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Introduction

If, like us, you’re a software developer or computer professional of some
sort, you probably have to deal with the stereotype that developers can’t

express themselves among normal humans about normal things. Unfortunately,
this book may not help you with that particular challenge, but it can help
improve your ability to communicate with other developers about technical
matters. UML (Unified Modeling Language) is a graphical language that is suit-
able to express software or system requirements, architecture, and design.
You can use UML to communicate with other developers, your clients, and
increasingly, with automated tools that generate parts of your system.

If you’re already familiar with UML, you know how powerful and expressive
it is — but don’t be surprised if you’re impressed all over again by the new
features of UML 2. Perhaps you found some parts of UML too complicated
or the apparent benefit too obscure. Well, the UML gurus have revamped
UML in many areas — making easier to express yourself exactly and
clearly — and they have also added fresh capabilities for the latest 
software- and system-development problems that you’re facing.

But because your problems are complex — and your solutions are some-
times even more complex — UML is not always simple to learn. It’s a large
and multifaceted language, capable of helping in all areas of development,
from analysis to test as well as from database to embedded-real-time. To
some, it’s a bewildering array of diagrams and symbols. Sometimes it might
appear to you that the UML gurus purposely make it too complicated (and
with UML 2, even more so) for the rest of us to understand.

Bottom line: You need a practical, experience-based guide to the ins and
outs of this new language. Let this book be that guide. We boiled down our
experiences with UML (in many environments) and our skills as educators
to focus on key UML capabilities that you need first to be more productive.

So, with straightforward English and concrete examples, we give you a leg up
on expressing yourself and being more creative on the job. (Hey, it could help
you get a raise — just don’t expect us to help you get a date.)

How to Use This Book
There’s a right way and a wrong way to use this book. Luckily (like its 
subject, UML 2), this book is remarkably versatile. If you’re a traditionalist,



you can read it from cover to cover (although you’ll probably stop at the
index). That’s a great approach if you’re really new to UML. If you’re familiar
with earlier versions of UML, you can skip around looking for the new UML 2
stuff. You may miss our (ahem) great insights into the rest of UML, but you
know why you bought the book — do what works. Using any of these tech-
niques will get you familiar with your book so that you can count on it to help
unstick you if you hit a snag with UML.

After you make friends with your book, you’ll probably find yourself taking
advantage of its just-in-time features. With just a bit of page flipping, you’ll be
at a section that’s full of examples, tips, techniques, and warnings that will
help you with your UML modeling.

There are other ways to use this book . . . and some of them are wrong ways.
It’s not going to work that well as a doorstop (wrong size), and it probably
won’t impress your date (unless you’re dating a developer who’s new to
UML). However, it’ll look great on your bookshelf — silently conveying to
your boss your desire to improve — but if you never open it, you won’t get
the full benefit.

Some Presumptuous Assumptions
If you’re reading this, we can safely assume that not only have you already
opened the book, you’re probably also a developer of software, systems, or
databases, and you want to read or write UML 2 diagrams. Perhaps you’re a
manager or business analyst in the same boat.

We won’t assume that you know any particular computer language, although
knowing one will certainly help.

For the most part, we assume that you fall into one of two major categories:
Either you’re a modeler (with a yen to communicate requirements or how
you think the world works), or you’re a developer (looking to explore
alternative designs or communicate your results). Either way, this book is
for you.

We assume that you’re capable of using a tool to draw UML diagrams — we
don’t care which one. If the only tool that you have your hands on is in your
hands (as opposed to on-screen), you won’t be at a disadvantage when you
use this book (although your diagrams won’t be quite as tidy if you’re drawing
with a stick on wet sand). You may even be better off doing some diagrams
by hand; electronic UML tools are often expensive and may not yet be up to
date with all the neat UML 2 features that we cover. If you’re itching for a
high-tech UML tool, take a look at Chapter 23 where we list of some of the
more useful examples (in all price categories).
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How This Book Is Organized
Here’s your first practical hint about using UML: Put about five to nine
major elements on a diagram — no more. Studies have shown (we’ve always
wondered who does this type of study) that most people have a hard time
comprehending more than about nine elements at a time. Likewise, when
designing this book, we decided to follow our own advice and to divide the
book into just seven parts.

Remember that you don’t have to read this book in order. Just choose the
parts and chapters that you need at the time.

Part I: UML and System Development
If you want to know what UML is (and why knowing it is useful), this is the
place to go; it covers the basics of UML and how it can be used. You’ll also
find some common principles for communicating or developing systems
with UML. These principles guided the UML gurus when they created UML;
the same principles can guide you to effective use of it. Ways to apply these
principles crop up throughout the book.

Part II: The Basics of Object Modeling
When you model by using UML, the basics are the things (or objects) that
you draw and the relationships among them. You’ll find information on
classes, objects, associations, inheritances, and generalizations. No matter
what type of development you do, understanding this part will probably
be essential.

Part III: The Basics of Use-Case Modeling
Use cases (detailed real-world examples) allow you to understand and
communicate the purpose of a system or its components. They are great
for organizing your thoughts — and your system — when you want to get a
value-added product out the door.

Part IV: The Basics of Functional Modeling
When the objects in your system get busy and you want to explain the details
of their complex behavior, you’ll need a technique to do so. UML supplies
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several to choose from — and this part explains and compares them. You’ll
see several different types of interaction diagrams (such as sequence, com-
munication, and activity) in action, and discover how to combine them to
create solutions, patterns, and frameworks. If you’re experienced with UML,
you’ll find lots of new UML 2 stuff in this part.

Part V: Dynamic Modeling
Your objects are more that just clumps of data stuck together with a few
functions. The objects that you develop are more like living things; they
remember the past and live their lives by changing their states in response
to incoming events. In this part, you can make sure that they get a life —
and that you know how to explain it. Come to this part for state charts.

Part VI: Modeling the System’s
Architecture
Whether you’re an architect, programmer, or construction worker, you
build complex architectures. Computer systems and software applications
distribute themselves across different hardware platforms — and spread
throughout the Internet. This part outlines steps that you can use to
design your systems for their mission by using system plans, packaging,
and subsystems.

Part VII: The Part of Tens
Everyone enjoys making lists (and daydreaming that they’ll be read aloud,
backward, on late-night talk shows). Here are our top-ten lists of useful tips,
tools, Web sites, and diagrams. They’re likely to be your top-tens, too.

Icons Used in This Book
Appropriately for a book about graphical communication (even if it is
software-oriented), there are signposts throughout to help you find your way.

This icon identifies the really new stuff in UML 2. Not every modified feature
will get this flag, but it does alert those who are familiar with UML 1.x that
something’s really different here.
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Here’s a simpler way of doing something that can make it easier than the typi-
cal approach. Think of it as a shortcut to better UML.

UML can be a maze — and it can be amazing. These are gentle reminders to
reinforce important points.

If you see this icon but ignore it, you’ll be in good company but a bad mood.

When you see this icon, you know that we thought the associated material
really interesting — but every time we tell people enthusiastically about it,
they fall asleep. Skip these sections if you want.

Where to Go from Here
Okay, you’re now ready to explore the world of UML 2 modeling. Relax.
You’ve got the tools that you need in your head and your hands (one of them
is this book), and it’s safe to explore.

So, go ahead and express yourself with the power of UML 2.
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In this part . . .

B uilding systems or software isn’t that tough if
you can communicate with your clients, co-workers,

managers, and tools. Unfortunately, as your problems get
harder and more complex, the risks that emerge from mis-
communication become greater — and more severe when
they do crop up.

Fortunately, there’s a straightforward, visual language that
you can use that will help promote more precise and more
efficient communication about the nature of your system
in all its aspects — software, requirements, architectures,
designs, design patterns, and implementations. This lan-
guage is UML, the Unified Modeling Language. The newest
version, UML 2, has become more powerful and more
useful than ever.

Starting here, we cover the basics of UML. You find out how
it may fit your situation, how and when you can use it, and
what it’s good for. We give you just as much background in
history, terminology, and basic principles as you’ll need to
take advantage of UML’s highly productive features.



Chapter 1

What’s UML About, Alfie?
In This Chapter
� Understanding the basics of UML

� Exploring the whys and whens of UML diagrams

So you’ve been hearing a lot about UML, and your friends and colleagues
are spending some of their time drawing pictures. And maybe you’re

ready to start using UML but you want to know what it’s all about first. Well,
it’s about a lot of things, such as better communication, higher productivity,
and also about drawing pretty pictures. This chapter introduces you to the
basics of UML and how it can help you.

Introducing UML
The first thing you need to know is what the initials UML stand for. Don’t
laugh — lots of people get it wrong, and nothing brands you as a neophyte
faster. It’s not the Universal Modeling Language, as it doesn’t intend to model
everything (for example, it’s not very good for modeling the stock market;
otherwise we’d be rich by now). It’s also not the Unified Marxist-Leninists, a
Nepalese Political party (though we hope you’ll never get that confused). It is
the University of Massachusetts Lowell — but not in this context. UML really
stands for the Unified Modeling Language.

Well, maybe that’s not the most important thing to know. Probably just as
important is that UML is a standardized modeling language consisting of
an integrated set of diagrams, developed to help system and software
developers accomplish the following tasks: 

� Specification

� Visualization

� Architecture design



� Construction

� Simulation and Testing

� Documentation

UML was originally developed with the idea of promoting communication and
productivity among the developers of object-oriented systems, but the read-
ily apparent power of UML has caused it to make inroads into every type of
system and software development.

Appreciating the Power of UML
UML satisfies an important need in software and system development.
Modeling — especially modeling in a way that’s easily understood — allows
the developer to concentrate on the big picture. It helps you see and solve
the most important problems now, by preventing you from getting distracted
by swarms of details that are better to suppress until later. When you model,
you construct an abstraction of an existing real-world system (or of the system
you’re envisioning), that allows you to ask questions of the model and get
good answers — all this without the costs of developing the system first.

After you’re happy with your work, you can use your models to communicate
with others. You may use your models to request constructive criticism and
thus improve your work, to teach others, to direct team members’ work, or
to garner praise and acclamation for your great ideas and pictures. Properly
constructed diagrams and models are efficient communication techniques
that don’t suffer the ambiguity of spoken English, and don’t overpower the
viewer with overwhelming details.

Abstracting out the essential truth
The technique of making a model of your ideas or the world is a use of
abstraction. For example, a map is a model of the world — it is not the
world in miniature. It’s a conventional abstraction that takes a bit of training
or practice to recognize how it tracks reality, but you can use this abstraction
easily. Similarly, each UML diagram you draw has a relationship to your reality
(or your intended reality), and that relationship between model and reality
is learned and conventional. And the UML abstractions were developed as
conventions to be learned and used easily.

If you think of UML as a map of the world you see — or of a possible world you
want — you’re not far off. A closer analogy might be that of set of blueprints
that show enough details of a building (in a standardized representation with
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lots of specialized symbols and conventions) to convey a clear idea of 
what the building is supposed to be.

The abstractions of models and diagrams are also useful because they suppress
or expose detail as needed. This application of information hiding allows you
to focus on the areas you need — and hide the areas you don’t. For example,
you don’t want to show trees and cars and people on your map, because
such a map would be cumbersome and not very useful. You have to suppress
some detail to use it.

You’ll find the word elide often in texts on UML — every field has its own
jargon. Rumor has it that elide is a favorite word of Grady Booch, one of
the three methodologists responsible for the original development of UML.
Elide literally means to omit, slur over, strike out, or eliminate. UML uses
it to describe the ability of modelers (or their tools) to suppress or hide
known information from a diagram to accomplish a goal (such as simplicity
or repurposing).

Chapter 2 tells you more about using these concepts of information hiding
and abstraction during development.

Selecting a point of view
UML modeling also supports multiple views of the same system. Just as you
can have a political map, a relief map, a road map, and a utility map of the
same area to use for different purposes — or different types of architectural
diagrams and blueprints to emphasize different aspects of what you’re
building — you can have many different types of UML diagrams, each of
which is a different view that shows different aspects of your system.

UML also allows you to construct a diagram for a specialized view by limiting
the diagram elements for a particular purpose at a particular time. For example,
you can develop a class diagram — the elements of which are relevant things
and their relationships to one another — to capture the analysis of the problem
that you have to solve, to capture the design of your solution, or to capture
the details of your implementation. Depending on your purpose, the relevant
things chosen to be diagram elements would vary. During analysis, the elements
that you include would be logical concepts from the problem and real world;
during design, they would include elements of the design and architectural
solution; and during implementation, they would primarily be software
classes. 

A use case diagram normally concentrates on showing the purposes of the
system (use cases) and the users (actors). We call a use case diagram that
has its individual use cases elided (hidden) a context diagram, because it
shows the system in its environment (context) of surrounding systems
and actors.
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Choosing the Appropriate UML Diagram
UML has many diagrams — more, in fact, than you’ll probably need to know.
There are at least 13 official diagrams (actually the sum varies every time we
count it) and several semiofficial diagrams. Confusion can emerge because
UML usually allows you to place elements from one diagram on another if
the situation warrants. And the same diagram form, when used for a different
purpose, could be considered a different diagram.

In Figure 1-1, we’ve constructed a UML class diagram that sums up all the
major types of UML diagrams (along with their relationships), using the
principle of generalization, which entails organizing items by similarities
to keep the diagram compact. (See Chapter 2 for more information on
generalization.)

In Figure 1-1, the triangular arrows point from one diagram type to a more
general (or more abstract) diagram type. The lower diagram type is a kind-
of or sort-of the higher diagram type. Thus a Class Diagram is a kind of
Structural Diagram, which is a kind of Diagram. The diagram also uses a
dashed arrow to indicate a dependency — some diagrams reuse the features
of others and depend on their definition. For example, the Interaction
Overview Diagram depends on (or is derived from) the Activity Diagram
for much of its notation. To get a line on how you might use UML diagrams,
check out the summary in Table 1-1.

Structural
Diagram

Diagram

Object Diagram Class Diagram Component
Diagram

Package
Diagram

Deployment
Diagram

Composite
Structure
Diagram

Behavioral
Diagram

Activity
Diagram

Use-Case
Diagram

State-Machine
Diagram

Interaction-
Overview
Diagram

Sequence
Diagram

Timing
Diagram

Interaction
Diagram

Communication
Diagram

Protocol State
Machines

Figure 1-1:
A class

diagram 
of UML

diagrams.
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Slicing and dicing UML diagrams
There are many ways of organizing the UML diagrams to help you understand
how you may best use them. The diagram in Figure 1-1 uses the technique of
organization by generalization (moving up a hierarchy of abstraction) and
specialization (moving down the same hierarchy in the direction of concrete
detail). (See Chapter 6 for more on generalization and specialization.) In
Figure 1-1, each diagram is a subtype of (or special kind of) the diagram it
points to. So — moving in the direction of increasing abstraction — you can
consider a communication diagram from two distinct angles:

� It’s a type of interaction diagram, which is a type of behavioral diagram,
which is a type of diagram.

� It’s derived from a composite structure diagram, which is a kind of
structural diagram, which is a type of diagram.

After you get some practice at creating and shaping UML diagrams, it’s
almost second nature to determine which of these perspectives best fits
your purpose.

This general arrangement of diagrams that we used in our Figure 1-1 is
essentially the same as the UML standard uses to explain and catalog UML
diagrams — separating the diagrams into structural diagrams and behavioral
diagrams. This is a useful broad categorization of the diagrams, and is
reflected in the categorizations in Table 1-1:

� Structural diagrams: You use structural diagrams to show the building
blocks of your system — features that don’t change with time. These
diagrams answer the question, What’s there?

� Behavioral diagrams: You use behavioral diagrams to show how your
system responds to requests or otherwise evolves over time.

� Interaction diagrams: An interaction diagram is actually a type of
behavioral diagram. You use interaction diagrams to depict the
exchange of messages within a collaboration (a group of cooperating
objects) en route to accomplishing its goal.

Table 1-1 UML 2 Diagrams and Some of Their Uses
Category Type of  Purpose Where to Find 

Diagram More Information

Structural Class diagram Use to show real-world entities, Chapter 7
diagram elements of analysis and design,

or implementation classes and 
their relationships

(continued)
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Table 1-1 (continued)
Category Type of  Purpose Where to Find 

Diagram More Information

Structural Object diagram Use to show a specific or Chapter 7
diagram illustrative example of objects 

and their links. Often used to 
indicate the conditions for an 
event, such as a test or an 
operation call

Structural Composite Use to show the how something Chapter 5
diagram structure is made. Especially useful in

diagram complex structures-of-structures 
or component-based design

Structural Deployment Use to show the run-time Chapter 19
diagram diagram architecture of the system, the 

hardware platforms, software 
artifacts (deliverable or running 
software items), and software 
environments (like operating 
systems and virtual machines)

Structural Component Use to show organization and Chapter 19
diagram diagram relationships among the 

system deliverables

Structural Package Use to organize model elements Chapter 7
diagram diagram and show dependencies 

among them

Behavioral Activity diagram Use to the show data flow and/ Chapter 18
diagram or the control flow of a behavior. 

Captures workflow among 
cooperating objects

Behavioral Use case Use to show the services that Chapter 8
diagram diagram actors can request from a system

Behavioral State machine Use to show the life cycle of a Chapter 18
diagram diagram / particular object, or the

Protocol state sequences an object goes
machine diagram through or that an interface 

must support

Interaction Overview Use to show many different inter- Chapter 13
diagram diagram action scenarios (sequences of

behavior) for the same collab-
oration (a set of elements working
together to accomplish a goal)
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Category Type of  Purpose Where to Find 
Diagram More Information

Interaction Sequence Use to focus on message Chapter 13
diagram diagram exchange between a group of 

objects and the order of the 
messages

Interaction Communication Use to focus on the messages Chapter 14
diagram diagram between a group of objects and 

the underlying relationship 
of the objects

Interaction Timing diagram Use to show changes and their Rarely used, so 
diagram relationship to clock times in we refer you to 

real-time or embedded the UML 
systems work specification

Because UML is very flexible, you’re likely to see various other ways of 
categorizing the diagrams. The following three categories are popular:

� Static diagrams: These show the static features of the system. This 
category is similar to that of structural diagrams.

� Dynamic diagrams: These show how your system evolves over time.
This category covers the UML state-machine diagrams and timing 
diagrams.

� Functional diagrams: These show the details of behaviors and 
algorithms — how your system accomplishes the behaviors requested
of it. This category includes use-case, interaction, and activity diagrams.

You can employ UML diagrams to show different information at different times
or for different purposes. There are many modeling frameworks, such as
Zachman or DODAF (Department of Defense’s Architecture Framework) that
help system developers organize and communicate different aspects of their
system. A simple framework for organizing your ideas that is widely useful is
the following approach to answering the standard questions about the system:

� Who uses the system? Show the actors (the users of the system) on
their use case diagrams (showing the purposes of the system).

� What is the system made of? Draw class diagrams to show the logical
structure and component diagrams to show the physical structure. 

� Where are the components located in the system? Indicate your plans for
where your components will live and run on your deployment diagrams.

� When do important events happen in the system? Show what causes
your objects to react and do their work with state diagrams and 
interaction diagrams.
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� Why is this system doing the things it does? Identify the goals of the
users of your system and capture them in use cases, the UML construct
just for this purpose.

� How is this system going to work? Show the parts on composite 
structure diagrams and use communication diagrams to show the inter-
actions at a level sufficient for detailed design and implementation.

Automating with Model-Driven
Architecture (MDA)
Model-driven architecture (MDA) is new way to develop highly automated 
systems. As UML tools become more powerful, they make automation a real
possibility much earlier in the process of generating a system. The roles of
designer and implementer start to converge. UML provides you with the keys
to steer your systems and software development toward new horizons utiliz-
ing model-driven architectures.

In the past, after the designer decides what the system would look like —
trading off the design approach qualities such as performance, reliability, 
stability, user-friendliness — the designer would hand the models off to the
developer to implement. Much of that implementation is difficult, and often
repetitious. As one part of an MDA approach to a project, UML articulates the
designer’s choices in a way that can be directly input into system generation.
The mechanical application of infrastructure, database, user interface, and
middleware interfaces (such as COM, CORBA, .NET) can now be automated. 

Because UML 2 works for high-level generalization or for showing brass-tacks
detail, you can use it to help generate high-quality, nearly complete imple-
mentations (code, database, user-interface, and so on) from the models.

In MDA, the Development Team is responsible for analysis, requirements,
architecture, and design, producing several models leading up to a complete,
but Platform-Independent Model (PIM). Then UML and MDA tools can gener-
ate a Platform-Specific Model (PSM) based on the architecture chosen and
(after some tweaking) produce the complete application.

This approach promises to free the development team from specific middleware
or platform vendors. When a new architecture paradigm appears — and it
will — the team can adopt it without going back to Square One for a complete
redevelopment effort. The combination of UML and MDA also promises to
free development teams from much of the coding work. Although the required
UML models are much more specific than most organizations are used to,
their use will change the way developers make systems.

With the advent of MDA and its allied technologies, UML becomes a sort of
executable blueprint — the descriptions, instructions, and the code for your
system in one package. Remember it all begins with UML.
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Identifying Who Needs UML
Broadly speaking, UML users fall into three broad categories:

� Modelers: Modelers try to describe the world as they see it — either the
world as is, whether it’s a system, a domain, an application, or a world
they imagine to come. If you want to document a particular aspect of
some system, then you’re acting as a modeler — and UML is for you.

� Designers: Designers try to explore possible solutions, to compare, to
trade off different aspects, or to communicate approaches to garner
(constructive) criticism. If you want to investigate a possible tactic or
solution, then you’re acting as a designer — and UML is for you.

� Implementers: Implementers construct solutions using UML as part
of (or as the entire) implementation approach. Many UML tools can
now generate definitions for classes or databases, as well as application
code, user interfaces, or middleware calls. If you’re attempting to get
your tool to understand your definitions, then you’re an Implementer —
and (you guessed it) UML is for you.

To understand how you can benefit from UML, it will help to know how and
why it was developed. It’s based on successful and working techniques 
proposed by groups of Software Technology Vendors before the Object
Management Group, and voted upon by the members.

Dispelling Misconceptions about UML
Many developers have several misconceptions about UML. Perhaps you do
too, but after reading this book, you’ll have the misconceptions dispelled:

� UML is not proprietary. Perhaps UML was originally conceived by
Rational Software, but now it’s owned by OMG, and is open to all. Many
companies and individuals worked hard to produce UML 2. Good and
useful information on UML is available from many sources (especially
this book).

� UML is not a process or method. UML encourages the use of modern
object-oriented techniques and iterative life cycles. It is compatible with
both predictive and agile control approaches. However, despite the simi-
larity of names, there is no requirement to use any particular “Unified
Process” — and (depending on your needs) you may find such stuff
inappropriate anyway. Most organizations need extensive tailoring of
existing methods before they can produce suitable approaches for their
culture and problems.

� UML is not difficult. UML is big, but you don’t need to use or under-
stand it all. You are able to select the appropriate diagrams for you
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needs and the level of detail based on you target audience. You’ll need
some training and this book (of course), but UML is easy to use in 
practice.

� UML is not time-consuming. Properly used, UML cuts total development
time and expenses as it decreases communication costs and increases
understanding, productivity, and quality.
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The evolution of UML
In the B.U. days (that’s Before UML), all was
chaos, because object-oriented developers did
not understand each other’s speech. There
were over 50 different object-oriented graphi-
cal notations available (I actually counted),
some of them even useful, some even had tool
support. This confusion, interfered with adop-
tion of object-oriented techniques, as compa-
nies and individuals were reluctant to invest in
training or tools in such a confusing field.

Still the competition of ideas and symbols did
cause things to improve. Some techniques were
clearly more suited to the types of software
problems that people were having. Method-
ologists started to adopt their competitors’
useful notation. Eventually some market leaders
stood out.

In October 1994, Jim Rumbaugh of the Object
Modeling Technique (OMT) and Grady Booch of
the Booch Method started to work together on
unifying their approach. Within a year, Ivar
Jacobson (of the Objectory Method), joined the
team. Together, these three leading method-
ologists joined forces at Rational Software,
became known as the Three Amigos, and were
the leading forces behind the original UML. Jim
Rumbaugh was the contributor behind much of
the analysis power of UML and most of its nota-
tional form. Grady Booch was the force behind
the design detail capabilities of UML. Ivar
Jacobson led the effort to make UML suitable
for business modeling and tying system devel-
opment to use cases.

The Three Amigos were faced with the enor-
mous job of bringing order and consensus to the
Babel of notation and needed input from the
other leading methodologist about what works
and what doesn’t. They enlisted the help of the
Object Management Group (OMG), a consor-
tium of over 800 companies dedicated to devel-
oping vendor-independent specifications for the
software industry. OMG opened the develop-
ment of UML to competitive proposals. After
much debate, politics, and bargaining, a con-
sensus on a set of notation selected from the
best of the working notation used successfully
in the field, was adopted by OMG in November
1997.

Since 1997, the UML Revision Task Force (RTF)
of OMG — on which one of your authors (okay,
it was Michael) served — has updated UML
several times. Each revision tweaked the UML
standard to improve internal consistency, to
incorporate lessons learned from the UML
users and tool vendors, or to make it compati-
ble with ongoing standards efforts. However, it
became clear by 2000 that new development
environments (such as Java), development
approaches (such as component-based devel-
opment), and tool capabilities (such more com-
plete code generation) were difficult to incor-
porate into UML without a more systematic
change to UML. This effort leads us to UML 2,
which was approved in 2003.



Chapter 2

Following Best Practices
In This Chapter
� Getting to know the object-oriented principles behind UML

� Avoiding vendor hype

� Interpreting the buzzwords

Ever notice how buzzwords seem to sprout like mushrooms whenever
experts get their hands on something really useful? The object-oriented

ideas that form the foundation of UML started in the 1970s and UML itself got
going in 1994, so the experts had plenty of time to come up with complex
terms — like abstraction, encapsulation, and aggregation — to confuse the
rest of the world. The experts think you already know these terms. Luckily,
the meaning behind these words is generally quite simple.

Various vendors have developed a host of rival tools to help you with UML.
The experts also went into overdrive coming up with competing methodologies
(steps for using UML). These tools and the methodologies are supposed to
make you and me more productive. Of course the vendors and the experts
assume you already know how to use their tools, understand the meaning of
UML diagrams, and know all the buzzwords they’ve come up with in their
marketing brochures. In this chapter we cover the terms and other details
about UML that everyone assumes you already know.

Understanding UML Terminology 
and Concepts

Over the years (if you’re like most of us) you’ve learned the wisdom of such
phrases as “say what you mean, mean what you say” and “get to the point.”
You’ve probably found that your best communication with other people 
happens when you say what needs to be said, no more and no less. The
experts use their own special words to describe this common-sense
principle; Table 2-1 (which uses an air-filter air exchange unit as an
example) interprets what they mean.



Table 2-1 Keep It Simple: Word Interpretations
Expert’s Word What They Really Mean Example

Object Refer to something useful that The air-filter unit sitting in my 
has identity, structure, and living room is unique from
behavior. all other air filters. It’s about 3

feet tall with an 18-inch-square
base. The unit behaves nicely
by cleaning the air for me.

Class A family of objects with similar You refer to my air-filter unit 
structure and behavior. and the thousands of others

manufactured just like it as
the HEPA air-filter unit. All
these similar units form a
class of air-filter unit.

Abstraction Describe the essence of an A circuit diagram of an air-
object for a purpose. filter unit describes the

essence of the electrical
wiring so you don’t electrocute
yourself when you work on it.

Encapsulation Just tell me what I need to “You turn on the air-filter unit 
know to use an object. with the external three-speed

knob, and you can’t get inside
the unit to change the possible
speeds of the motor.” This
statement encapsulates all
the details of how the elec-
tricity flows to the motor thus
turning on the motor that
moves the fan, which moves
the air through the filters.

Information Keep it simple by hiding the Most people don’t need to 
hiding details. know the three-speed

switch’s part number, or the
fact that it takes 120 volts AC
power at 15 amperes.

Aggregation Just tell me about the whole The air-filter unit (as a whole) 
object or tell me about the pulls in air and expels filtered, 
parts of the whole object. cleaned air. The air-filter unit

is composed of two filters, a
fan, a fan motor, a three-
speed switch, and some wire.
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Expert’s Word What They Really Mean Example

Generalization Just tell me what is common Every air-filter unit has a filter 
among these objects. to clean the air and a fan to

move the air.

Specialization Just tell me what is different The HEP43x air-filter unit is 
about this particular object. unique because it has a

motion sensor to speed up the
fan when extra dust is flying
around.

Inheritance Don’t forget that specialized Since the HEP43x is an air-
objects inherit the common filter unit, it inherits the fea-
features of generic objects. tures of all air filter units — a

filter and a fan.

Abstracting away irrelevance
Ignoring unimportant details is a fundamental part of your life. Most of the
time you are not even aware how much you take no notice of your surround-
ings. If you had to pay attention to everything around you all the time, you
would have no time to do anything else. When you communicate your ideas
about a system or the software you are developing, you ignore the trivial and
focus on the important. The experts have a fancy word — abstraction — for
this process of distilling the “important” information (needed for some clear
purpose) out of the mass of surrounding details.

You use different degrees of abstraction at different times. For example, the
picture of the air-filter unit in Figure 2-1 is an abstraction; this image is not
the real air-filter unit. The picture describes the look of the unit without
details such as color, physical dimensions, and actual size.

Sometimes you need different abstractions of the same thing. For example,
the electrician may need to see a wiring diagram like the one in Figure 2-2.
This diagram “abstracts away” everything about the air-filter unit except its
electric circuitry — and even that isn’t what the actual wiring looks like.
The symbols on the wiring diagram have special meanings; they indicate
components or functions that would otherwise clutter up the diagram with
distracting details. The symbol that looks like an upside-down triangle with
three lines, for example, shows that the circuit is grounded at this point —
exactly how that’s done isn’t important right now, and isn’t shown.

UML diagrams have symbols that act as a shorthand notation. These symbols
allow you to show what’s important by using the principle of abstraction, just
as a circuit diagram shows the electricians what’s important to them.
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When you use UML to make models — in particular, objects and classes,
which are discussed in detail in Chapter 3 — they make good abstractions of
the physical world. A good model contains only the important aspects of an
object, such as its identity, structure, behavior, and association with other
objects. (Abstracting your real world objects — paring them down to the
essentials — is also a great help when you map real-world stuff into 
object-oriented programs.)

Don’t let someone use UML to describe lots of irrelevant detail. Apply the
principle of abstraction — ignore the irrelevant and model what is important
to you and fellow developers.

Encapsulating and hiding information
To help you enforce an abstraction, the experts have a couple of other
fancy terms:

� Encapsulation: When you summarize important features of your objects
in one place, you are encapsulating them — your objects can make good
abstractions of the real world by combining features such as identity,
attributes, and behavior into a neat package. Everything an object needs
to be itself — structure, identity, internal behavior — is close together
so the object can be itself (function the way it wants to). The operations
(behavior) of an object are like a wall between its internal workings and
those of other objects. The wall of operations places a barrier that helps
the object maintain its separation from other objects, which helps
enforce the abstraction.

Figure 2-1:
Picture

represen-
tation of 

an air-
filter unit.
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These walls prevent your intended abstraction from being violated. You
turn an air-filter unit on and off. You cannot break the encapsulation of
that object and change its internals to create a TV that you can also turn
on and off.

� Information hiding: Hiding the details of how an object performs its job
helps prevent overloading the user with irrelevant details. The advantage
is that if you hide internal information about an object from its users,
then you can tinker with that object without affecting the users.

Manufacturers of air-filter units try hard to hide how the unit works from
the users of these devices. The assumption is that the user doesn’t have
to know anything about the operation of the unit except how to turn it
on and off. If the manufacturer changes the internal workings of the unit
without changing its controls — and it performs the same function —
then its users don’t have to retrain themselves to use a new unit.

Encapsulation and information hiding are used in many branches of 
technology. For example, computer users sometimes complain that PCs —
even today — still require the user to master too much detailed knowledge.
The users — all of us — still have to know a lot about the internal workings of
the computer before we can change a setting or get it to do a simple task. All
those details tend to get in the way of performing a job. From the user’s
point of view, the PC builders haven’t done enough information hiding or
encapsulation.
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Figure 2-2:
Electric

circuit
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tation of 
an air-

filter unit.
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You use encapsulation and information hiding together when developing
object-oriented systems and software. By hiding an object’s structure and
internal methods of behavior behind a wall of operations, you enforce your
abstraction and — in effect — help keep the object intact.

Don’t make the structure of your objects public. Doing so breaks the principle
of encapsulation and information hiding. For openers, public attributes often
attract tinkerers who make unauthorized modifications, and that makes your
job of enforcing an abstraction difficult.

Separating the whole from its parts
Aggregation is, in effect, pulling together the parts of an object to make up the
actual object. For example, when we say “air-filter unit” we’re talking about a
whole object that hides many other objects that we call its parts. The fan,
motor, filter, switch, and wires are the internal objects/parts of an air-filter
unit. You aggregate the hidden parts to form the whole air-filter unit.
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A little information hiding goes a long way
During the 1990s, software developers were
obsessed with Y2K — the fear that software
programs worldwide would be disrupted when
the year changed from 1999 to 2000. The prob-
lem boiled down to a lack of (you guessed it)
encapsulation and information hiding. Two
digits were customarily used to represent the
year attribute of a date: 98 for 1998, 99 for 1999,
and 00 for — what? 1900 or 2000? Programs that
needed accurate dates to function properly
relied on those unencapsulated two-digit year
attributes — big trouble. Companies and gov-
ernments around the world spent in excess of
$200 billion to solve the problem.

Now, suppose those dates were encapsulated
into a date object and the year representation
was hidden inside the date object. The software
developers could have changed the internal
representation of year from two to four digits
and added a wall of behavior that would, if
asked, provide the date with either two- or four-
digit years. When a software developer needed
to see whether one date preceded another, the
developer would ask two date objects to com-
pare themselves through a simple compare
operation. If early software developers had
encapsulated all dates in the first place — and
hidden the representation of year — then the
Y2K scare would have never happened.



You use aggregation to hide the internal parts of a complex object from the
outside world. Aggregation is a form of encapsulation and information hiding.
The whole or aggregate object hides many complex internal objects or parts.

If an object is especially complex, you can ignore its internals by focusing on
relationships between the whole object and other external objects. We don’t
have to talk about the internal parts of an air-filter unit to tell you how to use
it. We communicate the relationships between you, the air-filter unit, and the
air that gets cleaned and moved throughout the room. In my communication
with you we tell you just what you need to know.

If you must maintain the air-filter unit by replacing the filter, we tell you about
that specific internal part of the unit. Nobody has to yak on and on about the
unit’s relationship with air, the room, and the user. Again, we tell you only
what you (as maintainer) need to know.

Whenever you need to hide the internal parts of an object, use UML aggrega-
tion notation to isolate the internal complexity of a whole object from outside
interactions with other objects.

Composition is another word for a strong form of aggregation. The experts
needed a different word to help distinguish between two different situations:

� Composition: When the parts of an object are completely bound up in
the life of the whole object, the whole object is composed of them. If you
take a whole air-filter unit and crush it (end the life of the whole thing),
then all its parts are crushed too (the life of each part is bound to the
life of the whole).

� Aggregation: Some parts of a whole object exist beyond the life of the
whole. For example, a subsidiary of a holding company is part of the
whole company. However, if the holding company were to go bankrupt
and cease to exist, the subsidiary’s life would continue as a standalone
company. The relationship between the subsidiary and the holding 
company is simple aggregation, not composition.

You manage complexity by hiding it. Suppose we build a black box and tell
you how to hook up to the black box. If all you worry about is the hook up
to the box and not the insides of the black box, then we have successfully
hidden any complexity from you. UML classes hide complexity by forcing
you to use their public operations (publicly accessible behavior). UML 
components with internal parts hide complexity by forcing you to use their
public interfaces.
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Generalizing and specializing
Like most people, UML experts prefer not to repeat themselves when commu-
nicating with others. They follow the principle of saying something once.
When you hear the following words this is what they mean:

� Generalization: You look at a group of objects, extract the features they
have in common — their attributes (structure) and their operations
(behavior) — and use those features to define a generic class of objects.
That way, you refer to these common features whenever you mention
the class — and you only have to do so once.

� Specialization: Specialization is the opposite of generalization. To specialize
a group of objects, you look at a group of objects and identify groups of
objects with unique features not shared with other groups of objects. Then,
you create a class for each group of objects with their own unique features.

The same is true of any object — especially of any machine. There are lots of
different kinds of air-filter units, from no-frills to fancy. Figure 2-3 shows the
type of air-filter unit you see above a stove. A more elaborate, whiz-bang 
air-filter unit, bristling with gizmos, is shown in Figure 2-4. These units share
common features — internal fan, On/Off switch, replaceable air filter — that
you can find in various types of filter units. When you consider all possible
filter units that have these basic features, you’re generalizing.

To help you see the spaghetti sauce you’re cooking, the stovetop unit in
Figure 2-3 has a light to illuminate the cooking surface below. None of the
other air-filter units have this, so stovetop air-filter units make up a more 
specific class of objects.

The fancy unit in Figure 2-4 has an ultraviolet light and a motion sensor. Since
we’ve already included it in the general class of air-filter units, we can assume
that it also has an On/Off switch, an internal fan, and an internal filter — 
even though there’s no stovetop light.

Inheriting features and performing
the same behaviors differently
Okay, air filters in general have the features common to all air filters — so
when we speak of a particular air-filter unit, we can focus on its specific 
features. By doing so, we assume you already understand that the unit has
the features listed in the generic description. We’re “reusing” the generic 
features that all air-filter units have in common.
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This leads us to two more terms that the experts use to confuse us:

� Inheritance: You notice that when we talk about a specific kind of air-
filter unit, we assume you understand that the specific unit has the same
features of any generic air-filter unit. The experts like to say the specific
object inherits the features of the generic object.

Through the principle of inheritance, you “reuse” the features of a
generic object when talking about or modeling specific objects.

� Polymorphism: Of course, everybody studies classical Greek these days,
right? So here it is again — poly meaning many, and morph meaning form.
It’s when objects have the same behavior but perform it differently. For
example, all air-filter units can perform the operation of turning on —
but each type of unit performs that operation differently.

In this example, you notice there is a difference between the operation of
the object and the method the object uses to perform the operation. In
the object-oriented world, objects invoke the operations (behavior) of
another object. The second object then performs some internal method
(steps in a process) as a result. When you (the first object) invoke the
operation of turning on the air filter unit (the second object), the air
filter unit performs an internal method (it passes electricity through a
switch to the fan).

The idea of polymorphism is to hide the exact method of operation
behind the operation itself. You invoke the operation of an object with-
out worrying about how the operation is performed. So when you step
up to an air-filter unit, you just turn it on. The method inside the unit
does the rest.

Figure 2-3:
This stove-

top air-filter
unit has a

light so you
find the

oregano.
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When you use UML to describe general and specific objects, use the Principle
of Least Surprise. You place an attribute or an operation in whatever class —
generalized class or specialized class — is least likely to surprise the user.

Improving Your Productivity
Developing software is a hard job, made harder because the product has to
be easy to use, loaded with additional functionality, and usable even when
distributed over complex Internet environments. Software must continually
be better, quicker, and faster than ever before. To help you achieve these
goals, software development has gone object-oriented. Instead of writing
functions, you create little software objects that send messages to other 
software objects. Unlike functions, these software objects allow you to hide
the details of internal operations in tidy programming objects. Now, to go
along with this new direction in software development, you encounter a
whole bunch of buzzwords. You can use Table 2-2 to translate the slew of
new buzzwords when UML pros want to talk shop (or vendors want to sell
you methods and tools for UML modeling).

Figure 2-4:
Air-filter 
unit with

ultraviolet
light. (Do

dust motes
glow in 

the dark?)
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Table 2-2 UML Buzzwords and Their Interpretations
Expert’s Word What They Really Mean Example

Component A real-world object or unit of You can replace one DVD 
software code that is so self- player in your entertainment 
contained that it can be system with another DVD 
swapped out and replaced by player of equal or better 
another object, without the capability; you can replace 
user knowing the difference. one module of code with

another that works better. 

Component-based 
development Building your system out of Develop your system using 

modular/replaceable units Enterprise Java Beans, 
of code. .Net, or CORBA components.

Interface A contract that specifies A DVD player must accept 
what the object must do audio and video signals 
(but not how to do it). through specific connectors

(for example, RCA-type).

Pattern Description of how develop- Use the adapter pattern 
ers solve a frequently  to adapt an existing class 
occurring problem. interface to a new interface

you can handle.

Framework A large-scale pattern that You could implement a hotel 
dictates the architecture of reservation application 
your application. using an event-driven frame-

work using GUI screens, or
an auction framework over
the Internet.

UML Modeling tool Software that allows you to Chapter 23 lists some ven-
create UML diagrams — dors of Modeling tools.
and generate code based 
on the diagrams.

Life cycle A sequence of generic For many software projects, 
steps from beginning to end the life cycle (Waterfall, for 
that everyone on the team instance) starts with the 
has to follow for developing analysis step, followed by 
a system or software. the design step; all steps are

sequential.

Methodology A prescribed detailed These are the steps pre-
approach to the task of scribed by industry experts 
developing a system or for the development of systems
software. and software. These steps

often involve the use of a mod-
eling language like UML,
RUP, OMT, Booch, and Agile.
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Building component-based applications
You’ve seen manufacturers assemble hardware from groups of components.
Each part of a device (for example, a disk drive) is created first. Then the
parts sit in bins, waiting to be picked at the right time in the assembly
process. One instance of a part like a power supply or disk drive is exactly
like another; each part is a replaceable unit. The assembly-line approach to
building hardware is more productive than building things by hand; object-
oriented programming applies the same principle to software development.

Building software by assembling prefab pieces is faster and more productive
than creating each program line by line from scratch. This is what the
experts call component-based development. You can think of components as
units of code that can be plugged into the software (as if into a circuit board)
to form an application.

To develop applications from groups of components, you need to perform the
following tasks:

� Create components: Write units of software as groups of cooperating
objects, which you can reuse from application to application.

� Separate what a component can do from how the component does
it: You must declare interfaces to your components. Each interface 
specifies the name of the operation and any parameters needed by that
operation. When one component invokes the interface of another com-
ponent, it should not have to know anything about how the operation is
performed.

For example, if we build a streaming-video component in software that
provides a run interface, you should be able to simply ask any of our
streaming-video components to run. You shouldn’t have to know any-
thing about the internal type, structure, or format of the video to run it.
Thanks to this separation of concerns (external interface from internal
code), you can replace our component with another component that
provides the same run interface and your assembled application will
continue to work. It’s like replacing one power supply in a disk drive
with another.

� Provide a common standard for communication among components:
To make your components replaceable, you have to standardize on the
exact way one component talks to another. The Object Management
Group’s CORBA and Microsoft’s COM are two established communica-
tion standards that offer this sort of consistency.

� Allow your components to exist in a standard environment: Your 
components must be able to create instances of other components,
find out which interfaces other components provide, and register them-
selves so other components can find them and invoke them. Enterprise
Java Beans (EJB) is a good example of a component environment. EJB
provides standard ways to create, register, find, interface with, and
delete components.
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Use UML component diagrams to describe an assembly of parts for your
application. Use class, composite structure, sequence, and communication
diagrams to describe how the insides of your components work. (Class 
diagrams show the attributes and operations of each object making up your
component. Composite structure diagrams show the internal parts that make
up each component. Sequence diagrams show interaction among the compo-
nents over time. Communication diagrams show complex internal interactions
of the parts of a component.)

Utilizing patterns in your development
One way you can become more productive is by reusing solutions to common
development problems. Why reinvent the wheel every time you have a design
problem? During the 1990s, many developers got together and documented
common solutions to common system and software problems. They called the
resulting documents design patterns. Each pattern has a name, a description
of the problem it solves, a standard solution, and the documented trade-offs
you encounter if you apply the pattern.

For example, the proxy design pattern allows you to have one object take
the place of another. This pattern allows all objects to interact with each
other across different computers. Your object on a client computer invokes
a proxy object on the client computer; and that object is the one that contacts
the real object on the server computer. Your original object knows nothing
about how to contact the server object — and doesn’t have to (that’s what
the proxy is for). This approach can make object development easier.

Here the terminology gets confusing. Patterns describe a common way of
making objects work together. Some experts use the word framework to
describe larger-scale patterns used to create applications. Other experts use
that same term — framework — to describe an existing group of objects that
you customize for your own purposes. When the experts sort it out, we’re
sure they’ll let us know.

You can use UML collaborations and collaboration occurrences to model 
patterns and frameworks. For more information on diagramming collabora-
tions and collaboration occurrences, see Chapter 15.

Using UML tools
UML is easy to draw; artistically challenged experts designed it that way. But,
keeping track of many different kinds of diagrams — on many pieces of paper —
is especially tedious when you have to make changes during development.
Using UML to model and build today’s complex software systems requires
something more than a white board, lots of paper, and pencils with big erasers.

31Chapter 2: Following Best Practices



What you need is a UML modeling tool, formerly known as a CASE (Computer-
Aided Software Engineering) tool. A modeling tool aids the development of
software by keeping track of all the software engineering symbols (such as
those in UML), and it helps you do the following tasks:

� Drawing UML diagrams: This can include class diagrams (see Chapter 7),
use case diagrams (see Chapter 8), and sequence diagrams (see
Chapter 12).

� Drawing UML notation correctly: The tool draws a UML class as a box
and a UML state as a rounded rectangle. You don’t have to fool with 
getting the icon to look right.

� Organize the notation and the diagrams into packages: With large 
projects, as the number of classes increase you need help organizing
your diagrams. Modeling tools help you organize by packages. (For
more information on package organization see Chapter 7 and Chapter 19.)

� Searching for specific elements in your diagrams: This is very helpful
when you have a lot of diagrams with many classes, objects, associations,
states, and activities.

� Reverse engineering: Some of the tools read your object-oriented 
programming code and convert it into simple class diagrams. This
saves you time when you’re modeling existing software.

� Model reporting: You can disseminate information about your models
to other developers by asking the tool to generate a report.

� Generating code: The big payoff of a UML modeling tool is the fast 
creation of some, but not all, of the code you need for your software.

Over 120 different modeling tools support UML modeling. (Chapter 23 in
this book describes ten such tools.) You can even get some of them free.
Whatever the outlay, choose a UML tool that fits the kind of system you’re
building and that makes you the most productive.

Think carefully about the kind of system you’re building before you buy a
UML modeling tool. Consider the following system categories:

� Information systems: You want to build software applications that
process information. Look for a tool that is well rounded in that it 
provides you with all the UML diagrams. 

� Real-time and embedded systems: You concern yourself with strict
timing and sizing issues in these systems. Get a tool that is especially
good at state diagrams (see Chapter 16), timing specifications, and 
real-time simulation of event handling (a special program that directly
implements a state diagram).

� Database systems: In this case, you design databases to handle transac-
tions online or serve as data warehouses. Consider the tools that support
conceptual, logical, and physical models, and that can generate the code
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to query and extract data from your chosen database-management
system.

� Web-based systems: Here you concern yourself with scripting languages
and Web services; you have to generate XML data structures, create client-
side code, and specify server-side operations. You need a tool that allows
you to diagram all the different components in a Web-based application.

The primary reason you buy a UML tool is to improve productivity. Look for a
tool that gives you the automated support you need on the job. Don’t listen
to vendor hype; look first at what the modeling tool can actually do for you.
The best tools have capabilities like these:

� Shell generation: The tool generates header files for your code accord-
ing to a class diagram, but doesn’t generate any actual method code.

� Code generation: Now we’re talking. These tools generate basic code for
setting and getting the attributes of a class. They also generate simple
constructor methods.

� Language-development support: You find some tools support the whole
application development process. These tools integrate requirements
management, UML modeling, and an interactive visual development
environment. A good tool that supports your language development
parses your code in the UML model for correctness. You should be 
careful to choose a tool that fits your language needs and supports the
development tools you use. These tools also reverse engineer code
into simple UML models, helping you with integrating legacy code.

� Database generation: These tools allow you to specify logical and 
physical data models as different class diagrams. The tool generates
Data-Description Language (DDL) statements such as create table
and create index. Make sure the UML tool generates the DDL you
need for the relational database-management system (RDBMS) you use.

Some UML tools don’t generate DDL directly. The tool vendor supplies
you with an export facility. You export your UML class diagram into a
more traditional entity-relationship modeling tool. That tool generates
the DDL.

� OCL support: The object-constraint language (OCL) provides you with a
powerful way of expressing business rules beyond the UML diagrams.
OCL allows you to declare pre- and postconditions for your operations.
A precondition is a statement of truth before an operation can work
properly. A postcondition is a statement of what is true after an operation
executes successfully. If you use OCL heavily, look for tools that parse
OCL and generate partial code from OCL.

� Support for collaboration on large projects: Many UML tools place your
diagrams in a file on your computer. If you work with others, then you
have to send them copies of the file with your diagrams. On very large
projects (with 50 or more developers), that approach leads to disaster —
the files get changed, no one knows which file is the latest and greatest,
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and mistakes proliferate. When you work big projects, look for tools that
store their models in an industrial-strength database instead of a file.
Large projects also require lots of documentation. Look for a tool that
generates reports in HTML, XML, and hard copy.

Sorting out methodology madness
UML is just a notation. UML does not tell you when to use which diagram.
The experts had plenty of time to create lots of suggestions about when,
what, where, why, and how to use UML. They call this advice a methodology.

Most experts use their own obscure terms to describe their specific methods.
You may find their jargon very confusing — especially when different experts
use the same word to mean different things, or different words to mean the
same thing.

Every method for developing systems and software starts with the following
basic steps:

1. Planning: Organize your project.

2. Analysis: Find out what your application does or needs to do.

3. Design: Specify how your application works.

4. Implementation: Just build the application.

5. Testing: You make sure the application works properly.

6. Deployment: Launch the finished application onto servers and the
users’ computers.

Any good engineer will tell you about the basic steps for developing a
system. But you need to know which UML diagram to use during each step.
You must have a sense of how to order the steps, and how long you should
take to perform a step for your project (for example, some complex software
requires a longer requirements-gathering period). That’s where the experts
come in with their life cycles and their methodologies.

Riding multiple life cycles
A system or software development life cycle tells you what to do (process
steps) and when to do it (the sequence of process steps). When the experts
give you just a life cycle, they don’t tell you how to perform the actual steps.

Fortunately, life cycles come in recognizable types. Here are the ones you’re
most likely to come across:

� Waterfall: This life cycle is one of the oldest and one of the simplest.
Each basic step (planning, analysis, design, and so on) follows the
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others in a strict sequence. First you perform your planning. When that
is done, you gather your application requirements during analysis. Only
after you have all the requirements can you move on to design. This life
cycle is not very flexible.

� Spiral: The Spiral was originally a way to make the Waterfall life cycle
more flexible. Think of this cycle as a sequence of mini-Waterfalls. Your
project progresses in smaller steps. At the end of each spiral (a whole
sequence of risk assessment, analysis, design, and prototyping), the
team assesses how well the project is doing. The next spiral then
addresses these issues to build a larger prototype. Eventually the 
prototype becomes the full, delivered system.

� Iterative Development: The Spiral is thorough, but developers needed
a life cycle that didn’t take so long. When they recognized they could
perform groups of steps in parallel iterations, they had the key to 
speeding up the process. 

First, high-level requirements are gathered. Then the project is broken
up into small bit-size pieces of customer-oriented capabilities that meet
those requirements. Small project teams work on each iteration at the
same time to deliver each piece. (An iteration involves building, testing,
and providing a small functional part of the overall program.) You get
the project done faster because your team works on different parts of
the project at the same time.

Adhering to multiple methodologies
A methodology tells you how to perform a sequence of steps to get the job —
completing an application — done in the time available. When you read
experts’ prescriptions for building an application you may get the impression
they’re really saying, “Do it my way or else face disaster.”

Don’t be confused by the lingo. What some experts call a methodology is just
a life cycle. Look for a method that’s well enough thought out to tell you what
to do, when to do it, how to do it, and how long to do it.

No one follows the experts all the time. Every project is different and yours
is no exception. Read what the experts have to say — and then create a 
customized methodology that fits your company culture, your type of 
project, your team dynamics, and your path to success.

If you want some useful starting points, you can find methodologies like the
following by using your favorite search engine on the Web:

� OMT, Booch, Objectory: In the old days (pre-1995), these were the lead-
ing object-oriented methodologies. Each method had its own notation.
UML came along and replaced the different diagram symbols with one
unified notation. But you can’t get a complex project done using just a
notation — look deeper at the overall approach.
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� Rational Unified Methodology: During the mid-1990s, the Rational soft-
ware tool company hired (or had access to) the methodologists of OMT,
Booch, and Objectory fame. These folks (known to developers as the
Three Amigos) came up with a unified method to go along with the 
unified notation. Rational called its new method RUP for the Rational
Unified Process. (See www.rational.com.)

� Catalysis: During the mid- to late 1990s, component-based development
became fashionable. Desmond D’Souza and Alan Wills developed a
methodology they called Catalysis that describes how to perform 
development using components. (See www.catalysis.org.)

� Agile, eXtreme Programming / eXtreme Modeling: After the turn of the
current century, a number of developers came together to address the
continuing failure of methodologies. Older methodologies like RUP
seemed bloated and overbearing, resulting in projects that generated
lots of diagrams and documents but still failed. These developers
wanted something more agile than RUP. The result — the Agile method —
encouraged developers to tailor their methods to meet their specific
needs. Agile modeling using UML is geared toward small development
projects with tight deadlines, like building Web front ends. (For agile
development see www.agilealliance.org. For eXtreme Programming
see www.extremeprogramming.org.)

Use risk as your guide. Each step of a methodology is intended to mitigate
some risk you might face on a project. Every project is different because
every project faces a different group of risks. Typical risks include lack of
communication among developers, not enough money in the budget, not
enough time on the schedule, and failing to meet user requirements. Review
your project to identify the high-priority risks that could kill your development
effort. Then you should find the process steps, methods, and UML diagrams
to help you mitigate those risks.

No matter what method you choose, successful projects happen because
teams learn to work together. Don’t worry about the fancy words; get 
everyone on the team focused and excited by the project. You can use UML
diagrams to communicate, exchange ideas, build consensus, and document
for others what your project, application, system, or software is going
through on its way to completion.
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Object Modeling



In this part . . .

This part introduces you to the everyday notation at
the heart of modeling objects and developing object-

oriented programs. Whether you’re a modeler or a pro-
grammer, we familiarize you with objects, classes,
associations, generalizations, aggregations, and packages.
We cover the important details of UML’s object-modeling
notation and give you tips on how to develop good model-
ing practices. We also warn you of problem areas and
show you how to avoid them.



Chapter 3

Objects and Classes
In This Chapter
� Choosing key objects and classes

� Nominating good names

� Attributing the attributes

� Getting openness with operations

� Building the boxes

� Allowing for privacy

Just as you take time to get to know a friend, you need to take the time to
get to know the important objects and classes of your system before you

start doing UML modeling. With this chapter as your guide, you can identify
these key classes and objects in your system and give them useful names. By
spending quality time with classes and objects, you get a good idea of what
attributes a class has, what operations it can do, and even what parts must
remain private or may be shared.

In this chapter, we offer useful tips for identifying and naming classes and
their parts, and then we help you start organizing all these parts into a model
that everyone on your development team can easily understand and use.

Recognizing Classes and Objects
Before you can go about modeling objects and classes with UML, get familiar
with the entities in your system that match the definition of an object or a
class:

� Object: An object can be any useful item that has identity, structure, and
behavior. When an object-oriented software system is running, the items
in the system are interacting software objects. When a real-life physical
enterprise is in operation, the individual interacting entities in the enter-
prise system are the business objects.



� Class: A class is a family of objects. If several objects have similar struc-
ture, behavior, and meaning, then you can group the objects into a 
class — in effect, a template (or even a factory) you can use to create
uniform individual objects. When you develop an object-oriented system,
the system is described as being made up of classes — and that’s even
true of a real-life enterprise system. Some examples of classes might be
the Crash Dummy class, Lease class, Client class, or Owner class. Each
class provides a generic scheme for one or more objects, and a class can
be a template for many objects or only one.

There is often (and should be) a strong parallel between a software system
and its underlying physical enterprise: The system’s software objects should
parallel the enterprise’s business objects (actual, tangible things that the soft-
ware objects represent). Imagine that you are constructing the software for a
Rent-A-Crash Dummy business enterprise. As you walk through the enterprise
in your mind’s eye, you recognize business objects: a particular Crash
Dummy, a specific lease document, and a particular client. All these objects
are useful, can be recognized, have structure, and have behavior. A well-
designed system shows a parallel between the business and the software;
every business object has a software object. There is a software object for
each Crash Dummy, each document, and each client.

Even so, some additional software objects are necessary parts of the design
and implementation of an object-oriented software system — even though
they’re not strictly parallel to the business system. If you were to walk through
your software system as a virtual traveler, many of the sights you could point
out would be such objects: individual pieces of data such as records, soft-
ware structures such as queues, working bits of code such as instance vari-
ables. These are the construction elements of the object-oriented software
world; no less than the business objects, they too have identity, structure,
and behavior. When you first start modeling your system, don’t include these
design or implementation objects; they get added in later activities.

You can use many techniques to choose your objects and classes. Because
your project will be using these objects and classes for a long time to come,
thinking a bit about your choices is worthwhile. One of the most common
techniques, called Underlining the Nouns (and Words That Relate to Nouns),
can help you identify which classes and objects to use. You start by describ-
ing the system (or the system’s behavior). Then you examine each noun in
the description and consider whether it meets the following criteria:

� It’s a thing or family of things

� It’s part of a problem to be solved

� It’s not part of the implementation details

� It’s not an event or occurrence

� It’s not a property of a thing
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After you underline all the nouns and related words in your system descrip-
tion, you can start weeding out the ones that might make good classes or
objects. Table 3-1 can help you sort through these words.

Table 3-1 Sorting the Nouns (And Noun-Related Words)
Type of Noun Example It’s Likely to Be a(n)...

A family of things Person, Crash Dummy Class

A proper noun (name) Max Object

A property of something Age, Color Attribute (see the section
“Identifying Attributes”
later in this chapter)

A value or data 27 years, Red Attribute’s value 

A condition of a thing Adult, New State (see Chapter 16)

An occurrence, event, Birthday Party, Telephone Operation (see the section 
or time Ring “Performing Operations”

later in this chapter) or
event (see Chapter 17)

Part of the implementation Database, Table, EJB Leave for design 
(see Chapter 19)

Set up a list for the nouns that make the cut. Be generous: If you’re not sure
whether something is a good candidate, add it to the list anyway. After you
identify a noun as an object, look around for the class that this object is an
instance of.

Don’t completely discard the nouns that don’t qualify as objects. You’ll find
that they may serve as attributes, states, operations, events, and so on — all
of which have value later.

As mentioned earlier, the input to this technique is a description of the
system or of the system’s behavior. If no description is available, construct
your own. Sometimes the description of the system’s behavior is best orga-
nized as a set of outside entities, called actors, pursuing their individual
goals, called use cases, which are invoked whenever they use the system.
You can find actors and use cases covered in Chapter 8.
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Naming Objects and Classes
After you identify the classes and objects you want to use in your system,
you can start thinking about what to call them. In this section, we provide
some UML naming guidelines. (For general naming tips, see the sidebar,
“Perfecting your names.”)

Following rules for naming classes
Every project may have its own guidelines for naming classes, but your class
names also need to follow some commonly obeyed rules associated with
UML. If you made a list of possible names (as we discuss in the section
“Recognizing Classes and Objects”), you can start with a name from the list
and whip it into shape by following the refinement process illustrated in
Table 3-2.

Follow your organization’s rules and style when naming your classes. You
may want to use different style names during different phases of your pro-
jects. It’s common to put spaces between terms in the names during analysis
but to make the names more code-like by dropping the spaces as you enter
the design phase.

Table 3-2 Refining Names to Be Good Class Names
A good class name . . . Revised example

Uses a noun or noun phrase my modern crash dummies

Is singular not plural my modern crash dummy

Avoids possessives a modern crash dummy

Doesn’t contain irrelevant adjectives a crash dummy

Is bold and is centered in its box a crash dummy

Uses initial capital letters A Crash Dummy

Doesn’t have spaces between words ACrashDummy

Doesn’t contain articles (a, an, the) pronouns CrashDummy
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Naming objects
Naming objects is just as easy. When an object is modeled, it’s typically a 
specific object that we know a lot about. If the object is one of our friends, 
a name like Max will do. Alternatively, you can use a noun phrase that describes
a specific object. If the Rent-A-Crash Dummy system found it useful to name
their dummies in order of acquisition, for example, some good names might
be CrashDummy001 and CrashDummy002.

During the design or implementation phases, you’ll find that some objects
require more generic names. This approach is appropriate when you’re deal-
ing with an object that is really just a variable — a slot that’s waiting for
someone to put one object in it at one time and a different object at another
time. Name such objects with the class name preceded by a pronoun, adjec-
tive, or article prefix, as in the following examples:

myCrashDummy
currentCrashDummy
aCrashDummy
thisCrashDummy
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Perfecting your class and object names
Since the goal of a good name is to convey
information quickly and accurately, avoid any-
thing that could be confusing or that might slow
down interpretation. It’s good policy to avoid
using any abbreviations in any name and make
sure your spelling is correct.

Almost all abbreviations have multiple mean-
ings and can be momentarily bewildering. Even
a one tenth of a second delay adds up to be sig-
nificant lost time over the life of a project. If you
must use acronyms, make sure they come from
a limited central list of allowable abbreviations.
Likewise, avoid puns and double entendres.
(Impress your fellow modelers with your UML
skills, not your humor.)

Also remember that spelling counts. Don’t think
for a moment otherwise. Misspelling a word

brands you as careless, and even worse, inter-
feres with the rapid recognition of the name.
Models are made for accurate and quick com-
munication, which won’t happen if your audi-
ence is laughing. Proofread carefully and correct
all spelling and grammar mistakes.

Okay, some of you may say you entered the field
of software because you loved math and hated
Language Arts (especially spelling). Unfortunately,
most UML tool support doesn’t provide diagram
spell checking, but all is not lost. One approach
is to export your diagrams or class definitions
into a word processor, such as Microsoft Word,
and then run the spell checker. While you’re
there, run the grammar checker, too. Your
output need not be literary, but it should defi-
nitely be literate.



If the code loops over all the dummies to check their status, you can give the
variable dummy a name to indicate that it’s holding the current object under
consideration.

Identifying Attributes
After you become familiar with your classes and learn how to name them,
you need to consider their properties. To be an interesting and useful class,
instances of the class (objects) should have some interesting and useful
properties. UML calls these properties attributes.

Finding these attributes is usually not difficult. You can often identify attrib-
utes by considering how you would describe the objects within a class and
how you could differentiate among them. For example, the color of an object
might be interesting and may differ, so color could be an attribute. The weight
of an object might be interesting and may differ, so weight could be an
attribute.

Depending on your background, you may feel comfortable thinking about
attributes as member variables or data slots. Each data slot has a data value
placed inside it. Either way you look at it, attributes are the specific features
or values that an object of a class may have.

If you have a background in using or designing databases, you may find it
helpful to match UML terms with database terminology. They’re not exactly
equivalent, but seeing the parallels in Table 3-3 will give you a head start to
understanding. Don’t be enamored too much with this comparison. It works
well for the data aspects of a class, but a class is a larger concept than just a
table because the class encompasses both data and behavior.

Table 3-3 Parallel UML and Database Terms
UML Term Parallel Database Term

Class Table

Object Record

Attribute Field or Column

After you identify an attribute, you may want to indicate the attribute’s type.
(A type specifies what kind of data that attribute can hold.) When you do
supply it with a type, place the type’s name after the attribute’s name as 
follows:
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attribute:Type

The type of an attribute can be the taken from your programming language’s
possibilities — or (since UML allows it) you can develop your own. UML also
defines several intrinsic data types:

� Integer: This includes all positive and negative whole numbers, as in 
the following list:

. . . , _2, –1, 0, 1, 2, . . .

� Boolean: Boolean values specify a state of logical truth, such as True
or False.

� String: A string is a sequence of characters and spaces in code (as in the
example “A Typical String”).

Ultimately, it’s going to be necessary to specify the type of all the attributes
to produce an executable system. However, you can delay typing (specifying
the type) until you know it and wish to share it with your model readers.
Many UML tools provide a default type for attributes as you add them to 
the model. 

Naming attributes and types
Attributes follow the same naming conventions that object’s names follow
(see the section “Naming Objects and Classes” earlier in this chapter), but
they don’t usually begin with an article (a, an, the) because they’re only 
properties. The following are some attributes of a Person class:

� name: String uses an Intrinsic UML type.

� age: Integer uses an Intrinsic UML type.

� weight: Double uses a Language Defined type.

Some attributes of a Lease class could be as follows:

� date: Date uses a Language Defined type.

� duration: Integer uses an Intrinsic UML type.

Sometimes an object may need to have an attribute borrowed from another
class — or refer to an object of another class. You can show this situation 
by using a class name in the Type field. For example, on a Lease class, you
might want to indicate a particular Crash Dummy being leased and the
person renting the Crash Dummy. You could set it up as follows, where
CrashDummy and Person are classes:
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hiredDummy: CrashDummy
renting: Person 

You can find much more about referencing objects of other classes in
Chapter 4.

When you name types, generally follow the same conventions that you would
follow when naming classes. (See the section “Following UML rules for
naming classes,” earlier in this chapter.) To distinguish classes from types,
end your user-defined type names with the word Type. It is also standard
convention to prefix Boolean attributes with the word is. For a Person class,
some additional attributes could be as follows:

� phoneNumber: PhoneNumberType uses a user-defined type.

� streetAddress: AddressType uses a user-defined type.

� isSingle: Boolean uses a Boolean attribute.

Enumerating the possibilities
If you find that an attribute has a value that’s taken from a (usually small)
fixed list of discrete, possible values, you want to construct what is called an
enumeration data type. It’s good modeling practice to clearly identify these
types by ending their names with the word Kind, as in the following examples:

� GenderKind could have the values Male or Female.

� TrafficLightColorKind could have the values Red, Yellow, or Green.

� SuccessKind could have the values Succeed or Fail.

You may ultimately want to expand a data type such as GenderKind to
include every single esoteric possibility. But as with all typing (and all model-
ing, for that matter), too much detail may be counterproductive.

Defining default values
When your system is up and running, slots for the attribute values are cre-
ated every time an object is created, but the contents of the slots are unde-
fined. You probably want to determine default values to initialize your
attributes, and may do so when you define them at modeling time, as follows
for a member of the Person class:

attributeName: AttributeType = default value

46 Part II: The Basics of Object Modeling 



name: String = ‘’
age: Integer = 0
weight: Double = 0.0
gender: GenderKind = male
phoneNumber: PhoneNumberType = 000 000-0000
isSingle: Boolean = true

These default values are used only when a new object is created at runtime,
and the type of the default value has to be compatible with the type of the
attribute.

UML is constantly improving. Occasionally, the UML gurus change things 
that probably don’t really need changing. In UML 1.4, the value assigned to 
an attribute when an object is first created was called the initial value. In
UML 2, the gurus changed this to the default value — less precise (but more
common) terminology.

Multiplicity
In normal situations, you want your objects to have one attribute value for
each attribute you’ve identified. UML allows for more. Perhaps your friend
has two telephone numbers, or more than one name. UML enables you to
indicate exactly how many values an attribute has (called the multiplicity)
and even allows for a range. You place the multiplicity in square brackets
after the attribute’s type, as follows:

attributeName: AttributeType [Multiplicity]

You can express the multiplicity by following the examples in Table 3-4.

Table 3-4 UML Multiplicities or How Many Do We Have
UML Multiplicity Meaning

1 Exactly 1 (the default)

2 Exactly 2

1..3 From 1 to 3 (inclusive)

3, 5 Either 3 or 5

1..* At least one, and at most, unlimited

* Unlimited (includes 0) 

0..1 Either 0 or 1
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The default multiplicity for an attribute is 1, so you shouldn’t bother to indi-
cate it explicitly unless the fact that the multiplicity is 1 is surprising. If an
attribute value may be omitted, perhaps because its value is not always
defined or known when the object is created, allow for zero in the multiplicity.
Such attributes are commonly described as having nulls allowed.

Look at the follow attributes on a Person class. A person must have at least
one name, but may also have a nickname. The second name is only created
when needed, so only initialize the first.

name: String [1..2] = “Michael”

If a person’s age were optional, you should include zero in the multiplicity. As
a person cannot have more than one age, the upper limit on the multiplicity
should be one.

age: Integer [0..1]

On the other hand, if you decide that it might be better to always have an age
attribute for every Person, use a multiplicity of one. You should also consider
whether you need a default value, as in the following example:

age: Integer [1] = 0
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Attributes and analysis
During the early phases of development, it’s
often premature to consider low-level features
(such as data types, slots, or fields). Instead,
concentrate on the knowledge responsibilities
that an object might have. Ask yourself, What
questions could be directed to the object that
the object should be expected to reply to?
Questions about the object’s state, status, or
condition are all natural knowledge responsibil-
ities; typically all are treated as attributes.

In early development steps (such as analysis),
you also need not compress and eliminate
spaces in the attribute names. Keeping the
names normal-looking helps you spell-check
the names — and also helps show that your
early-stage attributes are merely conceptual,
not meant to be directly implemented.

Similarly, consider using the conceptual
approach to units of measurement (such as
DegreesCelsius) instead of implementation
data types (such as int for integer) in the early
stages of developing your model. The reviewers
of your models are likely to be users and busi-
ness analysts. They’re not expected to know
what double or int means, but can catch 
on to standard units. If you’re modeling a 
thermometer class for a domain expert 
(for example), and want to convey that you’ve
got a handle on the subject, current
Temperature: Degrees Celsius makes
the point better than currentTemperature:
Double. For the Lease class, the analysis step
would probably benefit more from duration:
Weeks than from duration: Integer.



If you have a high-multiplicity attribute and you want to initialize several of
its possible values, you can do it as follows:

phoneNumber: PhoneNumberType [2] 
=(000 000-0000, 000 000-0000)

This initializes both possible phoneNumber values to the default value of 000
000-0000.

Performing Operations
As you get to know your classes and get to know their properties (attributes),
you also get to know their behaviors. UML uses the term operations to refer
to the possible behaviors of a class what the objects of the class can do or
have done to them. Consider what can you ask objects of the class to do — or
what can cause them to change their states — when you create the basic
syntax for an operation. A typical example follows:

operationName (optional argumentList): ReturnType

So if you wanted to ask a Person object to rent out a crash dummy, the oper-
ation would look something like this.

rentOutDummy (): SuccessKind

An operation is usually called (asked to be performed) because the caller
wants something in return. Specify the ReturnType as an attribute-like type
identifier. If nothing is returned when this operation is performed, either use
Null or omit the ReturnType altogether. In the previous example operation,
a success indicator is returned.

But before something can be returned, something must usually be given —
and generally requires information before it can do something. The argument
of an operation specifies a piece of information needed by the object to per-
form this operation. 

Specify the information needed by the operation in an optional
argumentList of comma-separated arguments or parameters — the specific
things the object needs to perform this operation. Here’s how the arguments
go together:

operationName (argument1, argument2, . . . ): ReturnType

Each argument must have a type declaration so that the kind of information
that is needed can be determined. Each argument in the argumentList
above looks like a mini-attribute, as shown below:
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argumentName: ArgumentType [Multiplicity] = default value

So our example operation might be more completely shown as follows:

rentOutDummy (aDummy:CrashDummy[1],forClient:Person[1]): SuccessKind

In this example, the operation rentOutDummy has two arguments. The first
argument is a singly valued argument named aDummy and is of the Crash
Dummy type. The second argument is also a singly valued argument, which is
called forClient and is of the type Person. When called, the operation
returns a value that is of the enumeration type SuccessKind.

As with attributes, if you don’t specify a multiplicity for an argument, it will
default to 1. And as with attributes, you may also specify a default value if
you want.

rentOutDummy (aDummy:CrashDummy,forClient:Person): SuccessKind

Besides a type, a multiplicity, and a default value, each argument can also
have a direction. If you need to set the argument before the operation is
called, the argument is an in argument. If you set the argument by calling the
operation, then the argument should be an out argument. If the argument
must be set before the operation is called and is changed by calling the oper-
ation, it’s an inout argument. The direction precedes the name of the argu-
ment. (The default is in.)

Here’s the syntax and an example of an operation with the direction included:

direction argumentName: ArgumentType [Multiplicity] = default value

rentOutDummy (in aDummy:CrashDummy, in forClient:Person): SuccessKind

The complete specification of the operation name, arguments, and return for
an operation is called the operation’s signature. As people have their own sig-
nature, each operation has one also. However; more than one person can
have the same name, and more than one operation can have the same signa-
ture, whenever there is more than class in question, it’s best to precede the
operation with the owning class name:

Class::operationName (argument list): ReturnType

Person::rentOutDummy (in aDummy:CrashDummy, in forClient:Person): SuccessKind

Naming operations and arguments
Name operations in the same format as attributes (start with a lowercase
word, compress blanks, and capitalize all successive words), but operation
names should be verbs or verb phrases. Though not technically required,
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follow the operation name with () to emphasize the visual distinction from
an attribute. When naming the operation, name it from the point of view of
target object, the object performing the operation, not from the point of view
of the requestor. If the requestor also performs an operation to make the
request, then there are two parallel operations. We show some examples in
Table 3-5. 

Try to choose active verbs whenever possible; you don’t want your readers
to fall asleep or drown in those passive helping verbs.

Table 3-5 Operation Naming
Requestor’s Operation Recipient’s Operation

hireDummy (aDummy, fromPerson) rentOutDummy(aDummy,
toPerson)

borrowTool (aTool, fromPerson) lendTool (aTool,
toPerson)

offerProposal () acceptProposal ():Boolean

Saying please
One trick to help name the operations correctly from the target object’s point
of view is to place a virtual “Please” before each operation. When you want a
person to lend you a tool, you ask them, “Please, lend me that tool” and not
“Please, borrow me that tool.”

When naming arguments, consider that the argument name has four purposes.
The name is supposed accomplish the following:

� Make it clear to the reader what the argument does.

� Make it clear to the caller what needs to be supplied.

� Make it clear to the caller what the argument is going to be used for.

� Make it clear to the coder what the incoming argument is.

