
VBA
FOR

DUMmIES
‰

5TH EDITION

by John Paul Mueller

01_046500 ffirs.qxp 12/5/06 5:32 PM Page i

File Attachment
C1.jpg

01_046500 ffirs.qxp 12/5/06 5:32 PM Page iv

VBA
FOR

DUMmIES
‰

5TH EDITION

by John Paul Mueller

01_046500 ffirs.qxp 12/5/06 5:32 PM Page i

VBA For Dummies®, 5th Edition
Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc., and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2006936829

ISBN: 978-0-470-04650-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

5O/SS/RS/QW/IN

01_046500 ffirs.qxp 12/5/06 5:32 PM Page ii

www.wiley.com

About the Author
John Mueller is a freelance author and technical editor. He has writing in his
blood, having produced 71 books and over 300 articles to date. The topics
range from networking to artificial intelligence and from database manage-
ment to heads-down programming. Some of his current books include a
Windows power optimization book, a book on .NET security, and books on
Amazon Web Services, Google Web Services, and eBay Web Services. His
technical editing skills have helped more than 50 authors refine the content
of their manuscripts. John has provided technical editing services to both
Data Based Advisor and Coast Compute magazines. He has also contributed
articles to magazines like DevSource, InformIT, Informant, DevX, SQL Server
Professional, Visual C++ Developer, Hardcore Visual Basic, asp.netPRO,
Software Test & Performance, and Visual Basic Developer.

When John isn’t working at the computer, you can find him in his workshop.
He’s an avid woodworker and candle maker. On any given afternoon, you can
find him working at a lathe or putting the finishing touches on a bookcase. He
also likes making glycerin soap and candles, which comes in handy for gift
baskets. You can reach John on the Internet at JMueller@mwt.net. He is
also setting up a Web site at http:// www.mwt.net/~jmueller/; feel free
to look and make suggestions on how he can improve it. Check out John’s
weekly blog at http://www.amazon.com/gp/blog/id/AQOA2QP4X1YWP.

01_046500 ffirs.qxp 12/5/06 5:32 PM Page iii

01_046500 ffirs.qxp 12/5/06 5:32 PM Page iv

Dedication
This book is dedicated to Uncle Bob on his birthday; thanks for helping me
understand the need to enjoy some time off.

Author’s Acknowledgments
Thanks to my wife, Rebecca, for working with me to get this book completed.
I really don’t know what I would have done without her help in researching
and compiling some of the information that appears in this book. She also did
a fine job of proofreading my rough draft.

Russ Mullen deserves thanks for his technical edit of this book. He greatly
added to the accuracy and depth of the material that you see here. I really
appreciate the time he devoted to checking my code for accuracy. I also
spent a good deal of time bouncing ideas off Russ as I wrote this book, which
is a valuable aid to any author.

A number of people read all or part of this book to help me refine the
approach, test the examples, and generally provide input that every reader
wishes they could have. These unpaid volunteers helped in ways too numer-
ous to mention here. I especially appreciate the efforts of Eva Beattie, who
read the entire book and selflessly devoted herself to this project. Members
of various newsgroups and the support staff from Microsoft were instrumen-
tal in helping me overcome obstacles. A number of other people, including
Tom Rider and Chellingi Prasad, helped me in ways too numerous to men-
tion. I’d love to thank by name each person who wrote me with an idea, but
there are simply too many to name.

Finally, I would like to thank Kyle Looper, Nicole Sholly, Rebecca Whitney,
and the rest of the editorial and production staff for their assistance in bring-
ing this book to print. It’s always nice to work with such a great group of
professionals.

01_046500 ffirs.qxp 12/5/06 5:32 PM Page v

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Nicole Sholly

Acquisitions Editor: Kyle Looper

Copy Editor: Rebecca Whitney

Technical Editor: Russ Mullen

Editorial Manager: Kevin Kirschner

Media Development Specialists: Angela Denny,
Kate Jenkins, Steven Kudirka, Kit Malone

Media Project Supervisor: Laura Moss

Media Development Manager:
Laura VanWinkle

Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Adrienne Martinez

Layout and Graphics: Carl Byers,
Stephanie D. Jumper, Barbara Moore,
Barry Offringa, Heather Ryan,
Ronald Terry

