UNIX

DUMMIES

5TH EDITION

by John R. Levine and Margaret Levine Young

WILEY
Wiley Publishing, Inc.

UNIX

FOR

DUMMIES

UNIX

DUMMIES

5TH EDITION

by John R. Levine and Margaret Levine Young

WILEY
Wiley Publishing, Inc.

UNIX® For Dummies®, 5th Edition
Published by

Wiley Publishing, Inc.

111 River Street

Hoboken, NJ 07030-5774

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any

form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except
as permitted under Sections 108 or 109 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8700. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, e-mail:
permcoordinator@wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. UNIX is a registered trade-
mark of UNIX Systems Laboratories, Inc. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE USED
THEIR BEST EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR WAR-
RANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK
AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTA-
TIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT
BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A PROFESSIONAL WHERE APPRO-
PRIATE. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR
ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CON-
SEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax
317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number available from publisher.
ISBN: 0-7645-4147-1

Manufactured in the United States of America

109 87654321

50/QZ/QR/QU/IN

WILEY is a trademark of Wiley Publishing, Inc.

About the Authors

John R. Levine was a member of a computer club in high school — before
high school students, or even high schools, had computers — where he met
Theodor H. Nelson, the author of Computer Lib/Dream Machines and the
inventor of hypertext, who reminded us that computers should not be taken
seriously and that everyone can and should understand and use computers.

John wrote his first program in 1967 on an IBM 1130 (a computer somewhat
less powerful than your typical modern digital wristwatch, only more difficult
to use). He became an official system administrator of a networked computer
running UNIX at Yale in 1975. He began working part-time (for a computer
company, of course) in 1977 and has been in and out of the computer and
network biz ever since. He got his company on Usenet (the Internet’s world-
wide bulletin-board system) early enough that it appears in a 1982 Byte maga-
zine article on a map of Usenet, which then was so small that the map fit on
half a page.

Although John used to spend most of his time writing software, now he
mostly writes books (including UNIX For Dummies and Privacy For Dummies,
both published by Wiley Publishing, Inc.) because it’'s more fun and he can
do so at home in the tiny village of Trumansburg, New York, where he is

the sewer commissioner (Guided tours! Free samples!) and can play with
his small daughter when he’s supposed to be writing. John also does a fair
amount of public speaking. (Go to www. johnlevine.com to see where he’ll
be.) He holds a BA and a PhD in computer science from Yale University, but
please don’t hold that against him.

In high school, Margaret Levine Young was in the same computer club as her
big brother, John. She stayed in the field throughout college against her
better judgment and despite John’s presence as a graduate student in the
computer science department. Margy graduated from Yale and went on to
become one of the first PC managers in the early 1980s at Columbia Pictures,
where she rode the elevator with big stars whose names she wouldn’t dream
of dropping here.

Since then, Margy has co-authored more than 25 computer books about the
topics of the Internet, UNIX, WordPerfect, Microsoft Access, and (stab from
the past) PC-File and Javelin, including Dummies 101: The Internet For
Windows 98, UNIX For Dummies, and WordPerfect For Linux For Dummies (all
published by Wiley Publishing, Inc.), and Windows XP: The Complete
Reference and Internet: The Complete Reference (published by
Osborne/McGraw-Hill). She met her future husband, Jordan, in the
R.E.S.LS.T.O.R.S. (that computer club we mentioned). Her other passion is her
children, along with music, Unitarian Universalism (www. uua.org), reading,
and anything to do with eating. She lives in Vermont (see
www.gurus.com/margy for some scenery).

Dedication

John and Margy both dedicate this book to their dad, wherever he is. When
last sighted, he was traveling somewhere in China finding out just how great
the wall is, unless he was at the beach here in the U.S. — he’s a man who
knows how to live!

Authors’ Acknowledgments

The authors thank Antonia Saxon, Jordan Young, Sarah Willow Levine
Saxon, Meg Young, and Zac Young for putting up with us while we
updated this book. Thanks also go to our Internet providers: Finger Lakes
Technologies Group and the Trumansburg Home Telephone Company
(Trumansburg, NY), the Shoreham Telephone Company (Shoreham, VT),
and SoVerNet (Bellows Falls, VT).

We thank Peter Seebach for research and revisions (you can guess what that
really means) on KDE and GNOME in Chapters 4 and 17, and Nancy McGough
for helping make our comments on Linux bear at least some relation to reality.

Chris Morris patiently shepherded the text from our hazy scribblings (elec-
tronically speaking) to a printed book with a blend of patience and midnight
wit. He got lots of help, of course, from all the folks listed on the other side of
this page.

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments through our online registration form

located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media
Development

Project Editor: Christopher Morris

(Previous Edition: Rebecca Whitney)
Acquisitions Editor: Steven Hayes

Copy Editor: Rebecca Senninger

Technical Editor: James F. Kelly

Editorial Manager: Kevin Kirschner
Permissions Editor: Laura Moss

Media Development Specialist: Travis Silvers

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant
(www.the5thwave.com)

Production
Project Coordinator: Courtney Maclntyre

Layout and Graphics: Seth Conley,
Andrea Dahl, Lauren Goddard,
Stephanie D. Jumper, Barry Offringa,
Heather Ryan, Mary Gillot Virgin,
Melanie Wolven

Proofreaders: Laura Albert, Andy Hollandbeck,
Kathy Simpson, TECHBOOKS Publishing
Services

Indexer: TECHBOOKS Publishing Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

www.dummies.com

Contents at a Glance

JNEPOAUCTION ...eeeeeeeeeeeeeeeeeeeeeennnaeeeesennasseesennnsaeeennnnsaees]

Part I: Before the Beginning..............ccccoueeecueeeauneaseneaace ¥

Chapter 1: Log Me In, UNIX! ...oo.oiiiiiiieeieeeee ettt 9
Chapter 2: What Is UNIX, ANYWAY?ccovieiieriieiieieeieeeeeteeere et esreeseeaesenesenesssesssesseennas 19
Chapter 3: A Few Lines on LINUXcccccuiiiiiiiiiieiiccieceeeee et 33
Part I1: Some Basic Stuff..........cccceceveeeaceeeiareecaeeesceeeees 39
Chapter 4: Opening Windows on UNIXcccceciiiiiiieniienieiieieeeeie et 41
Chapter 5: Files for Fun and Profitcoccooiiiiininiieeeeeeeeen 77
Chapter 6: Directories for Fun and Profitc.ccccoevveeieiiiiiiiicecececeeeeee 91
Chapter 7: The Shell GAMEcccviiiiiiiiiicieeceeeeeeee e 103
Chapter 8: Where’s That FIle?cocoiiiiieiiieiieieceeeseeeeeeeee et 119
Chapter 9: Printing (The Gutenberg Thing)cccooceiiririninieieee 133
Part I11: Getting Things Done..............cccoueeieueeacueeaee. 147
Chapter 10: Writing Deathless ProSecccccevviiiiiiienieiieeeeeee et 149
Chapter 11: Umpteen Useful UNIX Utilitiesccccoceeeeiiieiiiiiiieieee e 175
Chapter 12: Installing Software Can Be TriCKYccocvevierienieiieeieeiecieceesceieeiens 185
Chapter 13: Juggling a Bunch of Programscccccooiiivinininiiniececeeeene 199
Chapter 14: Taming LINUXcoccooiiiiiiiiiiiiieieceeeete ettt 211
Part [U: UNIX and the Netcccueeeceeeiceeciceneaaan 217
Chapter 15: Your Computer IS NOt AlONEc.ccceeeeieieeieiieiieieeeecee e 219
Chapter 16: Across a Crowded NEtWOTKcccoecuvviirienieiieniieieeieeieseeeee e 229
Chapter 17: Automating Your Office GOSSIDccceevvevverieriininieieeiereeeeeee e 243
Chapter 18: Web Surfing for UNIX USEISccccccuerieriiiieiiieieeeeeeeeee st 263
Chapter 19: Grabbing Files from the Netccccccooviiviiniiiiiiieececees 279
Chapter 20: Now Serving the INTernetccccocvevieeieniieniienieieeiececee e 293
Part Us Help!...........oucccccieeeccicneeecaianneecccssnneeceeesannees 303
Chapter 21: Disaster Reliefccoooiiiiiiiiniieeeeeee e 305
Chapter 22: The Case of the Missing Filesccocevievieiieiicieeececeeceeeeeeeins 311
Chapter 23: Some Programs Just Won't Di€ccccoovieviiiiiniinnieniienienieeeneeieeiens 325

Chapter 24: “My Computer Hates Me”ccccvvviieiirienienieiieieeieeee st 331

Part UL: The Part of Tenscccceecceeeeseeeiceeesneeeeneen 343

Chapter 25: Ten Common MiStaKescccceevuiiiiiiiieieeicceeiecteeee e ere s
Chapter 26: Ten Times More Information Than You Want about UNIX 351

Table of Contents

JOEPOAUCTTON «.aaeeeeeeeeeeeeeeeennaaseeeennasseeesnnnseeesnnnsseeeeens]

ADOUL THiS BOOK ...veiiiiiiiiieieee et et 1
Conventions Used in This BOOKcooovuiiiiiiiiiiiiiiieeeeeeeeeeeceeeeee e 2
FoOlish ASSUMPTIONSocoviiiiiiiiiieceeieeie ettt et 2
How This BOOK Is Organizedccccceeviieiieienienieniieneesieeie e eeeseesieeieens 2
Part I: Before the Beginningcccocevieviniiiniiniiiniiiceeceeeeee, 3
Part II: Some Basic StUffc...ooovvviiiiiiiiiieee e 3
Part III: Getting Things DONEccccccveeiiieeciiicieeeeeeee e 3
Part IV: UNIX and the Netooooviiiiieiieeeeeeeeeee e 3
Part Vi HEIP! ..ottt 3
Part VI: The Part of TENScccuvvviveiiiiiiiiee e 4
Icons Used in ThisS BOOKcooviiiiiiiiiiiiii ettt 4
Where to GO from HEYEoooovuviiiiiiiiiieeeeeeee e 4
AULNOTS’ INOTE ..ot e e eaeeeneeens 5

Part I: Before the Beginningccccccueeeecuneciacnaaaac @

Chapter 1: Log Me In, UNIX!t 9
Turning Your Computer On and Offccoocveviiiiiniiniieiieieeieeieeeeeiens 9

If a train stops at a train station, what happens
at @ WOTKSTAtiON?oouiiiiiiiiiiiciiecett e 10
A dumb terminalccceeeieiiieiiieieeeeee e 11
Hey, UNIX! TWant t0 LOZ INcccooviiiiiieeieeeeecteeese e 12
DIFECT ACCESS .vvivieiieiieiieieeteetestteste ettt et e e te s e sse e beebeeaeeaesnne e 13
Yo, UNIX! — not-SO-direCt ACCESS ..coovvueeviiiiiiiiieeieeieeeee e 13
Logging In: UNIX) Can Call M€ Alcccoeveieienieieeeeeeeeeeee e 14
PasSWOIrd SIMATTScc.eoeeieieieieieieeeeeeete ettt 16
a0, UNIX! .ottt ettt ettt et ae e s b reeneennan 17
Chapter 2. What Is UNIX, Anyway?cccoiiininiinnn. 19
Why Do We Ask Such Dumb Questions?ccoceveviriienienenieneceeeeene 19
May a thousand UNIXes fIOWETcccceeieriiiienieneeieeieeieeieeeene 19
WHhat's GINU?oouiiiiiecieeieeteeeeeet ettt saeeaeenee s 23
How Can YOU Tell? ...c..ooiiiiiiiieieceeeeeeeet ettt s 23
Cracking the Shell ... 24
The Bourne and Bourne Again shellscccocoeeveeieiieciicciecieeens 25
The Korn-on-the-cob shellcccccoooiiiiinni e, 26
She sells C SNEllSccuieciieiieiieiecieeeeeeee et 26

Are Any Good Programs ON?ccceveerieniieiieniienienieneesieeve e esaeeneseens 27

Xff UNIX For Dummies, 5th Edition

Finally! You're Ready to WOrKccoooviiiiiieiiieieeeeeee e 27
We could tell you the password, but then we’d

have t0 Kill FOU ...ccciiiiiiiieiceeteeceeee e 28

What’s MY file?oooiiiiiiieieeeeeeeee e 29

OOPS! ettt st sttt be e beeaesaneens 29

Play it again, SAmcccccoviriiiriiinieiee e 30
Everything you want to know about typing commands —

but are afraid t0 askcccoeieirieiee e 30

Chapter3: AFew LinesonLinuxccoieinnt.. 33

Out of the Frozen NOTrthccooiiiiiiinieee e 33

What’s Old, What's NEWcooooiiiiiiiiiiiiieiieeceeee ettt eeaaee e e 34

WRETE’S LINUX? .oeiiiieiieieeiecie ettt ettt ettt ae e beeaeesaesnee e 36

A Whole Lotta Kinds of LINUXcccceeviriiiiniiiiieiecieceecceeiceeeieeee e 37

Part 11: Sone Basic StUffcccaceeiceeiaeecaseeesaseecaceees 39

Chapter 4: Opening Windowson UNIX Y|

UNIX Gets All GUIoouiiiiiiieieee ettt 41

X marks the WINAOWcccoveiiiininiiiie e 42

“I'm not just a server — I'm also a client!”ccccccevviriiinviencennnnns 43

JUST MY LOOK ..ottt st 45
Considerably more than you want to know about

window managers, toolkits, and Xccccceeviieiiieiiienie e 47

Stupid Window Manager TTiCKScccooeeieiierieneninineeee e 51

Opening a NEW WINAOWcccueeuiiuieeieeieieierieeeee e eae s 51

Icon do this with a PICtUTec.ccceevieieiiieeeeeeeee e 54

Window wrangling a 1a Motifccecveeievienenieieecceec e 54

Getting rid of WINAOWSccoeviieiiiieieicee e 57

Ta-ta fOr NOW ...eoiiiiiiieeee e 58

CDE: A Desktop for All S€aSONScccceverieieiienieniirieneeeeee e 59

Desktop, here We COme!ccooveiienieniieiieeie et 60

Front and CeNtercoccooiviiiniiiniiiecceeeeee e 61

TOOIS YOU CAN USE ..cvviiiiiiiiieiieieeieeteeee ettt 62

Filing without tearsccccooeviiiiiiiiieeeeee e 63

WHhat's UP, OC? ..ottt s 64

Having it YOUI WAY .c.oociieiieieeiectccteecteee ettt 64

Desktop, there We go!oocveeieiieniienieiece et 66

What'’s the “K” Stand FOr? ... 66

TREMES ..ot 67

K applicationscccocciieeiieiieceeeeee et 68

Getting arOUNdcceeciieiieieeieeieceece ettt reebeeaeeaeesee e 70

Say goodnight, Gracie!cccocoririiiiiineirieeeeee e 70

You Mean the Little Guys with the Hats?cccocovviinieniieiieiciecieeeee 71

TREMES ..ottt 71

GNOME applicationsccccceiiiieeiiieeiii e e 73

Table of Contents

EVOIULION .ottt 73
Getting arOUNdccueeivieiieieeieceeteece et beebeeaeeaeesee e 73
Terminal HAPPENINGSccoviviiiiiiiiiietieieeieete ettt 74
CICK, CHCK ceveiiieeieeeeee ettt e 74
COMINg iN fOF @ SAVE ...vecveeiieieiietieeeeeeeeeee et 75

One last stupid xterm trickccccoeeiiiiiiiiiicice e, 76
Chapter 5: Files for Funand Profit 77
What Files Do YOU HaVe?cocoviiiiiiiiiieieeeeectesteteeee e 77
Let’s see the nitty-gritty detailscccceeveriiininiinieeee 78
Making files come out of hidingcccecevereriniinieeeeeeeeeee 79
ROZET, [COPY ettt 80
A good way to 10S€e SOME WOTKcceevuieiieiiiiieiieiecieseeeeieeee e 80
What’s in @ NAME?cc.eeviiiiieiieieeieeeeecce et 81
Nuking Files Back to the Stone Agecoccovvveviinienienieeciiceeeeee, 81
Big, Dig troublecociiiiiiiiiiee e 82
GOoOd hOUSEKEEPINGc.veeevieieeiieiieieeteeteete ettt 82
What’s in a Name (REPIiS€)ccccceeviiiiiiiiieiiieieciecieeeeee e 83
Looking at the Guts of @ Fileccccooieiiiriiieiiiniiieeeecece e 83
Is This a Printout I See Before Me?cccoovveviiviinienieieeiecieeeeseeeene 84
WHho GOES TREIE? ..ot s 85
Rock groups, pop groups, and UNIX groupsccccceccevveervienieneene 85
That’s MINE! ..o 86

Who can do What?ccceeciieiiiiiiieieeeeeeee e 86
Permissions by NUMDETcccocveriierieniieiieeiecieeeeceeeieeie e 87

If Mom says no, g0 ask Dadcccceeveeiieieniiinienieccceceeeeeeeeee 88
FINding @ NEW OWNETcccuiviiiiiiiiiiieieeieeiecte ettt 89

File seeks new group; can sing, dance, and do tricksc.c....... 90
Chapter 6: Directories for Funand Profit 91
Good News for WINAOWS USETScoceviiriirieniieniienieeieceeeeeeee et 91
What IS @ DITECLOTY? ..oeiiiiieiieieeeeeeee et 92
Divide and CONQUETccceeieierierieniirieeieeiteteie ettt 92
Paths tO POWETcueiiiiiieiicieceteteteee e 93
Family Matterscccccociriiiiieiiereeeeeeeee ettt 94
Names for direCtOriesc.ccoviriiniiniiiiinieciecereeeeeee e 94
There’s No Place Like HOMEcccccovivieieieieeeeeeeeeeeee e 95
I've been working in the directorycccoccevveeriieeieneneceeeeeene 95

[want to 0 home!ccooiiiiiieeeece e 96
Putting Your Ducks in @ ROWccociiiieiiiiieieeeeeceee e 97
Making dir€CtOTIESccevvirierieiieiieeeieee ettt 97

Dot and dOt dOtcoveeiiiiiiieieeeeeeee e 98

Neat operations you can perform on directoriesc.cccuveneen. 99
Putting Your Ducks on the Webcccccooiiiiiiiiiinieccee, 101

A Map Of UNIX ...ttt ettt 101

X

X[¢ UNIX For Dummies, 5th Edition

Chapter 7: The ShellGamec.coiiiiiiiinin.. 103

This Output Is Going to Havana: Redirectionc.ccccoevevvienienveneenen. 103

Grabbing OULPULccoooiiiiiiiieiieeeeeeee e 104

Redirecting inPutcccevieriieieieieeeeee e 105

Gurgle, Gurgle: Running Data through Pipesccccocveeiiiieeieciecieene. 105

Gimme just a little at @ timecocooeviriiirieee e 106

The cat and the fiddle . . . er, fileccooovvivviiiiiiiiieeeeeeeeee, 106

SOrting, SOTt Ofccvieiiiieiieeeeeeee e 106

Can we get that on PAPEr?cccooveeieviiinieeeeeeeeee e 109

Wild and Crazy WildCardsccoceevuerviirnienienienienieceieeie e 109

Pick a letter, any lettercccocovveiieiiiiieeeeeee e 110

Stars (F**) IN YOUT YES ...cccevivieieiirreieiirieieenteteeereteee et 110

Are kings or deuces wild?cccevieiieiieciieiieeeeeeeeee e 110

Wildcards for WINAOWS USEISccceevveviinenienenieieienieneseeieeeenen 111

History Repeats ItSelfcccoviiviiiiiiniiiieceececeee e 111

History in the key of Cccooviiiiiiiee e 112

BASHing through commandsccccoecveeierieneenienieeeeie e 113

A Korn-ucopia of commandscccceeevenereeienienieneneee e 114

Do [Have to Type the Same Things Every Time I Log In? 115

Terminal OPtiONScccocieiieiiieiicieeeeeeeeee et 116

Chapter 8: Where's ThatFile?t 119

The Search Is On ...t 119

Peering into every dir€Ctorycccocevvieviinienienieieieeeeeeeeee e 120

“Hey, | know the filename!”ccccooviiiiiniiniiniieeeen 121

“I know where to search (Sort 0f)”ccccooiiviiieriiniinieeeeee, 122

“At least | know part of the filename”ccccooevinininininnenne 122

Remote SearChes ...t 123

It’s what’s inside that countscccoceinininiininineee 123

What to Do with Files after You Find Themccccooceevieiiniiniieniicnen. 126

Searching IS SIOW!c..coiiiiiiiie s 127

A File by Any Other Namec.ccoveoieiiieiiieieeieceeceeee e 127
How can you be in two places at once when

you’re not anywhere at all?cccccooevieiieviieiinieceeeeeeees 128

Playing the lINKScccoviiiiiiiiiiieiecieeeceeestecee e 128

Deleting lINKSc.ooovevieniiiieieeecccece et 129

Renaming a linkc..coocioiiiiiiniii 129

Linking a bunch of filescccccoooiiiiiiiiieee e, 129

Linking across the great computer dividec.cccoccevvervenicnennnn 130

Making SOft lINKSccceeeiieiiiiiieiieiieieeie et 131

Using SOft lINKSccveveieiiiiieiiciececeecce e 131

Table of Contents

Chapter 9: Printing (The Gutenberg Thing) 133
Printing Stuff: Daemons at WOrKcccccevvivieniinieiieiieiecieeeeeeeeen 133
Printing in System Vcccooiiiiiiie e 134
Printing in BSD and LiNUXccccooeviiiniiiniinieeccceeeeeeeeee e 134
Finding Your Printout ..ot 134
Printers, printers, everywherec.cccccoviviiviiinninnenenieneee 135
Calling all PHNTETS ...c.coouieiieiieiieieeeee et e 135
“Help! I've Printed, and It Won’t Shut Up!”c.cccoeviiviiniiniiieeeieees 137
Cancel the order, System Vcccocvviiriiniinieceeceeeeeeee e 137
Cancel the order, BSD ... 138
Some final words about stopping the printercccccveeuvennnnee. 140
Prettying Up Your Printoutscccooiiiiiiiiiiniiinneeneeeeeeen 140
Titles and page numbers look so officialccccceevirviieviieeennnnnne. 140
Marginally YOULScccoeciiriieriieieeieeieeie ettt see e ste e eae e ens 141
Seeing dOUDIEcccooviiiiiiiiiieeceeee e 142

One column can’t CONtain Meccoeceeveverienieneenieeieeeeieeee e 142
Troff, NYOLf, GIrOff] ...ceeeiiiieieeeeeeeeeeee et e e 142
MACYO MATA ..eeviiiiieiieiteeeteeee ettt s 143

Let’s SNeak @ PEEKc.coouieiieiieiecieceeecee e 144
Printing for the PostScript-Challengedccccovvivviieviiniiiniienierieeeen 145
Printing PostScript with Ghostscriptccoocevveviiiiniiiiieiee, 146

Part 111: Getting Things Dotteccccueecueeaeeacenean. 147

Chapter 10: Writing DeathlessProse 149
UNIX Has Its Way with WOrdscccccveieniinienieieciecece e 149
Just the text, MaA’ Aoovvviiiiiecieceeeeee e 150

Text formatters aren’t really editorsccooceevvevieninneenicnienne, 150
Cuisinarts for text: Word proCessorsccccecveeeceeercieeecieesveeennenn. 151
Desktop publishing does it allccccoeeieiievienieeeeeeeee 152

vi and emacs and pico are your friendscccoecereririerieienennn. 152

Shy vi, the Princess of Text EAitorsccccoovveviinieniieciiecieieeieeeeeeen 153
Editor 31a Modeccooiiiiieiiiee e 153
Help! I need somebody!ccccoveieieiiniiiieieeeieieee s 154

Easy text-entry techniquescccoceviiirieniienienieeeeeceeee e 154

All kinds of ways to move the cursorcccoceeeevieviecieeeeennne, 155
Giving your text @ MaKEOVETccevvevieriiniieieieierere e 156
Removing unsightly textcccooieiiiiiiiiiicieceeeeeeeee e 156
Nobody undoes it Dettercccoevvevieviiieieieieeee s 156
Write me or save me — just don’t lose meccocceevvevieeeennnnne. 157

GOOA-DYE, Vi eeiiiieiieiieiieieierieete ettt sae e ese e s nnens 157

xv

XU[UNIX For Dummies, 5th Edition

A Novel Concept in Editing: emacs Makes Senseccccocevvierieneennen. 158
A tale Of tWO €IMACS ...ooveeeieieieiiieeeee e 159
Telling emacs what t0 doccceeevieieeiiiiicieeeceeee e 161
Another novel concept: Type to enter textccccevvevvevieecveennnnne. 161
Getting around in €MACSccceevveeierienienieneeeeeeie e 162
Making changes in €mMacscoceevieriierienienieeeceeeeee e 162
Deleting stuff in €mMaCsccccoevieriieriiiniiiniecee e 163
Save that file before it’s too late!cccccecviriinineincnccncene 163
Bidding emacs adi€uccceceeiiieieeiiciecieeeeceeee e 163

A PEEK At PICO ..eiviiiieiieicce ettt 164
YOU'TE MY LYPE .oevviriieeiieieeeerieeteeteeee et et sae e se et saessesseeseeseesaessaneas 165
YOU INOVE IMNIEoovvinvieeeeieiienieriesieeeeeeeesesessessesseeseessessessensessesseessessenses 165
You’re a big help ..ooooiiiiiiiie e 166
Time for @ Changecocevieiieieieeeee e 166
Thanks for saving my fileccccceceeviiiiiiiiieieeeeeeee e 166
I'm outta here ... 166

TalK tO M. € ..ooeiiiieeeeeeeeeeee ettt et s 168
Hey, Wilbur, which command was that?cccccoccevinninniiniennnne. 169
Feeding text to MI. €dcccovviiiiiiniiniiiieeieteceteeeee e 170
Getting Mr. ed to save your teXtccccceeveervieveeniienieeieeieeee e 170
Show me the file, Pleasecccooeiieiiriiinieeeeee e 171
A miserable way to €ditccccceiviiiiirieiice 171
Undo your thing, €d!c.cccooeviiiiiniinieeeeeeee e 172
Time to €d OUL .c..covuieiieiceee e 172

Chapter 11: Umpteen Useful UNIX Utilities 175

Comparing Apples and Orangesccoceveereenieenieenieniieniieniesreseeseenaees 175

ASSOTtEd FIlES ..couviiiiiiiieiiiie s 177

Time Is Money — Steal Some Today!ccccoeevieiriienierienereeeeeeeene 178

Squashing Your Filesccccooiiiiiniiiiieieeeceeeeee e 179
Compress Without Stre€SScccecviecieeieiieiierieeecee e 179
Zippedy day-tahccccovieiiiriiinieee e 182

What’s in That FIle?coooiiiiiiiieeeee e 182

Chapter 12: Installing Software Can Be Tricky 185

The SOftWAre StOTKccceeiiieieiieieeeeeeee et 185
You've bin hadccccooiiiiiiii e 186

You Too Can Be a Script Writercccoecvecieeiiiiicieceeeeeee e 187
Shelling @ SCHPT ..cc.eevieiiieieieeeeee et 187
Getting your SCript tO Playcccccceevieeviirieiienieeceeeee e 188
Running and rehashing your SCriptccccocevvevieninneenienciennenne, 188

Borrowing Other People’s Programscccccovveeveeviinvienienieniienieneeenn 191
The LIONG WAY ..covviiriieiiiiteteeeee ettt s 191

The €aSIEr WAYeovieeieiieieieiee et 192

Table of Contents X(/ii

USING AN @li@S ..oovvivieriiiiieieeieeeeeeeeteete e e 192
Using a Shell SCTPt ..oc.vvieiiieieee et 193
Stealing Software from the Networkccocooiviiiiiiiininineeee 194
TAY PIES 1eotieieeieeeceeee ettt e ene 194
Revving UPp RPMooiiiiiiiiiieeceeeeeeeeee e 196
Unwrapping PaCKaGEScocvevierierienienieeienteteitee e 196

Real Software Installationccccooceriienieniininnieeeeen 197
Chapter 13: Juggling a Bunch of Programs 199
So What Is a Process, ANYWay?ccccveeviieeiiieeiieeie e e eee e 200
Any Processes in the HOUSE?ccooieiiiiieiiiceeeeeeeeeeeeee e 201
Mind your Ps (ANd gS) ...ccveerrierieeiieeieeieeieeieeee e enreente e ae e ens 201

The LINUX PS cvveeiiiieeieeieieeieeie ettt eee e seeesveesbeesaeesaeesaeesaeens 202
Fancier ps (And gS) ..ccceeeeriieriierieeieeieeieetest ettt 202
Berkeley Ps (ANd gS) ..ccceeveeriirriiiiieeieeiesteetete e 204
Starting Background ProCessesc..cocuevieviiniinieniieniienieniesieseeseeen 206
The Magic of JOb CONEYOLccocciiiiiiieeieeeeeeee e 207
Take this job ando 207
What happens when two programs try to use the terminal? 209
Full-screen programs and job controlccccceevieviinniinvienciennenne. 210
Chapter14: Taming Linux ..., 211
Congratulations! You're a System Administrator!c.cccecevvenveneennen. 211
The root of all UNIXcccoieiiiiiiiieienieneceteceeeeee e 212
AddINgG @ USEY ..oouviiiiiiiiieeeeteee et e 212

How do I turn this thing off?cccciiiiiie 214

A Pride of LINUXES ...ccuoouiiiiiieieieiee et 214
“TINEEA HEIP!” ettt ettt sae e ens 216

Part JU: UNIX and the Net..............uuueeeeeeeaeaaaaanaeeneen217

Chapter 15: Your Computer Is NotAlone 219
You Don’t Need to Be In Who’s Who to Know What’s What 220
Finding Out Who's on Your COmMPULercccceveeirieienienieneneeieeceeeens 220
Finding Out Who'’s on Other COmMpPULtersccceveevieecieecieecienieeeesieeneen 222
Chatting with Other People on Your Computerccccccevvvervenvenneennen. 223

I'm talking — where are you?ccccocevvievieniieneenieniieieeieeeeeee e 225
Can We talk? ..c..ooooiii e 226
Chatting with faraway folksc.cccceeviviiieiiniieieeeeeeeeee 226
Reading the writing on the wallc.cccoeoviiviiniiiiiicee 227

Getting On the NEtoooieiiiieececeeee et 227

XUI[f UNIX For Dummies, 5th Edition

Chapter 16: Across a Crowded Network 229
On a Computer Far, Far AWaYcccccoevieieniiinienicececie e 229
Telnet It LIKE TEIS .ouvivuiiiieiieieeieeie ettt 230
3270: The Attack of the IBM Terminalscccooceeverviiniienvieniienienieneeen. 232
ssh: The Lazy Man’s Remote Logincccoccveeiieiiiiieeieeeeee 233

Escaping from SShccccooiiiiiiiiceeeee e 234
Username and secret key matching for sshcccccevveviieiennnnne. 234
Using ssh one command at a timeccccoevvevievienienieeieeieee 235
scp: Blatting Files across the Networkccocevevviniiniiniienienieeeee, 235
NFS: You’ll Never Find Your Stuffccooiiiiiniiniiieeeeen 237
What's NFS? ...ttt 237
ISNOTING NFS ..ot 239
Where are those files, anyway?cccccccevieviiecienieeneeneeneeieeeenes 239
NFS and system Crashescccoceeveevieniiniencieniccceeeeeeeee e 240
The UNIX/WINndOWSs ACCOYAScoovuviiiieiiieeereee et eeeeee e eeeaveeeeennnees 241
Let’s SamDa ...cc.cocoviiiiiiieee e 241
Listening to WINAOWScccoeeiiiiiieeceeeeee et 242

Chapter 17: Automating Your Office Gossip 243
What You Need in Order to Use Local E-Mailccccoceeiiniiiniininncnnen. 244
Addressing the Mailccocoooiiiiiininie e 246

Sending mail to people NEArDYcccccevvvieieriienienieieeeeie e 246
Sending mail to people elsewhere on your local network 246
Sending mail to people “out there”ccccooveviivieninniniiiniene, 247
IS dead, JIM oveeeiiiiiieeeeceeeeeeee e 248
Sending Stuff Other Than TeXtc.cccceeveeieiieiieceeeee e 248
Exchanging Gossip by Using Pinecccoocoviiininiininiiceeeeene 249
INtO the POSTDOX .oevieeieiiiiicteeeeeeeee e e 250
I’'m pining for some mMailccceevevieviiniiieieeeeeeee e 251
Send this file, TOO .ccveeeeeeeieeeeeeeeeeeeeeeeeee et e e 252
Creating your own address bookKccccoeveviiviiniininnienienieeee 253
SAVING MESSAGESeeevrerierierieieeireereeteeteeeeseesseesseesseeseesesssesssennns 253
Looking in @ fOlderccovieiiiriiieieieeece e 254
What You Need in Order to Use Remote E-Mailcccccocevininininnne. 254
Mail Bonding with MOZillaccceeieieieiiiiiiiceeeeeeeee e 257
KOOI Tt'S KIMAIL ..c.ouiiieieiiiecceec et 259
E-Mail with EVOIUtION ..c.ooviiiiiiiiiiiiiiieeteceee e 261

Chapter 18: Web Surfing for UNIXUsers 263
WHhat’s @ BIOWSEI? ...c..couiiiiiiiiicienieniteeeecetete sttt 263
Browsing with Pictures: Mozilla and Konquerorccccocevvenienennen. 264

(Don’t bother) configuring Mozilla or Konqueror 265
Starting them UPccceeieeieiiieiceceee e e 265
Surfing with Your BrOWSErcccooovvriiiienieiieiicececeee e 267
Getting aroUndcoccevieriieiiienieeieeieee et 267

BaCKkWard, NO!oooiiiieeeeeeeeeeeeeeeeee e 268

Table of Contents Xi X

All over the MAapP ...ccveeeiieeeeeeee s 268
GOING PLACES ettt st 269
WHRETE t0 SLATt? ..ooovieiieiieiececeeceeeee et 270

This page 100KS fUNNYcccoeviiiiieiiieiieieeieceeceeeeee e 270

Get Me OUttA NETE ...c..ooviiiieiieeeeceee e 271
Windows on the WOrldcccooieviiiiiiiiniieieeeeeee e 271
Wild window Maniacoceeveeriiniinieiieceeseetee e 271

Tab dANCING .ocvveeviiieieeieeeeeeee e eee 272
Short attention Span tipsccccoceeeeeierieneiinieceeeee e 272

My Favorite Thingsccccocevieiiiiiiiciieieeeeeetese et 273
Bookmarking with Mozilla and Konquerorccccceeveviervennnnnne. 274
Where do We STArt?ccovveviiiiieiieeeieeese e 275
Filling In FOIMS ..oooiiiiiiiiii ettt 276
What Should I LOOK At? ...cc.ooiiiiiiieeeeeeee s 278
Chapter 19: Grabbing Files fromthe Net 279
You're a Copying Machineccooveeiriieiieninieeeeeeeee e 279
Getting conNEctedccooeriririiieieeeeee e 280
Getting YOUr fil€cccoeeiiiiiiiiieiieiecececeee e 280
GEHING OUL ..ottt 281

Files With FINESSEcc.eoviiiiiiiiiiiciiceee et 281
When is a file not a file? ..o 281

How to foul up your files in FTPccccccooviiiiinieieieeceeeee 282

The directory thiCKetcccocieiieciieiiieiicieceeeeeeee e 283
What’s that name again?ccccooceveevieriecieeiieeieseeseee e 284
Here’s a file in YOUY €Y€oocvvviieiieiieiecieeeeeeceeeeee e 286

INO NAMES, PIEASEoeiiiiiieiiieeeeeeee ettt e e et e e e e s e e s snaanes 288
Hello, anonymoOus!cccceeeieeiiieeieecieeee et 288

A few anonymous FTP tipsccocvoieiiiiininiieeeeeeeeeen 289
Mouse-Centric Approaches to FTPccccoooiiiiiiiniiiiiieeeee 290
Great Stuff On FTP ...oooiiiiieieecceeeete e 290
A word from those etiquette ladies againccccoecevvveneniennnne. 290
Mirror, mirror, on the Net, where’s the file | want to get? 291
Chapter 20: Now Serving the Internet 293
The Internet, at YOUT SEIVICEcooovvvvviiriiiiiiiiieeeeeeieeeee et eseiaans 294
Serving YOUTrSelfoccoooioiiiiiiiiieeeee et 295
GettiNg SEIVEAocuvivieiieieceeeete ettt et et a e e ae e seeeneas 297
WeD Servers Galoreccecveeieeieiiieiieiieeeee et eve e seees 297
Apache and PHP are Kingccccceveevieiiieciieiiieieceeeeeeeee e 298
Building a Web site with almost no Workcccceevvvveevieniennnnne. 299
Daemons RUn AMOKcccceeviiiiiiiiiinieecteitceee et 300

A Few Tips for Webmasterscccccceeviiiiiieciieciieeeecee e 301

xx UNIX For Dummies, 5th Edition

Part U: Help!uiiieiiiccacannneeaciccsannnneeeeceenanaaes 303

Chapter 21: Disaster Relief oiiit. 305
“My Computer Won't Turn ON”cccceveverieneeeeeeeeieseceeeee e 305

“My Mouse Is Acting GlItChY”cccoviivieiiiiieiieececeeeee e 306

“The Network IS GONE”cccoooiiiiiiieiiereeeeeee ettt 307
“These Aren’t My Files!”ooo ittt 307
WIECKEA X .ottt sttt et es 308

“It’s NOt LiStENING!” ...ooiiiiieiieiecieee ettt 308
“TGIVE UP” ettt sttt sttt ettt 309
Chapter 22: The Case of the Missing Files 311
How You ClObDer Filesccivviiiiiiiiiiieieceetereeeccee e 311
Clobbering files With rmcccccooiviiiriiniinieeeeee 311
Clobbering files with cp, mv, and Inccccooceviiiiiiinniniciee, 313

Creaming files by using redirectionccccoeeveverivinieccennenns 313

Wrecking files with text editorsccoocevevieieienereeceeee, 315

Ways to Try to Get Files BaCKccccceeviieiiieiieeiiciicieceeeeeeeeeee e 316
Copies, copies, eVErYWNEreccccoevievciiiienienieeeieeeeee e 316

Call in the backup squadccccoceeeievieniinieieeeeeeee e 316

Disks, floppy and otherwiseccccoceviiviiniiniiniiineeieeeeeee 318

Thank goodness it’s backed Up!cccccoceviiniiniiniinineeeeeeee, 319

Three Ways Not to Lose Filescoccooiiviiiiiiiiiiiiineceeeen 321

Are you sure you wanna clobber this one?ccccccoccveviveiennnnne. 321
[diot-proofing save filesccccooievieeiiiriiinienieeeeeeee e 322

Don’t write on that! ..o 323

Chapter 23: Some Programs Just Won'tDie 325
Why Killing Is Sometimes Justifiedcccccoviviiieciecieneneceeeeeeeen, 325
What Process? (REPIISE)cccevieriiiiiiiiiiiiiiieciecterteeeee et 326

Fifty Ways to Kill Your ProCessccccoevviieeiiieciieieceeee e 326
Dirty Deeds, Done Dirt Cheapccccoceoieiieneninieieeeeee e 327
When X Goes Badcc.ccovieiiiiiiiecicececeeeete ettt 329
Chapter 24: “My Computer Hates Me” 331
Arg list t0O IONEG ..ooviiiieiieieceeeeeeeee e 332

BIOKEN PIPE ..evieiiiieiieceeeeteee ettt 333

CaNNOt ACCESS ..uvvivreiieiieiieieeieeie e eteete s te st e saeesbeenbeeseesessaesseesnns 333
Cross-device liINKcooiiviiiiiiiiiieeieceeeee e 333

DevVice OF T€SOUICE DUSY ...cccuveeiiieiiieiiecie ettt 333

Different file SYStEMccceviviriiieieeee e 334

FIlE @XISTS evveiiiiieiieieeee ettt e e 334

Table of Contents XXi

File table oOVerflowccccoviiiiiiiniiniee e 334
File 100 1arZe «.c.voovieieieieeeee e 334
|11 2:1 o) 0] 0 (o) o HEO OO 335
Insufficient argumentscccccoceevieeiieiiiiniieneeeeee e 335
| /O I <1 6 (o) SRS 336
[S @ AITECTOTY .eeoiiiiieiiieceeeeeeee e 336
LOZIN INCOITECT ..ottt 336
No process can be foundcocevierieneniniinieeee e 336
No such file Or dir€CtOYYcocoeeviieieeiicieeieeeeeeeeee e 337
INO SUCKH PIOCESS ...eveeieiieiieieeieeteeteee ettt e 337
INO MOTE PIOCESSESoovvieirieniieiieieeieete et ete st steesteenbeeaeeaeseeesaeens 337
No space left on devVicCeccovieeiiieiiiiieiieeee e 338
NOt @ dITECLOTY .veiiieiiiiiceeeeeee e 338
Permission deniedccoooiririiieiieniieee e 338
RE ITOT ..ottt sttt 339
Read-only file SYStemMcccceeviiiiieieeiiciecieeeccceeee e 339
ToO MANY lINKS ...ooviiiiiiieieeieeieeeceee e 340
USQZE .etiiuieeiiieiteeite sttt ettt ettt st st e st sae et b e besabesatesaee 340
444 mode? (or some other three-digit number) or

override r--r--r-- johnl/staff for f00?ccceeovevievieiiiiieieee. 341

Part Ul: The Part of Tens.......ceeeceeeeceeeiceeeiseeceseecennee 343

Chapter 25: Ten Common Mistakes 345
Believing That It Will Be EQSYccceeveieieieiececceeecceeieee e 345
Mistyping Commandscccccocervieriieriienienieteteieete ettt 346
To Press Enter, or Not to Press Entercccccooooveviiiiiieeiiceeeeeeeeeeee 346
Working in the Wrong Dir€Ctorycccoceeeeevienienienieceecieeie e 347
Not Keeping Backup COPIEScccueviiriirieniiieseeeeeeete e 347
Not Keeping Files Organizedccocevieviinienieneeieeieciecieeeeseeseeen 347
Turning Off Your COMPULETcccooviiriinierieiieteceeeeee e 348
Writing Your Password on a Sticky NoOteccoccovivniiiiniiniiinieniecee, 348
Sending Angry Electronic Mail (Flaming)ccccoeeveveneninininieieene 348

Chapter 26: Ten Times More Information Than

YouWantaboutUNIX i 351
Let’s Hear It from the mancccocoviriieiieninesceceeeee e 351

Reading manual PAgEScccocevieieierieneceeieeee e 353
Printing manual PAgesccceceevieevieeieniicieeeese et 353
Finding the manual page you wantcccocevvvevienienieenieeieenene 354

It’s a bird, it’s a plane, it’s XMan!cccccceeeeeevieserene e 355

XXff UNIX For Dummies, 5th Edition

Scanning the NetWOTKSccoviiiviririeieeeeeeeee e 355
Your basic UNIX NEWSc.c.eoeeeiiiiiieiieeeeeeeeeeee et 355
JUSTE FOF LINUX oo et 356
ON THE WED .ottt 357
Other Sources of INformationcccoevveiiiviiiiieiiieieecee e, 359
Read @ MAGAZINEccoevvevieriieieieieeee ettt 359
Read @ DOOKuviieeeeeee e 360
JOIN @ USEY GTOUD ...eoiiiiiiiiiiiieteiteeeee ettt 360

JOACK caeeeeeeeeeaeeeeeeeeeeeneeeeeeeeeesasasaeaaaaaaaaaaaanannnneeee 30T

Introduction

Welcome to UNIX For Dummies, 5th Edition! Although lots of good books
about UNIX are out there, most of them assume that you have a degree
in computer science, would love to learn every strange and useless command
UNIX has to offer (and there are plenty), and enjoy memorizing unpronounce-
able commands and options. This book is different.

Instead, this book describes what you really do with UNIX — how to get
started, what commands you really need, and when to give up and go for
help. And we describe it all in plain, ordinary English.

About This Book

We designed this book to be used when you can’t figure out what to do next.
We don'’t flatter ourselves that you are interested enough in UNIX to sit down
and read the whole thing. When you run into a problem using UNIX (“I thought
[typed a command that would copy a file, but it didn’t respond with any
message . ..”), just dip into the book long enough to solve your problem.

We have included sections about these kinds of things:

v Typing commands

v Copying, renaming, or deleting files

v Printing files

v Finding where your file went

v Using the Internet from UNIX

v Storing and updating a Web site on a UNIX computer

v Connecting and communicating with people on other computers
In this fifth edition, we updated the information about Linux (the popular free
version of UNIX), beefed up the information about the new KDE and GNOME

window systems, and added information about Internet applications and
hosting an Internet site on your own (or someone else’s) UNIX computer.

2 UNIX For Dummies, 5th Edition

Conventions Used in This Book

Use this book as a reference. (Or use it as a decorative paperweight —
whatever works for you.) Look up your topic or command in the table of
contents or the index; they refer to the part of the book in which we describe
what to do and perhaps define a few terms, if absolutely necessary.

When you have to type something, it appears in the book like this:
cryptic UNIX command to type

Type it just as it appears. Use the same capitalization we do — UNIX cares
deeply about CAPITAL and small letters. Then press the Enter or Return key
(we call it Enter throughout this book). The book tells you what happens
when you give each command and what your options are. Sometimes part of
the command is in italics, the italicized stuff is a sample name, and you have
to substitute the actual name of the file, computer, or person affected.

Chapter 24 lists error messages you may run into, and Chapter 25 lists
common user mistakes. You may want to peruse the latter to avoid these
mistakes before they happen.

Foolish Assumptions

In writing this book, we have assumed these things about you:

» You have a UNIX computer or remote access to one.
v You want to get some work done on it.

v Someone has set it up so that, if you turn it on (in many cases, it’s left on
all the time) or connect, you are talking to UNIX.

v You are not interested in becoming the world’s next great UNIX expert.

How This Book Is Organized

This book has six parts. The parts stand on their own — you can begin read-
ing wherever you want. This section lists the parts of the book and what they
contain.

Introduction

Part I: Before the Beginning

This part tells you how to get started with UNIX, including figuring out which
kind of UNIX you’re using. (You need to know this information later because
commands can differ from one type of UNIX to another.) You find out how to
log in, type UNIX commands, and ask for help. For Linux users, we include a
short chapter on what’s it’s all about, why Linux is cool, and how to get more
information about Linux.

Part II: Some Basic Stuff

Like most computer systems, UNIX stores information in files. This part
explains how to deal with files — creating, copying, and getting rid of them. It
also talks about directories so that you can keep your files organized, finding
files that have somehow gone astray, and printing files on paper.

Part I11: Getting Things Done

This part talks about getting some work done in UNIX. It gives step-by-step
instructions for using the most common text editors to create and change
text files, running several programs at the same time (to get confused several
times as fast), and making your Linux system behave, and gives you direc-
tions for a bunch of other useful UNIX commands.

Part IV: UNIX and the Net

Most UNIX systems are connected to networks, and many are connected to
the biggest network of them all: the Internet. This part prepares you for the
world of communications, including instructions for sending and receiving
electronic mail, for transferring files over the network, for logging in to other
computers over the Internet, and for surfing on the World Wide Web. For
those of you with some intestinal fortitude, we include an updated chapter
on how to have your Internet site run on your very own UNIX computer.

Part U: Help!

If disaster strikes, check this part of the book. It includes information about
what to do if something bad happens, what to do about backups, and what to
do when you see common UNIX error messages.

3

4

UNIX For Dummies, 5th Edition

Part Ul: The Part of Tens

This part is a random assortment of other tidbits about UNIX, including
common mistakes and how to get online help — all organized into two conve-
nient ten-item lists, sort of.

Icons Used in This Book

‘@

2
)
ES

e

WBER

‘%
<,

2
=

&

Some particularly nerdy, technoid information is coming up, which you can
skip (although, of course, we think that it’s all interesting).

A nifty little shortcut or time-saver is explained, or a piece of information you
can’t afford to be without.

Yarrghhh! Don’t let this happen to you!

Information that applies only if your computer is on a network. If it is not, you
can skip to the next section.

Something presented in an earlier section of the book or something you need
to remember to do.

The friendly penguin alerts you to information specifically about Linux
(see Chapter 3 to find out what Linux is).

Where to Go from Here

That’s all you need to know to get started. Whenever you hit a snag in UNIX,
just look up the problem in the table of contents or index of this book. You
will have the problem solved in a flash — or you will know to find some
expert help.

Introduction 5

Because UNIX is not designed to be particularly easy to use, don’t feel bad if
you have to look up a number of topics before you feel comfortable using the
computer. Most computer users, after all, never have to face anything as
daunting as UNIX (point this out to your Windows and Macintosh user
friends)!

If you have comments about this book and your computer can send elec-
tronic mail via the Internet, you can send them to our friendly mail robot,
which will write back, at unix5@gurus.com. (We authors also read your
messages and write back if time permits.) Also visit our Web site, with book
info and updates, at http://net.gurus.com. For information about the
For Dummies books in general, write to info@wiley.com or surf on by
www.dummies.com.

Authors’ Note

Because we practice what we preach, the manuscript for this book was
updated and edited using the free OpenOffice.org word processor on FreeBSD
UNIX. We also used NetBSD and SuSE Linux for the KDE and GNOME examples,
and a Web application on the Apache Web server on BSD/OS to pass around
edited chapters among the authors and our editors. The net.gurus.com and
www.dummies.com Web sites both run on Apache servers on UNIX; our UNIX
mail server handles the mail at gurus . com; and our publisher’s three UNIX
mail servers handle the mail at wiley.com. None of that expensive Pacific
Northwest software for us, thanks.

G UNIX For Dummies, 5th Edition

Part|

Before the
Beginning

T_he 5th Wave By Rich Tennant
SRUTENNANT

A ——

AL = 3 =H=

Z T . > /z//

“It's called ‘Linux Poker! Everyone gets to see

evergone elaes cavds, everythings wild, gou an

play off gour opponents hands, and evergone

wins except Bill Gates, whose face appears on
the Jokers."

In this part . . .

ikes! You have to learn how to use UNIX! Does this

mean that you're about to get inducted, kicking and
screaming, into a fraternity of hard-bitten, humorless nerds
with a religious dedication to a 30-year-old operating
system from the phone company? Well, yes and no. We
hope that we’re not humorless.

If you're like most UNIX users, a zealot stopped at your
desk, connected your terminal or workstation, gave you
five minutes of incomprehensible advice, demonstrated
a few bizarre games (like roaches that hide behind the
work on your screen), and disappeared. Now you're

on your own.

Don’t worry. This part of the book explains the absolute
minimum you need to know to get your UNIX system’s
attention, persuade it that you are allowed to use it, and
maybe even accomplish something useful.

Chapter 1

Log Me In, UNIX!

In This Chapter

Turning your computer on and getting its attention
Persuading your computer to let you use it
Using usernames, passwords, and all that

Logging out when you finish

f you read the exciting introduction to this book, you know that we make

some Foolish Assumptions about you, the reader. Among other things, we
foolishly assume that someone else has installed and set up UNIX for you so
that all you have to do is turn your computer on and tell UNIX that you're
there, or that a computer running UNIX is somewhere on the network that
you have access to.

If you don’t have UNIX already set up on a computer, the best thing you can
do for yourself is find a local UNIX guru or system administrator who is will-
ing to get you up and running. Unless you really know what you’re doing,
installing and setting up UNIX can be painful, frustrating, and time-consuming.
We recommend that you find something more enjoyable to do, such as clean-
ing out the grease trap under your kitchen sink or performing urgent home
surgery on yourself. (You can learn how to administer a UNIX system with
some patience and perseverance, but explaining how is way beyond the
scope of this book because each version of UNIX has its own procedures.)

Turning Your Computer On and Off

If you think that turning your computer on and off is easy, you may be wrong.
Because UNIX runs on so many almost-but-not-quite-compatible computers —
all of which work somewhat differently — you first must figure out which
kind of UNIX computer you have before you can turn it on.

10

Part |: Before the Beginning

If a train stops at a train station,
what happens at a workstation?

A workstation is a computer with a big screen, a mouse, and a keyboard. You
may say, “I have a PC with a big screen, a mouse, and a keyboard. Is it really
a workstation?” Although UNIX zealots get into long arguments over this

question, for our purposes, we say that it is. Most current UNIX systems are

workstations.

