UML 2

DUMMIE&

by Michael Jesse Chonoles
and James A. Schardt

WILEY
Wiley Publishing, Inc.

C1.jpg

UML 2

DUMMIE&

by Michael Jesse Chonoles
and James A. Schardt

WILEY
Wiley Publishing, Inc.

UML 2 For Dummies®

Published by

Wiley Publishing, Inc.
909 Third Avenue

New York, NY 10022
www.wiley.com

Copyright © 2003 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8700.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, e-mail:
permcoordinator@wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com and related trade dress
are trademarks or registered trademarks of Wiley Publishing, Inc., in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE USED
THEIR BEST EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR WAR-
RANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK
AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTA-
TIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT
BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A PROFESSIONAL WHERE APPRO-
PRIATE. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR
ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CON-
SEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax
317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2003105654
ISBN: 0-7645-2614-6

Manufactured in the United States of America
109 87654321

1B/QS/QX/QT/IN

WILEY is a trademark of Wiley Publishing, Inc.

About the Authors

Michael Jesse Chonoles: An established system developer, educator, author,
and consultant, Michael has done just about everything that you can do in
software and system development — business, requirements, and software
analysis; software, system, and architectural design; coding in many languages;
testing and quality control — right through marketing, packing, and shrink-
wrapping the software. His titles include Chief of Methodology for the
Advanced Concepts Center (ACC), Software Development Practice Area
Director, Consulting Analyst, Software Standard and Practices Manager, Test
Director, Senior Software Engineer, several varieties of Team/Project
Lead/Staff, and (his personal favorite) Wizard. At the Advanced Concepts
Center, he was responsible for the content and direction of its Object-
Oriented and Requirements-Gathering Curricula as well as its Software
Development Practice. Together with his co-author, he constructed a software/
system-development methodology, CADIT, which was an early attempt to
combine agile techniques with aerospace discipline. He continues his quest
to make the complicated simple, while increasing the professional rigor, qual-
ity, and productivity of his audience’s working lives.

Michael has been involved in many aspects of UML, even before there was a
UML. He’s been an active member of the UML RTF (Revision Task Force) at
OMG — and frequently writes, lectures, speaks, and suggests UML topics.

Michael has an MSE in Systems Engineering from the University of
Pennsylvania and BSs in Math and Physics from MIT. He can be contacted at
michaeljessechonoles@alum.mit.edu.

James A. Schardt: As the Chief Technologist with the Advanced Concepts
Center, James provides 24 years of experience and a firm grounding in object-
oriented development, data warehousing, and distributed systems. He
teaches and mentors Fortune 50 companies in the U.S. and abroad. His many
years of practice in object-oriented systems, database design, change man-
agement, business engineering, instructional design, systems-architecture
assessment, business engineering, and team facilitation bring a wealth of
experience to his assignments.

He authors papers on data warehousing and object technology and also
wrote a column for Report on Object-Oriented Analysis and Design. James
speaks at The Data Warehouse Institute’s world conferences on a regular
basis. He delivers a two-day presentation on collecting and structuring the
requirements for enterprise data-warehouse development.

James is always looking for ways to improve the way that we develop
systems and software. Clients request him by name to deliver his exceptional
knowledge transfer skills, both in the classroom and as a mentor on projects.
Over the years, James has managed major research and development
programs, invented new systems methods, developed “intelligent”
information-access systems, and provided unique insights into clients’
difficult development problems.

James has an MSE in Systems Engineering from the University of
Pennsylvania. He can be reached via schardt@acm.org.

Dedication

Michael dedicates this book to his wife Susann and to their son Zev, for their
love, support, sacrifice, and silliness.

Jim dedicates this book to his wife Martha for her sustaining love and
encouragement, and to M. R. Bawa Muhaiyaddeen as the guiding inspiration
in his life.

Authors’ Acknowledgments

We would like to thank all the students whom we have taught over the years
for their help in shaping our ideas, and all the members of the Advanced

Concepts Center, both past and present, for the chance to work with some of
the best practitioners in the business of systems and software development.

Together we acknowledge the absolutely necessary help, encouragement,
and moral support of our Wiley editors Terri Varveris and Kala Schrager.

Michael would like to thank a whole bunch of people who have helped him
over the years, and specifically with this book: Susann Chonoles for teaching
him how to write better and for help in proofreading; Zev Chonoles, for being
a Test Dummy For Dummies and reading his chapters; his managers Bob
DeCarli, Mike Duffy, and Barbara Zimmerman, who encouraged him even
when he messed up; and his high-school buddies Joseph Newmark, Jeffrey
Landsman, and Barry Salowitz, who keep on telling him what he’s doing
wrong. It goes without saying that he’s grateful to his parents for everything.

He’d also like to acknowledge Jim Schardt for his work toward understanding
UML in all its forms, and Lou Varveris for his insight, recommendations, and
for access to the Popkin’s System Architect tool. He’s also grateful to all the
members of the OMG ADTF and the UML Gurus for their technical advice,
encouragement, and support over the years — especially Cris Kobryn, Jim
Odell, Jim Rumbaugh, Philippe Desfray, and Bran Selic.

Jim would like to thank a number of individuals who helped him develop his
knowledge and skills over the years: David Oliver for his systems perspec-
tive; Michael Kamfonas for his data-warehouse development insights; Michael
Chonoles for his work toward understanding UML in all its forms; Jim
Rumbaugh and Fred Eddy for their mentoring on object-oriented analysis;
and Michael Blaha and William Premerlani for their guiding hand in develop-
ing database-design techniques using UML.

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media Production
Development Project Coordinators: Kristie Rees, Dale White
Project Editor: Kala Schrager Layout and Graphics: Seth Conley,
Acquisitions Editor: Theresa Varveris Kelly Emkow, Carrie Foster, LeAndra Hosier,
Stephanie D. Jumper, Michael Kruzil,

i Editor: B hilds-Hel
Senior Copy Editor: Barry Childs-Helton Mary Gillot Virgin

Technical Editor: Lou Varveris Proofreaders: Laura Albert, Susan Moritz,

Editorial Manager: Kevin Kirschner Dwight Ramsey, TECHBOOKS Production
Media Development Supervisor: Services
Richard Graves Indexer: TECHBOOKS Production Services

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant, www.thebthwave.com

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary C. Corder, Editorial Director
Publishing for Consumer Dummies
Diane Graves Steele, Vice President and Publisher
Joyce Pepple, Acquisitions Director
Composition Services
Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

Contents at a Glance

JOEPOAUCTION ...aeeeeeeeeeeeeeeeeeeeeennnaeaeeesnnnaseeeennnsseeeennnssnees]

Part I: UML and System Developmentccceeeeueeeec ¥

Chapter 1: What’s UML About, AIfi€?cccceeieiiiiiieieecieeeceeee ettt 9
Chapter 2: Following Best PractiCescoccoviiviiininiiiniiiniiiieieccceeeeeeeee e 19
Part 1I: The Basics of Object Modeling37
Chapter 3: Objects and CIaSSEScccovieriirieniieiieieeeeeee sttt 39
Chapter 4: Relating Objects That Work Togetherccccoovvivieiieiieiiecieeiecieeeee 61
Chapter 5: Including the Parts with the Wholec.ccccocoviiiiiieiiiicececece 83
Chapter 6: Reusing Superclasses: Generalization and Inheritancec.cccccc........ 93
Chapter 7: Organizing UML Class Diagrams and Packagesccccccocvvvvenviennennnnne 111
Part 111 The Basics of Use-Case Modeling................... 129
Chapter 8: Introducing Use-Case Diagramsc.cccceevueeveerienieneeneenieesieeieeseeenesenens 131
Chapter 9: Defining the Inside of a Use Cas€cccocerieieiierieienieieeeeee e 147
Chapter 10: Relating Use Cases to Each Otherccccoccovviiiiiniinininiiieeee 161
Part 1U: The Basics of Functional Modeling................. 175
Chapter 11: Introducing Functional Modelingc.cccoccevvieniinienienenniieieeieeeenene 177
Chapter 12: Capturing Scenarios with Sequence Diagramscccccecceevveevveevennnnne 189
Chapter 13: Specifying Workflows with Activity Diagramsccccceevvevivecveevenenn. 213
Chapter 14: Capturing How Objects Collaborateccoccovvieviininniniinnienienienene 227
Chapter 15: Capturing the Patterns of Behaviorcccccevvevevieiivieicieieseceeee 247

Part U: Dynamic Modeling..................ccocueeeeeeecacaaccen. 259

Chapter 16: Defining the Object’s Lives with Statesccccccovvvevievieciieiiececieene 261
Chapter 17: Interrupting the States by Hosting Eventscccccoeeeieiiieiiieciecnenenn, 277
Chapter 18: Avoiding States of Confusionc.cccocceeveriieriinienienieeeeeeeeeene 293
Part UI: Modeling the System’s Architecture................313
Chapter 19: Deploying the System’s COMPONENLScccceeceerieriieneeniiriieeieeienreneens 315

Chapter 20: Breaking the System into Packages/Subsystemsccccceevevveevennnnne 339

Part UIL: The Part of Tenscccceeceeeeceeseccseeeseeceass 359

Chapter 21: Ten Common Modeling Mistakesccccecervienieniinenniniieiienieeeenens 361
Chapter 22: Ten Useful UML Web Sitescccccvvviiriiiriiniierieiieceeeeeeieeie e 371
Chapter 23: Ten Useful UML Modeling TOOISccccecueevieriiiienienececieeieeeeeeeeeens 377
Chapter 24: Ten Diagrams for Quick Developmentccccceevvevieviiecieesieecieeeennens 383

JRACK «eeeeaeeaaaceenneeeacaaaaaaceneeeeeeseaasaceeeeees 393

Table of Contents

JNEFOAUCEION ...eeeeeeeeeeaaeeeeeeeeeennnnaaeeeeeeeesnnnnnasesseeeeesnnnnna]

How to Use This BOOKcociiiiiiiiiiieieeceeeeceeeee e 1
Some Presumptuous ASSUMPLIONScccecvvieviieiiieiiieieeieceeseeeeeie e 2
How This Book Is Organizedccccoooverinirinieieieeeeeeeee e 3
Part I: UML and System Developmentcccccoeeeviencieneeneeneennenne. 3
Part II: The Basics of Object Modelingcccceeveveievcienienieneeienee. 3
Part IIl: The Basics of Use-Case Modelingccccecevcievienieneennenee. 3
Part IV: The Basics of Functional Modelingccceccevveninncnnnennee. 3
Part V: Dynamic Modelingcccccueeviieiiiieiiiieiie et 4
Part VI: Modeling the System’s Architecturecccoceverenenencnns 4
Part VII: The Part of TENScccccvviiiiirieeeeeeeeeeeee e 4
Icons Used in This BOOKcccccuiiiiriiinieiieieeiccicciece et 4
Where to GO from HETeccooviviieieiiiieieeeeeeeee e 5

