
1
2 and σ

2
2. 

Here’s an example. Imagine a new training technique designed to increase IQ. 

Take a sample of 25 people and train them under the new technique. Take 

another sample of 25 people and give them no special training. Suppose that 

the sample mean for the new technique sample is 107, and for the no-training 

sample it’s 101.2. The hypothesis test is:

H
0
: μ

1 
- μ

2
 = 0

H
1
: μ

1 
- μ

2
 > 0

I’ll set α at .05

The IQ is known to have a standard deviation of 16, and I assume that stan-

dard deviation would be the same in the population of people trained on the 

new technique. Of course, that population doesn’t exist. The assumption is 

that if it did, it should have the same value for the standard deviation as the 

regular population of IQ scores. Does the mean of that (theoretical) popula-

tion have the same value as the regular population? H
0
 says it does. H

1
 says 

it’s larger.

The test statistic is
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With α = .05, the critical value of z — the value that cuts off the upper 5 per-

cent of the area under the standard normal distribution — is 1.645. (You can 

use the worksheet function NORMSINV from Chapter 8 to verify this.) The 

calculated value of the test statistic is less than the critical value, so the deci-

sion is to not reject H
0
. Figure 11-3 summarizes this.

 

Figure 11-3: 
The 

sampling 
distribu-

tion of the 
difference 

between 
means, 

along with 
the critical 

value for 
α = .05 and 

the obtained 
value of the 
test statistic 

in the IQ 
Example.
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Data analysis tool: z-Test: 
Two Sample for Means
Excel provides a data analysis tool that makes it easy to do tests like the one 

in the IQ example. It’s called z-Test: Two Sample for Means. Figure 11-4 shows 

the dialog box for this tool along with sample data that correspond to the IQ 

example.
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Figure 11-4: 
The z-Test 

data 
analysis tool 

and data 
from two 
 samples.

 

To use this tool, follow these steps:

 1. Type the data for each sample into a separate data array.

  For this example, the data in the New Technique sample are in column E 

and the data for the No Training sample are in column G.

 2. Select Data | Data Analysis to open the Data Analysis dialog box.

 3. In the Data Analysis dialog box, scroll down the Analysis Tools list 

and select z-Test: Two Sample for Means. Click OK to open the z-Test: 

Two Sample for Means dialog box (see Figure 11-4).

 4. In the Variable 1 Range box, enter the cell range that holds the data 

for one of the samples.

  For the example, the New Technique data are in $E$2:$E$27. (Note the 

$-signs for absolute referencing.)

 5. In the Variable 2 Range box, enter the cell range that holds the data 

for the other sample.

  The No Training data are in $G$2:$G$27.

 6. In the Hypothesized Mean Difference box, type the difference 

between μ1 and μ2 that H0 specifies.

  In this example, that difference is 0.

 7. In the Variable 1 Variance (known) box, type the variance of the first 

sample.

  The standard deviation of the population of IQ scores is 16, so this vari-

ance is 256.
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 8. In the Variable 2 Variance (known) box, type the variance of the 

second sample.

  In this example, this variance is also 256. 

 9. If the cell ranges include column headings, check the Labels checkbox. 

  I included the headings in the ranges, so I checked the box.

 10. The Alpha box has 0.05 as a default. 

   I used the default value, consistent with the value of α in this example.

 11. In the Output Options, select a radio button to indicate where you 

want the results.

  I selected New Worksheet Ply to put the results on a new page in the 

worksheet.

 12. Click OK.

  Because I selected New Worksheet Ply, a newly created page opens with 

the results. 

Figure 11-5 shows the tool’s results, after I expanded the columns. Rows 4, 5, 

and 7 hold values you input into the dialog box. Row 6 counts the number of 

scores in each sample. 

 

Figure 11-5: 
Results of 
the z-Test 

data analy-
sis tool.

 

The value of the test statistic is in cell B8. The critical value for a one-tailed 

test is in B10, and the critical value for a two-tailed test is in B12. 

Cell B9 displays the proportion of area that the test statistic cuts off in one 

tail of the standard normal distribution. Cell B11 doubles that value — it’s the 

proportion of area cut off by the positive value of the test statistic (in the tail 

on the right side of the distribution) plus the proportion cut off by the nega-

tive value of the test statistic (in the tail on the left side of the distribution).
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t for Two
The example in the preceding section involves a situation you rarely 

 encounter — known population variances. If you know a population’s vari-

ance, you’re likely to know the population mean. If you know the mean, you 

probably don’t have to perform hypothesis tests about it. 

Not knowing the variances takes the Central Limit Theorem out of play. This 

means that you can’t use the normal distribution as an approximation of the 

sampling distribution of the difference between means. Instead, you use the 

t-distribution, a family of distributions I introduce in Chapter 9 and apply to 

one-sample hypothesis testing in Chapter 10. The members of this family of 

distributions differ from one another in terms of a parameter called degrees 
of freedom (df). Think of df as the denominator of the variance estimate you 

use when you calculate a value of t as a test statistic. Another way to say 

 “calculate a value of t as a test statistic”: “Perform a t-test.”

Unknown population variances lead to two possibilities for hypothesis testing. 

One possibility is that although the variances are unknown, you have reason to 

assume they’re equal. The other possibility is that you cannot assume they’re 

equal. In the subsections that follow, I discuss these possibilities.

Like peas in a pod: Equal variances
When you don’t know a population variance, you use the sample variance 

to estimate it. If you have two samples, you average (sort of) the two sample 

variances to arrive at the estimate. 

 Putting sample variances together to estimate a population variance is called 

pooling. With two sample variances, here’s how you do it:

In this formula s
p

2 stands for the pooled estimate. Notice that the denomina-

tor of this estimate is (N
1
-1) + (N

2
-1). Is this the df? Absolutely!

The formula for calculating t is
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On to an example. FarKlempt Robotics is trying to choose between two 

machines to produce a component for its new microrobot. Speed is of the 

essence, so they have each machine produce ten copies of the component, 

and time each production run. The hypotheses are:

H
0
: μ

1
-μ

2
 = 0

H
1
: μ

1
-μ

2
 ≠ 0

They set α at .05. This is a two-tailed test, because they don’t know in 

advance which machine might be faster.

Table 11-1 presents the data for the production times in minutes.

Table 11-1 Sample Statistics from the 
 FarKlempt Machine Study

Machine 1 Machine 2

Mean Production Time 23.00 20.00

Standard Deviation 2.71 2.79

Sample Size 10 10

The pooled estimate of σ2 is

The estimate of σ is 2.75, the square root of 7.56.

The test statistic is

For this test statistic, df = 18, the denominator of the variance estimate. In a 

t-distribution with 18 df, the critical value is 2.10 for the right-side (upper) 

tail and –2.10 for the left-side (lower) tail. If you don’t believe me, apply TINV 

(Chapter 9). The calculated value of the test statistic is greater than 2.10, 
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so the decision is to reject H
0
. The data provide evidence that Machine 2 is 

significantly faster than Machine 1. (You can use the word “significant” when-

ever you reject H
0
.)

Like p’s and q’s: Unequal variances
The case of unequal variances presents a challenge. As it happens, when vari-

ances are not equal, the t distribution with (N
1
-1) + (N

2
-1) degrees of freedom 

is not as close an approximation to the sampling distribution as statisticians 

would like.

Statisticians meet this challenge by reducing the degrees of freedom. To 

accomplish the reduction they use a fairly involved formula that depends on 

the sample standard deviations and the sample sizes. 

Because the variances aren’t equal, a pooled estimate is not appropriate. So 

you calculate the t-test in a different way:

You evaluate the test statistic against a member of the t-distribution family 

that has the reduced degrees of freedom. 

TTEST
The worksheet function TTEST eliminates the muss, fuss, and bother of work-

ing through the formulas for the t-test. 

Figure 11-6 shows the data for the FarKlempt machines example I showed you 

earlier. The Figure also shows the Function Arguments dialog box for TTEST. 

Follow these steps:

 1. Type the data for each sample into a separate data array and select a 

cell for the result.

  For this example, the data for the Machine 1 sample are in column B and 

the data for the Machine 2 sample are in column D.

 2. From the Statistical Functions menu, select TTEST to open the 

Function Arguments dialog box for TTEST.
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Figure 11-6: 
Working 

with TTEST.
 

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments.

  In the Array1 box, enter the sequence of cells that holds the data for one 

of the samples. In this example, the Machine 1 data are in B3:B12.

  In the Array2 box, enter the sequence of cells that holds the data for the 

other sample. The Machine 2 data are in D3:D12.

  The Tails box indicates whether this is a one-tailed test or a two-tailed 

test. In this example, it’s a two-tailed test, so I typed 2 in this box. 

  The Type box holds a number that indicates the type of t-test. The 

choices are 1 for a paired test (which you find out about in an upcom-

ing section), 2 for two samples assuming equal variances, and 3 for two 

samples assuming unequal variances. I typed 2. 

  With values supplied for all the arguments, the dialog box shows the 

probability associated with the t value for the data. It does not show 

the value of t.

 4. Click OK to put the answer in the selected cell.

The value in the dialog box in Figure 11-6 is less than .05, so the decision is to 

reject H
0
. 

By the way, for this example, typing 3 into the Type box (indicating unequal 

variances) results in a very slight adjustment in the probability from the 

equal variance test. The adjustment is small because the sample variances 

are almost equal and the sample sizes are the same.
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Data Analysis Tools: t-test: Two Sample 
Excel provides data analysis tools that carry out t-tests. One tool works for 

the equal variance cases, another for the unequal variances case. As you’ll 

see, when you use these tools you end up with more information than TTEST 

gives you.

Here’s an example that applies the equal variances t-test tool to the data from 

the FarKlempt machines example. Figure 11-7 shows the data along with the 

dialog box for t-Test: Two-Sample Assuming Equal Variances. 

 

Figure 11-7: 
The equal 
variances 

t-Test data 
analysis tool 

and data 
from two 
samples.

 

To use this tool, follow these steps:

 1. Type the data for each sample into a separate data array.

  For this example, the data in the Machine 1 sample are in column B and 

the data for the Machine 2 sample are in column D.

 2. Select Data | Data Analysis to open the Data Analysis dialog box.

 3. In the Data Analysis dialog box, scroll down the Analysis Tools list 

and select t-Test: Two Sample Assuming Equal Variances. Click OK to 

open this tool’s dialog box.

  This is the dialog box in Figure 11-7.

 4. In the Variable 1 Range box, enter the cell range that holds the data 

for one of the samples.

  For the example, the Machine 1 data are in $B$3:$B$12. (Note the $-signs 

for absolute referencing.)

 5. In the Variable 2 Range box, enter the cell range that holds the data 

for the other sample.

  The Machine 2 data are in $D$3:$D$12.
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 6. In the Hypothesized Mean Difference box, type the difference 

between μ1 and μ2 that H0 specifies.

  In this example, that difference is 0. If the cell ranges include column 

headings, check the Labels checkbox. I included the headings in the 

ranges, so I checked the box.

 7. The Alpha box has 0.05 as a default. Change that value if you’re so 

inclined.

 8. In the Output Options, select a radio button to indicate where you 

want the results.

  I selected New Worksheet Ply to put the results on a new page in the 

worksheet.

 9. Click OK.

  Because I selected New Worksheet Ply, a newly created page opens with 

the results. 

Figure 11-8 shows the tool’s results, after I expanded the columns. Rows 4 

through 7 hold sample statistics. Cell B8 shows the H
0
-specified difference 

between the population means, and B9 shows the degrees of freedom. 

The remaining rows provide t-related information. The calculated value of the 

test statistic is in B10. Cell B11 gives the proportion of area the positive value 

of the test statistic cuts off in the upper tail of the t-distribution with the indi-

cated df. Cell B12 gives the critical value for a one-tailed test: That’s the value 

that cuts off the proportion of the area in the upper tail equal to α. 

Cell B13 doubles the proportion in B11. This cell holds the proportion of area 

from B11 added to the proportion of area that the negative value of the test 

statistic cuts off in the lower tail. Cell B14 shows the critical value for a two-

tailed test: That’s the positive value that cuts off α/2 in the upper tail. The 

corresponding negative value (not shown) cuts off α/2 in the lower tail.

 

Figure 11-8: 
Results of 
the Equal 

Variances 
t-Test data 

analysis 
tool.
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The samples in the example I used have the same number of scores and 

approximately equal variances, so applying the unequal variances version 

of the t-Test tool to that data set won’t show much of a difference from the 

equal variances case.

Instead I created another example, summarized in Table 11-2. The samples in 

this example have different sizes and widely differing variances.

Table 11-2 Sample Statistics for the Unequal 
 Variances t-Test Example

Sample 1 Sample 2

Mean 52.50 41.33

Standard Deviation 499.71 41.87

Sample Size 8 6

To show you the difference between the equal variances tool and the unequal 

variances tool, I ran both on the data and put the results side by side. 

Figure 11-9 shows the results from both tools. To run the Unequal Variances 

tool, you go through the same steps as for the Equal Variances version with 

one exception: In the Data Analysis Tools dialog box, you select t-Test: Two 

Sample Assuming Unequal Variances.

 

Figure 11-9: 
Results of 
the Equal 

Variances 
t-Test data 

analysis 
tool and the 

Unequal 
Variances 

t-Test data 
analysis tool 
for the data 

summarized 
in Table 11-2.

 

Figure 11-9 shows one obvious difference between the two tools: The Unequal 

Variances Tool shows no pooled estimate of σ2, because the t-test for that 
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case doesn’t use one. Another difference is in the df. As I pointed out before, 

in the unequal variances case you reduce the df based on the sample vari-

ances and the sample sizes. For the equal variances case, the df in this exam-

ple is 12, for the unequal variances case, it’s 9. 

The effects of these differences show up in the remaining statistics. The 

t values, critical values, and probabilities are different.

A Matched Set: Hypothesis Testing 
for Paired Samples

In the hypothesis tests I’ve described so far, the samples are independent of 

one another. Choosing an individual for one sample has no bearing on the 

choice of an individual for the other.

Sometimes, the samples are matched. The most obvious case is when the 

same individual provides a score under each of two conditions — as in a 

before-after study. For example, suppose ten people participate in a weight-

loss program. They weigh in before they start the program and again after 

one month on the program. The important data is the set of before-after dif-

ferences. Table 11-3 shows the data:

Table 11-3 Data for the Weight-Loss Example
Person Weight Before 

Program
Weight After One 
Month

Difference

1 198 194 4

2 201 203 -2

3 210 200 10

4 185 183 2

5 204 200 4

6 156 153 3

7 167 166 1

8 197 197 0

9 220 215 5

10 186 184 2

Mean 2.9

Standard 
Deviation

3.25
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The idea is to think of these differences as a sample of scores, and treat them 

as you would in a one-sample t-test (Chapter 10).

You carry out a test on these hypotheses:

H
0
: μ

d
 ≤ 0

H
1
: μ

d
 > 0

The d in the subscripts stands for “Difference.” Set α = .05.

The formula for this kind of t-test is:

In this formula,  is the mean of the differences. To find , you calculate the 

standard deviation of the differences and divide by the square root of the 

number of pairs:

The df is N-1. 

From Table 11-3,

With df=9 (Number of pairs – 1), the critical value for α=.05 is 2.26. (Use TINV to 

verify.) The calculated value exceeds this value, so the decision is to reject H
0
.

TTEST for matched samples
Earlier, I described the worksheet function TTEST and showed you how to 

use it with independent samples. This time, I use it for the matched samples 

weight-loss example. Figure 11-10 shows the Function Argument box for 

TTEST along with data from the weight-loss example. 
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Figure 11-10: 
The 

Function 
Arguments 
dialog box 
for TTEST 

along with 
matched 

sample 
data.

 

Here are the steps to follow:

 1. Enter the data for each sample into a separate data array and select 

a cell.

  For this example, the data for the Before sample are in column B and the 

data for the After sample are in column C.

 2. From the Statistical Functions menu, select TTEST to open the 

Function Arguments dialog box for TTEST.

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments.

  In the Array1 box, type the sequence of cells that holds the data for one 

of the samples. In this example, the Before data are in B3:B12.

  In the Array2 box, type the sequence of cells that holds the data for the 

other sample. The After data are in C3:C12.

  The Tails box indicates whether this is a one-tailed test or a two-tailed 

test. In this example, it’s a one-tailed test so I type 1 in the Tails box.

  The Type box holds a number that indicates the type of t-test to per-

form. The choices are 1 for a paired test, 2 for two samples assuming 

equal variances, and 3 for two samples assuming unequal variances. 

I typed 1. 

  With values supplied for all the arguments, the dialog box shows the 

probability associated with the t value for the data. It does not show the 

value of t.

 4.  Click OK to put the answer in the selected cell.

The value in the dialog box in Figure 11-10 is less than .05, so the decision is 

to reject H
0
. 
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If I assign the column headers in Figure 11-10 as names for the respective 

arrays, the formula in the Formula bar can be

=TTEST(Before,After,1,1)

That format might be easier to explain if you had to show the worksheet to 

someone. (If you don’t remember how to define a name for a cell range, see 

Chapter 2.)

Data analysis tool: t-test: Paired 
Two Sample for Means 
Excel provides a data analysis tool that takes care of just about everything 

for matched samples. It’s called t-test: Paired Two Sample for Means. In this 

section, I use it on the weight-loss data.

Figure 11-11 shows the data along with the dialog box for t-Test: Paired Two 

Sample for Means.

 

Figure 11-11: 
The Paired 

Two Sample 
t-Test data 

analysis 
tool and 

data from 
matched 
samples.

 

Here are the steps to follow:

 1. Enter the data for each sample into a separate data array.

  For this example, the data in the Before sample are in column B and the 

data for the After sample are in column C.

 2. Select Data | Data Analysis to open the Data Analysis dialog box.

 3. In the Data Analysis dialog box, scroll down the Analysis Tools list 

and select t-Test: Paired Two Sample for Means. Click OK to open this 

tool’s dialog box.

  This is the dialog box in Figure 11-11.
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 4. In the Variable 1 Range box, enter the cell range that holds the data 

for one of the samples.

  For the example, the Before data are in $B$2:$B$12. (Note the $-signs for 

absolute referencing.)

 5. In the Variable 2 Range box, enter the cell range that holds the data 

for the other sample.

  The After data are in $C$2:$C$12.

 6. In the Hypothesized Mean Difference box, type the difference 

between μ1 and μ2 that H0 specifies.

  In this example, that difference is 0.

 7. If the cell ranges include column headings, check the Labels checkbox.

  I included the headings in the ranges, so I checked the box.

 8. The Alpha box has 0.05 as a default. Change that value if you want to 

use a different α.

 9. In the Output Options, select a radio button to indicate where you 

want the results.

  I selected New Worksheet Ply to put the results on a new page in the 

worksheet.

 10. Click OK.

  Because I selected New Worksheet Ply, a newly created page opens with 

the results. 

Figure 11-12 shows the tool’s results, after I expanded the columns. Rows 4 

through 7 hold sample statistics. The only item that’s new is the number in 

cell B7, the Pearson Correlation Coefficient. This is a number between –1 and 

+1 that indicates the strength of the relationship between the data in the first 

sample and the data in the second. 

If this number is close to 1 (as in the example), high scores in one sample are 

associated with high scores in the other, and low scores in one are associ-

ated with low scores in the other. If the number is close to –1, high scores in 

the first sample are associated with low scores in the second, and low scores 

in the first are associated with high scores in the second. 

If the number is close to zero, scores in the first sample are unrelated to 

scores in the second. Because the two samples consist of scores on the same 

people, you expect a high value. (I describe this topic in much greater detail 

in Chapter 15.)

Cell B8 shows the H
0
-specified difference between the population means, and 

B9 shows the degrees of freedom. 
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The remaining rows provide t-related information. The calculated value of the 

test statistic is in B10. Cell B11 gives the proportion of area the positive value 

of the test statistic cuts off in the upper tail of the t-distribution with the indi-

cated df. Cell B12 gives the critical value for a one-tailed test: That’s the value 

that cuts off the proportion of the area in the upper tail equal to α. 

Cell B13 doubles the proportion in B11. This cell holds the proportion of area 

from B11 added to the proportion of area that the negative value of the test 

statistic cuts off in the lower tail. Cell B13 shows the critical value for a two-

tailed test: That’s the positive value that cuts off α/2 in the upper tail. The 

corresponding negative value (not shown) cuts off α/2 in the lower tail.

 

Figure 11-12: 
Results of 

The Paired 
Two Sample 

t-Test data 
analysis 

tool.
 

Testing Two Variances
The two-sample hypothesis testing I’ve described thus far pertains to means. 

It’s also possible to test hypotheses about variances.

In this section I extend the one-variance manufacturing example I used in 

Chapter 10. FarKlempt Robotics, Inc., produces a part that has to be a certain 

length with a very small variability. They’re considering two machines to 

produce this part, and they want to choose the one that results in the least 

variability. They take a sample of parts from each machine, measure them, 

find the variance for each sample, and perform a hypothesis test to see if one 

machine’s variance is significantly greater than the other’s.

The hypotheses are:

H
0:
 σ

1
2 = σ

2
2

H
1:
 σ

1
2 ≠ σ

2
2

As always, an α is a must. As usual, I set it to .05. 
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When you test two variances, you don’t subtract one from the other. Instead, 

you divide one by the other to calculate the test statistic. Sir Ronald Fisher is 

a famous statistician who worked out the mathematics and the family of dis-

tributions for working with variances in this way. The test statistic is named 

in his honor. It’s called an F-ratio and the test is the F test. The family of distri-

butions for the test is called the F-distribution.

Without going into all the mathematics, I’ll just tell you that, once again, df 

is the parameter that distinguishes one member of the family from another. 

What’s different about this family is that two variance estimates are involved, 

so each member of the family is associated with two values of df, rather than 

one as in the t-test. Another difference between the F-distribution and the 

others you’ve seen is that the F cannot have a negative value. Figure 11-13 

shows two members of the F-distribution family.

The test statistic is:

 

Figure 11-13: 
Two mem-
bers of the 

F-distribution 
family.

 

f(F)

1.0

0.5

0.0

0
F

1 2

df = 10,20

df = 5,15

3 4 5
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Suppose FarKlempt Robotics produces 10 parts with Machine 1 and finds a 

sample variance of .60 square inches. They produce 15 parts with Machine 2 

and find a sample variance of .44 square inches. Can they reject H
0
?

Calculating the test statistic,

The df’s are 9 and 14: The variance estimate in the numerator of the F ratio is 

based on 10 cases, and the variance estimate in the denominator is based on 

15 cases.

When the df’s are 9 and 14 and it’s a two-tailed test at α = .05, the critical 

value of F is 3.21. (In a moment, I’ll show you an Excel function that finds that 

value for you.) The calculated value is less than the critical value, so the deci-

sion is to not reject H
0
. 

 It makes a difference which df is in the numerator and which df is in the 

denominator. The F-distribution for df=9 and df=14 is different from the 

F-distribution for df=14 and df=9. For example, the critical value in the latter 

case is 3.98, not 3.21.

Using F in conjunction with t
One use of the F-distribution is in conjunction with the t-test for indepen-

dent samples. Before you do the t-test, you use F to help decide whether to 

assume equal variances or unequal variances in the samples.

In the equal variances t-test example I showed you earlier, the standard devi-

ations are 2.71 and 2.79. The variances are 7.34 and 7.78. The F-ratio of these 

variances is 

Each sample is based on 10 observations, so df=9 for each sample variance. 

An F-ratio of 1.06 cuts off the upper 47 percent of the F-distribution whose 

df are 9 and 9, so it’s safe to use the equal variances version of the t-test for 

these data.

In the sidebar at the end of Chapter 10, I mention that on rare occasions a 

high α is a good thing. When H
0
 is a desirable outcome and you’d rather not 

reject it, you stack the deck against rejecting by setting α at a high level so 

that small differences cause you to reject H
0
. 
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This is one of those rare occasions. It’s more desirable to use the equal vari-

ances t-test, which typically provides more degrees of freedom than the 

unequal variances t-test. Setting a high value of α (.20 is a good one) for the 

F-test enables you to be confident when you assume equal variances.

FTEST
The worksheet function FTEST calculates an F-ratio on the data from two 

samples. It doesn’t return the F-ratio. Instead, it provides the two-tailed prob-

ability of the calculated F-ratio under H
0
. This means that the answer is the 

proportion of area to the right of the F-ratio, and to the left of the reciprocal 

of the F-ratio (1 divided by the F-ratio).

Figure 11-14 presents the data for the FarKlempt machines example I just 

summarized for you. The Figure also shows the Function Arguments dialog 

box for FTEST. 

 

Figure 11-14: 
Working 

With FTEST.
 

Follow these steps:

 1. Enter the data for each sample into a separate data array and select a 

cell for the answer.

  For this example, the data for the Machine 1 sample are in column B and 

the data for the Machine 2 sample are in column D.

 2. From the Statistical Functions menu, select FTEST to open the 

Function Arguments dialog box for FTEST.

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments. 
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211 Chapter 11: Two-Sample Hypothesis Testing

  In the Array1 box, enter the sequence of cells that holds the data for the 

sample with the larger variance. In this example, the Machine 1 data are 

in B3:B12.

  In the Array2 box, enter the sequence of cells that holds the data for the 

other sample. The Machine 2 data are in D3:D17. 

  With values entered for all the arguments, the answer appears in the 

dialog box.

 4. Click OK to put the answer in the selected cell.

The value in the dialog box in Figure 11-14 is greater than .05, so the decision 

is to not reject H
0
. Figure 11-15 shows the area that the answer represents.

Had I assigned names to those two arrays, the formula in the Formula bar 

could have been:

=FTEST(Machine_1,Machine_2)

If you don’t know how to assign names to arrays, see Chapter 2. In that chap-

ter, you also find out why I inserted an underscore into each name.

 

Figure 11-15: 
FTEST’s 

result.
 

f(F)

1.0

0.5

0.0

0
F

1 2

FTEST returns the sum
of these two areas

3 4
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FDIST 
You use the worksheet function FDIST to decide whether or not your calcu-

lated F-ratio is in the region of rejection. You supply a value for F, a value for 

each df, and whether the test is one-tailed or two-tailed. FDIST returns the 

probability of obtaining an F-ratio at least as high as yours if H
0
 is true. If that 

probability is less than your α, you reject H
0
. 

Here, I apply FDIST to the example I just used. The F-ratio is 1.36, with 9 and 

14 df.

The steps are:

 1. Select a cell for the answer.

 2. From the Statistical Functions menu, select FDIST to open the Function 

Arguments dialog box for FDIST. (See Figure 11-16.)

 

Figure 11-16: 
The 

Function 
Arguments 
dialog box 
for FDIST. 

 

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments.

  In the X box, type the calculated F. For this example, the calculated F 

is 1.36.

  In the Deg_freedom1 box, I type the degrees of freedom for the vari-

ance estimate in the numerator of the F. The degrees of freedom for the 

numerator in this example is 9 (10 scores - 1).

  In the Deg_freedom2 box, I type the degrees of freedom for the variance 

estimate in the denominator of the F. The degrees of freedom for the 

denominator in this example is 14 (15 scores - 1). 

  With values entered for all the arguments, the answer appears in the 

dialog box.
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213 Chapter 11: Two-Sample Hypothesis Testing

 4. Click OK to close the dialog box and put the answer in the selected cell.

The value in the dialog box in Figure 11-16 is greater than .05, so the decision 

is to not reject H
0
.

FINV
Excel’s FINV worksheet function finds the value in the F-distribution that cuts 

off a given proportion of the area in the upper (right-side) tail. You can use 

it to find the critical value of F. Here, I use it to find the critical value for the 

two-tailed test in the FarKlempt machines example.

 1. Select a cell for the answer.

 2. From the Statistical Functions menu, select FINV to open the Function 

Arguments dialog box for FINV. 

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments.

  In the Probability box, I enter the proportion of area in the upper tail. In 

this example, that’s .025 because it’s a two-tailed test with α = .05. 

  In the Deg_freedom1 box, I type the degrees of freedom for the numera-

tor. For this example, df for the numerator = 9. 

  In the Deg_freedom2 box, I type the degrees of freedom for the denomi-

nator. For this example, df for the denominator = 9. 

  With values entered for all the arguments, the answer appears in the 

dialog box. (See Figure 11-17.)

 4. Click OK to put the answer into the selected cell.

 

Figure 11-17: 
The 

Function 
Arguments 
dialog box 

for FINV. 
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Data Analysis Tool: F-test Two Sample 
for Variances
Excel provides a data analysis tool for carrying out an F-test on two sample 

variances. I apply it here to the sample variances example I’ve been using. 

Figure 11-18 shows the data, along with the dialog box for F-Test: Two-Sample 

for Variances. 

 

Figure 11-18: 
The F-Test 

data 
analysis tool 

and data 
from two 
 samples.

 

To use this tool, follow these steps:

 1. Enter the data for each sample into a separate data array.

  For this example, the data in the Machine 1 sample are in column B and 

the data for the Machine 2 sample are in column D.

 2. Select Data | Data Analysis to open the Data Analysis dialog box.

 3. In the Data Analysis dialog box, scroll down the Analysis Tools list 

and select F-Test Two Sample For Variances. Click OK to open this 

tool’s dialog box.

  This is the dialog box in Figure 11-18.

 4. In the Variable 1 Range box, enter the cell range that holds the data 

for the first sample.

  For the example, the Machine 1 data are in $B$2:$B$12. (Note the $-signs 

for absolute referencing.)

 5. In the Variable 2 Range box, enter the cell range that holds the data 

for the second sample.

  The Machine 2 data are in $D$2:$D$17.
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215 Chapter 11: Two-Sample Hypothesis Testing

 6. If the cell ranges include column headings, check the Labels checkbox.

  I included the headings in the ranges, so I checked the box.

 7. The Alpha box has 0.05 as a default. Change that value for a different α.

  The Alpha box provides a one-tailed alpha. I want a two-tailed test, so I 

changed this value to .025

 8. In the Output Options, select a radio button to indicate where you 

want the results.

  I selected New Worksheet Ply to put the results on a new page in the 

worksheet.

 9. Click OK.

  Because I selected New Worksheet Ply, a newly created page opens with 

the results. 

Figure 11-19 shows the tool’s results, after I expanded the columns. Rows 4 

through 6 hold sample statistics. Cell B7 shows the degrees of freedom. 

The remaining rows present F-related information. The calculated value of F 

is in B8. Cell B9 gives the proportion of area the calculated F cuts off in the 

upper tail of the F-distribution. This is the right-side area in Figure 11-15. Cell 

B10 gives the critical value for a one-tailed test: That’s the value that cuts off 

the proportion of the area in the upper tail equal to the value in the Alpha box. 

 

Figure 11-19: 
Results of 

The F-Test 
data analy-

sis tool.
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Chapter 12

Testing More Than Two Samples
In This Chapter
▶ Why multiple t-tests won’t work

▶ Introducing ANOVA

▶ What to do after an ANOVA

▶ Working with repeated measures

▶ Performing a trend analysis

Statistics would be limited if you could only make inferences about one 

or two samples. In this chapter, I discuss the procedures for testing 

hypotheses about three or more samples. I show what to do when samples 

are independent of one another, and what to do when they’re not. In both 

cases, I discuss what to do after you test the hypotheses.

I also introduce Excel data analysis tools that do the work for you. Although 

these tools aren’t at the level you’d find in a dedicated statistical package, 

you can combine them with Excel’s standard features to produce some 

sophisticated analyses.

Testing More Than Two
Imagine this situation. Your company asks you to evaluate three different 

methods for training its employees to do a particular job. You randomly 

assign 30 employees to one of the three methods. Your plan is to train them, 

test them, tabulate the results, and make some conclusions. Before you can 

finish the study, three people leave the company — one from the Method 1 

group, and two from the Method 3 group. 

Table 12-1 shows the data.
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218 Part III: Drawing Conclusions from Data 

Table 12-1 Data from Three Training Methods
Method 1 Method 2 Method 3

 95  83  68

 91  89  75

 89  85  79

 90  89  74

 99  81  75

 88  89  81

 96  90  73

 98  82  77

 95  84

 80

Mean  93.44  85.20  75.25

Variance 16.28  14.18  15.64

Standard Deviation  4.03  3.77  3.96

Do the three methods provide different results, or are they so similar that 

you can’t distinguish among them? To decide, you have to carry out a 

hypothesis test:

H
0
: μ

1 
= μ

2 
= μ

3

H
1
: Not H

0

with α = .05.

A thorny problem
Sounds pretty easy, particularly if you’ve read Chapter 11. Take the mean 

of the scores from Method 1, the mean of the scores from Method 2, and do 

a t-test to see if they’re different. Follow the same procedure for Method 1 

versus Method 3, and for Method 2 versus Method 3. If at least one of those 

t-tests shows a significant difference, reject H
0
. Nothing to it, right?

Wrong. If your α is .05 for each t-test, you’re setting yourself up for a Type I 

error with a probability higher than you planned on. The probability that at 

least one of the three t-test results in a significant difference is way above .05. 
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219 Chapter 12: Testing More Than Two Samples

In fact, it’s .14, which is way beyond acceptable. (The mathematics behind 

calculating that number is a little involved, so I won’t elaborate.)

With more than three samples, the situation gets even worse. Four groups 

require six t-tests, and the probability that at least one of them is significant 

is .26. Table 12-2 shows what happens with increasing numbers of samples.

Table 12-2 The Incredible Increasing Alpha
Number of Samples t Number of Tests Pr(At Least One Significant t)

 3  3  .14

 4  6  .26

 5  10  .40

 6  15  .54

 7  21  .66

 8  28  .76

 9  36  .84

 10  45  .90

Carrying out multiple t-tests is clearly not the answer. So what do you do?

A solution
It’s necessary to take a different approach. The idea is to think in terms of 

variances rather than means. 

I’d like you to think of variance in a slightly different way. The formula for 

estimating population variance, remember, is

Because the variance is almost a mean of squared deviations from the mean, 

statisticians also refer to it as Mean Square. In a way, that’s an unfortunate 

nickname: It leaves out “deviation from the mean,” but there you have it.
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The numerator of the variance, excuse me, Mean Square, is the sum of 

squared deviations from the mean. This leads to another nickname, Sum of 
Squares. The denominator, as I say in Chapter 10, is degrees of freedom (df). 

So, the slightly different way to think of variance is

You can abbreviate this as

Now, on to solving the thorny problem. One important step is to find the 

Mean Squares hiding in the data. Another is to understand that you use these 

Mean Squares to estimate the variances of the populations that produced 

these samples. In this case, assume those variances are equal, so you’re 

really estimating one variance. The final step is to understand that you use 

these estimates to test the hypotheses I show you at the beginning of the 

chapter.

Three different Mean Squares are inside the data in Table 12-1. Start with the 

whole set of 27 scores, forgetting for the moment that they’re divided into 

three groups. Suppose you want to use those 27 scores to calculate an esti-

mate of the population variance. (A dicey idea, but humor me.) The mean of 

those 27 scores is 85. I’ll call that mean the grand mean because it’s the aver-

age of everything. 

So the Mean Square would be

The denominator has 26 (27–1) degrees of freedom. I refer to that variance 

as the Total Variance, or in the new way of thinking about this, the MS
Total

. It’s 

often abbreviated as MS
T
.

Here’s another variance to consider. In Chapter 11, I describe the t-test for 

two samples with equal variances. For that test, you put the two sample 

variances together to create a pooled estimate of the population variance. 

The data in Table 12-1 provide three sample variances for a pooled estimate: 

16.28, 14.18, 15.64. Assuming these numbers represent equal population vari-

ances, the pooled estimate is:
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221 Chapter 12: Testing More Than Two Samples

Because this pooled estimate comes from the variance within the groups, it’s 

called MS
Within

, or MS
W

.

One more Mean Square to go — the variance of the sample means around 

the grand mean. In this example, that means the variance in these numbers: 

93.44, 85.20, and 75.25 — sort of. I said “sort of” because these are means, 

not scores. When you deal with means you have to take into account the 

number of scores that produced each mean. To do that you multiply each 

squared deviation by the number of scores in that sample.

So this variance is:

The df for this variance is 2 (the number of samples – 1).

Statisticians, not known for their crispness of usage, refer to this as the vari-

ance between sample means. (Among is the correct word when you’re talking 

about more than two items.) This variance is known as MS
Between

, or MS
B
.

So you now have three estimates of population variance: MS
T
, MS

W
, and MS

B
. 

What do you do with them? 

Remember that the original objective is to test a hypothesis about three 

means. According to H
0
, any differences you see among the three sample 

means are due strictly to chance. The implication is that the variance among 

those means is the same as the variance of any three numbers selected at 

random from the population. 

If you could somehow compare the variance among the means (that’s MS
B
, 

remember) with the population variance, you could see if that holds up. If 

only you had an estimate of the population variance that’s independent of 

the differences among the groups, you’d be in business.

Ah . . . but you do have that estimate. You have MS
W

, an estimate based on 

pooling the variances within the samples. Assuming those variances repre-

sent equal population variances, this is a pretty solid estimate. In this exam-

ple, it’s based on 24 degrees of freedom.
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The reasoning now becomes: If MS
B
 is about the same as MS

W
, you have evi-

dence consistent with H
0
. If MS

B
 is significantly larger than MS

W
, you have evi-

dence that’s inconsistent with H
0
. In effect, you transform these hypotheses

H
0
: μ

1 
= μ

2 
= μ

3

H
1
: Not H

0

into these

H
0
: σ

B
2 ≤ σ

W
2

H
1
: σ

B
2 > σ

W
2

Rather than multiple t-tests among sample means, you perform a test of the 

difference between two variances. 

What is that test? In Chapter 11 I show you the test for hypotheses about 

two variances. It’s called the F-test. To perform this test, you divide one vari-

ance by the other. You evaluate the result against a family of distributions 

called the F-distribution. Because two variances are involved, two values for 

degrees of freedom define each member of the family. 

For this example, F has df = 2 (for the MS
B
) and df = 24 (for the MS

W
). 

Figure 12-1 shows what this member of the F family looks like. For our 

 purposes, it’s the distribution of possible F values if H
0
 is true.

The test statistic for the example is:

What proportion of area does this value cut off in the upper tail of the 

F-distribution? From Figure 12-1, you can see that this proportion is micro-

scopic, as the values on the horizontal axis only go up to 5. (And the propor-

tion of area beyond 5 is tiny.) It’s way less than .05.

This means that it’s highly unlikely that differences among the means are due 

to chance. It means that you reject H
0
.

 This whole procedure for testing more than two samples is called the analysis 
of variance, often abbreviated as ANOVA. In the context of an ANOVA, the 

denominator of an F-ratio has the generic name error term. The independent 

variable is sometimes called a factor. So this is a single-factor or (one-factor) 

ANOVA.
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Figure 12-1: 
The 

F-distribution 
with 2 and 

24 degrees 
of freedom.

 

0 1 2 3 4 5

0.0

0.5

1.0

F

f(F)

In this example, the factor is Training Method. Each instance of the indepen-

dent variable is called a level. The independent variable in this example has 

three levels.

More complex studies have more than one factor, and each factor can have 

many levels.

Meaningful relationships
Take another look at the Mean Squares in this example, each with its Sum of 

Squares and degrees of freedom. Before, when I calculated each Mean Square 

for you, I didn’t explicitly show you each Sum of Squares, but here I include 

them:
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Start with the degrees of freedom: df
B
 = 2, df

W
 = 24, and df

T
 = 26. Is it a coinci-

dence that they add up? Hardly. It’s always the case that

How about those Sums of Squares?

Again, this is no coincidence. In the analysis of variance, this always happens:

In fact, statisticians who work with the analysis of variance speak of parti-

tioning (read “breaking down into non-overlapping pieces”) the SS
T
 into one 

portion for the SS
B
 and another for the SS

W
, and partitioning the df

T
 into one 

amount for the df
B
 and another for the df

W
.

After the F-test
The F-test enables you to decide whether or not to reject H

0
. After you decide 

to reject, then what? All you can say is that somewhere within the set of 

means, something is different from something else. The F-test doesn’t specify 

what those “somethings” are.

Planned comparisons
In order to get more specific, you have to do some further tests. Not only 

that, you have to plan those tests in advance of carrying out the ANOVA. 

What are those tests? Given what I said earlier, this might surprise you: 

t-tests. While this might sound inconsistent with the increased alpha of mul-

tiple t-tests, it’s not. If an analysis of variance enables you to reject H
0
, then 

it’s OK to use t-tests to turn the magnifying glass on the data and find out 

where the differences are. And as I’m about to show you, the t-test you use is 

slightly different from the one I discuss in Chapter 11.

These post-ANOVA t-tests are called planned comparisons. Some refer to 

them as a priori tests. I illustrate by following through with the example. 

Suppose before you gathered the data, you had reason to believe that 

Method 1 would result in higher scores than Method 2, and that Method 

2 would result in higher scores than Method 3. In that case, you plan in 

advance to compare the means of those samples in the event your ANOVA-

based decision is to reject H
0
.
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The formula for this kind of t-test is

It’s a test of 

H
0
: μ

1
 ≤ μ

2

H
1
: μ

1
 > μ

2

MS
W

 takes the place of the pooled estimate s
p

2 I show you in Chapter 11. In 

fact, when I introduced MS
W

, I showed how it’s just a pooled estimate that 

can incorporate variances from more than two samples. The df for this t-test 

is df
W

, rather than (n
1
 – 1) + (n

2
 – 1).

For this example, the Method 1 versus Method 2 comparison is:

With df = 24, this value of t cuts off a miniscule portion of area in the upper 

tail of the t-distribution. The decision is to reject H
0
.

The planned comparison t-test formula I showed you matches up with the 

t-test for two samples. You can write the planned comparison t-test formula 

in a way that sets up additional possibilities. Start by writing the numerator

a bit differently:

The +1 and –1 are comparison coefficients. I refer to them, in a general way, as 

c
1
 and c

2
. In fact, c

3
 and  can enter the comparison, even if you’re just com-

paring  with :

The important thing is that the coefficients add up to zero.

18 454060-ch12.indd   22518 454060-ch12.indd   225 4/21/09   7:31:36 PM4/21/09   7:31:36 PM



226 Part III: Drawing Conclusions from Data 

Here’s how the comparison coefficients figure into the planned comparison 

t-test formula for a study that involves three samples:

Applying this formula to Method 2 versus Method 3:

The value for t indicates the results from Method 2 are significantly higher 

than the results from Method 3.

You can also plan a more complex comparison — say, Method 1 versus the 

average of Method 2 and Method 3. Begin with the numerator. That would be

With comparison coefficients, you can write this as

If you’re more comfortable with whole numbers, you can write it as:

Plugging these whole numbers into the formula gives you

Again, strong evidence for rejecting H
0
.

18 454060-ch12.indd   22618 454060-ch12.indd   226 4/21/09   7:31:36 PM4/21/09   7:31:36 PM



227 Chapter 12: Testing More Than Two Samples

Unplanned comparisons
Things would get boring if your post-ANOVA testing is limited to compari-

sons you have to plan in advance. Sometimes you want to snoop around 

your data and see if anything interesting reveals itself. Sometimes something 

jumps out at you that you didn’t anticipate. 

When this happens, you can make comparisons you didn’t plan on. These 

comparisons are called a posteriori tests, post hoc tests, or simply unplanned 
comparisons. Statisticians have come up with a wide variety of these tests, 

many of them with exotic names and many of them dependent on special 

sampling distributions. 

The idea behind these tests is that you pay a price for not having planned 

them in advance. That price has to do with stacking the deck against reject-

ing H
0
 for the particular comparison.

Of all the unplanned tests available, the one I like best is a creation of famed 

statistician Henry Scheffé. As opposed to esoteric formulas and distributions, 

you start with the test I already showed you, and then add a couple of easy-

to-do extras. 

The first extra is to understand the relationship between t and F. I’ve shown 

you the F-test for three samples. You can also carry out an F-test for two 

samples. That F-test has df = 1 and df = (n
1 
– 1) + (n

2 
– 1). The df for the t-test, 

of course, is (n
1
 – 1) + (n

2
 – 1). Hmmm . . . seems like they should be related 

somehow. 

They are. The relationship between the two-sample t and the two-sample F is

Now I can tell you the steps for performing Scheffé’s test:

 1. Calculate the planned comparison t-test.

 2. Square the value to create F. 

 3. Find the critical value of F for dfB and dfW at α = .05 (or whatever α 

you choose). 

 4. Multiply this critical F by the number of samples – 1. 

  The result is your critical F for the unplanned comparison. I’ll call this F’.

 5. Compare the calculated F to F’. If the calculated F is greater, reject H0 

for this test. If it’s not, don’t reject H0 for this test.
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Imagine that in the example, you didn’t plan in advance to compare the mean 

of Method 1 with the mean of Method 3. (In a study involving only three sam-

ples that’s hard to imagine, I grant you.) The t-test is:

Squaring this result gives

For F with 2 and 24 df and α = .05, the critical value is 3.403. (You can look 

that up in a table in a statistics textbook or you can use the worksheet func-

tion FINV.) So

Because the calculated F, 91.61, is greater than F’, the decision is to reject 

H
0
. You have evidence that Method 1’s results are different from Method 3’s 

results. 

Data analysis tool: Anova: Single Factor
The calculations for the ANOVA can get intense. Excel has a data analysis 

tool that does the heavy lifting. It’s called Anova: Single Factor. Figure 12-2 

shows this tool along with the data for the preceding example.

 

Figure 12-2: 
The Anova: 

Single 
Factor data 

analysis tool 
dialog box.
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The steps for using this tool are:

 1. Enter the data for each sample into a separate data array.

  For this example the data in the Method 1 sample are in column B, 

the data in the Method 2 sample are in Column C, and the data for the 

Method 3 sample are in column D.

 2. Select Data | Data Analysis to open the Data Analysis dialog box.

 3. In the Data Analysis dialog box, scroll down the Analysis Tools list 

and select Anova: Single Factor. Click OK to open the Anova: Single 

Factor dialog box.

  This is the dialog box in Figure 12-2.