The most useful approach is to make the whole operation signature read like
a sentence. Remember to place a logical “Please”(replacing the two colons)
right before the operation name and right after the class name. For example,
consider the following operation:

Person::rentOutDummy (thisDummy:CrashDummy, toThatPerson:Person):SuccessType

It could be translated this way: “Person, please, rentOutDummy, thisDummy
of type CrashDummy toThatPerson of type Person, returning a SuccessType”
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Diagramming a System’s Parts
UML is primarily a diagramming language. In this section, we show you how
to take the classes and objects, along with their attributes and operations
and to graphically represent them on diagrams. By capturing the elements on
diagrams, you can depict and solidify your understanding of the static struc-
ture of your system, as well as communicate it to others for comment and
buy-in.

Boxing in classes and objects
The UML symbol for both classes and objects is the box. Its solid nature
makes it a good foundation for building our knowledge of UML. If you’re a
frustrated artist and really care about how it looks, try to draw it with a
width-to-height ratio of about 1.6:1, as you can see in Figure 3-1. This ratio is
the Golden Ratio (Φ) and proportions close to it are generally considered
pleasing to the eye. (The actual value of Φ ≈ 1.618.) Of course, you should
conform the proportions of the box to the text within.

To show a UML class box, just place the chosen class name in the center of
the box, or perhaps about one third of the way from the top of the box, as
shown in Figure 3-2.

CrashDummy
Figure 3-2:

A class 
box with 
a name.

Figure 3-1:
UML’s class

box.
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Differentiating between 
classes and objects
UML always tries to make similar things have similar shapes. Although this
simplifies remembering the form, it can make them hard to tell apart. Objects
also use boxes, just as classes do. To differentiate them, the UML gurus
decided that object names must be underlined and then followed by the class
name, with the two names separated by a colon.
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What’s in an icon?
The UML gurus argued for a long time on what
shapes to use for the UML notation. For classes,
one of the UML Three Amigos, Grady Booch,
argued for an amorphous cloud-like figure 
(as shown in the figure) — based, of course, on
his own Booch notation. Another Amigo, Jim
Rumbaugh, argued for a box (based, of course,
on his own Object Modeling Technique nota-
tion). Others argued for a variety of shapes, one

of which was a tombstone-like icon. For a while,
they even toyed with pentagons. Ultimately they
settled on the rectangle box for objects and
classes. Their key reasons: Objects and classes
have crisp boundaries and need a crisp, solid,
stable icon. And it had to be something simple
to draw, not only for the developers, but for the
UML tools too.



When you show an object on a diagram, you can omit the class part of the
name if its class is clear from the context (or if it’s still unknown and must be
left unspecified). When you omit the class part, you’re allowed to omit the
colon as long as you keep the underline. Alternatively, the object name may
be omitted when you want to emphasize that any anonymous object of the
class would do under the circumstances. Figure 3-3 shows several sample
objects with different name forms.

Using arrows to indicate an object’s class
Sometimes UML has more than one way of showing the same information.
This doesn’t mean that you have to use them all. Even though redundancy
can often improve communications, it usually makes the diagram more com-
plicated. UML has another way of indicating that an object is an instance of a
specified class — by drawing a dashed arrow from the object to the class.
Avoid this arrow technique unless there is some reason to strongly empha-
size that the object is a member of the class — and even then, it’s still proba-
bly better to drop the redundant class name from the objects. Figure 3-4
shows the use of an arrow to indicate the object’s class.

Using stereotypes
UML has lots of different kinds of dashed arrows that look identical. Luckily,
UML allows you to label a model element to indicate exactly what kind of 

Max: Crash Dummy

Figure 3-4:
An object

pointing to
(instanti-
ating) its

class.

MaxProper Name - unspecified class

Joan : CrashDummyProper Name - with class specified

aCrashDummy : CrashDummyTypical Name - with class specified

: Crash DummyAnonymous object of specified class

Figure 3-3:
Sample

UML
objects.
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element it is. UML calls this label a stereotype. You show the stereotype next
to the element (preceding the name of the element if there is one). UML has
several predefined stereotypes or you can define your own to indicate a spe-
cial kind of element for your own purposes 

The syntax for a stereotype is as follows.

«stereotype name»

A stereotype can appear before any UML element. You could label the kind of
dashed arrow we used in Figure 3-4 as «InstanceOf» as the arrow indicates
that the object is an instance of the class it points to.

The special characters surrounding the stereotype name are called
guillemets. If you’re typographically challenged, you can use the double angle
brackets << and >>, but the « and » are used in the UML standard.

Modeling forms
Following the object-oriented principles of encapsulation and co-location 
(as explained in the Chapter 2), UML displays each class along with its prop-
erties and behaviors together. Each type of information (class name, attribute,
and operation) has its own compartment in a class-box symbol. And following
the object-oriented principles of encapsulation and information hiding, the
compartments may be hidden if desired. Figure 3-5 demonstrates the standard
arrangement of the three compartments, and the following list describes
them:

� Name compartment: The name of the class goes in the Name
compartment.

� Attribute compartment: Place those attributes that you’ve already iden-
tified for the class in the Attribute compartment. When you look over
all the attributes, you may find that there are some redundancies. It’s
almost always good advice to eliminate duplication, but sometimes,
there’s an attribute whose value can be calculated from some of the
other attributes yet you still want the attribute to be kept. The calcu-
lated attribute is called a derived attribute and is flagged by a slash (/).
For example, consider the following attributes of a Rectangle class:

height: LinearUnits
width: LinearUnits
/area: SquareUnits
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In this case, the height and width are considered base attributes and
the /area is the derived attribute. The base attributes are those whose
values are needed to calculate the derived attribute. (See the sidebar 
“ Derived attributes” for more on — you guessed it — derived 
attributes.)

� Operation compartment: The operations of the class go in the Operation
compartment. But don’t model all operations; some of them are auto-
matically implied. Whenever there is an attribute on the class, there is
likely to be an operation to SET the attribute’s value and an operation to
GET the attribute’s value. Because these GET/SET operations (accessor
operations) are relatively obvious, most UML tools generate such opera-
tions for you. If you write your own GET or SET operations, you may con-
fuse the tools — and you’ll certainly crowd the Operation
compartment.

NameCompartment

Attribute Compartment

Operation Compartment

Figure 3-5:
A class’s
compart-

ments.
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Derived attributes
Why might you keep a derived attribute if it’s
really a duplicate? There are two basic reasons. 

� During analysis, you may find that a key
customer concept, something from the cus-
tomer’s basic vocabulary, is really deriv-
able. If you eliminate that concept, you’ll
have to spend a lot of effort in explaining
why the customer can’t find the concept in
your model. You run the risk of seeming
either ignorant or arrogant if you leave it
out. So leave it in — but mark it derivable.

� During design, derived attributes have
another purpose — efficiency. Suppose
some calculated value is needed often, and
quickly. If you plan ahead, you might want
to precalculate the value and store it so it’s
available when you need it. (Just remember

to recalculate the derived attribute when
the base attributes change.)

Unless it’s obvious, flag each derived attribute
with the formula needed to recalculate it, as in
the following example:

height: LinearUnits
width: LinearUnits
/area: SquareUnits {/area =

height × width}
These brackets — { }— indicate a constraint
and may contain any information that limits the
values of an attribute.

height: LinearUnits {height >
0.0}

width: LinearUnits {width >
0.0}

/area: SquareUnits {/area =
height × width}



Defining Visibility
If you really get to be friendly and know your classes well, you’ll be able learn
some private secrets about them. When you make your models and design
your classes, you’ll be able to define what’s visible and what’s not. Typically,
all the attributes are private so that only the owning object can see the
values of the attributes. Thus, each person object can see his or her own
age, because you own and control your own attributes. 

Each attribute — and each operation — of a class should have its visibility
determined. You model the visibility by preceding the feature definition with
a typographical symbol, as defined in Table 3-6.

Table 3-6 Symbols for Modeling Visibility
Symbol Visibility Meaning

+ Public Any object can use the feature.

- Private Only the owning object can use this feature.

# Protected Only the owning object or descendants of the owning
object can use this feature.

~ Package Only objects in the same package as the owning
object’s package can use this feature.

The object-oriented principle of information hiding should be guiding you to
avoid exposing any details. Keeping the details hidden allow you to change
them later, whenever you want to. To give yourself this freedom to change,
make all the attributes private. You don’t want anyone to get to them without
going through the accessor (GET/SET) operations where you can control the
access.

On the other hand, most operations are public. You want the objects to be
useful, so they need to be accessible to be told do their stuff.

You can find more details on information hiding and other principles of
object orientation in the Chapter 2.
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Marking attributes as public and private
Many UML tools enforce the information-hiding concept of attribute privacy
strictly. Even if you mark an attribute as public, it is still generated as private.
How do the UML tools get away with ignoring your requests, after all, you’re
the modeler and should be in charge? 

Most tools generate the attribute as private, but generate accessor operations
with your requested visibility. This surprising trick puts up a wall that
enables you to control the details of the access.

If you modeled it as +name:String, you’ll probably automatically have the
following generated:

- name:String
+ getName():String
+ setName(toNewName:String)

But what should you do, if you really want to have an attribute that’s mostly
private, but not to everybody? In many programming languages, it’s possible
to mark some classes as friends. Only close friends can get to see the private
parts; these friends can break the encapsulation rules. (For more about
encapsulation see Chapter 2.)

Marking static attributes
Every object in a class has its own attributes and keeps track of its own data.
Sometimes, however, members of the same family have to share information.
They do this through by flagging the attributes representing the shared infor-
mation as static attributes. This indicates that the attribute has class-scope.
Once flagged, every object in the class has the same value for that attribute.
Change it once, and every object’s value is changed. You mark these attrib-
utes as static by underlining them. Operations that set or get these static
attributes should also be marked static. 

Normally, when a regular (non-static) operation is called or an attribute is 
referenced, you start with the object name, as follows:

� aCrashDummy.name indicates the name of the aCrashDummy object.

� myNeighbor.borrowTool() indicates the borrowTool operation on the
myNeighbor object
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With a static attribute, you refer to the class as a whole — so you precede the
operations and attributes with the class name, like this:

� CrashDummy.nextID indicates the nextID used by the whole
CrashDummy class

� CrashDummy.getNextID() also indicates the operation to get the
nextID value used by the whole CrashDummy class

If you want to define a static attribute or operation for a class, include it in
the class box, but flag it as static by underlining it. Figure 3-6 shows an 
example.

The CrashDummy class in Figure 3-6 illustrates some of the features that are
discussed in this chapter. The attribute compartment has several private
attributes and the operation compartment has several public operations:

� The birth attribute captures the construction date for the Crash
Dummy.

� The age attribute captures the targeted age that CrashDummy mimics.

� You use the gender attribute of the dummy to capture the gender that
the CrashDummy mimics.

� Use the weight and height to capture physical properties of the
dummy. Each has their own default value and a constraint governing
their values.

CrashDummy

-name: String
-model: ModelKind=Simple
-serialNumber: Integer=getNextID()
-nextID: Integer
-birth: Date = 01/01/2000
-age: Integer=0
-weight: Double=0.0 {weight ≥ 0.0}
-gender: GenderKind
-height: Double=5.5 {height≥ 0.0}
-isWorking: Boolean

‹‹constructor›› +CrashDummy()
-getNextID():Integer
+hire(in thisDate:Date=Today)
+fire(in thisDate:Date=Today)

Figure 3-6:
A class 

with many
features.
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� You can see a Boolean isWorking attribute, which reflects whether the
dummy is need of repair.

� The nextID attribute is a static (also known as a class-scope) attribute,
whose value is available to the class as a whole.

� The nextID attribute is used with the static operation getNextID().

� The CrashDummy() operation is also considered a static operation;
although it makes a CrashDummy object, it operates on the class to do so.

� The CrashDummy() operation is also flagged with the stereotype 
«constructor» to remind the reader or tools that this operation will
make up new objects.

Most of these attributes capture constant properties of a CrashDummy object.
After you set them, you can forget them, as they don’t change over the life of
the object. However, make you shouldn’t forget that objects typically have
attributes that reflect the state of the object and may change over time.
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Chapter 4

Relating Objects That 
Work Together

In This Chapter
� Showing how objects and classes relate

� Figuring out how many objects relate to each other

� Indicating which objects play multiple roles

� Adding attributes to associations

� Partitioning your objects

� Implementing associations

UML allows modelers and programmers to show static relationships
between classes and objects. If you’re a modeler, you describe relation-

ships between objects that communicate with each other in the real world so
you can better understand these objects and their classes. If you’re a program-
mer, you specify which objects interact with each other so you know how
to define classes in your program. This chapter tells you about two types of
relationships — links and associations — and shows you the UML notation for
modeling these important relationships between objects and between classes.

You must resolve a lot of issues as you define and depict relationships between
objects and classes. You need to figure out how to show an association and
what makes a good association name. You also need to decide how many
objects can link together. Then, you need to think about the details of associa-
tions, such as names at each end of an association, association classes, and
qualifiers. These issues can be tricky, but we break them down for you. We also
give you some pointers to help you accurately model various associations and
take the mystery out of what modeling associations mean for your programs.



Showing Static Relationships 
in a Class Diagram

There is a lot more to this world than just objects. Relationships between
objects are just as important as the objects. In UML these relationships are
defined using associations and links. To give you a concrete sense of these
relationships, we use several different examples. Our first example involves
a company that rents crash dummies to clients for tests. Consider this the
Rent-A-Crash Dummy example. You have to relate the crash dummies to the
clients who rent them — and show that a specific crash dummy named MAX
was rented to a client named Safety ’R Us.

An instance of a class is an object. We use the words object and instance
interchangeably.

Links are instances of associations. Associations relate classes, whereas links
relate instances of those classes (objects). So a link would connect an object
in the Client class with an object in the CrashDummy class.

You show a simple association by drawing a line between the two classes
you want to relate. Likewise, you show a link by drawing a line between two
instances of two associated classes.

After you have specified that two classes are associated, think about a few
details for depicting the association. Here’s a quick list (which we discuss 
further later in this chapter):

� Name: Normally an association has a name — placed along the associa-
tion line — that describes the relationship between the classes. Older
versions of UML specified italics for the association name so it would
stand out. UML 2 doesn’t require italicized association names — but it’s
not a bad idea. A good practical rule is to use the form that your UML
modeling tool uses.

Names of associations are not underlined, but the names of links are.
Use associations to connect classes; use links to connect objects.

� Multiplicity: Use multiplicity to specify how many instances of one class
can be linked to a single instance of another class. The multiplicity is
shown as a number (or numbers) indicating the lower and upper bounds
on the number of links at each end of an association.

� Roles: Here you name the class on one end of an association by indicating
how the class participates in that association. The name is placed at the
end of the association closest to the participant class it is identifying.
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� Constraints: Employ constraints on an association if its underlying links
must follow some rule(s). Place a constraint in curly brackets { } close
to the association.

� Qualifiers: Use qualifiers to show that navigation from an instance of one
class to a partitioned set of instance(s) of another class must be based
on an attribute of that other class. Place a qualifier in a box appended to
the class from which the navigation begins.

� Directional navigation: Utilize a navigation arrow on the association line
when one class can communicate one way with another. Show directional
navigation with an arrowhead at one end of the association, indicating the
direction of allowable communication.

Well, yes, there are a lot of details here, but the chapter takes you through
them. Fortunately, you don’t have to place all these details on each and every
association in your diagrams. Usually the name of the association and the
multiplicities are all you need.

Linking Objects Together
When you want to show that a relationship exists between two objects, you
create a link in your UML class diagram. That is, a link is the device you use
in a UML diagram to indicate that two objects communicate with each other.
The link appears as a line connecting two boxes representing the objects and
may have a name showing somewhere along the line.

Remember these characteristics of links when creating or reading a UML 
diagram:

� A link relates two objects that communicate.

� A line connecting two object boxes represents a link.

� Naming the link is optional. We name a link only if it helps clarify what
we mean to others who look at our diagrams.

So say that Safety ’R Us is a company that rents a dummy called MAX for test-
ing. Figure 4-1 shows an object called SafetyRus (an instance of the class
Client) renting MAX, an instance of the class CrashDummy — and rents is
the name of the link between these two instances.

rents
SafetyRus : Client MAX : CrashDummy

Figure 4-1:
Two linked

objects.
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Only when two objects are linked together can they communicate. In UML, the
link notation allows the modeler to specify that SafetyRus is linked to MAX,
and therefore SafetyRus can rent MAX. The link notation allows the program-
mer to specify that the instance SafetyRus is linked to the instance MAX, and
therefore SafetyRus can invoke MAX’s operations. Still confused? Well, try
looking at links like the strings on a marionette. If you want to invoke the
behavior of the puppet, you must be linked to it via the strings.

Associating Classes
You show meaningful relationships between classes with an association.
It’s called an association because you are indicating that instances of certain
classes associate — that is, communicate with each other — and thus work
together. The definition of an association sounds a lot like the definition of
a link.

Keep in mind:

� Links relate objects.

� Associations relate classes.

� You give the association a name to help others understand the nature
of the relationship between two classes.

Figure 4-2 shows a simple rents association between the Client class and
the CrashDummy class. Clients do not purchase or make crash dummies;
clients rent crash dummies. So we want to use UML associations to indicate
what the instances of these classes do when they get together. The link shown
in Figure 4-1 is an instance of the rents association shown in Figure 4-2.

Because a link between two objects carries the same name as the association
between the objects’ classes, the link name is often omitted. This is a fancy
way of saying, Name your associations, but don’t worry about link names.

rentsClient

CrashDummy

Figure 4-2:
Two

associated
classes.
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Naming Your Associations
When you name an association, use a verb phrase that best describes what
these two classes do with (or to) each other. If you consider the classes at
either end of an association along with the association name, then the whole
thing can be read as a sentence, such as, “A client rents a crash dummy.”

Try to find an active verb phrase that relates the two classes. This enables
others to understand your diagrams more easily.

Although associations have meaning in both directions, the name you choose
should be readable from left to right or from top to bottom when someone is
looking at your diagram. When you build class diagrams with many classes
and associations, however, you cannot avoid having some of your association
names running in the wrong direction. If you must use an association name
that reads from right to left or bottom to top, then use a small arrowhead —
the name-direction arrow (as in Figure 4-3) — to help the reader. Considered
as a sentence, the association in Figure 4-3 reads like this: “Test equipment
monitors a crash dummy.”

Some UML modeling tools (software that helps you draw UML diagrams and
may generate code as a result) don’t have the directional-arrowhead feature
that UML requires. In such cases, we use the keyboard symbols in Table 4-1
as substitutes for the arrowheads. If possible, however, we recommend using
name-direction arrows (if your UML modeling tool provides them) to help
other developers know exactly what you mean.

Table 4-1 Substitutes for Association-Name Arrowheads
Symbol Keyboard Keys Purpose

< Shift+, (comma) Read association from right to left

^ Shift+6 Read association from bottom to top

> Shift+. (period) Read association from left to right

v Lowercase v Read association from top to bottom

TestEquipmentCrashDummy
monitors

Figure 4-3:
Use of

arrowheads
for reading

association
names.
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We highly recommend that you name your associations. Names emphasize
relationships instead of data flow (more about that in the sidebar, “Noname
associations”); they also increase the readability of your diagrams by leaps and
bounds. After all, UML is all about effective communication with other develop-
ers. When we return to a class diagram months after we put it together, the
association names help us remember what we had in mind months earlier.
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Noname associations
Watch out for class diagrams with lots of
classes and associations that have no names.
This indicates the modeler is not thinking about
objects interacting together — and may be
trapped in thinking about getting data from one
place to another.

When they program, many expert developers
use a functional mindset — worrying about the
data that must be poured into each function,
constantly working to get data from one func-
tion to another. They speak of “data flow.”
When these functional programmers start using
object-oriented techniques and languages, they
want the data to flow from one object to another
just as if it were moving from one function to
another.

So why does someone create a class diagram
with “noname” associations? Well, some devel-
opers start by drawing a few classes with attrib-
utes and operations. Then they focus on one of
the classes and think about the data it needs.
Next, they see that another class has an
attribute with the right data. Finally, they draw a
line (association) from the class with the data to
the class that needs the data — but they don’t
bother to name the association. If you ask them
to read the association in the recommended
way (class name, verb phrase, class name) so
it describes how the two classes relate, they
can’t come up with a good verb phrase. They
haven’t really thought about the nature of the

interaction between the two objects — just the
data flow.

For example, suppose we need to route the data
about a crash dummy after a bumper test —
say, from the test equipment to a TV monitor. But
object-oriented programs are about getting
objects to interact in different ways to accom-
plish particular tasks or functions — they’re not
about data flow. The crash dummy is not really
associated with the TV monitor; the test equip-
ment has that association. The test equipment
monitors the data about the state of the dummy;
the TV receives the summarized results from the
test equipment. We would model this situation
by drawing one association between the crash
dummy and the test equipment, and another
association between the test equipment and the
TV monitor.

Remember, one object can ask another object
for information. The second object can in turn
ask a third object for that information, and then
return the result to the first. This is done all the
time in the real world. For example, our bosses
are always asking us for stuff. We just turn to
the Internet, get an answer, and turn it around
to the boss — who has no direct relationship to
all the things we used to get the information.

So, to avoid getting stuck in the functional mind-
set, associate classes that really interact —
and give those associations accurate, natural-
sounding names. Don’t worry about data flow.



Relating Many Objects (Multiplicity)
As in the real world, you can link one object to many instances of another
class. Surely, if you want to have a successful business renting crash dum-
mies to clients, your clients should be able to rent more than one dummy at
a time — and a dummy should be rentable to more than one client over time.
Specifying how many instances can be linked together is called multiplicity.

When showing multiplicity on your association, remember to do the following:

� Position the multiplicity numbers above or below the association line,
close to the class.

� Place multiplicity numbers at both ends of an association.

� Use multiplicity to show how many things at either end of an association
are potentially linked together.

Notice the 1..* symbol close to the CrashDummy class in Figure 4-4. This
symbol tells you that a client rents at least one or more crash dummies. In
other words the appearance of 1..* represents the idea of having one or
more instances of CrashDummy that a Client rents. The 1 in the 1..*
means that a client must rent at least one crash dummy. The * in 1..* indi-
cates that a client can rent more than one crash dummy, and does not place
an upper limit in the number that can be rented.

Because associations have meaning in both directions, you also place a multi-
plicity symbol on the association line next to the Client class. In Figure 4-4,
you see that a CrashDummy can be rented by zero or more instances of
Client (0..*).

Determining multiplicity
When you specify the multiplicity of an association, you must determine the
value to place at each end of the association line. Follow these steps to make
your determination:

rentsClient

CrashDummy
1..*0..*

Multiplicity

Figure 4-4:
Association

with
multiplicity.
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1. Establish the classes that form the endpoints for the association.

In this example, the classes are Client and CrashDummy, connected by
the rents association line.

2. Examine the characteristics of the association from the perspective of
one class.

In this example, we look at the Client class and ask ourselves the fol-
lowing questions:

• Can a client rent zero crash dummies and still be a client? (No.)

• Must a client rent at least one dummy? (Yes.)

• Can a client rent many dummies over time? (Yes, many.)

The answers to these questions tell us that the multiplicity must be 1..*
because the client must rent at least one crash dummy, and can rent many.

3. Place the multiplicity symbol that represents the answer to questions
in Step 2 at the proper point on the UML diagram.

In this example, we place 1..* at the opposite end of the association
from the Client class.

4. Repeat Steps 2 and 3 from the perspective of the other class.

To complete this example, we look at the association from the perspec-
tive of the CrashDummy class. We ask ourselves the following questions:

• Is it possible for MAX to never be rented? (Yes, poor MAX.)

• Must at least one client rent MAX? (No.)

• Can more than one client rent MAX over time? (Yes, although not at
exactly the same time.)

The answers to these questions tell us that the multiplicity must be
0..* because a particular crash dummy may never be rented by a
client, but could (over time) be rented by many clients.

Finally, we place 0..* at the opposite end of the association from the
CrashDummy class.

Notice that we first look at the association from the client’s perspective — as if
we had only one client. We decide to use 1..* as the multiplicity symbol and
place it at the opposite end from the client class. Then we consider the multi-
plicity from the crash-dummy perspective. The chosen multiplicity is 0..* and
we place it at the opposite end of the association from the CrashDummy class.

Representing multiplicity
Table 4-2 lists the various symbols that can use for multiplicity. To under-
stand the table, consider the multiplicity symbol at the crash-dummy end of
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the rents association in Figure 4-5. You can then replace the ?? in the figure
with a symbol from the table to see what that multiplicity means.

Table 4-2 Multiplicity Symbols
Multiplicity Meaning
Symbol

1 A Client instance must be linked with exactly one instance of
CrashDummy no more and no less.

* A Client instance may be linked with zero or more instances of
CrashDummy.

0..* A Client instance may be linked with zero or more instances of
CrashDummy. This is just like using * for the multiplicity.

0..1 A Client instance may be linked with either zero or one instance
of CrashDummy. This is known as the optional multiplicity.

1..* A Client instance must be linked with at least one or more
instances of CrashDummy. This is the multiplicity we chose for
Figure 4-4.

5..9 A Client instance can be linked to at least 5 instances of
CrashDummy but not more than 9 instances.

3,5,7 A Client instance can be linked to (and thus rent) 3 or 5 or 7
instances of CrashDummy.

Using multiplicity
The multiplicity you end up with on your diagrams varies depending on the
application you develop. For instance, suppose you build an application that
keeps track of all clients who ever rented dummies, whether they are renting
some now or not. You would have to allow a multiplicity of zero or more for
the CrashDummy class (as shown in Figure 4-6). In this situation, you have the
possibility that an instance of Client rents zero crash dummies.

rentsClient

CrashDummy
??0..*

Figure 4-5:
Choosing

multiplicity.
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If your application is a simple order-entry system, you may require that a
client rents at least one dummy. However, if your application is keeping track
of all clients, you need to show that a client rents zero or more dummies.

When you start thinking about the multiplicity of your associations, you
uncover hidden assumptions about how many objects can be linked together.
When you talk with users, often they’re vague about associations and don’t
consider every possible way of linking the instances of one class with the
instances of another class. For example, thinking about objects that invoke
each other’s behavior in a program can easily make a programmer forget to
consider all the different situations. It’s left to you to discover whether an
instance of one class must be linked to another — or perhaps doesn’t always
require a link. Consider these details when you gather requirements and ana-
lyze the situation; it pays dividends later, when you start programming.

Some time ago, we were writing a simulation program that associated airplanes
with their location on a simulated map. The location was called a cell — the
map was composed of cells, and each plane was placed in a cell. As the simula-
tion progressed, a plane would move from cell to cell. Figure 4-7 shows a UML
diagram of the associations between plane and cell. A plane is currently
located in exactly one cell and a plane moves through one or more cells
during the simulation.

What we didn’t properly appreciate at programming time was the fact that a
plane had to be in a cell. We created the plane class but did not enforce any
multiplicity. So, when we started to use instances of the plane class, they
were not automatically assigned to a cell. When another object in our pro-
gram asked a plane, Where are you? the program blew up — that’s because it

located in

moves through

Plane Cell

1..*

1

*

*Figure 4-7:
Multiplicity

example
with cells

and planes.

rentsClient

CrashDummy
0..*0..*

Figure 4-6:
Multiplicity

depends 
on the

application.
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was chasing a null pointer to a nonexistent cell object. (A null pointer is a
program variable that is set to zero instead of to a valid address in a com-
puter’s memory. This one was a real nuisance.) If we’d used UML, we would
have discovered the need to code a link from plane to cell, right from the
start, instead of having to debug and rewrite it after the fact. This is just
another example of why considering the details of multiplicity is a good habit
to get into.

Understanding the Roles 
That Classes Can Play

When objects get together, sometimes they behave differently in different
relationships. You could say they have multiple personalities. We use the
term role to describe in a single name how a class behaves in association to
another class.

For example, consider one of your authors as if he were an object (he won’t
mind): He plays the role of Husband in the relationship with his wife — and
in quite a different relationship to his job, he plays the role of Chief
Technologist. (Sometimes he plays the role of Crash Dummy.) He plays
many roles, depending on who or what he’s associating with. The same is
true of objects in UML.

When adding roles to your association, consider the following:

� A name is shown on the association line next to the class that plays
some role in relationship to another class.

� You use roles to help clarify the nature of the behavior that an instance
exhibits when it’s linked to an instance of another class.

In versions of UML previous to UML 2, the name at the end of an association
was called a role. In UML 2, the word role has disappeared, replaced by asso-
ciation end name. To be precise, a name at an “association end” indicates
what kind of behavioral participation the instances of one class (at that end)
perform in relationship to instances of the class that occupies the other end
of the association. That specific kind of behavioral participation is, in effect,
a role — so the idea that objects play roles in relationship to other objects
still makes sense to us. Therefore, as a practical matter, we use the word role
instead of “association end name.”

The Cell class in Figure 4-8 has two different roles in relationship to the
Plane class. An instance of a cell may play the role of “current cell” in associ-
ation with one plane, and a “route element” in relation to another plane that
has already moved through that “current cell” to another cell.
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You can think of a role as the name of an attribute belonging to the class on
the opposite side of an association. The role “current cell” is an attribute of
the class Plane. Even though the diagram doesn’t show it, the class Plane
has attributes currentCell and routeElement (as in Figure 4-9). The data
type for each of these attributes is the class Cell.

Association names are important to the readers of your diagrams. Role names
are important to the code generators of your UML modeling tools. We recom-
mend you provide role names on your class diagrams whenever you can; it
makes for better code generation.

Diagrams for modeling objects and classes come in two flavors — class dia-
grams and instance diagrams. The class diagram shows the static structure
of classes and their associations. The object diagram shows objects (that is,
instances) and their links. You use class diagrams most of the time — but now
and then an instance diagram helps clarify a class diagram by providing an
example. You build class diagrams to communicate the structure and behavior
of each class. To show which classes can interact, you associate them together.
When other developers have trouble understanding the meaning of your class
diagram, use a instance diagram to show specific objects linked together. The
instance diagram illustrates your class diagram.

When we put together the class diagram in Figure 4-8, for example, some
developers didn’t understand what we meant. So we built a sample instance
diagram (shown in Figure 4-10). Note that Figure 4-8 shows a Plane class
associated with (located in) a Cell class — and the Cell class plays the role
of currentCell. Figure 4-10 illustrates the meaning of these associated

Plane

-currentCell : Cell
-routeElement : Cell[1..*]

Figure 4-9:
The Plane
class with
role-name
attributes.

located in

moves through

Plane Cell

1..*

route element

1

current cell
*

*

Role names

Figure 4-8:
Class

diagram
with roles.
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classes by showing an instance of Plane (p12) linked to only one instance of
the Cell class (c45-23). Here cell c45-23 plays the role of the current cell,
showing where plane p12 is at this point in time.

Figure 4-8 also shows a Plane class associated with (moves through) a Cell
class. Here the Cell class plays a different role, that of routeElement. Again,
Figure 4-10 illustrates the meaning of the association (moves through) by
showing the p12 instance linked to three instances of the Cell class —
c45-20, c45-21, c45-22. Each of these three Cell instances plays the role of
routeElement, showing which other cells plane p12 has visited on its route.

Thus an instance diagram can help you clarify the meaning of a class diagram
by illustrating it with a specific example of linked objects.

Associating Classes with Themselves
You may need to show that two instances of the same class can be associated
with each other. In certain tests, for example, crash dummies are lined up in a
row with one dummy as the leader and the rest as followers. During the test,
the lead dummy blocks the dummies lined up behind it. Each dummy then has
an association — block — to the next dummy behind it. Such an association
relates instances of the same class — and is known as a reflexive association.

When diagramming reflexive associations, remember to do the following:

1. Draw an association.

You need an association that comes out of a particular class and goes
back into the same class.

currentCell

p 12 : Plane c45-23 : Cell

routeElement

c45-20 : Cell

routeElement

c45-21 : Cell

routeElement

c45-22 : Cell

Figure 4-10:
Instance
diagram.
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2. Name the association.

Make sure you name the association so it reads like a sentence.

3. Add multiplicity.

Consider the multiplicity at each end of the association.

4. Provide roles.

To lend clarity to the diagram, add role names to describe what different
instances of the same class do in the association.

You would read the diagram in Figure 4-11 as follows: “A crash dummy blocks
zero or more instances of CrashDummy in the role of follower. Further, a
crash dummy may be blocked by one crash dummy in the role of leader.”

To read the blocks association shown in Figure 4-11, you would read in the
reverse direction, like this:

“A crash dummy (class name) is blocked by (association name in the
reverse direction) zero or one (multiplicity) instances of CrashDummy
(class name) in the role of leader (role name).”

0..1

leader

<blocks

follower 0..*

CrashDummy

Figure 4-11:
A reflexive

association.
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Reading reflexive associations
Reflexive associations can be tricky to diagram,
which can also make them tricky to read. Here’s
how to keep them focused:

� For the sake of clarity, always use at least
one role name in the diagram.

� Be careful when you read the role names in
reflexive associations: They have to be read
in both directions. We use the following
template:

“(A or One) (class name) (association
name) (multiplicity) instances of (class
name) in the role of (role name).”

We always start the reading of associations
with the word A or One. 

� Don’t read the multiplicity close to the start-
ing class, only the multiplicity at the other
end of the association.



Notice we did not use the role name of follower or the multiplicity of 0..* in
this example. Why, you ask? Because it’s not true in every case that a crash
dummy in the role of follower is blocked by the one crash dummy in the role
of leader. The other dummies can be blocked, but only by dummies other
than the leader. So, because there can be only one leader dummy, the mul-
tiplicity is 0..1 rather than 1.

Constraining associations
Under some special circumstances, you may want to say more about the
association than just its name, roles, and multiplicity. For instance, suppose
you want to say that the association must be an ordered set of instances
instead of an unordered set — that a reflexive association shall not have
cycles. You can do so by using UML to specify any constraints that must be
imposed on the links of an association. As with all constraints in UML, you
place the text that names the constraint or limitation in curly brackets { }.

For example, Figure 4-12 shows that the follower dummies are ordered in rela-
tion to the leader dummy. That means there is a first follower, a next follower,
and on down the line to the last follower. Notice that the word {ordered} is
surrounded by the curly brackets used to indicate a constraint.

Figure 4-12 shows another important constraint called no cycles This is
especially useful for reflexive associations. The no cycles constraint means
you cannot have a dummy in the role of leader that is also in the role of a
follower. We don’t want a circle of dummies.

Using Association Classes
When you model the real world you find attributes that do not seem to fit in
any one class. For instance, in our rental example you have two classes,
Client and CrashDummy. Further, you know that clients rent crash dummies.

0..1

leader

<blocks

+follower {ordered}

{no cycles}

0..*

Constraint

CrashDummy

Figure 4-12:
Association

with
constraint

notation.
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Now you want to model the attribute dayOfRental. The value of that
attribute is the day a particular client rents a particular dummy. Where does
the attribute belong?

Well, for openers, the dayOfRental attribute does not belong in Client; the
client may rent dummies on different days. You could create attributes for
client called dayOfRental1, dayOfRental2, and dayOfRental3. But if you
create multiple attributes, how do you know which crash dummy was rented
on dayOfRental1? On the other hand, dayOfRental doesn’t belong in
CrashDummy either; any given dummy can be rented on many different days,
to different clients. The solution to this dilemma: Recognize that dayOfRental
is an attribute of the rents association and not an attribute of a class.

If you find an attribute whose value depends on more than one class instance,
you need a third class that holds that attribute. For example, the dayOfRental
attribute depends on the specific instance of Client and the specific instance
of CrashDummy that were linked in the rents association on that day. You
would designate the needed third class — an association class — by using a
dashed line to connect the new class to the association.

Figure 4-13 shows the UML notation for showing such special attributes. The
figure shows your two classes — Client and CrashDummy — in the rents
relationship. It then shows another class (Rents) that contains the special
attribute dayOfRental.

In UML, a dashed line means dependency; Figure 4-13 shows dependency
between the Rents class and the association named rents.

The name of the association class must be the same name as that of the 
association — because they are really two different aspects of the same 
association. Association classes are, however, classes in their own right —
so they can have operations as well as attributes. You can even associate your
association classes to other classes — but this can get complex in a hurry.
Our recommendation is to keep your modeling simple and easy to read.

0..*

rents
Client CrashDummy

1..*

Association classDependency

Rents

- dayOfRental : Date
Figure 4-13:

The Rents
association

class.
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Qualifying Relationships
People often partition the objects of a class into groups based on the value
of an attribute in that class when they describe the real world. This grouping
of objects may be an important aspect of an association between two classes.
In our rental example, we group crash dummies by their size — and it turns
out that size is an important attribute of a crash dummy. When clients place
orders for crash dummies, they always specify the size of the dummies they
want. When placing orders, the client “qualifies” the order with a value for
dummy size. They ask for two 72-inch dummies and three 52-inch dummies.
It helps the order processing to group the orders according to the sizes
requested. Thus the orders association between client and crash dummy
is known as a qualified association.

Modeling this situation requires the use of something the UML gurus call a
qualifier, a notation that qualifies — that is, partitions into groups — navigation
from an instance of one class to the instances of another. Figure 4-14 shows a
qualified association where the qualifier occupies a small box between a class
and an association. The qualifier goes at the opposite end of the association
from the class of which it’s an attribute.

Say what? In Figure 4-13, size is an attribute of CrashDummy. When a Client
instance orders zero or more instances of CrashDummy, they must specify the
size they want. (The qualifier size goes at the opposite end of the orders
association, away from the CrashDummy class.) So Figure 4-14 means that if we
take an instance of Client and a value for the size qualifier, then we have
zero or more orders links to instances of the class CrashDummy. So, given a
specific client, the particular crash dummies rented are of a certain size.

A qualifier is an attribute in the instances at the far end of the qualified asso-
ciation. Any attribute can have a datatype. In Figure 4-14, for example, the
size qualifier has the inches datatype.

Reducing multiplicity — with qualifiers
Often you find qualifiers reduce the multiplicity of an association. The rents
association between the Client class and the CrashDummy class (for example)
is a many-to-many association. If we recast the association as a qualified

0..*

orders
Client size : inches CrashDummy

0..*

QualifierFigure 4-14:
Qualifying

an
association.
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association (as in Figure 4-15), the multiplicity is reduced. Figure 4-15 has the
following meaning: “Given an instance of Client and the value for a
CrashDummy serialNum, the Client rents zero or one instance of
CrashDummy.” (This is true because each crash dummy has a unique serial
number.) Using qualifiers to reduce multiplicity is like tossing a lot of similar
things into a bin, where the bin name describes the contents. If bin name is a
unique attribute (like serial number), you get one thing per bin. If the bin name
is descriptive attribute (such as size), you can get lots of things per bin — but
less than the whole drawer.

Indexing with qualifiers
During design, you may want to tell the programmer to use an index when
invoking the methods of an object at runtime. An index is a way of quickly
looking something up; it works like a card catalog at the public library: You
look up a book by its title, author name, or keyword. The card catalog pro-
vides an index for looking up books quickly rather than searching each shelf
for the book. We’ve often found that qualifiers are a good way to show index-
ing in UML.

As a designer, you’re often concerned with performance — and if you need to
execute a fast lookup to find a particular crash dummy by its serial number,
then the diagram in Figure 4-15 does the trick. To show the programmer you
want a fast way of looking up crash dummies by serial number, use the quali-
fier notation in your class diagram.

Finding a Way — Navigation
Whenever you associate two classes, you are indicating that instances of
these classes can “see” and communicate with each other. That means you
can navigate from one side of an association (the source) to the other side
(the target). An association is navigable in both directions if the objects

0..*

rentsClient serialNum

CrashDummy
0..1

Changed multiplicity

Figure 4-15:
Qualifiers

can reduce
multiplicity.
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involved invoke operations (in which an object sends a message to another
object to ask the second object to perform some specific behavior) on each
other. If you have objects involved in an association and they can navigate in
both directions, then each object can serve as both a source and a target.

You may only need to navigate an association in one direction during run-
time. To show this navigation constraint, you place an arrow on the associa-
tion line to indicate the direction of the invocation — from the source object
toward the target object. We generally use navigation arrows during design
time. If an association has no arrow, then (normally) it’s okay to implement
the association in both directions. If an association has an arrow, then you
program the association only in the direction of the arrow — and not the
other direction.

In Figure 4-16, the arrow on the rents association line indicates that an
instance of Client can invoke methods of CrashDummy objects at runtime.
However, an instance of CrashDummy cannot see (and thus cannot navigate
to) instances of the Client class, as it would have to do in order to invoke
behavior on instances of Client.

Creating a Program
Suppose you want to implement your program by specifying an association
between classes in a UML diagram. We want to show you how a UML diagram
with associations is turned into code. Refer to the class diagram in Figure 4-17,
the following bulleted list, and Listing 4-1 to see how this simple model of client
and crash dummy becomes program elements implemented in Java program-
ming code:

� Classes: The Client and CrashDummy classes become classes in the
Java code in statements such as the following:

public class Client

0..*

rents
Client CrashDummy

+rentedDummy

1..*

Figure 4-16:
Using the

navigation-
arrow

symbol.
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� Associations: The rents, orders, and blocks associations become com-
binations of attributes. For example, you implement the blocks associa-
tion in both directions by declaring the attributes public CrashDummy
leader and public CrashDummy follower[] within the CrashDummy
class. The diagram shows you can only navigate from Client to
CrashDummy (and not the other way around); the rents and orders
associations are implemented only in the Client class, as follows:

public Btree orderedDummies;
public List rentedDummy;

� Roles: Notice that we use the role names as the names of the attributes
used for implementing an association. So the role of leader is imple-
mented as the name of the reference attribute leader by making the 
following declaration:

public CrashDummy leader.

The orderedDummy, rentedDummy, and follower roles are also handled
as attributes, along the following lines:

public Btree orderedDummies;
public List rentedDummy;
public CrashDummy follower[];

� Qualifier: The size qualifier is implemented as Private Integer Size
so it is an attribute of CrashDummy. The qualification aspects are imple-
mented using a Btree class named orderedDummies. The Btree class
allows you to associate a value for the size qualifier with an instance
of CrashDummy. Then, the Btree is used to lookup a CrashDummy by
its size.

0..*

0..*follower

0..1

0..*

rents

CrashDummy

0..*
rentedDummy
1..*

orderedDummy

leader

<blocks

orders

Client

size : inches

Figure 4-17:
Class

Diagram of
clients and

crash
dummies.
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� Multiplicity: Finally, the multiplicity is handled by using the following:

• A simple reference pointer, as in Public CrashDummy leader
where multiplicity is to 0..1 or 1.

• An array as the default for handling multiplicities of more than one,
as in Public CrashDummy follower[].

• A designer-defined container, such as List or B-tree.

What would the diagram in Figure 4-17 look like in a programming language
such as Java? Well, if you convert classes to classes and associations to refer-
ences, then you generate code that looks similar to Listing 4-1.

Listing 4-1: Java Code for Simple Associations

public class Client 
{

public B-tree orderedDummies;
public List rentedDummy;

public Client() {
}

}
public class CrashDummy 
{

public CrashDummy leader;
public CrashDummy follower[];
Private Integer Size;

public CrashDummy() {
}

}
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Chapter 5

Including the Parts 
with the Whole

In This Chapter
� Modeling the whole and its parts

� Differentiating between aggregation and composition

� Programming considerations for aggregates

� Showing parts within class boxes

When you model associations between classes, you find that UML treats
one kind of association with special reverence. This particular associa-

tion embodies the “whole-or-part-of” relationship that UML modelers call
aggregation. Aggregation is just a fancy way of talking about a group of distinct
objects (parts) gathered together to form some whole. In this chapter we
define aggregation and its stronger form — composition. We demonstrate the
UML notation for aggregation and explain why it holds a special place among
associations in the world of object-oriented modeling and programming.

Representing the Whole and the Parts
If you have a class such as car and you want to model the car and its parts
(such as the engine, brakes, chassis, and wheels), you use aggregation.
In UML, aggregation shows the relationship between the whole and its parts.
Using the notation is simple; just follow these steps:

1. Decide which class is playing the role of the whole and which classes
play the role of the whole’s parts.

2. Draw an association line between the class that is playing the whole
(car) and each of its parts (engine, brake, and so on).



3. Place a small diamond shape on the association line, right up against
the class that is playing the role of the whole (car).

We show an example of this diamond shape in Figure 5-1, later in this
chapter. (We also talk about when to fill in the diamond as in Figure 5-1
and when not to as in Figure 5-2 later in the chapter.)

4. Consider the multiplicity of this special association that is now an
aggregation.

Usually the whole has multiplicity of one.

5. Consider the multiplicity of the each of the parts in relation to the
whole.

For example, the engine has a multiplicity of one, and the wheels have a
multiplicity of four (or five if you count the spare tire).

Modeling complexity
For the modeler, aggregation is important because it hides complexity.
Objects are like black boxes: We can see the outside of the box but not what
is inside. If an object is really an aggregation of parts, then the inside of the
box may be complex. A car, for example, is a complex object — and (as with a
black box) we don’t have to understand all its internal parts to use it. The
aggregation notation helps the modeler handle complexity by building two
diagrams:

� External associations of the aggregate: On this class diagram, place the
class playing the whole, and show classes outside the whole that are
associated with the whole. This first diagram shows the external context
of the whole class. 

This diagram hides the complexity of the internal parts. In other words,
just look at the external aspects of the complex whole.

� Internal structure of the aggregate: On this second class diagram, place
the class playing the role of the whole at the top and show all of its parts
underneath. Then consider the associations between the parts and
show those on this diagram.

This diagram only shows the classes involved in the aggregation and
does not show any classes outside the aggregation. The modeler can
focus on the internal workings of the aggregate without the complexity
of what is outside the aggregate. In other words, just look at the internal
aspects of a complex whole.
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Considering aggregation behavior
A whole and its parts form a special bond. The whole object usually invokes
the behavior of its parts to accomplish its own behavior. When you start a
car, you use an interface (the ignition-key slot) that is part of the car. After
turning the ignition key, various parts of the car (wires, battery, ignition coil,
engine, and so on) are invoked in the right sequence to start the engine. From
a programming perspective, the whole (car) invokes behavior on the aggre-
gated parts to achieve its requested behavior (to start running).

For programmers, aggregations have a special meaning beyond just allowing
instances of one class to invoke the behavior of instances of another class.
Because the whole controls its parts, use the following when designing opera-
tions for the whole and its parts:

� Constructor: Think about the constructor operation (the operation invoked
to create instances of the class) of the whole. Ask yourself what parts
must be available as soon as the whole object is created at runtime. Be
sure to create them in the constructor’s method (the actual code for the
constructor operation).

� Life cycle: Consider the life cycle of the whole. You need to think about
the state changes the whole goes through during its life — and for aggre-
gates, this can be quite complex. During the life of an aggregate, its parts
are created and deleted at specific times, and the aggregate invokes the
behavior of each part at specific times in specific order. You may want to
consider building a state diagram for the class that plays the role of the
whole. (You can find more information on state diagrams in Chapter 16.)

� Cascading operations: For each major stage in the life cycle, consider
what behavior the whole is performing. Further consider which parts
get involved to assist the whole. For example, when the car is asked to
accelerate, the accelerator, throttle, engine, transmission, axes, and
wheels get involved. When the car is asked to stop, the brakes, wheels,
axes, transmission, and engine are involved. Think of how requests of
the whole object are passed down to requests on the parts.

� Handling errors: Consider how you handle errors. If a part is having a
problem, the natural place to handle the problem is within the part.
However, if the part can’t deal with the error, you can throw the error
over to the whole and let it deal with it. Often the whole object “knows”
enough about the internal workings of itself and all its parts that it can
rectify the problem.

� Destructor: Don’t forget the destructor operation (the operation that con-
tains behavior to delete instances of a class) of the whole. You should
consider what happens when the whole is asked to destruct. Take the
time to think about the life cycle of the whole’s parts. Reflect on whether
any parts are left over — are they all destroyed along with the whole?
Program your destructor operation on the whole accordingly.
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The following are some quick guidelines for specifying aggregation:

� Don’t worry about naming this special association. All aggregations are
also associations. Aggregations are a special kind of association because
they associate a whole with its parts. So, all aggregations are implicitly
named “part-of.” You can name them if you want to, but you don’t have to.

� Consider naming the part end of the association only if it plays some
special role in relation to the whole.

� On the class representing the whole, add operations that control the parts.

� Create a state diagram for the whole, indicating its dynamic life cycle.
(See Chapter 16 for more on state diagrams.)

� Carefully consider the constructor and destructor operations on the
whole.

Showing Ownership: Composition
If you have a part instance of some whole instance which belongs to one and
only one whole, then you have a special case of aggregation known as compo-
sition. With composition, parts can’t be shared with other objects. The life of
the part is completely within the life span of the whole. If you think of a VCR, it
is a composite. Take a look inside your VCR through the door that accepts the
videotape. It is composed of all those internal parts — such as circuit boards,
a power supply, and a tape-transport mechanism. If the VCR is destroyed, then
all the parts within it are destroyed as well. When you have a part whose life is
within the life of the whole, then you have composition, which is a strong form
of aggregation. To indicate composition in UML, simply fill in the diamond that
appears next to the class playing the role of the whole, as shown in Figure 5-1.

A typical real-world example is a client who needs to build a reporting system.
Imagine such a system including a GenericReport class — a composite that
contains several other classes. Figure 5-1 illustrates a simplified version of the
class diagram that describes this composition. A GenericReport is com-
posed of four parts — Header, Column, Body, and Footer. The diamonds are
filled in with a solid color to indicate composition. Because composition is a
kind of aggregation, and aggregation is a special form of association, you can
place association names, multiplicities, role names, and qualifiers on the line
between the classes. Notice that the body plays the role of detail. The multi-
plicity at the GenericReport end is 1 because these parts belong to one
and only one instance of the composite object (GenericReport). Given a
GenericReport there are zero or more instances of Header, one for each
page of the report. A GenericReport has one or more Column instances,
one or more Body instances, optionally a Footer.
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Showing What Can Be Shared:
Aggregation

There are times when you want to show that a part can be shared among more
than one aggregate. This is known as the weak form of aggregation. A part such
as a computer can be shared among different networks at different times. The
part’s life is not strongly tied to the life of the whole. The computer as part of
the network maintains a separate existence from that of the network. You don’t
fill in the diamond in the case of this weaker form of aggregation.

The relationship between a class playing the role of the whole and its parts in
known as aggregation. When the life of the parts are tied up in the life of the
whole, then you call the aggregation relationship composition. When a part is
sharable among different wholes, then you simply call the aggregation rela-
tionship aggregation.

0..*

1 1 1 1

1..* 1..* detail

0..1

GenericReport

sqlStatement : String

<<constructor>> genericReport() : GenericReport
print(p : Printer)
setHeader(company : String, title : String)
setFooter(address : String, phone : String)
<<destructor>> delete()

Column

title : String
startPosition : Integer
length : Integer

print(p : Printer)

Body

text : String

print(p : Printer)

Header

companyName : String
reportTitle : String
pageNum : Integer

print(p : Printer)

Footer

printDate : Date
copyright : String
address : String
phoneNum : String

print(p : Printer)

Figure 5-1:
Example of

composition,
a strong
form of

aggregation.
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Figure 5-2 uses the weak form of aggregation to model a common business
object called SalesRegion. A sales region contains one or more offices, may
or may not contain a wholesale warehouse, and does contain one or more
retail outlets. Here the SalesRegion class is playing the role of the whole.
Nevertheless, the association is not a composition because the parts are not
necessarily destroyed if the sales region goes away. 

Here’s a closer look at the multiplicity in the direction from the parts to the
whole: An office is contained within zero or more sales regions, which means
some offices belong to more than one sales region at the same time. A single
wholesale warehouse services zero or more sales regions. A retail outlet
belongs to at least one or more sales regions. The respective parts are poten-
tially shared among sales regions.

Deciding between Aggregation 
and Composition

You might find it difficult to decide between modeling a relationship as an
association, an aggregation, or a composition. Here are a few clues to look for
when you’re modeling relationships:

� If you hear words like “part of,” “contains,” or “owns,” then you probably
have an aggregation relationship.

� If the life-cycle of the parts are bound up within the life-cycle of the
whole, then you have a composite.

� If the parts are shared, then it’s an aggregation.

� If the parts are not shared, then you may have composition.

0..* 1..*

1..*1..*

0..*

0..*

SalesRegion

Office RetailOutlet

WholesaleWarehouse

Figure 5-2:
A weak
form of

aggregation
— some

parts
survive if

the whole
goes away.
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Aggregations (and composition) also have two other identifying properties:
they’re not symmetric but they are transitive. Hang on, these are fancy terms
for a couple of simple ideas. An association is symmetric if it is the same thing
in both directions. Think of the relationship between a generic report and
one of its columns. Although it’s true that the column is part of the generic
report, it’s not true that the generic report is also part of the column. (Seems
obvious, doesn’t it?) When you’re deciding about whether you have a part-of
relationship, ask the symmetry question. The transitive property is a fancy
way of saying: If A is a part of B, and B is a part of C, then A is also a part of C.

Here’s a down-to-earth way to say that again: If a filament (A) is a part of a
light bulb (B), and a light bulb (B) is part of a lamp (C), then the filament (A)
is also part of the lamp (C). If you can apply the transitive property, then
chances are you have an aggregation.

Table 5-1 summarizes these criteria to help you decide whether you have an
aggregation, composition, or association.

Table 5-1 Aggregation Versus Composition: Clues
Decision Result Criteria

Aggregation or Composition Part-of, contains, owns words are used to
describe relationship between two classes

Aggregation or Composition No symmetry

Aggregation or Composition Transitivity among parts

Composition Parts are not shared

Composition Multiplicity of the whole is 1 or 0..1

Aggregation Parts may be shared

Aggregation Multiplicity of the whole may be larger than 1

Association Relationship does not fit the other criteria

Using Alternate Composite Notation
UML allows you to place a class diagram inside a class. When we’re talking
about composites, this isn’t as strange as it may seem. Since the second com-
partment of a class shows structure, and a composite has complex structure
within itself, then you can show the parts of the composite inside as a mini
class diagram.
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UML 2 has a new diagram name for this alternative notation: composite struc-
ture diagram.

The UML notation for class has three major compartments:

� The first compartment names the class, describes its stereotype and
lists its properties.

� The second compartment shows the structure of the class as a list of
attributes.

� The third compartment is where you place the class’s behavior 
specification.

This compartmentalization was allowed as an interesting idea in the previous
version of UML 1.4. Most of the CASE tools, however, didn’t pick up on this
idea. But that is changing with UML 2.0.

Showing parts as classes
Modeling the strong form of aggregation — composition — often results in a
class diagram with lots of confusing lines. You have lines between the class
playing the role of the whole and classes playing the role of the parts. You
also have lines showing the associations between individual parts internal to
the composite. With all these lines, the diagram can be difficult to read. UML 2
allows you to model composites and their parts as a class diagram within a
class (composite structural diagram). This reduces the clutter and allows
you to be clear about what you mean.

You can show the parts of a composite inside the structure compartment of a
class by putting a box around the part and providing a name for that part: part
name, then a colon, then a class name for the part. If you have more than one
part of the same type in the composition, then you can show its multiplicity in
square brackets. For example the Body part of a GenericReport would be sur-
rounded by a box with detail:Body[1..*] inside, as in Figure 5-3.

Parts can also be connected by (you guessed it) connectors — lines that indi-
cate links between instances of parts within a composite — so those parts may
communicate with each other. UML 2.0 provides for two kinds of connectors —
assembly and delegation. An assembly connector allows one part of the com-
posite to supply services that another part needs. On the other hand, use a 
delegation connector to show the whole composite forwarding some external
request for behavior to one of its internal parts. The assembly connector 
connects two parts like an association. The delegation connector connects the
whole with one of its parts. The delegation connector is shown as a line from
the edge of the composite class to one of the parts inside the composite class.
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Figure 5-3 illustrates just such a diagram. The GenericReport class is play-
ing the role of the whole or composite. The parts are anonymous parts with
classes named Header, Column and Footer. One of the parts is named
detail which is of the class Body. The parts are connected using lines that
can be named just like associations. Indeed you can place multiplicity, role
names, and qualifiers on these connections. Each of the connections shown
in Figure 5-3 are assembly connections. For instance the Header will invoke
the print service of Column.

Showing parts as attributes
This section ties together composites, part diagrams (those class
diagrams inside of a class), and attributes. Figure 5-4 shows the class for
GenericReport and its attributes. Notice the correspondence between the
attributes in Figure 5-4 and the classes in Figure 5-3. The class definition in
Figure 5-4 hides the internal structure of the GenericReport class by simply
listing the major parts as attributes. The sqlStatement is not a part —
rather, it’s one of the attributes of the GenericReport class.

GenericReport

Header[0..*]

precedes

title for

precedes

Column[1..*]

detail : Body[1..*]

Footer[0..*]

Composite whole

Part Assembly connector

Figure 5-3:
Composite

parts shown
inside a

class.
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If you want to convert a simple class into a composite structure diagram, you
can use Table 5-2 as a guide. The table shows the correspondence between
attributes in a simple class diagram and the elements of a part diagram inside
of a composite class. For instance the detail attribute of the GenericReport
becomes a part with the same name in the composite structure diagram. The
Body datatype becomes the name of the detail part’s class. The [1..*] multi-
plicity is carried forward to the multiplicity of the detail part.

Table 5-2 Attribute Correspondence to Composite Parts
Attribute Feature Composite Structure Feature

Attribute name Part name

Type Part’s class name

Multiplicity Allowable number of connections between part instances

GenericReport

- header : Header[0..*]
- column : Column[1..*]
- detail : Body[1..*]
- footer : Footer[0..1]
- sqlStatement: String

Figure 5-4:
Showing

composite
parts as

attributes
inside a

class.
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Chapter 6

Reusing Superclasses:
Generalization and Inheritance

In This Chapter
� Reusing common attributes and operations

� Defining generalization and specialization

� Providing steps to show generalization

� Adding discriminators to inheritance hierarchies

� Weighing the pros and cons of multiple inheritance

It’s natural to classify objects in categories and to organize categories into
subcategories. If you look for a place to live, you find yourself categorizing a

dwelling unit as a house, apartment, townhouse, condominium, mansion, and
so on. Houses can, in turn, be further organized by styles such as ranch, split-
level, colonial, and saltbox. UML provides you with notation to capture these
types of classifications — also known as generalization and specialization —
and make use of them as a modeler and a programmer. This chapter covers
generalization — and how it leads to inheritance. (Specifically, subclasses that
inherit the attributes and operations of a superclass. For more on superclasses
and subclasses read on.) We show you the UML notation for inheritance and
how to take advantage of it.

Some of us object-oriented developers will go to great lengths to save our-
selves a little work. When we can model something once and reuse it, we’re
interested. If we can write a method (the program code for an operation) for
a class only once and use it many times, then sign us up for higher productiv-
ity. If you want to save yourself time by specifying attributes and operations
once and then reusing them many times, read on.

Making Generalizations
As you define classes, you may notice that some classes have the same attrib-
utes or the same operations. When this is the case, you place these common



features (attributes, operations, and so on) in a more generic class called the
superclass. The classes that share the common features are known as sub-
classes of the superclass. For example, the length of recorded material on a
videotape, audiotape, compact disc, or movie film is an attribute of all four
kinds of recorded media. These classes can share other attributes as well, such
as their physical dimensions and the date each one was used to make a record-
ing. In this case the superclass would be RecordedMedia, the subclasses would
be Videotape, Audiotape, CompactDisc, and MovieFilm, and some shared
attributes could include recordedLength and totalLength.

This process of finding similar attributes or operations across classes is known
as generalization. For example you generalize the attribute recordLength into
a more generic class called RecordedMedia. The process for showing a gener-
alization in UML is simple:

1. Identify the subclasses.

Locate classes that have the same attributes and/or operations. These
classes are your subclasses.

2. Create a superclass.

Provide a superclass to hold the common attributes and/or operations
of the subclasses. Give the superclass a name that categorizes all the
subclasses. We recommend placing the superclass above the subclasses
in the diagram. (You don’t have to, but it does make it easier to read.)

3. Add common features to the superclass.

Remove the common attributes and operations from the subclasses and
place them (once) in the superclass.

4. Draw a generalization relationship.

You draw a generalization line from each subclass to the superclass. In
UML the generalization line is represented as a solid line with a hollow
arrowhead at the superclass end. In UML, a line with the hollow arrow-
head that connects a subclass to a superclass is known as a generaliza-
tion relationship.

After you create a superclass with the common features such as attributes
and operations, the subclasses inherit those features from the superclass.
This way you only have to write the common features once in the superclass
instead of many times in each of the subclasses.

You can tell whether you have a generalization by looking at the language you
(or others) use to describe the relationship between classes. Notice that in
describing recorded media and its various types such as videotape earlier in
this section, we used the phrase “four kinds of recorded media.” If you find
yourself using phrases such as “kind of” or “type of,” then chances are you
have a generalization on your hands.
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One of our clients is concerned with keeping track of materials in an archive.
This client has accumulated different kinds of recorded media such as video-
tapes and audiotapes. As modelers, we need to capture the differences
between these media as well as their similarities. The diagram in Figure 6-1
shows the beginnings of several generalizations, arranged in an inheritance
hierarchy.

Developers use the term generalization or inheritance to refer to the same
concept of reusing shared attributes and operations that you show in a
superclass and reuse in subclasses. Generalization refers to the concept of
generalizing from specifics (the subclasses) to the generic (the superclass).
Inheritance refers to the effect of generalization on the subclasses.

In Figure 6-1 RecordedMedia is the superclass. The hollow arrowhead is just
below (and right up against) the superclass. Lines from the arrowhead indicate
that Videotape, Audiotape, CompactDisc and MovieFilm are all subclasses or
“kinds of” RecordedMedia. Each subclass inherits the common attributes of
recordedLength, totalLength, height, width, depth, and form. Each of the
subclasses also has the operation recommendPlaybackMachine as an inherited
common feature from the superclass. Each subclass has its own attributes as
well. For example, CompactDisc has two unique attributes (recordedTracks
and errorRate) that the other classes don’t share.

When you see a generalization relationship between classes, its meaning is
very different from that of an association relationship between classes (as dis-
cussed in Chapter 4). An association is ultimately a relationship among many
objects — some instances of one class have a relationship (link) with instances
of the other class. In a generalization relationship among classes, the relation-
ship is really about the classes. The best you can say is that an object created
from a subclass contains all the features of the subclass and of the superclass.

You only have one object from a class in a generalization relationship. Even
though you show two classes, the subclass and the superclass, you only have
one object that gets created. You can think of an object of the Videotape
class also being an object of the RecordedMedia class because of inheri-
tance. Figure 6-2 shows an object created from the Videotape class with all
its attributes. (The instance of a class is represented as an object symbol.)
You don’t have two different objects (one for RecordedMedia and one for
Videotape), just one object. When the object vtu83-1023 was created, we
set all its attributes’ values. The recording on the tape is 57 minutes. The
total length of the physical tape is 60 minutes. The tape is a Umatic videocas-
sette with a height of 10 inches, a width of 7 inches, and a depth of 1.5 inches.
The recording is analog, and a log of tape contents is attached to the tape for
the archivist to reference.
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You only have one instance defined by a subclass and its superclass. The
subclass and the superclass may have a constructor operation (to create the
instance) and a destructor operation (to destroy the instance). When your
software runs, and you create an instance of a subclass, the constructor of
the superclass is executed first, followed by the constructor of the subclass.
When it comes time to eliminate the instance you created, the destructor of
the subclass is called first, followed by the destructor of the superclass. If
things are more complex because you have subclasses of subclasses, just
remember: Constructors are invoked from the top of the inheritance hierar-
chy to the bottom; destructors are called in order from the lowest subclass
up to the highest superclass.

RecordedMedia

- recordedLength : Time
- totalLength : Time
- height : Float
- width : Float
- depth : Float
- form : RecordingTechnologyKind

+ recommendPlaybackMachine() : Equipment

Videotape

-format : VideotapeStandardKind
-videoLogAttached : Boolean

Audiotape

-format : AudiotapeStandardKind
-tracksRecorded : Integer
-dolby : Boolean

CompactDisc

-recordedTracks : Integer
-errorRate : Integer

MovieFilm

-containsAudio : Boolean

Generalization
hollow arrowhead

Figure 6-1:
Simple

inheritance
hierarchy.
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Specializing Classes
You might hear some experts talk about specialization. Specialization is just
the opposite of generalization. Instead of taking common features from sub-
classes and creating a generic superclass, you create specialized classes from
a common superclass. In the archive we have “print media.” It turns out there
are two kinds of print media – books and transcripts. So print media is a super-
class. Books and transcripts are specializations and thus subclasses of print
media. While we started with the idea of having a class called PrintMedia, we
recognized there were special forms of PrintMedia in the archive.

When you generalize, you start with some subclasses and develop a super-
class. When you specialize, you start with a superclass and develop some
subclass.

For specialization, we start with PrintMedia and use UML to show PrintMedia
as a superclass and it’s “specialized” subclasses. Figure 6-3 shows the inheri-
tance hierarchy for PrintMedia. The Book class holds its own unique attributes
of isbn, author, title, publisher, and publishDate. Transcript (on the
other hand) has typist, editor, and transcribed attributes.

We may have specialized from the class PrintMedia instead of generalized,
but you notice that we still have an inheritance hierarchy with a superclass
and a couple of subclasses. So, the Book and Transcript subclasses both
inherit sheetWeight, paper and needsBinding from PrintMedia.

Generalization and specialization are just two sides of the same coin.
Whether you generalize or specialize, the UML diagram ends up having
superclasses connected to subclasses — an inheritance hierarchy. A devel-
oper looking at your diagram might focus on the superclass and think of the
subclasses as specializations. Another developer looking at your diagram
might focus on the subclasses and think of the superclass as a generalization.
You can look at inheritance diagrams either way no matter what technique
(generalization or specialization) you used to create the diagram.

vtu83-1023 : Videotape

recordedLength = 57
totalLength = 60
height = 10
width = 7
depth = 1.5
form = analog
format = Umatic
videoLogAttached = True

Figure 6-2:
An instance
showing all

inherited
attributes.
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When doing practical development of systems, you’ll find that you’re doing a
fluid dance with generalization and specialization. Sometimes you’ll be seeing
how things look the same, comparing them and generalizing the results.
Sometimes you’ll be seeing how things look different, contrasting them and
specializing the results. If you work hard at it, and dance with everyone,
you’ll find the order of your dancing doesn’t make that much difference to
the final generalization hierarchy. You’ll have gathered together the common-
alities, separated out the differences, and made a robust hierarchy.

Using Generalization Sets
Each generalization relationship is known as a binary relationship because
the generalization relates two classes: the superclass and a subclass. When
you create an inheritance hierarchy, you also create a generalization set — a
concept that helps you discriminate among the subclasses that inherit gen-
eral characteristics from a common superclass. For example, the basis for
distinguishing among the subclasses of PrintMedia is the material form of
each printed medium — whether a book, magazine, or transcript.

In our example of PrintMedia there are two generalization relationships,
one between Book and PrintMedia and the other between Transcript and
PrintMedia. These two generalization relationships then form a generaliza-
tion set (known in earlier versions of UML as a discriminator), which is a 
characteristic that distinguishes individual specializations of a class into 
subclasses. The basis for this particular generalization set is the physical
form of the printed material.

PrintMedia

- sheetWeight : Float
- paper : PaperKind

+ needsBinding() : Boolean

Book

isbn : ISBNnum
author : String
title : String
publisher : String
publishDate : Date

Transcript

typist : String
editor : String
transcribed : Date

Figure 6-3:
Print-media
inheritance

hierarchy.
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You can show the basis for discrimination among subclasses in UML. Just
place the name of the generalization set (discriminator) close to the hollow
arrowhead. Figure 6-4 shows the name of the generalization set to be 
physical form.

You should use named generalization sets when you have large inheritance
hierarchies. This will make it easier for others to know the basis for each part
of your large hierarchy. If you ever have to add a class into your hierarchy at
a later time, you can make the right decision as to what part of hierarchy the
class belongs so your inheritance hierarchy remains consistent.

We experienced just such a problem with the materials in the archive. Figure
6-5 shows just the superclasses and subclasses for archive material and their
basis for discrimination into generalization sets. (We’ve hidden the attributes
and operations to make the diagram easy to read.) The ArchiveMedium are
classified by the mechanism used to create them (creation mechanism).
RecordedMedia are created using some recording device. PrintMedia are
created using a machine that places ink on paper such as a printing press,
photocopier, or typewriter. Videotape and CompactDisc are types of
RecordedMedia based on their physical form.

Okay, now we have a nice inheritance hierarchy — everything fits. Then,
someone remembers that some old photos are also part of the archive.
Photos are not made using a recording device, nor are they created putting
ink to paper. Photos have a different creation mechanism and they are a dif-
ferent physical form from the classes in the hierarchy. However, because we
have names for our generalization sets, we can see where to place the new
class in the hierarchy.

PrintMedia

- sheetWeight : Float
- paper : PaperKind

+ needsBinding() : Boolean

Book

isbn : ISBNnum
author : String
title : String
publisher : String
publishDate : Date

Transcript

physical form

typist : String
editor : String
transcribed : Date

Generalization set name
(a.k.a. discriminator)

Figure 6-4:
Inheritance

showing
generali-

zation set.
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In order to solve the problem, we need add a new class, so we add PhotoMedia
as a kind of ArchiveMedium and Photograph as a kind of PhotoMedia. You
create PhotoMedia with a camera and film, and then develop the film to reveal
a picture. Understanding the basis for discriminating between the subclasses
of ArchiveMedium helps place the Photograph class into the complex inheri-
tance hierarchy, as in Figure 6-6.

physical form

creation mechanism

physical form physical form

ArchiveMedium

RecordedMedia PhotoMedia

Photograph

PrintMedia

Videotape

Audiotape MovieFilm

CompactDisc Book

Transcript

Figure 6-6:
Using

generali-
zation sets

to help with
class

placement.

physical form

creation mechanism

physical form

ArchiveMedium

RecordedMedia PrintMedia

Videotape

Audiotape MovieFilm

CompactDisc Book

Transcript

Figure 6-5:
Complex

hierarchy
with

generali-
zation sets.

100 Part II: The Basics of Object Modeling 



Inheriting from Ancestors
Generalizations are a great way to inherit common attributes and operations,
but a class inherits much more from a superclass, namely associations, con-
straints (limits), methods (code for an operation), interfaces (specification of
an operation), and composite parts (the parts internal to a class).

Think about an instance of a generic dwelling unit (a superclass) and its asso-
ciated instance of an address. Now think of a particular kind of dwelling unit,
say a ranch style house (a subclass). The ranch unit is also associated with an
address because it is a kind of dwelling unit. The ranch unit subclass inherits
the dwelling unit’s association with the address class. If you constrain the
definition of any dwelling unit’s size attribute to be no smaller than six square
feet, then that ranch unit’s size could not be any smaller than six square feet.
The ranch unit inherits any constraints of the superclass dwelling unit. You
could reuse the dwelling unit’s method for calculating its own resale value
based on size and location for calculating the ranch houses resale value
based on the same formula. You also inherit the composite parts of a dwelling
unit such as the kitchen, living room and bedroom in any type of dwelling like
the ranch-style house.

You should be careful when inheriting from a superclass. The regulations for
using inheritance are a little complex, but we’ll show you the rules that you use
most often. When your superclass is associated with other classes, then the
subclasses (being special cases of the superclass) are also associated with
those same classes. Even so, you should be aware that only certain aspects of
an association are inherited. (See the next section, “Making sense of inherited
associations,” for more information.) When your subclass specifies constraints,
they must be the same as — or more constraining than — those of the super-
class. Operations and their methods may be simply reused, or redefined.

Making sense of inherited associations
In the archive example that we used earlier in this chapter, it turns out that
storage space — like shelves and file cabinets — store all manner of archive
media. Videotapes are stored on special movable shelves. Transcripts are
stored in file cabinets of various sizes. To demonstrate this connection, we
modeled this situation as an association between the class StorageSpace
and the class ArchiveMedium.

All the subclasses of ArchiveMedium inherit this association and so
RecordedMedia is associated also with StorageSpace. However, the sub-
classes of ArchiveMedium only inherit certain features of the association.
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You inherit the role name, multiplicity and constraints on the far side of an
inherited association. For example, RecordedMedia inherits the multiplicity
at the StorageSpace end of the association between ArchiveMedium and
StorageSpace. You inherit any constraints and qualifiers on the near side of
an inherited association. The near side of the association would be the
ArchiveMedium side of the association between ArchiveMedium and
StorageSpace.

Figure 6-7 illustrates the far-side features that the subclasses RecordedMedia,
PhotoMedia, and PrintMedia inherit from ArchiveMedium in the stores
association: 0..1 multiplicity and mediaLocation role name. The subclasses
are also forced to be ordered because the stores association has the near-
side constraint ({ordered}).

Overriding your inheritance
You can override inheritance — change aspects of inherited attributes, con-
straints, and the methods used for operations. For example, an attribute of a
subclass can redefine an attribute inherited from the superclass. Additionally
the method used to implement an operation in a subclass can be a refined
version of the operation inherited from the superclass. For example, all types
of vehicles (the superclass) can move (the superclass operation). However,
each type of vehicle like a sailboat and a car (subclasses) move in very differ-
ent ways (different subclass methods for the inherited move operation).

ArchiveMedium

StorageSpace

mediaLocation0..1
stores

{ordered} 0..*

RecordedMedia

PhotoMedia

PrintMedia

Inherited
multiplicity

Inherited
association

Inherited
role name

Inherited
constraint

This multiplicity is
not inherited

Figure 6-7:
Inherited
features

of an
association.
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Overriding attributes
When overriding attributes inherited by a subclass keep the following in
mind with examples illustrated in Figure 6-8:

� Redefined name: An attribute in a subclass can redefine an attribute in
the superclass by showing a constraint with the word redefines fol-
lowed by the name of the redefined attribute from the superclass.

The class ArchiveMedium has an attribute defined as inventoryID:
Text, and the subclass Book inherits that attribute but redefines it as
isbn: String {redefines inventoryID}.

� Datatypes: The datatype of an inherited attribute must be the same as
or a specialization of the inherited attribute’s datatype in the superclass.

In the superclass ArchiveMedium the inventoryID has the datatype
Text. The subclass RecordedMedia defines the datatype for
inventoryID as String. String being a specialization of Text.

� Default value: The default value of an attribute in a subclass may over-
ride the default value of that same attribute in the superclass.

The generation attribute in the class ArchiveMedium has a default
value of one because it is assumed that most of the material in the
archive is an original and not a copy. However, all the photos in the
archive are copies from a private collection. So, the generation
attribute of PhotoMedia has a default value of 2.