Part I: UML and System Development...............ccceeeecueeca ¥

Chapter 1: What's UML About, Alfie? 9
INtroducing UMLccoooiiiieiiciecieeeeeteseee ettt ettt sae s enne s 9
Appreciating the Power of UMLccccooviiiiiiiiiiiiiiicieceeeeceee e 10

Abstracting out the essential truthccccooieiiiiiniiniin. 10
Selecting a point Of VIEWccccovviiriiniiniiiiiiieeceeeeeeeeeee 11
Choosing the Appropriate UML Diagramcccccevvevueevieecieecieeeeeieeneenne 12
Slicing and dicing UML diagramsccocoeveeeereereenieneneneneeeeeenen 13
Automating with Model-Driven Architecture (MDA) 16
Identifying Who Needs UMLccccoovieiiiniieienieeieceeceeee e 17
Dispelling Misconceptions about UMLccccoeciiniiniineeniinnienieeieneene, 17

Chapter 2: Following Best Practices 19

Understanding UML Terminology and Conceptscccccoeeevueerienvennnenne. 19
Abstracting away irrelevanceccccoccevvenienienennenieneneeenn 21
Encapsulating and hiding informationccccceeviiiiienciininenn. 22
Separating the whole from its partsccoceoeeeieieiinencneenee, 24
Generalizing and specializingccccceeveviieiieeiieniienieeeeeeee e 26
Inheriting features and performing the same

behaviors differentlycccocovveniiiiiiiiinineneee 26

Improving Your Productivitycccceceviinirniiniiniienienteeeieeeeesee e 28

Building component-based applicationsccccococeevveeeiienieennnenn. 30

Utilizing patterns in your developmentc.ccccceeceniiniinennennnenns 31

X

UML 2 For Dummies

USING UML tOOISoiiiiiiiiiiiecieetcteteeee ettt 31
Sorting out methodology madnessccccccvevieevieeienienienieeieeiens 34

Part II: The Basics of Object Modeling.........................37

Chapter 3: Objectsand Classesccoevvnnnn. 39
Recognizing Classes and ODJECtScccocvrviirvieriiiniiinieniecceceeeeeee 39
Naming Objects and ClasSesccocevieriiniiriieniiinienieteeeeee e 42

Following rules for naming classesccccocceevirecieeiieenieceieeeeen, 42
NaAMING ODJECES ...ecuvicviiiieiieiecieee ettt sae e s e 43
[dentifying AttriDULESccoviviiiiieieieeeeeeeeeeee e 44
Naming attributes and typPesc.cccocevievieriiiriiiniienieeeeeeee e 45
Enumerating the possibiliti€scccccovvieviriiiniiniiniieecceeie 46
Defining default valuesccccoceviiniiniiiiiiieieeeeeceeeceeiee 46
MUIEPHCIEY evveeieieiieeeeee et e e eaes 47
Performing OPerationsccccoeceeieniienienienieeie et 49
Naming operations and argumentscccocceevvieeiieinieenieenieeneeen. 50
SAYING PIEASE ...oevieieiieiieiietecteceeeee ettt aas 51
Diagramming a System’s Partscccccoocevvirviniiniienieniencceeeeeeveseee 52
Boxing in classes and ODJECtScccevieviiiiiriiiiiiiiierieeeeeeeeee 52
Differentiating between classes and objectscccccceveeverviennens 53
Using arrows to indicate an object’s classcccoocevevereneneenenee. 54
USING SEIEOLYPES ..ovveieiiiiiiiieeteeeeeetete et b e nnas 54
Modeling fOrMSccceviiiieiieieieeeeece et 55
Defining VISIDIlItYcccvevieieiiriiiisiceceeeeeeese et 57
Marking attributes as public and privatecccccocvviiieiveniennnens 58
Marking static attributescccceeeeeiieiiieciicieeeeceeeeee e 58

Chapter 4: Relating Objects That Work Together 61
Showing Static Relationships in a Class Diagramccccccvevueeveenennee. 62
Linking Objects TOZENETcccccueeiiiieriieieeieee et 63
ASSOCIAING CLASSES ..cuveeiieiiieiieieeieetese ettt sae b ens 64
Naming Your ASSOCIAtIONSc.cccuevieriieriieniieieeieeie st 65
Relating Many Objects (MUltipliCity)cccccovveevieriieniienieciieeieeeeieee 67

Determining multipliCitycccceeviirienieniiriieeeeeeeeee 67
Representing multipliCitycccoeveiieeiiiiniiieieee e 68
Using multipliCity ...ccccooeeviiiiiiiiieeeeeeeceee e 69
Understanding the Roles That Classes Can Playcccccoecveviieiieniennnnne. 71
Associating Classes with Themselvesccccocvvviirviiniieniienienieeciecies 73
Constraining assoCiationsccceeveeiiiriieniieniienieeeeeeeeeee e 75
Using Association CIaSSEScocueviiviieiiiiiiiiiienieeiesteeeeee e 75
Qualifying Relationshipsccccieiiiiiieiieciececeeeeeee e 77
Reducing multiplicity — with qualifiersccccccoevvevienienieciinnns 77
Indexing with qualifiersccccccoevieriiiiieniirieceeeee e 78
Finding a Way — Navigationccccoeveiienirniiniiiniieeeeeeeeeeeee e 78

Creating @ Programcc.ccoocioviiiiiiiiiieeieniectesteste et 79

Table of Contents

Chapter 5: Including the Parts with the Whole 83
Representing the Whole and the Partsccccccoeeivviinienienicnieiecieee, 83
Modeling COMPIEXILYccceevierierieriieieeieeieetee e 84
Considering aggregation behaviorccccocevvieviiiniiiniininnenenee 85

Showing Ownership: CompoSitioncccceeeieeciiiienieeeeeeee e 86
Showing What Can Be Shared: Aggregationcccceeevenenenenceeneenen. 87
Deciding between Aggregation and Compositionccccceevvvevieeiennennne. 88
Using Alternate Composite Notationcccceecveevienvienieneeneeneeeeieeeee 89
Showing parts as ClaASSESccceevieriirierieieeieeieeeeteeese e 90

Showing parts as attributescccecevieviniiinniniineee 91

Chapter 6: Reusing Superclasses: Generalization

andInheritancecciiiiiiii i i e 93
Making Generalizationscccceeciervieriienieniienieneeneese e 93
Specializing ClASSEScceevviviiiiiirieiieeetetee ettt 97
Using Generalization Setscoceviiriiiiiniiienieniceeeeeeee e 98
Inheriting from ANCEStOrScccccveeieiiieiieieeeeece e 101

Making sense of inherited associationscccccecevievienieenennen. 101
Overriding your inheritanceccccoccveeiieveevieniienienieneeseeieee 102
Inheriting interfacesc.cooevveviiinienienicece e 106
Exploring the Pros and Cons of Multiple Inheritancesccccceeenee. 108
REUSING COAE ..ottt s 109

Chapter 7: Organizing UML Class Diagrams and Packages 111
Modeling Objects and Classes on Diagramsccccceeceeveervierniensieneenens 111
Constructing Class DIiagramscccceeeverereeieeenierenene e 113

Drawing manageable class diagramsccccccceevviiieieenieeneeennnen. 113
Considering time in class diagramscccceveeevverieneeneenieennennnn. 118
Using Project-Oriented Class Diagramscccceceveveneeneeniennieesieninennens 119
Establishing cONtexXtscocceevieriiiiiiniinieiicieeeeeeeeeee e 120
Creating domain ClasSescccvevueevieeiieiicieeeeeeeeeee e 121
Applying an application perspectiveccccoeceevenveniiiniieneenenns 122
Wrapping PACKAZESccceevuieriieiieiieieeieeeesteesteesieere e eaesenesreenaeenne 125

Part I11: The Basics of Use-Case Modeling................... 129

Chapter 8: Introducing Use-Case Diagrams 131
Identifying YOUr AUAIENCEcceeeieieieieiieeeceeee e 131
Casting the System’s ACTOYScccooievieriirerieieeeeee e 133

Finding nonhuman actorsccccceeverieiiieriesieeieceeceeceee e 134
Identifying the roles of the actorsccccevivvieiiincinienieeeeee, 136
Naming the aCtOrsccccevieiiieiiiniiieeeeeee e 137

Exposing an Actor’s ROIEscc.cocevieviiininininiiiicncneeecccrceseene 137

Xi

X'ii UML 2 For Dummies

Showing Your System’s Use Casescccceveevueriierienieneeneeienieeieeienens 139
Defining use cases based on actors and goalsccecceevevenennne 139
[IIUStrating USE CASEScccveecieeieciieiieeieeieete ettt 139
Showing multiplicity with actors and use casesccccceeueeuene.. 140
Defining a g00d USE CASE ...c..eeveeeiireieniieiieieeieeieeeeeee et 141

Distinguishing between Internal and Externalc.cccocovenivinincnnn. 143
Documenting use-case levelsccoceveiviniinniniieniienieneeeeeee, 143
Treating people as design elementscccccceevveeviiiccieenieenieenen. 144

Using Context DIagramscocceceeieierieneninieceeese et 145

Packaging USE CASESccueeuieiieieeieieeiieenieeie e ete st saeesaeesteesveesaeeae e 146

Chapter 9: Defining the InsideofaUseCase 147

Creating a Use-Case Specificationcccocceeeeveenieneeneenenieeieeieeeeeene 147

Telling the Use-Case StOTYccoecuevierieiienieeieeiecie ettt sie e 149
Describing the US€ Casecccceviiviiniinieiiceeeeeeeee e 150
Recounting the use-case narrativeccccoccevvevveniienenienennennee, 151
Separating analysis from designccccccovevieviieiecieniecieeeeee, 151
Setting pre- and postconditionsccccccceeeievieeiieniienieneeeeee, 154