 4. In the Input Range box, enter the cell range that holds all the data.

  For the example, the data are in $B$2:$D$12. (Note the $-signs for abso-

lute referencing.)

 5. If the cell ranges include column headings, check the Labels checkbox.

  I included the headings in the ranges, so I checked the box.

 6. The Alpha box has 0.05 as a default. Change that value if you’re so 

inclined.

 7. In the Output Options, select a radio button to indicate where you 

want the results.

  I selected New Worksheet Ply to put the results on a new page in the 

worksheet.

 8. Click OK.

  Because I selected New Worksheet Ply, a newly created page opens with 

the results. 

Figure 12-3 shows the tool’s output, after I expanded the columns. The output 

features two tables, SUMMARY and ANOVA. The SUMMARY table provides 

summary statistics of the samples — the number in each group, the group 

sums, averages, and variances. The ANOVA table presents the Sums of 

Squares, df, Mean Squares, F, P-value, and critical F for the indicated df. The 

P-value is the proportion of area that the F cuts off in the upper tail of the 

F-distribution. If this value is less than .05, reject H
0
. 
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Figure 12-3: 
Output from 
the Anova: 

Single 
Factor anal-

ysis tool.
 

Comparing the means
Excel’s ANOVA tool does not provide a built-in facility for carrying out 

planned (or unplanned) comparisons among the means. With a little ingenu-

ity, however, you can use the Excel worksheet function SUMPRODUCT to do 

those comparisons. 

The worksheet page with the ANOVA output is the launching pad for the 

planned comparisons. In this section, I take you through one planned 

 comparison — the mean of Method 1 versus the mean of Method 2.

Begin by creating columns that hold important information for the compari-

sons. Figure 12-4 shows what I mean. I put the comparison coefficients in 

column J, the squares of those coefficients in column K, and the reciprocal of 

each sample size (1/n) in column L. 

 

Figure 12-4: 
Carrying out 

a planned 
comparison.
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A few rows below those cells, I put t-test related information — the t-test 

numerator, the denominator, and the value of t. I use separate cells for the 

numerator and denominator to simplify the formulas. You can put them 

together in one big formula and just have a cell for t, but it’s hard to keep 

track of everything. 

SUMPRODUCT takes arrays of cells, multiplies the numbers in the corre-

sponding cells, and sums the products. (This function is in the Math & Trig 

Functions menu, not the Statistical Functions menu.) I used SUMPRODUCT to 

multiply each coefficient by each sample mean and then add the products. 

I stored that result in K11. That’s the numerator for the planned comparison 

t-test. The formula for K11 is 

=SUMPRODUCT(J5:J7,D5:D7)

The array J5:J7 holds the comparison coefficients, and D5:D7 holds the 

sample means.

K12 holds the denominator. I selected K12 so you could see its formula in the 

formula bar:

=SQRT(D13*(SUMPRODUCT(K5:K7,L5:L7)))

D13 has the MS
W

. SUMPRODUCT multiplies the squared coefficients in K5:K7 

by the reciprocals of the sample sizes in L5:L7 and sums the products. SQRT 

takes the square root of the whole thing.

K13 holds the value for t. That’s just K11 divided by K12.

K14 presents the P-value for t — the proportion of area that t cuts off in the 

upper tail of the t-distribution with df = 24. The formula for that cell is

=TDIST(K13,C13,1)

The arguments are the calculated t (in K13), the degrees of freedom for MS
W

 

(in C13), and the number of tails. 

If you change the coefficients in J5:J7, you instantaneously create and com-

plete another comparison.

In fact, I’ll do that right now, and show you Scheffé’s post hoc comparison. 

That one, in this example, compares the mean of Method 1 with the mean 

of Method 3. Figure 12-5 shows the extra information for this test, starting a 

couple of rows below the t-test. 
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Figure 12-5: 
Carrying out 

a post hoc 
comparison.

 

Cell K16 holds F, the square of the t value in K13. K17 has F’, the product of 

C12 (df
B
, which is the number of samples – 1) and G12 (the critical value of 

F for 2 and 24 degrees of freedom and α = .05). K16 is greater than K17, so 

reject H
0
 for this comparison.

Another Kind of Hypothesis, 
Another Kind of Test

The ANOVA I just showed you works with independent samples. As you may 

remember from Chapter 11, sometimes you work with matched samples. For 

example, sometimes a person provides data in a number of different condi-

tions. In this section, I introduce the ANOVA you use when you have more 

than two matched samples.

This type of ANOVA is called repeated measures. You’ll see it called other 

names, too, like randomized blocks or within subjects.

Working with repeated measures ANOVA
To show how this works, I extend the example from Chapter 11. In that exam-

ple, ten people participate in a weight-loss program. Table 12-3 shows their 

data over a three-month period.
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Table 12-3 Data for the Weight-Loss Example
Person Before One Month Two 

Months
Three 
Months

Mean

1 198 194 191 188 192.75

2 201 203 200 196 200.00

3 210 200 192 188 197.50

4 185 183 180 178 181.50

5 204 200 195 191 197.50

6 156 153 150 145 151.00

7 167 166 167 166 166.50

8 197 197 195 192 195.25

9 220 215 209 205 212.25

10 186 184 179 175 181.00

Mean 192.4 189.5 185.8 182.4 187.525

Is the program effective? This question calls for a hypothesis test:

H
0
: μ

Before 
= μ

1
 = μ

2
 = μ

3

H
1
: Not H

0

Once again, I set α = .05

As in the previous ANOVA, start with the variances in the data. The MS
T
 is 

the variance in all 40 scores from the grand mean, which is 187.525:

The people participating in the weight-loss program also supply variance. 

Each one’s overall mean (his or her average over the four measurements) 

varies from the grand mean. Because these data are in the rows, I call this 

MS
Rows

:
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The means of the columns also vary from the grand mean:

One more source of variance is in the data. Think of it as the variance left 

over after you pull out the variance in the rows and the variance in the col-

umns from the total variance. Actually, it’s more correct to say that it’s the 

Sum of Squares left over when you subtract the SS
Rows

 and the SS
Columns

 from 

the SS
T
.

This variance is called MS
Error

. As I say earlier, in the ANOVA the denomina-

tor of an F is called an “error term.” So the word “error” here gives you a hint 

that this MS is a denominator for an F. 

To calculate MS
Error

, you use the relationships among the Sums of Squares 

and among the df.

Here’s another way to calculate the df
Error

: 

To perform the hypothesis test, you calculate the F:

With 3 and 27 degrees of freedom, the critical F for α = .05 is 2.96. (Look it up 

or use the Excel worksheet function FINV.) The calculated F is larger than the 

critical F, so the decision is to reject H
0
.

What about an F involving MS
Rows

? That one doesn’t figure into H
0
 for this 

example. If you find a significant F, all it shows is that people are different 

from one another with respect to weight and that doesn’t tell you very much.

As is the case with the ANOVA I showed you before, you plan comparisons to 

zero in on the differences. You can use the same formula, except you substi-

tute MS
Error

 for MS
W

:
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The df for this test is df
Error

.

For Scheffé’s post hoc test, you also follow the same procedure as before and 

substitute MS
Error

 for MS
W

. The only other change is to substitute df
Columns

 for 

df
B
 and substitute df

Error
 for df

W
 when you find F’.

Getting trendy
In situations like the one in the weight-loss example, you have an inde-

pendent variable that’s quantitative — its levels are numbers (0 months, 

1 month, 2 months, 3 months). Not only that, but in this case, the intervals 

are equal. 

With that kind of an independent variable, it’s often a good idea to look for 

trends in the data, rather than just plan comparisons among means. If you 

graph the means in the weight-loss example, they seem to approximate a line, 

as Figure 12-6 shows. Trend analysis is the statistical procedure that exam-

ines that pattern. The objective is to see if the pattern contributes to the sig-

nificant differences among the means.

 

Figure 12-6: 
The means 

for the 
weight-loss 

example.
 

178

180

182

184

186

188

190

192

194

Before

Time

1 Month 2 Months 3 Months

Weight (lbs)

A trend can be linear, as it apparently is in this example, or nonlinear (in which 

the means fall on a curve). In this example, I only deal with linear trend.

To analyze a trend, you use comparison coefficients — those numbers you 

use in planned comparisons. You use them in a slightly different way than 

you did before. 
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Here, you use comparison coefficients to find a Sum of Squares for linear 

trend. I abbreviate that as SS
Linear

. This is a portion of SS
Columns

. In fact,

Also,

After you calculate SS
Linear

, you divide it by df
Linear

 to produce MS
Linear

. This is 

extremely easy because df
Linear

 = 1. Divide MS
Linear

 by MS
Error

 and you have an 

F. If that F is higher than the critical value of F with df = 1 and df
Error

 at your α 

–level, then weight is decreasing in a linear way over the time period of the 

weight-loss program.

The comparison coefficients are different for different numbers of samples. 

For four samples, the coefficients are –3, –1, 1, and 3. To form the SS
Linear

 the 

formula is 

In this formula, n is the number of people and c represents the coefficients. 

Applying the formula to this example, 

This is such a large proportion of SS
Columns

 that SS
Nonlinear

 is really small:

As I pointed out before, df = 1, so MS
Linear

 is conveniently the same as SS
Linear

. 

Finally, 

The critical value for F with 1 and 27 degrees of freedom and α = .05 is 4.21. 

Because the calculated value is larger than the critical value, statisticians 

would say the data shows a significant linear component. This, of course, veri-

fies what you see in Figure 12-6.
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A little more on trend
The coefficients I showed you represent 
one possible component of what underlies 
the  differences among the four means in the 
 example — the linear component. With four 
means, it’s also possible to have other com-
ponents. I lumped those other components 

together into a category I called nonlinear. Now 
I discuss them explicitly. 

One possibility is that four means can differ 
from one another and form a trend that looks 
like a curve, as in the next figure.

(continued)

178
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1 Month 2 Months 3 Months

Weight (lbs)

178

180

182

184
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192
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Before 1 Month 2 Months 3 Months

Weight (lbs)

Time

Four means can form still another kind of trend:
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Data analysis tool: Anova: Two Factor 
Without Replication
Huh? Is that a misprint? Two-Factor??? Without Replication?? What’s that all 

about? 

Here’s the story: If you’re looking through the data analysis tools for some-

thing like Anova: Single Factor Repeated Measures, you won’t find it. The tool 

you’re looking for is there, but it’s hiding out under a different name.

Figure 12-7 shows this tool’s dialog box along with the data for the preceding 

weight-loss example.

(continued)

The first kind, where the trend changes direc-
tion once is called a quadratic component. In the 
first figure it increases, and then it decreases. 
The second, where the trend changes direc-
tion twice is called a cubic component. In the 
second figure it increases, decreases, and 
then increases again. In Figure 12-6, the trend 
is linear and doesn’t change direction (it just 
keeps decreasing). 

Quadratic and cubic components have coeffi-
cients, too, and here they are:

Quadratic: 1, –1, –1, 1

Cubic: –1, 3, –3, 1

You test for these components the same way 
you test for the linear component. A trend can 
be a combination of components: If you have a 
significant F, one or more of these trend compo-
nents might be significant.

Linear, quadratic, and cubic are as far as you 
can go with four means. With five means, you 
can look for those three plus a quartic compo-
nent (three direction-changes), and with six you 

can try and scope out all of the preceding plus 
a quintic component (four direction-changes). 
What do the coefficients look like?

For five means, they’re:

Linear: –2, –1, 0 , 1, 2

Quadratic: 2, –1, –2, –1, 2

Cubic: -1, 2, 0, –2, 1

Quartic: 1, –4, 6, –4, 1

And for six means:

Linear: –5, –3, –1 , 1, 3, 5

Quadratic: 5, –1, –4, –4, –1, 5

Cubic: –5, 7, 4, –4, –7, 5

Quartic: 1, –3, 2, 2, –3, 1

Quintic: –1, 5, –10, 10, –5, 1

I could go on with more means, coefficents, 
and exotic component names (hextic? septic?), 
but enough already. This should hold you for a 
while.
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Figure 12-7: 
The Anova: 
Two Factor 

Without 
Replication 

data 
analysis tool 

dialog box.
 

The steps for using this tool are:

 1. Type the data for each sample into a separate data array. Put the label 

for each person in a data array.

  For this example the labels for Person are in column B. The data in the 

Before sample are in column C, the data in the 1 Month sample are in 

column D, the data for the 2 Month sample are in column E, and the data 

for the 3 Month sample are in column F.

 2. Select Data | Data Analysis to open the Data Analysis dialog box.

 3. In the Data Analysis dialog box, scroll down the Analysis Tools list 

and select Anova: Two Factor Without Replication. Click OK to open 

the select Anova: Two Factor Without Replication dialog box.

  This is the dialog box in Figure 12-7.

 4. In the Input Range box, type the cell range that holds all the data.

  For the example, the data are in $B$2:$F$12. Note the $-signs for abso-

lute referencing. Note also — and this is important — the Person column 

is part of the data.

 5. If the cell ranges include column headings, select the Labels option.

  I included the headings in the ranges, so I checked the box.

 6. The Alpha box has 0.05 as a default. Change that value if you want a 

different α.

 7. In the Output Options, select a radio button to indicate where you 

want the results.

  I selected New Worksheet Ply to put the results on a new page in the 

worksheet.

 8. Click OK.

  Because I selected New Worksheet Ply, a newly created page opens with 

the results. 
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Figure 12-8 shows the tool’s output, after I expanded the columns. The output 

features two tables, SUMMARY and ANOVA. 

The SUMMARY table is in two parts. The first part provides summary sta-

tistics for the rows. The second part provides summary statistics for the 

columns. Summary statistics include the number of scores in each row and in 

each column along with the sums, means, and variances. 

The ANOVA table presents the Sums of Squares, df, Mean Squares, F, 

P-values, and critical F-ratios for the indicated df. The table features 

two values for F. One F is for the rows, the other for the columns. The 

P-value is the proportion of area that the F cuts off in the upper tail of the 

F-distribution. If this value is less than .05, reject H
0
. 

Although the ANOVA table includes an F for the rows, this doesn’t concern 

you in this case, as H
0
 is only about the columns in the data. Each row repre-

sents the data for one person. A high F just implies that people are different 

from one another, and that’s not news.

 

Figure 12-8: 
Output from 
the Anova: 

Two Factor 
Without 

Replication 
data analy-

sis tool.
 

Analyzing trend
Excel’s Anova: Two Factor Without Replication tool does not provide a way 

for performing a trend analysis. As with the planned comparisons, a little 

ingenuity takes you a long way. The Excel worksheet functions SUMPRODUCT 

and SUMSQ help with the calculations. 
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The worksheet page with the ANOVA output gives the information you need 

to get started. In this section, I take you through the analysis of linear trend.

I start by putting the comparison coefficients for linear trend into J15 through 

J18, as shown in Figure 12-9. 

 

Figure 12-9: 
Carrying 

out a trend 
analysis.

 

In J22 through J24, I put information related to SS
Linear 

— the numerator, the 

denominator, and the value of the Sum of Squares. I use separate cells for the 

numerator and denominator to simplify the formulas. 

As I pointed out before, SUMPRODUCT takes arrays of cells, multiplies the 

numbers in the corresponding cells, and sums the products. (This func-

tion is on the Math & Trig menu, not the Statistical Functions menu.) I used 

SUMPRODUCT to multiply each coefficient by each sample mean and then 

add the products. I stored that result in J22. That’s the numerator for the 

SS
Linear

. I selected J22 so you could see its formula in the Formula bar: 

=B15*SUMPRODUCT(J15:J18,D15:D18)^2

The value in B15 is the number in each column. The array J15:J18 holds the 

comparison coefficients, and D15:D18 holds the column means.

J23 holds the denominator. Its formula is:

=SUMSQ(J15:J18)
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SUMSQ (another function on the Math & Trig Functions menu) squares the 

coefficients in J15:J18 and adds them.

J24 holds the value for SS
Linear

. That’s J22 divided by J23.

Figure 12-9 shows that in the ANOVA table I’ve inserted two rows above 

the row for Error. One row holds the SS, df, MS, F, P-Value and critical F for 

Linear, the other holds these values for Nonlinear. SS
Nonlinear

 in B26 is B24-B25. 

The F for Linear is D25 divided by D27. The formula for the P-Value in F25 is

=FDIST(E25,C25,C27)

The first argument, E25, is the F. The second and third arguments are the df. 

The formula for the critical F in F25 is

=FINV(0.05,C25,C27)

The first argument is α, and the second and third are the df.
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Chapter 13

Slightly More Complicated Testing
In This Chapter
▶ Working with two variables

▶ Working with replications

▶ Understanding interactions

In Chapter 11, I show you how to test hypotheses with two samples. In 

Chapter 12, I show you how to test hypotheses when you have more than 

two samples. The common thread through both chapters is that one indepen-

dent variable (also called a factor) is involved.

Many times, you have to test the effects of more than one factor. In this 

Chapter, I show how to analyze two factors within the same set of data. 

Several types of situations are possible, and I describe Excel data analysis 

tools that deal with each one.

Cracking the Combinations
FarKlempt Robotics, Inc., manufactures battery-powered robots. They want 

to test three rechargeable batteries for these robots on a set of three tasks — 

climbing, walking, and assembling. Which combination of battery and task 

results in the longest battery life?

They test a sample of nine robots. They randomly assign each robot one bat-

tery and one type of task. FarKlempt tracks the number of days each robot 

works before recharging. The data are in Table 13-1.
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Table 13-1 FarKlempt Robots: Number of Days before 
 Recharging in Three Tasks with Three Batteries
Task Battery 1 Battery 2 Battery 3 Average

Climbing 12 15 20 15.67

Walking 14 16 19 16.33

Assembling 11 14 18 14.33

Average 12.33 15.00 19.00 15.44

This calls for two hypothesis tests:

H
0
: μ

Battery1 
= μ

Battery2
 = μ

Battery3

H
1
: Not H

0

and

H
0
: μ

Climbing 
= μ

Walking
 = μ

Assembling

H
1
: Not H

0

In both tests, set α = .05.

Breaking down the variances
The appropriate analysis for these tests is an analysis of variance (ANOVA). 

Each variable — Batteries and Tasks — is also called a factor. So this analysis 

is called a two-factor ANOVA.

To understand this ANOVA, consider the variances inside the data. First, 

focus on the variance in the whole set of nine numbers — MS
T
. (“T” in the 

subscript stands for “Total.”) The mean of those numbers is 15.44. Because 

it’s the mean of all the numbers, it goes by the name grand mean. 

This variance is
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The means of the three batteries (the column means) also vary from 15.44. 

That variance is 

Why does the 3 appear as a multiplier of each squared deviation? When you 

deal with means, you have to take into account the number of scores that 

produced each mean. 

Similarly, the means of the tasks (the row means) vary from 15.44:

One variance is left. It’s called MS
Error

. This is what remains when you sub-

tract the SS
Batteries

 and the SS
Tasks

 from the SS
T
, and divide that by the df that 

remains when you subtract df
Batteries

 and df
Tasks

 from df
T
:

To test the hypotheses, you calculate one F for the effects of the batteries and 

another for the effects of the tasks. For both, the denominator (the so-called 

“error term”) is MS
Error

:

Each F has 2 and 4 degrees of freedom. With α = .05, the critical F in each 

case is 6.94. The decision is to reject H
0
 for the batteries (they differ from one 

another to an extent greater than chance), but not for the tasks.

To zero in on the differences for the batteries, you carry out planned com-

parisons among the column means. (See Chapter 12 for the details.)
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Data analysis tool: Anova: Two-Factor 
Without Replication
Excel’s Anova: Two-Factor Without Replication tool carries out the analysis 

I just outlined. (I used this tool for another type of analysis in Chapter 12.) 

Without Replication means that only one robot is assigned to each battery-

task combination. If you assign more than one to each combination, that’s 

replication.

Figure 13-1 shows this tool’s dialog box along with the data for the batteries-

tasks example.

 

Figure 13-1: 
The Anova: 
Two Factor 

Without 
Replication 

data 
analysis 

tool dialog 
box along 

with the 
batteries-

tasks data.
 

The steps for using this tool are:

 1. Enter the data into the worksheet, and include labels for the rows and 

columns. 

  For this example, the labels for the tasks are in cells B4, B5, and B6. The 

labels for the batteries are in cells C3, D3, and E3. The data are in cells 

C4 through E6.

 2. Select Data | Data Analysis to open the Data Analysis dialog box.

 3. In the Data Analysis dialog box, scroll down the Analysis Tools list 

and select Anova: Two Factor Without Replication. Click OK to open 

the select Anova: Two Factor Without Replication dialog box.

  This is the dialog box in Figure 13-1.

 4. In the Input Range box, enter the cell range that holds all the data.

  For the example, the data range is $B$3:$E$6. Note the $-signs for abso-

lute referencing. Note also — and this is important — the row labels are 
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part of the data range. The column labels are, too. The first cell in the 

data range, B2, is blank, but that’s OK.

 5. If the cell ranges include column headings, select the Labels option.

  I included the headings in the ranges, so I checked the box.

 6. The Alpha box has 0.05 as a default. Change that value if you want a 

different α.

 7. In the Output Options, select a radio button to indicate where you 

want the results.

  I selected New Worksheet Ply to put the results on a new page in the 

worksheet.

 8. Click OK.

  Because I selected New Worksheet Ply, a newly created page opens with 

the results. 

Figure 13-2 shows the tool’s output, after I expanded the columns. The output 

features two tables, SUMMARY and ANOVA. 

The SUMMARY table is in two parts. The first part provides summary statistics 

for the rows. The second part provides summary statistics for the columns. 

Summary statistics include the number of scores in each row and in each 

column along with the sums, means, and variances. 

The ANOVA table presents the Sums of Squares, df, Mean Squares, F, P-values, 

and critical F for the indicated df. The table features two values for F. One F is 

for the rows, the other for the columns. The P-value is the proportion of area 

that the F cuts off in the upper tail of the F-distribution. If this value is less than 

.05, reject H
0
. 

In this example, the decisions are to reject H
0
 for the batteries (the columns) 

and to not reject H
0
 for the tasks (the rows).

 

Figure 13-2: 
Output from 
the Anova: 

Two Factor 
Without 

Replication 
data analy-

sis tool.
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Cracking the Combinations Again
The analysis I just showed you involves one score for each combination of 

the two factors. Assigning one individual to each combination is appropriate 

for robots and other manufactured objects, where you can assume that one 

object is pretty much the same as another.

When people are involved, it’s a different story. Individual variation among 

humans is something you can’t overlook. For this reason, it’s necessary to 

assign a sample of people to a combination of factors — not just one person.

Rows and columns
I illustrate with an example. Imagine that a company has two methods of 

presenting its training information. One is via a person who presents the 

information orally, the other is via a text. Imagine also that the information is 

presented in either a humorous way or in a technical way. I refer to the first 

factor as Presentation Method and to the second as Presentation Style.

Combining the two levels of Presentation Method with the two levels of 

Presentation Style gives four combinations. The company randomly assigns 

4 people to each combination, for a total of 16 people. After providing the 

training, they test the 16 people on their comprehension of the material. 

Figure 13-3 shows the combinations, the four comprehension scores within 

each combination, and summary statistics for the combinations, rows, and 

columns.

 

Figure 13-3: 
Combining 

the levels of 
Presentation 
Method with 
the levels of 
Presentation 

Style.
 

Presentation Style
Humorous

Presentation
Method

Spoken

Mean = 57.25
Variance = 12.92

Mean = 24.25
Variance = 12.92

Mean = 29.25
Variance = 12.25

Mean = 68.50
Variance = 12.33

Mean = 40.75

Mean = 48.88

Mean = 46.38 Grand Mean =
44.81

Mean = 43.25

Spoken
and

Humorous

54
55
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68

Spoken
and

Technical
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29
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Text
and

Humorous

33
25
28
31

Text
and

Technical

66
65
71
72

Text

Technical
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Here are the hypotheses:

H
0
: μ

Spoken
 = μ

Text

H
1
: Not H

0

and

H
0
: μ

Humorous
 = μ

Technical

H
1
: Not H

0

Because the two presentation methods (Spoken and Text) are in the rows, 

I refer to Presentation Type as the row factor. The two presentation styles 

(Humorous and Technical) are in the columns, so Presentation Style is the 

column factor.

Interactions
When you have rows and columns of data, and you’re testing hypotheses 

about the row factor and the column factor, you have an additional consid-

eration. Namely, you have to be concerned about the row-column combina-

tions. Do the combinations result in peculiar effects?

For the example I presented, it’s possible that combining Spoken and Text 

with Humorous and Technical yields something unexpected. In fact, you can 

see that in the data in Figure 13-3: For Spoken presentation, the Humorous 

style produces a higher average than the Technical style. For Text presenta-

tion, the Humorous style produces a lower average than the Technical style.

 A situation like that is called an interaction. In formal terms, an interaction 

occurs when the levels of one factor affect the levels of the other factor dif-

ferently. The label for the interaction is row factor × column factor, so for this 

example that’s Method × Type.

The hypotheses for this are:

H
0
: Presentation Method does not interact with Presentation Style

H
1
: Not H

0
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The analysis
The statistical analysis, once again, is an analysis of variance (ANOVA). As is 

the case with the other ANOVAs I showed you, it depends on the variances in 

the data. 

The first variance is the total variance, labeled MS
T
. That’s the variance of all 

16 scores around their mean (the “grand mean”), which is 44.81:

The denominator tells you that df = 15 for MS
T.

The next variance comes from the row factor. That’s MS
Method

, and it’s the 

variance of the row means around the grand mean:

The 8 multiplies each squared deviation because you have to take into 

account the number of scores that produced each row mean. The df for 

MS
Method

 is the number of rows – 1, which is 1.

Similarly, the variance for the column factor is

The df for MS
Style

 is 1 (the number of columns – 1).

Another variance is the pooled estimate based on the variances within the 

four row-column combinations. It’s called the MS
Within

, or MS
W

. (For details on 

MS
w
 and pooled estimates, see Chapter 12.). For this example,

This one is the error term (the denominator) for each F that you calculate. Its 

denominator tells you that df = 12 for this MS.
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The last variance comes from the interaction between the row factor and the 

column factor. In this example, it’s labeled MS
Method X Type

. You can calculate 

this a couple of ways. The easiest way is to take advantage of this general 

relationship:

And this one:

Another way to calculate this is 

The MS is

For this example,

To test the hypotheses, you calculate three Fs: 

For df = 1 and 12, the critical F at α = .05 is 4.75. (You can use the Excel 

function FINV to verify.). The decision is to reject H
0
 for the Presentation 

Method and for the Method × Style interaction, and to not reject H
0
 for the 

Presentation Style.
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Data analysis tool: Anova: Two-Factor 
With Replication
Excel provides a data analysis tool that handles everything. This one is called 

Anova: Two-Factor With Replication. “Replication” means you have more 

than one score in each row-column combination.

Figure 13-4 shows this tool’s dialog box along with the data for the batteries-

tasks example.

 

Figure 13-4: 
The Anova: 
Two Factor 

With 
Replication 

data 
analysis 

tool dialog 
box along 

with the 
type-method 

data.
 

The steps for using this tool are:

 1. Enter the data into the worksheet and include labels for the rows and 

columns. 

  For this example, the labels for the presentation methods are in cells B3 

and B7. The presentation types are in cells C2 and D2. The data are in 

cells C3 through D10.

 2. Select Data | Data Analysis to open the Data Analysis dialog box.

 3. In the Data Analysis dialog box, scroll down the Analysis Tools list 

and select Anova: Two Factor With Replication. Click OK to open the 

select Anova: Two Factor With Replication dialog box.

  This is the dialog box in Figure 13-4.
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253 Chapter 13: Slightly More Complicated Testing

 4. In the Input Range box, type the cell range that holds all the data.

  For the example, the data are in $B$2:$D$10. Note the $-signs for abso-

lute referencing. Note also — again, this is important — the labels for 

the row factor (presentation method) are part of the data range. The 

labels for the column factor are part of the range, too. The first cell in 

the range, B2, is blank, but that’s OK.

 5. If the cell ranges include column headings, select the Labels option.

  I included the headings in the ranges, so I checked the box.

 6. The Alpha box has 0.05 as a default. Change that value if you want a 

different α.

 7. In the Output Options, select a radio button to indicate where you 

want the results.

  I selected New Worksheet Ply to put the results on a new page in the 

worksheet.

 8. Click OK.

  Because I selected New Worksheet Ply, a newly created page opens with 

the results. 

Figure 13-5 shows the tool’s output, after I expanded the columns. The output 

features two tables, SUMMARY and ANOVA. 

The SUMMARY table is in two parts. The first part provides summary statis-

tics for the factor combinations and for the row factor. The second part pro-

vides summary statistics for the column factor. Summary statistics include 

the number of scores in each row-column combination, in each row, and in 

each column along with the counts, sums, means, and variances. 

The ANOVA table presents the Sums of Squares, df, Mean Squares, F, 

P-values, and critical F for the indicated df. The table features three values 

for F. One F is for the row factor, one for the column factor, and one for the 

interaction. In the table, the row factor is called Sample. The P-value is the 

proportion of area that the F cuts off in the upper tail of the F-distribution. 

If this value is less than .05, reject H
0
. 

In this example, the decisions are to reject H
0
 for the Presentation Method 

(the row factor, labeled Sample in the table), to not reject H
0
 for the 

Presentation Style (the column factor), and to reject H
0
 for the interaction.
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Figure 13-5: 
Output from 
the Anova: 

Two Factor 
Without 

Replication 
data analy-

sis tool.
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Chapter 14

Regression: Linear and Multiple
In This Chapter
▶ Summarizing a relationship

▶ Working with regression

▶ Hypothesis testing and regression

▶ Balancing many relationships

One of the main things you do when you work with statistics is make 

predictions. The idea is to take data on one or more variables, and 

use these data to predict a value of another variable. To do this, you have 

to understand how to summarize relationships among variables, and to test 

hypotheses about those relationships. 

In this chapter, I introduce regression, a statistical way to do just that. 

Regression also enables you to use the details of relationships to make pre-

dictions. First, I show you how to analyze the relationship between one vari-

able and another. Then I show you how to analyze the relationship between a 

variable and two others. These analyses involve a good bit of calculation, and 

Excel is more than equal to the task.

The Plot of Scatter
Sahutsket University is an exciting, dynamic institution. Every year, the 

school receives thousands of applications. One challenge the Admissions 

Office faces is this: Applicants want the Office to predict what their GPAs 

(grade-point averages on a 4.0 scale) will be if they attend Sahutsket. 

What’s the best prediction? Without knowing anything about an applicant, 

and only knowing its own students’ GPAs, the answer is clear: It’s the aver-

age GPA at Sahutsket U. Regardless of who the applicant is, that’s all the 

Admissions Office can say if its knowledge is limited.
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256 Part III: Drawing Conclusions from Data 

With more knowledge about the students and about the applicants, a more 

accurate prediction becomes possible. For example, if Sahutsket keeps 

records on its students’ SAT scores (Verbal and Math combined), the 

Admissions Office can match up each student’s GPA with his or her SAT 

score and see if the two pieces of data are somehow related. If they are, 

an applicant can supply his or her SAT score, and the Admissions Office 

can use that score to help make a prediction.

Figure 14-1 shows the GPA-SAT matchup in a graphic way. Because the points 

are scattered, it’s called a scatterplot. By convention, the vertical axis (the 

y-axis) represents what you’re trying to predict. That’s also called the depen-
dent variable or the y-variable. In this case, that’s GPA. Also by convention, 

the horizontal axis (the x-axis) represents what you’re using to make your 

prediction. That’s also called the independent variable or the x-variable. Here, 

that’s SAT. 

 

Figure 14-1: 
SATs and 

GAPs in the 
Sahutsket 
University 

student 
body.

 
SAT

GPA

900 1100 1300 1500

4.0

3.5

3.0

2.5

2.0

1.5

Average GPASAT =1000
GPA = 2.5

Each point in the graph represents an individual student’s GPA and SAT. In 

a real scatterplot of a university student body, you’d see many more points 

than I show here. The general tendency of the set of points seems to be that 

high SAT scores are associated with high GPAs and low SAT scores are asso-

ciated with low GPAs.

I singled out one of the points. It shows a Sahutsket student with an SAT 

score of 1000 and a GPA of 2.5. I also show the average GPA to give you a 

sense that knowing the GPA-SAT relationship provides an advantage over 

just knowing the mean. 
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How do you make that advantage work for you? You start by summarizing 

the relationship between SAT and GPA. The summary is a line through the 

points. How and where do you draw the line? 

I’ll get to that in a minute. First, I have to tell you about lines in general.

Graphing Lines
In the world of mathematics, a line is a way to picture a relationship between 

an independent variable (x) and a dependent variable (y). In this relationship

every time I supply a value for x, I can figure out the corresponding value for y. 

The equation says to take the x-value, multiply by 2, and then add 3. 

If x = 1, for example, y = 6. If x =2, y = 8. Table 14-1 shows a number of x-y pairs 

in this relationship, including the pair in which x = 0.

Table 14-1 x-y Pairs in y = 4+ 2x
x y

0 4

1 6

2 8

3 10

4 12

5 14

6 16

Figure 14-2 shows these pairs as points on a set of x-y axes, along with a line 

through the points. Each time I list an x-y pair in parentheses, the x-value is 

first.

As the Figure shows, the points fall neatly onto the line. The line graphs the 

equation y = 4 + 2x. In fact, whenever you have an equation like this, where x 

isn’t squared or cubed or raised to any power higher than 1, you have what 

mathematicians call a linear equation. (If x is raised to a higher power than 

one, you connect the points with a curve, not a line.)
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Figure 14-2: 
The graph 

for 
y = 4 + 2x. 
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 A couple of things to keep in mind about a line: You can describe a line in 

terms of how slanted it is, and where it runs into the y-axis. 

The how-slanted-it-is part is called the slope. The slope tells you how much y 

changes when x changes by 1 unit. In the line in Figure 14-2, when x changes 

by 1 (from 4 to 5, for example) y changes by 2 (from 12 to 14). 

The where-it-runs-into-the-y-axis part is called the y-intercept (or sometimes 

just the intercept). That’s the value of y when x = 0. In Figure 14-2 the y-inter-

cept is 4. 

You can see these numbers in the equation. The slope is the number that 

multiplies x and the intercept is the number you add to x. In general,

where a represents the intercept and b represents the slope.

The slope can be a positive number, a negative number, or zero. In Figure 14-2, 

the slope is positive. If the slope is negative, the line is slanted in a direc-

tion opposite to what you see in Figure 14-2. A negative slope means that 

y decreases as x increases. If the slope is zero, the line is parallel to the hori-

zontal axis. If the slope is zero, y doesn’t change as x changes.

The same applies to the intercept — it can be a positive number, a negative 

number, or zero. If the intercept is positive, the line cuts off the y-axis above 

the x-axis. If the intercept is negative, the line cuts off the y-axis below the 
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x-axis. If the intercept is zero, it intersects with the y-axis and the x-axis, at 

the point called the origin.

And now, back to what I was originally talking about.

Regression: What a Line!
Before I began telling you about lines, equations, slopes, and intercepts, I 

mentioned that a line is the best way to summarize the relationship in the 

scatterplot in Figure 14-1. It’s possible to draw an infinite amount of straight 

lines through the scatterplot. Which one best summarizes the relationship?

Intuitively, the “best fitting” line ought to be the one that goes through the 

maximum number of points and isn’t too far away from the points it doesn’t 

go through. For statisticians, that line has a special property: If you draw that 

line through the scatterplot, then draw distances (in the vertical direction) 

between the points and the line, and then square those distances and add 

them up, the sum of the squared distances is a minimum. 

Statisticians call this line the regression line, and indicate it as

Each y’ is a point on the line. It represents the best prediction of y for a given 

value of x.

To figure out exactly where this line is, you calculate its slope and its intercept. 

For a regression line, the slope and intercept are called regression coefficients. 

The formulas for the regression coefficients are pretty straightforward. For 

the slope, the formula is

The intercept formula is

I illustrate with an example. To keep the numbers manageable and compre-

hensible, I use a small sample instead of the thousands of students you’d 

find in a scatterplot of an entire university student body. Table 14-2 shows a 

sample of data from 20 Sahusket University students. 
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Table 14-2 SAT Scores and GPAs for 
 20 Sahusket University Students
Student SAT GPA

1 990 2.2

2 1150 3.2

3 1080 2.6

4 1100 3.3

5 1280 3.8

6 990 2.2

7 1110 3.2

8 920 2.0

9 1000 2.2

10 1200 3.6

11 1000 2.1

12 1150 2.8

13 1070 2.2

14 1120 2.1

15 1250 2.4

16 1020 2.2

17 1060 2.3

18 1550 3.9

19 1480 3.8

20 1010 2.0

Mean 1126.5 2.705

Variance 26171.32 0.46

Standard Deviation 161.78 0.82

For this set of data, the slope of the regression line is

The intercept is
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So the equation of the best fitting line through these 20 points is

or in terms of GPAs and SATs

Using regression for forecasting
Based on this sample and this regression line, you can take an applicant’s 

SAT score, say 1230, and predict the applicant’s GPA:

Without this rule, the only prediction is the mean GPA, 2.705.

Variation around the regression line
In Chapter 5, I describe how the mean doesn’t tell the whole story about a 

set of data. You have to show how the scores vary around the mean. For that 

reason, I introduce the variance and standard deviation. 

You have a similar situation here. To get the full picture of the relationship in 

a scatterplot, you have to show how the scores vary around the regression 

line. Here, I introduce the residual variance and standard error of estimate, 

which are analogous to the variance and the standard deviation.

The residual variance is sort of an average of the squared deviations of the 

observed y-values around the predicted y-values. Each deviation of a data 

point from a predicted point (y - y’) is called a residual, hence the name. The 

formula is

I said “sort of” because the denominator is N-2, rather than N. The reason for 

the -2 is beyond our scope. As I’ve said before, the denominator of a variance 

estimate is degrees of freedom (df), and that concept comes in handy in a 

little while.
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The standard error of estimate is 

To show you how the residual error and the standard error of estimate play 

out for the data in the example, here’s Table 14-3. This table extends Table 14-2 

by showing the predicted GPA for each SAT:

Table 14-3 SAT Scores, GPAs, and Predicted GPAs for 
 20 Sahusket University Students
Student SAT GPA Predicted GPA

1 990 2.2 2.24

2 1150 3.2 2.79

3 1080 2.6 2.55

4 1100 3.3 2.61

5 1280 3.8 3.23

6 990 2.2 2.24

7 1110 3.2 2.65

8 920 2.0 2.00

9 1000 2.2 2.27

10 1200 3.6 2.96

11 1000 2.1 2.27

12 1150 2.8 2.79

13 1070 2.2 2.51

14 1120 2.1 2.68

15 1250 2.4 3.13

16 1020 2.2 2.34

17 1060 2.3 2.48

18 1550 3.9 4.16

19 1480 3.8 3.92

20 1010 2.0 2.31

Mean 1126.5 2.705

Variance 26171.32 0.46

Standard 
Deviation

161.78 0.82
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As the table shows, sometimes the predicted GPA is pretty close, sometimes 

it’s not. One predicted value (4.16) is impossible.

For these data, the residual variance is

The standard error of estimate is

If the residual variance and the standard error of estimate are small, the 

regression line is a good fit to the data in the scatterplot. If the residual vari-

ance and the standard error of estimate are large, the regression line is a 

poor fit.

What’s “small”? What’s “large”? What’s a “good” fit? 

Keep reading.

Testing hypotheses about regression
The regression equation I’ve been working with

summarizes a relationship in a scatterplot of a sample. The regression coef-

ficients a and b are sample statistics. You can use these statistics to test 

hypotheses about population parameters, and that’s what I do in this section.

The regression line through the population that produces the sample (like 

the entire Sahutsket University student body, past and present) is the graph 

of an equation that consists of parameters, rather than statistics. By conven-

tion, remember, Greek letters stand for parameters, so the regression equa-

tion for the population is

The first two Greek letters on the right are α (alpha) and β (beta), the equiva-

lents of a and b. What about that last one? It looks something like the Greek 

equivalent of e. What’s it doing there?
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That last term is the Greek letter epsilon. It represents “error” in the popula-

tion. In a way, “error” is an unfortunate term. It’s a catchall for “things you 

don’t know or things you have no control over.” Error is reflected in the 

residuals — the deviations from the predictions. The more you understand 

about what you’re measuring, the more you decrease the error. 

You can’t measure the error in the relationship between SAT and GPA, but 

it’s lurking there. Someone might score low on the SAT, for example, and 

then go on to have a wonderful college career with a higher-than-predicted 

GPA. On a scatterplot, this person’s SAT-GPA point looks like an error in pre-

diction. As you find out more about that person, you might discover that he 

or she was sick on the day of the SAT, and that explains the “error.” 

You can test hypotheses about α, β, and ε, and that’s what I do in the upcom-

ing subsections.

Testing the fit
I begin with a test of how well the regression line fits the scatterplot. This is a 

test of ε, the error in the relationship. 

The objective is to decide whether or not the line really does represent a 

relationship between the variables. It’s possible that what looks like a rela-

tionship is just due to chance and the equation of the regression line doesn’t 

mean anything (because the amount of error is overwhelming) — or it’s pos-

sible that the variables are strongly related. 

These possibilities are testable, and you set up hypotheses to test them:

H
0
: No real relationship

H
1
: Not H

0

Although those hypotheses make nice light reading, they don’t set up a sta-

tistical test. To set up the test, you have to consider the variances. To con-

sider the variances, you start with the deviations. Figure 14-3 focuses on one 

point in a scatterplot and its deviation from the regression line (the residual) 

and from the mean of the y-variable. It also shows the deviation between the 

regression line and the mean.

As the figure shows, the distance between the point and the regression line 

and the distance between the regression line and the mean add up to the dis-

tance between the point and the mean:

This sets the stage for some other important relationships.

20 454060-ch14.indd   26420 454060-ch14.indd   264 4/21/09   7:33:52 PM4/21/09   7:33:52 PM



265 Chapter 14: Regression: Linear and Multiple

 

Figure 14-3: 
The devia-

tions in a 
scatterplot.
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Start by squaring each deviation. That gives you , , and . 

If you add up each of the squared deviations, you have

I just showed you this one. That’s the numerator for the residual variance. 

It represents the variability around the regression line— the “error” I spoke 

of earlier. In the terminology of Chapter 12, the numerator of a variance is 

called a Sum of Squares, or SS. So this is SS
Residual

.

This one is new. The deviation 
 
represents the gain in prediction due 

to using the regression line rather than the mean. The sum reflects this gain, 

and is called SS
Regression

.

I showed you this one in Chapter 5 — although I used x rather than y. That’s 

the numerator of the variance of y. In Chapter 12 terms, it’s the numerator of 

total variance. This one is SS
Total

.

This relationship holds among these three sums:
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Each one is associated with a value for degrees of freedom — the denomi-

nator of a variance estimate. As I pointed out in the previous section, the 

denominator for SS
Residual

 is N-2. The df for SS
Total

 is N-1 (see Chapter 5 and 

Chapter 12). As with the SS, the degrees of freedom add up:

This leaves one degree of freedom for Regression.

Where is this all headed, and what does it have to do with hypothesis test-

ing? Well, since you asked, you get variance estimates by dividing SS by 

df. Each variance estimate is called a Mean Square, abbreviated MS (again, 

Chapter 12):

Now for the hypothesis part. If H
0
 is true and what looks like a relationship 

between x and y is really no big deal, the piece that represents the gain in 

prediction because of the regression line (MS
Regression

) should be no greater 

than the variability around the regression line (MS
Residual

). If H
0
 is not true, 

and the gain in prediction is substantial, then MS
Regression

 should be a lot 

bigger than MS
Residual

. 

So the hypotheses now set up as

H
0
: σ2

Regression
 ≤ σ2

Residual

H
1
: σ2

Regression
 > σ2

Residual

These are hypotheses you can test. How? To test a hypothesis about two 

variances, you use an F test (Chapter 11). The test statistic here is

To show you how it all works, I apply the formulas to the Sahusket example. 

The MS
Residual

 is the same as s
yx

2 from the preceding section, and that value is 

0.16. The MS
Regression

 is
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This sets up the F:

With 1 and 18 df and α = .05, the critical value of F is 4.41. (You can use the 

worksheet function FINV to verify.) The calculated F is greater than the criti-

cal F, so the decision is to reject H
0
. That means the regression line provides 

a good fit to the data in the sample. 

Testing the slope
Another question that arises in linear regression is whether or not the slope 

of the regression line is significantly different from zero. If it’s not, the mean 

is just as good a predictor as the regression line.

The hypotheses for this test are:

H
0
: β ≤ 0

H
1
: β > 0

The statistical test is t, which I discuss in Chapters 9, 10, and 11 in connection 

with means. The t-test for the slope is

with df = N-2. The denominator estimates the standard error of the slope. 

This term sounds more complicated than it is. The formula is:

where s
x
 is the standard deviation of the x-variable. For the data in the example

The actual value is 6.00. Rounding s
yx

 and s
b
 to a manageable number of deci-

mal places before calculating results in 5.96. Either way, this is larger than 

the critical value of t for 18 df and α = .05 (2.10), so the decision is to reject 

H
0
. This example, by the way, shows why it’s important to test hypotheses. 
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The slope, 0.0034 looks like a very small number. (Possibly because it is a 

very small number.) Still, it’s big enough to reject H
0
 in this case.

Testing the intercept
 For completeness, I include the hypothesis test for the intercept. I doubt you’ll 

have much use for it, but it appears in the output of some of Excel’s regression-

related capabilities. I want you to understand all aspects of that output (which 

I tell you about in a little while), so here it is.

The hypotheses are

H
0
: α = 0

H
1
: α ≠ 0

The test, once again, is a t-test. The formula is

The denominator is the estimate of the standard error of the intercept. 