Proofreaders: Susan Moritz, Dwight Ramsey,
Techbooks

Indexer: Techbooks

Anniversary Logo Design: Richard Pacifico

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_046500 ffirs.qxp 12/5/06 5:32 PM Page vi

www.dummies.com

Contents at a Glance
Introduction ...1

Part I: An Overview of VBA ...7
Chapter 1: Getting to Know VBA ..9
Chapter 2: Your First VBA Program ...33

Part II: Learning the Ropes ...49
Chapter 3: Writing Structured VBA Programs ..51
Chapter 4: Storing and Modifying Information ...79
Chapter 5: Creating Structured Programs...111
Chapter 6: Trapping Errors and Squashing Bugs ...133
Chapter 7: Interacting with the User..155

Part III: Expanding Your VBA Horizons.......................179
Chapter 8: Object-Oriented Programming ..181
Chapter 9: Working with Arrays and Collections ...205
Chapter 10: Working with Disk Files ..229
Chapter 11: VBA Programming with XML ...239

Part IV: Programming for Applications255
Chapter 12: VBA Programming in Office ...257
Chapter 13: VBA Programming in Word ..277
Chapter 14: VBA Programming in Excel ..305
Chapter 15: VBA Programming in Access ...329
Chapter 16: Applications that Work Together ..355

Part V: The Part of Tens ..379
Chapter 17: Ten Kinds of VBA Resources..381
Chapter 18: Ten Ways to Update Your Old VBA Code Quickly389

On the Web
Bonus Chapter 1: VBA Programming in FrontPage ...BC1
Bonus Chapter 2: VBA Programming in Visio ..BC25
Bonus Chapter 3: Ten Really Cool Things You Can Do with VBA..........................BC43

Index ...397

02_046500 ftoc.qxp 12/5/06 5:32 PM Page vii

02_046500 ftoc.qxp 12/5/06 5:32 PM Page viii

Table of Contents
Introduction..1

About This Book...1
Conventions Used in This Book ...2
What You Should Read ..2
What You Don’t Have to Read ..3
Foolish Assumptions ...3
How This Book Is Organized...3

Part I: An Overview of VBA ...4
Part II: Learning the Ropes..4
Part III: Expanding Your VBA Horizons..4
Part IV: Programming for Applications..5
Part V: The Part of Tens...5
The accompanying Web site ...5

Icons Used in This Book..6
Where to Go from Here..6

Part I: An Overview of VBA..7

Chapter 1: Getting to Know VBA .9
Batteries Included — VBA Comes with Office..10
VBA: It’s Not Just for Programmers ...12

Automating documents ...12
Customizing an application’s interface ...12
Performing calculations ..13
Getting stuff from a database..13
Adding new application features..14
Making special tools ..14
Having things your way ...14

Other Products Use VBA, Too ..15
A Room with a View ...15

Looking at the Integrated Development Environment (IDE)16
Looking at the VBA Toolbox ...17
Looking at objects ..18

Starting the Visual Basic Editor..18
Word 2007, Excel 2007, and PowerPoint 2007...................................19
Access 2007 ...19
OneNote 2007, Publisher 2007, Visio 2007, Project 2007,

and all older versions of Office ...19
Security under Vista...19

02_046500 ftoc.qxp 12/5/06 5:32 PM Page ix

Setting macro security for Word 2007, Excel 2007,
PowerPoint 2007, and Access 2007 ..20

Setting macro security for OneNote 2007, Publisher 2007,
Visio 2007, Project 2007, and all older versions of Office............21

Using Project Explorer...21
Using the Properties window..23
Using the Code window ...25
Using the Immediate window..27
Using Object Browser ..29

Chapter 2: Your First VBA Program .33
Deciding What to Do..34
Steps to Create a VBA Program..35

Step 1: Design the program ...35
Step 2: Implement the design..36
Step 3: Test, test, test...38
Step 4: Swat the bugs ...39

Four Ways to Run Your Program..40
Using the Macro dialog box ..40
Using the quick-launch methods..42
Accessing the program from other VBA code45
Executing the VBA program automatically46

Using Help to Your Advantage — Stealing Microsoft’s Code....................47

Part II: Learning the Ropes ..49

Chapter 3: Writing Structured VBA Programs .51
Parts of a Program ...52

Defining the parts of a program..52
Understanding the VBA programming blocks53
Using the Macro Recorder...54
Using Subs ...60
Using Functions ..61
Modifying the project settings..61
Defining compiler options...65