Turning on a workstation is easy enough: You reach around the back and turn

on the switch. Cryptic things that appear on-screen tell you that UNIX is
going through the long and not-at-all-interesting process of starting up.
Starting up can take anywhere from ten seconds to ten minutes, depending

What you were hoping we wouldn't tell you:
The difference between a PC and a workstation

First, you have to understand that this isn't a
technical question — it's a theological question.
Back in the olden days (about 1980), telling the
difference was easy. A workstation had a large
graphical screen — at least, large by the stan-
dards of those days — a megabyte of memory,
a fast processor chip, a network connection,
and it cost about $10,000. A PC had a lousy little
screen, 64K of memory, a slow processor chip,
a floppy or two, and it cost more like $4,000.

These days, your typical $800 PC has a nice
screen (much nicer than what the workstation
used to have), hundreds of megabytes of
memory, a fast Pentium processor, a big disk,
speakers, and a network connection. That's
much better than what people used to call a
workstation. Does that make a PC a worksta-
tion? Oh, no. Modern workstations have even
better screens, buckets of memory, a tur-
bocharged processor chip— you get the idea.
What's the difference?

Maybe it's the software that people use: Most
workstations are designed to run UNIX (or, in a

few cases, proprietary systems similar in power
to UNIX), whereas PCs run Windows or
Macintosh software. Wait — some perfectly
good versions of UNIX run on PC hardware, and
Windows 2000/NT runs on many boxes that
everyone agrees are workstations, and the
latest version of Mac 0S is UNIX underneath.
Now what? You can get into esoteric arguments
about the speed of the connection between the
guts of the computer on one hand and the disks,
screens, and networks on the other hand and
argue that workstations have faster connec-
tions than PCs, but some examples don't fit
there, either.

As far as we can tell, if a computer is designed
to run Windows or the Mac 0S, it's a PC. If it's
designedto run UNIX, it's a workstation. If this
distinction sounds feeble and arbitrary to you,
you understand perfectly. Here at UNIX For
Dummies Central, we have a couple of large
PCs running UNIX (which makes them look, to
our eyes, just like workstations) and a couple of
other, smaller ones running Windows. Works
fine for us.

Chapter 1: Log Me In, UNIX!

\NG/
Vg,\\

NUX

on the version of UNIX, number of disks, phase of the moon, and so on.
Sooner or later, UNIX demands that you log in. To find out how, skip to the
section “Logging In: U(NIX) Can Call Me Al,” later in this chapter.

Turning off a workstation is a more difficult problem. Workstations are jealous
of their prerogatives and do punish you if you don’t turn them off in exactly
the right way. Their favorite punishment is to throw away all the files related
to whatever you were just working on. The exact procedure varies from one
model of workstation to another, so you have to ask a local guru for advice.
Typically, you enter a command along these lines:

shutdown +3

This command tells the workstation to shut down (in three minutes, in this
example). With some versions of UNIX, that command is too easy. The ver-
sion we use most often uses this command:

halt
If you use Linux, type this command to shut down the system right away:
shutdown now

The workstation then takes awhile to put a program to bed or whatever else
it does to make it feel important, because it knows that you're waiting there,
tapping your feet. Eventually, the workstation tells you that it’s finished. At
that point, turn it off right away, before it gets any more smart ideas.

An approved method for avoiding the hassle of remembering how to turn off
your workstation is never to shut off your computer (although you can turn
off the monitor). That’s what we do.

A dumb terminal

The traditional way to hook up to a UNIX system is with what’s known (sneer-
ingly) as a dumb terminal. Nobody makes dumb terminals any more, but
Windows PCs have a natural ability to play dumb, so they’re commonly
pressed into duty as terminals. You run a terminal emulator program on a PC,
and suddenly the mild-mannered PC turns into a super UNIX terminal.
(Truthfully, it’s more the other way around: You make a perfectly good PC
that can run Doom and other business productivity-type applications act like
a dumb terminal that can’t do much of anything on its own.)

11

12

Part |: Before the Beginning

Hey,

When you finish with UNIX, you leave the terminal emulator, usually by press-
ing Ctrl+X or some equally arcane combination of keys. (Consult your local
guru: No standardization exists.) Like Cinderella at the stroke of midnight, the
terminal-emulating PC turns back into a real PC. To turn it off, you wait for
the PC’s disks to stop running (carefully scrutinize the front panel until all the
little red or green lights go out) and then reach around and turn off the big
red switch. If you don’t wait for the lights to go out, you're liable to lose some
files.

If you have a network installed, which these days has become so cheap that
nearly everyone does, your PC running Windows probably has a network
connection to your UNIX system. Windows 95/98/Me/NT/2K/XP, and the Mac
OS (the Macintosh operating system) have the network stuff built in.

If you do have a network connection, you can use programs called telnet,
ssh, or putty (described in Chapter 16) to connect to your UNIX system.
After one of them is running and connected to your UNIX system, within your
program’s window you get a faithful re-creation of a 1970s dumb terminal and
you can proceed to log in.

After you connect, you use it to communicate with the computer that is run-
ning UNIX. If the terminal is wired directly to the computer, UNIX asks you to
log in before you can do anything else (see the section “Hey, UNIX! I Want to
Log In,” later in this chapter). If not, you may have to perform some addi-
tional steps to call the computer or otherwise connect to it.

An X terminal is similar to an extremely stripped-down workstation that can
run only one program — the one that makes X Windows work. (See Chapter 4
to find out what X Windows are — or don’t. It’s all the same to us.) Turning
an X terminal on and off is pretty much like turning a regular dumb terminal
on and off. Because the X terminal doesn’t run programs, turning it off doesn’t
cause the horrible problems that turning off a workstation can cause. You can
get X software for Windows to make a Windows PC act like an X terminal, too.
If you have such a PC, ask the person who set it up how to start it and stop it.

UNIX! [Want to Log In

Whether you use a remote PC or a workstation, you have to get the attention
of UNIX. You can tell when you have its attention because it demands that
you identify yourself by logging in. If you use a workstation, whenever UNIX
finishes loading itself, it is immediately ready for you to log in (skip ahead to
the section “Logging In: U(NIX) Can Call Me Al”). You terminal users (X or
otherwise), however, may not be so lucky.

Chapter 1: Log Me In, UNIX! ’3

\\3

Direct access

If you're lucky, your keyboard and screen are attached directly to the main
computer, either because the main computer is the only one and you're
sitting at it, or someone’s rigged up a remote PC to log in directly. If so, it
displays a friendly invitation to start working, something like this:

ttyS034 login:

Well, maybe the invitation isn’t that friendly. By the way, the ttyS034 is the
name UNIX gives to your terminal. Why doesn’t it use something easier to
remember, like Fred or Muffy? Beats us!

This catchy phrase tells you that you have UNIX’s attention and that it is all
ears (metaphorically speaking) and waiting for you to log in. You can skip the
next section and go directly to “Logging In: U(NIX) Can Call Me Al.”

If your UNIX system displays a terminal name, make a note of it. You don’t
care what your terminal’s name is, but, if something gets screwed up and you
have to ask an expert for help, we can promise you that the first thing the
guru will ask is, “What’s your terminal name?” If you don’t know, the guru may
make a variety of nerd-type disparaging comments. But, if you can say, “A-OK,
Roger. That’s terminal tty125,” your guru will assume that you are a with-it
kind of user and may even try to help you. (Even if her name isn’t Roger.)

Vo, UNIX! — not-so-direct access

If you're connecting over the Internet or another network, either find a
local network expert to tell you how to connect, or see Chapter 16 for some
suggestions.

If you're using a PC with a modem, you probably have to tell the modem to
call the UNIX system. Although all terminal emulators have a way to make the
call with two or three keystrokes, all these ways are different, of course. (Are
you surprised?) You have to ask your local guru for info.

After your terminal is attached to the computer, turned on, and otherwise
completely ready to do some work, UNIX, as often as not, doesn’t admit that
you're there. It says nothing and seems to ignore you. In this way, UNIX
resembles a recalcitrant child — firm but kind discipline is needed here.

The most common ways to get UNIX’s attention are

’4 Part |: Before the Beginning

v Press the Return or Enter key. (We call it the Enter key in this book, if
you don’t mind.) Try it two or three times if it doesn’t work the first
time. If you're feeling grouchy, try it 20 or 30 times and use a catchy cha-
cha or conga rhythm. It doesn’t hurt anything and is an excellent way to
relieve stress.

v Try other attention-getting keystrokes. Ctrl+C (hold down the Ctrl key,
sometimes labeled Control, and press C) is a good one. So is Ctrl+Z.
Repeat to taste.

v If you're attached to UNIX through a modem, you may have to do some
speed matching (described in a minute): Press the Break key a few
times. If you're using a terminal emulator, the Break key may be dis-
guised as Alt+B or some other hard-to-find combination. Ask your guru.

Two modems can talk to each other in about 17,000 different ways, and they
have easy-to-remember names, such as B212, V.32, and V.32bis. (Bis is French
for “and a half.” Really.) After you call the UNIX system’s modem with your
modem, the two modems know perfectly well which way they’re communi-
cating, although UNIX sometimes doesn’t know. Every modem made since
about 1983 announces the method it’s using when it makes the connection.
Because the corresponding piece of UNIX code dates from about 1975,
though, UNIX ignores the modem’s announcement and guesses, probably
incorrectly, at what’s being used.

If you see something like ~xxx~~r.!" on-screen, you need to try speed
matching. Every time you press Break (or the terminal emulator’s version of
Break), UNIX makes a different guess at the way its modem is working. If UNIX
guesses correctly, you see the login prompt; if UNIX guesses incorrectly, you
see another bunch of ~xxx~~~@(r)!" or you see nothing. If UNIX guesses
incorrectly, press Break again. If you overshoot and keep Breaking past your
matched speed, keep going, and it’ll come around again.

After awhile, you learn exactly how many Returns, Enters, Breaks, and what-
nots your terminal needs in order to get UNIX’s attention. It becomes second
nature to type them, and you don’t even notice what a nerd you look like
while you do it. You have no way around that last part, unfortunately.

Logging In: U (NIX) Can Call Me Al

Every UNIX user has a username and password. Your system administrator
assigns you a username and a password. Although you can and should
change your password from time to time, you're stuck with your username.

Chapter 1: Log Me In, UNIX! ’5

\\J

WING/
&

Before you can start work, you must prove your bona fides by logging in; that
is, by typing your username and password. How hard can typing two words
be? Really, now. The problem is this: Because of a peculiarity of human brain
wiring, you will find that you can’t enter your username and password with-
out making a typing mistake. It doesn’t matter whether your username is

al —you will type AT, 1a, a;L, and every other possible combination.

UNIX always considers upper- and lowercase letters to be different: If your
username (sometimes also called your login name) is egbert, you must type
it exactly that way. Don’t type Egbert, EGBERT, or anything else. Yes, we know
that your name is Egbert and not egbert, but your computer doesn’t know
that. UNIX usernames almost always are written entirely in lowercase.
Pretend that you're a disciple of e. e. cummings.

When you type your username and password and make a mistake, you may
be tempted to press Backspace to clear your mistake. If only life were that
easy. Guess how you clear typing errors when you type your username and
password? You press the # key, of course! (We're sure that it made sense in
1975.) Some — but not all — versions of UNIX have changed so that you can
use Backspace or Delete; you may have to experiment. If you want UNIX to
ignore everything you typed, press @, unless your version of UNIX has changed
the command key to Ctrl+U (for untype, presumably — doubleplusungood).
So, Egbert (as you typed your username), you may have typed something like
this:

ttyS034 login: EgfHtegberqgit
Finish entering your username by pressing Enter or Return.

After you type your username, UNIX asks you to enter your password, which
you type the same way and end by pressing Enter (or Return, but we call it
Enter). Because your password is secret, it doesn’t appear on-screen as you
type it. How can you tell whether you typed it correctly? You can’t! If UNIX
agrees that you typed your username and password acceptably, it displays a
variety of uninteresting legal notices and a message from your system admin-
istrator (usually delete some files, the disk is full) and passes you
on to the shell, which you find out about in Chapter 2.

If UNIX did not like either your username or your password, UNIX says Login
incorrect and tells you to start over with your username.

In the interest of security, UNIX asks you for a password even if you type your
username wrong. This arrangement confuses the bad guys — but not nearly
as much as it confuses regular users. So, if UNIX rejects your password even
though you’re sure that you typed it correctly, maybe you typed your user-
name incorrectly.

10

Part |: Before the Beginning

Password Smarts

Like every UNIX user, you should have a password. You can get along without
a password only under these circumstances:

v You keep the computer in a locked, windowless room to which you have
the only key, and it’s not connected to any network.

»* You don’t mind whether unruly 14-year-olds borrow your account and
randomly insert dirty knock-knock jokes in the report you're supposed
to give to your boss tomorrow.

The choice of your password deserves some thought. You want something
easy for you to remember but difficult for other people to guess. Here are
some bad choices for passwords: single letters or digits, your name, the
name of your spouse or significant other, your kid’s name, your cat’s name, or
anything fewer than eight characters. (Bad guys can try every possible
seven-letter password in less than a day.)

Good choices include such things as your college roommate’s name mis-
spelled and backward. Throw in a digit or two or some punctuation, and capi-
talize a few letters to add confusion, so that you end up with something like
yellLas12. Another good idea is to use a pair of words, like fat;Head.

You can change your password whenever you're logged in, by using the
passwd program. It asks you to enter your old password to prove that you're
still who you are when you logged in (computers are notoriously skeptical).
Then the passwd program asks you to enter your new password twice, to
make sure that you type it, if not correctly, at least consistently. None of the
three passwords you type appears on-screen, of course. We show you how to
run the passwd program in Chapter 2.

Some system administrators do something called password aging, this strat-
egy makes you change your password every once in awhile. Some administra-
tors put rules in the passwd program that try to enforce which passwords are
permissible, and some even assign passwords chosen randomly. The latter
idea is terrible because the only way you can remember a password you
didn’t choose is to write it on a sticky note and stick it on your terminal,
which defeats the purpose of having passwords.

In any event, be sure that no one other than you knows your password.
Change your password whenever you think that someone else may know it.
Because UNIX stores passwords in a scrambled form, even the system admin-
istrator can’t find out what yours is. If you forget your password, the adminis-
trator can give you a new one, but she can’t tell you what your old one was.

Chapter 1: Log Me In, UNIX! ’ 7

If you really want to be paranoid about passwords, don’t use one that
appears in any dictionary. Some system breakers may decide to use the UNIX
password-encryption program to encrypt every last word in a dictionary and
then compare each of the encrypted words to your password. It’s another
thing to keep you awake at night.

Ciao, UNIX!

Logging out is easy — at least compared to logging in. You usually can type
logout. Depending on which shell you're using (a wart we worry about in
Chapter 2), you may have to type exit instead. In many cases, you can press
Ctrl+D to log out.

You know that you have logged out successfully because UNIX either invites
the next sucker to log in, hangs up the phone, or, if you're connected by
telnet or ssh, disconnects from your program.

’8 Part |: Before the Beginning

Chapter 2
What Is UNIX, Anyway?

In This Chapter
Why you care: A little boring UNIX history

Finding out which version of UNIX you have
Using the UNIX shell
Avoiding shell traps and pitfalls

Fis entire chapter tells you how to figure out which kind of UNIX system

you have gotten involved with. If you really don’t think that you care, skip
this chapter. As you read the rest of this book and run into places where you
need to know which kind of UNIX or shell you are using, you can always come
back here.

Why Do We Ask Such Dumb Questions?

“What is UNIX?” UNIX is UNIX, right? Not entirely. UNIX has been evolving
feverishly for close to 30 years, sort of like bacteria in a cesspool — only not
as attractive. As a result, many different varieties of UNIX have existed along
the way. Although they all share numerous characteristics, they differ (we bet
this doesn’t surprise you) just enough that even experienced users are
tripped up by the differences between versions.

May a thousand UNIXes flower

Indulge us while we tell a historical parable. Imagine that UNIX is a kind of
automobile rather than a computer system. In the early days, every UNIX
system was distributed with a complete set of source code and develop-
ment tools. If UNIX had been a car, this distribution method would have

been the same as every car’s being supplied with a complete set of blue-
prints, wrenches, arc-welders, and other car-building tools. Now imagine that
nearly all these cars were sold to engineering schools. You may expect that
the students would get to work on their cars and that soon no two cars
would be the same. That’s pretty much what happened to UNIX.

20

Part |: Before the Beginning

Q““X

Bell Labs released the earliest editions of UNIX only to colleges and universi-
ties. (Because Bell Labs was The Phone Company at that time, it wasn’t
supposed to be in the software business.) From that seed, a variety of more-
or- less scruffy mutants sprang up, and different people modified and
extended different versions of UNIX.

Although about 75 percent of the important stuff is the same on all UNIX
systems, knowing which kind of UNIX you’re using helps, for two reasons.
First, you can tell which of several alternatives applies to you. Second, you
can impress your friends by saying things like “HP-UX is a pretty good imple-
mentation of BSD, although it’s not as feature-full as Solaris.” It doesn’t
matter whether you know what it means — your friends will be amazed

and speechless.

Throughout this book, we note when we discuss a command or feature that
differs among the major versions of UNIX. And when we talk about the popu-
lar Linux system, you see our cute Linux icon in the margin. We don’t waste
your time with a family tree of UNIX systems. The following sections describe
the most common kinds.

The two main versions of UNIX are BSD UNIX and System V. Although they
differ in lots of little ways, the easiest way to tell which one you’re using is to
see how you print something. If the printing command is 1p, you have System
V; if it’s Tpr, you have BSD. (If the command is print, you cannot be using
UNIX; nothing in UNIX is that easy.)

Here are the major types of UNIX you're likely to run into:

v+ Berkeley UNIX: One of the schools that received an early copy of UNIX
was the University of California at Berkeley. Because no student’s career
was complete without adding a small feature to Berkeley UNIX, you can
still see on every part of BSD UNIX the greasy fingerprints of a genera-
tion of students, particularly a guy named Bill, about whom you hear
more later.

The Berkeley people made official Berkeley Software Distributions of
their code (named BSD UNIX) and gave numbers to its versions. The
final and most widely used version of BSD UNIX is Version 4.4. Berkeley
graduates fanned out across the country, working for and even starting
new companies that sell descendants of BSD UNIX, including Sun
Microsystems (which markets Solaris), Hewlett-Packard (HP-UX), and
IBM (AIX). Most workstations run some version of BSD UNIX.

v Post-Berkeley BSDs: Shortly before 4.4BSD came out, the folks at
Berkeley realized that they had made so many changes to BSD over the
years that practically none of the original Bell Labs code was left.
Several groups quickly rewrote the missing 1 percent, adapted the BSD

Chapter 2: What Is UNIX, Anyway?

\\J

o

code for 386 and newer PC-compatible machines, and made all the code
available over the Internet. Three projects (called FreeBSD, OpenBSD,
and NetBSD) continued to improve and update the freely available BSD,
and a company called Berkeley Software Design, now part of Wind River
Systems, offers a commercially supported version of BSD/OS.

v~ System V: Meanwhile, back at The Phone Company, legions of program-

mers were making different changes to UNIX. They gave their versions of
UNIX Roman numerals — which are classier than plain ol’ digits. Their
current version of UNIX is known as System V. The many subversions of
System V are known as System V Release 1 (SVR1) and SVR2, SVR3, and
SVR4. Most non-workstation versions of UNIX are based on System V or,
occasionally, its predecessor, System Ill. (What happened to System IV?
Not ready for prime time, we guess.)

Sun Microsystems, from the BSD camp, and AT&T, of the System V camp,
decided to bury the hatchet and combine all the features of BSD and
System V into the final incarnation of System V, SVR4. SVR4 has so many
goodies that it’s only slightly smaller than a blimp. If your system runs
SVR4 or its descendants, you have to pay attention to our hints about
both BSD and System V. The last version of SVR4 was SVR4.4. (Where do
they get these numbers?) System V was eventually sold to Novell (the
NetWare people), which retitled it UNIXWare. Novell eventually sold it to
a Microsoft affiliate called the Santa Cruz Operation (better known as
SCO), which retitled it UnixWare (don’t ask).

Helpful advice to Sun users: Although Sun changed the name of its
software from SunOS to Solaris, it didn’t change the way the software
worked. If you use Solaris 1.0, follow the instructions for BSD UNIX.
Because Solaris 2.0 is based on SVR4, however, you have to worry about
both BSD and System V. Is this stuff clear? We’re still confused about it.

v OSF/1: When System V and BSD UNIX merged to form SVR4, many UNIX

vendors were concerned that, with only one version of UNIX, the market
confusion would be insufficient. They started the Open Software
Foundation, which makes yet another kind of UNIX: OSF/1. Although
OSF/1 is mostly BSD, it is also a goulash of some System V and many
other miscellaneous eyes of newts and toes of frogs.

OSF/1 has largely disappeared; if you use OSF/1, however, pay attention
to the BSD advice in this book, and you will be okay:.

v Linux: Without a doubt, the most surprising UNIX development in recent

years has been the appearance — seemingly from nowhere (but actually
from Finland) — of Linux, a rather nice, freely available version of UNIX.
Linux is such a big deal that we devote an entire chapter to it (the next
one, in fact). Chapter 14 also has stuff about Linux for those brave souls
who run their own Linux systems.

Linux resembles SVR4 as much as it resembles any other version of UNIX.

22

Part |: Before the Beginning

Why you should fight rather than switch

The question, “Which is better: UNIX or
Windows 2000 or XP?" has sparked a religious
war between UNIX crusaders and the high
priests of marketing at Microsoft Corporation.
Microsoft would have you believe that
Windows 2000 and XP, its industrial-strength
versions of Windows, are a snazzy new alter-
native to UNIX, a tired old system that wore out
its welcome in the last days of disco. According
to Microsoft, UNIX is expensive and impossible
to use without a degree in computer science.
Windows 2000 and XP are cheaper and easier
to use, and, because it's a Microsoft product, it's
just plain better. So you should junk your UNIX
computers and replace them with Windows
servers and workstations right now, before it's
too late! (If we were cynical, we would point out
that Microsoft has no UNIX version of its own to
sell. But we're not cynical. Are we?)

In spite of rather extravagant Microsoft claims
of Windows superiority, the evidence is decid-
edly mixed. Although many businesses seem to
have made the switch from UNIX to Windows
successfully, they’re usually on the small- to
medium-size end of the spectrum. If you have to
support a large company that depends on an
extensive network to handle high volumes of
traffic and to serve critical applications and
information, you're much better off sticking with
UNIX.

In case your system administrator is consider-
ing making an ill-advised switch from UNIX
servers to Windows servers, here are a few
points you should try to work in during your next
conversation at the company water cooler.

Windows servers tend to go down — stop
working properly for one reason or another —
fairly regularly. UNIX servers, on the other hand,
tend to work perfectly for months on end.
Running your company’s phone sales depart-
ment on a Windows server means running the
risk of cutting off all your callers until you can

get your server to reboot, or recover from one
of its little episodes.

According to various independent reports,
Windows chronically has more security bugs
(problems with the way the system behaves)
than UNIX. Windows simply doesn't have the
built-in security and permissions features that
UNIX has always had.

As far as processing power goes, Windows
can't hold a candle to UNIX. Windows servers
now have a four-processor limit, although UNIX
machines can handle many, many more. UNIX
can handle larger files, and its architecture pro-
vides as much as 4 billion times more data
space than Windows (yup, we said billion). In
practice, this statement means that you have to
replace each of your UNIX machines with mul-
tiple Windows machines to maintain the same
amount of computing power.

Which brings us to the question of cost.
Although individual Windows servers may be
cheaper than individual UNIX servers (although
that's less true now that the hardware they run
on is the same), the apparent price advantages
quickly evaporate when you consider the
number of servers you need and the cost of
administering and maintaining them, not to
mention hidden costs from server downtime
and data loss.

We could go on (and if you want to meet us over
a couple of beers, we certainly will). Suffice
it to say that the Microsoft rumors about the
imminent death of UNIX have been greatly
exaggerated.

Oh, and by the way, UNIX still leads the way
when it comes to serving Web sites. The
Apache server, which we discuss in Chapter 20,
is still the most widely used Web server in the
world today. And it doesn’t cost much. In fact,
it's free.

Chapter 2 What Is UNIX, Anyway? 2 3

What's GNU?

No tour of UNIX versions is complete without a visit to the Free Software
Foundation, in Cambridge, Massachusetts (not to be confused with the OSF,
Open Software Foundation, which is about six blocks down the street). The
FSF was founded by a brilliant but quirky programmer named Richard
Stallman, who came from MIT, where people wrote lots and lots of software
and gave it all away. He firmly (some would say fanatically) believes that all
software should be free, and he set up the FSF to produce lots of high-quality
free software, culminating in a complete, free version of UNIX. Despite quite a
bit of initial skepticism, the FSF has raised enough money and been given and
lent enough equipment to do just that. The FSF’s project GNU (for GNU’s Not
UNIX) has so far produced versions of most of the UNIX user-level software.
The best-known and most widely used pieces are the text editor GNU Emacs
(which we discuss in Chapter 10), most of the other basic UNIX utilities, and
the GNU C compiler (GCC), which is now used on all the free versions of
UNIX, including Linux, as well as on a few commercial ones.

The GNU crowd continues to work on new stuff, including its piéece de résis-
tance, the GNU Hurd, a complete working version of the guts of the UNIX
system. Early on, fans of free software awaited the GNU Hurd with great eager-
ness; now that Linux and the freely available BSD versions have arrived, how-
ever, their eagerness has abated somewhat. Hurd or no Hurd, GNU Emacs,
GCC, and the GNU utilities are here to stay. The FSF says you should call Linux
GNU/Linux, because so much GNU software is in Linux, but almost nobody
does. (There’s probably more BSD than GNU software in Linux, actually.)

What the FSF means by “free” software is a little different from what you may
expect: It means freely available, not necessarily available for free. It means
that if you can find someone willing to pay you a million bucks for some GNU
software, that’s perfectly okay. That person, and anyone else to whom you
give or sell GNU software, however, must be free to give or sell it, in turn, to
other people without restriction. The intention is that people can make
money by supporting and customizing software, not by hoarding it. Although
opinions vary about the long-term practicality of this plan, for now the FSF
surely has written some popular software, and at least one company, named
Cygnus Support, makes a good business supporting it.

How Can Vou Tell?

When you log in to your UNIX system, a variety of copyright notices usually
flash by, with an identification of the type of UNIX you are accessing. Carefully
scrutinize the information on-screen, and you may be able to tell which version
you have.

24

Part |: Before the Beginning

S

A\

NUX

Another approach is to type the command uname and press Enter. Sometimes
this command displays the name of your computer (such as aardvark or
acctg3l). Sometimes, however, the command displays the version of UNIX
you are running. On Linux systems, it says Linux.

If you can’t tell which UNIX version you have, break down, grovel, and ask
your local UNIX expert. When you figure out which type of UNIX you are run-
ning, write it down on the Cheat Sheet in the front of this book. You never
know when you may need to know this stuff.

If you're connected to your UNIX system over a network from a PC or an X
terminal, the type of UNIX you’re using depends on the maker of the main
computer you're attached to — not on the maker of the PC or terminal. You
generally see the identification of the main computer in a message it sends to
the terminal just before or just after you log in.

Cracking the Shell

Now that you have figured out which general variety of UNIX you have, you
must figure out one other vital consideration: which shell you’re using. You
may say, “I don’t want to use any shell; I just want to get some work done,”
but the shell is the only way to get to where you want to be.

The guts of UNIX are buried deep in the bowels of the computer. The guts
don’t deign to deal with such insignificant details as determining what users
may want to do. That nasty business is delegated to a category of programs
known as shells. A shell is a program that waits for you to type a command
and then executes it. From the UNIX point of view, a shell is nothing special,
other than the first program UNIX runs after you log in. Because you can des-
ignate any old program to run when you log in, any fool can write a shell —
indeed, many have done so. About a dozen UNIX shells are floating around,
all slightly incompatible with each other (you probably guessed that).

Fortunately, all the popular shells fall into two groups: the Bourne (or Korn or
BASH) shell and the C shell. If you can figure out which of the two categories
your shell is in, you can get some work done. (You're getting close!)

You can easily tell which kind of shell you're using. If UNIX displays a $ after
you log in, you have a Bourne-style shell; if UNIX displays a %, you're using
the C shell. Traditionally, System V systems use the Bourne shell, and BSD
systems use the C shell. These days, however, because all versions of UNIX
come with both shells, you get whichever one your system administrator
likes better. Preferences in command languages are similar to preferences in
underwear: People like what they like, so you get what you get, although
these days most of the people we know like BASH, a souped-up Bourne-style
shell.

Chapter 2: What Is UNIX, Anyway?

You can disregard this discussion
about the true nature of shells

What UNIX calls a shell, many other people —
especially DOS users — call a command
processor. What DOS users call a shell is a
fancy graphical program that is supposed to
make the computer easier to use by displaying
cute little icons for programs and files and other
such user-friendly goodies.

Because the people who wrote UNIX didnt go
for all this wimpy, frou-frou, hand-holding stuff,
their idea of a shell was a program in which you

could type zq to run a program called zq.
(These guys were notoriously lazy typists.)
Although user-friendly shells are available for
UNIX, they’re not widely used, and we don’t
mention them again in this book.

If a Windows or Macintosh fanatic says rude
things about the UNIX shell, you can respond
that, although UNIX may be somewhat chal-
lenging to use, as a UNIX user, at least you're
not a wimp.

25

QQ\SX
Linux systems usually come with the BASH shell, a Bourne-style shell.
After you determine whether you have a Bourne-style shell ($) or a C shell
(%), note this fact on your Cheat Sheet in the front of this book.
N\

If you use a GUI (see Chapter 4), you see windows and icons, not a boring
little UNIX prompt, after you log in. You still need to use a UNIX shell from
time to time, however, usually to perform housekeeping tasks.

The Bourne and Bourne Again shells

The most widely used UNIX shell is the Bourne shell, named after Steve
Bourne, who originally wrote it. The Bourne shell is on all UNIX systems. It
prompts you with $, after which you type a command and press Enter. Like
all UNIX programs, the Bourne shell itself is a program, and its program name
is sh. Clever, eh?

A few alternative versions of the original Bourne shell exist, most notably the
Bourne Again shell (or BASH, whose program name is bash) from the GNU
crowd. This version of the Bourne shell is used in many places because of its
price — it’s free. Some people claim that it’s still overpriced, but we don’t get
into that. BASH is enough like the original Bourne shell that anything we say
about the Bourne shell applies also to BASH. The most notable advantage of
BASH is that it has command editing, a fancy way of saying that you can press
the arrow keys on your keyboard to correct your commands as you're typing
them, just as you can with DOS (oops, better not say that when any UNIX fans
are listening).

26

Part |: Before the Beginning

The Korn-on-the-cob shell

After the Bourne shell was in common use for a couple of years, many people
thought that the shell was so simple and coherent that a single person could
understand all its features and use them all effectively. Fortunately, a guy
named Dave Korn remedied this shameful situation, who added about a thou-
sand new features to the Bourne shell and ended up with the Korn shell
(called ksh). Because most of the new features are of interest only to people
who write shell scripts (sequences of shell commands saved in a file), you can

consider the Korn shell the same as the Bourne shell. Most versions of the
Korn shell also have command editing.

She sells C shells

No, the C shell wasn’t written by someone named C. It was written by Bill, the

guy we mentioned earlier. (He sells C shells by the C shore? Probably.) We
would discuss our opinion of the C shell at length, except that Bill is 6'4", in
excellent physical shape, and knows where we live. The C shell’s program

name is csh.

The most notable difference between the C shell and the other leading shell
brands is that the C shell has many more magic characters (characters that do
something special when you type them). Fortunately, unless you use a number

of commands with names like ed ! 3x, these characters aren’t a problem.

Who says the C shell isn’t user-friendly?

If you use the C shell, be aware that some punc-
tuation characters do special and fairly useful
things.

An exclamation point (!) tells the C shell to do a
command again. Two of them (!!) means to
repeat the last command you typed. One of
them followed by the first few characters of a
command means to repeat the last command
that started with those characters. For example,
to repeat the last cp command you gave, type

lep
This command is great for lazy typists.

You can also use carets (*) to tell the C shell to
repeat a command with some change. If you
type this line:

~old*new

the C shell repeats the last command, substitut-
ing “new” for “old” wherever it appears in what
you typed. You can use slashes (/) in a similar
way, although carets are easier to use. The C
shell also uses colons (:) to perform truly con-
fusing editing of previous commands, which we
don't getinto.

In Chapter 7, we tell you more about reissuing
shell commands.

Chapter 2: What Is UNIX, Anyway?

Many versions of the C shell exist; most of them differ in which bugs are fixed
and which are still there. You may run into programs called zsh and tcsh,
two slightly extended C shells with command editing.

Are Any Good Programs On?

You may be wondering why we refer sometimes to commands and sometimes
to programs. What'’s the difference?

A command is something you type that tells UNIX (or actually the shell) what
to do. A program is a file that contains executable code. The confusion comes
because in UNIX, to run a program, you just type its name. (In old-fashioned
operating systems, you usually typed something like RUN BUDGET_ANALYSIS
to run a program called BUDGET_ANALYSIS.)

When you type a command, such as 1s or cp or emacs (a text editor we talk
about in Chapter 10), the shell looks at it carefully. The shell knows how to do
a few commands all by itself, including cd and exi t. If the command isn’t one
that the shell can do by itself, the shell looks around for a program stored in
a file by the same name.

Old DOS users may recognize the way this process works — commands DOS
can do itself are called internal commands, and commands that require run-
ning another program are called external commands. Internal commands are
also called built-in commands.

Finally! Vou're Ready to Work

We wrap up this chapter with a little advice about hand-to-hand combat with
the shell. You can give many commands to your shell. Every shell has about a
dozen built-in commands, most of which aren’t very useful on a day-to-day
basis. All the other commands are the names of other programs. The fact that
every UNIX system has hundreds of programs lying around translates into
hundreds of possible shell commands.

One nice thing about UNIX shells is that, within a given shell, the way you
type commands is completely consistent. If you want to edit a file called my -
calendar, for example, and use an editor called e, you type this line:

$ e my-calendar

27

28

A\\J

Part |: Before the Beginning

Ending command lines without hard feelings

Remember to end every command line by With a few programs, notably the text editors
pressing Enter. UNIX is pretty dumb; in most vi, pico, and emacs, you don't need to press
cases, your pressing Enter is the only way UNIX Enter anywhere; we point out those exceptions.
can tell that you have finished doing something. Everywhere else, remember to press the Enter

key at the end of every line.

Now you know which kind of UNIX you are using, which shell you are using,
and why you care. In the following sections, we show you a few UNIX (or
shell) commands you can use to begin getting something done.

As always, press Enter at the end of the line to tell the shell you have fin-
ished. The shell runs the e editor, which does whatever it does. When you
finish, you return to the shell, where you can issue another command.

Whenever you see a UNIX prompt (either $ or %), a shell is running, waiting
to do your bidding. Throughout this book, we usually refer to the entire
package — UNIX plus shell — as UNIX. We say, “Use the 1s command to get
UNIX to display a list of files” rather than “Use the 1s command to get the
shell to get UNIX to display a list of files.” Okay?

We could tell you the password,
but then we'd have to kill you

When you logged in, you probably hated your password because someone
else picked it. Hating your password is a good reason to change it. Another
reason you may want to change it is that, to get this far, you enlisted the aid
of some sort of expert and had to reveal your password. This section shows
how to change your password: Use the passwd command.

This stuff is easy. Just type this line:
passwd

As always, press Enter after typing the command. The passwd command asks
you to type your current password to make sure that you are really you. (If it

Chapter 2 What Is UNIX, Anyway? 29

WING/

didn’t check, whenever you wandered off to get some more coffee, someone
could sneak over to your desk and change your password. Not good.) Type
your current password and press Enter. The password doesn’t appear on-
screen as you type, in case someone is looking over your shoulder.

Then passwd asks for your new password. (Chapter 1 has lots of sage advice
about how to choose a password.) You have to type the new password twice
so that passwd is sure that you typed it correctly. Assuming that you type the
new password twice in the same way, passwd changes your password. The
next time you log in, you are expected to know it.

If you forget your password, you have no way to retrieve it; not even your
system administrator can tell you what it is. The administrator can assign
you a new one, though, and you can change it again, preferably to something
more memorable than the one you forgot.

What's my file?

This section discusses a command you use frequently: the 1s command,
which lists your files. Chapters 5 and 6 talk more about files, directories, and
other stuff 1s helps you with; for now, here’s 1s Lesson 1. Type the following
line (we're not telling you to press Enter anymore because we know that you
have the hang of it):

Ts

The Ts command lists the names of the files in the current directory.
(Chapter 6 talks about directories.)

Oops!

If you are a world-class typist, you can skip this section. If you make thou-
sands of typos a day, as we do, pay close attention. If you type something
wrong, you can probably press the Backspace key to back up and retype it.
If that doesn’t work, though, all is not lost. Try the Delete key, the # key
(Shift-3), or Ctrl+H. One of these combinations should work to back you up.

To give up and start the entire line over again (not usually necessary with
nice, short commands, such as 1), press Ctrl+U. If that doesn’t work, press
the @ key (Shift+2).

30 Part |: Before the Beginning

NG/
&

Don't turn off the computer if you make a typo!

To repeat something we have hinted at: If you command, press Ctrl+C, or, on some systems,
make a mistake and all is not going well, do not the Break key or the Delete key.

turn off the computer, unplug it, or otherwise get
unnecessarily rough. Although PC users get
used to just turning the darned thing off if things
aren't going well, UNIX computers don't
respond well to this approach.

If the situation is out of control, UNIX is running
a program you don’t want, and you can't get it
to stop, you can use some Advanced and
Obscure Techniques to wrestle extremely recal-
citrant programs into line. See Chapter 24 if
Instead, suggest politely to UNIX that it stop you're desperate.

doing whatever it is you don't like. To stop a

Play it again, Sam

Sometimes, you may want to issue the same command again (because it was
so much fun the first time). If you use the C shell, type this line:

If you use the BASH shell, press the up-arrow key to see the last command
you typed and then press Enter.

In the Korn shell, you can type this line to reissue a command:

r

If you use the Bourne shell, you're out of luck and must type your command
again.

Everything you want to know about typing
commands — but are afraid to ask

This list shows a wrap-up of what to do when UNIX displays a prompt (either
$ or %) and you want to type a command:

v As you type, the cursor moves along to indicate where you are. The
cursor looks like an underline or a box.

v If you make a typing mistake, press Backspace (or try Delete, #, or
Ctrl+H).

\\J

Chapter 2: What Is UNIX, Anyway?

v To cancel the entire command before you press Enter, press Ctrl+U
(or try @).

v When you finish typing a command, press Enter. (If you don’t, UNIX —
and you — wait forever.)

v If you issue a command that UNIX (actually, the shell) doesn’t know, you
see a message like this:

blurfle: Command not found.

This message means that you typed the command wrong, you typed a
command that UNIX doesn’t know (maybe a DOS command crept in), or
someone hasn’t told UNIX the right places to look for programs.

v Don'’t stick extra spaces in the middle of commands, as in pass wd. Type
the command exactly as we show it. On the other hand, do type a space
after the name of the command but before any additional information
you have to type on the line (read more about that subject in Chapter 5).
Also, do not capitalize except where you know that the command has a

capital letter.

v You know that a command resembles a sentence, but you don’t end
it with a period. UNIX doesn’t like the period, and UNIX is extremely

unforgiving.

The UNIX cast of special characters

One of the more exciting aspects of typing shell
commands is that many characters are special.
They have special meanings to UNIX; the next
few chapters discuss some of them. Special
characters include the ones in this list:

*

< >
{ 1 S \

[] # | &
() $ -

Spaces also are considered special because
they separate words in a command. If you want

to put special characters in a command, you
must quote them. You quote something by
putting quotation marks around it. Suppose that
you have a file called c* (not a great idea, but
sometimes you get these things by mistake). You
can edit it by typing
e "c*"

You can use either single or double quotation
marks, as long as you're consistent. You can
even quote single quotation marks with double
quotation marks and quote double quotation
marks with single quotation marks. Is that clear?
Never mind.

31

32 Part |: Before the Beginning

Chapter 3
A Few Lines on Linux

In This Chapter
What is Linux?

Why should you care?

Linux is the hottest thing to arrive in UNIX-land in years: a wildly popular,
completely free version of UNIX. It is (quite deliberately) similar to other
versions of UNIX; for the most part, then, everything in this book that applies
to other versions of UNIX also applies to Linux.

Many ISPs use Linux on their servers because it’s fast, flexible, and free. Even
if you don’t use Linux locally, if you have a Web site hosted at your ISP, you
may well find that a Linux box is serving up your Web pages.

Out of the Frozen North

In 1992, a guy in Finland named Linus Torvalds took a then-popular, small,
educational version of UNIX called Minix, decided it wasn’t quite what he
wanted, and proceeded to rewrite and extend it so that it was more to his
taste. Lots of enthusiastic programmers have started projects like that, but to
everyone’s astonishment, Linus actually finished his. By mid-1993, his system
had long since left its Minix roots and was becoming a genuinely usable ver-
sion of UNIX. Linus’s system was picked up with great enthusiasm by pro-
grammers, and later by users, all over the Internet. It spread like crazy, to
become the fastest-growing part of UNIX-dom.

Linux is popular for three reasons:

v It works well, even on a small, cheap PC. A 386 PC with 4MB of random-
access memory (RAM) and a 40MB hard drive can run Linux — barely.
(You can find computers like that for $5 at the thrift store these days.)
On a top-of-the-line Pentium PC, its performance approaches that of a
full-blown traditional UNIX workstation.

34

Part |: Before the Beginning

v Lots of enthusiastic people are working on Linux, with wonderful new
features and additions available every day. Many of them even work.

v It’s free!

The many developers of Linux proudly describe it as a “hacker’s system,” one
written by and for enthusiastic programmers. (This classic meaning of hacker
should not be confused with the other, media-debased “computer vandal”
definition.) These programmers keep up the development of Linux at a brisk
pace, and a new “development” version is made available on the Internet
every few days. Every once in a while, the developers decide that they have
gotten enough bugs out of their recent developments, and they release a
“stable” version, which stays constant for months rather than days. Most
normal people use the stable version rather than a development version.
Using a development version of Linux is sort of like living in a house inhab-
ited by a large family of carpenters and architects: Every morning when you
wake up, the house is a little different. Maybe you have a new turret, or some
walls have moved. Or perhaps someone has temporarily removed the floor
under your bed. (Oops — sorry about that.)

Linux started life as the operating system of choice for students and other
cheapskates . .. er ... users who wanted a UNIX system of their own but couldn’t
afford a traditional UNIX workstation. As Linux has matured into a stable, reli-
able UNIX system, this base has expanded to include companies and institu-
tions that could afford traditional UNIX workstations, but found that Linux
enabled them to add PC-based workstations at a fraction of the cost. In fact,
Linux is now conservatively estimated to have more than 18 million users,
making it the second or third most popular operating system in the world,
behind Windows and about even with the Macintosh operating system.

What's Old, What's New

The original guts of Linux were written from scratch by Linus Torvalds and
have since been greatly changed and extended by other people. He based
Linux more or less on System V (on descriptions of System V; there’s no code
from System V). Most programs that people actually use (the shells and other
commands) come either from 4.4BSD or from the GNU project, which mod-
eled most of them after the Berkeley UNIX versions, so most of the com-
mands are BSD-ish. Because the networking programs are adapted from the
Berkeley ones, they also are all BSD-ish.

Technically speaking, Linux refers only to the operating system “kernel.”
When most people refer to a Linux system, though, they usually mean the
whole package: operating system plus the GNU programs that come with it.
Like all UNIX systems, Linux systems can run various shells, editors, and
other software. Most versions of Linux use BASH as the default shell because
it’s also new and snazzy.

Chapter 3: A Few Lines on Linux

How free is free?

Linux is free software. In the UNIX software
biz, “free” has a concrete meaning that is dif-
ferent from public domain and different from
shareware.

Linux is made available under the GNU General
Public License (GPL), Version 2, the same license
the Free Software Foundation uses for most of its
programs. The license has seven pages of
legalese, much of which is about where copy-
right notices have to appear and stuff like that,
but the basic plan is simple. In short, it says:

+* You can copy and distribute Linux and other
GPL software, and you can charge for it.

v But, anyone to whom you distribute it has
the right to give copies away for free.

v And you must include the source code (or
make it available for no more than a repro-
duction fee) in the distribution.

The idea is that people are permitted, even
encouraged, to distribute copies of GPL soft-
ware and to sell maintenance service, as long
as the software itself remains freely available.

Don't confuse free software with shareware,
which is software for which you are supposed
to pay the original author if you use it, or with
public domain software, with which you can do
anything you want.

Although the GPL was subject to considerable
debate and a fair amount of ridicule when it first
came out in about 1990, it has worked pretty
much the way its authors intended — GPL soft-
ware (including Linux) is widely available, and
people do indeed constantly work on and
improve it.

Keep in mind that because Linux is a moving target, with frequent improve-

35

SMBER
é"\&‘ ments to the programs, the version of Linux you use is probably not exactly the
same as the version described in any book, including this one. At the time we
wrote this edition of this book, the latest stable version of Linux was 2.5.75, but
even if you have a more recent version, the basic structure is the same.

Alook at the various Web sites and Usenet newsgroups dedicated to Linux
shows a veritable flurry of Linux-related activity. New programs, extensions,
and enhancements for Linux appear daily, it seems. Red Hat Linux, for exam-
ple, now offers a range of snazzy new products, including a secure Web server,
several Microsoft Office-like suites of desktop tools including ApplixWare and
OpenOffice.org, and fully graphical integrated desktops (see Chapter 4 for
details about UNIX desktops).

Several organizations have set up computer clusters — hundreds of comput-
ers acting like one enormous supercomputer — built out of ordinary Linux
systems connected by fast Ethernets. You can get the source code, operating
system, and management tools to set up such a cluster off the Internet for
free (at www.beowulf.org). Or if you want all your computing in one place,
you can buy a multi-million dollar IBM mainframe computer and run Linux on
it, too.

36

Part |: Before the Beginning

You say to-may-to, | say tomahto

A frequent concern of newcomers to Linux is
how to pronounce it correctly, in order not to
sound uninformed. It's simple: However you pro-
nounce it is wrong — or right, depending on
your audience. Among English speakers in the
United States, at least, opinions seem to be
divided about evenly between “Line-ucks” and
“Linn-ucks.”

The name Linux is derived from the first name of
its creator, Linus Torvalds. The “Line-ucks”
group holds that the pronunciation is based on

the usual English pronunciation of Linus. Linus
Torvalds himself, though, a Swedish-speaking
Finn, has helpfully provided an audio file on the
Internet in which he provides the definitive
answer in both English and Swedish. In the file,
he says, “Hello, this is Lee-noos Torvalds, and |
pronounce Lee-nooks as Lee-nooks.” It's up to
you whether you want to say “Linux” with a
Swedish accent, but to our ears his reading
sounds much closer to the Anglicized “Linn-
ucks,” so that's what we use.

\\J

In Chapter 14, we talk about the latest releases of the most popular versions
of Linux. In Chapter 26, we describe a number of ways you can get additional
information about Linux, including reading one of a number of Usenet news-
groups about Linux or subscribing to a Linux magazine.

Where’s Linux?

Linux development happens mostly on the Internet, and if you have an
Internet connection, you can download the entire system at no charge. You
do need either a fast connection or great patience because the system takes
up several CD-ROMs full of data. A typical 56 Kbps dialup connection takes
about a day and a half to download a version of Linux. Quite a few bulletin-

O

WING/

board systems around the world make Linux code available. A more practical

approach is to buy or borrow a CD-ROM version of Linux, which you can

install in an hour or so.

Sounds great, doesn’t it? You can install a version of UNIX on your very own

computer! Keep in mind one tiny little snag, however: That makes you the
system administrator. You have to learn how to create user accounts, deal
with disks that fill up, and install and configure software. It’s not impossible
(far from it — John has done it for years), but you have much to learn.

The details of installing and setting up Linux are way beyond the scope of
this book. In Chapter 14, we barely touch on a few basics of administering a

Linux system. For more details, take a look at Linux For Dummies, 5th Edition,

by Dee-Ann LeBlanc (published by Wiley Publishing, Inc.); and Running Linux,
by Welsh and Kaufman (O’Reilly & Associates).

Chapter 3: A Few Lines on Linux

A Whole Lotta Kinds of Linux

The main Linux project develops the Linux kernel, the heart of the system
that runs programs, handles files, networks, virtual memory, and lots of other
crucial details. But to have a usable system, you also need text editors and
file copiers, and all of the other programs that we take most of this book to
describe. Because the Linux kernel is free software, and a huge variety of edi-
tors, file copiers, and so forth are available, anyone who cares to do so can
collect his or her favorites into what’s known as a Linux distribution. Some of
the best-known distributions include Red Hat, Debian, Gentoo, Mandrake,
Slackware, and SuSe, but a whole lot more is out there. (The list at www .
linux.org has close to 200.)

Which Linux distribution should you choose? We were afraid you’d ask. Some
of the distributions are for special purposes, such as Knoppix, which runs off
a CD without needing to be installed on your hard drive (a good choice if you
want to try Linux quickly), or FlightLinux, intended for controlling experi-
ments in outer space. But the mainstream versions, including the ones we
mention in this chapter, all work fine, so we suggest that you use whatever
your friends use, so you have people you can commiserate with to solve
problems.

37

38 Part |: Before the Beginning

Part I
Some Basic Stuff

The 5th Wave By Rich Tennant

Arthur inadvertently replces his movse vad with
2 Ouija board.. For the test of the day, i receves
messages from the spactyal world,

In this part . . .

u NIX, like other computer systems, keeps your infor-
mation in things called files. When you work with

UNIX, you frequently need to make new files, rename files,

make copies of particularly interesting files, get rid of files

that have outlived their usefulness, find a file you temporar-
ily mislaid, or print what’s in a file.

This part of the book also talks about graphical user
interfaces (GUIs), with sort of clever names like KDE and
GNOME, which let you use a mouse to point at things on-
screen. Most people find GUIs a big improvement over
typing commands, but you have to know what to point at
and click. You're about to find out!

Chapter 4

Opening Windows on UNIX

In This Chapter
What’s a GUI — and should you care?

Finding out which type of windows you have
Window-wrangling skills, Motif and otherwise
Getting in and out of windows

Making UNIX look and act a whole heck of a lot like
Those Other Famous Operating Systems

T) answer your first question, GUI stands for graphical user interface and
really is pronounced “gooey.” We prefer the term WIMP, which stands for
windows, icons, and mouse pointing, but for some reason the term never caught
on. Fast-track executives would rather be gooey than wimps, we suppose.

A GUI is a combination of a graphics screen (one that can show pictures in
addition to text), a mouse (or something like it), and a system that divides
the screen into several windows that can show different things at the same
time. All GUIs work in more or less the same way because they’re all based on
the same original work done at Xerox about 20 years ago. The details differ
enough, though, to make you want to tear your hair out.

UNIX Gets All GUI

The earliest UNIX systems didn’t have fancy, screen-oriented windowing sys-
tems. They didn’t have screens at all, in fact — they used loud, rattling termi-
nals that printed on actual paper. (The historically minded can find these
types of terminals in the Computer Museum in Boston and the Smithsonian
Institution in Washington, D.C. Yes, really.) As the years went by, UNIX
appeared on computers that did have screens (most notably Sun worksta-
tions), and various windowing systems appeared.

52

Part ll: Some Basic Stuff

Under the hood in Mac 0S X

Apple programmers wrote the first nine ver-
sions of the Macintosh operating system all by
themselves. But in 0OS X, they wised up and
jumped on the free UNIX bandwagon.
Underneath all of the Mac-fullness, 0S X is
based on a version of FreeBSD. If you look in the
Utilities folder in the Applications folder, you find
the Terminal program, which gives you the clas-
sic UNIX shell.

Although the Mac Finder looks a lot like some X
desktops, or maybe the other way around, the

0S X window system (known as Aqua) isn't X;
it's the old Mac window system rewritten for
UNIX. But if you want X, Apple is happy to give
itto you. Visitwww.apple.com/macosx/x11
where you can download a version of X for
0S X, integrated with Aqua so you can run Mac
0S programs and X programs together, and
even cut and paste between them. The X pro-
grams may look a little strange on the Mac
desktop, because they still look like UNIX pro-
grams, but that's how you know it's UNIX. Looks
odd, but works great.