Without going into detail, the formula for s
a
 is

where s
x
 is the standard deviation of the x-variable, s

x
2 is the variance of the 

x-variable, and  is the squared mean of the x-variable. Applying this formula 

to the data in the example,

The t-test is 

With 18 degrees of freedom, and the probability of a Type I error at .05, the 

critical t is 2.45 for a two-tailed test. It’s a two-tailed test because H
1
 is that 
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the intercept doesn’t equal zero — it doesn’t specify whether the intercept is 

greater than zero or less than zero. Because the calculated value isn’t more 

negative than the negative critical value, the decision is to not reject H
0
. 

Worksheet Functions for Regression
Excel is a big help for computation-intensive work like linear regression. An 

assortment of functions and data analysis tools makes life a lot easier. In this 

section, I concentrate on the worksheet functions and on two array functions. 

Figure 14-4 shows the data I use to illustrate each function. The data are GPA 

and SAT scores for 20 students in the example I showed you earlier. As the 

figure shows, the SAT scores are in C3:C22 and the GPAs are in D3:D22. The 

SAT is the x-variable and GPA is the y-variable. 

To clarify what the functions do, I defined names for the data arrays. I defined 

SAT as the name for C3:C22 and I defined GPA as the name for D3:D22. That 

way, I can use those names in the arguments for the functions. If you don’t 

remember how to define a name for an array, go back to Chapter 2.

 

Figure 14-4: 
Data for the 
regression-

related 
worksheet 
functions. 

 

SLOPE, INTERCEPT, STEYX
These three functions work the same way, so I give a general description and 

provide details as necessary for each function.
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 1. With the data entered, select a cell.

 2. From the Statistical Functions menu, select a regression function to 

open its Function Arguments dialog box.

 • To calculate the slope of a regression line through the data, select 

SLOPE. 

 • To calculate the intercept, select INTERCEPT. 

 • To calculate the standard error of estimate, select STEYX. 

  Figures 14-5, 14-6, and 14-7 show the Function Arguments dialog boxes 

for these three functions.

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments. 

  In the Known_y’s box, I entered the name for the cell range that holds 

the scores for the y-variable. For this example, that’s GPA (defined as 

the name for C3:C22). 

  In the Known_x’s box, I entered the name for the cell range that holds 

the scores for the x-variable. For this example, it’s SAT (defined as the 

name for D3:D22). After I enter this name, the answer appears in the 

dialog box. 

 • SLOPE’s answer is .00342556 (Figure 14-5). 

 • INTERCEPT’s answer is –1.153832541 (Figure 14-6). 

 • STEYX’s answer is 0.402400043 (Figure 14-7).

 4. Click OK to put the answer into the selected cell.

 

Figure 14-5: 
The 

Function 
Arguments 
dialog box 
for SLOPE.
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Figure 14-6: 
The 

Function 
Arguments 

dialog 
box for 

INTERCEPT.
 

 

Figure 14-7: 
The 

Function 
Arguments 
dialog box 
for STEYX.

 

FORECAST
This one is a bit different from the preceding three. In addition to the col-

umns for the x-and-y variables, for FORECAST, you supply a value for x 

and the answer is a prediction based on the linear regression relationship 

between the x-variable and the y-variable. 

Figure 14-8 shows the Function Arguments dialog box for FORECAST. In the 

X box, I entered 1290. For this SAT, the figure shows the predicted GPA is 

3.265070236.

 

Figure 14-8: 
The 

Function 
Arguments 

dialog 
box for 

FORECAST.
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Array function: TREND
TREND is a versatile function. You can use TREND to generate a set of pre-

dicted y-values for the x-values in the sample. 

You can also supply a new set of x-values and generate a set of predicted 

y-values, based on the linear relationship in your sample. It’s like applying 

FORECAST repeatedly in one fell swoop. 

In this section, I go through both uses. 

Predicting y’s for the x’s in your sample
First, I use TREND to predict GPAs for the 20 students in the sample. 

Figure 14-9 shows TREND set up to do this. I include the Formula Bar in this 

screen shot so you can see what the formula looks like for this use of TREND.

 

Figure 14-9: 
The 

Function 
Arguments 
dialog box 

for TREND, 
along with 

data. TREND 
is set up 

to predict 
GPAs for 

the sample 
SATs.

 

 1. With the data entered, select a column for TREND’s answers.

  I selected E3:E22. That puts the predicted GPAs right next to the sample 

GPAs.

 2. From the Statistical Functions menu, select TREND to open the 

Function Arguments dialog box for TREND.

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments. 

  In the Known_y’s box, enter the name for the cell range that holds the 

scores for the y-variable. For this example, that’s GPA (D3:D22). 
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  In the Known_x’s box, enter the name for the cell range that holds the 

scores for the x-variable. For this example, it’s SAT (C3:C22).

  I left the New_x’s box blank.

  In the Const box, I typed TRUE (or leave it blank) to calculate the y-inter-

cept, or type FALSE to set the y-intercept to zero.

  (I really don’t know why you’d enter FALSE.) A note of caution: In the 

dialog box, the instruction for the Const box refers to b. That’s the 

y-intercept. Earlier in the chapter, I use a to represent the y-intercept, 

and b to represent the slope. No particular usage is standard for this.

 4. IMPORTANT: Do NOT click OK. Because this is an array function, 

press Ctrl+Shift+Enter to put TREND’s answers into the selected array. 

Figure 14-10 shows the answers in E3:E22. 

 

Figure 14-10: 
The results 
of TREND: 
Predicted 
GPAs for 

the sample 
SATs.

 

Predicting a new set of y’s for a new set of x’s
Here, I use TREND to predict GPAs for four new SAT scores. Figure 14-11 

shows TREND set up for this, with the name New_SAT defined for the cell 

range that holds the new scores. The figure also shows the selected cell 

range for the results. Once again, I included the Formula Bar to show you the 

formula for this use of the function. 
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Figure 14-11: 
The 

Function 
Arguments 
dialog box 

for TREND, 
along with 

data. TREND 
is set up 

to predict 
GPAs for a 
new set of 

SATs.
 

 1. With the data entered, select a cell range for TREND’s answers.

  I selected G8:G11.

 2. From the Statistical Functions menu, select TREND to open the 

Function Arguments dialog box for TREND.

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments. 

  In the Known_y’s box, enter the name of the cell range that holds the 

scores for the y-variable. For this example, that’s GPA (D3:D22). 

  In the Known_x’s box, enter the name of the cell range that holds the 

scores for the x-variable. For this example, it’s SAT (C3:C22).

  In the New_x’s box, enter the name of the cell range that holds the new 

scores for the x-variable. Here, that’s New_SAT (F8:F11).

  In the Const box, the choices are to enter TRUE (or leave it blank) to cal-

culate the y-intercept, or FALSE to set the y-intercept to zero.I entered 

TRUE. (Again, I really don’t know why you’d enter FALSE.)

 4. IMPORTANT: Do NOT click OK. Because this is an array function, 

press Ctrl+Shift+Enter to put TREND’s answers into the selected 

column. 

  Figure 14-12 shows the answers in G8:G11. This time I included the 

Formula Bar to show you that Excel now surrounds the formula with 

curly brackets to indicate an array formula.
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Figure 14-12: 
The Results 

of TREND: 
Predicted 

GPAs for a 
new set of 

SATs.
 

Array function: LINEST 
LINEST combines SLOPE, INTERCEPT, and STEYX, and throws in a few extras. 

Figure 14-13 shows the Function Arguments dialog box for LINEST, along with 

the data and the selected array for the answers. Notice that it’s a five-row-by-

two-column array. For linear regression, that’s what the selected array has to 

be. How would you know the exact row-column dimensions of the array if I 

didn’t tell you? Well . . . you wouldn’t.

 

Figure 14-13: 
The 

Function 
Arguments 
dialog box 

for LINEST, 
along with 

the data and 
the selected 
array for the 

results.
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Here are the steps for using LINEST:

 1. With the data entered, select a five-row-by-two-column array of cells 

for LINEST’s results.

  I selected G3:H7.

 2. From the Statistical Functions menu, select LINEST to open the 

Function Arguments dialog box for LINEST.

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments.

  In the Known_y’s box, I entered the name of the cell range that holds the 

scores for the y-variable. For this example, that’s GPA (D3:D22). 

  In the Known_x’s box, I entered the name of the cell range that holds the 

scores for the x-variable. For this example, it’s SAT (C3:C22).

  In the Const box, the choices are to enter TRUE (or leave it blank) to 

 calculate the y-intercept, or FALSE to set the y-intercept to zero. .I 

entered TRUE. 

  In the Stats box, the choices are to enter TRUE to return regression sta-

tistics in addition to the slope and the intercept, or FALSE (or leave it 

blank) to return just the slope and the intercept. I entered TRUE.

  In the dialog box, b refers to intercept and m-coefficient refers to slope. 

As I said earlier, no set of symbols is standard for this.

 4. IMPORTANT: Do NOT click OK. Because this is an array function, 

press Ctrl+Shift+Enter to put LINEST’s answers into the selected array.

Figure 14-14 shows LINEST’s results. They’re not labeled in any way, so I 

added the labels for you in the worksheet. The left column gives you the 

slope, standard error of the slope, something called “R Square,” F, and the 

SS
regression

. What’s R Square? That’s another measure of the strength of the 

relationship between SAT and GPA in the sample. I discuss it in detail in 

Chapter 15. 

The right column provides the intercept, standard error of the intercept, 

standard error of estimate, degrees of freedom, and SS
residual

.
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Figure 14-14: 
LINEST’s 
results in 

the selected 
array.

 

Data Analysis Tool: Regression 
Excel’s Regression data analysis tool does everything LINEST does (and 

more) and labels the output for you, too. Figure 14-15 shows the Regression 

tool’s dialog box, along with the data for the SAT-GPA example.

 

Figure 14-15: 
The 

Regression 
data 

analysis tool 
dialog box, 
along with 

the SAT-
GPA data.

 

The steps for using this tool are:

 1. Type the data into the worksheet, and include labels for the columns. 

 2. Select Data | Data Analysis to open the Data Analysis dialog box.
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 3. In the Data Analysis dialog box, scroll down the Analysis Tools list 

and select Regression. Click OK to open the Regression dialog box.

  This is the dialog box in Figure 14-15.

 4. In the Input Y Range box, enter the cell range that holds the data for 

the y-variable.

  For the example, the GPAs (including the label) are in $D$2:$D$22. Note 

the $-signs for absolute referencing. 

 5. In the Input X Range box, enter the cell range that holds the data for 

the x-variable.

  The SATs (including the label) are in $C$2:$C$22.

 6. If the cell ranges include column headings, check the Labels checkbox.

  I included the headings in the ranges, so I checked the box.

 7. The Alpha box has 0.05 as a default. Change that value if you want a 

different alpha.

 8. In the Output Options, select a radio button to indicate where you 

want the results.

  I selected New Worksheet Ply to put the results on a new page in the 

worksheet.

 9. The Residuals area provides four capabilities for viewing the devia-

tions between the data points and the predicted points. Check as 

many as you like.

  I selected all four. I’ll explain them when I show you the output.

 10. Select the Normal Probability Plots option if you want to produce a 

graph of the percentiles of the y-variable.

  I checked this one so I could show it to you in the output.

 11. Click OK.

  Because I selected New Worksheet Ply, a newly created page opens with 

the results. 

 A word about Steps 4 and 5: You’ll notice I didn’t enter the names for the 

cell ranges (GPA and SAT). Instead I entered the ranges ($D$2:$D$22 and 

$C$2:$C$22). Why? When I define a name for a cell range, I don’t include the 

cell that holds the name (for reasons I explain in Chapter 2). Following this 

practice, however, creates a small hurdle when you use a data analysis tool: 

You can’t check the Labels checkbox if the defined names aren’t in the named 

range. Checking that checkbox makes the variable names show up in the 

output — which is a good thing. So . . . I just enter the cell range including the 

name cell and check the Labels checkbox.
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Tabled output
Figure 14-16 shows the upper half of the tool’s tabled output, after I expanded 

the columns. The title is SUMMARY OUTPUT. This part of the output features 

one table for Regression Statistics, another for ANOVA, and one for the 

regression coefficients. 

 

Figure 14-16: 
The upper 
half of the 

Regression 
data analy-

sis tool’s 
tabled 

 output.
 

The first three rows of the Regression Statistics table present information 

related to R2, a measure of the strength of the SAT-GPA relationship in the 

sample. The fourth row shows the standard error of estimate and the fifth 

gives the number of individuals in the sample.

The ANOVA table shows the results of testing

H
0
: σ

Regression
 ≤ σ

Residual

H
1
: σ

Regression
 > σ

Residual

If the value in the F-significance column is less than .05 (or whatever alpha 

level you’re using), reject H
0
. In this example, it’s less than .05.

Just below the ANOVA table is a table that gives the information on the 

regression coefficients. Excel doesn’t name it, but I refer to it as the coef-

ficients table. The Coefficients column provides the values for the intercept 

and the slope. The slope is labeled with the name of the x-variable. The 

Standard Error column presents the standard error of the intercept and the 

standard error of the slope. 

The remaining columns provide the results for the t-tests of the intercept and 

the slope. The P-value column lets you know whether or not to reject H
0
 for 

each test. If the value is less than your alpha, reject H
0
. In this example, the 

decision is to reject H
0
 for the slope, but not for the intercept.
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Figure 14-17 shows the lower half of the Regression tool’s tabled output.

 

Figure 14-17: 
The lower 
half of the 

Regression 
data analy-

sis tool’s 
tabled 

 output.
 

Here, you find the RESIDUAL OUTPUT and the PROBABILITY OUTPUT. The 

RESIDUAL OUTPUT is a table that shows the predicted value and the residual 

(y-y’) for each individual in the sample. It also shows the standard residual for 

each observation, which is 

The tabled data on residuals and standard residuals are useful for analyzing 

the variability around the regression line. You can scan these data for outli-

ers, for example, and see if outliers are associated with particular values of 

the x-variable. (If they are, it might mean that something weird is going on in 

your sample.)

The PROBABILITY OUTPUT is a table of the percentiles in the y-variable data 

in the sample. (Yes, PERCENTILE OUTPUT would be a better name.)

Graphic output
Figures 14-18, 14-19, and 14-20 show the Regression tool’s graphic output. 

The Normal Probability Plot in Figure 14-18 is a graphic version of the 

PROBABILITY OUTPUT table. The SAT Residual Plot in Figure 14-19 shows 

the residuals graphed against the x-variable: For each SAT score in the 

sample, this plot shows the corresponding residual. Figure 14-20 shows the 

SAT Line Fit Plot — a look at the observed and the predicted y-values. Note 

that in the Line Fit Plot, the SATs do not appear on the x-axis in numerical 

order. Rather, they appear in the same order as in the data.
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Figure 14-18: 
The Normal 
Probability 
Plot shows 

the percen-
tile data 

for the 
y-variable.

 

 

Figure 14-19: 
The SAT 
Residual 

plot 
graphs the 

residuals 
against the 
 x-variable.

 

 

Figure 14-20: 
The SAT 

Line Fit Plot 
shows the 
observed 
y-values 
and the 

predicted 
y-values.
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If you’ve used the Regression Tool in earlier versions of Excel, you’ll notice a 

change in the Normal Probability Plot and the Line Fit Plot. These two formerly 

appeared as scatterplots. In Excel 2007, they appear as column charts. You can 

use Excel’s graphics capabilities to easily reformat them to scatterplots. 

Juggling Many Relationships 
at Once: Multiple Regression

Linear regression is a great tool for making predictions. When you know the 

slope and the intercept of the line that relates two variables, you can take 

a new x-value and predict a new y-value. In the example I’ve been working 

through, you take a SAT score and predict a GPA for a Sahutsket University 

student.

What if you knew more than just the SAT score for each student? What if you 

had the student’s high-school average (on a 100 scale), and you could use 

that information, too? If you could combine SAT with HS average, you might 

have a more accurate predictor than just SAT alone.

When you work with more than one independent variable, you’re in the realm 

of multiple regression. As in linear regression, you find regression coefficients 

for the best-fitting line through a scatterplot. Once again, “best-fitting” means 

that the sum of the squared distances from the data points to the line is a 

minimum.

With two independent variables, however, you can’t show a scatterplot in 

two dimensions. You need three dimensions, and that becomes difficult to 

draw. Instead, I’ll just show you the equation of the regression line:

For the SAT-GPA example, that translates to

You can test hypotheses about the overall fit, and about all three of the 

regression coefficients. 

I won’t go through all the formulas for finding the coefficients, because that 

gets really complicated. Instead, I’ll go right to the Excel capabilities. 
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A couple of things to bear in mind before I proceed: 

 ✓ You can have any number of x-variables. I just use two in the upcoming 

example.

 ✓ Expect the coefficient for SAT to change from linear regression to mul-

tiple regression. Expect the intercept to change, too.

 ✓ Expect the standard error of estimate to decrease from linear regression 

to multiple regression. Because multiple regression uses more informa-

tion than linear regression, it reduces the error. 

Excel Tools for Multiple Regression
The good news about Excel’s multiple regression tools is that they’re the 

some of the same ones I just told you about for linear regression: You just 

use them in a slightly different way. 

The bad news is . . . well . . . uh . . . I can’t think of any bad news!

TREND revisited
I begin with TREND. Before, I showed you how to use this function to predict 

values based on one x-variable. Change what you enter into the dialog box, 

and it predicts values based on more than one. 

Figure 14-21 shows the TREND dialog box and data for 20 students. In the 

data, I’ve added a column for each student’s high-school average. I defined 

HS_Average as the name for the data in this column. The Figure also shows 

the selected column for TREND’s predictions. I include the Formula Bar in 

this screen shot so you can see what the formula looks like.

 1. With the data entered, select a column for TREND’s answers.

  I selected F3:F22. That puts the predicted GPAs right next to the sample 

GPAs.

 2. From the Statistical Functions menu, select TREND to open the 

Function Arguments dialog box for TREND.
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Figure 14-21: 
The Function 

Arguments 
dialog box 
for TREND 
along with 

data. TREND 
is set up 

to predict 
GPAs for 

the sample 
SATs and 

high-school 
averages.

 

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments.

  In the Known_y’s box, I entered the name of the cell range that holds the 

scores for the y-variable. For this example, that’s GPA (E3:E22). 

  In the Known_x’s box, I entered the names of the cell ranges that hold 

the scores for the x-variables. With the cell ranges named, it’s SAT:HS_

Average. These names cover C3:D22, the cells that hold the SAT scores 

and the high-school averages.

  I left the New_x’s box blank.

  In the Const box, the choices are TRUE (or leave it blank) to calculate 

the y-intercept, or FALSE to set the y-intercept to zero. I entered TRUE. (I 

really don’t know why you’d enter FALSE.) A note of caution: In the dialog 

box, the instruction for the Const box refers to b. That’s the y-intercept. 

Earlier in the chapter, I use a to represent the y-intercept, and b to repre-

sent the slope. No particular usage is standard for this. Also, the dialog 

box makes it sound like this function just works for linear regression. As 

you’re about to see, it works for multiple regression, too.

 4. IMPORTANT: Do NOT click OK. Because this is an array function, press 

Ctrl+Shift+Enter to put TREND’s answers into the selected column. 

Figure 14-22 shows the answers in F3:F22. Note the difference in the Formula 

Bar from Figure 14-21 to Figure 14-22. After the function completes its work, 

Excel adds curly brackets to indicate an array formula.

So TREND predicts the values, and I haven’t even shown you how to find the 

coefficients yet!
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Figure 14-22: 
The results 
of TREND: 
Predicted 
GPAs for 

the sample 
SATs and 

high-school 
averages.

 

LINEST revisited
To find the multiple regression coefficients, I turn again to LINEST. 

In Figure 14-23, I’ve put the data and the dialog box for LINEST, along with the 

data and the selected array for the answers. The selected array is five-rows-

by-three-columns. It’s always five rows. The number of columns is equal to 

the number of regression coefficients. For linear regression, it’s two— the 

slope and the intercept. For this case of multiple regression, it’s three.

 

Figure 14-23: 
The 

Function 
Arguments 
dialog box 

for LINEST, 
along with 

the data and 
the selected 
array for the 

results of 
a multiple 

regression.
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Here are the steps for using LINEST for multiple regression with three 

 coefficients:

 1. With the data entered, select a five-row-by-three-column array of cells 

for LINEST’s results.

  I selected H3:J7.

 2. Click the Insert Function button to open the Insert Function dialog box.

 3. In the Insert Function dialog box, select LINEST and click OK to open 

the Function Arguments dialog box for LINEST.

  In the Known_y’s box, enter the column that holds the scores for the 

y-variable. For this example, that’s E3:E22, the GPAs. 

  In the Known_x’s box, enter the columns that hold the scores for the 

x-variables .For this example, it’s C3:D22, the SAT scores and the high-

school averages.

  In the Const box, enter TRUE (or leave it blank) to calculate the y-intercept. 

Enter FALSE to set the y-intercept to zero. I typed TRUE. 

  In the Stats box, enter TRUE to return regression statistics in addition 

to the slope and the intercept, FALSE (or leave it blank) to return just 

the slope and the intercept. I entered TRUE. The dialog box refers to the 

intercept as b and to the other coefficients as m-coefficients. I use a to rep-

resent the slope and b to refer to the other coefficients. No set of symbols 

is standard. 

 4. IMPORTANT: Do NOT click OK. Because this is an array function, 

press Ctrl+Shift+Enter to put LINEST’s answers into the selected array.

Figure 14-24 shows LINEST’s results. They’re not labeled in any way, so I 

added the labels for you in the worksheet. I also drew a box around part of 

the results to clarify what goes with what. 

The entries that stand out are the ugly #N/A symbols in the last three rows of 

the rightmost column. These indicate that LINEST doesn’t put anything into 

these cells.

The top two rows of the array provide the values and standard errors for the 

coefficients. I drew the box around those rows to separate them from the 

three remaining rows, which present information in a different way. Before I 

get to those rows, I’ll just tell you that the top row gives you the information 

for writing the regression equation:
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In terms of SAT, GPA, and high-school average, it’s:

The third row has R Square (a measure of the strength of the relationship 

between GPA and the other two variables, which I cover in Chapter 15) and 

the standard error of estimate. Compare the standard error of estimate for 

the multiple regression with the standard error for the linear regression, and 

you’ll see that the multiple one is smaller. (Never mind. I’ll do it for you. It’s 

.40 for the linear and 0.35 for the multiple.)

The fourth row shows the F-ratio that tests the hypothesis about whether 

or not the line is a good fit to the scatterplot, and the df for the denominator 

of the F. The df for the numerator (not shown) is the number of coefficients 

minus 1. You can use FINV to verify that this F with df = 2 and 17 is significant. 

The last row gives you SS
Regression

 and SS
Residual

. 

 

Figure 14-24: 
LINEST’s 

multiple 
results in 

the selected 
array.

 

Regression data analysis tool revisited
In the same way you use TREND and LINEST for multiple regression, you use 

the Regression data analysis tool. Specify the appropriate array for the x-vari-

ables, and you’re off and running.

Here are the steps:

 1. Type the data into the worksheet, and include labels for the columns. 

 2. Select Data | Data Analysis to open the Data Analysis dialog box.
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 3. In the Data Analysis dialog box, scroll down the Analysis Tools list 

and select Regression. Click OK to open the Regression dialog box.

  This is the dialog box in Figure 14-15.

 4. In the Input Y Range box, enter the cell range that holds the data for 

the y-variable.

  The GPAs (including the label) are in $E$2:$E$22. Note the $-signs for 

absolute referencing. 

 5. In the Input X Range box, enter the cell range that holds the data for 

the x-variable.

  The SATs and the high-school averages (including the labels) are in 

$C$2:$D$22.

 6. If the cell ranges include column headings, select the Labels checkbox.

  I included the labels in the ranges, so I selected the box.

 7. The Alpha box has 0.05 as a default. Change that value if you want a 

different alpha.

  In the Output Options, select a radio button to indicate where you want 

the results.

 8. I selected New Worksheet Ply to put the results on a new page in the 

worksheet.

 9. The Residuals area provides four capabilities for viewing the devia-

tions between the data points and the predicted points. Select as many 

as you like.

  I selected all four. 

 10. The option in the Normal Probability Plot area produces a graph of 

the percentiles of the y-variable.

  I checked this one.

 11. Click OK.

Go back to the section, “Data Analysis Tool: Regression,” for the details of 

what’s in the output. It’s the same as before, with a couple of changes and 

additions because of the new variable. Figure 14-25 shows the ANOVA table 

and the coefficients table.

The ANOVA table shows the new df (2, 17, and 19 for Regression, Residual, 

and Total, respectively). The coefficients table adds information for the HS 

Average. It shows the values of all the coefficients, as well as standard errors, 

and t-test information for hypothesis testing.
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Figure 14-25: 
Part of 

the output 
from the 

Regression 
data analy-

sis tool: The 
ANOVA 

table 
and the 

Coefficients 
table.

 

If you go through the example, you’ll see the table of residuals in the output. 

Compare the absolute values of the residuals from the linear regression with 

the absolute values of the residuals from the multiple regression; you’ll see 

the multiple ones are smaller, on average.

The graphic output has some additions, too: A scatterplot of HS Average and 

GPA that also shows predicted GPAs, and a plot of residuals and HS Average.
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Chapter 15

Correlation: The Rise and Fall of 
Relationships

In This Chapter
▶ What correlation is all about

▶ How correlation connects to regression

▶ Conclusions from correlations

▶ Analyzing items

In Chapter 14, I show you the ins and outs of regression, a tool for sum-

marizing relationships between (and among) variables. In this chapter, 

I introduce you to the ups and downs of correlation, another tool for looking 

at relationships. 

I use the example of SAT and GPA from Chapter 14, and show how to think 

about the data in a slightly different way. The new concepts connect to what 

I showed you in the preceding chapter, and you’ll see how that works. I also 

show you how to test hypotheses about relationships and how to use Excel 

functions and data analysis tools for correlation.

Scatterplots Again
A scatterplot is a graphic way of showing a relationship between two vari-

ables. Figure 15-1 is a scatterplot that represents the GPAs and SAT scores of 

20 students at the fictional Sahusket University. The GPAs are on a 4.0 scale 

and the SATs are combined Verbal and Math. 

Each point represents one student. A point’s location in the horizontal direc-

tion represents the student’s SAT. That same point’s location in the vertical 

direction represents the student’s GPA.
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Figure 15-1: 
A scatter-
plot of 20 
students’ 
SAT and 

GPA at 
Sahusket 

University.
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Understanding Correlation
In Chapter 14, I refer to the SAT as the independent variable and to the GPA as 

the dependent variable. The objective in Chapter 14 was to use SAT to predict 

GPA. Here’s a very important point: Although I use scores on one variable to 

predict scores on the other, I do not mean that the score on one variable causes 

a score on the other. “Relationship” doesn’t necessarily mean “causality.” 

Correlation is a statistical way of looking at a relationship. When two things 

are correlated, it means that they vary together. Positive correlation means 

that high scores on one are associated with high scores on the other, and 

that low scores on one are associated with low scores on the other. The scat-

terplot in Figure 15-1 is an example of positive correlation.

Negative correlation, on the other hand, means that high scores on the first 

thing are associated with low scores on the second. Negative correlation 

also means that low scores on the first are associated with high scores on 

the second. An example is the correlation between body weight and the time 

spent on a weight-loss program. If the program is effective, the higher the 

amount of time spent on the program, the lower the body weight. Also, the 

lower the amount of time spent on the program, the higher the body weight. 

Table 15-1, a repeat of Table 14-2, shows the data from the scatterplot.
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Table 15-1 SAT Scores and GPAs for 20 Sahusket 
 University Students
Student SAT GPA

1 990 2.2

2 1150 3.2

3 1080 2.6

4 1100 3.3

5 1280 3.8

6 990 2.2

7 1110 3.2

8 920 2.0

9 1000 2.2

10 1200 3.6

11 1000 2.1

12 1150 2.8

13 1070 2.2

14 1120 2.1

15 1250 2.4

16 1020 2.2

17 1060 2.3

18 1550 3.9

19 1480 3.8

20 1010 2.0

Mean 1126.5 2.705

Variance 26171.32 0.46

Standard Deviation 161.78 0.82

In keeping with the way I used SAT and GPA in Chapter 14, SAT is the x-vari-

able and GPA is the y-variable. 

The formula for calculating the correlation between the two is 
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The term on the left, r, is called the correlation coefficient. It’s also called 

Pearson’s product-moment correlation coefficient after its creator Karl Pearson. 

The two terms in the denominator on the right are the standard deviation of 

the x-variable and the standard deviation of the y-variable. The term in the 

numerator is called the covariance. So another way to write this formula is

The covariance represents x and y varying together. Dividing the covariance 

by the product of the two standard deviations imposes some limits. The 

lower limit of the correlation coefficient is –1.00, and the upper limit is +1.00. 

A correlation coefficient of –1.00 represents perfect negative correlation (low 

x-scores associated with high y-scores, and high x-scores associated with 

low y-scores.) A correlation of +1.00 represents perfect positive correlation 

(low x-scores associated with low y-scores and high x-scores associated with 

high y-scores.) A correlation of 0.00 means that the two variables are not 

related.

Applying the formula to the data in Table 15-1, 

What, exactly, does this number mean? I’m about to tell you.

Correlation and Regression
Figure 15.2 shows the scatterplot with the line that “best fits” the points. It’s 

possible to draw an infinite number of lines through these points. Which one 

is best?

To be “best,” a line has to meet a specific standard: If you draw the distances 

in the vertical direction between the points and the line, and you square 

those distances, and then you add those squared distances, the best fitting 

line is the one that makes the sum of those squared distances as small as 

possible. This line is called the regression line. 
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Figure 15-2: 
Scatterplot 

of the 20 
students, 
including 

the regres-
sion line.
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The regression line’s purpose in life is to enable you to make predictions. As I 

mention in Chapter 14, without a regression line your best predicted value of 

the y-variable is the mean of the y’s. A regression line takes the x-variable into 

account and delivers a more precise prediction. Each point on the regression 

line represents a predicted value for y. In the symbology of regression, each 

predicted value is a y’.

Why do I tell you all of this? Because correlation is closely related to regres-

sion. Figure 15-3 focuses on one point in the scatterplot, and its distance to 

the regression line and to the mean. (This is a repeat of Figure 14-3.)

 

Figure 15-3: 
One point in 
the scatter-
plot and its 
associated 
distances.
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Notice the three distances laid out in the Figure. The distance labeled (y-y’) 

is the difference between the point and the regression line’s prediction for 

where the point should be. (In Chapter 14, I call that a residual.) The distance 

labeled y-  is the difference between the point and the mean of the y’s. 

The distance labeled y’-  is the gain in prediction ability that you get from 

using the regression line to predict the point instead of using the mean. 

Figure 15-3 shows the three distances are related like this:

As I point out in Chapter 14, you can square all the residuals and add them, 

square all the deviations of the predicted points from the mean and add 

them, and square all the deviations of the actual points from the mean and 

add them, too. 

It turns out that these sums of squares are related in the same way as the 

deviations I just showed you:

If SS
Regression

 is large in comparison to SS
Residual

, that indicates that the relation-

ship between the x-variable and the y-variable is a strong one. It means that 

throughout the scatterplot, the variability around the regression line is small. 

On the other hand, if SS
Regression

 is small in comparison to SS
Residual

, that 

means that the relationship between the x-variable and the y-variable is weak. 

In this case, the variability around the regression line is large throughout the 

scatterplot.

One way to test SS
Regression

 against SS
Residual

 is to divide each by its degrees 

of freedom (1 for SS
Regression

 and N-2 for SS
Residual

) to form variance estimates 

(also known as Mean Squares, or MS), and then divide one by the other to 

calculate an F. If MS
Regression

 is significantly larger than MS
Residual

, you have evi-

dence that the x-y relationship is strong. (See Chapter 14 for details.)

Here’s the clincher, as far as correlation is concerned: Another way to 

assess the size of SS
Regression

 is to compare it with SS
Total

. Divide the first by 

the second. If the ratio is large, this tells you the x-y relationship is strong. 

This ratio has a name. It’s called the coefficient of determination. Its symbol is 

r2. Take the square root of this coefficient, and you have . . . the correlation 

 coefficient!
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The plus-or-minus sign (±) means that r is either the positive or negative 

square root, depending on whether the slope of the regression line is positive 

or negative.

So, if you calculate a correlation coefficient and you quickly want to know 

what its value signifies, just square it. The answer — the coefficient of deter-

mination — lets you know the proportion of the SS
Total

 that’s tied up in the 

relationship between the x-variable and the y-variable. If it’s a large propor-

tion, the correlation coefficient signifies a strong relationship. If it’s a small 

proportion, the correlation coefficient signifies a weak relationship. 

In the GPA-SAT example, the correlation coefficient is .817. The coefficient of 

determination is

In this sample of 20 students, the SS
Regression

 is 66.7 percent of the SS
Total

. 

Sounds like a large proportion, but what’s large? What’s small? Those ques-

tions scream out for hypothesis tests.

Testing Hypotheses About Correlation
In this section, I show you how to answer important questions about cor-

relation. Like any other kind of hypothesis testing, the idea is to use sample 

statistics to make inferences about population parameters. Here, the sample 

statistic is r, the correlation coefficient. By convention, the population param-

eter is ρ (rho), the Greek equivalent of r. (Yes, it does look like our letter p, 

but it really is the Greek equivalent of r.)

Two kinds of questions are important in connection with correlation: (1) Is a 

correlation coefficient greater than zero? (2) Are two correlation coefficients 

different from one another?

Is a correlation coefficient 
greater than zero?
Returning once again to the Sahusket SAT-GPA example, you can use the 

sample r to test hypotheses about the population ρ — the correlation coef-

ficient for all students at Sahusket University. 

21 454060-ch15.indd   29721 454060-ch15.indd   297 4/21/09   7:34:48 PM4/21/09   7:34:48 PM



298 Part III: Drawing Conclusions from Data 

Assuming we know in advance (before we gather any sample data), that any 

correlation between SAT and GPA should be positive, the hypotheses are:

H
0
: ρ ≤ 0

H
1
: ρ > 0

I set α = .05.

The appropriate statistical test is a t-test. The formula is:

This test has N-2 df.

For the example, the values in the numerator are set: r is .817 and ρ (in H
0
) is 

zero. What about the denominator? I won’t burden you with the details. I’ll 

just tell you that’s 

With a little algebra, the formula for the t-test simplifies to

For the example,

With df = 18 and α = .05 (one-tailed), the critical value of t is 2.10 (use the 

worksheet function TINV to check). Because the calculated value is greater 

than the critical value, the decision is to reject H
0
.

Do two correlation coefficients differ?
In a sample of 24 students at Farshimmelt College, the correlation between 

SAT and GPA is .752. Is this different from the correlation (.817) at Sahutsket 

University? If I have no way of assuming that one correlation should be 

higher than the other, the hypotheses are:

21 454060-ch15.indd   29821 454060-ch15.indd   298 4/21/09   7:34:48 PM4/21/09   7:34:48 PM



299 Chapter 15: Correlation: The Rise and Fall of Relationships

H
0
: ρ

Sahusket
 = ρ

Farshimmelt

H
1
: ρ

Sahusket
 ≠ ρ

Farshimmelt

Again, α = .05.

For highly technical reasons, you can’t set up a t-test for this one. In fact, you 

can’t even work with .817 and .752, the two correlation coefficients.

Instead, what you do is transform each correlation coefficient into something 

else and then work with the two something elses in a formula that gives 

you — believe it or not — a z-test.

 The transformation is called Fisher’s r to z transformation. Fisher is the statisti-

cian who’s remembered as the “F” in the F-test. He transforms the r into a z by 

doing this:

If you know what loge means, fine. If not, don’t worry about it. (I explain it in 

Chapter 20.) Excel takes care of all of this for you, as you see in a moment.

After you transform r to z, the formula is

The denominator turns out to be easier than you might think. It’s:

For this example,
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The whole formula is

The next step is to compare the calculated value to a standard normal dis-

tribution. For a two-tailed test with α = .05 the critical values in a standard 

normal distribution are 1.96 in the upper tail and -1.96 in the lower tail. The 

calculated value falls in between those two, so the decision is to not reject H
0
.

Worksheet Functions for Correlation
Excel provides two worksheet functions for calculating correlation — and, 

they do exactly the same thing in exactly the same way! Why Excel offers 

both CORREL and PEARSON I do not know, but there you have it. Those are 

the two main correlation functions. 

The others are RSQ and COVAR. RSQ calculates the coefficient of determina-

tion (the square of the correlation coefficient), and COVAR calculates the 

covariance, sort of.

CORREL and PEARSON
Figure 15-4 shows the data for the Sahusket SAT-GPA example, along with the 

Function Arguments dialog box for CORREL.

 

Figure 15-4: 
The 

Function 
Arguments 
dialog box 

for CORREL, 
along with 

data.
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To use this function, the steps are:

 1. Type the data into cell arrays and select a cell for CORREL’s answer.

  I’ve entered the SAT data into C3:C22 and the GPA data into D3:D22, and 

selected F15. I’ve defined SAT as the name of C3:C22 and GPA as the 

name of D3:D22. (Reread Chapter 2 to see how to do this.)

 2. From the Statistical Functions menu, select CORREL to open its 

Function Arguments dialog box.

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments.

  In the Array 1 box, I entered SAT — the name I assigned to the cell range 

(C3:C22) that holds the scores for one of the variables. 

  In the Array 2 box, I entered GPA — the name I assigned the cell range 

(D3:D22) that holds the scores for the other variable.

  With values entered for each argument, the answer, 0.81662505, appears 

in the dialog box.

 4. Click OK to put the answer into the selected cell.

  Selecting PEARSON instead of CORREL gives you exactly the same 

answer, and you use it exactly the same way.

Item analysis: A useful application of correlation
Instructors often want to know how perfor-
mance on a particular exam question is related 
to overall performance on the exam. Ideally, 
someone who knows the material answers 
the question correctly; someone who doesn’t 
answers it incorrectly. If everyone answers it 
correctly — or if no one does — it’s a useless 
question. This evaluation is called item analysis. 

Suppose it’s possible to answer the exam 
question either correctly or incorrectly, and 
it’s possible to score from 0 to 100 on the exam. 
Arbitrarily, you can assign a score of 0 for an 
incorrect answer to the question, and 1 for a 
correct answer, and then calculate a correla-
tion coefficient where each pair of scores is 
either 0 or 1 for the question and a number from 

0 to 100 for the exam. The score on the exam 
question is called a dichotomous variable, and 
this type of correlation is called point biserial 
correlation. 

If the point biserial correlation is high for an 
exam question, it’s a good idea to retain that 
question. If the correlation is low, the question 
probably serves no purpose.

Because one of the variables can only be 0 or 
1, the formula for the biserial correlation coef-
ficient is a bit different from the formula for the 
regular correlation coefficient. If you use Excel 
for the calculations, however, that doesn’t 
matter. Just use CORREL (or PEARSON) in the 
way I outline.
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RSQ
If you have to quickly calculate the coefficient of determination (r2), RSQ is 

the function for you. I see no particular need for this function because it’s 

easy enough to use CORREL and then square the answer. 

Here’s what the EXCEL Formula Bar looks like after you fill in the RSQ 

Function Arguments dialog box for this example:

=RSQ(GPA,SAT)

In terms of the dialog box, the only difference between this one and CORREL 

(and PEARSON) is that the boxes you fill in are called Known_y’s and 

Known_x’s rather than Array 1 and Array 2. 

COVAR
This is another function for which I see no burning need. A minute ago I said 

COVAR calculates covariance “sort of.” I said that because the covariance I 

introduced earlier (as the numerator of the correlation coefficient) is

COVAR, however, calculates 

You use this function the same way you use CORREL. After you fill in its 

Function Arguments dialog box for this example, the formula in the formula 

bar is

=COVAR(SAT,GPA)

If you want to use this function to calculate r, you divide the answer by the 

product of STDEVP(SAT) and STDEVP(GPA). I don’t know why you’d bother 

with all of this when you can just use CORREL.
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Data Analysis Tool: Correlation
If you have to calculate a single correlation coefficient, you’ll find that Excel’s 

Correlation data analysis tool does the same thing CORREL does, although 

the output is in tabular form. This tool becomes useful when you have to cal-

culate multiple correlations on a set of data. 

For example, Figure 15-5 shows SAT, High School Average, and GPA for 20 

Sahusket University students, along with the dialog box for the Correlation 

data analysis tool.

 

Figure 15-5: 
The 

Correlation 
data 

analysis 
tool dialog 
box, along 
with data 

for SAT, 
High School 

Average, 
and GPA.

 

The steps for using this tool are:

 1. Type the data into the worksheet and include labels for the columns.

  In this example, the data (including labels) are in C2:E22. 

 2. Select Data | Data Analysis to open the Data Analysis dialog box.

 3. In the Data Analysis dialog box, scroll down the Analysis Tools list 

and select Correlation. Click OK to open the Correlation dialog box.

  This is the dialog box in Figure 15-5.

 4. In the Input Range box, enter the cell range that holds all the data.

  I entered $C$2:$E$22. Note the $-signs for absolute referencing. 

 5. To the right of Grouped By, select a radio button to indicate if the data 

are organized in columns or rows.

  I chose the Columns radio button.
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 6. If the cell ranges include column headings, check the Labels checkbox.

  I included the headings in the ranges, so I checked the box.

 7. In the Output Options, select a radio button to indicate where you 

want the results.

  I selected New Worksheet Ply to put the results on a new page in the 

worksheet.

 8. Click OK.

  Because I selected New Worksheet Ply, a newly created page opens with 

the results. 

Tabled output
Figure 15-6 shows the tool’s tabled output, after I expanded the columns. The 

table is a correlation matrix.

 

Figure 15-6: 
The 

Correlation 
data analy-

sis tool’s 
tabled 

 output.
 

Each cell in the matrix represents the correlation of the variable in the row 

with the variable in the column. Cell B3 presents the correlation of SAT with 

High School Average, for example. Each cell in the main diagonal contains 1. 

This is because each main diagonal cell represents the correlation of a vari-

able with itself. 

It’s only necessary to fill in half the matrix. The cells above the main diagonal 

would contain the same values as the cells below the main diagonal.

What does this table tell you, exactly? Read on. . . . 

Multiple correlation
The correlation coefficients in this matrix combine to produce a multiple 
correlation coefficient. This is a number that summarizes the relationship 
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between the dependent variable — GPA in this example — and the two inde-

pendent variables (SAT and High School Average). 

To show you how these correlation coefficients combine, I abbreviate GPA 

as G, SAT as S, and High School Average as H. So rGS is the correlation coef-

ficient for GPA and SAT, rGH is the correlation coefficient for GPA and High 

School Average, and rSH is the correlation coefficient for SAT and High 

School Average. 

Here’s the formula that puts them all together:

The uppercase R on the left indicates that this is a multiple correlation coeffi-

cient, as opposed to the lowercase r that indicates a correlation between two 

variables. The subscript G.SH means that the multiple correlation is between 

GPA and the combination of SAT and High School Average.

This is the calculation that produces Multiple R in the Regression Statistics 

section of the Regression data analysis tool’s results. (See Chapter 14.)

For this example, 

Because I use the same data to show you multiple regression in Chapter 14, 

this value (with some additional decimal places) is in Figure 14-25, in cell B4.

If you square this number, you get the multiple coefficient of determination. In 

Chapter 14, I tell you about R Square, and that’s what this is. It’s another item 

in the Regression Statistics that the Regression data analysis tool calculates. 

You also find it in LINEST’s results, although it’s not labeled.

For this example, that result is:

You can go back and see this number in Figure 14-24 in cell H5 (the LINEST 

results). You can also see it in Figure 14-25, cell B5 (the Regression data anal-

ysis tool report).

21 454060-ch15.indd   30521 454060-ch15.indd   305 4/21/09   7:34:49 PM4/21/09   7:34:49 PM



306 Part III: Drawing Conclusions from Data 

Partial correlation
GPA and SAT are associated with High School Average (in the example). Each 

one’s association with High School Average might somehow hide the true 

correlation between them. 

What would their correlation be if you could remove that association? 

Another way to say this: What would be the GPA-SAT correlation if you could 

hold High School Average constant? 

One way to hold High School Average constant is to find the GPA-SAT cor-

relation for a sample of students who have one High School Average — 87, 

for example. In a sample like that, the correlation of each variable with High 

School Average is zero. This usually isn’t feasible in the real world, however. 

Another way is to find the partial correlation between GPA and SAT. This is 

a statistical way of removing each variable’s association with High School 

Average in your sample. You use the correlation coefficients in the correla-

tion matrix to do this:

Adjusting R2

Here’s some more information about R2 as it 
relates to Excel. In addition to R2 — or as Excel 
likes to write it, R Square — the Regression data 
analysis tool calculates Adjusted R Square. In 
Figure 14-21, it’s in cell B6. Why is it necessary 
to “adjust” R Square? 

In multiple regression, adding independent vari-
ables (like High School Average) sometimes 
makes the regression equation less accurate. 
The multiple coefficient of determination, R 
Square, doesn’t reflect this. Its denomina-
tor is SSTotal (for the dependent variable) and 
that never changes. The numerator can only 

increase or stay the same. So any decline in 
accuracy doesn’t result in a lower R Square.

Taking degrees of freedom into account fixes 
the flaw. Every time you add an independent 
variable, you change the degrees of freedom 
and that makes all the difference. Just so you 
know, here’s the adjustment:

  

The k in the denominator is the number of inde-
pendent variables.
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Once again, G stands for GPA, S for SAT, and H for High School Average. The 

subscript GS.H means that the correlation is between GPA and SAT with High 

School Average “partialled out.”

For this example, 

Semipartial correlation
It’s also possible to remove the correlation with High School Average from 

just SAT without removing it from GPA. This is called semipartial correlation. 

The formula for this one also uses the correlation coefficients from the cor-

relation matrix:

The subscript G(S.H) means the correlation is between GPA and SAT with 

High School Average “partialled out” of SAT only.

Applying this formula to the example,

 Some statistics textbooks refer to semipartial correlation as part correlation.