Indicating Alternative Courses of Behaviorccccccoevveeieiiiniiniieciiennnn. 155

Chapter 10: Relating Use Cases to Each Other 161

Linking Use Cases with «include»ccccooveevvieiiiiiiinienienieieeieeieeieene 161
Documenting included use CaSescceevervierrierieneeneeneeeeieene. 163
Generalizing actors in included use casescccceceevevreeriennennen. 165

Using Generalization with Use Casesccceeviirienienienensiennieeieeienens 166
Generalizing differing mechanismscccooevivininieneneneneee 166
Generalizing differing agentscococeveienenininneeeeee 168

EXtending USE CASEScccccveeiiriieieeiiesieerieenteeieeie et saeesveeteesaeeseene e 169
ShOWINg @ NEW TFeleASEcccueviiriiiierieieeieeie et 169
Taking alternate pathsc.ccoccvvivieniiiniiiniiieee e, 171
Extending with optional goalscccceceeviiiiiiiniiniiniieeeee, 173
Misusing eXtendsccceeeeriiiiiiiiieeeeeee e 173

Part 1U: The Basics of Functional Modeling175

Chapter 11: Introducing Functional Modeling 177
Modeling Functions from an Object-Oriented

PEISPECHIVE ..ottt e et 177

When use cases aren’t enoughcccocceevieiieciecieciecieeeeeeeeee 178

Describing behavior with use casesccccccoeeecieevienienierieeienen. 180

Converting use cases into operations (class diagrams) 181

Writing Text-Based Behavioral Specificationsccccccoevvevienieneenenen. 183

Writing use-case specificationsc.cccoceveevieniniinieniienienceeene 183

Writing pre- and postconditionsc.ccocceevieveniieniieniienienieees 184

Writing general algorithmsc.ccooeeiiiiiiiiininneee 187

Table of Contents

Chapter 12: Capturing Scenarios with Sequence Diagrams 189
Diagramming an Interaction SCENAariocccccecceevvevcienieneenieenieeiieeeeeene 190
Choosing your interaction scenarios during analysis 191
Examining object lifelinescccccocvvvieniiiiiiiinniiieeeeeee, 193
Creating and destroying Objectsccccecvrvieriienieneenenneeeeieeee, 193
SeNding MESSALGEScccvieivieirieieeieeieeeeee e eere e ee e e sreesreesaeeseeanes 195
Naming YOUr MESSAZESeevveevereerrrerrenieenreenieesaeesesseesseesseesseessesnes 196
Designing messages and their methodscccccceevviviinieneenennen. 199
Signaling by other meansc.cccocevvievierieiinrieeeeeeeeeee e, 201
Choosing your interaction scenarios during designc........ 202
Composing Interaction Diagramsc.cccecevcievienienienennenienieeieeeeeeens 203
Referencing and reusing interactionscccccceeveveieciienieenneennen. 203
Adding parameters to an interactionccceceeeeevieecieeciencieneenns 204
Alternating interactions with combined fragments 206
Chapter 13: Specifying Workflows with Activity Diagrams 213
Ordering the Flow of Behaviorcccocoovviiiiiiniiniiieeccececeeee 213
Dissecting an activity diagramc.ccceceevevvirveniienienienieneeeeee, 214
Utilizing activity diagramsccccocevvievieniieninnienienienceeeeeeee e 216
Working through Workflow Diagramscccceccevviiiiniiniininnineneee, 220
Diagramming US€ CAS€ STEPScccccvuerievierieriinieeieeeesieesieeee e 220
Indicating the responsible partiesccccccevievinvieniienieneeieen. 224
Chapter 14: Capturing How Objects Collaborate 227
Developing a Collaborationcccccevierieiiieiiecieeieceeseeie e 228
Structuring a design class diagramcccecevveereeneeneenieesiennene 228
Preparing the participantsccccovevieviiiinninieceeeeeeee, 232
Constructing the Communication Diagramcccccecevviiriienieneenennens 234
Numbering steps sequentiallyccccooceeviiiiniiniiniiniieeeee, 235
Outlining procedural callsc.ccceevieviieciiiieeeeeeeeeeee e 236

| I070) 03) o VU OSSR 238
Conquering CONCUITENCYccverieerieenieerieerieeieseeseesseesseesseesseesseessessseseens 241
Looping concurrentlycccccoecevviervienienienieieeieeiesee e 242
Identifying independent threadsccccoccevvivviiniieniienienieeeeee, 243
Capturing the Collaboration’s Designcccceceevienienerieniiennienieneenene 244
Chapter 15: Capturing the Patterns of Behavior 247
Describing Patterns with Collaborationsc...ccceceviiviniinnenieniencn. 247
Defining and classifying patternsccccccoevveveecieccienieneeneeneenne. 249
Using composite structure diagramsccccceceeveenennenncnseeneennn 250
Looking at a common design patterncccoccevveencieenieencieennnen. 251
APPIYING PALEINS ...ttt 252
Using the Builder patternccccooveeieeeiecieneneseeeeeeeee e 252
Showing object interactionc.ccoceveeviniinnenieneneceeeee, 254

Framing Frameworksccccooviviiriiniiniieeeteeeeeee e 255

Xi

XIU UML2For Dummies

Part U: Dynamic Modelingccccccceceeeieeeeeeenc 259

Chapter 16: Defining the Object's Lives with States 261
Showing the Life of an Objectcccoocvvvievieiieiiciiceceeeeeeeeee 261
Documenting object behavior and eventsccccccovcvervenieennnnen. 262
Constructing state diagramsccocevveevienieneenensenieeeeeeneeen 263

Exploring different types of statesccccevevvevienienininncnienee, 266
Transitioning from state to statecccoceeevenenininceeeeee 267
Programming an Object’s Memory with State Attributes 270
Creating State Diagrams from Scenariosccccceeveeveevieeciinsieesienceenens 272
Chapter 17: Interrupting the States by Hosting Events 2717
Making Use Of EVENLESccccooiiviiiiiieiiiiiciececceeteeet et 277
Operating YOUr EVENESccccceeriieniieiieeieeie et nae e eeeeaees 278
Objectifying your €VENtscccceveevieriieriienienienieneenieeseeeeeie e 281
Parameterizing event hierarchiescccccocoevvieiiiiiciiniiinee. 283

Holding special eVentscccecerieniininienineeeceeeeeeeeeee 285

Indicating Order of Execution on a Diagramccceceeeveevieenieesieevennnens 289
Showing Transitions as [COMNSccecveerieriieiiieiieiiecteseeeee e 290
Chapter 18: Avoiding States of Confusion 293
Simplifying Large State Diagramscccccecveevieevieeiienieneeneenieesieesieenenenens 293
Generalizing Statesccccevieiierieieeieeieceee s 294

Utilizing pseudostates and saving historycccceccevieneinennenen. 300

Handling Concurrency with Statesccccocvveveieneneneeieeeeeeee 303
Diagramming concurrent statescocceeceeververvierieneeneenenneene 303

Using pseudostates with concurrent substatesc..ccccueeuenee. 305

Building Protocol State Machinesccceevueeviieiienienieeeececeeiene 308

Part Ul: Modeling the System’s Architecture................313

Chapter 19: Deploying the System’s Components 315
Defining YOUY SYStEIMccuiviiriiiieieieiecieeieee e 316
Constructing Logical PIECESccccuiviiriecieieeeeieeie ettt 320

Packing up your ClaSSEscccecuevierieneenieeiieiecieeeeseese e 321
Decomposing YOUY SYSTEMc..cccvevierieniieiieiieieeieseesieeseeee e 322
Developing subsystem responsibilitiesccccocevvieniiiniinennennen. 323
Working with COMPONENLSc.cccoeeiiiieiieiececece e 325
Showing black DOXESccceeeeieierieriiriieeeeeee e 327
Describing the interfacesccoccocvevieciieciiecineceeeeeee 329
Looking inside the DOXccccceviiiiiniiniciceccceeeeee e 330
Deploying Physical Pieces (Implementation)ccccccevveevierniennieneennnene 333
Diagramming the physical architecturec.cccoccoovieninninnennnnee. 333

Realizing your system as artifactsccccocoeevvieeiciiccecnieecieeen, 336

Table of Contents ¥(/

Chapter 20: Breaking the System into Packages/Subsystems 339
Using Packages and SUDSYStEMSccccevieviieiienienieneeeeieeieeeeeee e 339
Creating analysis PACKAZEScccceveevieriiiiiiieienieieeeceeeee e 341
Creating SUDSYSTEIMIScccvevuiiiiiiriiiiieieeieeie et 343
Exploring Dependenciesccocuevieviiniienieniienieniestesieeeeiee e 347
Diagramming dependenciesc.coceevervierriernienienieeneeneeneeeeeeees 348
Importing what you needccoccoevieieieieiiececeeeeeeee e 351
Merging what YOU havecccceeviviiiieiieieeeeeeee e 352
Patterning the Relationshipscccoovevienieiiiniiniiieeeeeeeeeee 354
Utilizing the three-tier architecture patternc..ccoccovvveveenennen. 354
Modeling architectural patternsccocceevevereeeeeeiieceeriereseeeene 355
Using other architectural patternsc...cccceveevevviniinnnennenne. 356

Part Vll: The Part of Tens........ccccceeeaeeeceecceeaeeaeaaeeaana 359

Chapter 21: Ten Common Modeling Mistakes 361
Splitting Attributes and Operationscocceecevvienienieneenieerieeieeeenene 361
Using Too Few or Too Many Diagram Typesc.ccoceveevervienviensienieencne 363
Showing Too Much Detailcccoecveeieiieiieiiieiecieeeeeeeeee e 364
Using Vague TerminolOgycccoceeieriiiiininienienienieseceeieeeeeeeee e 365
Defining the Same Thing TWICEccccoevverieriieiiieiieieceeeeeeeee e 366
Linking Everything Togethercccoccooviiniiiiniiniinieeeeeeeeeene 366
Creating Too Many Use CASESc.cceeverierienienieniienieeieeieeie e eeesnesieens 367
Completing One Diagram Before Moving Oncccocceevevviinnieniienieenene 368
Cycling Around Class Diagramscccceceeeeienienienienienieeeeeieieseeseseene 368
Not Listening to the USErccccieieiieiienieiiciece e 370