One thing about the UNIX community you’ve probably come to appreciate by
now is that you can’t get everyone to agree on anything, except of course that
UNIX is better than every other kind of system and that anyone who thinks
otherwise is silly. So, not surprisingly, a variety of incompatible windowing sys-
tems arose, each different from the other in various, not particularly interest-
ing, ways. Nearly all the windowing systems were proprietary (they belonged to
one system vendor or another), and, of course, no vendor would dream of
admitting that someone else’s window system was better than theirs.

X marks the window

Universities also had a bunch of window system projects. One of the more
successful was the X Window project at MIT (alleged to be a successor to the
W Window project at Stanford — as far as we know, no one created a V
Window project). The X Window system had many virtues, not the least of
which were that it worked adequately well and it was available for free to
anyone who wanted it. So X became the window system everyone used.

Almost all UNIX systems that have any sort of GUI now use one based on the
X Window system (frequently abbreviated to just X Windows, which has been
known to drive UNIX purists crazy because it sounds too much like that other
famous operating system from Redmond, Washington). Old Sun workstations
used systems called SunView or NeWS; NeXT machines use NeXTStep (are
tHoSE wOrDS cAPiTaLlzed corREctlY?); other than those exceptions, how-
ever, you almost certainly get X Windows.

Chapter 4: Opening Windows on UNIX

X (which is an even shorter abbreviation for X Window system) has many
advantages as a windowing system:

v It runs on all sorts of computers, not just those that run UNIX.

v It is policy independent: A program can make the screen look any way it
wants; the screen is not constrained to a single style, as it is on the
Macintosh or with Microsoft Windows. (As you may imagine, this capa-
bility is not an unmitigated blessing. Read more about this subject in
“Just my look” later in this chapter.)

v It uses a networked client-server architecture (love those buzzwords).
You can run X on one computer, and the programs that display stuff on-
screen can be on entirely different computers connected by a network.

v MIT gives it away.

You can imagine which of these important advantages is the one that really
made all the computer makers choose X. Even though MIT gives away the
base version of X, unless you happen to be using the exact same kind of com-
puter the guys at MIT use (or you feel like compiling and debugging a gazil-
lion lines of C code), you don’t get it for free. You must buy a version tailored
for the particular kind of screen and adapter on your computer. An exception
is XFree86, a free version of X used by most PC-based UNIX systems, such as
Linux, which is described in Chapter 3.

How your screen looks depends on which GUI you use. The first part of this
chapter talks about things that are the same for all GUIs. Later, we talk about
how to tell which GUI you are using and how to do things that work differ-
ently for each GUIL

“I'm not just a server — I'm also a client!”

X was designed from the beginning to work with computer networks. It makes
a clear distinction between the server program, which handles the screen,
keyboard, and mouse, and the client program, which does the actual comput-
ing. Although the two programs are running more often than not on the same
computer, they don’t have to be. (Readers who saw John on The Internet
Show on public TV a few years ago may recall one demonstration of an online
subway map of Paris. That was an X application, with the X server running on
a PCin the TV studio in Texas and the client program on a computer in
France, connected by way of the Internet.)

The networkability (is that a word?) of X is most useful in two ways. One way
is that you can be sitting at an X workstation attached to a local network and
have windows attached to client programs running on computers all over the

43

44

\\J

Part ll: Some Basic Stuff

network, often on computers considerably more powerful than yours, partic-
ularly if you’re running on an old PC. X terminals, stripped down PCs, used to
run only one program, the X server, but these days PCs have gotten so cheap
that they cost less than any plausible X terminal. Should you find yourself
using an X terminal, it works just like a UNIX workstation except, of course,
that all of the programs you run have to be on other computers.

A few cool X programs

Because MIT gives away X Windows, X quickly
became the standard window system at hun-
dreds of colleges and universities around the
world. Students, who have a sincere dedication
to doing something other than what they are sup-
posed to be doing (not like the rest of us — no
way), quickly wrote all sorts of silly programs —
nominally to test either X or their understanding
of it and generally to have fun. Assuming that
these programs are installed on your computer,
you only have to type their names in a window
containing a UNIX shell to run them (read more
about this subject in Chapter 7). A few of the
better-known fun X programs are in this list:

v~ xeyes: Pops up a large pair of eyeballs that
watch the mouse cursor as you move it
around the screen. According to the
manual, it checks up on you and reports
back to the boss. Hmmm.

v~ xsnow: Puts a snowstorm on the screen
background. Snowflakes fall down the
screen and pile up on top of your windows.
The -santa option makes an occasional
reindeer-drawn sleigh fly across your
screen. Ho, ho, ho.

v~ xsol: Plays a game of Klondike solitaire
against you. You click the deck to turn over
the next card and drag cards to move them
around. It's as good a way as any to learn
how to handle the mouse, or at least that's
the excuse you can use when your boss
comes by. Because the computer controls
the card deck, you can't cheat, which means
that winning in one trip through the deck is

practically impossible. We've won honestly
once in about two years of play. The program
enables you to turn over the deck and try
again, which enables you to win nearly half
the time, albeit without honor.

xphoon: Displays in the background of your
screen a detailed, full-screen picture of the
moon as it appears today. In a classic dis-
play of dedicated geek programming, it cor-
rectly computes the relative angular
positions of the earth, moon, and sun based
onthe current time and date and shows the
moon’s current phase (full, quarter, half, or
whatever). It's useful for people who work
in windowless offices and have forgotten
what the sky looks like.

xmille: Plays the Parker Brothers game
Mille Bornes against you. It keeps a running
score and plays a mean game. Click the
deck with the left mouse button to draw a
card, click a card in your hand to play it, and
click a card with the middle button to dis-
card it. During the past year or so, we have
won 34 games and lost 42, with each game
consisting of about five hands.

xroach: Lots of yucky roaches scurry
around the screen and hide under the win-
dows, just like in real life. If you run the pro-
gram with the -squish option, you can
squish the roaches by clicking them, leav-
ing an authentic smudge of roach guts on
your screen. (UNIX geeks consider this pro-
gram to be humor at its finest.)

We've got something in common

A few companies doing UNIX apparently
decided that they had gone too far in the cus-
tomizability department, so they got together
with the Open Software Foundation to create
something called the Common Open Software
Environment, which describes how to build

Windows desktops. Surprisingly, CDE began to
catch on, especially among Microsoft Windows
and Macintosh users who were new to UNIX or
who needed to use both Windows or Mac 0S
alongside their UNIX workstations. CDE does
much more than manage your UNIX windows.

Chapter 4: Opening Windows on UNIX

We talk about CDE in the section “CDE: A
Desktop for All Seasons,” later in this chapter.

UNIX programs so that they all act and look
something like each other (or at least like
they come from the same planet). In 1995, this
group came out with the Common Desktop
Environment, or CDE, which is a UNIX window-
ing system that bears more than a passing
resemblance to the Macintosh and (Microsoft)

The KDE environment, which we also discuss
later in this chapter, looks a lot like CDE.
Because CDE costs money and KDE is free,
you're more likely to run into KDE these days.

Just my look

Most windowing systems on most kinds of computers make programs use a
consistent style. All Macintosh programs, for example, look pretty much the
same: They all use the same menu, the same little window when you want to
select a file, and similar windows to turn options on and off. One Microsoft
Windows program looks much like all the others: They all use similar sets of
windows.

Do all X Windows programs have a consistent look? Of course not — that
would be too easy. This situation is what the X crowd means by policy inde-
pendence: X is utterly agnostic about what windows should look like on-
screen, how keystrokes and mouse clicks should be interpreted, and pretty
much anything else that affects a user. This lack of policy was part of the orig-
inal appeal of X because no matter which window system you are used to,
you can make X look just like that system. The good news is that X offers
great flexibility. The bad news is that the word inconsistent barely scratches
the surface of what you run into.

Makeup artists for your windows

One of the ways in which X avoids having any policy built in is that it foists
much of the general window-management jobs onto a program called a
window manager. (Catchy name, huh?) The window manager handles jobs
such as creating borders around each application’s main windows; control-
ling how you move, resize, switch among, and iconify windows; and most of
the other tasks that aren’t part of any particular application. It’s possible to
run X without any window manager, although it’s rather unpleasant because,
without one, you have no way to do some things, such as move a window.

A7

Part ll: Some Basic Stuff

|
Figure 4-1:

A typical
Motif
window.
|

|
Figure 4-2:
Atypical
OpenLook
window.
|

A field guide to window managers

A bunch of competing window “looks” are on the UNIX market. To tell which
one you're stuck with . . . er, have the pleasure to use, look at the border
around the windows on your screen. If they have 3-D-style borders with
sharp corners, as shown in Figure 4-1, you're using the Motif Window
Manager (MWM); its free look-alike counterpart, FVWM; or DTWM, the
Desktop Window Manager that comes with the Common Desktop
Environment (CDE). If the borders have rounded corners, as shown in Figure
4-2, you're using OpenLook. If they have a thin border around the sides and
bottom and top borders like those shown in Figure 4-3, you're probably using
a program called TWM, which comes with the base version of X and is still
sometimes used because it is simple and small.

programn, use the commands

xgrabsc -2 Joutfile.p=zl
puzzle —picture outfile.pzl

To have xgrabsc sleep for three =seconds before rubber—
banding, display processing information, and have the result
displayed with xuwud,
xgrabsc —Wuvsd | xuwud
iecc:ttuypl: johnl>xgrabsc —W > numwd
iecc:ttypl: johnl>xwud mwnwd
usage: Susr-bin X1l xuud [—in <file>] [-noclick]l [—geometry <{geom>] [-display <d
isplay>1
[-new] [-=td <maptupe>] [-rawl [-vis <vis—type-or—-id>]
[-help]l [-rv]l [-plane <number>1 [-fg <color>]1 [-bg <color>]
iecc:ttypl: johnl>xwud —in munwd
iecc:ttypl: johnl>txgrab
xgrabsc —UW > munwd
iecc:ttypl: johnl>¥xu
xuud —in mwnwd
ieccittypl: johnl>txg
xgrabzc —W > nunwd

i =] Snapshot V3
Load.. | Save..] Print «)

Snap Type: “Window | Region Screen |
Snap Delay:_EJ_EJ 4 |9 _lEJ seconds

« Beep During Countdown

| Hide Window During Capture

Shap | Wiew |

SELECT-Position Rectangle, ADJUST—Snap Image, MENU-Cancel,

Chapter 4: Opening Windows on UNIX

|
Figure 4-3:

A typical
TWM
window.
|

term

iecc:ttypl: johnl>who —a

. system boot Dec 12 12:32

5 run—level 2 Dec 12 12:32 Z a 8
bcheckrc < Dec 12 12:33 8:28 5 id=bchk term=8 exit=77
brc . Dec 12 12:33 8:28 15 id= brc termn=8 exit=A
brc = Dec 12 12:33 8:28 19 id= mt term=8 exit=A
rcZ 5 Dec 12 12:49 B:28 23 id= rZ term=-8 exit=A
root console Dec 29 2Z8:16 B:81 17956
zleep . Dec 1Z 12:49 8:ZA8 138 id= uwt term=8 exit=A
Johnl vtBAl Dec 21 15:19 8:81 5938
LOGIN vtz Dec 29 ZA:16 ZA:48 17955
LOGIN tiydl Dec 38 16:24 B:52 2827 492-3869
faxserve . Dec 26 11:45 B:Z8 24871 id= F2
Jjohnl ttyp2 Dec 38 17:16 = 3853 id= p2 term=112 exit=2
Johnl ttypl Dec 38 16:55 z 3854
Johnl tiyph Dec 38 16:55 @:15 3855
Johnl ttyp3 Dec 38 16:56 B:Z8 3886 id= p3 term=112 exit=2
Johnl ttypd Dec 38 16:12 1:84 19342 id= p4 term=112 exit=2
Johnl ttuyps Dec 23 18:41 old 11186 id= p5 term=112 exit=2
LOGIN v Dec 15 15:28 B:28 25517
LOGIN . Dec 15 15:3@ B:2Z8 25532
LOGIN ttyd2 Dec 17 18:55 old 5561 id= 82 term=15 exit=8
iecc:ttypl: john
ieccittypl: johnl>xgrabsc —W > twunwd

The Open Software Foundation, the same people who provide the OSF/1 ver-
sion of UNIX, created Motif, based on some work done by their members
Hewlett-Packard and Digital Equipment. Motif is much more complete than its
competition (it has a provision for handling languages other than English, for
example), and because DEC made it cheap for software vendors to use, it
became the primary X Windows manager until KDE and GNOME came along.

People using the Common Desktop Environment (CDE) get the Desktop
Window Manager, or DTWM. CDE comes with all kinds of nifty and zoomy
programs, although underneath the glitz it’s just a version of Motif, so it looks
pretty much the same.

Lots of other window managers exist, although the ones described in this sec-
tion are the most common ones. After several years of window system war-
fare, Motif and its clone FVWM have emerged as the clear favorite window
managers, so that’s what we concentrate on here. Even if you use a different
window manager, it probably works about the same way that Motif does.

Considerably more than you want to know
about window managers, toolkits, and X

If you're dying to know more about how the X Window system works, strap
on your safety belts because we're going to get a little technical. If you're
dying to know how to use your window manager and couldn’t care less about
how it works, skip down to the section “Stupid Window Manager Tricks.” If
you’re sticking with us, just don’t say that we didn’t warn you.

b7

58

\\3

Part ll: Some Basic Stuff

Déja vu déja vu

Readers familiar with Microsoft Windows 95 or
NT may find the Motif window manager to be
strangely familiar. Its windows don’t look all that
much like Windows windows, although the
mouse and keyboard techniques are extremely
similar. That turns out to be no coincidence.
Because Hewlett-Packard has a super-duper
application environment it sells for both
Windows and X, it deliberately made its X pack-
age (from which much of Motif is derived) as
similar to Windows as possible.

For users who switch back and forth between
Windows and Motif (we authors, for example),
this capability is a blessing because the mouse
moves and keystrokes our fingers have memo-
rized for one system work by and large in the
same way in the other. This practically
unprecedented level of compatibility exists
between UNIX and something else, so we figure
that, deep down, it must have been an oversight.

The X Window system divides the work of controlling what’s on-screen
among three separate kinds of programs:

v X server: Draws pictures on-screen and reads user input from the key-

board and mouse

+ Window manager: Controls where windows appear on-screen, draws

borders around windows, and handles basic window operations, such as
moving windows, shrinking windows to an icon (a little box representing

that window), and expanding icons to windows

v Clients: Programs that do some real work

For any particular screen, there’s one X server, usually (but not always) one
window manager, and a bunch of clients. Every client communicates with
the server to tell it what to draw and to find out what you did; the server
communicates with the window manager when the user asks for a window-
management operation, such as changing the size of a window. Although the
server, window manager, and clients usually run on the same computer, X
Windows enables them to exist on separate machines connected by a net-

work. It is not unusual to have a setup in which the server runs on an X termi-

nal, the window manager runs on a nearby workstation, and the clients are
on various machines scattered around the network.

The window manager is usually a regular UNIX program. You can stop one
window manager and start another if you decide that you don’t like the way
your windows look. Client programs can ask the X server to ask the window

manager to do some specialized operations. A terminal program, for example,

can ask the window manager to enable a user to change the size of the
window only to a size that is a whole number of lines of text. (This kind of
communication starts to resemble that in the ancient Roman Empire, in

Chapter 4: Opening Windows on UNIX

which proconsuls could officially speak only to procurators, who could speak

to senators, and so on. Computers are like that.) If no window manager
exists, no window-management operations are available.

Writing an X program is a great deal of work. To make life easier for program-
mers, a programmer can build on toolkits of program code that are already

written. MIT sends out X Toolkit (immediately called Xt by the usual lazy typ-

ists). This toolkit provides a set of basic window functions that most pro-
grams use. Starting with Xt, different people have produced libraries of
widgets, or screen elements a program can use. A menu or a file-selection
panel is a widget, for example. The Motif widget set is for programs that want
to look like Motif. The Athena widgets from MIT’s Project Athena aren’t par-
ticularly attractive, but many programs use them because (where have we
heard this before?) they're available for free. You can also find other toolkits
for other window systems, including KDE and GNOME.

FVWM: The chameleon of window managers

Because Motif isn't free, it isn't included with
most Linux and BSD systems. (Nothing prevents
you from running Motif under Linux or BSD, but
most people aren't prepared to pay more for a
window manager than they paid for the whole
operating system and its included software.)
Instead, with Linux, you often find the window
manager called FVYWM.

The origins of the name FVWM are forever lost
in the mists of history. The VWM part stands for
virtual window manager. The Fpartis a mystery,
though. Fine and feeble are two frequently
offered possibilities.

The “virtual” part of this window manager is
one of FVYWM's best-loved features. Rather than
having just a single desktop, you can have any
number of virtual desktops, each with its own
independent set of windows open. Because
each desktop is the size of the screen, this fea-
ture enables you to think of your screen as a
porthole looking at part of a much larger screen
behind it.

FVWM usually displays a little map of all the vir-
tual desktops at your disposal; Most systems
have either four or nine, although theoretically
you can have as many or as few as you want.

You move around among all your desktops by
pressing the Ctrl key and then the arrow key for
the direction of the next desktop according to
the little map. Is your desktop getting too
crowded with windows? No need to close some
of them; just pop on over to another desktop.
You can have dozens of programs open without
getting too crowded; never has slowing your
system to a crawl been easier!

FVWM is almost infinitely configurable. You can
make it look like practically anything, although
its default look is nearly identical to Motif. A ver-
sion of FYWM known as FVWM95 looks remark-
ably similar to — you guessed it— Windows 95.
(Whether this is A Good Thing is a favorite point
of religious arguments among many Linux
users.) Not only do its window borders mimic
Windows 95, but it also even features a Start
button with pull-up menus. FYWM35 is found by
defaulton recent releases of Red Hat Linux (dis-
cussed in Chapter 14). Another popular mutation
of FVYWM is called AfterStep, which looks just
like the NeXTStep window system.

FVWM has become enormously popular on free
UNIX versions. You can even find it on some
large commercial systems.

50

A\

Part ll: Some Basic Stuff

How do | start Motif, anyway?

You may think that this question is a simple one
to answer, but, because UNIX is involved, it's
not. The short answer is “Run mwm” (the Motif
window manager), although that technique is
not useful because you have to run mwm at the
right time and place.

If you're lucky, your system manager sets up
everything for you automatically. If you're on an
X terminal or a workstation running xdm (the X
display manager), X is already running when
you sit down and waiting for you to enter your
username and password, and Motif starts as
soon as you log in.

The next best thing is that you're at a worksta-
tion thatis set up to run X after you log in so that
Xand Motif start automatically when you log in.

Failing that, you have to start X and Motif your-
self after you log in to UNIX. The two most
common start-up commands are startx and
xinit. If you're not sure which one to use, try
them and see what happens. What happens is
that your screen goes kerflooie! for a few sec-
onds when it switches from old, dumb, terminal
mode to new, cool, graphical X mode; a few
windows appear, running xterm (the dumb ter-
minal emulator that runs under X); and Motif
starts and draws attractive borders around all
the windows.

If none of those things works, we've run out of
ideas, and you have to ask your local expert
how to start X and Motif on your computer or X
terminal.

What all this means is that any particular X client uses one of the widget sets
to control what that client’s window looks like. A program that uses the Motif
toolkit, for example, is a Motif program. Because clients are separate from

window managers, however, the Motif window manager (named mwm — the
lazy typists strike again) can be running and draw a Motif border around the
windows of clients using other toolkits.

Because of the constant danger that GUI systems could begin to make sense
to users, UNIX people have learned to obfuscate things by using “Motif” to
refer to both the Motif window manager and the Motif toolkit, which are, of
course, completely separate entities. When people refer to “Motif,” therefore,
they may be referring to the window manager or maybe to the toolkit. Or
both. Often it’s difficult to tell. This confusion is all just part of the proud

legacy of UNIX evolution.

One school of thought says that we all would be better off if X Windows had
picked a window style and stuck with it so that we would have a single

window manager and a single set of widgets — as every other window system

does — although it’s much too late now for that.

Chapter 4: Opening Windows on UNIX

Stupid Window Manager Tricks

We now delve into the nitty-gritty details of how to get stuff done using what-
ever window manager you happen to have on your computer. Because Motif
is the most common window manager, we spend a fair amount of time on it in
this book. If something we say is specific to Motif, we tell you.

If you're lucky enough to have some version of the Common Desktop
Environment (CDE), KDE, or GNOME, you can skip to the appropriate section
later in this chapter. Because the Common Desktop Environment is built on
Motif and KDE looks a lot like CDE, we recommend that you read this section
anyway to find out the basics about windows, icons, mice, and the various
and sundry widgets you encounter.

Opening a new window

When you run a new X program, generally speaking, it opens a new window.
In some cases, you want to tell a program that’s already running to open
another window (another file for a word processor, for example), although
the way you do that is specific to each program. You have to read the manual
(gasp)) for the program.

You usually have at least one terminal window running. A terminal window
isn’t as sinister as it sounds: It’s a window that acts like a terminal. The usual
program is called xterm; it acts much like an antique DEC VT100 terminal.
Most systems also have a modified terminal program that acts like the com-
puter maker’s favorite terminal. Hewlett-Packard systems have hpterm, for
example, which acts like an HP terminal, and some PC UNIX systems have
xpcterm, which acts like a PC console. For most purposes, all these terminal
programs act the same. They start up running a UNIX shell, and you type
commands just as we describe in this book.

You can use one of two ways to start a new program that opens a new
window: the GUI-oriented, user-friendly way and the easy way.

Follow these steps for the GUl-oriented, user-friendly way:

1. Move the cursor so that it’s not in any of your current windows.
2. Click the Menu mouse button.

This button is the last one (the right-most button unless you have a left-
handed mouse) in OpenLook and the first button otherwise.

51

52

\\J

Part ll: Some Basic Stuff

About your mouse

Your mouse (or mouse-like thing) has some but-
tons on it. Take a moment to count the buttons.
Finished counting? (How long could it have
taken?) We hope that you found three buttons. If
you found only two buttons, you have a problem
because most X programs are written with
three-button mice in mind and don’t work well

with two-button mice. Some X servers can be
configured to enable you to get to all the X fea-
tures by using only two buttons, although get-
ting a three-button mouse is much easier. We've
found some perfectly usable ones at our local
computer store for $10 or less.

WING/
&

3. Drag the mouse up and down the menu that pops up until you find the

program you want.

4. Let go of the button.

Sometimes you have nested menus: When you pick an item from the first

menu, a second menu pops up, and you must pick an item there, too.

The easy way to start a program has only one step:

1. Go to a terminal window and type the name of the program you want

to run.

This approach is the same one you use to run any other program or to give a
command. To display another terminal window, type xterm or the name of

the terminal program you use.

Then you have the issue of where on-screen the new window appears. Some
programs and window managers have strong opinions of their own, and the

new window appears wherever the program or window manager thinks that

it should. With other, less opinionated programs, you make the call: A ghostly

window that appears floats near the middle of the screen. You move the
ghost around with the mouse and click when the window is where you want
it. At that point, the ghost materializes into the regular window. This latter
scheme is usually more convenient because the locations the opinionated
programs choose for window placement are rarely where you want them.
Beware of one thing, though, while the ghost is on-screen: All other windows
are frozen. If you leave the ghost on-screen for a long time (while you're at
lunch or overnight), all the others can become rather constipated waiting for
the screen to unfreeze so that they can update their windows. If you're using
Motif, your local guru can switch your system between opinionated mode

and floating-ghost mode.

A\

Some systems have desktop manager programs (unrelated to window man-

ager programs) that attempt to make handling programs and files easier.
Desktop managers have sets of icons you click to start common programs.

They enable you to click filenames to edit the file, for example — sort of like

the Macintosh Desktop. Opinions vary on how useful these desktop man-

agers are. We haven’t been crazy about them, although trying them for a few

minutes is worth your time because some people find them much easier to
use than menus and shell commands.

Chapter 4: Opening Windows on UNIX

A quick mouse refresher

You probably know all about how to use your
mouse. In the unlikely event that you're a little
rusty on the terminology, though, here are a few
basic terms:

Which button is which: The first button is the
one on the left (unless someone has configured
your mouse to be left-handed, and then the first
button is the one on the right). Either way, the
second button is the one in the middle. The third
button is the one that isn't the first or second
button. (What? You already figured that out?)

Cursor: The cursor is the little doozit (a highly
technical term) on-screen that shows where
the mouse is pointing. The cursor often changes
shape as you move it from one window to
another to give you a hint of what's going on in
a window. The most common cursor shapes are
a black X (when you're not in any window), a
little arrow (in windows with graphics), a little
vertical hairline (in windows of text), and a little
leftward-pointing finger (in windows with links,
such as Help systems and Web browsers).

Click: To click something, move the cursor to
the thing you want to click, and then press and
release the mouse button. Unless otherwise
directed, use the left-most mouse button.
Clicking is also called selecting the screen item;
it means that you want to do something with the
item you just clicked.

Double-click: To click the same button twice
quickly, usually with the first button.

Drag: To drag something, move the cursor to the
drag-ee, press down the mouse button, move
the mouse while holding down the button, and
then let go of the button when you get to where
you want the drag-ee to be. Most non-Motif
programs use the left button to drag stuff, and
Motif programs use the middle button.

You use dragging in two main ways. The first is
for pop-up menus. When you press one of the
mouse buttons, a menu appears, with a list of
possible things to do. While you are holding
down the button, drag the cursor to the item on
the menu you want and then let the button go. If
you change your mind and don’t want to do any
of the things on the menu, drag the cursor
entirely off the menu before letting go of the
button.

The second way to use the drag technique is to
outline some part of a window. You move to one
corner of an area you want to select, press a
mouse button, drag to the opposite corner of the
area, and let go; at this point, a box on-screen
shows the area you outlined.

53

54

Part ll: Some Basic Stuff

|
Figure 4-4:
Icons are
windows in
a miniature
disguise.
|

\NG/
&‘3‘“

Icon do this with a picture

GUIs are crazy about pictures (they’re graphical, after all), especially cute,
little ones. The cutest, littlest ones you run into are called icons. An icon is a
little picture in a little box on-screen that represents a window. When you tell
X Windows to “iconify” a window, the window disappears and an icon
remains. When you double-click (or single-click if you're not using Motif) the
icon, the window comes back just as it was before. Being able to reduce win-
dows to icons enables you to shove programs out of the way and not lose
what you are doing — one of the best things about window systems. Figure
4-4 shows a pair of icons, one for an e-mail program and one for a terminal
program. If new mail arrives, the little flag on the mail icon flips up, which is
almost useful enough to make up for its X-treme cuteness.

Window wrangling a la Motif

Motif (or, more particularly, the Motif window manager) draws a border
around every window on your screen, as shown in Figure 4-5. The border
gives you considerable control over the window, enabling you to move it,
hide it, change its size, and perform other tasks.

The borders of some windows are missing some or all of the buttons we dis-
cuss in this section. That’s because not all windows allow all functions. If the
button’s not there, you can’t do what it would have done anyway.

You frequently will find that you don’t like the way the windows on your
screen are arranged. You can do lots of things to alleviate this problem and
simultaneously waste lots of time. We have found that, by giving your dedi-
cated attention to window management, you can spend the entire day at the
computer apparently working but not accomplishing anything. Because a
little rearrangement is inevitable, the following sections are thumbnail
sketches of what you can do and how to do it with Motif:

v Change the layering. Change which windows are in front of other win-
dows, much like shuffling the papers in the pile on your desk. Unless
you're a masochist, you want the active window (the window you’re
using) to be the one in front.

Chapter 4: Opening Windows on UNIX 5 5

v Move windows around the screen. This process is even more similar to
shuffling the papers on your desk.

v Turn windows into icons and vice versa.

v~ Change the size of windows. Create larger areas for long files you're
editing, for example.

Window menu Title area
| —lconify
MotifBurger — Maximize

—Border

|
Figure 4-5:
Atypical
Motif
window.
|

Switching and layering your windows

Suppose that you have two or three windows on-screen. How do you tell
UNIX which window you want to use? The answer is (wait, no — how did you
know that this answer was coming?) it depends. In line with the standard X
rule of never making up its mind about anything, you can switch windows in
two different ways:

v Click-to-type, or explicit focus: Move the mouse cursor to the window
you want to use, and click the mouse in it somewhere. The window
moves to the front (any overlapping windows drop behind it so that you
can see the entire window).

v Move-to-type, or pointer focus: Move the mouse cursor into the window
you want to use. Even though the window may be partially obscured by
other windows, it becomes active. You can tell when a window is active
because the border around it changes color. Click the window’s title bar
if you want to move it to the front. Motif also enables you to move a
window up front like this: Move the cursor into the window, hold down
the Alt or Meta key, and press F1.

56

Part ll: Some Basic Stuff

WING/
gg‘

W

If you have to “click to type” and hate it — or don’t and really want to — a
guru skilled in the ways of X (naturally called an X-pert) can change some
parameters and turn “click to type” on or off. We recommend that you live
with whatever you have. So many changeable parameters are available that,
after you begin fiddling with them, it can become X-asperating to figure out
X-actly how your X-pert left them, and you will utter an X-cess of X-pletives.

You can tell which is the active window because the Motif window manager
changes the color of its border to a distinctive darker color. The Motif stan-
dard window-switching rule is click-to-type.

“Where, oh, where has my window gone?”

In Motif, you put the cursor in the title bar, press the first mouse button, and
drag the window to where you want it (that is, you move the window as you
hold down the mouse button). This action also brings the window to the
front because you use the same button to do that.

You can move windows so that they are partially off the edge of the screen,
sort of like pushing papers to the side of your desk so that they hang over the
edge (except that windows are less likely to fall on the floor). This capability
is sometimes useful if the interesting stuff in the window is all at the top or all
on one side.

Stashing your windows

The title bar of the window has little buttons you can click. Near the right end
of the title bar is a little box that contains a small dot; when you click it, you
iconify the window; that is, the window turns into an icon.

To get the window back, double-click the icon with the first mouse button.

Icons normally appear in the lower-left corner of the screen, although you
can move them around by dragging the icon around with the mouse. After
you move an icon, if you restore the window and then re-iconify it, the icon
reappears where you left it. You can lay out the icons to your taste by iconify-
ing every window on-screen, moving the icons to tasteful positions, and then
restoring the ones you want to use.

Curiouser and curiouser: Changing window sizes

The last little bit of window magic involves changing window sizes. Motif has
gone to a great deal of trouble to let you change the size of your windows,
which tells us that they gave up trying to make them the right size in the first
place. Oh, well. Little “grab bars” are in each corner of most windows. (The
few windows you can’t resize don’t have grab bars.) You move the cursor to
one of the grab bars, click the first mouse button, drag the corner to where
you want it (make the window larger or smaller), and release the button.

Chapter 4: Opening Windows on UNIX

WING/

Then do it again two or three times because you never get it right on the first
try. Motif also has grab bars (thin, gray borders) on the top, bottom, and
sides of every window, which enable you to change the height of a window
without changing the width or vice versa.

Some programs have strong feelings about how big their windows should be.
In some cases, they don'’t let you shrink the window to less than a minimum
size. In other cases, you can’t change the size. For these programs, attempts
to resize just don’t work. You can click and drag the borders all you want, but
nothing moves.

Motif has a shortcut to enable you to expand a window to fill the entire
screen. Click the little box-in-a-box at the right end of the title bar. If you do
the same thing again, the window shrinks back to normal size.

In practice, we rarely blow up windows to full-screen size because few UNIX
programs take advantage of the entire screen. The full-screen option was
much more important when screens were smaller.

Getting rid of window's

Your screen often becomes cluttered with windows you no longer need. You
already know how to turn them into icons to get most of the screen space
back, but sometimes you just want to make the program go away.

If 57 different programs are running, even if most of them are snoozing
behind their icons, it can put enough of a load on your computer to slow
down the ones you want to use.

Most programs have a natural way to exit. In terminal windows, you log out
from the shell by typing exit or logout in the terminal window. Real windows-
oriented programs usually have menus of their own with a Quit or Exit option
that cleans up and makes the program stop. Because some programs just
won’t die, however, you have to take drastic measures.

In Motif, click the little bar in the box at the left end of the title bar; a menu of
window operations pops up, as shown in Figure 4-6. The Restore, Move, Size,
Minimize, and Maximize choices are equivalent to the border-clicking tech-
niques we discussed in the preceding section. (Minimize is Motif-ese for
iconify.) The two remaining options can be useful, though. The Lower option
pushes the window behind all the rest so that it doesn’t obscure any other
windows. That option is useful when you want to work on something else for
a while. Close closes the window and usually also ends the program that
started it. This option can be handy for programs that get stuck or don’t have
any normal way to exit.

57

58

Part ll: Some Basic Stuff

|
Figure 4-6:
The Motif
window
menu.

\NG/
?g\\\

Motif offers a set of keyboard equivalents for mouse-haters. To display the
window menu, press Shift+Esc or Alt+spacebar. Then either press the cursor
keys and Enter to choose one of the entries, or press the underlined letter in
the entry you want. To move or resize windows, you press the cursor keys to
move or resize the window and then press Enter when you finish.

You can also press the Alt+key equivalents on the menu, such as Alt+F9 for to
minimize a window. If your keyboard has two Alt keys (as most PC keyboards
do), you may find that the two Alt keys work differently. Individual programs
recognize the left Alt key on our system, and the Motif window manager rec-
ognizes the right Alt key.

Motif uses confusing and inconsistent names in the window-operations menu.
Close destroys the window and the program, and Minimize turns the window
into an icon.

Ta-ta for now

The last little detail is how to tell X Windows that you're finished with it. The
way you do that (we're getting tired of saying this) varies from one system to
another. You have to stop the start-up program, which is usually a terminal
window named 10gin or the window manager itself. If you see a window
named 10gin, go to the login window and type exit or logout to exit that shell.

If your start-up program is the window manager, you must persuade the
window manager to exit. You can’t kill it the way you kill other programs,
because the window manager doesn’t have a particular window. In Motif, you
move the cursor outside any window, press the first mouse button, and select
the Quit item from the menu that pops up. Motif pops up another box, incredu-
lous that you claim that you want to leave a program as wonderful as itself, so
you have to click OK to assure it that you are indeed such an ingrate.

Chapter 4: Opening Windows on UNIX

How do | leave Motif, anyway?

This question is only slightly less complicated
than the one about starting Motif. As usual, you
are the victim of a blizzard of options. Here are
some likely possibilities:

v Log out by leaving the Motif window man-
ager. In this case, move the mouse cursor
outside any windows, click and hold the
right mouse button to display the Motif root
menu, slide the cursor down to Quit, and
release the button. Motif displays anincred-
ulous little box asking whether you really
want to leave mwm. Click OK.

window is the main one. If one of them is
labeled Login or Console, that's it. Switch to
that window by moving the mouse to that
window and clicking the left mouse button.
Then type exi t to the shell in that window.

When X and Motif exit, the screen usually ker-
flooies! again when it goes back to dumb termi-
nal mode. (If your system uses the X display
manager, your system may immediately go back
to the login screen, in which case you're fin-
ished.) If you end up back at a shell prompt in
dumb terminal mode, you then have to exit from

59

s~ Log ot by closing the main xterm that as well by typing ex i t to that shell.

window. The trick is to figure out which

CDE: A Desktop for All Seasons

If you ever use a Macintosh or one of those other Windows computers, then
you know what a desktop is. When you start up a computer with the Macintosh
or Windows OS installed on it, slick-looking graphics and mouse-clickable icons
and menus take over your entire computer screen, giving you a common work-
space for all your programs and windows. That’s the desktop.

The desktop gives you a slew of ways to keep track of your files and get your
work done efficiently and painlessly. You can open multiple windows and
switch between them with the click of a mouse button. You can do spiffy stuff
such as dragging and dropping to share files and information among your
programs. Graphical tools that come with the desktop give you views into the
operating system, your files, and your network (if you're on one). Additional
graphical tools let you do neat stuff, such as send and receive mail, manage
print jobs, and change the way your desktop looks.

Although window managers (such as Motif) have been around for quite some
time, real integrated desktops like the ones built into Windows and the Mac
OS are just beginning to catch on in the UNIX world. Now you can choose

60

Part ll: Some Basic Stuff

from a whole crop of UNIX desktops. The first widely used UNIX desktop

was the Common Desktop Environment, or CDE. CDE is the result of an
unprecedented outbreak of cooperation among a number of UNIX vendors —
including Hewlett-Packard, IBM, Novell, and SunSoft — and the Open
Software Foundation (the same people who brought you Motif, remember?).

CDE desktops are not quite as simple, of course, as their Windows and Mac
OS counterparts. The Mac and Windows desktops are developed and sold
only by Apple and Microsoft, respectively. Each company that sells CDE along
with UNIX, on the other hand, offers a slightly different version of CDE devel-
oped exclusively for its own version of UNIX. Unlike the Mac and Windows
desktops, which are built in to the operating system and appear whenever
you start up your computer (like it or not), CDE desktops are optional. You
don’t have to use CDE to use UNIX, and you (or, more likely, your system
administrator) can decide whether to have CDE start up when you log in.

To enhance the confusion to acceptable UNIX-like levels, CDE is infinitely
customizable by system administrators and UNIX hackers. You can make
far-reaching changes to CDE by switching the CDE default window manager
from DTWM to FVWM, for example. You can tell CDE to launch various pro-
grams automatically when you log in. You can change the way the keyboard
behaves — and so on and so on, ad nauseum.

The good news is that the similarities among versions of CDE far outnumber
the differences; after all, it’s supposed to be a common desktop environment.
In practice, and discounting any bizarre modifications that an overzealous
UNIX system administrator may have made, using one version of CDE is very
much like using another.

The following sections give you some idea of how to use the Common
Desktop Environment. In the interest of keeping things as simple as possible,
we don’t worry about which version of CDE you’re using, and we figure that
you’ll make whatever adjustments are necessary to account for the idiosyn-
crasies of your configuration.

Desktop, here we come!

Bringing up the desktop is much like starting Motif, a subject we cover in the
sidebar “How do I start Motif, anyway?” earlier in this chapter. If you're lucky,
your system administrator has set up your computer so that the CDE comes
up when you turn on your computer or log in. If not, you have to refer to your
local UNIX guru or system documentation to find out which command to run
in which directory.

Chapter 4: Opening Windows on UNIX

|
Figure 4-7:
The
FrontPanel
puts the
desktop
front and
center.
|

No matter what the start-up details are, the desktop heralds its imminent
appearance by making your computer screen flicker like Dr. Frankenstein’s
laboratory on a stormy night and then replacing whatever your screen was
displaying before with a drab gray background, on top of which appear vari-
ous tools, toolbars, icons, and programs, depending on how your desktop is
configured. You usually see a version of the FrontPanel across the bottom of
your computer screen.

Front and center

The FrontPanel is similar to the control center for the desktop. Actually, it’s
more like the dashboard of a fancy car, which puts all the car’s doohickeys
and thingums within easy reach of the driver. As with all the elements of the
desktop, you can customize the FrontPanel. Figure 4-7 shows a typical set of
FrontPanel icons, buttons, and other clickable thingies.

[= T = 7] |
=

Thn—

=i
@%: usv J

At the center of the FrontPanel are four buttons, named One, Two, Three, and
Four. These buttons let you manage as many as four workspaces. The idea is
that the desktop is in reality four times as large as your computer screen; in
other words, your computer screen shows only one-quarter of your desktop
at a time. Each quarter is a workspace. You can have different icons, program
windows, and whatnot set up in each workspace, all of which stay put and
reappear just as you left them every time you return to the workspace. For
example, you may dedicate one workspace to managing your UNIX environ-
ment, one workspace to dealing with all your communications (e-mail, FTP,
networking), one workspace to your favorite games, and one workspace to
doing work (such as writing the definitive guide to peas and how to eat
them). Rename the workspace buttons Looks, Comms, Games, and Peas so
that you can remember which workspace is which, and then switch among
your workspaces by clicking the buttons. (We recommend switching from
Games to Peas whenever your boss comes around the corner.)

01

62

Part ll: Some Basic Stuff

|
Figure 4-8:
Just popped
into see
what
condition
my

condition
was in.
|

Tools you can use

The icons to the left and right of the workspace buttons give you mouse-click
access to a typical set of CDE tools. Reading from left to right in Figure 4-8,
you see icons for Clock, Group Calendar Manager, File Manager, Terminal
Emulator, Mail Tool, Print Manager, Style Manager, Applications Manager,
Help Viewer, and Trash.

You can open each tool or tool set by double-clicking its icon in the FrontPanel.
If the icon has a little upward-pointing triangle above it, you can click the tri-
angle to pop up a menu of choices (the menu slides out from behind the
FrontPanel like a window shade being drawn upward). Drag to the choice you
want, and then release the mouse button to select it. You can close a pop-up
(or slide-up) menu by clicking the square in the upper-left corner of the
menu and choosing Close or by clicking the triangle again (it turned into a
downward-pointing triangle while you weren’t looking). The menu demurely
slides down behind the FrontPanel until it disappears. Figure 4-8 shows the
menu that appears when you click the triangle above the Applications
Manager icon.

Applications

I'M- ezl Teng
chm-S
|r=|.'f-lpplicai:igr|:

LU

2o Bopipol =

All the standard UNIX utilities and programs described in Part III of this book
(such as find, diff, ed, vi, and emacs) get zoomy new graphical versions in
the CDE, many of which are easier to use than their command-line equiva-
lents (easier, that is, if you're used to using a mouse to do your computing).
In fact, CDE desktops come with so many tools and utilities that an entire
book is needed just to describe them all.

Chapter 4: Opening Windows on UNIX 63

Filing without tears

The File Manager looks like the window shown in Figure 4-9, which appears
when you double-click the File Manager icon on the FrontPanel.

[/export/hone/tarascio

Figure 4-9:
Show

me some '
files, man! restre. b

— || 50 Ttens 3 Hidgen

The CDE File Manager is much like the Mac OS Finder or Windows Explorer.
You can use the CDE File Manager to browse through your files, launch pro-
grams, and, as its name implies, manage your files (open, copy, move, or
delete them or have them over for dinner). The File Manager shows some
kind of icon for each directory and file on your computer. Directory icons
look like file folders; file icons look different depending on which type of file it
is. Figure 4-9 shows icons for seven text files, which look like pieces of paper
with writing on them (clever, no?). The icon with the runner on it launches a
program (in this case, a program named Source Safe 5.0).

The “..(go up)” icon lets you travel up the directory tree toward the root
directory. The series of folder icons at the top of the window shows your cur-
rent location (and hence the directory that contains all the stuff you now see
in the File Manager) relative to the root directory. You can jump to any direc-
tory in the branch of the tree you're on by clicking one of these folders.
Pictograms (little pictures) on the folders tell you something about the direc-
tory’s permissions; for example, a folder showing a pencil with a line through
it means that you don’t have write permission in that directory.

64

Part ll: Some Basic Stuff

We don't want to give the impression that the from any application, session management,
CDE brings only cosmetic enhancements to advanced collaboration tools such as e-mail
your UNIX system. The CDE does some heavy clients and group scheduling utilities, GUI tool-
lifting, too. Among other features too numerous kits, and all kinds of full-fledged application
to mention, the CDE gives you easy and consis- development tools.

tent network access, a standard way of printing

Not just another pretty face

You can move files and directories from one location to another by dragging
and dropping their icons. Being able to drag and drop in the File Manager
means that you can do all kinds of cool and unexpected things. For example,
you can drag a text file to the icon for the emacs editor to automatically
launch emacs and open the text file you dragged. You can add icons to the
FrontPanel by dragging them from the File Manager and dropping them on
the FrontPanel’s icon areas.

What's up, doc?

One of the most convenient, friendly, and ultimately un-UNIX-like features of
the CDE is its Help Viewer. The Viewer, as shown in Figure 4-10, is a graphical
help- and documentation-viewing program with full-fledged searching and
printing capabilities. You can view all the man pages (online documentation,
described in detail in Chapter 26) for your version of UNIX in a pleasant, read-
able format (a giant leap for UNIX-kind, as you know if you ever tried to make
extensive use of traditional UNIX man pages) and journey hither and yon by
means of an expandable and collapsible outline. The Viewer can even handle
context-sensitive help (in other words, make a game attempt to guess exactly
what information you need at any given moment so that you don’t have to go
hunting for it).

Having it your way

Customize, customize, customize! One of the joys of using the CDE is your
ability to change the way your desktop looks and behaves by using the Style
Manager (as shown in Figure 4-11). Use up all that pesky extra time by chang-
ing the colors of various window elements and text; choosing pretty back-
drops to replace your desktop’s monotonous gray background; adding pizzazz
and generally making your desktop unusable by choosing decorative fonts,

Figure 4-10:
The Help
Viewer tells
you all
about itself.

|
|
Figure 4-11:
The Style
Manager:
Where the
fashionable
desktop
goes for a
thorough
makeover.

Chapter 4: Opening Windows on UNIX 65

reconfiguring your keyboard, changing what the various buttons on your
mouse do; and making a thousand other cunning modifications to your com-
puting environment. Go ahead — indulge yourself. You haven't lived until you
spend an entire afternoon designing a desktop scheme that expresses your
innermost desires (especially when you should be doing something else).

Fi

le Edit Search Nawigate Help

Vfolume: Help - Top Lavel

F I‘Nelcnrne to Help Manageri e 2
Ceomman Desktop Enviranment el
Yerr
Cwerview and Basic Desktop Skills o
ndex. ..

Top Level

T

Welcome to Help Manager

Each of the dtles listed belsw represents a product famiy thar hasineralled and
1egistered its emline help. Each title (and icam) is a hyperlink that lists the help within the
family.
- Ta display a lst of the help available for a product family, cheose its dtle
(underlined text) oricomn.
- Within a praduer family, find the help yen want 1o view, then chaose irs drle.
- Ifycn need help while nsing help windows, press F1.

Common Desktop Environment

Owverviens and Basic Desktop Skills * Using Help * Andia * File
Manager * File Properdes * Front Panel * Applicadon Manager * Primt
Manager * Style Manager * Mailer * Image Viewer * Text Editar *
Calendar Manager * Icon Editor * Terminal Emularer * Create Acdon *
Lagin Manager and Enviranment Variables

Overview and Basic Desktop Skills

Owvervienw and Basic Desktop Skills far the Commen Desktop
Environment.

= -~ -
& Tre €1 M=
Eeyle Forie Haelielpine [1IEES Sicaprie

66

Part ll: Some Basic Stuff

Talkin' trash

The Trash tool is a great boon to UNIX users 1. Double-click the Trash tool icon.
susceptible to blowing away important files with . . .
unforgiving UNIX commands such as rm. When 2. ::)eot around in the trash until you find the
you issue the rm command or one of its ’

brethren, the files you delete are gone, plainand 3. Drag the file from the trash and drop it back
simple. When you're using the File Manager on into an appropriate location in the File
the desktop, on the other hand, files you delete Manager.

get putin a virtual trash barrel, where they hang
around until you tell UNIX to get rid of them. If
you delete a file by mistake, you can bring the
file back to life by following these steps:

Remember to empty the trash every now and
again, or else you eventually run out of disk
space.

Desktop, there we go!

The easiest way to get yourself out of the desktop is to click the Exit thingum
near the workspace buttons on the FrontPanel, which drops you unceremoni-
ously into good old traditional UNIX character mode. You can also lock the
desktop (so that only someone who knows your username and password can
get to it) by clicking the padlock icon in the center of the FrontPanel.

What's the “K” Stand For?

You could ask about the interface. You could ask about the history of the pro-
ject. But the chances are, the first thing you want to know about the K Desktop
Environment is what the K stands for. We can’t tell you. Some Internet wags
claim that, early in 1996, the project was going to be called the “Kool Desktop
Environment,” but being sure is impossible. Now, it doesn’t stand for anything;
it’s just the letter K.

KDE is a full desktop environment, much like CDE — the similarity in names is
probably not a coincidence — and provides a bewildering variety of choices
and options. You can move the window widgets around. You can change what
they look like. In the UNIX world, finding that your computer looks like — and
can be used like — someone else’s is very embarrassing. It’s like showing up
to a party in the same dress as someone else. KDE provides a good layer of
insulation; even if you and your friend both use KDE, your computers won'’t
look a bit alike.

Chapter 4: Opening Windows on UNIX 6 7

|
Figure 4-12:
KDE,

using the
“Keramic”
theme.
|

If your system doesn’t use a graphical login program, or start KDE automati-
cally, the command you’re looking for to start it is startkde. Not sure that’s
the right command? Look at Figure 4-12, which is one sample of what KDE
might look like.

You can, of course, change what it looks like, using themes.

Themes

KDE has a broad variety of themes. Many of them are intended to look a great
deal like other systems you might be familiar with — but be careful! The but-
tons won’t always do what you expect them to do, and the mouse buttons and
shortcut keys may be different. We recommend you pick a style that’s different
enough that you won’t get tricked. Pick something bold, one that makes a state-
ment about you. The statement might be “I set this up one afternoon, and
forgot how to change it again, please won’t somebody help me.” That’s okay.
It’s still a statement.

erfhome/seebs/docs=Kongueror

DRE2,B O < -l

E» Location: [|5 file .fhomefseebsfdocs|

Adocs I
Hfloppies|
Hforge

3 games producty paf seanning pdf

] 2 tems - 2 Files (9.3 MB Total) - 0 Directories

g ‘) filezfhome/seebs/docs - Konque:
| . Shell - konsale ol

M

EERY RN T ™ | PEEIEES

07/29)03

68 Part ll: Some Basic Stuff

Shut up already!

Some installations of KDE come preconfigured 5. Press the More Options button.
to make a joyous noise unto the user. You get
clicks, whistles, bongs, and whooshing effects.
Thrilling for 30 seconds, neat for a minute, mad- 7. Select Sounds from the pop-up menu next
dening after half an hour. Follow these steps to to the Turn Off All button.

turn the sounds off. 8. Click the Turn Off All button.
Blissful silence.

Don't like it? That's what the Turn On All button
3. Select the System Notifications heading. is for. If cacophony is your thing, go wild.

6. Find the Quick Controls panel.

1. Startup kcontrol.
2. Open the Sound and Multimedia panel.

4. In the pop-up menu to the right, select the
KDE Window Manager.

If you find yourself wanting to change those settings, one reliable way to get
to the settings program is to run the kcontrol program. You can run a com-
mand line in KDE by holding down the Alt key and pressing the F2 key. (Then
let go of the Alt key. It’s probably getting tired.) Type the command and press
Enter. You'll spend the most time playing with the Appearance & Themes sec-
tion at first. Try not to overdo it.

K applications

KDE provides a lot of desktop applications designed to share the look and
feel of the KDE window manager. Their names generally start with a K, to help
you recognize them. We list a few of the most common ones in Table 4-1.
These programs are probably going to be on the toolbar at the bottom of the
screen, if you haven’t gotten around to customizing it yet.

Table 4-1 K Applications
Application What It Does
Konqueror File management and Web browsing — it's both a floor

wax and a dessert topping!

KMail Standard e-mail program

Chapter 4: Opening Windows on UNIX 69

Application What It Does

KOffice An office suite — what did you expect?
KWrite Word processor — part of KOffice
KSpread Spreadsheet — part of KOffice

KBear Graphical FTP client

KBiff E-mail notifier

The best part about these applications — and you hear this a lot about soft-
ware for X — is that they’re free. They aren’t 100 percent compatible with
some of the big-name office software you might see, but they’re pretty good,
and you can’t beat the price. Konqueror is a combination file manager and
Web browser, which works a little like a program called Explorer you might
see elsewhere.

Of course, you don’t have to use these programs. You can use whatever you
want under KDE. These programs are just the ones that fit in the best with the
rest of KDE, using the same kinds of buttons and other window controls. Give
them a try, though. A lot of people find that these programs do their jobs just
fine. Konqueror is particularly impressive; a remarkably good Web browser,
which is why Apple used it as the basis for its new Safari browser for the
Macintosh. See Chapter 17 for details about Kmail, the KDE e-mail program.