Data Analysis Tool: Covariance
You use the Covariance data analysis tool the same way you use the 

Correlation data analysis tool. I won’t go through the steps again. Instead, I’ll 

just show you the tabled output in Figure 15-7. The data are from Figure 15-5.

The table is a covariance matrix. Each cell in the matrix shows the covari-

ance of the variable in the row with the variable in the column (again, using 

N rather than N-1). Cell C4 shows the covariance of GPA with High School 

Average. The main diagonal in this matrix presents the variance of each vari-

able (which is equivalent to the covariance of a variable with itself). In this 

case, the variance is what you compute if you use VARP. 
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Figure 15-7: 
The 

Covariance 
data analy-

sis tool’s 
tabled out-

put for SAT, 
High School 

Average, 
and GPA.

 

Again, it’s only necessary to fill half the matrix. Cells above the main diagonal 

would hold the same values as the cells below the main diagonal.

As is the case with COVAR, I don’t see why you’d use this tool. I just include 

it for completeness.

Testing Hypotheses About Correlation
Excel has no worksheet function for testing hypotheses about r. As I pointed 

out before, you perform a t-test whose formula is:

With 0.817 stored in cell H12, I used this formula to calculate t:

=H12*SQRT(20-2)/SQRT(1-H12^2) 

I then used the answer (6.011 and some additional decimal places) as input 

to TDIST (along with 18 df and 1 tail) to find that the one-tailed probability of 

the result is way less than .05.

Worksheet Functions: FISHER, FISHERINV
Excel handles the rather complex transformations that enable you to test 

hypotheses about the difference between two correlation coefficients. FISHER 
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transforms r to z. FISHERINV does the reverse. Just to refresh your memory, 

you use the transformed values in the formula

in which the denominator is

In the example I discussed earlier (Sahusket versus Farshimmelt), the corre-

lation coefficients were .817 and .752, and I did a two-tailed test. The first step 

is to transform each correlation. I’ll go through the steps for using FISHER to 

transform .817:

 1. Select a cell for FISHER’s answer.

  I selected B3 for the transformed value.

 2. From the Statistical Functions menu, select FISHER to open its 

Function Arguments dialog box.

  The FISHER Function Arguments dialog box appears in Figure 15-8.

 

Figure 15-8: 
The FISHER 

Function 
Arguments 
dialog box.

 

 3. In the Function Arguments dialog box, type the appropriate value for 

the argument.

  In the x box, I typed .817, the correlation coefficient. The answer, 

1.147728, appears in the dialog box.

 4. Click OK to put the answer into the selected cell.
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I selected B4 to store the transformation of .752. Next, I used this formula to 

calculate Z

=(B3-B4)/SQRT((1/(20-3))+(1/(24-3)))

Finally, I used NORMSINV to find the critical value of z for rejecting H
0
 with a 

two-tailed α of .05. Because the result of the formula (0.521633) is less than 

that critical value (1.96), the decision is to not reject H
0
.
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Working with 

Probability
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In this part . . .

Statistical analysis and decision-making rest on a foun-

dation of probability. Throughout the book, I give 

a smattering of probability ideas — just enough to get 

you through the statistics. Part IV gives a more in-depth 

treatment and covers related Excel features. You find out 

about discrete and continuous random variables, count-

ing rules, conditional probability, and probability distribu-

tions. In this part, I also discuss specific probability 

distributions that are appropriate for specific purposes. 

Part IV ends with an exploration of modeling, tests of how 

well a model fits data, and how Excel deals with modeling 

and testing.
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Chapter 16

Introducing Probability
In This Chapter
▶ Defining probability

▶ Working with probability

▶ Dealing with random variables and their distributions

▶ Focusing on the binomial distribution

Throughout this book, I toss around the concept of probability, because 

it’s the basis of hypothesis testing and inferential statistics. Most of the 

time, I represent probability as the proportion of area under part of a distri-

bution. For example, the probability of a Type I error (a/k/a α) is the area in a 

tail of the standard normal distribution or the t distribution.

In this chapter, I explore probability in greater detail, including random vari-

ables, permutations, and combinations. I examine probability’s fundamentals 

and applications, zero in on a couple of specific probability distributions, and 

I discuss probability-related Excel worksheet functions.

What is Probability?
Most of us have an intuitive idea about what probability is all about. Toss 

a fair coin, and you have a 50-50 chance it comes up “Head.” Toss a fair die 

(one of a pair of dice) and you have a one-in-six chance it comes up “2.” 

If you wanted to be more formal in your definition, you’d most likely say 

something about all the possible things that could happen, and the propor-

tion of those things you care about. Two things can happen when you toss a 

coin, and if you only care about one of them (Head), the probability of that 

event happening is one out of two. Six things can happen when you toss a 

die, and if you only care about one of them (2), the probability of that event 

happening is one out of six. 
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Experiments, trials, events, 
and sample spaces
Statisticians and others who work with probability refer to a process like 

tossing a coin or throwing a die as an experiment. Each time you go through 

the process, that’s a trial. 

This might not fit your personal definition of an experiment (or of a trial, for 

that matter), but for a statistician, an experiment is any process that pro-

duces one of at least two distinct results (like a Head or a Tail). 

Another piece of the definition of an experiment: You can’t predict the result 

with certainty. Each distinct result is called an elementary outcome. Put a 

bunch of elementary outcomes together and you have an event. For example, 

with a die the elementary outcomes 2, 4, and 6 make up the event “even 

number.” 

Put all the possible elementary outcomes together and you’ve got yourself a 

sample space. The numbers 1, 2, 3, 4, 5, and 6 make up the sample space for a 

die. “Head” and “Tail” make up the sample space for a coin.

Sample spaces and probability
How does all this play into probability? If each elementary outcome in a 

sample space is equally likely, the probability of an event is

So the probability of tossing a die and getting an even number is

If the elementary outcomes are not equally likely, you find the probability of 

an event in a different way. First, you have to have some way of assigning a 

probability to each one. Then you add up the probabilities of the elementary 

outcomes that make up the event. 

A couple of things to bear in mind about outcome probabilities: Each prob-

ability has to be between zero and one. All the probabilities of elementary 

outcomes in a sample space have to add up to 1.00.
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How do you assign those probabilities? Sometimes you have advance infor-

mation — such as knowing that a coin is biased toward coming up Head 60 

percent of the time. Sometimes you just have to think through the situation 

to figure out the probability of an outcome. 

Here’s a quick example of “thinking through.” Suppose a die is biased so that 

the probability of an outcome is proportional to the numerical label of the out-

come: A 6 comes up six times as often as a 1, a 5 comes up five times as often 

as a 1, and so on. What is the probability of each outcome? All the probabilities 

have to add up to 1.00, and all the numbers on a die add up to 21 (1+2+3+4+5+

6 = 21), so the probabilities are: pr(1) = 1/21, pr(2) = 2/21, . . ., pr(6) = 6/21.

Compound Events
Some rules for dealing with compound events help you “think through.” A 

compound event consists of more than one event. It’s possible to combine 

events by either union or intersection (or both).

Union and intersection
On a toss of a fair die, what’s the probability of getting a 1 or a 4? 

Mathematicians have a symbol for “or.” It looks like this , and it’s called 

“union.” Using this symbol, the probability of a 1 or a 4 is pr(1 , 4).

In approaching this kind of probability, it’s helpful to keep track of the ele-

mentary outcomes. One elementary outcome is in each event, so the event 

“1 or 4” has two elementary outcomes. With a sample space of six outcomes, 

the probability is 2/6 or 1/3. Another way to calculate this is 

pr(1 , 4) = pr(1) + pr(4) = (1/6) + (1/6) = 2/6 = 1/3

Here’s a slightly more involved one: What’s the probability of getting a 

number between 1 and 3 or a number between 2 and 4? 

Just adding the elementary outcomes in each event won’t get it done this 

time. Three outcomes are in the event “between 1 and 3” and three are in the 

event “between 2 and 4.” The probability can’t be 3 + 3 divided by the six out-

comes in the sample space because that’s 1.00, leaving nothing for pr(5) and 

pr(6). For the same reason, you can’t just add the probabilities.
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The challenge arises in the overlap of the two events. The elementary out-

comes in “between 1 and 3” are 1, 2, and 3. The elementary outcomes in 

“between 2 and 4” are 2, 3, and 4. Two outcomes overlap: 2 and 3. In order to 

not count them twice, the trick is to subtract them from the total. 

A couple of things will make life easier as I proceed. I abbreviate “between 1 

and 3” as A and “between 2 and 4” as B. Also, I use the mathematical symbol 

for “overlap.” The symbol is + and it’s called intersection.

Using the symbols, the probability of “between 1 and 3” or “between 2 and 4” is 

You can also work with the probabilities:

The general formula is:

Why was it okay to just add the probabilities together in the earlier example? 

Because  is zero: It’s impossible to get a 1 and a 4 in the same toss of 

a die. Whenever , A and B are said to be mutually exclusive.

Intersection again
Imagine throwing a coin and rolling a die at the same time. These two experi-

ments are independent, because the result of one has no influence on the 

result of the other. 

What’s the probability of getting a Head and a 4? You use the intersection 

symbol and write this as pr(Head 4):

Start with the sample space. Table 16-1 lists all the elementary outcomes.
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Table 16-1 The Elementary Outcomes in the Sample Space 
 for Throwing a Coin and Rolling a Die
Head, 1 Tail, 1

Head, 2 Tail, 2

Head, 3 Tail, 3

Head, 4 Tail, 4

Head, 5 Tail, 5

Head, 6 Tail, 6

As the table shows, 12 outcomes are possible. How many outcomes are in the 

event “Head and 4”? Just one. So

You can also work with the probabilities:

In general, if A and B are independent,

Conditional Probability
In some circumstances, you narrow the sample space. For example, suppose 

I toss a die, and I tell you the result is greater than 2. What’s the probability 

that it’s a 5? 

Ordinarily, the probability of a 5 would be 1/6. In this case, however, the sample 

space isn’t 1, 2, 3, 4, 5, and 6. When you know the result is greater than 2, the 

sample space becomes 3, 4, 5, and 6. The probability of a 5 is now 1⁄4.

This is an example of conditional probability. It’s “conditional” because I’ve 

given a “condition” — the toss resulted in a number greater than 2. The nota-

tion for this is 
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The vertical line is shorthand for the word given, and you read that notation 

as “the probability of a 5 given Greater than 2.”

Working with the probabilities
In general, if you have two events A and B,

as long as pr(B) isn’t zero.

For the intersection in the numerator on the right, this is not a case where you 

just multiply probabilities together. In fact, if you could do that, you wouldn’t 

have a conditional probability, because that would mean A and B are inde-

pendent. If they’re independent, one event can’t be conditional on the other. 

You have to think through the probability of the intersection. In a die, how 

many outcomes are in the event “5  Greater than 2”? Just one, so pr(5 

Greater than 2) is 1⁄6, and 

The foundation of hypothesis testing
All the hypothesis testing I’ve gone through in previous chapters involves 

conditional probability. When you calculate a sample statistic, compute a sta-

tistical test, and then compare the test statistic against a critical value, you’re 

looking for a conditional probability. Specifically, you’re trying to find 

If that conditional probability is low (less than .05 in all the examples I show 

you in hypothesis-testing chapters), you reject H
0
.

Large Sample Spaces
When dealing with probability, it’s important to understand the sample 

space. In the examples I show you, the sample spaces are small. With a coin 

or a die, it’s easy to list all the elementary outcomes.
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The world, of course, isn’t that simple. In fact, probability problems that 

live in statistics textbooks aren’t even that simple. Most of the time, sample 

spaces are large and it’s not convenient to list every elementary outcome. 

Take, for example, rolling a die twice. How many elementary outcomes are in 

the sample space consisting of both tosses? You can sit down and list them, 

but it’s better to reason it out: Six possibilities for the first toss, and each 

of those six can pair up with six possibilities on the second. So the sample 

space has 6 × 6 = 36 possible elementary outcomes. (This is similar to the 

coin-and-die sample space in Table 16-1, where the sample space consists of 

2 × 6 = 12 elementary outcomes. With 12 outcomes, it was easy to list them all 

in a table. With 36 outcomes, it starts to get . . . well . . . dicey.)

Events often require some thought, too. What’s the probability of rolling a die 

twice and totaling five? You have to count the number of ways the two tosses 

can total five, and then divide by the number of elementary outcomes in the 

sample space (36). You total a five by getting any of these pairs of tosses: 1 

and 4, 2 and 3, 3 and 2, or 4 and 1. That’s four ways and they don’t overlap 

(excuse me, intersect), so 

Listing all the elementary outcomes for the sample space is often a night-

mare. Fortunately, shortcuts are available, as I show in the upcoming sub-

sections. Because each shortcut quickly helps you count a number of items, 

another name for a shortcut is a counting rule. 

Believe it or not, I just slipped one counting rule past you. A couple of para-

graphs ago, I say that in two tosses of a die you have a sample space of 6 × 6 

= 36 possible outcomes. This is the product rule: If N
1
 outcomes are possible 

on the first trial of an experiment, and N
2
 outcomes on the second trial, the 

number of possible outcomes is N
1
N

2
. Each possible outcome on the first trial 

can associate with all possible outcomes on the second. What about three 

trials? That’s N
1
N

2
N

3
.

Now for a couple more counting rules.

Permutations 
Suppose you have to arrange five objects into a sequence. How many ways 

can you do that? For the first position in the sequence, you have five choices. 

After you make that choice, you have four choices for the second position. 

Then you have three choices for the third, two for the fourth, and one for the 

fifth. The number of ways is (5)(4)(3)(2)(1) = 120. 
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In general, the number of sequences of N objects is N(N-1)(N-2)…(2)(1). This 

kind of computation occurs fairly frequently in probability-world and it has 

its own notation, N! You don’t read this by screaming out “N” in a loud voice. 

Instead, it’s “N factorial.” By definition, 1! = 1, and 0! = 1.

Now for the good stuff. If you have to order the 26 letters of the alphabet, the 

number of possible sequences is 26!, a huge number. But suppose the task is 

to create five-letter sequences so that no letter repeats in the sequence. How 

many ways can you do that? You have 26 choices for the first letter, 25 for 

the second, 24 for the third, 23 for the fourth, 22 for the fifth, and that’s it. So 

that’s (26)(25(24)(23)(22). Here’s how that product is related to 26!:

Each sequence is called a permutation. In general, if you take permutations of 

N things r at a time, the notation is NPr (the P stands for “permutation”). The 

formula is

Combinations
In the example I just showed you, these sequences are different from one 

another: abcde, adbce, dbcae, and on and on and on. In fact, you could come up 

with 5! = 120 of these different sequences just for the letters a, b, c, d, and e.

Suppose I add the restriction that one of these sequences is no different from 

another, and all I’m concerned about is having sets of five nonrepeating let-

ters in no particular order. Each set is called a combination. For this example, 

the number of combinations is the number of permutations divided by 5!:

In general, the notation for combinations of N things taken r at a time is NCr 
(the C stands for “combination”). The formula is
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Worksheet Functions 
Three Excel functions help you with factorials, permutations, and combina-

tions. Excel categorizes one of them as a Statistical function, but, surpris-

ingly, not the other two. 

FACT
FACT, which computes factorials, is one of the functions not categorized as 

Statistical. Instead, you’ll find it in the Math & Trig Functions menu. It’s easy 

to use. Supply it with a number, and it returns the factorial. Here are the steps:

 1. Select a cell for FACT’s answer.

 2. From the Math & Trig functions menu, select FACT to open its 

Function Arguments dialog box.

 3. In the Function Arguments dialog box, enter the appropriate value for 

the argument. 

  In the Number box, I typed the number whose factorial I want to compute.

  The answer appears in the dialog box. If I enter 5, for example, 120 appears.

 4. Click OK to put the answer into the selected cell.

PERMUT
You’ll find this one in the Statistical Functions menu. As its name suggests, 

PERMUT enables you to calculate 
N
P

r
. Here’s how to use it to find 

26
P

5
, the 

number of five-letter sequences (no repeating letters) you can create from 

the 26 letters of the alphabet. In a permutation, remember, abcde is consid-

ered different from bcdae. Follow these steps:

 1. Select a cell for PERMUT’s answer.

 2. From the Statistical Functions menu, select PERMUT to open its 

Function Arguments dialog box (Figure 16-1).

 3. In the Function Arguments dialog box, type the appropriate values for 

the arguments.

  In the Number box, I entered the N in 
N
P

r
. For this example, N is 26. 

  In the Number_chosen box, I entered the r in 
N
P

r
. That would be 5. 

  With values entered for both arguments, the answer appears in the 

dialog box. For this example, the answer is 7893600.
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Figure 16-1: 
The 

Function 
Arguments 

dialog 
box for 

PERMUT.
 

 4. Click OK to put the answer into the selected cell.

COMBIN 
COMBIN works pretty much the same way as PERMUT. Excel categorizes 

COMBIN as a Math & Trig function. 

Here’s how you use it to find 
26

C
5
, the number of ways to construct a 5-letter 

sequence (no repeating letters) from the 26 letters of the alphabet. In a com-

bination, abcde is considered equivalent to bcdae.

 1. Select a cell for COMBIN’s answer.

 2. From the Math & Trig Functions menu, select COMBIN to open its 

Function Arguments dialog box.

 3. In the Function Arguments dialog box, type the appropriate values for 

the arguments.

  In the Number box, I entered the N in 
N
C

r
. Once again, N is 26. 

  In the Number_chosen box, I entered the r in 
N
C

r
. And again, r is 5.

  With values entered for both arguments, the answer appears in the 

dialog box. For this example, the answer is 65870.

 4. Click OK to put the answer into the selected cell.

Random Variables: Discrete 
and Continuous

Return to tosses of a fair die, where six elementary outcomes are possible. If I 

use x to refer to the result of a toss, x can be any whole number from 1 to 6. 
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Because x can take on a set of values, it’s a variable. Because x’s possible 

values correspond to the elementary outcomes of an experiment (meaning you 

can’t predict its values with absolute certainty) x is called a random variable.

Random variables come in two varieties. One variety is discrete, of which die-

tossing is a good example. A discrete random variable can only take on what 

mathematicians like to call a countable number of values — like the numbers 

1–6. Values between the whole numbers 1–6 (like 1.25 or 3.1416) are impos-

sible for a random variable that corresponds to the outcomes of die-tosses.

The other kind of random variable is continuous. A continuous random vari-

able can take on an infinite number of values. Temperature is an example. 

Depending on the precision of a thermometer, it’s possible to have tempera-

tures like 34.516 degrees.

Probability Distributions 
and Density Functions

Back again to die-tossing. Each value of the random variable x (1–6, remem-

ber) has a probability. If the die is fair, each probability is 1/6. Pair each value 

of a discrete random variable like x with its probability, and you have a prob-
ability distribution. 

Probability distributions are easy enough to represent in graphs. Figure 16-2 

shows the probability distribution for x.

 

Figure 16-2: 
The 

probability 
distribution 
for x, a ran-

dom variable 
based on 

the tosses 
of a fair die.

 

1 2 3 4 5 6
x

pr(x)

1/6

23 454060-ch16.indd   32323 454060-ch16.indd   323 4/21/09   7:35:58 PM4/21/09   7:35:58 PM



324 Part IV: Working with Probability 

A random variable has a mean, a variance, and a standard deviation. 

Calculating these parameters is pretty straightforward. In random-variable 

world, the mean is called the expected value, and the expected value of 

random variable x is abbreviated as E(x). Here’s how you calculate it:

For the probability distribution in Figure 16-2, that’s

The variance of a random variable is often abbreviated as V(x), and the for-

mula is

Working with the probability distribution in Figure 16-2 once again,

The standard deviation is the square root of the variance, which in this case 

is 1.708.

For continuous random variables, things get a little trickier. You can’t pair a 

value with a probability, because you can’t really pin down a value. Instead, 

you associate a continuous random variable with a mathematical rule (an 

equation) that generates probability density, and the distribution is called a 

probability density function. To calculate the mean and variance of a continu-

ous random variable, you need calculus.

In Chapter 8, I show you a probability density function — the standard 

normal distribution. I reproduce it here as Figure 16-3.

In the figure, f(x) represents the probability density. Because probability den-

sity can involve some heavyweight mathematical concepts, I won’t go into 

it. As I mention in Chapter 8, think of probability density as something that 

turns the area under the curve into probability. 

While you can’t speak of the probability of a specific value of a continuous 

random variable, you can work with the probability of an interval. To find 

the probability that the random variable takes on a value within an interval, 

you find the proportion of the total area under the curve that’s inside that 

interval. Figure 16-3 shows this. The probability that x is between 0 and 1σ 

is .3413.
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Figure 16-3: 
The stan-

dard normal 
distribution: 

A probability 
density 

function.
 

f(x)

x
0 10-10-20-30 20 30

.3413.3413

.1359.1359 .0215.0215
.0013.0013

For the rest of this chapter, I deal just with discrete random variables. A spe-

cific one is up next.

The Binomial Distribution
Imagine an experiment that has these five characteristics:

 ✓ The experiment consists of N identical trials.

  A trial could be a toss of a die, or a toss of a coin.

 ✓ Each trial results in one of two elementary outcomes.

 ✓ It’s standard to call one outcome a success and the other a failure. For 

die-tossing, a success might be a toss that comes up 3, in which case a 

failure is any other outcome.

 ✓ The probability of a success remains the same from trial to trial.

  Again, it’s pretty standard to use p to represent the probability of a suc-

cess, and 1-p (or q) to represent the probability of a failure.

 ✓ The trials are independent.

 ✓ The discrete random variable x is the number of successes in the N trials.
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This type of experiment is called a binomial experiment. The probability dis-

tribution for x follows this rule:

On the extreme right, px(1-p)N-x is the probability of one combination of x 

successes in N trials. The term to its immediate left is NCx, the number of 

possible combinations of x successes in N trials. 

This is called the binomial distribution. You use it to find probabilities like the 

probability you’ll get four 3s in ten tosses of a die:

The negative binomial distribution is closely related. In this distribution, the 

random variable is the number of trials before the xth success. For example, 

you use the negative binomial to find the probability of 5 tosses that result in 

anything but a 3 before the fourth time you roll a 3. 

For this to happen, in the eight tosses before the fourth 3, you have to get 

5 non-3s and 3 successes (tosses when a 3 comes up). Then, the next toss 

results in a 3. The probability of a combination of 4 successes and 5 failures 

is p4(1-p)5. The number of ways you can have a combination of 5 failures and 

4-1 successes is 
5+4-1

C
4-1

. So the probability is

In general, the negative binomial distribution (sometimes called the Pascal 
distribution) is

Worksheet Functions 
These distributions are computation intensive, so I get to the worksheet func-

tions right away. 
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BINOMDIST 
BINOMDIST is Excel’s worksheet function for the binomial distribution. As an 

example, I use BINOMDIST to calculate the probability of getting four 3s in 

ten tosses of a fair die:

 1. Select a cell for BINOMDIST’s answer.

 2. From the Statistical Functions menu, select BINOMDIST to open its 

Function Arguments dialog box (Figure 16-4).

 

Figure 16-4: 
The 

BINOMDIST 
Function 

Arguments 
dialog box.

 

 3. In the Function Arguments dialog box, type the appropriate values for 

the arguments.

  In the Number_s box, I entered the number of successes. For this exam-

ple, the number of successes is 4.

  In the Trials box, I entered the number of trials. The number of trials is 10.

  In the Probability_s box, I entered the probability of a success. I entered 

1/6, the probability of a 3 on a toss of a fair die.

  In the Cumulative box, one possibility is FALSE for the probability of 

exactly the number of successes entered in the Number_s box. The 

other is TRUE for the probability of getting that number of successes or 

fewer. I entered FALSE. 

  With values entered for all the arguments, the answer appears in the 

dialog box.

 4. Click OK to put the answer into the selected cell.

To give you a better idea of what the binomial distribution looks like, I use 

BINOMDIST (with FALSE entered in the Cumulative box) to find pr(0) through 
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pr(10), and then I use Excel’s graphics capabilities (see Chapter 3) to graph 

the results. Figure 16-5 shows the data and the graph.

 

Figure 16-5: 
The 

binomial 
distribution 

for x suc-
cesses in 

ten tosses 
of a die, 

with p = 1/6.
 

Incidentally, if you type TRUE in the Cumulative box, the result is .984 (and 

some more decimal places), which is pr(0) + pr(1) + pr(2) + pr(3) + pr(4). 

NEGBINOMDIST
As its name suggests, NEGBINOMDIST handles the negative binomial distribu-

tion. I use it here to work out the example I gave you earlier — the probabil-

ity of getting five failures (tosses that result in anything but a 3) before the 

fourth success (the fourth 3). 

 1. Select a cell for NEGBINOMDIST’s answer.

 2. From the Statistical Functions menu, select NEGBINOMDIST to open its 

Function Arguments dialog box (Figure 16-6).

 

Figure 16-6: 
The 

NEGBINOM
DIST 

Function 
Arguments 
dialog box.
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 3. In the Function Arguments dialog box, type the appropriate values for 

the arguments.

  In the Number_f box, I entered the number of failures. The number of 

failures is 5 for this example.

  In the Number_s box, I entered the number of successes. For this exam-

ple, that’s 4.

  In the Probability_s box, I entered 1/6, the probability of a success. 

  With values entered for all the arguments, the answer appears in the 

dialog box. The answer is 0.017 and some additional decimal places.

 4. Click OK to put the answer into the selected cell.

Hypothesis Testing with the 
Binomial Distribution

Hypothesis tests sometimes involve the binomial distribution. Typically, you 

have some idea about the probability of a success, and you put that idea into 

a null hypothesis. Then you perform N trials and record the number of suc-

cesses. Finally, you compute the probability of getting that many successes 

or a more extreme amount if your H
0
 is true. If the probability is low, reject H

0
.

When you test in this way, you’re using sample statistics to make an infer-

ence about a population parameter. Here, that parameter is the probability of 

a success in the population of trials. By convention, Greek letters represent 

parameters. Statisticians use π (pi), the Greek equivalent of p, to stand for the 

probability of a success in the population. 

Continuing with the die-tossing example, suppose you have a die and you 

want to test whether or not it’s fair. You suspect that if it’s not, it’s biased 

toward 3. Define a toss that results in 3 as a success. You toss it 10 times. 

Four tosses are successes. Casting all this into hypothesis-testing terms:

H
0
: π ≤ 1/6

H
1:
 π > 1/6

As I usually do, I set α = .05

To test these hypotheses, you have to find the probability of getting at least 4 

successes in 10 tosses with p = 1/6. That probability is pr(4) + pr(5) + pr(6) + 

pr(7) + pr(8) + pr(9) + pr(10). If the total is less than .05, reject H
0
. 
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That’s a lot of calculating. You can use BINOMDIST to take care of it all (as 

I did when I set up the worksheet in Figure 16-5), or you can take a different 

route. You can find a critical value for the number of successes, and if the 

number of successes is greater than the critical value, reject H
0
.

How do you find the critical value? You can use a convenient worksheet func-

tion that I’m about to show you. 

CRITBINOM
This function is tailor-made for binomial-based hypothesis testing. Give 

CRITBINOM the number of trials, the probability of a success, and a crite-

rion cumulative probability. CRITBINOM returns the smallest value of x (the 

number of successes) for which the cumulative probability is greater than or 

equal to the criterion. 

Here are the steps for the hypothesis testing example I just showed you:

 1. Select a cell for CRITBINOM’s answer.

 2. From the Statistical Functions menu, select CRITBINOM and click OK 

to open its Function Arguments dialog box (Figure 16-7).

 

Figure 16-7: 
The 

CRITBINOM 
Function 

Arguments 
dialog box.

 

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments.

  In the Trials box, I entered 10, the number of trials.

  In the Probability_s box, I entered the probability of a success. In this 

example it’s 1/6, the value of π according to H
0
.

  In the Alpha box, I entered the cumulative probability to exceed. I 

entered .95, because I want to find the critical value that cuts off the 

upper 5 percent of the binomial distribution.
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  With values entered for the arguments, the critical value, 4, appears in 

the dialog box.

 4. Click OK to put the answer into the selected cell.

As it happens, the critical value is the number of successes in the sample. 

The decision is to reject H
0
.

More on hypothesis testing
In some situations, the binomial distribution approximates the standard 

normal distribution. When this happens, you use the statistics of the normal 

distribution to answer questions about the binomial distribution. 

Those statistics involve z- scores, which means that you have to know the mean 

and the standard deviation of the binomial. Fortunately, they’re easy to com-

pute. If N is the number of trials, and π is the probability of a success, the mean is

the variance is

and the standard deviation is 

The binomial approximation to the normal is appropriate when N π ≥ 5 and 

N(1- π) ≥ 5. 

When you test a hypothesis, you’re making an inference about π, and you have 

to start with an estimate. You run N trials and get x successes. The estimate is

In order to create a z-score, you need one more piece of information — the 

standard error of P. This sounds harder than it is, because this standard 

error is just

Now you’re ready for a hypothesis test. 
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Here’s an example. The CEO of the FarKlempt Robotics Inc. believes that 50 

percent of FarKlempt robots are purchased for home use. A sample of 1,000 

FarKlempt customers indicates that 550 of them use their robots at home. Is 

this significantly different from what the CEO believes? The hypotheses:

H
0
: π = .50

H
1
: π ≠ .50

I set α = .05

N π = 500, and N(1- π) = 500, so the normal approximation is appropriate.

First, calculate P:

Now, create a z-score

With α = .05, is 3.162 a large enough z-score to reject H
0
? An easy way to find 

out is to use the worksheet function NORMSDIST (Chapter 8). If you do, you’ll 

find that this z-score cuts off less than .01 of the area in the upper tail of the 

standard normal distribution. The decision is to reject H
0
.

The Hypergeometric Distribution
Here’s another distribution that deals with successes and failures. 

I start with an example. In a set of 16 light bulbs, 9 are good and 7 are defective. 

If you randomly select 6 light bulbs out of these 16, what’s the probability 

that 3 of the 6 are good? Consider selecting a good lightbulb as a “success.” 

When you finish selecting, your set of selections is a combination of 3 of the 

9 good light bulbs together with a combination of 3 of the 7 defective light 

bulbs. The probability of getting 3 good bulbs is a . . . well . . . combination of 

counting rules:
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Each outcome of the selection of the good light bulbs can associate with all 

outcomes of the selection of the defective light bulbs, so the product rule is 

appropriate for the numerator. The denominator (the sample space) is the 

number of possible combinations of 6 items in a group of 16.

This is an example of the hypergeometric distribution. In general, with a small 

population that consists of N
1
 successes and N

2
 failures, the probability of x 

successes in a sample of m items is

The random variable x is said to be a hypergeometrically distributed random 
variable.

HYPERGEOMDIST
This function calculates everything for you when you deal with the hyper-

geometric distribution. Here’s how to use it to go through the example I just 

showed you.

 1. Select a cell for HYPERGEOMDIST’s answer.

 2. From the Statistical Functions menu, select HYPERGEOMDIST to open 

its Function Arguments dialog box (Figure 16-8).

 

Figure 16-8: 
The 

HYPERGEO
MDIST 

Function 
Arguments 
dialog box.

 

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments.

  In the Sample_s box, I entered the number of successes in the sample. 

That number is 3 for this example.
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  In the Number_sample box, I entered the number of items in the sample. 

The sample size for this example is 6.

  In the Population_s box, I entered the number of successes in the popu-

lation. In this example that’s 7, the number of good light bulbs.

  In the Number_pop box, I entered the number of items in the population. 

The total number of light bulbs is 16, and that’s the population size.

  With values entered for all the arguments, the answer appears in the 

dialog box. The answer is 0.37 and some additional decimal places.

 4. Click OK to put the answer into the selected cell.

As I do with the binomial, I use HYPERGEOMDIST to calculate pr(0) through 

p(6) for this example. Then I use Excel’s graphics capabilities (see Chapter 3) 

to graph the results. Figure 16-9 shows the data and the graph. My objective 

is to help you visualize and understand the hypergeometric distribution.

 

Figure 16-9: 
The hyper-
geometric 

distribution 
for x suc-
cesses in 

a 6-item 
sample from 

a popula-
tion that 
consists 
of seven 

successes 
and nine 
failures.
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Chapter 17

More on Probability
In This Chapter
▶ The beta version

▶ Pursuing Poisson 

▶ Grappling with gamma

▶ Exponentially speaking

In the Chapter 16, I delve into probability in a semiformal way, and intro-

duce distributions of random variables. The binomial distribution is the 

starting point. In this chapter, I examine additional distributions.

One of the symbols on the pages of this book (and other books in the 

Dummies series) lets you know that “Technical Stuff” follows. It might have 

been a good idea to hang that symbol above this chapter’s title. So here’s a 

small note of caution: Some mathematics follows. I put the math in to help 

you understand what you’re doing when you work with the dialog boxes of 

the Excel functions I describe. 

Are these functions on the esoteric side? Well . . . yes. Will you ever have 

occasion to use them? Well . . . you just might.

Beta
This one connects with the binomial distribution, which I discuss in Chapter 

16. The beta distribution (not to be confused with “beta,” the probability of a 

Type 2 error) is a sort of chameleon in the world of distributions. It takes on 

a wide variety of appearances, depending on the circumstances. I won’t give 

you all the mathematics behind the beta distribution, because the full treat-

ment involves calculus. 

The connection with the binomial is this: In the binomial, the random variable 

x is the number of successes in N trials with p as the probability of a success. 

N and p are constants. In the beta distribution, the random variable x is the 

probability of a success, with N and the number of successes as constants. 
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Why is this useful? In the real world, you usually don’t know the value of p, 

and you’re trying to find it. Typically, you conduct a study, find the number 

of successes in a set of trials, and then you have to estimate p. Beta shows 

you the likelihood of possible values of p for the number of trials and suc-

cesses in your study.

Some of the math is complicated, but I can at least show you the rule that 

generates the density function for N trials with r successes, when N and r are 

whole numbers:

The vertical bar in the parentheses on the left means “given that.” So this 

density function is for specific values of N and r. Calculus enters the picture 

when N and r aren’t whole numbers. (Density function? “Given that”? See 

Chapter 16.)

To give you an idea of what this function looks like, I used Excel to generate 

and graph the density function for four successes in ten trials. Figure 17-1 

shows the data and the graph. Each value on the x-axis is a possible value for 

the probability of a success. The curve shows probability density. As I point 

out in the last chapter, probability density is what makes the area under the 

curve correspond to probability. The curve’s maximum point is at x = .4, 

which is what you would expect for four successes in ten trials.

 

Figure 17-1: 
The Beta 

Density 
function for 

four suc-
cesses in 
ten trials.

 

Suppose I toss a die (one of a pair of dice), and I define a success as any toss 

that results in a 3. I assume I’m tossing a fair die, so I assume that p = pr(3) = 

1/6. Suppose I toss a die ten times and get four 3s. How good does that fair-

die assumption look? 

The graph in Figure 17-1 gives you a hint: The area to the left of .16667 (the 

decimal equivalent of 1/6) is a pretty small proportion of the total area, mean-

ing that the probability that p is 1/6 or less is pretty low. 
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Now, if you have to go through all the trouble of creating a graph, and then 

guesstimate proportions of area to come with an answer like “pretty low,” 

you’re doing a whole lot of work for very little return. Fortunately, Excel has a 

better way.

BETADIST
BETADIST eliminates the need for all the graphing and guesstimating. This 

function enables you to work with the cumulative beta distribution to deter-

mine the probability that p is less than or equal to some value. Considering 

the complexity of beta, BETADIST is surprisingly easy to work with. 

 In the BETADIST Function Arguments dialog box, and in the BETADIST help file, 

you’ll see “Alpha” and “Beta.” The dialog box tells you each one is a “param-

eter for the distribution” and the help file tells you that each is “a parameter 

of the distribution.” Aside from altering the preposition, neither one is much 

help — at least, not in any way that helps you apply Alpha and Beta. 

So here are the nuts and bolts: For the example I’m working through, Alpha is 

the number of successes and Beta is the number of failures.

When you put the density function in terms of Alpha (α) and Beta (β), it’s

Again, this only applies when α and β are both whole numbers. If that’s not 

the case, you need calculus to compute f(x).

The steps are:

 1. Select a cell for BETADIST’s answer.

 2. From the Statistical Functions menu, select BETADIST to open its 

Function Arguments dialog box (Figure 17-2).

 3. In the Function Arguments dialog box, type the appropriate values for 

the arguments.

  The X box holds the probability of a success. For this example, the prob-

ability of a success is 1/6.

  Excel refers to Alpha and Beta (coming up next) as “parameters to the 

distribution.” I treat them as “number of successes” and “number of fail-

ures.” So I entered 4 in the Alpha box and 6 in the Beta box.

  The A box and the B box are evaluation limits for the value in the X box. 

These aren’t relevant for this type of example. I left them blank, which 

by default sets A = 0 and B=1. 
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Figure 17-2: 
The 

BETADIST 
Function 

Arguments 
dialog box.

 

  After all the entries, the answer appears in the dialog box.

  The answer for this example is .048021492. “Pretty low” indeed. With 

four successes in ten tosses, you’d intuitively expect that p is greater 

than 1/6.

 4. Click OK to put the answer into the selected cell.

The beta distribution has wider applicability than I show you here. 

Consequently, you can put all kinds of numbers (within certain restrictions) 

into the various boxes. For example, the value you put into the X box can be 

greater than 1.00, and you can enter values that aren’t whole numbers into 

the Alpha box and the Beta box.

BETAINV
This one is the inverse of BETADIST. If you enter a probability and values for 

successes and failures, it returns a value for p. For example if you supply it 

with .048021492, 4 successes, and 6 failures, it returns 0.1666667 — the deci-

mal equivalent of 1/6. 

 BETAINV has a more helpful application. You can use it to find the confidence 

limits for the probability of a success. 

Suppose you’ve found r successes in N trials, and you’re interested in the 

95 percent confidence limits for the probability of a success. The lower 

limit is:
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The upper limit is:

 1. Select a cell for BETAINV’s answer.

 2. From the Statistical Functions menu, select BETAINV to open its 

Function Arguments dialog box (Figure 17-3).

 

Figure 17-3: 
The 

BETAINV 
Function 

Arguments 
dialog box.

 

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments. 

  The X box holds a cumulative probability. For the lower bound of the 95 

percent confidence limits, the probability is .025. 

  In the Alpha box, I entered the number of successes. For this example 

that’s 4. 

  In the Beta box, I entered the number of failures (NOT the number of 

trials). The number of failures is 6.

  The A box and the B box are evaluation limits for the value in the X box. 

Again, these aren’t relevant for this type of example. I left them blank, 

which by default sets A = 0 and B=1. 

  With the entries for X, Alpha, and Beta, the answer appears in the dialog 

box. The answer for this example is .13699536.

 4. Click OK to put the answer into the selected cell.

Entering .975 in the X box gives .700704575 as the result. So the 95 percent 

confidence limits for the probability of a success are .137 and .701 (rounded 

off) if you have 4 successes in 10 trials. 
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With more trials of course, the confidence limit narrows. For 40 successes in 

100 trials, the confidence limits are .307 and .497

Poisson
If you have the kind of process that produces a binomial distribution, and 

you have an extremely large number of trials and a very small number of suc-

cesses, the Poisson distribution approximates the binomial. The equation of 

the Poisson is

In the numerator, μ is the mean number of successes in the trials, and e is 

2.71828 (and infinitely more decimal places), a constant near and dear to the 

hearts of mathematicians. 

Here’s an example. The FarKlempt Robotics Inc. produces a universal joint 

for its robots’ elbows. The production process is under strict computer con-

trol, so that the probability a joint is defective is .001. What is the probability 

that in a sample of 1000, one joint is defective? What’s the probability that 

two are defective? Three?

Named after 19th-century mathematician Siméon-Denis Poisson, this distribu-

tion is computationally easier than the binomial — or at least it was when 

mathematicians had no computational aids. With Excel, you can easily use 

BINOMDIST to do the binomial calculations.

First, I apply the Poisson distribution to the FarKlempt example. If π = .001 

and N = 1000, the mean is

 (See Chapter 16 for an explanation of μ = N π .)

Now for the Poisson. The probability that one joint in a sample of 1000 is 

defective is:

24 454060-ch17.indd   34024 454060-ch17.indd   340 4/21/09   7:36:43 PM4/21/09   7:36:43 PM



341 Chapter 17: More on Probability

For two defective joints in 1000, it’s

And for three defective joints in 1000:

 As you read through this, it may seem odd that I refer to a defective item as a 

“success.” Remember, that’s just a way of labeling a specific event.

POISSON
Here are the steps for using Excel’s POISSON for the preceding example:

 1. Select a cell for POISSON’s answer.

 2. From the Statistical Functions menu, select POISSON to open its 

Function Arguments dialog box (Figure 17-4).

 

Figure 17-4: 
The 

POISSON 
Function 

Arguments 
dialog box.

 

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments. 

  In the X box, I entered the number of events for which I’m determining 

the probability. I’m looking for pr(1), so I entered 1.

.   In the Mean box, I entered the mean of the process. That’s N π, which for 

this example is 1.
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  In the Cumulative box, it’s either TRUE for the cumulative probability or 

FALSE for just the probability of the number of events. I entered FALSE.

.  With the entries for X, Mean, and Cumulative, the answer appears in the 

dialog box. The answer for this example is .367879441.

 4. Click OK to put the answer into the selected cell.

In the example, I showed you the probability for two defective joints in 1,000 

and the probability for three. To follow through with the calculations, I’d 

type 2 into the X box to calculate pr(2), and 3 to find pr(3).

As I said before, in the 21st century, it’s pretty easy to calculate the binomial 

probabilities directly. Figure 17-5 shows you the Poisson and the Binomial 

probabilities for the numbers in Column B and the conditions of the example. 

I graphed the probabilities so you can see how close the two really are. I 

selected Cell D3 so the formula box shows you how I used BINOMDIST to cal-

culate the binomial probabilities.

 

Figure 17-5: 
Poisson 

prob-
abilities and 

Binomial 
probabili-

ties.
 

Although the Poisson’s usefulness as an approximation is outdated, it has 

taken on a life of its own. Phenomena as widely disparate as reaction time 

data in psychology experiments, degeneration of radioactive substances, and 

scores in professional hockey games seem to fit Poisson distributions. This is 

why business analysts and scientific researchers like to base models on this 

distribution. (“Base models on?” What does that mean? I tell you all about it 

in Chapter 18.) 

Gamma
The gamma distribution is related to the Poisson distribution in the same way 

the negative binomial distribution is related to the binomial. The negative 
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binomial tells you the number of trials until a specified number of successes 

in a binomial distribution. The gamma distribution tells you how many sam-

ples you go through to find a specified number of successes in a Poisson dis-

tribution. Each sample can be a set of objects (as in the FarKlempt Robotics 

universal joint example), a physical area, or a time interval.

The probability density function for the gamma distribution is:

Again, this works when α is a whole number. If it’s not, you guessed it — 

calculus. (By the way, when this function has only whole-number values of 

α it’s called the Erlang distribution, just in case anybody ever asks you.) The 

letter e, once again, is the constant 2.7818 I told you about earlier.

Don’t worry about the exotic-looking math. As long as you understand what 

each symbol means, you’re in business. Excel does the heavy lifting for you. 

So here’s what the symbols mean. For the FarKlempt Robotics example, α is 

the number of successes and β corresponds to μ the Poisson distribution. 

The variable x tracks the number of samples. So if x is 3, α is 2, and β is 1, 

you’re talking about the probability density associated with finding the second 

success in the third sample, if the average number of successes per sample 

(of 1000) is 1. (Where does 1 come from, again? That’s 1000 universal joints 

per sample multiplied by .001, the probability of producing a defective one.)

To determine probability, you have to work with area under the density func-

tion. This brings me to the Excel worksheet function designed for gamma.

GAMMADIST
GAMMADIST gives you a couple of options. You can use it to calculate the 

probability density, and you can use it to calculate probability. Figure 17-6 

shows how I used the first option to create a graph of the probability density 

so you can see what the function looks like. Working within the context of the 

example I just laid out, I set Alpha to 2, Beta to 1, and calculated the density 

for the values of x in Column D.

The values in Column E shows the probability densities associated with find-

ing the second defective universal joint in the indicated number of samples 

of 1000. For example, Cell E5 holds the probability density for finding the 

second defective joint in the third sample.
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Figure 17-6: 
The density 

function 
for gamma, 

with 
Alpha = 2 

and Beta =1.
 

In real life, you work with probabilities rather than densities. Next, I show 

you how to use GAMMADIST to determine the probability of finding the 

second defective joint in the third sample. Here it is:

 1. Select a cell for GAMMADIST’s answer.

 2. From the Statistical Functions menu, select GAMMADIST to open its 

Function Arguments dialog box (Figure 17-7).

 

Figure 17-7: 
The 

GAMMA
DIST 

Function 
Arguments 
dialog box.

 

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments. 

  The X box holds the number of samples for which I’m determining the 

probability. I’m looking for pr(3), so I entered 3.

  In the Alpha box, I entered the number of successes. I want to find the 

second success in the third sample, so I entered 2.

   In the Beta box, I entered the average number of successes that occur 

within a sample. For this example, that’s 1. 

  In the Cumulative box the choices are TRUE for the cumulative distribu-

tion or FALSE to find the probability density. I want to find the probabil-

ity, not the density, so I entered TRUE.
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  With values entered for X, Alpha, Beta, and Cumulative, the answer — 

.800851727 — appears in the dialog box.

 4. Click OK to put the answer into the selected cell.

GAMMAINV
If you want to know, at a certain level of probability, how many samples it 

takes to observe a specified number of successes, this is the function for you.

GAMMAINV is the inverse of GAMMADIST. Enter a probability along with 

Alpha and Beta and it returns the number of samples. Its Function Arguments 

dialog box has a Probability box, an Alpha box, and a Beta box. Figure 

17-8 shows that if you enter the answer for the preceding section into the 

Probability box and the same numbers for Alpha and Beta, the answer is 3. 

(Well, actually, a tiny bit more than 3.) 

 

Figure 17-8: 
The 

GAMMAINV 
Function 

Arguments 
dialog box.