Chapter 22: Ten Useful UML Web Sites n
Weave a Tangled WEDcccooiieiiiiiiieceeeeeceete e 371
UML HOME PAGE ..ottt sttt 372
UML FOTUITL ..ouiiiiiiiieiteieeieeie ettt ettt et see st et e e enbeebeeseennenaeens 372
UML 2 SUDIMIELETS ...eeniieiieiieiieieeteteteteeeeete ettt 373
OCL CONEET ..ottt ettt ettt st sae s sae et 373
Magazines and Information Portalsc.ccccoviniiniininiinniniiceicnee 373
Search ENGINEScocveiuiiiiieiieieceeeeeeeee ettt 374
TOOL SIEES ettt ettt s 374
Training SIEES ...vicvieeieeieieieiece ettt saeeaees 375
Forums and GYOUPSccceeeuieviieiiieiieieeieeeeeee st eve et v e eaeas 375
MiSCEllaNEOUS SItESccveviiriieiieieieieeie ettt esens 375

Chapter 23: Ten Useful UML Modeling Tools 377
PicKing @ TOOL ..c.ooiiiiiiiiieieeeeeee ettt 377
ATBO/UML ..ottt sttt eae s 379

(O3 1A 7<) - TR 379

xvi

UML 2 For Dummies

[deogramic UML ...ttt 379
ODJECLEETING ..oieuvieiiieiieciieciteeeeee ettt ettt e e e reesseebeenbeeseenseesaesseans 380
Rational ROSE SUItec.cciviiiiiiiiieiiee e 380
RRAPSOAY ontieiiieiieceteeee ettt ettt et ae e 380
System ArchiteCtc.ooceeviieiiiiiiiiieieeeeee e 381
TAU ottt ettt 381
TOZELNEISOft ..o 381
VISIO ettt sttt ettt ettt aeens 382
Chapter 24: Ten Diagrams for Quick Development 383
Context DIAGIamccooveieriiriieiieieieieie ettt et eesae e eseene 383
Use-Case DIagramccecevuiririieieieniesiesieeie ettt s 385
Domain Class DIa@ramccccecuieierienieniienieeieeie et seeesieesreesaeesaeeaesanens 386
Sequence DIaGraImccceveeiiriirienieneereeeeie et se e steesbeeaesane s 387
State DIAGYAIM ...ccviviiiiiieiieieeieeieeteet ettt sttt et 388
Application Class Diagramcccceecevieniiniiieniiiiecieeseee e 388
Package DIagramcccceceeeririeieieieesieee ettt 390
Deployment DIa@Iammc.ccceeevieieeienieniienieiieeie e esesseesseesseesseesseesesseens 390
Communication DIa@ramc.cceevieeriiriieeiienienieneeseeseeie et 391
ACtiVIty DIagram ...oc.eevuiiiiiiieiieieeeceeteseeee e 391

JOACK «..ceeeeeeeaaaeaeaaaeeeeeeeeeeeaaccnneeeeeeeeaaaannneeeeeseeeasanceee 393

Introduction

f, like us, you're a software developer or computer professional of some

sort, you probably have to deal with the stereotype that developers can’t
express themselves among normal humans about normal things. Unfortunately,
this book may not help you with that particular challenge, but it can help
improve your ability to communicate with other developers about technical
matters. UML (Unified Modeling Language) is a graphical language that is suit-
able to express software or system requirements, architecture, and design.
You can use UML to communicate with other developers, your clients, and
increasingly, with automated tools that generate parts of your system.

If you're already familiar with UML, you know how powerful and expressive
it is — but don’t be surprised if you're impressed all over again by the new
features of UML 2. Perhaps you found some parts of UML too complicated
or the apparent benefit too obscure. Well, the UML gurus have revamped
UML in many areas — making easier to express yourself exactly and
clearly — and they have also added fresh capabilities for the latest
software- and system-development problems that you're facing.

But because your problems are complex — and your solutions are some-
times even more complex — UML is not always simple to learn. It’s a large
and multifaceted language, capable of helping in all areas of development,
from analysis to test as well as from database to embedded-real-time. To
some, it’s a bewildering array of diagrams and symbols. Sometimes it might
appear to you that the UML gurus purposely make it too complicated (and
with UML 2, even more so) for the rest of us to understand.

Bottom line: You need a practical, experience-based guide to the ins and

outs of this new language. Let this book be that guide. We boiled down our
experiences with UML (in many environments) and our skills as educators
to focus on key UML capabilities that you need first to be more productive.

So, with straightforward English and concrete examples, we give you a leg up

on expressing yourself and being more creative on the job. (Hey, it could help
you get a raise — just don’t expect us to help you get a date.)

How to Use This Book

There’s a right way and a wrong way to use this book. Luckily (like its
subject, UML 2), this book is remarkably versatile. If you're a traditionalist,

2

UML 2 For Dummies

you can read it from cover to cover (although you’ll probably stop at the
index). That’s a great approach if you're really new to UML. If you're familiar
with earlier versions of UML, you can skip around looking for the new UML 2
stuff. You may miss our (ahem) great insights into the rest of UML, but you
know why you bought the book — do what works. Using any of these tech-
niques will get you familiar with your book so that you can count on it to help
unstick you if you hit a snag with UML.

After you make friends with your book, you’ll probably find yourself taking
advantage of its just-in-time features. With just a bit of page flipping, you’ll be
at a section that’s full of examples, tips, techniques, and warnings that will
help you with your UML modeling.

There are other ways to use this book . . . and some of them are wrong ways.
It’s not going to work that well as a doorstop (wrong size), and it probably
won’t impress your date (unless you're dating a developer who’s new to
UML). However, it’ll look great on your bookshelf — silently conveying to
your boss your desire to improve — but if you never open it, you won'’t get
the full benefit.

Some Presumptuous Assumptions

If you're reading this, we can safely assume that not only have you already
opened the book, you're probably also a developer of software, systems, or
databases, and you want to read or write UML 2 diagrams. Perhaps you're a
manager or business analyst in the same boat.

We won’t assume that you know any particular computer language, although
knowing one will certainly help.

For the most part, we assume that you fall into one of two major categories:
Either you're a modeler (with a yen to communicate requirements or how
you think the world works), or you'’re a developer (looking to explore
alternative designs or communicate your results). Either way, this book is
for you.

We assume that you're capable of using a tool to draw UML diagrams — we
don’t care which one. If the only tool that you have your hands on is in your
hands (as opposed to on-screen), you won'’t be at a disadvantage when you
use this book (although your diagrams won’t be quite as tidy if you’re drawing
with a stick on wet sand). You may even be better off doing some diagrams
by hand; electronic UML tools are often expensive and may not yet be up to
date with all the neat UML 2 features that we cover. If you're itching for a
high-tech UML tool, take a look at Chapter 23 where we list of some of the
more useful examples (in all price categories).

Introduction 3

How This Book Is Organized

Here’s your first practical hint about using UML: Put about five to nine
major elements on a diagram — no more. Studies have shown (we’ve always
wondered who does this type of study) that most people have a hard time
comprehending more than about nine elements at a time. Likewise, when
designing this book, we decided to follow our own advice and to divide the
book into just seven parts.

Remember that you don’t have to read this book in order. Just choose the
parts and chapters that you need at the time.

Part I: UML and System Development

If you want to know what UML is (and why knowing it is useful), this is the
place to go; it covers the basics of UML and how it can be used. You'll also
find some common principles for communicating or developing systems
with UML. These principles guided the UML gurus when they created UML,;
the same principles can guide you to effective use of it. Ways to apply these
principles crop up throughout the book.

Part I1: The Basics of Object Modeling

When you model by using UML, the basics are the things (or objects) that
you draw and the relationships among them. You'll find information on
classes, objects, associations, inheritances, and generalizations. No matter
what type of development you do, understanding this part will probably
be essential.

Part I11: The Basics of Use-Case Modeling

Use cases (detailed real-world examples) allow you to understand and
communicate the purpose of a system or its components. They are great
for organizing your thoughts — and your system — when you want to get a
value-added product out the door.

Part JU: The Basics of Functional Modeling

When the objects in your system get busy and you want to explain the details
of their complex behavior, you’ll need a technique to do so. UML supplies

4 UML 2 For Dummies

several to choose from — and this part explains and compares them. You'll
see several different types of interaction diagrams (such as sequence, com-
munication, and activity) in action, and discover how to combine them to
create solutions, patterns, and frameworks. If you're experienced with UML,
you’ll find lots of new UML 2 stuff in this part.

Part U: Dynamic Modeling

Your objects are more that just clumps of data stuck together with a few
functions. The objects that you develop are more like living things; they
remember the past and live their lives by changing their states in response
to incoming events. In this part, you can make sure that they get a life —
and that you know how to explain it. Come to this part for state charts.

Part Ul: Modeling the System’s
Architecture

Whether you're an architect, programmer, or construction worker, you
build complex architectures. Computer systems and software applications
distribute themselves across different hardware platforms — and spread
throughout the Internet. This part outlines steps that you can use to
design your systems for their mission by using system plans, packaging,
and subsystems.

Part VIl: The Part of Tens

Everyone enjoys making lists (and daydreaming that they’ll be read aloud,
backward, on late-night talk shows). Here are our top-ten lists of useful tips,
tools, Web sites, and diagrams. They're likely to be your top-tens, too.

Icons Used in This Book

Appropriately for a book about graphical communication (even if it is
software-oriented), there are signposts throughout to help you find your way.

\2
% This icon identifies the really new stuff in UML 2. Not every modified feature
M) will get this flag, but it does alert those who are familiar with UML 1.x that
something’s really different here.

Introduction

\\3
Here’s a simpler way of doing something that can make it easier than the typi-
cal approach. Think of it as a shortcut to better UML.

Q‘&N\BEB
‘ UML can be a maze — and it can be amazing. These are gentle reminders to

¢,

reinforce important points.

QNG

}
$‘ If you see this icon but ignore it, you’ll be in good company but a bad mood.

When you see this icon, you know that we thought the associated material
really interesting — but every time we tell people enthusiastically about it,
they fall asleep. Skip these sections if you want.

Where to Go from Here

Okay, you're now ready to explore the world of UML 2 modeling. Relax.
You've got the tools that you need in your head and your hands (one of them
is this book), and it’s safe to explore.

So, go ahead and express yourself with the power of UML 2.

5

6 UML 2 For Dummies

Part |

UML and System
Development

The 5“l Wave By Rich Tennant
[T \

b =
= -
B - . -

=l ’ . =

"No, 1t's not a ple chavt; ‘s just a corn
chip that got ecanwned nto the document.”

In this part . . .