Don’t want to be productive? KDE comes with a lot of games. Every distribu-
tion has a different set of games, but there are enough of them to keep you
entertained for a long time. If you try KPatience, don’t forget to look in the
Game Type submenu of the Settings menu — it plays more than one game,
and you may like the others better.

Why biff?

According to the Jargon File, biffis a verb:

“To notify someone of incoming mail. From the
BSD utility hiff(1), which was in turn named after
a friendly dog that used to chase frisbees in the
halls at UCB while 4.2BSD was in development.
There was a legend that it had a habit of barking

whenever the mailman came, but the author of
biff says this is not true.”

We don't care whether Biff actually barked at
the mailman; programs that alert you to incom-
ing mail are still called biff.

70

Part ll: Some Basic Stuff

Getting around

Getting around in KDE is pretty straightforward, except that the potential to
change themes all the time makes giving much advice hard. If a button has an
X, it probably closes a window. You can generally move windows by dragging
the title bar, and resize them by dragging their corners. A right-click generally
gives you a menu. Right-clicking the desktop itself gives you a top-level menu.
Right-clicking a title bar gives you a selection of window options.

The file manager (which is actually our old friend Konqueror) is almost
entirely predictable. It does have one little surprise for you, though. By
default, it activates everything with a single click! So, if you're used to double-
clicking, you may well launch things twice. This makes more sense on Web
pages than for file management. If you want to select a file (without opening
it), you must use Control-click or Shift-click. Shift-clicking two files also
selects all the files between them; Control-clicking multiple files just selects
the files you clicked.

KDE, like CDE, offers multiple workspaces. This is a good feature, and surpris-
ingly hard to live without once you get used to it. However, in KDE, they’re
called desktops. It’s still a great feature, and we really recommend you play
around with it a bit. Having one desktop with nothing on it but a maximized
browser window can be awfully convenient.

If you want to know more, try the online help. Right-click the desktop, and
look at the Help submenu. Lots and lots of goodies are in here! KDE is way
too large for us to cover it completely here, so we entrust you to the capable
writers who have done the KDE documentation.

Say goodnight, Gracie!

You ran KDE, but now you’re done? Look for the Logout option on the main
KDE menu. You can also lock the screen, which means that no one else can
do anything but watch the screen saver unless someone guesses your pass-
word. If you're going to be gone for a while, logging out is more polite. KDE
may also offer you the chance to turn your computer off entirely when you
ask to log out. If you're on some kind of shared system, don’t do that, just
log out.

Chapter 4: Opening Windows on UNIX

A moving target

The descriptions of KDE and GNOME in this book
are based mostly on KDE version 3.1 and GNOME
version 2.2. Unlike CDE, KDE and GNOME are
being actively developed, changed, updated, and
revised. You might get a few surprises using

newer or older versions, or even just versions
that are configured differently by whoever com-
piled them. Any major release of these environ-
ments should work fine, though, so don't worry
too much.

Vou Mean the Little Guys with the Hats?

Another desktop environment you might see is GNOME. It’s supposed to be
pronounced with a hard “g” — “guh-NOME.” GNOME is started by running a
program called gnome-session. GNOME comes with a large variety of
themes and styles. In fact, you can configure GNOME to look enough like KDE
to really annoy people who are expecting it to behave exactly the same, too.

GNOME is yet another complete desktop environment — icons, little pointy-
clicky things, menus, the whole nine yards. If your system comes with GNOME,
but not with CDE, that’s fine. GNOME does all the same kinds of things. It’s just
a matter of personal preference, or what happens to be installed.

In Figure 4-13, you see a reasonably typical GNOME desktop. The bar at the
bottom of the screen holds buttons for common activities, some of which
bring up menus. The button that looks like a little computer monitor with a
>_ in it opens a terminal window, which is handy if you want to take a break
from the stressful world of mice and graphics and just type a little. Click the
foot icon at the lower-left to open the main menu. This menu is where you
find a lot of cool toys, such as the GNOME Control Center.

Themes

Depending on your configuration, GNOME can look confusingly similar to cer-
tain other desktop environments. It won’t be the same, but it may be comfort-
ing, or it may be confusing. You can customize it a great deal. How? Start the
GNOME Control Center application, and double-click the Theme icon. Play
around. The most fun is to be had playing around with the Details button,
which lets you mix and match parts of different themes. You can also, of
course, come up with something totally unlike any other environment, and
that may be the most fun you can have.

/1

72

Figure 4-13:
A sample
GNOME
desktop.
|

Part ll: Some Basic Stuff

(e =@
= File Edit View Go Bookmarks Help
@Back ~ B ~ & & @I ﬁ Home .
Location: |start—here:ﬂ! —'.\-J-' @
Information ~ % | ae 25

Applications Desktop
Preferences
% =
Start Here =

folder, 4 items

today at 2:31:20 PM Server Settings System Settings

Y

Tue Aug 26
2:41 PM

If you’re from a Mac environment, and you miss the menu bar at the top of
the screen, you can have it back, sort of. If you right-click the bar at the
bottom of the screen, click the New Panel item on the pop-up menu and
choose the Menu Panel item. It’s not the same as the Mac’s menu bar — for
instance, programs won'’t put their menus up there, which makes it sort of
silly. But it looks a bit similar, and you can put common menus up there. At
least it has rounded corners!

A little unsure of how to tell a lawn gnome from Traditional garb
the GNOME desktop environment? Here's a
quick checklist.

Telling lawn gnomes from GNOME

Consistent look and feel

Has a beard Has an e-mail client

Lawen gnome The GNOME desktop Made of ceramic Written in C++
environment Hand-painted Custom themes
Wears pointy Runs on Red Hat Silent ‘G’ Hard ‘G’

red hat

Chapter 4: Opening Windows on UNIX

GNOME applications

Like KDE, GNOME provides a handful of applications that share its look and
feel settings. The names aren’t as standardized as the KDE ones — you can’t
just tack a K on the front of a word and expect it to do something — but it
sounds cooler that way. Table 4-2 lists some of the more common GNOME
applications.

Table 4-2 Common GNOME Applications
Application What It Does

Evolution E-mail client

Nautilus File manager

Galeon Web browser

GNOMLE, like KDE, comes with a broad selection of games to play. Tired of
Solitaire? There are a dozen more games where that came from. The exact set
of games installed varies from one system to another, but you can count on
finding something more fun than working.

Evolution

Okay, we lied. Calling Evolution an e-mail client is like calling an aircraft car-
rier a biggish boat. Evolution does everything: contact management, schedul-
ing, synchronizing with a Palm Pilot, you name it. But it also does e-mail. It’s a
lot like Outlook Express, only it won’t send e-mail to your entire address book
saying you love them. See Chapter 17 for details about the e-mail parts of
Evolution.

Getting around

GNOME offers multiple workspaces, which are all the rage in UNIX window
managers, and has the same basic approach to interfaces that KDE does.
Right-clicking is almost always a good bet if you want options. For instance, if
you want to move a window from one workspace to another, just right-click
the title bar, and select one of the Move options.

If you're looking for help, try pressing F1 whenever you're lost or confused.
Most of the time, GNOME brings up some online help for you.

/3

74

Part ll: Some Basic Stuff

A few buttons are generally on the panel at the bottom of the screen, next

to the GNOME menu. If you right-click any of the buttons, you can remove

or change it. If you right-click an empty part of the bar, you can add a new
button, or one of the mini-apps designed to run there, such as a clock. Right-
click the bar, select the Add to Panel option from the pop-up menu, and look
at all the options you get. Note that it matters where you click. A new item is
placed near where you clicked; it won’t be shoved over by the other items on
the panel.

Sooner or later, you'll want to quit. When that time comes, just select the Log
Out option from the main GNOME menu. Now you can mutter “I can quit any
time [want” under your breath, and make people nervous.

Terminal Happenings

Even though X Windows enables you to run all the coolest, awesomest, newest,
most graphicalest programs, guess which program people use the most? It’s
called xterm, and all it does is act like the kind of VT100 dumb terminal that
window systems are supposed to save us from. Such are the ways of progress.

The xterm program is one of the oldest programs that runs under X, and it
has the greasy fingerprints of a dozen generations of programmers. As the
README file in its source code notes, “This is undoubtedly the most ugly pro-
gram in the distribution.” Although xterm has more than 70 exciting options
on its command line alone, we don’t tell you about them.

Click, click

One place where xterm acts a little better than the dumb terminal it purports
to emulate is in mouse handling. You can select text with the mouse and then
paste the selected text into either the same or a different xterm window.

To select some text, move the mouse to the beginning of the text, press down
the first (left) mouse button, and move the mouse to the end of the text. As
you move the mouse, the selected text changes color. When you select it

all, let go of the mouse button. Normally, xterm selects text character-by-
character; if you double-click rather than just press the mouse button, how-
ever, it selects by word, and if you triple-click, it selects by line. Users who
don’t believe in walking and chewing gum at the same time have an alterna-
tive way to select text: Move to the beginning of the selection, click the left
button, and then move to the end of the selection and click the right button.

Chapter 4: Opening Windows on UNIX

\\J

|
Figure 4-14:
A few
xterm
menu
options.
|

Either way, after you select the text, move the mouse to the window where
you want to paste it and click the middle button. If, after you select the text, a
program erases the window, you can’t see the selection anymore, although
it’s still there and you can still paste it.

Because most other programs that have text type-in areas use the same mouse
conventions xterm does, you can select text from an xterm and paste it into
other programs and vice versa.

Coming in for a save

The other thing that makes xterm occasionally useful is that you can save in a
log file a transcript of what goes on in the window. To turn on logging, move the
cursor into the xterm window, hold down the Ctrl key with your nonmouse
hand, and then press and hold down the left mouse button to get a little menu
like the one shown in Figure 4-14. Next, move the mouse down to Log to File,
and let go of the mouse button. (This sequence isn’t quite as hard as it sounds,
fortunately.) A bunch of other options are on that menu, none of which we rec-
ommend other than the self-explanatory Redraw Window and Quit.

Main Options

Secure Keyboard
Allow SendEvents
Log to File
Redraw Hindow
Send STOP Signal
Send COHT Signal
Send IHT Signal
Send HUP Signal
Send TERH Signal
Send KILL Signal
Quit

After that, everything you type in that window — including all the back-
spaces and other correction characters to remind you of what a rotten
typist you are and everything UNIX types back — is written to a file. Which
file? The answer varies, although it’s usually a file in your home directory
called XtermlLog.12345, where the last five digits are made up to be unique.
Type Is Xterm™*, and you’ll probably find it. When you finish, to turn off the
log, do the same Ctrl-and-mouse dance and choose Log to File again (it’s
checked to remind you that logging is turned on).

75

76 Part Il: Some Basic Stuff

QNG
& Logging is an optional feature of xterm, and some systems have logging
turned off permanently. In that case, if you try to turn on logging, the terminal
just beeps.

One last stupid xterm trick

If the text in your xterm window is insufficiently or excessively legible, you
can make the type larger or smaller. Hold down the Ctrl key and press the
right mouse button to display the xterm VT Fonts menu, from which you
can select font sizes ranging from Unreadable to Huge. We recommend the
Unreadable font, which scrunches your typical 80x40 character text window
to a one-inch square that is indeed unreadable. When you tire of that option,
choose the Default font to return things to normal.

Chapter 5
Files for Fun and Profit

In This Chapter
Naming files for the Web

Listing information about files

Showing who has permission to use files
Duplicating a file

Erasing a file

Renaming a file

Looking at what’s in a file

Printing a text file

Giving a file to someone else

A file is a bunch of information stored together, such as a letter to your
mom or a database of customer invoices. Every file has a name. You end
up with tons of them.

This chapter explains how to work with files, including getting rid of the ones
you no longer want.

As a reminder, you must log in (as described in Chapter 1) before you can do
any of the nifty things we talk about in this chapter. When you see the UNIX
prompt (% or $), you're ready to rock and roll.

What Files Do You Have?

To see a list of your files (actually, a list of the files in the working directory,
which Chapter 6 covers), type Is and press Enter. (This is positively the last
time we nag you to press Enter.)

This command stands for list, but could the lazy typists who wrote UNIX
have used the other two letters? No-0-0-0-0. This command lists all the files in

/8

3

Part ll: Some Basic Stuff

@\)X

your working directory. (Chapter 6 discusses directories and how to make

lots of them.) The 1s command just shows the names of the files in alphabeti-

cal order, like this:

bin/
jordan

budget-02

Mail/ meg

budget-03 budget-04 daveg draft

news.junk zac

In some Linux systems, if the directory contains subdirectories, the subdirec-

tory names appear in a different color (if your screen handles colors), which
is very handy. In BSD UNIX, subdirectory names also have a slash after them.
(Chapter 6 talks about subdirectories, if you're wondering what we are talk-

ing about.)

Let’s see the nitty-gritty details

For more information about your files, use the -1 option (long form listing):

Ts -1

That’s a small letter /, by the way, not a number one. This option tells 1s to
display tons of information about your files. Each line looks like this:

“rW-r--r-- 1 johnl

users

250 Apr 6 09:57 junk3

Later in this chapter, in the section “Who can do what?” we explain all the
information in this listing. For now, just notice that the right-hand part of the
line shows the size of the file (250 characters, in this example), the date and
time the file was last modified, and the filename.

For shell-less Web site owners

A lot of people use UNIX only because they
happen to have a Web site that's physically
located on a UNIX machine. If you're one of
these reluctant UNIX just-barely-users, you
probably don't have access to a UNIX shell, but
instead only use an FTP program to move files
to and from your Web server (see Chapters 19
and 20).

Perhaps surprisingly, most of what's in this
chapter still applies to you. All the same rules
about filenames and permissions still apply, and

most FTP programs have an 1s command that
works about the same as the shell version.

When you're choosing names for your files,
remember that upper- and lowercase are dif-
ferent, so you probably should make them all
lowercase. Web servers use the filename to
determine the type of material in a file, so HTML
Web pages end with . htm1, GIF icons with
.g1f,JPEG pictures with . jpeg, and so forth.
(Unlike some other systems, UNIX systems do
not encourage you to abbreviate all the file
types to three letters if the name is longer.)

Chapter 5: Files for Fun and Profit

To switch or not to switch?

Lots of UNIX commands have options. (They are
also called switches because you switch the
options on and off by typing or not typing them
when you type the command. True geeks call
them flags.) Options make commands both more
versatile and more confusing. Probably the most
widely used option is the -1 option for the 15
command, which tells 1s to display lots of infor-
mation about each file. When you type a com-
mand with one or more options, keep this list of
rules handy:

v Leave a space after the command name
(the command 15, for example) and before
the option (the -1 part).

v Type a hyphen as the first character of the
option (-1, for example).

v Type a space after the option if you want to
type more information on the command line
after the option.

v If you wantto include more than one option,
type another space, another hyphen, and
the next option. You can usually string mul-
tiple options together after one hyphen; for
example, -al means that you want option
a and option 1.

Making files come out of hiding

You may have more files in your directory than you think. UNIX enables you
to make things called hidden files, which are just like regular files except that

they don’t appear in normal 15 listings. Making a hidden file is easy — just

start its filename with a period.

You can see your hidden files by typing

Is -a

To see all the information about your hidden files, type

Ts -al

This command combines the -a and -1 options together so that you see the

long version of the complete listing of files. You can get the same thing by

typing

1s -a -1

but that requires typing an extra character and an extra space, an anathema

to lazy UNIX typists.

79

80 Part ll: Some Basic Stuff

a\\J

Making a long listing stop and
start when you're ready

If you have a large number of files, the 1s listing after the basic 1s command tells UNIX to stop
may fly right off the top of your screen. If you listing information to the screen just before the
have this problem, type this line: firstfile disappears from view. Press the space-

1s | more bar to see the next screen of filenames.

The vertical bar is called a pipe (we talk more
about the pipe in Chapter 7). The | more option

Roger, 1 Copy

You can make an exact duplicate of a file. To do it, you must know the name
of the file you want to copy, and you must create a new name to give to the
copy. If a file contains your January budget (called budget. jan, for example)
and you want to make a copy of it to use for the February budget (to be
called budget. feb, for example), type this line:

cp budget.jan budget.feb

The lazy typists strike again. Be sure to leave spaces after the cp command
and between the existing and new filenames. This command doesn’t change
the existing file (budget. jan); it just creates a new file with a new name, and
with the same contents.

A good way to lose some work

QNING/ What if a file named budget . feb already exists? Tough cookies! UNIX blows it
Sy away and replaces it with a copy of budget. jan. It truly is an excellent idea
to use the Ts command first to make sure that you don’t already have a file
with the new name you have chosen.

In most versions of UNIX, however, you can use the -1 option to ask cp to
inform you whether a file with the new name already exists. If it does, the -1
option asks you whether to proceed. Type cp -i rather than just cp to use this
nifty little feature.

Chapter 5: Files for Fun and Profit 8 ’

If all goes well and cp works correctly, it doesn’t show you any message.
Blessed silence on the part of UNIX usually means that all is well. You should
use the Ts command to check that the new file really does exist, just in case.

What’s in a name?

When you create a file, you give it a name. UNIX has rules about what makes
a good filename:

v~ Filenames can be pretty long; they’re not limited to eight characters
and a three-character extension. In older versions of UNIX, the limit is
14 characters for a filename; newer versions have a huge limit — in the
hundreds of characters — so you can call a file
Some_notes_I plan_to_get_around_to_typing_up_eventually_if
_I_Tlive_that_long.

+ Don’t use weird characters that mean something special to UNIX or
some shell you may encounter. Stay away from these characters when
you name files:

< > ' "

() o~
[# |
C) $ 7

Stick mainly to letters and numbers.

1 oo — *

+* Don’t put spaces in a filename. Although most programs let you put
them in, spaces cause nothing but trouble because other programs simply
cannot believe that a filename may contain a space, and because in shell
commands, spaces separate filenames. Don’t borrow trouble. Most UNIX
people use periods to string together words to make filenames, such as
budget.jan.98 or pumpkin.soup. Underscores work, too.

+ UNIX considers uppercase and lowercase letters to be completely dif-
ferent. Budget, budget, BUDGET, and BuDgEt are all different filenames.

Nuking Files Back to the Stone Age

You can also get rid of files by using the command the lazy typists call rm. To
erase (delete, remove — it’s all the same thing) a file, type

rm budget.feb

82

Part ll: Some Basic Stuff

WING/
&

If all goes well, UNIX reports nothing, and you see another prompt. Use 1s to
see whether the rm command worked and the file is gone.

Watch out! Under most circumstances, you have no way to get a file back
after you delete it.

To be safe, you can use the -7 option to ask rm to ask you to confirm deletion
of the file. This is a particularly good idea if you use wildcards to delete a
group of files all at one time (see Chapter 7 for more info about wildcards).
For example, if you type

rm -i last-years-budget
UNIX asks:
rm: remove " last-years-budget'

Press the y key to delete the file or the n key to leave it alone.

Big, big trouble

If you delete something really, really important and you will be called on to
perform ritual seppuku if you can’t get it back, don’t give up hope. Your local
UNIX guru should make things called backups on some regular basis. Backups
contain copies of some or all of the files on the UNIX system. Your files may
be among those on the backup. Go to the guru on bended knee and ask
whether the file can be restored. If the file wasn’t backed up recently, you
may get an older version of it, but hey — it’s better than the alternative.

Even before you get yourself into this kind of pickle, you may want to ask
your UNIX expert to confirm that regular backups are made. Make sure that
your important files are included in the backups. If no one is making regular
backups, panic! This is not a safe situation. You had better talk to your
system administrator about getting a backup system.

Good housekeeping

You should get rid of files you no longer use, for several reasons:

v Having all kinds of files lying around becomes confusing, and remember-
ing which ones are important is difficult.

v~ Useless files take up disk space. Whoever is in charge of your UNIX system
probably will bother you regularly to “take out the garbage,” that is, to get
rid of unnecessary files and free up some disk space.

Chapter 5: Files for Fun and Profit

P On the other hand, making extra copies of files can be a good idea. If you
have been working on a report for three weeks, making an extra copy every
day or so isn’t a bad idea. That way, if you make some revisions that, in hind-
sight, are stupid, you can always go back to a previous revision.

What's in a Name (Reprise)

Having given a file a name, you may want to change it later. Maybe you spelled
it wrong in the first place. In any case, you can rename a file by using the mv
(lazy typist-ese for move) command.

Suppose that you made a file called bugdet.march. Oops, dratted fingers. . . .
Type the following line to correct the error in the filename:

mv bugdet.march budget.march

After mv, you type the current name of the file and then the name you want to
change it to. Note that it can be harder to retype the same typo than to type
the name correctly!

Q&“X Because you can’t have two files with the same name in the same directory, if
a file already has the name you want to use, mv thoughtfully blows away the
existing file (probably not what you want to do). You can use mv -1 (like cp
-1) to prevent inadvertent file clobbering.

W Want to hide a file so that it doesn’t appear in your directory listing? Use a
period (.) as the first letter of the filename. To see all your files, including
hidden files, type

1s -al

Looking at the Guts of a File

Although we have been slicing and dicing files for a while now, you still
haven’t seen what'’s inside one. Two basic types of files exist:

v Files that contain text that UNIX can display nicely on-screen
v Files that contain special codes that look like monkeys have been at the

keyboard when you display the files on-screen

The first type of files are called text files. The second type is composed of
spreadsheet files, database files, program files, and just about everything
else. Text editors make text files, as do a few other programs.

83

84

Part ll: Some Basic Stuff

\\J

To display a text file, type this line:
cat eggplant.recipe

If you want to see the guts of a file that isn’t named eggplant.recipe, sub-
stitute your file’s name. The cat stands for catalog, or maybe catenate — who
knows? We'’re surprised that the lazy typists didn’t call it something like g. If
you try to use cat with a file that doesn’t contain text, your screen looks like
a truck ran over it — but you won’t hurt anything. Sometimes the garbage in
the file can put your terminal in a strange mode in which characters you type
don’t appear or appear as strange Greek squiggles. See Chapter 22 to learn
how to “un-strange” your terminal.

If the file is long, the listing goes whizzing by. (You find out how to look at the
file one screen at a time in Chapter 7.) To see just the first few lines of the file,
you can type this line:

head eggplant.recipe

Most versions of the head command display the first ten lines.

You can ask UNIX to guess at what’s in a file, by using the fi1e command. If
you type

file filename

(replacing 7 7ename with the name of the file you're wondering about), UNIX
takes a guess at what’s in the file, by looking at it. It says something like this:

letter.to.jordan: ascii text
or this
unix4d: directory

Is This a Printout 1 See Before Me?

If a file looks okay on-screen when you use the cat command, try printing the
file. If you use UNIX System V, type this line to print your famous eggplant dish:

1p eggplant.recipe
If you use BSD UNIX or Linux, type

Ipr eggplant.recipe

Chapter 5: Files for Fun and Profit 85

Assuming that you have a printer that’s hooked up, turned on, has paper, and
that your username is set up to use it, the eggplant.recipe file prints. If it
doesn’t, see Chapter 9 to straighten things out. If your computer is blessed
with a network, the printed copy may come out down the hall or on another
floor. In one inexplicable case, when users in New York printed any file, the
copies ended up on a printer somewhere in Japan. If your printer isn’t attached
directly to your computer, you probably have to ask for advice about where to
pick up the printout. If you can print files on more than one printer, you use the
-d or -P option with the printer name to tell UNIX which printer you want to
use, as described in see Chapter 9.

Who Goes There?

Unlike some operating systems we could name (such as . . . oh, Microsoft
Windows, f’rinstance), UNIX was designed from the beginning to be used by
more than one person. Like all multi-user systems, UNIX keeps track of who
owns what file and who can do what with each file. Permissions attached to
each file and directory determine who can use them.

Permissions come in three types:

1 Read permission: Enables you to look at a file or directory. You can use
cat or atext editor to see what’s in a file that has read permission. You
also can copy this type of a file. Read permission for a directory enables
you to list the directory’s contents.

1 Write permission: Enables you to make changes to a file. Even if you
can write (change) a file, you can’t necessarily delete it or rename it; for
those actions, you must be able to write in the directory in which the file
resides. If you have write permission in a directory, you can create new
files in the directory and delete files from it.

1 Execute permission: Enables you to run the program contained in
the file. The program can be a real program or a shell script. If the file
doesn’t contain a program, execute permission doesn’t do you much
good and can provoke the shell to complain bitterly as it tries (from its
rather dim point of view) to make sense of your file. For a directory, exe-
cute permission enables you to open files in the directory and use cd to
get to the directory to make it your working directory.

Rock groups, pop groups,
and UNIX groups

Every UNIX user is a member of a group. When the system administrator cre-
ated your username, she assigned you to a group. To see which group you're
in, type

86

Part ll: Some Basic Stuff

id
You see something like this:

uid=113(margy) gid=102(guest) groups=102(guest),101(book),
103(cheese)

Groups usually indicate the kind of work you do. UNIX uses groups to give a
bunch of people the same permissions to use a set of files. All the people who
work on a particular project are usually in the same group so that they can
look at and perhaps change each other’s files.

If you are part of the accounting department, for example (it’s a dirty job, but
someone has to do it), you and the other accounting staff members may need
read, write, and execute access to basically the same files. People in other
departments should not have the same access to accounting programs and
data. The system administrator probably made a group called something like
acctg and put all you accounting boys and girls in it.

In Linux and BSD, you can be in several groups at a time, which is handy if
you’re working on several projects. To find out what groups you’re in, type
groups.

That’s mine!

Every file and directory has an owner and a group owner. The owner is usually
the person who made the file or directory, although the owner can sometimes
change the ownership of the file to someone else. The group owner is usually
the group to which the owner belongs, although the owner can change a file’s
group owner to another group.

If you use Linux or System V, you can change who owns a file with the chown
command (described later in this chapter).

Who can do what?

To see who can do what to a file, use the 1s command with the -1 option.
Type this line:

Ts -1 myfile
You see something like this:

=F=r==p== 1 margy staff 335 Jan 22 13:23 myfile

Chapter 5: Files for Fun and Profit 8 7

If you don’t specify a filename (in this case, myfile), UNIX lists all the files in
the directory, which is often more useful. For every file, this listing shows all
the following information:

v Whether it’s a file, symbolic link, or directory. The first character in
the line is a hyphen (-) if it’s a file, an [if it’s a symbolic link, and a d if it’s
a directory.

v Whether the owner can read, write, or execute it (as shown by the
next three characters, 2 through 4, on the line). The first character is
an r if the owner has read permission or a hyphen (-) if not. The second
character is a w if the owner has write permission or a hyphen (-) if not.
The third character is an x (or sometimes an s) if the owner has execute
permission or a hyphen (-) if not.

v Whether the members of the group owner can read, write, or execute
the file or directory (as indicated by the next three characters, 5
through 7). An r, w, or x appears if that permission is granted; a hyphen
(-) appears if that permission is not granted.

v Whether everyone else can read, write, or execute the file or direc-
tory (as indicated by the next three characters, 8 through 10). An r, w,
or x appears if that permission is granted; a hyphen (-) appears if that
permission is not granted.

v The link count, that is, how many links (names) this file has. For directo-
ries, this number is the number of subdirectories the directory contains
plus 2 (don’t ask).

1 The owner of the file or directory.

v The group to which the file or directory belongs (group owner).
v~ The size of the file in bytes (characters).

v The date and time the file was last modified.

v The filename — at last!

Permissions by number

Figuring out which permissions a file has by looking at the collection of rs,
ws, and xs in the file listing is not too difficult. Sometimes permissions are
written another way, however: with numbers. Only UNIX programmers could
have thought of this method. (It’s an example of lazy typists at their finest.)
Numbered permissions are sometimes called absolute permissions (perhaps
because they are absolutely impossible to remember).

Part ll: Some Basic Stuff

Why those numbers?

You may well ask why those particular numbers
are assigned to permissions. They weren't
assigned at random. For those of you who
remember New Math from fourth grade, all this
makes sense if you think in binary (base 2).

Think of every permission digit as a three digit
binary number, like 010 (that's binary for 2). The
first digitis 1 if you have read permission, or 0 if

you don't. The second digitis 1if you have write
permission, or 0 if you don’t. The third digit is 1
if you have read permission, or 0 if you don't.

So, the permission digit 6, which is 110 in binary,
means that you can read and write, but not exe-
cute. If this subject still doesn't make sense, find
a fourth-grader to work it out for you.

When permissions are expressed as a number, it’s a three-digit number. The
first digit is the owner’s permissions, the second digit is the group’s permis-
sions, and the third digit is everyone else’s permissions. Every digit is a
number from 0 to 7. Table 5-1 lists what the digits mean.

Table 5-1 Absolute Permissions Decoded
Digit Permissions

0 None

1 Execute only

2 Write only

3 Write and execute

4 Read only

5 Read and execute

6 Read and write

7 Read, write, and execute

It Mom says no, go ask Dad

If you own a file or directory, you can change its permissions. You use the
chmod (for change mode) command to do it. You tell chmod the name of the
file or directory to change and the new permissions you want the file to have

Chapter 5: Files for Fun and Profit 89

Q““X

for yourself (the owner), your group, and everyone else. You can either type
the numerical absolute permissions (such as 440) or use letters.

To use letters to type the new permissions, you use a cryptic collection of let-
ters and symbols that consists of the following:

v Whose permissions you are changing: u for user (the file’s owner), g for
the group, o for other (everyone else), or a for all three.

v~ If the permission should be on or off: + (on, yes, OK) or - (off, no, don’t
let them).

v The type of permission you’re dealing with: r for read, w for write, and
x for execute.

Type the following line, for example, to allow everyone to read a file called
announcements:

chmod a+r announcements

This line says that the user or owner, the group, and everyone else can read
the file. To not let anyone except the user or owner change the file, type

chmod go-w announcements

You can also use numeric (absolute) permissions with chmod. To let the user
or owner and associated group read or change the file, type

chmod 660 announcements

This line sets the owner permission to 6 (read and write), the group permis-
sion to 6 too, and everyone else’s permission to 0 (can’t do anything).

You can change the permissions for a directory in exactly the same way you
do for a file. Keep in mind that read, write, and execute mean somewhat dif-
ferent things for a directory.

Finding a new owner

When someone gives you a file, he usually copies it to your home directory.
As far as UNIX is concerned, the person who copied the file is still the file’s
owner. In Linux and System V, you can change the ownership of a file you own
by using the chown command. (BSD users have to get the system manager’s
help to change a file’s owner.)

90

Part ll: Some Basic Stuff

\\J

You tell chown the new owner for the file and the filename or filenames whose
ownership you are changing, as shown in this example:

chown john chapter6

This command changes the ownership of the file named chapter6 to john.
Keep in mind that only you can give away files you own; if you put a file in
someone else’s directory, it’s polite to chown the file to that user.

Another way to change the owner of a file is to make a copy of the file. Suppose
that Fred puts a file in your home directory, and he still owns it. You can’t use
chown to change the ownership because only the owner can do that (we have
a chicken-before-the-egg problem here). You can get ownership of a file if you
copy the file. When you copy a file, you own the new copy. Then delete the
original.

File seeks new group; can sing,
dance, and do tricks

If you own a file or directory, you can change the group that can access it.
The chgrp command enables you to change the name of the group associ-
ated with the file, as shown in this example:

chgrp acctg billing.list

This command changes the group associated with the file biT1Ting.Tist to
the group called acctag.

Chapter 6
Directories for Fun and Profit

In This Chapter

Defining a directory

Getting to the right directory

Defining a home directory

Making a new directory

Erasing a directory

Renaming a directory

Moving a file from one directory to another
Organizing your files

A map of UNIX

Fles are great — they’re where you store all your important information,
as well as where UNIX itself and all your programs are stored. UNIX sys-
tems have, in fact, tens of thousands of files, even before you create a single
one. Imagine typing your 1s command and getting a list of 10,000 filenames.
Not pretty (or fast).

To avoid this situation, UNIX has things called directories, which enable you
to divide your files into groups. This chapter explains how to organize your
UNIX files into directories and how to find things after you have done so.

Good News for Windows Users

We have good news about UNIX directories for you experienced Windows
users who occasionally use commands in a DOS window. They work almost
exactly the same as Windows directories do. Actually, it’s the other way
around: A guy named Mark added directories to DOS back in 1982 and ripped
off . . . er, emulated the way UNIX did things — with a few confusing changes,
of course.

92 Part Il: Some Basic Stuff

Briefly, Windows users should know the following information about UNIX
directories:

v All those backslashes (\) you learned to type in Windows turn into
regular slashes (/) in UNIX. For some reason, Mark decided that DOS
slashes should lean backward. We'’re sure that he had a very good
reason, of course — maybe the / key on his keyboard was broken.

v The UNIX cd (change directory) command works (more or less) like the
DOS window CD command; remember not to capitalize it in UNIX.

v The UNIX command for making a directory is mkdir rather than the DOS
window MD command. To remove a directory in UNIX, you use the rmdir
command rather than the DOS window RD command. Don’t capitalize
these commands, either.

v As always, UNIX believes that uppercase and lowercase letters have
nothing to do with each other. Because the two types of letters are com-
pletely different, be sure to use the correct capitalization when you type
directory names and filenames.

If you understand directories and paths intuitively from your vast experience
with PCs, skip to the sidebar “Getting the big picture,” later in this chapter.

What Is a Directory?

A directory, for the rest of you people, is a group of files or a work area.
(Windows and Macintosh users may recognize it as a folder.) You give a direc-
tory a name, such as Budget or Letters or Games or Harold. You can put as
many files in a directory as you want.

The good thing about directories (also sometimes called subdirectories, for
no good reason) is that you can use them to keep together groups of related
files. If you make a directory for all your budget files, those files are the only
ones you see while you are working in that directory. Directories make con-
centrating on what you are doing easy so that you're not distracted by the
zillions of other files on the hard drive.

You can make directories, move files into them, rename directories, and get

rid of them. This chapter describes the commands that perform each of
these stunts.

Divide and Conquer

Interestingly, a directory can contain other directories. You may have a direc-
tory called Budget, for example, for your departmental budget. The Budget

Chapter 6: Directories for Fun and Profit

|
Figure 6-1:
Atree-
structured
directory.
|

directory may contain several other directories (also called subdirectories)
such as Year2003, Year2004, and Estimates. If a directory contains so
many files that you can’t find things, you should create some subdirectories
to divide things up.

Files and directories are stored on hard drive. Every hard drive has a main
directory that contains everything on the disk. This directory is called the
root directory. The designers of UNIX were thinking of trees here, not turnips.
They imagined an upside-down tree with the root at the top and the branches
reaching downward, as shown in Figure 6-1. This arrangement of directories
is called a tree-structured directory.

Root directory
I
| I
Budget Recipes
I I
| | pumpkin.soup
Year 2003 Year|2004 tiramisu

freds-04-budget
sues-04-budget

Strangely, you don’t type root when you’re talking about the root directory.
Rather, you press /. Just like that: A single slash means “root” in UNIX-ese.

Paths to power

Unfortunately, UNIX never shows you the directory structure as a nice pic-
ture, as shown in Figure 6-1. That would be too easy. Rather, to tell UNIX
which file you want to use, you type its pathname. The pathname is the step-
by-step map UNIX follows to get to a file, starting at the root. The pathname
for the file named freds-04-budget in Figure 6-1, for example, contains
these steps:

v /: The root, where you start.

v Budget: The name of the first directory you move to on your way to the
file.

v /: Confusingly, this slash doesn’t refer to another root; it’s just the char-
acter used to separate one name from the next in a pathname.

v Year2004: The next directory on your way to the file.
v /: Another separator character.

v freds-04-budget: The filename you want.

93

94

Pa

\\3

rt Il: Some Basic Stuff

When you type this pathname, you string it all together, with no spaces:

/Budget/Year2004/freds-04-budget

Luckily, you don’t often have to type big, long pathnames like this one; it’s
devilishly hard to get all that right on the first try!

Family matters

You can also think of the tree structure of directories as a family tree. In this
way of thinking, the Year2004 directory is a child of the Budget directory,
and the Budget directory is the parent of the Year2004 directory. You see
these terms sometimes if you read more about UNIX.

Names for directories

Choose names for directories in the same way as you choose names for files:
Avoid funky characters and spaces, and don’t make the name so long that
you never type it correctly, for example. Some people capitalize the first

letter of directory names to make it easier to tell what’s a directory and

what’s a file. When you type 15 to list the contents of a directory, the com-
mand lists both filenames and the names of subdirectories. When you use
capitalization to distinguish between directory names and filenames, you can

quickly tell which are which.

Getting the big picture

If you have a UNIX workstation that's all your
own, most or all of the files on its hard drive are
yours. If you connect from a PC and share a
UNIX computer with others, the computer's hard
drive hasfiles that belong to all the users. As you
canimagine, we are talking about oodles of files.
To keep the files — and users! — organized,
UNIX has lots of different directories.

UNIX has lots of directories for the UNIX pro-
gram files themselves, program files for other

programs, and other stuff you definitely are not
interested in. The files that belong to users
(such as yourself) usually are stored in one
area. A directory called /usr (or sometimes
/home) contains one subdirectory for every
user. If your username is zacyoung, for exam-
ple, the /usr directory contains a subdirectory
called zacyoung, which contains your files.

Chapter 6: Directories for Fun and Profit 9 5

There’s No Place Like Home

Every user has a home directory (sweet, isn’t it?) in which you store your
personal stuff, mail, and so on. When you log in, UNIX starts you working in
your home directory, where you work until you move somewhere else. Your
home directory is your subdirectory in the /usr/home (or /home) directory,
so Zac Young’s home directory is /usr/home/zacyoung. (Although Zac is
only 8 years old, he’s got plenty of stuff to put in his home directory.)

Because most UNIX systems involve lots of people sharing hard drive space
and files, UNIX has a security system to prevent people from reading each
other’s private mail or blowing away each other’s work (accidentally, of
course). Chapter 5 talks about the security system. In your home directory,
you usually have the right to create, edit, and delete all the files and subdirec-
tories. You can’t do that in someone else’s home directory unless the direc-
tory’s owner gives you permission.

I've been working in the divectory

Whenever you use UNIX, the directory you are working in is the working
directory. Some people call it the current directory, which also makes sense.

When you first log in, your home directory is your working directory. Although
you start in your home directory, you can move around. If you move to the
/Budget directory, for example, the /Budget directory becomes the working
directory. (Your home directory is still your home directory — it never moves.)

If you forget where you are in the directory structure, you can ask UNIX. Type
the following line to ask UNIX where you are:

pwd

This line is short for print working directory. UNIX doesn’t print the informa-
tion on paper; it just displays it on-screen. You see something like this:

/Budget/Year2004

When you use the 1s command (or most other UNIX commands), UNIX
assumes that you want to work with just the files in the working directory.
The 1s command lists just the files in the working directory unless you tell it
to look somewhere else.

90

Part ll: Some Basic Stuff

To move to another directory to do some work (if you're tired of working on
the budget and want to get back to that recipe for pumpkin soup, for exam-
ple), you can change directories. To move from anywhere in the /Budget
directory to the /Recipes directory, type this line:

cd /Recipes

Remember that cd is the change directory command. After the cd (and a
space), you type the directory you want to go to. You can tell UNIX exactly
which directory you want in two ways:

v Type a full pathname, or absolute pathname (the pathname starting at
the root, as you did earlier). In the /Recipes example, the slash at the
beginning of the pathname indicates that the pathname starts at the
root.

v Type a relative pathname (the pathname starting from where you
are now).

This stuff is confusing, we know, but UNIX has to know exactly which directory
you want before it makes the move. Because the hard drive can have more
than one directory called Recipes, UNIX has to know which one you want.

When you type a full pathname starting at the root directory, the pathname
starts with a /. When you type a relative pathname starting at the working
directory, the pathname doesn’t start with a /. That’s how UNIX (and you)
can tell which kind of path it is.

If you are in the /Budget directory (on the /Budget branch of the directory
tree) and want to go to the Year2004 subdirectory (a branchlet off the main
/Budget branch), for example, just type cd Year2004. To go to a different
branch or to move upward toward the root, you must type the slashes. To
move from the /Budget/Year2004 branchlet back to the main /Budget
branch, type cd /Budget. To move from the /Budget branch to the /Recipes
branch, for example, type cd /Recipes.

If you try to move to a directory that doesn’t exist or if you incorrectly type
the directory name or pathname, UNIX says:

Budegt: No such file or directory

(or whatever directory name you typed).

1 want to go home!

If you move to another directory (/0z, for example) and want to get back to
your home directory (/Kansas, that is), you can do so as easily as clicking

Chapter 6: Directories for Fun and Profit 9 7

the heels of your ruby slippers three times. (Or were they glass slippers?)
Just type this line:

cd

When you don’t tell UNIX where you want to go, it assumes that you want to
go home.

Putting Vour Ducks in a Row

As with everything else in life (if we may be so bold as to suggest it), it pays
to be organized when you're naming files and putting them in directories. If
you don’t have at least a little organization, you will never find anything.
Think about which types of files you will make and use. (Word-processing
files? Spreadsheet files?) Then make a directory for every type of file or for
every project you're working on. This section shows you how.

Making directories

Before you create a directory, be sure that you put it in the right place.
Remember that you type the following line to display your working directory
(the current directory):

pwd

The most likely place to create a subdirectory is in your home directory. If
you're not there already, type this line to go back home:

cd

When you create a directory, you give it a name. To create a directory called
Temp to hold temporary files, type this line:

mkdir Temp
Many people have a directory called Temp to hold files temporarily. These
files can be the ones you need to keep just long enough to print, to copy to a
floppy disk or tape, or whatever. Anyway, you have one now, too. To confirm

that the Temp directory is there, type this line:

1s

98 Part ll: Some Basic Stuff

A\

You can even go in there and look around by typing the following (and press-
ing Enter after typing the first line):

cd Temp
1s

When you create a directory, it starts out empty (it contains no files).
Most people have directories with names something like these examples:

v Mail or Maildir: For electronic mail (see Chapter 17).
v Docs: For miscellaneous documents, memos, and letters.

v Temp: For files you don’t plan to keep. Use Temp to store files you plan
to throw away soon. If you put them in some other directory and don’t
erase them when you finish with them, you may forget what they are and
be reluctant to delete them later. Directories commonly fill up with junk
in this way. Make a rule that any files left in the Temp directory are con-
sidered deletable. Most UNIX systems also have a directory called /tmp
where anyone can stash temporary files for a while, which is emptied
every time the system is restarted.

v bin: For programs that you use but that aren’t stored in a central place.
Your system administrator may have already made you your own bin
directory. (See Chapter 12 for information about the bin directory and
making your own programs.)

You can also make one or more directories to contain actual work.

Dot and dot dot

UNIX has two funny directory names you can use — especially with the cd
and 1s commands. One is . (a single dot), which stands for the current direc-
tory. You type the following line, for example, to tell UNIX to list the files in
the current directory:

Ts .

This command is pointless, of course, because typing the following line does
exactly the same thing:

Ts

Okay, forget about . (the single dot). But . . (the double dot, or dot dot) is
useful. It stands for the parent directory of the working directory. The parent
directory is the one of which the working directory is a subdirectory. The

Chapter 6: Directories for Fun and Profit

parent is one level up the tree from where you are now. If you're in the direc-
tory /usr/home/zacyoung/Budget, for example, the .. (dot dot, or parent)
directoryis /usr/home/zacyoung.

Suppose that you type this line:

Is ..

You see a list of the files in the parent directory of where you are now. This
command can save you from some serious typing (and the associated errors).

Neat operations you can
perform on directories

After you have some directories, you may want to change their names or get
rid of them. You also may want to move a file from one directory to another.
This section shows you how to try that first.

Transplanting files

Chapter 5 describes the use of the mv command to rename a file. You can use
the same command to move files from one directory to another. To get the mv
command to move files rather than just rename them, you tell it two things:

v The name of the file you want to move

v The name of the path where you want to put the file

If you want, you can rename the file at the same time you move it, but we
like to keep things (comparatively) simple. Suppose that you put the file
sues.04.budget into the /Budget/Year2003 directory rather than in
/Budget/Year2004. The easiest way to move it is to go first to the directory
in which it is located. In this example, you type this line:

cd /Budget/Year2003

Use 15 to make sure that the file is in the current directory. After you are sure
that the file is there, you can move it to the directory you want by typing this
line:

mv sues-04-budget /Budget/Year2004

Be sure to type one space after mv and one space between the name of the
file and the place you want to move it to. If you use 1s again, you discover
that the file is no longer in the working directory (Year2003). You should

99

1 00 Part ll: Some Basic Stuff

WING/

change to the directory to which you moved the file and use 1s to make sure
that the file is there. Make one typing mistake in a mv command, and you can
move a valuable file to some unexpected place.

Amputating unnecessary directories

You can use the rmdir command to remove a directory, but what about the
files in the directory? Are they left hanging in the air with the ground blown
out from under them? Nope; you must either get rid of the files in the direc-
tory (delete them) or move them elsewhere before you can hack away at the
directory.

To erase a directory, follow these steps:

1. Use the rm command to delete any files you don’t want to keep.
(See Chapter 5 for the gory details of using this command.)

2. If you want to keep any of the files, move them to somewhere else by
using the mv command (as explained in the preceding section).

3. Move to some other directory when the directory you want to delete
is empty.

Deleting your working directory is usually a poor idea. The easiest thing
to do is to move to the working directory’s parent directory:

cd ..
4. Remove the directory by typing this line:
rmdir 01dStuff
Replace 07dStuff with the name of the directory you want to ax.

5. Use 1s to confirm that the directory is gone.

You can delete a directory and all the files in it or even a directory and all the
subdirectories and files in them, but this process is dangerous stuff. You usu-
ally are better off sifting through the files and deleting or moving them in
smaller groups. If you're interested in a really dangerous command, which we
shouldn’t even be telling you about, you can type rm -r to remove a direc-
tory and all its files and subdirectories in one fell swoop.

Renaming a directory

If you have used DOS, you will be thrilled to learn that in UNIX you can rename
a directory after you create it. (DOS didn’t let you do that, at least not in early
versions.) Again, the mv command comes to the rescue.

Chapter 6: Directories for Fun and Profit

To rename a directory, you tell mv the current directory name and the new
directory name. Go to the parent directory of the directory you want to
rename, and then use the mv command. To rename the /Budget directory to
the /Finance directory, for example, go to the / directory (type cd /) and
then type this line:

mv Budget Finance

égN\BEI? Make sure first that a directory with that name isn’t already there. If it is, UNIX
Y moves the first-named directory to become a subdirectory of the existing
directory. In other words, if a /Finance directory is already there, /Budget
moves to become /Finance/Budget. That could be handy, if that’s what you
have in mind. Then again, it could drive you out of your mind if that’s not what
you expect.

Putting Vour Ducks on the Web

Web sites on UNIX systems use directories, too. Many ISPs organize their Web
servers by user, so if your username is fred, your Web site is called http://
www.myisp.com/fred or maybe http://www.myisp.com/~fred/. The site’s
home page is usually a file called index.html in the site’s home directory,
and the other pages are files whose names match their URLs, so a page
named http://www.myisp.com/fred/effluent.html is stored in a file
called effluent.html. If your site has more than a handful of pages, you
should organize it into directories. Not by coincidence, the syntax of URLs is
almost exactly the same as the syntax of UNIX filenames, so if you organize
your site so that a page is called http://www.myisp.com/fred/
Greenstuff/Smelly/effluent.html, the file is called Greenstuff/
Smelly/effluent.html.

A few directory names are reserved for special Web server purposes, so you
have to be careful to avoid them. The list varies from server to server (this
is UNIX, after all), but the directory cgi-bin is invariably reserved for CGI
scripts, programs that the Web server runs to produce pages on the fly.
Check with your Web host to find out the reserved directory names on your
system.

A Map of UNIX

Most UNIX systems have thousands, or even tens of thousands, of files. They
are stored in hundreds of directories. Luckily, you don’t care about most of

101

1 02 Part ll: Some Basic Stuff

these directories because they contain nothing other than the files that make
up the murky technical underbelly of UNIX.

You may, however, need to find something in some directory other than your
own safe, well-lit home directory. Table 6-1 is a guide to some directories that
you're likely to find on your UNIX system. (Not every UNIX system has all
these directories, but most do.)

Table 6-1 Popular UNIX Directories and What They Contain

Directory Name What It Contains
/bin Standard system commands.
/usr/bin More standard system commands.

/usr/contrib/bin Even more standard system commands (the ones con-
tributed by third parties).

/usr/Tocal/bin Nonstandard, locally installed system commands.

/dev Contains connections to devices, such as tape drivers,
rather than real files. UNIX uses a terribly clever trick for
referring to hardware devices as though they were files.

/etc Miscellaneous system files. Not really interesting to
nonweenies.

/home Contains a home directory for each user. (If you don't
see /home, try /usr/home.)

/11ib Program libraries and the like. (See our comment about
/etc.)

/usr/1ib More program libraries and the like. (See our comment
about /etc again.)

/tmp Small temporary files.

/usr/tmp Larger temporary files.

/usr/src On systems that come with source code, the source

code to the system. (Fascinating to programmers, but
not so fascinating otherwise.)

/var/src Another place where source code can be found.

/usr/man and Text of online manual pages.
/usr/catman

Chapter 7

The Shell Game

In This Chapter
Using redirection
Viewing a file one screen at a time
Printing the output of any command
Working with groups of files
Avoiding retyping commands, especially after typos
Getting set up each time you log in
Setting your terminal options

f you read the preceding chapters in this book, you know how to work

with files and how to type some commands to UNIX (you type them to the
shell, as you know, but don’t get bogged down in that here). UNIX has a
clever way to increase the power of its commands: redirection. This chapter
shows you how to use redirection and how to use wildcards to work with
groups of files.

This Output Is Going to Havana:
Redirection

When you use a UNIX command like 15, the result (or outpuf) of the com-
mand is displayed on-screen. The standard place, in fact, for the output of
most UNIX commands is the screen. The output even has a name: standard
output. As you can imagine, there is also standard input, usually the keyboard.
You type a command; if it needs more input, you type that, too. The result is
output displayed on-screen — all very natural.

You can pervert this natural order by redirecting the input or output of a pro-
gram. A better word is hijacking. You say to UNIX, “Don’t display this output
on-screen — instead, put it somewhere else.” Or, “The input for this program
is not coming from the keyboard this time — look for it somewhere else.”

1 04 Part Il: Some Basic Stuff

\\3

The “somewhere else” can be any of these sources:

v A file: You can store the output of 1s (your directory listing) in a file, for
example.

v The printer: It’s useful only for output. Getting input from a printer is a
losing battle.

v Another program: This one gets really interesting when you take the
output from one program and feed it to another program!

A bunch of UNIX programs are designed primarily to use input from a source
other than the keyboard and to output stuff to someplace other than the
screen. These kinds of programs are called filters. Readers old enough to
remember what cigarettes are may recall that the advanced ones had a filter
between the cigarette and your mouth to make the smoke smoother, mel-
lower, and more sophisticated. UNIX filters work in much the same way,
except that they usually aren’t made of asbestos.

The only exception to this redirection business is with programs, such as text
editors and spreadsheets, that take over the entire screen. Although you can
redirect their output to the printer, for example, you won'’t like the results
(nor will your coworkers, as they wait for a pile of your garbage pages to
come out of the printer). Full-screen programs write all sorts of special glop
(they give instructions) to the screen to control where stuff displays, what
color to use, and so on. These instructions don’t work on the printer because
printers use their own, different kind of glop. The short form of this tip is that
redirection and editors don’t mix.

Grabbing output

So how do you use this neat redirection stuff, you ask? Naturally, UNIX does
it with funny characters. The two characters < and > are used for redirecting
input and output to and from files and to the printer. You use another charac-
ter (]) to redirect the output of one program to the input of another program.

To redirect (or snag, in technical parlance) the output of a command, use >.
Think of this symbol as a tiny funnel into which the output is pouring (hey, we
use any gimmick we can to remember which funny character is which). To
make a file called 1ist.of.files that contains your directory listing, for
example, type this line:

Is > list.of.files

UNIX creates a new file, called 1ist.of.files in this case, and puts the
output of the 1s command into it.

Chapter 7: The Shell Game ’ 05

WING/
gg‘

\\J

If Tist.of.files already exists, UNIX blows away the old version of the file.
If you don’t want to erase the existing file, you can tell UNIX to add this new
information to the end of it (append the new information to the existing infor-
mation). To do it, type this line:

Ts >> Tist.of.files

The double >> symbol makes the command append the output of 1s to the
lTist.of.files file, if it already exists. If 1ist.of.files doesn’t exist
already, 1s creates it.