Taking the Lego Approach ..66
Creating an application plan ...67
Defining the project..68
Adding a module...69
Designing procedures ..70
Writing statements ...70

Writing Your First Sub..71
Writing Your First Function...73

VBA For Dummies, 5th Edition x

02_046500 ftoc.qxp 12/5/06 5:32 PM Page x

Getting the Scoop on Scope..75
Understanding the purpose of scope ..75
Defining the effects of scope...76

Creating Readable Code ..77
Telling Others about Your Code...77

Writing basic comments..78
Knowing when to use comments ...78
Understanding how to create a good comment78

Chapter 4: Storing and Modifying Information .79
Understanding Variables and Constants...80

Making the declaration..80
Knowing which storage type to use...81
Defining scope ..83

Defining the Data Types ..83
Using strings for text..84
Using numbers for calculations..92
Using Boolean values to make decisions ..98
Using scientific values for math calculations99
Using currency values for money calculations100
Using date and time values ...101
Working with variant data ...103
Presenting data in a pleasing format ...104

Working with Operators ..106
Applying What You Know to Design an Excel Report..............................107

Chapter 5: Creating Structured Programs .111
Exercising Control with Structures..111
Making a Decision with the If...Then Statement.......................................112

Using the If...Then statement ..113
Using the If...Then...Else statement..115
Using the If...Then...ElseIf statement..117
Using the IIf function..119

Making a Choice by Using the Select Case Statement.............................120
Using the Select Case statement ..120
Using the Case Else clause ..123

Performing a Task More than Once by Using Loops124
Using the Do While...Loop statement ..124
Using the Do...Loop While statement ..126
Using the Do Until...Loop statement ..126
Using the Do...Loop Until statement ..126
Using the For...Next statement..127
Using the For Each...Next statement..129

Redirecting the Flow by Using GoTo ...130
Using the GoTo statement correctly ..130
Avoiding misuse of the GoTo statement..131

xiTable of Contents

02_046500 ftoc.qxp 12/5/06 5:32 PM Page xi

Chapter 6: Trapping Errors and Squashing Bugs 133
Knowing the Enemy ...134

Understanding syntax errors ..134
Understanding compile errors..135
Understanding run-time errors...136
Understanding semantic errors..137

Prevention Is Better than a Cure..138
Avoiding run-time errors ...139
Recovering from an error ..140
Understanding error handlers ..143
Writing your own error-handling code ..144
Reporting errors ...146

Saving and Restoring Code ...147
Exporting a module from a program..147
Importing a module in a program ..147

Time for a Bug Hunt...148
Executing a break ...148
Taking individual steps..149
Viewing the data tips ...149
Using the Immediate window to your advantage...........................150

Using the Locals Window..151
Using the Watches Window ..152

Adding a new watch expression...153
Using the Add Watch window...153

Chapter 7: Interacting with the User .155
Understanding Forms ..155

Using forms creatively ...156
Designing a form for your application...156
Considering the form layout ...157

Using the Basic Controls ...158
Adding controls to the form..159
Understanding the two parts of a form ...160
Using the Label control to display text ...160
Getting user input with text boxes...161
Executing tasks with command buttons ...163
Saying yes or no with check boxes and toggle buttons165
Making choices with option buttons and frames...........................167
Choosing options with list boxes and combo boxes170
Adding controls to the Toolbox..172

Using the Forms You Create ...173
Modifying the form and control properties173
Making your form pretty ...174
Creating a connection between forms and modules175
Validating user input ..175
Handling form events...176

VBA For Dummies, 5th Edition xii

02_046500 ftoc.qxp 12/5/06 5:32 PM Page xii

Part III: Expanding Your VBA Horizons179

Chapter 8: Object-Oriented Programming .181
Understanding Classes ..181

Understanding object-oriented programming concepts...............182
Understanding properties, methods, and events183
Defining classes ..183
Considering class types...184
Using classes to improve your applications185

Designing a Basic Class ...185
Defining properties ..186
Defining methods ...191
Defining events ...193
Using enumerated constants ..194
Defining initialization ...195
Setting the Instancing property..197
Creating useful classes ..197

Using Your New Object in an Application...198
Adding Error Handling to Classes..200
Using the With Statement..202
Adding a Digital Signature to Your Creation ...203

Obtaining a digital signature...203
Creating a test digital signature..203
Applying the digital signature to a project......................................204

Chapter 9: Working with Arrays and Collections 205
Using Arrays for Structured Storage..206