B uilding systems or software isn’t that tough if

you can communicate with your clients, co-workers,
managers, and tools. Unfortunately, as your problems get
harder and more complex, the risks that emerge from mis-
communication become greater — and more severe when
they do crop up.

Fortunately, there’s a straightforward, visual language that
you can use that will help promote more precise and more
efficient communication about the nature of your system
in all its aspects — software, requirements, architectures,
designs, design patterns, and implementations. This lan-
guage is UML, the Unified Modeling Language. The newest
version, UML 2, has become more powerful and more
useful than ever.

Starting here, we cover the basics of UML. You find out how
it may fit your situation, how and when you can use it, and
what it’s good for. We give you just as much background in
history, terminology, and basic principles as you’ll need to
take advantage of UML'’s highly productive features.

Chapter 1

What's UML About, Alfie?

In This Chapter
Understanding the basics of UML
Exploring the whys and whens of UML diagrams

5) you’ve been hearing a lot about UML, and your friends and colleagues
are spending some of their time drawing pictures. And maybe you’re
ready to start using UML but you want to know what it’s all about first. Well,
it’s about a lot of things, such as better communication, higher productivity,
and also about drawing pretty pictures. This chapter introduces you to the
basics of UML and how it can help you.

Introducing UML

The first thing you need to know is what the initials UML stand for. Don’t
laugh — lots of people get it wrong, and nothing brands you as a neophyte
faster. It’s not the Universal Modeling Language, as it doesn’t intend to model
everything (for example, it’s not very good for modeling the stock market;
otherwise we’d be rich by now). It’s also not the Unified Marxist-Leninists, a
Nepalese Political party (though we hope you’ll never get that confused). It is
the University of Massachusetts Lowell — but not in this context. UML really
stands for the Unified Modeling Language.

Well, maybe that’s not the most important thing to know. Probably just as
important is that UML is a standardized modeling language consisting of
an integrated set of diagrams, developed to help system and software
developers accomplish the following tasks:

v Specification

v Visualization

v Architecture design

10

Part I: UML and System Development

v+ Construction

v Simulation and Testing

v Documentation
UML was originally developed with the idea of promoting communication and
productivity among the developers of object-oriented systems, but the read-

ily apparent power of UML has caused it to make inroads into every type of
system and software development.

Appreciating the Power of UML

UML satisfies an important need in software and system development.
Modeling — especially modeling in a way that’s easily understood — allows
the developer to concentrate on the big picture. It helps you see and solve
the most important problems now, by preventing you from getting distracted
by swarms of details that are better to suppress until later. When you model,
you construct an abstraction of an existing real-world system (or of the system
you're envisioning), that allows you to ask questions of the model and get
good answers — all this without the costs of developing the system first.

After you’re happy with your work, you can use your models to communicate
with others. You may use your models to request constructive criticism and
thus improve your work, to teach others, to direct team members’ work, or
to garner praise and acclamation for your great ideas and pictures. Properly
constructed diagrams and models are efficient communication techniques
that don’t suffer the ambiguity of spoken English, and don’t overpower the
viewer with overwhelming details.

Abstracting out the essential truth

The technique of making a model of your ideas or the world is a use of
abstraction. For example, a map is a model of the world — it is not the

world in miniature. It’s a conventional abstraction that takes a bit of training
or practice to recognize how it tracks reality, but you can use this abstraction
easily. Similarly, each UML diagram you draw has a relationship to your reality
(or your intended reality), and that relationship between model and reality

is learned and conventional. And the UML abstractions were developed as
conventions to be learned and used easily.

If you think of UML as a map of the world you see — or of a possible world you
want — you’re not far off. A closer analogy might be that of set of blueprints
that show enough details of a building (in a standardized representation with

Chapter 1: What's UML About, Alfie?

lots of specialized symbols and conventions) to convey a clear idea of
what the building is supposed to be.

The abstractions of models and diagrams are also useful because they suppress
or expose detail as needed. This application of information hiding allows you
to focus on the areas you need — and hide the areas you don’t. For example,
you don’t want to show trees and cars and people on your map, because
such a map would be cumbersome and not very useful. You have to suppress
some detail to use it.

You'll find the word elide often in texts on UML — every field has its own
jargon. Rumor has it that elide is a favorite word of Grady Booch, one of
the three methodologists responsible for the original development of UML.
Elide literally means to omit, slur over, strike out, or eliminate. UML uses

it to describe the ability of modelers (or their tools) to suppress or hide
known information from a diagram to accomplish a goal (such as simplicity
or repurposing).

Chapter 2 tells you more about using these concepts of information hiding
and abstraction during development.

Selecting a point of view

UML modeling also supports multiple views of the same system. Just as you
can have a political map, a relief map, a road map, and a utility map of the
same area to use for different purposes — or different types of architectural
diagrams and blueprints to emphasize different aspects of what you’re
building — you can have many different types of UML diagrams, each of
which is a different view that shows different aspects of your system.

UML also allows you to construct a diagram for a specialized view by limiting
the diagram elements for a particular purpose at a particular time. For example,
you can develop a class diagram — the elements of which are relevant things
and their relationships to one another — to capture the analysis of the problem
that you have to solve, to capture the design of your solution, or to capture
the details of your implementation. Depending on your purpose, the relevant
things chosen to be diagram elements would vary. During analysis, the elements
that you include would be logical concepts from the problem and real world;
during design, they would include elements of the design and architectural
solution; and during implementation, they would primarily be software
classes.

A use case diagram normally concentrates on showing the purposes of the
system (use cases) and the users (actors). We call a use case diagram that
has its individual use cases elided (hidden) a context diagram, because it
shows the system in its environment (context) of surrounding systems
and actors.

11

12

Part I: UML and System Development

Choosing the Appropriate UML Diagram

|
Figure 1-1:
Aclass
diagram

of UML
diagrams.
|

UML has many diagrams — more, in fact, than you’ll probably need to know.
There are at least 13 official diagrams (actually the sum varies every time we
count it) and several semiofficial diagrams. Confusion can emerge because
UML usually allows you to place elements from one diagram on another if

the situation warrants. And the same diagram form, when used for a different
purpose, could be considered a different diagram.

In Figure 1-1, we’ve constructed a UML class diagram that sums up all the
major types of UML diagrams (along with their relationships), using the
principle of generalization, which entails organizing items by similarities
to keep the diagram compact. (See Chapter 2 for more information on
generalization.)

In Figure 1-1, the triangular arrows point from one diagram type to a more
general (or more abstract) diagram type. The lower diagram type is a kind-
of or sort-of the higher diagram type. Thus a Class Diagramis a kind of
Structural Diagram, which is a kind of Diagram. The diagram also uses a
dashed arrow to indicate a dependency — some diagrams reuse the features
of others and depend on their definition. For example, the Interaction
Overview Diagram depends on (or is derived from) the Activity Diagram
for much of its notation. To get a line on how you might use UML diagrams,
check out the summary in Table 1-1.

Diagram
Structural Behavioral
Diagram Diagram
X X
[| | [| |
Obiject Diagram Class Diagram Component Activity Use-Case State-Machine
) 9 9 Diagram Diagram Diagram Diagram
N
'
'
Package Deployment c;:,:’zf::t: 1 Interaction Protocol State
Diagram Diagram Diagram H Diagram Machines
)] 7y
'
' . |
' Interaction- s Timi
H Overview I;quence D.lmlng
! Diagram iagram iagram
'
'
'
'
'

Communication
Diagram

Chapter 1: What's UML About, Alfie?

Slicing and dicing UML diagrams

There are many ways of organizing the UML diagrams to help you understand
how you may best use them. The diagram in Figure 1-1 uses the technique of
organization by generalization (moving up a hierarchy of abstraction) and
specialization (moving down the same hierarchy in the direction of concrete
detail). (See Chapter 6 for more on generalization and specialization.) In
Figure 1-1, each diagram is a subtype of (or special kind of) the diagram it
points to. So — moving in the direction of increasing abstraction — you can
consider a communication diagram from two distinct angles:

v It’s a type of interaction diagram, which is a type of behavioral diagram,
which is a type of diagram.

v It’s derived from a composite structure diagram, which is a kind of
structural diagram, which is a type of diagram.

After you get some practice at creating and shaping UML diagrames, it’s
almost second nature to determine which of these perspectives best fits
your purpose.

This general arrangement of diagrams that we used in our Figure 1-1 is
essentially the same as the UML standard uses to explain and catalog UML
diagrams — separating the diagrams into structural diagrams and behavioral
diagrams. This is a useful broad categorization of the diagrams, and is
reflected in the categorizations in Table 1-1:

v Structural diagrams: You use structural diagrams to show the building
blocks of your system — features that don’t change with time. These
diagrams answer the question, What's there?

1 Behavioral diagrams: You use behavioral diagrams to show how your
system responds to requests or otherwise evolves over time.

v Interaction diagrams: An interaction diagram is actually a type of
behavioral diagram. You use interaction diagrams to depict the
exchange of messages within a collaboration (a group of cooperating
objects) en route to accomplishing its goal.

Table 1-1 UML 2 Diagrams and Some of Their Uses
Category Type of Purpose Where to Find
Diagram More Information

Structural Class diagram Use to show real-world entities, Chapter7
diagram elements of analysis and design,

or implementation classes and

their relationships

(continued)

13

14

Part I: UML and System Development

Table 1-1 (continued)

Category Type of Purpose Where to Find
Diagram More Information
Structural ~ Object diagram Use to show a specific or Chapter 7
diagram illustrative example of objects
and their links. Often used to
indicate the conditions for an
event, such as a test or an
operation call
Structural ~ Composite Use to show the how something Chapter 5
diagram structure is made. Especially useful in
diagram complex structures-of-structures
or component-hased design
Structural Deployment Use to show the run-time Chapter 19
diagram diagram architecture of the system, the
hardware platforms, software
artifacts (deliverable or running
software items), and software
environments (like operating
systems and virtual machines)
Structural Component Use to show organization and Chapter 19
diagram diagram relationships among the
system deliverables
Structural ~ Package Use to organize model elements Chapter 7
diagram diagram and show dependencies
among them
Behavioral Activity diagram Use to the show data flow and/ Chapter 18
diagram or the control flow of a behavior.
Captures workflow among
cooperating objects
Behavioral Use case Use to show the services that Chapter 8
diagram diagram actors can request from a system
Behavioral State machine Use to show the life cycle ofa Chapter 18
diagram diagram/ particular object, or the
Protocol state sequences an object goes
machine diagram through or that an interface
must support
Interaction Overview Use to show many differentinter- Chapter 13
diagram diagram action scenarios (sequences of

behavior) for the same collab-
oration (a set of elements working
together to accomplish a goal)

Chapter 1: What's UML About, Alfie?] §

Category Type of Purpose Where to Find
Diagram More Information
Interaction Sequence Use to focus on message Chapter 13
diagram diagram exchange between a group of
objects and the order of the
messages

Interaction Communication Use to focus onthe messages Chapter 14
diagram diagram between a group of objects and

the underlying relationship

of the objects

Interaction Timing diagram Use to show changes and their Rarely used, so

diagram relationship to clock times in we refer you to
real-time or embedded the UML
systems work specification

Because UML is very flexible, you're likely to see various other ways of
categorizing the diagrams. The following three categories are popular:

1 Static diagrams: These show the static features of the system. This
category is similar to that of structural diagrams.

v Dynamic diagrams: These show how your system evolves over time.
This category covers the UML state-machine diagrams and timing
diagrams.

v Functional diagrams: These show the details of behaviors and
algorithms — how your system accomplishes the behaviors requested
of it. This category includes use-case, interaction, and activity diagrams.