Some (but not all, of course) versions of the C shell check to see whether the
file already exists and refuse to let you wreck an existing file with redirection.
To overwrite the file if your C shell works this way, use rm to get rid of the old
version. The command that tells the C shell not to clobber an existing file
when you're creating a new file from redirection is set noclobber. To turn
this protection off, you can use the unset noclobber command. We recom-
mend turning on noclobber every time you run UNIX (or get a UNIX wizard
to help you make this command execute automagically every time UNIX
starts up).

Redirecting input

Redirecting input is useful less often than redirecting output, and we can’t
think of a single, simple example in which you would want to use it. Suffice it
to say that you redirect input just like you redirect output except that you
use the < character rather than the > character.

Gurgle, Gurgle: Running Data
through Pipes

The process of redirecting the output of one program so that it becomes the
input of another program can be quite useful. This process is the electronic
equivalent of whisper-down-the-lane, with each program passing information
to the next program and doing something to the information being whispered.

To play whisper-down-the-lane with UNIX, you use a pipe. The symbol for a
pipe is a vertical bar (|). Search your keyboard for this character. It’s often
on the same key with \ (the backslash). Sometimes the key shows the verti-
cal bar with a gap in the middle, although the gap doesn’t matter. If you type
two commands separated by a |, you tell UNIX to use the output of the first
command as input for the second command.

1 06 Part ll: Some Basic Stuff

A\

Gimme just a little at a time

When you have many files in a directory, the output of the 1s command can
go whizzing by too fast to read, which makes seeing the files at the beginning
of the list impossible before they disappear off the top of the screen. A UNIX
program called more solves this problem. The more program displays on-
screen the input you give it, and it pauses as soon as it fills the screen and
waits for you to press a key to continue. To display your list of files one
screen at a time, type this line:

1s | more

This line tells the 1s command to send the file listing to the more command.
The more command then displays the listing. You can think of the informa-
tion from the 1s command gurgling down through the little pipe to the more
command (we think of it this way).

The cat and the fiddle . . . er, file

As we explain in Chapter 5, you can use the cat command to display the
contents of a text file. If the text file is too long to fit on-screen, however, the
beginning of the file disappears too fast to see. You can display a long file one
screen at a time in these two ways:

v Redirect the output of the cat command to more by typing the following
line (assuming, of course, that the file is called really.Tong.file):
cat really.long.file | more
v Just use the more command by typing this line:
more really.long.file

If you use the more command without a pipe (without the |), more takes the
file you suggest and displays it on-screen a page at a time.

Sorting, sort of

A program called sort sorts a file line-by-line in alphabetical order. The pro-
gram alphabetizes all the lines according to the beginning of each line. Each
line in the file is unaffected; just the order of the lines changes.

Suppose that you have a file called honors.students, which looks like this:

Chapter 7: The Shell Game ’ 0 7

Meg Young
Shelly Horwitz
Neil Guertin
Stuart Guertin
Sarah Saxon
/ac Young
Gillian Guertin
Tucker Myhre
Andrew Guertin
Megan Riley
Chloe Myhre

To sort it line by line into alphabetical order, type this:
sort honors.students
The result looks like this:

Andrew Guertin
Chloe Myhre
Gillian Guertin
Meg Young
Megan Riley
Neil Guertin
Sarah Saxon
Shelly Horwitz
Stuart Guertin
Tucker Myhre
/Zac Young

The list appears on-screen, however, and nowhere else. If you want to save
the sorted list, type

sort honors.students > students.sorted
You can also sort the output of a command:

1s | sort

Because 1s displays filenames in alphabetical order anyway, of course, this
example doesn’t do you much good. If you want the filenames in reverse
alphabetical order, however (we're stretching for an example here), you can
use the -r option with the sort command:

1s | sort -r

1 08 Part ll: Some Basic Stuff

s

If you are sorting numbers, be sure to tell UNIX. Otherwise, it sorts the num-
bers alphabetically (the sort of imbecilic and useless trick only a computer
would do). To sort numbers, use the -n option:

sort -n order.numbers
Suppose that your file of honors students contains total test scores:

10000 Meg Young

8000 Shelly Horwitz
7000 Neil Guertin
5000 Stuart Guertin
9000 Sarah Saxon
5000 Zac Young

8000 Gillian Guertin
7000 Tucker Myhre
11000 Andrew Guertin
6000 Megan Riley
7000 Chloe Myhre

When you alphabetize things as letters, not as numbers, a 1 comes before an
8 no matter what, even if it’s the first number of 10. When you alphabetize
things as numbers, 10 comes after 8, not before it. If you sort this file as let-
ters, with this command:

sort honors.students
you get

10000 Meg Young
11000 Andrew Guertin
5000 Stuart Guertin
5000 Zac Young

6000 Megan Riley
7000 Chloe Myhre
7000 Neil Guertin
7000 Tucker Myhre
8000 Gillian Guertin
8000 Shelly Horwitz
9000 Sarah Saxon

This output does not show the bonus amounts in any useful order. If you sort
the file as numbers, with this command:

sort -n honors.students

you get this more useful listing:

Chapter 7: The Shell Game ’ 09

>

5000 Stuart Guertin
5000 Zac Young

6000 Megan Riley
7000 Chloe Myhre
7000 Neil Guertin
7000 Tucker Myhre
8000 Gillian Guertin
8000 Shelly Horwitz
9000 Sarah Saxon
10000 Meg Young
11000 Andrew Guertin

If the file contains letters, not numbers, the -n option has no effect.

Can we get that on paper?

Being able to print the output of a command is terrifically useful when you
want to send to a printer something that normally appears on-screen. To
print a listing of your files, for example, type this line:

s | 1p

Users of Linux and BSD UNIX use the 1pr command rather than 1p. (Chapter 9
explains other stuff about printing.)

You can use more than one pipe if you want to be advanced. To print a list-
ing of your files in reverse order, for example, you can use this convoluted
command:

1s | sort -r | 1p

Wild and Crazy Wildcards

When you type a command, you may want to include the names of a bunch
of files on the command line. UNIX makes the typing of multiple filenames
somewhat easier (as though we should be grateful) by providing wildcards.
Wildcards are the two special characters (still more of them to remember!)
that have a special meaning in filenames:

Wildcard What It Means

? Any single letter

* Anything at all

1 ’ 0 Part ll: Some Basic Stuff

Pick a letter, any letter

You can use one or more ? wildcards in a filename. Each ? stands for exactly
one character — no more, no less. To list all your files that have two-letter
names, for example, you can type this line:

1s 2?2

The command 1s budget?? lists all filenames that start with budget and have
two — and only two — characters after budget, like budget98 and budget99;
the combination doesn’t match budgetl or budget.draft or Budget98
(because of the uppercase B).

Stars (***) in your eyes

The * wildcard stands for any number of characters. To list all your files that
have names starting with a ¢, for example, type

Is c*

This specification matches files named customer.letter, c3, and just plain
c. The specification budget.* matches budget.2004 and budget.draft,
but not draft.budget. The name *.draft matches budget.draft and
window.draft, but not draft.horse or plain draft. By itself, the filename *
matches everything (watch out when you let the asterisk go solo!).

Are kings or deuces wild?

Unlike some other kinds of operating systems (we don’t name any, although
one system’s initials are DOS), UNIX handles the ? and * wildcards in the
same way for every command. You don’t have to memorize which commands
can handle wildcards and which ones cannot. In UNIX, they all can handle
wildcards.

Wildcards commonly are used with the 1s, cp, rm, and mv commands. For
example, to copy all the files from the current directory to the temp direc-
tory, you can type

cp * temp

\NG
s

Chapter 7: The Shell Game

Look before you delete!

The combination of wildcards and the rm com-
mand is deadly. Use wildcards with care when
you delete files. You should look first at the list of
files you are deleting to make sure that it is what
you had in mind. Before you type the following
command, for example, to delete a bunch of
files:

rm *.03
type this line and look at the resulting list of files:
1s *.03

You may see in that list of . 03 files something
worth keeping that you forgot about.

The most deadly typo of all is this one (do not
type this linel):

rm * .03

Notice the space between the * wildcard and
the . 03. Although you may have thought that
you were deleting all files ending with .03,
UNIX thinks that you have typed two filenames
to delete:

* This “filename” deletes all the files in the
directory.

.03 This filename deletes a file named . 03 (yes,
filenames can start with a period). By the
time UNIX tries to delete this (nonexistent)
file, it has, of course, already deleted all the
files in the directory!

You end up with an empty directory and lots of
missing files. Watch out when you use rmand *
together!

Wildcards for Window's users

Although UNIX wildcards look just like Windows wildcards and they work in

almost the same way, they have a few differences:

v Because UNIX filenames don’t have to have the extensions that Windows
filenames use, don’t use *.* to match all files in a directory. That trick

matches only files that have a dot in their names. A simple * does the

trick.

+ In Windows, you cannot put letters after the * wildcard — Windows

ignores the letters following the asterisk. In Windows, d*mb is the same

as d*, for example. It’s dumb, we know. The good news is that UNIX is
not so dumb. In UNIX, d*mb works just the way you want it to.

History Repeats Itself

We make fun of the C shell a lot (and rightly so), but when Bill wrote it, he
added a lovely feature called history. BASH does history too, even more
nicely than the C shell. And the Korn shell has a way to do history that is

clunky but serviceable.

111

1 ’ 2 Part ll: Some Basic Stuff

The history command enables you to issue UNIX commands again without
having to retype them, a big plus in our book. Bourne shell users may as well
skip the rest of this chapter because it will just make you jealous (or it’ll
make you bite the bullet and switch to the BASH shell, by typing bash).

Here’s how history works. The shell stores in a history list a list of the com-
mands you’ve given. Then you can use the list to repeat commands exactly as
you typed them the first time or edit previously used commands so that you
can give a similar command.

History in the key of C

In the C shell, you can type !! and press Enter to repeat the last command
you typed. The shell displays the command and then executes it.

You can also rerun the last command line that begins with a particular bunch
of letters. If you type

!find

the C shell repeats the last command line that began with the text find. You
don’t have to type an entire command. If you type

1fi

it looks for the last command you typed that started with fi, which may be a
find command or file command.

To see the history list, type history. You see a list like this:

20:26 1s

20:26 1s -1
20:26 1s -al

s history
20:26 cat junk3
20:26 cat .term
20:26 history
20:27 history

CO~NOY OB WM
no
o
no
(@)}

This example shows the commands you just typed, in the order you typed
them. Because the list is numbered, you can refer to the commands by
number. After the number comes the time you gave the command (if you
care), followed by the command you typed.

If you want to repeat a command, you can type ! followed by the number of
the command. For example, if you type

iE

Instant script — just add water

For those of you who know what a shell script
is, you can use the history command to
create an instant script. (For those of you who
don't, read Chapter 12.)

Here's how to use the history command to
create a script. Give the commands you want to
include in the script, in the order in which you
want them to occur. Then type history to display
the list of commands. Note how many of the
previous commands you want to include in the
scripts; for this example, perhaps it's the last
eight commands. Type a command like this (for
the C shell):

history -h 8 >myscript

If you use BASH, type
history 8 > myscript
In the Korn shell, type
fc -1 8 > myscript

This command lists the last eight commands
and stores the list in a file called myscript.
Requesting from your history list more com-
mands than you think you need is a good idea,
because you can always delete them from your
script. You have to use a text editor to clean up
the script anyway, deleting the command num-
bers and times.

the C shell repeats command number 3 on the list (in this case, 1s -al).

You can also repeat a command with a modification. Suppose that you just

typed this command:

find .

-name budget.04 -print

Chapter 7: The Shell Game ’ ’3

Now you want to give the same find command, but this time you’re looking
for a file named budget . 05. Rather than tediously, arduously retype the line,
character by character and keystroke by keystroke, worrying anxiously about
a possible typo with every key you press, you can tell the C shell to repeat the
last command, substituting 05 for 04. The command is

~04705

You type a caret (%), the old text, another caret, and the text to substitute.
Voila! The C shell displays the new command and then executes it.

BASHing through commands

BASH can do all the cool history tricks the C shell can, with some additional
acrobatics. When BASH displays your history list, it usually stores the last
500 commands you typed, so the list can be huge. To see it a page at a time,
type this command:

1 ’4 Part Il: Some Basic Stuff

history | more
To see the last nine commands on the history list, type
history 9

Here comes the neat part — you can press the arrow keys to flip back through
your commands. When you press the up-arrow key (or Ctrl+P, for previous),
BASH shows you the previous command from the history list. You can press
Enter to execute the command. You can keep pressing the up-arrow key (or
Ctrl+P) until you get to the command you want. If you go past it, you can move
back down your history list by pressing the down-arrow key (or Ctrl+N, for
next).

This feature is downright useful and typo-saving! DOS windows in Windows
have it too, of course, but who’s counting?

After you display a command from your history list on the command line,
you can edit the command before you press Enter to execute it. Press the left-
and right-arrow keys (or Ctrl+B and Ctrl+F, for backward and forward) to
move the cursor. When you type characters, BASH inserts them on the com-
mand line where the cursor is.

The folks at the Free Software Foundation who wrote BASH are big emacs fans
(as are we) because you can use most emacs editing commands to edit the
command on the command line. For example, pressing Ctrl+A moves your
cursor to the beginning of the line, Ctrl+E moves it to the end of the line, Esc+F
moves it forward by a word, and Ctrl+K deletes everything to the right of the
cursor. For users who, for some reason, prefer vi to emacs, if you press
Esc+Enter, BASH changes to a vi-like editor, where you search for history
commands by pressing Ctrl+R and Ctrl+S.

Enough about BASH and history. You get the general idea!

A Korn-ucopia of commands

We don’t use the Korn shell much because we’ve become rather fond of
BASH, but the Korn shell can do history, too. The history command lists
your history list, as does the more cryptic fc -1 command. To repeat the
last command, just type r and press Enter. That’s it — just r. To repeat the
last cat command, type

r cat

To repeat the last command, but replace 03 with 04, type

Chapter 7: The Shell Game ’ ’5

r 03=04

The Korn shell enables you to edit your previous commands in all kinds of
fancy ways, although it’s confusing to do, so we suggest that you switch to
the BASH shell if you long to edit and reissue commands.

Do 1 Have to Type the Same
Things Every Time I Log In?

Most users find that, every time they log in, they type the same commands
to set up the computer the way they like it. You may typically change to your
favorite directory, for example, and then change the terminal settings (see
the following section), check your mail, or do any of a dozen other things.

The Bourne, Korn, and BASH shells look in your home directory for a file
called .profile when youlogin. If the .profile file exists, UNIX executes
the commands in that file. The C shell has two corresponding files: . Togin
(which it runs when you log in) and . cshrc (which it runs every time you
start a new C shell, either at login time or when you type csh).

Your system administrator probably gave you a standard .profile or
.10gin file when your account first was set up. Messing with stuff that’s
already there is definitely not a good idea. You may end up unable to log in
and then have to crawl to your system administrator and beg for help. So
don’t say that we didn’t warn you.

The standard .profile, .10gin, and .cshrc files vary considerably (why do
we even finish this sentence — you know what we’re going to say) from one
system to another, depending on the tastes of the system administrator. These
files usually perform this tasks:

v Set up the search path the shell uses to look for commands
v Arrange to notify you when you have new mail

v (Sometimes) change the shell prompt from the usual $ or % to something
more informative

If you always type the same commands when you log in, adding new com-
mands at the end of .profile or .10gin is fairly safe. If you do most of your
work in the directory bigproject, for example, you may add the following
three lines to the end of the file your shell uses to start up your UNIX session
(.profileor .cshrc):

1 ’6 Part ll: Some Basic Stuff

\\3

change to bigproject, added 3/04
cd bigproject
echo Now in directory bigproject.

The first line is a comment the computer ignores but is useful for humans
trying to figure out who changed what. Any line that starts with a pound sign
(#) is a comment. The second line is a regular cd command. The third line is
an echo command that displays a note on-screen to remind you of the direc-
tory you're in.

If you use the C shell, a frequently useful command to put in . 10gin is this one:

set ignoreeof

If you press Ctrl+D in the shell, the shell normally assumes that you're fin-
ished for the day and logs you out — in keeping with the traditional UNIX
“you asked for it, you got it” philosophy. Many people think that you should
be more explicit about your intention to log out and use ignoreeof to tell
the shell to ignore Ctrl+D (the following section tells you what eof has to do
with Ctrl+D) and log out only when you type exit or logout.

Terminal Options

About 14 zillion different settings are associated with each terminal or pseudo-
terminal attached to a UNIX system, any of which you can change with the
stty command. More than 13 zillion of the 14 zillion shouldn’t be messed
with, or else your terminal vanishes in a puff of smoke (as far as UNIX is con-
cerned), and you have to log in all over again or even get your system admin-
istrator to undo the damage. You can, however, safely change a few things.

All the special characters that control the terminal, such as Backspace and
Ctrl+Z, are changeable. People often find that they prefer characters other
than the defaults, for any of several reasons: They became accustomed to
something else on another system, the placement of the keys on the key-
board makes some choices more natural than others, or their terminal emula-
tor is dumb about switching Backspace and Delete. The special characters
that control the keyboard are described in Table 7-1.

Table 7-1 Terminal-Control Characters
Name Typical Character Meaning
erase Ctrl+H Erases (backspaces over) the

preceding character

kill Ctrl+U Discards the line typed so far

Chapter 7: The Shell Game

Name Typical Character Meaning

eof Ctrl+D Marks the end of input to a
program

swtch Ctrl+Z Pauses the current program
(see Chapter 13)

intr Ctrl+C Interrupts or kills whichever
program is running

quit Ctrl+\ Kills the program and writes a
corefile

To tell stty to change any of these control characters, you give it the name
of the special character to change and the character you want to use. If, as
is common, you want to use a control character, you can type a caret (* —
the thing above the 6 on the key in the row of keys across the top of the key-
board) followed by the plain character, both enclosed in quotation marks.
As a special case, "7 represents the Del or Delete key. The Tab key is repre-
sented as " I. The Backspace key is usually *H. To make the Delete key the
erase character and Ctrl+X the ki11 character, for example, type this line:

stty erase '2?"' kill '~X'

If you're feeling perverse, you can set the various control characters to what-
ever you want. You can make the erase character g and the intr character 3,
although doing so makes getting any work done difficult because you couldn’t
use g or 3 in anything you type.

The other thing you can change is terminal output stop mode, which controls
whether background jobs can display messages on your terminal. (Chapter
13 explains what this statement means.) To allow output from background
jobs to display on your terminal, turn off output stop mode by typing

stty -tostop
To prevent output from background jobs, or, more exactly, to make back-
ground jobs stop and wait when they want to display something, turn on
output stop mode by typing this line:

stty tostop

All these stty commands usually go in the . Togin or .profile file so that
the terminal is set up the way you want every time you log in.

117

1 ’8 Part ll: Some Basic Stuff

Chapter 8
Where's That File?

In This Chapter

Finding a file when you know the filename with the find program
Looking for a file when you know only part of the filename
Finding a file when you know what’s in it with the grep program
Looking for files on other computers on your network

Looking for a directory

Knowing what to do with the files you find

Doing something else while the computer searches for your file

Sharing files by using the 1n command so that files appear in more than one directory

Doncha love to set up lots of different directories so that you can orga-

nize your files by topic, program, date, or whatever suits you? We do.

After you have files in all those directories, however, you can also easily lose
them. Is that budget memo in your Budget directory, your Memos directory,

your ToDo directory, Fred’s Budget.Stuff directory, or somewhere else?

Two programs can help you find files: find and grep. Alternatively, you can
use the Tn command to create links to your files so that a file can appear in
several directories at a time and you have that many more opportunities to
find it.

The Search Is On

UNIX systems have lots of files. Lots and lots. Tens of thousands, to be more
specific. So where’s the memo you wrote last week?

1 20 Part ll: Some Basic Stuff

Links to shadow files

You may run into a situation in which a file the home directories of several people at one
seems to be in several directories at one time time so that they all can easily share itis useful.
(Twilight Zone music here, please). Mac users
ought to be thinking of aliases here; Windows
users ought to be thinking of shortcuts. UNIX
has its own way of letting you keep a file in sev-
eral places at the same time. To avoid excessive
clarity, the file can even have several different
names. Seriously, having a file in, for example,

To achieve this magical feat, you use links. We
discuss links in the section “A File by Any Other
Name,” later in this chapter. In the meantime,
don't panic if you see a file lurking around in one
place when you’re sure that it belongs some-
where else.

Peering into every directory

The first approach to finding a lost file is to use the brute-force method.
Starting in your home directory, use 1s to search through each of your direc-
tories. In every directory, type this line:

1s important.file

Replace important.file with the name of the file you're looking for. If the file is
in the current directory, 1s lists it. If the file isn’t there, 1s complains that it
can’t find the file. This approach can take awhile if you have a large number
of directories. An additional drawback is that you won’t find the missing file if
it has wandered off to someone else’s directory.

If you know — or think that you know — that your file is nearby, you can
use * (asterisk) wildcards in directory names. (Wildcards are covered in
Chapter 7. They enable you to work with lots of files or directories at one
time.) To find important.file in any of the subdirectories in the working
directory, type this line:

1s */important.file

This technique doesn’t work if you have directories within directories: It
looks only one level down.

Chapter 8: Where’s That File? ’ 2 1

a\\s

“Hey, | know the filename!”

With luck, you know the name of the file you have lost. If so, you can use the
find program to find it. When you use find, you tell it the name of the file
and the place to start looking. The find program looks in the directory you
indicate and in all that directory’s subdirectories.

Suppose that you're working in your home directory. You think that a file
named tiramisu is in there somewhere. Type this line:

find . -name tiramisu -print
That is, you type these elements:

v find (just like you see it here).
v A space.

v The directory in which you want the program to begin looking. If it’s the
working directory, you can type just a period (which means “right here”).

v Another space.

v -name (to mean that you will specify a filename).

v Another space.

v The name of the file you want to find (tiramisu, in this case).
v Another space.

v -print to tell UNIX to print (on-screen) the full name, including the direc-
tory name, to let you know where UNIX finds the file. If you omit this
step and find finds the file, it doesn’t tell you. (We know that this situa-
tion is stupid, but computers are like that.) If you use UNIX SVR4 or
Solaris, you'll notice the find command is fixed so that it warns you
rather than runs the command pointlessly.

The find program uses a brute-force approach to locate your file. It checks
every file in all your directories. This process can take quite a while. After
find finds the file, it prints the name and keeps going. If the program finds
more than one file with that name, find finds them and reports them all.
After find prints a found file, you usually will want to stop the program
(unless you think that it will find more than one match). You stop find by
pressing Ctrl+C or the Delete key.

1 22 Part ll: Some Basic Stuff

A\

If the find command doesn’t work and you think that the file may be in some
other user’s directory, type the same find command and replace the . (dot)
with a / (slash). This version tells find to start looking in the root directory
and to search every directory on the hard drive. As you can imagine, this
process can take some time, so try other things first.

“I know where to search (sort of)”

Rather than use a period to tell find to begin looking in the working direc-
tory, you can use a pathname. You can type this line, for example:

find /usr/margy -name tiramisu -print

This command searches Margy’s home directory and all its subdirectories.
(Her home directory name may be something different; see Chapter 6 to find
out about home directories.) To search the entire disk, use the slash (/) to
represent the root of the directory tree:

find / -name tiramisu -print

If your disk is large and full of files, a search from the root directory down can
take a long time — as long as half an hour on a very large and busy system.

You can even type several directories. To search both Margy’s and John’s
home directories for files named white.chocolate.mousse, for example,
type this line:

find /usr/margy /usr/johnl -name white.chocolate.mousse
-print

If you use the BASH or C shell, rather than type the home directory name,
you can type a tilde (~) and the username; the shell puts in the correct direc-
tory name for you:

find ~margy ~johnl -name white.chocolate.mousse -print

“At least | know part of the filename”

You can use wildcard characters in the filename if you know only part of the
filename. (Remember the * and ? characters that act as wildcards in file-
names?) Use ? to stand for any single character; use * to stand for any bunch
of characters. There’s a trick to using wildcards, however: If you use * or ? in
the filename, you have to put quotation marks around the filename to keep
the shell from thinking that you want it to find matching names in only the
current directory.

Chapter 8: Where's That File? ’ 2 3

,\\NORK

You can search the entire disk for files that start with budget, for example, by
typing

find / -name "budget*" -print

If you leave out the quotation marks, the search may look like it worked,
although find probably hasn’t done the job correctly.

Remote searches

If your system uses NFS (Network File System, as described in Chapter 16),
some or all the directories and files on your machine may really be on other
computers. The find command doesn’t care where files are and cheerfully
searches its way into any directory it can get to. Because getting to files over
a network is about half as fast as getting to files stored locally, telling find to
look through a large number of files stored on a network can take a long time.
Consider having a long lunch while find does its thing.

Suppose that you're looking for Dave’s famous stuffed-squid recipe. The obvi-
ous way to look for it is with this line:

find ~dave -name stuffed-squid -print

If you know that Dave’s files are stored on machine xuxa, however, this com-
mand can be much faster:

ssh xuxa "find ~dave -name stuffed-squid -print"

See Chapter 16 for details about the ssh command.

It's what'’s inside that counts

“Hmm . .. I don’t remember what the file is called, but I'm looking for a letter
[wrote to Tonia, so it should contain her mailing address in the heading.
That’s 1471 Arcadia. How do I find it?”

This situation is made for grep — a great program with a terrible name. It
stands for, if you can believe it, global regular expression and print, or some
such thing. The grep command looks inside files and searches for a series of
characters. Every time it finds a line that contains the specified characters, it
displays the line on-screen. If it’s looking in more than one file, grep also tells
you the name of the file in which the characters occur. You control which
files it looks in and which characters it looks for.

1 24 Part II: Some Basic Stuff

Three grep programs exist: grep, egrep, and fgrep. They are similar, so we
talk just about grep. (Fgrep is faster but more limited, and egrep is more
powerful and more confusing.)

To look in all the files in the working directory (but not in its subdirectories)
for the characters 1471 Arcadia, type this line:

grep "1471 Arcadia"™ *
That is, type these elements:

v grep (just as you see it here).
v A space.

v The series of characters to look for (also called the search string). If the
string consists of several words, enclose it in quotation marks so that
grep doesn’t get confused.

v A space.
v The names of the files to look in. If you type * here, grep looks in all the
files in the current directory.

The grep program responds with a list of the lines in which it finds the
search string:

ts.doc: 1471 Arcadia Lane
tonia.letter: 1471 Arcadia La.

The program lists the name of the file and then the entire line in which it
finds the search string.

You can do lots of things with grep other than look for files. In fact, one could
write entire (small) books about using grep. For our purposes, however, here
are some useful options you can use when you use grep to look for files.

If you want to see just the filenames and you don’t want grep to show you
the lines it found, use the -1 (for list) option. (That’s a small letter /, not a
number one.) Suppose that you type this line:

grep -1 "1471 Arcadia" *

The grep program responds with just a list of filenames:

ts.doc
tonia.letter

A\\J

125

Chapter 8: Where's That File?

It may be a good idea to tell grep not to worry about uppercase and lower-
case letters. If you use the -1 (for ignore case) option, grep doesn’t distin-
guish between uppercase and lowercase letters, as shown in this example:

grep -i DOS *

With this command, grep, which is extremely literal-minded, finds both refer-
ences to DOS and some “false hits”:

fruit.study: salads; in Brazil, avocados are used in
desserts.

chapter.26: DOS vs. UNIX

chapter.30: Dos and Don'ts

Finally, if you don’t know the exact characters that occur in the file, you can
use grep’s flexible and highly powerful (that is, cryptic and totally confusing)

expression-recognition capabilities, known in nerdspeak as regular expres-
sions. The grep program has its own set of wildcard characters, sort of but
not much like the ones the shell uses to enable you to specify all kinds of
amazing search strings. If you're a programmer, this feature is useful because
you frequently need to find occurrences of rather strange-looking stuff.

The reason we mention this subject is that grep’s wildcard characters
include most punctuation characters — namely:

*[:l/\$

Quick ‘'n’ dirty database

You can use grep to treat a text file like a quick
and dirty database. Using a text editor, for
example, you can create a file named 411 that
contains the names and phone numbers of your
friends and associates, with one entry per line:

Jordan Young, 555-4673
Meg Young, 555-5485
Zac Young, 554-8649

To look up someone’s phone number, you just
type

grep Meg 411
The grep program displays the line or lines of

the file containing the name or names you
asked for.

The grep program is widely used by UNIX
enthusiasts for searching all kinds of files for all
kinds of information. As long as each item fits
on one line, you can keep all sorts of data in this
kind of cheap database file. One of our favorite
files is called restaurants, which has lines
that look like this:

Chef Chung's Cheap 555-3864

If you’re in the mood for something cheap, you
can say

grep -i cheap restaurants

1 26 Part ll: Some Basic Stuff

Directory assistance

You can look for lost directories in addition to This command searches the entire hard drive
lost files. Give the find command the option for directories that begin with Budget.
-type d:

find / -name "Budget*" -type d
-print

If you include any of these characters in a search string, grep doesn’t do
what you expect. To type any of these characters in a search string, precede
them with a backslash (\). To search for files containing C.LA., for example,
type this line:

grep "C\.I\.A\." *

The period (.) is grep’s wildcard character, like the question mark (?) in the
shell. In this example, if you don’t precede the periods with backslashes,
grep matches not only C. I.A. but also CHIFAS (a Peruvian dialect word
meaning Chinese restaurants, in case you are wondering) and lots of other
things. Don’t press your luck — use the backslashes with punctuation marks
to be safe.

What to Do with Files
after You Find Them

After you find the file or files you are looking for, you can do more than just
look at their names. If you want, you can tell the find command to do some-
thing with every file it finds.

Rather than end the find command with the -print option, you can use the
-exec option. It tells find to execute a UNIX shell command every time it
finds a file. The following command, for example, tells the find command to
look for files with names beginning with report:

find . -name "report*" -exec lpr {} ";"

Every time the command finds that type of file, it runs the 1pr program and

substitutes the name of the file for the { }. (You type two curly braces, which
was some nerd’s idea of a convenient placeholder.) The semicolon indicates

the end of the UNIX shell command. (You have to put quotation marks

Chapter 8: Where’s That File? ’ 2 7

\NG/
Vg,\\

around the semicolon, or else the shell hijacks it and thinks that you want to
begin a new shell command. If that didn’t make sense, take our word for it
and remember to put quotation marks around the semicolon when you use
find.) Every time find finds a filename beginning with report, this com-
mand prints the file it finds.

You can use almost any UNIX command with the -exec option, so, after you
find your files, you can print, move, erase, or copy them as a group. A slight
variation is to use -ok rather than -exec. The -ok option does the same
thing except that, before it executes each command, find prints the com-
mand it’s about to run, followed by a question mark, and waits for you to
agree to run the command. Press the y key if you want to do it, and press the
n key if you want it to skip that particular command.

By using find and -exec rm, you can delete many unwanted files in a hurry.
If you make the smallest mistake, however, you can delete many important
and useful files equally as quickly. We don’t recommend that you use find
and rm together. If you insist, however, please use - ok to limit the damage.

Searching Is Slow!

Because the grep and find commands can take a couple of minutes to do
their work, you may want to run them in the background, as described in
Chapter 13. To do that, redirect their output to a file so that you can review
the results of the search at your leisure. End the command with an amper-
sand (&), which tells UNIX to run the command in the background. For exam-
ple, you can type these two commands, pressing Enter after each one:

find / -name "budget*" -print > budget.files &
grep "chocolate mousse™ * > mousse.recipe.files &

When the jobs end, you can type these commands to see what they found:

cat budget.files
cat mousse.recipe.files

A File by Any Other Name

Sometimes, having a file in more than one place is nice (that budget file we
keep mentioning, for example). If you are working on it with someone else,
the file can be in both your home directory and your coworker’s home direc-
tory so that neither of you have to use the cd command to get to it.

1 28 Part ll: Some Basic Stuff

A nice feature of UNIX (and you thought there weren’t any!) is that this situa-
tion is possible — even easy to set up. A single file can have more than one
name, and the names can be in different directories.

Suppose that two authors are working on a book together (a totally hypothet-
ical example). The chapters of the book are in John’s directory: /usr/johnl/
book. What about Margy? Having to type the following line every time work
on the book begins is annoying:

cd /usr/johnl/book

Instead, the files could also be in /usr/margy/book.

How can you be in two places at once
when you've not anywhere at all?

The way to let a file be in two places at once is with the 1n (for link) com-
mand. You tell 1n two things:

v The current name of the file or files you want to create links to

v The new name

Start with just one file. Margy wants to make a link to the chapterlog file
(it contains the list of chapters). The file is in /usr/john1/book. In her book
directory, Margy types this line:

In /usr/johnl/book/chapterlog booklog

UNIX says absolutely nothing; it just displays another prompt. (No news is
good news.) It just created a link, or new name, however, to the existing
chapterlog file. The file now appears also in /usr/margy/book as bookTog.
You have only one file (UNIX doesn’t make a copy of the file or anything tacky
like that) with two names.

Playing the links

After you create a link by using 1n, the file has two names in two directories.
The names are equally valid. It isn’t as though /usr/johnl1/book/chapterlog
is the real name, and /usr/margy/book/booklog is an alias. UNIX considers
both names to be equally important links to the file.

Chapter 8: Where’s That File? ’ 2 9

Deleting links

To delete a link, you use the same rm command you use to delete a file. In
fact, rm always just deletes a link. It just so happens that, when no links to a
file exist, the file dries up and blows away. When you use rm on a file that has
just one name (link), the file is deleted. When you use rm on a file that has
more than one name (link), the command deletes the specified link (name),
and the file remains unchanged, along with any other links it may have had.

Renaming a link

You can use the old mv command to rename a link, too. If Margy decides that
for the book-status file to have the same name in both places is less confus-
ing (as it stands now, it’s chapterlog to John and book10g to Margy), she
can type this line:

mv booklog chapterlog

You can even use the mv command to move the file to another directory.

Linking a bunch of files

You can also use 1n to link a bunch of files at the same time. In this case, you
tell 1n two things:

v The bunch of files you want to link, probably using a wildcard character
such as chapter*. You also can type a series of filenames or a combina-
tion of names and patterns. (UNIX may be obscure, but it’s flexible.)

v The name of the directory in which you want to put all the new links.

The Tn command uses the same names the files currently have when it
makes the new links. It just puts them in a different directory.

The chapterlog business in the preceding example, for example, works so
well that Margy decides to link to all the files in /usr/john1/book. To make
links in /usr/margy/book, she types this line:

In /usr/johnl/book/* /usr/margy/book

130 Part ll: Some Basic Stuff

\\3

Linking once and linking twice

Here's one caveat. The 1n command in the
example in this section links all the files that
exist at the time the command is given. If you
add new files to either /usr/margy/book or
/usr/johnl/book, the new files are not
automatically linked to the other directory. To fix
this situation, you can type the same 1n com-
mand every few days (or whatever frequency
makes sense). The command tells you that lots
of files are already identical in the two directo-
ries and makes links for the new files.

If you linked to someone else’s files, you may
have permission to read those files but not to
change or write to them. When you ask 1n to
make the new links, if it tries to replace a file you
can’t write to, it says something like this:

In: chapterl3: 644 mode?

See Chapter 25 for the exact meaning of this
uniquely obscure message. Press the y key if
you want to replace the file, which you proba-
bly do in this case. Press the n key if you don't
want to replace the file.

N

WNORK

This command tells UNIX to create links for all the files in /usr/johnl1/book
and to put the new links in /usr/margy/book. Now every file that exists in
/usr/johnl/book also exists in /usr/margy/book. Margy uses the 1s
command to look at a file listing for her new book directory. It contains all
the book files. This arrangement makes working on the files much more

convenient.

Linking across the great computer divide

All this talk about links assumes that the files you're linking to are on the

same file system (that’s UNIX-speak for disk or disk partition). If your com-
puter has several hard drives or if you're on a network and use files on other
computers (through NFS or some other system, as explained in Chapter 16),

some of the files you work with may be on different file systems.

Here’s the bad news: The original 1Tn command couldn’t create links to files
on other file systems. Bummer. But all modern UNIX systems have things
called soft links, or symbolic links (symlinks, for short) that are almost as

good.

Soft links enable you to use two or more different names for the same file.

Unlike regular links (or hard links), however, soft links are just imitation links.

UNIX doesn’t consider them to be the file’s real name.

Chapter 8: Where's That File?

A\

NUX

Making soft links
To make a soft link, add the -s option to the 1n command.

Suppose that you want a link in your home directory to the recipe.1ist file
in /usr/gita.In your home directory, you type this line:

In /usr/gita/recipe.list gitas.recipes

Rather than respond with serene silence, UNIX responds with this line:
In: different file system

Drat! Gita’s home directory is on a different file system from yours, perhaps
even on a different computer. So you make a soft link by sticking an -s into
the command:

In -s /usr/gita/recipe.list gitas.recipes

As usual, no news is good news; 1n says nothing if it works. Now a file called
gitas.recipes seems to be in your home directory — all through the magic
of soft links. You still have only one file, but you have an extra link to it.

Using soft links

You can look at, copy, print, and rename a soft-linked file as usual. If you have
the proper permissions, you can edit it. If Gita deletes her file, though, the file
vanishes. Your soft link now links to an empty hole rather than to a file, and
you see an error message if you try to use the file. UNIX knows that the soft
link isn’t the file’s real name. When you see a soft link in a long 15 listing,
UNIX gives the name of the soft link and also the name of the file it refers to.

If you try to use a file and UNIX says that it isn’t there, check to see whether
it’s a dangling soft link (a link to a nonexistent file). Type 1s -1 to see
whether the file is a soft link. If it is, use another 1s -1 on the real filename to
make sure that the file really exists.

To get rid of a dangling soft link, use the rm command to delete it.

131

132 Part ll: Some Basic Stuff

Chapter 9
Printing (The Gutenberg Thing)

In This Chapter
Sending stuff to the printer

Finding the printer
Stupid printing tricks

u nless you happen to work in the paperless office of the future (reputed
to be down the hall from the paperless bathroom of the future), from
time to time you will want to print stuff. The good news is that doing so is
usually easy. The bad news is that nothing is as easy as it should be.

The major extra complication is that the way to print things is different on
UNIX BSD and System V systems. (Remember which one you have? Refer to
Chapter 2 if you don’t. You may have written it on the Cheat Sheet in the front
of this book.) We start by explaining how you print something already in a
file; then we go on to the fancy stuff.

Printing Stuff: Daemons at Work

From a human being’s point of view, printing stuff in UNIX is simplicity itself:
You use either the 1p command or the 1pr command, depending on your
flavor of UNIX. Many office suite packages have built-in printing commands,
but they’re all 1p or 1pr underneath.

From your computer’s point of view, this arrangement is, of course, way too
simple. To make things suitably complex, the print command doesn’t print
the file. What it does is leave a note for another program buried deep inside
UNIX, and this buried program prints your file. This buried program is called
a daemon (pronounced “demon”). The theory behind this arrangement is
that a bunch of people may want to use the printer, and waiting for the
printer to be free is a pain. The print command puts your file on a list, and
the daemon runs down the list and does the printing so that you don’t have
to wait. The request ID is the name the print command gives to the note it
leaves for the daemon. You can ignore the request ID unless you change your
mind and decide that you don’t want to print that file after all.

134 Part Il: Some Basic Stuff

OQ“X

Printing in System U

If you use UNIX System V, you print stuff with the 1p command. If you have a
file named myletter, for example, you print it by typing this line:

1p myletter
UNIX responds with this important information:

request id is dj-2613 (1 file)
Usually, that’s all you need to do. UNIX responds to your request to print by
telling you the request ID of the print job, which you probably don’t care

about. Sometimes you want to pretty up the way the printout looks by leav-
ing wider margins; we talk about that subject later in this chapter.

Printing in BSD and Linux

If you use Linux or BSD UNIX, printing is just as easy as printing with System V,
except that you use the command 1pr rather than 1p. If you have a file
named myletter, for example, you print it by typing

lpr myletter
Some systems, notably SVR4 and Solaris, have both the 1p and Tpr com-

mands. If you have these versions of UNIX, either command works equally
well. Note that the 1pr command doesn’t report a request ID.

Finding Your Printout

QNORK

As far as UNIX is concerned, its only job is to send your file to the printer.
Now the real work begins: finding your printout.

If your UNIX system is attached to a network, chances are that your printer is
attached to some other computer rather than to yours. You may have to go
looking for it to find your printouts.

You may have to ask people in nearby cubicles or stand still in the center of
the office and listen for the sound of printing (a gentle whir and click from
most laser printers). If all else fails, ask your system administrator. Because
your UNIX system may be capable of using more than one printer, your
system administrator may be the only person who can tell you which printer
your printout is on.

Chapter 9: Printing (The Gutenberg Thing) ’35

Aha! There’s the printer! If you're lucky, no one else printed anything recently,
so the paper on top of the printer is all yours. More likely, lots of people
printed stuff, and a pile of paper is on top of the printer — only some of
which is yours.

With luck, every printout has in front of it a sheet that identifies the file that’s
printed, with the username, time, and other odds and ends that seemed rele-
vant to the person who configured the printer. Rooting through the stack,
picking out your own pages, and leaving the rest in a heap is considered
tacky. Instead, separate the printouts and leave them on the table or in print-
out racks (if available) with the usernames visible. With luck, others do the
same for you. If you can’t find your printout on the printer, maybe someone
else already separated and stacked the printouts. Or maybe other users
decided that your printout looked more interesting than theirs and took it off
the printer to read it.

Printers, printers, everywhere

A reasonably large installation probably has several printers, either because
one printer can’t handle all the work or because the installation uses differ-
ent kinds of printers. When you use the 1p or 1pr command, UNIX picks one
printer as the default. If you use 1p, you use the -d option (that’s a lowercase
d — remember that UNIX cares about these things) to identify the printer. To
print your file on a printer named draft, for example, you type

1p -ddraft myletter

If you use 1pr, the analogous option is -P (that’s an uppercase P), so the
command you type is

Ipr -Pdraft myletter

In either case, don’t type a space between the -d or -P and the printer name.

Calling all printers

The list of available printers depends entirely on the whims of the system
administrator. Typically, one day she gets tired of putting up with the slow,
illegible, or chronically broken previous printer, storms into the boss’s office,
gets the necessary signature, and buys the first printer available. Sometimes
the old printer is thrown away, sometimes not.

136 Part ll: Some Basic Stuff

A\

Getting a list of printers known to the system is generally not too difficult.
If you use the 1p command to print, type this line to get a list of available

printers:

Tpstat -a all

This line means roughly, “Show me the status of all printers that are active.”

The Tpstat program lists the status of all available printers, one per line, like

this:

dj accepting requests since Thu Apr 26 13:43:50 2001

In this case, only one printer, whose name is dj, is available. The listing also
shows you the vital fact that it was installed on a Thursday afternoon in April

2001. Whoopee.

If you use the 1pr command to print, try typing this line to get the same

information:

Tpq -a

Woodsman, spare that file!

When you tell UNIX to print a file, the file doesn't
printimmediately. UNIX makes a note to print the
file and remembers its filename.

What if you delete the file before UNIX has a
chance to print it? If you print with 1p, you get
a nasty message because UNIX can't find the
file. If you print with 1pr, the file prints normally
because UNIX makes a copy of the material to
print.

To force 1p to copy the file, use the < command-
line operator. To send a copy of the filemyfiTe
to the printer, for example, type

1p < myfile

You can then delete or change my fi1e and not
affect the printout.

If you are printing a large file, 1pr can take a
long time to make the copy of the file (which it
doesn'treally need to do because it's already in
afile in the first place, isn't it?). You can use 1pr
-s to tell UNIX to print from the original file to
save time and hard drive space. If you use the
-s option, be sure not to delete or change the
file until it's printed.

You can tell 1pr to delete the file when it fin-
ishes printing it. This capability is sometimes
useful when you made the file in the first place
only so that you could print it. Use the - r option
to remove the file after printing:

Tpr -r myfile
For large files, you can use - r and - s together:

Tpr -s -r myfile

Chapter 9: Printing (The Gutenberg Thing)

The 1pq program responds with a similar list:

1p:
Rank Owner Job Files Total Size
1st johnl 7 longletter 4615 bytes
pS:
no entries

The 1pgq command stands for something like /ine printer query, and -a means
all printers. In this case, two printers are available, named 1p and ps, and
something is printing on the first one.

Keep in mind that not every printer the 1pstat and 1pg commands report to
is usable. System administrators frequently put in the table of printers some
test entries that don’t really represent printers you can use.

“Help! 've Printed, and
It Won’t Shut Up!”

WING/
gg‘

The first time you print something large, you suddenly will realize that you
don’t really want to print the file because you have found a horrible mistake
on the first page. Fortunately, you can easily tell UNIX that you have changed
your mind.

If you tell UNIX to print a file that does not contain text, such as a file that
contains a program or a database, in most cases UNIX prints it anyway. In a
classic example of Murphy’s Law (anything that can go wrong will go wrong),
files like that tend to print about 12 random letters on each of 400 pages.
Every page has just enough junk on it that you can’t use that piece of paper
again. As you may expect, people who print a large number of files like that
tend to become unpopular, particularly with coworkers whose 2-page memos
are in line behind the 400 pages of junk.

Cancel the order, System U

If you used 1p to print the file in the first place, you use cancel (we don’t
know how that name slipped past the lazy typists) to cancel the print job.
You have to give the cancel command the request ID that 1p assigned to the
job. If you're lucky, the 1p command is still on-screen, and you can see the
request ID. If that information has vanished from your screen, remain calm.
Remember that the 1pstat command lists all the requests waiting for the
printer. Type this command:

137

138 Part ll: Some Basic Stuff

NUX

Tpstat
This command displays a list like the following:

dj-2620 john1 34895 Dec 23 21:12 on dj
This list tells you that your request was named dj-2620, it was done on
behalf of a user named johnT, the size of the file to be printed is 34895, and
the print command was given on December 23. You can cancel the request
with this command:

cancel dj-2620
UNIX responds with this line:

request "dj-2620" cancelled
UNIX has a surprisingly convenient (surprising for UNIX, anyway) shortcut
you can use. If you give the name of a printer, UNIX cancels whatever is print-
ing on that printer. If you remember that the local printer is named d j, you

can type the following line to cancel whatever dj is printing:

cancel dj

Cancel the order, BSD

If you made your printing mistake with the 1pr command, you use 1pq to find
out the request ID, which — to add confusion — is called a job number here.
Just type this command:

Tpq
UNIX responds with a list of print jobs:

Rank Owner Job Files Total Size
1st johnl 12 blurfle 34895 bytes

You need to note the job number (12, in this case). Use that number with the
1prm command, which, despite its name, removes the request to print some-
thing and not the printer itself:

Tprm 12
The Tprm command usually reports something about “dequeued” lines; this

information is meant to be reassuring, although it’s not clear to whom. In
response to the Tprm 12 command, for example, UNIX displays this message:

dfB012iecc dequeued
cfAO0l2iecc dequeued

Chapter 9: Printing (The Gutenberg Thing) ’3 9

Why you don’t want to know about PostScript

You may have what's known as a PostScript
printer. Two general camps of laser-printer
design exist: the Hewlett-Packard (HP) camp
and the PostScript camp. Printers in the
Hewlett-Packard camp are based on the design
of the HP LaserJet line of printers. Printers in
the PostScript camp use the PostScript pro-
gramming language designed by Adobe
Systems. LaserdJet printers are said to speak
PCL, although PCL is not nearly as complicated
or flexible (depending on how you look at it) as
PostScript. To add to the confusion, most laser
printers produced in recent years speak both
PostScript and PCL.

You may reasonably ask, “What does a pro-
gramming language have to do with a printer?”
If you send to the simpler LaserJet a file that
contains the text Your mother wears army
boots, the printer prints Your mother wears
army boots. If you send the same file to a
PostScript printer, the printer doesn’t print any-
thing. The reason is that a PostScript printer is
a powerful computer with a built-in program-
ming language (that's PostScript) that can print
stuff sort of as a sideline. To make a PostScript
printer print anything, you have to send it a pro-
gram to do the printing. Fortunately, this type of
program is widely available.

This arrangement isn't quite as deranged as it
sounds. To print simple files of text, it's a pain;
for fancy typeset documents with lots of type-
faces and figures and line drawings and such
things, however, PostScript is considerably
more flexible than PCL, enough so that people
use PostScript to typeset entire books (such as
this one).

PostScript has two problems that may bite you.
The firstis sending a regular file to a PostScript
printer. UNIX printer software is usually smart
enough to figure out automatically that it must
PostScript-ize the file in order to print it. If the
printer software is not that smart, another pro-
gram can do the PostScript-ization. Adobe, the
originator of PostScript, sells a widely used
package named Transcript. It includes a pro-
gramnamed enscript that prints plain files. If
the plain 1p or Tpr command doesn’t work, try
using the enscript command or its freeware
clone nenscript before you run for help.

The other problem you may encounter is that a
file contains PostScript but prints like a regular
file. PostScript files look like incomprehensible
programs written in an obscure programming
language because that's what they are. The
tipoff is that the first two letters on the first line
are % !. To see what the file is supposed to look
like, you must send itto a PostScript printer that
can run the program in the file and print what-
ever the file contains. If your printer prints the
PostScript program instead, most likely your
printer doesn't speak PostScript.

Lacking a PostScript printer, you still may not be
out of luck. A program from the Free Software
Foundation named Ghostscript can read
PostScript files and translate them into some-
thing your local printer can print. Later in this
chapter — in “Printing for the PostScript-
Challenged,” to be precise — we discuss
Ghostscript and its cousin Ghostview, which lets
you preview PostScript documents on-screen.

140 Part II: Some Basic Stuff

WING/
gg‘

Some final words about
stopping the printer

Most printers have something called an internal buffer, which is where data to
be printed resides before the printer prints it. An internal buffer is good and
bad: It’s good because it keeps the printer from stopping and starting if the
computer is a little slow in passing your file to it. It’s bad because, after data
is in the buffer, the computer cannot get it back. So, even after you cancel
something you want to print, some of it may still be in the buffer: as much as
2 pages of normal text or about 20 pages of the junk that results from printing
a non-text file.

You have no easy way to keep from printing the stuff in the printer buffer.
One really bad idea is to turn the printer off in the middle of a page: This
method tends to get the paper stuck and, on laser printers, lets loose a bunch
of black, smeary stuff that gets all over your hands and on the next 1,000
pages the printer prints. If you insist, press the printer’s Stop or Off-line
button and wait for the paper to stop moving. Then you can turn the printer
off relatively safely. Or, with luck, a button on the printer provides a Cancel
option to discard what’s waiting in the printer.

After you cancel your print request, the printer probably still has half a page
of your failed file waiting to print. You can eject that page by pressing a
button on the printer labeled something like Form Feed or Print/Check or
even Reset.

Prettying Up Your Printouts

If you send a file full of plain text to a printer, the result can look ugly: no mar-
gins, titles, or anything else. You can use the pr command to make your file
look nicer. Use it only with plain text files, however, not with files full of
PostScript code, document files from your favorite word processor, or a desk-
top publishing program.

Titles and page numbers look so official

The simplest thing you can do with the pr command is to add titles and page
numbers to your printout. By default, the title is the name of the file and the
date and time it was last changed. You can use a pipe (defined in Chapter 7 as
the vertical bar, 1) to format with pr and print on a single line:

pr myfile | lpr

Chapter 9: Printing (The Gutenberg Thing) ’ 4 1

(Remember to use the 1p command rather than 1pr, if appropriate.) This
command tells the pr program to pretty up the file and pass the results to
the 1pr program.

You can set your own heading by using the -h option with the pr command:
pr -h "My Deepest Thoughts" myfile | lpr

The pr command assumes that printer pages are 66 lines long. If that’s not
true for you, rather than the title’s appearing at the top of every page, it sort
of oozes down from page to page. You can override the length of the standard
page with the -1 option. Suppose that the page length is 60 lines. You type
this line:

pr -1 60 myfile | Tpr

If you want to use pr and not have any heading at the top of the page, use the
-t option:

pr -t myfile | 1pr

(This example doesn’t do anything interesting to myfi1e. In the next section,
however, you see that it really is useful when you combine it with the margins
and stuff.)