� Derived attribute: The subclass may have a derived attribute that was
not a derived attribute in the superclass.

ArchiveMedium has a weight attribute that is not a derived attribute.
However, the Transcript subclass inherits the weight attribute from
ArchiveMedium, and inherits the sheetWeight attribute of PrintMedia.
The weight attribute of Transcript is a derived attribute because it
can be calculated using the sheetWeight and the numPages attributes.
(Transcript inherits both sheetWeight and numPages from PrintMedia.)

Overriding constraints
Inevitably, you deal with business rules that constrain the objects in your
system. For instance, the archivist must follow the rule that no material
(ArchiveMedium) may be borrowed from the archive for longer than thirty
days. You recognize this as one of those rules people have to follow, and you
have to make sure your software doesn’t violate that rule. The archive-system
software must warn the archivist when any instance of ArchiveMedium is out
for a period close to (but not more than) thirty days.

This case illustrates an important principle: If the superclass has a constraint
or limitation, then all of its subclasses have that constraint too. When you
use inheritance, your subclasses must not loosen any constraints placed on
the superclass. Therefore Books and Transcripts cannot be borrowed for
more than thirty days. 

103Chapter 6: Reusing Superclasses: Generalization and Inheritance



Although you can’t loosen the constraint for subclasses, you can tighten it. One
example is the rule that Videotapes can’t be borrowed for more than a week.

Overriding operations and methods
One thing we like about inheritance is being able to reuse the method for an
operation defined in a superclass. Often the method code for a superclass

ArchiveMedium

+ location() : StorageSpace
+ needCopying() : Boolean
+ borrower() : String
+ assign(to : String) : Boolean
+ place(on : StorageSpace)
+ original() : Boolean

- inventoryID : Text
- generation : Integer = 1
- comment : Text
- creationDate : Date
- age : Years
- owner : String
- physicalQuality : QualityLevel
- weight : Lbs.

PrintMedia

- generation : Integer = 2
- sheetWeight : Float
- paper : PaperKind
- numPages : Integer

+ needsBinding() : Boolean

PhotoMedia

- film : FilmKind
- generation : Integer = 2

+ calcFadeRate() : Float

Book

- isbn : String {redefines InventoryID}
- author : String
- title : String
- publisher : String
- publishDate : Date

Transcript

- typist : String
- editor : String
- transcribed : Date
- weight : Lbs.

Figure 6-8:
Examples of

overridden
attributes.
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operation has to be written no more than once; all the subclasses then have
that operation. No need to write the method code again (once for each sub-
class). The original operation of ArchiveMedium has a simple method that
works the same for every subclass. The method (using the Java language)
looks something like this:

public Boolean original() {
if (generation == 1) then 
return True;      //first generation means original
else
return False;

}

Although you can reuse your inherited operations and their methods, you can
do more than simply reuse the method code. You can extend, restrict, or opti-
mize your methods. For a concrete idea of these different ways to override
methods in the superclass, consider ArchiveMedium and its place operation:

private StorageSpace mediaLocation; //attribute to implement
// the association to an instance of StorageSpace

public void place (StorageSpace on){
if (on.spaceAvailabe())   //check to see if there is space

if (on.add(this))      //add media to storage space
mediaLocation= on;     //set pointer to our media loca-

tion
}

Now let’s look at what it means to extend, restrict, or optimize a method:

� Extend: Reuse the method code you inherit from the superclass and
then add some code that extends the method to deal with specialized
attributes of the subclass. For example the Transcript classes’ place
operation must make sure the editor of the transcript has access to the
place where the transcript is stored. So the place operation is extended
to check that condition:

public void place (StorageSpace on) {
if (on.userAccess(editor))  //extension is here
super.place(on);         //then reuse superclass method
}

� Restrict: Your method code in the subclass must account for some addi-
tional constraint that is placed on the subclass. In the archive example,
a videotape must not be placed in a crowded storage area. So the place
method of the Videotape class must be restricted to storage spaces
that are no more than 80 percent full:

public void place (StorageSpace on) {
if (on.percentUsed() <= 80) //check for enough space
super.place(on);         //then reuse superclass method
}
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� Optimize: You optimize the method code for a subclass because you can
take into account the specialized extra attributes or constraints in the
subclass. It turns out that photographs are so thin that we almost never
have to worry about whether there’s enough storage space available. So,
to optimize the code for the place method a little, you can remove the
statement that first checks to see whether space is available. The result-
ing code looks like this:

public void place (StorageSpace on) {
if (on.add(this))      //add media to storage space
mediaLocation= on;  //set pointer to our media location
}

Inheriting interfaces
Classes have public operations that you invoke from instances of other
classes. You can think of each one of these public operations as being an
interface between you and the internal workings of the class. Each operation
is defined by its name, parameters, and return-result type. This definition is
known as the operation’s signature. For instance the signature for the assign
operation on the ArchiveMedium class includes the name assign, the to
argument and its datatype String, as well as the Boolean return result type.
In UML the signature for assign looks like this:

assign(to:String): Boolean

Your subclasses inherit this signature as well as the method code for that
operation. When you invoke the assign operation on any subclass of
ArchiveMedium, your subclasses must all have the assign operation with
one parameter — and the operation will return a Boolean value, no matter
how you write the method code for the subclasses.

Normally you create instances of classes. Each class has methods defined for
each operation. A method must follow the rules laid down by the operation’s
signature. The classes used to create instances are known as concrete classes.
Most examples of classes in this book are concrete classes. However, suppose
you have a superclass operation with no method code for that operation. Such
an operation — without method code — is known as an abstract operation. In
UML, abstract operations are shown in italics. If an operation is abstract (has
no method), then you can’t create instances of that class. The runtime environ-
ment wouldn’t know what to do if you invoked an operation that had no method
code. In this situation, any of your classes with abstract operations are known
as abstract classes. Any class for which you cannot create instances is an
abstract class. In UML, abstract classes have their class names shown in italics.

Abstract classes are a great way to enforce interface inheritance. If you specify
an abstract operation in a superclass, then all of its subclasses must conform
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to the signature of that operation. So anyone who inserts a new subclass into
the inheritance hierarchy must write method code for the inherited abstract
operation to create a concrete subclass.

You cannot create instances of abstract classes. You can only create
instances of concrete classes.

In Figure 6-9, you see that recommendPlaybackMachine is an abstract opera-
tion and RecordedMedia is an abstract class. We don’t have enough informa-
tion in the superclass to define a method that could recommend what
equipment to use to play back recorded media. On the other hand, we have
that information in each of the subclasses. Given (for example) an instance of
the VideoTape class and a value for its format attribute, we have all the data
we need to make a recommendation.

RecordedMedia

+ recommendPlaybackMachine() : Equipment

- inventoryID : String
- recordedLength : Time
- totalLength : Time
- height : Float
- width : Float
- depth : Float
- form : RecordingTechnologyKind

Videotape

format : VideotapeStandardKind
videoLogAttached : Boolean

CompactDisc

recordedTracks : Integer
errorRate : Integer

Audiotape

format : AudioStandardKind
tracksRecorded : Integer
dolby : Boolean

MovieFilm

containsAudio : Boolean

Figure 6-9:
An abstract
class, used
to enforce

interface
inheritance.
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Exploring the Pros and Cons 
of Multiple Inheritances

You categorize classes in many different ways. A person class could be cate-
gorized by age, income, job role, or location. You use inheritance as a way
to categorize your subclasses. If a subclass can inherit from one superclass,
why not from two or more superclasses? Well, it can; UML allows you to show
such multiple inheritance. For example, the MovieFilm class is an instance
of RecordedMedia and of PhotoMedia. It should have all the attributes and
operations of both superclasses, as illustrated in Figure 6-10. You show multi-
ple inheritance in UML by connecting the subclass to each of its superclasses
with a generalization relationship.

Ah, but does the use of multiple inheritance make our programs richer?
Sometimes. There are both advantages and disadvantages to using multiple
inheritance. First, the advantages:

� You categorize classes in many different ways. Multiple inheritance is a
way of showing our natural tendency to organize the world. During
analysis, for example, we use multiple inheritance to capture the way
users classify objects.

� By having multiple superclasses, your subclass has more opportunities
to reuse the inherited attributes and operations of the superclasses.

Now for the disadvantages:

� Some programming languages (such as Java) don’t allow you to use multi-
ple inheritance. You must translate multiple inheritance into single inheri-
tance or individual Java interfaces. This can be confusing and difficult to

RecordedMedia PhotoMedia

PhotographVideotape

Audiotape MovieFilm

CompactDisc
Figure 6-10:

Inheriting
from two
classes.
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maintain because the implemented code for categorizing objects is quite
different from the way the user organizes those objects. So, when the user
changes their mind or adds another category, it is difficult to figure out
how to program the new subclass.

� The more superclasses your subclass inherits from, the more mainte-
nance you are likely to perform. If one of the superclasses happens to
change, the subclass may have to change as well.

� When a single subclass inherits the same attribute or operation from 
different superclasses, you must choose exactly which one it must use.
For example, the MovieFilm subclass inherits the place operation from
both the RecordedMedia superclass and the PhotoMedia superclass.
Remember, the RecordedMedia and PhotoMedia classes inherit the
place operation from their superclass — ArchiveMedium. So now you
must choose which method code for place to use for MovieFile — the
one from RecordedMedia or the one from PhotoMedia. These choices
can get very complex with multiple inheritance hierarchies. Be careful.

During analysis, we use inheritance hierarchies to capture the way our users
think about their world. During design, however, we try to stay away from mul-
tiple inheritance. In the long run, its disadvantages outweigh its advantages.

Reusing Code
The really great thing about inheritance is the productivity you get through
reuse of code. We’ve shown you an example of code reuse earlier in the chap-
ter with the following method from the Transcript classes place operation:

public void place (StorageSpace on) {
if (on.userAccess(editor))  //extension is here
super.place(on);         //then reuse superclass method
}

Notice the third line says super.place(on);. We are reusing the place
method that is located in the ArchiveMedium superclass.

Creating an inheritance hierarchy of classes helps you simplify your program-
ming code. Object-oriented programs can loop through a set of objects that
are from the same generalization set (based on the same superclass) without
knowing which object of which subclass is being invoked. The object-oriented
program simply invokes an operation defined on the superclass. The program
does not have to worry which object is being invoked because they all share a
common superclass and all subclasses inherit the superclass operations.
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For example, if our program has a list of objects created from the Videotape,
CompactDisc, MovieFilm, and Audiotape subclasses and these objects were
all mixed up on the list, we could write a program to retrieve each object from
the list and invoke the recommendPlaybackMachine operation on that object.
Since each object inherits the recommendPlaybackMachine operation from
the RecordedMedia superclass the right behavior will be invoked.

The real payoff for you is when you want to extend your software. You can
add new subclasses to an inheritance hierarchy and not have to change
code in other parts of your program. For example, suppose we added a DVD
subclass to the RecordedMedia inheritance hierarchy. We would have to 
program the subclass to handle the recommendPlaybackMachine operation.
Even though we added a whole new class to the software, we would not have
the change that part of the object-oriented program that goes through that
list of objects described in the previous paragraph. If we added an object 
created from the DVD subclass to the list the program would still just invoke
the recommendPlaybackMachine operation just as before. No code changes
in the existing program.
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Chapter 7

Organizing UML Class Diagrams
and Packages

In This Chapter
� Avoiding confusing class diagrams

� Showing the right number of classes on a single diagram

� Building top-level and second-level diagrams

� Showing the context of your system

� Handling multiple time periods

� Diagramming classes and instances

� Modeling foundation classes

� Considering application classes

� Grouping classes into packages

UML diagrams such as the class diagram are quite versatile. You use class
diagrams to express the static structure of the objects and classes you

want to model and the static blueprint of the program you want to build. In this
chapter we give you some tips for constructing class diagrams. We also show
you several different kinds of class diagrams that you can use when modeling
systems or developing software.

Modeling Objects and Classes 
on Diagrams

You have two main types of static diagram in UML — class diagrams and
object diagrams. Class diagrams show classes and associations, aggregations,
and generalizations. Pure object diagrams just show instances of classes and
their links to other instances. Of course, you can also show classes and
objects on the same diagram, but this is rarely done. We use these different
diagram types for specific purposes.



If you use a UML modeling tool, take a close look at the different types of 
diagrams that it supports. If you do not see an object diagram, then the 
modeling tool probably lets you place objects on class diagrams.

Most of the time you use class diagrams; they provide the broadest way of
showing what you’re modeling. They’re also the most useful diagrams you
can produce, because the code that UML tools generate is based on the class
diagram.

Pure object diagrams simply show instances and links — the objects and the
connections between objects. (For more on links see chapter 4.) For complex
modeling, you have to show many instances and links on a single diagram.
But, the class diagram would be quite simple. Figure 7-1 shows you just what
we’re saying. An instance of the Supplier class called ace1 links up with two
instances of the Invoice class, a1 and a2. Both instances a1 and a2 are bills
that were sent out in the past because they play the role of pastBill. These
two invoices were paid from an instance of the SupplierAccount class
called aceAcc. Another instance of the Supplier class, generalAirF, is linked
to a different set of invoices. From the diagram you see that the instance b4
of the Invoice class plays the role of the currentBill. 

The diagram in Figure 7-1 illustrates two different cases for suppliers and
their invoices. In one case the supplier ace1 has no current bill. In the other
case generalAirF has a current bill. This object diagram is an illustration of
the class diagram shown in Figure 7-7, later in this chapter.

Pure object diagrams are good for showing a simple example of what you mean
by a class diagram. We sometimes have one or two pure object diagrams for a
software project; they help give managers an idea of what’s going on.

ace1 :
Supplier

aceAcc :
SupplierAccount

a1 :
Invoice

a2 :
Invoice

pastBill pastBill

generalAirF :
Supplier

genAcc :
SupplierAccount

b1 :
Invoice

pastBill

b2 :
Invoice

pastBill

b3 :
Invoice

pastBill

b4 :
Invoice

currentBill

Figure 7-1:
Object

diagram
example.
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You can also build a hybrid class/object diagram. You’ll find this most useful
when you want to show your classes — and also show one or two example
instances of no more than a few of those classes.

Table 7-1 helps you choose when to use each type of diagram.

Table 7-1 Choosing a Diagram Approach
Diagram Type Purpose

Pure class diagram Show classes, associations, aggregations, and 
generalization.

Arrange classes for code generation in a UML tool.

Pure object diagram Show management a specific example.

Consider what instances you have at runtime (also 
use a communication diagram).

Describe pre- and postconditions of a piece of behav-
ior (what is true before and after some behavior is 
performed).

Show a setup for test runs.

Hybrid class object diagram Show examples of specific classes that are hard to
understand.

Constructing Class Diagrams
Your class diagrams show the fixed structure of classes, objects, attributes,
operations, associations, generalizations, and aggregations. (See Chapters 3,
4, 5, and 6 for more on these items.) If you’re engaged in a large modeling or
development project, building one large class diagram for the whole project
isn’t helpful — classes get lost, the diagram becomes confusing and difficult
to read — break that diagram up into manageable pieces. You want to be con-
sistent in your diagrams as well. A class diagram should have the same time
period reflected in each association. (You may also find it helpful to build dia-
grams that have only instances of classes, but this is rare.)

Drawing manageable class diagrams
We have seen many developers draw impossibly large diagrams using the
development notation of the day. Some of these diagrams fill entire walls.
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These diagrams can be difficult to understand because the important infor-
mation was buried in amongst hundreds of unimportant details. To make our
diagrams comprehensible we break them up into smaller more understand-
able pieces.

It’s more effective to use a simple process to get more bite-size diagrams. To
illustrate this process we use the example of a company that’s in the business
of selling air-filter units to customers and buying stock from their suppliers.
The process is as follows:

1. Build one top-level diagram with up to 15 key classes.

The top-level diagram provides developers with an overview of the most
important classes. It avoids showing details. The key classes are those
groups of objects that are most important to your business; they may
include classes such as customer, air filter, and supplier.

2. Build second-level diagrams with one of the key classes in the center
of the diagram surrounded by 5 to 10 supporting classes and their
association with the key class.

Now you choose one of the key classes from the top-level diagram. Add in
details showing attributes, operations, other supporting classes, and asso-
ciations that directly relate to the chosen key class. For example, build a
class diagram with customer at the center, showing supporting classes
such as coupon, customer account, credit card, and club card.

3. If you have a significant aggregation, show the aggregate and its parts
on a separate diagram.

The class playing the role of the whole (aggregate) should appear on the
top-level diagram or on one of the second-level diagrams. For example,
you show the air filter and its parts on one diagram.

4. When you have a significant inheritance hierarchy, place the super-
class and its subclasses on a separate diagram.

See Chapter 6 for more on inheritance.

From our running example, you have many types of coupons. On a sepa-
rate diagram, show the generic coupon as a superclass and the different
types of coupons as subclasses.

5. If any of your second-level diagrams are too complex with more than
ten supporting classes, consider creating a third level of class diagrams.

When you follow this process, you get a hierarchy of class diagrams; each dia-
gram has a specific focus. Stakeholders and users who want a quick overview
look at your top-level diagram. Figure 7-2 shows just such a diagram for a
simple retail system that handles customer orders. Notice that the top-level
diagram just shows the most important classes, without specifying their
attributes or operations. The top-level diagram should be simple, without
much detail to clutter it up.
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Each class diagram should have a single major theme — and should have no
more than 15 to 20 classes. People have a hard time remembering more than
a half-dozen things in their short-term memory. So if you put 20-plus classes
in one diagram, most people will find it confusing and difficult to work with.
We talk about a top-level diagram followed by a second-level diagram. If a
class on the second level also has a lot of supporting classes, you can create
third-level diagrams. Try to keep the number of classes on any one diagram
below 20 classes.

You see a second-level diagram in Figure 7-3 with the focus on a Customer
class. All the classes that relate to Customer are shown. Developers inter-
ested in all aspects of Customer turn to this diagram to see the details. Users
and developers in a specific area of your business should be able to review
the diagrams that focus on their areas of expertise. They should not have to
look over every class in your system to find those that interest them.

Notice that the second-level diagram in Figure 7-3 shows details such as the
attributes and operations for Customer and all its supporting classes —
ClubCard, CreditCard, CustomerAccount, and Coupon. Sometimes we
place other top-level classes on a second-level diagram because other devel-
opers need to see how the details of a key class fits into the big picture
shown in the top-level diagram. For example, the second-level diagram shows
the Customer class associated with the AirFilter class so you can under-
stand the context of the customer focus diagram and its relationship to the
higher-level diagram. The AirFilter class is shown without attributes and
operations. To account for them, we would provide another, second-level dia-
gram with AirFilter at the center, and show its supporting classes.

Figure 7-4 shows you the details of the AirFilter class. This diagram
focuses on the internal parts of the air filter. You notice that the diagram isn’t
cluttered with other classes outside of the AirFilter class.

Customer

1

0..*

1..*

1..*

client

buys

supplied by

AirFilter

Supplier

Figure 7-2:
A top-level

diagram.
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The class diagram in Figure 7-5 gives your developers a way of focusing on an
inheritance hierarchy without having to wade through the complexity of
other classes and associations.

Keep the following in mind when deciding what to put in a class diagram:

� Don’t try to put every class on one diagram.

� Create a top-level diagram with your 5 to 15 key classes.

� Think of each class diagram as having a theme — all the classes in the
diagram support that theme.

� Provide second-level diagrams. Each second-level diagram focuses on
one or two of the key classes shown in the top-level diagram.

� Create separate class diagrams that show only an aggregate and its parts

� Put inheritance hierarchies into their own class diagrams.

ClubCard

- account number
- address
- clubStatus

Customer

+ receiveStatement()

- name
- buyingStatus CustomerAccount

+ deposit(amount : Currency)
+ withdraw(amount : Currency)

- accountNumber
- currentBalance

Coupon

+ calcValue() : Currency

- issueDate
- expirationDate

CreditCard

+ valid() : Boolean

- cardNumber
- bank
- expirationDate
- type

1 1

1

0..1

0..1

0..*

1..*

0..*

client

buys

pays from1..*

backs up

0..*

identifies

uses

AirFilter

Figure 7-3:
A second-

level
diagram.
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Figures 7-2, 7-3, 7-4, and 7-5 begin to capture the language of an air-filter order
system. Users of that system understand what a coupon is. They can look at
Figure 7-4 and tell you whether you have captured all the different kinds of
coupons. These four figures are known as a domain diagrams because they
describe the domain of ordering air filters in a retail setting.

Coupon

+ calcValue() : Currency

- issueDate
- expirationDate

PercentOff

- percent

FixedValue

- totalValue

FreeService

Figure 7-5:
Separate

inheritance
diagram.

Filter

- minParticleSize
- thickness
- length
- width

Caster

- diameter
- maxWeight

AirFilter

- make
- model
- airChangesPerMinute

FilterHousing

- model
- dieNumber

Motor

- volts
- maxAmps
- weight

1

1

1

1..*

1

4

1

1

Figure 7-4:
Separate

aggregation
diagram.

117Chapter 7: Organizing UML Class Diagrams and Packages



Considering time in class diagrams
When you draw a class diagram with its classes and its associations, the dia-
gram is tied to a time period. This sounds odd because of the static nature of
these diagrams. But, when you think about the multiplicity of an association
you must specify it for some time period. Check your diagram to see that all
the multiplicities are for the same time period.

You might create a class diagram with hidden assumptions about time period.
All the multiplicities on a class diagram should reflect one time period. If you
draw a diagram with more than one time period, you create confusion about
what you mean — which leads to poor programming down the road.

Figure 7-6 shows a class diagram with two different time periods, and the multi-
plicities used in the diagram are tied to that fact. The supplier may or may not
send an invoice according to the sends association, and to represent that, we
have used the 0..1 multiplicity. It’s certainly true that a single supplier sends
many invoices over a long period of time, say five years. We chose the 0..1 mul-
tiplicity because we’re focused on a very short time period — today — with a
current outstanding invoice that must be paid. The diagram in Figure 7-6 also
shows that invoices are paid from a supplier account. It shows that a supplier
account pays for zero or more invoices. The paid from association also has a
time period — for all time or for a very long time period. The paid from associ-
ation isn’t focused on just the outstanding invoice from a specific supplier.

The problem with the diagram in Figure 7-6 is that it uses two different time
periods. Readers of the diagram would not necessarily catch that — and
would become confused. The diagram could be interpreted as meaning that a
supplier only ever sends one invoice. 

Assign each of your class diagrams a time period. Then check the multiplicity
of each association to make sure it conforms to your chosen time period.

If you can’t avoid showing different time periods on the same diagram, you
can use role names on your associations to help keep the time periods dis-
tinct. Create an association for each time period you plan to use, and then
add a role name to indicate the time period for that association.

Figure 7-7 shows the two time periods that were hidden in Figure 7-5. The
supplier sends an invoice that plays the role of the current bill. We show this
with a sends association connecting the Supplier class with the Invoice
class and a currentBill role name. The supplier is also associated with all
past sent invoices. This second association adds the second time period of
the past to the diagram. We associate the Supplier class with a second asso-
ciation to the Invoice class and a pastBill role name. The paid from
association between the SupplierAccount class and the Invoice class
remains unchanged.
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If you make an assumption about the time period for a class diagram, you
should add a comment to the diagram. That way you tell other developers
exactly what to expect when reading the multiplicities of the associations
between the classes.

0..1currentBill

1 1

sends

Supplier

pastBill1..*

1

0..*

paid from

Invoice

SupplierAccount

Association with current time period Association with past time period

Figure 7-7:
Multiple

time periods
modeled

correctly.

0..1

1

sends

Supplier

1

0..*

paid from

Invoice

SupplierAccount

Multiplicity reflects one-day time period

Multiplicity for all of time

Figure 7-6:
A diagram
with mixed

time
periods.
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Using Project-Oriented Class Diagrams
Class diagrams are also used to pull together key aspects of your project —
during analysis, and again during design. Accordingly, it can be helpful to
create class diagrams that represent the context of the system, its problem
domain, application requirements, and the design of each subsystem.

Establishing contexts
There are two kinds of context diagrams you show with class diagrams:

� External context diagram: This type of diagram shows a central class
and the classes to which it’s related. An external context diagram doesn’t
show the internals of the central class but instead illustrates the bound-
aries of the central class.

� Internal context diagram: This type of diagram shows the opposite of
the external context diagram. You see the internals of a central class but
none of the externally related classes.

Use external context diagrams to scope your system (to put a boundary
around your system). We use the following steps to se up an external context
diagram for our system:

1. Create a class and give it the name of the system you’re developing.

Don’t show any attributes or operations on this class.

2. Think about all the actors and other systems that you expect to inter-
act with your system — and add a class to your diagram for each such
interactor.

These are your external classes.

3. Draw an association between each interactor and your system class.

4. Consider the multiplicity of each association.

Ask yourself, How many instances of these actors/systems will my system
interact with?

5. Add an operation to any external class if your system must invoke its
behavior.

6. Add an attribute to any external class if that class must have some
knowledge important to your system.

Internal context diagrams allow you to show internal structure. If you have a
complex aggregation, then use this kind of context diagram to show the inter-
nal parts of the class. For this diagram, simply inflate the size of the class
box. Place a mini-class diagram where you normally show the attributes of

120 Part II: The Basics of Object Modeling 



the inflated class. Figure 7-8 shows just such an internal context diagram for a
generic report. See Chapter 5 for a detailed description for showing the inter-
nal parts of a class as a strong form of aggregation. For information about
context you show using use case diagrams see Chapter 8.

UML 2 has a new diagram called the composite structure diagram, discussed in
Chapter 5. You use composite structure diagrams to show internal context.

Creating domain classes
As you develop your system or software application, you’ll notice that you use
some classes over and over again. These highly reusable classes are based on
the real world and represent things in your business. In our air-filter example,
classes such as Customer, AirFilter, and Coupon are found in the business
world. When you talk to users, these are the very words they use when dis-
cussing their business. We call these words the domain language or the lan-
guage of the user. We capture and model this user language for two reasons:

� Reusability: As a developers, you use domain classes — classes that
reflect the domain or language of the user — in several different ways, and
each way they are used is known as a use case. (For more on use cases,
please read Chapter 8.) For example a manager uses the retail order
system to track the sales of air filters to customers and to find out which
supplier has the best price for air filters. In both cases different parts of

Generic Report

Header[0..*]

precedes

title for

precedes

Column[1..*]

detail : Body[1..*]

Footer[0..*]

Figure 7-8:
Internal
context

diagram.
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your application software will use instances of the same AirFilter class.
These reusable domain classes become the foundation for many of your
applications.

� User verification: Many of the classes in your software represent things
in the real world. It’s easier to talk with a user about a problem (and the
software you have to build to solve that problem) if your diagram shows
classes that are familiar to that user. The user can see the words you
have in the diagram and tell you whether it’s right or wrong because you
have built a diagram that only includes words from their language —
words they are familiar with.

As we mention in the section “Drawing manageable class diagrams,” Figures
7-2, 7-3, 7-4, and 7-5 begin to capture the language of an air-filter order
system. Users of that system understand what a coupon is, and they can
look at Figure 7-5 and tell you whether you have captured all the different
kinds of coupons. These four figures in this chapter are examples of domain
diagrams because they describe the domain of ordering air filters in a retail
setting. Your classes that capture the language of the user are known as
domain classes.

Domain class diagrams that capture the user’s language are good for the fol-
lowing purposes:

� Defining a common vocabulary between the user and the developer

� Capturing the most stable classes in your system

� Staying the same from application to application

� Removing vagueness from the definition of your real world classes

Develop your domain model during the requirements-gathering phase of 
your project. Capture in domain class diagrams what the user means as they
describe what they do. Refine the domain class diagrams when the user talks
about what they want your system to do for them. The very nouns the user
says become classes or attributes. The verb phrases from the mouth of the
user become associations.

Applying an application perspective
There comes a point in your software development when you want to show
which classes come together to bring a use case to life. Remember, object-
oriented software contains nothing but objects interacting together. The func-
tionality described in a use case arises from this interaction. You need to show
which objects interact to make each use case come to life. To show this rela-
tionship, use an application class diagram, which shows which classes work
together to perform the job of a use case. The diagram will include a few
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classes from your domain diagrams as well as special classes known as appli-
cation classes. Application classes have the attributes and behavior necessary
to make your software live up to the description written for a use case.

The following is a list of some application classes that will help you get your
project done:

� Controller class: These are classes that manage the interaction between
the user and the internal domain classes in your application. Controllers
know when to ask a domain class to make the application work. We usu-
ally add a controller class for each use case in our applications. The
responsibility of this use case controller class is to ensure that user
interactions with the system defined in the use case description are
done properly, in the right sequence over time.

� View class: A view class has the responsibility to manage the user inter-
face boundary between a person and your application. Users want to
see the information or objects in your system in a variety of ways. Each
view class knows how to interact with the underlying domain classes to
show the user a specific view of those domain classes.

� Boundary class: Boundary classes are similar to view classes because
they sit on the boundary between your application and an actor outside
your application. Boundary classes interact with other systems, data-
bases, and external devices that interact with your application. For
instance, we use boundary classes to separate our application from a
database. If any objects within our application require data from a data-
base, they ask a boundary class to go get it for them. That way if the
database changes (or the database-access mechanism changes), we only
have to change the internal workings of the boundary class. The bound-
ary class hides the complexity of the world outside of my application.

These classes encapsulate the attributes and operations of your application
that are “visible” to the user. The controller encapsulates what the user can
do and when they can do it for your application. The view classes show
things to your users. Boundary classes hide the external interactions of your
application from its internal classes.

Figure 7-9 illustrates one of the application class diagrams used in an air-filter
order-handling system. The attributes and operations of each class are not
shown, making the diagram easier to read. You notice Figure 7-9 actually has
two diagrams separated by a thick line. At the top of the figure is a use case
diagram showing the review accounts use case. At the bottom of the figure is an
application class diagram showing the classes that must perform the Review
Accounts use case for the Order Clerk actor. (An actor is a person outside
your system that interacts with your system.) The AccountReviewer knows
when to access the database via the DatabaseAccessor to retrieve instances
of the Customer, CreditCard, and CustomerAccount classes. The Account
Reviewer also knows when, at the users request, to create instances of the
view classes (CustomerView, CCView, AccountView, and ComplexAccount
View) and when to ask a view to show itself to the order clerk user.
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Notice that we do not draw all the associations between all the classes in
Figure 7-9. The AccountReviewer controller class has associations with all
the view classes because it must create them, but drawing association all of
these lines clutters up the diagram and does not add anything surprising for
the developer. Another reason why we may not draw the line between the
AccountReviewer class and the other classes is that associations are often
reserved for those situations where one class needs to continually know
about another class. The more temporary the knowledge of the other class is,
the more likely we don’t bother modeling it. When we use a UML modeling
tool, we add these extra associations to the diagram just before we ask the
modeling tool to generate code.

«controller»
AccountReviewer

«View»
CustomerView

«View»
AccountView

«View»
ComplexAccountView

«View»
CCView

«Domain»
Customer

«Domain»
CreditCard

«Domain»
CustomerAccount

«boundary»
DatabaseAccessor

1

1

0

shows

1

0..*

shows

1

1..*
pays from

0..1

1..*
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0..*

1
shown by

0..*

1..*
shown by
0..*

controls

0..*

1

database

Order Clerk

Review
Accounts

Figure 7-9:
Application

class
diagram.
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All you find in object-oriented software is (you guessed it) objects. It’s the
objects — not functions — that get together at runtime, collaborate, send
messages to each other, and get the job done. Each use case is realized by a
group of cooperating objects. Both application objects and domain objects
must work together to get a use case to work.

Wrapping packages
At some point in a project, you may find that the modeling you perform to
gather requirements, analyze those requirements, and develop software to
meet those requirements is getting out of hand. You probably have different
levels of class diagrams as well as domain class diagrams and application
class diagrams. You might well be wondering how to keep it all under control.
We have faced this same problem many times — and each time we used pack-
ages. You can wrap up groups of classes and even groups of diagrams into a
UML package.

A package is a way of grouping classes together. A UML package looks like a
tabbed file folder. You think of the package as containing certain diagrams
and/or certain classes. There are several ways of organizing packages for
your system:

� Development phase: Create a package for each development phase —
for example, Analysis, System Design, and Detailed Design. Place
the classes in each package as you find them during each phase.
(Classes discovered during analysis go in the Analysis package.)

� Diagram type: Create packages to hold the classes and the major types
of class diagram. We mention some of those diagrams in this chapter —
and we often create Domain, Application, System, and Subsystem
packages. We place domain classes and domain class diagrams into the
Domain package.

� Version control: Create packages to represent each version of your
system as you develop it. The packages would be named Alpha
Version, Beta Version, Release One, and so on. This way all the
classes for a particular version are available in one place.

When your development becomes really complex and large, you can put
packages inside packages.

To keep track of all those packages, use a package diagram. This diagram
simply shows the packages as tabbed folders, with the name of each package
on the front of each folder. You can also show any dependencies among your
packages by showing a dashed line with an arrow at the end of the line up
against the package some other package depends on.
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The package diagram is now an official diagram in UML 2. In previous version
of UML we used a class diagram to show packages and their dependencies
because there was not official package diagram separate from the class dia-
gram in the UML modeling tool.

Packages own their content. You can’t put the same class into two different
packages. Place each class in one — and only one — package. You can use
the class in other packages, but some package has to own the reused class,
and that’s the only one it should occupy. See Chapter 20 for more details on
organizing classes into different packages.

Figure 7-10 is a package diagram showing some of the packages you might
have for the retail air-filter order-handling system. The Review Account,
Handle Order, and Setup New Clients packages contain classes and dia-
grams that are specific to use cases by the same name. The Air Filter
Domain package just contains other packages. Finally, the Client, Product,
and Vendor packages contain groups of classes that are important to each of
those major parts of the user’s language.

Air Filter Domain

Client Vendor

Product

Handle
Order

Set up New
Clients

Review
Account

Figure 7-10:
Package
diagram.
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Dependencies are also shown here. You see a dependency line from the
Review Account package to the Air Filter Domain package. The Review
Account Package is dependent on the Air Filter Domain package; to
review an account, you must also use some of the classes in the Air Filter
Domain package.

Packages are a great way to group important stuff together so your complex
models don’t get out of hand.
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The Basics of 

Use-Case
Modeling



In this part . . .

This part covers some of the most important stuff in
software and system development: Who’s your system

for? What must it do? Why build it in the first place? Here
we cover the basic techniques that help you find answers
to those questions: use-case diagrams, which capture and
present how the basic users (called actors) call upon the
system in their typical situations (called use cases). We
explain how to document the contents, flow, and alternate
courses as the use cases unfold, making the big picture
easier to grasp for narrative or specification purposes.

For advanced use-case modeling, we detail the possible
relationships — inclusion, extension, and generalization —
among multiple use cases, and help you avoid common
problems in this tricky area.

If your use cases start to multiply and get unruly, we show
how to corral them in packages so they stay manageable.
And we offer advice on how use cases can not only help
you create a better understanding of your system’s goals
and requirements (so your stakeholders buy in with mini-
mum fuss), but also benefit the process of design and
implementation.



Chapter 8

Introducing Use-Case Diagrams
In This Chapter
� Determining who will use your system

� Showing your system’s uses in terms of use cases

� Indicating system context

� Partitioning your system into use-case packages

UML has lots of pretty pictures and diagrams. Some focus on harnessing
the power of object-oriented theory and techniques to analysis and

design — and some focus on the meat-and-potatoes of detailed design and
construction. In both cases, these diagrams help you accomplish a task or
communicate with your peers in your organization.

However, practical development isn’t just an internal activity, especially in
the current climate of competition and shrinking budgets. If you want to stay
in business, you have to capture and understand your customer’s require-
ments and needs, and make a product or system that they want. Use cases
and use-case diagrams are the UML features that support the gathering and
analysis of user-centric requirements by starting with your users’ goals.

Use cases can keep you focused on your users’ goals and on producing prac-
tical systems that deliver value to your customers, whether they’re paying
external customers or paying internal customers (those with the money
inside your company).

Identifying Your Audience
A use case is a particular purpose that a user can actually use the system to
accomplish. Use cases achieve their great power primarily by simplicity and
organization: When you identify and organize use cases, you can paint a clear
picture of what the system has to do. You can show this clear picture to your
customers, users, management, and peers — which can help you get invalu-
able, focused feedback on your ideas for the system early in its process of
development.



To get an accurate picture of your system’s purpose, you must identify whom
the system is for (your customer) and who uses the system (the users).

The users and the customers are generally not the same group of people. Even
when they are the same people, it’s beneficial to think of user and customer as
different roles. 

� Your customers: Your customers — sometimes called the clients — are
the people or organizations that ultimately fund and task your team.
They must be satisfied for you to get paid. Your team may have a con-
tractual relationship with them (external customers), or they may be
part of your own management structure (internal customers). When
you’re in an in-house development organization, consider your parent
organization as your client.

� The client’s customers: When you talk about the customers (as opposed
to your customers), you typically are referring to the customers of your
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Consider the stakeholders
Considering the needs of the clients and their
customers and workers is a good start, and
although the use case’s focus on actors does
help you consider their needs, it’s not enough.
We recommend that you also acknowledge the
existence of stakeholders (the many individuals
and organizations that have a vested interest in
the success of your project). Every system has
a set of these potential stakeholders — individ-
uals or organizations affected by the operation
of your system (or who may affect the operation
of your system). The stakeholders are the
sources of your funding, your requirements, and
your opposition. They are your fans and oppo-
nents. Even within these groups, subgroups
whose opinions matter must be identified.

As an example, if you examine the workers, the
stakeholders include those who will use your
system and those who have used the previous
system. Also, consider those workers whose jobs
you automate, change, or eliminate. If you exam-
ine your own organization, the different types of
developers have their own stakes in the project.

Anyone who cares about the success of your
system or who can derail it is a stakeholder. The

authorities (legal, regulatory, industry, political,
trade, and so on), lobbies, and special-interest
groups are also stakeholders.

Are hackers and terrorists also stakeholders,
then? After all, they can certainly derail your
system. Well, not normally. Some companies do
explicitly treat the bad guys as stakeholders —
and sometimes even model them as actors —
but that’s a part of threat analysis. For a normal
assessment of stakeholders and their needs,
concentrate on identifying individuals, teams,
and groups who represent political and eco-
nomic forces that have legitimate vested inter-
ests (stakes) in your system.

During the process of gathering the require-
ments for your system, you’ll be spending most
of your time with the actors — but you must
consider all the stakeholders. Diagram the
actors with their use cases, but examine the
stakeholders also. Prioritize them by their
potential impact on the system as you evaluate
their needs. The more you satisfy your stake-
holders’ needs, the smoother sailing your
system will have, and acceptance and follow-
on will be high.



client. These are the people or organizations that buy things from your
client. If your system doesn’t make them happy, your client is unhappy,
and that means you’re unhappy.

� Users: When you refer to users of a system, they may be your clients’
customers, or they may be the workers in your client’s organization who
have a hands-on relationship with the system. Many systems have users
of all types — clients, their customers, and their workers. Users get the
closest feel for the system — and get the strongest impressions. The
tasks of the users are what the system must automate; the needs of the
users are what the system has to meet.

UML has a special term for the users, whether they’re clients, customers, or
workers: actors. The actors initiate behaviors in the systems and receive
information from the system.

Imagine you’re building a hotel registration system to be used by both poten-
tial guests from home (via the Internet) and by registration clerks at the hotel
when the potential guests phone them. Table 8-1 lists the main stakeholders
on this project. (The nearby sidebar “Consider the stakeholders” provides
more information on stakeholders.) In the table, Potential Guest appears
as twice as a stakeholder — once in the role of customer (when the actor is
Registration Clerk), and once as an actor who uses the system directly
via the Internet. Such duplication happens often when there are optional
intermediary workers (such as Registration Clerk).

Table 8-1 Main Stakeholders
Stakeholder Group Example

Client Hotel Chain

Customer Potential Guest

Actor (Worker) Registration Clerk

Actor (Customer) Potential Guest

Casting the System’s Actors
It’s easy to start identifying the main groups of actors (refer to Table 8-1) by
taking a high-level view of the workers and customers who act as end-users.
Evaluate these main actors to see if there are subdivisions with special privi-
leges and capabilities. For example, in the hotel registration system, special
types of Potential Guests represent large parties for conferences or affairs —
typically they want to reserve blocks of rooms at a special price, and may also
be reserving other hotel facilities. These Event Organizers are another type
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of actor for this particular system. Identifying these subgroups helps you con-
struct an evolving list of actors for your system.

Many systems have paired sets of actors. For every customer actor type, (for
example) there is often a parallel worker actor type. The system allows the
customer-actor to work directly with the system or through a worker-actor
intermediary — which gives you two actors with paired roles. You might be
able to treat both actors as only one actor if their user interface is identical
(as it would be when their privileges are exactly the same) — but typically
these paired actors use the system in different ways. In the hotel registration
system, the customer-actors of Potential Guest and Event Organizer
have paired worker-actors of Registration Clerk and Event Consultant.

When classifying actors, you have to consider all sources of input to the
system. For example, a system typically needs input to define the evolving
configurations. In the Registration system, someone — perhaps the Hotel
Manager — must define configurations for the rooms, their prices, checkout
policies, and the like.

Finding nonhuman actors
In UML, human end-users aren’t the only actors in the system. The term actor
also includes everything that passes information or events directly to or from
the system. Such actors include other systems/subsystems, other databases,
hardware, and devices.

Incorporating system and database actors
You have to consider these nonhumans as actors even though they aren’t
stakeholders — or (really) users of the system — for several reasons. Each
external system that interacts with your system has its own stakeholders
and actors. By modeling the external system as an actor, you capture it as a
proxy — a symbol for the collected goals and requirements of these stake-
holders and actors. The Hotel Reservation system must deal with an exter-
nal Credit Card Authorization system. The Credit Card Authorization
system, considered as an actor, works for you as a proxy for its clients, cus-
tomers, and workers. Another such actor might be an external database (such
as external Frequent Traveler database).

Ignoring internal components (databases and systems)
When considering databases and other systems, you should only consider
and model the external ones as actors. If they’re an internal part of your own
system, you can just leave them off the diagram.

Adding an internal component to the list of actors doesn’t really add any
value, because that component’s clients, customer, and workers are just a
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subset of your own system’s actors — not a source of new requirements or
information. Even so, don’t just ignore the internal components; be sure to
check whether any of them qualify as actors that must be added to your total
list of actors.

Telling internal databases from external databases
If a database is external, it should be modeled as an actor; if it’s an internal com-
ponent, then it shouldn’t be modeled as an actor. Sometimes it’s hard to tell
whether a database is external or internal; you have to look at the list of clients,
customers, and workers who deal with the database. If the actors for the data-
base are vastly different from the other actors of your system, don’t add them to
your list; instead, treat the entire database as an external actor. If the actors for
the database are mostly the same as your actors, then you probably have control
over the database — and you can probably treat it as an internal component
without flinching. For another way of looking at this criterion, consider that the
more you think of a system component as under your control and design, the
more likely it is to be internal. If you think of it as outside your control, then it’s
most likely external, and best modeled as an actor.

Incorporating device actors
Input and output devices must also be considered potential actors:

� Input Devices: Input devices (sometimes called sensors) have to be con-
sidered because they report on some condition or events in the outside
world. A sensor typically serves in one of two roles:

• Proxy for the causer of the events: For example, a TV remote con-
trol acts upon the TV system to change the channel as an agent of
the person using the remote control.

• Proxy for the setter of the sensor threshold: For example a ther-
mostat in a refrigeration system. It reports when the temperature
increases over a preset level. The thermostat is an actor because
it acts for the person(s) who set the temperature threshold.

� Output Devices: You should consider output devices because (by defini-
tion) they produce an effect or output for some stakeholder to use, or to
comply with a stakeholder’s wishes. The compressor in a refrigeration
system (for example) is an actor because it acts upon the system’s con-
tents to satisfy the wishes of the person who wants the contents cold.

Consider the card reader in an ATM system. It reads the card to get identity
and account data of the patron. As such, it acts for the person as a way of get-
ting his or her data into the system — therefore it should be considered an
actor. The display in an ATM system is an actor for much the same reason
because it outputs data to the user. When the whole unit is essentially one
device, you can combine the card reader, display, keyboard, and so on into
one (complex) actor for your system.
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Ignoring transparent actors
Don’t treat all sensors and devices as actors. Most devices are so ubiquitous
that you deal with them transparently. Consider the standard keyboard, dis-
play screen, and computer mouse. These hardware elements can often just
pass data or events from your system to its actors so easily that you consider
its direct actions as your own. Standard computer hardware provides examples
of internal design elements that are so well understood or easy to use that you
need not (typically) consider them as sources of system requirements. They
are transparent to the system.

Incorporating clock actors
An actor starts every thread of activity in your system. To complete the iden-
tification of the actors, you may have to include a device — in this case, a
clock — as an actor to initiate internal scheduled activities. The clock-actor
stands in for the stakeholder who scheduled the activities. In the Hotel
Reservation system, the Clock automatically cancels room reservations
if the Guest hasn’t arrived by some cutoff time.

Identifying the roles of the actors
As you look for actors for your system, consider that an actor isn’t a specific
person, but rather, a role in which a person may act. Don’t use individuals’
names. (They may be stars, but from the system’s viewpoint, they’re only
instances of roles.) Individuals often serve as different actors, depending
on what part of the job they’re doing. The same person may act as a
Registration Clerk and then later as an Event Consultant, depending
on the job flow.

Also, consider that job titles alone may not be sufficient to distinguish actors.
A particular job title such as hotel manager may encompass several separate
roles — you may have to define several actors, one for each role. In your dia-
gram, reserve the actor Hotel Manager for the role that only a hotel manager
can play.

One way you may try to distinguish the different roles an employee may play is
to construct a class diagram around the employee, where each employee is
considered a class. (Class diagrams with roles are discussed in Chapter 4.)
If there are several different relationships (associations) connecting the
employee to the other system elements, then there is a separate role for each
association the employee participates in. Usually each of these roles would be
a separate actor. You can see an example in Figure 8-1, where an employee with
the job title of Hotel Desk Clerk acts in at least two roles — Reservation
Clerk and Check-In Clerk — and these are the true actors of the system.
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Naming the actors
Actors are very much like classes, so you should use nouns to name your
actors. Generally, the names of human actors should be singular-agent nouns
formed from an active verb. In English, many of these end in -er or -ant, though
they may end in -or, -ee, or -ar (Customer, Organizer, Consultant, Debtor,
Professor, Employee, Registrar). Be sure to examine the role names that
come from association roles in the class diagram (as discussed in Chapter 4).
These often contribute such standard names as Reservation Clerk, Check-
In Clerk, Guest, Student, or Patron, which identify specific types of rela-
tionships between actor and system. If an employee who has a particular job
title acts in only one role, you can use the job title as the actor’s name.

When naming the nonhuman actors, you can use the name of the role that the
hardware or external system performs relative to your target system. Or, you
may find it convenient to use the given name of the system to simplify identi-
fication. For example, if there is an external system to authorize the potential
guests’ credit cards, it is acting in the role of CreditCardAuthorizer, and
that’s not a bad name for it as an actor. But if it’s already well known by a spe-
cific name such as credit card authorization system, then that might be a
better name for the actor.

Exposing an Actor’s Roles
Actors are not shy; they have to be shown to their public if you want to get
their value. Within UML, the notation for an actor is traditionally a stick
figure, as you can see on the left of Figure 8-2. You can also use a class box
(as shown on the right of Figure 8-2) to indicate an actor — you label the box
with the string «Actor». This is called stereotyping, and each « and » mark is
a guillemet. You may use double angle brackets (<< and >>) if you’re typo-
graphically challenged (as are many UML tool vendors). Stereotyping is the
common UML way of distinguishing similarly drawn figures of different types.

reservation clerk

check-in clerk

Hotel Desk Clerk Reservations

Room Assignment

Figure 8-1:
Using roles

to find
actors.
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The box form for an actor is similar to a class box (discussed in Chapter 3),
but actors and classes are treated differently — and the stereotype «Actor»
helps you recognize which is which. 

We recommend using the stick figure form for all the human actors and the
box class box form for non-human actors (other systems, databases, and
devices). This little visual convention will help you distinguish them quickly.

Sometimes you’ll find it possible to generalize your actors — especially when
an “is-a” relationship (“x is a y”) exists among some actors. You can use the
UML generalization notation to capture this relationship. You may also find
this same type of relationship among classes. (Chapter 6 discusses the gener-
alization relationship.)

Figure 8-3 shows an example of generalized actors. In this case, we started
with looking at the actors, Potential Guest, and Frequent Traveler. We
recognized that some of the essential activities of each could be generalized
as those of a Reserver, as they both make reservations. As we feel that a
Potential Guest “is a” Reserver and a Frequent Traveler “is a”
Reserver, we use the generalization symbol to reflect the relationship.

Potential Guest Frequent Traveler

Reserver

Figure 8-3:
Generalizing

actors.

«Actor»
Credit Card Authorization System

Potential Guest

Figure 8-2:
Exposing
actors on
diagrams.

138 Part III: The Basics of Use-Case Modeling 



Showing Your System’s Use Cases
Finding and categorizing the stakeholders and identifying the actors will cer-
tainly help you determine the sources of requirements for your system and
help you get critical feedback early. However, to get full value from UML use-
case diagrams you have to show how the actors use the system. Each distinct
use of the system — or purpose for which the system can be put to use — is
called a use case. Each use case must be initiated by some actor, whether
human user, device, clock, or other system.

Defining use cases based
on actors and goals
Put yourself in the place of each actor in turn. Consider the goals that each
human actor has when using the system. Determine the job the actor per-
forms while using the system you’re developing. You need to recognize and
understand how your system helps the actor meet job goals or personal
goals. If using the system returns some observable or measurable value to
the actor that moves the actor toward the goal, then that use is a good candi-
date for a use case. For example, making a reservation returns a reservation
to the actor; checking in returns a room assignment and a key; checking out
returns an end-of-room assignment and a bill. For the non-human actors, 
consider the goals the actor’s stakeholders have when it initiated interaction
with your system.

All actor-and-system interactions are part of some use case. For each set of
interactions with the system, examine the goals or purposes of the initiating
actor, sometimes called the primary actor. If more than one actor participates
in the use case, then the actor who starts the behavior (or contacts the
system) is the primary actor. The system contacts other actors as it attempts
to meet the primary actor’s goals. You can call these other actors the sec-
ondary actors. Often an actor may be primary for one use case and secondary
for another.

Illustrating use cases
UML has a simple way of indicating the relationships between actors and their
use cases. You draw a line from each actor to each use case he or she (or it)
participates in. (An example of a use-case diagram appears in Figure 8-4.)
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Show the use case by drawing an oval, which is UML notation for a use case
(and other such behaviors). The name of the use case is supposed to be
placed inside the oval, but this is rarely seen. Some tool vendors find it diffi-
cult to redraw diagrams when the text is inside the oval, so they put the use-
case name on the outside, near the bottom of the oval. UML accepts either
location for the name. Our Figure 8-4 shows both ways of drawing use cases.

If there are multiple actors participating in a use case, it’s sometimes conve-
nient to show who is in charge and who is just along for the ride. We recom-
mend that you indicate the actor who initiates a use case — the primary
actor — by drawing an arrow from the actor to the use case. Other actors,
who might just participate in the use case, you show as the targets of arrows
that start at the use case. We demonstrate this convention in Figure 8-4.

When you draw the use case yourself by hand, you’ll find it easy to put the
name inside the use-case oval if you remember the simple rule for using your
hand as a UML tool: Draw the words first, and then draw the container. If you
draw the oval first, the name will rarely fit inside.

Showing multiplicity with actors 
and use cases
In many of your systems, the concurrency of each use case is useful to cap-
ture. The concurrency of a use case is the number of instances of the use
case that the actor can communicate with at the same time. You can use the

«Actor»
Credit Card Authorization System

Potential Guest

«system»
Hotel Reservation

Make Room
Reservation

Check Room Availability

Cancel Room Reservation

Figure 8-4:
This use-

case
diagram

illustrates
use cases

and their
associated

actors.
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multiplicity value (see Chapter 4 for the complete details of how multiplicity
is indicated) to show concurrency as well. If an actor can participate in more
than one running of a particular use case — at the same time — then the mul-
tiplicity of the use case should be 0..*. In the normal situation (one-at-a-time
participation), you can use 0..1 as the multiplicity, or just don’t bother to
indicate it. In Figure 8-5, we show that the Credit Card Authorization
System can work with many instances of the Make Room Reservation run-
ning at the same time, but a Potential Guest can only try one Make Room
Reservation with our system at a time. 

Don’t get too confused over arrowheads or multiplicity. The lines from the
actors to the use cases can be adorned in many ways, all of which are optional.
All you need is the basic core line to indicate that the actor participates in the
use case. If a use case has only one actor, it’s obviously the initiating actor. If
there is more than one actor, you can distinguish this primary actor by showing
that it initiates the use case (do so by making the arrowhead point to the use
case). You can also try the convention that places the primary actors on the
left of the diagram and secondary (non-initiating) actors on the right. Of course,
you can use both conventions on the same diagram.

Defining a good use case
A use case is an actor-initiated, complete, system behavior that brings value
to the actor. Sometimes it may be difficult to identify the set of use cases that
our system offers. The following list provides several helpful hints for defin-
ing a good use case:

«Actor»
Credit Card Authorization System

Potential Guest

«system»
Hotel Reservation

Make Room
Reservation

Check Room Availability

Cancel Room Reservation

1

1

1

0..1

0..1

0..1

1

1

0..*

0..*

Figure 8-5:
A use-case

diagram
with

multiplicity.
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� Choose a good name: A use case is a behavior, so you should name it
with a verb phrase. To make it more precise, you should add a noun to
the name to indicate the class of objects that the action effects. To help
you choose the verb-noun phrase for the use case name, going back to
the class diagrams that helped you find the actors (see Figure 8-1) may
help identify the objects and the associations created by the use cases.
Look at a possible good name for your use case, by examining the name
of the relationships of the actor to the system’s objects.

� Illustrate a complete behavior: A use case must be a complete behavior
that starts with the initiating event from the primary actor and ends with
the actor normally reaching his/her goal. If a proposed use case is only a
step along the way to the goal, don’t treat it as a use case unless you can
consider it a goal in itself. For example, Specify the Bed Size (such as
king, queen, or double) is an activity that you have to perform to reserve
a room — but it’s only a part of the Make a Room Reservation use case
because it never really stands alone and doesn’t (by itself) return a useful
result. It’s not really a goal for the actor to use the system. However, you
may consider Check Room Availability important enough to be a use
case. It returns a value and could stand alone.

� Identify a completable behavior: To achieve a goal and produce value
for an actor, the use case must complete. When you name the use case,
choose a verb phrase form that implies completion or ending. For exam-
ple, use Reserve a Room, rather than Reserving a Room, because the
“ing” describes an ongoing behavior.

� Provide “inverse” use cases: Whenever you see a use case that accom-
plishes a goal that is to change a state in the system, you probably need
a use case to un-accomplish that goal. For example, the use case Make a
Room Reservation is undone with Cancel Room Reservation. Use
cases that just obtain information don’t need an undo. (For example,
you don’t need an undo for Check Room Availability.)

� Limit each use case to one behavior: Sometimes you might be tempted
to have a use case achieve more than one goal or do more than one
activity. To avoid confusion, keep the use case focused on only one
thing. For example, the potential use case Check-in and Check-out is
unfocused; it attempts to describe two different behaviors. If a proposed
use-case name has an and or an or in the name, it’s probably too unfo-
cused to be one activity.

� Represent the actor’s point of view: Write the use case from the actor’s
point of view, using the terminology of the actor, not that of the system.
Doing so allows the actors to review their use case properly without
having to learn your system’s terminology. In addition, it helps keep you
and your team learning — and using — your user’s terminology, making
you more responsive to their needs. For example, you would allow a
Guest to use the system to help Reserve a Room (using common Guest
terminology), but you would not name that use case Schedule Room
Assignment, because that’s a Hotel’s terminology and not the Guest’s. 
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One hint that can help you find good names for your use cases is to put the
name in the conversational words of a typical actor — for example, “System,
please help me to <verb> <noun> <phrase>.” When you use this form, you
automatically force the use-case name to adopt the actor’s point of view.

Distinguishing between Internal
and External

Taken together, the use cases of your system cover all the services that your
system offers to the totally of actors. Every service, every behavior, every
interaction with the outside world must be covered. You may enclose all the
system’s use cases in a box (representing the entire system) if you want to
emphasize that your system is what’s offering these services. Label this
box with the name of the system under construction (refer to Figures 8-4 and
8-5). Of course, this box is optional — and not all tools support this kind of
notation — but it will help make the ownership of use cases clearer (at least
it helps when the use cases can fit in the box).

Documenting use-case levels
Though it’s (technically) optional to do so, you should also stereotype the
box in which you’re offering the use cases as «system». Other entities (such
as subsystems or even classes) can offer use cases within UML, so using the
stereotypes can help the reader understand who is offering these use cases
as services.

We also recommend the use of «business» or «enterprise» when you want
your use cases to be offered by the entire business, whether they’re auto-
mated or not. Depending on your methodology — and the size of the system
you’re building — you may need «business», «system», «subsystem»,
«class», and even «component» stereotypes to identify different levels of
use-case diagrams. Doing so helps you understand, explore, develop, and
document your system — one iteration at a time.

When you do document your use cases at the «business» level, don’t con-
sider the internal workers of your system as actors. Instead, consider them
internal parts of your business system — essentially transparent. You ignore
the workers at the business level because your model should assume they’re
internal entities — under your complete control, like a database or other
internal subsystem. (You can read more about this approach in the section on
“Defining a good use case,” earlier in this chapter.) Similarly, when you’re dia-
gramming at a business level you should ignore “transparent” devices (dis-
cussed earlier); instead, indicate the ultimate actors that use those devices.
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For that matter, ignore all internal subsystems when you’re showing use
cases at the «system» level. You can — provided you’re building a large
enough system — decompose the system into several interacting subsys-
tems. Then you can find use cases for each subsystem, each with its own use-
case diagram (focused on itself). From the point of view of the subsystem, its
actors are the other interactive subsystems of the system — including (if the
subsystem interacts with the outside world) one or more actors of the
system as a whole. Figure 8-6 shows an example of use-case levels.

Treating people as design elements
If you model the Hotel as a Business, the registration clerks and other
employees show up in the model as internal design elements. Perhaps you
could automate their jobs completely. Consider the recent trends in libraries
and supermarkets; it’s now possible to check out your own books and check
out your own groceries. From the model’s point of view, clerks or cashiers are
designable elements, not actors; in effect, the business doesn’t exist for the
employees; the employees exist for the system.

«Actor»
Credit Card

Authorization System

System Level Diagram

«system»
Hotel Reservation System

Make Room
Reservation

Potential Guest

«Actor»
Payment Subsystem

Subsystem Level Diagram

«subsystem»
Room Assignment Subsystem

Make Room
Reservation

Potential Guest

«Actor»
Credit Card

Authorization System

«Actor»
Room Assignment

Subsystem

«subsystem»
Payment Subsystem

Validate
Payment Method

Figure 8-6:
Use-case

diagram
levels.
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Using Context Diagrams
Use-case diagrams are very powerful, but in most systems, the number of use
cases you have will be larger than you can conveniently show on one dia-
gram. A popular form of the use-case diagram may help summarize the inter-
action of actors with the system. This diagram is called a top-level use-case
diagram, but as it’s very similar to a type of diagram that predates UML; often
you’ll see it called by its traditional name: context diagram. This type of dia-
gram, shown in Figure 8-7, displays the system of interest and all its actors —
but it hides the use cases themselves.

When you draw these context diagrams, you don’t have to worry about the
arrows. If an actor is always the initiator in all its use cases, you can have the
arrow pointing to the system. If an actor is never the initiator, you can have
the system pointing to the actor.

You can draw these context diagrams right after you identify the actors —
and before you take a crack at the use cases — so a good guess is probably
sufficient. To be safe, don’t use the arrowheads if you’re not sure.

As with the regular use-case diagrams, context diagrams can be subdivided
into levels. To minimize confusion, focus your diagram on the subsystem,
component, or class of interest — and use stereotypes to indicate what the
diagram elements are doing.

«Actor»
Credit Card Authorization System

«Actor»
Point Redemption System

Potential
Guest

Reserver

Frequent
Traveler

Hotel
Manager

Registration
Clerk

«system»
Hotel Reservation System

Figure 8-7:
System
context

diagram.
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Packaging Use Cases
Context diagrams are popular because they can show the entire picture at
one shot. In complicated systems, you couldn’t show all use cases on one 
diagram anyway. Therefore, what you want to do is to produce a use-case 
diagram for each initiating (primary) actor. If you make the actor names on
the context diagram into hyperlinks, then your context diagram becomes a
graphic table-of-contents that refers to a set of use-case diagrams.

This organizational structure is probably the most efficient for you anyway.
If you produce artifacts based on the use-case structure, you’ll want to orga-
nize them actor-by-actor so the actor community can review the diagrams
more easily. The real-world actors (supervisory personnel, for example) can
give you focused feedback and input if they can narrow their view — which
means looking only at their own sections. This approach works for identifying
requirements, as well as for the stages of analysis, design, implementation,
and delivery.

When you use this approach to structure part of your system, you put your ini-
tiating actor and its use cases in a separate package. (You can find more about
using packages in Chapter 7.) A use-case package has an optional, special icon
(a tabbed folder with an oval in the center) that you might want to use (as
shown in Figure 8-8). Although use cases themselves are behaviors — which
you name with verb phrases — use-case packages are things, so you name them
with noun phrases. We recommend creating a package called Actor Uses for
each primary actor you can name. If you find that you have too many use cases
within a single package, you can make lower-level packages. In fact, you may
need several levels of packages if you’re planning a large system.

«use-case package»
Guest Uses

«use-case package»
Reservation Management

Figure 8-8:
Gathering
use cases

into
packages.
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Chapter 9

Defining the Inside of a Use Case
In This Chapter
� Describing the use case’s theme and plot

� Narrating the use-case story

� Pouring use-case flows into tables

� Showing alternative flows

Simple UML use-case diagrams clarify how you expect your system to 
satisfy the needs of its actors. That’s fine, as far as it goes. Identifying

or naming the services your system offers is often a good start — but more
details of the use case are needed before you can get on with development.
This chapter lays out some common approaches to defining the inside of a
use case.

Creating a Use-Case Specification
A use case is one way of using the system. You identify the actors (the users
of the system) and their use cases — placing them on a use-case diagram —
in order to understand and organize your thoughts about the system, and as
a useful way to organize the system’s requirements, analysis, design, and
potential artifacts (documents, diagrams, and so on).

You can also consider a use case as a behavior that the system offers to the
actors to help meet the actors’ goals. (For more on identifying actors and
their use cases, and drawing them in use-case diagrams, see Chapter 8.)

UML tells you to draw use cases as named ovals, and to connect them to
their actors (stick figures and boxes), but it doesn’t say much about how to
supply details of how the system performs behaviors needed to meet the
actors’ goals. Though use-case diagrams are helpful, without more informa-
tion on how the system is to do this work, your development effort will stall.



So you have to supply information on how the use case is to work — and put
that information somewhere. Where? Somewhere close by and available when
you need it, but not anywhere that clutters up the simplicity and effectiveness
of your use-case diagrams. Figuratively we place these details inside the use
case — not on the diagram, but behind the scenes. Often a textual document
or form is the place to put these details; it may be reached (perhaps by hyper-
linking) easily from the use-case oval.

This set of needed details placed inside a use case is sometimes called the use-
case specification because you use it to specify (spell out in detail) how the
system behaves when triggered by actors to meet their goal(s). (The format of
the specification isn’t standardized in the industry — each development orga-
nization develops or modifies its own standard — but we’ve based the discus-
sion that follows on the common features of the most popular approaches.)

Filling in this specification isn’t difficult if you step through the following tasks:

1. Identify and name your use case.

See Chapter 8 for more on this process.

2. Draw a diagram indicating the use case, as well as its primary (trigger-
ing) and secondary actors.

See Chapter 8 for more on drawing use-case diagrams.

3. Describe the use case briefly.

Give a sentence outlining the purpose of the use case.

4. Narrate the story of what happens in this use case.

The use-case narration should be a written story. Usually it starts with
the phrase, “This use case starts when the actor <does something> . . .”
and then describes what the actor and system do in the normal course
of events. Often this description takes the form of alternating steps: The
actor does this, and then the system does that, and so on, until the story
ends with: “This use case ends when the system <does something> and
<the actor’s goal> <is satisfied>.” If there are some major plot variations
to the story (that is, alternate paths the use case might take), you
should include them in the narration as well. You don’t have to be
exhaustively complete — and certainly don’t be formal. Go for a few
paragraphs that get the idea across.

5. Describe the main course (sometimes called the main flow) of events
in your use case.

When you and your customers are satisfied with your narration, you can
take the main story — the typical interchange of events — and capture
this flow of events (what the actor does and then what the system does,
and so forth) more formally. Later in this chapter, we give various popu-
lar techniques for capturing a flow of events.
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6. Define appropriate pre- and postconditions for this flow of events.

As part of making the flow of events more formal and precise, we specify
the conditions that must be true to enable this version of the story to
occur — the preconditions. We also specify the conditions that will be
true after this flow of events finishes — the postconditions.

7. Identify alternative, error, and exception scenarios.

Now we look at the alternate plot lines we indicated in the narration. We
identify all the alternative paths, possible errors (and their conse-
quences), and exceptional situations that the use case might encounter.

8. Describe each scenario’s alternative course with a flow of events,
adding pre- and postconditions.

Using the same techniques used in Step 5 (to describe the flow of events
for the main course), describe each alternate course identified in Step 7.
Then identify the pre- and postconditions, as in Step 6.

9. Add to the use case any requirements that must be obeyed, or any
implementation notes.

Document any usual business rules and data validations that the use case
must enforce. Capture any guidelines on design and implementation that
might be helpful.

Remember, every use case must have a specification constructed. How much
of the specification you ought to fill out depends on the formality of your pro-
ject and where you are in your project.

Telling the Use-Case Story
In Chapter 8, we give a basic definition of a use case as an actor-initiated,
complete, system behavior that brings value to the actor. Chapter 8 also pre-
sents some techniques to help you find and identify these use cases, culmi-
nating in naming your use cases and placing them on use-case diagrams, as
shown in Figure 9-1. However, just naming the behavior does not tell the
whole story; you need more.

«Actor»
Credit Card

Authorization System
Potential Guest

«system»
Hotel Reservation

Make Room
Reservation

Figure 9-1:
A use-case
diagram for

the use
case Make

Room
Reservation.
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All approaches to defining a use case’s behaviors are more or less the same as
detailing how the system responds to actor-initiated triggers — and ultimately
delivers the value back to the actor. That plot and theme bind the use case
together.

Describing the use case
The simplest way to describe a use case (and normally the first one tried) is
to identify the theme of the use case in a simple sentence or two — the use-
case description. Given the use case Make Room Reservation, you might
describe the plot and theme as follows:

Use-case name: Make Room Reservation

Description: The actor Potential Guest uses a Web browser to specify
desired room features and dates, in order to obtain from the system a
confirmed room reservation.

The use-case description you write is, in essence, a simple synopsis or abstract
of the use-case story. It explains the goals, plot, and theme of the use case when
just the use-case name will not. But, it is not the full story; an abstract needs a
body. An abstract may stand for the body under some circumstances. As with
any abstract, the use-case description may stand in lieu of the use-case story
when there is no room for the full version — or during iterative development
(before the full story has been written) — but the full story must also be done.
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Use cases are not just descriptions
While there are many templates and guidelines
that give overall good sample formats of the
use-case description, they often suggest a
simple miswording that may lead you down the
wrong path. You may see samples that start
something like, “This use case describes how
the system . . . .”

This leads you to think that a use case is a doc-
ument as it describes a behavior. I believe that
this is confusing on several levels. In a typical
iterative development, you have several different
documents that describe the same use case —
each made at a different level of detail. The doc-
uments describe the use case; they are not the
use case itself.

This simple confusion between the use case
itself and the use-case description sometimes
leads to a more fundamental error. Use cases are
primarily artifacts of analysis and discovery. By
looking at your system, you can discover or
uncover the existing use cases — the ones that
are there whether you notice them or not.
However, when you talk about them as docu-
ments or descriptions, they may lead you to think
that use cases are artifacts of design, subject to
the arbitrariness of ingenuity and creativity and
convenience, and that any use-case arrange-
ment will suffice. A word to the wise: While there
is certainly room for leeway in naming and orga-
nizing your use cases, it doesn’t justify sloppy
use cases.



Recounting the use-case narrative
You have many choices and techniques to capture the full behavior of the use
cases. Most developers use a combination of approaches to show all the
aspects of the required behavior in the use case, and do so incrementally,
starting with less formal textual approaches and iteratively use more formal
specification approaches. You can choose a mix of formal statements-of-
requirements (such as, “The system shall provide the capability to reserve
rooms up to one month in duration”) or employ UML functional modeling
techniques (such as the interaction diagrams and textual behavioral specifi-
cations outlined in Chapter 11).

The level of formality you stop at depends on the level of formality that your
development needs or wants. Not every organization needs the full treatment
(which can, after all, be time-consuming).

The most basic approach you can take to capture the use-case behavior is a
narrative paragraph form where you describe the interaction between the
actor and the system as if it were a story.

First, identify the actor’s triggering behavior, and then describe the system’s
response. Repeat this for every future action by the actor and follow it by the
system’s response. Describe alternatives or exceptions as they can occur,
though significant variations can be described in other paragraphs. End the
narrative when the actor achieves his/her goal.

Separating analysis from design
Most developers use use cases as artifacts of analysis. Use cases should be
used to specify the required behaviors of your system not to capture design
of your system. Design decisions change often; implementations change even
oftener. By separating the requirements from the design, you allow the use
cases to be a stable definition of what your system must do to be successful.
They become part of your agreement with your stakeholders — that if you
produce a system that delivers these use cases, they will be happy (and pay
for it). You can then do whatever you want to design and implement the
system — knowing that if you make the use case work, you’re okay. Putting
design details in the use case, however, means that if you change your mind
about the design, you have to change the use case — and go back to your
stakeholders for approval.

Separating analysis from design also frees your test team to start developing
their test plans directly from the use cases — knowing that the use case will
be (relatively) stable, knowing that they will be able to test the functionality
of the system directly from the use case.
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To concentrate on the required visible, testable behavior of the system, we
recommend you follow these guidelines in your use cases:

� Tell what happens and when, but ignore the how.

� Use the actor’s terminology and perspective.

� Don’t describe any internal workings of the system, unless they are ulti-
mately visible to an actor. Treat the system as a black box whose inside
is hidden.

� Cover the major alternatives, exceptions, and looping in activity of the
interaction with the actor and system.

� Start with “This use case starts with the actor performs X,” where X is
the triggering action.

� End with “This use case ends when the actor is satisfied with the behav-
ior of the system or is unable to continue.”

You should have the goal to describe the required behavior of the system
without saying how it is to be done, as in the following use-case narration:

Use-case name: Make Room Reservation

Description: This use case allows the actor, Potential Guest, to use a
Web browser to specify the desired room features and dates and to
obtain from the system a confirmed room reservation.

Narration: This use starts when the actor, Potential Guest, visits the
opening Web page. The system responds by prompting for the span of
reservation days and the room type. The actor identifies the type of room
that is desired (bed size, is-smoking allowed) and the desired reservation
day span. The system validates the inputs and prompts for re-entry if
incorrect. The system then checks to see if a room matching the actors
request is available during the day span specified and returns this to the
actor. If several different classes of rooms are available, they are all
returned to the actor. If none match the actor’s criteria, the actor may re-
specify or may exit the use case. If one or more rooms meet the actor’s cri-
teria, the actor selects the room desired. The system prompts for payment
information. The actor supplies name, billing address, credit card number,
and expiration date. The system contacts the other actor, Credit Card
Authorization System, to validate the credit card and available credit. If
the credit card transaction is rejected, the System informs the Potential
Guest, who may then change the card or cancel the use case. If the credit
card transaction is accepted, the System marks the room as reserved over
this time period to prevent subsequent reservations, calculate a unique
reservation number, and informs the Potential Guest. The use case
ends when the actor reviews the successful reservation and leaves the
System. If the actor cancels before submitting acceptable credit card infor-
mation, the use case ends without a successful reservation.
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This narration form is often the first approach used to specify the behavior of
a use case. However, many ultimately prefer an approach that breaks the flow
of events into individual numbered actions so that they are easier to see and
refer to when necessary. A typical approach that works this way is called the
use-case flow of events. This approach allows you to clarify whether an event
is actor- or system-initiated, using indentation or numbering. The top-level
statements describe the actions that the actor performs. The indented,
lower-level statements describe the responses of the system. The following
is a partial example of this technique:

Use-case name: Make Room Reservation

Description: This use case allows the actor, Potential Guest, to use a
Web browser to specify the desired room features and dates and to
obtain from the system a confirmed room reservation.

Main course:

1. This use case starts when the actor visits the opening Web page.

1.1. The System prompts for the span of reservation days and room
type.

2. The actor identifies type of room (bed size and smoking or non-
smoking) and reservation day span.

2.1. The System validates inputs.

2.2. The System determines available matching room classes.

2.3. For each available room class, the System determines reserva-
tion costs.

2.4. The System displays possible reservations.

2.5. The System prompts for actor selection.

3. The actor identifies type of room (bed size and smoking or non-
smoking) and reservation day span.

3.1. . . .

We generally recommend writing the narration first — and having that
reviewed by your stakeholders before you construct the flow of events.
Afterward you may be able to discard the narration.

One important consideration using this flow of events approach is that a flow
captures only one path throughout the system. As you use the numbering
and indentation to convey order and initiator, they are not available to you
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to indicate looping or decision. Therefore, when using the flow of events
approach to documenting a use case, you will need to use multiple different
flows or courses to document the entire use case. You start with document-
ing the main course. This is the course of events that is the most common
and straightforward approach to achieve the actor’s goals with the use case.
(You may also hear the main course called the main flow or main path
through the use case.)

Setting pre- and postconditions
Most use case specification templates will ask you to supply pre- and post-
conditions for the course of events. The preconditions specify the state of the
world that must hold before the course can be triggered. The postconditions
specify the state of the world the will hold after the course has been success-
fully completed.

When documenting the main course of most use cases, we have found that
the preconditions are often simple as they just tell where the actor must be
to start the use case. Likewise, the postconditions of the main course may
also be simple if they are just statements that the actor’s goals have been
reached. However, sometime the conditions can be very complex, especially
when describing the conditions for alternate or error flows. You can see some
examples of not-too-complex pre- and postconditions in the section
“Indicating Alternative Courses of Behavior.”