You can employ UML diagrams to show different information at different times
or for different purposes. There are many modeling frameworks, such as
Zachman or DODAF (Department of Defense’s Architecture Framework) that
help system developers organize and communicate different aspects of their
system. A simple framework for organizing your ideas that is widely useful is
the following approach to answering the standard questions about the system:

1 Who uses the system? Show the actors (the users of the system) on
their use case diagrams (showing the purposes of the system).

+* What is the system made of? Draw class diagrams to show the logical
structure and component diagrams to show the physical structure.

1 Where are the components located in the system? Indicate your plans for
where your components will live and run on your deployment diagrams.

+* When do important events happen in the system? Show what causes
your objects to react and do their work with state diagrams and
interaction diagrams.

10

Part I: UML and System Development

1 Why is this system doing the things it does? Identify the goals of the
users of your system and capture them in use cases, the UML construct
just for this purpose.

1 How is this system going to work? Show the parts on composite
structure diagrams and use communication diagrams to show the inter-
actions at a level sufficient for detailed design and implementation.

Automating with Model-Driven
Architecture (MDA)

Model-driven architecture (MDA) is new way to develop highly automated
systems. As UML tools become more powerful, they make automation a real
possibility much earlier in the process of generating a system. The roles of
designer and implementer start to converge. UML provides you with the keys
to steer your systems and software development toward new horizons utiliz-
ing model-driven architectures.

In the past, after the designer decides what the system would look like —
trading off the design approach qualities such as performance, reliability,
stability, user-friendliness — the designer would hand the models off to the
developer to implement. Much of that implementation is difficult, and often
repetitious. As one part of an MDA approach to a project, UML articulates the
designer’s choices in a way that can be directly input into system generation.
The mechanical application of infrastructure, database, user interface, and
middleware interfaces (such as COM, CORBA, .NET) can now be automated.

Because UML 2 works for high-level generalization or for showing brass-tacks
detail, you can use it to help generate high-quality, nearly complete imple-
mentations (code, database, user-interface, and so on) from the models.

In MDA, the Development Team is responsible for analysis, requirements,
architecture, and design, producing several models leading up to a complete,
but Platform-Independent Model (PIM). Then UML and MDA tools can gener-
ate a Platform-Specific Model (PSM) based on the architecture chosen and
(after some tweaking) produce the complete application.

This approach promises to free the development team from specific middleware
or platform vendors. When a new architecture paradigm appears — and it
will — the team can adopt it without going back to Square One for a complete
redevelopment effort. The combination of UML and MDA also promises to
free development teams from much of the coding work. Although the required
UML models are much more specific than most organizations are used to,
their use will change the way developers make systems.

With the advent of MDA and its allied technologies, UML becomes a sort of
executable blueprint — the descriptions, instructions, and the code for your
system in one package. Remember it all begins with UML.

Chapter 1: What's UML About, Alfie?

Identifying Who Needs UML

Broadly speaking, UML users fall into three broad categories:

v Modelers: Modelers try to describe the world as they see it — either the
world as is, whether it’s a system, a domain, an application, or a world
they imagine to come. If you want to document a particular aspect of
some system, then you're acting as a modeler — and UML is for you.

v Designers: Designers try to explore possible solutions, to compare, to
trade off different aspects, or to communicate approaches to garner
(constructive) criticism. If you want to investigate a possible tactic or
solution, then you’re acting as a designer — and UML is for you.

+ Implementers: Implementers construct solutions using UML as part
of (or as the entire) implementation approach. Many UML tools can
now generate definitions for classes or databases, as well as application
code, user interfaces, or middleware calls. If you're attempting to get
your tool to understand your definitions, then you’re an Implementer —
and (you guessed it) UML is for you.

To understand how you can benefit from UML, it will help to know how and
why it was developed. It’s based on successful and working techniques
proposed by groups of Software Technology Vendors before the Object
Management Group, and voted upon by the members.

Dispelling Misconceptions about UML

Many developers have several misconceptions about UML. Perhaps you do
too, but after reading this book, you’ll have the misconceptions dispelled:

v UML is not proprietary. Perhaps UML was originally conceived by
Rational Software, but now it’'s owned by OMG, and is open to all. Many
companies and individuals worked hard to produce UML 2. Good and
useful information on UML is available from many sources (especially
this book).

v UML is not a process or method. UML encourages the use of modern
object-oriented techniques and iterative life cycles. It is compatible with
both predictive and agile control approaches. However, despite the simi-
larity of names, there is no requirement to use any particular “Unified
Process” — and (depending on your needs) you may find such stuff
inappropriate anyway. Most organizations need extensive tailoring of
existing methods before they can produce suitable approaches for their
culture and problems.

v UML is not difficult. UML is big, but you don’t need to use or under-
stand it all. You are able to select the appropriate diagrams for you

17

18

Part I: UML and System Development

needs and the level of detail based on you target audience. You'll need
some training and this book (of course), but UML is easy to use in

practice.

v UML is not time-consuming. Properly used, UML cuts total development

time and expenses as it decreases communication costs and increases
understanding, productivity, and quality.

The evolution of UML

In the B.U. days (that's Before UML), all was
chaos, because object-oriented developers did
not understand each other's speech. There
were over 50 different object-oriented graphi-
cal notations available (I actually counted),
some of them even useful, some even had tool
support. This confusion, interfered with adop-
tion of object-oriented techniques, as compa-
nies and individuals were reluctant to invest in
training or tools in such a confusing field.

Still the competition of ideas and symbols did
cause things to improve. Some techniques were
clearly more suited to the types of software
problems that people were having. Method-
ologists started to adopt their competitors’
useful notation. Eventually some market leaders
stood out.

In October 1994, Jim Rumbaugh of the Object
Modeling Technique (OMT) and Grady Booch of
the Booch Method started to work together on
unifying their approach. Within a year, lvar
Jacobson (of the Objectory Method), joined the
team. Together, these three leading method-
ologists joined forces at Rational Software,
became known as the Three Amigos, and were
the leading forces behind the original UML. Jim
Rumbaugh was the contributor behind much of
the analysis power of UML and most of its nota-
tional form. Grady Booch was the force behind
the design detail capabilities of UML. lvar
Jacobson led the effort to make UML suitable
for business modeling and tying system devel-
opment to use cases.

The Three Amigos were faced with the enor-
mous job of bringing order and consensus to the
Babel of notation and needed input from the
other leading methodologist about what works
and what doesn't. They enlisted the help of the
Object Management Group (OMG), a consor-
tium of over 800 companies dedicated to devel-
oping vendor-independent specifications for the
software industry. OMG opened the develop-
ment of UML to competitive proposals. After
much debate, politics, and bargaining, a con-
sensus on a set of notation selected from the
best of the working notation used successfully
in the field, was adopted by OMG in November
1997.

Since 1997, the UML Revision Task Force (RTF)
of OMG — on which one of your authors (okay,
it was Michael) served — has updated UML
several times. Each revision tweaked the UML
standard to improve internal consistency, to
incorporate lessons learned from the UML
users and tool vendors, or to make it compati-
ble with ongoing standards efforts. However, it
became clear by 2000 that new development
environments (such as Java), development
approaches (such as component-based devel-
opment), and tool capabilities (such more com-
plete code generation) were difficult to incor-
porate into UML without a more systematic
change to UML. This effort leads us to UML 2,
which was approved in 2003.

Chapter 2
Following Best Practices

In This Chapter

Getting to know the object-oriented principles behind UML
Avoiding vendor hype

Interpreting the buzzwords

Ever notice how buzzwords seem to sprout like mushrooms whenever
experts get their hands on something really useful? The object-oriented
ideas that form the foundation of UML started in the 1970s and UML itself got
going in 1994, so the experts had plenty of time to come up with complex
terms — like abstraction, encapsulation, and aggregation — to confuse the
rest of the world. The experts think you already know these terms. Luckily,
the meaning behind these words is generally quite simple.

Various vendors have developed a host of rival tools to help you with UML.
The experts also went into overdrive coming up with competing methodologies
(steps for using UML). These tools and the methodologies are supposed to
make you and me more productive. Of course the vendors and the experts
assume you already know how to use their tools, understand the meaning of
UML diagrams, and know all the buzzwords they’ve come up with in their
marketing brochures. In this chapter we cover the terms and other details
about UML that everyone assumes you already know.

Understanding UML Terminology
and Concepts

Over the years (if you're like most of us) you’ve learned the wisdom of such
phrases as “say what you mean, mean what you say” and “get to the point.”
You’ve probably found that your best communication with other people
happens when you say what needs to be said, no more and no less. The
experts use their own special words to describe this common-sense
principle; Table 2-1 (which uses an air-filter air exchange unit as an
example) interprets what they mean.

20

Part I: UML and System Development

Table 2-1

Keep It Simple: Word Interpretations

Expert's Word

What They Really Mean

Example

Object

Refer to something useful that
has identity, structure, and
behavior.

The air-filter unit sitting in my

living room is unique from

all other air filters. It's about 3
feet tall with an 18-inch-square
base. The unit behaves nicely
by cleaning the air for me.

Class

A family of objects with similar
structure and behavior.

You refer to my air-filter unit
and the thousands of others
manufactured just like it as
the HEPA air-filter unit. All
these similar units form a
class of air-filter unit.