 

Exponential
If you’re dealing with the gamma distribution and you have Alpha = 1, you 

have the exponential distribution. This gives the probability that it takes a 

specified number of samples to get to the first success.

What does the density function look like? Excuse me . . . I’m about to go mathemat-

ical on you for a moment. Here, once again, is the density function for gamma:

If α = 1, it looks like this:

24 454060-ch17.indd   34524 454060-ch17.indd   345 4/21/09   7:36:44 PM4/21/09   7:36:44 PM



346 Part IV: Working with Probability 

Statisticians like substituting λ (the Greek letter “lambda”) for , so here’s 

the final version:

I bring this up because Excel’s EXPONDIST Function Arguments dialog box 

has a box for LAMBDA, and I want you to know what it means.

EXPONDIST
Use EXPONDIST to determine the probability that it takes a specified number 

of samples to get to the first success in a Poisson distribution. Here, I work 

once again with the universal joint example. I show you how to find the prob-

ability that you’ll see the first success in the third sample. 

 1. Select a cell for EXPONDIST’s answer.

 2. From the Statistical Functions menu, select EXPONDIST to open its 

Function Arguments dialog box (Figure 17-9).

 

Figure 17-9: 
The 

EXPONDIST 
Function 

Arguments 
dialog box.

 

 3. In the Function Arguments dialog box, enter the appropriate values 

for the arguments.

  In the X box, I entered the number of samples for which I’m determining 

the probability. I’m looking for pr(3), so I typed 3.

  In the Lambda box, I entered the average number of successes per 

sample. This goes back to the numbers I gave you in the example — the 

probability of a success (.001) times the number of universal joints in 

each sample (1000). That product is 1, so I entered 1 in this box.
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  In the Cumulative box, the choices are TRUE for the cumulative distribu-

tion or FALSE to find the probability density. I want to find the probabil-

ity, not the density, so I entered TRUE.

  With values entered for X, Lambda, and Cumulative, the answer appears 

in the dialog box. The answer for this example is .950212932.

 4. Click OK to put the answer into the selected cell.
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Chapter 18

A Career in Modeling
In This Chapter
▶ What is a model?

▶ Modeling and fitting

▶ Working with the Monte Carlo method

Model is a term that gets thrown around a lot these days. Simply put, 

a model is something you know and can work with that helps you 

understand something you know little about. A model is supposed to mimic, 

in some way, the thing it’s modeling. A globe, for example, is a model of the 

earth. A street map is a model of a neighborhood. A blueprint is a model of 

a house.

Researchers use models to help them understand natural processes and 

phenomena. Business analysts use models to help them understand business 

processes. The models these people use might include concepts from math-

ematics and statistics — concepts that are so well known they can shed light 

on the unknown. The idea is to create a model that consists of concepts you 

understand, put the model through its paces, and see if the results look like 

real-world results.

In this chapter, I discuss modeling. My goal is to show how you can harness 

Excel’s statistical capabilities to help you understand processes in your world.

Modeling a Distribution
In one approach to modeling, you gather data and group them into a distri-

bution. Next, you try and figure out a process that results in that kind of a 

distribution. Restate that process in statistical terms so that it can generate a 

distribution, and then see how well the generated distribution matches up to 

the real one. This “process you figure out and restate in statistical terms” is 

the model. 
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If the distribution you generate matches up well with the real data, does this 

mean your model is “right”? Does it mean the process you guessed is the pro-

cess that produces the data? 

Unfortunately, no. The logic doesn’t work that way. You can show that a 

model is wrong, but you can’t prove that it’s right. 

Plunging into the Poisson distribution
In this section, I go through an example of modeling with the Poisson distri-

bution. I introduced this distribution in Chapter 17, and I told you it seems to 

characterize an array of processes in the real world. By characterize a pro-

cess, I mean that a distribution of real-world data looks a lot like a Poisson 

distribution. When this happens, it’s possible that the kind of process that 

produces a Poisson distribution is also responsible for producing the data.

What is that process? Start with a random variable x that tracks the number 

of occurrences of a specific event in an interval. In Chapter 17, the “interval” 

was a sample of 1,000 universal joints, and the specific event was “defective 

joint.” Poisson distributions are also appropriate for events occurring in 

intervals of time, and the event can be something like “arrival at a toll booth.” 

Next, I outline the conditions for a Poisson process, and use both defective 

joints and toll booth arrivals to illustrate:

 ✓ The numbers of occurrences of the event in two nonoverlapping inter-

vals are independent.

  The number of defective joints in one sample is independent of the number 

of defective joints in another. The number of arrivals at a toll booth during 

one hour is independent of the number of arrivals during another.

 ✓ The probability of an occurrence of the event is proportional to the size 

of the interval.

  The chance that you’ll find a defective joint is larger in a sample of 

10,000 than it is in a sample of 1,000. The chance of an arrival at a toll 

booth is greater for one hour than it is for a half hour.

 ✓ The probability of more than one occurrence of the event in a small 

interval is 0 or close to 0.

  In a sample of 1,000 universal joints, you have an extremely low prob-

ability of finding two defective ones right next to one another. At any 

time, two vehicles don’t arrive at a toll booth simultaneously.

As I show you in Chapter 17, the formula for the Poisson distribution is
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In this equation, μ represents the average number of occurrences of the 

event in the interval you’re looking at, and e is the constant 2.781828 (fol-

lowed by infinitely many more decimal places). 

Time to use the Poisson in a model. At the FarBlonJet Corporation, web design-

ers track the number of hits per hour on the intranet home page. They moni-

tor the page for 200 consecutive hours, and group the data as in Table 18-1. 

Table 18-1 Hits Per Hour on the FarBlonJet Intranet Home Page
Hits/Hour Observed Hours Hits/Hour X 

Observed Hours

0 10 0

1 30 30

2 44 88

3 44 132

4 36 144

5 18 90

6 10 60

7 8 56

Total 200 600

The first column shows the variable Hits/Hour. The second column, Observed 

Hours, shows the number of hours in which each value of Hits/Hour occurred. 

In the 200 hours observed, 10 of those hours went by with no hits, 30 hours 

had one hit, 44 had two hits, and so on. These data lead the web designers 

to use a Poisson distribution to model Hits/Hour. Another way to say this: 

They believe a Poisson process produces the number of hits per hour on the 

Web page.

Multiplying the first column by the second column results in the third 

column. Summing the third column shows that in the 200 observed hours the 

intranet page received 600 hits. So the average number of hits/hour is 3.00.

Applying the Poisson distribution to this example,

From here on, I pick it up in Excel.
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Using POISSON 
Figure 18-1 shows each value of x (hits/hour), the probability of each x if the 

average number of hits per hour is 3, the predicted number of hours, and the 

observed number of hours (taken from the second column in Table 18-1). I 

selected cell B3 so that the formula box shows how I used the POISSON work-

sheet function. I autofilled Column B down to cell B10. (For the details on 

using POISSON, see Chapter 17.)

 

Figure 18-1: 
Web-page 

hits/hour — 
Poisson-

predicted 
(μ=3) and 
observed.

 

To get the predicted number of hours, I multiplied each probability in 

Column B by 200 (the total number of observed hours). I used Excel’s graph-

ics capabilities (see Chapter 3) to show you how close the predicted hours 

are to the observed hours. They look pretty close, don’t they?

Testing the model’s fit
Well, “looking pretty close” isn’t enough for a statistician. A statistical test is 

a necessity. As is the case with all statistical tests, this one starts with a null 

hypothesis and an alternative hypothesis. Here they are:

H
0
: The distribution of observed hits/hour follows a Poisson distribution.

H
1
: Not H

0

The appropriate statistical test involves an extension of the binomial distri-

bution. It’s called the multinomial distribution — “multi” because it encom-

passes more categories than just “success” and “failure.” It’s difficult to work 

with, and Excel has no worksheet function to handle the computations.

Fortunately, pioneering statistician Karl Pearson (inventor of the correla-

tion coefficient) noticed that χ2 (“chi-square”), a distribution I show you in 
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Chapter 11, approximates the multinomial. Originally intended for one-sample 

hypothesis tests about variances, χ2 has become much better known for 

applications like the one I’m about to show you.

Pearson’s big idea was this. If you want to know how well a hypothesized 

distribution (like the Poisson) fits a sample (like the observed hours), use 

the distribution to generate a hypothesized sample (our predicted hours, for 

instance), and work with this formula:

Usually, this is written with Expected rather than Predicted, and both 

Observed and Expected are abbreviated. The usual form of this formula is:

For this example

What does that total up to? Excel figures it out for us. Figure 18-2 shows the 

same columns as before, with column F holding the values for (O-E)2/E. I 

could have used this formula

=((D3-C3)^2)/C3

to calculate the value in F3 and then autofill up to F10.

I chose a different route. First I assigned the name Predicted_Hrs to C3:C10 

and the name Observed_Hrs to D3:D10. Then I used an array formula (see 

Chapter 2). I selected F3:F10 and created this formula

=(Observed_Hrs-Predicted_Hrs)^2/Predicted_Hrs

Pressing CTRL+Shift+Enter puts the values into F3:F10. That key combination 

also puts the curly brackets into the formula in the Formula Bar.

The sum of the values in column F is in cell F11, and that’s χ2. If you’re trying 

to show that the Poisson distribution is a good fit to the data, you’re looking 

for a low value of χ2.
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Figure 18-2: 
Web page 

hits/hour — 
Poisson-

predicted 
(μ=3) and 
observed, 
along with 

the cal-
culations 

needed to 
compute χ2.

 

OK. Now what? Is 3.5661 high or is it low?

To find out, you evaluate the calculated value of χ2 against the χ2 distribution. 

The goal is to find the probability of getting a value at least as high as the cal-

culated value, 3.5661. The trick is to know how many degrees of freedom (df) 

you have. For a goodness-of-fit application like this one

where k = the number of categories and m = the number of parameters esti-

mated from the data. The number of categories is 8 (0 Hits/Hour through 7 

Hits/Hour). The number of parameters? I used the observed hours to esti-

mate the parameter μ, so m in this example is 1. That means df = 8-1-1= 6. 

Use the worksheet function CHIDIST on the value in F11, with 6 df. CHIDIST 

returns .73515, the probability of getting a χ2 of at least 3.5661 if H
0
 is true. 

(See Chapter 10 for more on CHIDIST.) Figure 18-3 shows the χ2 distribution 

with 6 df and the area to the right of 3.5661.

If α = .05, the decision is to not reject H
0
 — meaning you can’t reject the 

hypothesis that the observed data come from a Poisson distribution. 

This is one of those infrequent times when it’s beneficial to not reject H
0
 — 

if you want to make the case that a Poisson process is producing the data. If 

the probability had been just a little greater than .05, not rejecting H
0
 would 

look suspicious. The large probability, however, makes nonrejection of H
0
 — 

and an underlying Poisson process — seem more reasonable. (For more on 

this see the sidebar in Chapter 10.)
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Figure 18-3: 
The χ2 dis-

tribution, 
df = 6. The 

shaded 
area is the 
probability 

of getting a 
χ2 of at least 

3.5661 if H0 
is true.
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x2

3.56610
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0.05
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0.15

10 20

A word about CHITEST
Excel provides CHITEST, a worksheet function that on first look appears 

to carry out the test I showed you with about one tenth the work I did on 

the worksheet. Its Function Arguments dialog box provides one box for the 

observed values and another for the expected values. 

The problem is that CHITEST does not return a value for χ2. It skips that step 

and returns the probability that you’ll get a χ2 at least as high as the one you 

calculate from the observed values and the predicted values. 

The problem is that CHITEST’s degrees of freedom are wrong for this case. 

CHITEST goes ahead and assumes that df = k-1 (7) rather than k-m-1 (6). You 

lose a degree of freedom because you estimate μ from the data. In other 

kinds of modeling, you lose more than one degree of freedom. Suppose, for 

example, you believe that a normal distribution characterizes the underlying 

process. In that case, you estimate μ and σ from the data, and you lose two 

degrees of freedom.

By basing its answer on less than the correct df, CHITEST gives you an inap-

propriately large (and misleading) value for the probability. 
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CHITEST would be perfect if it had an option for entering df, or if it returned a 

value for χ2 (which you could then evaluate via CHIDIST and the correct df). 

When you don’t lose any degrees of freedom, CHITEST works as advertised. 

Does that ever happen? In the next section, it does.

Playing ball with a model
Baseball is a game that generates huge amounts of statistics — and many 

study these statistics closely. SABR, the Society for American Baseball 

Research, has sprung from the efforts of a band of dedicated fan-statisticians 

(fantasticians?) who delve into the statistical nooks and crannies of the Great 

American Pastime. They call their work sabermetrics. (I made up “fantasti-

cians.” They call themselves “sabermetricians.”)

The reason I mention this is that sabermetrics supplies a nice example of 

modeling. It’s based on the obvious idea that during a game a baseball team’s 

objective is to score runs, and to keep its opponent from scoring runs. The 

better a team does at both, the more games it wins. Bill James, who gave 

sabermetrics its name and is its leading exponent, discovered a neat relation-

ship between the amount of runs a team scores, the amount of runs the team 

allows, and its winning percentage. He calls it the Pythagorean percentage:

Think of it as a model for predicting games won. Calculate this percentage 

and multiply it by the number of games a team plays. Then compare the 

answer to the team’s wins. How well does the model predict the number of 

games each team won during the 2008 season? 

To find out, I found all the relevant data for every Major League team for 

2008. (Thank you, www.baseball-reference.com.) I put the data into the 

worksheet in Figure 18-4.

As Figure 18-4 shows, I used an array formula to calculate the Pythagorean 

percentage in Column D. First, I assigned the name Runs_Scored to the data 

in Column B, and the name Runs_Allowed to the data in Column C. Then I 

selected D2:D31 and created the formula

=Runs_Scored^2/(Runs_Scored^2 + Runs_Allowed^2)

Next, I pressed CTRL+Shift+Enter to put the values into D2:D31 and the curly 

brackets into the formula in the Formula Bar.
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Figure 18-4: 
Runs 

scored, runs 
allowed, 

predicted 
wins, and 

wins for 
each major 

league 
baseball 
team in 

2008.
 

Had I wanted to do it another way, I’d have put this formula in Cell D2:

=B2^2/((B2^2)+(C2^2))

Then I would have autofilled the remaining cells in Column D. 

Finally, I multiplied each Pythagorean percentage in Column D by the number 

of games each team played (24 teams played 162 games, 6 played 161) to get 

the predicted wins in Column E. Because the number of wins can only be a 

whole number, I used the ROUND function to round off the predicted wins. 

For example, the formula that supplies the value in E3 is:

=ROUND(D3*162,0)

The zero in the parentheses indicates that I wanted no decimal places.

Before proceeding, I assigned the name Predicted_Wins to the data in 

Column E, and the name Wins to the data in Column F.
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How well does the model fit with reality? This time, CHITEST can supply the 

answer. I don’t lose any degrees of freedom here: I didn’t use the Wins data 

in Column F to estimate any parameters, like a mean or a variance, and then 

apply those parameters to calculate Predicted Wins. Instead, the predictions 

came from other data — the Runs Scored and the Runs Allowed. For this 

reason, df = k-m-1= 30-0-1 = 29.

Here’s how to use CHITEST (when it’s appropriate!):

 1. With the data entered, select a cell for CHITEST’s answer.

 2. From the Statistical Functions menu, select CHITEST and click OK to 

open the Function Arguments dialog box for CHITEST. (See Figure 18-5.)

 

Figure 18-5: 
The 

CHITEST 
Function 

Arguments 
dialog box.

 

 3. In the Function Arguments dialog box, type the appropriate values for 

the arguments. 

  In the Actual_range box, type the cell range that holds the scores for the 

observed values. For this example, that’s Wins (the name for F2:F32).

  In the Expected_range box, type the cell range that holds the predicted 

values. For this example, it’s Predicted_Wins (the name for E2:E32).

  With the cursor in the Expected_range box, the dialog box mentions a 

product of row totals and column totals. Don’t let that confuse you. That 

has to do with a slightly different application of this function (which I 

cover in Chapter 20).

  With values entered for Actual_range and for Expected_range, the 

answer appears in the dialog box. The answer here is .99999518, which 

means that with 29 degrees of freedom you have a huge chance of find-

ing a value of χ2 at least as high as the one you’d calculate from these 

observed values and these predicted values. Bottom line: The model fits 

the data extremely well.

 4. Click OK to put the answer into the selected cell.

25 454060-ch18.indd   35825 454060-ch18.indd   358 4/21/09   7:37:16 PM4/21/09   7:37:16 PM
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A Simulating Discussion
Another approach to modeling is to simulate a process. The idea is to define 

as much as you can about what a process does and then somehow use num-

bers to represent that process and carry it out. It’s a great way to find out 

what a process does in case other methods of analysis are very complex. 

Taking a chance: The Monte Carlo method
Many processes contain an element of randomness. You just can’t predict 

the outcome with certainty. To simulate this type of process, you have to 

have some way of simulating the randomness. Simulation methods that incor-

porate randomness are called Monte Carlo simulations. The name comes 

from the city in Monaco whose main attraction is gambling casinos. 

In the next sections, I show you a couple of examples. These examples aren’t 

so complex that you can’t analyze them. I use them for just that reason: You 

can check the results against analysis.

Loading the dice
In Chapter 16, I talked about a die (one member of a pair of dice) that’s 

biased to come up according to the numbers on its faces: A 6 is six times as 

likely as a 1, a 5 is five times as likely, and so on. On any toss, the probability 

of getting a number n is n/21.

Suppose you have a pair of dice loaded this way. What would the outcomes 

of 200 tosses of these dice look like? What would be the average of those 200 

tosses? What would be the variance and the standard deviation? You can use 

Excel to set up Monte Carlo simulations and answer these questions.

To start, I used Excel to calculate the probability of each outcome. Figure 

18-6 shows how I did it. Column A holds all the possible outcomes of tossing 

a pair of dice (2-12). Columns C through N hold the possible ways of getting 

each outcome. Columns C, E, G, I, K, and M show the possible outcomes on 

the first die. Columns D, F, H, J, L, and N show the possible outcomes on the 

second die. Column B gives the probability of each outcome, based on the 

numbers in Columns C-M. I highlighted B7 so the formula box shows I used 

this formula to have Excel calculate the probability of a 7:

=((C7*D7)+(E7*F7)+(G7*H7)+(I7*J7)+(K7*L7)+(M7*N7))/21^2

I autofilled the remaining cells in Column B.
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The sum in B14 confirms that I considered every possibility.

 

Figure 18-6: 
Outcomes 
and prob-

abilities for 
a pair of 

loaded dice.
 

Next, it’s time to simulate the process of tossing the dice. Each toss, in effect, 

generates a value of the random variable x according to the probability distri-

bution defined by Column A and Column B. How do you simulate these tosses?

Data analysis tool: Random Number Generation
Excel’s Random Number Generation tool is tailor-made for this kind of simu-

lation. Tell it how many values you want to generate, give it a probability 

distribution to work with, and it randomly generates numbers according to 

the parameters of the distribution. Each randomly generated number corre-

sponds to a toss of the dice. 

Here’s how to use the Random Number Generation Tool:

 1. Select Data | Data Analysis to open the Data Analysis dialog box.

 2. In the Data Analysis dialog box, scroll down the Analysis Tools list 

and select Random Number Generation. Click OK to open the Random 

Number Generation dialog box.

  Figure 18-7 shows the Random Number Generation dialog box.

 

Figure 18-7: 
The Random 

Number 
Generation 
dialog box.
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 3. In the Number of Variables box, type the number of variables you 

want to create random numbers for.

  I know, I know. . . Don’t end a sentence with a preposition. As Winston 

Churchill once said: “That’s the kind of nonsense up with which I will 

not put.” Hey but seriously, I entered 1 for this example. I’m only inter-

ested in the outcomes of tossing a pair of dice. 

 4. In the Number of Random Numbers box, type the number of numbers 

to generate.

  I entered 200 to simulate 200 tosses of the loaded dice.

 5. In the Distribution box, click the down arrow to select the type of 

distribution.

  You have seven options here. The choice you make determines what 

appears in the Parameters area of the dialog box, because different 

types of distributions have different types (and numbers) of parameters. 

You’re dealing with a discrete random variable here, so the appropriate 

choice is Discrete.

 6. Choosing Discrete causes the Value and Probability Input Range box 

to appear under Parameters. Enter the array of cells that holds the 

values of the variable and the associated probabilities.

  The possible outcomes of the tosses of the die are in A2:A12, and the 

probabilities are in B2:B12, so the range is A2:B12. Excel fills in the 

$-signs for absolute referencing.

 7. In the Output Options, select a radio button to indicate where you 

want the results.

  I selected New Worksheet Ply to put the results on a new page in the 

worksheet.

 8. Click OK.

Because I selected New Worksheet Ply, a newly created page opens with the 

results. Figure 18-8 shows the new page. The randomly generated numbers 

are in Column A. The 200 rows of random numbers are too long to show you. 

I could have cut and pasted them into 10 columns of 20 cells, but then you’d 

just be looking at 200 random numbers. 

Instead, I used FREQUENCY to group the numbers into frequencies in 

Columns C and D and then used Excel’s graphics capabilities to create a 

graph of the results. I selected D2 so the formula box shows how I used 

FREQUENCY for that cell. As you can see, I defined Tosses as the name for 

A2:A201 and x as the name for C2:C12.
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Figure 18-8: 
The results 
of simulat-

ing 200 
tosses of 
a pair of 

loaded dice.
 

What about the statistics for these simulated tosses? 

=AVERAGE(Tosses) 

tells you the mean is 8.240. 

=VAR(Tosses) 

returns 4.244 as the estimate of the variance, and SQRT applied to the vari-

ance returns 2.060 as the estimate of the standard deviation. 

How do these values match up with the parameters of the random variable? 

This is what I meant before by “checking against analysis.” In Chapter 16, I 

show how to calculate the expected value (the mean), the variance, and the 

standard deviation for a discrete random variable. 

The expected value is:

In the worksheet in Figure 18-6, I used the SUMPRODUCT worksheet function 

to calculate E(x). The formula is:

=SUMPRODUCT(A2:A12,B2:B12)

The expected value is 8.667. 

The variance is:
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With E(x) stored in B16, I used this formula

=SUMPRODUCT(A2:A12,A2:A12,B2:B12)-B16^2

 Note the use of A2:A12 twice in SUMPRODUCT. That gives you the sum of x2.

The formula returns 4.444 as the variance. SQRT applied to that number gives 

2.108 as the standard deviation. 

Table 18-2 shows how closely the results from the simulation match up with 

the parameters of the random variable.

Table 18-2 Statistics from the Loaded Dice-Tossing Simulation 
 and the Parameters of the Discrete Distribution

Simulation Statistic Distribution Parameter

Mean 8.240 8.667

Variance 4.244 4.444

Standard Deviation 2.060 2.108

Simulating the Central Limit Theorem
This might surprise you, but statisticians often use simulations to make 

determinations about some of their statistics. They do this when mathemati-

cal analysis becomes very difficult. 

For example, some statistical tests depend on normally distributed popula-

tions. If the populations aren’t normal, what happens to those tests? Do they 

still do what they’re supposed to? To answer that question, statisticians might 

create non-normally distributed populations of numbers, simulate experiments 

with them, and apply the statistical tests to the simulated results.

In this section, I use simulation to examine an important statistical item — 

the Central Limit Theorem. In Chapter 9, I introduce the Central Limit 

Theorem in connection with the sampling distribution of the mean. In fact, 

I simulated sampling from a population with only three possible values to 

show you that even with a small sample size, the sampling distribution starts 

to look normally distributed.

Here, I use the Random Number Generation tool to set up a normally distrib-

uted population and draw 40 samples of 16 scores each. I calculate the mean 
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of each sample, and then set up a distribution of those means. The idea is to 

see how that distribution matches up with the Central Limit Theorem.

The distribution for this example has the parameters of the population of 

scores on the IQ test, a distribution I use for examples in several chapters. 

It’s a normal distribution with μ=100 and σ=16. According to the Central Limit 

Theorem, the mean of the distribution of means should be 100, and the stan-

dard deviation (the standard error of the mean) should be 4.

For a normal distribution, the Random Number Generation dialog box looks 

like Figure 18-9. The first two entries cause Excel to generate 16 random num-

bers for a single variable. Choosing Normal in the Distribution box causes 

the Mean box and the Standard Deviation box to appear under Parameters. 

As the Figure shows, I entered 100 for the Mean and 16 for the Standard 

Deviation. Under Output Options, I selected Output Range and entered a 

column of 16 cells. This puts the randomly generated numbers into the indi-

cated column on the current page. 

 

Figure 18-9: 
The Random 

Number 
Generation 
dialog box 

for a normal 
distribution.

 

I used this dialog box 40 times to generate 40 simulated samples of 16 scores 

each from a normal population, and put the results in adjoining columns. 

Then I used AVERAGE to calculate the mean for each column. 

Next, I copied the 40 means to another worksheet so I could show you how 

they’re distributed. I calculated their mean and the standard deviation. I used 

FREQUENCY to group the means into a frequency distribution, and Excel’s 

graphics capabilities to graph the distribution. Figure 18-10 shows the results.

The mean of the means, 99.671, is close to the Central Limit Theorem’s pre-

dicted value of 100. The standard deviation of the means, 3.885, is close to 

the Central Limit’s predicted value of 4 for the standard error of the mean. 

The graph shows the makings of a normal distribution, although it’s slightly 

skewed. In general, the simulation matches up well with the Central Limit 

Theorem.
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Figure 18-10: 
The results 

of the 
Central Limit 

Theorem 
simulation.

 

 A couple of paragraphs ago, I said “I copied the 40 means to another work-

sheet.” That’s not quite a slam-dunk. When you try to paste a cell into another 

worksheet, and that cell holds a formula, Excel usually balks and gives you an 

ugly-looking error message when you paste. That happens when the formula 

refers to cell locations that don’t hold any values in the new worksheet.

To get around that, you have to do a little trick on the cell you want to copy. 

You have to convert its contents from a formula into the value that the for-

mula calculates. The steps are:

 1. Select the cell or cell array you want to copy.

 2. Right-click and from the pop-up menu, select Copy (or just press 

Ctrl+C without right-clicking).

 3. Click the cell where you want the copy to go.

 4. Right-click and from the pop-up menu again, select Paste Special to 

open the Paste Special dialog box. (See Figure 18-11.)

 5. In the dialog box, select the Values radio button.

 6. Click OK to complete the conversion.

 The Paste Special dialog box offers another helpful capability. Every so often 

in statistical work, you have to take a row of values and relocate them into a 

column or vice versa. Excel calls this transposition. In the steps that follow, I 

describe transposing a row into a column, but it works the other way, too:

 1. Select a row of data.

 2. Right-click and from the pop-up menu, select copy or press Ctrl+ C 

without right-clicking.
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Figure 18-11: 
The Paste 

Special 
dialog box.

 

 3. Select the cell that begins the column where you want to put the 

values.

 4. Right-click and from the pop-up menu again, select Paste Special to 

open the Paste Special dialog box. (Refer to Figure 18-11.)

 5. Click the Transpose checkbox. (It’s in the lower-right corner.)

 6. Click OK to complete the row-to-column transposition.
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The Part of Tens

26 454060-pp05.indd   36726 454060-pp05.indd   367 4/21/09   7:37:51 PM4/21/09   7:37:51 PM



In this part . . .

We come to the famous “Part of Tens.” I put two 

chapters into this part. The first one covers statis-

tical traps and helpful tips — from problems with hypoth-

esis testing to advice on graphs, from pitfalls in regression 

to advice on graphing variability. 

The second chapter goes over a number of Excel features 

I just couldn’t fit anywhere else. This part covers forcast-

ing, graphing, testing for independence, and more. I talk 

about Excel functions based on logarithms – do you see 

what I mean about not fitting anywhere else? – and end by 

showing you how to import data from the Web.
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Chapter 19

Ten Statistical and Graphical 
Tips and Traps

In This Chapter
▶ Beware of significance

▶ Be wary of graphs

▶ Be cautious with regression

▶ Be careful with concepts

The world of statistics is full of pitfalls, but it’s also full of opportunities. 

Whether you’re a user of statistics or someone who has to interpret them, 

it’s possible to fall into the pitfalls. It’s also possible to walk around them. Here 

are ten tips and traps from the areas of hypothesis testing, regression, correla-

tion, and graphs.

Significant Doesn’t Always 
Mean Important

As I say earlier in the book, “significance” is, in many ways, a poorly chosen 

term. When a statistical test yields a significant result, and the decision is to 

reject H
0
, that doesn’t guarantee that the study behind the data is an impor-

tant one. Statistics can only help decision making about numbers and infer-

ences about the processes that produced them. They can’t make those 

processes important or earth shattering. Importance is something you have 

to judge for yourself — and no statistical test can do that for you.
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Trying to Not Reject a Null Hypothesis 
Has a Number of Implications

Let me tell you a story: Some years ago, an industrial firm was trying to show 

it was finally in compliance with environmental cleanup laws. They took 

numerous measurements of the pollution in the body of water surrounding 

their factory, compared the measurements with a null hypothesis-generated 

set of expectations, and found that they couldn’t reject H
0
 with α = .05. Their 

measurements didn’t differ significantly (there’s that word again) from 

“clean” water.

This, the company claimed, was evidence that they had cleaned up their 

act. Closer inspection revealed that their data approached significance, but 

the pollution wasn’t quite of a high enough magnitude to reject H
0
. Does this 

mean they’re not polluting?

Not at all. In striving to “prove” a null hypothesis, they had stacked the deck 

in favor of themselves. They set a high barrier to get over, didn’t clear it, and 

then patted themselves on the back. 

Every so often, it’s appropriate to try and not reject H
0
. When you set out on 

that path, be sure to set a high value of α (about .20-.30), so that small diver-

gences from H
0
 cause rejection of H

0
. (I discuss this in Chapter 10 and I men-

tion it in other parts of the book. I think it’s important enough to mention 

again here.)

Regression Isn’t Always linear
When trying to fit a regression model to a scatterplot, the temptation is to 

immediately use a line. This is the best-understood regression model, and 

when you get the hang of it, slopes and intercepts aren’t all that daunting.

But linear regression isn’t the only kind of regression. It’s possible to fit a 

curve through a scatterplot. I won’t kid you: The statistical concepts behind 

curvilinear regression are more difficult to understand than the concepts 

behind linear regression. 

It’s worth taking the time to master those concepts, however. Sometimes, 

a curve is a much better fit than a line. (This is partly a plug for Chapter 20, 

where I take you through curvilinear regression — and some of the concepts 

behind it.)
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Extrapolating Beyond a Sample 
Scatterplot Is a Bad Idea

Whether you’re working with linear regression or curvilinear regression, 

keep in mind that it’s inappropriate to generalize beyond the boundaries of 

the scatterplot. 

Suppose you’ve established a solid predictive relationship between a test of 

mathematics aptitude and performance in mathematics courses, and your 

scatterplot only covers a narrow range of mathematics aptitude. You have 

no way of knowing whether the relationship holds up beyond that range. 

Predictions outside that range aren’t valid. 

Your best bet is to expand the scatterplot by testing more people. You might 

find that the original relationship only tells part of the story.

Examine the Variability Around 
a Regression Line

Careful analysis of residuals (the differences between observed and pre-

dicted values) can tell you a lot about how well the line fits the data. A foun-

dational assumption is that variability around a regression line is the same 

up and down the line. If it isn’t, the model might not be as predictive as you 

think. If the variability is systematic (greater variability at one end than at 

the other), curvilinear regression might be more appropriate than linear. The 

standard error of estimate won’t always be the indicator. 

A Sample Can Be Too Large
Believe it or not. This sometimes happens with correlation coefficients. A 

very large sample can make a small correlation coefficient statistically sig-

nificant. For example, with 100 degrees of freedom and α = .05, a correlation 

coefficient of .195 is cause for rejecting the null hypothesis that the popula-

tion correlation coefficient is equal to zero. 

But what does that correlation coefficient really mean? The coefficient of 

determination — r2 — is just .038, meaning that the SS
Regression

 is less than 4 

percent of the SS
Total

 (See Chapter 16.) That’s a very small association.
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Bottom line: When looking at a correlation coefficient, be aware of the sample 

size. If it’s large enough, it can make a trivial association turn out statistically 

significant. (Hmmm . . . “significance” . . . there it is again!)

Consumers: Know Your Axes
When you look at a graph, make sure that you know what’s on each axis. 

Make sure that you understand the units of measure. Do you understand the 

independent variable? Do you understand the dependent variable? Can you 

describe each one in your own words? If the answer to any of those ques-

tions is “No,” you don’t understand the graph you’re looking at. 

When looking at a graph in a TV ad, be very wary if it disappears too quickly, 

before you can see what’s on the axes. The advertiser may be trying to create 

a lingering false impression about a bogus relationship inside the graph. The 

graphed relationship might be as valid as that other staple of TV advertising — 

scientific proof via animated cartoon: Tiny animated scrub brushes cleaning 

cartoon teeth might not necessarily guarantee whiter teeth for you if you buy 

the product. (I know that’s off-topic, but I had to get it in.)

Graphing a Categorical Variable as 
Though It’s a Quantitative Variable 
Is Just Wrong

So you’re just about ready to compete in the Rock-Paper-Scissors World 

Series. In preparation for this international tournament, you’ve tallied all 

your matches from the past ten years, listing the percentage of times you 

won when you played each role. 

To summarize all the outcomes, you’re about to use Excel’s graphics capa-

bilities to create a graph. One thing’s sure: Whatever your preference rock-

paper-scissors-wise, the graph absolutely, positively had better NOT look like 

Figure 19-1.

So many people create these kinds of graphs — people who should know 

better. The line in the graph implies continuity from one point to another. 

With these data, of course, that’s impossible. What’s between Rock and 

Paper? Why are they equal units apart? Why are the three categories in that 

order? (Can you tell this is my pet peeve?)
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Figure 19-1: 
Absolutely 
the wrong 

way to 
graph cat-

egorical 
data. 

 

Simply put, a line graph is not the proper graph when at least one of your 

variables is a set of categories. Instead, create a column graph. A pie chart 

works here, too, because the data are percentages and you have just a few 

slices. (See Chapter 3 for Yogi Berra’s pie-slice guidelines.)

When I wrote the first edition of this book, I whimsically came up with the idea 

of a Rock Paper Scissors World Series for this example. Between then and now, 

I found out . . . there really is one! (The World RPS Society puts it on.)

Whenever Appropriate, Include 
Variability in Your Graph

When the points in your graph represent means, make sure that the graph 

includes the standard error of each mean. This gives the viewer an idea of 

the variability in the data — which is an important aspect of the data. Here’s 

another plug: In Chapter 20, I show you how to do that in Excel.

Means by themselves don’t always tell you the whole story. Take every 

opportunity to examine variances and standard deviations. You may find 

some hidden nuggets. Systematic variation — high values of variance associ-

ated with large means, for example — might be a clue about a relationship 

you didn’t see before. (Appendix C shows you some additional ways to 

explore data.)
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Be Careful When Relating Statistics-Book 
Concepts to Excel

If you’re serious about doing statistical work, you’ll probably have occasion 

to look into a statistics text or two. Bear in mind that the symbols in some 

areas of statistics aren’t standard: For example, some texts use M rather 

than to represent the sample mean, and some represent a deviation from the 

mean with just x. 

Connecting textbook concepts to Excel’s statistical functions can be a chal-

lenge, because of the texts and because of Excel. Messages on dialog boxes 

and in help files might contain symbols other than the ones you read about, 

or they might use the same symbols but in a different way. The discrepancy 

might lead you to make an incorrect entry into a parameter in a dialog box, 

resulting in an error that’s hard to trace.

27 454060-ch19.indd   37427 454060-ch19.indd   374 4/21/09   7:38:15 PM4/21/09   7:38:15 PM



Chapter 20

Ten Things (Twelve, Actually) That 
Didn’t Fit in Any Other Chapter

In This Chapter
▶ What’s in the forecast?

▶ Visualizing variability

▶ Odds and ends of probability

▶ Looking for independence

▶ Logging out

▶ Importing data

I wrote this book to show you all of Excel’s statistical capabilities. My 

intent was to tell you about them in the context of the world of statistics, 

and I had a definite path in mind. 

Some of the capabilities don’t neatly fit along that path. I still want you to be 

aware of them, however, so here they are.

Some Forecasting
Here are a couple of useful techniques to help you come up with some fore-

casts. Although they didn’t quite fit into the regression chapter, and they 

really didn’t go into the descriptive statistics chapters, so they deserve a sec-

tion of their own. 

A moving experience
In many contexts, it makes sense to gather data over periods of time. When 

you do this, you have a time series. 
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Investors often have to base their decisions on time series — like stock 

prices — and the numbers in a time series typically show numerous ups 

and downs. A mean that takes all the peaks and valleys into account might 

obscure the big picture of the overall trend. 

One way to smooth out the bumps and see the big picture is to calculate a 

moving average. This is an average calculated from the most recent scores in 

the time series. It moves because you keep calculating it over the time series. 

As you add a score to the front end, you delete one from the back end.

Suppose you have daily stock prices of a particular stock for the last 20 days, 

and you decide to keep a moving average for the most recent 5 days. Start 

with the average from days 1–5 of those 20 days. Then average the prices 

from days 2–6. Next, average days 3–7, and so on, until you average the final 5 

days of the time series. 

Excel’s Moving Average data analysis tool does the work for you. Figure 20-1 

shows a fictional company’s stock prices for 20 days, and the dialog box for 

the Moving Average tool. 

 

Figure 20-1: 
Fictional 

stock prices 
and the 
Moving 

Average 
dialog box.

 

The figure shows my entries for Moving Average. The Input Range is cells A1 

through A21, the Labels in First Row checkbox is checked, and the Interval 

is 5. That means that each average consists of the most recent five days. 

Cells B2 through B21 are the output range, and I checked the boxes for Chart 

Output and for Standard Errors.

The results are in Figure 20-2. Ignore the ugly-looking #N/A symbols. Each 

number in Column B is a moving average — a forecast of the price on the 

basis of the most recent five days. 
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Each number in Column C is a standard error. In this context, a standard 

error is the square root of the average of the squared difference between the 

price and the forecast for the previous five days. So the first standard error 

in cell C10 is

 

Figure 20-2: 
The results: 

moving 
averages 
and stan-

dard errors.
 

The graph (stretched out from its original appearance and with a reformat-

ted vertical axis) shows the moving average in the series labeled Forecast. 

Sometimes the forecast matches up with the data, sometimes it doesn’t. 

As the figure shows, the moving average smoothes out the peaks and valleys 

in the price data. 

In general, how many scores do you include? That’s up to you. Include too 

many and you risk obsolete data influencing your result. Include too few and 

you risk missing something important. 

How to be a smoothie, exponentially
Exponential smoothing is similar to a moving average. It’s a technique for 

forecasting based on prior data. In contrast with the moving average, which 

works just with a sequence of actual values, exponential smoothing takes its 

previous prediction into account. 
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Exponential smoothing operates according to a damping factor, a number 

between zero and one. With α representing the damping factor, the formula is

In terms of stock prices from the preceding example, yt’ represents the pre-

dicted stock price at a time t. If t is today, t-1 is yesterday. So yt-1 is yester-

day’s actual price and y’t-1 is yesterday’s predicted price. The sequence of 

predictions begins with the first predicted value as the observed value from 

the day before. 

A larger damping factor gives more weight to yesterday’s prediction. A 

smaller damping factor gives greater weight to yesterday’s actual value. A 

damping factor of 0.5 weighs each one equally.

Figure 20-3 shows the dialog box for the Exponential Smoothing data 

analysis tool. It’s similar to the Moving Average tool, except for the Damping 

Factor box.

 

Figure 20-3: 
The 

Exponential 
Smoothing 

data 
analysis tool 

dialog box.
 

I applied Exponential Smoothing to the data from the previous example. I 

did this three times with 0.1, 0.5, and 0.9 as the damping factors. Figure 20-4 

shows the graphic output for each result. 

The highest damping factor, 0.9, results in the flattest sequence of predic-

tions. The lowest, 0.1, predicts the most pronounced set of peaks and valleys. 

How should you set the damping factor? Like the interval in the moving aver-

age, that’s up to you. Your experience and the specific area of application are 

the determining factors.

 In Appendix C, I show you another technique for smoothing. That one is based 

on medians.
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Figure 20-4: 
Exponential 

smoothing 
with three 

damping 
factors.

 

Graphing the Standard Error of the Mean
When you create a graph and your data are means, it’s a good idea to include 

the standard error of each mean in your graph. This gives the viewer an idea 

of the spread of scores around each mean. 

Figure 20-5 gives an example of a situation where this arises. The data are 

(fictional) scores for four groups of people on a test. Each column header 

indicates the amount of preparation time for the eight people within the 

group. I used Excel’s graphics capabilities (Chapter 3) to draw the graph. 

Because the independent variable is quantitative, a line graph is appropriate. 

(See Chapter 19 for a rant on my biggest peeve.)

For each group I used AVERAGE to calculate the mean and STDEV to cal-

culate the standard deviation. I also calculated the standard error of each 

mean. I selected cell B12, so the formula box shows you that I calculated the 

standard error for column B via this formula:

=B11/SQRT(COUNT(B2:B9))

The trick is to get each standard error into the graph. In Excel 2007, it’s a 

snap. Begin by selecting the graph. This causes the Design, Layout, and 

Format tabs to appear. Select Layout | Error Bars
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Figure 20-5: 
Four groups, 
their means, 

standard 
deviations, 

and stan-
dard errors. 

The graph 
shows 

the group 
means.

 

This opens a menu. Figure 20-6 shows what I mean.

 

Figure 20-6: 
Selecting 

Layout | 
Error Bars.
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 In this menu, you have to be careful. One selection is Error Bars with Standard 

Error. Avoid it. If you think this selection tells Excel to put the standard error 

of each mean on the graph, rest assured that Excel has absolutely no idea of 

what you’re talking about. For this selection, Excel calculates the standard 

error of the set of four means — not the standard error within each group.

Instead, in that menu, pick the final choice, More Error Bar options. This 

opens the Format Error Bars dialog box. (See Figure 20-7.)

 

Figure 20-7: 
The Format 
Error Bars 
dialog box.

 

In the Display area, click the radio button next to Both (for Direction) and the 

radio button next to Cap (for End Style). 

 Remember the cautionary note I gave you a moment ago? I’ve got a similar 

one here. One selection in the Error Amount area is Standard Error. Avoid this 

one, too. It does not tell Excel to put the standard error of each mean on the 

graph.

In the Error Amount area, click the radio button next to Custom. This acti-

vates the Specify Value button. Click that button to open the Custom Error 

Bars dialog box shown in Figure 20-8. With the cursor in the Positive Error 

Value box, select the cell range that holds the standard errors ($B$12:$E$12). 

Move the cursor to the Negative Error Value box and do the same.
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Figure 20-8: 
The Custom 

Error Bars 
dialog box.

 

 That Negative Error Value box might give you a little trouble. Make sure that 

it’s cleared of any default values before you enter the cell range.

Click OK on the Custom Error Bars dialog box, close the Format Error Bars 

dialog box and the graph looks like Figure 20-9.

 

Figure 20-9: 
The graph 

of the group 
means 

including 
the standard 

error of 
each mean.

 

This, by the way, is a good example of how the Ribbon expands the user 

experience. In previous Excel versions it was difficult to access the Error Bar 

capability, or to even know it was available. Buried under a tab in a dialog 

box, Error Bars seldom saw the light of day. The Ribbon, on the other hand, 

makes them immediately visible, as Figure 20-6 shows.
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Probabilities and Distributions
Here are some probability-related worksheet functions. A little on the eso-

teric side, you might find some use for them.

PROB
If you have a probability distribution of a discrete random variable, and you 

want to find the probability that the variable takes on a particular value, 

PROB is for you. Figure 20-10 shows the PROB Argument Functions dialog 

box along with a distribution.

 

Figure 20-10: 
The PROB 

Function 
Arguments 

dialog 
box and a 

probability 
distribution.

 

You supply the random variable (X_range), the probabilities (Prob_range), 

a Lower Limit, and an Upper Limit. PROB returns the probability that the 

random variable takes on a value between those limits.

WEIBULL
This is a probability density function that’s mostly applicable to engineering. 

It serves as a model for the time until a physical system fails. As engineers 

know, in some systems, the number of failures stays the same over time 

because shocks to the system cause failure. In others, like some micro-

electronic components, the number of failures decreases with time. In still 

others, wear and tear increase failures with time.
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The Weibull distribution’s two parameters allow it to reflect all these possi-

bilities. One parameter, Alpha, determines how wide or narrow the distribu-

tion is. The other, Beta, determines where it’s centered on the x-axis.

The Weibull probability density function is a rather complicated equa-

tion. Thanks to Excel, you don’t have to worry about it. Figure 20-11 shows 

WEIBULL’s Function Arguments dialog box.

 

Figure 20-11: 
The 

WEIBULL 
Function 

Arguments 
dialog box.

 

The dialog box in the figure answers the kind of question a product engineer 

would ask: Assume the time to failure of a bulb in an LCD projector follows 

a Weibull distribution with Alpha = .75 and Beta = 2000 hours. What’s the 

probability the bulb lasts at most 4000 hours? The dialog box shows that the 

answer is .814.

Drawing Samples
Excel’s Sampling data analysis tool is helpful for creating samples. You can 

tailor it in a couple of ways. If you’re trying to put a focus group together and 

you have to select the participants from a pool of people, you could assign 

each one a number, and have the Sampling tool select your group. 

One way to select is periodically. You supply n, and Excel samples every nth 

number. The other way to select is randomly. You supply the number of indi-

viduals you want randomly selected and Excel does the rest.

Figure 20-12 presents the Sampling dialog box, three groups I had it sample 

from, and two columns of output. 