Understanding array usage ...206
Understanding the array types...208
Copying data from one array to another...211

Using Collections to Create Data Sets ...213
Understanding collection usage...213
Adding keyed data to the collection ..217
Accessing predefined collection items..219

Defining Your Own Data Types...221
Understanding user-defined data types ..221
Knowing when to create your own data type.................................222
Accessing and manipulating data ..222

Chapter 10: Working with Disk Files .229
Using Disk Storage ...230

Application configuration information..230
Data translation ..231
Data storage ..231

xiiiTable of Contents

02_046500 ftoc.qxp 12/5/06 5:32 PM Page xiii

Working with Settings..232
Writing an INI file ..232
Reading an INI file...235

Chapter 11: VBA Programming with XML .239
Comparing WordML with Saved XML..240
Manipulating XML Data ...243

Writing the data to disk ...243
Defining a schema ..243
Defining XSD to worksheet linkage ..245
Exporting the data to disk...246
Importing the data from disk ..247

Creating a Simple Word XML Document ...247
Changing the Face of XML with XSLT ..249

Saving your Word document by using XSLT250
Automating the Word XML process ...252

Part IV: Programming for Applications........................255

Chapter 12: VBA Programming in Office .257
Working with the User Environment..257

Beneficial changes that you can make...258
Problems that you should consider...259

Manipulating Toolbars and Menus ..260
Displaying or hiding toolbars and menus261
Modifying the toolbar or menu content ..263
Adding and removing toolbars and menus.....................................265

Working with the New Ribbon Interface ...266
Understanding the application file content267
Obtaining and using the Office 2007 Custom UI Editor267
Adding a tab, group, and button ..269
Performing tasks when the Ribbon loads271
Modifying existing tabs..272

Chapter 13: VBA Programming in Word .277
Understanding the Word-Related Objects ..278

Using the Documents collection...278
Using the Templates collection ..281
Using the Windows collection ..283

Accessing the Word Document ..286
Using the Registry with VBA...289

Overcoming UAC problems in Vista...289
Accessing any Registry locations in Office290

VBA For Dummies, 5th Edition xiv

02_046500 ftoc.qxp 12/5/06 5:32 PM Page xiv

Selecting Objects in a Word Document ...291
Understanding object connectivity..291
Working with embedded objects by using the

InlineShape collection..292
Manipulating Text ..295
Working with Envelopes and Labels..299

Designing the envelope and label form ...300
Printing envelopes ...301
Printing labels ...302

Chapter 14: VBA Programming in Excel .305
Understanding the Excel-Related Objects ..306

Using the Workbooks collection...306
Using the Sheets collection...308
Using the Charts collection...314
Using the Windows collection ..319

Selecting Objects within Excel ...321
Developing Custom Functions in Excel ...324

Performing data conversion ...325
Defining math calculations..326
Adding comments to your functions ...326

Chapter 15: VBA Programming in Access .329
Understanding the Access-Related Objects ...331

Understanding Access and sub-procedure use331
Using the Application object effectively ...332
Defining your work area with the Workspaces collection.............334
Working with the DBEngine object...336
Using the CurrentDB and related objects..341
Understanding the Database objects...344
Accessing special commands with the DoCmd object..................345

Understanding SQL: A Quick Overview...347
Creating a SQL query the easy way..347
Using the SQL query ..349

Adding Form-Related Applications ..351
Creating Automatic Applications ...354

Chapter 16: Applications that Work Together 355
Understanding Why You Should Work with

More than One Application ...356
Starting and Stopping External Applications ...357

Deciding how to perform the task..357
Creating the Win32 API calls ...358
Encapsulating the process ..362
Calling the AccessExternalProgram function364

xvTable of Contents

02_046500 ftoc.qxp 12/5/06 5:32 PM Page xv

Processing Outlook E-Mail Messages with Word365
Sending E-Mail Messages with Outlook...368
Sending Notes from Word to Excel ..374

Part V: The Part of Tens ...379

Chapter 17: Ten Kinds of VBA Resources .381
Using Magazines and Periodicals...382

Traditional paper magazines and periodicals382
Free electronic newsletters...382

Using RSS to Obtain the Latest Information ...383
Finding Interesting Newsgroups and List Servers384

Microsoft-specific newsgroups...384
Third-party newsgroups..385
List servers that you access through e-mail and Web sites..........386