We normally use natural language statements to capture constraints on the
world, but we often find it useful to be more formal if the English could be
ambiguous. In these circumstances, you might use Object Constraint Language
(OCL) to indicate formal relationships among objects and attributes from the
domain model. (You can find more about using OCL in Chapter 11.) For even
more clarity, you may consider drawing object diagrams. We discuss these dia-
grams as the underpinning of collaboration diagrams in Chapter 14.
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Avoid the Happy Path
Occasionally people will refer to the use-case
main course as the Happy Path. We believe that
the term Happy Path, despite its popularity, is
often inappropriate and should be avoided. The
adjective happy is a matter of opinion and has to
do with interpretation of whether the actor’s

desired goal is also desirable. There are many
circumstances in which happy will be incongru-
ous, such as Cancel Reservation, Close
Hotel, or (more darkly) Execute Prisoner.
Generally, you will be more professional if you
avoid value judgments in your terminology.



Indicating Alternative Courses 
of Behavior

As the main course is just one possible course through the use case, if there
are other ways of reaching the actor’s goals, you need to construct other
courses for each way. Each possible path through a use case is called a sce-
nario. Consider a scenario as an instance of a use case, which you may diagram
as shown in Figure 9-2. The use-case instances use the same oval notation as
the use cases, but have their instance name, in the standard underlined format,
as follows:

scenario name: use-case name

The modeling notation shown in Figure 9-2 is similar to that of classes and
their instances, objects, which is covered in Chapter 3. Name each scenario
so that they are easily distinguished using the format for object instances.

There are often infinite potential instances of use cases, each of which is a
slightly different path through the use case, with different values for user
input, or different number of errors occurring in different orders. However,
don’t bother to even try to identify all of these. You should just identify the
ones that yield quantitatively different results. For example, identify different
ways of meeting the goals or different error messages. Construct scenarios

successful CC
Transaction:
Make Room
Reservation

invalid Day Span:
Make Room
Reservation

Canceled:
Make Room
Reservation

rejected CC
Transaction:
Make Room
Reservation

Make Room
Reservation

«instance of»

«instance of»

«instance of»
«instance of»

Figure 9-2:
Scenarios of

a use case.
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that span all errors, exceptions, or variations of flow. Ultimately, the set of
scenarios that you identify should exhaust all the logic of the use case.

Each scenario you identify has to be a possible path through the use cases.
Thus you’ll probably have to construct a separate flow of events for every
scenario you’ve found. Each of these additional flows is usually called an
alternate course. Document the alternate courses in the same way as the
main course.

This might seem a bit redundant. The scenario in which the credit card is
accepted is very similar to the scenario in which the credit card is rejected,
at least, up to the point of rejection. Luckily, it’s not necessary to duplicate
steps mentioned in previous courses. When you start an alternate course,
indicate the step from which it branches off and the conditions that cause
the branch off. 

When you end an alternate course, it has several possibilities:

� The use case ends because the goal is reached in an alternative way.
Write a postcondition to indicate the results of this course.

� The use case ends because it’s not possible to reach a successful con-
clusion. Write a postcondition to indicate the results of abandoning the
use case.

� The use case resumes at a previous step to re-attempt a failed behavior.
Indicate the next step in the original course that follows.

� The use case accomplishes a subgoal in a different way so that it skips a
group of steps and rejoins at a latter step. Indicate the next step in the
original course that follows.

Here’s an example of an alternate course

Alternate course #1: Invalid reservation day span.

Precondition: At Step 2, the actor enters an invalid reservation day span
(more than 1 month, or less than 1 day).

2.1 The System validates inputs but the reservation day span fails 
validation.

2.2 The System displays an error message indicating the problem to
be fixed.

. 2.3 The System prompts for correct reservation span.

Processing continues with Step 2.1 of the main course.

156 Part III: The Basics of Use-Case Modeling 



You may become tempted to use control syntax, such as IF, ENDIF, DO, FOR,
or CONTINUE AT, to minimize the number of alternate flows in a use case, but
it’s best to avoid such things altogether. If you yield to temptation, you’ll find
in hard to stop and the flow would quickly become unreadable.

When you describe use cases to specify requirements for your system, you
want to use the language of the user. That way, your users will be able to
clearly understand what the system does for them — and they can better
review and critique your use cases.

Another common approach to capturing the courses or flow that you might
use is table-oriented steps. The following example shows how a main course
and a few of the possible alternate courses could be captured using the table-
oriented steps:

Use-case name: Make Room Reservation

Description: The actor Potential Guest uses a Web browser to specify
desired room features and dates, and to obtain from the system a con-
firmed room reservation.

Main course of events: Successful credit card transaction.

Precondition: Actor reaches the hotel’s home Web page wanting to make
a reservation.

Successful postcondition: Actor has a confirmed room reservation.

Potential Guest System Credit Card 
Authorization System

1. This use case starts when 2. Prompts for span of 
the actor visits the opening reservation (in days) 
Web page. and room type.

3. Identifies type of room 4. Validates inputs using 
(bed size and is smoking Data-Validation Rules
allowed) and span (in days) 1 and 2.
of reservation.

5. Determines available 
matching room classes.

6. For each available room 
class, determines reservation 
cost. (See Business Rule 1.)

7. Displays possible 
reservations.
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Potential Guest System Credit Card 
Authorization System

8. Prompts for a choice.

9. Selects desired room. 10. Prompts for billing
information.

11. Supplies name, billing 12. Validates the inputs,
address, credit card number, using Data-Validation 
and expiration date. Rules 3 through 6.

13. Sends transaction to 14. Reports transaction 
Credit Card Authorization is accepted.
system.

15. Marks room as 
reserved by Potential 
Guest over the specified 
time period (to prevent 
subsequent reservations).

16. Calculates unique 
reservation number. 
(See Business Rule 2.)

17. Informs Potential 
Guest of success.

18. This use case ends when 
the actor, satisfied with the 
reservation, leaves the system.

Alternate course #1: Invalid reservation day span.

Precondition: At Step 3 of the main course, the actor enters an invalid
reservation day span (more than 1 month, or less than 1 day).

Potential Guest System Credit Card 
Authorization System

1. Fails Reservation Day 
Span validation.

2. Displays error message, 
indicating problem to be fixed.
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Potential Guest System Credit Card 
Authorization System

3. Prompts for corrected 
reservation span (days).

4. Use case continues with 
Step 3 of the main course.

Alternate course #2: Credit card authorization fails.

Precondition: At Step 14 of the main course, the Credit Card
Authorization System rejects the transaction.

Potential Guest System Credit Card 
Authorization System

1. Rejects transaction.

2. Informs Actor of 
transaction rejection.

3. Prompts for corrected 
or different credit card.

4. Use case continues with 
Step 11 of the main course.

Alternate course #3: Reservation canceled.

Precondition: At any of Steps 3, 9, or 11 in the main course, the actor
desires to cancel the reservation.

Postcondition: This use case ends with no reservation made.

Potential Guest System Credit Card 
Authorization System

1. Indicates Cancel or 2. Cancels ongoing 
leaves Web page. transaction.

In this example, we occasionally refer to Business Rules (for example, Step 6)
and Data-Validation Rules (Steps 4 and 12). Some use-case authors place the
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details of the field validations and algorithmic calculations in line with the
steps. This is acceptable, but we prefer to refer to the rules, and place them
somewhere else, usually at the end of the document. If you place the rules
right inside of the steps, the steps can get very long and difficult to read.
Readability should be one of your most important goals when you write use
cases, because you are attempting to get agreement and buy-in from your
stakeholders and other developers. In addition, business rules and data vali-
dations tend to change often — so it’s best to take the ones shown here out
of your final steps so the steps don’t have to change.

Here are some examples of the business and data-validation rules that we
referred to in our example. The business rule helps calculate the room prices;
the data-validation rules prevents reservations of less than one day or more
than one month. Here’s what they look like:

Business Rules:
1. DoubleOccupancyPrice = 1.75*BaseRoomPrice

Data-Validation Rules:
2. Day Span: Date1 -- Date2
Format: MM/DD/YY -- MM/DD/YY

aDate2 > Date1
bDate2 - Date1 ≥  1
cDate2 - Date1 ≤ 31

As we write out use cases, we need to be aware of situations that may cause
problems with the design — or the implementation — of the use case. Here’s
an example of a typical design note that would apply to our use case:

Design note:

If more than one Potential Guest could be running this use case at the
same time, there is the possibility that they may be attempting to reserve
the same room(s). This can cause inconsistent results. The design must
consider locking (preventing another actor from selecting) the offered
rooms until one is selected, and then locking the selected room until the
reservation is confirmed or canceled.
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Chapter 10

Relating Use Cases to Each Other
In This Chapter
� Using «include» relationships to extract common flows among use cases

� Generalizing and specializing use cases to show common goals

� Showing optionality with extended use cases

No one likes to do redundant work — and normally your use cases
shouldn’t require it. In this chapter, we show you some techniques to

help you keep duplicate work to a minimum, using two general approaches:

� Extracting areas of commonality with included or generalized use cases
can save you work (you only have to document the common parts once).

� Extracting and emphasizing optionality — that is, identifying variations
(as with extended use cases) — lets you simplify your work.

Linking Use Cases with «include»
You’ll often run into déjà vu as you document your use cases — especially
when several of them show an identical sequence of events exchanged
between an actor and the system. This is more than coincidence; multiple
use cases often have common subsequences. Usually (for example), some
common setups or prerequisites must be established before work even
begins — and common subgoals have to be reached on the way to accom-
plishing the actor’s goals.

Recognizing this commonality is good — because if you don’t recognize it, you
can end up doing your use-case work twice. Doing the same thing over again is
bad enough, but the consequences to your project can be worse. If you docu-
ment your use cases twice, you’ll likely document them differently — which
leads to designing, implementing, and testing them differently. Such systems
are also costly because such a lack of reuse adds complexity — and your
users may easily get lost in a system that shows no cohesion. They’ll have to
learn and remember different techniques to accomplish the same goals in dif-
ferent contexts.



To save everyone some hassle, it’s worth looking for opportunities to reuse
common pieces of use-case interactions between an actor and the system.

In the Hotel Reservation system diagrammed in Figure 10-1, the actor
Potential Guest may trigger the use case Make Room Reservation — and
another actor, Event Organizer, may trigger the use case Make Facility
Reservation. Both use cases involve an additional actor, the Credit Card
Authorization System, to guarantee a reservation.

After a little thought, you may notice a set of interactions that Make Room
Reservation and Make Facility Reservation have in common: the
process of verifying the credit card. This common set of interactions begins
with the actor requesting to pay by credit card, and the system responding
with prompts for credit-card information (such as type, number, date, and
name). After the actor fills in the fields, the system validates their values, and
passes the information to the Credit Card Authorization system, along
with an estimate of cost for the room or event. Here the information is veri-
fied; if it’s acceptable, the system puts a hold on the credit card for the esti-
mated cost. There are several alternate paths to this result — for example,
validation errors, insufficient credit, card reported stolen, and so on. (You
can see the Make Room Reservation use case, which includes these flows,
documented in Chapter 9.)

You can add such sets of common interactions to a new use case of their
own — which you can then include wherever you need it.

In Figure 10-2, for example, you can see that we pulled out the common inter-
actions of two use cases and placed them in a new use case called Guarantee
Reservation. We show the relationship by drawing a dashed arrow between
the base use cases (the ones doing the including because it needs the common

Hotel Reservation
System

‹‹actor››
Credit Card

Authorization
System

Potential Guest

Event Organizer

Make Room
Reservation

Make Facility
Reservation

Figure 10-1:
Potential

commonality
in use
cases.

162 Part III: The Basics of Use-Case Modeling 



behavior) and the common (included) behavior, labeling the arrow with the
stereotype «include». The resulting include relationship points from the base
use case to the included use case, indicating that the included use case is a
necessary part of the base. This included use case is a real use case; you doc-
ument it in the same manner as a base use case.

Though it uses a different notation, the «include» relationship is similar to
the aggregation relationship discussed in Chapter 5.

An included use case is often handy (and needed) when several use cases
share a secondary actor, such as Credit Card Authorization System.
Often these secondary actors are dealt with in common ways (share common
exchanges of events) from a number of different use cases. If the interactions
with the actor are the same and significant, it’s worth your time to make a
new use case for those interactions so you can simply «include» them.

Documenting included use cases
You may have one difficulty when you attempt to document the included use
case: How do you identify the primary actor? After all, three different actors
are involved with the Guarantee Reservation use case — and at least two
of them are potential primary actors. In fact, you should consider both
Potential Guest and Event Organizer as primary actors (yes, there can
be more than one). Any primary actor for any base use case is also a primary
actor for the included use case. You must document the included use case in
a way that allows any primary actor to interact with the system being built.
You can see one way of doing this in the following example, which is the
beginning of the documentation for the Guarantee Reservation use case.

Hotel Reservation
System

‹‹actor››
Credit Card

Authorization
System

Potential Guest

Event Organizer

Make Room
Reservation ‹‹include››

‹‹include››

Guarantee
Reservation

Make Facility
Reservation

Figure 10-2:
An included

use case.
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There’s also a bit of controversy about how to document these included use
cases. If you look at the following, you can see that we have a spot in the
header to list the base use cases (Make Room Reservation and Make
Facility Reservation). Normally, object-oriented principles guide us to
hide the identity of the callers from the called. This bit of information hiding
allows us to change the identity and number of callers (that is, the base use
cases) without requiring us to rework the called (that is, the included use
cases). When you implement your use cases, however, it’s often worthwhile
to ease up on the information hiding when you’re doing the documentation.
As you may expect, too much information hiding makes it hard to communi-
cate well. (For more about object-oriented principles of information hiding,
see Chapter 2.)

Use-case name: Guarantee Reservation

Description: This use case allows the actor, either Potential Guest or
Event Organizer, to guarantee a reservation using a credit card.

Base use cases: Make Room Reservation, Make Facility Reservation

Main course of events: Successful credit card guarantee.

Precondition: Actor is ready to guarantee the room or facility reservation
with a credit card. The system already knows the expected cost of the
reservation.

Successful post condition: Actor has guaranteed the reservation.

Potential Guest or System Credit Card 
Event Organizer Authorization System

1. This use case starts 2. Prompts for billing
when the actor is ready information.
to guarantee the reservation.

3. Supplies name, billing 4. Validates inputs data 6. Reports transaction is
address, credit card number, validation rules X accepted.
and expiration date. through Y.

5. Sends transaction to 
Credit Card Authorization 
system.

7. This use case ends 
when the guarantee is 
accepted by the system.
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Generalizing actors in included use cases
You may also generalize the potential actors and refer to them in their general-
ized form. In Figure 10-3, we’ve generalized Potential Guest and Event
Organizer into a new actor named Reserver. In this situation, the Potential
Guest actor and the Event Organizer actor — for as long as they’re partici-
pating in the Guarantee Reservation use case — share common goals and
purposes. Thus, when you document the included use case, you can refer to
Reserver as the actor. This is an especially good technique when you have
many base use cases, each with its own primary actor. If you don’t have to
explicitly refer to each individual actor, you improve readability, save some
documentation costs, and produce more change-tolerant documentation.

These advantages come with a caveat: When you produce the use-case dia-
gram, don’t connect the included use case directly to the generalized actor.
That way lies confusion; primary actors of an included use case are implicitly
the actors of the base use case(s). Adding a connection to the generalized
actor just adds another actor to the use case — one actor too many. This
common diagramming error indicates that another actor instance is required
to execute the use case — when it isn’t.

Use-case diagrams are, by and large, graphically simple. With only a few
actors and a few ovals per actor, you can convey lots of information about
your system (such as its users and services). Adding «include» relation-
ships can complicate the diagram slightly, but you gain clarity by highlighting
areas of commonality and regularity. It’s comforting to understand a system
deeply enough to identify areas of uniformity — and practical, because it
enables reuse and predictability.

Potential Guest Event Organizer

Reserver

Figure 10-3:
Generalizing

actors.
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Using Generalization with Use Cases
Sometimes there’s more than one way to reach a goal. When you find common
purposes or goals in UML, you have an opportunity to use generalization — the
object-oriented technique of specifying common features in a more general
way to enable the reuse of objects. (For more about generalization, check out
Chapter 2; for more about the UML notation for generalization, see Chapter 6.)

There are two common circumstances where you’ll find opportunities to gen-
eralize use cases:

� Differing mechanisms for the same goal: If there’s more than one alter-
native technique or approach that the system uses to help the actors get
their goals accomplished, they may share only a little implementation in
common. If they meet the same goal, however, then the approaches will
be still be sharing quite a bit: requirements, business rules, and data val-
idations. With generalization, we can make this sharing explicit and save
on duplications, by putting the common stuff in a single use case. 

� Differing agents for the same goal: If there is more than one actor
trying to accomplish the same goal, you may be able to generalize the
actors as we explain in the section above on generalizing actors in
included use cases, However, you will find that often the actors have
separate privileges, capabilities, or user interface. This is especially
common when one actor acts as an agent or intermediary for the other.
Generalizing the actors might still help, but now we want to explain how
the use case works differently for each type of actor. Instead of general-
izing the actors, generalize the use cases, placing in the generalized use
case the common documentation, requirements, business rules, data
validations, and perhaps implementation that they share. Using general-
ization will help you corral this common stuff and put it in its place (in a
separate single use case). 

Generalizing differing mechanisms
As technology evolves, your systems evolve as well. But it’s rare that you can
completely eliminate legacy (pre-existing) solutions to long-standing needs.
This can mean that at any one time, there are often several different ways to
achieve the same goal.

Sometimes it’s not a question of retaining legacy approaches; you may just be
hedging your bets with two different solutions to the same problem. Perhaps
it’s because of uncertainly about what will become the dominant technology,
or a desire to cater to diverse user populations with different preferences.

We show a typical example of such use-case generalization in Figure 10-4.
The actor Potential Guest connects to the generalized use case Make
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Room Reservation. You place the common requirements, business rules,
and even most of the flow description inside that use case. Then, in your
lower-level (specialized) use cases, you have to document only the specific
behavior required for their implementation mechanisms — that is, only the
differences. In the figure, we show that we have to implement the same Make
Room Reservation using modern HTTP Web technology, old-fashioned,
VT100 technology, and IVR (Interactive Voice Response) pushbutton tele-
phone technology.

You’ll find that when you generalize a use case in this manner, what you get is
typically an abstract use case — one you can’t implement directly (because
the details are missing) and that you can only put into action by implement-
ing the specialized concrete use cases that specify the detailed mechanism.
(UML indicates that a use case is abstract by italicizing its name and adding
the {abstract} property tag.) There’s a discussion on abstract and concrete
and how to indicate them in Chapter 6. 

As part of the generalization notation, you can label the generalization (this
label is called a discriminator) to clarify the basis or reasons for the general-
ization. We use the discriminator mechanism when we separate the imple-
mentation mechanisms in the diagram.

If your use cases are only for identifying requirements and documentation, gen-
eralizing by mechanism can actually work against you. Instead, try putting the
requirements, common business rules, and field validations in the generalized
use case — don’t bother creating the specialized use cases at all (if you already

Hotel Reservation
System

‹‹actor››
Credit Card

Authorization
System

Potential Guest

Make Room
Reservation

{abstract} ‹‹include››

mechanism

Make Room
Reservation
via VT100

Make Room
Reservation

via IVR

Make Room
Reservation

via HTTP

Guarantee
Reservation

Figure 10-4:
Generalizing

use cases
by

mechanism.
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created them, you can delete them). Unless you have to mention requirements
that arise from the mechanism, specialized use cases may not offer much new
to say. For many organizations, however, use cases serve purposes other than
just gathering requirements — for example, they can help with scheduling and
document organizing, or serve as a powerful explanatory tool. In such circum-
stances, generalizing by mechanism can still be valuable.

Generalizing differing agents
In the traditional model for service-oriented business, a customer contacts the
business and requests some service. A worker — a cashier, library-circulation
clerk, or hotel phone-reservation agent — performs the service for the cus-
tomer. However, in our increasingly technological world, the customer may
be able to interact directly with the system without using an intermediary
(worker). Improving technology enables this trend toward disintermediation —
in effect, losing the middleman — as a major thrust for Internet growth.

Your systems may have to support both direct (without an intermediary) and
indirect (with an intermediary) usage — and traditionally you would con-
struct a separate use case for each approach. Generalizing offers you an
alternative. Figure 10-5 (for example) shows two different approaches to
making hotel reservations — one direct (by Potential Guest over the
Internet), and the other indirect (Potential Guest contacts a Reservation
Clerk to do the work of making the reservation).

Hotel Reservation
System

‹‹actor››
Credit Card

Authorization
System

Potential
Guest

Make Room
Reservation

{abstract} ‹‹include››

agent

Make Room
Reservation
via Internet

Make Room
Reservation
via Agent

Guarantee
Reservation

Reservation
Clerk

Figure 10-5:
Generalizing

use cases
by agent.

168 Part III: The Basics of Use-Case Modeling 



When you generalize your use cases, you also add complexity to the 
diagrams — but what you get back is thoroughness: You can diagram the 
generalized use cases, which map to the essential goals of the actors, as
well as the different specialized variants on the themes.

Extending Use Cases
Your use-case diagrams can convey lots of information packed into a simple
form — but most information developed in the analysis stage ends up inside
the use case, serving as its specifications (discussed more fully in Chapter 9).
In practice, use-case flows get much of their true complexity from the entan-
glement of multiple alternate courses and paths.

When you draw use-case diagrams, you’re practicing the good object-oriented
principles of abstraction and information hiding (as described in Chapter 2) to
simplify the tangle — communicating the essence without the distraction of
suppressible details.

Hiding complexity is generally good, but sometimes you have to expose some
details to gain clarity somewhere else. With UML, you can depict important
alternate flows graphically by making them into their own use cases. Then
you can connect these new use cases to their base use cases by establishing
an «extend» relationship. Thus, you can emphasize otherwise-hidden infor-
mation when the reviewers of your use-case diagram want to see it. Some rea-
sons this might be desirable are as follows:

� Changed capability: If you have changed a use case significantly — 
perhaps because of a later release — you may find it useful (and perhaps
politic) to emphasize that the change has occurred, rather than burying
it in the use-case specification.

� Major variation: If you have a major alternative path in the use case, and
it’s complex enough to have its own alternative paths, then placing it on
your diagram will honestly expose the complexity — which is helpful in
costing, assignment, and scheduling.

� Optional subgoal: If you have parts of the use case that would be optional
to implement (or even optional to execute) to meet the actor’s goals, put
those parts into their own use case. Doing so clarifies the relationships
between actors and their goals. It also emphasizes that you may deliver
these optional goals in later releases.

Showing a new release
When you have significantly changed a capability in a new release (a new
delivery of code to the users), it’s often best to create a new extension use
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case that extends the existing use case. Figure 10-6, for example, shows Make
Room Reservation V2.0 as an extension use case of the original Make Room
Reservation. The «extend» relationship uses an open-headed, dashed
arrow that points from the extension to the base use case.

When you document the changes in such an extension use case, you save your-
self the work of changing any existing documentation. In fact, it’s considered
incorrect for a base use-case specification (the textual description discussed in
Chapter 9) to mention that it’s extended (except for listing extension points, as
discussed in a moment). This prohibition supports encapsulation — so you
can extend at whim without having to change any existing use cases. As an
added bonus, you shield your existing use cases from extra review or criticism.

When you use extensions to indicate additional releases of a use case, you
may find yourself in a common methodological quandary: The extension use
case is only supposed to capture any differences from the base use case. The
idea is to avoid duplicating things unnecessarily. On the other hand, docu-
menting a second-release use case without duplication is sometimes difficult,
especially if lots of small changes have cropped up within the use case.

Using extension to show a new release also introduces a maintenance problem.
After a while, you may end up with a chain of extended use cases — Make Room
Reservation 3.0 extending Make Room Reservation 2.0 and so on. No sub-
sequent use case can then be understood without understanding the previous
use case. This situation will undoubtedly cause problems.

And no, there are no ideal solutions to those problems. Therefore, we generally
recommend that you document subsequent releases as shown in Table 10-1.

Table 10-1 Documenting New Releases
Extent of New Release Documentation Approach

Very small (or small diffuse  Modify your existing use-case documentation.
changes), throughout the use Use change bars (or equivalent) to indicate new
case. requirements or approaches for the next release.

Hotel Reservation System

Potential Guest

Make Room
Reservation

Make Room
Reservation

V2.0

‹‹extend››
Figure 10-6:
Showing a

new
release.
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Extent of New Release Documentation Approach

Small, compact changes. Use alternate flows or courses to indicate new
requirements or approaches for the next release.

Large, compact changes. Create an extension use case to indicate alterna-
tive flows found in the next release.

Large, diffuse changes. Create generalized use case for common behav-
ior, and then create specialized use cases for
current and future releases.

Taking alternate paths
You’ll often have situations in which a use case takes an alternate path or
course (based on some circumstances or condition) but still attempts to reach
the original goal. In Chapter 9, we explain that an alternative course is a varia-
tion in the path of the use-case flow caused by some condition. For example,
when a Potential Guest Makes a Room Reservation, the user who wants
the room may come to the point at which the system prompts for any affinity
plans (such as frequent-traveler, hotel, or airline-mileage plans) in which the
user participates. Not only may extra points be available for each stay, but also
a Potential Guest enrolled in the right plans can get a room upgrade.

This activity of upgrading the reservation is an alternate path on the way to
reserving a room that only happens at a specific point in the use case — while
the actor is entering the affinity plans, and only under specific conditions —
the plan being entered is the right (eligible) plan. It’s also a complex alternate
path — there are usually restrictions on how and when an upgrade may be
obtained, and usually a guest must have (or trade) a certain minimum number
of points for the upgrade. Thus upgrading has its own alternate paths.

Not only is it complex, this path is not really necessary to achieve the main
goal of Make Room Reservation. This makes it a good candidate to pull it
out of the Make Room Reservation use case and document it as a separate
use case. This new use case that we pull out, Upgrade Reservation, UML
calls an extension use case, because it extends the original (or base) use case
with new capabilities or flows.

The place in the original (base) use case where the extension use case was
inserted (or as you may think of it, where the extension use case came from),
is called the extension point.

A dashed arrow pointing from the extension to the base connects the base
use case and extension use case. Label the arrow with the stereotype of
«extend». Figure 10-7 shows the ongoing example.
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Almost everyone is initially confused about the direction of the «extend»
arrow. It points from the new extension use case to the base, in the opposite
way from that of the «include» relationship discussed earlier. In Figure 10-7,
you should read the relationship as, “Upgrade Reservation extends Make
Room Reservation”, or if you prefer reading in the other direction, “Make
Room Reservation is extended by Upgrade Reservation”. 

Besides the basic notation for the «extend» relationship, there is some optional
UML notation that you may find useful. In the lower section of the oval that rep-
resents the base use case, you can list the extension points — places where
extension use cases may be inserted. Each of these identifies a step (or range
of steps) in the flow of events in the base use case shown in Chapter 9. The
numbering techniques given in that chapter to identify the location of an alter-
nate course can be used to identify the location of the extension points (for
example, Main Course Step 5; Alternate Course 2, Steps 3-6). To avoid exposing
the inner details of the step numbering (which would require the diagram to
change too often), we recommend that you use a easily remembered name for
each extension point. This name should be mapped to the step numbers in the
specification for the base use case. In Figure 10-7, for example, the extension
point is identified as Entering Affinity Plans.

Another way of identifying an extension point is to refer to the name of the
activity that the use case must be executing when the extension is inserted.
Check out Chapter 13 for using UML activity diagrams to diagram the steps
of a use case.

The figure also shows how you can attach to the «extend» relationship a 
comment indicating the condition under which the extension applies. To
completely read the diagram with the optional UML notation, it would go
something like this: “Upgrade Reservation extends Make Room
Reservation when the condition {Customer is in an acceptable
affinity plan} is true at the point the Make Room Reservation reaches
the extension point Entering Affinity Plans”.

Hotel Reservation System

Potential Guest

Upgrade
Reservations

‹‹extend››
Make Room
Reservation

extension points
entering affinity

plans

Condition:
 {Customer in an acceptable
 affinity plan}
Extension point:
 entering affinity plans

Figure 10-7:
An

extension
and

extension
points.
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Extending with optional goals
Believe it or not, you may have to add an activity to a use case that’s not
needed to achieve its goal. For example, you may want to request that any
Potential Guest answer a marketing survey when making a room reserva-
tion (as in Figure 10-8). This may become a mandatory insertion, but it’s
optional to the actor’s goals — you could, in theory, eliminate it — so it’s
best modeled as an extension.

Misusing extends
You may have problems determining when to employ extensions (as opposed
to other techniques such as inclusion or generalization discussed earlier in
this chapter). Unfortunately, the advice typically given isn’t sufficient to end
controversy. You’re usually told that the extension use cases must be optional
when invoked from their base use cases — and that the extension use cases
cannot depend on their base use cases.

One problem with such pronouncements is that the term optional isn’t well
defined. There are at least two possible meanings here. An extension use case
could be optional to implement or optional to execute at runtime. Most practi-
tioners prefer the second approach because it seems easy to see whether a
use case has a condition to test before it executes. For many use cases, how-
ever, it’s hard to define whether something is truly optional to execute. For
example, if the runtime test is always true, is the use case really optional to
run? And if you can’t decide which course is the main course and which is an
alternative course, would a use case be an extension if it’s used by the alter-
native course — but considered included if it’s used by the main course?

Okay, we do have some subtle reasons to believe it’s better to interpret
optional to mean optional to implement. For openers, we believe that UML
directed arrow requires that base use case not depend on extension use
cases, but a base use case can depend on included use case. If you follow this
guideline, your use-case diagram can (and should) determine required imple-
mentation order. This approach leads to two other clear requirements:

Hotel Reservation System

Potential Guest

Make Room
Reservation

Fill in
Marketing

Survey

‹‹extend››

Figure 10-8:
Mandatory

use case
with

optional
goal.
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� You must deliver any included use case along with its base use case.

� You may deliver any extended use case later than its base use case.

Not only is this information valuable for scheduling work, it’s easy to under-
stand visually.

On the other hand, we’ve seen civilized discussions on whether a use case
should be an extension or an inclusion become disagreements, then argu-
ments, and ultimately — well, they can cost your project a lot of time, money,
and good will. You’re probably best off if you don’t take a hard line on such
issues; this chapter’s three guidelines for extending use cases (listed earlier)
will steer you in an effective direction.
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In this part . . .

When you’re specifying use cases or designing oper-
ations, you are doing functional modeling — and

UML has some tools for you. The chapters in this part get
you started with the notations and techniques that make
up your toolkit for functional modeling.

We cover several different ways of representing the details
of your system’s functionality and behavior: sequence dia-
grams (which show the event exchange among objects),
activity diagrams (which show workflow and decision-
making), and communication diagrams (which show col-
laboration among objects to accomplish some behavior).
We even cover some UML-based ways to use text that are
sure to come in handy.



Chapter 11

Introducing Functional Modeling
In This Chapter
� Realizing your use cases

� Modeling the details of behaviors

� Choosing the best functional modeling approach

� Harnessing the power of OCL

� Writing text-based specifications

Use cases (discussed in detail in Chapters 8, 9, and 10) capture your
system’s behavior as seen by the actors of the system. However, use

cases are services your system offers to the outside — before the system can
deliver results to the outside, you have to deliver the insides, that is, you must
specify, design, and develop the inside parts of the system that accomplishes
these use cases. This is the point at which you have to worry about use-case
realization — how to realize (accomplish) the use cases.

This chapter introduces some UML capabilities available for designing and
capturing the details of behavior — and offers guidelines on how to model
behavior.

Modeling Functions from an 
Object-Oriented Perspective

Before object-oriented analysis and design methodology captured the imagi-
nations of software developers, the primary methods they used to ply their
trade either emphasized the functions (the behavior) or emphasized the
structure (the data).

Actually, the most common technique was (and still is) hacking — in effect,
a mostly undisciplined, unrepeatable approach — but styles of hacking con-
tinue to evolve, influenced by fashionable programming languages, concepts,
and other fads of the day.



The predominant style then separated out functional development (analysis,
design, and implementation of the behaviors) from that of structural develop-
ment (analysis, design, and implementation of the data). That is, people
designed their behaviors (the things the system does) independently from
that of their data structures (the values, fields, records, and database that 
contain the data of the system).

These approaches worked, but they tended to result in fragile, hard-to-maintain
systems. Someone always wanted to change a behavior (which was on one set
of models), or change a data structure (which was on another set of models) —
without seeing both views — and with no encapsulation or information hiding
to limit complexity, the system usually broke. Every change propagated ripple
effects that could change everything else. (For more about encapsulation,
information hiding, and other good development principles, review Chapter 2.)

Object-oriented techniques help you address these problems by keeping an
eye on some aspects of the functional view (seeing the operation in terms of
behavior and control) and the structural view (focusing on objects) at the
same time.

UML tries very hard to prevent this dangerous decoupling of behavior and
data. Because UML arose from the principles of object-oriented development
(such as described in Chapter 2), it presents a unified view of behavior and
the objects that do the behavior. Each diagram type may emphasize one or
another aspect of the system, but no diagram type is exclusively functional.
In Table 11-1 (in the next section), we show some of the modeling techniques
you can use when you need to concentrate on the details of a behavior.

You can’t get away with ignoring the objects that do the behavior and consid-
ering only the objects that the behavior works on. There is no pure functional
diagram in UML.

When use cases aren’t enough
Often your use cases will be simple behaviors of your system. The text-based
approach to their documentation, as explained in Chapter 9, will be sufficient
to document their externally visible behavior. Your use-case courses — the
main course and the alternate course(s) — describe a set of interactions
between an actor and the system. It’s simple when there are only two objects.
However, you may have secondary actors involved, in which case your inter-
actions can get complicated with three or more participating objects. You also
may have many alternate courses, or alternate courses of alternate courses.
You may find the simple text-based main and alternate course approach suffi-
cient for requirements understanding, but you will be challenged to use it to
help in design.
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UML has several possible approaches that might help you in explaining the
details of behavior. We outline the different approaches in Table 11-1 and give
you some idea of their domain of suitability. You might use any of them to cap-
ture the use-case flows graphically, which can help you in designing them —
and understanding them. Often you need more than one modeling approach
to properly clarify the behavior of interest. These techniques are available for
exploring the details of any behavior, so you can apply them to use cases as
well as operations in your work.

Table 11-1 Functional/Behavioral Modeling Techniques
Technique Indicates . . . You’ll Find 

more Info . . . 

Use case Externally visible behavior from actor’s point Chapter 8, 9, 
diagrams of view. Covers all scenarios at the same and 10 (and 

time, may call out some variations graphically. later in this 
Good for high-level overview and under- chapter)
standing and specifying requirements.

Operations Name, signature, arguments. Good for simple Chapter 3 
(Class diagrams) presentation and showing how to call (and later in  

behaviors on objects. this chapter)

Sequence Participating objects, exchanging events. Chapter 12
diagrams Usually a single scenario at a time. Good for 

application analysis and system design.

Activity Ongoing activities, concurrency, data flow. Chapter 13
diagrams May cover several scenarios at a time. Good 

for capturing and designing repeating or 
concurrent activities, or finding target objects 
for lower-level behavior.

Communication Detailed operation design playing out over static Chapter 14
diagrams structure. Usually a single scenario at a time. 

Good for capturing and designing complex 
operations, algorithm design, and design patterns.

State diagrams Response to complex events. Usually covers Chapters 16, 
all scenarios at the same time. Good for 17, and 18
capturing and designing event driven behavior 
or state machines. 

Text-based Flows and scenarios. Constraints, pre- and Later in this 
specifications postconditions. Usually covers all possible chapter

scenarios. Good for requirements specification, 
mathematical algorithm design, language-
independent programming. Often used along 
with other techniques.
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One reason that you will find these techniques useful for all sorts of behavior
is that use cases may describe behavior offered up by any class-like entity in
UML. For our purposes, the subject of a use case may be a system, subsystem,
class, or a component.

Describing behavior with use cases
As we explain in Chapter 8, use cases describe the behavior of the system as
seen from the actors, who are outside of the system. The actors consider the
use cases as the system’s operations. Figure 11-1 shows part of a use case
diagram for the Hotel Reservation System. Any model element in UML
that exhibits behavior can be the subject of a use case, so you can describe
the behavior with use cases at any level.

We recommend that you draw use case diagrams for the system as a whole.
We also recommend that you draw use case diagrams whenever you find you
have a complex subject that needs to be treated as a black box, where the
external and visible behavior needs to be specified, but the internal behavior
is hidden. You’ll find that this will apply to all systems, because you need to
distinguish the testable, required (visible) behaviors that the users want
from the designable (hidden) insides that you want to develop.

In larger systems, this need for use cases will also apply to subsystems. As you
decompose the system into subsystems, these subsystems can be treated as
use-case subjects. Their actors will be those entities that are external as you
look at each subsystem in turn. For example, the top part of Figure 11-2 shows
a piece of the Hotel Reservation System context diagram — emphasizing
the system and its surrounding context. They are good for quick communica-
tion of what in and what’s out of the system. The bottom part of the same
figure shows the results of portioning the complex system into three simpler
subsystems (User Interface, Business Logic, and Persistent Store).

Hotel Reservation System

Make Room
Reservation

‹‹include››

‹‹include››

Guarantee
Reservation

Make Facility
Reservation

Fill in
Marketing

Survey

‹‹extend››

Figure 11-1:
Use cases

of a system.
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When you do this type of partitioning, treat these subsystems as the subjects of
their own use cases with their own actors. The actors of the User Interface
subsystem are the original Potential Guest and the neighboring Business
Logic subsystem. From the Business Logic subsystem point of view, you
would treat as actors the User Interface subsystem and the Persistent
Store (DB) subsystem. (By the way, the tuning-fork symbol in the upper-
right hand corner is the optional UML icon for the «system» or «subsystem»
stereotype — some tools will use it and some won’t.) 

As with the subsystems, you may find that documenting with use cases would
even apply to lower-level decompositions, either to the behaviors of lower-
level subsystems or to the behaviors of large components or classes. This is
most useful for you in the larger development efforts where different develop-
ment teams may be assigned these large components and classes. You’ll be
taking advantage of the suitability of use cases for separating requirements
from internals, when you use them to spec out (specify) the requirements for
each development team. For another look at this sort of leveled decomposi-
tion, see Chapter 8.

Converting use cases into operations
(class diagrams)
To map use cases directly to system level operations, you can start by convert-
ing all directly actor-accessible use cases to public operations on a class repre-
senting the system. Remember, operations are behaviors that a class may be
asked to perform. They must be public because they are visible to the actors.

Hotel
Reservation

System
Potential

Guest

Hotel Reservation System

‹‹subsystem››
User Interface

‹‹subsystem››
Business Logic

‹‹subsystem››
Persistent Store (DB)

Figure 11-2:
System

decomposi-
tion showing

lower-level
use-case
subjects.
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You typically convert other use cases — such as included use cases (con-
nected by an «include» relationship) or extended use cases (connected by an
«extend» relationship) — to private operations — while they are behaviors the
system needs to perform, they can’t be invoked directly by an actor. If you
were to convert the use cases from Figure 11-1 into and use the UML notation
for operations and visibility that we explain in Chapter 3, you would arrive at
the system as shown in Figure 11-3. Remember that the + sign indicates public
visibility, and (you guessed it) the – sign indicates private visibility.

Converting the use cases to operations is really one of the first steps you can
do to design your system. It’s simple, but it’s a start at identifying the opera-
tions. The next step for each operation in Figure 11-3 would be to add the
operation’s return type and arguments, and the arguments’ types, directions,
and default values. 

Figure 11-3 shows these details for the guaranteeReservation operation indi-
cated in bold. From the description of the use case in Chapter 10, it is clear that
this operation needs to be passed a price and card information for use by the
Credit Card Authorization system. We choose estPrice:Money and
aCard:CardInfo as the arguments and their types. They are shown in the
argument list of the guaranteeReservation operation in the figure. We also
determined that the including use case, Make A Reservation, would need to
know if the guaranteeReservation use case was successful, so we indicated
a Boolean (True/False) success flag to be returned from the operation.

If you continued with this design, you would define the details of CardInfo,
which includes, at least, HolderName, CardNumber, and ExpirationDate, in
a separate class box called CardInfo using the techniques of Chapter 3. We
won’t do that here. You might also find that the operation needs other infor-
mation or returns other information — if so, capture them as input or output
arguments to the operation. When you do this design, you may come up with
slightly different results, but go ahead, it’s your design.

‹‹system››
Hotel Reservation System

+ makeRoomReservation()
+ makeFacilityReservation()
– guaranteeReservation(estPrice:Money,
 aCard : CardInfo) : Boolean
– fillInMarketingSurvey()

Figure 11-3:
Use cases
as system

operations.
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Writing Text-Based Behavioral
Specifications

One of the most common ways to capture the details of a behavior is to use
text-based specifications — using text in a semiformal way to express what the
behavior does. You have several different forms to choose from, based on
what you exactly want to accomplish, your tools, and your organization’s
standards. For example, you may have to type these text-based specifications
directly into your UML tool after opening up the use case ovals or you may
need to place them in separate documents. You may have strict templates to
follow or you may have considerable freedom. And, you may use a different
approach when documenting use case behaviors than when documenting
operation behaviors. With whatever restriction you have, keep the following
considerations in mind when using text-based approaches:

� Don’t descend to pure functional thinking. Pay attention to the objects
that are performing the behavior or the behavior is being performed on.

� Consider your audience. Text-based approaches can easily become
exercises of codelike complexity or pure expressions of logic and set
theory. Unless your audience will understand what you are writing,
you’re wasting your time.

� Choose the right level of abstraction. Keep away from lower-level details
unless you need them to explain the intent of the behavior. Object-oriented
approaches tend to have many small behaviors that collaborate to accom-
plish larger goals. Sometimes you’ll be documenting those small behaviors;
sometimes you’ll be documenting how they collaborate. The description of
the behaviors should be consistent with the current level of abstraction —
which you have a chance to bring lower when you write the code itself.

� Maximize cohesion. Follow this traditional advice for any design of behav-
ior. When you trigger a behavior, the effects should be all working together
to a common goal. If a part or piece of behavior seems extraneous, drop it
or move it somewhere else. If the parts and behaviors work together well,
and all of them are needed, then you have high cohesion. If the name of the
behavior, operation, or use case requires an and, reconsider if the behavior
is properly focused on a single coherent behavior. For example, if the use
case were called Reserve Room and Order Room Service, you’d know
pretty quickly that the use case is trying to do too much.

Writing use-case specifications
The traditional documentation approaches for use cases (discussed in
Chapter 9) are possible choices for behavioral specification. Although there
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are several different ways of documenting use cases, they typically describe
one main course (flow), with alternatives described afterwards, without dis-
turbing the main flow.

I recommend using this main-and-alternate-flow approach whenever the
requirements for a behavior seem unclear, and when the complexity of seeing
too many scenarios at once starts to boggle your mind. It’s very good for doc-
umenting externally visible behavior and requirements — but this technique
isn’t quite as good for capturing algorithmic, design, or implementation ideas.

Writing pre- and postconditions
One common and very useful style of documenting behaviors of all sorts that
you may use is the establishing of pre- and postconditions. These may be used
along with other text-based approaches, or with the graphical approaches:

� Precondition: A precondition is a statement that must be true about the
world before a behavior is started. Its existence serves to guarantee that
the behavior proceeds as planned. For example, before you can cancel a
room reservation, there must be an active room reservation, and you
must be the reserver or a representative.

� Postcondition: A postcondition is any statement that must be true about
the world after the behavior successfully completes. For example, after
you cancel a room reservation, the room is marked as free and any
credit hold on your card is dropped.

� Invariants: Besides pre- and postconditions, you must guarantee your
invariants — conditions that must be true both before and after a behav-
ior executes. For example, the number of occupants for a room on a
given day is never, never less than zero. 

Invariants are really conditions that must be true any time another object
queries (or looks at) the object executing the operation. In the presence of
multithreading, where an object can do more than one thing at a time, it’s
possible for an object to be executing an operation while reporting on its
condition. This means that the invariant can’t be violated even temporarily
while the operation is running. 

When you supply a complete set of preconditions and postconditions for a
behavior, you define that behavior without implying a design. Any caller or
invoker of a behavior or operation tries to guarantee that the preconditions
are met before the behavior is called. Then the object offering the operation
guarantees that the postconditions are met — after the behavior finishes.
This approach is sometimes called design-by-contract. It allows the designers
to do whatever they want as long as the contract is upheld.
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Writing OCL constraints
Though you can write constraints in any language, you may use a special lan-
guage that is part of UML when writing these constraints. The Object Constraint
Language (OCL) was built upon the underlying concepts of UML and can refer
explicitly to the objects, attributes, and links within your own class diagrams.
By using OCL, you can be sure that your constraints are unambiguous.

OCL is a very complex and complete language. If you use OCL for complex
expressions, you tend to sacrifice readability for precision. However, with some
of the UML tools, the OCL may be formally processed and verified. If you can
properly construct the OCL constraint, it means that you have enough informa-
tion in your models to enforce the constraint. When you write in a natural lan-
guage such as English, you can easily write a constraint that just cannot be
enforced because there is missing information in the model. Of course, knowing
it’s possible to enforce a constraint doesn’t mean the enforcement is easy.

When you use OCL constraints, you refer directly to features that appear on
the class diagram — for example, classes, attributes, roles, and operations.
This direct reference prevents you from divorcing your functional definition
from the objects the behavior actually operates on.

Harnessing OCL constraint syntax and applying the OCL dot operator
When you’re writing an OCL constraint, you usually attach it to an operation
in a note box (see Figure 11-4). Here’s the basic syntax for OCL constraints
for operations:

context Type::behaviorName(para1:Type1, . . .): ReturnType
pre ConstraintName: OCLExpression
post ConstraintName: OCLExpression
inv ConstraintName: OCLExpression

The following list details the syntax used in OCL constraints for operations:

� context: The keyword that starts up the OCL constraints. It precedes
the definition of the constraint context, where the applicability of the
constraints is indicated.

� Type: The subject of this behavior. It’s the name, the system, subsystem,
class, or type where you’re defining the behavior.

� behaviorName: The name of the operation or use case.

� para1:Type1, . . . : The parameter list for the behavior.

� ReturnType: The type of any return value from the behavior.

� pre, post, or inv: Keywords that indicate the type of constraint. They
indicate precondition, postcondition, and invariant respectively. 
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� ConstraintName: An optional name for the constraint so that it can be
referred to again.

� OCLExpression: A logical expression that must evaluate to true or false.

We show an example in Figure 11-4, using both pre- and postconditions on
the operation Reservation::cancel().

In this example, the Reservation::cancel() operation has three parame-
ters: a number (num) and two dates (start and end). There are also two pre-
conditions and two postconditions.

First, the context keyword establishes that this set of constraints is for the
operation Reservation::cancel(), that is, the operation cancel defined
in the class Reservation. The context also defines the object that owns
the operation. You can refer to the owning object (the object of the class
Reservation that is running the operation) by using the keyword self.

The first constraint in Figure 11-4, the precondition named pr1, refers to the
isCanceled attribute of the self object and requires it to have the value of
the enumerated literal False, as defined in the Boolean type. (An enumer-
ated literal is one of the possible values of finite-valued type where all the
possible values are listed when the type is defined.) What it’s saying is that
you can’t cancel an already-canceled reservation.

context  Reservation: :cancel (num: Integer, start : Date,
  end:Date) : Boolean
 pre  pr1:  self.isCanceled = Boolean.False
 pre  pr2:  (num=confirmation)  or
  ((num=self.reserver.creditCard)  and  (start=self.startDate)
  and  (stop=self.endDate))
 post  po1:  isCanceled = Boolean.True
 post  po2:  result = Boolean.True

Reservation

startDate : Date
endDate : Date
isCanceled : Boolean
confirmation : Integer

cancel(num : Integer, start : Date,
 end : Date) : Boolean

Person

name : String
creditCard : Integer

guest *

room 1

* responsibility

1 reserver

Figure 11-4:
Pre- and

post-
conditions
using OCL.
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The dot (.) operator in OCL has several possible meanings, as shown in
Table 11-2. 

Table 11-2 OCL Dot Operator
A.B Refers to

object.attribute The attribute(s) B of the object A

object.queryOperation The results of calling the query operation B on the
object A. Query operations return values but doesn’t
change any values.

Class.staticAttribute The static attribute B of the class A. Static attrib-
utes are owned by a class as a whole and not by
individual objects.

object.rolename The set of object(s) playing the role B across the
association from A

EnumeratedType.literal The value represented by the literal B of the enu-
merated datatype A

The dot operator has one more property that is interesting; you can succes-
sively apply it to the results of a previous dot operation. In practical terms,
A.B.C is the same as (A.B).C.

You might take advantage of some common ways of reading complex OCL dot
expressions, such as A.B.C can be read as “A’s B’s C” or “the C of the B of the A”.

The second constraint in Figure 10-4, the precondition named pr2, requires
the input parameter num to match either the confirmation number or the
credit number of the reserver. Using the approach discussed above to read
these complex statements. The expression self.reserver.creditCard
refers to self’s (current object) reserver’s creditCard, or the
creditCard of the reserver of the current object (self). If the creditCard
number is used the correct startDate and stopDate must also be supplied.

Finally, two postconditions are shown in Figure 11-4. The first requires the
operation to leave the isCanceled flag set to true. The second indicates
that the result of the operation is also set to true.

Writing general algorithms
You may have occasion to specify a mathematical, scientific, or computer-
science algorithm. This is rare for most developers, but if you find yourself in
these situations, it’s usually best simply to refer to a document where the
algorithm is predefined.
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You may define an algorithm with pseudocode — codelike sequences of charac-
ters that describe an operation. The purpose of pseudocode is to describe an
algorithm in sufficient detail so (technically oriented) non-programmers can
understand it, without forcing the use of a particular programming language. 

When using pseudocode, describe the essence of the algorithm — don’t go
too deep by writing nearly pure code. You may find this goal hard to achieve.
We generally recommend utilizing alternative graphical techniques other than
writing pseudocode. You can see some of these techniques in Chapters 12, 13,
and 14.

UML developers forced to use pseudocode (whether by corporate standards or
because the operation uses lots of algorithms) often base their pseudocode on
OCL. Unfortunately, OCL is only a constraint language; it can’t actually change
the value of anything. In addition, OCL has only limited control structures. The
common strategy uses two different syntaxes:

� You can adopt the syntax of your current programming language for
assignment and control statements.

� When you need to refer to elements in the class diagram, use the OCL
dot notation as your navigation syntax. 

Using this approach for writing OCL-based pseudocode can help you design
and write creditable algorithms.

Another approach may soon be commonly possible. Recently added to UML,
and formally incorporated into UML 2 are the Action Semantics. The Action
Semantics define a metamodel (a model made up of models) for specifying
behavior independent of implementation — that is, suitable for automatic
machine translation into various implementations for various architectures.
This is part of OMG’s Model-Driven Architecture (MDA) allowing developers to
skip writing code in programming languages. By constructing very complete
models and formally defining the behaviors, developers can target implemen-
tation on different platforms or architectures without changing the models.

Several syntaxes for the Action Semantics are possible. Different tools support
MDA differently — for different types of problems and different ranges of archi-
tectures. Tool support is already available in the embedded and real-time
development areas.
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Chapter 12

Capturing Scenarios with
Sequence Diagrams

In This Chapter
� Seeing your object’s lifelines

� Sending messages to other objects

� Capturing scenarios in sequence diagrams

� Composing interactions from fragments

Whenever you need to understand how some objects interact, you
should consider creating some type of UML interaction diagram. UML

has a rich assortment of these diagrams to choose from, such as sequence
diagrams, communication diagrams, activity diagrams, and timing diagrams,
all of which are designed for the specific purpose of helping you express the
details of how objects interact and collaborate to accomplish a behavior. And
UML even allows you to mix these diagrams together. Don’t be bewildered.
Following the guidelines given in Chapter 11 and the techniques of this chap-
ter, you’ll come to rely upon sequence diagrams as your first choice in many
circumstances.

Sequence diagrams, especially in their basic form, simply display the lifelines
of participating objects as they exchange messages in a single scenario.
(A lifeline represents the evolving life of the participating object by showing
relevant events that are important to the object.) Of all available UML interac-
tion diagrams, the sequence diagrams are usually the best suited to exploring
the scenarios or flows of a particular use case. Not only are they easiest to
draw, they are also easy for developers and clients alike to understand.

In this chapter, we introduce the features of sequence diagrams and help you
depict interactions among your objects.



Diagramming an Interaction Scenario
All interaction diagrams capture at least one interaction, which is the interplay
of messages sent between objects over time for a specific purpose. Usually the
most important interactions you document are the major use-case scenarios. In
this context, we use the term scenario as defined in Chapter 9 — an instance of
a use case. As discussed in Chapter 9, each use case has a generalized descrip-
tion of its most common scenario — its main course or main flow. In such a
flow, you describe the interaction of participating objects as an ordered set of
steps or actions that an actor (or system) takes as the flow plays out.

A participating object takes a set of actions, communicating the results of
one or more of these actions in a message to another participating object —
which (in turn) takes its own set of actions and communicates. Sometimes
the participating object needs help from other object, so it requests a service
in a message to another participating object, which (in turn) takes its own set
of actions and communicates. When you draw an interaction diagram, you
emphasize the message sequences among the participating objects, as shown
in Figure 12-1, and (usually) hide the internal actions.

In the sample diagram in Figure 12-1, you can see the basic features of a
sequence diagram. You diagram the participating objects as vertical lifelines.
These lifelines consist of an icon indicating the type of participant (such as
an object or an actor instance) at the top of a dashed line where you can indi-
cate the messages sent and received by the participating object. Show the
messages among the objects as directed arrows from sender to target object.

sd Basic Interaction

:FirstObject

It's Your Turn

Now It's Your Turn

:SecondObject

Time
Passes

Figure 12-1:
A basic

sequence
diagram.
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In this diagram, the FirstObject informs the SecondObject that It’s
Your Turn, and later, the SecondObject informs the FirstObject that Now
It’s Your Turn. The convention is that time passes as you read down the
page, though you can turn the diagrams so time runs from left to right. As is
typical in these diagrams, the messages alternate.

Place the interaction in the contents area of a frame, and then place the dia-
gram interaction’s title in the odd-shaped heading area (a rectangle with a
cut-off corner) in the upper-left corner. The heading contains a prefix that
describes the type of interaction you’ve placed in the frame. The sample dia-
gram shows the interaction as a sequence diagram, so the descriptive prefix
can be sequence diagram (for which the typical abbreviation is sd).

The frame and heading, new in UML 2, are applicable to all UML diagrams.
Because UML 2 must be backward-compatible with previous work, the frame
and heading are optional, and for the most part, you don’t need to use them.
However, we recommend using them with interaction and behavioral model-
ing as they form the basis for behavioral decomposition (as shown later in
this chapter).

In Figure 12-2, we’ve diagrammed the main course from the Make Room
Reservation use case discussed in Chapter 9 (and added a bit more detail
for illustrative purposes). In this diagram, you can see how we used the
sequence diagram to extract and show specific instances of communication
among interacting entities. You don’t show details of what must be done, just
the messages — which makes it easy to see what’s going on. This is an exam-
ple of how UML uses abstraction to make your work understandable by
hiding the details of internal behavior.

Choosing your interaction scenarios 
during analysis
You probably notice that the basic sequence diagram doesn’t add much more
than the textual approach to use cases (discussed in Chapter 9). Of the two
techniques — textual use cases and graphical sequence diagrams — textual
use cases actually contain more information. Sequence diagrams just extract
and show the messages that move among the objects; the use case tells more
about what the system has to do — which makes for a fuller picture of the
requirements it must meet.

So, if you fully document a simple use case in text (using the techniques of
Chapter 9), you probably won’t need to draw additional sequence diagrams
to account for every flow. On the other hand, pictures are worth thousands of
words — and sequence diagrams are very communicative. Often the quickest
way to get a team to understand a scenario is to put a sequence diagram on a
whiteboard, extracting the essence of the scenario. This is an application of
the principle of abstraction to improve communication.
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Our practical advice — for initial analysis, anyway — is that you draw
sequence diagrams for only those scenarios that need better explaining or
supplemental communication. Drawing up the main course and one other
illustrative scenario would suffice for a typical complex use case. (Even that
might be too much for some simple use cases.)

If you need to draw other scenarios of a particular use case, abstract out the
essences of those scenarios and draw only the differences — that is, capture
the alternate flows, not entire alternate scenarios. Try to avoid getting your-
self bogged down with redundant diagramming.

I'm visiting the
reservation page

:System
:Credit Card
Authorization

System

Prompt for Room Type &
Reservation Span

Indicate Possible Choices

"Your Reservation is
Guaranteed"

(reservationNum)

Identify Room Type &
Reservation Span

Prompt For Billing Information

Select Desired Room

Here's my info (blngInfo)
Please validate (fee, blngInfo)

Transaction Validated (authCode)

:Potential
Guest

sd Make Room Reservation

Figure 12-2:
A sequence
diagram for

the Make
Room

Reservation
use case.
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Examining object lifelines
Figure 12-2 shows the lifelines of three interacting participants: the actor
Potential Guest, the system being built, and another actor — the Credit
Card Authorization System. You can have your sequence diagram contain
any UML entity that can exhibit behavior. Normally, these will be actors (see
Chapters 8 and 9), systems or subsystems (see Chapters 9 and 20), objects
(see Chapter 2), parts (see Chapter 5), and components (see Chapter 19). For
sequence diagrams done during analysis (that is, before you do the design)
that you use to diagram a use-case flow, you will normally be restricted to
actors and systems. As you move into design, additional participants (usually
objects) will start to appear. These will be the objects added to realize the sce-
nario. At an even lower level, if you use a sequence diagram to diagram an
operation’s method, you can show lifelines for parameters and return values.
Whatever type of participant you have, place its representative symbol at the
top of the diagram and extend its dashed line to the bottom of diagram.

As the messages play across the lifelines, they tell the reader a story of the
scenario. In my example, the actor, Potential Guest, visits the appropriate
Web page, which notifies the system of his/her presence. The system dis-
plays prompts for necessary information, to which the actor responds. 
This alternates until the actor enters his/her billing information. Then, the
system forwards the billing information to the external Credit Card
Authorization. As authorization is granted, the system tells the Potential
Guest that the reservation is guaranteed and the scenario ends.

Creating and destroying objects
Not every participant exists throughout the entire interaction. Although the
external participants may be out of your scope, every internal object you
must create somewhere and you must destroy somewhere. Before you finish
design, you should find out those wheres for each major internal object. In
Figure 12-3, for example, the object Reservation is created in this interac-
tion (as indicated by a dashed line directly into the object’s box), and the life-
line starts down from that point.

You can also indicate that you want to destroy an object in an interaction. In
Figure 12-4, we show that the object Reservation is destroyed if the
Potential Guest cancels his reservation. You can indicate this graphically
by ending the lifeline with a large graphic X. In this diagram, we also show
that one can use a selector or qualifier to indicate which specific object is
participating. You can do this yourself by putting the selector in the qualifier
brackets before the class name of the object.
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The basic notation for a participating entity’s name includes such parts as
qualifier, selector, and class name, ordered as follows: 

roleName [qualifier/selector] :ClassName

Place the name in the participant’s box (or under it) on top of its dashed line.
In Figure 12-4, the rightmost lifeline represents the participating
Reservation object. Though we didn’t bother giving it a specific role name
(it’s optional), it’s not just any Reservation object that gets destroyed. (We
use resNum as the selector to choose the correct Reservation object.) As
the figure indicates, the Cancel Reservation interaction requests a reser-
vation number from the Potential Guest and uses the input resNum to
identify and delete the correct Reservation.

:System

:Reservation

:Credit Card
Authorization

System

"Your Reservation is
Guaranteed"

(reservationNum)

"Enter Billing Info"

I'm ready to guarantee

Here's my info (blngInfo)

Please Validate (fee, blngInfo)

Transaction Results(status=OK, authCode)

reservationNum

«create»
create (dateRange,

room, blngInfo)

:Potential
Guest

sd Guarantee Reservation

Figure 12-3:
Guarantee

Reservation
and creating

an object
within the

Guarantee
Reservation

system.
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You may flag the creating message with the stereotype «create» (as we did in
the Figure 12-3) and the destroying message with the stereotype «destroy»,
(as we did in Figure 12-4), but such redundancies often clutter up diagrams.
Use them only if your UML tool requires them for code-generation purposes.

Sending messages
The lives of objects would be very boring if they didn’t get messages from
other objects. Each incoming message may stimulate it to calculate a result,
to start a behavior, to create another object, or to die. The arrows from life-
line to lifeline indicate one object sending a message to another object to stir
up some activity or response.

When you have an object receive a message, it’s a big event in the life of the
object. It’s called a ReceiveEvent and it occurs at the tip of the arrowhead
where it touches the lifeline. (As you can imagine, the sending of an object is
called a SendEvent, but those are less useful.) ReceiveEvents are important
because they are the primary way an object gets to change its state. If you go
to your state diagrams for the target object, you should find an incoming
event for every possible ReceiveEvent and a corresponding state transition
(a change of state caused by an incoming event) or internal transition (a
response to an event without changing the state). By examining and combin-
ing all sequence diagrams that an object of a particular class participates in,

:System [resNum]
:Reservation

"Enter reservation num"

done

I'm ready to cancel

Here's my num(resNum)
«destroy»
cancel()

:Potential
Guest

sd Cancel Reservation

Figure 12-4:
Destroying

an object in
the Cancel

Reservation
system.
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you can complete the state diagram for that class. (You can find more about
state diagrams, transitions, and using sequence diagrams to construct state
diagrams in Chapter 16.)

You use the directed line to show the sending of messages from one object to
another. While you do requirements and analysis work, or are early in your
project, you’ll probably be using the plain “V” arrow (→) to show messages.
(You can see several examples to this type of arrow if you refer to Figure 12-1
through 12-4.) When you use this arrowhead shape, you indicate that the
message is sent and received in an unspecified manner, by some undefined
signaling technique. That is, the sender may tap the shoulder of the receiver,
pass a note, call on the receiver’s telephone, or call on the receiver’s opera-
tion. During design or later in the project, you need to be more precise. At
that point, the → arrow indicates asynchronous messages, which we discuss
in the section “Going on without an answer (asynchronous call)” later in this
chapter.

Naming your messages
When you diagram a message, center the name of the message above the
arrow to indicate what the sender wants the receiver to know. You can
choose any of several message-naming styles. We generally recommend a
naming approach that’s informative or interrogative, but not procedural. (If
the message tells the receiver that something happened, it’s informative. If
the message tells the receiver that the sender wants something, it’s interroga-
tive. But if the message doesn’t tell the receiver what to do about the situa-
tion, then it’s procedural.)

Good examples appear in Figure 12-3, where the Potential Guest tells the
System, I’m Ready to Guarantee, and in Figure 12-4 the Potential
Guest tells the System, Here’s my num(resNum). The sender tells the
receiver that some information is available, and that an event has happened,
is happening, or has stopped happening. Grammatically, these message
names are declarative and are in the present or past tense. This naming
approach is the most flexible because it assumes nothing about the nature of
the relationship between sender and receiver. By using it, you support the
good practice of decoupling, which entails encouraging flexibility by limiting
dependencies between the participants.

Using parameters and arguments with messages
Messages can have parameters or arguments if you want to indicate data or
an object being passed along with the message. The syntax for an argument
(in a message or an operation) is as follows:

direction argumentName: ArgumentType [Multiplicity] 
= defaultValue
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The direction is either in, out, or inout, indicating whether the argument is
input to the message, output from the message, or both. If you don’t specify
the direction for argument, it defaults to in.

If there’s a particular argument in the list that you don’t need to specify
because it’s not relevant to your flow, you should replace it with a hyphen (-).

Use the defaultValue to show any explicit value that the argument takes in
this scenario. By doing this, you make the story explicit and easy to follow.
When you need to develop test scripts (later in the process of development),
you’ll find it convenient to use these sequence diagrams as a source if they
have the values indicated. The following example of this technique also
appears in Figure 12-3; here the result from the Credit Card
Authorization System is a status of OK:

Transaction Results (status=OK, authCode)

Early in your project’s development, avoid getting too formal about your
arguments; often the reader of the diagram can infer an argument from the
name of a message. We recommend that you use actual message arguments
for only the most important information you want the system to pass.
Concentrate on the following tasks instead:

� Keep your use case consistent: There is often information you need to
track for use-case purposes. Use high-level argument names and docu-
ment them as classes in your class diagrams and/or in tables of text in
your use-case specifications. By using the arguments in this way, you
allow the use case’s reader to track the information flow and check for
completeness. Later, you should decompose these arguments into
detailed components as they help the user-interface designer to deter-
mine what fields need to be included in the interface.

� Documenting workflow: A common pattern to these sequence diagrams
is where the sender passes an object to receiver, who might do some
work with it, but then passes it along to another receiver. This is an
example of workflow, which might best be documented with a UML
activity diagram (described in Chapter 13). However, you’ll often find
workflow illustrated in a sequence diagram. When you do, show the
passed object as an argument in the messages as they go back and forth
among the objects. Figure 12-3, for example, uses the argument
blngInfo (short for BillingInfo) to stand for the information that the
actor Potential Guest passes to the System, which passes it on to the
Credit Card Authorization System.

Don’t forget to consider drawing a state diagram (as discussed in
Chapter 16) for the passed object if it changes state as other objects
take turns dealing with it. And (of course) document the passed object
in an appropriate class diagram.
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As you start doing detailed design, replace any informal argument descrip-
tions with complete definitions. Doing so allows your UML tool to check for
consistency and automatically generate code.

Quoting a message
Another common approach is to put the message name in quotes when you
mean that there is a literal error message or screen message that needs to be
displayed. Even if the text is not meant to be the literal message text, using the
quotes flags to the reader that a literal message needs to be written or a
screen displayed. You might think of the quotes around “Enter Reservation
Number” as shorthand for the wordier I’ve Sent To You(msg:String=”A
Literal Message”).

Designing a message name
During design and implementation, you should make the message names and
their arguments match your intended implementation. If you implement your
messages with an operation call (as most messages are), their names and
their arguments should match your standard for writing operations. You can
still use the informative and interrogative forms (described earlier in this
chapter in section “Naming your messages”), but you may find it more useful
to use imperative forms to the messages. For example, instead of System,
I’m Ready to Guarantee, you’re more likely to use something like System
Guarantee My Reservation or System.guaranteeReservation(res :
myReservation).

Pressing a button
Another shortcut — used in naming messages and their parameters — you
can apply when the argument of the message is a button name. This is the
case when an actor sends the message by pushing a real physical button on
the hardware (or by clicking a visual button on-screen). For example, instead
of naming the message something like

buttonSelected(buttonName : ButtonNameType=”Submit”)

we recommend

selected Submit or submit Selected

or the even the simplest: submit.

We use the underline to replace the whole rigmarole of indicating the opera-
tion name, argument name and value. Yet it makes the message clearer to the
reader and more likely to fit above the very small arrows that volley across
typical sequence diagrams. For an example of how this looks in a diagram,
you can refer to Figure 12-12 later in this chapter; it uses a cancel to indicate
that the actor presses the Cancel button.
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Your use-case specifications and their sequence diagrams typically shouldn’t
be so detailed that they contain user-interface button or key names. However,
as you do more design, this shorthand allows you to be brief but precise in
the more design-focused sequence diagrams that capture the details of the
user-interface.

Designing messages and their methods
Using the plain, unadorned “V” arrow (→) during analysis indicates that you
plan to use an unspecified signaling method to send a specified message.
This approach may be acceptable while you’re doing requirements and analy-
sis, but it won’t cut it when you’re trying to implement the system. In-
between the analysis and implementation phases, you have the chance to
state exactly what you want to happen and how it should be done. This
phase is called design.

Calling on a neighbor object
The most common mechanism for sending a message between objects is an
operation call that uses standard software techniques. (Examples include a
Java method, a C++ member function, and sending a message to a Smalltalk
object.) You indicate that you want to use a standard call by using the solid
triangular arrowhead (➝) pointing in the direction of the call (that is either
left or right, as the case might be). In Figures 12-3 and 12-4, we use standard
calls to create and cancel the reservation.

Returning from a call on a neighbor
In these standard calls, control of the process transfers from the sender to
the receiver. The sender pauses until the receiver finishes and returns. You
may want to indicate the return (that is, the result you get) from a standard
call as a message as well. Why? Because the return may bring in important
values, information, or an object that you need to use. Or the return itself
may be the significant event that transfers control. Returns are optional to
indicate, but when you do so, you use a dashed V-headed arrow (← − −). For
example, when the System creates a Reservation object (as in Figure 12-3),
it returns the reservationNumber to the System for later use.

In Figure 12-5, we diagram a fragment of an interaction diagram in which an
actor selects a hotel from a hotel chain and then prints out the information
about the hotel. Because we’ve decided to make this a design-time diagram,
we have dropped the actors from the diagram and have replaced them with
design-time boundary objects (system components that act as the interface or
boundary to the actor) we have chosen as part of our design. This is
common step in moving to the details of the design-time modeling. Although
actors are important to understand when you’re modeling domains and
requirements, they’re usually not under your control when you’re designing,
so they’re less important during this phase.
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In Figure 12-5, we’ve chosen a common architectural design pattern in which
a centralized controller maintains detailed, serialized control of the use case
in a tightly scripted Kiosk environment. Here the Controller calls each
input boundary device in turn, and waits until it gets a response. Messages
such as these — going to the boundary objects from the central controller
where the central controller has to wait for a response — are indicated with a
solid triangular arrowhead (➝). You indicate explicit returns with the ← − −
and place the return value on top of the arrow.

You need not always mark the return message explicitly. If the message expres-
sion uses the operation form and indicates the return type (or if nothing of
interest is returned), you can drop some clutter by dropping the return mes-
sage. For example, in Figure 12-5, both the needHotelChain(:ChainList) and
the display(:HotelList) messages are sent as calls from the Controller
to the TouchScreen boundary object. The Controller waits for a reply from
the TouchScreen for the selected HotelChain, but does not wait on the
TouchScreen for a reply for the display(:HotelList) call, so we decided to
skip the explicit return arrow. The Controller does need to know the selected
hotel, but we designed that to return via a separate call to the Keyboard.

Going on without an answer (asynchronous call)
Sometimes you don’t want to transfer control — or don’t want to wait at all.
You want the sender of the message to keep on going. This situation is called

:Controller :TouchScreen:KeyBoard :Printer

needHotelNumber()

hotelNumber

hotelChain

sd selectingHotelAtKiosk

display(:HotelList)

needHotelChain(:ChainList)

printHotelInfo(hotelInfo)printHotelInfo(hotelInfo)Figure 12-5:
Centralized

pattern
architecture.
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an asynchronous call and it’s where you use the V-shaped arrow (→) during
design.

Although the use of asynchronous calls is becoming more common, techni-
cally you may use them only if there are multiple threads of control in your
system (physically or logically), that is, only if the sender can remain running
while the receiver is working. In Figure 12-5, the Controller call to the
Printer is an asynchronous call — which is logical because you rarely want
to wait until the printer is done before you go on to the next task. Most sys-
tems allow spooling of the print job to the printer and concurrent printing
and computing.

Signaling by other means
You may find it useful to choose other specific mechanisms for sending a
message. Every operating system has several underlying message communi-
cations techniques. While they are rare to be used directly for most object-
oriented developers, if you need to use them and don’t mind breaking
portability you can indicate the mechanism by stereotyping the message with
the mechanism, such as «interrupt», «spin-lock», «semaphore». If you use
a particular mechanism often, you may want to create a specialized graphic
adornment to indicate your mechanism. In Figure 12-6, we list the standard
adornments, plus a few common ones we’ve used that are not currently part
of the base UML 2 standard. 

Generic or Asynchronous Call

Procedural/Synchronous Operation Call

Destroying an object

Timed Call: Abandoned if not completed in time
(not part of UML 2.0 standard)

Asynchronous Call: UML 1.3
(not part of the UML 2.0 standard)

Balking Call: Abandoned if receiver not ready
(not part of UML 2.0 standard)

Semaphore Message
(not part of UML 2.0 standard)

Return from a Call

Creating an object

Figure 12-6:
Some

possible
message

adornments.
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Choosing your interaction scenarios 
during design
Using interaction diagrams (such as sequence diagrams) during your design
activity is very different from using them to gather requirements or assist in
analysis. Interaction diagrams can approach the detail and specificity of
code. If you are a programmer, you’re likely to be reluctant to be so precise
without obvious gain. 

There are three primary reasons to consider using sequence diagrams for
design:

� Improved understanding before coding: While you’re likely to be more
familiar with coding (and therefore more comfortable with it), UML dia-
gramming — whether with a good-quality tool or a whiteboard — is
actually easier to do. It’s worth investing your time to do it well. Once it
becomes second nature to you, you’ll find that you can see the general
outline of your design in advance — before you even start coding — and
you can check it out to make it better, safer, and more complete. To get a
visual handle on complicated interactions, you can draw UML interac-
tion diagrams of them before coding them.

� Improved communication: If you’re a designer responsible for leading
several people’s implementations or tests, you’ll find that communicat-
ing a design is a lot easier when you use diagrams. The way you want a
behavior to work is a lot easier to explain (especially when it involves
several objects) if you use UML interaction diagrams. Showing someone
a pile of code won’t do much to convey the big picture, nor offer much
insight into the way multiple operations work together. Draw UML dia-
grams to communicate your design for prototypical interactions — and
to communicate the sense of how similar interactions are to work.

� Improved testing and execution: Increasingly the UML tools can test
the logic and generate complete code from diagrams such as the interac-
tion diagrams. When using such tools, you won’t need to be thinking as
much in a code-specific or language-specific manner unless performance
considerations become paramount. Visual modeling and visual testing
increasingly eliminate the need for much of the implementation phase —
and its associated costs. Of course, reaping that benefit requires near-
codelike specificity in the diagrams, but the result is a design that can
operate independently of any particular implementation — which saves
money and time. If you’re modeling with a tool capable of generating
quality code and/or tests, plan on modeling sufficient scenarios to exer-
cise all the logic.
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Composing Interaction Diagrams
We discussed the basic parts of a sequence diagram earlier in this chapter:
the participating objects and their lifelines, events, and messages. But a prob-
lem that occurs with sequence diagrams, as with any sort of scenario-based
documentation or diagramming is that they can become complex as well as
redundant. The scenario and its corresponding sequence diagram, for a
Potential Guest making a successful online reservation is very long, and
the scenario for failing to so (because of a rejected credit card) is just as long
and mostly the same. If you run into this problem while constructing use
cases, simply capture one scenario as the main flow, abstract out the essen-
tial differences between the scenarios, and document the differences in an
alternate flow,(as described in Chapter 9).