Abstraction

Describe the essence of an
object for a purpose.

A circuit diagram of an air-
filter unit describes the
essence of the electrical
wiring so you don't electrocute
yourself when you work on it.

Encapsulation

Just tell me what | need to
know to use an object.

“You turn on the air-filter unit
with the external three-speed
knob, and you can't get inside
the unit to change the possible
speeds of the motor.” This
statement encapsulates all
the details of how the elec-
tricity flows to the motor thus
turning on the motor that
moves the fan, which moves
the air through the filters.

Information
hiding

Keep it simple by hiding the
details.

Most people don't need to
know the three-speed
switch’s part number, or the
fact that it takes 120 volts AC
power at 15 amperes.

Aggregation

Just tell me about the whole
object ortell me about the
parts of the whole object.

The air-filter unit (as a whole)
pulls in air and expels filtered,
cleaned air. The air-filter unit
is composed of two filters, a
fan, a fan motor, a three-
speed switch, and some wire.

Chapter 2: Following Best Practices 2 ’

Experts Word ~ What They Really Mean Example
Generalization ~ Just tell me what is common Every air-filter unit has a filter
among these objects. to clean the air and a fan to
move the air.

Specialization ~ Just tell me what is different The HEP43x air-filter unit is
about this particular object. unique because it has a
motion sensor to speed up the
fan when extra dust is flying

around.
Inheritance Don't forget that specialized Since the HEP43x is an air-
objects inherit the common filter unit, it inherits the fea-
features of generic objects. tures of all air filter units — a

filter and a fan.

Abstracting away irrelevance

Ignoring unimportant details is a fundamental part of your life. Most of the
time you are not even aware how much you take no notice of your surround-
ings. If you had to pay attention to everything around you all the time, you
would have no time to do anything else. When you communicate your ideas
about a system or the software you are developing, you ignore the trivial and
focus on the important. The experts have a fancy word — abstraction — for
this process of distilling the “important” information (needed for some clear
purpose) out of the mass of surrounding details.

You use different degrees of abstraction at different times. For example, the
picture of the air-filter unit in Figure 2-1 is an abstraction; this image is not
the real air-filter unit. The picture describes the look of the unit without
details such as color, physical dimensions, and actual size.

Sometimes you need different abstractions of the same thing. For example,
the electrician may need to see a wiring diagram like the one in Figure 2-2.
This diagram “abstracts away” everything about the air-filter unit except its
electric circuitry — and even that isn’t what the actual wiring looks like.
The symbols on the wiring diagram have special meanings; they indicate
components or functions that would otherwise clutter up the diagram with
distracting details. The symbol that looks like an upside-down triangle with
three lines, for example, shows that the circuit is grounded at this point —
exactly how that’s done isn’t important right now, and isn’t shown.

UML diagrams have symbols that act as a shorthand notation. These symbols
allow you to show what’s important by using the principle of abstraction, just
as a circuit diagram shows the electricians what’s important to them.

22

Part I: UML and System Development

|
Figure 2-1:
Picture
represen-
tation of

an air-

filter unit.
|

A\

\NG/
S

When you use UML to make models — in particular, objects and classes,
which are discussed in detail in Chapter 3 — they make good abstractions of
the physical world. A good model contains only the important aspects of an
object, such as its identity, structure, behavior, and association with other
objects. (Abstracting your real world objects — paring them down to the
essentials — is also a great help when you map real-world stuff into
object-oriented programs.)

Don’t let someone use UML to describe lots of irrelevant detail. Apply the
principle of abstraction — ignore the irrelevant and model what is important
to you and fellow developers.

Encapsulating and hiding information

To help you enforce an abstraction, the experts have a couple of other
fancy terms:

+* Encapsulation: When you summarize important features of your objects
in one place, you are encapsulating them — your objects can make good
abstractions of the real world by combining features such as identity,
attributes, and behavior into a neat package. Everything an object needs
to be itself — structure, identity, internal behavior — is close together
so the object can be itself (function the way it wants to). The operations
(behavior) of an object are like a wall between its internal workings and
those of other objects. The wall of operations places a barrier that helps
the object maintain its separation from other objects, which helps
enforce the abstraction.

Chapter 2: Following Best Practices 2 3

These walls prevent your intended abstraction from being violated. You
turn an air-filter unit on and off. You cannot break the encapsulation of
that object and change its internals to create a TV that you can also turn
on and off.

v Information hiding: Hiding the details of how an object performs its job
helps prevent overloading the user with irrelevant details. The advantage
is that if you hide internal information about an object from its users,
then you can tinker with that object without affecting the users.

Manufacturers of air-filter units try hard to hide how the unit works from
the users of these devices. The assumption is that the user doesn’t have
to know anything about the operation of the unit except how to turn it
on and off. If the manufacturer changes the internal workings of the unit
without changing its controls — and it performs the same function —
then its users don’t have to retrain themselves to use a new unit.

Encapsulation and information hiding are used in many branches of
technology. For example, computer users sometimes complain that PCs —
even today — still require the user to master too much detailed knowledge.
The users — all of us — still have to know a lot about the internal workings of
the computer before we can change a setting or get it to do a simple task. All
those details tend to get in the way of performing a job. From the user’s

point of view, the PC builders haven’t done enough information hiding or
encapsulation.

3-SPEED FAN SWITCH

. |
Figure 2-2: oo o

Electric
circuit ——
represen-
tation of LJ
an air- —
filter unit.
—— FAN MOTOR

) Black

1]

(9]

reen

24

Part I: UML and System Development

A little information hiding goes a long way

During the 1990s, software developers were
obsessed with Y2K — the fear that software
programs worldwide would be disrupted when
the year changed from 1999 to 2000. The prob-
lem boiled down to a lack of (you guessed it)
encapsulation and information hiding. Two
digits were customarily used to represent the
year attribute of a date: 98 for 1998, 99 for 1999,
and 00 for— what? 1900 or 2000? Programs that
needed accurate dates to function properly
relied on those unencapsulated two-digit year
attributes — big trouble. Companies and gov-
ernments around the world spent in excess of
$200 billion to solve the problem.

Now, suppose those dates were encapsulated
into a date object and the year representation
was hidden inside the date object. The software
developers could have changed the internal
representation of year from two to four digits
and added a wall of behavior that would, if
asked, provide the date with either two- or four-
digityears. When a software developer needed
to see whether one date preceded another, the
developer would ask two date objects to com-
pare themselves through a simple compare
operation. If early software developers had
encapsulated all dates in the first place — and
hidden the representation of year — then the
Y2K scare would have never happened.

“&N\BEB You use encapsulation and information hiding together when developing
& object-oriented systems and software. By hiding an object’s structure and
internal methods of behavior behind a wall of operations, you enforce your
abstraction and — in effect — help keep the object intact.
QUING/ Don’t make the structure of your objects public. Doing so breaks the principle
Ny of encapsulation and information hiding. For openers, public attributes often

attract tinkerers who make unauthorized modifications, and that makes your
job of enforcing an abstraction difficult.

Separating the whole from its parts

Aggregation is, in effect, pulling together the parts of an object to make up the
actual object. For example, when we say “air-filter unit” we’re talking about a
whole object that hides many other objects that we call its parts. The fan,
motor, filter, switch, and wires are the internal objects/parts of an air-filter
unit. You aggregate the hidden parts to form the whole air-filter unit.

Chapter 2: Following Best Practices 2 5

A\

WMBER
\\&’
&

You use aggregation to hide the internal parts of a complex object from the
outside world. Aggregation is a form of encapsulation and information hiding.
The whole or aggregate object hides many complex internal objects or parts.

If an object is especially complex, you can ignore its internals by focusing on
relationships between the whole object and other external objects. We don’t
have to talk about the internal parts of an air-filter unit to tell you how to use
it. We communicate the relationships between you, the air-filter unit, and the
air that gets cleaned and moved throughout the room. In my communication
with you we tell you just what you need to know.

If you must maintain the air-filter unit by replacing the filter, we tell you about
that specific internal part of the unit. Nobody has to yak on and on about the
unit’s relationship with air, the room, and the user. Again, we tell you only
what you (as maintainer) need to know.

Whenever you need to hide the internal parts of an object, use UML aggrega-
tion notation to isolate the internal complexity of a whole object from outside
interactions with other objects.

Composition is another word for a strong form of aggregation. The experts
needed a different word to help distinguish between two different situations:

v+ Composition: When the parts of an object are completely bound up in
the life of the whole object, the whole object is composed of them. If you
take a whole air-filter unit and crush it (end the life of the whole thing),
then all its parts are crushed too (the life of each part is bound to the
life of the whole).

1 Aggregation: Some parts of a whole object exist beyond the life of the
whole. For example, a subsidiary of a holding company is part of the
whole company. However, if the holding company were to go bankrupt
and cease to exist, the subsidiary’s life would continue as a standalone
company. The relationship between the subsidiary and the holding
company is simple aggregation, not composition.

You manage complexity by hiding it. Suppose we build a black box and tell
you how to hook up to the black box. If all you worry about is the hook up
to the box and not the insides of the black box, then we have successfully
hidden any complexity from you. UML classes hide complexity by forcing
you to use their public operations (publicly accessible behavior). UML
components with internal parts hide complexity by forcing you to use their
public interfaces.

26

Part I: UML and System Development

Generalizing and specializing

Like most people, UML experts prefer not to repeat themselves when commu-
nicating with others. They follow the principle of saying something once.
When you hear the following words this is what they mean:

v Generalization: You look at a group of objects, extract the features they
have in common — their attributes (structure) and their operations
(behavior) — and use those features to define a generic class of objects.
That way, you refer to these common features whenever you mention
the class — and you only have to do so once.

v Specialization: Specialization is the opposite of generalization. To specialize
a group of objects, you look at a group of objects and identify groups of
objects with unique features not shared with other groups of objects. Then,
you create a class for each group of objects with their own unique features.

The same is true of any object — especially of any machine. There are lots of
different kinds of air-filter units, from no-frills to fancy. Figure 2-3 shows the
type of air-filter unit you see above a stove. A more elaborate, whiz-bang
air-filter unit, bristling with gizmos, is shown in Figure 2-4. These units share
common features — internal fan, On/Off switch, replaceable air filter — that
you can find in various types of filter units. When you consider all possible
filter units that have these basic features, you're generalizing.