Marginally yours

You may frequently put printouts in three-ring binders. Normally, because
printing starts very close to the left side of the page, the hole punch may put
holes in your text and make the page difficult to read — not to mention make
it look stupid. The -0 option (that’s a lowercase letter o, not a zero, for offset)
pushes the stuff you print to the right, leaving a left margin. To leave five
spaces for a left margin, for example, type this command:

pr -o5 myfile | 1pr

Sometimes leaving a wider margin at the bottom of the page is nice. You can
do that by combining the -1 option (to set the page length, as described in
the preceding section) with the - f option that tells pr to use a special form-
feed character to make the printer start a new page. (Normally, the -1 option
uses blank lines to space to the next page, like a typewriter.) Use the follow-
ing command if you’re in this situation:

pr -o5 -1 50 -f myfile | 1pr

This command tells UNIX to print just 50 lines per page, indented five spaces.
That amount of space in the margin should be enough for anyone.

142 Part II: Some Basic Stuff

Seeing double

The -d option tells pr to double-space the printout. Type this command:
pr -d myfile | Tpr

This command also puts a title on every page. Use -d -t to avoid that:

pr -d -t myfile | 1pr

One column can’t contain me

If the lines in your file are short, you can save paper by printing the file in
multiple columns. To print your file in two columns, for example, type

pr -2 myfile | 1pr

Astute readers probably can guess what the options -3, -4, and up to -9 do.
(If you're not feeling that astute today, these options specify the number of
columns you want.) Columns normally run down and then across the page, as
they do in newspapers. If your file contains a list of items, one per line, and
you want to print them in columns, you may want to change the order in
which the lines print. If you want to print items across the page and then
move down to the next line, and so on (which is nowhere near as cool), use
the -a option in addition to the -2 or -3 option.

For a truly baffling effect, you can arrange to print several files side by side
with the -m option:

pr -m firstfile secondfile | 1pr

This command prints the first line of every file on the first line of the print-
out, the second line of every file on the second line, and so on. You can spec-
ify as many as nine filenames and have them print side by side in skinny little
columns. We never have been able to figure out much of a use for this option,
although it is definitely a way to produce odd printouts.

Troff, Nroff, Groff!

No, it’s not a rabid dog. It’s a typesetting program. The troff program is the
“typesetter runoff’ that has been part of UNIX since the 1970s. The nroff pro-
gram is “new runoff’ (new as of about 1972), which formats documents for
simple printers without fancy fonts. The groff program is the GNU (refer to
Chapter 2) version of troff, which, like every GNU program, does all the

Chapter 9: Printing (The Gutenberg Thing) , 43

stuff the originals do and about 47 other things, too. Because groff is free,
whereas nroff and troff are subject to expensive licenses from whoever
owns the original UNIX licensing rights this year, groff is all you see these
days.

All the “roff” programs are batch formatters. In these programs, you type your
document with formatting codes into a text file and then run the text file
through groff, which produces a beautifully typeset version of your docu-
ment, give or take all your typos and coding errors. Then you fix the docu-
ment, re-groff, and so on. These programs are the antithesis of WYSIWYG
(What You See Is What You Get) formatting.

People still use groff, partly because it’s free and partly because you can do
fancy stuff with highly structured documents that’s difficult or impossible
with WYSIWYG formatters. We don’t expect that you'll write a great many
groff documents yourself, but you’ll probably run into some on the Internet
or in software packages.

With a bit of effort, you can turn groff documents into something legible.
Assuming that you have a PostScript printer available, type a command like
this one:

groff filename

Replace filename with the name of the text file you want to print. The groff
program interprets the typesetting codes in the text file and tells the printer
how to print your document.

As you probably figured out if you got this far in this book, principle yields to
hideous complication after you add a few practical details. This section
describes some of the details and the ensuing complications.

Macro mania

Formatting a document by using troff and its cousins requires rather low-
level detailed instructions using incomprehensible two-letter codes in the
documents — instructions so detailed that even UNIX weenies find them
tedious (and that’s saying a great deal). To relieve the tedium, most troff
documents take advantage of macro packages that define higher-level instruc-
tions, which people use rather than the low-level stuff. (These macro pack-
ages serve roughly the same function as style sheets in Microsoft Word.) The
troff program has been around for more than 25 years, and many macro
packages have come and gone, although a few have stood the test of time.
Because lazy typists have written all of them, each has a cryptic two- or
three-letter name, all starting with -m, the flag code that tells groff to use
the macro package. Table 9-1 lists a few popular macro packages.

144 Part Il: Some Basic Stuff

Table 9-1 Macro Packages

Name Description Origin

-ms Manuscript macros Bell Labs

-mm Different manuscript macros Another part of Bell Labs

-me Eric's macros Somebody’s Ph.D. thesis at Berkeley

(must have been a good thesis
because he's now the head of
Google)

-man Manual page macros Same place as -ms

To tell groff to format a document with the -ms macros, for example, you
type

groff -ms filename

Telling a priori what macros are used in what document is difficult, unless the
author took pity and gave you a clue by naming the file mobydick.ms or the
like. Fortunately, the worst that happens if you use the wrong macro package
is that the document looks ugly. (It’s not totally illegible: The text is still
there, but it’s formatted incorrectly.) You can try different macro packages
and see which one works least badly. As a general rule, documents from
academia usually use the -me macro package, whereas those from industry
usually use -mm or -ms. Documents about the UNIX system itself usually use
-ms because -ms was written by some of the same guys who did the original
UNIX work, and pages from the online manual (what the man command shows
you) use -man.

Let’s sneak a peek

One of the nicest things about groff is that it’s device independent, which
means that it can reformat your document for any of several output devices.
To format your document and display it on a normal, text-only terminal, use
the nroff command:

nroff -ms filename | more

(This command actually calls groff, but tells it to format for plain-text
output. Change the -ms to one of the other macro packages if necessary.) The
more command displays the result a screen at a time. Press the spacebar to
move from screen to screen, or press Q when you see enough.

Chapter 9: Printing (The Gutenberg Thing) ’ 45

Why UNIX succeeded

Back in the mid-1970s, the whole idea of com-
puterized document formatting and typesetting
was much less established than it is now.
Within AT&T, however, troff and the UNIX
system it ran on rapidly became the standard for
document preparation. Why? Two words: line
numbers. AT&T files a large number of patents,

and patent applications must have every fifth
line numbered. The troff program was the
first text formatter that could do that. The patent
typists embraced troff (patent applications
are revised and retyped about a thousand times
before they're finally sent to the patent office),
and the rest, as they say, is history.

If you're running X Windows, you can tell groff to display a page at a time,
beautifully typeset in an X window, by typing this command:

groff -TX75 -ms filename

In the window that groff creates, press the spacebar to move from screen to
screen or press Q when you see enough. If the type is too small to read, use
-TX100 rather than - TX75 to make the text bigger. (You can’t use any other
numbers; X comes with one set of fonts for 75 dot-per-inch screens and
another for 100 dot-per-inch screens, so that’s what groff uses.)

Printing for the PostScript-Challenged

Earlier in this chapter, we talk about PostScript, the fabulously complicated
printer language that enables you to print fabulously complex documents on
PostScript printers. But what if you don’t have a PostScript printer?

These days, the short answer is “Get one.” Although PostScript printers used
to cost much more than other kinds of printers, these days you can buy a
perfectly decent PostScript laser printer for less than $500. Nonetheless,
there are still lots of PostScript-free sites, where Ghostscript comes to the
rescue.

Ghostscript is a free, GNU version (see Chapter 2) of PostScript, written by L.
Peter Deutsch, a skillful programmer from way back who surely should have
been doing something else when he wrote it. When Ghostscript runs, it reads
its PostScript input from either a file or the keyboard (not very useful unless
you’re trying to learn PostScript) and produces its output on one of a zillion
possible output devices. If you want to see what the PostScript document
looks like, you can tell it to send its output to an X Windows system window.
If you want to print the document, you can send its output to your printer.

146 Part II: Some Basic Stuff

Printing PostScript with Ghostscript

If you're lucky, your system manager installed Ghostscript so that it’s semi-
automatically called when you print a PostScript file. You typically use the
-v flag, something like this:

lpr -v floogle.ps

Failing that, in order to run Ghostscript, you type its name (gs) and the name
of the PostScript file to display:

gs floogle.ps

If you just type that line, Ghostscript opens a new X window and displays
the first page of f1oogle.ps in that window — probably not what you want.
Press Ctrl+C once or twice to stop Ghostscript from displaying the page in

a window. To get Ghostscript to do something useful, you have to use
switches — lots and lots of switches:

gs -sDEVICE=deskjet -dNOPAUSE -sOutputFile=floogle.1j
floogle.ps quit.ps

What’s going on here is that we set the output device (DEVICE) to a popular
ink-jet printer. We tell it not to pause between pages, we tell it what output
file to create and which PostScript file to print, and then we give it another
file from the Ghostscript library (quit.ps). The quit.ps file contains a one-
line command, which tells Ghostscript that it’s finished. You can tailor this
command as needed; run gs -h to see the available printers.

We expect that you find this subject a wee bit complicated. In practice, unless
your system manager has set up Ghostscript to run automatically, your best
bet is to find a local expert who can tell you the exact command to use.
Lacking an expert, you can still look at PostScript on-screen by using a slick
little program named Ghostview.

Part Il
Getting Things
Done

The 5t Wave By Rich Tennant
CRICHTENNARNT

e

PSS A
LI =]

“We can monitor ovy entive operation from
one centval location. We kvnow what the ‘Wax
Lips' people ave doing; we know what the ‘W
Cughion’ people ave doing; we kinow what the Fly-
n-the-Tee Cube'peop\e ave doing. But we dont
now what the ‘Plastic Vomit' people are dong:
We dort want to know what the Plastic
Vowitt' people ave dowg."

In this part . . .

n the first two parts of this book, we talk about the
computer, files, mice, printers, and the shell — you
name it. But what about getting some real work done?

To do useful work, you need software. This part talks about
using text editors, word processors, e-mail programs, and
other useful programs. We also talk a little about installing
software and (for you Linux users) doing a tiny bit of
system administration.

Chapter 10
Writing Deathless Prose

In This Chapter

What is a text editor?

What is a text formatter?

What is a word processor?

What is a desktop publishing program?
Using vi if you absolutely have to

Using emacs, which is not that bad, really
Using pico, which works rather well

Using ed if you don’t have anything better

In the land of UNIX, many programs handle text. Where you come from,
you may be accustomed to the idea of using a word processor when you
want to type something and print it. Not in UNIX. It has four kinds of pro-
grams for this task, just to keep things interesting.

UNIX Has Its Way with Words

The four kinds of UNIX programs that handle text are

v Text editors

v Text formatters

1 Word processors

v Desktop publishing programs
Before describing the most commonly used text editors in gory detail, we
thought that you would want to know the differences among these four kinds

of programs, in case you plan to impersonate a geek at the next meeting of
your local UNIX users’ group.

150 Part I1l: Getting Things Done

Just the text, ma'am

A text editor enables you to

v Create a file full of text
v Edit the text

You can print a file by using the 1p or 1pr programs, as described in Chapter 9,
although text editors can’t do boldface, headers or footers, italics, or all

that other fancy stuff you need in order to produce modern, overformatted,
professional-quality memos.

You may want to use a text editor to write letters and reports. You certainly
will use one to send electronic mail, as described in Chapter 17.

The most commonly used text editors in the land of UNIX are vi, emacs, and
pico. We have strong opinions about these editors, which becomes abun-
dantly clear in the later sections in this chapter, where we tell you how to use
each of them.

Text formatters aren’t really editors

Text formatters are programs that read text files and create nice-looking for-
matted output. You use a text editor to make a text file that contains special
little commands only the formatter understands; the . IT command, for
example, makes something italic. When you run the text formatter, it reads
the text file, reads the special little commands, and creates a formatted file
you can then print. You use 1p or 1pr to print the output of the text formatter.

The most common UNIX text formatter is TeX, pronounced “teccccch” (like
yeccccch), an arcane language popular among mathematicians and physi-
cists because of its capability to format large, complex equations, and
because it produces more aesthetically pleasing results than any of its com-
petitors. A companion program, LaTeX, is designed to make TeX easier to use
(relatively speaking, of course). (See the nearby sidebar, “Howdy, TeX!” for
more info about TeX and LaTeX and where to get them.)

Another common text formatter is troff. Some people use nroff (an older
version of troff), or groff, a newer GNU version of the program. With luck,
you never have to use any of them. If your luck has run out, you may want to
check out the section about troff, nroff, and groff in Chapter 9.

Chapter 10: Writing Deathless Prose

Howdy, TeX!

Donald E. Knuth created the popular TeX text
formatter way back in the late 1970s. According
to Knuth himself, TeX is a “typesetting system. ..
intended for the creation of beautiful
books — and especially for books that contain
a lot of mathematics.”

Like troff andits cousins nroff and groff,
TeX uses macros (prewritten bits of formatting
code) to shield you (theoretically) from painful,
low-level programming chores. In practice, TeX
is hard to handle because it can do many, many
things in a variety of ways, all proudly anti-
intuitive. For people overwhelmed by the sheer
complexity of TeX, Knuth created something
called pTain TeX, which is a slim and trim,
stripped-down version of TeX. Because TeX
overwhelms almost everyone, almost everyone
uses plain TeX ratherthan TeX itself.

Over the years, various intrepid UNIX hackers
have taken it upon themselves to write their
own sets of macros that work with TeX. The
best known is probably LaTeX (the La part
comes from the last name of its creator, Leslie

Lamport). To make a long story short, LaTeX
simplifies TeX by letting you describe the struc-
ture of a document without making you worry
about the way the document looks (sort of like
using the built-in styles in a word processor,
such as Microsoft Word). Other macro pack-
ages for TeX include Eplain, Lollipop,
pdfTeX (for creating books in Adobe Acrobat),
and HyperTeX (for creating hypertext docu-
ments, such as Web pages, with TeX).

Like many things UNIX, TeX and the TeX source
code and documentation are available for free;
you can download them from various FTP and
Web sites on the Internet. Also, you can buy one
of a number of commercial versions of TeX; you
gettechnical support and, in some cases, addi-
tional features in exchange for your money.

The best source of information about TeX,
LaTeX, and related subjects is The TeX
Users Group home page on the World Wide
Web (at www.tug.org/) or one of the many
TeX Usenet newsgroups, such as comp.
text.tex.

Cuisinarts for text: Word processors

Word processors combine the capabilities of text editors and text formatters.
Most word processors are (or try to be) WYSIWYG (an acronym for What You
See Is What You Get), which enables you to see on-screen how the document

(that’s what they call their files) will look when you print them.

Several surprisingly good, free word processors are available for UNIX.
KWord, which comes with the KDE desktop package, is a simple but quite
usable word processor. AbiWord is quite similar to Microsoft Word, and
OpenOffice.org contains equivalents to most of the Microsoft Office. When

writing this original version of this book in 1993, we used troff, but for the
current edition we used OpenOffice.org Writer, which produced files that, to

our editor’s relief, work fine in Microsoft Word.

151

152 Part I1l: Getting Things Done

Most UNIX users think that word processors are for wimps (what you see is
all you’ve got) because they like the unintelligible and unmemorable com-
mands used by text formatters and prefer to imagine what their text will look
like when it is printed rather than be able to see it on-screen. Text formatters
can do more complex things than word processors can, such as format com-
plicated mathematical expressions, lay out multi-page tables, and neatly orga-
nize sections and headers of huge, book-length documents. But that’s
probably not your problem.

Desktop publishing does it all

A desktop publishing (DTP) program resembles a fancy word processor. It
can do everything a word processor can, plus things you need only if you are
printing a book, newsletter, or something else that looks fancy. DTPs have
facilities for creating tables of contents and indexes, maintaining cross-
references — you name it. For writing an occasional memo, a desktop pub-
lishing program is definitely overkill.

The most popular desktop publishing program for UNIX is Adobe FrameMaker
(available for PCs and Macintoshes also).

TeX and some versions of troff are available for free, which explains why
they remain so popular (big surprise, eh?). All desktop publishers are com-
mercial products that cost extra. Lots extra.

vi and emacs and pico are your friends

The rest of this chapter explains how to use each of the Big Three text edi-
tors (vi, emacs, and pico), along with some words about how to use the pre-
historic but not yet extinct ed (who, as you will see, is not your friend). Even
if you use a word processor or desktop publishing program, you may need to
use a text editor to do some things, such as these tasks:

v Write electronic mail (see Chapter 17).

v Create or edit text files called shell scripts, which enable you to create
your own UNIX commands (see Chapter 12).

v Create or edit special text files that control the way your UNIX setup
works (see Chapter 7).

v Write C programs (just kidding!).

\

Chapter 10: Writing Deathless Prose

Shy vi, the Princess of Text Editors

A\

The vi text editor can claim a unique status among UNIX editors: Almost
every UNIX system in the universe has vi. This fact makes it a good editor to
know if you plan to be moving around from system to system, because you
can always count on it being there. Someone may have other reasons for
using vi, but ease of use is not foremost among them.

To run vi, type vi, a space, and the name of the file you want to edit, and
then press Enter.

If you get an error message when you try to run vi, talk to your system
administrator. If the screen looks weird, your terminal type may not be set
right — another reason to talk to your system administrator.

Editor a la mode

The most distinctive feature of vi (and the one that has spawned legions of
vi-haters, along with a few devotees) is that it is a modal editor. The vi pro-
gram is always waiting for one of two things: commands or text (also known
as input). When vi is waiting for a command, it is in command mode. When it
is waiting for text, it is in input mode. Normally, it is up to you to figure out
which mode vi is in at any particular moment — it doesn’t give you a clue.

Most vi commands are one letter long. Some are lowercase letters, and
others are uppercase letters. When you type vi commands, be sure to use
the correct capitalization.

If you are in input mode and want to give a command, press the Esc key.

Emergency exit from vi

To escape from v i, follow these steps: 2. Type the following line and press Enter:
1. Press Escape at least three times. gl

The computer should beep. Now you are in This line tells vi to quit and not save any
command mode, for sure. changes.

153

154 Part lll: Getting Things Done

s

A\

Whenever we tell you to type a command, it works only if you are in com-
mand mode. If you are not sure which mode you’re in, press Esc first. If you
are already in command mode, pressing Esc just makes vi beep.

To switch from command mode to input mode, you tell vi to add the text
after the character the cursor (the point at which you are working) is on (by
using the a command) or to insert the text before the current cursor position
(by using the i command).

Help! 1 need somebody!

The guy who wrote vi (remember Bill, the grouchy guy who’s 6'4" and in
excellent physical condition? — same guy) didn’t believe in help, so there
wasn’t any.

Fortunately, vi has been used in so many introductory computing courses
that Bill eventually relented and added “novice” mode. Rather than type vi to
run the editor, type vedit to get the same editor with some allegedly helpful
messages. In particular, whenever you’re in input mode rather than command
mode, vi displays, at the bottom of your screen, a message such as INPUT
MODE, APPEND MODE, CHANGE MODE, or OPEN MODE. All these messages mean
the same thing (except to Bill, evidently): Text you type when these messages
are visible is added to the file rather than interpreted as commands.

Easy text-entry techniques

Make a new file with some deathless prose so that you can practice entering
text in vi. Run vi with a new filename:

vi madeline

To add text after the current position of the cursor, type the letter a (you do
not press Enter after a command):

We tell you in a minute how to move the cursor, when you have some text to
move around in. You can type a, for example, to add this text to the newly
created xanadu file:

In Xanadu did Kubla Khan
A stately pleasure-dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

To get back to command mode, press Esc. Press Esc whenever you finish
typing text so that you are ready to give the next command.

Chapter 10: Writing Deathless Prose ’ 5 5

Other commands you can use to enter text include i to insert text before the
current cursor position, A (that’s an uppercase A, which to vi is totally unre-
lated to a lowercase a) to add the text at the end of the line the cursor is on,
and 0 to add the text on a new line before the current line.

The vi program shows you a full-screen view of your file. If the file isn’t long
enough to fill the screen, vi shows tildes (~) on the blank lines beyond the
end of the file. Figure 10-1, for example, shows a text file called eating.peas
(created in a later discussion about ed) as it appears in vi.

I eat my peas with honey,
I°we dore it all my life.
It makes the peas taste funny,
Eut it keepsz them on my knife,

|
Figure 10-1:
Tildes fill up
the blank
lines on the
vi screen.
|

o ¥ FLE% 4 Foohod § PR F PRl

The cursor appears at the beginning of the first line of the file.

All kinds of ways to move the cursor

You can use dozens of commands to move the cursor around in your file, but
you can get to where you want with just a few of them:

1+ The arrow keys (<, —, T, and |) usually do what you expect: They move
the cursor in the indicated direction.

P Sadly, on some terminals vi does not understand the arrow keys. If this
statement is true for you, press h to move left, j to move down, k to
move up, and | to move right. Bill chose these keys on the theory that,
because those keys are a touch typist’s home position for the fingers on
the right hand, you can save valuable milliseconds by not having to
move your fingers. Really. In some versions of vi, the arrow keys work
only in command mode; in other versions, they also work in input mode.

156 Part I1l: Getting Things Done

v Enter or + moves the cursor to the beginning of the next line.
v The hyphen (-) moves the cursor to the beginning of the preceding line.
v G (the uppercase letter) moves the cursor to the end of the file.

»* 1G moves the cursor to the beginning of the file. (That’s the number 1,
not the letter . Why ask why?)

Giving your text a makeover

To modify the text you typed, follow these steps:

1. Move the cursor to the beginning of the text you want to change.
2. To type over (on top of) the existing text, press the R key.

3. Type the new text. What you type replaces what is already there.
Press Esc when you finish replacing text.

4. To insert text in front of the current cursor position, press the i key.

5. Type the new text. What you type is inserted without replacing any
existing text. Press Esc when you finish inserting text.

Removing unsightly text
To delete text, follow these steps:

1. Move the cursor to the beginning of the text you want to delete.

2. To delete one character, type x. To get rid of five characters, type
xxxxX. You get the idea.

3. To delete text from the current cursor position to the end of the line,
type an uppercase D.

4. To delete the entire line the cursor is on, type dd (the letter d twice).

Nobody undoes it better

Like many text editors, vi has a way to undo the most recent change or
deletion you made. Type the letter u to undo the change. If you type an
uppercase U, vi undoes all changes to the current line since you moved the
cursor to that line.

Chapter 10: Writing Deathless Prose

QWING/

Write me or save me — just don’t lose me

To save the updated file, type the following (be sure that you press Esc first
so that you’re in command mode):

W

That’s a colon and a w, and then press Enter. You should give this command
every few minutes, in case the confusing nature of vi commands makes you
delete something important by mistake.

Good-bye, vi

To leave vi, type

7

Be sure to press Esc a few times so that you are in command mode before
giving this command. To quit and not save the changes you have made, type
this line:

:q!

Then press Enter. This line means, “Leave vi and throw away my changes. |
know what I'm doing.”

Most other letters, numbers, and symbols are also vi commands, so watch
what you type when you are in command mode. Table 10-1 lists the most
common commands you use with vi.

Table 10-1 Commands in vi
Command Description

Esc Return to command mode
Enter Move to beginning of next line
+ Move to beginning of next line

- Move to beginning of preceding line

a Add text after cursor

(continued)

157

,58 Part I1l: Getting Things Done

Table 10-1 (continued)

Command Description

A Add text at end of current line
dd Delete entire current line

D Delete from cursor to end of line
G Move (go) to end of file

1G Move to beginning of file

h Move one space left

i Add text before cursor

] Move down one line

k Move up one line

I Move right one space

0 Add text on new line before current line

:q! (followed by Enter)

Quit vi, even if changes arent saved

R Replace text

u Undo last change

U Undo changes to current line
X Delete one character

:w (followed by Enter)

Save (write) file

77

Quit vi and save changes

A Novel Concept in Editing:

emacs Makes Sense

We don’t want to get your hopes up, but emacs is much easier to use than vi.
The reason is that it doesn’t have the mysterious modes that require you to
remember at every moment whether the program is expecting a command

or text.

Chapter 10: Writing Deathless Prose

|
Figure 10-2:
The GNU
Emacs
display in

a text
console. At
the bottom
of the
screen,
emacs
displays on
the status
line the
filename
and other
mysterious
information.
|

On the other hand, commands in emacs aren’t exactly intuitive. Still, we like
them better. In case you are wondering, the name emacs comes from editor
macros because the original version of emacs was written as an extension to
an early text editor called teco, an editor that makes ed (see the section
“Talk to Mr. ed,” at the end of this chapter) look like the winner of the Nobel
prize for user-friendliness. (Scary thought, isn’t it?)

To run emacs, type this line:
emacs eating.peas

You replace eating.peas with the name of the file you want, of course. If the
file you name doesn’t exist, emacs creates it. Like vi, emacs displays a full-
screen view of your file, as shown in Figure 10-2. On the bottom line of the
screen is the status line, which tells you the name of the file you are editing
and other, less interesting information.

I =at my peas with honey,
I'we done it all my life,
It makes the peas taste fumny,
Eut it keeps them on the knife.

— eating.peas [Fundamental] 100X =

A tale of two emacs

Unlike vi, emacs does not automatically come with UNIX. Because most ver-
sions of emacs are distributed for free, however, most systems have it or can
get it. By far the two most common versions of emacs are GNU Emacs and
XEmacs. Despite the name, XEmacs runs under both X Windows and text-
based consoles, and so does GNU Emacs. The basic commands are the same

159

’ 60 Part I1l: Getting Things Done

for both versions, and the most obvious differences between the two are the
button bars and more sophisticated 3-D look to the windows in XEmacs.
(Compare the difference in Figures 10-3 and 10-4.) Other than that, it really

|
Figure 10-3:
The GNU
Emacs
display in an
X window
includes
pull-down
menus for
most
common
commands,
including
save,
search,
undo, and
help.
|

|
Figure 10-4:
The XEmacs
display in an
X window
includes a
toolbarin
addition to
pull-down
menus and

a 3-D look to
the
interface.
|

doesn’t matter which you use.

uFFErs Files Tools Edit Search Help

I eat my peas with honey,
I’ve done it all my life.
It makes the peas taste funny,
But it keeps them on my knife.

Help

File Edit Apps Options Buffers Tools
ABy

IRl e e A

I eat my peas with honey.
I've done it all my life
It makes the peas taste funny,
Eut it keeps them on my knife.

Replace

=il &l

B

—-*+-¥Emacs: eating. peas (Fundamental) ----A11

Chapter 10: Writing Deathless Prose

More than just a text editor

The emacs program is a cornucopia of bells
and whistles, including two different e-mail
packages, a newsreader, a file manager, color
text highlighting, and countless other fun and
unnecessary features. These features make
emacs a much larger package than any other
editor (it has been somewhat accurately called
an operating system disguised as an editor) and
has been known to cause some system admin-
istrators to balk at installing it on their UNIX
machines. For others, it's almost a way of life, so
whether you have access to emacs may

depend on how strongly your system adminis-
trator feels about those types of things.

v~ Ifyou getan error message when you try to
run emacs, ask your system administrator
what's up. The emacs program may have
another name on your system. If your
system administrator says that you don't
have emacs, plead with him or her to getit.

v If emacs looks or acts weird (weirder than
usual, that is), your terminal type may not
be set correctly. Again, ask your system
administrator to straighten it out.

A\
To run XEmacs on the eating.peas file, type the command xemacs eating.

peas.

Telling emacs what to do

Rather than have two modes, as does vi, emacs treats normal letters, num-
bers, and punctuation as text and sticks them in your file when you type
them. (Pretty advanced concept, huh?) Commands are usually given by
pressing combinations of the Ctrl (Control) key and a letter. You also give
some commands by pressing the Meta key and a letter.

101

\\J

On most computers, the Meta key is the Esc key. If your keyboard has an Alt
key, it may be the Meta key. Try Alt to see whether it works. If it doesn’t, use
Esc. Unlike with Alt, if you use Esc you must release the Esc key before you
type the subsequent letter (Esc, release, letter). In the following section, we
tell you to press Esc.

Another novel concept: Type to enter text

To enter text, just start typing! The text is inserted wherever your cursor is.

1 62 Part I1l: Getting Things Done

\\J

Getting around in emacs

To move the cursor around in your text, use these keys:

v Arrow keys usually move the cursor up, down, left, and right.

P In a few situations, emacs doesn’t understand the arrow keys. If that’s
true for you, press Ctrl+B to move backward one character, Ctrl+F to
move forward one character, Ctrl+P to move to the preceding line, and
Ctrl+N to move to the next line. At least they tried to make them
mnemonic.

v Ctrl+A moves to the beginning of the line.
v Ctrl+E moves to the end of the line.

v Esc+< (press Esc and then hold down Shift and press the comma key)
moves to the beginning of the file.

v Esc+> (press Esc and then hold down Shift and press the period key)
moves to the end of the file.

Making changes in emacs

Even though emacs is a better text editor, you still make typos, change your
mind, and think of brilliant improvements to your text. To change text, follow
these steps:

1. Move the cursor to the beginning of the text you want to change.

2. Type the new text. The text is inserted wherever the cursor is.

3. Delete any text you don’t want.

It’s that simple. No weird commands required.

Emergency exit from emacs

To stop using emacs, press Ctrl+X followed by say something like “Buffers not saved. Exit?”
Ctrl+C. (Translation: “Do you really want to quit without
saving your changes?”) Press Y for yes or N for
no, as appropriate. If you just want to get out,
press N to the “Do you want to save” question
or Y to the “Buffers not saved” question.

This command doesn’t save any changes you
made to the file in emacs. It just gets you out.
Some versions of emacs may ask whether you
want to save the file the editor was looking at or

Moving text in emacs

Although this subject is beyond the scope of this
quick introductionto emacs, we tell you how to
move text from one place to another in a file. It
turns out that when you press Ctrl+K to kill the
text from the cursor to the end of the line, the
killed information is stored in a temporary place
called the kill buffer. You can copy the informa-
tion from the kill buffer back into your file by
pressing Ctrl+Y (yank it back into the file). To

move some text, kill it with Ctrl+K, move the
cursor to the new location, and press Ctrl+Y to
insert the text where your cursor is. (Kill and
yankin emacs-ese correspond to cutand paste
in the regular world.) If emacs is running in an
X window, the kill buffer is connected to X's
cut-and-paste system, which means that you
can cut and paste between emacs and other
programs.

Deleting stuff in emacs

emacs has several commands for deleting stuff:

v To delete the character the cursor is on, press Ctrl+D. Or, on many

Chapter 10: Writing Deathless Prose ’ 63

terminals, press the Del key.

v To delete text from the cursor to the end of the word (up to a space or
punctuation mark), press Esc and then D.

v To delete from the cursor to the end of the line, press Ctrl+K.

Save that file before it's too late!

To save the text in the file, press Ctrl+XS (press and hold down the Ctrl key,
press X and S, and then release the Ctrl key). You should save your work
every few minutes. Even though emacs isn’t as frustrating as vi (or ed, for
that matter), lots can still go wrong.

Bidding emacs adieu

When you finish editing and want to leave emacs, press Ctrl+XC (press and
hold down the Ctrl key, press X and C, and then release the Ctrl key). You
leave emacs and see the UNIX shell prompt.

, 64 Part lll: Getting Things Done

If you didn’t save your work, emacs politely points out that your buffers
stuff you have been working on) aren’t saved and asks whether you really
want to exit. It suggests pressing the n key as the safe default in case you
want to return to emacs to save the file. To leave without saving, press the y
key and then Enter.

It takes many fewer emacs commands to make a file and type some stuff,
make a few changes, and then save the file and leave than it does with ed or
vi. The emacs program has tons of commands, most of which are utterly use-
less. Table 10-2 lists the commonly used emacs commands.

Table 10-2 Commands in emacs
Command Description

Ctrl+A Move to the beginning of the line
Ctrl+B Move back one space

Ctrl+D Delete one character

Ctrl+E Move to the end of the line
Ctrl+F Move forward one space

Ctrl+K Delete to the end of the line
Ctrl+N Move to the next line

Ctrl+P Move to the preceding line
Ctrl+XC Leave emacs

Ctrl+XS Save the file

Esc+< Move to the beginning of the file
Esc+> Move to the end of the file
Esc+D Delete to the end of the word

A Peek at pico

One other editor has become popular: pico. As the Pine e-mail program has
spread like wildfire, the editor that comes with it, pico, has taken off, too.
pico is the easiest to use of the four text editors we describe in this chapter,
albeit not the most powerful. Folks at the University of Washington wrote it.

Figure 10-5:
The pico
editor is
easy to use,
with a small
menu at the
bottom of
the screen.
|

Chapter 10: Writing Deathless Prose ’ 6 5

To run pico, type this command:
pico eating.peas

As usual, type the name of the file you want to edit rather than eating.peas.
If you type a filename that doesn’t exist, pico creates a file with that name
just for you.

Your system may not have pico — if not, ask your system administrator if
she can get it for you. Assure her that if she doesn’t, you’ll pester her ten
times a day for the next year for help with ed or vi.

The pico screen looks like the one shown in Figure 10-5. Amazing — pico
shows you at the bottom of the screen a menu of the most commonly used
commands! What will they think of next?

UW PICO(tm) 2.5 File: eating.peas

B 2at my peaz with honey,
I°ve done it all my life.
It makes the peasz taste funny,
But it keeps them on my knife.

[Read 4 lines
Get Help @O WriteOut @Y Read File @ Prew Pg Cut Text
Exit B Justify Wl Where is | Mext Pg UnCut Textjll] To Spell

Vou've my type

Typing text into a file by using pico is a breeze. Just type. That’s all. No
modes, commands, or anything strange.

You move me

If your cursor keys work in pico, great. If not, you can use Ctrl+F to move
forward one character, Ctrl+B to move back one character, Ctrl+N to move
to the next line, and Ctrl+P to move to the preceding line. The following keys
also move you around the screen:

1 66 Part I1l: Getting Things Done

v Ctrl+A moves to the beginning of the line.
v Ctrl+E moves to the end of the line.
v Ctrl+V moves forward one screen of text (F8 does this, too).

v Ctrl+Y moves back one screen of text (as does F7).

You're a big help

To get help with the pico commands, press Ctrl+G. If your keyboard has an
F1 key, that should work, too. You see pages of helpful information about the
program. Press Ctrl+V to see more or Ctrl+X to return to pico.

Time for a change

Editing your text in pico is also easy. Whatever you type is inserted wherever
the cursor is. You can use these commands to edit stuff:

v Ctrl+D deletes the character the cursor is on.

v Ctrl+” (that’s Ctrl+Shift+6) marks the beginning of some text you want to
work with. You use this command to select a bunch of text to delete or
move.

v Ctrl+K (or F9) deletes (cuts) the text from the mark to the current cursor
position. Blammo! — the text is gone and is stored in an invisible hold-
ing tank somewhere.

v Ctrl+U (or F10) uncuts or pastes the last text you cut, making it reappear
where the cursor is now.

Thanks for saving my file

To save the text in a file, press Ctrl+O (or press F3). pico asks for the file-
name to write the text into, suggesting the filename you used when you ran
pico in the first place. You can change the name so that the text is written to
a new file or leave it as is, to update the existing file. When you press Enter,
pico writes the information into the file.

I'm outta here

When you finish editing and want to leave pico, just press Ctrl+X. If you
haven’t already saved your file, pico asks whether you really want to leave,
because leaving will lose any changes you made to the file since you last
saved it. Tell it that you do. Then you're out, and you see the shell prompt.

167

Chapter 10: Writing Deathless Prose

Editors galore

UNIX being UNIX, you could use many more text
editors in addition to the Big Three (and reluc-
tant Fourth) described in this chapter, including
such alien-sounding programs as sed, perl,
and awk. The popular vim editor is a souped-
up, X-ified version of vi. KDE comes with two
editors, KEdit (a relatively simple one) and
Kate (a fancier one), GNOME comes with
gedit (arelatively simple, as far as anything in
GNOME is simple, editor), and Cream (a
GNOME-ized version of vim). A little searching

around will find you more editors than you could
try out in your lifetime. We suggest that unless
you have a compelling reason to use a different
editor, such as everyone else in your company
uses another editor, stick with one of the Big
Three. Someday you'll switch to another version
of UNIX, and if your favorite editor isn’t there,
you'll either waste a lot of time finding and
installing a copy of your editor, or else relearn-
ing one of the editors that it does have. But the
Big Three are all either there, or easily added.

pico doesn’t claim to be an editor with the power of emacs or vi. After all,
you can'’t edit ten files at a time, read your mail, and rename files from pico.
Who cares? It’s a nice, easy program for editing text. Isn’t that what a text

editor is supposed to be?

Table 10-3 lists the top pico commands.

Table 10-3 Commands in pico

Command Description

Ctrl+A Move to the beginning of the line

Ctrl+B Move back one character

Ctrl+D Delete one character

Ctrl+E Move to the end of the line

Ctrl+F Move forward one character

Ctrl+G (or F1) Get help (display online help information)

Ctrl+K (or F9) Kill (delete) selected text (text between the mark and the
cursor)

Ctrl+N Move to the next line

Ctrl+0 (or F3) Output (save) the file

Ctrl+P Move to the preceding line

(continued)

1 68 Part I1l: Getting Things Done

Table 10-3 (continued)

Command Description

Ctrl+U (or F10) Uncut (paste) the last text that was deleted by using the
Ctrl+K command

Ctrl+V (or F8) Move down one screen

Ctrl+X (or F2) Exit from pico

Ctrl+Y (or F7) Move up one screen

Ctrl+7 (Ctrl+Shift+6) Mark the beginning of selected text

Talk to Mr. ed

\\J

The vi editor may seem like a quaint throwback to prehistoric software, but
in the early days of UNIX vi didn’t even exist. In the pre-CRT era of Teletype
terminals, line editors ruled, and the standard among line editors was (and
still is) ed. A line editor, such as ed, is one that assigns line numbers to the
lines in a file. Every time you do something, you must tell ed which line or
lines to do it to. If you use the EDLIN program in DOS, ed should look familiar.
The ed program has been a part of UNIX since the beginning of time. When
you use it, you begin to appreciate how far software design has progressed
since 1969.

If you can get another text editor to use in any way @@repeat — any way, do
it. If you don’t think that ed can really be that bad, just peruse the rest of this
section, and you will run screaming to your system administrator for vi ,
pico, or emacs (preferably pico or emacs).

Some systems have a program called ex that is similar to but not quite as
horrible as ed. Try typing ex to see what happens.

To run ed, type this line:
ed important.letter

(Type the name of your file rather than important.letter.) If no file has the
name you specify, ed makes one. UNIX responds to this command with a
number, which is the number of characters (letters, numbers, punctuation,
and spaces) in the file, just in case you are being paid to write by the letter.

If you receive an error message when you try to run ed, talk to your system
administrator. Congratulate her on getting rid of that Neanderthal text editor
and find out which text editor you can use.

A\

Chapter 10: Writing Deathless Prose ’ 69

Emergency exit from ed

To get the heck out of ed — in case someone
used your computer and left it running — follow
these steps:

1. Type a period on a line by itself and press

Enter.

This step gets you into command mode, in
case you're in input mode. If you are
already in command mode, a line of the file
prints on-screen. Ignore it.

and you see a UNIX shell prompt. If
changes to the file haven't been saved, ed
displays a question mark, meaning, “Yo,
you're about to throw away your changes.
Are you cool with this?” Press the g key and
press Enter again. This time, ed exits. If
someone has used your computer and ran
ed and didn’t save the work, to heck with it.
If youran ed by mistake and are fighting to
get out, you probably don’t want to save any

2. Type q and press Enter.

If changes to the file have been saved or if
there were no changes, this step quits ed

changes anyway.

In most versions of ed, you can also use the
capital Q command, which means, “Quit— and
don't ask any questions!”

\\J

Hey, Wilbur, which command was that?

All ed commands are one-letter long (such as h).

Remember not to capitalize ed commands unless we specifically say to. ed
commands are almost all lowercase letters.

Relatively recent versions of ed (since, oh, about 1983) have a P command
(that’s a capital P, one of the few uppercase commands) that turns on a
prompt. If you type P and press Enter, ed prompts you with an asterisk when
it’s in command mode and waiting for a command. Is that incredibly user-
friendly or what? This P command enables you to determine when you’re in
command mode! Must have snuck that one in when the lazy typists weren’t
looking.

If you're in input mode and want to give a command, type a single period on a
line by itself, which switches ed to command mode.

In the remainder of this discussion about using ed, whenever we tell you to
type a command, it works only if you’re in command mode. If you’re not
sure, type a period and press Enter first.

1 70 Part lll: Getting Things Done

If you're in command mode and want to type some text, you switch to text-
input mode. First, however, you must decide whether you're going to append
(by using the a command) after the current line the lines of text you will type
or insert (by using the i command) the lines of text before the current line.
More about the current line and the a and i commands in a minute.

Feeding text to Mr. ed

When you want to create a file and feed some text to it start the process by
typing this line:

ed eating.peas

You can name your file something other than eating.peas, if you want. UNIX
responds with a question mark, just to keep you on your toes. (This time, the
question mark tells you that ed just created a new file for you.)

To add (append) new lines of text to the end of the file — in this case, the end
of the file is the same as the beginning because the file is empty — type a and
press Enter. UNIX responds by saying nothing, which is your indication that
ed is now in input mode and waiting for you to type some text. Type some
pearls of wisdom, like this:

I eat my peas with honey,
I've done it all my Tife.
It makes the peas taste funny,
but it keeps them on the knife.

QgN\BER When you finish typing text, type a period on a line by itself to switch ed

> from input mode back to command mode. Not that ed gives you a hint that
this process is going on, unless you have used the P command to tell it to
prompt you.

The lines of text are now in your file. Now is a good time to save the file, just
in case you kick your computer’s plug from the wall in your frustration at
having to use such a brainless program.

Getting Mr. ed to save your text

The following command saves your text in a file with ed. If you are in input
mode, remember to type a period on a line by itself to switch to command
mode before typing w (followed by Enter). That’s w for write. UNIX responds
with the number of characters now in the file. Be sure to give this command
before leaving ed so that your deathless prose is saved in the file, in this
case, eating.peas (or whatever filename you used when you ran ed).

A\

Chapter 10: Writing Deathless Prose

What if ed commands end up in my text?

If you are in input mode and type an ed com- If this happens, delete the lines you don't want
mand, ed doesn’t perform the command. (we explain how to delete lines later in this
Instead, it thinks that you are typing text and chapter). The next time you want to enter a
stores the letter or letters of the command as command, first be sure to type a period on a line
just some more text in your file. by itself.

Show me the file, please

Now that you have text in the file, how can you see it or change it? By using
the p (print) command. This command doesn’t print anything on the printer;
it just displays it on-screen — another example of superb software engineer-
ing. (Well, it printed on those old Teletypes.) If you type the p command by
itself, as follows, ed displays the current line. In the case of the sample
eating.peas file, the current line is the last line in the file. You can also tell
ed which lines to display by typing their line numbers. To display lines 1
through 4, for example, type this line:

1,4p

You can also use the symbol $ to stand for the line number of the last line in
the file (in case you don’t know how many lines are in the file). The following
command always displays the entire file:

1,%p

A miserable way to edit

You can change the contents of a line of text with ed, but it involves giving
commands that look like this:

12,13s/wrong/right/

This command substitutes right for wrong in lines 12 through 13, inclusive.
Totally primitive and painful, isn’t it? For the amount of editing you probably
do in ed, it’s almost easier to delete the line with the typo and insert a new
line. We recommend that you immediately ask your system administrator for
a better text editor.

171

1 72 Part lll: Getting Things Done

WMBER
\g'c
&

Undo your thing, ed!

Wait — ed has one useful, humane command, after all! The u command
enables you to “undo” the last (and only the very last) change you made to
the file. If you delete a line by mistake with the d command, for example, you
can type u and then press Enter to undo the deletion.

Be sure that you don’t make any other changes before using the u command.
[t undoes only the last thing you did.

Time to ed out

When you finish making changes and you want to leave ed (or even if you're
not finished making changes and you want to leave ed anyway), type q and
then press Enter. If you are in input mode, first type a period on a line by
itself to get into command mode. Then press the q key to quit.

If you haven’t saved your work by using the w command, ed just doesn’t quit.
Instead, it displays a question mark to tell you that it was expecting a w com-
mand first. To save your changes, type these two commands, pressing Enter

after each:

W
q

If you don’t want to save the changes to the file, press the q key again at the
question mark. This time, ed believes that you really want to leave and thus
exits. Not a moment too soon!

As a review, Table 10-4 lists the commands you use most commonly with ed.

Table 10-4 Commands in ed

Command Description

a Add lines after the current line and enter input mode

d Delete line or lines

h Display extremely terse help message right now

H Display terse help messages whenever anything goes wrong

Insert lines before the current line and enter input mode

Chapter 10: Writing Deathless Prose ’ 73

Command Description

n Display line or lines with line numbers

p Display line or lines

P Display an asterisk whenever ed is in command mode
q Quit the whole thing

Q Quit regardless of whether changes have been saved
u Undo last change

w Write (save) the file

1 74 Part lll: Getting Things Done

Chapter 11

Umpteen Useful UNIX Utilities

In This Chapter

A grab bag of useful programs

Sorting and comparing files

Stupid calendar tricks

Squashing files to make them smaller
Some other odds and ends

In spite of the fact that we have been making fun of UNIX in this book, we
are well aware that UNIX actually has some fairly handy programs lying
around. In this chapter, we look briefly at some of them. All these programs
have a severe case of what is known as Feature Disease (closely related to the
greasy fingerprints mentioned in Chapter 2): They all are bristling with fea-
tures and options. Most of the features and options aren’t worth mentioning,
however, so we don’t.

Comparing Apples and Oranges

When you have used your UNIX machine for a while, you have piles of files
(say that six times quickly) lying around. Often, many of the files are dupli-
cates, or near duplicates, of each other. Two programs can help sort out this
mess: cmp and diff.

The simplest comparison program is cmp; it just tells you whether two files
are the same or different. To use cmp to compare two files, type this line:

cmp onefile anotherfile
You replace onefile and anotherfile with the names of the files you want

to compare, of course. If the contents of the two files are the same, cmp doesn’t
say anything (in the finest UNIX tradition). If they’re different, cmp tells how

1 76 Part lll: Getting Things Done

\\J

far into the files it got before it found something different. You can compare
any two files, regardless of whether they contain text, programs, databases,
or whatever, because cmp cares only whether they’re identical.

A considerably more sophisticated comparison program is di f f. This pro-
gram attempts to tell you not only whether two files are different but also
how different they are. The files must be plain text, not word processor docu-
ments or anything else, or else di ff becomes horribly confused. Here’s an
example that uses two versions of a story one of us wrote. We compared files
tsel and tse? by typing this command:

diff tsel tse2

Enter the name of the older file first and the name of the new, improved
second file. The diff program responds:

45¢c45
< steered back around, but the sheep screamed in panic and
reared back.

> steered back around, but the goats screamed in panic and
reared back.

46a47

> handlebars and landed safely in the snow.

The changes between tsel and tse? are that, in line 45, the sheep changed
to goats, and a new Line 47 was added after Line 46.

diff reports, in its first line of output (45c45) that changes (that’s what
the ¢ stands for) were made in lines 45 through 45 (that is, just line 45). Then
it displays the line in the first file, starting with a <, and the line in the
second file, starting with a >. We think of this as diff’s way of saying that
you took out the lines starting with < and inserted the lines starting with >.
Then diff reports that a new line is between lines 46 and 47 in the original
file, and it shows the line that was inserted. This is a great way of seeing
what changes were made when you get a new revision of a document you
wrote. Most versions of diff can also show you the context — a few lines
around each change — by giving an option like -3 (which shows three lines
of context).

BSD versions of di ff (including the version that usually runs under Linux)
can compare two directories to tell you which files are present in one and not
in the other, and to show you the differences between files with correspond-
ing names in the two directories. Run diff and give it the names of the two
directories.

Chapter 11: Umpteen Useful UNIX Utilities

Assorted Files

\\J

Computers are good at putting stuff in order. Indeed, at one time a third of all
computer time was spent sorting. UNIX has a quite capable sorting program,
cleverly named sort, that you may remember meeting briefly in Chapter 7.
Here, we talk about some other ways to use the program.

The sort command sorts the lines of a file into alphabetical order. From the

sort point of view, a line is anything that ends with a carriage return (that is,
you pressed Enter). If you have a file containing a list, with one item per line,
this command alphabetizes the list.

The easiest way to use sort is to sort one file into another. In other words,
you tell sort to place the sorted version of the original file in another file.
This way, you don’t risk screwing up the original file if the sort runs amok.
To sort the original myfile into a second file named sortedfile, type this
command:

sort myfile > sortedfile

Although you can sort a file back into itself, you can’t do it in the obvious
way. The following line, for example, doesn’t work:

sort myfile > myfile

The problem with this command is that the UNIX shell clears out myfile
before the sort starts (with the result that, when sort tries to sort some-
thing, it finds that myfile is empty). You can use the -0 (for output) option
to tell sort where to put the results, like this:

sort myfile -o myfile

This command works because sort doesn’t start to write to the output file
until it has read all its input.

Normally, sort orders its results based on a strict comparison of the internal
ASCII codes the computer uses for storing text. The good news is that this
command sorts letters and digits in the correct way, although some peculiari-
ties exist: Normally, uppercase letters are sorted before lowercase letters, so
ZEBRA precedes aardvark. You can use the - f (for fold cases together) option
to sort regardless of uppercase and lowercase letters:

sort -f animals -o sortedanimals

177

1 78 Part lll: Getting Things Done

Although we could use the > redirection symbol in this example, with the
sort command using the -o option is safer. You can use several other
options also to tell it to sort:

-b Ignore spaces at the beginning of the line.

-d Use dictionary order and ignore any punctuation. You usually use this option
with - f.

-n Sort based on the number at the beginning of the line. With this option, 99
precedes 100 rather than follows it, as it does in usual alphabetical order.
(Yes, the normal thing the computer does is pretty dumb. Are you surprised?)

-r Sortinthe reverse order of whatever would have been done otherwise. You
can combine this option with any of the others.

We find sorting to be particularly useful in files in which every line starts with
a date, as shown in these examples:

0505 Tonia's birthday
1204 Meg's birthday
1102 Zac's birthday
0318 Sarah's birthday

We could type sort -n to sort this file by date. Notice that we wrote May 5
as 0505 (not 55, for example) so that a numeric sort works.

You can do much more complex sorting and treat every line as a sequence of
“fields” that sort uses to decide the final sorted order. If you really need to
do complex sorting, talk to someone who knows something about sorting or,
if you're feeling adventurous, type man sort.

Time Is Money — Steal Some Today!

All UNIX systems have internal clocks. You can ask the system what the date
and time are with the date command:

date
UNIX responds with this information:
Thu Dec 4 15:43:50 EST 2003
Many options enable you to tailor the date format any way you want. Don’t

waste your time. UNIX has an idea about the time zone too, and even does
daylight savings time automatically.

Chapter 11: Umpteen Useful UNIX Utilities] /9

You can schedule things to be done later by using the at command. You say
something like this:

at 5:15pm Jul 4
sort -r myhugefile -o myhugefile.sort
pr -f -2 myhugefile.sort | 1p

Then you press Ctrl+D to indicate that you finished giving commands.

You give the at command and specify a time and date. Then you enter the
commands you want to run at that date and time. Press Ctrl+D on a separate
line to tell UNIX that you're finished listing tasks. In this example, we sort a
huge file and then print it in two columns, all on the Fourth of July, when pre-
sumably no one is around to complain that it’s taking too long. If you omit the
date, UNIX assumes that you mean today if the time you give is later than the
current time; otherwise, UNIX assumes that you mean tomorrow.

Any output that normally goes to the terminal is sent back to you by elec-
tronic mail, so you should at least skim Chapter 17 to find out how to read
your mail.

Squashing Your Files

One problem common to all UNIX systems — indeed, to nearly all computer
systems of any kind — is that you never have enough hard drive space. UNIX
comes with a couple of programs that can alleviate this problem: compress
and gzip. They change the data in a file into a more compact form. Although
you can’t do anything with the file in this compact form except expand it back
to its original format, for files you don’t need to refer to often, compressing
can be a big space-saver.