In sequence diagrams, you do almost the same thing. Instead of documenting
the essential differences somewhere else, you use the power of graphical rep-
resentation to display the variations side by side. (Remember, however, that
you can suppress details for readability’s sake, and present them later.) In
this section, we cover some ways you can use UML to document complex
scenarios.

Referencing and reusing interactions
The most common problem with sequence diagrams — or, for that matter,
with any interaction diagram — is that you can’t quite avoid redundancy with
another sequence diagram: Often two scenarios overlap. The solution here is
to make (and document) an interaction occurrence that you can refer to in
several other diagrams. The technique is easy and pretty slick: Any named
interaction diagram can be referred to by name and inserted into another 
diagram.

Earlier in this chapter, we provided a sequence diagram for the scenario of
guaranteeing a reservation (shown in Figure 12-3). Suppose that diagram con-
tains an interaction that we want to reuse elsewhere — or from which we
want to extract the details for encapsulation. To refer to this interaction, we
use what UML 2 calls an interaction occurrence, which is a reference to a
reusable piece of an interaction defined elsewhere.

In Figure 12-7, we first define the sequence diagram for Validate Credit
Card. Here the interaction is simple, consisting of two objects and two mes-
sages, but it could be very complex.
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In Figure 12-8, we refer to our defined interaction by using a UML frame with the
operator in the label box, ref, and the title of the interaction in the body sec-
tion of the frame. This reference is an occurrence of the interaction Validate
Credit Card, hence the name interaction occurrence. You can use a reference
like this anywhere in an interaction diagram. In typical use, it just means insert-
ing the referenced behavior into the larger diagram. This approach is a suitable
way (especially for use cases) to eliminate redundant diagramming.

Adding parameters to an interaction
You can use this sort of reference anywhere in an interaction diagram. In the
typical use, it just means that there is an insertion of the referenced behavior
into the larger diagram. However, you often find that the behavior has some
slight differences in each occurrence. You need to be able to tailor the
inserted sequence diagram to the current situation.

You can be more explicit about how the inserted behavior works while
making it more reusable if you add input and output parameters to the interac-
tion. In Figure 12-9, for example we’ve redefined the inserted sequence dia-
gram to indicate that it needs fee and blngInfo as inputs and that it returns
status as a return value and authCode as an out parameter. The syntax for
indicating the input and output parameters is the same as shown for opera-
tions in Chapter 3.

Figure 12-10 shows how these returned values are now used. You indicate
where you want to assign the returned values in the reference to the interaction.
In the reference to the Validate Credit Card interaction of Figure 12-10, the
System.Transaction.Status attribute is assigned the return value from

:System
:Credit Card
Authorization

System

pleaseValidate (fee, blngInfo)

transactionResults (status=OK,authCode)

sd Validate Credit Card

Figure 12-7:
An

interaction
called

Validate
Credit Card.

204 Part IV: The Basics of Functional Modeling 



the interaction (the use of the equal sign indicates the assignment), and
the System.Transaction.AC is assigned the value of the out parameter
authCode. When the Validate Credit Card interaction finishes, both
output parameters (the return value status and authCode) are assigned to
some attribute of the Transaction object that is part of the System object.

:System

:Reservation

:Credit Card
Authorization

System

"Your Reservation is
Guaranteed"

(reservationNum)

"Enter Billing Info"

I'm ready to guarantee

Here's my info (blngInfo)

reservationNum

«create»
create (dateRange,

room, blngInfo)

:Potential
Guest

sd Guarantee Reservation

ref
Validate Credit Card

Figure 12-8:
Incorpo-
rating a

reference.
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Alternating interactions with 
combined fragments
One common difficulty occurs when the main path splits into several paths
and depends on the return from a message (or some other condition) before
it can proceed.

UML 2 gives you several different operators to use in this situation; you can
indicate whether a sequence may be optional (opt), may be repeated (loop),
or may have an alternative (alt).

Taking an optional path
You can use a frame with the opt operator to indicate that it may not be used
under some circumstances. Usually you place an explicit guard (that is, a
test) in square brackets to indicate such a condition.

In the example shown in Figure 12-11, we’ve changed the reference to the
interaction occurrence of Validate Credit Card to return a generic
Status from the previous example of Figure 12-10, where we set the Status
to OK. This is followed by a frame with the opt operator. The whole interac-
tion fragment contained in the frame is optional — and can only occur if the
guard [status=OK] is true. You can also put the guard in the label along with
the operator opt [status=OK].

:System
:Credit Card
Authorization

System

pleaseValidate (fee, blngInfo)

transactionResults (status,authCode)

sd Validate Credit Card(fee,blngInfo,out authCode):Status

Figure 12-9:
Adding

arguments
to an

interaction.
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:System

:Reservation

:Credit Card
Authorization

System

"Your Reservation is
Guaranteed"

(reservationNum)

"Enter Billing Info"

I'm ready to guarantee

Here's my info (blngInfo)

reservationNum

«create»
create (dateRange,

room, blngInfo)

:Potential
Guest

sd Guarantee Reservation

System.Transaction.Status=
Validate Credit Card (fee,blngInfo,

System.Transaction.AC=authcode):OK

ref

Figure 12-10:
Passing and

returning
arguments

from an
interaction.
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Looping around a path
In some situations, instead of an interaction occurring zero times or one time,
it may be repeatable multiple times. That’s when you use the loop operator,
which looks like this:

loop minint, maxint, [guard]

:System

:Reservation

:Credit Card
Authorization

System

"Your Reservation is
Guaranteed"

(reservationNum)

"Enter Billing Info"

I'm ready to guarantee

Here's my info (blngInfo)

reservationNum

«create»
create (dateRange,

room, blngInfo)

:Potential
Guest

sd Guarantee Reservation

opt

System.Transaction.Status=
Validate Credit Card (fee,blngInfo,

System.Transaction.AC=authcode):Status

ref

[ status = OK ][ status = OK ]

Figure 12-11:
An optional
interaction.
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You replace minint, maxint, guard with actual values as follows:

� minint: Must loop at least this number of times.

� maxint: This parameter is optional. The interaction may not loop more
than this number of times. If not given, maxint = minint.

� guard: A guard is an optional condition shown in square brackets. After
the first minint iterations, the condition is tested before each additional
loop iteration. If the condition is false, then the loop is abandoned. If the
guard is not specified, it is assumed to be true, so the loop continues to
iterate until the maxint iterations are performed. 

An example of a loop is shown in Figure 12-12. We allow the Potential Guest
three tries to find a credit card to be good. By setting the minint to 1, we’re
requiring the loop to be executed at least one time. By setting the maxint to 3,
we’re requiring the loop to execute no more than three times. The loop exits
early if it tries to start the second or third iteration and the guard, [status=
bad] is false, which will be the case if the card’s status is good.

Breaking out of a loop
Loops can be sticky, and often you’ll find you need a way of escaping from
them. UML supplies the break operator for that purpose; you can use it to
indicate the scenario that causes escape from a loop (or from any enclosing
segment) and that processing continues with the first message after the loop.
In Figure 12-12, we show that if the actor selects the Cancel key/button, the
loop is immediately escaped.

Making a decision on the path
If you have two more choices for the path to take, you can set yourself up with
the alt operator. Divide your frame into sections with interactions inside each
of the sections. Place a guard to control whether the section is entered. You
can use [else] as the guard to the last section — it will be entered if none of
the above sections are entered (because all the other guards are false).

The alt operator is the construct to use if you’re thinking of including an if or
case statement in your code. In the example shown in Figure 12-12, the top sec-
tion of the alt operator is executed if status=OK. If the status is not OK —
say, because the loop executed three times without success or because the
actor hit the Cancel key/button — then a warning message is issued instead.

Choosing advanced operators
UML 2 gives you many operators to use if you want to compose complex
interaction diagrams. The operators indicate which of several interactions
would be executed (such as alt), how many times to execute a particular
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interaction (loop, opt, break), how to interpret the interaction (assert,
neg), and the relationship of the interaction with other ongoing interactions
and events (par, region). Table 12-1 shows some of these operators and how
you can use them. For the programmers among you, we give some idea of the
programming statements that correspond to some of these operators. 

:System

:Reservation

:Credit Card
Authorization

System

"Your Reservation is
Guaranteed"

(reservationNum)

"Sorry you're having trouble.
Please try again later."

"Enter Billing Info"

I'm ready to guarantee

Here's my info (blngInfo)

cancel

reservationNum

«create»
create (dateRange,

room, blngInfo)

:Potential
Guest

sd Guarantee Reservation

alt

System.Transaction.Status=
Validate Credit Card (fee, blngInfo,

System.Transaction.AC=authcode):Status

ref

break

loop 1, 3 [status=BAD]

[ status = OK ][ status = OK ]

[else][else]

Figure 12-12:
Looping and
alternatives.
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Table 12-1 Operators in an Interaction Diagram
Operator Keywords Description

alt [guard1] ... Selects one interaction to execute from a set of 
[guard2] ... interactions. The selected interaction follows a true 
[else] ... guard condition or an [else] condition if none of

the guard conditions are true. In programming, this
corresponds to statements like case or if] ...
then ... else ... endif.

assert The selected interaction must occur exactly in
the way indicated. If it doesn’t, you have an invalid
interaction.

break If the selected interaction occurs, the enclosing
interaction (usually a loop) is abandoned. You may
be familiar with this as the programming statements
of break or escape.

loop minint, Execute the interaction minint times, then execute 
maxint, the interaction up to maxint times as long as the 
[guard] [guard] is true. This corresponds to programming

statements such as do ... until, while, or
for ....

neg This interaction is invalid and can’t occur.

opt [guard] This interaction only occurs if the [guard] is true.
This corresponds to the programming statement
if...endif . 

par This operator indicates several interactions that may
run concurrently (overlapped in time). For example,
several threads of the interactions Make Room
Reservation and Canceling a
Reservationmay be running in parallel.

ref Refers to an interaction defined elsewhere. This cor-
responds to the programming concepts of call or
invoke or the use case concept of «include».

region The enclosed interaction is a critical region. No other
messages can interleave. A critical region is needed
when a shared resource is updated to prevent the
updates from overlapping and producing inconsistent
results. You would typically use this within parallel
interactions. For example, many threads of the Make
Room Reservationmay be running in parallel,
but a critical region is needed when you seize the
room, or else several Potential Guestsmay
wind up reserving the same room.
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Chapter 13

Specifying Workflows with
Activity Diagrams

In This Chapter
� Defining activities

� Documenting business processes

� Ordering operations

� Controlling object flow

Sometimes, when you are modeling a system or developing software, you
need a good old-fashioned dataflow diagram, workflow diagram, or behav-

ior flow diagram. UML has a sort of updated version of the dataflow diagram —
called an activity diagram — to help you out in just such a situation. Class 
diagrams show you who (which class or classes) is related (associations and
generalizations) with whom (other classes) — and what each can do (each
class’s operations). Sometimes even all that isn’t enough. In this chapter, we
show you how to use activity diagrams when you want to emphasize the order
of behavior and not necessarily who does the behavior. We give you some tips
for modeling complex operations, intricate use-case interactions, and business
workflows.

Ordering the Flow of Behavior
When you want to explore the flow of behavior across classes, use an activity
diagram. Although your class diagrams (see Chapter 3 and Chapter 7) tell
you who performs what operations, they don’t show a valid sequence of
operations across classes. If you build a state diagram (see Chapter 16), you
show a sequence of operations — but a state diagram limits you to the opera-
tions within a single class. The activity diagram, on the other hand, allows
you to show the flow of behavior across multiple classes. Use activity dia-
grams whenever you want to show object flow, dataflow, or the flow of con-
trol across different classes.



Dissecting an activity diagram
All activity diagrams have a few basic elements. Normally you use the follow-
ing pieces to diagram the flow of behavior:

� Action: A simple piece of behavior is called an action. An action cannot
be further decomposed into smaller actions. You can specify pre- and
postconditions for an action — defining what must be true before the
action can execute and what must be true after the action executes. An
action could be any of the following:

• Getting or setting an attribute value

• Invoking the operation of another class

• Calling a function

• Invoking an activity that contains actions

• Sending a signal or notification of an event to a group of objects

You show an action in UML notation as a rounded rectangle. Place the
name of the simple behavior as text inside the rounded rectangle.

� Activity: Activities contain sequences of actions and/or other activities.
You use activities to group sequences of actions together. At the level of
an object-oriented class, you can use an activity to represent the
method of an operation. You can also use activities to represent the
tasks that make up a business process.

You diagram an activity as a rounded rectangle with the name of the
activity inside (as with an action). You can also show activities in a large
rounded rectangle containing complex sequences of actions, activities,
object flows and control flows. The complex form of an activity also
allows you to show parameters, preconditions, postconditions, and
properties of the activity.

� Control flow: Think of control as moving like a stream that connects
actions and activities together; shows the sequence of execution.

Connect your activities and actions with a line that has an arrowhead to
indicate the direction in which control is flowing. For example, you draw
a control flow from an activity like Browse Book to an activity such as
Make A Note.

� Object node: Your classes’ operations take in parameters and generate
return results. Activities modify objects or transform objects into other
objects. You use an object node to show these objects as they move from
activity to activity.

You use a class box with the name of the object’s class to show an
object node. You can also describe the state of the object by including
the name of the state in between square brackets underneath the name
of the class.

214 Part IV: The Basics of Functional Modeling 



� Object flow: In the old days, this was known as “data flow.” Now the
experts call the flow of objects, object flow. You use activity diagrams to
show this flow of objects from one activity or action to another. 

� You place an object node between two activities or actions to show
object flow. Connect the first activity or action with a line and an arrow-
head in the direction of the object node. Then connect the object node
to the second activity or action with a line and an arrowhead in the
direction of the second activity or action.

� Control node: You use control nodes to guide the flow of control (and the
flow of objects) through a group of activities and actions. Control nodes
come in a variety of forms, depending on what you need; they serve as
traffic cops for the flow of control and flow of objects. The control nodes
are as follows:

• Initial: You start a sequence of activities or actions with an initial
node. An initial node is shown as a large dot.

• Final activity: When you want to end all control flows and object
flows in an activity, use the final-activity node. Show final activity
with a bull’s-eye symbol.

• Final flow: If you want to end some — but not all — flows inside
an activity, use the final-flow node. You show a final flow as a small
circle with an X inside.

• Decision: A decision node uses a test to make sure that an object
or control flow goes down only one path. Use this node when you
want to construct an if-then-else selection for an execution path.
You indicate a decision node with a large diamond shape. Connect
the diamond with each downstream activity or action by drawing a
control-flow arrow. Place decision criteria for each path in square
brackets on the control flow line.

• Merge: You bring separate decision paths back together with a
merge node. Show your merge using a large diamond shape. This is
the same shape as a decision node. Decision nodes create diver-
gent control paths through an activity diagram. The merge node
allows you to bring those divergent paths back together again fol-
lowing a decision node. Merge nodes do not have any decision cri-
teria in square brackets.

• Fork: Sometimes you need activities or actions to work in parallel.
To split behavior into concurrent operations, use the fork node. A
fork looks like (you guessed it) a fork. You show a fork with one line
going into the fork and multiple lines coming out the other side.

• Joins: A join is the opposite of a fork. When you want to bring par-
allel flows of operations back together, use the join, a symbol that
looks like the mirror image of a fork.

• Connector: If you run out of room on your diagram and you need
to continue the flow of control to another page, use a connector —
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a small circle with a label inside. The connector indicates that the
flow picks up at another location in the diagram or on another
page where you find a connector with the same label.

Older versions of UML had activity diagrams, but UML 2 takes this diagram
to a new level. Previously, activity diagrams were a special kind of state dia-
gram. You could show flow of control across classes — from one operation to
another — but the diagram limited the kinds of flow you could show. UML2
provides activity diagrams that act like a Petri net — a flow that works kind of
like a pinball machine: Instead of silver balls, objects known as tokens (which
represent other objects or the presence of control) can bounce from node to
node (that is, flow from activity to activity). In UML 2, activities and actions
consume tokens and produce tokens — so now you can construct pure flow
diagrams that pass the tokens around.

Utilizing activity diagrams
We recommend using activity diagrams in several different situations:

� High-level operations: When you have a class with a complex operation
that involves many steps, use an activity diagram to show those steps as
a sequence of activities.

� Use-case details: If one of your use cases is really a group of steps per-
formed concurrently, use an interaction-overview diagram — a form of
activity diagram that shows the flow of interaction between the main
success scenario and any alternative scenarios. We show you an exam-
ple interaction overview diagram a little later in this chapter.

� Workflow or business-process flow: Activity diagrams are great for
modeling business processes, not just software operations. You show
who performs activities, which decisions must be made, and what docu-
ments the business process generates.

� Process modeling: Since activity diagrams are the latest form of the
good old data-flow diagram, you can use them to model any process.
You model the steps in a process as activities and show sequencing with
control flows and control nodes.

� Summarize many sequence diagrams: If you find yourself generating
lots of sequence diagrams for a use case — usually to make sure you
capture all allowable orderings of events — then consider creating an
activity diagram to summarize those sequence diagrams. The complex
behavior of your use case — with its concurrent sequences — may be
easiest to grasp as an activity diagram.

Avoid the function trap. If you use the activity diagram as a way to pick apart
functions into subfunctions (and the subfunctions into subsubfunctions), then
beware — you may have fallen into the “functional decomposition” trap that
lies in wait for anyone who builds object-oriented systems and software. After
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all, your system or software is composed of objects, not functions. Each object
has a responsibility to perform certain behavior when asked. Functionality
emerges from the collaboration of objects invoking behavior on each other.
To avoid the functional trap, keep in mind who performs each action and who
is responsible for each activity.

Figure 13-1 and Figure 13-2 illustrate the basic use of activity diagrams to docu-
ment a high-level operation. This example focuses on the planTrip operation
of the Person class. The operation takes one parameter — travelBooks :
Book[0..*]. When you invoke the planTrip operation, you pass in zero or
more instances of objects called travelBook — instances of the class Book.
When planTrip completes, it returns an instance of the Itinerary class. The
Person class has the needs attribute with the NeedKind datatype. NeedKind is
a datatype that enumerates the different needs a person may have. Those
needs are shown in the NeedKind class stereotyped with «enumeration».

Suppose a person like you needs a vacation (no challenge there). To plan a
trip, you get your hands on several travel books and browse each book. If
you have an interest in the locations discussed in one of the books, you take
some notes, look into the location in more detail via the Internet, and call
some friends. After you settle on a place to go, you make reservations and
end up with an itinerary. Figure 13-2 captures your behavior for planning a
trip in an activity diagram.

The name of the complex activity — Plan Trip — is shown in the large,
rounded rectangle in the upper-left corner. You show parameters underneath
the name of the activity. In this example, the travel-book parameter is shown
as travel book: Book. You show pre- and postconditions in an activity
close to the name of the activity, in the form of text preceded by a stereotype
of the right type. Figure 13-2 shows the need vacation as a precondition
and complete itinerary as the postcondition.

You name activities with a verb phrase. Your activities express some behav-
ior that an object or objects will perform. Just like use case names (see
Chapter 3), activity names are best stated as an action verb followed by a
noun or simple noun phrase.

Person

notes: Travel Note [*]
needs: NeedKind

«enumeration»
NeedKind

vacation
eat
sleep
work
pay taxes

planTrip(travelBook : Book[0..*]) : Itinerary

Figure 13-1:
The Person
class with a

high-level
operation:

planTrip.
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Travel Book

Plan Trip

Travel
Note

Itinerary

[interested]

[not interested]

travelBook : Book

«precondition» need vacation
«postcondition» complete itinerary

[not sure][this is the place]

[won't go
there now]

Browse
Book

Make a
Note

Check
Internet Call a

Friend

Make
ReservationFigure 13-2:

Activity
diagram for
planning a

trip.
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Whenever you have a complex operation, declare the pre- and postconditions
for the operation. Preconditions describe what must be true before the oper-
ation can execute. Postconditions express what is true after the operation
completes successfully. 

After you determine which objects(s) flow into an activity (you identify them
via parameters) and the object(s) that an activity returns (you identify them
via operation result types), place them on the outside contour line of the
rounded rectangle. Diagram incoming objects as object nodes inside a class
box. The Plan Trip activity has an incoming Travel Book object node on
the contour line of the activity. Any outgoing objects are also shown as class
boxes. The Itinerary object node is also shown on the contour of the Plan
Trip activity.

As a modeler, you can reveal activities, actions, flow, and control nodes inside
the border of a complex activity, as we did in Figure 3-2. In the example, you
see a sequence of steps — Browse Book, Make a Note, Check Internet,
Call a Friend, and Make Reservation — in order to plan a trip. You show
each step in a rounded rectangle. Flow of control passes from activity to activ-
ity along the lines in the direction of the arrow. For example, control flows
from Make a Note to Browse Book after the Make a Note activity finishes.

In this example, we use several control nodes to further guide the flow of
objects and the flow of control. For instance, a diamond-shaped decision node
directs flow of control according to whether the person planning a trip is
interested in the contents of a travel book he or she has finished browsing. If
the person is interested, then control flows onto the Make a Note activity.
If the person is not interested, then control flows to a final flow node —
the X in a circle.

As you look at an activity diagram, visualize objects flowing down a path like
balls in a pinball machine. For example, a travel-book flow begins as follows:

1. Into the Plan Trip activity.

2. Moves to the Browse Book activity.

3. When the Browse Book activity finishes, the travel book is passed on to
the decision node:

• The decision node tests the interested condition. If the condition
is true, then the book moves on to the Make a Note activity. If
this condition is false, then the decision node tests any other
conditions attached to it.

• The decision node tests the not interested condition. If the con-
dition is true, then the book moves on the final flow node — where
it disappears. The job of a final flow node is to remove any objects
that flow into it.
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From here, the flow continues on through the rest of the complex activity.

Your activities can generate new object nodes. For example, Make a Note
generates instances of the Travel Note class. These travel notes are passed
on, like balls in a pinball machine, to other activities.

If you have activities that happen concurrently, use a combination of fork and
join control nodes. In the example, Check Internet and Call a Friend are
activities that happen at about the same time but are independent of each
other. Above these two activities is a fork control node — a thick horizontal
line with one control flow line coming into it and two control flows coming
out the bottom. The flow of control comes back together into a single path
with the use of a join control node shown below these two activities.

Concurrent does not mean simultaneous. Concurrent activities may occur at
the same time, but they are always independent of each other; one concur-
rent activity could start before other concurrent activities and end before
they are complete.

Working through Workflow Diagrams
Your specific needs for modeling workflow can come in many shapes and sizes.
The example in Figure 13-2 illustrates the use of an activity diagram at the level
of a complex operation on a class. You can also use UML for more than devel-
oping software. We use it to model business processes, document flow, and
employee responsibilities. The activity diagram is very useful when you want
to illustrate work flowing through a business process. You can also document
complex use cases with what is known as an interaction overview diagram.

Be careful not to use the activity diagram at too low (that is, detailed) a level.
Activity diagrams can potentially specify the line-by-line code for a method —
but (alas) today’s UML tools don’t generate code from activity diagrams. So if
you find yourself thinking, “I could have already written the code in the time
it took me to draw this activity diagram,” then you’re definitely modeling at
too low a level.

Diagramming use case steps
Some of your use cases are likely to be complex enough to have a main success
scenario, many alternative flows, and error flows. UML 2 has come to the
rescue by making possible a special kind of activity diagram: the interaction-
overview diagram.
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In an interaction-overview diagram, you show interaction occurrence nodes
connected by control flows instead of showing action and activity nodes.
An interaction occurrence is some notation for referencing a full-fledged
sequence diagram. You draw an interaction-occurrence node as a rectangle
with a small thumbnail in the upper left-hand corner. The thumbnail contains
the keyword ref. The rest of the box contains the name of the interaction. See
Chapter 12 for more details about interaction occurrences.

You can help others to understand complex use cases by giving them an
overview of how the interaction sequences flow. For example, Figure 13-3
shows a simple use-case diagram for the process of making a room reserva-
tion in a hotel reservation system.

Figure 13-4 shows an interaction overview diagram, looking suspiciously simi-
lar to an activity diagram. Instead of enclosing the diagram with a symbol for
complex activity (a rounded rectangle), you use a sequence-diagram frame in
a regular rectangle. 

Use interaction occurrences instead of activities when you need to show
alternative flows. Use decision/merge nodes and fork/join nodes to indicate
the flow of control through the use case.

To construct an interaction overview diagram for your complex use cases,
follow these steps: 

1. Place the name of the use case in the upper-left corner just after the
sd keyword.

In the example in Figure 13-4, the name is Make Room Reservation.

2. Start your interaction with an initial node, a large dot.

3. Draw a control flow that starts at the initial node and goes to the first
interaction occurrence.

«system»
Hotel Reservation

«Actor»
Credit Card

Authorized System

Make Room
Reservation

Potential
Guest

Figure 13-3:
A use-case
diagram for
Make Room
Reservation.

221Chapter 13: Specifying Workflows with Activity Diagrams



Identity room type and day span
ref

sd Make Room Reservation

Select available room type

[invalid day span][cancel]

[cancel]

[cancel]

[else]

[else]

[else]

[invalid CC]

ref

Supplies billing info
ref

Cancel reservation
ref

Confirm reservation
ref

Day span error
ref

Failed Credit Card
ref

Figure 13-4:
Interaction

Overview
diagram for

making a
room

reservation.

222 Part IV: The Basics of Functional Modeling 



4. Break up your main success scenario into groups of interactions.

Draw your main success scenario, breaking it up into groups of interac-
tions. To make a reservation our actor, Potential Guest, must pick a
room type and day span for the reservation, select an available room
type, supply billing information, and confirm the reservation.

5. Each group of interactions becomes an interaction occurrence.

You show each interaction occurrence as a box with the ref keyword in
the upper-left corner and the name of the occurrence in the middle of
the box. For example, Identify room type and day span is a small
interaction between the Potential Guest actor and the system. You
show this referenced interaction in another sequence diagram. If the
interaction is simple, you can show a mini-sequence diagram instead of
an interaction occurrence.

6. Connect the main success scenario interactions with control-flow lines
to show the correct sequence.

The Select available room type follows the Identify room type
and day span interaction occurrence.

7. When you have an alternative flow, break the control flow between
interaction occurrences and insert a decision node or a fork node.

If the alternative flow or flows are concurrent to the main success sce-
nario, then use a fork to indicate it; otherwise use a decision.

In the reservation example in Figure 13-4, a decision must be made
between the Identify room type and day span and the Select
available room type interactions. If invalid day span is true, then
control flows to the Day span error interaction occurrence. If cancel
is true than control flows to the Cancel reservation interaction
occurrence. Otherwise, control flows normally to the next part of the
main success scenario.

Repeat this step as needed to encompass all the alternative flows for
your use case.

8. Use merge or join nodes to bring any alternative paths that pass
through the interaction diagram back together (if necessary).

This is the same technique used in an activity diagram. The example
illustrated in Figure 13-4 doesn’t require any merge or join nodes.

9. You must use the activity final node in your interaction overview,
because all use cases must come to an end.

In the reservation example, the interaction ends after the Confirm
reservation interaction or the Cancel reservation interaction. To
indicate this situation, you place a bull’s-eye at the bottom of the diagram
with control flow lines coming from those two interaction occurrences.
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Indicating the responsible parties
UML 2 lets you show who is responsible for an activity or an action in two
ways:

� Swim lanes: You can divide up your activity diagram into rows or
columns, called swim lanes. To understand the concept of swim lanes,
think of placing your activity diagram in a large pool. At the head of the
pool you place each person involved in the business process, each in his
or her own swim lane. Each person who dives into the pool then swims
over the various activities for which they are responsible.

You show swim lanes as parallel lines across or down the page. At the top
or side of the lane put the name of the person, job role, or organizational
unit that is responsible for performing the activities in that lane. Place the
activities or actions for that party inside the lane.

� Partition names: When you can’t use swim lanes, you can just place the
name of the responsible party in parentheses inside the rounded rectan-
gle above the name of the activity or action.

When you model a business process, it’s necessary to show each part of the
process and each individual responsible. With UML, you show business
processes as an activity diagram with swim lanes. Figure 13-5 shows the
process of getting through an airport to board a plane. This business process
involves four participants: Passenger, Ticket Agent, Airport Security,
and Boarding Agent.

We chose to place the swim lanes in vertical swim lanes because they fit the
page better, but we could have used horizontal swim lanes. Each lane has the
name of one participant. Each participant is responsible for performing the
activities in his or her lane.

You notice the Ticket object changes state as it moves through this activity
diagram. When the Ticket Agent performs the Generate Pass activity, the
Ticket object has the valid state. After the Boarding Agent performs the
Stamp Pass activity the Ticket changes to the used state.

Use a connector when you run out of space in an activity diagram. For exam-
ple, we ran out of room at the Receive Pass activity that the passenger 
performs. So, we placed a connector with the label A. Then we drew a control-
flow line from Receive Pass to the A connector. Using the same technique,
you can pick up the control-flow path at the connector with the same label A
at the top of the Passenger’s swim lane, and then proceed to the Wait in
line activity.
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A

A

[else]

[pass]

[fail]

Passenger Ticket Agent Airport Security Boarding
Agent

[valid ticket &
small bags]

Ticket
[valid]

Ticket
[used]

Walk
through
Scanner

Collect
Boarding

Pass

Collect
Bags

Stamp
Pass

Archive
Pass

Board
Plane

Check
ID

Confirm
Ticketing

Handle
Baggage

Generate
Pass

Receive
Pass

Find Boarding
Gate

Wait in line

Wait in line

Wait in line

Check
ID

Observe
Passenger

Check
Carry-on

Ticket
[valid]

Figure 13-5:
Activity

diagram
showing a

business
process.
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Figure 13-6 shows two examples of partition names placed inside the activ-
ity’s rounded rectangle. Instead of using swim lanes, you can show that the
Passenger is performing the Wait in line activity and Airport Security
performs the Observe Passenger activity.

(Passenger) 
Wait in line

(AirportSecurity)
Observe Passenger

Figure 13-6:
Showing

who’s
responsible
with names

placed
inside an

activity.
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Chapter 14

Capturing How Objects
Collaborate

In This Chapter
� Structuring a communication diagram

� Numbering your messages

� Conquering concurrency with communication diagrams

� Capturing the design of a collaboration

To get a job done, you design interactions among a set of participating
objects so that they can work together to achieve your goal. UML gives

you several tools to work out the details of these interactions, such as
sequence diagrams, communication diagrams, activity diagrams, and timing
diagrams. If you follow the diagramming guidelines given in Chapter 11 (along
with the techniques of this chapter), you’ll be using communication diagrams
when it’s necessary to design the details of an interaction.

Communication diagrams are not really new to UML 2, but their name is new.
In the previous UML 1.x versions, these diagrams are called collaboration dia-
grams, because they show how objects collaborate to meet a goal. While this
was a good name, UML also uses collaboration to mean something else. In 
UML 2, a collaboration is a specification of how a set of objects and associa-
tions playing specific roles realize an operation or use case. Therefore, with the
old terminology, a collaboration diagram was just one way of indicating the
details of one scenario that a collaboration was realizing. Confusing? You bet.
So, the UML gurus finally decided to change the name to communication 
diagrams.

In UML 2, when you attempt to design a collaboration (the set of classes and
associations that realize a use case or an operation), you’ll need to specify
the participating objects and links. Then, for each possible scenario that the
use case or operation has, you must specify the interaction of messages
among the participating objects and links in the collaboration.



To do this, you’ll need one or more interaction diagrams to capture these sce-
narios. Sequence diagrams will probably suffice for many circumstances, but
as you move into detailed design, you may find the capabilities of communi-
cation diagrams more suitable to your needs. 

While the new UML 2 communication diagrams look a lot like the old UML 1.x
collaboration diagrams, they seem to be significantly less complicated, and
unfortunately, less expressive and powerful. In this chapter, we offer advice
on how to regain some of the lost expressiveness, while still keeping you from
drowning in details. We’ve asked the UML 2 team at OMG to re-insert some of
the features they’ve taken out for the sake of compatibility and power. You’ll
need to keep track of future revisions to UML 2 (perhaps UML 2.1) to see
exactly how they’ve done the corrections.

Developing a Collaboration
In the following sections, we outline the design of a GenerateBill use case
using some of the communication diagram features. This process starts with
the analysis class diagram for the classes that must participate in this use
case, which we change by adding some specific design features to help
accomplish the use case’s behaviors.

As the class diagram evolves to incorporate the design of the use case and
appears to stabilize, you construct a communication diagram that walks
through the designed interaction, showing the step-by-step interchange of
message over the objects and links participating in our use case. 

As you make decisions in the communication diagram, go back to the class
diagram to ensure consistency. You need individual communication diagrams
to capture different scenarios of the use case. This suite of communication
diagrams and the class diagram evolve to capture the design details of the
dynamic behavioral view and static class view consistently.

Structuring a design class diagram
When you construct a communication diagram, you need to identify the par-
ticipating objects and lay them out in a static structure diagram, such as a
class diagram. You can find more about the typical features of these diagrams
in Chapter 3 and Chapter 5. 

Figure 14-1 shows the initial class diagram drawn during analysis for the
example use case GenerateBill. In the example diagram, you can see that
each Room has an ordered set of Stays (indicated on the diagram by the
property {ordered} and the multiplicity * ), and for each Stay and date,
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there is an associated RoomRate. A RoomRate can be for multiple Rooms, but
for each combination of a Stay, a date, and a RoomRate, there is an associa-
tion class Lodging that has some information about the specifics on that
date, such as the number of occupants for that day.

For each Stay and date there is also a set of RoomCharges that can be
applied — which might include things like room service or videos. We could
have hooked the RoomCharges to the Lodging instead of directly to the
Stay, but we felt that the RoomCharges are probably generated by different
subsystems than the Lodging charges, so it’s probably better to separate the
responsibilities.

Focusing on a central class
A central class or focus class is the class that a use case appears to be most
concerned with — usually creating, finding, or manipulating instances of that
class or using it to find other information needed by the use case. You can
see that the central class for this use case is Stay, as most items of informa-
tion needed for the use case — in particular, the items on the bill — are avail-
able close to the Stay class. Though the needed information is accessible
from the other classes, the distance from the Stay is the shorter. Of course,
the measure here isn’t the physical distance on the diagram, it’s how many
hops it takes to get to the information.

RoomRate

Lodging

numOccupants

Stay

Room

* {ordered}

date

date

RoomCharge

chargeAmount

rate
1

1

*

1

*

Figure 14-1:
Initial class

diagram 
for the

GenerateBill
use case.
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When you can identify the central class for a use case or operation, you have
a head start in designing the collaboration. For example, as the interaction
among the classes kick off, much of the behavior will need to be focused on
how to find the correct instance of the central class. After it is found, this
instance will probably be the correct place to assign most of the work.
Knowing which class is the central class will allow you to focus your atten-
tion on the right place.

Now that we know that the central class is Stay, we need to design our
approach to finding the correct instance of Stay as the use case runs. From
the logic of the situation, it appears that the actor can be asked for the room
number. To help find the correct instance of the central class (Stay), we
create a HotelInventory class that acts as a container holding all the avail-
able rooms of the hotel. Its main behavior will be to find a particular Room
object given a room number. (Refer to Figure 14-3 later in this chapter to see
how this design-time container class is positioned.) The HotelInventory
container uses the qualifier roomNumber as an index to the Rooms. If you know
the roomNumber you can use the HotelInventory to find the Room you want.
(The use of qualifiers as indices on associations is discussed in Chapter 4.)

From the correct Room, the use case then needs to find the correct Stay. We
assume that the GenerateBill use case is normally started upon guest
checkout, so we can use the latest Stay associated with the Room. It’s possi-
ble to find the latest Stay from the Room, because the Stays are ordered
from the perspective of the Room (back to the {ordered} property on the
diagram).

Controlling a use case
Whenever you have a complex use case, you should consider which object
controls and organizes the required behavior. Typically, no existing object
from the initial class diagram will do. Though each object has its own natural
responsibilities that are found by analyzing the use case and the problem
domain, the control and organization responsibilities tend to be part of the
solution and need to be added. Following good design practice of keeping our
classes focused on doing one thing and doing it well, you shouldn’t add these
new responsibilities to any of the existing classes. Therefore, you need to
design a new class — a use-case controller class that will initiate and coordi-
nate the activities of the classes to meet the needs of the use case. Typically
in these circumstances, you would name the use-case controller class with
the name of the use case, GenerateBill, as you can see in Figure 14-3.

We recommend that you flag your controller classes with a special stereotype,
such as «use-case controller» or «control» to remind the designer of
the special features that controllers usually have. (We use «controller».)
For example, a use-case controller typically requires its own active thread at
run-time and is also ultimately responsible for the interaction with the actor.
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As you progress, you’ll often find other common design changes being made
to standard modeling approaches. For example, when you see an association
class, such as the Lodging class in Figure 14-1, you may need to convert it to a
class that lies as an intermediate class between the ends of the original associ-
ation (an inline class). You can see an example of how to do this in the sample
diagram of Figure 14-2. This diagram shows the trick of keeping the promoted
multiplicities correct. The outer multiplicities become inner multiplicities —
they switch sides on the promoted class — and the outer multiplicities are
replaced with 1.

Though there are other possible design/implementation approaches to associ-
ation classes, the transformation shown in Figure 14-2 is the most common
because it’s easy to implement and easy to make the objects live in a database.
We promote the association class Lodging in this manner in Figure 14-3.

Adding an output class
There is at least one more design class you need to add to the initial diagram
shown in Figure 14-1. Because our use-case GenerateBill produces a bill, you
must make sure that the Bill class is on the diagram. (Granted, that should be
obvious, but the lack of it is a common error found in many diagrams.) For
now, hang the Bill class off the use-case controller (as in Figure 14-3).

A C B

Typical Design Solution for Association Classes

1 2 * 1

A

C

B
* 2

Analysis Association Class

Figure 14-2:
Promoting

an
association
class to an

inline class.

231Chapter 14: Capturing How Objects Collaborate



Preparing the participants
Using the class diagram as a guide to designing the collaboration, you need
to select the appropriate participants. We use a UML object diagram (as
described in Chapter 7) or a UML composite structure diagram (as described
in Chapter 5). In order to make such a diagram, you identify the objects
(instances) that need to participate, or you convert the classes to parts. (You
can treat the participating instances as internal parts of the collaboration in
the same manner as you treat internal parts of a class using the treatment
found on composite structure diagrams that we discuss in Chapter 5.) The
parts use the same syntax as those of lifeline references as described in
Chapter 12.

The basic name of the part/lifeline references for these purposes is as follows:

referenceName[selectors] : className

The component pieces of this syntax are as follows:

� referenceName is the handle you use to refer to the part. It may be
the rolename of the participating object’s class, the name passed in a
parameter or local variable that contains the participating object. The

RoomRateStay

Room

* {ordered}

date

date

Hotel
Inventory

<<controller>>
GenerateBill

Bill

roomNumber

RoomCharge

chargeAmount

rate
1

1

0..1

1

*

*

1

1 1 *Lodging

numOccupants
Figure 14-3:

A class
diagram

incorporat-
ing initial

design for
GenerateBill.
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referenceName is optional, so you often see just the class name when
there is only one object for that class in the collaboration.

� selectors is an optional field that selects a particular object or objects
from a set. It may be a qualifier, an indexing subscript, or some Boolean
expression. You don’t need it if the referenceName refers to an object
with a multiplicity of one.

� className is the class or type of the participating object.

Figure 14-4 shows the participating parts of the communication diagrams for
the GenerateBill collaboration. In this diagram, the objects for the con-
troller class GenerateBill (which controls the use case) and the container
class HotelInventory (which contains and finds Rooms) don’t need any
referenceNames or selectors because they are unambiguous (there’s only
one of each of them). However, because there are many possible bills, you
need to identify a specific Bill. In this model, the specific Bill being con-
structed is given the name of newBill.

There are also many rooms in the HotelInventory. To identify the specific
Room, we’ve supplied a value rmNum as the selector. This corresponds to the
value of the qualifier roomNumber off of the HotelInventory. (Refer to
Figure 14-3.)

In the same manner, from the point of view of the [rmNum]:Room, there are
still many possible Stays. When you generate a Bill, it’s always for the most
recent Stay, so a selector of [latest] is used. Selectors like 1st, 2nd, last,
latest, and nth are only allowed when the underlying association between the
respective classes is an ordered or sorted association (as indicated by
{ordered} or {sorted} on the diagram). If the association is not ordered or
sorted, there’s no way of asking for a positional element in effect, it’s just a
set of elements without an order.

From the point of view of the [latest]:Stay, there are many Lodging
objects and RoomCharge objects. The [date] qualifier can address either
type of object, so you can use a value for date or a dateRange as your selec-
tor. As either type of object can have multiple instances, you can also put the
* multiplicity in the upper-right corner as a reminder.

Finally, the RoomRate class had a rolename of rate in the original class dia-
gram (see Figure 14-1). Use this rolename as the referenceName for the part
for consistency among the diagrams.

233Chapter 14: Capturing How Objects Collaborate



Constructing the Communication
Diagram

You place the messages used to perform the collaboration on the basic dia-
gram of the participants. Each message, which is a communication between a
sender object and a receiver object, is indicated on a line connecting the two
of them.

The whole diagram is enclosed in a frame and you use the abbreviation sd to
stand for your communication diagram.

You may be wondering why the abbreviation for a communication diagram is
sd and not cd. We’ve wondered about that, too — and we’ve complained.
Looks like this must have been one of those silly compromises that got made
when the UML gurus got too tired. They wanted all the interaction diagrams to
have the same abbreviation — to simplify things. And they didn’t want to use
id or int because they thought those would be confusing. That’s why we have
to live with sd as the abbreviation for sequence diagram, communication dia-
gram, timing diagram, and interaction-overview diagram. The gurus can always
justify using sd by saying that a communication diagram is a type of sequence
diagram. With any luck, an early revision to UML 2 may yet fix it. In the 

[dateRange]
:RoomCharge

rate
:RoomRate[latest]:Stay

[rmNum]
:Room

:Hotel
Inventory:GenerateBill

newBill
:Bill

*

[dateRange]
:Lodging

*
Figure 14-4:

The
participants

of the
GenerateBill

collabora-
tion.
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meantime, if all that ambiguity bothers you, you may want to use cd as your
abbreviation for communication diagram (provided your UML tool allows it).

The name of the communication diagram is the name of the use case or oper-
ation that you are diagramming. Because you are typically doing design when
you make a communication diagram, you should consider taking a more
formal approach to documenting the arguments and return values of the
interaction. In Figure 14-5, we name the interaction based on the use-case
name GenerateBill(rmNum:RoomNumber, out newBill:Bill).

With this as a name, you indicate that the GenerateBill interaction takes a
RoomNumber as input argument — and that inside the interaction, this argu-
ment is called rmNum. There is also an output argument (of type Bill) that
will be called newBill inside the interaction. Normally, if you create an
object inside an interaction and it has to be visible outside, you also indicate
it as an out argument or a return.

Numbering steps sequentially
Message syntax on a communication diagram is essentially the same as for
the sequence diagram. (You can find more information on this syntax in
Chapter 12.) The first key difference you notice is that on your communica-
tion diagram, the messages are numbered — and each message is executed in
sequential order. By examining Figure 14-5, you can see that the following
steps are executed in this order:

1. thisRoom=getRoom(rmNum): First, the GenerateBill controller asks
the HotelInventory container class to find the correct Room object
with the given rmNum. The correct object is returned and placed in an
attribute within the GenerateBill controller named thisRoom. The
HotelInventory object can find the correct Room because this relation-
ship is indexed/qualified by roomNumber (See the Figure 14-3).

2. occFlag=isOccupied(today): Next, the GenerateBill controller
queries the Room to see if it isOccupied(today). The GenerateBill con-
troller can send the message to the room because the query is called on
the Room object that is was returned from call #1.The notation thisRoom
at the end of the message line reminds you of the way the GenerateBill
controller knows about the object. The results from the query are
returned and stored in an occFlag (short for occupationFlag), which
is a local attribute of the GenerateBill controller.

This is a good example of how designing the messages can cause struc-
tural changes to the class diagram. Because the GenerateBill now
knows about a Room object, we may decide that there is a link between
the two objects. We cover this and other approaches in Table 14-1.
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3. [occFlag] newBill = Bill(thisRoom, controller=self): Next,
the GenerateBill controller queries the Bill and tells it how to find
the room by passing it the thisRoom argument. The controller has this
value because call #1 returns it. But, before the call can be initiated, the
controller checks the guard condition [occFlag], which was returned
from call #2. If the call is performed, the Bill object is returned as
newBill, which matches the return argument of the interaction.

The controller also creates a reference to itself and passes that to the
Bill. This reference will be used in the next call (call #4) so the Bill
can find the controller again. Self is a reserved keyword, representing
the calling or executing object.

4. billReady(self): Lastly, the Bill object calls the billReady() opera-
tion on the GenerateBill controller and passes a reference to itself
back to the controller. The Bill is able to find the controller because
the controller was passed in call # 3.

Outlining procedural calls
Communication diagrams give you the numbering capabilities to display graph-
ically the calls to operations — and then the calls from those called operations,
and (in turn) the calls from the operations they call, and so on. If you can keep
your head from spinning, you can identify as many levels of calls and opera-
tions as you need (or at least as many as will fit on the diagram).

This miracle is done by using a tool you’ve seen if you’ve ever examined a table
of contents: an outline-numbering scheme. If an object gets a message to exe-
cute an operation that is numbered 3:, any messages it then issues (numbered

[rmNum]
:Room

:Hotel
Inventory

1:thisRoom=getRoom(rmNum)

sd GenerateBill(rmNum:RoomNumber, out newBill:Bill)

:GenerateBill

newBill
:Bill

2:occFlag=isOccupied(today)

3[occFlag]:
 newBill=Bill(thisRoom,
  controller=self)

4:billReady
 (self)

thisRoom

controller

Figure 14-5:
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commu-
nication
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3.1:, 3.2:, or 3.3:) are subordinate messages because they’re issued within
the context of 3:. Accordingly, any message starting 3.x: must complete its
business before the top 3: message can be considered complete. This follows
the traditional outline numbering pattern shown below:

3:
3.1:
3.2:

3.2.1:
3.2.2:

3.3:
3.4:

4:

In Figure 14-6, we use some outline numbering of the messages. Examine (for
example) message 2, where the GenerateBill controller asks the Room object
if it isOccupied. To accomplish this work, the Room object also calls an opera-
tion on another object; in this case, it calls an operation on the latest Stay
object ([latest]:Stay). Because this operation is subordinate, it needs a
lower-level outline number. You would use 2.1, because this is the first (and
only in this case) subordinate operation within operation 2. In the example, this
operation on the Stay returns an occFlag to the Room if the latest stay included
today. The Room, in turn, returns the occFlag back to the GenerateBill con-
troller. When you use this outline-style technique of numbering, you can detail
how each operation works and calculate results for its caller.

[rmNum]
:Room

[latest]:Stay

:Hotel
Inventory

1:thisRoom=getRoom(rmNum)

sd GenerateBill(rmNum:RoomNumber, out newBill:Bill)

:GenerateBill

newBill
:Bill

3.4.1*:getLodgingCharge

3.1:thisStay=getStay(today)

2:occFlag=isOccupied(today)

2.1:occFlag=isincluded(today)

3.2: party=getParty()

3.3: getDayRange(sd=startDate, ed=endDate)

3.4: getTotalCharges(sd, ed)

3[occFlag]:
 newBill=Bill(thisRoom,
  controller=self)

4:billReady
 (self)

thisRoom

thisRoom

thisStay

controller

[thisDay]
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Message 3: also has some subordinate steps:

3[occFlag]: newBill = Bill(thisRoom, controller=self)
3.1: thisStay = getStay(today)
3.2: party = getParty
3.3: getDayRange(Bill.sd = sd : startDate,

Bill.ed = ed : endDate)
3.4: getTotalCharges(sd, ed)

3.4.1*: getLodgingCharge()

This sequence of messages is governed by the guard condition on message 3.
If the [occflag] is false, the whole sequence beginning with 3 is skipped. If
[occFlag] is true, then message 3 is sent to create the Bill. Then (as the
diagram says), the Bill sends message 3.1 to the Room and follows up with
message 3.2, 3.3, and 3.4 to the Stay. As any number of levels can be used,
message 3.4.1* getLodgingCharge() is sent by the Stay to the Lodging.

Looping
In Figure 14-6, you may see that there is a message with an * in the sequence
number, 3.4.1*: getLodgingCharge(). This * indicates that many
instances of that message are sent with that same number. We recommend
thinking of this * as a multiplicity indicator, similar to that used on UML asso-
ciations. If there’s just a *, it indicates that the message is to be repeated as
often as needed. If you repeat a message, then you also repeat all its subordi-
nate messages.

If you want to have the message repeated a specific number of times, the
syntax is as follows:

SequenceNumber*[iteration clause]:

The iteration clause has several common forms:

� Boolean expression: The expression repeats as long as the expression is
True. A message such as 3*[isMoreNeeded] would continue until
isMoreNeeded=False.

� loopVariable=lowerLimit..upperLimit: This expression initializes the
loopVariable to the lowerLimit and sends the message. Then the
loopVariable is incremented and tested against the upperLimit. As
long as the loopVariable is in range, the message is sent again. These
upper and lower limits may be integers or ordered enumerations of
values. For example, the messages 4*[thisMonth=Jan..Dec] and
4*[thisMonthNumber=1..12] would both execute 12 times.
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� Codelike looping syntax: UML allows you to write the iteration clause
using the target programming language. Although there is some value to
this practice, I wouldn’t recommend tying your model to your program-
ming language; after all, the language could change in the future. Also,
your UML tool may not understand the syntax exactly — so it probably
won’t generate high-quality code.

In Figure 14-7, I’ve used the loopVariable approach in two locations. Look
at message 3.3 from the Bill to the Stay. This tells us how the returned out
arguments (sd and ed) are set and where their results go. Upon return, the
two arguments, that of sd and ed, are set to the startDate attribute of the
Stay and the endDate attribute for the Stay. Then, these values are saved in
the Bill as Bill.sd and Bill.ed. Later, in message 3.4*, the Bill uses the
sd and ed as (respectively) the lower and upper limit for a loop. The Bill
sets up a loop with a loopVariable of thisDay and asks the Stay to retrieve
the total charges for this day, via the call 3.4*[thisDay=sd..ed]:
getTotalCharges(thisDay). 

Message 3.4.1 is sent inside this loop to [thisDay]:Lodging, which illus-
trates that the loopIndex value, thisDay, (being passed in as a parameter in
3.4*) is being used by the Stay to find (or select) the correct Lodging.
Within 3.4.1, the Lodging asks the RoomRate object for information on the
rate. Every time the 3.4 loop iterates, you have message 3.4.1 sent, and
then message 3.4.1.1 is sent.

[rmNum]
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[thisDay]
:Lodging

rate
:RoomRate
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:Hotel
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1:thisRoom=getRoom(rmNum)
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Looping or selecting?
Often an ambiguity can crop up when you send
multiple messages to a specific lifeline (a part
reference) on of a communication diagram. A
lifeline refers to a participating instance, but the
naming structure allows the reference to point
to different instances in each loop iteration.
Such a sending could mean that there are many
messages, each sent to a separate instance, or
it could mean that there are many messages, all
sent to the same instance. Fortunately, you have
several ways of trying to clear up this problem.

One common approach that was possible in
UML 1.x was to indicate that the destination is a
multiobject. Unfortunately, the UML gurus have
eliminated this feature from UML 2, but many
tools will still support it and it may be re-inserted

in UML 2.1.This technique involves making the
target lifeline box look as if there’s a stack of
objects slightly offset. I’ve used this approach
in Figure 14-6 on the Lodging. When you use
this notation coupled with an * in the incoming
message, you’re indicating that the loop of mes-
sages is over different objects in the set.

A better solution, though only possible when you
are using an explicit loop counter, is to make the
loopVariable part of the selector of the life-
line. As an example, imagine that you want to
create an array of the number of working days
per month for a payrollCalculator. In the
figure in this sidebar, there is a message that
loops over the months and asks each month for
the number of working days.

:payrollCalculator

[thisMonth]:
Month

4.1 *[thisMonth=1..12] : wrkDays(thisMonth) = getWorkingDays(

Note carefully that the loop index is used as the
selector of the Month — and as the subscript
of the return value from the call. This technique
is very powerful; it allows specific identification
of the elements of target lifelines, arrays, or any
ordered collection. Of course, you can only use
the loopVariable as a selector if the lifeline
(in this case, the Month) is ordered in one of
two ways:

� As an array, where the specific elements
are indexed or referenced by a numerical
value, such as 1..12

� Addressable by an enumerated qualifier
that already has a defined order, such as
the values, Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec

You may have to go back to the class diagram
that contains the Month class and make sure
that there is such a qualifier or an ordered rela-
tionship that you can traverse to find the correct
month.



Messages 3.4.2 and 3.4.3 are also sent within the 3.4 loop. Message
3.4.2 is an operation call sent by the Stay to itself, to return the number of
Charge objects associated with it for the current day
getNumCharges(thisDay). The result returns as numCharge.

This result is then used to construct another loop — an inner loop that uses
the index thisCharge and loops from 1 to the numCharges. As both loops —
thisDay and thisCharge — are going on at the same time, you can use both
loop indices to select the charge on which you want to operate.

Conquering Concurrency
Normally when you construct communication diagrams, the messages are all
sequential — you can use a traditional, outline-style numbering scheme to
indicate the order of the messages, and only one message is ever active at a
time. Of course, in sophisticated multithreaded systems, you may have multi-
ple threads running at once. If you refer to Figure 14-7, for example, you can
see that the Bill object, when it has to return information to the
GenerateBill object, does so with a call back to the GenerateBill rather
than with a traditional return. We designed it this way because the Bill has
lots of work to do that doesn’t involve the GenerateBill. If we can free up
the GenerateBill controller, it may be able to work with other guests to
generate other bills while our Bill is busy. We treat Bill an active object
that has its own thread of control distinct from that of the use case so the
two objects can run independently.

Whenever you have a class or object that owns its own thread of control that
it is able to run independently of its caller, you have an active object. You
might want to use an optional notation on the Bill object to indicate that it
is an active object. You indicate this by placing parallel, vertical bars next to
the left and right sides of the class or object box (as in Figure 14-8).

We’ve been throwing the words concurrency and concurrently around a bit —
and yes, you could run to the nearest dictionary and come up with a defini-
tion for them. Here, however, concurrency has a formal meaning in computer
science and the world of UML — one that differs slightly from its everyday
meaning.

If two events, A and B, are concurrent, the following must be true:

� There is no causal relationship between A an B (neither causes the
other).

� A can occur before B, or B can occur before A.

� A and B can occur simultaneously (it’s not logically impossible).
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A and B don’t have to run simultaneously — in fact, that’s pretty rare, and it
often has more to do with how precisely you record your time. And in single
processors, A and B can’t really run simultaneously, unless they swap in and
out in a time-sharing way.

Looping concurrently
Whenever you indicate a loop in UML, the normal interpretation is that each
iteration of the loop runs sequentially: The first iteration runs and finishes, and
then next iteration runs and finishes, and so on until the last iteration. Often,
however, this interpretation is overly restrictive — and not strictly necessary. If
the results of the loop would be the same, no matter what the order of iteration
(say, counting down instead of up), then you may be able to make all the itera-
tions run concurrently. On some hardware, the compiler automatically detects
whether the results of an iteration depend on the order — if they don’t, the
compiler forwards each iteration to a parallel processor.

If you want to have the loop iterations run independently and concurrently,
use the following syntax:

3.4*||(loopIndex=lowValue..HighValue): msg()

Adding the two bars indicates that you want the iterations of the loop done
concurrently (or in parallel — in which case, the bars are parallel ). Adding
the bars doesn’t guarantee that the implementation will be done that way —
after all, it’s sometimes a platform consideration. For example, some plat-
forms can’t do parallel loops at all, and some can do no more than 255 at a
time. But adding the bars does signal your intent that no loop iteration
depend on any other — and that you prefer a parallel implementation. You
can see an example of this concurrent looping in Figure 14-8 if you look at the
following message:

3.4b.2*||[thisCharge=1..numCharges]:
rc[thisCharge] = getRoomCharge()

The getRoomCharge() is a simple retrieval operation, so all the charges are
retrieved at once (concurrently) and stored into a local array called rc[]. We
show the assignment to rc[thisCharge] because we are using the
lifeline/part notation and [thisCharge] is the selector (or qualifier) that
indicates which object we are setting. (Ignore the b in the message number; it
indicates a thread, which we explain later in this chapter.)
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Identifying independent threads
If you work with multi-threaded systems, you may want to be explicit about
concurrent processes. In UML, if you want to indicate that messages are to be
sent concurrently, you have to give them the same sequence number. But to
distinguish them, you give them individual names. For example, the following
three messages would be sent concurrently, as they all share the same
sequence number 4.1.

4.1cotton:       msg1()
4.1nylon:        msg2()
4.1polyester:    msg3()

All three threads run concurrently. Each of the different threads has a charac-
ter string tag that can be used to identify it (cotton, nylon, or polyester).
If you don’t sew, you can use thread names like a, b, or c.

The thread names are useful because you still want to be able to identify sub-
ordinate messages on a communication diagram. For example, the following
message executions have to obey the rules that govern subordinate sequence
numbers:

[rmNum]
:Room

[thisDay]
:Lodging

rate
:RoomRate

[latest]:Stay

:Hotel
Inventory

1:thisRoom=getRoom(rmNum)

sd GenerateBill(rmNum:RoomNumber, out newBill:Bill)

:GenerateBill

newBill
:Bill

[thisDay,thisCharge]
:RoomCharge

3.4.1*:getLodgingCharge

3.1:thisStay=getStay(today)

2:occFlag=isOccupied(today)

2.1:occFlag=isIncluded(today)

3.4.1.1
dayRate=
getRoomRate()

3.4.2: numCharges=getNumCharges(thisDay)

3.4b.2*|| [thisCharge=1..numCharges]:
 rc[thisCharge]=getRoomCharge()

3.2: party=getParty()

3.3: getDayRange(Bill.sd=sd : startDate, 

 Bill.ed=ed : endDate)

3.4a*: [thisDay=sd..ed]:

 getLodgingCharges(thisDay)

3.4b*: [thisDay=sd..ed]:

 getRoomCharges(thisDay)

3[occFlag]:
 newBill=Bill(thisRoom,
  controller=self)

4:billReady
 (self)

thisRoom

thisRoom

thisStay

controller

Figure 14-8:
A communi-

cation
diagram
showing

concurrency.
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4.1cotton: 
4.1cotton.1:
4.1cotton.2:
4.1cotton.2.1:
4.1nylon:
4.1nylon.1:
4.1nylon.1.1:
4.1nylon.1.2:
4.1polyester:

These rules require that 4.1cotton.1: finishes before 4.1cotton.2: can
start. And before 4.1cotton.2: can finish, 4.1cotton.2.1: must finish. To
have 4.1cotton:: finish, 4.1cotton.2: must finish also. 

A similar ordering occurs with the nylon thread. However, because the two
threads are concurrent, you can’t say anything about the relative order of any
cotton message or nylon message. You could have 4.1nylon.1.2: running
before 4.1cotton.1: finishes or vice versa.

In Figure 14-8, there are two independent threads: 

3.4a*[thisDay=sd..ed]: getLodgingCharges(thisDay)
3.4b*[thisDay=sd..ed]: getRoomCharges(thisDay)

In each thread, there is a loop over the number of days in the stay. Because
each loop is a normal loop, each iteration of each loop occurs in order. But
because the two loops are concurrent, the two loops are not in synch and
could finish in any order.

In both threads, there are subordinate steps. In the 3.4a thread, for each iter-
ation of the loop there is a call to the Lodging and the Lodging then calls the
RoomRate. In the 3.4b thread, concurrent with the 3.4a thread, each itera-
tion of the loop has the Stay asking itself for the number of charges and then
in a parallel loop, asking the RoomCharges for their values.

Capturing the Collaboration’s Design
Each step you take to add detail and flesh out the steps in the communication
diagram captures more information on how the collaboration works. Some of
this design detail requires the underlying classes or associations to change
their definitions. You have to go back to the class diagram and make sure that
the features from the communication diagram map to the features of your class
diagrams, as detailed in Table 14-1. Your tool may automate some of this map-
ping — updating one diagram may automatically update the others. You want
to be sure that the communication diagrams and the class diagrams are consis-
tent; they should be different views of the same underlying model. So in the
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table below we list several of the possible communication diagram design fea-
tures, and we tell you what these features would be in the class diagram. By
looking at Figures 14-8 and 14-9, you’ll see how we did the mapping in practice.

Table 14-1 Mapping Communication Diagram 
Features to Class Design

Communication Mapping to Class Design
Diagram Feature

Message name Target class must have an operation (or a signal reception) by
that name.

Argument list Argument lists on the class’s operations/signals must match
the communication diagram, in direction, type, number, name,
and order. It’s not required that the argument list be dupli-
cated. Argument values may be used on the communication
diagram if they can be matched directly and are compatible
with the arguments of the class.

Return assignments If you assign a named value, the results of a message
return value must match the type of the return value from
the operation.

The named value must be an attribute or local variable of the
calling class. If the named value is only used by that object
within its current operation, you may use a local variable. If
used in subsequent operations, or required to be persistent
(live in a database), make it an attribute.

Selectors / qualifiers Check to see if the relationship has a qualifier or is
{ordered}.

Call direction If during an operation on A, A invokes another operation on B,
it must know about B. It can do this because of a link, or a
parameter being passed to A that references B, a return
value to A referencing B, or because B is in a well-known
(global) location.

If the knowledge about B needs to be remembered for other
operations on A, or is persistent, the best solution is a link.
Otherwise, it may be possible to store a reference to B locally
for the duration of A’s operation. When in doubt, use a link.

Only a unidirectional link is needed from A to B. The reverse
direction is needed only if B calls an operation on A.

In Figure 14-9, we’ve applied the guidelines of Table 14-1 to the details of the
communication diagram shown earlier in Figure 14-8. Whenever there was a
choice in identifying a feature as an attribute (as opposed to a local variable),
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we chose an attribute, primarily because it made it visible on the diagram.
When you do this work of abstracting the design, you’ll need to be more dis-
criminating. You only need to use attributes if the knowledge of the value or
reference is persistent across calls. 

If you have multiple interactions or scenarios to describe for this collabora-
tion, incorporate the features from all the communication (and sequence or
timing) diagrams used to detail the interactions.
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Chapter 15

Capturing the Patterns of Behavior
In This Chapter
� Defining patterns and frameworks

� Developing your own patterns

� Using UML to document your patterns

Your object-oriented software succeeds because objects work together —
they collaborate. Out of this collaboration emerges the functionality of

your application. While developing applications, you’ve probably experienced
déjà vu — you know, the sense that you’ve seen this program before. Many of
your fellow practitioners capture these frequent programming solutions and
call them patterns or frameworks — reusable solutions to common problems.
In this chapter, we show you how to develop and document patterns and
frameworks so you too can communicate your reusable models and designs.

Describing Patterns with Collaborations
You don’t want to reinvent the proverbial wheel. In the old days, craftsmen
built a physical template for a wagon wheel into the floor of a barn. They’d
reuse the template or pattern to create a new wheel by bending wood to fit
the framework etched in the floor. Builders, craftsmen, and engineers use the
same basic approach to solving hard problems — they develop a pattern,
using the following steps:

1. Build ad-hoc solutions to a development problem.

The answer to a complex problem requires you to make a choice among
competing alternatives. You build different solutions when you’re not
sure what works best or which solution offers the best results.



For example, suppose you must write software that constructs a com-
plex assembly for a CAD/CAM (Computer-Aided Design/Computer-Aided
Manufacturing) application. You must program two behaviors: the
process of constructing the whole assembly (an air-filter unit) and the
creation of each part in the assembly. The first thing you do is build 
several different software solutions to assemble air-filter units for the
CAD/CAM application. These two bits of behavior can be programmed in
many ways, and you need to try several solutions to see which one
works best.

2. Find the solution that works best in different situations.

In our running CAD/CAM example, the most successful solution to
putting together a complex assembly is found by separating the two
behaviors into different classes. You need a class that represents the
assembly of an air-filter unit and a class that knows the process of con-
structing an air-filter unit.

3. Abstract commonality out of your best solutions.

Find and extract the important common features (classes, attributes,
operations, associations) of your solutions and make the solution as
general as possible. Base your decisions on practice, not on theory.
Look at balancing such competing factors as cost to build, time to build,
and performance of the resulting solution.

In the CAD/CAM software example, the common features of successful
solutions are as follows:

• Provide a class that directs the construction of the whole assem-
bly. A Director class knows how to direct the assembly of air-
filter units. The Director does not actually build each part, just
knows which part to build in what order to build the parts making
up the assembly.

• Define a common interface for building each part. The interface
must capture the operation signature (see Chapter 3) for building
an assembly so we’ll call the interface Builder.

• Supply a specific class that knows how to build individual parts
for the whole assembly. Since this class actually knows how to
build individual parts for the assembly it gets the name
ConcreteBuilder.

4. Create a pattern that describes the abstractions you developed 
in Step 3.

Providing other developers with a pattern description helps you com-
municate clearly what works.

5. Reuse the pattern in the appropriate situations to boost productivity
and build high-quality solutions.
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Defining and classifying patterns
A pattern is basically a template solution to a problem. Patterns can be vital
to the development process — but they’re only effective if they’re presented
clearly and consistently.

When you describe a pattern, provide your fellow developers with the follow-
ing information:

� Pattern name: Give your pattern a memorable name that matches its
purpose.

� Problem description: You tell others just what problem this pattern
solves. Provide your readers with information about the context of the
problem, when to consider using your pattern, and how to recognize
whether the problem they have is one to which your pattern provides
an answer.

� Solution description: Here you describe the classes, how they collabo-
rate, their associations, their constraints, and the job of each class.

� Consequences of the solution: Every one of your patterns has positive
and negative aspects. Don’t forget to tell other developers about any
issues they must face as a result of choosing to use your pattern.

Patterns occur at many different levels of complexity. The three most impor-
tant levels for complexity are given the following names:

� Pattern: A pattern is a solution to a small software problem that devel-
opers face over and over again in the construction of an application. A
well-built application utilizes many patterns to solve modeling problems
during analysis and construction issues at design time.

� Framework: A pattern for an entire application is known as a framework.
Frameworks are “almost complete” applications; decisions about the
structure of the application, specific classes, their behavior, and flow of
control through the application are already made and in place. Just plug
in a few of your own classes to employ the framework for your applica-
tion’s requirements.

� Architectural framework: A pattern for an entire system composed of
many applications is known as an architectural framework. On a grand
scale, you use architectural frameworks to bind many applications into a
whole system of subsystems. An architectural framework could be a
group of application frameworks, but it does not have to be. The impor-
tant thing about architecture frameworks is that they describe how the
individual subsystems work together. At this level, the architectural
framework provides guidelines that specify responsibilities and interac-
tions for each of your subsystems/applications.
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For lots more information on patterns, check out the Hillside Group at
http://hillside.net/.

Using composite structure diagrams
You use a special composite structure diagram to describe a pattern. The com-
posite structure diagram shows a “collaboration” and the parts that play dif-
ferent roles in the pattern. A collaboration is a group of objects interacting
together to accomplish some functionality. (For more on composite structure
diagrams, see Chapter 5.)

You show a pattern with a collaboration symbol and an internal structure:

� Collaboration symbol: A collaboration symbol is a large dashed oval
shape. (Be prepared to make it large.) At the top of and inside the
dashed oval, you place the name of the collaboration (that is, your pat-
tern’s name). Use a dashed line to separate the pattern’s name from its
internal structure.

� Internal structure: Place each element of your pattern inside the dashed
oval. Be prepared to make the elements small if you didn’t make the oval
large enough. When illustrating a pattern, be sure to attend to the follow-
ing issues:

• Draw a composite structure diagram: When you show the ele-
ments of your pattern, you use a composite structure diagram.
These diagrams consist of parts and connections. Parts are simply
classes shown inside another class. Connections are special kinds
of associations shown inside a class. See Chapter 5 for more
details.

• Show each major class of your pattern as a part: You draw each
part as a box with the name of the part inside. I name the parts
after the role each part plays in the pattern.

• Show connections between the parts: If you have an association
between the classes in your pattern, show them as connections
between the parts. To show a connection, draw a line between the
two parts that must communicate. Add any multiplicity constraints
on the connection; put them between the parts. Don’t forget to
name the connection, just as you name associations. This helps
others to understand what’s going on.

• Decide whether to use an interface: If your pattern calls for inher-
itance and abstract operations in a superclass, then use an inter-
face. Instead of a superclass, you attach a provider interface to the
subclass; the provider-interface symbol is a lollipop or a small
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circle attached to a line. The line joins up with whichever internal
part provides the attributes and operations defined by the inter-
face. For the part that actually invokes those operations, you show
a required-interface symbol — half a circle attached to a line —
and use the line to connect the required-interface symbol to the
part that does the invoking. When that’s done, you simply connect
the required-interface symbol to the provider-interface symbol.
When you’re done, it looks like a ball-and-socket joint. (See Figure
15-1 for an example.)

Composite structure diagrams don’t allow generalizations, so you can’t use
them to show an inheritance hierarchy. Use an interface symbol instead. (See
Chapter 5 for more on composite structure diagrams and Chapter 6 for more
on generalization and inheritance.)

UML 2 has a notation for expressing patterns. It’s called a composite structure
diagram with collaboration. If you’re familiar with UML 1.x, don’t confuse this
diagram type with the old collaboration diagram. UML 2 doesn’t actually
have a collaboration diagram. Instead, UML 2 renames the old UML 1.x collab-
oration diagram and calls it a communication diagram. (See Chapter 14 for
more information on communication diagrams.) Collaboration means the
structure depicted in a static diagram that shows the relationship among
classes that serve as parts working together to accomplish some collective
behavior, but the diagram doesn’t specify how they collaborate.

Looking at a common design pattern
Figure 15-1 illustrates the design pattern known as Builder that developers
frequently use. You see a large dashed oval with the name of the pattern at
the top. The Builder design pattern consists of three primary classes and
two interfaces — a provider interface and a required interface. The Director
knows what to build and when to build it. The ConcreteBuilder knows how
to construct a particular Product. The pattern also includes the Builder
provider interface and the Builder required interface. An instance of the
Director invokes operations on instances of a ConcreteBuilder defined in
the Builder interface. The provider interface is shown with the Builder
name above as a small closed circle attached to the ConcreteBuilder. The
required interface is shown with the same Builder name above an open
circle (socket) attached to the Director. An instance of ConcreteBuilder
then invokes known operations on the Product class to construct instances
of the parts that eventually make up the Product.

If you document design patterns and you have to deal with inheritance (gen-
eralization), use an interface to capture the abstract superclass.
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Applying Patterns
The diagram in Figure 15-1 shows you who’s involved in a collaboration, but
it doesn’t provide much detail about the attributes and operations of the indi-
vidual classes you must construct before you can use the pattern for your-
self. To help you and others with using patterns, you need to show a specific
example fitting your own classes into the pattern or template. In UML 2, the
example you build to show others how you are using a pattern is known as a
collaboration occurrence.

You use collaboration occurrences to show details of how you apply a pattern
to your specific application. You show a collaboration occurrence by placing
the name of the occurrence and a colon in front of the name of the collabora-
tion. For example, if you use the builder pattern to build air-filter units, you
would name the collaboration occurrence as AirFilterUnit:Builder.

Instead of showing everything inside a large dashed oval, you can show a col-
laboration or collaboration occurrence as a small dashed oval, connected to
each class via dashed lines. The role that each class plays in the collabora-
tion appears on the dashed line, next to the name of the class playing the
role. Use this form of collaboration to show details of the participating
classes’ attributes and operations.

Using the Builder pattern
Figure 15-2 shows you an example of the Builder pattern for building air-
filter units. You notice the AirFilterUnit: Builder name in the small
dashed oval indicates this is an example — a collaboration occurrence. The
example uses the alternative form of a collaboration occurrence. The classes,
important attributes, and operations for this use of the Builder pattern look
like this:

Director

Product

ConcreteBuilder

Builder

Builder

constructs
11

Figure 15-1:
Collabo-

ration
showing the

Builder
design

pattern.
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� The AirFilterConstructor class plays the role of Director in the
Builder pattern. To follow the Builder pattern, you must provide the
class that plays the role of Director with a construct operation. 

� Only a class stereotyped as an interface can play the role of Builder
in the pattern. (Remember a class stereotyped as an interface is a spe-
cial kind of class that specifies a contract that other classes must per-
form if they are to realize the interface.) Any class that supports the
Builder interface must have an assembly attribute, along with a refer-
ence datatype that references an instance of the Product being built. 

� The Builder interface also requires the implementation of a buildPart
operation.

� The AirFilterUnitBuilder class plays the role of the
ConcreteBuilder, thus providing a getResult() : AirFilterUnit
operation. That operation returns an instance of the AirfilterUnit
class, which plays the role of the Product in this pattern.

AirFilterConstructor

construct ()

AirFilterUnit :
Builder

AirFilterUnit

AirFilterUnitBuilder

getResult() : AirFilterUnit

«interface»
Builder

buildPart ()

assembly : Product

Product

ConcreteBuilder

Builder

Director

Figure 15-2:
Alternative

form for
showing 
a collab-

oration
occurrence.
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Showing object interaction
Whenever you document a pattern, you have to show how the objects play-
ing various roles interact. You can use a sequence diagram or communication
diagram to document the nature of the interaction between parts of a 
collaboration.

Figure 15-3, for example, is a sequence diagram that shows the Builder pat-
tern interaction. Play by play, it looks like this:

1. the: Client creates an instance of ConcreteBuilder called
aConcreteBuilder.

2. the: Client creates an instance called a of type Director, and passes
it a reference to the aConcreteBuilder instance just made in Step 1.

3. The instance a: Director turns around and asks aConcreteBuilder
to buildPart. 

4. The sequence gets into a loop where the Director instance asks the
ConcreteBuilder instance to build all the parts that are necessary
until the assembly is complete.