The first output column, Column A, shows the results of periodic sampling 

with a period of 6. Sampling begins with the sixth score in Group 1. Excel 

then counts out scores and delivers the sixth, and goes through that process 
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again until it finishes in the last group. The periodic sampling process, as you 

can see, doesn’t recycle. I supplied an output range up to cell A11, but Excel 

stopped after four numbers.

 

Figure 20-12: 
The Sam-
pling data 

analysis tool 
dialog box, 

sampled 
groups, and 

results.
 

The second output column, Column B, shows the results of random sampling. 

I asked for 20 and that’s what I got. If you closely examine the numbers in 

Column B, you’ll see that the random sampling process can select a number 

more than once.

 Beware of a little quirk: The Labels checkbox seems to have no effect. When I 

specified an input range that includes C1, D1, and E1, and checked the Labels 

checkbox, I received an error message: “Sampling - Input range contains non-

numeric data.” Not a showstopper, but a little annoying.

Testing Independence: The True 
Use of CHITEST

In Chapter 18, I show you how to use CHITEST to test the goodness of fit of 

a model to a set of data. At the time, I warned you about the pitfalls of using 

this function in that context, and I mentioned that it’s really intended for 

something else.

Here’s the something else. Imagine you’ve surveyed a total of 200 people. 

Each person lives in either a rural area, an urban area, or a suburb. Your 

survey asked them their favorite type of movie — drama, comedy, or anima-

tion. You want to know if their movie preference is independent of the envi-

ronment in which they live.
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Table 20-1 shows the results.

Table 20-1 Living Environment and Movie Preference
Drama Comedy Animation Total

Rural 40 30 10 80

Urban 20 30 20 70

Suburban 10 20 20 50

Total 70 80 50 200

The number in each cell represents the number of people in the environment 

indicated in the row who prefer the type of movie indicated in the column.

Do the data show that preference is independent of environment? This calls 

for a hypothesis test:

H
0
: Movie preference is independent of environment

H
1
: Not H

0

α= .05

To get this done, you have to know what to expect if the two are indepen-

dent. Then you can compare the data with the expected numbers and see if 

they match. If they do, you can’t reject H
0
. If they don’t, you reject H

0
.

Concepts from probability help determine the expected data. In Chapter 16, I 

tell you that if two events are independent, you multiply their probabilities to 

find the probability that they occur together. Here, you can treat the tabled 

numbers as proportions, and the proportions as probabilities. 

For example, in your sample, the probability is 80/200 that a person is from 

a rural environment. The probability is 70/200 that a person prefers drama. 

What’s the probability that a person is in the category “rural and likes 

drama”? If the environment and preference are independent, that’s (80/200) 

× (70/200). To turn that probability into an expected number of people, 

you multiply it by the total number of people in the sample — 200. So the 

expected number of people is (80 × 70)/200, which is 28. 

In general, 
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After you have the expected numbers, you compare them to the observed 

numbers (the data) via this formula:

You test the result against a χ2 (chi-square) distribution with df = (Number of 

Rows – 1) X (Number of Columns – 1), which in this case comes out to 4.

The CHITEST worksheet function performs the test. You supply the observed 

numbers and the expected numbers, and CHITEST returns the probability that a 

χ2 at least as high as the result from the preceding formula could have resulted if 

the two types of categories are independent. If the probability is small (less than 

.05), reject H
0
. If not, don’t reject. CHITEST doesn’t return a value of χ2, it just 

returns the probability (under a χ2 distribution with the correct df).

Figure 20-13 shows a worksheet with both the observed data and the expected 

numbers, along with CHITEST’s Function Arguments dialog box. Before I ran 

CHITEST I attached the name Observed to D3:F5, and the name Expected to 

D10:F12. (If you don’t remember how to do this, reread Chapter 2.)

 

Figure 20-13: 
The 

CHITEST 
Function 

Arguments 
dialog 

box, with 
observed 
data and 

expected 
numbers.
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The figure shows that I’ve entered Observed into the Actual_range box, and 

Expected into the Expected_range box. The dialog box shows a very small 

probability, .00068, so the decision is to reject H
0
. The data are consistent 

with the idea that movie preference is not independent of environment.

Logarithmica Esoterica
 The functions in this section are really out there. Unless you’re a tech-head, 

you’ll probably never use them. I present them for completeness. You might 

run into them while you’re wandering through Excel’s statistical functions, 

and wonder what they are.

They’re based on what mathematicians call natural logarithms, which in turn 

are based on e, that constant I use at various points throughout the book. I 

begin with a brief discussion of logarithms, and then I turn to e.

What is a logarithm?
Plain and simple, a logarithm is an exponent — a power to which you raise a 

number. In the equation 

2 is an exponent. Does that mean that 2 is also a logarithm? Well . . . yes. In 

terms of logarithms, 

That’s really just another way of saying 102 = 100. Mathematicians read it as 

“the logarithm of 100 to the base 10 equals 2.” It means that if you want to 

raise 10 to some power to get 100, that power is 2.

How about 1,000? As you know

so 

How about 453? Uh . . . Hmmm . . . That’s like trying to solve
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What could that answer possibly be? 102 means 10 × 10 and that gives you 

100. 103 means 10 × 10 × 10 and that’s 1,000. But 453? 

Here’s where you have to think outside the dialog box. You have to imag-

ine exponents that aren’t whole numbers. I know, I know . . . how can you 

multiply a number by itself a fraction at a time? If you could, somehow, the 

number in that 453 equation would have to be between 2 (which gets you to 

100) and 3 (which gets you to 1,000). 

In the 16th century, mathematician John Napier showed how to do it and 

logarithms were born. Why did Napier bother with this? One reason is that 

it was a great help to astronomers. Astronomers have to deal with numbers 

that are . . . well . . . astronomical. Logarithms ease computational strain in a 

couple of ways. One way is to substitute small numbers for large ones: The 

logarithm of 1,000,000 is 6 and the logarithm of 100,000,000 is 8. Also, working 

with logarithms opens up a helpful set of computational shortcuts. Before 

calculators and computers appeared on the scene, this was a very big deal.

Incidentally,

meaning that

You can use Excel to check that out if you don’t believe me. Select a cell and 

type 

=LOG(453,10)

press Enter, and watch what happens. Then just to close the loop, reverse 

the process. If your selected cell is — let’s say — D3, select another cell 

and type

=POWER(10,D3)

or

=10^D3

Either way, the result is 453.

Ten, the number that’s raised to the exponent, is called the base. Because it’s 

also the base of our number system and we’re so familiar with it, logarithms 

of base 10 are called common logarithms. 
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Does that mean you can have other bases? Absolutely. Any number (except 0 

or 1 or a negative number) can be a base. For example,

So

If you ever see log without a base, base 10 is understood, so 

In terms of bases, one number is special . . .

What is e?
Which brings me to e, a constant that’s all about growth. Before I get back to 

logarithms, I’ll tell you about e.

Imagine the princely sum of $1 deposited in a bank account. Suppose the 

interest rate is 2 percent a year. (Good luck with that.) If it’s simple interest, 

the bank adds $.02 every year, and in 50 years you have $2. 

If it’s compound interest, at the end of 50 years you have (1 + .02)50 — which 

is just a bit more than $2.68, assuming the bank compounds the interest once 

a year. 

Of course, if they compound it twice a year, each payment is $.01, and after 

50 years they’ve compounded it 100 times. That gives you (1 + .01)100, or just 

over $2.70. What about compounding it four times a year? After 50 years — 

200 compoundings — you have (1 + .005)200 which results in the don’t-spend-

it-all-in-one-place amount of $2.71 and a tiny bit more. 

Focusing on “just a bit more” and a “tiny bit more,” and taking it to extremes, 

after one hundred thousand compoundings you have $2.718268. After one 

hundred million, you have $2.718282.

If you could get the bank to compound many more times in those 50 years, 

your sum of money approaches a limit — an amount it gets ever so close to, 

but never quite reaches. That limit is e.

The way I set up the example, the rule for calculating the amount is 
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where n represents the number of payments. Two cents is 1/50th of a dollar 

and I specified 50 years — 50 payments. Then I specified two payments a 

year (and each year’s payments have to add up to 2 percent), so that in 50 

years you have 100 payments of 1/100th of a dollar, and so on.

To see this in action, enter numbers into a column of a spreadsheet as I have 

in Figure 20-14. In cells C2 through C20, I have the numbers 1 through 10 and 

then selected steps through one hundred million. In D2, I put this formula

=(1+(1/C2))^C2

and then autofilled to D20. The entry in D20 is very close to e. 

 

Figure 20-14: 
Getting to e.

 

Mathematicians can tell you another way to get to e:

Those exclamation points signify factorial. 1! = 1, 2! = 2 X 1, 3! = 3 X 2 X 1. (For 

more on factorials, see Chapter 16).

Excel helps visualize this one, too. Figure 20-15 lays out a spreadsheet with 

selected numbers up to 170 in Column C. In D2, I put this formula:

=1+ 1/FACT(C2)

and, as the Formula Bar in the Figure shows, in D3 I put this one:

=D2 +1/ FACT(C3)

Then I autofilled up to D17. The entry in D17 is very close to e. In fact, from 

D11 on, you see no change, even if you increase the amount of decimal places.
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Figure 20-15: 
Another 

path to e.
 

Why did I stop at 170? Because that takes Excel to the max. At 171, you get an 

error message.

So e is associated with growth. Its value is 2.781828 . . . The three dots mean 

you never quite get to the exact value (like π, the constant that enables you 

to find the area of a circle).

This number pops up in all kinds of places. It’s in the formula for the normal 

distribution (see Chapter 8), and it’s in distributions I discuss in Chapter 17. 

Many natural phenomena are related to e.

It’s so important that scientists, mathematicians, and business analysts use 

it as the base for logarithms. Logarithms to the base e are called natural loga-
rithms. A natural logarithm is abbreviated as ln. 

Table 20-2 presents some comparisons (rounded to three decimal places) 

between common logarithms and natural logarithms:

Table 20-2 Some Common Logarithms (Log) 
 and Natural Logarithms (Ln)
Number Log Ln

e 0.434 1.000

10 1.000 2.303

50 1.699 3.912

100 2.000 4.605

453 2.656 6.116

1000 3.000 6.908
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One more thing. In many formulas and equations, it’s often necessary to raise 

e to a power. Sometimes the power is a fairly complicated mathematical 

expression. Because superscripts are usually printed in small font, it can be 

a strain to have to constantly read them. To ease the eyestrain, mathemati-

cians have invented a special notation: exp. Whenever you see exp followed 

by something in parentheses, it means to raise e to the power of whatever’s 

in the parentheses. For example,

Excel’s EXP function does that calculation for you.

Speaking of raising e, when Google, Inc., filed their IPO they said they wanted 

to raise $2,718,281,828, which is e times a billion dollars rounded to the near-

est dollar.

On to the Excel functions.

LOGNORMDIST
A random variable is said to be lognormally distributed if its natural loga-

rithm is normally distributed. Maybe the name is a little misleading, because I 

just said log means “common logarithm” and ln means “natural logarithm.”

Unlike the normal distribution, the lognormal can’t have a negative number 

as a possible value for the variable. Also unlike the normal, the lognormal is 

not symmetric — it’s skewed to the right.

Like the Weibull distribution I describe earlier, engineers use it to model the 

breakdown of physical systems — particularly of the wear-and-tear variety. 

Here’s where the large-numbers-to-small numbers property of logarithms 

comes into play. When huge numbers of hours figure into a system’s life 

cycle, it’s easier to think about the distribution of logarithms than the distri-

bution of the hours.

Excel’s LOGNORMDIST works with the lognormal distribution. You specify 

a value, a mean, and a standard deviation for the lognormal. LOGNORMDIST 

returns the probability that the variable is, at most, that value. 

For example, the FarKlempt Robotics Inc. has gathered extensive hours-to-

failure data on a universal joint component that goes into their robots. They 

find that hours-to-failure is lognormally distributed with a mean of 10 and a 

standard deviation of 2.5. What is the probability that this component fails in, 

at most, 10,000 hours? 
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Figure 20-16 shows the LOGNORMDIST Function Arguments dialog box for 

this example. In the X box, I entered ln(10000). I entered 10 into the Mean box 

and 2.5 into the Standard_dev box. The dialog box shows the answer, .000929 

(and some more decimals).

 

Figure 20-16: 
The 

LOGNORM
DIST 

Function 
Arguments 
dialog box.

 

LOGINV
LOGINV turns LOGNORMDIST around. You supply a probability, a mean, 

and a standard deviation for a lognormal distribution. LOGINV gives you the 

value of the random variable that cuts off that probability.

To find the value that cuts off .001 in the preceding example’s distribution, I 

used the LOGINV dialog box in Figure 20-17. With the indicated entries, the 

dialog box shows that the value is 9.722 (and more decimals).

 

Figure 20-17: 
The LOGINV 

Function 
Arguments 
dialog box.

 

By the way, in terms of hours that’s 16,685 — just for .001.
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Array Function: LOGEST
In Chapter 14, I tell you all about linear regression. It’s also possible to have a 

relationship between two variables that’s curvilinear rather than linear.

The equation for a line that fits a scatterplot is 

One way to fit a curve through a scatterplot is with this equation:

LOGEST estimates a and b for this curvilinear equation. Figure 20-18 shows 

the LOGEST function arguments dialog box and the data for this example. It 

also shows an array for the results. Before using this function, I attached the 

name x to B2:B12 and y to C2:C12.

 

Figure 20-18: 
The 

Function 
Arguments 
dialog box 

for LOGEST, 
along with 

the data and 
the selected 
array for the 

results.
 

Here are the steps for this function: 

 1. With the data entered, select a five-row-by-two-column array of cells 

for LOGEST’s results.

  I selected F4:G8.

 2. From the Statistical Functions menu, select LOGEST to open the 

Function Arguments dialog box for LOGEST.
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 3. In the Function Arguments dialog box, type the appropriate values for 

the arguments.

  In the Known_y’s box, type the cell range that holds the scores for the 

y-variable. For this example, that’s y (the name I gave to C2:C12).

  In the Known_x’s box, type the cell range that holds the scores for the 

x-variable. For this example, it’s x (the name I gave to B2:B12).

  In the Const box, the choices are TRUE (or leave it blank) to calculate 

the value of a in the curvilinear equation I showed you or FALSE to set a 

to 1. I typed TRUE. 

  The dialog box uses b where I use a. No set of symbols is standard.

  In the Stats box, the choices are TRUE to return the regression statistics 

in addition to a and b, FALSE (or leave it blank) to return just a and b. I 

typed TRUE.

  Again, the dialog box uses b where I use a and m-coefficient where I use b.

 4. IMPORTANT: Do NOT click OK. Because this is an array function, 

press Ctrl+Shift+Enter to put LOGEST’s answers into the selected 

array.

Figure 20-19 shows LOGEST’s results. They’re not labeled in any way, so I added 

the labels for you in the worksheet. The left column gives you the exp(b) — 

more on that in a moment, standard error of b, R Square, F, and the SS
regression

. 

The right column provides a, standard error of a, standard error of estimate, 

degrees of freedom, and SS
residual

. For more on these statistics, see Chapters 

14 and 15.

 

Figure 20-19: 
LOGEST’s 
results in 

the selected 
array.

 

 About exp(b). LOGEST, unfortunately, doesn’t return the value of b — the 

exponent for the curvilinear equation. To find the exponent, you have to cal-

culate the natural logarithm of what it does return. Applying Excel’s LN work-

sheet function here gives 0.0256 as the value of the exponent. 
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So the curvilinear regression equation for the sample data is:

or in that exp notation I told you about,

 A good way to help yourself understand all of this is to use Excel’s graphics 

capabilities to create a scatterplot. (See Chapter 3.) Then right-click on a data 

point in the plot and select Add Trendline from the pop-up menu. That opens 

the Format Trendline dialog box (Figure 20-20). Click the radio button next to 

Exponential, as I’ve done in the figure. Also, as I’ve done in the figure, toward 

the bottom of the dialog box click the checkbox next to Display Equation on 

Chart.

 

Figure 20-20: 
The Type 

tab on 
the Add 

Trendline 
dialog box.

 

Click Close, and you have a scatterplot complete with curve and equation. I 

reformatted mine in several ways to make it look clearer on the printed page. 

Figure 20-21 shows the result.
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Figure 20-21: 
The scatter-

plot with 
curve and 
equation.

 

Array Function: GROWTH
GROWTH is curvilinear regression’s answer to TREND (Chapter 14). You can 

use this function two ways — to predict a set of y-values for the x-values in 

your sample, or to predict a set of y-values for a new set of x-values. 

Predicting y’s for the x’s in your sample
Figure 20-22 shows GROWTH set up to calculate y’s for the x’s I already have. 

I included the Formula Bar in this screen shot so you can see what the for-

mula looks like for this use of GROWTH.

Here are the steps:

 

Figure 20-22: 
The Function 

Arguments 
dialog box 

for GROWTH, 
along with 

the sample 
data. 

GROWTH 
is set up 

to predict 
x’s for the 

sample y’s.
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 1. With the data entered, select a cell range for GROWTH’s answers.

  I selected D2:D12 to put the predicted y’s right next to the sample y’s.

 2. From the Statistical Functions menu, select GROWTH to open the 

Function Arguments dialog box for GROWTH.

 3. In the Function Arguments dialog box, type the appropriate values for 

the arguments.

  In the Known_y’s box, type the cell range that holds the scores for the 

y-variable. For this example, that’s y (the name I gave to C2:C12).

  In the Known_x’s box, type the cell range that holds the scores for the 

x-variable. For this example, it’s x (the name I gave to B2:B12).

  I’m not calculating values for new x’s here, so I leave the New_x’s box 

blank.

  In the Const box, the choices are TRUE (or leave it blank) to calculate 

a, or FALSE to set a to 1. I entered TRUE. (I really don’t know why you’d 

enter FALSE.) Once again, the dialog uses b where I use a.

 4. IMPORTANT: Do NOT click OK. Because this is an array function, 

press Ctrl+Shift+Enter to put GROWTH’s answers into the selected 

column. 

  Figure 20-23 shows the answers in D2:D12. 

 

Figure 20-23: 
The results 

of GROWTH: 
Predicted 
y’s for the 

sample x’s.
 

Predicting a new set of y’s for a new set of x’s
Here, I use GROWTH to predict y’s for a new set of x’s. Figure 20-24 shows 

GROWTH set up for this. In addition to the array named x and the array 

named y, I defined New_x as the name for B15:B22, the cell range that holds 

the new set of x’s. 

Figure 20-24 also shows the selected array of cells for the results. Once 

again, I included the Formula Bar to show you the formula for this use of the 

function. 
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Figure 20-24: 
The 

Function 
Arguments 
dialog box 

for GROWTH, 
along 

with data. 
GROWTH 

is set up to 
predict y’s 
for a new 
set of x’s.

 

To do this, follow these steps:

 1. With the data entered, select a cell range for GROWTH’s answers.

  I selected C15:C22.

 2. From the Statistical Functions menu, select GROWTH to open the 

Function Arguments dialog box for GROWTH.

 3. In the Function Arguments dialog box, type the appropriate values for 

the arguments.

  In the Known_y’s box, enter the cell range that holds the scores for the 

y-variable. For this example, that’s y (the name I gave to C2:C12).

  In the Known_x’s box, enter the cell range that holds the scores for the 

x-variable. For this example, it’s x (the name I gave to B2:B12).

  In the New_x’s box, enter the cell range that holds the new scores for 

the x-variable. That’s New_x (the name I gave to B15:B22).

  In the Const box, the choices are TRUE (or leave it blank) to calculate a, 

or FALSE to set a to one. I typed TRUE. (Again, I really don’t know why 

you’d enter FALSE.)

 4. IMPORTANT: Do NOT click OK. Because this is an array function, 

press Ctrl+Shift+ Enter to put GROWTH’s answers into the selected 

column. 

  Figure 20-25 shows the answers in C15:C22. 

28 454060-ch20.indd   40028 454060-ch20.indd   400 4/21/09   7:38:58 PM4/21/09   7:38:58 PM



401 Chapter 20: Ten Things (Twelve, Actually) That Didn’t Fit in Any Other Chapter

 

Figure 20-25: 
The Results 

of GROWTH: 
Predicted 

y’s for a 
New Set 

of x’s.
 

When Your Data Live Elsewhere
In a few places throughout the book, I use data from the history of baseball. 

Happily, the Web site www.baseball-reference.com provides these data. 

How did I get these data from a web page into a worksheet?

It’s way easier than you might think. To take the first giant step, I select  

Data| Get External Data

and then choose the type of data source I’m dealing with. Figure 20-26 shows 

how to do it.

 

Figure 20-26: 
Selecting 
Data | Get 

External 
Data.

 

As you can see, you can import from a number of different types of sources. 

Here, I just discuss data import from the web. To illustrate, I import data 

from the Web site of Wiley Publishing. 
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After I choose From Web, the New Web Query window opens within the 

spreadsheet. The window displays the home page that appears when I open 

my browser. In the Address box, I enter the address of the Web page that 

supplies the data. Specifically, I typed Wiley.com into the Address box. When 

I clicked Go, the window opened the page with this URL:

www.wiley.com/WileyCDA/ 

Figure 20-27 shows the appearance of the New Web Query window with 

this URL.

 

Figure 20-27: 
The New 

Web Query 
window 

displaying a 
Wiley Web 

page.
 

The important items to note here are the right-pointing arrows throughout 

the window. You can’t see it on the figure, but those arrows are in yellow. 

Each one points to a grouping of data you can import into Excel. 

I clicked the arrow next to ABOUT WILEY. Then I clicked Import. The Import 

Data dialog box opens and gives the choice of putting the data into the exist-

ing worksheet or a new one. I chose the existing worksheet, and specified cell 

A1 as the starting point for the table. (I could have also selected a cell before 

I opened the New Web Query window.) Then I clicked OK. Figure 20-28 shows 

the result.
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Figure 20-28: 
Data 

imported 
from a Web 
page into a 
worksheet.

 

That’s all there is to it!
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Appendix A

When Your Worksheet 
Is a Database

In This Chapter
▶ Databases in Excel 

▶ Statistics in databases

▶ Pivot tables

Excel’s main function in life is to perform calculations. As the chapters in 

this book show, many of those calculations revolve around built-in sta-

tistical capabilities.

You can also set up a worksheet to store information in something like a 

database, although Excel is not as sophisticated as a dedicated database 

package. Excel offers database functions that are much like its statistical 

functions, so I thought I’d familiarize you with them.

Introducing Excel Databases
Strictly speaking, Excel provides a data list. This is an array of worksheet 

cells into which you enter related data in a uniform format. You organize the 

data in columns, and you put a name at the top of each column. In database 

terminology, each named column is a field. Each row is a separate record. 

This type of structure is useful for keeping inventories, as long as they’re not 

overly huge. You wouldn’t use an Excel database for recordkeeping in a ware-

house or a large corporation. For a small business, however, it might fit the bill.

The Satellites database
Figure A-1 shows an example. This is an inventory of the classic satellites in 

our solar system. By “classic,” I mean that astronomers discovered most of 
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them before the 20th century, via conventional telescopes. The three 20th-

century entries are so dim that astronomers discovered them by examin-

ing photographic plates. Today’s super telescopes and space probes have 

revealed many more satellites that I didn’t include.

 

Figure A-1: 
The 

Satellites 
database.

 

The database is in cells B10:G35. I defined Satellites as the name of this cell 

range. Notice that I included the field names in the range. (Reread Chapter 2 

if you don’t remember how to name a cell range.)

The Name field provides the name of the satellite; the Planet field indicates 

the planet around which the satellite revolves. 

Orbital_Period_Days shows how long it takes for a satellite to make a com-

plete revolution around its planet. Our Moon, for example, takes a little over 

27 days. A couple of records have negative values in this field. That means they 

revolve around the planet in a direction opposite to the planet’s rotation. 

Average Distance_X_1000_km is the average distance from the planet to the 

satellite in thousands of kilometers. The last two fields provide the year of 

discovery, and the astronomer who discovered the satellite. For our Moon, of 

course, those two are unknown.

 After you label each field, you attach a name to each cell that holds a field 

name. Important point: The range for each name is just the cell that holds the 

field name, not the whole column of data. So here, I define Name as the name 

of the cell labeled Name. 
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Okay, I worked really hard to set up the premise for the preceding sentence. 

Here are two examples that are easier to follow: I define Planet as the name of 

cell C10, and Orbital_Period_Days as the name of D10, and so on. Now I can 

use these field names in Excel’s database formulas. 

The criteria range
I copied the column headers — excuse me, field names — into the top row. I 

also put some information into nearby cells. This area is for the criteria range. 

This range enables you to use Excel’s database functions to ask (and answer) 

questions about the data. Database honchos call this “querying.” Criteria are 

a part and parcel of each database function. (“Criteria” is plural. The singular 

form is “criterion.”)

It’s not necessary to have this range at the top of the worksheet. You can des-

ignate any range in the worksheet as the criteria range. 

When you use an Excel database function it’s in this format:

=FUNCTION(Database, Field, Criteria)

The function operates on the specified database, in the designated field, 

according to the indicated criteria. 

For example, if you want to know how many satellites revolve around Saturn, 

you select a cell and enter

=DCOUNT(Satellites,Average_Distance_X_1000_km,C1:C2)

Here’s what this formula means: In the database (B1:G35), DCOUNT tallies up 

the amount of number-containing cells in the Average_Distance_X_1000_km 

field, constrained by the criterion specified in the cell range C1:C2. That cri-

terion is equivalent to Planet = Saturn. Note that a criterion has to include at 

least one column header . . . uh . . . field name from the criteria range, and at 

least one row. Bear in mind that you can’t use the actual field name in the cri-

teria. You use the cell ID (like C1). 

When you include more than one row, you’re saying “or.” For example, if 

your criterion happens to be G1:G3, you’re specifying satellites discovered by 

Galileo or Cassini.

When you include more than one column in a criterion, you’re saying “and.” 

If your criterion is E1:F2, you’re specifying satellites farther than 150,000 km 

from their planets and discovered after 1877.
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The format of a database function
The formula I just showed you

=DCOUNT(Satellites,Average_Distance__X_1000_km,C1:C2)

is accessible via a Function Arguments dialog box, as is the case for all the 

other worksheet functions in Excel. Figure A-2 shows the equivalent dialog 

box for the preceding formula, set against the backdrop of the database and 

the criteria range. 

 

Figure A-2: 
The 

DCOUNT 
Function 

Arguments 
dialog box.

 

How do you open this dialog box? Unlike the Statistical Functions or the 

Math & Trig Functions, Database Functions do not reside on their own menu. 

Instead you click the Insert Function button to open the Insert Function 

dialog box. Then in that dialog box, you scroll down the list of functions until 

you find the database function you’re looking for.

Here’s an example:

 1. Select a worksheet cell.

  As Figure A-2 shows, I selected H6.

 2. Click the Insert Function button (it’s labeled fx) to open the Insert 

Function dialog box.
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 3. In the Insert Function dialog box, select a function to open its 

Function Arguments dialog box.

  From the Database category, I selected DCOUNT and that’s the dialog 

box in Figure A-2.

 4. In the Function Arguments dialog box, enter the appropriate values 

for the arguments.

  For the Database, I entered Satellites in the Database box. For the Field, 

I entered Average_Distance_X_1000_km in the Field box. This isn’t as 

keyboard intensive as it sounds. As I type along, a pop-up appears with 

the full name of the field name. Double-clicking the name puts it into the 

Field box. For the Range, I entered C1:C2 in the Range box.

  The answer, 9, appears in the dialog box.

 5. Click OK to put the answer into the selected cell.

All the database functions follow the same format, you access them all the 

same way, and you fill in the same type of information in their dialog boxes. 

So I’m going to skip over that sequence of steps as I describe each function, 

and just discuss the equivalent worksheet formula.

Counting and Retrieving 
One essential database capability is to let you know how many records meet a 

particular criterion. Another is to retrieve records. Here are the Excel versions.

DCOUNT and DCOUNTA 
As I just showed you, DCOUNT counts records. The restriction is that the field 

you specify has to contain numbers. If it doesn’t, the answer is zero, as in

=DCOUNT(Satellites,Name,C1:C2)

because no records in the Name field contain numbers.

DCOUNTA counts records in a different way. This one works with any field. It 

counts the number of non-blank records in the field that satisfy the criterion. 

So this formula returns 9:

=DCOUNTA(Satellites,Name,C1:C2)
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Getting to “or”
Here’s a tally that involves “or”:

=DCOUNTA(Satellites,Name,D1:D3)

The criterion D1:D3 specifies satellites whose orbital period is 1.26 days or 

greater than 20 days — as I mention before, multiple rows mean “or.” Five sat-

ellites meet that criterion: Deimos, Hyperion, Iapetus, our Moon, and Nereid.

Wildcards
Look closely at Figure A-1 and you see the cryptic entry *io in Cell B2. I did 

that so you’d know that Excel database functions can deal with wildcard 

characters. The formula

=DCOUNTA(Satellites,Name,B1:B2)

returns 3, the number of satellites with the letter-string “io” anywhere in their 

names (Dione, Io, and Hyperion). 

DGET
DGET retrieves exactly one record. If the criteria you specify result in more 

than one record (or in no records), DGET returns an error message. 

This formula

=DGET(Satellites,Name,D1:D2)

retrieves “Deimos,” the name of the satellite whose orbital period is 1.26 days.

This one

=DGET(Satellites,Name,E1:E2)

results in an error message because the criterion specifies more than one 

record.

Arithmetic
Excel wouldn’t be Excel without calculation capabilities. Here are the ones it 

offers for its databases.
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DMAX and DMIN
As their names suggest, these provide the maximum value and the minimum 

value according to your specifications. The formula

=DMAX(Satellites,Orbital_Period__Days,E1:E2)

returns 360.14. This is the maximum orbital period for any satellite that’s far-

ther than 150,000 km from its planet.

For the minimum value that meets this criterion,

=DMIN(Satellites,Orbital_Period__Days,E1:E2)

gives you –550.48. That’s Phoebe, a satellite that revolves in the opposite 

direction to its planet’s rotation.

DSUM 
This one adds up the values in a field. To add all the orbital periods in the 

satellites discovered by Galileo or by Cassini, use this formula:

=DSUM(Satellites,Orbital_Period__Days,G1:G3)

That sum is 117.64.

 Want to total up all the orbital periods? (I know, I know . . . =SUM(B11:B35). 

Just work with me here.)

This formula gets it done:

=DSUM(Satellites,Orbital_Period__Days,C1:C3)

Why? It’s all in the criterion. C1:C3 means that Planet = Saturn or . . . anything 

else, because C3 is empty. The sum, by the way, is 35.457. Bottom line: Be 

careful whenever you include an empty cell in your criteria.

DPRODUCT
Here’s a function that’s probably here only because Excel’s designers could 

create it. You specify the data values, and DPRODUCT multiplies them. 
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The formula

=DPRODUCT(Satellites,Orbital_Period__Days,G1:G2)

returns the product (749.832) of the orbital periods of the satellites Galileo 

discovered — a calculation I’m pretty sure Galileo never thought about.

Statistics
Which brings me to the statistical database functions. These work just like 

the similarly named worksheet functions.

DAVERAGE
Here’s the formula for the average of the orbital periods of satellites discov-

ered after 1887:

=DAVERAGE(Satellites,Orbital_Period__Days,F1:F2)

The average is negative (-36.4086) because the specification includes those 

two satellites with the negative orbital periods.

DVAR and DVARP
DVAR is the database counterpart of VAR, which divides the sum of N 

squared deviations by N-1. This is called sample variance. 

DVARP is the database counterpart of VARP, which divides the sum of N 

squared deviations by N. This is the population variance. (For details on VAR 

and VARP, sample variance and population variance, and the implications of 

N and N-1, see Chapter 5.)

Here’s the sample variance for the orbital period of satellites farther than 

150,000 km from their planets and discovered after 1877:

=DVAR(Satellites,Orbital_Period__Days,E1:F2)

That turns out to be 210,358.1.

The population variance for that same subset of satellites is

=DVARP(Satellites,Orbital_Period__Days,E1:F2)

which is 140,238.7.
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Once again, if you have multiple columns in the criteria, you’re dealing 

with “and.”

DSTDEV and DSTDEVP
These two return standard deviations. The standard deviation is the square 

root of the variance. (See Chapter 5.) DSTDEV returns the sample standard 

deviation, which is the square root of DVAR’s returned value. DSTDEVP 

returns the population standard deviation, the square root of DVARP’s 

returned value.

For the specifications in the preceding example, the sample standard devia-

tion is

=DSTDEV(Satellites,Orbital_Period__Days,E1:F2)

which is 458.6481.

The population standard deviation is

=DSTDEVP(Satellites,Orbital_Period__Days,E1:F2)

This result is 374.4846.

According to Form
Excel provides a Data Form to help you work with databases. Unfortunately, 

Excel 2007 didn’t put a button for this form on the Ribbon. To access this 

button, you have to put it on the Quick Access toolbar. 

Here’s how to do it:

 1. Click the down arrow on the right of the Quick Access toolbar to open 

the Customize Quick Access Toolbar menu.

 2. From this menu, select More Commands to open the Excel Options 

dialog box. 

 3. In the Choose Commands From drop-down menu, select Commands 

Not in the Ribbon.

 4. In the list box on the left, scroll down and select Form.

 5. Click the Add button to put Form into the list box on the right.

 6. Click OK to close the Excel Options dialog box.

  The Data Form button is now on the Quick Access toolbar.
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To use the Data Form, highlight the entire cell range of the database, includ-

ing the column headers. Then click the Data Form button.

Figure A-3 shows the appearance of the Data Form when you open it with the 

whole database selected. Excel fills in the field names automatically, and the 

fields populate with the values from the first record. You can use the form to 

navigate through the database, and you can use it to add a record. You can 

start with one record and use the New button to enter all the rest, but for me 

it’s easier to just type each record. 

 

Figure A-3: 
The Data 
Form for 
working 

with Excel 
databases.

 

Whenever you add records (and whichever way you add them), be sure to 

click Formulas | Manage Names and increase the cell range attached to the 

database name.

 The title on the Data Form is the same as the name on the bottom tab of the 

worksheet. So it’s a good idea to put the name of the database on the tab. It’s 

clearer what the Form shows when something like “Satellites” is in its title 

rather than “Sheet 1.”

Pivot Tables
A pivot table is a cross-tabulation — another way of looking at the data. You 

can reorganize the database, and turn it (literally) on its side and inside out. 

And you can do it in any number of ways.

For example, you can set up a pivot table that has the satellites in the rows 

and a planet in each column, and has the data for orbital period inside the 

cells. Figure A-4 shows what I mean.
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Figure A-4: 
A pivot table 
of the satel-

lites data 
showing 

satellites, 
planets, 

and orbital 
period.

 

Figure A-5 shows a pivot table that presents another view of the data. This 

one takes the spotlight off the individual satellites and puts it on the planets. 

Each planet’s row is divided into two rows — one for the Orbital Period and 

one for the Average Distance. The numbers are the sums across each planet’s 

satellites. Adding up the Orbital Period for all of Jupiter’s satellites gives you 

29.66, for instance.

 

Figure A-5: 
Another 

pivot table 
of the satel-

lites data, 
showing 
planets, 

orbital 
period, and 

average 
distance.

 

This example focuses on creating the pivot table in Figure A-4. Creating pivot 

tables in Excel 2007 is easier than in earlier versions. Before, you 

29 454060-bapp01.indd   41529 454060-bapp01.indd   415 4/21/09   7:39:36 PM4/21/09   7:39:36 PM



416 Statistical Analysis with Excel For Dummies, 2nd Edition 

went through a number of steps as you worked via a wizard. Now, here’s 

what you do:

 1. Open the worksheet that holds the database.

  In this case, it’s Satellites.

 2. Select any cell in the range of the database.

 3. Select Insert | Pivot Table to open the Create Pivot Table dialog box 

(See Figure A-6).

 

Figure A-6: 
The Create 
Pivot Table 
dialog box.

 

 4. Make your entries within this dialog box.

  Because I selected a cell within the database before I opened this dialog 

box, the first radio button is selected and the Range box is filled in.

  I selected the radio button next to New Worksheet to put the pivot table 

on a new worksheet.

 5. Click OK.

  The result is the Pivot Table Layout on a new worksheet. (See 

Figure A-7.) 

 6. Populate the Pivot Table Layout.

  To populate the PivotTable Layout, you select a field from the 

PivotTable Field List, drag it into the appropriate box below, and drop it. 

  I begin with the rows. To make the names of the satellites appear in the 

rows, I selected Name and dropped it into the Row Labels box. Figure 

A-8 shows the result. In addition to the satellite names in the rows, the 

checkbox next to Name is bold and checked, to indicate it’s in the table. 

Unchecking the checkbox removes Name from the table.
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Figure A-7: 
A new 

worksheet 
containing 

the pivot 
table layout.

 

 

Figure A-8: 
The 

PivotTable 
Layout after 

dropping the 
Name Field 

into the Row 
Labels box.
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  Next, I dropped Planet into the Column Labels box. (Figure A-9.)

  Dragging Orbital Period (Days) from the Field List and dropping it into 

the Σ Values box results in the table shown in Figure A-4. 

  Dropping a field into the Report Filter box creates something like a 

multipage version of the table. For example, putting Discoverer in the 

Report Filter box creates a drop-down that allows you to see just the 

data for each Discoverer. 

  The down arrow next to a field opens a menu of options for sorting and 

filtering that field.

The importance of pivot tables is that they allow you to get your hands dirty 

with the data. By dropping fields into and out of the table, you might see rela-

tionships and carry out analyses that might not occur to you if you just look 

at the original database.

 

Figure A-9: 
The 

PivotTable 
Layout after 

dropping the 
Planet Field 
into Column 
Labels Box.
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Appendix B

The Analysis of Covariance
In This Chapter
▶ Another look at covariance

▶ Why and how we analyze covariance

▶ Analysis of Covariance (ANCOVA) in Excel

One of the major points of this book is that Excel comes with a surprising 

number of analytical tools and formulas. The toolset isn’t as extensive 

as you’d find in a dedicated statistics package, but it’s still impressive.

Some analyses, unfortunately, aren’t part of Excel. And some of those might 

turn out to be important for you. In many cases, with a little ingenuity you 

can use the existing parts of Excel to perform those analyses anyway. In this 

Appendix, I focus on one of those analyses.

Covariance: A Closer Look
In Chapter 15, I mention covariance in connection with correlation. I spoke 

about it briefly as the numerator of the correlation coefficient. I also mention 

that covariance represents two variables changing together.

What does that mean, exactly?

Imagine a group of people on whom we measure mathematical ability and 

sociability. (Let’s just assume we have valid, reliable ways of measuring 

both.) If we find that the people with high mathematical ability are the most 

sociable, and the people with low mathematical ability are the least sociable, 

this thing called covariance is numerically high and positive. This type of 

positive relationship is called a direct relationship.
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A different result is possible: The people with high mathematical ability 

might turn out to be the least sociable, and the people with low mathematical 

ability the most sociable. If that happens, covariance is numerically high and 

negative. This type of negative relationship is called an inverse relationship.

Still another result is possible. We might find no connection whatsoever 

between mathematical ability and sociability. In this case, the two variables 

are independent, and the numerical value of covariance is close to zero. It 

could be slightly positive, it could be slightly negative, but it’s close to zero.

Sounds a lot like correlation? It should. As I said, covariance is the numera-

tor of the correlation coefficient. One way to look at it is that the correlation 

coefficient puts an upper and lower bound on covariance. With a little experi-

ence, we can understand what a correlation coefficient of .98 means, or a cor-

relation coefficient of -.62. Without a lot of context, it’s hard to know what a 

covariance of 473.5 means.

Why You Analyze Covariance
So you’ve had a refresher on what covariance is. Why do we want to . . . uh . . . 

analyze it?

Let’s begin with a typical study: You randomly assign people to different 

conditions and you assess their performance under those conditions. For 

example, you might randomly assign 15 children to one of three groups that 

differ on how they prepare for a math exam. One group prepares by listen-

ing to a human instructor. Another prepares by going through an interactive 

program on a computer. The third prepares by reading a textbook. Then they 

take the exam.

The performance on the test is the dependent variable. The three preparation 

conditions make up the independent variable. The goal is usually to find out 

if the different conditions of the independent variable affect the dependent 

variable. Recall from Chapter 12 that this involves a hypothesis test that 

looks like this:

H
0
: μ

Instructor 
= μ

Computer 
= μ

Text

H
1
: Not H

0

In Chapter 12, I also point out that the appropriate statistical technique is the 

analysis of variance (ANOVA).

So far, so good. What about covariance?
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In addition to the dependent variable and the independent variable, a third 

kind of variable can come into play. Here’s how. Suppose you have another 

relevant measure for each of the 15 children — mathematics aptitude. In 

addition to preparation type, this could also affect each child’s exam perfor-

mance. This third variable is called the covariate. The relationship between 

the dependent variable and the covariate is covariance.

Big shots in the field of research design and analysis have a name for ran-

domly assigning individuals to different conditions of the independent vari-

able and keeping everything else the same (like the time of day you give the 

test, the amount of time each child prepares, the amount of time each child 

has to take the test). They call this experimental control. 

They also have a name for assessing the effects of a covariate — that is, 

its covariance with the dependent variable. They refer to that as statistical 
 control. Both are valuable tools in the analyst’s arsenal.

Bottom-line question: Why do you need statistical control? Suppose you 

carry out the study and find no significant differences among preparation 

groups. This could mean that experimental control wasn’t powerful enough 

to discern an effect of preparation type. That’s when statistical control can 

come to the rescue. Suppose mathematics aptitude affected performance in 

ways that masked the effects of preparation type. That is, does the possible 

correlation of performance with aptitude affect the results?

By combining experimental control with statistical control, analysis of covari-

ance (ANCOVA) answers that question.

How You Analyze Covariance
How do you combine the two types of control? 

In Chapter 12, I point out that ANOVA separates SS
Total

 into SS
Between

 and SS
Within

. 

Divide each SS by its degrees of freedom and you have three MS (variances). 

The MS
Between

 reflects differences among group means. The MS
Within

 estimates 

the population variance. It’s based on pooling the variances within the 

groups. If the MS
Between

 is significantly greater than the MS
Within

, you can reject 

the null hypothesis. If not, you can’t. (Reread Chapter 12 if this all sounds 

strange to you.)

In ANCOVA, you use the relationship between the dependent variable and 

the covariate to adjust SS
Between

 and SS
Within

. If the relationship is strong, it’s 

likely that the adjustment increases SS
Between

 and reduces SS
Within

. Statistics, 
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like most other aspects of our world, feature no free lunches: The adjustment 

lowers the df
Within

 by 1. It might help to think of it this way:

ANOVA: 

ANCOVA:

A possible outcome of the adjustment (if the relationship is strong) is that 

the F ratio is higher for ANCOVA than for ANOVA. In practical terms, this 

means that adding statistical control can result in a more powerful study 

(that is, greater ability to find an effect) than experimental control alone.

Here’s a way to understand ANOVA vs. ANCOVA: ANOVA helps you find a 

needle in a haystack. ANCOVA also does this, but it removes some of the hay 

from the haystack — and it makes the needle a little bigger, too.

ANCOVA in Excel
Although Excel has no built-in tools for ANCOVA, you can use what Excel 

does provide to make ANCOVA way easier than it looks in statistics books. 

What does Excel provide? When it comes to covariance, recall that the 

COVAR worksheet function does all the calculations for you, as does the 

Covariance analysis tool.

It sounds like the Covariance analysis tool is ideal for something called 

Analysis of Covariance (ANCOVA). Oddly, it’s not. We also have no use for 

COVAR as we proceed. 

Instead, I show you two approaches that use other Excel features to carry out 

an ANCOVA. One approach uses the Anova: Single Factor analysis tool along 

with some worksheet functions. The other uses the Regression analysis tool 

along with some worksheet functions. 

Both approaches tackle the data in Table B-1. In both methods, I use regres-

sion slopes to express the relationship between the dependent variable and 

the covariate. 
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Table B-1 Data for Exam Performance with Three Preparation
 Methods and for Mathematics Aptitude

Human Computer Text

Math 
Aptitude

Exam Math 
Aptitude

Exam Math 
Aptitude

Exam

10 6 7 9 7 9

9 9 7 5 9 12

8 7 8 14 4 9

6 2 11 10 11 18

9 10 11 15 7 11

These methods are for the kind of research design I discuss in Chapter 12 

(single factor ANOVA). You can use ANCOVA for any kind of research design 

that involves ANOVA, but these two particular methods won’t work for more 

complicated designs (as in Chapter 13, for example). 

Method 1: ANOVA 
When most statistics textbooks cover analysis of covariance, they show you 

a lot of arcane-looking computation formulas designed to avoid even more 

complex-looking regression-related calculations. The result is that they often 

obscure what ANCOVA is supposed to do.

With this method, and the next one, I show you how to harness Excel’s power 

to get around all of that. My goal is to make ANCOVA a lot easier than it looks 

in stat books.

Figure B-1 shows the ANCOVA worksheet for this method. I’ll take you 

through the steps.

The data from Table B-1 are in cells B1:D13, separated into one table for the 

dependent variable data and another for the covariate data. I structured 

the data this way because I have to use the Anova: Single Factor tool on the 

dependent variable and again on the covariate. The input to the Anova tool is 

a contiguous range of cells, so the layout in Table B-1 doesn’t work.

The first thing I did was set up to calculate b
within

, a quantity I use to adjust 

the SS and to adjust group means for post-analysis testing. 
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Figure B-1: 
The

 Method 1 
ANCOVA 

worksheet 
for the data 

in Table B-1.
 

What is b
within

? Imagine a scatterplot for each of the three groups, and a 

regression line through each scatterplot. Each regression line has a slope. 

The value of b
within

 is the average of the group slopes with each slope 

weighted by the variance of the covariate within the group. 

This might be a rare case where the formula is clearer than the words. Here 

it is:

So I used VAR to calculate the variance of each group within the covariate. 

Those variances are in row 14, labeled VarianceX. I could have run the Anova 

tool to get these variances. I did it this way for clarity. The sum of these vari-

ances, 12.4, is in cell E14.