Compress without stress

You use compress and gzip in pretty much the same way. To compress a file
named confidential.txt, for example, type this line:

compress -v confidential.txt

The optional -v (for verbose) option merely tells UNIX to report how much
space it saved. If you use it, UNIX responds with this information:

confidential.txt: Compression: 49.79% — replaced with
confidential.txt.Z

1 80 Part I1l: Getting Things Done

\\3

The compress program replaces the file with one that has the same name
with .7 added to it. The degree of compression depends on what’s in the file,
although 50 percent compression for text files is typical. For a few files, the
compression scheme doesn’t save any space, in which case compress is
polite enough not to make a .7 file.

To get the compressed file back to its original state, use uncompress:
uncompress confidential.txt.Z

This command gets rid of confidential.txt.Z and gets back
confidential.txt. You can also use zcat, a compressed-file version

of the cat program, which sends an uncompressed version of a compressed
file to the terminal, without storing the uncompressed version in a file. The
command is rarely useful by itself but can be quite handy with programs,
such as more or 1p. You use it this way:

zcat confidential.txt.Z | more

This command enables you to see one page at a time what'’s in the file. Unlike
uncompress, zcat does not get rid of the . Z file.

The GNU crowd weighed in with its own compress-like program named gzip.
It works the same way that compress does, but uses a different, slightly
better, compression scheme. The gzip program is analogous to compress.
gunzip and gzcat uncompress stuff. Use them this way:

gzip -v confidential.txt
gunzip confidential.txt.gz
zcat confidential.txt.gz | more

Note that the files end with lowercase gz rather than uppercase 7.

Fortunately, gzip knows how to uncompress files produced by compress as
well as those produced by several other compression programs, so you can
use gunzip as your one-stop uncompression utility.

Yet another compression program, called bzip?, comes with companions
bunzip? and bzcat. You use it the same way as gzip, except that the files it
makes end with bz2 and are a little smaller than the equivalent gz files.
Downloaded files from the Web are sometimes compressed with bzip?. If
your system doesn’t have bzip? installed, you (or maybe your local helpful
nerd) can find it at http://sources.redhat.com/bzip2. Here’s how you
use them:

bzip2 -v confidential.txt
bunzip2 confidential.txt.bz2
bzcat confidential.txt.bz2 | more

Chapter 11: Umpteen Useful UNIX Utilities

How does file compression work, anyway?

This discussion is pretty technical. Don't say
that we didn't warn you.

The issue of optimal codes (codes that use the
least number of bits for a particular file — or
message because at that time they were think-
ing in terms of radioteletypes) was a hot topic in
the late 1940s, challenging the deepest thinkers
in the field. In 1952, a student named David
Huffman published a paper that any high-school
student could understand showing how to use
simple arithmetic techniques to construct opti-
mal codes. Oops. Ever since then, this kind of
code has been known as Huffman coding. For
many years Huffman coding was the best avail-
able, and a UNIX program named pack used it.

Normally, every character in a file is stored by
using 8 bits (binary digits, 1s and 0s, the smallest
unit of data a computer can handle). Suppose
that a file contains 800 As followed by 100 Bs,
and 100 Cs. That's 1,000 characters, at 8 bits
apiece, or 8,000 bits. For this particular file, a
compression program can use much shorter
codes. It can use a 1-bit code for A and 2-bit
codes for Band C. That makes the total size 800
bits for the As, and 200 bits apiece for the Bs
and the Cs — a total of 1,200 bits rather than
8,000. The packed file is a little larger than that
(1,408 bits) because a table at the front of the
packed file indicates which codes correspond
to which letters.

The compress program uses a dictionary-
compression scheme, which is kind of back-
ward from Huffman coding. Rather than try to
find the shortest code for every letter, com-
press runs through the file trying to find fre-
quently occurring groups of letters it can
encode as a single dictionary entry, or token. To
compress the same file we packed in the previ-
ous paragraph, compress reads letter by letter

and notes that it has seen AA more than once;
then it notices that it has seen AAA more than
once, and so on. It enters longer and longer
runs of A’s into its dictionary until it has runs of
more than 300 As, each represented by a single
dictionary entry and a single token in the com-
pressed file. When compress runs into the Bs
and then the Cs, it does the same thing and also
enters long runs of Bs and Cs in the dictionary.

Using a clever technique (at least, it's clever to
data-compression wonks), compress doesn’t
have to store the dictionary in the compressed
file because uncompress can deduce the
contents of the dictionary that compress was
building from the sequence of tokens in the
compressed file. As a result, compress does a
fantastic job on this file and squashes it to a
mere 640 bits from the original 8,000.

Compression techniques are still a hot topic in
the computer biz, and many techniques have
been patented. The particular technique com-
press usesis known as LZW, after Lempel, Ziv,
and Welch, the three guys who thought of it.
Welch, who works for Unisys and made some
improvements to an earlier scheme designed by
Lempel and Ziv, has a patent on it. It's such a
cool technique, in fact, that two other guys
named Miller and Wegman, who work for IBM,
invented it at about the same time, and they also
have a patent on it. Because the patent office is
not supposed to grant two patents on the same
invention, some people use this situation to sug-
gest that issuing patents on software isn't a
good idea. Fortunately, neither Unisys nor IBM
has ever objected to the compress program,
and the patent expired in June 2003, so you can
go ahead and use it. Gzip, zip, and bzip2
use techniques that are somewhat similar to
LZW but not covered by patents.

181

1 82 Part I1l: Getting Things Done

Zippedy day-tah

WinZip and PKZIP are widely used compression programs among Windows
and DOS users to create ZIP files containing one or more files compressed
together. You may run into ZIP files if you get information from the Internet or
on a disk from a DOS or Windows system. Fortunately, a number of volunteers
(led by a perfectly nice guy who goes by the enigmatic handle of Cave Newt)
have written free zipping and unzipping programs named zip and unzip.
Because they’re both available for free over the Internet, no UNIX system
should be without them.

To unzip a ZIP file, you use unzip:
unzip video-Tist.zip

The unzip command has a bunch of options, the most useful of which is -1,
which tells the program to list the contents of the ZIP file without extracting
any of the files. To find out what all the options are, run unzip with no
arguments.

If you need to create a ZIP file, you can use the equally boringly named z1ip
program:

zip video-Tist *.txt

This command says to create a file named video-1ist.zip (it adds the
.z1p part if you don’t) containing all the files in the current directory whose
names end in . txt. The zip program has a number of options, the most
useful of which are -9, meaning to compress as well as possible even though
it’s slow (-1 means as fast as possible; other digits give results in between),
and -k, which means to make the file look just like one created on a DOS
system, not using any lowercase filenames or other UNIX-isms. We use

zip -9k to create ZIP files to copy to DOS systems.

Incidentally, gzip bears only the vaguest connection to zip and unzip. gzip
compresses single files, whereas zip compresses multiple files into a single
archive.

What'’s in That File?

Sometimes you have a bunch of files and no recollection of what they con-
tain. The file command can give you a hint. It looks at the files you name on
the command line and makes its best guess about what’s in the files.

Chapter 11: Umpteen Useful UNIX Utilities]| & 3

To have file try to figure out what’s in the files in the working directory,
type this line:

file *
UNIX responds with this bunch of seemingly incomprehensible information:

sleuthl.doc: Microsoft Office Document

sleuthl.ms: [ntlroff, tbl, or egn input text

tsel: ascii text

pictures.zip: Zip archive data, at lTeast v2.0 to extract

This mess says that fi1e figured out that sTeuthl.doc was a Microsoft
Word document, sTeuthl.ms is a text file coded for input to the troff text
formatter (those other programs are some of troff’s helpers), that tsel
contains text, and that pictures.zip is compressed using zip. The file
program guesses “data” whenever it has no idea what’s in a file, usually
because it was created by an application not commonly used on UNIX.

1 84 Part lll: Getting Things Done

Chapter 12
Installing Software Can Be Tricky

In This Chapter

Where does software come from (the software stork)?

Where to put software

Writing shell scripts, or files full of commands
Writing aliases for your favorite commands
Grabbing software from the Internet

Uncompressing, uudecoding, and otherwise fooling with files that contain programs

f you are a Windows or Macintosh user, you probably are thinking: “I can

install new programs. What'’s the big deal? I just stick in a disk or a CD-
ROM and type INSTALL, right?” No. In UNIX, it’s not that simple, of course.
You face issues of paths, permissions, and other technical-type stuff we have
been protecting you from.

On the other hand, we’re not about to train you to be a system programmer.
Every user has a few favorite programs, and you wear out your welcome
quickly if you go off to your local wizard every time you want to use a new
program. Although installing new UNIX programs is much trickier than
installing PC or Mac programs, in many cases you can do it yourself.

The Software Stork

Interesting software comes from many places:

v Some other user on the same machine already has it for his or her own
use, and you want to use it, too.

WORK
é‘i\ »* Some other machine on the network has a program you want for your-
ﬁih self. See Chapter 16 for the gory details of copying the program from
other machines on the network.

1 86 Part I1l: Getting Things Done

v Someone sends you programs through e-mail. (Yes, it’s possible,
although you should be really, really sure that it’s from someone you

trust before you install it.)

v You create files that contain frequently used commands so that you
don’t have to type them repeatedly. In UNIX-speak, these files are
called shell scripts. In essence, you make your own multipurpose UNIX

commands.

First, we talk about where you should put your own software. Then we go
into more detail about the mechanics of putting it there.

VYou've bin had

Every UNIX user should have a bin directory. It’s just a directory named bin
in your home directory. If it’s not there, you can make it by going to your
home directory and typing this line:

mkdir bin

The thing that’s special about bin is that the shell looks for programs there.
Most system administrators automatically set up a bin directory for users. If
not, and you had to create it yourself, you may have to do some fiddling to
tell the shell to look for programs there. See the sidebar “Your search path,”

A\

later in this chapter, for the bad news.

To put programs in your bin directory, you just copy them there by using
the cp command. Alternatively, you can move them there by using the mv
command, a text editor, or any other way to create or move a file.

Why is it named bin?

Early on, bin was short for binary because
most programs that people put there were, in
fact, compiled binary code. In the late 1970s, a
famous professor of cognitive science at the
University of California published a paper titled
“The Trouble with UNIX,” in which he com-
plained bitterly about how difficult it was to use
UNIX. One of the items on his list was that bin
was difficult to remember. One of the UNIX
guys at Bell Labs published a witty rebuttal
and pointed out that many of the allegedly
“more natural” command names the professor

suggested were merely the names the com-
puter system at his university used. The UNIX
guy reported that many Bell Labs users thought
that a bin was the obvious place to stash their
programs. So, it's still a bin.

The famous professor, who subsequently
worked at Apple and Hewlett-Packard and is
now back in academia, has come around some-
what and is reputed to even use UNIX now and
then, although he probably shuts his office door
so that no one can see.

Chapter 12: Installing Software Can Be Tricky ’8 7

Vou Too Can Be a Script Writer

You can make your own commands (that is, shell scripts) and put them in
your bin directory. A shell script is a text file that contains a list of shell
commands — the same commands you type at the shell prompt. You can
store a list of commands as a shell script and run the commands any time
by typing the name of the shell script. This section tells you how.

Shelling a script
To create a shell script, use any text editor (refer to Chapter 10). Enter the
commands one per line, just as you type them at the shell prompt. Save the

file in your bin directory.

Here’s an example — if you frequently search for files with names that begin
with budget, you probably are tired of typing this command over and over:

find . -name budget* -print
(Check out Chapter 8 to see how the find command works.) Instead, you
can put this command in a shell script and perhaps name the script findbud.

To do it, create a text file named findbud that contains just one line: the
command.

First you move to your bin directory because that’s where your programs
live:

cd bin
Then you use a text editor to create a text file containing the commands you
want in your script. In this example, we use ed, a creepy editor, but you can
use the editor of your choice instead. Type

ed findbud
UNIX responds with this line:

?findbud
or maybe

findbud: No such file or directory
Either way, you are editing the findbud file. Type this command:

a

1 88 Part I1l: Getting Things Done

This command tells ed to start appending text to the end of the findbud file.
(Remember that because you're using ed, you have to type weird commands.)

Then type these two lines:

find . -name budget* -print
The dot on a line by itself tells ed to return to command mode. To save the
file, type

w

UNIX responds with the information that you saved a file with 29 (or so)
characters:

29
Quit ed by typing this command:

q

You see the shell prompt again. Great! You created a shell script!

Getting your script to play

After you create the text file, you must tell UNIX it is executable — that it’s
more than a mere text file. Type this line:

chmod +x findbud

This line marks the findbud file as executable (it’s a script the shell can run).

Running and rehashing your script
To run the shell script, just type its name:

findbud

Voila! You just created your own UNIX command! UNIX runs the find com-
mand to look for your budget files.

Chapter 12: Installing Software Can Be Tricky ’ 89

Your search path

You can ignore this section unless you have put
a command in your bin directory, and the shell
can't find it. Still reading? Sorry to hear it. The
shell has a list of directories that contain com-
mands; this list is known as the search path. On
any sensible UNIX system, the bin directory is
already in your search path. If not, you have to
put it there. You do it in two stages: putting it in
once and putting it in permanently.

To see what your current search path is, type
the following line if you are using the C shell:
echo $path
If you have BASH or the Bourne or Korn shell,
type this line:
echo $PATH
Yes, one’s uppercase and one’s lowercase.

Arrgh! The C shell responds with something like
this:
/bin /usr/bin /usr/uch/bin
/usr/local/bin
BASH or the Bourne or Korn shell shows some-
thing like this:
/bin:/usr/bin:/usr/ucb/bin:/usr
/Tocal/bin:.

What you have to do is add your bin directory to
the path.

If you use the C shell, type this magical
incantation:

set path=($path ~/bin)

That's a tilde (~) in the middle. This line tells the
C shell to set the path the same as the current
path ($path), plus the bin subdirectory of your
home directory (~).

If you use BASH or the Bourne or Korn shell,
type this even more magical incantation:

PATH=$PATH:$HOME/bin
export PATH

Note that the second time you type PATH and
HOME in the first command, you include a dollar
sign ($) in front of them. This line tells the
Bourne or Korn shell to set the path the same as
the current path ($PATH), plus the bin subdi-
rectory of your home directory ($HOME). Same
song, different words.

Now you should be able to run your new script
regardless of which directory you're using.

This new, improved path lasts only until you log
out. To put your bin directory on the path every
time you log in, you must add the incantation to
the end of the shell script that runs automati-
cally whenever you log in. If you use the C shell,
add itto the . 10gin file. If you use the Bourne
or Korn shell, add it to the . profile file.

Yes, these filenames begin with periods.
Filenames that start with periods usually don't
show up in file listings, which is why you haven't
noticed these files in your home directory. Type
the following line to list all your files, including
these hidden ones:

Is -a

In principle, you only have to edit the file, go to
the end, and add the necessary lines. In prac-
tice, screwing up is easy, so — unless you're
feeling particularly brave — you're probably
better off asking for expert assistance.

1 90 Part I1l: Getting Things Done

You're not quite finished, though. Observe what happens when you go to
another directory. Type the following two commands to go to your home
directory and give the findbud command there:

cd
findbud

UNIX may respond with this message:
findbud: Command not found.

If so, type one of these commands to get UNIX to do what you want:
hash findbud

or
rehash

(Try the first; if it doesn’t work, try the second.) Now when you type
findbud, it works.

What’s going on? Well, it’s Mr. too-smart-for-his-own-good Shell. Because pro-
grams don’t appear and disappear very often, when the shell starts up, it
makes a list of all the commands it can access and where they are. Because
five or six command directories frequently exist, this process saves consider-
able time (the alternative is to check every directory for every command
every time you type one). The hash and rehash commands tell UNIX to
rebuild its list (known in geekspeak as a hash table) because you have added
anew command (the findbud file is really a command, remember?). If the
command still doesn’t work, you have to fiddle with your search path — not
a pretty job. See the nearby sidebar, “Your search path.”

Qg‘,ﬂ\l?'EI? Type hash or rehash to tell the shell that you have added a new command
> and that you want it to rebuild its list of available commands to include this
one. If you don’t give the hash or rehash command and you change directo-
ries, you can’t use the newly created shell script during this login session.

One could write an entire book about shell scripts (others have done so, in
fact). The finer points naturally vary depending on which shell you use,
although this explanation gives you the general idea. Shell scripts aren’t lim-
ited to one line: They can be as long as you want, which is handy when you
have a long list of commands you want to run regularly.

A\

Chapter 12: Installing Software Can Be Tricky ’ 9 1

Don’t give me any arguments!

Shell scripts can be complete programs. Every
shell program has lots of swell programming
features you don't want to know about. One is
so useful, however, that we're going to tell you
anyway: Your shell scripts can use information
from the command line. That is, if you type
foogle dog pig,yourscriptnamed foogle
can see thatyouranitsaying dog and pig. The
things on the line after the name of the com-
mand are called arguments. The word dog s the
first argument, and pig is the second one. In
shell scripts, the first argument is named $1; the
second, $2; and so on. In shorthand, $* means
“all the arguments.”

Suppose that you want to write a script
named 2print that prints files in two-column
format. (You do that by using the pr command,
described in Chapter 9.) Create a file named
2print that contains this line:

pr -f -2 $* | 1p

Then use the chmod and, if necessary, hash or
rehash commands to make 2print an exe-
cutable script. If you want to print several files,
one right after the next, in two-column format,
you can type this line:

2print onefile anotherfile
yetanotherfile

In reality, you are saying

pr -f -2 onefile anotherfile
yetanotherfile | Tp

This line prints all three files in two-column
format. (Note that you may need to use 1pr
rather than 1p in this shell script. Refer to
Chapter 9.)

Borrowing Other People’s Programs

Lots of times, someone else has a cool program you want to be able to use.
You have two approaches to getting what you want, and both are pretty easy.
Suppose that your friend Tracy has a program named pornotopia in the bin
directory. (No, we don’t know what it does, either.) How can you run it?

The long way

If you use the C shell, you can run the program from Tracy’s directory by

typing this line:

~tracy/bin/pornotopia

If you use BASH or the Bourne or Korn shell, you can type this line:

/usr/tracy/bin/pornotopia

1 92 Part I1l: Getting Things Done

The easier way

Typing this long string of letters and symbols every time you want to run
the program is a pain. A better way is to put in your bin directory a link to
the cool program so that you can run it directly. (Links are described in
Chapter 8.) You use the 1n command to create a link, which makes the file
appear to be in your own bin directory, too.

Try the direct approach. Move to your home directory and create a link:

cd
In ~tracy/bin/pornotopia bin/pornotopia

With any luck, this method works, creating a link from Tracy’s file to your bin
directory. Give or take a quick hash or rehash, you're all set.

The 1n command doesn’t work, however, if you and Tracy have files on differ-
ent hard drives. (All this stuff is explained in Chapters 8 and 16.) In this case,
you may get this unhelpful message:

In: different file system

If you get this message, it’s time for Plan B. UNIX systems have symbolic links
that work across different hard drives (these links also are explained in
Chapter 8). Try this line:

In -s ~tracy/bin/pornotopia bin/pornotopia .

If it works, it makes a symbolic link to the file you want. You're all set: The
link to pornotopia refers to Tracy’s version. After a hash or rehash, you're
ready to go.

Using an alias

If you were named pornotopia, you probably would want an alias, too.
Fortunately, the BASH, Korn, and C shells give you the ability to invent a
short name for a long command. (Bourne shell users, you're out of luck. Skip
to the next section.)

Time for Plan C. In the BASH and Korn shells, type

alias dobudget="/usr/tracy/bin/pornotopia’
This line tells the shell that, when you type dobudget, you really want to run
Tracy’s program. Heh, heh. To avoid inadvertent ease of use, the C shell’s

alias command works in almost the same way, but it is punctuated slightly
differently:

Chapter 12: Installing Software Can Be Tricky ’ 93

alias dobudget '/usr/tracy/bin/pornotopia’

(In both cases, the single quotes are optional if the command doesn’t contain
any spaces or special characters, although it never hurts to use them.)

You can define aliases for any frequently used one-line command. The alias
can contain spaces, pipes, and anything else you can type on a command
line. In BASH, for example, you can type

alias sortnprint='sort -r bigfile | pr -2 | 1pr’
This line makes the new sortnprint command sort your bigfile in reverse
alphabetical order, format it in two columns with pr, and send the result to
the printer. Aliases can also be useful if you are subject (as we are) to chronic
miswiring of the nerves in your fingers. We always type mroe when we mean
more, and the following alias fixes it:

alias mroe=more

(That’s the BASH version; the C shell has a space rather than an equal sign
between mroe and more.)

Aliases you type directly to the shell are lost when you log out. If you want
them available permanently, you must put the alias commands in your

.loginor .profile file, in the same way we mentioned earlier in this
chapter, in the “Your search path” sidebar.

Using a shell script

If this method doesn’t work either, try Plan D to use Tracy’s program: a one-
line shell script. Although we use the ed program because it’s easier to show
in a book, you should use a real editor. Start by revving up ed:
ed bin/pornotopia
You get the following helpful response, or something like it:
?bin/pornotopia
Now tell ed to add some text to the file, by typing this command:

a

You are now in append mode. Type the command line you want to include in
the shell script, followed by a dot (period) on a line by itself:

/usr/tracy/bin/pornotopia

1 94 Part lll: Getting Things Done

The dot on a line by itself switches back to ed’s command mode. Then type
this command:

w

This command writes the new shell script file and prints the size of the file.
Then type the following to quit ed:

q

Type the next command to make your new shell script runnable:
chmod +x pornotopia

If necessary, give this command to tell UNIX to redo its hash table:
rehash (or hash, if that's what your shell needs)

Now your script named pornotopia runs Tracy’s original program named
pornotopia. At least one of these three plans should work for any program
lying around anywhere on your system.

QNG

\/ We don’t even discuss software copyrights, licenses, and ethics here, but, if

you use a copyrighted program, you should pay for it unless you like to think

of yourself as a thief.

Stealing Software from the Network

WORK If you are on the Internet, you can get zillions of programs free for the taking.
& You can get copies of programs in the same way you get copies of anything
% else on the Internet — by either using FTP or downloading files from a Web
browser, such as Netscape, Opera, or Mozilla. See Chapter 19 for the inside
scoop on downloading files from the Internet.

On many UNIX systems, this process is the most common way to get new
software. Although most of it is shareware or freeware, even some commer-
cial outfits are now selling their programs that you can download from the
Internet.

Tar pits

When you download UNIX software from the Internet, nine times out of ten
the filename ends in either .tar, .tar.Z,or .tar.gz. (We get to the most
common exception in the next section.) Named, oddly enough, tar files, they
don’t have anything to do with black, goopy paving material; tar is short for

Chapter 12: Installing Software Can Be Tricky ’ 95

tape archive. You use this command for backing up (what used to be called
“archiving,” in the days when people went out of their way to make comput-
ers Look Important) UNIX systems to tape. (We discuss this use of tar in
Chapter 23.)

In this section, though, you're seeing tar in its other role, where it moon-
lights as a software-packaging command. The people who distribute the soft-
ware use tar to glom into one big tar file all the files that make up the
software package (it can have anywhere from just a few to as many as hun-
dreds of files). This way, you download only one big file rather than hundreds
of little files. Because tar files are generally so big, the software distributors
then squish them even more, using either the compress command (which
results in a file ending in . tar.Z) or the gzip command (which results in a
file ending in .tar.gz). Using compress used to be the standard, but
because gzip results in smaller files, it’s the compression program most
people use these days.

P If you're familiar with the Microsoft Windows world, you may have come
across zip files, which end in . z1ip. These files are the Windows equivalent of
tar files, except that zip combines the glomming and squishing phases into
one command, an example of efficiency that true UNIX die-hards would never
stand for.

Suppose that you find a really cool editor that you decided you can'’t live
without, and you download the tar file. It probably looks something horren-
dous, like really_cool_ed_unix_v.3.4pl6.tar.gz. To unpack your newly
acquired tar file, first you have to unsquish it. If the file ends in . tar.Z, type
this command:

uncompress really_cool_ed unix _v.3.4pl5.tar.Z
Otherwise, type this command:
gunzip really cool_ed unix v.3.4pl5.tar.gz

Either way, you end up with a file named really_cool_ed_unix_v.3.4p16
.tar. Notice that the .7 or . gz is gone? This file is much bigger now that it’s
unsquished.

Now you have to untar the file (that’s really the way the UNIX gurus phrase
it). This step blows up your tar file into potentially hundreds of little files
and puts them into whatever your current directory is. Make sure that your
working directory is the directory where you really want all those files to be
rather than someplace where you’ll have to move them later. (Moving one tar
file where you want it is considerably easier than waiting until after you've
blown it up into multitudes of files.) Okay, ready? Type this command:

tar xvf really_cool_ed unix v.3.4pl5.tar

1 96 Part I1l: Getting Things Done

The x in xvf stands for extract, the v means verbose so that you can see
all the files being created, and fis for file and is followed by the name of the
tar file.

Don’t get too excited yet, because you still have more to do. Included in the
bunch of files you just created should be a file usually named README or
INSTALL. This file has the rest of the installation instructions specific to the
package you just downloaded.

Revving up RPM

For years, the tar file method has been the only game in UNIX-land for dis-
tributing software over the Internet. For UNIX administrators who are accus-
tomed to installing software packages, this method works just fine. Among
everyone else, though, a growing number of disgruntled users have clamored
for an easier way to install and maintain software. Their calls were answered
by Red Hat Linux, which came up with the Red Hat Package Manager (RPM).

RPM is a software-management system that is a substitute for tar. Rather
than download a file ending in . tar.gz, you download one that ends in . rpm.
The RPM utility unpacks the file, puts all the resulting little files in their cor-
rect places, and updates a database of installed software on the computer. If
you later want to install an upgrade, RPM remembers that an older version is
already installed and saves any existing configuration files while upgrading
the necessary files. This feature is enough to generate grumbling from tradi-
tionalists about user-friendliness infiltrating UNIX.

An important caveat about RPM is that you can install software this way only
if you are the system administrator, which for most people happens only if
they have a PC running Linux, as described in Chapter 14. So far, its use has
been limited mainly to versions of Linux, although the use of RPM is not nec-
essarily restricted to Linux, and we’ve heard of people using it on other UNIX
systems, too.

Unwrapping packages

If you use one of the BSD varieties of UNIX, including FreeBSD (which hap-
pens to be the version that Mac OS X is based on, so Mac users should keep
reading), NetBSD, or OpenBSD, and if you're the system administrator and
know the superuser password, you can use the package system to install soft-
ware on your computer. It’s the same general idea as RPM, except of course
that it’s different because we wouldn’t want to be excessively compatible.

Chapter 12: Installing Software Can Be Tricky ’ 9 7

The program to install packages is called pkg_add. You give it the name of
the package, whichis a .tar.gz or . tgz (same thing for lazy typists) file. If
you already downloaded the package or it’s on a CD-ROM, you give it the
actual name of the package file. If not, you can give a URL that says where the
package is on the Internet. Either way, type su and enter the password to
become the superuser, then run pkg_add:

pkg_add pornotopia-1.1.tgz

pkg_add

ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/packages/multimedia/
pornotopia-1.1.tgz

P Unless someone sends you the URL of a package in an e-mail message or a
Web page, the URL can be kind of hard to guess. Many versions of pkg_add
have a - r option that looks in some likely places on the Internet to find the
package:

pkg_add -r pornotopia

?g\\\\NG! Because pkg_add runs as the superuser, you have no protection against soft-
ware that turns out to be buggy or malicious. The packages from the main
distribution site for each system, like www. freebsd. org for FreeBSD, should
be fine, but otherwise be very sure of what you're getting.

Real Software Installation

In case you're wondering, purchased software has official software-
installation procedures. To install these pieces of software, you must be the
superuser — the one who can clobber anyone’s files anywhere — by logging
in as root or running su, and run a program named something like install.
The install program directs you to load tapes, CD-ROMs, or disks as appro-
priate; reads in the programs; and then asks a bunch of configuration ques-
tions, such as “Does this system support DES-protected NFS mounts across
router boundaries?” We suggest that you leave this procedure to trained
professionals.

1 98 Part I1l: Getting Things Done

Chapter 13
Juggling a Bunch of Programs

In This Chapter

What processes are

Where processes come from
What a background program is
How to shuffle background programs around

Hints about windows and background programs

f you have a plain old terminal with no windowing system, you may be
envious of users with fancy window systems who can pop up a bunch of
windows and run umpteen programs at a time.

Don’t. Any UNIX system enables you to run as many programs simultane-
ously as you want. Nearly all the systems let you stop and restart programs
and switch around among different programs whenever you want.

If you're used to an old-fashioned, one-program-at-a-time system, such as DOS
(without Windows) or the pre-System 7 Mac, you may not see the point of
doing several things at a time. Suppose, however, that you're doing some-
thing that takes awhile and the computer can manage with little or no super-
vision from you, such as copying a large file over a network (which can take
10 or 15 minutes). You have no reason to sit and wait for that process to
finish — you can do something useful while the copy runs in the background.

Or, suppose that you're in the middle of a program and you want to do some-
thing else: You're writing a memo in a text editor and need to check some
e-mail you received to make sure that you spelled someone’s name right. One
way to do that is to save the file, leave the editor, run the mail program, leave
the mail program, start the editor again, return to the same place in the file,
and pick up where you left off. What a pain. UNIX enables you to stop the
editor, run the mail program, and resume the editor exactly where you left it.
For that matter, you can run both the editor and the mail program and flip
between them as necessary.

200 Part I1l: Getting Things Done

Lots of X Windows

If you're running Motif or any other X Window
Graphical User Interface (GUI), you probably
already figured out how to run many programs
at a time: Open several xterm windows and
run a program in each one. You create a new

something similar. If you're running a version of
CDE, running many programs at a time is even
easier: Just double-click the icon for each pro-
gram you want to run. That's it. You don’t even
have to deal with opening xterm windows.

window by moving the mouse outside of any
window, holding down the left mouse button to
get a menu and selecting New Window or

Read this chapter anyway, however, particularly
the sidebar “Do windows and job control mix?”
later in this chapter.

In the interest of fairness, we must point out that job control, the feature that
enables you to flip back and forth, was written by Bill, the same guy who
wrote the C shell, vi, and NFS (Network File System, described in Chapter 16).
In contrast to our opinion of some of his other efforts, we think that job con-
trol is pretty cool.

\\J
If you have a process that has run amok, see Chapter 24 to find out how to
kill it.

So What Is a Process, Anyway?

All the work UNIX does for you is done by UNIX processes. When you log in,
the shell is a process. When you run an editor, the editor is a process. Pretty
much any command you run is a process.

Processes called daemons lurk in the background and wait to do useful things
without manual intervention. When you use 1p or 1pr to print something,

for example, a daemon does the real work of sending the material to the
printer.

Normally, all this process stuff happens automatically, and you don’t have to
pay much attention to it. Sometimes a program gets stuck, however, and you
can’t make it go away. If you use a personal computer running Windows 98 or
a pre-OS X Macintosh, the usual response to a stuck program is to restart the
computer. When you run UNIX, resetting the computer is a little extreme for a
single stuck program. For one thing, other running programs and other people
who are logged in do not appreciate having their computer kicked out from
underneath them. Also, UNIX may take awhile to restart from a forced reboot
(our system takes about 5 minutes to check all the hard drive), and you run
the risk of losing files that were being updated.

Chapter 13: Juggling a Bunch of Programs 20 1

Why processes are not programs and vice versa

Although programs and processes are similar,
they're notthe same. A processis, more or less,
a running program. Suppose that you’re using X
Windows, have two windows on-screen, and
are running vi in both of them. Although the
same program is running in both windows,
they're different processes doing different
things (in this case, editing different files).

To add to the confusion, some programs use
more than one process apiece. The terminal
program cu, for example, uses two processes:
one to copy what you type to the remote

computer and the other to copy stuff from the
remote computer back to your screen.
Sometimes, hidden processes take place: Many
programs have a way you can execute any
UNIX command from inside the program. (In v i
and ed, for example, you type ! and the com-
mand you want to run.) In addition to the com-
mand, a shell process usually interprets the
command.

In most cases, identifying in a list of processes
which one is which is easy because each one
is identified by the command that started it.

Any Processes in the House?

The basic program you use to find out which processes are around is ps (for
process status). Although the details of ps (wait! — how did you know?) vary
somewhat from one version of UNIX to another, two main kinds of ps exist:
the System V kind and the BSD kind. (SVR4 uses the System V kind of ps,
even though SVR4 has a great deal of BSD mixed in. Linux uses a ps that
looks more or less like BSD.)

Mind your ps (and qs)

If you run plain ps, no matter which version of UNIX you have, you get a list
of the processes running from your terminal (or window, if you're using X
Windows). The list looks something like this:

PID TTY TIME COMMAND
24812 ttypO0 0:01 -csh
25973 ttyp0 0:00 ps

The PID column gives the process identification, or process ID. To help keep
processes straight, UNIX assigns every process a unique number as an identi-
fier. The numbers start at 1 and go up. When the PIDs become inconveniently
large (about 30,000 or so), UNIX starts over again at 1 and skips numbers that
are still in use. To get rid of a stuck process, you have to know its PID to tell
the system which process to destroy.

202 Part I1l: Getting Things Done

\}““X

The TTY column lists the terminal from which the process was started. In this
case, ttyp0 is the terminal, which happens to be pseudoterminal number 0.
(Because UNIX systems are written by and for nerds, they tend to start count-
ing at 0 rather than at 1.) UNIX uses a pseudoterminal when you're logged in
from a window on your screen or from a remote system through a network
rather than through a real, actual, drop-it-on-your-foot-and-it-hurts terminal.
For our purposes, all terminals act the same, whether they’re real, pseudo, or
whatever.

The TIME column is the amount of time the computer has spent running this
program. (The time spent waiting for you to type something or waiting for
disks and printers and so forth doesn’t count.)

The COMMAND column shows, more or less, the name of the command that
started the process. If the process is the first one for a particular terminal or
pseudoterminal, the command name starts with a hyphen.

The Linux ps

The Linux ps command has one additional column:

PID TTY STAT TIME COMMAND
1797 ppb5 S 0:00 -bash
1855 pp5 R 0:00 ps

The STAT column shows the status of the process. According to the man page
(online documentation) for the command, R means runnable, .S means sleep-
ing, D means uninterruptible sleep, T means stopped or traced, and Z means
a zombie process. Wow! For our purposes, R means that it’s a command you
ran, and the other stuff doesn’t matter much.

Fancier ps (and qs)

The System V version of ps has lots of options, most of which are useless.
One of the more useful is - f, which produces a “full” listing:

UID PID PPID C STIME TTY TIME COMMAND

johnl 11764 3812 0 14:06:02 ttyp3 0:00 /usr/bin/emacs
johnl 11766 11764 0 14:06:05 ttyp3 0:00 /bin/sh -i
johnl 11769 11766 10 14:06:15 ttyp3 0:00 ps -f

johnl 3812 3804 0 Jan 18 ttyp3 0:04 -sh

(We did it from a different window, which you can tell because the PID of the
shell is different.)

Chapter 13: Juggling a Bunch of Programs 203

This listing has a few more columns than does the basic ps listing, and a few
columns are different. The UID column is the username — just what it looks
like. PPID is the parent PID, the PID of the process that started this one. We
had run emacs from the shell and then told emacs to start another shell to
run a ps command.

The parent PIDs reflect the order in which the processes started each other:
The login shell process (number 3812) is the parent of emacs, which in turn

is the parent of the shell /bin/sh, which is the parent of ps. (We could explain
why the processes aren’t listed in order, but — trust us — you don’t want to
know.) All processes in a UNIX system are arranged in a genealogical hierarchy
based on which process started which. The grand ancestor of them all is
process number 1, which is named init. You can trace the ancestry of any
process back to init. “Hark! [am yclept Ps, son of Bourne Shell, daughter of
Emacs, son of Dash-shell (or is that Dashiell?), great-great-grandson of the
ancient and holy Init!”

The C column is a totally technoid number relating to how much the process
has been running lately. Ignore it. STIME is the start time, the time of day the
process began. If it began more than 24 hours ago, this column shows the
date. TTY is the name of the terminal the process is using. If you run a GUI,
such as X Windows, and you run the xterm program in a window (as we did
in this example), the entry for TTY doesn’t show the terminal you are using.
Instead, it lists the pseudoterminal assigned to the window (a useless piece
of information). Sometimes the TTY column shows a 7, which means that the
process is a daemon that doesn’t use a terminal.

The COMMAND column shows the full command that began this process,
including (in some cases) the full pathname of the program. (Because stan-
dard system programs live in the directories /bin and /usr/bin, you see
them frequently in ps listings.)

If you're logged in on several terminals or in several windows, you may want
to see all your processes, not just the ones for the current terminal. With the
System V version of ps, you can ask to see all processes for a given user by
using this command:

ps -u tracy
This command lists all processes belonging to user tracy. You can ask to
see any user’s processes, not just your own. You can get a full listing for that
user, too:

ps -fu tracy

System V has other, less useful switches for ps, notably -e, which shows
every process in the entire system.

204 Part lll: Getting Things Done

Berkeley ps (and qs)

The basic report from the BSD version of ps looks like this example:

PID TT STAT TIME COMMAND
7335 p4 S 0:00 -csh (csh)
7374 p4 R 0:00 ps

The PID, TIME, and COMMAND columns are the same as those you already
know about. (In the COMMAND column, the true name of the program is listed
in parentheses if a dash or something is in the regular name.) The TT column
lists a short form of the terminal name (pseudoterminal 4, in this case). STAT
lists the status of the process: R means that the process is running right now;
anything else means that it isn’t. Usually, you don’t care unless you have a
stuck process and you wonder whether it’s sitting there waiting for you to
type something (then its status is I or IW) or running off into the woods
(then its status is R).

Adding the -u switch gives a user-oriented report, although perhaps they had
a different kind of user than you and we in mind, as you may gather from this

example:
USER PID %CPU ZMEM SZ RSS TT STAT START TIME COMMAND
johnl 7375 0.0 0.9 196 436 p4 R 14:59 0:00 ps -u
Jjohnl 7335 0.0 0.6 196 316 p4 S 14:56 0:00 -tcsh (tcsh)

The %CPU and ZMEM columns list the percentage of the available central
processor time and system memory the process has taken recently (these
numbers are usually close to 0). RSS is Resident Set Size, a measure of how
much memory the process is using right now, measured in thousands of
bytes (abbreviated as K). The ps command, for example, takes 436K bytes
(which is horrifying when you consider that the entire UNIX system used to
fit into 64K total bytes). The START column lists the time of day the process
began.

You can ask for a particular terminal’s process list by using the -t option, as
shown in this example:

ps -tp4
With the -t option, you have to use the same two-letter terminal abbreviation

ps uses. Have fun guessing it. Try the two-letter abbreviations that appear in
the TT column of the ps listing.

Chapter 13: Juggling a Bunch of Programs 205

The BSD version of ps has lots of other useless options, including -1 for a long
technoid listing; -a for all processes, not just yours; and - x to show processes
not using a terminal. You have no way to ask for all processes belonging to a

particular user.

To see all the processes you started, type this incantation:

ps -aux | grep tracy

Replace Tracy’s name with your own username. This line redirects the output

of the ps command to the grep command (described in Chapter 8), which

throws away all the lines except those that contain your username.

Why cd isn't a process

People always ask us (well, someone asked
once) why the cd command doesn’t always act
the way they expectitto. The problem is what is
called in erudite circles Lamarckian Heritability
and what we call “you look like your mother.”

When a parent process creates a child process,
the child inherits many characteristics from its
parent, such as the username, terminal, and
(this one is important) current directory. The
child, ungrateful for its heritage — as all chil-
dren are — can change many of these things.
Because inheritance goes only one way,
changes in the child don’t affect the parent.
Suppose that you create a new process (type sh
to start a new shell as the second process).
Then go to some directory other than the one
you are using, such as / tmp, by typing cd /tmp.
Then type pwd to make sure that you are in
/tmp. Leave the new shell by typing exit, and
then type pwd back in the old shell to prove that
you're back in the original directory.

This example proves that cd can't be a normal
command executed in its own process. If it

were, the new directory would apply to only that
process. As soon as the process was finished,
you would be back in the shell with the directory
unchanged.

The authors of the various shells finessed this
problem using what's technically known as a
kludge (something that works but that you're not
proud of; it rhymes with “huge,” not with
“fudge.”) The kludge checks especially for the
cd command and handles it itself in the shell.
The exit and 1ogout commands also are
handled in the shell for the same reason.

Here's an example of where you may run into this
stuff: If you make a shell script (see Chapter 12)
that contains a cd command, the cd affects only
subsequent commands in that script. After your
shell script finishes running, you find yourself
back in the original directory as though the cd
never occurred. Although you can write a script
that does change the directory, doing so is
so complicated that even wizards shrink from
the task.

206 Part I1l: Getting Things Done

Starting Background Processes

a\\S

Starting a background command is simplicity itself. You can run any program
you want in the background: When you type the command, stick a space and
an ampersand (&) at the end of the line just before you press Enter.

Suppose that you want to use troff to print a file (even though we warned
you not to use it). Because this process is bound to take a long time, for
example, typing the ampersand to run it in the background is wise:

troff a_really large file &

The shell starts the command and immediately comes back to ask you for
another command. It prints a number, which is the process ID (or PID) assigned
to the command you just started. (Some shells print a small number, which
they call the job number, and a larger number, which is the PID.) If you know
the PID, you can check up on your background program with the ps command.
If you get tired of waiting for the background process, you can get rid of it with
the ki11 command and the PID, as you see in Chapter 24.

You can start as many programs simultaneously as you want in this way. In
practice, you rarely want more than three or four. Because only one computer
is switching back and forth among the various programs, the more simultane-
ous things you do, the slower each one runs.

When your background program finishes, the C, Korn, BASH, and SVR4 Bourne
shells tell you that the program is finished; older versions of the Bourne shell
say nothing.

If you know that a program will take a long time (a program that crunches for
a long time to produce a report, for example), you can use the nice command
with that program. The nice command tells the program to run in a nice
way so that it gets a smaller share of the computer than it would otherwise.
Although the nice program takes longer to run, other programs run faster,
which is usually a good trade-off if the nice program was going to take a long
time anyway. To use it, you just type nice followed by the command to run:

nice genreport Tuesday.raw &

You almost always use nice to run programs in the background because only
an inexplicably saintly user wants to slow down a program he was going to
sit and wait for.

If you want to wait for background programs to finish, the wait command waits
for you until they’re all finished. If you become impatient, you can interrupt
wait by pressing Ctrl+C (or Del, depending on your system). These keystrokes
interrupt only the wait and leave the background processes unmolested.

Chapter 13: Juggling a Bunch of Programs 20 7

The Magic of Job Control

\NG/
Vg\\\

Quite awhile ago (in about 1979), people (actually, our pal Bill) noticed that,
many times, you run a program, realize that it will take longer than you
thought, and decide that you want to switch it to a background program. At
the time, the only choices you had were to wait or to kill the program and
start it over by using an & to run it in the background. Job control enables
you to change your mind after you start a program.

The job-control business requires some cooperation from your shell. In SVR4,
all three shells handle job control. In some earlier versions of UNIX, only the
C shell, or sometimes the C shell and Korn shell, handled job control.

Suppose that you start a big, slow program by typing this line:
bigsTowprogram somefile anotherfile

The program runs in the foreground because you didn’t use an ampersand (&).
Then you realize that you have better things to do than wait, so you press
Ctrl+Z. The shell responds with the message Stopped. (If it doesn’t, you don’t
have a job-control shell. Sorry. Skip the rest of this chapter.) At this point, your
program is in limbo. You can do three things to it:

v Continue it in the foreground as though nothing had happened, by
typing fg (which stands for foreground).

v~ Stick it in the background by typing bg (for background), which makes
the program act as though you started it with an & in the first place.

v~ Kill it if you decide that you shouldn’t have run it. This method is
slightly more complicated. Details follow.

Take this job and . . .

UNIX calls every background program you start a job. A job can consist of
several processes (which, as you know, are running programs). To print a list
of all your files in all your directories with titles, for example, you can type
this line:

Is -1R | pr -h "My files" | 1p &

This command lists the files with 1s, adds titles with pr, and sends the mess
to the printer with 1p, all in the background. Although you use three different
programs and three separate processes, UNIX considers it one job because
each of the three programs needs the other two in order to get work done.

208 Part I1l: Getting Things Done

\\3

Every regular command (those you issue without an &) is also a job,
although, until you use Ctrl+Z to stop it, that’s not an interesting piece of
information. You can use the jobs command to see which jobs are active.
Here’s a typical response to the jobs command:

[1] - Stopped (signal) elm
[2] + Stopped vi somefile

This listing shows two jobs, both of which have been stopped with Ctrl+Z.
One is a copy of e1m, the mail-reading program; the other job is the vi editor.
(The difference between Stopped (signal) and plain Stopped is interesting
only to programmers, so we don’t discuss it much.) One job is considered the
current job — the one preceded by a plus sign (+); it’s the one most recently
started or stopped. All the rest are regular background jobs, and they can be
stopped or running.

... stick it in the background

You can tell any stopped job to continue in the background by using the bg
command. A plain bg continues the current job (the one marked by a plus sign)
in the background. To tell UNIX to continue some other job, you must identify
the job. You identify a job by typing a percent sign (%) followed by either the
job number reported by jobs or enough of the command to uniquely identify
it. In this case, the eTmjob is called %1, %Ze1m, or %e because no other job uses
a command starting with an e. As a special case, %% refers to the current job.
Although some other % combinations are available, no one uses them. Typing
bg %e, for example, continues the e1m job in the background.

... runitin a window in the foreground

To put a process in the foreground, where it runs normally and can use the
terminal, you use the fg command. Continuing a job in the foreground is so
common that you can use a shortcut: You just type the percent sign and the
job identifier. Typing %1 or %e, for example, continues the e1m job in the fore-
ground. Typing %v or %%, however, continues the vi editor in the foreground.

Do windows and job control mix?

If you use a GUI system such as KDE or GNOME,
you can run lots of programs in lots of windows.
Is there any need for this Ctrl+Z nonsense? By
and large, the answer is no; popping up three
windows to run three programs is much easier
than flipping the programs around in one
window. (Chapter 4 shows you how to pop up
new windows.)

Even if you use a GUI, it doesn't hurt to learn
about job control, though. It's not hard to use,
and someday you may be stuck in a single
window (when you use telnet to access
another system) or be banished to a regular
non-X terminal. Then you will appreciate what
job control has to offer.

Chapter 13: Juggling a Bunch of Programs 209

... shove it

To get rid of a stopped or background job, use the ki1l command with the
job identifier or (if it’s easier, for some reason) the PID. You can get rid of the
vi editor job by typing this line:

kill Zv

Typically, you start a job, realize that it will take longer than you want to wait,
press Ctrl+Z to stop it, and then type bg to continue that process in the
background.

Alternatively, you interrupt a program by pressing Ctrl+Z, run a second pro-
gram, and, when the second program is finished, type fg or %% to continue
the original program.

You don’t often bring in the gangster ki11 to turn out the lights on a program,
although knowing that you have friends in the underworld who can put a nasty
program to sleep for good is nice to know. Chapter 24 talks more about it.

What happens when two programs
try to use the terminal?

Suppose that a program running in the background tries to read some input
from your terminal. Severe confusion can result (and did, in pre-job-control ver-
sions of UNIX) if both the background program and a foreground program —
or even worse, two or three background programs — try to read at the same
time. Which one gets the stuff you type? Early versions of UNIX did the worst
possible thing: A gremlin inside the computer flipped a coin to decide who
got each line of input. That was, to put it mildly, not satisfactory.

With the advent of job control, UNIX enforced a new rule: Background jobs
can’t read from the terminal. If one tries, it stops, much as though you had
pressed Ctrl+Z. Suppose that you try to run the ed editor in the background
by using this command:

ed some.file &
UNIX responds:

[1] + Stopped (tty input) ed
As soon as ed started and wanted to see whether you are typing anything it
should know about, the job stopped. You can continue ed as a foreground

program by typing fg or %% if you want to type something for ed. You can kill
it (which is all that ed deserves) by typing kill %%.

2 ’ 0 Part lll: Getting Things Done

Taming background terminal output

Any program, foreground or background, usually
can scribble on-screen anything it wants at any
time it wants. More often than not, that's okay
because most programs are well behaved about
not blathering when they’re in the background.

In some cases, however, particularly when you
use a full-screen editor, the interspersed output
gets on your nerves. Fortunately, job control lets
you solve this problem. You can put your terminal
into terminal output stop mode: When a back-
ground program wants to send something to the
terminal, it stops, just as it does when it wants to

read something. You then have the same alterna-
tives to continue that program in the foreground
if you want to see what it has to say or kill it if
you don’t. To turn on output stop mode, type this
command:

stty tostop
To turn off output stop mode, type this line:
stty -tostop

The stty command is used to make all sorts of
changes to the setup of your terminal.

Full-screen programs and job control

Programs that take over the entire screen (or the entire terminal window),
notably the vi and emacs editors and mail programs such as e1m, treat the
Ctrl+Z interrupt in a slightly different way. Just stopping the program and
starting it again later isn’t adequate; the screen shows the results of what
you did in the meantime. To solve this problem, full-screen programs make

arrangements with UNIX to be notified when you press Ctrl+Z and again when
you continue them so that they can do something appropriate, such as redraw
the screen when you continue. This process generally is all automatic and
obvious, although people occasionally are confused when the screen is magi-
cally returned after they give the fg command.

Chapter 14
Taming Linux

In This Chapter

A few basics for the reluctant system administrator
How a Linux system is structured
Where to get help

eah, we know that it’s pronounced “linn-ux” or “leen-ux,” not “line-ux,” but
it still needs taming, and if you look around the office and find nobody
other than yourself to fix things, you're the Linux tamer.

Congratulations! You're a
System Administrator!

Using Linux is no different from using any other UNIX, as long as it’s on some-
one else’s computer, and he or she has set you up with an account. When your
computer is running Linux, however, and you are responsible for maintaining

it, things become much more complicated. Although we have no way to teach
all the complexities of Linux system administration in a book like this one, we
can describe a few key points to get you started.

Linux For Dummies, 5th Edition, by Dee-Ann LeBlanc (published by Wiley
Publishing) is a great introduction to Linux and Linux administration. Running
Linux, by Welsh and Kaufman (published by O’Reilly & Associates), has most
of the information you need to really administer a Linux system. Also, the
World Wide Web is awash in sites devoted to Linux. A good place to start is
the popular Linux site at www. Tinux.org/. (See Chapter 18 for more informa-
tion about the World Wide Web if you're uncertain what it means.) Chapter 26
lists a number of other places to go Linux hunting on the World Wide Web.

2 ’ 2 Part lll: Getting Things Done

The root of all UNIX

UNIX is a multi-user world, and that includes Linux: Lots of people can use
the computer at the same time, by connecting from remote locations. The
first thing you need to know about administering a Linux system is the differ-
ence between the user called root and every other user. Root (also grandly
called the superuser) is the system administrator. This account has all the
privileges to change things on the system. If you want to add users, install
some software, or even turn off the computer, you must be logged in as root.
If you're logged in as someone other than root and you try to do anything
related to system administration, your computer responds with a barrage of
“permission denied” messages. It’s nothing personal. It’s just the computer’s
way of telling you that in a multi-user environment, it doesn’t want just
anyone messing around with it — only the one person it trusts, which is root.

“Fine,” you say. “I'll just log in as root all the time and not have to worry
about running into those pesky permission problems.” Bad idea! Using the
root account to do non-system-administration tasks is dangerous because
sometime — eventually, when you least expect it — you type a command
you really didn’t want to — oh, say, deleting all the files on the hard drive (it
happens more frequently than you may think). If you're logged in as someone
other than root, the computer replies with a simple “permission denied.” If
you’re root, though, the damage is done, and Linux (or any other version of
UNIX) does not have an undelete command! Remember that permissions are
your friends!

Adding a user

Assuming that you're convinced about not logging in as root unless you really
must, you have to add a user account for yourself (or for others) to use for
everyday tasks. Suppose that you want to create the username bobby joe for
yourself. To add this user, log in as root (because adding users is one of those
special, privileged tasks that only root can perform) and at the shell prompt
type the command adduser bobbyjoe. The computer creates the new user
and then, if you're lucky, reminds you to set the password for the new user.
Whether or not the computer reminds you, you have to add the password by
typing passwd bobbyjoe. Then enter the password when the computer asks
for it. It asks you to enter the password twice, just to make sure that you typed
it correctly.