5. After the assembly is constructed, the: Client invokes the getResult
operation on aConcreteBuilder : ConcreteBuilder. 

6. A constructed instance of the Product is returned to the: Client.

the : Client

create (aConcreteBuilder)
a : Director

aConcreteBuilder :
ConcreteBuilder

loop 1,* [not complete]

sd builder interaction

getResult

buildPart

product

Figure 15-3:
Sequence

diagram for
the Builder

design
pattern.
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Framing Frameworks
Patterns help you solve small problems when you develop an application.
Frameworks provide you with an “almost complete” application. For example
MacApp provides you with a framework for building applications on an Apple
Macintosh machine. You’ll notice some frameworks provide a solution for
some important part of an application (frameworks that focus on the user
interface design or a framework for accessing data in a relational database).

Frameworks also include special classes known as hotspots, which are the
places in the framework that must change to bend the framework to your
will. When you use a framework, you must develop classes and code for each
hotspot. (For example, a reservation framework would have a hotspot for the
specific commodity that a “reserver” can reserve.) You must provide the
class definition that conforms to the commodity hotspot. For example, if you
build a hotel-reservation system, then the commodity you provide is the
room that a potential guest reserves.

Building your own application framework is hard to do. Many developers
have tried and failed. Good application frameworks involve many classes,
multiple use cases, various hotspots, and intricate interactions — all of
which require lots of documentation. (For example, the MacApp documenta-
tion runs to almost 20 megabytes.)

Should you choose to develop a framework as the basis for your application,
you have to document the following information:

� Who’s involved: You need a class diagram to help others understand
the details of each class involved in the framework.

� Where you plug in to a hotspot: Each hotspot of the framework must be
described so you can build customized classes that conform to the
framework.

� Collaborations: Instances of the most important classes collaborate to
accomplish the job of the framework. You should provide composite
structure diagrams that show the roles each major class plays in the
framework.

� How the collaborating objects interact: At runtime, the objects of your
framework must interact to accomplish the functionality of your “mini-
application.” Use sequence, activity, and communication diagrams to
show the most important interactions.

� Control mechanism: If your framework uses events, interrupts, and
other such ways of controlling the application, then your framework
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documentation must include these details. For example, if the frame-
work is event-driven, use a state machine diagram to describe the timing
and control of the major application-oriented events. (See Chapter 16 for
more on the state machine diagram. See Chapter 17 for more on events
and interrupts.)

Frameworks can be quite complex. The often involve patterns of patterns. For
example, Figure 15-4 illustrates a simple ownership collaboration. Figure 15-5
shows a reservation pattern that incorporates the ownership pattern twice.

The ownership pattern itself is simple, incorporating only two parts — the
part playing the role of owner and the part playing the role of the property
owned. What we haven’t shown in Figure 15-4 is the morass of details — any
attributes, operations, and significant interactions between instances of the
Owner class and instances of the Property class. You would see those in the
alternative form of the collaboration, or in a simple class diagram.

For our reservation example, the important classes in any reservation play
the following roles:

� Reserver: This entity in the collaboration reserves the commodity by
placing a reservation with the renter.

� Commodity: The item being rented such (as a videotape, a crash dummy,
or a room in a hotel) is known as the commodity being reserved.

� Guarantee: The owner of the commodity must have some guarantee of
payment. This guarantee often takes the form of a credit card or cash.

� Renter: The renter offers a commodity for reservation by a reserver.

Figure 15-5 shows the Reservation collaboration with all these elements. We
also show you that the Reserver plays the role of Owner in the Ownership
collaboration. Here the Guarantee is the Property of the Reserver in the
Ownership collaboration. You can also see that the Renter and the
Commodity play roles in their own Ownership collaboration.

Owner Property

Ownership

owns

Figure 15-4:
The

ownership
collabo-

ration.
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Frameworks can be very complex. Even simple examples of frameworks
involve collaborations involving other collaborations. Strive to keep your dia-
grams as simple as possible, while still communicating to other developers
what they have to know when they use your pattern or framework.

Figure 15-6 applies the Reservation collaboration to the specific occurrence
of reserving rooms in a hotel with a credit card. The Potential Guest class
plays the role of Reserver, the Room plays the role of Commodity in hotel
reservations, the Hotel plays the role of Owner, and the Credit Card plays
the role of Guarantee.

If you want to make the Reservation collaboration a usable framework, then
you also have to show the following:

� A use-case diagram with descriptions of each use of the reservations
system for each actor.

� A class diagram describing each class in the framework, especially the
key classes shown in the collaboration occurrence of Figure 15-6.

� A component diagram showing the components of your framework and
their interfaces.

� A series of sequence and communication diagrams telling other devel-
opers how each major use case is accomplished through the collabora-
tion of the classes in the framework.

Guarantee

Renter

Reserver

Commodity[1..*]

Ownership

Reservation

Ownership

Owner

payment
held by

reserves

Owner Property

Property

Figure 15-5:
The

reservation
collabo-

ration.
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name hotel:
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Room [1..*]

Hotel
price
location
type
reservedStatus

calcPrice
available

Reserver
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Commodity

Credit Card

cardID
expiration
secureNo
type

valid

Guarantee

Figure 15-6:
A hotel
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collabo-

ration
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Part V
Dynamic Modeling



In this part . . .

It’s alive! You create objects, let them live out their
days, and finally delete them. Your objects are not

simply data for some lifeless function to chew up. You
need a way to describe the life cycle of objects contained
in your system.

We cover how to explore and document your objects’ lives
by using state diagrams to show important moments —
and what your objects do after those events. We also
describe how to give your objects a memory of the past,
use complex UML state notation, and avoid too much com-
plexity in your depictions of dynamics. Although dynamic
modeling can be perplexing, we help you get a handle on
the needed notation with lots of tips and tricks.



Chapter 16

Defining the Object’s Lives 
with States

In This Chapter
� Building state diagrams

� Giving objects a memory

� Working with different kinds of states

� Showing event transitions

� Relating sequence diagrams to state diagrams

Each object in your system has a life. You create it, it interacts with other
objects for a specified time, and then you remove the object from your

system. This chapter shows you how to use UML to describe the life of an
object — from its birth to its death. This chapter introduces you to the basic
state-diagram notation for showing an object’s internal states, transitions
between states, and the timing of an object’s behavior. To help make state dia-
grams less of a hassle, we provide steps for building them — and show how
state diagrams relate to class diagrams and sequence diagrams (scenarios).

Showing the Life of an Object
Your objects are not just some data combined with a few functions that use
the data. They are so much more — an object has life. For example, an order
entry system has accounts that customers use to pay for the products they
order. In this system you create an object such as CustomerAccount and
then invoke operations like open to open the account. Sometime later you
may have to remove that object. (For example, when a customer account is
no longer active it gets deleted.)



The values for each attribute of an object are hidden inside the object. So, your
objects have a memory. When you invoke a function in a programming lan-
guage that isn’t object-oriented, the function remembers nothing about the last
time you called it. You must feed it all the data it needs to do its job. On the
other hand, an object can remember what has gone before in its life. You
cannot (for example) invoke the withdraw operation on CustomerAccount
before you invoke the open operation. The CustomerAccount object must
remember whether it’s open or not before the withdrawal can be performed.
Because a thorough modeling of your system should take this memory capabil-
ity into account, you need a way to show the life of an object.

Documenting object behavior and events
We recommend that you use UML’s state-diagram notation to keep track
of what your objects are doing over time. A state is some major behavior that
an object performs while time passes. A state diagram depicts the proper
sequence of an object’s behavior that result from some event over time. With
UML, you use states to show what an object is doing and when it is doing it.

There’s more to an object, however, than just the behavior it performs while
in a state. You stimulate your objects’ behavior with events. In general terms,
of course, an event is a moment in time when something of importance hap-
pens. In UML, you use event notation to describe that important moment.
When you stimulate an object by notifying it of an event, the object reacts
to that notification according to its current state. For example, a customer
account responds to the open event by validating its associated credit card.
But it only does this when the object is first initialized — not at any other
time. If you try to open an account after it’s already open, nothing happens.

An event describes a moment in time. From an object’s point of view, an
event is a stimulus that causes a change of behavior. A state (by contrast)
describes some major behavior an object performs in response to an event.
Time passes when an object is in a state, but events take no time at all.

As your objects become more complex, you describe their states — and the
events that affect them — by using state diagrams. The notation is pretty
simple:

� States: States are shown as rounded rectangles. Take a rectangle, round
off its corners, and you have depicted a state. Place the name of the
state in the middle of the top part of the rounded rectangle.

� Events: Any event that causes an object to make a transition from one
state to the next is shown as a line with an arrow connecting the two
states. Place the name of the event close to the line that represents the
transition. The arrow on the line shows the direction of transition, from
the original state to the next state. The line that connects two states as a
result of an event is called an event transition.
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You will almost always have to include a couple of other specialized states —
the initial state (your object’s starting point in life) and the final state (your
object’s final resting point).

Constructing state diagrams
Building state diagrams is all about considering when behavior happens
within an object. State diagrams — including events that indicate the arrival
of important moments and states that indicate what happens as a result of
those moments — show the flow of control within your objects.

Here are the steps we use when building a state diagram:

1. Choose one class and focus on the life cycle for all objects of that one
class.

For example, choose CustomerAccount.

2. Start your state diagram with an initial state in the upper-left corner
of the state diagram.

Show an initial state as a large solid dot with an event transition coming
from it. After you identify the first major state of your class you can con-
nect the event transition from the initial state to that first major state.

3. Identify events.

Think about what causes your object to change its behavior — to stop
doing one thing and start doing another. You’re looking for important
moments in the life of your object.

The CustomerAccount example has the following events: open (open an
account), validated (the account has been checked to make sure
everything is okay), passed (the trial period for the account is finished),
renew (it’s time to renew the account), and close (the account needs to
be closed).

4. Think of what the object spends its time doing in response to the
events you identified in Step 3.

Develop a list of these major chunks of behavior (that is, put a name to
these states) where time passes for your object.

The CustomerAccount spends its time doing the following:

• Validating its credit card.

• Staying OnTrial while the customer maintains a positive balance
and pays their bills on time.
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• Staying Established while the customer may have momentary
negative balances and stretch out the payment of bills.

• Renewing the customer’s account on a regular basis.

• Archiving all information associated with an account that is closed.

5. Order the list of states:

• Initial state: Ask yourself if there is a state that must come first
before any others, such as Validating in the CustomerAccount
example.

Intermediate states: Look at the other states and see which ones
must come before or after other states. In the CustomerAccount
example, OnTrial comes after Validating and before
Established. Renewing comes after Established. Established
comes after OnTrial and before Archiving.

Final state: Check to see whether there is a state that must come
last, such as — Archiving in the CustomerAccount example.

6. Place your states in the diagram, ordering them from top (initial state)
to bottom (final state) as developed in Step 5.

7. Add the events identified in Step 3 as lines that connect the states.

Use arrowheads on the lines to indicate the directions of the transitions
from one state to another.

8. Determine when the object is removed from your system.

Ask yourself, What state your object must be in before you can delete it?
What event occurs to tell your object that it’s time to go?

Our CustomerAccount must be Archiving before it can be deleted.
When the account is saved, then the account can be deleted from the
system.

9. Place a final state on your diagram and show the transition that brings
an object from other states to this final state.

Show the final state as a large bull’s eye symbol. Draw event transition
arrows from all the states where the object can be deleted (determined
in Step 8) to the final state’s bull’s eye symbol.

A state diagram does not have to have a final state. So, you may not
have to perform Step 9 for your state diagram.

10. Abnormal events: After you have a basic state diagram for your
object, think about the times when things go wrong.

Ask yourself whether your object is notified, at some points in time, of
any cancel, abort, or error events. Add the states that result from these
abnormal events and provide the appropriate event transition. For
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example, while our CustomerAccount is OnTrial, the account may fail
and have to make the transition to the Canceling state. After it’s can-
celed, the account must move on to the Archiving state.

11. Step back from your diagram and check to make sure it makes sense.

This is the life cycle of your object. Verify that the object performs its
behaviors in the right order.

You use a state diagram for all the objects that belong to one class. So when
you are building a state diagram for a class, consider the behavior of all pos-
sible objects of that class.

Figure 16-1 illustrates a simple state diagram for the CustomerAccount
object. The following steps will help you trace through and understand the
diagram:

1. We start off with a large dot known as the initial state.

2. When the open event happens, the CustomerAccount goes into the
Validating state.

3. After the account is validated, then the object transitions to the
OnTrial state.

4. At this point, if the passed event happens, the CustomerAccount
becomes Established. However, if instead the fail event happens the
CustomerAccount goes into the Canceling state.

5. If the CustomerAccount finds itself in the Established state, it can be
renewed or archived.

6. Only when the renew event happens can the object then perform the
Renewing behavior.

7. The renewed event is the only event that makes the CustomerAccount
transition out of the Renewing state.

8. If the close event happens while the CustomerAccount is Renewing,
then that event is ignored. The CustomerAccount will not transition to
another state; it will continue doing the behavior of the Renewing state.

9. If the account is in the Established state and it receives the close
event, the account performs the behavior associated with the
Archiving state.

10. If the object is in the Canceling state and it receives the canceled
event then the account will transition to the Archiving state and per-
form the archive behavior.

11. When the saved event occurs while the CustomerAccount is in the
Archiving state, then the object moves to its final state. (The final state
is shown as a bull’s-eye at the bottom of Figure 16-1.)
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Exploring different types of states
The states you use for your objects come in several flavors — wait states,
constraint-based states, ongoing-process states, initial states, and final states.
Earlier in this chapter, we told you about a couple of especially important
states — the initial state and final state, the starting and stopping points in an
object’s life.

The other three important kinds of states are:

� Wait states: In these states, an object simply waits for an event to
happen. The object doesn’t do anything really important while it’s wait-
ing for something to happen. A credit-card object (for example) waits
until it’s asked to either validate itself or handle a charge against itself.

� Constraint-based states: In these states, an object behaves in a certain
way according to the values of its own attributes — or according to the
links it maintains with other objects. The credit card is in the expired state
when the value for its expired-date attribute is earlier than today’s date.

Validating

Established

Renewing

Archiving

OnTrial

open

validated

passed

close

saved

fail

renewed

canceled

renew

CancelingFigure 16-1:
Simple state

diagram.
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� Ongoing-process state: This type of state occurs when your object is
performing some behavior that is ongoing. The object leaves this state
when some other significant event occurs. Otherwise, the object will
continue doing this ongoing process. The credit card remains in the vali-
dating state until it’s validated.

After your object has entered a particular state, it may perform some behav-
ior that takes time. Such behaviors are known as activities. In UML, you show
an activity inside a state with the word do, followed by a slash (/), which is in
turn followed by the operation that denotes the behavior being done while in
the state. For example, when an instance of the CreditCard class goes into
the Expired state, the card must notify the bank that it has expired. The
notation for this activity is do / notify(Bank).

Name your states by using either an adjective phrase or a verb phrase. If
your state is constraint-based, give it a name that describes the values for the
required attribute and/or links. (Expired is just such a name — it describes
the value for the validDate attribute.) For states that represent ongoing pro-
cessing, use a phrase that has an “ing” verb in it. (Debiting and Validating
describe ongoing processes for the credit card.)

Objects wait a lot. You will have objects that just wait around for some event
to happen. After the event occurs, the object makes a transition to a separate
state, performs some important job, and then makes the transition back to a
state of waiting.

Transitioning from state to state
An event stimulates your object to make a transition from one state to
another. When you show a transition, you can also specify some details as
part of the event:

� Information: Sometimes, when your object is notified of an event, you
also have to pass some information to the object as part of the event.
You show this in UML by following the name of the event with the infor-
mation being passed (and enclosing the information in parentheses).

For example, suppose a credit card is told it’s time to make a charge to
the card. At the same time the card must be told the amount to charge.
The notation would look like charge(amount), as shown in Figure 16-2.

� Actions: If you want your object to perform some very small operation
when it receives an event, you can show that procedure on the event’s
transition line. Such a simple procedure is called an action. We use actions
for simple counting, resetting variables, initializing some value, sending
a message to another object, or performing a quick calculation. Use a
slash (/) after the event’s name and just before the action to indicate
your procedure.
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For example, suppose that when a credit card is checked to see whether
it’s valid, the card must keep track of how many times it has been
checked. The notation for this example of an event/action pair looks
like this:

valid / checkcount = checkcount + 1

� Guards: A guard is used to check some condition when an event hap-
pens. If the event happens and the condition is true, then the object
transitions to the next state. However, if the event happens and the con-
dition isn’t true, then the object doesn’t make the transition. Show guard
conditions in square brackets on the respective event transition line
right after the event name.

When the credit card notifies the bank that it has expired, the bank noti-
fies the card of its status. If the status is renewed, the card goes back to
a wait state. If the card status is canceled, then the card makes the tran-
sition to its final state. The UML notation that describes these two guard
conditions looks like notified[renewed] and notified[canceled].

Often your object sends an event to another object to notify it that some
important moment has arrived. The sending of events is treated just like
any action that takes place during a transition: You show the event’s
name followed by a slash (/), and then follow that with the name of the
class and the operation taking place in that class. For example, after the
an instance of the CreditCard class receives the event that tells it an
amount is successfully debited, the card must tell the Customer how
much was debited. The UML notation for sending this event looks like
this: debited / Customer.debitNotify(amount).

Events take no time. Therefore actions trigged by events take no time.

You might be thinking, How can an event take no time when everything on a
computer takes at least a little time? Well, in practical terms, events do take a
negligible amount of time. However, even if events (and their corresponding
actions) take measurable time on some clock somewhere, they are not inter-
ruptible. No ongoing process or incoming event can occur that prevents
these events/actions from completing. If, at some lower scale of the system,
interruptions (such as clock ticks or screen refreshes) are going on, they are
not noticeable, nor do they prevent the events/actions from completing.
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Programming an Object’s Memory 
with State Attributes

Some of your objects have complex lifecycles. We use state diagrams like the
one in Figure 16-1 to help us understand an object’s life and what an object
has to remember from one moment in its life to the next. The customer-
account objects that make up our running example in this chapter are not
simple data structures holding information about current customer balances.
There are also rules they must obey to live life to the fullest:

� When a customer first opens an account, the customer’s credit must be
validated.

� After the account is validated, it is put on trial to see whether the cus-
tomer always maintains a positive balance and always pays their
invoices within thirty days.

� After the trial period is over, the account is established and can be
renewed every three years. 

� At some point, the customer account is archived — for example, when
there is no activity in the account for a period of five years.

� Money can’t be withdrawn from the customer account while it’s being
validated. Money can only be withdrawn when the account is in the trial
period or when it’s fully established.

Since the customer account is an object it can remember its current state and
that is enough to help you program for all these rules. For example, you can
program the withdraw method of the object to work only if the object has
already been opened. This is easily done if you use an attribute to capture
the current state of the object and then your withdraw method check that
state attribute to see whether it’s set properly. We use the following steps to
give the CustomerAccount class memory of what it has done (using the Java
programming language):

1. Create several fixed attributes that represent each state of the class.

In this example, we need attributes representing the Validating,
OnTrial, Established, Renewing, and Archived states. Each attribute
representing a state gets initialized with a separate integer value.

2. Next we provide an attribute to capture the current state and another
attribute to capture the current balance of the account.

We use the following code to make this happen:
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Public class CustomerAccount {
private int accInitialized = 0;
private int accValidating = 1;
private int accOnTrial = 2;
private int accEstablished = 3;
private int accRenewing = 4;
private int accArchived = 5;
private int currentState = 0;
private int beginningBalance = 0;
private float currentBalance = accInitialized;

3. Set the current state.

Some of the operations change the currentState. For instance, the
open operation that opens a customer account checks beforehand to
make sure the currentState is set to its initial value. (It makes sense to
not let you open an account that is already open.) Then the operation
sets the currentState to the value of the attribute representing the val-
idating state. Now the operation can ask the customer’s credit card
whether it’s valid. If everything checks out, we set the currentState by
setting the current state to the value of the accOnTrial attribute and
the currentBalance of the account is set to the beginningBalance.

Each operation that causes a change in state must set the currentState
attribute to the correct value. Why? So the object can remember what
it’s been doing. For example, the following code for the open operation
first checks the currentState. 

public Boolean open(Currency beginningBalance) {
if (currentState == accInitialized) then {

currentState = accValidating;      // validating
if (myCreditCard.valid = True) then {

currentState = accOnTrial;      // now on trial
currentBalance = beginningBalance;

}}}

If currentState is set to the value of accInitialized then the code
changes the currentState to the value of accValidating. Next the
valid operation is invoked on an instance of the CreditCard class —
myCreditCard. If the valid operation returns True, then the
currentState is changed to the value of the attribute representing the
OnTrial state and the currentBalance is set to the value of the
beginningBalance attribute.

4. Check current state.

Some of the operations can only execute if the object is in the correct
state. You can also check to be sure state-based business rules are fol-
lowed. When (for example) the withdraw operation is invoked on an
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instance of the CustomerAccount class, the operation must check to
see whether the object is in the OnTrial or the Established state. If
so, then the operation can reduce the currentBalance by the with-
drawal amount. Given the rules for CustomerAccount, this operation
needs to check to see if the withdrawal amount exceeds the current bal-
ance, which would yield a negative balance. If a negative balance is
achieved while the CustomerAccount is in the OnTrial state, the oper-
ation fails and another object is notified of the failure.

The withdraw operation for CustomerAccount looks like the following
code in the Java programming language:

public Currency withdraw (Currency amount) {
if ((currentState == accOnTrial) or 

(currentState == accEstablished)) then
currentBalance = currentBalance - amount;

if ((currentState == accOnTrial) and 
(currentBalance < 0)) then {

onTrialManager.failure(this);
currentBalance = amount + currentBalance;
return currentBalance;}

else
return currentBalance;

}}

This code first checks to see if the currentState is set to the attribute
value representing either the OnTrial or the Established state. If so,
the code then deducts the withdrawal amount from the currentBalance
to come up with a new currentBalance. Next the code checks to see if
the state of the account is equal to the attribute value representing the
OnTrial state. If the currentBalance is less than zero, the failure
operation of another object — an instance of the TrialManager class
called onTrialManager — is invoked. Next the currentBalance is
reset to the original amount. In other words, the customer account bal-
ance remains unchanged and no currency is withdrawn from the
account. The old value for the balance of the account is returned. On the
other hand if everything worked out correctly, the account balance is
changed and the new current balance is returned.

Now you know that your objects not only have a life, they also remember
what they’ve done during their lives. Your objects can get very complex.

Creating State Diagrams from Scenarios
One other way to build your state diagrams is to check your sequence dia-
grams to see which events are important to the more dynamic objects in your
system. You see whether a sequence diagram shows one object sending an
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event to another — and whether a second object, stimulated by that incoming
event, must make a transition from its present state to another state.

To illustrate the process of creating a state diagram from a sequence dia-
gram, consider an example from the retail air-filter order system. Order
clerks interact with the order-entry system to review customer accounts.

Figure 16-3 illustrates a scenario interaction between Jim (an instance
of Order Clerk), the account reviewer, and myDB (an instance of the
DatabaseAccessor class). You notice that we have inserted thin vertical
oval shapes into the diagram. These ovals are not part of UML. We placed
them on the diagram to show you where the AccountReviewer object is in
some state. Each incoming event causes the object to transition to a new
state. Each oval corresponds to a state in Figure 16-4.

Jim : Order Clerk

review

customer

customer(name)

show(CustomerView)

show(Accountview)

details

show(ComplexAccountview)

finished

the :
AccountReviewer

myDB :
DatabaseAccessor

lookup(name)

delete

found(Customer)

found(CustomerAccount)

Figure 16-3:
Sequence

diagram for
reviewing

an account.
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You can use the following process to create a state diagram from a sequence
diagram:

1. Look at your sequence diagram and choose objects for which you
want to build a state diagram.

Look for those objects that have a lot of events going into them. They
have the most state transitions. So, we have to diagram them in
order to understand their life cycle. For example instances of the
AccountReviewer class receives a lot of events.

2. As always, start with placing an initial state in the upper left-hand
corner of your new state diagram.

3. Get things started by adding a wait state.

This state will wait for the first event of your sequence diagram to
arrive. Draw a simple transition line from the initial state to the wait
state. You don’t have to name this transition because it represents a
completion transition. (A completion transition happens automatically
after a state completes its behavior. See Chapter 17 for more information.)

4. Find incoming events.

Look at the object lifeline (the dashed line) on the sequence diagram of
your chosen object. Each event that comes into that object becomes an
event transition in your state diagram.

5. Locate an event pair, which consists of an incoming event and the
next incoming event.

You look at the first and second events that come into your object. It 
doesn’t matter where these events come from, whether from one or two
other objects. In our example, Jim the order clerk sends the review event
to the account reviewer. The second incoming event is customer(name).

6. Determine what your object is doing in response to the first incoming
event. 

Ask yourself, What is this object doing between the time it received the
first event and the time it receives the next incoming event? Think of a
name that captures this behavior of the object at this time.

In our example using Figure 16-3, the : AccountReviewer
sends the customer event to Jim : Order Clerk. Then the :
AccountReviewer waits for Jim : Order Clerk to return the name
of the customer they are interested in reviewing. At about the same
time, the : AccountReviewer object is creating and instance of the
DatabaseAccessor class called myDB. We choose the name Wait for
Customer Request because the : AccountReviewer is waiting for a
request to review a specific customer.
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7. Place a new state on the diagram

Give it the name you came up with in Step 6. In our example, you would
add the Wait for Customer Request state to your diagram.

8. Draw a transition with the name of the first incoming event between
your wait state and the new state you just placed on the diagram.

In our example, you add a transition line between the Waiting state and
the Wait for Customer Request state. Then you give this transition
the same name as the incoming event: review.

9. Add transitions and states:

In this step, you perform Steps 5, 6, 7, and 8 for each pair of incoming
events. You take the second incoming event and pair it up with the third
incoming event, assess the state, draw the next state, and show the
second incoming event name as the transition between the previous
state and the next state. The next pair of incoming events you look at is
customer(name) and found(Customer).

The account reviewer is looking up the customer matching the name
that comes from the database. It looks like the state is Finding
Customer. The transition from Wait for Customer Request to
Finding Customer is named customer(name).

10. Consider the last transition.

Your object ends up in some state after the last incoming transition.
That state is often the final state (or the first wait state you placed in the
diagram). Ask yourself, What happens to my object’s life after the last
incoming transition? If it’s finished, then place a transition that leads to a
final state. If your object starts all over again, then draw a transition that
leads back to the first wait state. The account reviewer returns to its
original wait state to wait for a clerk to ask it to review another customer
account.

By following this procedure for converting a sequence diagram to a state dia-
gram, we obtained the diagram in Figure 16-4. Notice that each transition has
the same name as an incoming event on the sequence diagram (shown in
Figure 16-3). The state names indicate what the account reviewer is doing as
a result of the incoming event.
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Sequence diagrams help you develop state diagrams for objects that have a
lot of incoming events.

You can start a state diagram based on one sequence diagram that contains
our object of interest. Then you should look at the other scenarios that the
object participates in, examine their sequence diagrams and determine how
our object behaves differently in each alternative sequence. Ask yourself the
following questions: Does the object receive different incoming events? Does it
do different things? You can apply the same process of creating new states
when you see an incoming event pair, but be careful you don’t come up with
new names for existing states. You should do this until you’ve exhausted all
the interesting scenarios that include your object of interest.

Waiting

Showing
Complex View

Showing
Basic Account

Waiting for
Account

Finding
Customer

Wait for Customer
Request

review

details found(Customer)

found(CustomerAccount)

customer(name)
finished / DatabaseAccessor.delete

Figure 16-4:
A state

diagram for
the Account

Reviewer
class.
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Chapter 17

Interrupting the States 
by Hosting Events

In This Chapter
� Relating event transitions to class diagrams

� Structuring many events using generalization

� Using different types of events

� Ordering behavior with events

� Using transition icons instead of text

Your objects are constantly interrupted by other objects. Each interrup-
tion causes an object to stop what it’s doing, consider the interruption,

and then do something as a result of the interruption. In UML, these interrup-
tions are called events. In this chapter we show you the ins and outs of using
the different types of events that your objects deal with. You will also see
how events on your state diagrams relate to operations on your class dia-
gram. We explain a modeling technique to use when you have too many
events. Since state diagrams illustrate flow of control inside your objects, we
show you the correct order of execution of event actions and state activities.

UML 2 provides you with a new “transition” notation. Because this chapter
focuses on the events that interrupt your objects, we show you the new icons
UML 2 has for diagramming all the parts of a transition — events, guard con-
ditions, and actions.

Making Use of Events
You draw state diagrams to understand the life cycle of an object. Each event
received by one of your objects causes the object to change state — to change
its behavior in a major way. So you work with events to accomplish the 
following:



� Develop operations for your classes: Events in your state diagram tell
you when an object represented by that state diagram must perform
some state-based behavior. When an object’s behavior (specified as an
operation on the object’s class shown in a class diagram) is called, then
the object performs the operation-based behavior. Because events cause
an object to perform some behavior (state-based behavior) they make
good names for operations for the object’s class. For more on this see
the section on “Operating your events” later in this chapter.

� Understand parameters for operations on a class: We make use of com-
plex groupings of events in a technique that parameterizes and simpli-
fies the number of events and operations you must contend with.
Sometimes you can reduce the number of different operations in your
classes by adding parameters to an operation on a class. We use events
on state diagrams to help. For more on this see the section on
“Objectifying your events” and “Parameterizing event hierarchies” later
in this chapter.

� Consider the sequence of behavior within an operation: You can use
events of different types to better control the behavior of your objects.
For more on this see the section on “Holding special events” later in this
chapter.

Operating your events
The only way anything happens in an object-oriented system is to have
groups of objects work together. To get your system to perform a task, one
object calls another object — which calls yet another and returns a result.
Then still another object sends a message to an object, and so on. Each of
your objects does a small piece of the overall task.

Figure 17-1 shows the state machine diagram for the objects of a simple
CreditCard class. The life cycle of a credit card starts at the large dot (initial
state) and immediately moves to the Wait state. If the event charge(amount)
arrives, then the instance goes into the Debiting state. However, if the event
valid arrives, then the instance moves on to the Validating state. If the
event expire makes its way to the object (instead of charge or valid), then
the object moves on to the Expired state. (See Chapter 16 for more details
on state machine diagrams and using events to transition from state to state
within an object.)

The event transitions (interruptions) that you place on a state diagram
become operations performed on a class when you represent them in a class
diagram. For example, when you send the charge(amount) event to an
instance of the CreditCard class, that’s the same thing as sending a message
asking that some amount be charged to a credit card.
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An event transition is the line that connects two states as a result of an event.

After you’re satisfied with the state diagram for the objects of a class, then
you can create operations in the class corresponding to each event transition
on the state diagram that defines those objects. We took several of the event
transitions in Figure 17-1 and placed them as operations in the CreditCard
class shown in Figure 17-2. The following describes what we did:

� Event valid: The valid event becomes valid(): Boolean. From the
state diagram in Figure 17-1 you see that along with the valid event is
an action to add one to the checkout value and then to invoke the

Debiting

do/ debit(amount)
debited / Customer.debitNotify(amount)

charge(amount)

checked

expire

valid / checkcount = checkcount + 1

notified [renewed]

notified [canceled]

Wait

Validating

do/ Bank.verify(cardNumber)

Expired

do/ notify (Bank)
Figure 17-1:

A state
diagram 

for a credit
card.
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verify operation on an instance of the Bank class. If the bank verifies
that the credit card number is okay, the operation is done. The method
code for the valid operation looks like this:

public Boolean valid () {
checkout = checkout + 1;
if (bank.verify(cardNumber)) then

return (true);
else

return(false);
}

� Event charge: The charge(amount) event becomes charge(amount :
Currency): Boolean. However, after the charge event happens, the
credit card must debit some amount from the bank and once debited,
the owner of the card or customer must be notified. The method code
for the charge operation looks like the following:

public Boolean charge(Currency amount) {
if not canceled then

if(bank.debit(amount)) then {
Customer.debitNotify(amount);
return(true);

}
else

return(false);
}

� Event expire: The expire event becomes simply expire(). When the
credit card is told to expire, the Bank is notified. The Bank, in turn,
notifies the card whether it’s renewed or canceled as a result of the
expiration event. If the card is renewed, then the credit card goes back
to its Wait state to wait for more valid and charge events. If the card is
canceled, then it goes to its final state and is removed from the system.
The method code for the expire operation looks like the following:

public Boolean expire() {
String cardStatus;
cardStatus = bank.notify(expired, cardNumber);
If cardStatus == “renewed” then {

renewed = true;
canceled = false;}

else if cardStatus == “canceled” then
this.finalize   // clean up for the java garbage

//collector.
}

The code examples for the valid, charge, and expire operations represent
just one way of designing the CreditCard class. If we’re dealing with asyn-
chronous calls in a multithreaded environment, we could choose to imple-
ment the code in any of several different ways.
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Objectifying your events
Modelers often run into the situation of having an object that receives so
many events, that it becomes hard for you to get a handle on what is going
on. For instance, consider the events that some relatively high-tech air-filter
machines must deal with. The machine is set to on, off, or standby. Meanwhile
the fan has a service limit. The air filter is notified when the fan has reached
that time limit and needs replacement. A sensor tells the air filter whether
the airflow from the fan is normal or too slow. The owner of the air filter can
select one of several room sizes and fan speeds. The machine also has an
ultraviolet light to kill germs — and that has a service life too. The really
fancy air filters have motion sensors that send events to indicate whether
dust is in motion in the room. Finally, the air filter has an air-quality sensor
that sends events to the machine to help it control how long it should be run-
ning. (Confused by all this sending? We are.)

UML provides you with a way to make sense of this confusion of events: You
can treat your events like classes and build a generalization (inheritance) hier-
archy to organize your events. You see, events are really a lot like classes.
Events have attributes called parameters. Events also have associations,
which relate the event to the class that sends it — and to the class that
receives it. When you treat an event like a class, you use the «signal»
stereotype.

Figures 17-3 and 17-4 show what is called an event hierarchy. To create an
event hierarchy, treat each event like a class — and give them the «signal»
stereotype. (Be sure to consider all the different kinds of events being sent to
the AirFilter class.) To complete the process, follow these steps:

1. Group your related events and form a generalized event.

In the air-filter example, the on, off, and standby events become
PowerOn, PowerOff and PowerStandby classes, each of which is a spe-
cialization of the PowerEvent class. We looked for other groupings and

«Domain»
CreditCard

- cardNumber : String
- bank : Bank
- expirationDate : Date
- type : CardKind
- renewed : Boolean
- canceled : Boolean
- checkout : Integer

+ valid() : Boolean
+ charge(amount : Currency) : Boolean
+ expire()

Figure 17-2:
Class

diagram
showing

events as
operations

of the
CreditCard

class.
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modeled them as FanSpeed, Airflow, MotionSensorEvent,
RoomSizeSettingEvent, AirQualitySensorEvent, and ServiceEvent
classes.

2. Continue grouping the groups if necessary.

The MotionSensorEvent and the AirQualitySensorEvent are both
kinds of SensorEvent class. The FanSpeed and Airflow are both kinds
of the more generic FanEvent class.

3. Group the most generic events under one class.

Finally, we grouped the most generic events under one class called
AirfilterEvent.

Now you can use the diagrams in Figures 17-3 and 17-4 to see the structure of
all those events. Seeing the structure of all these events allows you to check
whether any events are missing or out of place.

«signal»
AirfilterEvent

«signal»
FanEvent

«signal»
FanSpeed

«signal»
Airflow

«signal»
PowerEvent

«signal»
PowerOn

«signal»
PowerStandby

«signal»
PowerOff

«signal»
FanOff

«signal»
AirFlowNormal

«signal»
FanHighSpeed

«signal»
AirflowToSlow«signal»

FanLowSpeed
«signal»

FanMediumSpeed

Figure 17-3:
The first 

half of 
the air-

filter-event
general-

ization
hierarchy.
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Converting events into classes is a form of reification, which is the technique
of taking something that isn’t an object of some class (in this case, an event)
and making it into one. Now that we’ve reified some events, we can give them
attributes, invoke their behavior, and even store them away in a database for
later use.

Parameterizing event hierarchies
Parameterization is another payoff you can get from generalizing events. You
can reduce the number of events by changing the lowest event classes in
your generalization hierarchy into parameters that exist in the more generic

«signal»
AirfilterEvent

«signal»
SensorEvent

«signal»
ServiceEvent

«signal»
FilterNeedsService

«signal»
LampNeedsService

«signal»
RoomSizeSettingEvent

«signal»
MotionSensorEvent

«signal»
AirQualitySensorEvent

«signal»
LargeRoom

«signal»
SmallRoom

«signal»
MediumSizeRoom

«signal»
HighQualityAir

«signal»
Motion

«signal»
NoMotion

«signal»
GoodQualityAir

<<signal»
PoorQualityAir

Figure 17-4:
The second

half of the
air-filter-

event
general-

ization
hierarchy.

283Chapter 17: Interrupting the States by Hosting Events



superclass. Use this technique when you want fewer events to deal with.
Transforming events into parameters in a superclass reduces their complex-
ity, making them simpler and easier to program.

Figure 17-5 illustrates the results of using the following steps to parameterize
your event hierarchies:

1. Identify the classes you want to turn into parameters.

First locate the leaf classes in your hierarchical tree of events. Leaf
classes are the classes at the very bottom of the hierarchy that have no
subclasses below them. Select all the leaf classes that can make up one
superclass in your event hierarchy.

For example, PowerOnEvent, PowerStandby, and PowerOffEvent are
leaves in the event hierarchy shown in Figure 17-3. Each of these classes
is a subclass to the PowerEvent superclass.

2. Identify the superclass.

Select the generalized superclass of the leaf classes selected in Step 1.
(See Chapter 6 for more on superclasses.)

The superclass chosen is the PowerEvent class.

3. Create an enumeration class.

This is a class with the «enumeration» stereotype. Its attributes hold
values of a particular datatype used in some other class. In this case,
your enumeration class holds each leaf event as an attribute.

In the air-filter example, you would create a new class called PowerKind,
give it the «enumeration» stereotype, and give the class three attrib-
utes — on, standby, off — corresponding to the three leaf classes
chosen in Step 1 (which they now replace).

4. Add an attribute to the superclass.

Add an attribute to the superclass you chose in Step 2. This attribute’s
datatype is that of the enumeration class you created in Step 3.

In the air-filter example, you would add the power attribute to the
PowerEvent class. The attribute has an initial value of off, and the UML
notation for the attribute looks like this:

- power : PowerKind = off

5. Add a set operation to the superclass.

Add an operation to set the value of the attribute you added in Step 4,
placing it in the same superclass.

In our example, add the setPower operation. The UML notation looks
like this:

+ setPower(p : PowerKind)
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6. Add multiple parameters.

You can have a superclass whose attributes include more than one para-
meter. Just follow Steps 1 through 5, but place the attributes and opera-
tions in the superclass of the superclass.

The FanEvent class has two subclasses FanSpeed and Airflow. These
classes, in turn, have subclasses that can be parameterized. The
FanEvent class ends up with two attributes fanSpeed and airFlow.

The event-generalization structures shown in Figures 17-3 and 17-4 can help
convey an understanding of all the events that effect one complex class such
as an AirFilterUnit class. This generalization process helps you categorize
your events. Finally, to simplify the diagram, you change those event classes
into parameters in a superclass. Figure 17-5 shows the result of this process:
an AirfilterEvent superclass with only four subclasses.

If your classes must handle a lot of events, another common technique for
implementing them is to specify an operation such as handle(event).
Instead of having one operation for each event (as in Figure 17-2), you can
have one operation that handles all the different events. For the Airfilter
class, for example, you can provide the operation
handle(event:AirfilterEvent).

Holding special events
An event is a moment in time when something of importance happens. Events
stimulate an object to make a transition from one state (of performing some
behavior) to another state (with different behavior). When the new state is
attained, the transition caused by the event is complete; event transitions are
what happens between states.

Sometimes you want your events to occur during an object’s state. These spe-
cial events are shown inside the rounded rectangle that represents a state:

� Entry events: Every time your object changes state and starts a state, an
entry event is generated. This is the moment in time when your object
“enters” the state before it starts performing the behavior of that state.

• Entry actions: The action associated with each entry event — the
entry action — is performed as soon as your object enters the state
that includes this action. Entry actions are small chunks of behav-
ior (like normal actions); what’s different is when they occur. (See
Chapter 16 for more information on actions.)

• Notation: Inside the rounded rectangle that represents a state,
place the word entry followed by a slash (/) followed by the entry
action.
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� Exit events: Every time your object receives an external event and must
change state, an exit event is generated. This is the moment when your
object exits its current state, before it performs any actions associated
with the external event that made it exit.

• Exit actions: The action associated with each exit event — the exit
action — is performed just before your object exits the state that
generated the action in response to the external event.

«signal»
PowerEvent

- power : PowerKind = off

- setPower(p : PowerKind)

«signal»
AirfilterEvent

«signal»
ServiceEvent

- needsService : ServiceKind

+ setService(s : ServiceKind)

«signal»
RoomSizeSettingEvent

- size : RoomSizeKind = medium

+ setSize(s : RoomSizeKind)

«signal»
SensorEvent

- motion : Boolean
- airQual : AirQualityKind

+ setMotion(m : Boolean)
+ setAirQual(q : AirQualityKind)«enumeration»

PowerKind

- on
- off
- standby

«enumeration»
RoomSizeKind

- small
- medium
- large

«enumeration»
AirQualityKind

- poor
- good
- high

«enumeration»
ServiceKind

- filter
- lamp

FlowKind

- normal
- slow

«enumeration»
SpeedKind

- off
- low
- medium
- high

«signal»
FanEvent

- fanSpeed : SpeedKind
- airFlow : FlowKind = normal

+ setSpeed(s : SpeedKind)
+ setAirFlow(f : FlowKind)

Figure 17-5:
Parameter-
izing some

air-filter
events.
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• Notation: Inside the rounded rectangle that represents a state, place
the word exit, followed by a slash (/), followed by the exit action.

� Internal events: If you have an event-and-action pair that occurs inside a
state, you may have an internal event.

No entry or exit actions: This type of event does not cause the
object to exit the existing state. Nor does it cause a reentry into
the existing state (which would trigger an entry action).

• Notation: Inside the rounded rectangle that represents a state,
place the name of the internal event, followed by a slash (/) fol-
lowed by the action that your object should perform if the internal
event occurs.

You can model queries as operations (requests for information from
your object) that generate internal events.

� Deferred events: Sometimes you want to defer event actions — keep
them from occurring until later. Such deferred events are recognizable as
events that can occur while an object is in a particular state, but the exe-
cution of any associated action is specifically blocked for now. The nota-
tion for this type of event is to place the name of the deferred event
followed by a slash (/) followed by the word defer inside the rounded
rectangle that represents a state.

Figure 17-6 is a partial state diagram from the customer-account example that
we used at the beginning of this chapter. The figure illustrates entry, exit,
internal, and deferred events. On entry to the Validating state, an instance
of CustomerAccount performs the entry action by sending the valid event
to a linked instance (theCreditCard) of the CreditCard class. Upon exit
from the Validating state, an instance of CustomerAccount performs the
exit action by setting its own internal attribute, dateOpened, to today’s date.
If the deferred event statement should be received while an instance of the
CustomerAccount class is performing the do activity (in this case, wait for
validation), then the statement event is deferred to another state
(OnTrial) that does not defer the statement event. The OnTrial state han-
dles three internal events: statement, withdraw and deposit.

Other events you can use in special situations to model events between
states include these:

� Completion transition: A completion event is generated when all entry,
internal, and do behaviors within the state are complete. If the state is
connected to another state by a transition that has no label, then the
object automatically makes a transition to the state that comes after
executing any exit action. Completion transitions used to be known as
automatic transitions in earlier versions of UML.
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� The when event: Use this kind of time event when your object must be
notified of a precise moment in time. The notation for a when event is the
word when, followed by the required absolute time condition (placed in
parentheses).

� The after event: Use this kind of time event when your object must be
notified of a relative moment in time. The after event begins after your
object enters a specified state. The notation for an after event is the
word after, followed by the required relative time condition (placed in
parentheses).

Figure 17-7 shows you examples of a when event, a completion transition, and
an after event. Here’s how they play out:

� The after event: Six months after an instance of the CustomerAccount
class enters the OnTrial state, the instance stops any do activities and
makes a transition to the Established state. 

� The when event: When the renewDate attribute of an instance of the
CustomerAccount class is equal to today’s date, and the instance is in
the Established state, then the instance stops any do activities and
makes a transition to the Renewing state.

� The completion transition: After the renewing behavior (not shown) is
finished, an instance of CustomerAccount follows the completion transi-
tion and automatically goes back to the Established state.

Validating

validated

entry/ theCreditCard.valid
do/ wait for validation
exit/ dateOpened := Today
statement/ defer
customer/ return(customer)

OnTrial

withdraw( amount )/ currentBalance := currentBalance - amount
deposit( amount )/ currentBalance := currentBalance + amount
statement/ generateStatement

Figure 17-6:
Events
inside

states.
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Indicating Order of Execution
on a Diagram

You use state diagrams to indicate flow of control. As you develop state dia-
grams, you indicate what sequence of behavior is allowed for an object. When
an event arrives at your object, the state diagram shows just what happens
next.

Be careful how you put your state diagrams together. You want to make sure
that operations happen in the right order. To help you determine the sequence
of behavior, pay attention to the flow of control specified by the meaning of
UML’s state-diagram notation.

Figure 17-8 shows a small piece of the CustomerAccount state diagram. If an
instance of the CustomerAccount is in the Idle state, and the open event is
received by the instance, then the following sequence of actions occurs:

after( 6 months )

when( renewDate := Today )

OnTrial

withdraw( amount )/ currentBalance := currentBalance - amount
deposit( amount )/ currentBalance := currentBalance + amount
statement/ generateStatement

Established

Renewing

withdraw( amount )/ currentBalance := currentBalance - amount
deposit( amount )/ currentBalance := currentBalance + amount
statement/ generateStatement

Figure 17-7:
Other

special
events

outside
states.
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1. An action on the incoming event: display(“validating”).

2. An entry action: entry/theCreditCard.valid.

3. The actions of all deferred events: none for the Validating state.

Note, however, that when the object makes the transition to the Cancel
state, the statement event may be handled then — provided it arrived
during the Validating state.

4. A do activity(the main behavior of the state): do/wait for validation.

5. Internal actions: customer / return(customer).

The internal event interrupts the do activity and performs its action. Then
control returns to allow the do activity to pick up right where it left off.

6. An exit action: exit/dateOpened := Today.

The exit action is performed only after the object receives the
notValid event, causing the object to make the transition out of the
Validating state.

7. Action on the outgoing event: display(“Invalid Credit Card”).

Validating

notValid / display("Invalid Credit Card")

entry/ theCreditCard.valid
do/ wait for validation
exit/ dateOpened := Today
statement/ defer
customer/ return(customer)

Canceling

open( beginningBalance ) / display("validating")

Idle

Figure 17-8:
Flow of

control in 
a state

diagram.
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Showing Transitions as Icons
Sometimes you want to emphasize the transitions of your state diagrams
instead of the states. UML provides you with a notation that gives you a
transition-oriented view of state diagrams. Instead of showing an event in
text, you can use special icons. Each part of the event text has its own icon:

� Signal receipt: The name of the incoming event and its attributes is
known as the signal received by your object. A signal-receipt icon looks
like a small flag with the name of the event and its attributes inside.
Some people describe the signal-receipt icon as a rectangle with a trian-
gular notch in its side (either side will do).

� Signal sending: If your object must send an event off to another
instance as a result of receiving the incoming event, then show the send-
ing of the event with a signal-sending icon. This icon looks like a boxy
arrow with the signal-sending event information shown inside the box.
Others might describe it as a rectangle with a triangular point coming
out of one side (again, either side will do).

� Action sequence: The action part of the incoming event is shown with
an action-sequence icon (a box with the action text shown inside).

An example of this transition-oriented notation is shown in Figure 17-9.
Instances of the CustomerAccount class have the following event that causes
a transition from the OnTrial to the Cancel state:

nonpayment(Invoice) [Invoice.date < Today - 30 days] /
customer.overDue(Invoice); display(“Late Payment”)

Use a choice-pseudostate icon to handle the guard condition [Invoice.date
< Today - 30 days]. The choice-pseudostate icon is shown as a large dia-
mond with the decisions shown in square brackets. The decisions are tested
and the object makes the transition to the next icon, depending on which
decision is true. (You can find more about this and other pseudostates in
the Chapter 18.)
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OnTrial

Canceling

nonpayment( Invoice )

[Invoice.date >= Today - 30 days]

[Invoice.date < Today - 30 days]

customer.overDue(Invoice)

display ("Late Payment")

Signal receipt

Action sequence

Signal sending

Figure 17-9:
An example

of UML’s
transition-

oriented
notation.
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Chapter 18

Avoiding States of Confusion
In This Chapter
� Avoiding overly complex state diagrams

� Handling concurrent states

� Using a shorthand notation to reduce diagram complexity

� Working with protocol state machines

� Steering clear of data-flow diagrams

Some objects are really dynamic. They are expected to perform many dif-
ferent behaviors at many different times. The rules for what behavior

your objects must execute — and just when to execute that behavior — can
get really complex. To help you avoid your own state of confusion, this chap-
ter shows you how to build complex state diagrams that really do the job —
and can help maintain your sanity.

Simplifying Large State Diagrams
Creating a state diagram for an object with simple dynamics is easy. You usu-
ally have an initial state, a wait state, a few important event transitions to
states with important behavior, and a final state. But, with more dynamic
objects you may notice the following characteristics:

� The same entry, exit, and internal events are repeated in several differ-
ent states.

� The same event transition is coming from several different states — but
all going to the same state.

� A couple of different do activities can happen at the same time but com-
pletely independent of each other.

� There are very complex activities within a state that also depend on
important events.



� Interruptions cause your object to stop what it’s doing. Then the inter-
ruption must cause a complex method to execute without further inter-
ruption. And after the interruption is handled, allow the object to pick
up with what it was doing before the interruption.

Don’t be surprised if your state diagram tends to sprout an awful lot of
lines, repeated event transitions, and many states that all do the same thing.
Fortunately, you don’t have to have all this repetition. You can solve these
problems by employing the following techniques:

� Generalize your states: Arranging states to emphasize their commonal-
ity of events and behaviors helps simplify the diagram.

� Build submachines: Creating separate mini-state diagrams, which you
can reuse in your state diagrams, makes your diagrams easier to under-
stand and easier to maintain.

� Utilize pseudostates: Using a special shorthand notation reduces the
number of states and transitions you have to depict for certain 
situations.

� Show concurrency: Illustrating concurrency — independent behavior —
within an object by establishing separate regions inside the same state
makes for a more compact diagram. (Some of your objects can walk and
chew gum at the same time.)

Generalizing states
Each of your states has at least one activity that the object does when the
object is in that state. An activity is some major behavior performed by an
object that takes time. If this activity involves a complex sequence of behav-
ior you can show that activity with a state diagram inside the larger state. The
states shown within a state are known as substates. The “superstate” contain-
ing the substate is also known as the generalized state. When you have to
describe an activity within a state as a state diagram, simply expand the sur-
rounding state and place your substates inside. This type of UML diagram
looks like someone’s put a state diagram inside another state diagram.

Figure 18-1 shows an example of a simple state (Archiving) and its primary
behavior (do / saveAccountData). If an instance of CustomerAccount is in
the Established state and the close event occurs, then the object makes a
transition to the Archiving state. Another way into the Archiving state is
from the Canceling state when the canceled event occurs. (Note that these
two distinct transitions have one destination.) Once in the Archiving state,
the account data must be saved. When the saved event occurs, the object
makes a transition out of Archiving and into the final state.
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The process for saving account data is complex and involves some important
events. To archive an account requires that all transaction processing come
to a halt, then the account gets locked, then officially closed, and finally all
the data associated with the account gets backed up. You can show the
detailed sequences for the Archiving behavior as substates within the
Archiving superstate.

Figure 18-2 demonstrates what this process looks like:

1. An instance of CustomerAccount, upon entering the Archiving state,
makes an automatic transition from the initial state (the large black
dot) to the Locking state. 

2. As the object enters the Locking state, the entry action requestLock
takes place. Transactions are halted and the object waits for the locked
event to occur. 

3. Upon receiving the locked event, the object makes a transition to the
Closing state where it formally closes the account so no more transac-
tions can take place on this account.

4. When the account is shut down and the object receives the closed
event, the object enters the Backup state. 

In the Backup state, the object must log in to the database, and then
insert account data into the database. When there is no more account
data to insert, the object receives the lastTransaction event.

5. The lastTransaction event stimulates the object to exit the Backup
state; the object performs the exit action and logs out of the database.

6. While the object makes its transition from the Backup state within the
Archiving state, the saved event is sent to the object playing the role
of self. (In effect, the object sends itself the saved event.)

Established

Canceling

Archiving

do/ saveAccountData

close

nonpayment( Invoice )[ Invoice.date < Today - 90 ]

canceled

saved

Figure 18-1:
Simple

archiving
state.
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7. When the saved event is received at the higher-level state (as dia-
grammed in Figure 18-1), the whole object to makes the transition to the
final state.

Look out for repeating substates. Sometimes an object must do the same
thing at several different points in its life. You could end up creating the same
substate diagram for several different superstates. If this starts to happen to
you, use submachines.

Using submachines
Submachines are really mini state diagrams you can include in other state
diagrams. This ensures that you don’t have to repeat yourself. For example,
each instance of the CustomerAccount class has several states — OnTrial,
Established, Canceling, and Renewing — that must handle the statement
event. When the statement event occurs, the CustomerAccount object must
perform generateStatement.

However, generateStatement isn’t a simple action. Generating a statement
is dependent on customer information, transaction data, the day of the year,

Locking

Archiving

entry/ requestLock
do/ halt transaction activity; wait for lock

locked

closed

lastTransaction / self.saved

Backup

entry/ DB Login
do/ insert transaction history
exit/ DB logout

Closing

do/ close Account

Figure 18-2:
States
within
states.
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and whether there are any overdue invoices. To address this issue, you could
create a substate diagram for generateStatement and place it inside the
OnTrial, Established, Canceling, and Renewing states. However it’s more
efficient to create a submachine for generating a statement, and then include
it in those four states.

Follow this process to make use of submachines:

1. Recognize the need for a submachine.

You may want to create a submachine if either of the following is true:

• You are repeatedly using the same group of substates inside sev-
eral different superstates within the same object’s state diagram.

• You see a mini state diagram within the different state diagrams
belonging to objects of separate classes.

In our example, we recognize that a submachine is warranted because
the states for generating a statement are reused in the OnTrial,
Established, Canceling and Renewing states of CustomerAccount
objects.

2. Build a submachine.

Pull out the common mini state diagram and create a separate state dia-
gram. This state diagram has one superstate with the common substates
inside it. You have to give the superstate a name.

We named the submachine’s superstate GenerateStatementSM for the
CustomerAccount example. Figure 18-3 shows the UML notation for the
submachine GenerateStatementSM. The submachine contains the
WaitForCustomer, ObtainingTransactions, Summarizing,
TransactionFormating, and GenerateOverDueNotice substates. Every
time you include the GenerateStatementSM in other states, the exact
sequence for generating statements based on customer information, the
day of the year and checking for overdue invoices is performed.

3. Include the submachine.

Now that you have a submachine you can use it wherever you need it.
This is done with a special include statement. In the state that has the
submachine, place the word include followed by a slash (/) followed
by the name of the included submachine.

Figure 18-4 shows how we used the GenerateStatmentSM within the
Canceling state of a CustomerAccount instance. We created a sub-
state, Wait for Cancel, so the object can wait for the account to be
canceled. If while it’s waiting, a statement event should occur then the
object transitions to the HandleStatement state. Because it “includes”
a submachine, the GenerateStatementSM submachine is executed. 

When the GenerateStatementSM completes at its final state, the
object will automatically transition back to the Wait for Cancel state.
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You use submachines to describe common “event/action” sequences such as
handling errors, providing help, reading data and writing data.

Inheriting events in substates
When you create substates within a superstate, your substates inherit flow of
control from the superstate. An event that stimulates your object to exit a
superstate also causes your object to exit any substate it may be in. If you have
a transition that goes directly to a substate from outside the superstate, then
the entry actions are executed in sequence from the outer most superstate to
the inner most substate. The opposite is true for exiting a substate to another
state outside an enclosing superstate. The object executes any exit actions in
sequence from the inner most substate to the outer most superstate. Any inter-
nal events on superstates are inherited by the substates. They will interrupt
the current substate.

GenerateStatementSM

WaitForCustomer customer

[ Today <> yearEnd ][ Today := yearEnd ]

overdue
overdue

entry/ getCustomer

ObtainingTransactions

TransactionFormattingSummarizing

GenerateOver
DueNotice

Figure 18-3:
The

Generate-
Statement

submachine.
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If you’re an object-oriented programmer, this may sound familiar. This is par-
allel to how “new” operations are done when you create an instance of a sub-
class. First the new operation of the superclass is performed, followed by the
new operation of the subclass. Your object performs the destructor opera-
tion of the subclass and then the destructor operation of the superclass.

Figure 18-5 shows a piece of the state diagram that describes instances of
the CustomerAccount class. In this diagram, we have included the
OnTrial, Established, and Renewing states as substates within the
ManageTransactions superstate. When the object receives the validated
event, it transitions directly to the OnTrial state. First the entry action
TransactionManager.notify(this) is executed and then the entry action
accountStatus := OK is executed because the entry actions are inherited
from outermost to innermost actions.

Figure 18-5 also uses flow-of-control inheritance to reduce the complexity of the
diagram. Instead of having individual transitions from OnTrial to Canceling,
from Established to Canceling, and from Renewing to Canceling, you need
only one transition. The ManageTransactions superstate has such a single
transition — cancel — and it goes straight to the Canceling state. All sub-
states inherit this same transition. Thus, when the object receives the cancel
event — no matter what substate it occupies within ManageTransactions —
it makes the transition to the Canceling state.

If you refer to Figure 17-7, you can see the OnTrial state and the Established
state, both with the deposit and withdrawal internal events. If you use
flow-of-control inheritance, you only have to show them once — as internal
events in the superclass. (Because you cannot make a deposit or withdrawal
when the account is being renewed, we had to “defer” those operations in the
Renewal state.)

Canceling

entry/ AccountManager.cancel(this)

Wait for
Cancel

Handle Statement

include/ GenerateStatementSM

statement

Figure 18-4:
Including a

submachine.
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Utilizing pseudostates and saving history
As you build more complex state diagrams, you can make use of some short-
hand notation we call pseudostates that provide you with common ways to
hook transitions together. Chapter 16 introduces a couple of pseudostates —

OnTrial

Established

Validating

Archiving

validated

entry/ TransactionManager.notify(this)
withdraw( amount )/ decreaseBalance
deposit( amount )/ increaseBalance

ManageTransactions

entry/ accountStatus := OK

after( 6months )

close

when( renewDate := Today )

Canceling

cancel

canceled

Renewing

withdraw/ defer
deposit/ defer

Figure 18-5:
Inheriting

events.
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the initial state and the final state. The initial state is indicated on a dia-
gram; its large dot and transition to some other state serve as shorthand for
Start here when you enter this state diagram. It’s simpler than having a regular
rounded rectangle represent a state with a name like Please start here
(you’d have to get everyone who reads your state diagrams to know that the
Please start here state where you always start your state diagrams). With
more complex state diagrams you have to connect up many transitions to
form complex paths through the different states in your objects. To help you,
UML provides pseudostates for connecting these transitions.

Most of the time your objects are happy to be interrupted by some important
event. The event stimulates your object to move on to some other state to do
some other activity, happy never to return to its previous state. While a
CustomerAccount object is in the ManageTransations state, it’s either in
the OnTrial, Established, or Renewal substates. But, you have to interrupt
the object so it can produce a statement. When the statement is produced,
you have to get your object back to the substate it was in before the interrup-
tion. That means saving the history of what the object was doing so you can
get back to it.

You save the history of a state so you can get back to it later with the history
pseudostate. Actually there are two kinds of history pseudostates:

� Shallow history: UML shows this pseudostate with a capital H inside a
small circle. The shallow history pseudostate captures information
about the current state but not any of its substates.

� Deep history: When you want to capture information about the current
state and all its substates, then you use the deep history pseudostate.
This is shown as a capital H followed by an asterisk (*) inside a small
circle.

� Your history pseudostate has a transition from the state that handles
the important interruption to the history pseudostate. You can also
include a transition from the history pseudostate to the default state
within the superstate: Any incoming object that has never been in the
superstate before makes an automatic transition to the default state. As
an example, Figure 18-6 shows you how to handle the statement event
when it happens during the ManageTransactions state.

Here’s the play-by-play sequence shown in Figure 18-6:

1. A statement event stimulates the object into a transition from the
ManageTransactions state to the Handle Statement state.

2. When the Handle Statement state is finished, control passes to the
history pseudostate.

3. From there, the object continues in whatever state it occupied before
the statement event interrupted.
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4. If no substate of ManageTransactions was active at the time of the
interrupt, then the default state pointed to by the history pseudostate
(OnTrial) is activated.

Use internal events to handle simple interruptions to your object’s behavior.
These events occur while an object is doing some activity within a state —
and they don’t cause the object to exit that state. (See Chapter 17 for more
information on internal events.)

OnTrial

Established

entry/ TransactionManager.notify(this)
withdraw( amount )/ decreaseBalance
deposit( amount )/ increaseBalance

ManageTransactions

entry/ accountStatus := OK

after( 6months )

H

when( renewDate := Today )

statement

Renewing

withdraw/ defer
deposit/ defer

Handle Statement

include/ GenerateStatementSM
withdraw/ defer
deposit/ defer

Figure 18-6:
Using the

history
pseudo-

state.
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Handling Concurrency with States
Some of your objects can (in effect) walk and chew gum at the same time.
Think of the objects you have that are aggregations: They include the whole
object (the aggregate), and all the individual part objects contained within
the whole. The parts of your aggregate work independently of each other, a
situation called concurrency. So you need a way to show that some states in
your objects are concurrent — they don’t depend on each other, and can (but
don’t have to) happen at the same time.

Concurrent objects have causally independent behavior; in object-oriented
systems, concurrent doesn’t mean “simultaneous.” Concurrent independent
behavior among concurrent objects can be simultaneous — but it doesn’t
have to be.

Diagramming concurrent states
As an illustrative example, consider an air-filter machine. It’s composed of
several parts, among them are the controller for the air-filter machine, the
ultraviolet lamp, the filter to clean air, and the fan to move air through the
filter. Figure 18-7 illustrates this aggregation relationship between the
AirFilterMachine class and its parts.

The diamond shape in Figure 18-7 represents aggregation. If the diamond is
filled in, that represents the stronger form of aggregation known as composi-
tion. For more details see Chapter 5.

When you want to show the concurrent states for the class playing the role
of the whole in an aggregation, just show a state diagram for every part of
the whole. Figure 18-8, for example, combines the state diagrams for the
AirFilterController, the Fan, the Filter, and the UVLamp. The state of one
instance of AirFilterMachine is a combination of current states — one for
each of its parts.

AirFilterMachine

AirFilterController

UVLamp Filter

Fan
Figure 18-7:

Air-filter
machine

aggregation.
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You can also think of an object as having the state of being itself (as an
instance of its class). Figure 18-8 shows the states of the object inside a
superstate. Thus you see the superstate AirFilterController containing
Off, On, and Standby substates.

Off

powerStandby

powerStandby

powerOff

powerOff
powerOnpowerOn

Standby

AirFilterController

On

Off On

Fan

fanOn

fanOff

Working Service

Filter

clogged

reset

Off On

UVLamp

lampOn

lampOff

Figure 18-8:
Composite

states for
the air-filter

machine.
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Notice that the superstates in Figure 18-8 have little tabs attached to them —
that’s just another minor variation on UML state-diagram notation: the name
of a state in a small box attached to the top of the state.

You can also show concurrent states within an object. In the example of the
air-filter machine, concurrent states across objects are all part of one aggre-
gation. But some states have concurrency — independent behavior — within
themselves. The On state for the AirFilterController (for example) is
more complex that you might first realize. When you turn on the air-filter
machine, you’re telling an instance of AirFilterController to perform the
following tasks, all at the same time:

� Check sensors: Keep an eye on all the sensors to make sure they’re
working properly. If a sensor isn’t working, go into a service mode.

� Monitor air quality: Check the air quality through the air quality sensor.
When the air quality is less than the desired level, increase the fan
speed. When the air filter achieves the right level of air quality, decrease
the fan speed and return to simply monitoring air quality.

� Monitor motion: Using a sensor, check for motion. If there is motion
(such as a person walking by), go into cleaning mode: increase the fan
speed and turn on the ultraviolet lamp. When there is no motion (or a
certain amount of time has passed), return to simply sensing motion.

The AirFilterController must perform each of these tasks when it’s in
the on state and it must perform them independent of each other. To show
concurrency within a state, divide the state into regions. Each region is sepa-
rated from the others by a dashed line. a mini state diagram is placed into
each region showing the concurrent behavior. Figure 18-9 contains the con-
current states for the AirFilterController’s On state. To keep this state
diagram simple, we have not shown you the substates of the CleaningAir,
Servicing and Cleaning states. (Details for the CleaningAir substate are
discussed in the section “Using pseudostates with concurrent substates”
later in this chapter.)

Using pseudostates with 
concurrent substates
A couple of handy pseudostates can help you construct states that have con-
current substates:

� Fork: The fork pseudostate enables you to take a single event transition
and split it into several parallel control paths.

� Join: The join pseudostate merges multiple transition paths into one
transition.
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The UML notation for a pseudostate (whether a fork or a join) is a short,
thick line that shows transitions coming in or going out. Figure 18-10 shows
an example of how to use the fork and join pseudostates.

CheckingAir CleaningAir

when( quality >= selected )

when( quality < selected )

Monitoring
Motion

Cleaning

timeout

motion

noMotion

CheckingSensor Servicing

reset

notWorking( sensor )

On

Figure 18-9:
Concurrent
substates.
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Here’s what’s happening in Figure 18-10:

1. If the AirFilterController is in the CheckingAir state and the
when(quality < selected) time comes, then the object makes a tran-
sition to the CleaningAir state.

2. In the CleaningAir state, the fork pseudostate (the thick line at the
left of the diagram) splits the just-completed when transition into two
parallel control paths.

Both control paths lead to the HandleEquipment substate.

3. HandleEquipment has two concurrent regions, to which control flows
as needed:

CheckingAir

Wait for better
Air Quality

HandleFan

HandleEquipment

increased

on

entry/ fan.increaseAirFlow

CleaningAir

when( quality < selected )when( quality >= selected )

HandleLamp

entry/ UVLamp.lampOn
Figure 18-10:

Using fork
and join

pseudostates
to manage

complex
control
paths.
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• In one region, the HandleFan state is executed.

• In the other region, the HandleLamp state is executed.

• HandleFan and HandleLamp are independent of each other.

4. At this point, while control is in the HandleEquipment region, the object
receives the next event:

• If the increased event is received, then the object leaves the
HandleFan state and makes a transition to the join pseudostate
(the thick line at the right of the diagram).

• If the on event is received, then the object leaves the HandleLamp
state and makes a transition to the join pseudostate.

5. The join pseudostate makes no transition to the Wait for better
Air Quality state until the object receives both the increased and on
events.

These two events may arrive in any order. The object simply waits until
both arrive before moving on.

Building Protocol State Machines
When you want to show the sequence of events an object reacts to — and the
resulting behavior — you use the UML notation that creates behavioral state
diagrams (also known as machines): Such state diagrams have event/action
pairs, entry actions, exit actions, and do activities. Most of your state dia-
grams use these features; in effect, they are behavioral state machines.

Sometimes, however, you just want to show a specified sequence of events that
your object responds to — and when it can respond — without having to show
its behavior. Such a specified sequence is called an event protocol. In UML 2,
you can show event protocols by diagramming protocol state machines. These
differ from behavioral state machines and have special uses.

Normally we recommend using regular state diagrams to show internal
sequences of behavior for all objects of a class. Sometimes, however, you want
to show a complex protocol (set of rules governing communication) when
using an interface for a class. For example, when you are designing classes that
access a database for your application you need to use common operations
like open, close and query a database. But, these operations must be called in
the right order. You cannot query the database before you open it. 

One solution to designing a simple database access class is to develop a
DatabaseAccessor class with a DBaccess interface as shown in Figure 18-11.
But, the DBaccess interface has a complex protocol that governs its use
because of the rules governing communication between any other object and
the DatabaseAccessor class implementing the DBaccess interface. To use
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the interface properly, you have to open the database and then set up a
query. You can put these rules in a state diagram to indicate the protocol that
must be followed when using the interface.

Regular state diagrams don’t help you with interfaces because interfaces
don’t describe behavior implementation they just declare what operations
the class must perform. It’s up to the class to specify the implementation of
an interface. On the other hand a protocol state machine enables you to
declare what operations can happen and the order they can happen without
having to say anything about behavior implementation.

Figure 18-11 shows the DBaccess interface attached to the DatabaseAccessor
class; the DatabaseAccessor class must conform to the operation sequence
(that is, the protocol) of the DBaccess interface: The open, close, query,
fetch, cancel, create, and kill operations must be implemented in the
order specified by the DBaccess interface’s protocol (shown in Figure 18-12).

You draw a protocol state machine in much the same way you draw any
other state machine. Remember, however, to follow a few special rules:

� States can have names but can’t show entry actions, exit actions, inter-
nal actions, or do activities.

� Transitions show operations but not actions or send events (as regular
state diagrams can).

� Transitions can have preconditions and postconditions shown in square
brackets [], as in the following example:

[queryStatement <> null] query / [comArea set]

• A precondition states what must be true before the object can tran-
sition from one state to another. In this example, when an object
that conforms to the DBaccessor interface receives the query

DBaccess

«boundary»
DatabaseAccessor

- dbname
- password
- comArea
- queryStatement

+ open()
+ close()
+ query()
+ fetch()
+ cancel()
+ create()
+ kill()

Figure 18-11:
Class

diagram
with

DBaccess
interface.
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operation, the queryStatement attribute is checked to see
whether it’s null. If the object is in the Opened state, and the
queryStatement isn’t null then the object transitions to the
Queried state.

• A postcondition states what must be true once the object com-
pletes its transition and is now in a new state. In this example,
when an object that conforms to the DBaccessor interface makes
a successful transition to the Queried state, that means the post-
condition must now be true — the comArea is set.
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Avoiding data-flow diagrams
Many developers are used to thinking of the
flow of data moving from function to function —
so when they try to draw a state diagram, what
they get is actually a good old-fashioned data-
flow diagram: They draw lines between states
that show data flowing from one to another. But
a state is not some function that executes —
and a data-flow diagram is not a state diagram.
A data-flow diagram in disguise doesn’t help
you think of the life cycle of your objects.

To avoid this misuse of state diagrams, you have
to be aware of two kinds of states:

� Do-forever state: Left to itself, this type of
state performs its activity forever. It only
stops doing its behavior when an event
interrupts it, causing a transition to another
state. The WaitForCustomer state, for
example, is willing to wait forever. Only
when it receives the customer event will
the object make a transition to the
ObtainingTransactions state.

� Do-until states: This type of state performs
its activity until the activity is complete; then
it makes an automatic transition to another
state. You can easily find do-until states by
finding transitions that have no event on the
line-with-an-arrow that links pairs of states.
The GenerateOverDueNotice state, for
example, simply generates a notice and

then automatically makes the transition to a
final state. The GenerateOverDue-
Notice does not have to wait for an event
to cause a transition.

You can check your state diagram to see what
you’re building. The key is the proper checking
of how many do-forever and do-until states
exist in your diagram:

1. Count the number of do-forever states.

These are the real stuff of state diagrams.

2. Count the number of do-until states.

Look for those automatic transitions without
event names; they’re a dead giveaway.

3. Evaluate whether the diagram you’re build-
ing is really a state diagram.

If the majority of states in your state dia-
gram (around 70% or more) are do-until
states, you probably have a data-flow dia-
gram. On the other hand, if the majority of
states in your diagram are do-forever
states, then you have a solid, flow-of-
control state diagram.

When you find your state diagram is really a
data-flow-type diagram, then consider using an
activity diagram instead.



� You draw your protocol state machine as a group of substates within
one large frame, like the frames for sequence diagrams we show you in
Chapter 12.

� You must name the protocol state machine as such; place the keyword
protocol in curly brackets {} next to the name.

Created

Opened

Queried

Fetching

Closed

create /

open / [successful login]

cancel / [comArea cleared]

close /

close /

close /

kill /

fetch / [comArea.recordAvailable]

[queryStatement <> null] query / [comArea set]

cancel / [comArea cleared]

DBaccessor {protocol}

Figure 18-12:
DBaccessor

protocol
state

machine.
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The diagram in Figure 18-12 shows a protocol state machine for the
DBaccessor interface. Any class conforming to the DBaccess interface must
implement the protocol state machine. You can show the implementation of
the protocol state machine as a regular state machine with all the actions and
activity behaviors thrown in. That way it’s clear to other developers how you
will implement the protocol for a specific class in your design.

State diagrams aren’t meant to show the flow of data from one process step
to another. Instead, they’re supposed to show where the flow of control goes
when some behavior happens. Don’t let your state diagram mutate into a
data-flow diagram. We’ve included a handy sidebar to help you hold the line.
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Part VI
Modeling

the System’s
Architecture



In this part . . .

In the old days, when life was simple, you worried
about software applications that ran on one computer.

Today, your systems and software are far more complex.
Your software is loaded on a server machine but run on a
client machine. You may have multiple servers — each 
performing an important task in support of the whole
system. Your data resides everywhere. Your software
must account for network outages and system crashes.
The life of a developer — your life — is not simple 
anymore.

This part helps you rein in your complex systems by pro-
viding you with proven system-design steps. We show you
how to use UML to explore different architectures and doc-
ument your design decisions. You want maintainable, flexi-
ble, and modular systems and software. We show you the
techniques that we use to reach those goals — assembling
components, decomposing systems, applying architecture
patterns, and realizing subsystems — when we’re faced
with designing today’s complex applications.



Chapter 19

Deploying the System’s
Components

In This Chapter
� Stepping through a system’s design

� Considering design priorities

� Breaking your system into subsystems

� Sorting logical and physical system diagrams

� Getting componentized

� Deploying hardware configurations

� Showing off artifacts

So you know what you want to build, and you’ve got some requirements
for your system, but there is just one little problem: Your system is spread

out across several different computers and you must build pieces of software
to run on each platform. You have to figure out a design for this complex
system by thinking about what software goes on which piece of hardware.
But there are so many choices. Ah, for the good old days when life was simple
and our systems were applications that ran on a single user’s computer.