Then I used SLOPE to calculate the slope within each group. Those are in 

row 15, labeled SlopeXY. 

Row 16, labeled VarX*SlopeXY, contains the product of each group slope 

multiplied by the variance in that group. Cell E16 holds the sum of these 

products. 

The value of b
within

 is in cell B18. The formula for that cell is

=E16/E14
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Cell B19 holds another slope I use for SS adjustment. It’s called b
total

 and it 

represents the slope of the regression line drawn through a scatterplot of all 

the scores regardless of the group they’re in. The formula for B19 is

=SLOPE(B2:D6,B9:D13)

Next, I constructed the spiffy-looking ANCOVA table in cells A21:F25. The 

objective of this whole process is to fill in this table. I formatted all the labels 

and borders to make it look something like the results of an Anova:Single 

Factor analysis. Then I filled in the sources of variation in A23:A25, and the df 

in C23:C25. The df are the same as for ANOVA, except you lose a df from the 

df
Within

, and that of course is reflected in the df
Total

.

The next order of business is to run the Anova:Single Factor analysis tool. I 

ran it once for the dependent variable and once for the covariate. Why for the 

covariate? After all, I’m not testing any hypotheses about Math Aptitude. The 

reason for an ANOVA on the covariate is that the ANOVA output provides SS 

values I need to complete the ANCOVA.

In Chapter 12, I explain how to use this tool. The only difference is that in this

case I directed the output to this worksheet rather than to separate worksheets. 

I removed some rows from the Anova tool’s outputs so that everything would 

fit into one screen shot, and I modified them a bit for clarity.

The values in the ANOVA tables enable me to fill in the ANCOVA table. The 

Adusted SS
Total

 is

This means that 

=I13-B19^2*I27

goes into cell B25 in the ANCOVA table. By the way, I rounded off to two deci-

mal places to make everything look nicer on this page. The worksheet has 

way more decimal places.

Next up: Adjusted SS
Within

. The formula for the adjustment is 
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Numerically, that’s

So in cell B24 I put this formula

=I11-B18^2*I25

Adjusted SS
Between

? That’s just 

=B25-B24

in cell B23.

I complete the ANCOVA table by dividing each Adjusted SS by its df, and then 

dividing the Adjusted MS
Between

 by the Adjusted MS
Within

 to compute F.

That last column in the ANCOVA table, P-value, is a little trick courtesy of 

FDIST. The formula in cell F23 is

=FDIST(E23,C23,C24)

Just below the ANCOVA table, I put the adjusted means for the dependent 

variable. These enter into post-analysis testing, which I cover in the section 

after the next one. For now, I’ll just tell you that each adjusted mean is

where that uppercase X with a bar over it represents the average of all 15 

scores in the covariate. 

For this example, the adjusted means are

The adjustments increase the spread among the means.

In this worksheet, the group means are in the ANOVA outputs. Specifically, 

they’re in K4:K6 for the dependent variable and in K18:K20 for the covariate. 

So the formula for the adjusted Human mean (in cell B28) is

=K4-B18*(K18-AVERAGE(B9:D13))

30 454060-bapp02.indd   42630 454060-bapp02.indd   426 4/21/09   7:40:19 PM4/21/09   7:40:19 PM



427 Appendix B: The Analysis of Covariance

For the adjusted Computer mean (cell C28) it’s

=K5-B18*(K19-AVERAGE(B9:D13))

and for the adjusted Textbook mean (cell D28) it’s

=K6-B18*(K20-AVERAGE(B9:D13))

What’s the benefit of ANCOVA? Take a look at Figure B-1. Compare the result 

of the dependent-variable ANOVA (F
2,12

 = 2.57) with the result of the ANCOVA 

(F
2,11

 = 5.84). Although we sacrificed a df, the P-value shows the ANCOVA 

result is significant. The ANOVA result is not. The ANCOVA adjusted the 

SS
Between

 upward, and adjusted the SS
Within

 downward.

Bottom line: The relationship between the dependent variable and the covari-

ate enables us to uncover a significant effect we might otherwise miss. In this 

example, ANCOVA avoids a Type II error.

Method 2: Regression 
If the preceding method works, why am I bothering to show you yet another 

method? Even more important, why should you take the trouble to master it?

The reason I’d like you to read on is this. The method I’m about to show you 

asks you to change your mind-set about the data. If you can do that, you’ll 

find yourself open to another way of looking at statistical analysis and to 

mastering some new statistical concepts.

Here’s what I mean. The worksheet in Figure B-2 shows the data from Table 

B-1 in a different type of layout. The figure also shows the work for the com-

pleted ANCOVA. 

Column A has the math exam data, and column B has the math aptitude data, 

but they’re not separated into three groups as before. What’s going on here?

My plan is to treat this as a multiple regression. Exam is the dependent vari-

able, and Math Aptitude is an independent variable. But it’s not the only inde-

pendent variable.

The key is to somehow represent the group that each individual is a member 

of. Tag1 and Tag2 take care of that. If a child is in the Human Instructor 

group, Tag1 = 1 and Tag2 = 0. If a child is in the Computer group, Tag1 = 0 and 

Tag2 = 1. If a child is in the Textbook group, Tag1 = 0 and Tag2 = 0. In general, 

with k groups, k-1 columns can specify group membership in this way. Just to 

let you know, in Statistics World columns B, C, and D are called vectors, but I 

won’t go there.
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Figure B-2: 
The 

Method 2 
ANCOVA 

worksheet 
for the data 

in Table B-1. 
 

 This categorization scheme works when you have the same number of indi-

viduals in each group. If you don’t, things get a little dicey.

I drew lines to separate the three groups but that’s just to clarify.

What I’ve set up is a multiple regression with a dependent variable (Exam) 

and three independent variables (Math Aptitude, Tag1, and Tag2). What I’m 

saying is that Exam score depends on Math Aptitude, Tag 1, and Tag 2.

Below the data layout, cell B18 holds SS
TotalX

. The formula for that cell is

=COUNT(B2:B16)*VARP(B2:B16)

meaning that I multiplied the number of scores in column B (15) by the vari-

ance in column B (treated as a population of 15 scores, hence VARP) to give 

SS
TotalX

, the numerator of a variance.

I also calculated b
total

 in cell B20:

=SLOPE(A2:A16,B2:B16)

What about b
within

? Patience.

Below those values is a table of means and adjusted means, but I’ll get to that 

later.

You might not believe this, but the analysis is almost done.
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All that remains is to run the Regression analysis tool and use its results to 

complete the ANCOVA table.

In Chapter 14 I show you how to use the Regression tool. The difference here 

(as with ANOVA in Method 1) is that I directed the output to this worksheet 

rather than to a separate worksheet. For this example, the Input Y range in 

the Regression tool dialog box is A1:A16. Because this is a multiple regres-

sion, the Input X range is B1:D16.

The ANCOVA table is below the Regression output. As before, I formatted the 

whole thing, labels, rows, columns, and all. Then I filled in the df. 

I begin, as in Method 1, with the Adjusted SS
Total

. Again, that’s

So this time

=H14-(B20^2*B18)

goes into cell G26.

What next? The values for the Adjusted Within row are in the ANOVA table 

for the Regression output. They’re in the row labeled Residual. That’s right — 

the Adjusted SS
Within

 is the SS
Residual

 and Adjusted MS
Within

 is the MS
Residual

. 

That means 

=H13

goes into cell G25 and 

=I13

goes into cell I25. 

The Adjusted SS
Between

 is 

=G26-G25

in cell G24.
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I divided the Adjusted SSs by the df to produce the Adjusted MSs. Then I 

divided the Adjusted MS
Between

 by the Adjusted MS
Within

 to compute F. The 

rightmost entry, Significance F, is based on FDIST as in Method 1.

Did I forget b
within

? Nope. It’s is in the Regression output in cell G18 under 

Coefficients. It’s the regression coefficient for Math_Aptitude. I used this 

value to calculate the Adjusted Means in the Means table. After using 

AVERAGE to compute the means for the dependent variable and the covari-

ate, I put this formula into cell D24

=B24-$G$18*(C24-AVERAGE($B$2:$B$16))

and autofilled D25 and D26.

When you began reading this subsection, you might have wondered why 

I bothered to show you this method. Now that you’ve read it, you might 

wonder why I bothered to show you the first one!

After the ANCOVA
As I point out in Chapter 12, a significant F value indicates that an effect is 

somewhere within the data. It’s still necessary to zoom in on where.

Post-analysis tests come in two varieties — the kind you plan in advance, and 

the kind you don’t. The first, planned comparisons, are motivated by your 

ideas about what to expect before you gather the data. The second, post-hoc 
tests, are motivated by what looks interesting in the data you gathered.

In an ANOVA, you perform those tests on group means. In an ANCOVA, you 

adjust the group means (of the dependent variable) just as you adjust the SSs 

and the MSs. You also adjust the error term (the denominator) of the tests. 

I deal here with planned comparisons. After adjusting the means (which I did 

in each Method), the next step is to adjust the MS that goes into the denomi-

nator of the planned comparisons. I refer to the adjusted MS as and the way 

to calculate it is

in which k is the number of groups.
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For our example, that’s 

In the Method 1 worksheet, I select a cell and enter

=D24*(1+(I24*2)/I25)

I can now proceed with planned comparisons as I did in Chapter 12.

From all I show you here, it looks like Method 1 has the advantage over 

Method 2. Using the ANOVA analysis tool gives you the values you need for 

the planned comparisons, and it gives you the dependent-variable ANOVA to 

compare against the ANCOVA.

With the data arranged as in Method 2, we can’t get all that information, 

can we?

Yes we can. And that sets the stage for looking at a particular statistical anal-

ysis (ANOVA) in a new way, as I mention at the beginning of Method 2.

Read on.

And One More Thing
In several chapters of this book, you see the interplay between ANOVA and 

Regression: After every regression analysis, ANOVA tests hypotheses about 

regression ideas. 

In this section, I turn things around: I take an exercise normally treatable 

via ANOVA, turn it into a regression problem, and use regression to do an 

analysis of variance. This is called the MRC (multiple regression/correlation) 

approach. It’s based on the work of psychologist/statistician Jacob Cohen, 

who in the late 1960s formulated the idea of multiple regression as a general 

system for data analysis. 

Without going into all the details, Cohen’s idea is that many kinds of data are 

expressible in the format that regression operates on. Performing a regres-

sion analysis is all that’s necessary. In effect, various statistical techniques 

then become special cases of the general system.
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The dependent variable data in Table B-1 provide an opportunity to illustrate 

this approach. With the groups identified under Tag1 and Tag2, and the Tags 

as independent variables, ANOVA is exactly the same as multiple regression.

You might already be a step ahead of me. Figure B-3 shows the data laid out 

as in Figure B-2, but with different analyses. 

 

Figure B-3: 
The 

Method 2 
ANCOVA 

worksheet 
with two 
different 

regression 
analyses.

 

I ran the Regression analysis tool twice and directed the output to this work-

sheet both times. I deleted everything but the ANOVA from each output. 

The first time I ran the tool, the Input Y Range was A2:A16 (Exam) and the 

Input X Range was C2:D16 (Tag1 and Tag2). The result is the first ANOVA 

table, just below the heading Dependent Variable. 

The second time, the Input Y Range was B2:B16 (Math Aptitude) and the 

Input X Range was C2:D16, resulting in the ANOVA table below the heading 

Covariate.

Do the numbers look familiar? They should. They’re the same as the two 

ANOVAs I ran for Method 1. The only difference, of course, is the names in 

the Source of Variance column. Rather than Between and Within, these out-

puts display Regression and Residual. 

To complete the post-analysis tests for Method 2 ANCOVA, you only need the 

ANOVA for the covariate. I show you both to illustrate the MRC approach.

You can extend the MRC approach to more complex hypothesis tests, like 

the ones I discuss in Chapter 13. When you do, it becomes a bit more compli-

cated: You have to know more about multiple regression and how it applies 

to things like interaction. In any event, the MRC approach is definitely worth 

looking into.
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Appendix C

Of Stems, Leaves, Boxes, 
Whiskers, and Smoothies

In This Chapter
▶ Stem-and-leaf tables

▶ Box-and-whisker charts

▶ Data smoothing

Throughout Part III, I discuss Excel capabilities for testing hypotheses. 

The general process is that you formulate a hypothesis, gather data, and 

use a statistical technique to test the hypothesis.

Famed statistician John Tukey referred to hypothesis testing as confirmatory 
data analysis. He stressed, however, the importance of another process — 

exploratory data analysis (EDA). As the name suggests, in this process you 

explore data to find and illustrate features of interest, and perhaps generate 

hypotheses to investigate further. 

Tukey catalogued a wide array of techniques for exploring sets of data 

and for presenting data sets in ways that make them easy to understand. 

In this Appendix, I show you how to use Excel to implement three of those 

 techniques.

Stem-and-Leaf
Whenever I return an exam, naturally I tell the class the mean and the stan-

dard deviation, and what a score means in terms of a letter grade. If you read 

Chapter 6, you know I do that in terms of z-scores.
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What’s missing, though, is a sense of how the distribution of exam scores 

looks. Even with a frequency distribution (Chapter 2), an individual doesn’t 

know exactly where his or her score sits in the overall distribution.

Tukey’s stem-and-leaf display is a way around this. It organizes data so that 

an entire distribution of scores is quickly and easily comprehensible. 

The display breaks each score into two components: a leaf which is usually 

the last digit of the score, and a stem which is everything else. The objective 

is to create a layout that looks like Figure C-1.

 

Figure C-1: 
A stem-and-

leaf plot.
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In the display (also called a stemplot), the row labeled 9 means that all scores 

in that row are between 90 and 99. The leaves — 0, 3, 8, and 8 — in that row 

stand for scores of 90, 93, 98, and 98.

Figure C-2 shows an Excel worksheet with scores (in A1:A31), an intermediate 

display, and a stem-and-leaf display like Figure C-1. The intermediate display 

is the foundation for the stem-and-leaf display.

The first thing I did was arrange the scores in increasing order, which is how 

they appear in A1:A31. 

Next, I completed the intermediate display. I put numbers representing the 

stems in a column. That’s 90, 80, 70, 60, 50, and 40 in C4:C9. 
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Figure C-2: 
An Excel 

worksheet 
with scores, 

an inter-
mediate 

table, and a 
 stemplot.

 

After that, I put the scores from column A into the appropriate row in the 

intermediate display. Here are the steps for putting the data into the row:

 1. For an intermediate display row, select the subset of scores from the 

data column.

  For the first row, I selected 90–98 from column A.

 2. Right-click the selection and choose Copy from the pop-up menu.

 3. Select the first cell for the row where the selected scores go.

  I selected cell D4 to begin the first row.

 4. Right-click the selected cell and choose Paste Special from the pop-up 

menu to open the Paste Special dialog box.

 5. In the Paste Special dialog box, choose Transpose.

  This puts the selected column data into the row, with the scores in 

increasing order. 

Going through those steps for each row completes the intermediate display. 

Then I completed the stem-and-leaf display. I began by putting the stems into 

a column: 9, 8, 7, 6, 5, and 4 into C12:C17. Then I used the MOD function to 

add the leaves. The MOD function takes two arguments — a number and a 
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divisor — and returns the remainder. Here are the steps for using MOD and 

finishing the display. 

 1. Select the first cell for the leaf row.

  I selected D12, the highlighted cell in Figure C-2.

 2. From the Math & Trig menu, select MOD to open the Function 

Arguments dialog box for MOD. (See Figure C-3.)

 

Figure C-3: 
The MOD 
Function 

Arguments 
dialog box.

 

 3. In the Function Arguments dialog box, enter the values for the 

 arguments.

  For Number, I want the corresponding entry in the intermediate table, 

so that’s D4. 

  For Divisor, I want the intermediate display number that corresponds to 

the stem. That’s cell C4. I also want C4 to be the divisor when I autofill 

the remaining cells in the row, so I press the F4 key to turn C4 into $C$4. 

 4. Click OK to close the dialog box and place the calculated value into 

the selected cell.

  Figure A3-2 shows the Formula bar displaying the formula for D12:

=MOD(D4,$C$4)

 5. Autofill the row with the same number of scores as the row in the 

intermediate table.

Complete these five steps for each row and you have a stem-and-leaf display. 

I added the label Stem and the label Leaves. 

 To make everything look nicer for pasting to Powerpoint, I merged the cell 

holding the Leaves label with a few of the cells to its right.  
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 After pasting to PowerPoint, stretching the copy and enlarging the font make 

everything clearer.

Consider the stem-and-leaf display next time you have to present a distribu-

tion of scores.

Boxes and Whiskers
In Chapter 20, I describe a way of using Excel to put the standard error of the 

mean into a graph. It’s a great way of adding information to a graph that shows 

means of a dependent variable versus values of an independent variable.

Figure C-4 shows the Internet connections per district in the fictional eight-

district Farchadat County for the years 2006–2008, along with the standard 

error for each mean.

 

Figure C-4: 
Internet 

connections 
per district, 

Farchadat 
county, 

2006–2008.
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Does this chart tell the whole story? Do you really get a sense of the underly-

ing data? Take a look at Table C-1 before you answer.

Table C-1 Number of Internet Connections in 
 Farchadat County, 2006–2008
District 2006 2007 2008

1 1,140 957 1,179

2 1,460 960 824

3 489 496 652

4 594 871 651

5 502 732 765

6 508 908 696

7 370 119 390

8 200 220 106

That’s the data summarized in Figure C-4. As you can see, the numbers are 

quite a bit different from year to year, even though the means are the same 

and the standard errors (particularly for 2007 and 2008) are pretty similar. 

If you had to present the information to a Farchadat audience, you couldn’t 

just show them all the numbers. That would make everyone’s eyes glaze over 

and they’d quickly lose interest. So Figure C-4 doesn’t give enough detail and 

Table C-1 gives way too much. 

What do you do?

Instead of showing the mean and the standard error, the box-and-whisker 
plot shows the minimum, first quartile, median, third quartile, and maximum 

of a set of data. Statisticians refer to this set of statistics as a five-number 
 summary. 

You represent each five-number summary as a box with “whiskers.” The 

box is bounded on the top by the third quartile, on the bottom by the first 

quartile. The median divides the box. How you lay out the chart determines 

the width of the box. The whiskers are error bars: One extends upward from 

the third quartile to the maximum, the other extends downward from the 

first quartile to the minimum. 

Figure C-5 shows this. Notice that the median isn’t necessarily in the middle 

of the box and the whiskers aren’t necessarily the same length.

31 454060-bapp03.indd   43831 454060-bapp03.indd   438 4/21/09   7:41:02 PM4/21/09   7:41:02 PM



439 Appendix C: Of Stems, Leaves, Boxes, Whiskers, and Smoothies

 

Figure C-5: 
A box with 
whiskers.
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Surprisingly, Excel doesn’t offer a box-and-whisker chart. Instead, I show you 

how to cajole a type of Excel chart into boxes and whiskers. Full disclosure: 

The method I show you here isn’t original. It draws heavily (okay, entirely) 

from the work of Jon Peltier. Check out Jon’s Web site (peltiertech.com) 

for all kinds of great ideas.

The first order of business is to put the data into a worksheet and start com-

puting some statistics. Figure C-6 shows the worksheet and the statistics. 

I used the Mean and Standard Error to create the chart in Figure C-4. I use 

everything else to create a box-and-whisker plot for the data.

The next group of statistics holds the values for the five-number summary. 

I use MIN to find the minimum value for each year and MAX to find the 

maximum value. (See Chapter 7.) QUARTILE (Chapter 6) computes the first 

quartile and the third quartile. Not surprisingly, MEDIAN (Chapter 4) deter-

mines the median.

The final group of statistics holds the values I put directly into the box-and-

whisker plot. Why is this group necessary? 
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Figure C-6: 
Worksheet 

for a 
box-And-
whiskers 

plot.
 

I’m about to turn a Stacked Column chart (Chapter 3) into a box-and-whisker 

plot. In a stacked column, each segment’s size is proportional to how much it 

contributes to the size of the column. In a box-and-whisker box, however, the 

size of a segment represents a difference between one value and another — 

like the difference between the quartile and the median, or between the median 

and the first quartile. 

So the box is really a stacked column with three segments. The first segment 

is the first quartile. The second is the difference between the median and the 

first quartile. The third is the difference between the third quartile and the 

median. 

But wait. Won’t that just look like a column that starts at the x-axis? Not after 

I make the first segment disappear!

The other two differences — between the maximum and the third quartile 

and between the first quartile and the minimum — become the whiskers.

Follow these steps after you calculate all the statistics you see in Figure C-6.

 1. Select the data for the boxes in the box-and-whisker plot.

  In this worksheet, that’s B21:D23. Row 20 and Row 24 don’t figure into 

this step.
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 2. Select Insert | Column | Stacked Column to add a stacked column 

chart to the worksheet.

  Figure C-7 shows Steps 1 and 2.

  Figure C-8 shows what the stacked column chart looks like after I insert it, 

delete the gridlines, and reformat and title the axes.

 

Figure C-7: 
Selecting 

the 
Box-And-
Whiskers 
data and 

inserting a 
stacked col-

umn chart.
 

 

Figure C-8: 
The stacked 

column 
chart.
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 3. Add the whiskers.

  This is a lot like what I discuss in Chapter 20 when I show how to add 

standard errors to a chart. 

  First, I add the lower whiskers. With Series 1 selected, I click Layout | 

Error Bars and pick More Error Bars Options from the menu. 

  This opens the Format Error Bars dialog box. I select the Minus radio 

button, the Cap radio button, and the Custom radio button. 

  Then I click the Specify Value button to open the Custom Error Bars 

dialog box. Leaving the Positive Error Value as is, I specify the cell 

range for the Negative Error Value. For this worksheet, that’s B20:D20 

(Q1-Minimum). Figure C-9 shows the dialog boxes.

 

Figure C-9: 
Using the 

Format Error 
Bars dialog 

box and 
the Custom 
Error Bars 
dialog box 

to add 
the lower 
whiskers.

 

 4. Clicking OK closes this dialog box, and clicking Close closes the 

Format Errors dialog box.

  I follow similar steps to add the upper whiskers. This time I select 

Series 3. Then as before, I click Layout | Error Bars and More Error Bars 

Options. This time in the Format Errors dialog box I select the Plus radio 

button, the Cap radio button, and the Custom radio button. 
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  Again, I click the Specify Value button to open the Custom Error Bars 

dialog box. This time, I specify the cell range for the Positive Error 

Value. That cell range is B24:D24 (Max-Q3). I click OK and Close.

  Figure C-10 shows what the chart looks like after these steps.

 

Figure C-10: 
The stacked 

column 
chart with 
whiskers.

 

 5. Make the bottom segments disappear.

  To give the appearance of boxes rather than stacked columns, I select 

Series 1 (the bottom segment of each column), right-click and choose 

Format Data Series from the pop-up menu to open the Format Data 

Series dialog box.

  In the Format Data Series dialog box, I select Fill and click the No Fill radio 

button. Then I select Border Color and click the No Line radio button. 

  Clicking Close closes the dialog box. Figure C-11 shows the appearance 

of the chart.

 6. Reformat the remaining series to complete the box-and-whiskers plot.

  I select Series 2, right-click and pick Format Data Series from the pop-up 

menu. I select Fill and click the No Fill radio button. 

  Then I select Border Color and click the Solid Line radio button. I click 

the Color Button and select black from the Theme Colors palette.

  I click Close, and then go through the same sequence for Series 3.

  After that, I delete the legend. Voilà — Figure C-12! I can add another 

data series that shows where the means are, and another that would 

allow me to connect the medians, but this is enough for now.
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Figure C-11: 
The almost-

finished 
box-and-
whiskers 

plot.
 

 

Figure C-12: 
The 

completed 
box-and-
whiskers 

plot.
 

The box-and-whiskers plot shows important aspects of the data you can’t 

see in Figure C-4. One feature it shows is skewness (see Chapter 7): Although 

the means are identical and the standard errors pretty similar, the skewness 

differs from year to year. You see this in the position of the median within 

the box, and in the relative lengths of a box’s whiskers. The data for 2006 are 

positively skewed, the data for 2007 are negatively skewed, and the data for 

2008 are nearly symmetrical (slightly negative, to be exact). 

Another feature the box-and-whiskers plot shows is kurtosis (see Chapter 7) — 

how flat or how peaked the data are. Positive kurtosis means a frequency chart 

of the data would show a peak. Negative kurtosis means a frequency chart of 

the data would show flatness. The height of the box is the clue here. A longer 

box suggests negative kurtosis, a shorter box suggests positive kurtosis. 
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For 2008, the data have positive kurtosis, for 2007 the data have negative kur-

tosis. For 2006, the kurtosis is positive, but less so than for 2008. Admittedly, 

kurtosis doesn’t mean much with just eight scores. With a larger number, 

around 30, this feature takes on greater importance.

What’s the point of all this? The information about skewness, at least, would 

probably cause a Farchadat analyst to look at why a particular district might 

be an outlier one year and perhaps not the next.

Data Smoothing
Statisticians typically have to look at large masses of data and find hard-to-

see patterns. Sometimes an overall trend suggests a particular analytic tool. 

And sometimes that tool, while statistically powerful, doesn’t help the statis-

tician arrive at an explanation.

And so it is with Figure C-13, a chart of home runs hit in the American League 

from 1901 until 2008. (Yes, I know — yet another baseball example. Bear with 

me. Even if you’re not a fan, I think you can appreciate the thought process.)

 

Figure C-13: 
Home Runs, 

American 
League, 

1901–2008.
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The obvious overall trend is that as the years go by, more home runs are hit. 

Fitting a regression line confirms this idea. The equation

Home Runs = 24.325*Year – 465395

is a terrific fit to the data. The equation gives an R-Squared value of 0.91, indi-

cating that a linear model nicely describes the relationship between home 

runs and years. 

And so . . . what?

Just fitting a regression line glosses over important things within baseball — 

things both great and small that make up a baseball season, an era, a history. 

And baseball has many of those things. The objective is to get them to reveal 

themselves. 

The other extreme from the regression line is to connect the dots. That 

would just give a bunch of zigzags that likely won’t illuminate a century of 

history. 

The problem is similar to what I discuss in the preceding section — how 

to rise above the details without glossing over everything. In other words, 

summarize without eliminating too much: Get rid of the zigzags but keep 

the important peaks and valleys. How do we do this without knowing what’s 

important in advance? 

EDA helps point the way. One of Tukey’s EDA techniques is called three-
median smoothing. For each data point in a series, replace that data point 

with the median of three numbers: the data point itself, the data point that 

precedes it, and the data point that follows. Here’s a formula:

Why the median? Unlike the mean, the median is not sensitive to extreme 

values that occur once in awhile — like a zig or a zag. (See Chapter 4 if this 

sounds unfamiliar.) The effect is to filter out the noise and leave meaningful 

ups and downs. 

Why three numbers? Like most everything in EDA, that’s not ironclad. For 

some sets of data you might want the median to cover more numbers. It’s up 

to the intuitions, experiences, and ideas of the analyst. 
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Another of Tukey’s techniques is called hanning. This is a running weighted 

mean. You replace a data point with the sum of one fourth the previous data 

point plus half the data point plus one fourth the next data point. The formula:

Still another technique is the skip mean. For this one, I let the formula tell the 

story:

Tukey provides a number of others, but I confine the discussion to these 

three.

In EDA, you don’t just use one technique on a set of data. Often, you start 

with a median smooth, repeat it several times, and then try one or two 

others. 

For the data in the scatterplot in Figure C-13, I applied the three-median 

smooth, repeated it (that is, I applied it to the newly smoothed data), hanned 

the smoothed data, and then applied the skip mean. Again, no technique (or 

order of techniques) is right or wrong. You apply what you think illuminates 

meaningful features of the data.

Figure C-14 shows part of a worksheet for all of this. I obviously couldn’t fit 

all 108 years in one screenshot, but this gives you the idea. Column A shows 

the year, column B the number of home runs hit that year in the American 

League. The remaining columns show successive smooths of the data. 

Column C applies the three-median smooth to column B, column D applies 

the three-median smooth to column C. A quick look at the numbers shows 

that the repetition didn’t make much difference. Column E applies hanning to 

column D, and column F applies the skip mean to column E. In columns C–F, 

I used the actual number of home runs for the first value (for the year 1901) 

and for the final value (for the year 2008).

Just to clue you in on how I arrived at the smoothed values, here are the 

worksheet formulas for a typical cell in each column. 
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Figure C-14: 
A worksheet 

for smooth-
ing the data 

in Figure 
C-13.

 

For cell C3, the formula is

=MEDIAN(B2:B4)

For D3, it’s

=MEDIAN(B2:B4)

For E3

=(D2/4)+(D3/2)+(D4/4)

And for F3

=(E2/2)+(E4/2)

I autofilled each column, except for the first value and the final value. 

Next, I superimposed the numbers in column F as a series on the scatterplot. 

I formatted the series to have a solid line and no markers. Figure C-15 shows 

this. I refer to that solid line as “the smoothed line.”

 You can easily watch the effect of each successive smoothing technique on 

the smoothed line. The key is to right-click on the plot area and choose Select 

Data from the pop-up menu. Click on the name of the data series that repre-

sents the smoothed line, edit the cell range of the series to reflect the column 

that holds the particular smoothing technique, and click OK to close the edit-

ing dialog boxes. 
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Figure C-15: 
The 

smoothed 
data for 

home 
runs in the 
American 

League, 
1901–2008.

 

Home Runs

Year

1500

1000

500

0
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

2000

2500

3000

And now the story begins to reveal itself. Instead of a regression line that 

just tells us that home runs increase as the years go by, the highs and lows 

stimulate thinking as to why they’re there. Here’s a highly abridged version 

of baseball history consistent with the twists and turns of the smoothed line.

The low flat segment from 1901 until 1920 signifies the “dead-ball era,” a time 

when the composition of a baseball inhibited batted balls from going far 

enough to become home runs. 

As the 1920s began, however, a gentleman named George Herman Ruth (see 

Chapter 6) began whacking them out of American League ballparks with 

alarming regularity. Noting that this induced many to attend said ballparks, 

the powers that be (so the story goes) livened up the baseball to make the 

home run a more frequent event. This most likely accounts for the steady 

rise in the smoothed line until the 1940s.

Why the sudden decline after 1940? World history played a role: World War II 

took many of the best players and home-run production declined. In the late 

1940s, they came back. This provided the initial impetus for the ensuing rise 

in home runs. After that, the long-overdue diversification of the talent pool 

helped home-run output increase steadily until the beginning of the ’60s. 
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From then on, the smoothed line shows a series of peaks and valleys. A 

number of influences caused the peaks. The valleys most likely indicate 

pitchers adapting, learning, and perfecting their craft. 

First peak: 1961 brought expansion, and two new teams joined the American 

League. The League stocked the new teams with players from the established 

teams. The result was that the pool of pitchers thinned out — the number of 

talented pitchers per team declined, and batters took advantage, causing a 

sudden rise in home runs after the steady increase through the ’40s and ’50s. 

My best guess is that pitching improved, because home-run production 

declined in the late ’60s. Then the powers that be intervened again by chang-

ing the rules. The pitcher delivers the ball starting from a standing position 

on a raised area called “the mound” 60 feet 6 inches from home plate. In 

order to reduce the pitcher’s leverage and thereby increase batting produc-

tion, baseball’s overseers lowered the height of the mound in 1969. Coupled 

with another expansion that year (two additional teams), home-run produc-

tion rose again. 

In 1973, the American League (but not the National League) changed its rules 

yet again to improve batting production. Instead of letting notoriously weak-

hitting pitchers bat, the League invented the role of the designated hitter. 

The designated hitter has one job — to bat in place of the pitcher. 

With the removal of weak hitters from team batting orders, I expected 

an immediate dramatic increase in home runs. It didn’t happen that way. 

Instead, the smoothed line dips a bit and then increases steadily, if undramat-

ically, for the1970s. The introduction of the designated hitter likely affected 

baseball in a variety of ways that aren’t immediately obvious. I’m sure saber-

metricians (see Chapter 13) have addressed those possibilities. 

In 1977, the American League added two more teams, coinciding with another 

rise in home runs that continued until the early ’80s. Pitchers apparently 

adapted, and home runs declined until the early ’90s. 

Then something seems to have fueled home-run production, peaking around 

1998 when the League expanded again and added another team. Many have 

speculated on what juiced up this increase, but that’s beyond the scope of 

this discussion. As the smoothed line shows, home runs are in a period of 

decline lately. Hmmm . . .

I had a lot of fun writing this capsule summary of baseball history and show-

ing how events (as I see them) coincided with the peaks and valleys in the 

smoothed line. My knowledge is a little stronger on what might have caused 

the peaks, less so on the valleys. I assume “pitchers adapting” accounts 
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for the valleys, but I’m not certain. Did they really adapt? If so, how? Did 

anything else have an influence? (Strike-shortened seasons, for example?) 

Knowing about the valleys causes me to form hypotheses and test them — in 

this case, perhaps, by examining other statistics from the appropriate eras. 

For completeness, I have to verify my ideas about the peaks, too.

Bottom line: Exploring and visualizing the data stimulates thought about 

what’s producing the patterns the exploration uncovers. Speculation leads to 

testable hypotheses, which lead to analysis. As Tukey said in the preface to his 

book Exploratory Data Analysis (Addison-Wesley, 1977): “The greatest value of 

a picture is when it forces us to notice what we never expected to see.” 

I don’t think he was just talking about the designated hitter.

A SMOOTH add-in for Excel
EDA should be in the toolset of every statisti-
cian. If you want to get more heavily into data 
smoothing, visit quantdec.com, the Web site of 
Pennsylvania-based Quantitative Decisions. 
Founder Bill Huber has developed a free Excel 
add-in that incorporates all of Tukey’s data 
smoothing techniques. (More than the ones I 

tell you about here.) It’s called SMOOTH. After 
you download and install it in your spreadsheet, 
SMOOTH appears in the Statistical Functions 
menu. Each time you invoke SMOOTH you can 
apply a number of techniques successively. For 
example, in one run of SMOOTH, I can apply the 
four techniques I use for the home-run data.
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Index
• A •
a posteriori tests. See unplanned 

comparisons

a priori tests. See planned comparisons

absolute referencing. See also referencing 

cells

converting relative references to, 24–25

defi ned, 24

defi ned names and, 46

absolute values, 108

Add-Ins dialog box, 49

alpha

Anova: Single Factor tool, 229

Anova: Two-Factor with Replication tool, 

253

Anova: Two-Factor without Replication 

tool, 239, 247

defi ned, 172

F-Test Two Sample for Variances tool, 215

increasing, 219

Regression tool, 278, 288

t-test: Paired Two Sample for Means tool, 

206

t-Test: Two Sample tool, 200

alternative hypotheses. See also 

hypotheses

data importance, 171

decisions, 172

defi ned, 15, 171

statistical notation, 15

testing versus null hypothesis, 173

analysis of covariance (ANCOVA). See also 

covariance; covariance analysis

ANOVA method, 423–427

benefi t of, 427

defi ned, 421–422

in Excel, 422–431

F-ratio and, 422

outputs, 426

planned comparisons, 430

post-hoc tests and, 430

regression method, 427–430

table, 425–426

analysis of variance (ANOVA). See also 

variances

calculations, 228

defi ned, 222

dependent-variable, 431

F-ratio denominator, 222

multiple regression and, 432

one-factor, 222

post t-tests, 224

repeated measures, 232–235

two-factor, 244–245

AND function, 106

ANOVA. See analysis of variance

ANOVA method (ANCOVA), 423–427

Anova: Single Factor

alpha, 229

ANOVA table, 229

cell ranges, 229

defi ned, 47

dialog box, 228

output, 230

SUMMARY table, 229

use steps, 229

Anova: Two-Factor with Replication

alpha, 253

ANOVA table, 253

cell ranges, 253

defi ned, 47, 252

dialog box, 252

output, 254

output options, 253

SUMMARY table, 253

use steps, 252–253

Anova: Two-Factor without Replication

alpha, 239, 247

ANOVA table, 240, 247

cell ranges, 239, 247

defi ned, 47, 238

dialog box, 239, 246

output, 240, 247
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Anova: Two-Factor without Replication 

(continued)

output options, 239, 247

SUMMARY table, 240, 247

for two-factor ANOVA, 246–247

use steps, 239, 246–247

arguments

AND function, 106

AVEDEV function, 109

AVERAGE function, 82

AVERAGEA function, 82

AVERAGEIF function, 84

AVERAGEIFS function, 85, 86

BETADIST function, 337–338

BETAINV function, 339

BINOMDIST function, 327

CHIDIST function, 183

CHIINV function, 184

CHITEST function, 358, 387

COMBIN function, 322

CONFIDENCE function, 165–166

CORREL function, 300, 301

COUNT function, 124

COUNTBLANK function, 125

COUNTIF function, 125

COUNTIFS function, 126

CRITBINOM function, 330–331

DCOUNT function, 408, 409

defi ned, 30

DEVSQ function, 108

entering, 31

EXPONDIST function, 346–347

FACT function, 321

FDIST function, 212

FINV function, 213

FISHER function, 309

FORECAST function, 271

FREQUENCY function, 37

FTEST function, 210

GAMMADIST function, 344–345

GAMMAINV function, 345

GROWTH function, 398, 399, 400

HYPERGEOMDIST function, 333–334

IF function, 106

INTERCEPT function, 270, 271

KURT function, 131, 132

LINEST function, 275–276

LOGEST function, 395, 396

LOGINV function, 394

LOGNORMDIST function, 394

MAX function, 127

MEDIAN function, 90, 91

MOD function, 436

MODE function, 92

NEGBINOMDIST function, 328–329

NORMDIST function, 145, 146

NORMINV function, 146, 147

NORMSDIST defi ned, 149

NORMSINV function, 149

PEARSON function, 300–301

PERCENTILE function, 119

PERCENTRANK function, 120

PERMUT function, 321–322

POISSON function, 341–342

PROB function, 383

QUARTILE function, 120

RANK function, 117

SKEW function, 129, 130

SLOPE function, 270

STANDARDIZE function, 114, 115

STDEV function, 103

STDEVP function, 101, 102

STEYX function, 270, 271

SUM function, 33

SUMIF function, 43, 44, 45

TDIST function, 180

TINV function, 168

TREND function, 272–273, 274

TRIMMEAN function, 87

TTEST function, 197–198, 204

VAR function, 100

VARP function, 97

VARPA function, 98

WEIBULL function, 384

ZTEST function, 178

array formulas

creating, 46–47

results, 47

typing, 46

array functions. See also functions; specifi c 
functions

defi ned, 35

example, 35–37

arrays. See also cells

fi nding frequencies in, 133

FTEST function, 211

intervals, 37

names, defi ning, 38
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referring to, 38

right-clicking, 39

selecting, 40

unnamed, 45

z-scores, 116

asymptotic curves, 144

autofi lling cells

absolute referencing, 24

benefi ts, 21

defi ned, 20

incorrect, 23

from named arrays, 46

relative referencing, 23

using, 21–22

AVEDEV function, 109

average absolute deviation, 109

average deviation, 108–109

AVERAGE function

accessing, 51

defi ned, 81

formulas, 82, 161

Function Arguments dialog box, 82

with STDEV function, 103

steps, 81–82

using, 364

working with, 81

AVERAGEA function

defi ned, 82

evaluation, 83

Function Arguments dialog box, 82

steps, 82

AVERAGEIF function

defi ned, 20, 83

formula creation, 84–85

formulas, 84

Function Arguments dialog box, 84

AVERAGEIFS function

defi ned, 20, 83

formula creation, 86

Function Arguments dialog box, 85, 86

averages. See also means

deviation, 95

moving, 376

reporting, 25

trial, 85, 105

axes. See also x-axis; y-axis

horizontal, 57, 142

knowing, 372

pie charts and, 57

titles, 61

vertical, 57, 142

Axis Labels dialog box, 70, 71

• B •
bar graphs. See also graphs

bars, darkening, 73

creating, 72–73

data selection, 72

defi ned, 57, 71

illustrated, 72

layout, 73

modifying, 73

type selection, 72

uses, 71

bases, 389–390

bell curve

defi ned, 142

illustrated, 142

as normal distribution, 143

best fi tting line, 294

beta distribution

applicability, 338

binomial connection, 335

cumulative, working with, 337–338

defi ned, 335

random variable, 335

BETADIST function

defi ned, 337

Function Arguments dialog box, 337–338

use steps, 337–338

BETAINV function

defi ned, 338

Function Arguments dialog box, 339

lower limit, 338

return, 338

upper limit, 339

use steps, 339

bimodal, 91

BINOMDIST function

defi ned, 327

Function Arguments dialog box, 327

illustrated, 328

use steps, 327
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binomial distribution

BINOMDIST function for, 327–328

defi ned, 326

hypothesis testing with, 329–332

illustrated, 328

negative, 326

standard normal distribution 

approximation, 331

binomial experiments, 326

bins, 37, 133

box-and-whisker plot

box, 438

data, 440, 444

data selection, 441

defi ned, 438

fi ve-number summary, 438

illustrated, 439, 444

kurtosis display, 444–445

series, reformatting, 443

skewness display, 444

turning stacked column chart into, 440

whiskers, 438

worksheet for, 440

• C •
categorical variables, 372–373

category buttons, 18

cell ranges

in COUNTIFS function, 126

database name, increasing, 414

name attachment to, 40

naming, 38–46

right-clicking, 39

selecting, 40

standard scores, 150

cells. See also arrays; cell ranges

autofi lling, 20–22

entering formulas directly into, 40

referencing, 22–25

Central Limit Theorem

defi ned, 157

large samples, 189, 191

mean of sampling distribution, 73, 157

normal distribution for large samples, 166

normally distributed populations, 189

parameters for sampling distribution, 160

population and, 158

sampling distribution as normal 

distribution, 157–158

sampling distribution of the difference 

between means, 189

simulation, 158–162, 363–366

simulation results, 365

standard deviation of sampling 

distribution, 157

standard error of the mean, 173

two-sample hypothesis testing, 189–190

central tendency

defi ned, 79

means, 79–89

medians, 89–91

mode, 91–92

Change Chart Type dialog box, 67

Chart Wizard, 19

charts. See also graphs

creating, 19

defi ned, 58

gallery, 19

High-Low-Close, 18

inserting, 58–59

modifying, 59

Charts area (Insert tab), 58–59

CHIDIST function

defi ned, 182–183

Function Arguments dialog box, 183

use steps, 183

using, 354

CHIINV function

defi ned, 183–184

Function Arguments dialog box, 184

use steps, 184

chi-square distributions

defi ned, 181

degrees of freedom and, 181

members, 182

multinomial approximation, 352–353

test statistic, 181

CHITEST function

defi ned, 355

degrees of freedom and, 355–356

Function Arguments dialog box, 358, 387
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return, 387

in testing independence, 385–388

use steps, 358

coeffi cient of determination

calculating with RSQ, 302

defi ned, 296

multiple, 305

square root of, 296–297

column factor

defi ned, 249

row factor interaction, 251

variance, 250

column graphs. See also graphs

for categorical variables, 373

data selection, 59

defi ned, 57

gallery, 60

as histograms, 63

illustrated, 56

modifying, 60–61

for occurrence frequency, 63

stacked, 61–63, 440

titles, 61

type selection, 59

COMBIN function, 322

combinations

calculating, 322

defi ned, 320

formula, 320

large sample spaces, 219

notation, 319

common logarithms. See also logarithms

defi ned, 389

natural logarithms comparisons, 392

comparison coeffi cients

changing, 231

defi ned, 225

in fi nding Sum of Squares for linear 

trends, 236

multiplying with SUMPRODUCT, 231

in planned comparison t-test formula, 226

squared, 230

in trend analysis, 235

comparisons. See planned comparisons; 

unplanned comparisons

compound events. See also events

combining methods, 315

defi ned, 315

formulas, 315, 316

intersection, 316–317

union, 315–316

conditional probability. See also 

probabilities

in decision-making process, 15

defi ned, 14, 317

example, 317

hypothesis testing foundation, 318

working with, 318

confi dence, estimates, 155, 162–166

CONFIDENCE function

defi ned, 165

Function Arguments dialog box, 165–166

return, 165

sample size and, 169

sampling distribution assumption, 169

use steps, 165–166

Confi dence Limit of the Mean, 138

confi dence limits

defi ned, 162–163

example, 164–165

fi nding for a mean, 163–165

lower, 168

percentage of area beyond, 166

upper, 168

confi rmatory data analysis, 433

constants, 11

contextual tabs, 19

continuous random variables, 323

CORREL function

cell ranges, 301

defi ned, 300

Function Arguments dialog box, 300, 301

use steps, 301

correlation

calculation formula, 293

defi ned, 291, 292

multiple, 304–305

negative, 292

partial, 306–307

point biserial, 301

positive, 292

regression and, 294–297

semipartial, 307

testing hypotheses about, 

297–300, 308–310

worksheet functions for, 300–302
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correlation coeffi cient

calculating, 297

defi ned, 294

difference, 298–300

greater than zero, 297–298

large samples and, 371–372

lower limit, 294

multiple, 304–305

Pearson’s product-moment, 294

transforming, 299

upper limit, 294

correlation matrix, 304

Correlation tool

cell ranges, 303, 304

defi ned, 48, 303

dialog box, 303

multiple correlation, 304–305

output options, 304

partial correlation, 306–307

semipartial correlation, 307

tabled output, 304–307

use steps, 303–304

COUNT function

defi ned, 123

Function Arguments dialog box, 124

use steps, 123–124

COUNT NUMBERS function, 51

COUNTA function, 124

COUNTBLANK function

defi ned, 124

Function Arguments dialog box, 125

COUNTIF function, 125

COUNTIFS function

defi ned, 20, 125

example use, 126

Function Arguments dialog box, 126

pairs of cells, 125

counting rule, 319

COVAR function, 302

covariance

calculating, 302

defi ned, 294

formula, 302

matrix, 307

covariance analysis

ANCOVA, 422–431

covariate, 421

dependent variable, 420

experimental control, 421

independent variable, 420

method, 421–422

reason for, 420–421

statistical control, 421

Covariance tool

defi ned, 48, 307

tabled output, 308

covariate

defi ned, 421

dependent variable relationship, 421, 427

variances within, 424

Create Pivot Table dialog box, 416–418

CRITBINOM function

defi ned, 330

Function Arguments dialog box, 330–331

return, 330

use steps, 330–331

criteria range, 407

critical values

defi ned, 173

example, 175–176

for F, 236

one-tailed test, 194

setting, 174

cubic component, 238

cumulative area, 145

cumulative proportion, 145

curly brackets, 37

curvilinear regression. See also regression

equation, 397

extrapolating beyond scatterplot and, 371

GROWTH function, 398–401

Custom Error Bars dialog box, 381–382, 442

Customize Status Bar menu, 138–139

• D •
damping factor, 378

data

box-and-whisker plot, 440, 444

graphing, 55–77

imported from Web page, 403

importing, 401–403

interval, 13

median, 446

32 454060-bindex.indd   45832 454060-bindex.indd   458 4/21/09   7:41:38 PM4/21/09   7:41:38 PM