To help you see the spaghetti sauce you're cooking, the stovetop unit in
Figure 2-3 has a light to illuminate the cooking surface below. None of the
other air-filter units have this, so stovetop air-filter units make up a more
specific class of objects.

The fancy unit in Figure 2-4 has an ultraviolet light and a motion sensor. Since
we’ve already included it in the general class of air-filter units, we can assume
that it also has an On/Off switch, an internal fan, and an internal filter —

even though there’s no stovetop light.

Inheriting features and performing
the same behaviors differently

Okay, air filters in general have the features common to all air filters — so
when we speak of a particular air-filter unit, we can focus on its specific
features. By doing so, we assume you already understand that the unit has
the features listed in the generic description. We're “reusing” the generic
features that all air-filter units have in common.

Chapter 2: Following Best Practices 2 7

Figure 2-3:
This stove-
top air-filter
unit has a
light so you
find the
oregano.

_ﬁ

This

‘/

"

leads us to two more terms that the experts use to confuse us:

Inheritance: You notice that when we talk about a specific kind of air-
filter unit, we assume you understand that the specific unit has the same
features of any generic air-filter unit. The experts like to say the specific
object inherits the features of the generic object.

Through the principle of inheritance, you “reuse” the features of a
generic object when talking about or modeling specific objects.

Polymorphism: Of course, everybody studies classical Greek these days,
right? So here it is again — poly meaning many, and morph meaning form.
It’s when objects have the same behavior but perform it differently. For
example, all air-filter units can perform the operation of turning on —
but each type of unit performs that operation differently.

In this example, you notice there is a difference between the operation of
the object and the method the object uses to perform the operation. In
the object-oriented world, objects invoke the operations (behavior) of
another object. The second object then performs some internal method
(steps in a process) as a result. When you (the first object) invoke the
operation of turning on the air filter unit (the second object), the air
filter unit performs an internal method (it passes electricity through a
switch to the fan).

The idea of polymorphism is to hide the exact method of operation
behind the operation itself. You invoke the operation of an object with-
out worrying about how the operation is performed. So when you step
up to an air-filter unit, you just turn it on. The method inside the unit
does the rest.

28

Part I: UML and System Development

|
Figure 2-4:
Air-filter

unit with
ultraviolet
light. (Do
dust motes
glow in

the dark?)

\\J

\/

U000

PR

LI

;
\\\\\\\\\\
““““ M.,

When you use UML to describe general and specific objects, use the Principle
of Least Surprise. You place an attribute or an operation in whatever class —
generalized class or specialized class — is least likely to surprise the user.

Improving Your Productivity

Developing software is a hard job, made harder because the product has to
be easy to use, loaded with additional functionality, and usable even when
distributed over complex Internet environments. Software must continually
be better, quicker, and faster than ever before. To help you achieve these
goals, software development has gone object-oriented. Instead of writing
functions, you create little software objects that send messages to other
software objects. Unlike functions, these software objects allow you to hide
the details of internal operations in tidy programming objects. Now, to go
along with this new direction in software development, you encounter a
whole bunch of buzzwords. You can use Table 2-2 to translate the slew of
new buzzwords when UML pros want to talk shop (or vendors want to sell
you methods and tools for UML modeling).

Chapter 2: Following Best Practices

29

Table 2-2 UML Buzzwords and Their Interpretations
Expert's Word What They Really Mean Example
Component A real-world object or unit of You can replace one DVD

software code thatis so self- player in your entertainment

contained that it can be

system with another DVD

swapped out and replaced by player of equal or better

another object, without the

user knowing the difference.

capability; you can replace
one module of code with
another that works better.

Component-based
development

Building your system out of
modular/replaceable units
of code.

Develop your system using
Enterprise Java Beans,
.Net, or CORBA components.

Interface A contract that specifies A DVD player must accept
what the object must do audio and video signals
(but not how to do it). through specific connectors
(for example, RCA-type).
Pattern Description of how develop- Use the adapter pattern
ers solve a frequently to adapt an existing class
occurring problem. interface to a new interface
you can handle.
Framework Alarge-scale patternthat ~ You could implement a hotel

dictates the architecture of
your application.

reservation application
using an event-driven frame-
work using GUI screens, or
an auction framework over
the Internet.

UML Modeling tool

Software that allows you to
create UML diagrams —
and generate code based
on the diagrams.

Chapter 23 lists some ven-
dors of Modeling tools.

Life cycle A sequence of generic For many software projects,
steps from beginning to end the life cycle (Waterfall, for
that everyone on the team instance) starts with the
has to follow for developing analysis step, followed by
a system or software. the design step; all steps are

sequential.

Methodology A prescribed detailed These are the steps pre-

approach to the task of
developing a system or
software.

scribed by industry experts
for the development of systems
and software. These steps
often involve the use of a mod-
eling language like UML,
RUP, OMT, Booch, and Agile.

30

Part I: UML and System Development

WMBER
\x&
&

Building component-based applications

You’ve seen manufacturers assemble hardware from groups of components.
Each part of a device (for example, a disk drive) is created first. Then the
parts sit in bins, waiting to be picked at the right time in the assembly
process. One instance of a part like a power supply or disk drive is exactly
like another; each part is a replaceable unit. The assembly-line approach to
building hardware is more productive than building things by hand; object-
oriented programming applies the same principle to software development.

Building software by assembling prefab pieces is faster and more productive
than creating each program line by line from scratch. This is what the
experts call component-based development. You can think of components as
units of code that can be plugged into the software (as if into a circuit board)
to form an application.

To develop applications from groups of components, you need to perform the
following tasks:

1 Create components: Write units of software as groups of cooperating
objects, which you can reuse from application to application.

1 Separate what a component can do from how the component does
it: You must declare interfaces to your components. Each interface
specifies the name of the operation and any parameters needed by that
operation. When one component invokes the interface of another com-
ponent, it should not have to know anything about how the operation is
performed.

For example, if we build a streaming-video component in software that
provides a run interface, you should be able to simply ask any of our
streaming-video components to run. You shouldn’t have to know any-
thing about the internal type, structure, or format of the video to run it.
Thanks to this separation of concerns (external interface from internal
code), you can replace our component with another component that
provides the same run interface and your assembled application will
continue to work. It’s like replacing one power supply in a disk drive
with another.

v Provide a common standard for communication among components:
To make your components replaceable, you have to standardize on the
exact way one component talks to another. The Object Management
Group’s CORBA and Microsoft’s COM are two established communica-
tion standards that offer this sort of consistency.

1 Allow your components to exist in a standard environment: Your
components must be able to create instances of other components,
find out which interfaces other components provide, and register them-
selves so other components can find them and invoke them. Enterprise
Java Beans (EJB) is a good example of a component environment. EJB
provides standard ways to create, register, find, interface with, and
delete components.

Chapter 2: Following Best Practices

A\\S

\NG/
S

A\\S

Use UML component diagrams to describe an assembly of parts for your
application. Use class, composite structure, sequence, and communication
diagrams to describe how the insides of your components work. (Class
diagrams show the attributes and operations of each object making up your
component. Composite structure diagrams show the internal parts that make
up each component. Sequence diagrams show interaction among the compo-
nents over time. Communication diagrams show complex internal interactions
of the parts of a component.)

Utilizing patterns in your development

One way you can become more productive is by reusing solutions to common
development problems. Why reinvent the wheel every time you have a design
problem? During the 1990s, many developers got together and documented
common solutions to common system and software problems. They called the
resulting documents design patterns. Each pattern has a name, a description
of the problem it solves, a standard solution, and the documented trade-offs
you encounter if you apply the pattern.

For example, the proxy design pattern allows you to have one object take

the place of another. This pattern allows all objects to interact with each
other across different computers. Your object on a client computer invokes

a proxy object on the client computer; and that object is the one that contacts
the real object on the server computer. Your original object knows nothing
about how to contact the server object — and doesn’t have to (that’s what
the proxy is for). This approach can make object development easier.

Here the terminology gets confusing. Patterns describe a common way of
making objects work together. Some experts use the word framework to
describe larger-scale patterns used to create applications. Other experts use
that same term — framework — to describe an existing group of objects that
you customize for your own purposes. When the experts sort it out, we're
sure they’ll let us know.

You can use UML collaborations and collaboration occurrences to model
patterns and frameworks. For more information on diagramming collabora-
tions and collaboration occurrences, see Chapter 15.

Using UML tools

UML is easy to draw; artistically challenged experts designed it that way. But,
keeping track of many different kinds of diagrams — on many pieces of paper —
is especially tedious when you have to make changes during development.
Using UML to model and build today’s complex software systems requires
something more than a white board, lots of paper, and pencils with big erasers.

31

32 Part I: UML and System Development

What you need is a UML modeling tool, formerly known as a CASE (Computer-
Aided Software Engineering) tool. A modeling tool aids the development of
software by keeping track of all the software engineering symbols (such as
those in UML), and it helps you do the following tasks:

v+ Drawing UML diagrams: This can include class diagrams (see Chapter 7),
use case diagrams (see Chapter 8), and sequence diagrams (see
Chapter 12).

v Drawing UML notation correctly: The tool draws a UML class as a box
and a UML state as a rounded rectangle. You don’t have to fool with
getting the icon to look right.

» Organize the notation and the diagrams into packages: With large
projects, as the number of classes increase you need help organizing
your diagrams. Modeling tools help you organize by packages. (For
more information on package organization see Chapter 7 and Chapter 19.)

v Searching for specific elements in your diagrams: This is very helpful
when you have a lot of diagrams with many classes, objects, associations,
states, and activities.

1 Reverse engineering: Some of the tools read your object-oriented
programming code and convert it into simple class diagrams. This
saves you time when you’re modeling existing software.

* Model reporting: You can disseminate information about your models
to other developers by asking the tool to generate a report.

v Generating code: The big payoff of a UML modeling tool is the fast
creation of some, but not all, of the code you need for your software.

Over 120 different modeling tools support UML modeling. (Chapter 23 in
this book describes ten such tools.) You can even get some of them free.
Whatever the outlay, choose a UML tool that fits the kind of system you’re
building and that makes you the most productive.

A\
Think carefully about the kind of system you’re building before you buy a
UML modeling tool. Consider the following system categories:

v Information systems: You want to build software applications that
process information. Look for a tool that is well rounded in that it
provides you with all the UML diagrams.

1 Real-time and embedded systems: You concern yourself with strict
timing and sizing issues in these systems. Get a tool that is especially
good at state diagrams (see Chapter 16), timing specifications, and
real-