Windows users of the world, unite!

Users who bring experience with other flavors
of UNIX to their first encounters with Linux will
probably find getting Linux up and running rela-
tively easy. The large (and growing) community
of Windows users who want to add or switch to
Linux will likely encounter some fairly rough
sledding.

One of the great things about Linux is that it can
run on PCs with Intel chips in them. Disgruntled
Windows users can therefore switch to Linux
without having to buy a new computer. Windows
users who are still sufficiently gruntled can
check out Linux by installing it, cheek by jowl,
on the same computer with Windows (as long
as it has enough free disk space, of course).

All well and good, in theory. In practice, how-
ever, you can get yourself into trouble with star-
tling efficiency. Even if it’s going to coexist on
your computer with Windows, Linux needs its
own separate file system, which in turn needs
its own separate area of your computer’s disk.
These separate areas are called partitions,
or drives, and you have to have at least two

partitions, one for Windows and one for Linux,
to get Windows and Linux to live together in
peace and harmony.

If you have only one big drive or partition on your
computer, you have to create a second partition
before you can even begin installing Linux. To do
s0, you have to run a DOS utility named fdisk
on your computer. The trouble with fd1i sk is that
if you make one false move, everything that's
already on your computer gets wiped out, no
questions asked. If you already have Windows
installed on your computer, do yourself a favor
and back up your system before even thinking
about using fdisk. Then carefully follow what-
ever instructions you have for setting up a com-
puter that can run both Windows and Linux
(known as a dual-boot system). Linux For
Dummies (mentioned earlier in this chapter), for
example, describes the whole process in gory
detail. If you already have Windows installed, you
can also use Partition Magic, a popular (but not
free) disk utility to repartition your hard drive with-
out having to reinstall everything from scratch.

With some versions of Linux, your computer gives you remedial password

Chapter 14: Taming Linux 2 ’3

advice if it thinks that you need it. If you create a user named noah and then
try to add the password ark, your computer may say BAD PASSWORD: It's
WAY too short.If you try to fake the computer out by adding the password
arkarkark, it may say BAD PASSWORD: it does not contain enough
DIFFERENT characters. If you're not sure what constitutes a good pass-
word, go back and read the section in Chapter 1 about password smarts. As
a system administrator, you're responsible for the security of the system, so
don’t say that you haven’t been warned.

2 ’4 Part lll: Getting Things Done

How do | turn this thing off?

UNIX and Linux are very sensitive to impolite treatment on the part of the
operator. If you just log out and turn off the machine with the power switch,
it reminds you of this rude treatment with a flood of error messages when
you next restart the computer. To turn the machine off, you first must exe-
cute the shutdown command. While logged in as root, enter the command
shutdown now to turn the machine off gracefully. If other users are logged
in and you want to give them some warning, you can type the number of
minutes until shutdown: shutdown +10, for example, waits ten minutes
before shutting down and warns any users who are logged in. To reboot
the computer, shutdown -r now (-r for reboot) shuts down the machine
and then restarts it. Some Linux systems also let the “three-finger salute”
(Ctrl+Alt+Del, familiar to DOS and Windows users) serve as a shortcut for
shutdown -r now.

A Pride of Linuxes

Complete Linux systems are packaged into distributions, which describe not
how Linux is distributed but rather how the operating system and the GNU
programs are bundled. A few distributions are in common use: Slackware,
Red Hat, Mandrake, and Debian. All are available for free via the Internet or
for a small charge on CD-ROM. As a user, which distribution you use doesn’t
matter because they all behave in much the same way. As a system adminis-
trator, though, you should consider the important differences the distribu-
tions have among them.

Slackware, the oldest of the three, has been around since the beginning of
Linux. It is the most traditional distribution (traditional in the UNIX sense, as
in not particularly user-friendly) and has relatively little in the way of utilities
to facilitate the management of a Linux system. For this reason, those who
have been around UNIX systems for a while tend to favor it.

Linux: Not just for PCs

Although Linux was originally developed for
Intel-based PCs, you can now find versions of
Linux for just about every kind of computer cur-
rently in production. Most of the popular distrib-
utions have versions for the PowerPC (the chip
inside modern Macs), and Yellow Dog Linux

(www.yellowdoglinux.com) has a version
designed just for Macs. If you have $10 million
to spare, IBM will be happy to sell you a high-end
mainframe computer running Red Hat, SuSE, or
Turbolinux, or, if you want, all three at the same
time.

Linux goes commercial

The freely available, “alternative” image of Linux
discouraged commercial enterprises from adopt-
ing Linux in its early days. Understandably, many
companies did not want to deal with an operat-
ing system that did not have a corporate entity
standing behind it, no matter how reliable or
trouble-free the product. To fill this need, a
number of companies have stepped in to provide
commercial support for Linux. Red Hat Software,

Inc., for example, provides a commercial ver-
sion of its Linux distribution in addition to the
free version. Organizations that purchase the
commercial Red Hat distribution can therefore
turn to Red Hat for support rather than (or in
addition to) Usenet. Most other distributions
also have support companies that support them
for a monthly or yearly subscription.

Chapter 14: Taming Linux 2 ’5

Red Hat Linux is the most popular distribution. It features plenty of tools to
make the life of a system administrator easier, most notably the Red Hat
Package Manager (RPM), which eases the installation, upgrade, and deletion of
software packages, and even the operating system itself. For about $40, you
can get a CD set with the Mozilla Web browser, OpenOffice office suite, KDE,
GNOME, and about a hundred other packages. The $40 is for the CDs, not the
software on them (which is free), and one month of Web-based software sup-
port. (More support — Red Hat’s main business — is available for more money.)

The Debian and Mandrake distributions, like Red Hat, also provide interfaces
that ease the task of a system administrator. Although these distributions are
not as popular as Red Hat, they both have plenty of followers.

If you enjoy editing lots of configuration files and moving them around by
hand, the old-fashioned way (believe it or not, some people like to do it that
way), you should go with Slackware. Everyone else will find life easier with
Red Hat, Debian, or Caldera.

Many other Linux distributions are out there, of course, so you may want to
do a little more investigating before deciding on a package:

v Knoppix: For PC users without much free space, this version of Linux
can run (kind of slowly) directly from its CD-ROM without needing to be
installed on a regular disk. (See www. knoppix.org.)

v Lindows: A combination of Linux and proprietary add-ons intended to
be easy to set up and easy for Windows users to use. Costs about $50 at
www. Tindows.com.

+ SuSe Linux: Comes with all kinds of preconfigured software packages,
X servers, and graphical utilities for novice users.

v Turbolinux: Primarily intended for larger businesses and servers; devel-
oped in Japan and popular in Asia.

2 ’6 Part lll: Getting Things Done

“l Need Help!”

What happens when you have a problem with Linux? (It has been known to
happen.) If you shelled out for a commercially distributed CD version, you
get possibly a few months of free support if the company has the wherewithal
to offer it. Otherwise, no technical-support hotline exists to call when things
go wrong.

There is a huge base of Linux users around the world, though, most of whom
have access to the Internet. Usenet is the best place to find help with Linux,
as described in Chapter 18. For someone accustomed to calling a commercial
entity on the phone for tech support, the idea of posting questions on Usenet
may seem foreign, even hopelessly naive. Questions are generally read by

so many thousands of people, though, that the odds are overwhelming that
someone familiar with your problem will read the question and respond, usu-
ally within a day or so. (In fact, many people claim that Usenet-based support
is faster and more reliable than some technical-support hotlines!) The Linux
community as a group still maintains an attitude of “we’re all in this together,”
and the Usenet support system has mostly worked. The Linux groups, which
tend to be some of the most active computer groups on all of Usenet, are listed
at the end of Chapter 26.

Part IV
UNIX and the Net

The 5th Wave By Rich Tennant

on the Web while you weve gone?”

In this part . . .

M ost computers that run UNIX are connected to other
computers. Many are parts of office-wide networks,
many have network connections to UNIX systems in other
places, most are connected to computers running operat-
ing systems other than UNIX, and nearly all are connected
directly or indirectly to the biggest network of all: the
Internet.

This part of the book reveals how to use your UNIX system
to send and receive e-mail, browse the World Wide Web,
transfer files, and log in to other computers over the
Internet. We even tell you a few things about how to set up
your own Internet site so that you can make files and Web
pages on your own computer available to your cohorts in
cyberspace.

Chapter 15
Your Computer Is Not Alone

In This Chapter

Discovering who else is using your computer by using the finger command

Fingering people who use other computers on the Internet

Communicating with other user computers by using the write and talk commands
Talking to everyone at the same time

Getting your UNIX box on the Net

Fom the beginning, UNIX was designed as a multi-user system. In the
early years of UNIX computing, keeping an entire PDP-11/45 (a 1972
vintage minicomputer about the speed of a Palm Pilot but the size of a trash
compactor) to yourself was considered greedy. It was also kind of expensive.
These days, the cost argument is much less compelling — unless your com-
puter is a Cray supercomputer or the like — although UNIX remains multi-
user partly because it always was and partly because multi-user systems
make sharing programs and data easier.

Even if you have your own workstation but are attached to a network, your
machine is potentially multi-user because other people can log in to your
machine over the net, as we technoids call a network. (On the other hand,
you can log in to their machines, too. See Chapter 16 for details.)

Don’t confuse net — any network of computers — with the Net, which is what
we technoids call the Internet. In this day and age, all anyone ever talks about
is the Internet. If your computer is attached to the Internet, you can talk to lit-
erally millions of computers.

In this chapter, you see how you can nose around and find out who’s on your

system and on other systems to which you're connected. For the most part, we
talk about the net — the computer network to which your machine is attached.
If we mean the Net (also known as the Internet), we say so. After you find out

who’s out there, you can look into getting in touch with them.

22() PartIV:UNIX and the Net

\\J

If you are the only person who ever uses your computer and you don’t have a
network or a phone line (your computer is all alone in the world), skip this
chapter — in fact, skip this entire part of the book.

Vou Don’t Need to Be In Who's
Who to Know What's What

If you have an account on a UNIX machine, UNIX knows a great deal about you.
(Not that we’re paranoid.) It knows your username, when you last logged on,
which terminal you are using, and possibly additional facts, such as your real
name and office extension, and it writes a short essay about what you are up
to. (No, we're not kidding. Read on.) Other people can see this information,
including people who use the same computer as you, and (if your UNIX system
is on a network) people who use other computers.

Finding Out Who's on Your Computer

You can use three main commands to find out who’s using your machine:
who, w, and finger. The simple way to use either one is just to type who.

The typical response is something like this:

Jjohnl console Sep 3 14:57

johnl ttypl Sep 3 14:57 (:0.0)
johnl ttyp2 Sep 3 14:57 (:0.0)
johnl ttyp3 Sep 4 17:48 (:0.0)
johnl ttyp4 Sep 18 10:48 (:0.0)
johnl ttypb Sep 26 18:42 (:0.0)
johnl ttyp7 Sep 9 14:10 (:0.0)

You see the user, terminal, and login time. User johnl logged in seven times
because he has a bunch of X terminal windows, each of which counts as a login
session. Although the exact output from who varies from one version of UNIX
to another, it always contains at least this much. You can also type who am 1,
and UNIX prints just the line for the terminal (or terminal window) in which
you typed the command. (A similar UNIX command, whoami, prints only the
name of the user logged in at the prompt where you typed the command.)

Chapter 15: Your Computer Is Not Alone 22 1

A considerably more informative program is finger because it produces a
more useful report than who does:

Login Name Tty Idle Login Time Office Phone
johnl John R Levine co 23d Sep 3 14:57 NY 387
johnl John R Levine pl 6:10 Sep 3 14:57 NY 387
johnl John R Levine p2 1d Sep 3 14:57 NY 387
johnl John R Levine p3 22d Sep 4 17:48 NY 387
johnl John R Levine p4 1:53 Sep 18 10:48 NY 387
johnl John R Levine *p5 Sep 26 18:42 NY 387
johnl John R Levine p7/ 1:14 Sep 9 14:10 NY 387

Although finger reports the same stuff as who does, it also looks up the user’s
real name (if it’s in the user password file) and tells you how long the terminal
has been idle (how long it has been since the user last typed something). If
the system administrator entered the information, finger also usually shows
an office phone number, room number, or other handy info about where the
user works.

You can also use finger to ask about a specific user, and UNIX looks up some
extra info about that user. In this example, we used it to look up one of the
authors of this book:

finger johnl
UNIX returned this information:

Login: johnl Name: John R Levine
Directory: /home/johnl Shell: /bin/bash
Office: Trumansburg, 607 387 6874

On since Wed Sep 3 14:57 (EDT) on console, idle 23 days 10:34

Last Togin Sat Sep 27 01:31 (EDT) on ttyp0 from bebel.iecc.com
Project: Working on "UNIX for Dummies, 5th Ed."

Plan:

Write many books, become famous.

The Project and Plan lines are merely the contents of files called .project
and .plan in the login directory. (Yes, the filenames start with periods.) It
has become customary to put a clever remark in your .p1lan file, but please
don’t overdo it. If the user is logged in on more than one terminal or terminal
window, finger gives a full report for each terminal. The finger johnl
command we gave reported all the logins — but we edited it to save paper.

222 PartIV: UNIX and the Net

The w command provides yet another version of the same info:

1:24AM up 23 days, 9:50, 7 users, load averages: 2.16, 1.72, 1.44

USER TTY FROM LOGIN@ IDLE WHAT

johnl co - 03Sep03 23days xinit /home/johnl/.xinitrc
johnl pl :0.0 03Sep03 6:06 tail -f current

johnl p2 :0.0 03Sep03 27:34 -bash (bash)

johnl p3 :0.0 04Sep03 22days ./dnetc

johnl p4 :0.0 18Sep03 1:49 -bash (bash)

johnl p5 :0.0 Fri06PM 1:13 (pine)

johnl p7 :0.0 09Sep03 1:10 -bash (bash)

a a ’
Finding Out Who's on Other Computers
WORK
é“'/\ If your machine is on a network, you can use rwho to find out about other
machines. We can check nearby systems, by typing this command:

rwho

The computer responds with this output:

abuse xuxa:ttyp4d Sep 22 15:19 6:30
johnl bebel:ttyv0 Sep 22 14:08 99:59
johnl tom:console Sep 3 14:57 99:
Jjohnl tom:ttypl Sep 3 14:57 6:15
johnl tom:ttyp? Sep 3 14:57 27:42
johnl tom:ttyp3 Sep 4 17:48 99:59
Jjohnl tom:ttyp4d Sep 18 10:48 1:57
johnl tom:ttypb Sep 26 18:42 1:21
johnl tom:ttyp7/ Sep 9 14:10 1:19
Jjohnl xuxa:console Sep 22 09:29 27:

johnl xuxa:ttyp0 Sep 22 01:54 2:32
johnl xuxa:ttypb Sep 24 14:23 1

The finger command is set up to work over the net, and if you're on the
Internet, you can — in principle — finger any machine on the Internet.
Because no rule says that machines must answer when you call, however, in
most cases you get a “connection refused” response or even no response.

Some systems, particularly main network machines at universities, have set
up finger to return user-directory information. Suppose that you ask who’s
at MIT:

finger @mit.edu

Chapter 15: Your Computer Is Not Alone 223

You get an introduction to the MIT online directory:

[mit.edul

Student data loaded as of Dec 15, Staff data loaded as of Dec
19. Notify the Registrar or Personnel as
appropriate to change your information.

Our on-line help system describes

How to change data, how the directory works, where to get
more info.

For a listing of help topics, enter finger help@mit.edu. Try
finger help_about@mit.edu to read about how the
directory works. Please see help_url@mit.edu for
questions about the new URL field.

You can try to finger a particular individual at MIT, too:
finger chomsky@mit.edu
Now you can see the public data about that individual:

[mit.edul

... There was 1 match to your request. name: Chomsky, Noam A
email: CHOMSKY@MIT.EDU

phone: (617) 555-7819

address: 777-219

department: Linguistics & Philos

title: Linguistics, Institute Professor

alias: N-chomsky

Chatting with Other People
on Your Computer

After you figure out who is on your computer, you may want to send them a
message. Message sending has two general schools. The first is the real-time
school, in which the message appears on the other user’s screen while you
wait, presumably because it’s an extremely urgent message. The write and
talk commands enable you to do that. Excessive use of real-time messages is
a good way to make enemies quickly, however, because you interrupt people’s
work all over the place. Be sparing in your blather.

The second school is electronic mail, or e-mail, in which you send a message
the other user looks at when it’s convenient. E-mail is a large topic in its own
right, so we save that for Chapter 17.

22/, PartIV:UNIX and the Net

\\J

Real-time terminal communication has been likened to talking to someone on
the moon because it’s so slow: It’s limited by the speed at which people type.
Here on Earth, because most of us have telephones, the most sensible thing
to do is to send a one-line message asking the other user to call you on the
phone.

The simpler real-time communications command is write. If someone writes
to you, you see something like this on your screen:

Message from johnl on iecc (ttypl) [Wed Jan 6 20:28:42]
Time for pizza. Please call me at extension 8649
<EOT>

Usually the message appears in the middle of an editor session and scrambles
the file on your screen. You will be relieved to know that the scrambling is
limited to the screen — the editor has no idea that someone is writing to you.
The file is okay.

In either vi or emacs, you can tell the editor to redraw what’s supposed to be
on-screen by pressing Ctrl+L (if you're in input mode in vi, press Esc first).

To write to a user, use the write command and give the name of the user to
whom you want to talk:

write dguertin

After you press Enter, write tells you absolutely nothing, which means that it
is waiting for your message. Type the message, which can be as many lines
long as you want. When you finish, press Ctrl+D (the general end-of-input
character) or the interrupt character, usually Ctrl+C or Delete. Because the
write command copies every line to the other user’s screen as you press
Enter, reading a long message sent by way of the write command is sort of
like reading a poem on old Burma-Shave signs as you drive by each one.

You want to send an important message, for example, to your friend Dave, so
you type these lines:

write dguertin
Yo, Dave, turn on your radio. WBUR is rebroadcasting
Terry Gross's interview with Nancy Reagan!

You press Enter at the end of each line. After the last line, you press Ctrl+D.

Chapter 15: Your Computer Is Not Alone 225

\\3

I'm talking — where are you?

Sometimes write tells you that the user is logged in on several logical
terminals:

dguertin is logged on more than one place.
You are connected to "vtOl".

Other locations are:

ttypl

ttyp0

ttyp2

The write command is pretty dumb. If the person you are writing to is logged
in on more than one terminal — or, more typically, is using many windows in
X —write picks one of them at random and writes there. You can be virtually
certain that the window or terminal write chooses is not the one the user is
viewing at the time. To maximize the chances of the user’s seeing your mes-
sage, use the finger command to figure out which terminal is most active
(the one with the lowest idle time) and write to that window. Remember the
results of the finger command, for example, from a few pages back:

Login Name TTY Idle When Office
root 0000-Admin(0000) co 1:11 Tue 20:16
dguertin David S. Guertin vt 1:11 Mon 15219
dguertin David S. Guertin vt 1:35 Tue 16:47
dguertin David S. Guertin p2 1:11 Wed 16:36
dguertin David S. Guertin pl Wed 17:20
dguertin David S. Guertin p0 Wed 16:36

The best candidates to send a message to are ttypl and ttyp0. (The finger
command cuts the tty from terminal names.)

To write to a specific terminal, give write the terminal name after the
username:

write dguertin ttypl

If you are writing back to a user who just wrote to you, you should use the
terminal name that was sent in his write message (in this case, it was also

ttypD).

220 PartIV:UNIX and the Net

Can we talk?

You can have a somewhat spiffier conversation with the talk command, which
allows simultaneous two-way typing. You use it the same way you use write:
by giving a username and, optionally, a terminal name:

talk margy
The other user sees something like this:

Message from Talk_Daemon@iecc at 20:47 ...
talk: connection requested by johnl@IECC
talk: respond with: talk johnl@IECC

If someone tries to talk to you and you’re interested in responding, type the
talk command it suggests. If you're in the middle of a text editor or other
program, you must exit to the shell first.

While talk is running, it splits your screen and arranges things so that what
you type appears in the top half and what the other user types appears in the
bottom half. Unlike write, talk immediately passes what you type — without
waiting for you to press Enter — which means that you can see all the other
user’s typing mistakes and vice versa. When you get tired of talk, exit by
pressing Ctrl+D.

Chatting with faraway folks

The talk command is designed to “talk” to users on other computers. If the
other computer is a long way away, typing rather than talking over the tele-

phone can make sense. As the Internet stretches around the world, you may
find yourself exchanging messages with someone for whom English is not a

native language. In that case, typing can be faster than trying to understand
someone with a strong accent across a noisy phone connection.

Computers have names, too, which are usually called machine names (more
about this in Chapter 16). To talk to someone on another computer, give talk
the username and machine name:

talk zac@greattapes.com
After you're connected, talk works just like talking to a local user, except

that sometimes several seconds can pass for characters to get from one
machine to another on an intercontinental link.

Chapter 15: Your Computer Is Not Alone 22 7

a\\S

If you want to talk to a number of other people, maybe thousands and thou-
sands of them, you can use a system called Internet Relay Chat (IRC). We
don’t have room to describe it in this book, but you can read about it at our
Web site:

http://net.gurus.com/irc

If you don’t know how to find this Web site, see Chapter 18.

Reading the writing on the wall

For the truly megalo-maniacal among you, a program called wa 11 blats what
you type to every single terminal and window on your entire computer. You
use it much like write:

wall
Free pizza in the upstairs conference room in 5 minutes!

As with write, youtell wall that you're finished by pressing Ctrl+D. Be spar-
ing in your use of wal1 unless you want a bunch of new enemies. Note that
wall affects only the people who use your computer, not everyone on your
network (or on the whole Internet).

Getting On the Net

If you have a home UNIX or Linux system, you’d probably like to connect to
the Internet. The good news is that it’s possible, the bad news is that it can
be, ah, a little tricky.

The easiest way to get on the Net is with a connection that looks, to your UNIX
system, like you're on an office LAN, because UNIX systems generally are all
set up for LANs right out of the box. If you have a broadband connection, and
the connection uses a setup scheme called DHCP, you win. Plug your UNIX
box’s Ethernet adapter into the broadband box, and the connection starts
right up. This happy state of affairs most often occurs with cable modems.

The other broadband connection scheme is known as PPPoE and requires
that you or your computer send a username and a password to your ISP so it
can be sure you're actually the person plugging into its service and not one of
the hundreds of other people who might live in your house. (What? Nobody
lives in your house but you? Well, how’s the phone company supposed to

228 PartIV: UNIX and the Net

know that?) Although setting up a PPPoE connection on your UNIX box is
possible, it’s way more complex than we can describe here. Unless you have
a geeky friend who can set it up for you, the path of least resistance is to run
out and get a $30 router, plug that into your PPPoE connection, plug your UNIX
box into the router that does nice simple DHCP, and configure the necessary
passwords into the router using its handy Web page.

Setting up a dialup connection isn’t as bad as PPPoE but is still more complex,
and varies too much from one flavor of UNIX to another. Some versions of
Linux have a nice Window-ish setup system, but failing that, you still need that
geeky friend or a router with a dial-out modem.

Chapter 16

Across a Crowded Network

In This Chapter

Logging in to other computers

Checking out computers on the network

Discovering whether your files are on a different computer

On a

f your computer is on a network, sooner or later you have to use comput-

ers other than your own. Although you can do lots and lots of things over
a network, the two most widespread activities are remote login and file trans-
fer. If your computer is on a LAN (Local Area Network), you can probably use
files directly that are located on other computers.

Computer Far, Far Away

Most UNIX systems are attached to the Big Mazooma of networks, the Internet,
which hooks together several million computers around the world. Because
most of the UNIX network software descends from stuff originally written at
Berkeley specifically for use on the Internet, all the commands discussed in
this chapter work just fine on the Internet. The only difference you may notice
is that although you can refer to computers on your own network with simple
names, such as pumpkin, in order to talk to computers on the Internet, you
have to give their true names, which can be long and tedious, such as iecc.
cambridge.ma.us (a name our computer used to have).

Remote login is no more than logging in to some other computer from your
own. While you're logged in to the other computer, whatever you type is
passed to the other computer; whatever responses the other computer makes
are passed back to you. In the great UNIX tradition of never leaving well enough
alone, two slightly different remote-login programs exist: telnet and ssh.
You can also use ssh to give commands one at a time on other computers.

A file transfer copies files from one system to another. You can copy files from
other systems to your system and from your system to others. Two different
file-transfer programs exist (how did you know that?): ftp and scp. We talk
about ftp in Chapter 18.

230 PartIv:UNIX and the Net

How do | get networked, anyway?

If your UNIX system is in an office with an
Ethernet LAN or you have a home network with
a router, you can usually put your system on the
net with little effort. When most UNIX software
is firstinstalled, it asks whether you have a LAN
connection. Make sure a network cable is
plugged from your computer to the LAN hub or
router and tell the installation software that yes,

there’s a LAN. (Um, well, yeah, that’s kind of
obvious.) If it asks whether you want to get your
network address automatically, dynamically, or
using DHCP, three increasingly geeky ways of
saying the same thing, also say yes. Barring bad
luck, your computer automatically connects to
the local network each time it starts up.

Telnet It Like It Is

Telnetting (in English, you can “verb” any word you want) involves no more
than typing telnet and the name of the computer you want to log in to:

telnet pumpkin

UNIX tells you that it is making the connection and then gives the usual login

prompt:

Trying...

Connected to pumpkin.bigcorp.com.

Escape character is '~]1'.

FreeBSD 4.8 (pumpkin.bigcorp.com)

login:

At the login prompt, you type your username and then your password. After
the other computer connects, you log in exactly as though you are sitting

at the other computer. In the following example, we typed john1 as our user-
name and then gave our secret password:

login: johnl
Password:

Last Togin: Thu Oct 3:03:58 from squash
FreeBSD 4.8-RELEASE (PUMPKIN) #0: Thu Jul 24 14:49:39 EDT

2003

Please confirm (or change) your terminal type.

TERM = (xterm

Chapter 16: Across a Crowded Network 23 1

Terminal type tedium

If you use a full-screen program, such as the
UNIX text editors emacs and vi or the mail pro-
grams e Imand Pine, you have to set your termi-
nal type. This problem shouldn't exist in the first
place, but it does, so you have to deal with it.

The problem is that about a dozen different con-
ventions exist for screen controls such as clear
screen and move to position (x,y). The program
you're using on the remote host has to use the
same convention your local terminal program
does.

If the conventions are not the same, you get
garbage (funky-looking characters) on-screen
when you try to use a full-screen program. In
most cases, the remote system asks you which
terminal type to use. The trick is knowing the
right answer. Here are a few hints to help you
find out:

v If you're using the X Window system, with
or without Motif, the answer is more likely
to be V7-100, a popular terminal from the

1970s that became a de facto standard. You
may also try xterm, the name of the standard
X program that does terminal emulation.

v If you're using a PC and an emulation pro-
gram, the best answer is usually ANSI
because most PC terminal programs use
ANSI terminal conventions. (ANS/ stands for
the American National Standards Institute.
One of its several thousand standards
defines a set of terminal-control conven-
tions that MS-DOS PCs — which otherwise
wouldn’t know an ANSI standard if they
tripped over one — invariably use.)

v Inplaces where a great deal of IBM equip-
ment is used, the terminal type may be 3107,
an early IBM terminal that was also popular.

The ANSI and VT-100 conventions are not much
different from each other, so if you use one and
your screen is only somewhat screwed up, try
the other.

If the other computer asks you what type of terminal you're using, give the
answer appropriate to the terminal you're using. (If you're using an X terminal
window, it’s xterm. Try VT-100, ANSI, or TTY if you're using a dumb terminal

or PC))

The normal way to leave telnet is to log out from the other computer:

lTogout

UNIX gives you the following message to tell you that the other computer has
hung up the phone, so to speak:

Bye Bye
Connection closed by foreign host.

232 PartIV:UNIX and the Net

Sometimes the other computer is recalcitrant and doesn’t want to let you go.
Remember that you're in control. To force your way out, you first must get
the attention of the telnet program by pressing Ctrl+] (that’s a right square
bracket). A few versions of telnet use a different escape character to get
telnet’s attention. (It tells you which character when you first connect to
the other system.) After you get telnet’s attention, type quit to tell telnet
to wrap things up and return to the shell:

Ctr1-1]
telnet> quit

3270: The Attack of the IBM Terminals

All the terminals discussed earlier in this chapter that are handled by telnet
are basically souped-up Teletypes, with data passed character by character
between the terminal and the host. This kind of terminal interaction can be
called Teletype-ish.

IBM developed an entirely different model for its 3270-series display terminals.
The principle is that the computer’s in charge. The model works more like fill-
ing in paper forms. The computer draws what it wants on-screen, marks which
parts of the screen you can type on, and then unlocks the keyboard so that
you can fill in whichever blanks they want. Whenever you press Enter, the
terminal locks the keyboard, transmits the changed parts of the screen to the
computer, and awaits additional instructions from headquarters.

To be fair, this method is a perfectly reasonable way to build terminals
intended for dedicated data-entry and data-retrieval applications. The termi-
nal on the desks at your bank or the electric company are probably 3270s —
or more likely these days, cheap PCs emulating 3270s. Because the 3270 ter-
minal protocol squeezes a great deal more on a phone line than Teletype-ish,
having all the 3270s in an office sharing the same single phone line, with rea-
sonable performance is quite common.

The Internet is a big place, and plenty of IBM mainframes run applications
on the Internet. Some of them are quite useful. Some large library catalogs
that haven’t moved to the Web yet speak 3270-ish. Usually, if you telnet to
a system that wants a 3270, it converts from the Teletype-ish that telnet
speaks to 3270-ish so that you can use it anyway. Some 3270 systems speak
only 3270-ish, however, and if you telnet to them, they connect and discon-
nect without saying anything in between.

Chapter 16: Across a Crowded Network 233

A variant of telnet that speaks 3270-ish is called tn3270. If a system keeps
disconnecting, try typing the command tn3270 instead. (Large amounts of
UPPERCASE LETTERS and references to the IBM operating systems VM or
0S5/390 or z/0S are also tip-offs that you're talking to a 3270.) Even if a 3270
system allows regular telnet, you get a snappier response if you use tn3270
instead.

ssh: The Lazy Man’s Remote Login

The telnet command has been around since the 1970s, but is now consid-
ered largely obsolete and dreadfully insecure. (If you use a computer in the
kind of place where people can plug into your network and watch the bits go
by, they can read your entire telnet session, passwords and all.) These days
the ssh, short for secure shell command is both more secure and more con-
venient because it automates more of the process. You can use ssh in much
the same way you use telnet:

ssh pumpkin
UNIX responds:

Last login: Thu Oct 3:03:58 from squash
FreeBSD 4.8-RELEASE (PUMPKIN) #0: Thu Jul 24 14:49:39 EDT
2003

Hey! It didn’t ask for the username or password. What happened? Often you
have accounts on a bunch of machines in a group, and if you log in to one of
them, you use the same username to log in to others. When setting up ssh,
the system manager can configure each machine with the secret ssh keys (a
long string of digits) of the other machines in its group so when someone
sshes in, it can say “oh, that machine, it’s OK.” If you have accounts on a vari-
ety of UNIX or Linux machines, setting up your own authorized keys files so
you can log in from one host to another without passwords is possible.

The ssh command also passes along the type of terminal you're using so that
even if the other system asks you to enter your terminal type, it always guesses
correctly if you don’t tell it explicitly.

If the remote system doesn’t recognize your username, it asks you to type a
username and password, just like telnet does. If it does recognize your user-
name but not your secret ssh key, it just asks for a password.

234 Partiv:UNIX and the Net

Escaping from ssh

One place where ssh is quite different from telnet is in how you escape from
a recalcitrant remote system: You type ~. (a tilde followed by a period) on a
line by itself. What you have to do is press Enter (or Return), tilde, period,
Enter.

Username and secret key matching for ssh

This section is pretty nerdy. If you work in an office with a bunch of worksta-
tions, you can assume that they all generally share usernames (the system
manager should have arranged for all the necessary keys), and you can skip
this section.

The control files for ssh are in a directory called . ssh. On each computer you
need to have your own ssh key (actually a pair of keys: the private key that
only stays on that computer and the public key that you copy to all of the other
computers from which you plan to log in to this one). Assume you have two
computers called squash and pumpkin, and you want to be able to log in to
each from the other. The keys for each computer are in the . ssh directory
and are called id_rsa and id_rsa.pub,or id_dsa and id_dsa.pub. (Either
will do; rsa and dsa are two different coding schemes that ssh can use.)

To log in to each computer, follow these steps:

1. On pumpkin, if the keys don’t exist, create them by running ssh-keygen
-t dsa and waiting a minute or so while it thinks up a really good
secret key for you.

When it asks for the filename to use, press Enter to use the normal names,
and it also asks for optional pass phrases to secure the keys, and press
Enter again not to use them.

2. Copy the public key id_dsa.pub you just created on pumpkin to
squash, where you call the copy pumpkin-key.

Copy the file using scp or ftp, both of which are discussed later in this
chapter.

3. On squash, copy pumpkin.key to .ssh/authorized_keys.
4. Log in from pumpkin into squash without a password.

To go the other way, do the same steps, reversing the two computers. If
you have more than two computers, on each computer you need to put
all the keys of the other computers into authorized_keys, like this:

cat pumpkin.key squash.key gourd.key >>
.ssh/authorized_keys

Chapter 16: Across a Crowded Network 23 5

Now you see why we give each key file a different name. Putting a computer’s
own key into authorized_keys is harmless. If you have more than two
computers, make all the keys, combine all the public keys into one big
authorized_keys file, and then scp copy that combo file to all of the com-
puters with scp.

If your login names on the various machines are different, this password-
avoidance trick still works fine, but you have to tell ssh what login name to
use. Either of these works:

ssh -1 fred pumpkin # old-fashioned form
ssh fred@pumpkin # groovy new form

Using ssh one command at a time

Sometimes a complete login session is overkill for what you want to do —
you just want to run one command at a time. In this type of situation, ssh can
also do one command at a time:

ssh pumpkin 1pq
ssh fred@pumpkin 1pq # if your user name is different
there

You give ssh the name of the system you want to use and the command you
want to run on that system. This example runs the 1pg command on system
pumpkin (remember that 1pg asks what’s waiting for the printer on pumpkin).

If you can use ssh to log in to a system and not give a username or a password,
you can also use it a command at a time without a password.

scp: Blatting Files across the Network

Although telnet and ssh may be the next best thing to being there, some-
times there’s no place like your home machine. If you want to use files that
are on another machine, scp is often the easiest thing to do. (You can also
use ftp to blat files across the network, but because that’s a larger topic, we
give it all of Chapter 19.)

The idea behind scp is that it works just like cp (the standard copy
command) — except that it also works on remote files that you own or that
you at least have access to. To refer to a file on another machine, type the
machine name and a colon before the filename. To copy a file named mydata
from the machine named pumpkin and call it pumpkindata, you type

scp pumpkin:mydata pumpkindata

236 PartIv:UNIX and the Net

\\3

To copy it the other way (from a file called pumpkindata on your machine to
a file called mydata on a machine called pumpkin), you type this line:

scp pumpkindata pumpkin:mydata
The scp program uses the same username rules as does ssh. If your username
on the other system is different from that on your own system, type the user-
name and an @ sign before the machine name:

scp steph@pumpkin:mydata pumpkindata
If you want to copy files in another user’s directory (tracy, for example) on
the other system, place the user’s name after a ~ (a tilde) before the filename.
Suppose that you need one of Tracy’s files:

scp pumpkin:~tracy/somefile tracyfile

To copy an entire directory at a time, you can use the -r (for recursive) flag
to tell scp to copy the entire contents of a directory:

scp -r pumpkin:projectdir .

This command says to copy the directory projectdir on machine pumpkin
into the current directory (the period is the nickname for the current direc-
tory) on the local machine.

You can combine all this notation in an illegible festival of punctuation:
scp -r steph@pumpkin:~tracy/projectdir tracy-project

Translation: “Go to machine pumpkin, where my username is steph, and get
from user tracy a directory called projectdir and copy it to a directory on
this machine called tracy-project.” Whew!

If you're copying large files, scp gives you reassuring progress reports to tell
you how it’s doing and when it thinks it’ll be done. sscp is done when you see
the UNIX prompt.

If you copy stuff to another machine and want to see whether it worked, use
ssh to give an 1s command afterward to see which files are on the other
machine:

scp -r projectdir pumpkin:squashproject
ssh pumpkin 1s -1 squashproject

Although scp is reliable (if it didn’t complain, the copy almost certainly
worked), it never hurts to be sure.

Chapter 16: Across a Crowded Network 23 7

NES: You'll Never Find Your Stuff

If your computer is on a LAN, the computer is probably set up to share files
with other computers. Quite a few different schemes enable computers to use
files on other machines. These schemes are named mostly with TLAs (Three
Letter Acronyms) such as AFS, RFS, and NFS. This chapter talks mostly about
NFS (you’ll Never Find your Stuff) because that’s the most commonly used
scheme, even though it works, in many ways, the worst. If you didn’t like the
C shell or the vi editor, you won't like NFS either; it also was written by Bill,
the big guy with the strong opinions.

What's NES?

The NFS (Network File System) program enables you to treat files on another
computer in more or less the same way you treat files on your own computer.

You may want to use NFS for several reasons:

v Often you have a bunch of similar computers scattered around, all
running more or less the same programs. Rather than load every pro-
gram on every computer, the system administrator loads one copy of
everything on one computer (the server) so that all the other computers
(the clients) can share the programs.

v Centralizing the files on a server makes backup and administration
easier. Administering one disk of 4,000MB is easier than administering
10 disks of 400MB apiece. Backing up everything is also easier because
everything is all in one place rather than spread around on a dozen
machines.

v Another use of NFS is to make a bunch of workstations function as a
shared time-sharing system. Setting up a bunch of workstations so that
you can sit down at any one of them, log in, and use the same set of files
regardless of where on the network they physically reside is reasonably
straightforward. This capability is a great convenience. Also, by using
programs such as ssh (discussed earlier in this chapter), you can log in
to another machine on the network and work from that machine (which
is handy if the other machine is faster than yours or has some special
feature you want to use).

v NFS works in heterogeneous networks, a fancy term for networks
with different kinds of computers. NFS is available for all sorts of com-
puters, from PCs to mainframes.

238 PartIv:UNIX and the Net

Why NFS is out of state

We discuss the technical theology of remote file
access here. Still reading? Geez, what a glutton
for punishment.

The communication between the server (the
machine with the files) and the client (the
machine that wants to use them) is handled in
two general ways: One approach is known as
stateless, and the other (for lack of a better
word) is called stateful.

The stateful approach is more straightforward:
The two machines have a conversation, the gist
of which runs something like this:

“lwantto read afile called /usr/elvis/
current-whereabouts.”

“Very good, sir— an excellent choice.”

“Can | have the first piece of that file | just
asked about?”

“Certainly, sir. It's so-and-so.”

“Thank you so much. May | have the next
piece?”

“My pleasure. It's such-and-such.”

The only problem in this example occurs if one
or the other machine crashes during the con-
versation. When it comes back, the server has
no recollection of what it was talking about, the
conversation cannot be reestablished easily,
and all sorts of special recovery schemes are
necessary to get things back in sync. (“Beg
pardon, old boy, I've had a spot of amnesia. Can
you remind me what we were chatting about?”)

Back when Bill was writing NFS, he didn't feel
like writing all that recovery code (it's difficult to
write and boring, to boot) so he made NFS state-
less. This decision gave NFS a severe case of
amnesia on the part of all the servers. Rather
than keep track of which client is asking for

which file, NFS couldn’t care less. The NFS
servers don’t have the faintest idea who their
clients are, and they forget everything about a
client from one request to the next. The conver-
sation goes more like this:

“lwantto read /usr/elvis/current-
whereabouts.”

“It's all the same to me. On my disk, it's file
number 86345.”

“Send me the first piece of file 86345.”
“Well, okay, if you insist. It's so-and-so.”
“Send me the second piece of file 86345."

“Who the heck are you? Hardly matters —
| wouldn’t remember, even if you told me.
Anyway, the answer is such-and-such.”

The advantage here is that, if the server
crashes, when it comes back up, the server can
pick up where it left off. Because the server
didn't know anything about its clients anyway, it
doesn't forget anything. The disadvantage is
that determining whether a request got lost or,
because of network glitchery, got handled twice
is difficult. In a stateful setup, figuring out what
happened is easier: Every message has a
number. If messages 106 and 108 arrive without
107 between them, you know that something got
lost. Because stateless messages don't have
numbers (it wouldn't matter if they did, because
the stateless server doesn't remember the
number from one message to the next), you
have no way to tell whether a message got lost.
In practice, if a client doesn’t get an answer to
a request within a few seconds, it repeats the
request because NFS requests are supposed to
be idempotent (this 25-cent word means that it
doesn't hurt if the server does them more than
once).

Most requests are indeed idempotent (whether
you write the same stuff to the same part of a
file twice in a row doesn’t matter) — but not all
of them are. If the request was something like
“delete the furble file” and the server in fact
received the request but lost the response, the
second time the client sends the request, the
server complains that the file is not there and
sends back an error (even though, from the
client's point of view, the file was there when it
asked to delete it). Are you confused yet? We
certainly are.

Chapter 16: Across a Crowded Network 239

More complex sequences of repeated and lost
messages can cause the contents of a file to be
thrown away by mistake. (No, we don't go into
detail—we know that you have already stopped
reading this part.) Fortunately, such sequences
are rare, although they have been known to
happen.

NFS doesn’t handle tapes, printers, and the like
because even Bill couldn’t figure out how to
make an idempotent printer — one in which
printing a page twice was the same thing as

printing it once. Perhaps he could have used
transparent ink.

\\J

Ignoring NFS

Except when NFS screws up, you don’t have to worry about using it. Your
system administrator did all the hard work when she installed it.

Files passed over the network act almost exactly like those on the local
machine; in most cases, you can treat them the same. The primary difference
is that access to files through NFS is about twice as slow as access to files on
the local machine. This problem usually isn’t a big one because, for most of
the stuff you do, the machine doesn’t spend much time waiting for the disk

anyway.

When you do something really big and slow (such as repaginate a 500-page
document), seeing whether you can log in to the machine on which the files
reside and run the program there may be worth the time.

Where are those files, anyway?

NFS works by mounting remote directories. Mounting means pretending that
a directory on another disk or even on another computer is actually part of
the directory system on your disk. Files stored in lots of different places can
then appear to be nicely organized into one tree-structure directory.

Whenever UNIX sees the name of a directory — /stars/elvis, for example —
it checks to see whether any names in the directory are mount points, which
are directories in which one disk is logically attached to another.

240 PartIv:UNIX and the Net

Your system may have the directory /stars mounted from some other
machine, for example, and then the directory e1vis and all the files in it
reside on the other machine.

The easiest way to tell which files are where is with the df (Disk Free space)
command. It prints the amount of free space on every disk and tells you where
the disks are. Here’s a typical piece of df output:

Filesystem kbytes used avail capacity Mounted on

/dev/sdOa 30383 6587 20758 24% /

/dev/sd0g 157658 124254 17639 88% /usr

/dev/sdOh 364378 261795 66146 80% /home

/dev/sd3a 15671 1030 13074 7% /tmp

/dev/sd3g 1175742 758508 299660 72% /mnt

srvsys:/usr/spool/mail 300481 190865 79567 71% /var/spool/mail
srvsys:/usr/1ib/news 300481 190865 79567 71% /usr/lib/news

In this example, the directory / resides on a local disk (a disk on your own
computer) named /dev/sd0a; /usr resides on /dev/sd0g; /home resides
on /dev/sd0h; and so on. (We don’t go into the subject of disk names other
than to say that anything in /dev is on the local machine.) The directory
/var/spool/mail is really the directory /usr/spool/mail on machine
server-sys,and /usr/Tlib/news isreally /usr/1ib/news on machine
server-sys.

Some of the local directory names are the same as the remote machine’s
directory names — and some aren’t. This situation can and often does cause
considerable confusion; unfortunately, it’s usually unavoidable. A system
administrator with any sense at least mounts each directory with a consis-
tent name wherever it’s mounted so that /var/documents/bigprojectis
the same no matter which computer you're working on.

A database known as NIS (Network Information System) makes keeping the
naming process straight easier. Don’t worry about it unless your system admin-
istrator messes up.

NES and system crashes

What happens if you're working with NFS, your files are stored on a server,
and the server crashes? The answer is, you wait. Eventually, when the server
comes back, you continue from where you left off. If the crash is severe, you
may wait a long time. In one extreme case (so we have heard), a program on
an NFS client system waited more than six months while the server crashed,
was dismantled and shipped back to the manufacturer, and then was refur-
bished, shipped back, reloaded from tape, and rebooted — at which point the
client program continued. You probably won’t be so patient.

Chapter 16: Across a Crowded Network 2 4 1

The worst practical problem is that, if a program stalls while it is waiting for a
dead NFS server, you have no way to stop or kill the program, short of reboot-
ing your UNIX computer.

Recent versions of NFS have features called soft and hard mounts (not as inde-
cent as they sound, but close) that make stopping a program that has stalled
while waiting for a dead server possible. The problem is that, if a server is
merely slow and not dead (and believe us, a server loaded with hundreds of
clients can be impressively slow), a client may assume that the server is dead
and stop a program. Had the client been a little more patient, the server would
have responded, and the program could have completed its task.

The UNIX/Windows Accords

Sometimes UNIX computers are on networks with computers running other
operating systems, such as Windows 98, Me, NT, 2000, or XP. So how do you
get your UNIX and Windows computers to communicate with each other?

When computers want to speak to one another, they can’t just chuck data at
one another indiscriminately. They have to use what’s known in computer-ese
as protocols. Protocols are sets of rules by which computers exchange data
and commands. If two computers know the same protocols, they can talk
turkey, even if one of those computers is running UNIX and the other is run-
ning Windows.

Computers use all kinds of protocols to communicate. On a network,

clients connect to servers by using protocols, such as TCP/IP (Transmission
Control Protocol/Internet Protocol) and IPX (Internetwork Packet eXchange).
Computers connected by way of the Internet exchange files by using protocols
such as FTP (File Transfer Protocol) and HTTP (HyperText Transfer Protocol).

Let’s Samba

The particular protocol of interest here is the Server Message Block, or SMB,
protocol. SMB has been around in one incarnation or another since 1987, when
Microsoft and Intel (the chip maker) first defined it. Because they helped to
invent SMB, Microsoft includes an SMB client in all its versions of Windows.
Any server that can talk SMB, therefore, can do business with a Windows com-
puter, so the Windows computers can use disks and printers on the server
just like on a Windows NT server, for example.

202 PartIV:UNIX and the Net

Enter Andrew Tridgell, a UNIX hacker from Canberra, Australia, with a firm
grasp of the obvious. He wrote a suite of programs collectively named Samba,
which turns almost any version of UNIX you care to mention into an SMB
server. Samba lets UNIX and Windows computers do snazzy, friendly stuff,
such as access one another’s files and share printers. In typical UNIX style,
dozens of programmers from around the world have contributed to Samba
over the years, and it’s distributed for free under the infamous GNU public
software guidelines.

SMB is a request-response protocol, in which a client makes requests of the
server and the server responds. Because nothing is ever as easy at it seems
where computers are concerned, a client has to make several requests of a
server before anything useful happens. First, the client has to ask the server
which dialect of SMB it wants to speak (yup, dialect, just like in real life). Then
the client has to get down on bended knee and politely request access to the
server by giving the server a username and password. If the server grants the
client an audience, the client can start petitioning the server with a series of
requests — for example, to locate, open, and print a particular file.

The latest version of Samba is 2.2.8 or higher. Nearly all current versions of
UNIX come with Samba installed, or you can download it from one of the
Samba Web sites such as http://usl.samba.org. (If you don’t know what
these curious strings of seeming gobbledygook mean, read Chapter 19.)

Listening to Window's

Samba lets a UNIX system provide file and printer service to Windows
machines. Occasionally you need to go the other way, either to copy a
bunch of files or to use a remote Windows disk.

Samba includes a program called smbclient that works sort of like FTP (see
Chapter 18) to copy files to or from a Windows shared folder. Some UNIX
systems also have an SMB mounter that can mount remote Windows folders
on the local machine just like remote NFS disks. Check with your system
manager if you need to set this up.

Chapter 17
Automating Your Office Gossip

In This Chapter
What is e-mail?

What are e-mail addresses?

Where is your mailbox?

Using the Pine program

Using the ma i1 program
Reading your mail with Mozilla
Reading your mail with KMail

Reading your mail with Evolution

Eectronic mail (or e-mail) is the high-tech way to automate interoffice
chatter, gossip, and innuendo. Using e-mail, you can quickly and efficiently
circulate memos and other written information to your coworkers, including
directions to the beer bash this Saturday and the latest bad jokes. You can
even send and receive e-mail from people outside your organization, if you
and they use networked computers.

If your organization uses e-mail, you probably already have some. In fact,
vitally important but unread mail may be waiting in your mailbox at this very
moment. Probably not, but who knows? You can tell whether unread messages
are in your mailbox because UNIX displays this message when you log in:

You have mail.

Actually, you might have mail even if it doesn’t say so — the UNIX system is
just telling you whether any mail is on the local hard drive. If you're using your
UNIX system as a home desktop, and you dial up to an ISP, then you may have
mail on its server, which you need to download. In this chapter, we discuss
local e-mail and remote e-mail separately. Local e-mail is what you use on a typ-
ical UNIX machine that is part of a network, such as a corporate or university
environment. Remote e-mail is what you use on a home machine running UNIX.

244 PartIv:UNIX and the Net

All the news that’s fit to print

E-mail isn't the only way to gossip. There's also
Usenet news. You can read Usenet news using
Mozilla— one of the e-mail clients we discuss
here, although you're better off with a dedicated
newsreader if you read much mail. We recom-
mend trn, which is incredibly flexible, but more
than a little confusing at first. Some people
swear by tin and nn. Newsreaders tend to
have short names, and be command-line pro-
grams. A lot of newsreaders are out there; almost
as many as e-mail clients.

Usenet has gradually decayed under swarms of
spammers and binary newsgroups (newsgroups
where people post huge files, instead of dis-
cussing anything), and a lot of people have writ-
ten it off, yet pockets of Usenet are still usable.
Look for moderated groups, or groups with very
specialized topics.

Not sure what Usenet has to offer? The Google
Groups area is an interface to Usenet; point a

browserathttp://groups.google.com/
and poke around.

For general information about Usenet news-
groups, see our Usenet page at net.gurus.
com/usenet/.

To use Usenet, you need these three Important
News Skills:

+* How to read the news that interests you

v How not to read the news that doesn't inter-
est you, because much more news is sent
every day than any single human can ever
read

+* How to post articles of your own (definitely
optional)

If you start reading news, learn to use the kill file
early. It's the only way to stay sane — or so
we're told, by people who are still sane.

What You Need in Order

to Use Local E-Mail

Any UNIX system handles local e-mail for users on that system. To exchange
e-mail with the outside world, your computer must be on a network — or at
least have a phone line and a modem. You definitely don’t want to know how
to set up a mail network — if your computer doesn’t already have e-mail on
it, it’s time to talk to a UNIX wizard.

In the great tradition of UNIX standardization, UNIX has about 14 different
mail-sending-and-receiving programs. (Fortunately, they all can exchange
mail with each other.) To find out whether your computer can do e-mail, try
using the simple mai1 program to see whether you have any mail waiting.

Just type this line:

mail

Chapter 17: Automating Your Office Gossip 2 4 5

We can'tlist all the mail programs that exist,but Mozilla It's a Web browser! It's a mail
this table gives you a brief summary. reader! It's. .. Mozilla!
Program name Description KMail The graphical mail reader
. . . that comes with KDE.
mail One of many plain-text mail
readers. Evolution The all-in-one mail reader,
. . calendar, and personal assis-
Mail Another plain-text reader. tant that comes with GNOME.
mailx You guessed it, another plain- nail A program evolved from
text reader. h .
mai1x, but with support for
elm A fairly old plain-text mail MIME.
MBIt VAT S S L exmh Early graphical client, provid-
attachments
' ing a friendly front-end to mh.
pine A RS plaln-t