When you build today’s complex (dare we say enterprise-wide?) systems, you
need a way to step back from the details and develop an overall strategy for
how your system and its software application(s) are put together. There comes
a time when you have to look at the big picture and describe how your system
works. This chapter describes the steps for designing large systems and
describe the UML diagrams you use to define your system. We help you get a
handle on describing the relationships between the hardware and the soft-
ware components that make up your system.



Defining Your System
Once you have some requirements, it’s a good idea to start describing how
your system is going to work. Gone are the days of simple applications that
work on one computer. These days you’re likelier to build applications that
are split across many different computers. Take, for example, a hotel reserva-
tion system that works over the World Wide Web. In our travels, we often use
a Web browser to access a hotel reservation system. We look for room avail-
ability, make the reservation and specify how we’ll pay for the room. These
reservation systems include our computer, its Web browser, an http Web
server, server-side programs, the hotel’s own reservation system, a database
management system, and access to a credit card authorization system. In the
face of this system complexity, you need a way to come up with the right
design — and a way to describe that design using UML.

During design, we recommend you think about designing the total system
first before diving into the details. When you build complex applications,
make some high-level decisions before you focus on designing individual
classes. By making decisions about architecture, hardware, networking, 
software interfaces, components, and databases, you limit the number of pos-
sible designs. By looking at the big picture first, you make sure your require-
ments are handled — and you end up adding classes that your users need,
but could never tell you they need. Once you have your system organized
and you know you have all the big pieces, then you can focus on the details
of designing your classes.

The number of potential designs for the hotel reservation system is almost
limitless. Just think of the many possible technologies, network configura-
tions, hardware platforms, class definitions, programming languages, vendor
software, middleware techniques, remote communications protocols, and
database techniques you could use. (Stop! The room is spinning.) Let’s con-
sider the big picture first to “get our arms around” this system.

The process for designing the big picture involves the following steps and
considerations:

1. Consider the design priorities.

Of course you want to build a system that meets the needs of your
users. But, there are other competing factors you must consider in your
design, such as the following:

• Functional requirements: Each use case represents required func-
tionality of your system. (For more on use cases see Chapter 8.)
Some use cases may be more important than others, and given
your budget and schedule you may have to choose which use
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cases to implement and which to leave for another day. Perhaps
the first version of the hotel reservation system implements the
basics: making and canceling reservations. The next version will
handle marketing features such as surveys and upgrading reserva-
tions with earned points.

• Flexibility: You can design your system to be modular. That way
when users change their mind (never happens), your design is
easy to change. However, the more flexible you make your design,
the longer it takes to design — and the more it will cost to build.
You could design the system to handle reservations for anything —
trucks, videotapes, crash dummies, or theater tickets — not just
rooms. But if you do so, don’t be surprised if it takes longer to
develop the complete reservation system.

• The “ilities”: Really great designs consider scalability, reliability,
and availability to name a few. A design for the hotel reservation
system that handles one hotel in version one and can be expanded
to handle a whole chain of hotels — without major design changes —
is a scalable design. If your design consistently makes and cancels
reservations — no matter how may users are connected — then it’s
considered a reliable design. If you decide to make the reservation
system available 24-7, you must design in enough redundancy to
make sure the system stays up even in the event of a failure.

• Performance: Your chosen design has an impact on system speed.
If it’s not fast enough, users waste time waiting. If the system is
way too fast, you probably spent more money than necessary to
develop it. To design the hotel reservation system, we have to ask,
How fast is fast enough?

• Cost: Most, but not all, systems that we design have a budget. The
design must not cost more than what the stakeholder is willing to
pay for the system. For $100 million, we could build a fancy, fast,
flexible, modular, scalable reservation system. But, the return on
investment for that system would be a long time coming.

• Schedule: Like cost, schedule is a factor in our designs. Usually,
market forces such as competition require that a system be
designed and built by some date. Otherwise the competition wins
with a product that gets market share. Building a hotel reservation
system should not take so long that the company looses potential
guests to other hotels.

Each of these priorities affects your design. First, we speak with project
stakeholders about these design issues to get a sense of priority. If per-
formance is the overriding design priority, then we design our system to
achieve high levels of speed through hardware choices and parallel pro-
cessing. If cost and schedule are the top priorities, we look for ways to
minimize the required hardware (because that takes money) and the
required functionality (because that takes time and money).
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Unfortunately, these design issues are not compatible with each other.
Designing to one will impede your design in another. For instance design-
ing for performance usually increases your costs. Designing your system
to meet the all the needs of users impedes your ability to meet your
schedule. Because of these design trade-offs, we recommend you get
these priorities straight first before launching into the hard work of
designing a complex system.

2. Review current system.

If your new system is a replacement or an addition to some existing
system, take a look at how the old system is designed. Choices that
made sense for an older system (such as that of the database vendor)
or for a specific hardware platform may limit your “new” design. In our
reservation system example, the older hotel reservation system is built
on a simple client-server model. We can reuse the hotel’s current room
reservation management server as part of the new reservation system.

3. Decompose the system.

Take your system and break it up into smaller subsystems. This is what
engineers have always done — take a big problem and break it into lots
of smaller problems. If we can solve each of the smaller problems, then
combining the solutions should solve the bigger problem. We would
break up the hotel reservation system into conceptual pieces such as
user presentation, the business logic behind making reservations, per-
sistent storage, and credit-card processing. Now, if we can define these
simpler pieces known as subsystems, the new hotel reservation system
is as good as designed.

4. Define an architecture.

Once you define your subsystems, you have to describe how those sub-
systems relate to each other — and the hardware that supports those
subsystems. Our presentation subsystem runs on the machines belonging
to potential guests who visit the Web site. The business-logic subsystem
runs on a combination of hardware, including a machine running Linux as
well as our existing reservation-management server. Credit-card process-
ing starts on the same machine as the reservation management server
and utilizes a B2B (business-to-business) server across the Internet.

5. Choose object persistence.

Some of your objects must persist. If your system is turned off, you
have to preserve your objects so they don’t get lost. During this step, you
have to decide how you will preserve those objects. Some of your options
include relational database management, object-oriented database man-
agement, and plain old files. Your choice has a significant impact on the
design of a persistence subsystem, and on how other subsystems can
use it. If a guest makes a reservation using the hotel reservation system
today — and the system goes down tomorrow — that reservation had
better be there when the system comes back up. Often designers use an
existing relational database to hold hotel-reservation information.
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6. Define subsystem interfaces.

Treat subsystems just like classes. Each subsystem is responsible for
some major operations. During this step, you decide what those opera-
tions are and describe them as interfaces. The credit-card processing
subsystem is responsible for checking the validity of a guest’s card. And
the subsystem must authorize any charges against a guest’s credit card.

7. Select Components.

Building today’s systems for maximum flexibility means designing with
components. A component is a modular, self-sufficient, replaceable unit
that works like a black box in your system. In this step, you select which
parts of your system you want to act as replaceable or reusable units
(that is, as components). The CreditCardAuthorization subsystem,
the Reservation class, and the Room class are good candidates for mod-
ular components.

8. Pick system strategies.

You have to consider how your system starts up and how it shuts down.
You must have a design strategy for handling errors and system failures.
Regrettably (in this day and age), your system also must consider infor-
mation security, data integrity, and customer privacy. These concerns
may add use cases, classes, and subsystems to the overall systems
design. The hotel reservation system must protect guest credit-card
numbers and people’s addresses from prying eyes. The system must
not allow hackers to modify any reservations.

The first time you perform Steps 1 through 8 on a project, don’t make
any hard and fast design decisions. Just review the issues because each
decision you make at each step has an impact on decisions you could
make during the other system design steps. For instance, when you
decide to use a certain vendor’s relational database-management
system, doing so imposes limits on how you define your interfaces —
and on exactly how you could decompose your system into subsystems.

9. Iterate Steps 2 to 8.

Now, having visited the design issues presented in Steps 1 through 8,
revisit each step and make some tentative decisions based on the design
priorities you chose in Step 1. Use UML diagrams such as a package dia-
gram and a deployment diagram to capture your design choices.

10. Iterate again.

We find that a good system design emerges after going through Steps 2
through 8 two or three times.

Designing your system involves a lot of steps. Luckily, UML provides you with
notation and diagrams to help. Table 19-1 lists the major design elements that
need defining during systems design and the UML diagrams that help you.
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Table 19-1 Systems Design Diagrams
Design Element UML Diagram Description

System Package Diagram and Take your system and break it 
Decomposition Component Diagram up into more manageable 

pieces known as subsystems. 
Show the subsystems and 
show their dependencies.

Interfaces Class Diagram Explore and then describe the
contractual obligations of 
each subsystem. Treat each 
subsystem as if it were a 
class and describe the 
operations for that subsystem.

Hardware Deployment Diagram Describe the hardware you 
will use to run your software. 
And show how the hardware 
is connected together. Show 
the physical hardware 
architecture for your system 
as nodes with communication
paths between them.

Components Component Diagram Show which parts of your 
system are really replaceable 
units also known as 
components. Show the 
structure of your system as 
black boxes with their 
interfaces, ready for replace-
ment or reuse.

Deployment Deployment Diagram Indicate how your compo-
nents and subsystems are 
realized as physical artifacts. 
In addition, show the hard-
ware on which those artifacts
are deployed.

Constructing Logical Pieces
Your first major step in designing a system is called “system decomposition.”
In this step you take the big-picture point of view and break your system up
into “logical” pieces. You use a package diagram to group classes that must
work together. (See Chapter 7 and Chapter 20 for more details on the package
diagram.) You build component diagrams showing subsystems to present a
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consistent concept of how your system is put together. Later on you create
real physical artifacts such as program code, Java scripts, or Web pages for
each of these logical parts of your system.

Packing up your classes
You create subsystems to group classes together in a conceptual (logical)
way for your design. The basic notation for a subsystem is a rectangle with
the name of the subsystem at the top of the rectangle with a stereo type of
«subsystem» and optionally a small fork icon in the upper-right corner of the
rectangle. We use the fork icon to help the developer quickly pick out the sub-
systems from a complex diagram. Subsystems are a kind of package. The idea
here is that just like packages that hold classes, subsystems can hold classes
for your design. Take a look at Chapter 7 for more information on how and
when you can put packages to work. Each subsystem in your system owns the
classes within it. You cannot have the same class owned by two different sub-
systems. However you can import classes into a subsystem from another sub-
system or package. (You can find more details on importing in Chapter 20.)

Figure 19-1 shows a simple subsystem labeled Reservations Business
Logic. The subsystem contains the Person, Room, and CreditCard classes.
The reservations business logic subsystem also contains the reserves asso-
ciation and the pays-with association. You can think of the Reservations
Business Logic subsystem as a logical grouping with some of the classes
required by the hotel reservation system.

Your design classes should be owned by one — and only one — subsystem.
The idea is to treat subsystems just as you would UML packages: Make sure
you don’t put the same class into more than one subsystem. If you do, you
find their definition mutates into something different in the different subsys-
tems, and confusion will follow. A frazzled developer may grab the wrong def-
inition of the class, use it in an application, and break the system.

«subsystem»
Reservations Business Logic

Person

CreditCard

Room

*

0..1
0..*

0..*

pays-with

reserves

CC
Figure 19-1:

A subsystem
and its

contents.
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You don’t have to put the same class in more than one subsystem, because a
subsystem can import and reuse classes from other subsystems. (We explain
importing classes in Chapter 20.)

Decomposing your system
You can think of your system as being one large package with all the classes
contained inside — but that gets confusing. It’s easier (and saner) to organize
your system so that it’s composed of groups of classes. You group your
system’s classes so that each group of classes must handle the behavior of
only a part of your system — for example, realizing a use case or accessing a
database. These groupings are what we’ve been calling subsystems. Each sub-
system is capable of dealing with one important part of the overall problem
your system is designed to solve.

We see projects get out of hand when they have just one package holding all
the classes. The developers get confused and the system implementation is
disorganized. You can get away with just one package if the software applica-
tions are small. If you build a large system, however (like a hotel-reservation
management system), then sooner or later you’ll have to break it up into
smaller, more manageable pieces.

Use the following major techniques to identify subsystems and get started
with system decomposition:

� Establish subsystems: Split your system into three major subsystems:

• Presentation: The presentation subsystem is responsible for all
interaction with the users.

• Application: The application subsystem is responsible for handling
all the business logic. 

• Data: The data subsystem is responsible for storing data making
sure your objects persist.

� Use aggregation: If you have a large aggregation in your domain model,
think about making a subsystem that contains the aggregate and all its
parts.

� Use case: Create a subsystem that contains all the classes for your appli-
cation that are necessary for making the use case work properly. You may
want to combine several similar use cases into one subsystem. (You can
find more details on grouping use cases into subsystems in Chapter 20.
For more on classes that help your use case come alive see Chapter 7.)
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� Group domain classes: Consider making a subsystem that holds all your
domain classes. Domain classes reflect the domain or language of the
user. These domain classes appear in various use cases in your applica-
tion — and they must persist. Having all the domain classes in one place
makes it easier to enforce a common definition and provide a common
way to store these classes in a database.

Not all of these techniques mentioned above are compatible with each other.
For example the three tier approach (group by presentation, application, and
data) is not really compatible with use case approaches (group by functional-
ity), although a very large system may use a combination of approaches.

If your system is really complex, you can break up any subsystem into lower-
level subsystems. There are two ways you can show the subsystems inside
your system: 

� Showing subsystems within a package: Figure 19-2 illustrates the sub-
system within a package technique for showing system decomposition.
The Hotel Reservation System as a package contains three subsys-
tems, Web Presentation, Reservations Business Logic, and
Persistent Store(DB). Notice that each subsystem has the small fork
icon. The Hotel Reservation System package could have also been
shown as a subsystem with a «system» stereotype.

� Membership notation: You can also use membership notation to show
system decomposition. You show the containing package at the top of
the diagram. Attach a circle (with a plus sign inside) to the bottom of the
package. Then draw a line from the circle-with-a-plus to each of the sub-
systems. Figure 19-3 shows this alternative notation using the package
membership notation. The package diagrams in Figures 19-2 and 19-3
mean the same thing. Normally we prefer showing subsystems inside the
main system package — that way it’s easier to understand the contain-
ment visually.

Developing subsystem responsibilities
As you get these logical subsystems in place, you should ask yourself, Just
what is each subsystem responsible for? Your subsystem is an aggregate or
whole and the classes inside are the parts. Just as your system has major
operations it must perform (use cases), each subsystem has a group of major
operations for which it’s responsible.

To help you understand what each subsystem must do, we recommend
you create a simple class diagram that shows each of your subsystems as
classes — and each subsystem’s major responsibilities as operations.
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As an example, the hotel reservation system has a Reservations Business
Logic subsystem. This subsystem is responsible for making room reserva-
tions, canceling reservations, guaranteeing a reservation, finding a room,
checking its availability, and getting a price for the room. Figure 19-4 shows 
the major operations for the Web Presentation, Reservations Business
Logic and Persistent Store(DB) subsystems.

You can focus on each subsystem, one at a time, and show its responsibilities
as use cases and the other subsystems as actors. An example of this
approach is given in Chapter 8.

«subsystem»
Web Presentation

«subsystem»
Reservations Business

Logic

«system»
Hotel Reservation System

«subsystem»
Persistent Store(DB)

Figure 19-3:
Package
diagram

using
membership

notation.

«subsystem»
Web Presentation

Hotel Reservation
System

«subsystem»
Reservations Business

Logic

«subsystem»
Persistent Store(DB)

Figure 19-2:
A package

diagram
showing
internal

subsystems.
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Working with Components
You organize a system into subsystems. A standalone subsystem,
autonomous and modular (relative to the bigger system), is known as a com-
ponent. UML components are like replaceable parts — you take one out and
fit another in its place. We like components because we can replace it without
having to change anything else in my system. Components make your sys-
tems more flexible, maintainable, scalable, and reusable. Components come

«subsystem»
Web Presentation

+promptUser(in form) : Boolean
+showObject(in view)
+generateView(in xmlcontent : String) : Object(idl)

user

interacts-with

1

1

0..*

retrieves-from

1

1..* database

«subsystem»
Persistant Store(DB)

+openDB(in dbName : String, in userName : String, in Password : String)
+closeDB(in DB)
+retrieve(in type : object(idl), in search : object(idl)) : object(idl)
+store(in theObject : object(idl)) : object(idl)
+sqlFetch(in sqlString : String) : object(idl)

«subsystem»
Reservations Business Logic

+makeRoomReservation() : Reservation
+cancelRoomReservation(in theReservation : Reservation) : Boolean
+guaranteeReservation(in estPrice : Currency, in cc : CreditCard) : Boolean
+findRoom(in roomSpec : object(idl)) : Room
+checkAvailability(in room : Room) : Boolean
+getPrice(in theReservation : Reservation) : Currency

Figure 19-4:
Subsystems

with major
operations
as possible

responsi-
bilities.
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in many shapes and sizes. Subsystems are one example of a large component.
A complex class with many internal parts and external interfaces could also
be a component. (Remember a component is a replaceable part.)

When you construct replaceable components (parts), be sure to carefully
define the boundary of the component. You define the boundary by clearly
describing the responsibilities and interfaces of the component. Such parts
are easy to make because everyone knows exactly what the component
should do. This improves productivity and makes the component easier to
test (the testing teams know exactly how the part is supposed to work),
which improves quality. Also, the more a component is reused, the more
trustworthy and reliable it becomes.

For your components to be replaceable parts they must have the following
criteria:

� Hide the inner workings: The insides of a component are hidden from
(and inaccessible by) objects outside the component. If you want to
make a truly replaceable part, you can allow no dependencies to exist
between the insides of the component and any other objects.

� Provide interfaces: An interface describes what operations you can
invoke on a component — but, not how any such operation is performed.
An object outside a component uses an interface without knowing which
instance of a class is being invoked. All an outside object must know
about a component is that it’s using the appropriate interface (so it
looks for the signature of the interface). That way the outside objects are
kept in the dark about the inner workings of the component. Providing
interfaces are a way of hiding the inside workings of a component from
the outside. Components rely on the principles of encapsulation and
information hiding. See Chapter 2 for more on these principles.

� Make the inner parts independent: You must make sure the objects
internal to the component have no knowledge of outside objects.
Otherwise trying to replace the component would break the system —
there would be no guarantees that the appropriate outside objects
would be available to the replacement component.

� Specify the required interfaces: Sometimes the objects inside your
component must access objects on the outside. If the object on the out-
side has its own interfaces declared, then the objects on the inside use
that common interface instead of accessing outside objects directly.

You can think of a component as a subsystem with internal classes that work
together to realize the publicly stated interfaces.
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Showing black boxes
UML 2 redefines the meaning of the “component diagram.” In earlier versions
of UML the component diagram defined components as the physical imple-
mentation of your software such as executable code files, dynamic link
libraries, and source code files. The component diagram showed dependen-
cies among the pieces of your software implementation and their hardware
location. The experts who developed UML ran into a little problem: While
they were busy defining diagrams, we object-oriented programmers were
busy with our own meaning for the word component.

We needed replaceable parts for our applications. Classes were not replace-
able. We needed an object-oriented part that provided not only behavior, but
also interfaces independent of how the part worked. We needed better black
boxes. So, during the mid-to-late 1990s, the practical development commu-
nity came up with the idea of components. UML 2 catches up with developers
and redefines the concept of component to bring it in line with the idea of an
autonomous replaceable unit.

You show a component as a rectangle with the name of the component
inside. The component has a stereotype of «component» and (optionally) a
small icon in the upper-right corner that looks like a small box with a couple
of tabs hanging off. (We’re not making this up. Honest.) Because a component
must hide its inner workings from the outside, it often has interfaces attached
to the sides of the rectangle. Each interface that a component provides to the
outside world looks like a “lollipop” (a circle on a stick) in the diagram. Each
interface that the component requires from some other class or component
in the system looks like a half-circle on a stick.
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Logical versus physical
The experts talk about logical data models,
physical models, logical views, and physical
elements. You needn’t worry about all this
babble. When the experts use the term “physi-
cal,” they are referring to something in the real
world that all of us experience. The experts use
of the word “logical” simply means conceptual.

For instance a physical table model (also known
as a physical data model) describes the tables
of a relational database as they physically exist
in a database. The actual names of the table
and its fields are used in physical table model.

On the other hand, the logical data model
describes the tables in a more generic or con-
ceptual way — as entities. Entities are the con-
cept behind the physical tables of a relational
database.

The logical model for an object-oriented system
consists of the conceptual pieces that make up
the system: subsystems, components, and
classes. The physical model consists of the real
parts of a system: hardware, network connec-
tions, classes with design details specified,
application code, scripts, and files.



Figure 19-5 provides a black-box example of UML notation for a component
called PersistentStore. Here it has the «component» stereotype and the
small component icon on the right side. Our application component,
PersistentStore, provides the following three interfaces:

� DBAccess: Another object in your system uses the DBAccess interface
to open and close a database.

� DBQuery: If an object in your system wants to query an open database,
that object uses the DBQuery interface. Then, in response to the query,
the PersistentStore component then stores or retrieves objects as
needed from a database.

� DBTest: Sometimes you have to test the connection between your
system and an open database. An object in your system would use the
DBTest interface for this purpose.

Our PersistentStore component also requires access to a relational data-
base via a specific interface. Figure 19-5 shows this required interface with a
half circle (socket) on a stick called Rdbms. The Rdbms interface must be pro-
vided by another class or component in your system. The PersistentStore
connects its required interface to another component’s provided interface —
and both have the name Rdbms.

Figure 19-6 shows another black-box example of a component. Notice that
UML doesn’t make you use the circles-and-half-circles-on-a-stick notation; you
can replace the lollipops with operations — showing the provided interfaces
with the «provided interface» stereotype and the required interfaces with
the «required interface» stereotype. The diagrams shown in Figures 19-5
and 19-6 have the same meaning.

Your components are, in effect, black boxes. Nobody can see what goes on
inside them — but everyone can see their interfaces. The software compo-
nents represented in your diagram have interfaces too, no less than the
pieces of electronic equipment that have tangible interfaces for hooking up
various cables.

«component»
PersistentStore

DBAccess

DBTest Rdbms

DBQuery
Figure 19-5:

Basic
component

with
interfaces.
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Describing the interfaces
You show components as black boxes when you want to wire them together
to make up your system. In the example of the PersistentStore component
in the previous section, you connect the PersistentStore to another com-
ponent that provides the Rdbms interface. 

But, if you’re building the insides of a component for others to assemble into
their system, you have to show the interfaces’ details. If (for example) other
developers want to use your PersistentStore component to retrieve data
from the database, they have to know the signature of the retrieve opera-
tion in the DBQuery interface, which may look like this:

retrieve(type : Object, search : String): Object(idl)

When you build a component, give the users of your component a special
interface specification using a component diagram. In this type of diagram
you show the component as a black box and the interfaces as classes. Each
interface has the «interface» stereotype, the name of the interface as the
name of the class, and the full operation signature for each operation with in
the interface. Connect up the provided interfaces to the component with a
realizes dependency. The realizes dependency shows that the component
implements the operations specified by the interface. Connect the required
interfaces to the component with a uses dependency. The uses dependency
shows that the component must use some other component that implements
that interface.

Your users of the PersistentStore component will appreciate the compo-
nent diagram shown in Figure 19-7. This diagram shows users of the
PersistentStore component that if they want to store an object instance in
the database, they must invoke the DBQuery interface with store(theObject:
Object(idl)): Object(idl). Further, if they want to perform an SQL
query on the database, they would use the DBQuery interface with
sqlFetch(sqlString : String) : String. To keep the diagram simple,
we haven’t shown the detailed signature of operations in the DBAccess,
DBTest, and Rdbms interface classes.

If you refer to Figure 19-6, you can see that it shows the PersistentStore
component with three provided interfaces and one required interface. 

«component»
PersistentStore

«provided interface» +DBAccess()
«provided interface» +DBQuery()
«provided interface» +DBTest()
«required interface» +Rdbms()

Figure 19-6:
A compo-
nent as a

black box.
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Figure 19-7 shows the same thing, only it uses dependency arrows instead of 
stereotypes:

� The dashed line with a large, closed arrowhead is the realizes depen-
dency. That means an interface is realized by a component. For example
the DBQuery interface is realized by the PersistentStore component. 

� A dashed line that has a regular arrowhead and the «uses» stereotype
means that the component uses the interface — in fact, that it requires
the interface. For example, the PersistentStore component uses
(requires) the Rdbms interface.

Looking inside the box
But wait a minute — you want to build components, not just assemble them.
You need a way of showing the insides of your component. That’s easy: just
add a compartment below your component and put a class diagram there.
Classes inside the component work together to accomplish the interfaces of
the component.

«interface»
DBQuery

+retrieve(type : Object(idl), search : String) : object(idl)
+store(theObject : Object(idl) : Object(idl)
+sqlFetch(in sqlString) : String

«interface»
DBAccess

+openDb(name : URL, user : String, 
 password : String) : Boolean
+closeDb() : Boolean

«interface»
Rdbms

+open()
+close()
+select()
+insert()
+delete()
+fetch()

«component»
PersistentStore

«uses»

«interface»
DBTest

+checkConnection() : BooleanFigure 19-7:
A compo-
nent with

explicit
interface

specifi-
cations.
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Because you must show how the internal classes are hooked up to the com-
ponent’s interfaces, UML provides some special terms and notation for the
purpose:

� Ports: A port is a point of interaction between the inside and the outside
of your component. Provided and/or required interfaces are attached to
these interaction points. You show a port as a small square on the edge
of your component. By attaching interfaces to a port, you’re specifying
the services that the component provides — or requires — through that
port. One way to tell which port does what is to name it, putting the
name next to the small square. 

Ports can be used on classes and subsystems as well as components.

� Delegation: When a request for service comes into your component
through a port, you have to show who handles that request. Do so with
a link between the port and one of the internal classes (or components)
inside the larger component. Your connecting link should be a line with
an arrowhead indicating the direction of the request. The line is also
stereotyped «delegate».

� Stereotypes for inner workings: UML provides you with several stereo-
types that help distinguish between the different parts inside your com-
ponent. You can use the following stereotypes on the inner workings
(classes and internal components) inside your component:

• «focus»: A part with this stereotype executes some or all the busi-
ness logic internal to the component.

• «process»: A part with this stereotype executes a transaction. It
must make sure that an important sequence of behavior — the
transaction — completes. If the transaction fails to reach comple-
tion, this part must undo any behavior done to make the transac-
tion happen — in effect, eating the evidence.

• «service»: A service part has no states; it just computes a value.
Such a part is really a function (sequential set of instructions)
dressed up as an object.

• «entity»: A part that persists. An entity’s attribute values, behav-
ior, and state carry on beyond the life of the application runtime
environment.

• «auxiliary»:A part that assists the focus part with implementing
business logic for the component.

� Ball and socket: You can use the ball-and-socket notation to show
assemblies inside your component. If you have one class that must have
a particular interface and another class that provides that interface, then
you can hook them up in the diagram: Just place the ball end of the pro-
vided interface into the half-open end of the required interface.
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Whenever you design a component, create a component diagram to show its
inner workings. You use such a diagram to help you explore, design, and doc-
ument the best ways to wire your component. You should also create a com-
ponent diagram that shows the component as a black box surrounded by
interface classes, each with a detailed operation signature. Pass this
second diagram out to all the developers who will be integrating your compo-
nent into their system.

Figure 19-8 provides an inner structure example of the PersistentStore
component. When an object outside of the PersistentStore invokes the
DBAccess interface using the openDB or closeDB operation, the request is
delegated to an instance of the DBManager class.

Incidentally, the DBManager is the focus of PersistentStore — so it makes
sure any business logic for the component is handled properly. The DBManager
creates an instance of the checkConnection class so the component can
provide the service associated with the DBTest interface. Both the DBManager
and the checkConnection must have interfaces on an internal component
called Connection.
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You can see the use of the ball-and-socket notation in the example. The
DBManager requires the connect interface that the Connection component
provides. The Connection component, DBManager and Query all require the
Rdbms interface. The Rdbms interface is external to the component; it must be
provided by some other class or component in the system.

Deploying Physical Pieces
(Implementation)

Before your design can see the light of day, you must plan the physical
appearance of your system — describing the hardware, communication
paths between devices, and the different types of files that run on that hard-
ware. UML provides ways to show all such aspects of implementation on a
deployment diagram.

Diagramming the physical architecture
Deployment diagrams show the physical architecture of your system —
essentially a connected arrangement of hardware — as nodes (three-dimen-
sional boxes). You draw lines between nodes to represent communication
paths between your hardware components.

Nodes are very similar to classes. In fact, like the aggregate classes that con-
tain parts, your nodes can contain other nodes. You can document detailed
hardware configuration information by adding attributes and operations to
your nodes. For instance we would specify that our user’s Web-client hard-
ware have the following attributes:

memory : Kilobytes = 256
diskCapacity : Gigabytes = 20
cpuSpeed : Mhz = 1.2
screenResolution: pixelRes = 1024 x 768

Some UML tools display this information right on the diagram. If not, the con-
figuration information is still accessible in the definition of the node for later
retrieval.

Any type of hardware that can execute software and talk to other hard-
ware devices — for example, printers, modems, scanners, and external disk
drives — are represented as nodes on a deployment diagram. Your communi-
cation paths represent such things as local area networks, the Internet, a USB
cable, or (indeed) any mechanism that links one node to another. Use stereo-
types to indicate the nature of the communication that goes on between your
hardware components.
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Communication paths between nodes are similar to associations between
classes. You can show multiplicity, roles, and even qualifiers on the paths
between the nodes. We like to show multiplicity to help developers under-
stand how many nodes are in our design configuration.

You can use a number of stereotypes on the nodes and the communication
paths of your deployment diagram. Some of the more common stereotypes
are as follows:

� Nodes: Use these stereotypes to indicate the type of hardware node
you’re deploying:

«device»: Use this stereotype for a node that has processing 
capability.

• «application server»: A node of this type provides a remote
service for an application.

• «client workstation »: A user’s computer is often designated
with the client workstation stereotype. 

• «mobile device»: Laptop computers, cell phones, and other
devices that use wireless communications are considered mobile
devices.

• «embedded device»: Yes, developers of real-time embedded sys-
tems also have a stereotype.

• «execution environment»: This is a stereotype of a virtual node
providing an environment for executing a program. A virtual node
looks like hardware but is not actually hardware. An operating
system or a Java virtual machine are examples of an execution
environment.

• «container»: Enterprise-system development that uses Java also
uses a “container” node to hold components. Designate that piece
of hardware with the container stereotype.

� Communication paths: Use these stereotypes to specify types of com-
munication links between hardware nodes:

• «serial»: Use this stereotype to indicate a serial-port connection
between nodes — for example, a connection between a mouse and
a computer via the serial port.

• «parallel»: Use this path to hook up nodes via the parallel port.
Many printers and scanners are hooked up this way.

• «usb»: The Universal Serial Bus (USB) type of connection is used
widely to hook up external devices (nodes) to computers.

• «lan»: Use this stereotype to indicate that two nodes are net-
worked together.
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• «internet»: Use the internet stereotype to indicate that the two
nodes are using the vast resources of the Internet to communicate.
If you have a Web application, you have an internet connection.

A deployment diagram that shows your hardware layout helps others under-
stand how to build the system you have in mind. Keep it simple — show only
the hardware architecture and its configuration. Such a diagram helps you to
explore the dependencies among your hardware components. In large sys-
tems, this simplicity becomes especially important. Consider, for example,
corporate data-warehouse configurations that involve many different types of
nodes, including the following

� Online transaction-processing database servers

� Operational database servers

� At least one store server that provides atomicity (requiring each transac-
tion to execute — or not — as a unit)

� Various metadata servers

� Multiple data marts

� Online application servers, load balancers, and users’ desktop computers

All these nodes must utilize various corporate networks to communicate. We
use a deployment diagram to organize these machines into an architecture.
We look for communication bottlenecks in the diagram. We get consensus on
the deployment and then publish the final version of the deployment diagram
so all the developers understand the complexity of the data warehouse struc-
tural design.

Don’t try to show everything on your deployment diagram; just show the
major pieces of your architecture. You can show computers — or, for that
matter, CPU chips — as nodes on a deployment diagram, and if necessary,
you can show lots of detail — disk drives, memory cards, backplane commu-
nication buses, even specific wires. But these details are not important to
most developers of software applications. Just show what’s important to get
the job done.

Figure 19-9 illustrates a simple deployment diagram for the hotel-reservation
system. Potential guests use a Web Client and gain access to the reserva-
tion system through one of several hotel Web Server nodes. The Web Server
passes information and requests between the user’s Web Client and a single
Reservation Server. The hardware sitting at the hotel’s check-in desk as
well as the manager’s office is all one node — the Reservation Client node.
This hardware also has access to the Reservation Server by using Java’s
remote method-invocation protocol (rmi). The Reservation Server uses
the Database Server node for saving reservations and uses one of several
available Credit Bureau nodes for credit authorizations.
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Realizing your system as artifacts
UML 2 introduces the artifact. We’re not talking relics here. Artifacts are the
physical files that make up your implemented system found running on vari-
ous hardware nodes. Artifacts replace the UML 1.x definition of component.

Your system is logically composed of components, subsystems, classes, and
functions. You realize these logical elements as physical artifacts or files. For
example, a compiled file with executable code, a Java JAR file, a dynamic link
library (dll) file, and a Web script are all artifacts. These are all physical
manifestations of your work as a developer. You use deployment diagrams to
show not only hardware nodes but also the artifacts that reside on them.

You show artifacts as a rectangle with the name of the artifact inside. The
name is usually the filename with its extension, such as room.jar. You use
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the stereotype «artifact» and optionally a small icon that looks like a dog-
eared page. On a deployment diagram, you can show artifacts in the following
ways:

� Inside the node on which they reside: Just place the artifact inside the
boundary of a node.

� With a location property naming the node on which they reside: The
location property is shown below the name of the artifact as follows
(replace node name with the actual name of the node):

{location = node name}

� Along with their dependencies to other artifacts: You show dependen-
cies among artifacts as dashed lines, each with an arrowhead indicating
the direction of the dependency.

� With a component property naming the component that the artifact
implements: The component property is shown below the name of the
artifact as follows (replace component name with the actual name of the
node):

{component = component name}

� As dependencies to the component(s) that they implement: Show the
artifact and the component it depends on in your deployment diagram.
Then draw a dashed line with an arrowhead from the artifact to the com-
ponent it depends on.

Artifacts are the physical implementation of components or subsystems. So
every artifact depends on some component or subsystem, regardless of
whether you show it on a deployment diagram.

Figure 19-10 provides an example of a deployment diagram for part of the
hotel reservation system. Two artifacts residing on the Reservation Server
node — ReservationLogic and Persistence.jar. ReservationLogic
depends on the Persistence.jar file because at runtime instances in the
ReservationLogic file must invoke instances in the Persistence.jar file.
The Persistence.jar file depends on the Rdbms.exe executable file that
resides on the Database Server node.

You may notice that the diagram shows two ways to indicate an artifact’s
dependency on a component. For the ReservationLogic artifact, the com-
ponent dependency is shown as a property {component = Reservations
Business Logic}. For the Persistence.jar artifact, the dependency is
shown with a dashed line and an arrow pointing to the PersistentStore
component.

UML provides you with a number of common stereotypes for your artifacts.
Instead of using the plain «artifact» stereotype you can use any of the fol-
lowing to match your deployment situation:
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� «executable»: This artifact can be executed as a program on a computer.

� «library»: You use this stereotype when you have a file that is a
dynamic (or static) link library or DLL file.

� «script»: Script artifacts are source code files that get interpreted at
runtime by some other program. If you have (for example) a Javascript
file downloads to a Web browser, use this stereotype.

� «page»: Use the page stereotype to denote a single HTML page.

� «file»: This is a generic stereotype. Use this for any old file that is impor-
tant to the runtime environment. You might use this for a profile or con-
figuration-setup data file used by a program to start up an application.
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Chapter 20

Breaking the System into
Packages/Subsystems

In This Chapter
� Defining good packages

� Developing subsystems from packages

� Considering dependencies

� Specifying required subsystem services

� Realizing a subsystem

� Using architectural patterns to decompose your system

Even the development wizards can get it wrong. This chapter shows you
the tricks of the trade so you can avoid or at least contain the mess that

can result when designing large systems. When designing these large sys-
tems, poor system decomposition — partitioning a system into smaller sys-
tems or subsystems — can exacerbate the confusion, and you can end up with
a maintenance headache resulting from built in dependencies throughout the
system. If this is the case, you may have a queasy feeling that the system is
brittle — which means that every time you make a change to one part of the
system, you end up having to make changes in lots of other places too. To
help you head off such a scenario, this chapter shows you some measures
you can take to avoid brittle systems. We talk about moving from analysis-
time packages to design-time subsystems. You’ll see examples of subsystem
notation and architectural patterns that get you started building solid sys-
tems that stand the test of time.

Using Packages and Subsystems
Your requirements for a system start out as simple statements from a few
users — and before you know it, you have many different types of users, lots
of use cases, burgeoning domain terminology, and piles of business rules. As



you develop your design solution, you must contend with users’ machines,
application servers, Web technology, networking, security, database perfor-
mance, and a host of other issues. All this results in lots of diagrams and lots
of classes to implement. To help you avoid confusion, UML provides pack-
ages and subsystems.

A package is an all-purpose way to group things such as classes, use cases,
and/or diagrams together — and it’s represented as a tabbed folder. Packages
help you keep your development organized. Packages own what’s inside them,
and the internal contents of your packages are either public (visible outside
the package), private (hidden inside the package), or protected (visible to
package extensions, hidden from external packages).

A package can import the contents of another package and then use the
imported package contents as if they were inside. You refer to an element like
a class that belongs to another package with the PackageName::ElementName
notation. For example, Product::AirFilter refers to the AirFilter class
owned by the Product package.

You use packages to organize your requirements at analysis time. You use
subsystems to organize your solution at design time. You can treat subsys-
tems just like packages. In UML 2, subsystems and packages are not exactly
the same thing, but they are close enough. (Subsystems are shown as a rec-
tangle with a small fork icon in the upper right-hand corner.)

We use packages and subsystems during analysis and design as follows:

1. Develop analysis packages.

During analysis, you can start grouping classes that must work together
into the same package. You can also group your use cases by creating a
package for each actor and placing the use cases initiated by that actor
in the package. 

2. Reorganize packages for system design.

When you start designing your system, move classes and use cases
around to group things together for your developers. Developers appre-
ciate packages organized by important use cases, hardware, develop-
ment schedule, or department ownership of the information. We’ll give
you more details on reorganizing packages later in the chapter.

3. Convert packages to subsystems.

Change the packages into subsystems. The subsystems now hold and
own, the contents that the packages did. The value of this step comes
later when you design the details of each subsystem.
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Not all analysis-time packages turn into subsystems. You might keep
a package that holds common datatype definitions during design time.
Subsystems in your system import the contents of the datatype package.

4. Consider dependencies.

Look at each subsystem and examine how it may (or may not) depend
on the contents of other subsystems.

5. Reorganize subsystems.

Rearrange the contents of your subsystems to either increase dependen-
cies (for performance) or decrease dependencies (for modularity) among
your subsystems. At this stage, you use architectural design patterns such
as façade or three-tier to reduce subsystem dependencies and increase
the flexibility of your system’s design. (You can find more about façade
and three-tier patterns in the section “Using other architectural patterns,”
later in this chapter.) Doing so can often lead to a change in how you
arrange your subsystems. If you reduce subsystem dependencies, you can
have teams of designers work independently on each subsystem.

6. Design subsystem details.

After you’re satisfied with the overall organization of your subsystems,
then you begin designing their details. UML enables you to show the
specification (requirements) and the realization (implementation
details) for each subsystem.

If you organize your subsystems well, then teams of developers can design
each subsystem without worrying about how the other subsystems are
designed.

Creating analysis packages
The systems you analyze are probably large and complex with many different
types of users, too many classes to remember, and lots of different behavioral
interactions among the classes. To keep it all straight, we use packages during
analysis. Here are some of the packages we find useful during system and
software analysis:

� Domain groups: Group your domain classes (classes that reflect the 
terminology of the user, like hotel, room, or reservation) into a package.
If you have lots of classes, then consider creating subpackages to fur-
ther organize these domain classes. Look for a group of classes closely
associated with each other and loosely associated with other classes in
the domain. You can also look for classes that participate in any of the
following:
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• Classification scheme: You organize these classes into an inheri-
tance hierarchy. Sometimes this makes for a good grouping.

• Aggregation: If you have an aggregate class that has a lot of parts,
put the aggregate class and its parts into their own package.

• Persistent class group: If some (but not all) of your domain classes
must persist (live beyond the life of the running application), place
them in their own package.

� Actors and use cases: Each actor interacting with your system uses that
system for its own purposes, which is a different from the purposes of
other actors. Create a package for each actor and place the use cases for
that actor in their respective package. If an actor has a lot of use cases
(more than 5–9) consider creating subpackages to group the use cases
more specifically for that actor.

� Application class groups: As you consider the classes required by your
application, place them either in an appropriate use-case package or
create a separate package to hold them. Such application classes are the
control, view, and boundary classes that an application needs so it can
make a use case work properly for an actor.

� Common datatypes: Often classes can represent enumerations (such as
eye color), data classification (including units of measurement such as
miles for distance and pounds for weight), and abstract datatypes (such
as address, currency, or date). Place any such common datatype in a
package so you have one definition of it that everyone can reuse.

You can continue to use packages during the design phase of your project as
a general-purpose way of grouping elements from your UML diagrams
together. However, we like to use subsystems during design because they
allow you to show how specific requirements are realized by a group of coop-
erating classes.

Figure 20-1 shows some of the packages for an air-filter product business. The
order clerk and the clerk’s use cases are owned by the Order Handling
package. The Account Billing package contains the accountant actor and
use cases directly accessed by the accountant. A separate Analysis
Datatype package holds several classes stereotyped as enumerations and a
couple of abstract datatypes.

The domain packages for the air-filter business example are shown in Figure
20-2. To keep the diagrams simple, we don’t show all classes and associa-
tions. You can see some of the classes owned by the Customer Accounting
package, but we don’t show the contents of the Supplier Accounting,
Airfilter Product, and AirEvents packages. Call it an exercise of a handy
UML feature: showing or hiding the contents of a package as needed.
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Creating subsystems
If your analysis results in a lot of classes and required behavior to make the
system or software conform to what your users need, then you need to orga-
nize your design using multiple subsystems. During design, you can create
subsystems according to the following criteria:

� Use cases: You can create subsystems that focus on a group of similar
use cases. The analysis-time packages that you based on your use cases
are good starting points when you’re creating these subsystems. As
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when creating the analysis-time packages, you should look for use cases
that have the same actor. The air-filter business example has two such
subsystems: Order Handling and Billing.

When creating subsystem, keep use cases that depend on other
“included” use cases in mind. You should ask yourself: In which subsys-
tem should I place the “included” use case? There are a couple ways to
answer this question:

• You can place an included use case in the subsystem where it’s
most often used — and let other subsystems import it if they need
it. For the air-filter example, we chose to put the Check Credit
Card use case in the Billing subsystem instead of the Order
Handling subsystem because the accountant uses it more fre-
quently than the order clerk does. The Order Handling subsys-
tem will import the Billing subsystem. During design, you’re
allowed to move things around if it meets your design priorities.

• Alternatively, you can place the included use case in its own subsys-
tem. Other subsystems that need the behavior of the included use
case must import the behavior. We favor this approach if several
other use cases in our system must access the included use case. 
If you chose this option for the air-filter example, you would 
create a subsystem, call it Credit Check, and place the Check
Credit Card use case with in it. The Order Handling and Billing
subsystems would depend on the Credit Check subsystem.
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� Hardware and software: Your information system has software that
runs on hardware. You can use this as a basis for creating subsystems.
Consider the following examples:

• Hardware: Create subsystems around the different kinds of hard-
ware in your system. The Order Handling subsystem, for exam-
ple, can be broken down into two more subsystems: Web Orders
for handling orders placed over the Internet and Clerk Orders
placed on standard-issue office equipment of the order clerks.

• Software: You have three kinds of software in your system: new
software you develop, old legacy software that you have to use for
a while yet, and commercially purchased software (such as appli-
cation programs, transaction managers, database-management sys-
tems, and office software suites). Create subsystems to contain
each of these different types of software. (The air-filter business
would need a subsystem for the commercially purchased 
database-management system.)

� Schedule: You don’t always get the chance to build and deliver the
required software for your system all at once. You have a schedule you
must follow, rolling out specific pieces of the software over time. You can
create subsystems that group related use cases (and the classes that
implement those use cases) for each delivery deadline in the schedule. If
you built subsystems according to the schedule in the air-filter example,
you’d need a subsystem containing Setup New Customer, Invoice
Customer, and Check Credit Card use cases for the first scheduled
rollout. The second rollout would have a subsystem containing the
Generate Product Order and the Review Accounts use cases.

� Ownership: If you have developers from different departments who must
take ownership for a particular piece of the system, consider creating sub-
systems based on that ownership. If we have developers with accounting
expertise, then we create a subsystem and place all accounting-oriented
classes, use cases, and components in it. Similarly, the database depart-
ment is responsible for (you guessed it) the database subsystem.

� Deployment: Today your applications are spread across the user’s com-
puter, Web servers, application servers, and database servers. You can
create subsystems based on where you deploy the software. The air-
filter business needs subsystems for the software that gets deployed on
each of these different machines.

Figure 20-3 shows a group of subsystems based on the analysis-time packages
for the air-filter business example. The two analysis-time use-case packages
lead to the Order Handling and Billing subsystems. (The Billing sub-
system contains the Check Credit Card use instead of Order Handling.)
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At analysis time, all the different domain packages lead to a subsystem that
holds all the common objects. The Common Objects subsystem contains sev-
eral sub-subsystems — Customer, Supplier, and Product. The Persistent
Store subsystem provides an interface to a back-end relational database-
management system. The Security subsystem handles all login and user
authorization tasks. The Accounting System Interface provides access
to a legacy accounting system.

The Analysis Datatypes package is now called the Domain - Datatypes
package for the system design. Not all analysis packages convert to 
subsystems.
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Exploring Dependencies
Unless your system is simple, no one subsystem does everything. Each sub-
system must rely on services supplied by other subsystems to get its own job
accomplished. When one subsystem can’t do its work without relying on
another subsystem, you have dependency.

An example of dependency occurs in the air-filter business example: The
Order Handling subsystem must rely on the classes inside the Common
Objects subsystem to generate a product order. If you were to make a
change to the operations of the AirFilter, Customer, or CustomerAccount
classes, then you would have to change classes inside the Order Handling
subsystem too.

The dependencies among your subsystems come in three flavors (Figure 20-4
illustrates these flavors):

� Dependent: If one of your subsystems depends on the contents or inter-
faces of another subsystem, but not the other way around, this is the
simple case of one-way dependency. The Order Handling subsystem is
dependent on the Common Object subsystem. (You hear experts refer to
client-supplier, or client-server dependency. These are just other terms for
one-way dependency.)

Show one-way dependency as a dashed line that connects two subsys-
tems; include an arrowhead that points from the dependent subsystem
to the subsystem it depends on. You can show dependencies among
packages in the same way.

� Codependent: Two subsystems are codependent or two-way dependent
when they depend on each other. If a class in the Common Object sub-
system must have access to a class in the Order Handling subsystem
and some other class in the Order Handling subsystem needed access
to yet other classes in Common Objects, then we have a two-way depen-
dency (also known by its fancier name, peer-to-peer dependency).

You show two-way dependency as two separate dependency lines that
connect the same two subsystems but go in opposite directions. (A
more informal notation for codependency is a single dashed line that
has arrowheads at both ends.)

� Independent: If you have two subsystems that have no dependency
between them, they are called independent. In the air-filter example, the
Persistent Store subsystem and the Accounting Interface
Subsystem have no dependencies between them.

You show that two subsystems are independent by not connecting them
with dependency lines.
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If you want a maintainable system, avoid codependency among your subsys-
tems. Dependency means that a change in a subsystem may lead to a change
in the dependent system. But, codependency is worse. A change in one code-
pendent subsystem may lead to a change in the other codependent subsys-
tem, which in turn could lead to a change in the first codependent
subsystem.

After you have your subsystems, consider the dependencies among them:
Build a diagram that shows your design-time subsystems and packages, using
dashed-lines-with-arrows to indicate each subsystem’s dependency on other
subsystems and packages. While you’re exploring these dependencies, con-
sider the degree of coupling and cohesion present in each subsystem:

� Coupling: A highly coupled subsystem has many dependencies.

� Cohesion: A highly coherent subsystem has all the classes it needs to
meet its assigned responsibility.

To increase or decrease coupling and cohesion among subsystems, you move
classes from one subsystem to another until you find the right balance.

Look for codependent (two-way-dependent) subsystems — and try to make
them one-way-dependent. You can do this by moving classes from one sub-
system to another or by creating a subsystem that holds only the common
classes. Architectural patterns (discussed at the end of this chapter) can also
help you break the cycle of codependency.

Every system you build has some amount of coupling and some degree of
cohesion. But, the desired levels of coupling and cohesion depend on your
design priorities and goals. Those goals relate to functional requirements,
performance, cost, and schedule. You find more information on design priori-
ties in Chapter 19.

Before you design your system, consider your design priorities. As you per-
form the design tasks, keep an eye on coupling and cohesion. Adjust your
design to obtain the right level of coupling and cohesion to meet the design
concerns.

Diagramming dependencies
Figure 20-4 illustrates a design diagram with subsystems, packages, and
dependencies for the air-filter business example. We like to put the user-
oriented (use case) subsystems at the top and low-level service-oriented sub-
systems at the bottom of our dependency diagrams.
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At the top of the diagram in Figure 20-4, you see the two subsystems that
interface with the Order Clerk and Accountant actors — Order Handling
and Billing. Order Handling depends on Billing because Billing con-
tains the included use case Check Credit Card. Order Handling and
Billing both depend on Common Objects. The Billing subsystem must
access the Accounting System Interface subsystem, so there is a depen-
dency there too.

All classes in the Common Objects subsystem — such as Customer,
AirFilter, SupplierAccount, and CreditCard (not shown in the figure) —
must be saved in a database. So, the Common Objects subsystem depends
on the Persistent Store subsystem — and on the definitions of abstract
datatypes and enumerations contained in the Domain-Datatypes package.

Notice that the Security subsystem has a property {visibility =
Global}. That means that all the other subsystems may depend on the
Security subsystem because it’s globally available to all parts of the system.
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Instead of drawing a lot of dependency lines from just about every subsystem
to just one commonly needed subsystem, use the global-visibility property
instead.
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Considering coupling and cohesion
There are many possible design solutions for
your system. Each solution has good points and
bad points. We use the concepts of coupling and
cohesion to figure out how well any particular
design solution meets our design priorities. In
and of themselves coupling and cohesion are
neither good nor bad — but they can tell you a
lot about how your system approaches its
work — and whether you want to change that.

The concept of coupling expresses how inter-
connected the parts of our system are — in
effect, how interconnected such parts as
classes or subsystems are. A class with six
associations is more coupled than a class with
two associations. A subsystem that depends on
another subsystem is more coupled than a sub-
system with no dependencies. Another way to
think about coupling is to consider how much an
instance of a class must “know” about its sur-
roundings. The more an object must know about
other objects’ methods, the higher the coupling.

Cohesion, on the other hand, expresses how
well all the internal parts of a class or subsys-
tem work together. If a class must have every
one of its attributes and operations in order to
work, the class is highly cohesive. However, if a
couple of attributes are only used with one oper-
ation and another few attributes are only in use
by a different operation, the class has lower
cohesion within the class. When all classes
inside a subsystem work together to accomplish
the tasks required of the subsystem, then the

subsystem is highly cohesive. However if a sub-
system has several groups of classes where
each group works independently of each other,
then the subsystem is less cohesive.

Suppose you’re designing a system to be flexi-
ble. A flexible design enables you to make
changes in one subsystem without affecting or
changing other subsystems. Flexible systems
call for a modular design with high cohesion and
low coupling. Subsystems with high cohesion
are replaceable — and if they have a low
degree of coupling, fewer changes are needed;
the result is more modularity. If your subsystem
exhibits high coupling, that means it’s dependent
on many other subsystems. In a highly coupled
system, chances are that a change in one sub-
system leads to changes in other subsystems.

But, if you’re designing a system for perfor-
mance, you tend to increase the coupling and
lower the cohesion of your classes and subsys-
tems. That way when an object must get data
quickly, it goes directly to an object that can
provide that data instead of indirectly through
many interfaces. For example, you have an
object that needs data from a database you
have design options. You could have the object
invoke the behavior of a generic database inter-
face object. Or, you could write the access code
right into a method in the object that needs the
data. The second option ties your object directly
to the database but, it performs faster.



Importing what you need
As you work on a subsystem, you come to a point at which you need the ser-
vices of a class that resides in another subsystem or package. You have two
choices:

� Invoke an interface: When you call an operation on the subsystem
where the needed class resides, that operation invokes the needed
class. Suppose (for example) you’re using the façade design pattern
(more on façade in the section “Using other architectural patterns,” at
the end of this chapter) to make this happen: When an instance of the
Customer class changes, an update must be made to the database.
You can design the Customer class to invoke the interface operation
store(this) on the Persistent Store subsystem. The internal ele-
ments of the Persistent Store subsystem then get to work storing
the data from the Customer instance in tables in the database.

� Import the class: You import the class right into the subsystem that
must use the class, making it appear as if the imported class is inside
the subsystem that needs it. The imported class is still owned by the
package or subsystem from which you imported it, but you can use it
directly. The AirFilter class needs the Pound (weight in pounds)
abstract datatype that resides in the Domain - Datatype package. By
importing the Domain-Datatype package into the Product subsystem,
you can treat the Pound class definition as if it were inside the Product
subsystem.

You import elements from other subsystems so that their visibility is either
public or private. You make the contents of another package or subsystem
public in another subsystem by using the «import» stereotype on a dashed
dependency line. You make the insides of another package or subsystem pri-
vate in another subsystem by using the «access» stereotype on a dashed
dependency line.

Figure 20-5 illustrates what happens when you use the «import» and
«access» stereotypes. On the left side of the figure, you import the contents of
Domain - Datatypes into Product and make them publicly visible to other
subsystems. So, when the Order Handling subsystem imports Product, it
also imports the elements originally in the Domain - Datatypes package.

However, the situation is quite different on the right side of Figure 20-5. You
“access” the contents of Domain - Datatypes and make them private —
hidden from other subsystems. As a result, when the Order Handling sub-
system imports Product, it does not import the elements originally in the
Domain - Datatypes package and may not use them.
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Merging what you have
Suppose you realize that two subsystems are almost identical. They have
about the same number of classes, the names of the classes are similar, and
relationships between the classes are almost identical. To solve this problem,
UML provides a special dependency called merge that works like inheritance.
A package or subsystem merges the contents of another package or subsys-
tem by inheriting its contents within its own scope. To indicate merging,
attach the «merge» stereotype to the dependency line.

For example, in the air-filter business example we have similar subsystems —
Customer and Supplier. Both subsystems have an account. In the Customer
subsystem it’s called CustomerAccount and in the Supplier subsystem it’s
called SupplierAccount. Each type of account is backed up by a line of
credit. In the Customer subsystem, the customer’s credit card provides the
line of credit. The business sends invoices to customers and receives
invoices from suppliers. In both cases, the invoice is paid through the respec-
tive account — Customer or Supplier Account. There must be a way to sim-
plify this situation. Figures 20-6 and 20-7 illustrate one such solution: merge.

When you see common classes and associations in different subsystems,
create a subsystem that contains their commonality. Figure 20-6 shows a new
subsystem called ClientAccount. The ClientAccount holds generic classes
such as Client, Account, LineOfCredit, and Invoice. The Customer and
Supplier subsystems are shown merging the ClientAccount.

Figure 20-7 shows the classes internal to the Supplier subsystem as a result
of merging the ClientAccount subsystem. The supplier contains its own 
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Domain - Datatypes

«subsystem»
Product

«import»

«subsystem»
Order Handling

«import»
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Invoice, Client, Account and LineOfCredit classes. These classes play
specific roles in association with each other. The Invoice class plays the
role of payable in this subsystem. In the Customer subsystem (not shown),
the Invoice plays the role of receivable.

ClientAccount:: Client

ClientAccount:: Invoice

ClientAccount:: LineOfCredit

«subsystem»
Supplier

ClientAccount:: Account

Client LineOfCredit
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Account
bills

bills

utilizes

utilizes

backs-up

backs-up

Supplier
[Client]

payable
[Invoice]

1..*

1..*

1..*

1..*

1..*

1..*

0..1

0..1

0..1

0..1

0..*

0..*

Figure 20-7:
Illustration
of merged

subsystems’s
internal
classes.

0..*

1..*

1..*

1..* 0..1

0..1

backs-up

«extend»«extend»

utilizes

bills

Account

«subsystem»
ClientAccount

LineOfCredit

«subsystem»
Customer

«subsystem»
Supplier

Invoice

Client

Figure 20-6:
Merging

subsystem
from

another
subsystem.

353Chapter 20: Breaking the System into Packages/Subsystems



Notice that Figure 20-7 shows some classes and associations as gray. We did
that to illustrate how the merge dependency leads to inheritance. (You would
not show those gray elements in your diagram. When you merge another sub-
system or package those gray elements are implicitly there.) For example, the
Invoice class owned by the Supplier subsystem is a subclass of the Invoice
class owned by the ClientAccount subsystem — ClientAccount::Invoice.

You add attributes and operations specific to the classes in the Supplier
subsystem and inherit the generic attributes and operations from the classes
defined in the ClientAccount subsystem. The associations are also inher-
ited. You see the bills association inherits from the gray bills association.
As a consequence the bills association inherits the multiplicities (0..1 and
0..*) and role names (Invoice and Account). We have changed the role
name from Invoice to payable. UML allows us to indicate that we’re redefin-
ing the role name by showing the new role name as payable and the old
(inherited) role name as [Invoice].

Patterning the Relationships
If you build systems, you may experience déjà vu — the same kinds of sub-
systems appear in different system architectures. You’re not losing your
mind. Many systems display similar architectural patterns when you struc-
ture their subsystems. You make use of these patterns to solve common
design problems when you start putting your system together. An architec-
tural pattern gives you a reusable template to base your systems design.

Utilizing the three-tier architecture pattern
Three-tier architecture is a common pattern for systems. This pattern sepa-
rates your system into three distinct areas of behavior found in almost every
system (presentation to the user, business logic, and object persistence). It
also separates subsystems by technology (for example, user interface, 
application, database) and machine location (user-client machine, server
machine, database machine). What you get (ideally) is a consistent user
interface across multiple applications. But not all related behavior is confined
to the same subsystem. For example, handling an instance of the Order class
is done in several different places.

Using the three-tier architecture pattern you decompose your system into
three subsystems:
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� Presentation: The subsystem that plays the Presentation role is
responsible for all interactions with the user of the system.

� Business Logic: This subsystem must perform calculations and make
sure the application adheres to business rules. This is where the real
work of the application takes place, independent of any user interfaces.

� Database: The back end of the system is the subsystem that plays the
role of the database. This subsystem is responsible for storing any data
or objects that must persist beyond the runtime of the application.

Modeling architectural patterns
You use a collaboration to diagram an architectural pattern. If you’re showing
just the pattern, draw a dashed oval with the name of the collaboration at the
top. Draw a dashed line to separate the name of the collaboration from the
elements depicted as involved in the pattern collaboration. In the main body
of the oval show a simple diagram with the subsystems that interact to form
the pattern. You name the subsystem in such a way as to indicate the role
they play in the pattern. You can also show connections between the subsys-
tems and any other dependencies between the subsystems that make up the
pattern. (See Chapter 15 for more on collaborations.)

Figure 20-8 illustrates the three-tier pattern. The basic idea is quite simple,
three subsystems labeled Presentation, Business Logic, and Database
are contained inside a named collaboration oval. The dependencies between
the three subsystems are also show to further clarify the pattern. If you use
this pattern your three subsystem must follow the pattern of dependencies
shown in the diagram.

«subsystem»
Business Logic

Three-Tier

«subsystem»
Presentation

«subsystem»
DatabaseFigure 20-8:

Three-tier
architec-

tural
pattern.
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When you want to show a specific “occurrence” of a pattern, you draw a col-
laboration occurrence — a small, named collaboration oval — and don’t forget
the dashes. To show each your specific subsystems that participate in the
pattern, use a dashed line to connect each subsystem to the collaboration
oval. Then, at the end of the dashed line next to each subsystem, show the
role that subsystem plays in the pattern. Role names come from the generic
pattern description.

Figure 20-9 shows an occurrence of the three-tier pattern for the air-filter
business example. A subsystem called OrderViewClient plays the role of
the Presentation subsystem. The OrderViewClient is responsible for pre-
senting screen views of order and customer information to the user. The
OrderHandlingServer subsystem performs all the business logic of the
order-handling application. It, in turn, depends on the PersistentStore
subsystem to play the role of the Database part of the pattern.
PersistentStore is responsible for all storage and retrieval of order and
customer information.

Using other architectural patterns
It can be especially helpful to use architectural patterns to get you started
with decomposing your system into subsystems. You may want to consider
the following other architectural patterns: 

� Façade: You provide a simple interface, the façade, to hide complex
internal details, such as the system’s subsystems, components, and/or
classes. Many complex subsystems use this pattern to hide their com-
plexity from other subsystems.
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� Adapter: You want to convert the interface of an existing system or sub-
system, the adaptee, to an interface more easily used, the adaptor. This
pattern serves to “wrap” legacy systems and hide the old interface to
the legacy system.

� Master-slave: You have to have one subsystem, the master, in complete
control of other subsystems, the slaves. The master issues commands
and accepts responses from the slaves. Command and control systems
tend to use this pattern.

� Pipe-filter: When you want a system that must perform a step-by-step
sequence based purely on data input, you actually have two tasks:

• Create a pipeline architecture with subsystems that perform
each step.

• Create a subsystem to hold the data.

The subsystems that perform each step can also filter the data passing
through them. Signal-processing systems and batch-oriented systems
(for example) use this pattern.
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Part VII
The Part of Tens



In this part . . .

In this part, we get to make several lists of stuff that
help you model with UML while still being fun, informa-

tive, and useful — such as common UML pitfalls and mis-
takes to avoid, Web sites full of additional UML information
to surf, UML tools that make pretty pictures easy to draw,
and a selection of the best UML diagrams — complete
with instructions on when to use them.



Chapter 21

Ten Common Modeling Mistakes
In This Chapter
� Avoiding diagram pitfalls

� Checking for problems

We’ve been teaching modeling for the analysis and design of systems
for more than a decade. During this time, we’ve witnessed many of the

same modeling mistakes over and over. As you learn to apply UML to meet
your needs, keep in mind these pitfalls (which we hope to help you avoid).
This chapter lists ten of the most common blunders made by modelers. Use
it to check your work as you and your co-developers construct UML diagrams.

Splitting Attributes and Operations
We see developers create some classes with attributes but no operations,
and other classes that have no attributes — only operations. (We don’t know
about you, but every object-oriented class we ever met had both attributes
and operations.)

The developers making this mistake are really thinking about data structures
and the functions that act on the data. They translate that idea into the
object-oriented world by using the steps much like the following:

Blunder 1: Equate data structure only with class attributes.

Blunder 2: Equate a function that manipulates data structures only 
with class operations.

Blunder 3: Create one instance of the class with operations.

Blunder 4: Create one instance of the class with attributes.

Blunder 5: Use the class with the operations to change the values of 
the class with attributes.



Do not follow the five steps we’ve just outlined (but you knew that). They
lead to splitting up attributes and operations. Big mistake.

Make your classes whole by putting the attributes and operations that need
each other together in one class.

Figure 21-1 shows classes with attributes and classes with operations — sep-
arately (and confusingly). The Vehicle class works with the Truck class.
The Tools class is similar to the ToolKit class. The Person class is another
name for the Employee class. Figure 21-2 shows a better model, with the
attributes and operations put together.

Availability

Resources

+available()
+schedule()

Person

+truckAssignment()
+currentTask()

Vehicle

+driver()
+loaded()
+location()

Tools

+truck
Truck
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-weight
-department
-VIN

ToolKit

-category
-metric
-weight

Employee

-name
-employeeId
-phone
-skillset
-jobTitle

Figure 21-1:
Example of

a split-
classes

mistake.
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Using Too Few or Too Many 
Diagram Types

We’ve observed some developers use just one diagram for every situation.
They forget that other UML diagrams are there to help them understand,
communicate, analyze, design, and implement. They build class diagrams to
capture classes (and their static relationships), but also try to represent
object interactions, data flows, and system decompositions with those same
class diagrams. Unfortunately, the class diagram was never meant to capture
that other stuff very well — but use-case, sequence, state, and activity dia-
grams seem foreign to these experts.

Some developers produce only class diagrams because that’s what translates
most easily into object-oriented programming code. Alas, the code they pro-
duce is not dynamic enough (because the developer didn’t consider state
diagrams) or even what the user wants (because the developer never
thought about the use cases for the application).
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-weight
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Other developers seem compelled to use every single UML diagram whether
they need to or not. Some people pride themselves on their knowledge of
UML notation. They show off their abilities by using every diagram on every
project. You waste valuable time trying to decipher these extra diagrams
without making any progress toward completing the project.

Every UML diagram has a purpose and value, but not every diagram is neces-
sary on every project. Your project is unique; some — but not all — UML dia-
grams will help you get the job done. If your project involves maintaining an
existing system (for example), then some class diagrams, a couple of
sequence diagrams, and a deployment diagram may be all you need.
However, if you build real-time embedded systems, you need state diagrams
along with sequence diagrams (because you want the team to understand
timing issues), and some class diagrams. Every project is different.

Check out Chapter 24, where we list ten useful diagrams to get you started.
Our aim here is to avoid getting stuck on just one diagram — but also to
spare you the confusion of trying to use all the possible UML diagrams.

Showing Too Much Detail
One team of developers we worked with proudly showed us over one hun-
dred sequence diagrams they had constructed. Each diagram was like the
one in Figure 21-3 — only worse. There were twenty to thirty instances
shown at the top of some of these diagrams. The team used really big pieces
of paper to print out their masterwork. We asked them a couple of questions:
“Do you maintain these diagrams — as the requirements change, do you
update their details?” Their answer was a simple “No.” (Yikes.)

Often developers start drawing UML diagrams because they want to build a
program. Each event line in our client’s sequence diagrams (for example)
might become a method call from one object instance to another. Rather than
clarify the interaction requirements for their software application, the team
bogged down in unnecessary programming details before they even knew
what to program.

If you think to yourself, I could have written the program in less time than it
took to create this diagram, then you have too much detail.

You can avoid too much detail by thinking about whether a risk to the project
exists if you don’t show the detail on your diagram. Often there is none. If you
do find some risk to the progress of the project, than add a little more detail
to the diagram.
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Using Vague Terminology
To keep the peace, some modelers give their classes vague names. One mod-
eler, for example, had a diagram with the Tuple class on it — and the devel-
opers were confused about its meaning. When we asked the modeler about it,
we found out the modeler was avoiding a political fight. You see, the develop-
ers had strong opinions about the meaning of specific data items. Instead of
clearly defining Tuple to be a grouping of either abstract or concrete data
items and named functions, used as metadata in the process of extracting
data from a source data set, the modeler choose to stay out of trouble by
using vague class names. No one could accuse the modeler of choosing sides
in the “data item” battle, and the modeling work could still go forward.

Now the whole point of using UML notation is to foster communication. Often
users and developers are not precise about what they mean. For example,
you may find that the same term, Tuple — as applied to abstract-versus-
concrete data elements — has different meanings to different people. Work
with each person to find out precisely what he or she is talking about. Then
use UML to communicate the different meanings accurately to each group.
You become the hero because you help overcome conflict among developers
by clarifying what they mean when they use similar terminology.

a:B :G hh e:F c:D m i:J :D n :J

Figure 21-3:
Example of
sequence

diagram
with too

much detail.
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Defining the Same Thing Twice
The users you talk to have their own language and UML diagrams help you
understand that language. But as you carefully build class diagrams that define
the terminology of your users, the unthinkable happens (in fact, rather fre-
quently): Two users use different words to mean the same thing. For example,
in the insurance world hazard and peril can mean the same thing. We asked one
user the meaning of hazard and were told, “When a hazard occurs, we must
pay an insurance claim if the policy handles that hazard.” Another user told
me, “A peril is a description of an incident for which we write coverage.” We
used UML to model the meaning of hazard, peril, insurance policy, claim, and
coverage. As this model matured, The Hazard and Peril classes had almost
identical attributes, operations, and associations with the Policy and
Coverage classes. After we discussed the meaning of hazard and peril with
both users, they agreed the two words meant the same thing.

Look through your diagrams to find classes with similar attributes, opera-
tions, and associations. If you find a couple of similar classes, question your
users and the other developers. Ask for examples of these similar classes
from your users. If they turn out to be the same, you should choose a single
name for the class and stick with it. (You might use the other name for some
other purpose — say, as a role name on an association or the name of a
common superclass.)

Linking Everything Together
Developers often get used to feeding a function with all the data it needs — and
(just as often) apply this same thinking to classes. These programmers create a
class and connect it (via associations) to all other classes that have any data
the first class might need in one of its operations. For instance, an AutoPolicy
class is associated with Claim, MedicalCoverage, LiabilityCoverage,
ComprehensiveCoverage, Auto, Agent, Premium, Payment, and Person
classes. The developer forgets that one class (AutoPolicy) can ask another
class (Premium) for information about yet another class — the dollar value
from the Payment class — without having to associate the AutoPolicy class
directly to the Payment class.

Class diagrams — where most classes connect to most other classes — can
be the royal road to maintenance nightmares. Any time you associate one
class to another class, you have a dependency between those classes. If you
change one class, the other may change too. The more associations between
classes, the more dependencies you must worry about.

366 Part VII: The Part of Tens 



When you see class diagrams with every class connected to every other
class, remove some of those associations. You should find out which associa-
tions are really necessary and which associations exist simply to get data
from one class to another class.

Creating Too Many Use Cases
Some business analysts go use-case crazy. Before they know it, they have an
unruly plethora of use cases. This happens when the business analyst cre-
ates — CRUD. Yep, CRUD. For example, the user needs to Create addresses,
Read addresses, Update addresses, and Delete addresses. So the analyst cre-
ates four use cases to handle the Address class. Then, with a flourish, the
Read Address use case is included by putting «includes» in the Create,
Update and Delete Address use cases. (By the way, this analyst is just get-
ting started. Every class known to the user must be created, read, updated,
and eventually deleted — which means dealing with thousands of use cases.)

When you see lots of use cases, check to see if they are CRUD. Check the fol-
lowing to identify CRUD:

� One class: Several use cases all center around just one class.

� Not a major class: The use cases deal with a relatively minor class in
your application.

� CRUD: The use-case names are similar to Create X, Read X, Update X,
and Delete X, where X is the minor class.

� Simple interaction: Each use-case description is short and simple to
describe.

� Include Read use case: Several of the use-case descriptions include the
Read X use case. In other words several use cases have an «include»
relationship to a use case named Read X.

If you recognize CRUD use cases, combine them into one use case and call it
Maintain X. However, if the CRUD use cases really represent different goals
to the users, then they should be separate.

You should be careful not to fall into the opposite trap of creating a diagram
with one use case that seems to do everything. You can recognize this situa-
tion by looking at the use-case description. If it has sprouted many compli-
cated alternative paths, replace that overburdened use case with several
simpler ones.
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Completing One Diagram 
Before Moving On

Some modelers get stuck because they want to “complete” one diagram
before they work on another diagram. For example, a team of developers can
easily get fixated on use cases. They complete the use-case diagram and fill
out every single use-case description, down to the last alternative scenario.
Only then do these developers feel ready to move on to building a class dia-
gram that defines the terminology that crops up in those use-case descrip-
tions. There’s just one problem: They discover that the terms used in the
use-case descriptions are inconsistent because various users expressed the
same word to mean different concepts and different words mean the same
thing. As a result, the single-minded developers must go back to every use-
case description and change them, one at a time, to make them consistent
with the class diagram.

The work you perform on one diagram can help you with other diagrams.
Consider developing your UML diagrams in parallel. For example, when you
start your work on use cases, at the same time start building a class diagram
as you talk with users. Defining the meaning of the users’ language as you go
can help keep your use cases in sync with your class diagram throughout the
project.

Cycling Around Class Diagrams
Modelers are not always careful with the multiplicity they show on class dia-
grams. However, you can discover multiplicity inconsistencies easily if there
are cycles in the class diagram. You have a cycle if you find a path that starts
at a class, goes along a series of associations and connected classes, and
comes back to your starting class. Figure 21-4 illustrates a cycle from Person
to Policy to Vehicle back to Person.

Person Policy
*

*

*

1
1

holds

drives

Vehicle
1..*

insures

Figure 21-4:
Class

diagram
with

incorrect
multi-

plicities.
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To check for inconsistencies of multiplicity, work through the following steps:

1. Select one of the classes in the cycle as the starting point.

In the example in Figure 21-4, start at Person.

2. Follow the association from the starting class to the next class in the
chain.

This takes you to Policy because Person connects to Policy through
the holds association.

3. Take a look at the multiplicity at the end of the association you just
followed next to the class you found in Step 2.

4. Make a mental note of what that multiplicity means for the two classes.

A person can hold exactly one policy.

5. Now go back to the starting class and follow the chain of classes in the
opposite direction until you get to the class you found in Step 2.

In the running example using Figure 21-4, you have Person to Vehicle
to Policy.

6. Take a look at the multiplicity at the end of the last association you
just followed to get to the class you found in Step 2.

In this example, this multiplicity is also exactly 1.

7. Consider the meaning of the indirect relationship between the start-
ing class and the ending class via this other route.

A person can drive zero or more vehicles and each vehicle can only be
insured by one policy.

8. Check to see whether the meaning you got from the diagram in Step 4
squares with the meaning you got in Step 7.

If it doesn’t, then you have a potential inconsistency in multiplicity —
and it must be fixed. If you are to believe the diagram in Figure 21-4, an
instance of the Person class can only hold one policy, and a policy
insures one vehicle. But that same person can drive more than one vehi-
cle (where each vehicle is insured by exactly one policy).

Those two statements are inconsistent under most circumstances. How
can a person hold only one policy (if you follow the holds association)
and hold more than one policy if he or she drives several vehicles and
each of those vehicles can have a different policy?