459459 Index

nominal, 12

ordinal, 12

percentile, 281

ratio, 13

scatterplots, 74

sets, 433, 446

smoothed, 449

testing more than two samples, 218

types of, 12–13

data analysis tools, 199–202

Anova: Single Factor, 47, 228–230

Anova: Two-Factor with Replication tool, 

47, 252–254

Anova: Two-Factor without Replication, 

47, 238–240, 246–247

Correlation, 48, 303–307

Covariance, 48, 307–308

defi ned, 47

Descriptive Statistics, 48, 50, 51, 136–138

Exponential Smoothing, 48, 378

F-Test Two Sample for Variances, 

48, 214–215

Histogram, 48, 63, 134–136

list of, 47–48

Moving Average, 48, 376–377

Random Number Generation, 48, 360–363

Rank and Percentile, 48, 121–122

Regression, 48, 277–282, 287–289

Sampling, 48, 384–385

t-test: Paired Two Sample for Means, 

205–207

t-Test: Two Sample, 48, 199–202

use example, 50–51

using, 47–51

z-Test: Two Sample for Means, 

48, 192–194

Data Form

accessing, 413

defi ned, 413

illustrated, 414

using, 414

data lists, 405

data smoothing

hanning, 447

peaks and valleys, 450, 451

skip mean, 447

SMOOTH, 451

three-median, 446

Data tab (Ribbon)

Analysis area, 30

Data Analysis button, 49, 50, 134, 137

Get External Data button, 401

database functions. See also functions

accessing, 409

arithmetic, 410–412

example, 407

format, 407, 408–409

operation, 407

statistics, 412–414

wildcards and, 410

databases

Data Form, 413–414

fi elds, 405

records, 405, 409–410

satellites, 405–407

uses, 405

worksheets as, 405–418

DAVERAGE function, 412

DCOUNT function

defi ned, 407

formula, 408, 409

Function Arguments dialog box, 408, 409

use steps, 408–409

DCOUNTA function

defi ned, 409

formula, 409, 410

decision-making

in fi eld of statistics, 9

hypotheses, 15

number crunching and, 9

degrees of freedom

CHIDIST function, 183

CHIINV function, 184

in chi-square distributions, 181

CHITEST function, 355–356

defi ned, 166, 179, 195

denominator of variance estimate, 261

equal variances and, 202

FDIST function, 212

F-distribution, 223

FINV function, 213

F-ratio, 209

Mean Squares and, 224

in population variance, 179

reducing, 197

regression, 266
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degrees of freedom (continued)

TDIST function, 180

t-distribution and, 167, 179

TINV function, 168

unequal variances and, 202

dependent variables. See also variables

covariance analysis, 420

covariate relationship, 421, 427

defi ned, 12, 256, 292

independent variable relationship, 257

in vertical axis, 57

Descriptive Statistics tool

defi ned, 48, 136

dialog box, 50, 137

opening, 137

options, 137

output, 51, 138

statistics values, 138

use steps, 136–137

working with, 50

Design tab (Ribbon)

Change Chart Type button, 67

Chart Layouts button, 70, 73, 75

Chart Styles button, 70, 73

Data button, 61

Location button, 62

deviations

absolute value of, 108

average, 108–109

averaging, 95

defi ned, 94

in scatterplot, 265

squared, 94–97, 221

standard, 100–107, 148, 178, 190, 379

DEVSQ function

defi ned, 107

Function Arguments dialog box, 108

DGET function, 410

dichotomous variables, 301

direct relationships, 419

discrete random variables, 323

distributions

beta, 335–338

binomial, 326, 327–332

chi-square, 181–182, 352–353

Erlang, 343

exponential, 346–347

F-distribution, 208–210, 213, 223

frequency, 36, 132–136

gamma, 343–345

hypergeometric, 332–334

lognormal, 394–395

multinomial, 352

normal, 131, 143–144, 150–151, 

157–158, 392

parameters, 361

Pascal, 326

Poisson, 340–342, 350

probability, 323, 324

sampling, 156–158, 161–162, 172–175, 

188–191

t-distribution, 166–168, 179

Weibull, 384

DMAX function, 411

DMIN function, 411

DPRODUCT function, 411–412

drawing samples, 384–385

DSUM function, 411

DVAR function, 412–413

DVARP function, 412–413

• E •
e

defi ned, 390

growth association, 392

natural phenomenon related to, 392

paths to, 391–392

raising to power of, 393

elementary outcomes

defi ned, 314

large sample spaces, 319

probabilities of, 314

in sample space, 317

English letters, 11

epsilon, 264

equal variances. See also variances

defi ned, 195

degrees of freedom and, 202

t-test, 210

Erlang distribution, 343
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error terms

defi ned, 222, 234

for F, 250

errors

epsilon representation, 264

in hypothesis testing, 172

probabilities, 173

Type I, 17, 172

Type II, 17, 172

types of, 16–17

*VALUE!, 47

estimates

confi dence, 155, 162–166

context, 155

pooled, 196, 197, 220–221

population mean, 163

population variance, 195

residual error, 262

standard error, 167, 261, 262, 270

events

combining, 315–316

compound, 315–316

intervals, 350

overlap, 316

exam scores, 113–114

Excel 2007

ANCOVA in, 422–431

graphics capabilities, 58–59

relating statistics-book concepts to, 374

statistical capabilities, 27–52

worksheet functions, 30–33

Excel Options dialog box, 49

EXP function, 151, 393

exp notation, 393

expected numbers, 386–387

expected value, 324

experimental control, 421

experiments

binomial, 326

defi ned, 314

exploratory data analysis (EDA)

defi ned, 433

three-median smoothing, 446

Exploratory Data Analysis (Tukey), 451

EXPONDIST function

Cumulative box, 347

defi ned, 346

Function Arguments dialog box, 346–347

Lambda box, 346

use steps, 346–347

exponential distribution

calculating, 346–347

defi ned, 345

density function, 345

exponential smoothing

damping factor, 378

defi ned, 377

illustrated, 379

Exponential Smoothing tool

application, 378

defi ned, 48

dialog box, 378

exponents

base, 389

curvilinear equation, 396

defi ned, 388

• F •
FACT function, 321

factorials

computing, 321

indication, 391

factors, 222, 243

FDIST function

defi ned, 212

degrees of freedom, 212

Function Arguments dialog box, 212

return, 212

use steps, 212–213

F-distribution

cutting off portion of tail, 213

defi ned, 208

degrees of freedom, 223

members, 208

statistic test, 208

with t-test, 209–210

fi elds

defi ned, 405

dropping into/out of pivot tables, 418

Fill pop-up menu, 22

FINV function, 213

FISHER function

defi ned, 308–309

Function Arguments dialog box, 309

FISHERINV function, 309
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Fisher’s r to z transformation, 299

fi ve-number summary

defi ned, 438

representation, 438

values, 439

FORECAST function, 271

forecasting, regression for, 261

Format Data Point dialog box, 65–66

Format Data Series dialog box, 443

Format Error Bars dialog box

for adding whiskers, 442

Both button, 381

Cap button, 381, 442

Custom button, 381, 442

illustrated, 381

opening, 381

Plus button, 442

Specify Value button, 381, 443

Format Trendline dialog box, 76, 397

Formula Bar

defi ned, 28

function format, 32

illustrated, 28

formulas, 195, 203

array, 46–47

autofi lled, 22–23

combinations, 320

compound events, 315, 316

converting score to z-score, 147

correlation, 293

covariance, 302

creating, 21

entering directly into cells, 40

event occurrence, 14

inserting in cells, 20, 21

intercept, 259

kurtosis, 131

Mean Square, 220

permutations, 320

Poisson distribution, 340–341, 350

population standard deviation, 101

population variance estimation, 219

regression coeffi cients, 259

repeating, 22

sample standard deviation, 102

sample variance, 99

skewness, 128–129

slope, 259

standard error of estimate, 262

t-test, 195, 203, 225

typing, 32

variance, 96

z-score, 112

z-test, 191

Formulas tab (Ribbon)

Defi ne Name button, 39

Insert Function button, 29

Logical Functions button, 105

Manage Names button, 414

Math & Trig button, 42, 45

More Functions button, 33, 34

F-ratio

ANCOVA and, 422

calculation, 210–211

defi ned, 208

degrees of freedom, 209

error term, 222

region of rejection determination, 

212–213

variance estimates in, 209

frequencies

defi ned, 36

fi nding in arrays, 133

fi nished, 37

frequency distribution

creating, 132–136

defi ned, 36, 132

FREQUENCY function

arguments, 37

bins, 37, 133

defi ned, 35, 132

example use, 36–37

formulas, 37, 134

frequencies, 134

Function Arguments dialog box, 37, 133

in simulated sampling distribution, 

161–162

use steps, 133–134

using, 361, 364

working with, 36

F-test

after, 224–228

defi ned, 208

rejection decision, 224

FTEST function

arrays, 211

defi ned, 210

formula, 211
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Function Arguments dialog box, 210

results, 211

use steps, 210–211

working with, 210

F-Test Two Sample for Variances tool

alpha, 215

cell ranges, 214

data, 214

defi ned, 48

dialog box, 214

output options, 215

results, 215

use steps, 214–215

variables, 214

Function Arguments dialog box, 31, 32

AND function, 106

AVEDEV function, 109

AVERAGE function, 82

AVERAGEA function, 82

AVERAGEIF function, 84

AVERAGEIFS function, 85, 86

BETADIST function, 337–338

BETAINV function, 339

BINOMDIST function, 327

CHIDIST function, 183

CHIINV function, 184

CHITEST function, 358, 387

COMBIN function, 322

CONFIDENCE function, 165–166

CORREL function, 300, 301

COUNT function, 124

COUNTBLANK function, 125

COUNTIF function, 125

COUNTIFS function, 126

CRITBINOM function, 330–331

DCOUNT function, 408, 409

DEVSQ function, 108

EXPONDIST function, 346–347

FACT function, 321

FDIST function, 212

FINV function, 213

FISHER function, 309

FORECAST function, 271

FREQUENCY function, 37, 133

FTEST function, 210

GAMMADIST function, 344–345

GAMMAINV function, 345

GROWTH function, 398, 399, 400

HYPERGEOMDIST function, 333–334

IF function, 106

INTERCEPT function, 270, 271

KURT function, 131, 132

LINEST function, 275–276

LOGEST function, 395, 396

LOGINV function, 394

LOGNORMDIST function, 394

MAX function, 127

MEDIAN function, 90, 91

MOD function, 436

MODE function, 92

NEGBINOMDIST function, 328–329

NORMDIST function, 145, 146

NORMINV function, 146, 147

NORMSDIST defi ned, 149

NORMSINV function, 149

opening, 45

PEARSON function, 300–301

PERCENTILE function, 119

PERCENTRANK function, 120

PERMUT function, 321–322

POISSON function, 341–342

PROB function, 383

QUARTILE function, 120

RANK function, 117

SKEW function, 129, 130

SLOPE function, 270

STANDARDIZE function, 114, 115

STDEV function, 103

STDEVP function, 101, 102

STEYX function, 270, 271

SUMIF function, 43, 44, 45

TDIST function, 180

TINV function, 168

TREND function, 272–273, 274

TRIMMEAN function, 87

TTEST function, 197–198, 204

VAR function, 100

VARP function, 97

VARPA function, 98

WEIBULL function, 384

ZTEST function, 178
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Function Library

accessing, 28

defi ned, 29

functions

access menus, 29

accessing, 33–35

adding to Quick Access Toolbar, 34

AND, 106

array, 35–37

AVEDEV, 109

AVERAGE, 51, 81–82

AVERAGEA, 82–83

AVERAGEIF, 20, 25, 83–85

AVERAGEIFS, 20, 25, 85–86

BETADIST, 337–338

BETAINV, 338–340

BINOMDIST, 327–328

CHIDIST, 182–183

CHIINV, 183–184

CHITEST, 355–356, 358, 385–388

commonly used, accessing, 51–52

CONFIDENCE, 165–166

CORREL, 300–301

COUNT, 123–124

COUNT NUMBERS, 51

COUNTA, 124

COUNTBLANK, 124–125

COUNTIF, 125

COUNTIFS, 20, 125–126

COVAR, 302

CRITBINOM, 330–331

DAVERAGE, 412

DCOUNT, 407, 408–409, 409

DCOUNTA, 409–410

DEVSQ, 107–108

DGET, 410

dialog box, 20

DMAX, 411

DMIN, 411

DPRODUCT, 411–412

DSTDEV, 413

DSTDEVP, 413

DSUM, 411

DVAR, 412–413

DVARP, 412–413

EXP, 151, 393

EXPONDIST, 346–347

FACT, 321

FDIST, 212–213

FINV, 213

FISHER, 308–309

FISHERINV, 309

FORECAST, 271

Formula Bar format, 32

FREQUENCY, 35–37, 132–134

FTEST, 210–211

GAMMADIST, 343–345

GAMMAINV, 345

GEOMEAN, 88

GROWTH, 398–401

HARMEAN, 89

HYPERGEOMDIST, 333–334

IF, 105–106

INTERCEPT, 269–271

KURT, 131–132

LARGE, 118–119

LINEST, 275–277

LOGEST, 395–398

LOGINV, 394

LOGNORMDIST, 393–394

MAX, 51, 126–127, 439

MAXA, 127

MEDIAN, 90–91, 439

MIN, 51, 127, 439

MINA, 127

MOD, 435–436

MODE, 92

NORMDIST, 145–146

NORMINV, 146–147

NORMSDIST, 148–149

NORMSINV, 149

opening list of, 27

PERCENTILE, 119

PERCENTRANK, 120

PI, 151

POISSON, 341–342

PROB, 383

QUARTILE, 120, 439

RANDBETWEEN, 160–161

RANK, 117–118

RSQ, 302

selecting, 20, 45
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shortcut to, 33–35

SKEW, 129–130

SLOPE, 269–270, 424

SMALL, 118

STANDARDIZE, 114–116

STDEV, 102–103

STDEVA, 103

STDEVP, 101–102

STDEVPA, 102

STEYX, 269–271

SUM, 30–31, 51

SUMIF, 41, 42–43

SUMIFS, 41

SUMPRODUCT, 230–231, 241

SUMQ, 242

TDIST, 180–181

TINV, 168–169

TREND, 272–275

TRIMMEAN, 86–87

TTEST, 197–198, 203–205

using, 19–20

VAR, 100

VARA, 100

VARP, 97–98

VARPA, 98

WEIBULL, 383–384

worksheet, 30–33

ZTEST, 177–178

fx symbol, 27, 28

• G •
gamma distribution

calculating, 343–345

defi ned, 342–343

probability density function, 343

GAMMADIST function

defi ned, 343

Function Arguments dialog box, 344–345

use steps, 344–345

GAMMAINV function, 345

GEOMEAN function, 88

geometric mean, 88

goodness-of-fi t application, 354

grand mean

defi ned, 220, 244

variance from, 233–234

graphs. See also axes; charts

bar, 57, 71–73

benefi ts, 55

categorical variable, 372–373

column, 57, 59–63

creation guidelines, 57–58

fundamentals, 57–58

horizontal axis (x-axis), 57

illustrated example, 56

line, 68–71, 257–259

pie, 57, 64–68

reasons for using, 55–57

scatterplot, 74–77

standard error, 373, 382

variability in, 373

vertical axis (y-axis), 57

“what-if” capabilities, 67

Greek letters, 11

group of means, 382

GROWTH function

cell ranges, 399, 400

defi ned, 398

Function Arguments dialog box, 

398, 399, 400

predicting new set of y’s, 399–401

predicting y’s, 398–399

results, 399, 401

use steps, 399, 400

• H •
hanning, 447

HARMEAN function, 89

harmonic mean, 89

High-Low-Close chart, 18

Histogram tool

Cumulative percentage option, 136

defi ned, 48, 63

dialog box, 135

FREQUENCY function versus, 134, 135–136

opening, 134

options, 135
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Histogram tool (continued)

output, 136

Pareto chart option, 136

use steps, 134–135

histograms

column graphs as, 63

cumulative percentage line, 136

kurtosis, 130

setting up, 63

skewness, 129

Home tab, Σ button, 51, 52

horizontal axis. See also axes

bell curve, 142

defi ned, 57

independent variable, 57

HYPERGEOMDIST function

defi ned, 333

Function Arguments dialog box, 333–334

results, 334

use steps, 333–334

hypergeometric distribution

defi ned, 333

example, 332–333

graphics results, 334

hypergeometrically distributed random 

variables, 333

hypotheses

accepting, 172

alternative, 15–16, 171

defi ned, 14, 171

null, 15, 16, 171

rejection decision, 14–15, 172

hypothesis testing

with binomial distribution, 329–332

calculations for, 177–178

conditional probability, 318

as confi rmatory data analysis, 433

correlation, 297–300, 308–310

decisions, 172

defi ned, 171

errors, 172

independence, 385–388

more than two samples, 217–242

multiple regression, 282

one-sample, 171–185

one-tailed, 176

paired samples, 202–207

regression, 263–269

sampling distributions and, 172–174

slope, 267–268

test statistic, 175

two factors, 243–254

two variances, 207–215

two-sample, 187–215

two-tailed, 176

with variances, 181–184

• I •
icons, in this book, 5

IF function

arguments, 105

Function Arguments dialog box, 106

Import Data dialog box, 402

importance, 369

importing data, 401–403

independence, testing, 385–388

independent variables. See also variables

covariance analysis, 420

defi ned, 12, 256, 292

dependent variable relationship, 257

factor, 222

in horizontal axis, 57

level, 223

number of, 283

standard deviation, 267

inferential statistics

error types, 16–17

hypotheses, 14–16

populations and, 11

Insert Function button

defi ned, 27

fx label, 27, 28

location, 28

Insert Function dialog box

illustrated, 29

opening, 27–28, 29

Insert tab (Ribbon)

Bar button, 72

Column button, 59, 162

illustrated, 18

Line button, 69, 150
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Other Charts button, 18

Pie button, 64

Pivot Table button, 416

Scatter button, 74

instant statistics, 138–139

interaction, 249

intercept

calculating, 270

defi ned, 258

formula, 259

linear regression, 283

multiple regression, 283

negative, 258

positive, 258

regression line, 260

testing, 268–269

zero, 259

INTERCEPT function, 270, 271

intersection

in combining events, 316–317

symbol, 316

interval data, 13

intervals

overlapping, 350

size, 350

small, 350

inverse relationships, 420

• K •
known population variances, 195

KURT function

defi ned, 131

Function Arguments dialog box, 131, 132

use steps, 132

kurtosis

in box-and-whisker plot, 444–445

defi ned, 128

excess, 131

formula, 131

with KURT function, 131–132

leptokurtic, 130

mean and variance relationship, 128

negative, 444, 445

platykurtic, 130

positive, 444, 445

• L •
LARGE function

defi ned, 118

Function Arguments dialog box, 119

large sample spaces. See also probabilities; 

sample spaces

combinations, 320

counting rule, 319

elementary outcomes, 319

permutations, 319–320

product rule, 319

Layout tab (Ribbon)

Axis Titles button, 61

Chart Title button, 61

Data Labels button, 66

Error Bars button, 379, 380, 442

Labels button, 73

leaves. See also stem-and-leaf plot

adding, 435

defi ned, 434

labeling, 435

leptokurtic, 130

Line Fit Plot (Regression tool), 282

line graphs. See also graphs

categorical variables and, 373

creating, 69–70

data selection, 69

defi ned, 68

illustrated, 68

modifying, 69

titles, 70

type selection, 69

uses, 68

linear equations, 257

linear regression. See also regression

defi ned, 74

extrapolating beyond scatterplot and, 371

intercept, 283

in predictions, 282

regression coeffi cient, 283

standard error of estimate, 283

linear trends. See also trends

cubic, 238

defi ned, 235

quadratic, 238

Sum of Squares for, 236
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lines

graphing, 257–259

intercept, 258–259

regression, 259

slope, 258

smoothed, 448, 449, 450

LINEST function

cell ranges, 276, 286

defi ned, 275

Function Arguments dialog box, 

275–276, 285, 286

for multiple regression, 285–287

multiple results, 287

results, 277

use steps, 276, 286

loaded dice

outcomes, 360

probabilities, 360

simulation results, 362

tossing simulation statistics, 363

logarithms

common, 389

defi ned, 388

natural, 388, 392

LOGEST function

defi ned, 395

Function Arguments dialog box, 395, 396

results, 396

use steps, 395–396

LOGINV function, 394

lognormal distribution, 394–395

LOGNORMDIST function

defi ned, 393

Function Arguments dialog box, 394

return, 393

• M •
Math & Trig Functions menu, 29

MAX function

accessing, 51

defi ned, 51, 126

in fi ve-number summary, 439

Function Arguments dialog box, 127

use steps, 126–127

MAXA function, 127

mean and variance, 128

Mean Squares

defi ned, 219, 266

degrees of freedom and, 224

example, 220

fi nding, 220

formula, 220

Sum of Squares and, 223

means

abbreviation, 80

calculating, 80–81, 379

comparing, 230–232

confi dence limits for, 163–165

defi ned, 79

example, 80

formula, 80–81

functions, 81–88

geometric, 88

grand, 220

group of, 382

for group of numbers, 89

harmonic, 89

population, 81

random variable, 324

running weighted, 447

sample, 79

of sampling distribution, 157, 190

skip, 447

MEDIAN function

defi ned, 90

in fi ve-number summary, 439

Function Arguments dialog box, 90, 91

steps, 90

medians

defi ned, 90

extreme values and, 446

fi nding, 90

quartile difference, 440

worksheet function, 90–91

MIN function

accessing, 51

defi ned, 51, 127

in fi ve-number summary, 439

MINA function, 127
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MOD function

arguments, 435–436

defi ned, 435

Function Arguments dialog box, 436

mode

defi ned, 91

fi nding, 91–92

function, 91

as representative of central tendency, 91

MODE function, 92

modeling

distributions, 349–358

simulations, 359–366

models

defi ned, 349

fi t, testing, 352–355

Poisson distribution in, 351

researcher use, 349

Moh’s Scale, 12

Monte Carlo simulations, 359

Move Chart dialog box, 62

moving average

defi ned, 376

results, 377

in series, 377

Moving Average tool

defi ned, 48, 376

dialog box, 376

use results, 377

multinomial distribution, 352

multiple, 219, 222

multiple coeffi cient of determination, 305

multiple correlation coeffi cient. See also 

correlation coeffi cient

combination, 305

defi ned, 304

indication, 305

multiple regression. See also regression

as ANCOVA method, 427–430

ANOVA and, 432

defi ned, 282

Excel tools for, 283–289

hypothesis testing, 282

intercept, 283

LINEST function for, 285–287

regression coeffi cient, 283

Regression tool for, 287–289

standard error of estimate, 283

TREND function for, 283–285

x-variables, 283

multiple regression/correlation (MRC), 

431, 432

• N •
Name box, 29

Name Manager dialog box, 42

named arrays. See also arrays

in array formulas, 46–47

autofi lling from, 46

illustrated, 46

names, array

absolute referencing and, 46

attachment of, 40

beginning character, 38

defi ning, 38–46

managing, 42

spaces/symbols and, 38

tracking, 42

uniqueness, 39

using, 41

natural logarithms. See also logarithms

abbreviation, 392

common logarithms comparisons, 392

defi ned, 150, 388

negative binomial distribution

defi ned, 326

NEGBINOMDIST function for, 328–329

negative correlation, 292

negative kurtosis, 444, 445

NEGBINOMDIST function

defi ned, 328

Function Arguments dialog box, 328–329

use steps, 328–329

New Name dialog box, 39–40

New Web Query window, 402

nominal data, 12

nonlinear trends, 235

normal distribution

defi ned, 143

divided into standard deviations, 144

Excel formula, 151
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normal distribution (continued)

formula, 392

member symmetry, 143

parameters, 143–144

probabilities, 143

sampling distribution as, 157–158

standard, 131, 148

x and f(x) relationship, 150–151

Normal Probability Plot (Regression tool), 

282

NORMDIST function

cumulative area, 145

defi ned, 145

formula, 146

Function Arguments dialog box, 145, 146

use steps, 145

NORMINV function

defi ned, 146

Function Arguments dialog box, 146, 147

uses, 146

NORMSDIST

defi ned, 148

Function Arguments dialog box, 149

NORMSINV function, 149

null hypotheses. See also hypotheses

defi ned, 15, 171

rejecting/not rejecting, 16, 17

statistical notation, 15

as tendency to maintain status quo, 17

testing versus alternative hypothesis, 173

trying not to reject, 370

number crunching, 9–10

• O •
one-factor ANOVA, 222

one-tailed hypothesis testing

critical value, 194

defi ned, 176

rejection, 177

TTEST function, 204

ordinal data, 12

organization, this book, 3–4

origin, 259

outcomes

elementary, 314, 317, 319

loaded dice, 360

summarizing, 372

outliers, 86

• P •
paired samples hypothesis testing, 202–207

defi ned, 202

example data, 202

t-test: Paired Two Sample for Means tool, 

205–207

TTEST for, 203–205

parameters

distribution, 361

Greek letters for, 11

normal distribution, 143–144

number of, 354

statistics relationship, 11

part correlation, 307

partial correlation, 306–307

Pascal distribution, 326

Paste Special dialog box, 365–366

Pearson Correlation Coeffi cient, 206

PEARSON function

defi ned, 300

use steps, 301

Pearson’s product-moment correlation 

coeffi cient, 294

Peltier Web site, 439

percentages, Pythagorean, 356

PERCENTILE function, 119

percentiles

data, 281

defi ned, 119

scores, 119–121

in summarizing score groups, 120

PERCENTRANK function, 120

periodic sampling, 385

PERMUT function

defi ned, 321

Function Arguments dialog box, 321–322

use steps, 321
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permutations

calculating, 321–322

defi ned, 320

formula, 320

large sample spaces, 319–320

PI function, 151

pie graphs. See also graphs

axes and, 57

borders, 65

changing, 67

creating, 64–65

data selection, 64

exploding, illustrated, 67

fi lls, 65

illustrated, 64

labels, 66

modifying, 65

slices, clicking, 65

slices, number of, 68

slices, pulling apart, 66–67

type selection, 64

pivot tables

creating, 416–418

defi ned, 414

dropping fi elds into/out of, 418

illustrated examples, 415

importance, 418

setting up, 414–415

PivotTable Layout

defi ned, 416

illustrated, 417, 418

populating, 416–418

planned comparisons. See also unplanned 

comparisons

ANCOVA and, 430

carrying out, 230

comparison coeffi cients, 225

defi ned, 224

t-test formula, 225–226

platykurtic, 130

point biserial correlation, 301

Poisson distribution

binomial calculations, 340

calculating, 341–342

defi ned, 340

formula, 340–341, 350

illustrated, 342

in model, 351

uses, 350

POISSON function

defi ned, 341

Function Arguments dialog box, 341–342

results, 342

use steps, 341–342

using, 352

Poisson process, 350

pooled estimates

defi ned, 195

example, 196

of population variance, 220–221

unequal variances and, 197

pooling, 195

population standard deviation. See also 

standard deviation

defi ned, 101

formula, 101

functions, 101–102

symbol, 101

population variances

calculating, 97–98

defi ned, 412

degrees of freedom in, 179

estimating, 195

estimating formula, 219

known, 195

pooled estimates, 220–221

unknown, 195

populations

bell curve, 142

Central Limit Theorem and, 158

characteristics, 11, 81

inferential statistics and, 11

mean, 81

mean, best estimate, 163

parameters, estimating, 155

regression equation, 263

regression line through, 263

samples relationship, 11

standard deviation, 178

positive correlation, 292

positive kurtosis, 444, 445

post hoc tests. See unplanned comparisons
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predictions

gain in, 265

linear regression in, 282

outside range, 371

PROB function, 383

probabilities

assigning, 315

beta, 335–340

binomial distribution, 325–326

conditional, 14, 317–318

decision error, 174

defi ned, 13

of elementary outcomes, 314

exponential distribution, 345–347

formula, 14

gamma distribution, 342–345

hypergeometric distribution, 332–334

hypothesis testing, 329–332

intuitive idea of, 313

large sample spaces, 318–320

loaded dice, 360

multiplying, 386

Poisson distribution, 340–342

probability distributions, 323–325

as proportion of area under part of 

distribution, 313

sample mean, 174

sample spaces and, 314–315

successes, 329

working with, 318

worksheet functions, 326–329, 383–384

probability decision errors, 173

probability density

curve, 336

defi ned, 143, 324

graph creation, 343

probability density function

defi ned, 324

gamma distribution, 343

illustrated, 325

normal distribution, 143

Weibull, 384

probability distributions

defi ned, 323

for random variable, 323

working with, 324

product rule, 319

Pythagorean percentage

calculating, 356–357

defi ned, 356

multiplying, 357

• Q •
quadratic component, 238

quantitative variables, 372–373

quartic component, 238

QUARTILE function, 120, 439

questions, statistician, 9

Quick Access Toolbar, 34

quintic component, 238

• R •
R Square, 306

RANDBETWEEN function, 160–161

Random Number Generation tool

defi ned, 48, 360

dialog box, 361, 364

distribution types, 361

for normal distribution, 364

number of variables, 361

output options, 361

use steps, 360–361

using, 363–364

random sampling, 385

random variables. See also variables

beta distribution, 335–336

continuous, 323

defi ned, 323

discrete, 323

hypergeometrically distributed, 333

lognormally distributed, 393

mean, 324

probability distributions for, 323

standard deviation, 324

variance, 324

randomized blocks. See repeated measures

range, 138
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Rank and Percentile tool. See also data 

analysis tools

defi ned, 48

illustrated, 121

opening, 121

options, 122

output, 122

use steps, 121–122

RANK function

defi ned, 117

Function Arguments dialog box, 117

steps, 117–118

ranks

auto-fi lled, 118

fi nding score for, 118–119

ratio data, 13

reciprocal, 89

records. See also databases

counting, 409–410

defi ned, 405

retrieving one, 410

referencing cells. See also cells

absolute, 24–25

relative, 23–24

regression

correlation and, 294–297

curvilinear, 371

defi ned, 255

degrees of freedom, 266

equation, 263

for forecasting, 261

hypothesis testing about, 263–269

linear, 74, 282, 370

multiple, 282

uses, 255

worksheet functions, 269–277

regression coeffi cients

defi ned, 259

formulas, 259

linear regression, 283

multiple regression, 283

regression line

defi ned, 259, 294

intercept, 260

point prediction, 296

points on, 295

through population, 263

scatterplot fi t, 264–267

slope, 260, 424

variability around, 261–263, 371

x-variable and, 295

regression method (ANCOVA), 427–430

Regression tool

Adjusted R Square, 306

alpha, 278, 288

for ANCOVA table, 429

ANOVA table, 279, 288

cell ranges, 278, 288

defi ned, 48, 277

dialog box, 277

graphic output, 280–282, 289

Line Fit Plot, 282

lower half of tabled output, 280

for multiple regression, 287–289

Normal Probability Plot, 282

output, 279–282, 289

output options, 278, 288

percentile data, 281

PROBABILITY OUTPUT table, 280

RESIDUAL OUTPUT table, 280

residuals, 281

running, 432

tabled output, 279–280, 288

upper half of tabled output, 279

use steps, 277–278

y-values, 281

relationships

correlation and, 291–310

direct, 419

independent variable and dependent 

variable, 257

inverse, 420

population and sample, 11

Sum of Squares, 234

variable, 255–289

relative referencing. See also referencing 

cells

in autofi lling, 24

converting to absolute references, 24–25

defi ned, 23

formula assumption, 24

using, 23–24
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repeated measures. See also analysis of 

variance

defi ned, 232

error term, 234

example data, 233

variances, 233

working with, 232–235

residual variance

defi ned, 261

example, 263

residuals

analysis, 371

defi ned, 261, 296

error estimate, 262

graph, 281

Ribbon

Data tab, 30, 49, 50, 134, 401

defi ned, 18

Design tab, 61, 67, 70, 73, 75

Formula tab, 28, 29, 34, 39, 42, 414

Home tab, 51–52

Insert tab, 18, 59, 64, 69, 72, 416

Layout tab, 61, 66, 73, 379, 442

menu bar switch to, 19

row factor

column factor interaction, 251

defi ned, 249

variance, 250

rows. See also databases

multiple, “or” and, 410

stem-and-leaf display, 436

totaling, 23

RSQ function, 302

running weighted mean, 447

• S •
sabermetrics, 356

sample mean, 79, 174

sample spaces

defi ned, 314

elementary outcomes in, 317

large, 318–320

probability and, 314–315

sample standard deviation. See also 

standard deviation

defi ned, 102

formula, 102

functions, 102–103

return of, 413

symbol, 102

sample variances. See also variances

calculating, 100

defi ned, 412

estimating population variance, 166

formula, 99

samples

all possible, from three scores, 159

characteristics of, 81

drawing, 384–385

examples, 10

paired, 202–207

populations relationship, 11

too large, 371–372

sampling distributions

Central Limit Theorem and, 157

CONFIDENCE function assumption, 169

defi ned, 156, 172

of difference between means, 

188, 189, 190

example illustration, 164

FREQUENCY function and, 161–162

hypothesis tests and, 172–175

illustrated, 156

importance of, 156

for large samples, 191

mean of, 157, 190

parameters, 160

partitioned into standard error units, 158

RANDBETWEEN function and, 160–161

set of differences as, 189

simulation, illustrated, 160

simulation steps, 160–162

small samples, 166

standard deviation of, 157, 190

two-sample hypothesis testing, 188–194

Sampling tool

defi ned, 48, 384

dialog box, 385
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selecting periodically, 384

selecting randomly, 384

satellites database, 405–407

scatterplots. See also graphs

with additional information, 77

creating, 74–75

data, 74

defi ned, 74, 256, 291

deviations in, 265

expanding, 371

extrapolating beyond, 371

fi tting curve through, 370

illustrated, 75

layout, 75

modifying, 75

points, distances, 295

points, right-clicking, 76

regression line fi t, 264–267

trendline, 76

type selection, 74

x-axis, 256

y-axis, 256

Scheffé’s test, 227–228

scores

converting, to z-score, 147

distribution, 132–136

exam, 113–114

number of, 123

percentage of, 136

percentile, 119–121

rank, 17–19

standard. See z-scores

standard units, 111

standardizing, 147

standing, 116–122

in stem-and-leaf display, 434–435

Select Source dialog box, 70

semipartial correlation, 307

Series dialog box, 22

signifi cance, 369

signifi cant linear component, 236

simulations

Central Limit Theorem, 158–162, 363–366

loaded dice, 359–363

Monte Carlo, 359

SKEW function

defi ned, 129

Function Arguments dialog box, 129, 130

use steps, 129

skewness

in box-and-whisker plot, 444

defi ned, 128

formula, 128, 129

histogram illustration, 129

mean and variance relationship, 128

SKEW function for, 129–130

skip mean, 447

slices. See also pie graphs

clicking, 65

number of, 68

pulling apart, 66–67

slope

calculating, 424

defi ned, 258

formula, 259

negative, 258

positive, 258

regression line, 260, 424

standard error, 267

testing, 267–268

t-test for, 267

SLOPE function, 270, 424

SMALL function, 118

SMOOTH, 451

smoothed lines, 448, 449, 450

smoothing

data, 447, 450–451

exponential, 377–379

three-median, 446

squared deviations. See also deviations

averaging, 94–97

defi ned, 95

multiplying by number of scores, 221

stacked column graphs. See also column 

graphs; graphs

column order, 62

column size, 61–62

conversion into box-and-whisker plots, 

440–444

illustrated, 441

inserting, 62
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stacked column graphs (continued)

in own worksheet, 63

segments, 61

with whiskers, 443

standard deviation. See also deviations

calculating, 379

defi ned, 100–101

fi ltering data to calculate, 104

normal distribution divided into, 144, 148

population, 101–102, 178

random variable, 324

return of, 413

sample, 102–103, 413

sampling distribution, 157, 190

trial, 105

as unit of measure, 116

standard error

defi ned, 138, 157

difference between means, 190

graph, 373

maximum/minimum difference, 138

multiplying z-score by, 164

slope, 267

standard error of estimate

calculating, 270

defi ned, 261

formula, 262

linear regression, 282

multiple regression, 282

standard error of mean

in Central Limit Theorem, 173

defi ned, 157

estimate, 167

graph illustration, 382

graphing, 379–382

standard normal distribution

binomial distribution approximation, 331

defi ned, 131, 148

divided by standard deviations, 148

illustrated, 325

standard scores. See z-scores

standard units, 111

STANDARDIZE function

defi ned, 114

Function Arguments dialog box, 114, 115

statistical concepts, 10

statistical control, 421

Statistical Functions menu

illustrated, 35

locating, 20

statistics

as aid to common sense, 185

as decision-making fi eld, 9

English letters for, 11

inferential, 14–17

instant, 138–139

parameters relationship, 11

Status bar

customizing, 138–139

displaying values of, 139

right-clicking, 138

STDEV function

AVERAGE function with, 103

defi ned, 102

Function Arguments dialog box, 103

STDEVA function, 103

STDEVP function

defi ned, 101

Function Arguments dialog box, 101, 102

STDEVPA function, 102

stem-and-leaf plot

defi ned, 434

illustrated, 434

intermediate display, 434–435

leaves, adding, 435

leaves, labeling, 435

rows, 436

stems, placing, 435

stemplot. See stem-and-leaf plot

STEYX function, 270, 271

SUM function

accessing, 51

defi ned, 30

with fi ve arguments, 33

use illustration, 31

using, 30–31

Sum of, abbreviation, 80

Sum of Squares

defi ned, 220, 265

for linear trends, 236

Mean Squares and, 223

relationships of, 234
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SUMIF function

defi ned, 41

formulas, 44, 45

Function Arguments dialog box, 43, 44, 45

SUMIFS function, 41

SUMPRODUCT function

defi ned, 230, 241

formulas, 362, 363

squared coeffi cients multiplication, 

231, 241

SUMQ function, 242

systematic variation, 373

• T •
TDIST function

defi ned, 180

Function Arguments dialog box, 180

return, 180

use steps, 180–181

t-distribution

defi ned, 166

degrees of freedom and, 167, 179

members, 167

value, fi nding, 168

test statistic

chi-square, 181

defi ned, 175

evaluation, 197

t as, 179

two-variances hypothesis testing, 208

value size, 175

z-scores as, 175, 191

testing. See hypothesis testing

testing more than two samples. See also 

hypothesis testing

data, 218

defi ned, 217

problem, 218–219

relationships, 223–224

solution, 219–223

three-median smoothing, 446

time series, 375

TINV function

answer, multiplying by standard 

error, 169

defi ned, 168

Function Arguments dialog box, 168

use steps, 168

Toolpak, 49

Total Variance, 220, 265

traits

distribution, 141–142

measuring, 142

types of, 141

transformation, correlation coeffi cient, 299

transposition, 365

trend analysis

carrying out, 241

comparison coeffi cients in, 235

defi ned, 235

objective, 235

TREND function

defi ned, 272

Function Arguments dialog box, 

272–273, 274, 284

for multiple regression, 283–285

predicting new set of y’s, 273–275

predicting y’s, 272–273

results, 273, 275, 285

use steps, 272–273, 274, 283–284

trendlines, 76

trends

analyzing, 235, 240–242

cubic component, 238

four means, 237

linear, 235

nonlinear, 235

quadratic component, 238

quartic component, 238

quintic component, 238

trials, 83

average, 105

defi ned, 104, 314

experimental, 86

slow/fast reaction times, 86

standard deviation, 105

TRIMMEAN function

defi ned, 87

Function Arguments dialog box, 87

percentages trimmed, 88

use guidelines, 87

T-score, 115
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t-Test: Paired Two Sample for Means tool

cell ranges, 206

data from matched samples, 205

defi ned, 205

dialog box, 205

difference, 206

output options, 206

results, 207

unequal variances, 210

use steps, 205–206

variables, 206

t-Test: Two Sample tool

cell ranges, 199

defi ned, 48

Equal Variances tool, 201

output options, 200

results, 200

samples, 201

Unequal Variances tool, 201

variables, 199

TTEST function

defi ned, 197

Function Arguments dialog box, 

197–198, 204

for matched samples, 203–205

one-tailed test, 204

two-tailed test, 198

use steps, 197–198, 204

working with, 198

t-tests

equal variances, 210

F-distribution, 209–210

formulas, 195, 203, 225

intercept, 268

planned comparison, 225

post-ANOVA, 224

slope, 267

unequal variances, 210

two-factor ANOVA

analysis, 250–251

Anova: Two-factor with Replication tool 

for, 252–254

Anova: Two-Factor without Replication 

tool for, 246–247

column factor, 249, 250

defi ned, 244

grand mean, 244

hypothesis testing, 245

interactions, 249

presentation methods, 248–249

row factor, 249, 250

rows and columns, 248–249

variances, 244–245, 250

two-factors hypothesis testing

combinations, 243–254

defi ned, 243

variances, 244–245

two-sample hypothesis testing

Central Limit Theorem, 189–190

one-tailed test, 187, 188

paired samples, 202–207

sampling distributions, 188–194

two variances, 207–215

two-tailed test, 187, 188

two-tailed hypothesis testing

defi ned, 176

rejection region, 177

TTEST function, 198

z-score, 176

two-variances hypothesis testing, 207

with FDIST function, 212–213

with FINV function, 213

with F-test data analysis tool, 214–215

with FTEST function, 210–211

test statistic, 208

Type I error

defi ned, 17, 172

example, 17

probability, 268

tolerating, 174

Type II error, 17, 172

• U •
unequal variances. See also variances

defi ned, 197

degrees of freedom and, 202

t-test, 210

t-test calculation, 197

union

in combining events, 315–316

symbol, 315
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unplanned comparisons. See also planned 

comparisons

ANCOVA and, 430

carrying out, 232

defi ned, 227

Scheffé’s test, 227–228

• V •
#VALUE! error, 47

values

absolute, 108

critical, 173

Descriptive Statistics tool, 138

displaying on Status bar, 139

Excel guessing, 33

expected, 324

fi ve-number summary, 439

smoothed, 447

types of, 32

typing in, 32

VAR function, 100

VARA function, 100

variability

in graphs, 373

regression line, 371

reporting, 25

variables

categorical, 372–373

defi ned, 11

dependent, 11, 12, 57, 256

dichotomous, 301

independent, 11, 12, 57, 222–223, 256

one value, 11

quantitative, 372–373

random, 322–323

relationships, 255

variances

analysis of, 222, 224

between sample means, 221

in covariate, 424

defi ned, 95

equal, 195–197, 202

example, 96

formula, 96, 99

from grand mean, 233–234

large, 97

Mean Square, 219

measuring, 93, 94–100

population, 412

population, calculating, 97–98

random variable, 324

residual, 261, 263

sample, 99, 166, 412

small, 97

square root, 100–101

symbol, 96

testing, 181–184

Total, 220, 265

two-factor ANOVA, 244–245, 250

two-factors hypothesis testing, 244–245

unequal, 197, 202

VARP function

defi ned, 97

formula, 98

Function Arguments dialog box, 97

working with, 97–98

VARPA function, 98

vertical axis. See also axes

bell curve, 142

defi ned, 57

dependent variable, 57

• W •
Weibull distribution, 384

WEIBULL function, 383–384

whiskers. See also box-and-whisker plot

adding, 442

defi ned, 438

quartiles becoming, 440

stacked column chart with, 443

wildcard characters, database functions 

and, 410

within subjects. See repeated measures

worksheet functions. See also specifi c 
functions

arguments, 31–32

categories, 30

for correlation, 300–302

in Excel 2007, 30–33

multiargument capabilities, 32
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worksheet functions (continued)

probabilities, 326–329, 383–384

regression, 269–277

steps for using, 30–31

worksheets

as databases, 405–418

names, tracking, 42

Status bar, 138–139

• X •
x-axis. See also horizontal axis

defi ned, 57

intercept, 258–259

use of, 256

x-variables. See also independent variables

number of, 283

regression line and, 295

specifying, 287

standard deviation, 267

y-variable relationship, 257

x-y pairs, 257

• Y •
y-axis. See also vertical axis

defi ned, 57

intercept, 258–259

use of, 256

y-intercept. See intercept

y-variables. See also dependent variables

defi ned, 256

x-variable relationship, 257

• Z •
z-scores. See also scores

auto-fi lled array, 116

characteristics of, 112

converting scores to, 147

defi ned, 112

in exam score example, 113–114

formula, 112

hiding, 115

multiplying by standard error, 164

negative, 115, 164

NORMSDIST function and, 149

NORMSINV function and, 149

positive, 164

STANDARDIZE function and, 114–116

as test statistic, 175, 191

in two-tailed hypothesis testing, 176

z-Test: Two Sample for Means tool

cell ranges, 193

defi ned, 48

dialog box, 193

difference, 193

results, 194

use steps, 193–194

variance, 193, 194

z-test formula, 191

ZTEST function

defi ned, 177

Function Arguments dialog box, 178

use steps, 178

z-score calculation elimination, 177
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