Check all the cycles in your class diagrams for contradictions by using the
eight steps given here.
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Not Listening to the User
Many of the modeling mistakes we see are traceable to someone’s poor lis-
tening skills. Rather than listen to what a user needs from a software applica-
tion, some developers are too busy thinking about how they are going to
write their next program. These developers dream up terminology like
QualifiedEditableAccount, Tuple, and Xref. In the end, the software
does not meet the needs of the user. That’s partly because those arcane
terms aren’t much help when the original developers are no longer on the
project. When users ask for a better system, the new developers get com-
pletely confused because they can’t relate what the user is saying to anything
in the program code.

Users provide you with a wealth of information for your software application.
Here’s a strategy for making the best use of it:

1. Listen to your users carefully.

2. Convert the users’ terminology into classes.

For example, in the insurance domain, define Policy, Customer,
Vehicle, Coverage, and Claim.

3. Convert the users’ required interactions with your software into use
cases and sequence diagrams.

Capture what it means to the user to “generate a policy,” “handle a
claim,” and “bind a policy.”

4. Design your system and write the code based on what the user told you.

For example, implement a Policy class that uses the same terminology
as that of your users.

5. Listen to the user after you deliver the software.

Now, when the user talks about changing something related to an insur-
ance policy, you know right where to go in your design the make
changes. You will not be hunting down Tuple and Xref to see whether
that’s where to change your code.

Recently, while serving on a “panel of experts” at a conference, one of your
authors (Jim, in fact) was asked, “How can you tell a good modeler when you
see one?” His response was, “The best modelers are the ones who really
listen.”
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Chapter 22

Ten Useful UML Web Sites
In This Chapter
� Finding more information on UML

� Utilizing the Web as a UML resource

We’d like to believe that after you read this book on UML 2, you’ll never
need to look at another UML resource — but we know that’s not true.

UML is so big and vast (with new approaches to using it arising all the time)
that it’s likely you’ll need to find more information on UML some time in the
future. We’ve constructed this chapter to recommend some useful Web sites
that should help you with your future UML needs.

Before you go any further, when you first find that you need something more
on UML, you should go to your friendly neighborhood bookstore, or if you
prefer the Web, go to Amazon.com at www.amazon.com and spin through the
capsule reviews of books on UML. And if you (ahem) happen to find some
more of ours. . . . (Well, okay, we know our books aren’t the only ones out
there, but why break up a beautiful relationship?)

Weave a Tangled Web
The Web is a good source of information, but it’s not a perfect source. You’ll
find three main problems with using the Web as a source of information:

� If it costs nothing, it may be worth nothing. The quality of the Web
sites is notoriously uneven. Examine every Web site with a challenging
eye. Is the information on this site accurate and useful? Not every one
who publishes on the Web is an expert. This chapter helps you select
trustworthy sites — but never suspend your judgment while surfing.

� Nothing’s where it used to be. The Web is ephemeral. Sites appear and
disappear, change their names, or quickly get out of date. You may have
to be a skilled sleuth to find the latest incarnation of a site.



� You can’t surf a million waves at once. The Web is so big that you’ll
quickly be inundated with information. A simple search for UML on
Google, www.google.com, results in over 1,390,000 hits.

With these limitations in mind, you may wonder why you should bother with
the Web at all. Well, the Web’s advantages stem from the same properties as
its disadvantages:

� The price is right. While the highest-quality material will be from tradi-
tional books, almost all material on the Web is free.

� Quick and up-to-date. Not only is it quicker to find a Web site than
buying a book, the Web is often the only place to get up-to-the-minute
material. In a fast-moving field like system development with UML, you’ll
be able to hear about something first on the Web. (Of course, afterward
you’ll probably want to buy the book.)

� Diversity of opinion and expression. The Web is so large that you’re
more likely to find someone who has an answer for your specific ques-
tion, or for your domain, or expressing a point of view similar to yours.
That’s a big help when you’re doing something fairly different or have a
problem understanding the standard examples. 

UML Home Page
As OMG is the owner of UML, you should first go to OMG for the official infor-
mation about UML.

OMG is located at www.omg.org, but you’ll probably want to go directly to
their UML home page at www.uml.org. From this site, you can find pointers
to the official UML 2 and UML 1.x published specifications and official works-
in-progress. For example, the official UML 1.5 specification is found at
www.omg.org/technology/documents/formal/uml.htm.

The UML 2 official Request For Proposal (RFP) documents are also there. If
you work for one of the over 800+ members of OMG, you’ll also be allowed to
look at ongoing works-in-progress.

This site has additional useful background information on UML and some
pointers to other informative UML sites.

UML Forum
UML Forum (www.uml-forum.com) is a virtual community and knowledge
portal containing pointers to some official and semiofficial information.
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We particularly like the set of UML tutorials written by key UML developers
such as Cris Kobryn, Gunnar (gunnaro@morfeus.it.kth.se), Bran Selic
(karin.palmkvist@enea.se), Morgan Björkander (morgan.bjorkander@
telelogic.se), and J.Warmer@klasse.nl. You’ll also find pointers to tool
vendors, UML books, and conferences.

UML 2 Submitters
There are several groups submitting UML 2 proposals to OMG. While the
winner’s site will be the most useful, the other submitters’ sites will have
useful information on how they see UML 2 being used — and some alterna-
tive approaches to modeling:

� UML 2.0 Partners: The leading group, called U2P (UML 2.0 Partners),
has a Web site (www.u2-partners.org) where you can download their
latest proposals, catch the latest news, and make comments on their
Yahoo! group.

� Community UML: One of the proposing groups, the communityUML
(yep, one word), maintains a Web site of all the various proposals,
including their own proposal called 3C (Clear, Clean, Concise). See
http://community-ml.org/submissions.htm.

� 2U Consortium: A specific Web site for the 2U Consortium
(Unambiguous UML) can be found at www.2uworks.org. 

� pUML: A specific Web site for the precise UML group (pUML) can be
found at www.cs.york.ac.uk/puml/uml2_0.html.

OCL Center
OCL is an important part of UML whose use is increasing with the growth of
Model-Driven Architecture and model-consistent business rules. You’ll also
need to understand OCL if you want to understand the formal UML 2 specifi-
cations. This Web site (www.klasse.nl/ocl) keeps you informed about the
status of OCL, OCL 2.0, and several OCL-dedicated tools.

Magazines and Information Portals
These sites usually have copies of their latest articles from their magazine or
for-fee services. They’re often controversial, but are full of insightful opinion
and advice.
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� Software Development Magazine: Software Development Magazine has
a Web site for their influential articles on UML. Always interesting. Take
a look at their UML Design Center at www.sdmagazine.com/uml/. 

� DevX: DevX has an excellent set of recent articles on UML in their UML
Zone. Some of their best stuff requires a paid-up membership. Take at
look at what they have at www.devx.com/uml.

Search Engines
Searching for UML is a tricky business. First of all, UML doesn’t only mean
Unified Modeling Language. You’ll probably find hits for User Mode Linux,
University of Massachusetts Lowell, and Unified Marxist Leninist (the
Communist Party of Nepal). Together these hits may outnumber the hits on
UML sites. Use the advanced search forms when possible to eliminate the
extraneous hits.

You have several options when choosing a search engine:

� Google: The most popular Web-search engine appears to be Google
(www.google.com).

� Tech search engines: You’ll probably be best searching with more 
technically focused search engines from Northern Light (http://
nlresearch.northernlight.com/research.html), Overture
(www.overture.com) or Teoma (www.teoma.com).

� Zeal.com: Another good search engine is www.zeal.com. In this site,
users can suggest sites and write reviews. The quality of the hits is very
good, and you can be become one of their Zealots. 

Tool Sites
Many UML tool vendors offer good UML sites in addition to their tools. Here
are some of the best:

� Rational’s UML Resource Center: Lots of good material, especially some
early stuff on UML (www.rational.com/uml).

� Popkin’s UML Resource Center: Several papers and book recommenda-
tions (www.popkin.com/customers/customer_service_center/
enterprise_architecture_resource_center/uml.htm).

374 Part VII: The Part of Tens 



Training Sites
Several companies make a living by offering training, consulting, and mentor-
ing in UML and other related topics. Their Web sites offer online course cata-
logs and often articles and other reference material. We could start, of course,
by recommending our company, the Advanced Concepts Center, LLC, and its
Web site (www.acclearning.com) for discussions on UML, a complete list of
UML tools, great courses, and (harrumph) a highly knowledgeable staff of
instructors/mentors. But if you happen to be on another continent or planet,
then by all means look around for a nearby UML guru.

Forums and Groups
Participating in a community forum is sometimes the best way to get up to
speed. Members share their questions, opinions, and experience. Often there’s
a resident expert or two who helps the group. The quality of the answers may
vary, and the quantity of traffic can be large, but here are some of the best.
Visit them and you may (virtually) bump into one of us as we stop by to give
some advice:

� UML-Forum: With over 1000 members, this is one of the largest groups;
Cris Kobryn, the leader of the U2P team, moderates it. (http://
groups.yahoo.com/group/uml-forum/)

� The OOAD_UML group: This group is probably even more active than
the UML-Forum. (http://groups.yahoo.com/group/OOAD_UML/)

Miscellaneous Sites
Here are some interesting specialty UML sites that might be worth visiting:

� Define a term: If you need to look up a UML term, try Kendall Scott’s
UML Dictionary at www.softdocwiz.com/UML.htm.

� Ask a question: If you want an interactive Ivar (a chatterbox in the form
of a virtual simulacrum of Ivar Jacobson) to query about UML, try
Jaczone’s Cyber Ivar at www.jaczone.com/cyberivar.
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Chapter 23

Ten Useful UML Modeling Tools
In This Chapter
� Knowing which tool to use just in CASE

� Choosing a UML modeling tool

No matter how good you are at drawing, even if you’re an artist, you’re
not going to do a lot of UML by hand on paper or even on a whiteboard.

Maybe for a few high-level diagrams, it’ll work. But the more complex diagrams
are difficult and hard to draw, and the cross-diagram consistency quickly gets
out of hand, even if you’re handy with a drawing tool. Many different UML tools
are vying in the market for the privilege of helping you with drawing. Most of
these tools will do more than drawing, even more than modeling — they’ll do
consistency checking, generate code, write reports, reverse-engineer existing
code into models, and a host of other things. The full-featured tools are often
called CASE tools, where CASE, in case you didn’t know, stands for Computer-
Aided Software (or sometimes System) Engineering. Some don’t like the CASE
tool moniker and prefer Modeling tool because the CASE tools got a bad name
in the early nineties when they weren’t quite the silver-bullet solution they
were claimed to be. But whatever name you call them, reach for these tools
when you want to do UML modeling.

Picking a Tool
Pick a tool that meets the following requirements:

� Up to date: Does your tool support UML 2 (or have plans to do so within
your timeframe)? Some of the smaller tools don’t have the time or money
behind them to stay updated. On the other hand, sometimes the larger
tools are burdened with a large user population that must migrate to any
new version. Look for the UML 2 features that you need — and consider
how soon you can get them up and running.



� Affordable: Buy the best tool that you can afford, considering not only
the price of the tool but also the price of any support or maintenance
that you’ll need. Look for a tool that fits your checkbook.

� Understands XMI: XMI (XML Model Interchange) enables you to get your
model out of one tool and into another tool. If your tool supports XMI,
you’re less likely to get stuck with the limited modeling capability of a
tool that you’ve outgrown. XMI is also essential for getting the best-of-
breed in tools. Many vendors specialize in enabling specific parts of the
development solution (for example, modeling, metrics, or code genera-
tion). With XMI as the glue, you can pick one tool as the best for model-
ing and another as the best for generating code. Look for a tool that
speaks XMI.

� Stable: The fancier the tool, the more unstable it may be. Look for a tool
that foregoes too many bells and whistles so that it won’t blow up on you.

� Supported: The UML tool market is an exciting and dangerous place;
companies come, and companies go. Look for a tool from a company
that you trust.

� Checks consistency flexibly: Most tools have some ability to check con-
sistency among the models. This is good. However, you’ll often find that
the tool’s idea of consistency may be too strict for your purposes. Look
for a tool that enables you to control checking at the lowest level possible.

� Has an MDA approach in mind: With the growing popularity of the
OMG’s Model Driven Architecture approach, a good tool should be able
to support this initiative by handling platform independent and platform-
specific modeling. Look for a tool that supports MDA.

� Scalable: Many tools are great solutions for single users but won’t scale
up to many users as the same time. So consider: How many of your users
can be modeling at the same time? Look at the tool’s strategies for lock-
ing, providing concurrent updates, and managing configurations. See
whether it meets your team’s needs; look for a tool that grows with you.

� Works in and for your environment: The tool has to run on your devel-
opment platform as well as generate code suitable for your target plat-
form. Look for a tool that works where you want it to.

� Supports the diagrams that you need: It’s unlikely you’ll need every
diagram that UML 2 has, certainly not equally. For example, some tools
make the best class diagrams, some make the best state diagrams, and
some make the best use cases. They differ in the amount of detail that
they support, and in whether they generate code from that diagram.
Look for a tool that knows how to do what you want.

At our last count, there were over 128 UML-capable tools to choose from —
a tool for every user, purpose, and price range. In fact, it’s been said that any
developer who acts as his or her own tool has a fool for a tool. So take a look
at some of these tools and pick what works for you.
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We selected ten representatives that should simplify your choices, but if you
don’t find what you need, there are plenty more out there.

Argo/UML
� Produced by: Tigris

� Web site: argouml.tigris.org

Maybe you don’t want to pay a lot — or you want to get a good tool for free.
Well, with Argo/UML, you tap into the Open Source community. Argo/UML is
a fast-growing and improving tool, with support for OCL and automated
design wizards. Choose Argo/UML when you want to go open source.

Cittera
� Produced by: CanyonBlue

� Web site: www.canyonblue.com

The Internet is supposed to change everything. Cittera uses a Web-based
repository for your models and will host your models. Their collaborative
development approach enables users from all over the Internet to work on
the same model — complete with audit trail and version control. Choose
Cittera if your development is distributed, mobile, and flexible.

Ideogramic UML
� Produced by: Ideogramic

� Web site: www.ideogramic.com/products

So maybe you really want to use your hands and not the point-click-drag
idiom. This tool is gesture-based — specialized (but easy-to-remember) ges-
tures enable you to draw UML diagrams that can be saved and transferred to
any XMI-capable tool. Hook it up to something like Mimio to draw diagrams
on the whiteboard. Your squiggles are straightened, and correctly formed
boxes appear. Chose Ideogramic UML if you want to draw great-looking dia-
grams on a whiteboard with almost no effort.
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Objecteering
� Produced by: Softeam

� Web site: www.objecteering.com

Every tool has its own strengths. Objecteering is strong in many areas but is
probably the most powerful UML tool for constructing profiles. This means
that if you want to use one of the UML dialects — such as SPEM (Software
Process Engineering Modeling), CWM (Common Warehouse Modeling), or
EDOC (Enterprise Distributed Object Computing) — you may want to use
Objecteering. This tool is also especially handy if you want to make modifica-
tions to support your special methodology.

Rational Rose Suite
� Produced by: IBM

� Web site: www.rational.com

You probably can’t go wrong with the most popular tool. It’s certainly strong
in many areas and has a full suite of tools to support your development, espe-
cially in areas such as requirements management and configuration manage-
ment. Rational has other UML tools, such as Rose R/T and Rational XDE, that
are also worth looking at. With IBM owning Rational, things may change, but
for now, it’s the market (and marketing) leader. Choose Rational’s tools if
you’re conservative or need the full software development environment.

Rhapsody
� Produced by: i-Logix

� Web site: www.ilogix.com

If you’re a real-time or embedded-systems developer, you’ll need a special
tool. There are several out there, but Rhapsody is one of the most popular.
Choose Rhapsody if you’re embed (so to speak) with real time.
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System Architect
� Produced by: Popkin

� Web site: www.popkin.com/products/system_architect.htm

This popular tool offers you something UML-and-beyond: It also supports
Enterprise Frameworks such as the Zachman Framework and the Department
of Defense Architecture Framework (DoDAF, formerly C4ISR Framework).
These frameworks are gaining wide acceptance in the commercial and gov-
ernment sectors for capturing information on entire businesses. (Frameworks
are templates for capturing the who, what, why, when, where, and how of the
entire business at various stages of development.) UML is integrated with
support for traditional business process, as well as functional, organizational,
and relational data modeling — all of which provide great legacy-environment
support. System Architect also supports system-engineering environments.
Pick System Architect if UML isn’t enough for you.

Tau
� Produced by: Telelogic

� Web site: www.telelogic.com

Here’s another leader in UML and software development. Telelogic is noted
for higher-end technical tools that are attractive to large-scale aerospace,
communication, and manufacturing projects (among others). Tau offers good
real-time and multiuser capabilities as well as a powerful suite of associated
tools. Telelogic’s latest version, Tau, Generation 2, was the first to claim UML 2
support. (See www.taug2.com.) Pick Tau if you need the power.

TogetherSoft
� Produced by: Borland

� Web site: www.togethersoft.com

Sometimes you want to be agile. TogetherSoft’s powerful tool attracts the
eXtreme Programming developers and is probably the tool with the fastest-
growing market share. When you change the diagram, the code changes before
your eyes — and vice versa. Borland has a whole bunch of other great UML
tools, and it is assembling a powerful suite, but it has an integration challenge
ahead. Choose TogetherSoft if you want to be streamlined and agile, or if you
like a powerful underdog.
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Visio
� Produced by: Microsoft

� Web site: www.microsoft.com/office/visio

Not just a drawing tool, Visio includes code generation, reverse engineering,
and good notation coverage. Microsoft has been quietly building up Visio to
be a complete tool tailored for its .NET environment. We expect to see more
from Microsoft as the competition in the tool market heats up. Choose Visio if
you buy the complete Microsoft line or like the flexibility of having a good
drawing tool.
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Chapter 24

Ten Diagrams for Quick
Development

In This Chapter
� Choosing when to use a specific UML diagram

� Recognizing what each diagram is good for during development

� Understanding what each diagram shows

This book provides you with a basic reference to the Unified Modeling
Language — but you also have to know why particular diagrams are

important, when to use them, and what each diagram can do for you. This
chapter gives you a tour of our ten favorite ways of using the basic UML dia-
grams — as well as a few tips along the way. You will find more detailed exam-
ples of the basic UML diagrams and how we use them throughout the rest of
the book.

Context Diagram
The first diagram that you need on any project is a context diagram. UML
does not have a context diagram per se. We use the use-case diagram of UML
to show the context of the system or software that we are developing. So, we
give this special use-case diagram a solution-oriented name: context diagram.
If you already have one, that’s great. But in our experience, most software- or
systems-development projects start out without a context diagram, blissfully
unaware that they need one.

For your system or software development to be successful, you have to know
the answers to the following questions:

� Who uses your system?

� What data must go into your system?



� What information and objects must your system produce as output to
users and other systems?

A context diagram answers these questions because it shows your system in
a setting (context) defined by its interactions. The diagram helps define the
boundaries of your system or software application by showing all the users
and systems that your application must interact with.

A context diagram provides a good starting point for your work on use cases.
In fact, you build a context diagram based on the use-case diagram provided
by UML. Use the following steps to construct such a diagram:

1. Place a large rectangle in the center of the diagram.

This represents your system or software application.

2. Place the name of the system at top-center, just inside the rectangle.

3. Identify and name each of the actors that you expect to interact with
your system.

Actors can be human users, other systems, hardware, or the clock.

4. Place the actors around the outside of the rectangle representing your
system.

Use “stick figures” (including the name of each actor) for human users. If
the actor is not a human, use class notation that uses the name of the
actor as the class name and give the class the «actor» stereotype.

5. Draw a line between the actor and the system rectangle.

This shows that the actor interacts with your system.

6. Show the information, data, and/or objects that flow into your system
from an actor above the line connecting that actor to the system.

You show this as text with a small arrow pointing from the text toward
the system rectangle.

7. Show the information, data, and/or objects that flow out of your
system to an actor below the line connecting that actor to the system.

Again, you show this as text with a small arrow pointing from the text
toward the actor receiving the system output.

8. Repeat Steps 6 and 7 for each actor that sends data into the system or
receives data from the system.

The context diagram helps you set boundaries for the scope of your project.
You know from the context whom your system must satisfy, what data your
system must accept, and what data your system must generate.
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Use-Case Diagram
To understand your system’s requirements from the users’ perspective, build
a use-case diagram. A quick way to create one is to start with the context dia-
gram. If you remove the data input and output from the context diagram and
simply add a use case for each of your actors, you have a use-case diagram.

The use-case diagram helps you understand the major functionality that your
system must provide for each type of user. That’s vital information when you
want to organize the requirements imposed on each group of users (that is,
on each actor). Each use case tells the requirements story from the user’s
perspective.

Don’t try to complete your use-case diagram with all the use-case descrip-
tions (textual description of the details of the user’s use of the system) at
once; instead, follow these steps:

1. Develop a basic use-case diagram and just supply the name, summary,
and actor in each use-case description.

2. Model the user’s domain in a domain class diagram for your use cases.

For more information, read the section “Domain Class Diagram” later in
this chapter.

3. Return to your use-case descriptions and fill in the pre- and 
postconditions.

You might also want to provide a (simple) example of a user interaction.

4. Add details that you found while discussing user interaction (in
Step 3) to your domain class diagram (in Step 2).

5. Consider adding alternative and error scenarios to your use-case
descriptions.

Creating careful, thorough use-case diagrams, and use-case descriptions can
help you achieve the following goals:

� Easier communication: Use cases are written in the language of the user.
Your users and project stakeholders understand what you’re talking
about because you use their words. You understand what the users are
saying because you focus on their needs.

� Better-educated users: Users often don’t know exactly what they want
in a new software application. You will educate your users because you
understand their goals, develop use cases to meet those goals, and
describe back to the users (in a language that they understand) what the
use cases does to help them. As you help users to focus on their job
goals, they in turn tell you what they need from your system to meet
those goals.
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� Closer focus on requirements: Developers find it hard to focus on
requirements. All too often they think about how to make a program
work. Developers focus on technology and implementation details
because that is their training. Use cases help you stay focused on users’
needs (requirements).

� Natural stages for incremental development: Each use of the system is
geared toward one group of users. You don’t have to build an entire
application; all you need is one that does just a few use cases. Then,
incrementally, design and build a few more use cases — and deliver
them in the next increment to your system. You can get away with this
incremental approach because use cases don’t depend on each other.
What one group of users may need is different from what another group
needs. In our experience, each use case has its own classes. If the user
requirements (for example) change for one particular use case, they
don’t cause changes in other use cases.

Use interview notes and use-case descriptions to help you build a domain
class diagram. User interactions (part of your use-case documentation) can
help illustrate the dynamics of your system or software. You capture the
dynamics of text descriptions in sequence diagrams.

Domain Class Diagram
Your users work with objects all the time. They talk about the objects and their
relationships in their domain, which is a fancy term for the group of objects
that your users deal with. The insurance domain has objects such as policy,
policyholder, claim, coverage, covered item, and hazard. Finance has its own
domain language, including items such as equity, fund, portfolio, account, and
trade. To build a system or a software application that your users understand,
we recommend that you capture the language of the user in a class diagram
that we like to call the domain class diagram.

If you take a look at the applications that you build, you find some of the same
classes in each application. If you work in the insurance domain (for example),
you need a policy class for applications such as policy generation, underwriter
review, claims handling, and premium billing. You can also use the domain
class diagram to define specialized terms and other user jargon. That’s because
there’s one thing that computers can’t handle — vagueness. Every term, class,
attribute, operation, and association must be nailed down — precisely.

A domain class diagram must accomplish the following:

� Precisely define user terminology

� Provide common classes that are useful in many different applications

� Allow you to work with users to understand how they structure the world
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So take the time to build a class diagram that accurately reflects what your
users mean when they talk about their “domain.”

Start building a domain class diagram early in your project. We begin our own
domain diagrams at the same time that we’re working with users to develop
use cases.

Sequence Diagram
We use sequence diagrams to show interactions between objects related to
our system or software application. You can use these diagrams to detail the
scenarios for each use case. The sequence diagram shows a small group of
objects and the events (important moments in time) being passed between
the objects. As time passes, you show each event in sequence, moving down
the page of the diagram.

Don’t try to show how your objects collaborate by using a sequence diagram
during analysis. Some developers use the sequence diagram to show how
their programs work before they clearly understand the requirements. You
can avoid this mistake by showing when an object must notify another object
that an important moment has arrived.

Don’t try to show thirty-object instances across the top of a sequence dia-
gram. We’ve seen this done — it isn’t pretty. You should have between two
and eight objects on a single sequence diagram — no more. That way, the dia-
gram doesn’t get too cluttered.

We like to build two levels of sequence diagrams during analysis:

� High-level sequence: To focus on a use case, we show a sequence dia-
gram with just the actor objects and an object representing the system.
These diagrams, each showing no more than two or three objects, are a
graphical way of relating the text of a use-case description. This type of
sequence diagram gives a high-level view of events and of the order in
which they come into and go out of our system.

� Application-level sequence: For each use case, we build application-
level sequence diagrams. For each high-level sequence diagram, we sub-
stitute the actor objects with application objects such as view, boundary,
and device objects. These are the objects that the users will actually
interact with. We replace the system object with some kind of controller
or manager object.

If you want to show object collaboration during design, use a communication
diagram and not a sequence diagram.
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State Diagram
State diagrams show the internal workings and life cycles of your objects. For
instance, each software object is born into the runtime environment, lives a
life interacting with other objects, and then dies out. State diagrams capture
these important moments in time, including the event transitions for your
objects. The states themselves capture what your objects are supposed to do
after an important event.

We build state diagrams for objects that are dynamic. In other words, they
change a lot during their life. In general, you can build a state diagram for the
following kinds of objects:

� Controllers: Those objects that control the timing and behavior of other
objects are called controllers — the objects that know when to get things
done to meet the goals of your system. This type includes objects that
make each use case work properly as well as objects that must start up
and shut down your system. Each of these objects exhibits complex
behavior that must be done in the right order at the right time.

� Event handlers: If an object must receive events and then (as a result of
the events) ask another object to actually perform the needed work, the
object that has this job deserves a state diagram. Use the state diagram
to show the allowable sequence of events and the resulting behavior.

� Aggregations: When you have an aggregate with many parts, the object
that represents the aggregate has an interesting life. At first, the aggregate
must create instances of its parts. It then must receive requests from the
outside and pass them off to the appropriate part(s). When the aggregate
is deleted, it must first delete its internal parts in the right order and then
(and only then) delete itself. You should capture the complex life cycle of
an aggregate with a state diagram. (See Chapter 5 for more on aggregates.)

� Dynamic domain: Every user domain has at least two or three dynamic
objects. For instance, an insurance policy goes through many states in
its life — open, established, claim processing, canceling, archived, and
closed (to name a few). Look at each of your domain classes and think
about their life cycles. If those look interesting, build a state diagram
that describes them.

Application Class Diagram
There comes a point in your project when you have to understand require-
ments imposed by your application. To gain that insight, we build an applica-
tion class diagram for each use case. The application class diagram is simply
a UML class diagram that shows the classes that work together to accom-
plish all the scenarios of a particular use case.
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A domain class diagram defines the requirements imposed on you by the
user’s language. The application class diagram defines the requirements
imposed on you by the very application that you’re building.

If your users interact with a graphic user interface (GUI), you need classes
that know how to paint the GUI in a way that offers a view of some domain
classes. For example, if a user wants to see a policy object, you need a view
class that extracts the data out of an instance of the policy class and shows
that data in a GUI window — complete with text boxes, radio buttons, and
drop-down lists.

If any use cases require your application to do things in a specific order,
create a controller class. This class is responsible for remembering what
the user has done and what comes next. For example, in the insurance sce-
nario, when a user generates a policy, he or she must create the policy first —
and then assign coverage to it, assign covered items, and indicate who owns
the policy. When the user has done these tasks, all this information must be
complete and correct before the policy goes to the underwriter for review. In
this case, we create a policy manager class that controls the other objects at
runtime, making sure that the use case works properly.

Other than a controller class and view classes, you may have to create the
following application classes:

� Boundary class: This is a class that hides the details of one part of a
system from another part. We use a separate class that knows how to
access the database as a boundary between our domain objects and the
database.

� Device class: A device class usually represents a physical device
(such as a barcode scanner) or the software driver for a physical device.
Working much like a boundary class, a device class isolates a physical
device for our domain objects.

� Surrogate class: We use surrogate classes to stand in for our use-case
actors. Actors are those things outside our system that interact with
the system. Surrogates are classes inside our system that stand in for
the actor outside the system. If our application must store and track
information about users (for example), we create surrogate classes
inside our system to hold that data.

You may find that other developers use different terminology for these
classes. Instead of using controller, they use control. Instead of the word
boundary, they use the word view or interface. Instead of calling the diagram
an application class diagram, they call it a robustness diagram. (“You say
tomayto, I say tomahto. . . .’’) No wonder people get confused.
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Don’t try to give your domain classes all the knowledge of the following:

� How to display themselves in a GUI window

� How to display themselves over the Net in a Web browser

� When to display different attribute values

� How to store and retrieve data from a database

Let your domain classes know how to be themselves. Let other classes have
the responsibility of showing your domain classes as pictures in a GUI or of
handling their interactions with a database.

Package Diagram
Your systems or software applications start out as one big design problem.
Like all good engineers, you take that problem and break it up into smaller
problems. If you can solve each of the little problems, you solve the big prob-
lem. You can use the package diagram to help break a big problem into
smaller problems — and show that decomposition.

We use the UML package notation to show our application as a large package.
Inside the large package, we show smaller packages — one for each subsys-
tem. After our subsystems are set, we convert the packages into subsystems.
Then we draw dependency lines to indicate which subsystems must rely on
other subsystem(s) — and which ones they rely on. (For more details on this
process, see Chapter 20.)

At the start of your systems design phase, draw a simple package diagram
showing the decomposition of your system into subsystems. Then consider
all your system design issues such as layering, subsystem interfaces, data-
base access, and networking. As you make your strategic design decisions,
modify the package diagram to reflect those decisions. Finally, give a copy of
this big picture system diagram to each of the subsystem design teams. By
using the package diagram, they can understand how their subsystem fits
into the overall system.

Deployment Diagram
Your system or application has two crucial structures that exist in the real
world — hardware deployment and software artifacts. Too often developers
get lost in the details of their code without ever understanding how their
work fits into the deployed application. We use a deployment diagram to doc-
ument our hardware-and-software layout.

390 Part VII: The Part of Tens 



During system design, show the hardware architecture of your application
with a deployment diagram. Then, as you develop your software for each
subsystem, show the software as artifacts on your deployment diagram. That
way, you gain an understanding of where each piece of software runs and on
which piece of hardware. Finally, show the reliance of one artifact on another
by means of dependency lines.

Use deployment diagrams to look for places in your design where there may
be too much interdependence among the pieces of hardware and software.

Communication Diagram
In your object-oriented system or software application, objects working
together make the application work. Use communication diagrams to show
this all-important object collaboration; they should show the following
aspects of that cooperation, all at the same time:

� Instances of parts linked together for a specific collaboration

� Flow of control by showing the numbered sequencing of messages being
sent to each part

� Flow of data by showing the parameters being passed along with the
messages and the return data assigned to the results of a message

Use communication diagrams at design time to explore exactly how your
objects work together — and then document your design for programmers to
implement.

We use communication diagrams both at systems design time and detailed
design time. The system communication diagrams show how the subsystems
cooperate to accomplish the system’s use cases. Communication diagrams
showing subsystems as objects help us understand the interfaces that each
subsystem must provide. At detailed design time, we build communication
diagrams to show how the objects inside a subsystem will work together to
accomplish the major operations required of the subsystem.

Activity Diagram
When you want to focus on the flow of control across objects and the flow of
data from object to object — but not on the relationships between objects —
use the activity diagram. This diagram allows you to show sequences of
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behavior over time among objects — but (unlike the communication dia-
gram) it doesn’t show linkages between objects. This diagram is especially
useful when you’re showing workflow among people in a business process.

Instead of building lots of sequence diagrams to show all the possible ways
that events happen in parallel for a single use case, you can use one activity
diagram.
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Symbols & Numerics
* (asterisk), in multiplicity specification, 69
{} (braces), enclosing constraint, 56, 63
^ (caret), for bottom to top association, 65
: (colon)

between object and class name, 53–54
between part name and class name, 90

. (dot operator), in OCL, 187
<<>> (double angle brackets), for

stereotype, 55, 137
:: (double colon), between class and

operation, 50
Φ (Golden Ratio), for class box size, 52
«» (guillemets), for stereotype, 55, 137
- (hyphen)

for irrelevant message argument, 197
for private visibility, 57
for role name, 72

< (left angle bracket), for right to left
association, 65

( ) (parentheses), enclosing operation
arguments, 51

+ (plus sign), for public visibility, 57
# (pound sign), for protected visibility, 57
“” (quotes), for literal message, 198
> (right angle bracket), for left to right

association, 65
/ (slash)

for an action or activity, 267
for derived attribute, 55
for event actions, 285–287

[] (square brackets)
for multiplicity, 47, 90
for preconditions or postconditions, 310

~ (tilde), for package visibility, 57
2U Consortium Web site, 373
3C (Clear, Clean, Concise) proposal, Web

site for, 373

• A •
abstract class, 106–107
abstract operation, 106
abstract use cases, 167
abstraction. See also encapsulation;

information hiding
definition of, 10–11, 20, 21–23
in text-based behavior specification, 183

«access» stereotype, 351–352
accessor operations, 56
acronyms, in class and object names, 43
Action Semantics, 188
action sequence icon, 291
actions, 214. See also activities
active objects, 241–242
activities

concurrent, 220
definition of, 214
within a state, 267

activity diagram. See also interaction-
overview diagram

constructing, 216–220
definition of, 213–216
partition names in, 224, 226
showing responsible parties in, 224–226
swim lanes in, 224–225
uses of, 14, 179, 216, 391–392

«Actor» stereotype, 137
actors. See also use cases

analysis packages based on, 342
clocks as, 136
customers (clients), 132–133
defining use cases based on, 139, 142
definition of, 133
devices as, 135–136
diagramming, 137–138, 139–141
generalized, 138, 165
identifying, 133–136
as internal design elements, 144

Index



actors (continued)
naming, 137
nonhuman (proxy), 134–136, 138
paired sets of, 134
primary, 139, 141
responsibilities of, in activity diagram,

224–226
roles of, 136–138
secondary, 139, 141
transparent, 136
users, 133, 370

adapter architectural pattern, 357
Advanced Concepts Center Web site, 375
after event, 288
aggregation. See also composition;

encapsulation; information hiding;
internal context diagram

analysis packages based on, 342
behavior of, 85–86
in class diagrams, 114, 115
composition compared to, 25, 88–89
definition of, 20, 24–25
external associations of, 84
internal structure of, 84
naming, 86
representing as association, 83–84, 86
sharing parts of, 87–88
state diagram for, 388
subsystems and, 322
transitive property of, 89

Agile methodology, 36
algorithms, in behavioral specification,

187–188
alt operator, 206, 209, 211
alternate courses of use case, 155–160
analysis packages, 340–343
angle brackets

double (<<>>), for stereotype, 55, 137
left (<), for right to left association, 65
right (>), for left to right association, 65

application class diagram
definition of, 122–125
uses of, 388–390

application classes
analysis packages based on, 342
definition of, 122–123

«application server» stereotype, 334

application subsystem, 322
application-level sequence diagram, 387
applications. See software and system

development; tools for UML modeling
architectural patterns, 354–357
architecture, system. See system

architecture modeling
Argo/UML tool Web site, 379
arguments

for event hierarchies, 283–285
for interactions, 204–206
for methods, 196–198
for operations, 49–51

arrow
on dashed line, from object to class,

54–55
for directional navigation of association,

63, 79
filled in, for direction of association

name, 65
hollow, for generalization, 94
for messages sent and received, 196,

199–201
«artifact» stereotype, 336–337
artifacts, 336–338
assembly connector, 90
assert operator, 211
association end name. See roles
associations. See also aggregation; links

aggregation as type of, 83
in application diagram, 123–124
classes as, 75–76, 231
constraining, 75
definition of, 62–63, 64
diagram of, converting to code, 80–81
diagramming, 64, 65, 68–69, 74, 77, 79
generalization compared to, 95
inheriting, 101–102
multiplicity of, 62, 67–71, 102
naming, 62, 65–66
navigation of, 78–79
not naming, 66
qualified, 63, 77–78, 102
reflexive, 73–75
symmetric, 89
too many of, 366–367
transitive, 89

asterisk (*), in multiplicity specification, 69
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asynchronous call, 200–201
asynchronous messages, 196
attributes

of association, 75–76
base, 56
composition parts as, 91–92
default values for, 46–47, 103
derived, 55–56, 103
diagramming, 55–56, 59–60
identifying for a business, 44–45
identifying from knowledge

responsibilities, 48
inheriting, 101, 103
multiple values for (multiplicity), 47–49
name of, inheritance and, 103
naming, 45–46
omitted (null) values for, 48
state, 269–272
static, 58–60
type of, 44–45
visibility of, 57–60
without operations, 361–383

automatic transition. See completion
transition

automating development with UML. 
See MDA

«auxiliary» stereotype, 331
availability, system design 

requirement, 317

• B •
balking call, 201
ball and socket, for assemblies in a

component, 331, 333
base attributes, 56
behavior of actors. See use cases
behavior of class. See operations
behavioral diagrams, 13, 14. See also

specific diagrams
behavioral specification, 179, 183–188
behavioral state diagram, 308
behaviors, modeling. 

See functional modeling
binary relationship, 98
black box components, 327–329

Booch, Grady (original developer of 
UML), 18

Booch methodology, 35
Boolean datatype, 45, 46
Borland, TogetherSoft tool, 381
boundary class, 123, 389
boxes. See also rectangle

for actors, 138
for classes and objects, 52, 55–56, 59–60
with parallel vertical bars, for active

objects, 241
for qualifiers, 77
small, for component parts, 331
stack of, in communication diagram, 240
three-dimensional, for nodes, 333
with two small rectangles, for

components, 327–328
braces ({}), enclosing constraint, 56, 63
brackets, square. See square brackets
break operator, 209, 211
brittle systems, 339
bull’s eye, for final-activity nodes, 215
business logic subsystem, 355
business objects, parallelism with software

objects, 40
business rules, in use case scenarios, 160
«business» stereotype, 143
button names in messages, 198–199

• C •
CanyonBlue, Cittera tool, 379
caret (^), for bottom to top association, 65
cascading operations, 85
Catalysis methodology, 36
central class, for use case, 229–230
circle. See also socket

filled in (large dot)
for initial nodes, 215
for initial state, 263

half circle, on a stick, for interfaces, 327
labeled, for connectors, 215–216
with plus sign inside, for 

membership, 323
on a stick, for interfaces, 327
with X inside, for final-flow nodes, 215

Cittera tool Web site, 379
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class diagram. See also hybrid class/object
diagram; object diagram

breaking into hierarchical levels, 114–116
communication diagram evolving from,

228–232
communication diagram mapped to,

244–246
constructing, 113–119
content of, 116
context diagrams for, 120–121
cycles in, 368–369
definition of, 111–112
for frameworks, 257
for functional modeling, 181–182
for internal classes of components,

330–333
number of classes in, 115
object diagram compared to, 72–73
project-oriented, 119–127
for subsystem responsibilities, 323–325
time period for, 118–119
uses of, 11, 13, 15, 113, 179, 320
using for every purpose, 363–364

«class» stereotype, 143
classes. See also attributes; objects;

operations; subclasses; superclasses
abstract, 106–107
application, 122–123, 342
as association, 75–76, 231
associations between, 62–63, 64–66,

366–367
associations with themselves, 73–75
as attribute type, 45–46
boundary, 123
central, for use case, 229–230
composition parts as, 90–91
concrete, 106
containing only attributes or operations,

361–383
controller, 123, 230–231
definition of, 20, 40
device, 389
diagram of, converting to code, 79–80
diagramming, 52–56, 59–60
distinguishing from types, 46
domain, 121–122
duplicates of, 366
events treated as, 281

as friend, 58
generalization and, 21, 25–26, 93–97
grouping into subsystems, 318, 321–323
hotspots, 255
identifying for a business, 40–41
importing into subsystems, 351–352
multiple, wrapping into packages,

125–127
naming, 42–43, 365, 370
roles of, 71–73
specialization and, 21, 25–26, 97–98
surrogate, 389
view, 123, 389
visibility of, 57–60

classification scheme, analysis packages
based on, 342

class-scope. See static attributes; static
operations

«client workstation» stereotype, 334
clients. See customers
client-server dependency, 347
client-supplier dependency, 347
clocks as actors, 136
code. See software and system

development
codependency, 347–348
cohesion

in subsystem, 348, 350
in text-based behavior specification, 183

collaboration. See also communication
diagram

for architectural patterns, 355–356
definition of, 227
diagramming, 250, 355–356
in frameworks, 255–258
in patterns, 250–252
showing object interaction in, 254
UML modeling tools supporting, 33–34

collaboration diagram. See communication
diagram

collaboration occurrence, 252–254, 356
colon (:)

between object and class name, 53–54
between part name and class name, 90

colons, double (::), between class and
operation, 50

COM (Microsoft), 30
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common objects, subsystems based 
on, 346

communication diagram
class detail in, 245–246
class diagrams consistent with, 244–245
class diagrams in preparation for, 228–232
constructing, 234–241
for frameworks, 257
looping in, 238–241, 242
messages in, 235–241
naming, 235
operation calls in, 236–238
participants of, 232–234
sd abbreviation for, 234
uses of, 15, 179, 391

communication paths between nodes,
334–335

communication standard for 
components, 30

communityUML Web site, 373
completion event, 287
completion transition, 274, 287
component diagram

for frameworks, 257
for interfaces, 329–330
uses of, 14, 15, 320

component environment, 30. See also EJB
«component» stereotype, 143, 327
component-based development, 29–31
components

black boxes, 327–329
choosing, 319
communication between, 30
definition of, 28, 325–326, 327
delegates for, 331
diagramming, 327
icons for, 327
interfaces for, 326–330
internal classes of, 330–333
ports for, 331

composite structure diagram
constructing, 250–252
definition of, 89–92
uses of, 14, 16

composite structure diagram with
collaboration, 251

composition. See also aggregation
aggregation compared to, 25, 88–89
as association, 86–87

as composite structure diagram, 
89–92

definition of, 25, 86
inheriting parts of, 101
transitive property of, 89

conceptual types, 48
concrete class, 106
concrete use cases, 167
concurrency

of activities, 220
definition of, 241–242
identifying threads in, 243–244
looping and, 242
with states, 303–308
of use cases, 140–141

connectors, 90, 215–216, 224
constraint-based state, 266
constraints. See also invariants;

postconditions; preconditions
on associations, 63, 75
inheritance of, overriding, 

103–104
inheriting, 101
OCL used to define, 185–187

construction elements, 40
constructor operation, 85, 97
«constructor» stereotype, 60
«container» stereotype, 334
context diagram

constructing, 120–121, 384
definition of, 11
for use cases, 145
uses of, 383–384

control flow, 214
control nodes, 215
controller class

application class diagram for, 389
definition of, 123
state diagram for, 388
for use case, 230–231

«controller» stereotype, 230
CORBA (Object Management Group), 30
cost, system design requirement, 317
coupling, in subsystem, 348, 350
«create» stereotype, 194–195
CRUD test for use cases, 367
curly brackets. See braces
customers (clients), 132
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• D •
dash. See hyphen
dashed line

with arrow, from object to class, 
54–55

for dependencies, 76, 125, 347
dividing concurrent substates, 307
for included use cases, 162–163
for lifelines, 190

dashed oval, for collaborations, 250,
252–253

data flow. See object flow
data slots. See attributes
data subsystem, 322
database subsystem, 355
databases

as actors, 134–135
internal compared to external, 135
for object persistence, 318
terminology, compared to classes and

objects, 44
UML modeling tools for, 32–33

Data-Description Language. See DDL
data-flow diagram, avoiding, 309. See

activity diagram
datatypes

analysis packages based on, 342
for arguments, 49–50
for attributes, 44–45
implementation compared to conceptual

types, 48
inheritance and, 103
intrinsic, 45
of qualifiers, 77

data-validation rules, in use case
scenarios, 160

DDL (Data-Description Language), UML
modeling tools supporting, 33

decision node, 215
decomposition of system

creating subsystems, 318, 321–323
definition of, 318, 320–321
process for, 322–323

deep history pseudostate, 301
default values, attribute

definition of, 46–47
inheritance and, 103

/defer, for deferred events, 287

deferred event, 287
«delegate» stereotype, 331
delegates, for components, 331
delegation connector, 90
Department of Defense’s Architecture

Framework. See DODAF
dependencies

dashed line for, 76, 125, 347
with diagrams, 12
with interfaces, 329–330
with merged subsystems, 352–354
with subsystems, 341, 347–350

deployment, subsystems based on, 345
deployment diagram

artifacts in, 336–338
constructing, 333–335
uses of, 14, 15, 320, 390–391

derived attributes
definition of, 55–56
inheritance and, 103

design class diagram, 228–232
design pattern. See patterns
design phase

package diagram for, 390
sequence diagrams for, 202
subsystems for, 342

designers, 17
design-time boundary objects, 199
«destroy» stereotype, 195
destructor operation, 85, 97
developers. See implementors
development. See software and system

development
device class, 389
«device» stereotype, 334
devices as actors, 135–136
DevX Web site, 374
diagrams. See also shapes and symbols in

UML diagrams; specific diagrams
abstract classes represented in, 107
actors represented in, 137–138, 139–141
aggregation represented in, 83–84, 86
alternative categories of, 15
architectural patterns represented in,

355–356
artifacts represented in, 337
association classes represented in, 76
associations represented in, 64, 65, 68–69,

74, 77, 79
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choosing using modeling frameworks,
15–16

classes represented in, 52–56, 59–60
collaborations represented in, 250,

355–356
completing in parallel, 368
components represented in, 327
composition represented in, 86–87, 89–92
converting to code, 79
dependencies represented in, 76, 125, 347
diagram of, 12
events represented in, 262, 285, 290–292
generalizations represented in, 94–96
generalized use cases represented in,

167–168
interfaces represented in, 327
level of detail in, 364–365
lifelines represented in, 190–193
links represented in, 63
list of, 13–15
multiple inheritance represented in, 108
multiple, wrapping into packages,

125–127
multiplicity represented in, 68–69
nodes represented in, 333
number of elements in, 3
objects represented in, 52–56
point of view for, 11
preconditions and postconditions

represented in, 186
roles represented in, 71–72
specialization represented in, 97–98
spelling and grammar checking for, 43
states represented in, 262
subsystems represented in, 321
transitions represented in, 290–292
use cases represented in, 139–141,

167–168
uses of, 13–15, 31
using too many or too few, 363–364

diamond
for decision and merge nodes, 215
filled in, for composition, 86–87
hollow, for aggregation, 84, 87–88

direction of argument, 50
discriminator. See generalization sets
do/, for activity in a state, 267
DODAF (Department of Defense’s

Architecture Framework), 15

do-forever state, 309
domain class diagram

definition of, 117, 122
uses of, 122, 386–387

domain classes. See also use cases
analysis packages for, 341–342
definition of, 121–122
dynamic, 388
responsibilities of, 390
subsystems for, 323

domain groups, 341–342
domain language, 121
dot

for initial nodes, 215
for initial state, 263

dot operator (.), OCL, 187
double angle brackets (<<>>), for

stereotype, 55, 137
double colon (::), between class and

operation, 50
do-until state, 309
dynamic diagrams, 15
dynamic domain classes, 388
dynamic modeling. See events; state

diagram; states

• E •
EJB (Enterprise Java Beans), 30
elide. See information hiding
«embedded device» stereotype, 334
embedded systems, UML modeling tools

for, 32
encapsulation, 20, 23–24
Enterprise Java Beans. See EJB
«enterprise» stereotype, 143
«entity» stereotype, 331
entry/, for entry actions, 285
entry action, 285
entry event, 285
enumeration datatype, 46
«enumeration» stereotype, 217, 284
error handling, for aggregation, 85
event handlers, state diagram for, 388
event hierarchy

creating, 281–283
parameters for, 283–285

event protocols, 308–312
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event transition, 262, 267–269, 278–279
events. See also states

actions performed during, 267
completion, 287
definition of, 262, 277
generalizing, 281–283
guard checking condition during, 269
handling all with one operation, 285
icons for, 290–292
identifying, 263–265
inheriting, in substates, 298–300
internal, 287, 302
occurring during object’s state, 285–289
operations corresponding to, 278–281
organizing into an event hierarchy,

281–285
passing information to object, 267
time taken by, 269
uses of, 277–278

«executable» stereotype, 338
«execution environment»

stereotype, 334
exit/, for exit actions, 287
exit action, 286
exit event, 286
«extend» stereotype, 169–174
extension use cases, 169–174
external context diagram, 120
eXtreme Modeling methodology, 36
eXtreme Programming methodology, 36

• F •
façade architectural pattern, 356
«file» stereotype, 338
files. See artifacts
final state, 263, 264
final-activity node, 215
final-flow node, 215
flexibility, system design requirement, 

317, 350
focus class. See central class
«focus» stereotype, 331
fork icon, for system or subsystem, 

181, 321
fork node, 215
fork pseudostate, 305–308

framework
definition of, 29, 31, 255
developing, 255–258
diagrams for, 257
pattern compared to, 31, 255

friend class, 58
functional diagrams, 15
functional modeling. See also activity

diagram; collaboration; patterns;
sequence diagram

algorithms in, 187–188
class diagrams for, 181–182
list of diagrams used for, 179
preconditions and postconditions for,

184–187
text-based behavioral specification for,

183–188
use-case diagrams for, 180–181
use-case specification for, 183–184

functional programming
comparing to object-oriented techniques,

177–178
splitting attributes and operations,

361–363

• G •
generalization. See also classes;

inheritance
of actors, 138
association compared to, 95
definition of, 21, 25–26
diagramming, 94–96
of events, 281–283
identifying superclass and subclasses

with, 93–97
of states, 294–300
of use cases, 166–169

generalization sets, 98–100
GET operation. See accessor operations
global visibility, 349–350
Golden Ratio (Φ), for class box size, 52
Google Web site, 374
grammar-checking diagrams, 43
guard conditions, for events, 269
guillemets («»), for stereotype, 55, 137
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• H •
H*, for deep history pseudostate, 301
H, for shallow history pseudostate, 301
Happy Path of use case, 154
hardware. See also physical architecture,

modeling
hiding information. See information hiding
high-level sequence diagram, 387
Hillside Group Web site, 250
history pseudostates, 301–302
hotspots, 255
hybrid class/object diagram, 113
hyphen (-)

for irrelevant message argument, 197
for private visibility, 57
for role name, 72

• I •
IBM, Rational Rose Suite tool, 380
icons in UML diagrams. See shapes and

symbols in UML diagrams
icons used in this book, 4–5
Ideogramic tool UML Web site, 379
i-Logix, Rhapsody tool, 380
implementation datatypes, 48
implementors (developers), 16, 17. See

also software and system development
«import» stereotype, 351–352
«include» stereotype, 161–163
included use cases

definition of, 161–163
delivering with base use case, 174
documenting, 163–164
generalizing actors in, 165
subsystems for, 344

independency, 347
indexing, with qualifiers, 78
information hiding, 11, 20, 23–24
information systems, UML modeling tools

for, 32
informative messages, 196
inheritance. See also generalization

in class diagrams, 114, 116
code reuse with, 109–110

definition of, 21, 27, 95, 101–102
enforcing with abstract classes, 106–107
of events in substates, 298–300
list of items inherited, 101
multiple, 108–109
overriding attributes of, 103

inheritance hierarchy
for events, 281–285
for generalization, 95–96
for specialization, 97–98

initial node, 215
initial state, 263, 264
initializing attributes. See default values,

attribute
input devices as actors, 135
instance. See objects
«InstanceOf» stereotype, 55
integer datatype, 45
interaction diagrams. See also

communication diagram; interaction-
overview diagram; sequence diagram

constructing, 203–211
definition of, 13
list of, 14–15
multiple or repeating paths in, 206–211
referencing from other diagrams, 203–206
sd abbreviation for, 234
timing diagram, 15
uses of, 15, 189

interaction occurrences, 203, 221, 223
interaction-overview diagram. See also

activity diagram
constructing, 221–223
definition of, 220–221
dependency on activity diagram, 12
uses of, 14

interactions. See also scenarios of use case
definition of, 190
multiple or repeating paths in, 206–211
parameters for, 204–206
referencing from other interactions,

203–206
sequence diagram for, 190–192

«interface» stereotype, 329
interfaces

for components, 327–330
definition of, 29, 30
diagramming, 327
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interfaces (continued)
inheriting, 101, 106–107
invoking from subsystems, 351–352
specification for, 329–330
for subsystems, 319

internal context diagram, 120–121. 
See also aggregation

internal event, 287, 302
internal transition, 195
«internet» stereotype, 335
interrogative messages, 196
«interrupt» stereotype, 201
intrinsic datatypes, 45
invariants, 184–187
italics, for abstract classes or 

operations, 107
iterative development life cycle, 35
Ivar Web site, 375

• J •
Jacobson, Ivar

original developer of UML, 18
Web site with virtual simulacrum of, 375

join node, 215
join pseudostate, 305–308

• K •
knowledge responsibilities for objects, 48

• L •
«lan» stereotype, 334
language development, UML modeling

tools supporting, 33
language of the user. See domain language
left angle bracket (<), for right-to-left

association, 65
«library» stereotype, 338
life cycle

of aggregation, 85
definition of, 29
methodology compared to, 35
types of, 34–35

lifeline of object
definition of, 189, 193
diagramming, 190–193
references for, 232–233

line
dashed

with arrow, from object to class, 54–55
for dependencies, 76, 125, 347
dividing concurrent substates, 307
for included use cases, 162–163
for lifelines, 190

solid
for associations, 62
for links, 63

thick
for fork or join nodes, 215
for fork or join pseudostates, 306–307

links, 62, 63–64. See also associations
logical models, 327
lollipop icon, 327
loop operator, 206, 208–209, 211

• M •
machines. See behavioral state diagram
main course of use case, 154
master-slave architectural pattern, 357
MDA (model-driven architecture)

definition of, 16
UML tool support for, 378

member variables. See attributes
membership notation for subsystems,

323–324
merge dependencies, 352–354
merge node, 215
«merge» stereotype, 352
messages

arguments in, 196–198
asynchronous, 196
button names in, 198–199
in communication diagram, 235–241
definition of, 195–196
informative, 196
interrogative, 196
literal, quoting, 198
methods used to send, 199–201
naming, 196–199
procedural, 196
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methodology
basic steps for, 34
choosing, 35–36
definition of, 29
history of, 18
life cycle compared to, 35
types of, 35–36
UML not as, 17

methods. See also events; operations
definition of, 101
inheriting, 101, 104–106
operations compared to, 28

Microsoft COM. See COM
Microsoft Visio tool, 381–382
«mobile device» stereotype, 334
model-driven architecture. See MDA
modelers, 17
modeling. See specific types of modeling
modeling frameworks, 15–16
modeling tools. See tools for UML

modeling
multiple inheritance, 108–109
multiplicity

of aggregation association, 84
of arguments, 50
of association, 62, 67–71, 102
of attributes, 47–49
of composition parts, 90
for concurrency in use cases, 140–141
diagram of, converting to code, 80
diagramming, 68–69
inconsistencies in, 368–369
reduced by qualifiers, 77–78
time period relevant to, 118

multithreaded systems. See also
concurrency

invariants and, 184
threads in communication diagram,

243–244

• N •
name-direction arrow, 65
naming

actors, 137
aggregation, 86
associations, 62, 65–66

attributes, 45–46
classes, 42–43, 365, 370
communication diagram, 235
identical names for the same class, 366
messages, 196–199
objects, 43–44
operations, 50–51
use cases, 142, 143
vague names, 365

navigation arrow, in association, 63, 79
neg operator, 211
no cycles constraint, 75
nodes, 333–335
Northern Light Web site, 374
nouns, using to define objects and classes,

40–41
null values, for attributes, 48

• O •
object diagram. See also hybrid

class/object diagram
class diagram compared to, 72–73
definition of, 111–112
uses of, 14, 113

object flow, 215
Object Management Group. See OMG
Object Management Group, CORBA. 
See CORBA
object modeling. See associations; classes;

generalization; inheritance; objects
object node, 214
object-constraint language. See OCL
Objecteering tool Web site, 379–380
object-oriented development, 18, 24,

177–178. See also software and system
development

object-oriented principles used in UML,
19–28, 39–41

Objectory methodology, 35
objects. See also classes

active, 241–242
aggregation and, 20, 24–25
creating during interaction, 193–195, 201
definition of, 20, 39
destroying during interaction, 

193–195, 201
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objects (continued)
diagramming, 52–56
encapsulation of, 20, 23–24
generalization and, 21, 25–26
identifying for a business, 40–41
information hiding and, 11, 20, 23–24
inheritance and, 21, 27, 95, 101–102
knowledge responsibilities for, 48
life of, 261–263
lifeline of, 189, 193
links between, 62, 63–64
messages sent and received by, 195–201
name of, underlining in diagram, 53–54
naming, 43–44
persistence of, 318
polymorphism and, 27–28
public, breaking encapsulation and

information hiding, 24
singling out important aspects of

(abstraction), 10–11, 20, 21–23
specialization and, 21, 25–26
as a variable, 43–44

OCL (object-constraint language)
for behavioral preconditions and

postconditions, 185–187
for pseudocode, 188
UML modeling tools supporting, 33
for use case preconditions and

postconditions, 154
Web site for, 373

OMG (Object Management Group)
original development of UML, 18
owns UML, 17
Web site for, 372

OMT methodology, 35
one-way dependency, 347
ongoing-process state, 267
OOAD_UML group Web site, 375
operation call, 199
operations. See also events; methods

abstract, 106
accessors (GET/SET), 56
activity diagrams for, 216
for aggregation, 85
arguments of, 49–51
cascading, 85
constructor, 85, 97
converting use cases to, 181–182

defining (signature of), 49–51, 106
destructor, 85, 97
diagramming, 56, 59–60
events corresponding to, 278–281
extending, 105
inheritance of, 101, 104–106
naming, 50–51
optimizing, 106
private, 182
public, 181–182
restricting, 105
return type of, 49
signature of, 106
static, 58–60
visibility of, 57–60
without attributes, 361–363

operators in interaction diagrams, 206–211
opt operator, 206–208, 211
ordered constraint, 75
output class, for use case, 231–232
output devices as actors, 135
ovals

dashed, for collaborations, 250, 252–253,
355–356

for use cases, 140, 146
Overture Web site, 374
overview diagram. See interaction-

overview diagram
ownership, subsystems based on, 345

• P •
package diagram

definition of, 125–127
uses of, 14, 320, 390

packages
definition of, 125–127
subsystems compared to, 340
for system design, 339–343
for use cases, 146
visibility of, 57

«page» stereotype, 338
par operator, 211
«parallel» stereotype, 334
parameters. See arguments
parentheses (( )), enclosing operation

arguments, 51
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partition names, in activity diagram, 
224, 226

patterns
applying to a specific application,

252–254
composite structure diagrams for,

250–252
defining, 249–250
definition of, 29, 31
developing, 247–248
framework compared to, 31, 255
showing object interaction in, 254
for systems, 354–357
Web site about, 250

people. See actors; customers;
stakeholders; users

performance
high degree of coupling for, 350
as system design requirement, 317

persistence
analysis packages based on, 342
of objects, choosing, 318

Petri net, activity diagrams compared 
to, 216

physical architecture, modeling, 333–338
physical models, 327
PIM (Platform-Independent Model), MDA

and, 16
pipe-filter architectural pattern, 357
Platform-Independent Model. See PIM
Platform-Specific Model. See PSM
plus sign (+), for public visibility, 57
point of view for diagrams, 11
polymorphism, 27–28
Popkin, System Architect tool, 380–381
Popkin’s UML Resource Center Web 

site, 374
ports, 331
postconditions

for activities, 219
for text-based behavioral specification,

184–187
for transitions in protocol state machines

diagram, 310
for use-case specification, 154

pound sign (#), for protected visibility, 57
precise UML group Web site, 373

preconditions
for activities, 219
for text-based behavioral specification,

184–187
for transitions in protocol state machines

diagram, 310
for use-case specification, 154

presentation subsystem, 322, 355
primary actors, 139, 141
Principle of Least Surprise, 28
private operations, 182
private visibility, 57–58, 182, 340
procedural messages, 196
process modeling, activity diagrams 

for, 216
«process» stereotype, 331
programs. See software and system

development; tools for UML modeling
project-oriented class diagrams, 119–127
property. See attributes
protected visibility, 57, 340
protocol state machines diagram

constructing, 310–312
definition of, 308–310
uses of, 14

«provided interface» stereotype,
328–329

proxy actors, 134–136, 138
pseudocode, for algorithms, 188
pseudostates

with concurrent substates, 305–308
definition of, 300–302

PSM (Platform-Specific Model), MDA 
and, 16

public operations, 181–182
public visibility, 57–58, 182, 340
pUML Web site, 373

• Q •
qualifiers

on associations, 63, 77–78, 102
diagram of, converting to code, 80
indexing with, 78
reducing multiplicity, 77–78

quotes (“”), for literal message, 198
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• R •
Rational Rose Suite tool Web site, 380
Rational Software, UML development and,

17, 18
Rational Unified Methodology, 36
Rational’s UML Resource Center Web 

site, 374
realizes dependency, 329
real-time systems, UML modeling tools 

for, 32
ReceiveEvent event, 195
rectangle. See also boxes

action sequence icon, 291
for components, 327
for interaction-overview diagram, 221
rounded

for activities, 214
for events during states, 285
for states, 262

with triangular notch, signal receipt 
icon, 290

with triangular point, signal sending 
icon, 290

ref operator, 211
reflexive associations, 73–75
region operator, 211
reification, of events, 283
reliability, system design requirement, 317
«required interface» stereotype,

328–329
return call, 199–200
return type of operation, 49
Rhapsody tool Web site, 380
right angle bracket (>), for left-to-right

association, 65
robustness diagram. See application class

diagram
roles

of actors, 136–138
of classes, 71–73
diagram of, converting to code, 80
inheriting, 102

RTF. See UML Revision Task Force of OMG
Rumbaugh, Jim (original developer of

UML), 18

• S •
scalability, system design requirement, 317
scenarios of use case. See also sequence

diagram
definition of, 155–160
list of diagrams for, 179

schedule
subsystems based on, 345
system design requirement, 317

«script» stereotype, 338
sd abbreviation, 191, 234
search engines, 374
secondary actors, 139, 141
semaphore message, 201
«semaphore» stereotype, 201
SendEvent, 195
sequence diagram

application-level sequence, 387
constructing, 190–192
constructing state diagram from, 272–276
creating and destroying objects in,

193–195
for design phase, 202
for frameworks, 257
high-level sequence, 387
multiple, summarizing in activity

diagrams, 216
for object interaction in a 

collaboration, 254
sd abbreviation for, 191, 234
sending messages in, 195–201
uses of, 15, 179, 189, 202, 387

«serial» stereotype, 334
«service» stereotype, 331
SET operation. See accessor operations
shallow history pseudostate, 301
shapes and symbols in UML diagrams

ball and socket, for assemblies in a
component, 331, 333

box
for actors, 138
for classes and objects, 52, 55–56, 59–60
with parallel vertical bars, for active

object, 241
for qualifiers, 77
three-dimensional, for nodes, 333
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box icon, with two small rectangles, for
components, 327–328

boxes, stack of, in communication
diagram, 240

bull’s eye, for final-activity nodes, 215
circle

filled in (large dot), for initial nodes, 215
filled in (large dot), for initial state, 263
labeled, for connectors, 215–216
with plus sign inside, for

membership, 323
on a stick, for interfaces, 327
with X inside, for final-flow nodes, 215

diamond
for decision and merge nodes, 215
filled in, for composition, 86–87
hollow, for aggregation, 84, 87–88

folder, tabbed, for packages, 126, 146, 340
fork

for fork or join nodes, 215
for fork or join pseudostates, 306–307

fork icon, for system or subsystem, 
181, 321

half circle, on a stick, for interfaces, 327
history of choices for, 53
line, dashed

with arrow, from object to class, 54–55
for dependencies, 76, 125, 347
dividing concurrent substates, 307
for included use cases, 162–163
for lifelines, 190

line, solid
for associations, 62
for links, 63

ovals
dashed, for collaborations, 250, 252–253,

355–356
for use cases, 140, 146

rectangle
action sequence icon, 291
for components, 327
for interaction-overview diagram, 221
rounded, for activities, 214
rounded, for events during states, 285
rounded, for states, 262

with triangular notch, signal receipt
icon, 290

with triangular point, signal sending
icon, 290

small square, for component ports, 331
socket, in pattern, 251–252

shell generation, UML modeling tools
supporting, 33

signal receipt icon, 290
signal sending icon, 290
«signal» stereotype, 281
signature of operation, 50, 106
slash (/)

for an action or activity, 267
for derived attribute, 55
for event actions, 285–287

socket
ball and socket, for assemblies in a

component, 331, 333
in patterns, 251–252
on a stick, for interfaces, 327

Softeam, Objecteering tool, 379–380
software. See also tools for UML modeling
software and system development. 

See also system design
automating from UML models, 16, 

17, 378
component-based, 29–31
converting diagrams to code, 79–81
design phase, 202, 342, 390
diagrams for, 31
functional, 177–178
life cycles for, 34–35
methodologies for, 34–36, 129
object-oriented

benefits of, 177–178
encapsulation and information hiding

used with, 24
history of UML and, 18

patterns in, 31
reusing code

with domain classes, 121–122
with frameworks, 255–258
with inheritance, 109–110
with patterns, 247–254
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software and system development
(continued)

terminology used for, 28–29
types of systems being developed, 32–33
UML tools improving productivity of,

32–34
Software Development Magazine 

Web site, 374
source of association, 78–79
specialization

definition of, 21, 25–26
identifying superclass and subclasses

with, 97–98
spell-checking diagrams, 43
«spin-lock» stereotype, 201
spiral life cycle, 35
square. See boxes
square brackets ([])

for multiplicity, 47, 90
for preconditions or postconditions, 310

stakeholders, 132
state attributes, 269–272
state diagram

avoiding data-flow diagram for, 309
complex, simplifying, 293–302
concurrent states in, 303–305
constructing, 263–266, 272–276
creating operations from events in,

278–281
definition of, 262–263
events as icons in, 290–292
order of execution defined in, 289–290
protocol state machines diagram,

308–312
uses of, 14, 15, 179, 312, 388

state transition, 195
state-machine diagram. See state diagram
states. See also events

activities or actions within, 267
attributes of, 269–272
concurrency with, 303–308
definition of, 262–263
diagramming, 262
do-forever, 309
do-until, 309
generalizing, 294–300
initial, 263, 264

pseudostates, connecting transitions
with, 300–302

submachines for, 296–298
substates of, 294–296
transitions between, 267–269
types of, 266–267

static attributes, 58–60
static diagrams, 15
static operations, 58–60
stereotypes

for actors in use cases, 137–138
for artifacts, 337–338
for communication paths, 334–335
for components, 327
for constructor operation, 60
for creating and destroying objects, 195
for enumerations, 217, 284
for events treated as classes, 281
for extended use cases, 169–174
for importing subsystems, 351
for included use cases, 161–163
for instance of object, 55
for interfaces, 328–330
for internal parts of components, 331
for merging subsystems, 352
for messaging mechanism, 201
for nodes, 334
for subsystems, 321
syntax for, 54–55
for use-case controller, 230
for use-case levels, 143–144
for use-case packages, 146

stick figure. See actors
string datatype, 45
structural diagrams, 13–14. See also

specific diagrams
structure of class. See attributes
subclasses

basis for discrimination between, 98–100
identifying with generalization, 94–97
identifying with specialization, 97–98

submachines, 296–298
substates

concurrent, pseudostates and, 305–308
definition of, 294–296
inheriting events in, 298–300

«subsystem» stereotype, 143, 181, 321
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subsystems. See also components
aggregation and, 322
application, 322
cohesion in, 348, 350
as components, 325
converting packages to, 340–341, 343–345
coupling in, 348, 350
creating during decomposition, 318,

321–323
definition of, 321
dependencies in, 341, 347–350
diagramming, 321
for domain classes, 323
importing classes into, 351–352
interfaces for, 319
invoking interfaces from, 351–352
membership notation for, 323–324
merging, 352–354
in a package, 323
packages compared to, 340
relationships between, 318
responsibilities of, 323–325
types of, 322
for use cases, 322

superclasses
abstract operations for, 106
identifying with generalization, 94–97
identifying with specialization, 97–98

superstates, 294
surrogate class, 389
swim lanes, in activity diagram, 224–225
symbols in UML diagrams. See shapes and

symbols in UML diagrams
symmetric association, 89
System Architect tool Web site, 380–381
system architecture modeling. See

subsystems; system design
system design. See also software and

system development; subsystems
architecture, physical, 333–338
architecture, system, 318
brittle systems, 339
categories of systems, 32–33
components for, 319, 325–333
current system, reviewing, 318
decomposition of system, 318, 320–325
deployment for, 333–338
interfaces for, 319, 327–330, 351–352

list of diagrams for, 320
object persistence for, 318
packages for, 339–343
patterns in, 354–357
priorities for, 316–318
process for, 316–319
strategies for, 319
subsystem interfaces for, 319
users’ terminology for, 370

system development. See software and
system development

«system» stereotype, 143, 181
systems modeled by UML, 32–33

• T •
tabbed folder, for packages, 340
target of association, 78–79
Tau tool Web site, 381
Telelogic, Tau tool, 381
Teoma Web site, 374
text-based behavioral specification, 179,

183–188
thick line

for fork or join nodes, 215
for fork or join pseudostates, 306–307

threads. See multithreaded systems
Three Amigos, 18, 36
3C (Clear, Clean, Concise) proposal, Web

site for, 373
three-tier architecture pattern, 354–355
Tigris, Argo/UML tool, 379
tilde (~), for package visibility, 57
time period for class diagram, 118–119
timed call, 201
timing diagram, 15
TogetherSoft tool Web site, 381
tokens, in activity diagrams, 216
tools for UML modeling

definition of, 29
features of, 33–34, 377–378
systems modeled by, 32–33
uses of, 32
Web sites about, 374, 379–382

transitions
completion, 274, 287
event, 262, 267–269, 278–279
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transitions (xontinued)
icons for, 290–292
internal, 195
in protocol state machine diagrams, 310
pseudostates connecting, 300–302
state, 195

transitive association, 89
transparent actors, 136
2U Consortium Web site, 373
two-way dependency, 347–348
types. See datatypes

• U •
UML (Unified Modeling Language). See also

tools for UML modeling; UML 2, new
features in

automating development with, 16, 378
definition of, 1, 9–10
history of, 18
level of detail to describe with, 23,

364–365
methodologies for, 18, 29, 34–36
misconceptions about, 17–18
object-oriented principles used in, 20–28,

39–41
people using, 17
Principle of Least Surprise for, 28
training for, 375
uses of, 9–11
Web sites about, 372–373, 375

UML Dictionary Web site, 375
UML Forum Web site, 372–373
UML Revision Task Force (RTF) of OMG, 18
UML 2, new features in. See also UML

Action Semantics, 188
activity diagrams, 216
artifacts, 336
association end name, replacing role, 71
behavioral state diagram, 308
communication diagrams, 227, 228
component diagram, revisions to, 327
composite structure diagram, 90, 121
composite structure diagram with

collaboration, 251
interaction frame and heading, 191
interaction occurrences, 203

interaction-overview diagram, 220
MDA and, 16
operators in interaction diagrams, 206
package diagram, 126
transition notation, 277, 290–292

UML 2, proposals for, 373
UML 2.0 Partners Web site, 373
UML-Forum Web site, 375
underlining

for button names in messages, 198
for link name, 62
for object name, 53–54
for static attribute or operation, 58–59

“Underlining the Nouns” technique, 40–41
Unified Modeling Language. See UML
«usb» stereotype, 334
use cases. See also domain classes;

functional modeling
abstract, 167
activity diagrams for, 216
alternate paths for, 171–172
analysis packages based on, 342
application classes for, 122–125
central class for, 229–230
changing capability of, 169–171
class diagram for, 228–232
concrete, 167
concurrency of, 140–141
context diagrams for, 145
controller class for, 230–231
CRUD test for, 367
customers of, 132–133
defining, 139, 141–143
definition of, 131
diagramming, 139–141, 167–168
domain classes for, 121–122
extending, 169–174
generalizing, 166–169
including other use cases in, 161–165, 174
interaction-overview diagram for, 220–223
levels of, 143–145
naming, 142, 143
optional goals for, 173
output class for, 231–232
packaging, 146
priorities of, in system design, 316–317
subsystems for, 322, 343–344
too many of, 367
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too many paths in, 367
when to use, 16

«use-case controller» stereotype, 230
use-case diagram. See also context diagram

application class diagram for, 123–124
constructing, 139–141, 143–144, 385
converting to operations in class

diagrams, 181–182
definition of, 11, 139
for frameworks, 257
for functional modeling, 180–181
uses of, 14, 15, 179, 385–386

use-case modeling. See use cases; use-case
diagram; use-case specification

«use-case package» stereotype, 146
use-case specification

alternate courses for, 155–160
definition of, 147–149
description for, 150
design details omitted from, 151–153
flow of events for, 153–154, 156–159
for functional modeling, 183–184
for included use cases, 163–164
main course for, 154
multiple scenarios for, 155–160
narration (story) for, 149–153
preconditions and postconditions 

for, 154
user-defined types, 46
users

definition of, 133
designing system for, 370
interaction with application, showing,

122–125
verification of domain classes by, 

121–122
uses dependency, 329
»uses» stereotype, 330

• V •
v, for top-to-bottom association, 65
variable, object used as, 43–44
view class, 123, 389
visibility, 57–60, 182, 340, 349–350
Visio tool Web site, 381–382

• W •
wait state, 266
waterfall life cycle, 34–35
Web sites

magazines, 373–374
about OCL, 373
about patterns, 250
search engines, 374
as source of information, 371–372
about UML 2, 373
UML Dictionary, 375
UML forums, 372–373, 375
UML home page, 372
for UML questions, 375
about UML tools, 374, 379–382
about UML training, 375

Web-based systems, UML modeling tools
for, 33

when event, 288
workflow diagram. See activity diagram

• X •
X, for destroyed object, 193, 201
XMI (XML Model Interchange), 378

• Y •
Y2K date problem, encapsulation and, 24

• Z •
Zachman modeling framework, 15
Zeal Web site, 374
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