Locating Just the Right Code..386
Getting Tools to Make Programming Easier ...387
Downloading ActiveX Controls and Third-Party Components...............388
Using the Author As a Resource ..388

Chapter 18: Ten Ways to Update Your Old VBA Code Quickly389
Debugging Your Code Before Making Changes ..390
Using Search-and-Replace to Your Advantage..390
Asking Others About a Fix ..391

Finding fixes that Microsoft provides ..392
Finding third-party solutions to problems......................................393

Maintaining a Log...393
Grabbing Helpful Code from VBA Help ...394
Getting Your Users to Help You..394
Creating an Update Plan..395
Learning When That Old Code Won’t Update ..395
Using the Code in This Book for Updates ...396

On the Web

Bonus Chapter 1: VBA Programming in FrontPage BC1

Bonus Chapter 2: VBA Programming in Visio BC25

Bonus Chapter 3: Ten Really Cool Things
You Can Do with VBA .BC43

Index..397

VBA For Dummies, 5th Edition xvi

02_046500 ftoc.qxp 12/5/06 5:32 PM Page xvi

Introduction

Welcome to your first look at Visual Basic for Applications (VBA)!
You might think that VBA is a secret code used by advanced com-

puter users to intimidate the rest of us. Nothing could be further from the
truth. VBA is all about doing things your way. When you want an application
to perform a task in a certain way, use VBA to extend it. VBA makes you the
boss. After you discover the wonders of VBA, you can customize a number
of applications to make them work the way you want them to work.

VBA is a tool that empowers you to perform tasks you never thought possible
in a fraction of the time that it takes to perform the task by hand. For exam-
ple, you can add new toolbars, create custom reports, and perform special
kinds of data analysis. When you write a VBA program, you become the
master of your environment — someone who gets the job done quickly.

Over 500 readers of the previous edition of this book sent me e-mail, many of
whom told me about their current projects. After reviewing those messages
for this edition of the book, I can truly say that VBA is an amazing tool because
you’re doing amazing things with it. After seeing everything that people are
doing with VBA, it’s easy to say that this is the tool for everyone!

About This Book
VBA For Dummies, 5th Edition, is a reference book. You don’t have to read it
in any particular order, and you can skip anything that you don’t find inter-
esting. Readers who have VBA programming experience can skip to the
advanced examples at the end of the book or explore new language elements
as needed. That said, I did put the book into a logical order. When you begin
at Chapter 1 and progress through the book chapter by chapter, you acquire
a complete view of VBA, even if you’ve never used it.

This book contains many examples from my own library. I write VBA pro-
grams for all my applications that support it because I know that using VBA
can save me time and effort. In addition, I write VBA programs for some of my
consulting clients. This real-world approach to using VBA will help you get
started quickly.

Some of the new examples are the result of my experiments with the new
Ribbon interface. You’ll find that the Ribbon adds a new dimension to work-
ing with VBA and that it breaks some of your older code. Fortunately, you’ll
find many of the answers for fixing your applications in this book.

03_046500 intro.qxp 12/5/06 5:32 PM Page 1

Conventions Used in This Book
I always try to show you the fastest way to accomplish any task. In many cases,
this means using a menu command, such as Tools➪Macro➪Visual Basic Editor.
When you’re working with the Ribbon, I’ll tell you which tab to access first
and then which feature to use on that tab.

I’m assuming that you’ve worked with Windows long enough to know how
the keyboard and mouse work. You should also know how to use menus and
other basic Windows features.

Whenever possible, I use shortcut keys to help you access a command faster.
For example, you can also start the VBA Integrated Development Environment
(IDE) by pressing Alt+F11.

This book also uses special type to emphasize some information. For exam-
ple, entries that you need to type appear in bold. All code, Web site URLs,
and onscreen messages appear in monofont type. Whenever I define a new
word, you’ll see that word in italics.

Because you use two applications when working with VBA, I always tell
you to move from one application to the next. When a chapter begins, I
assume that you’re in the VBA IDE unless I tell you otherwise. All the com-
mands in that chapter are for the VBA IDE until I specifically tell you to move
to the host application. I also specifically tell you when it’s time to move
back to the VBA IDE.

What You Should Read
What you read depends on your level of experience — you need to know
how to use at least one Microsoft Office application. It also helps to know
something about VBA before you tackle the programs at the end of the book.
With this in mind, you probably want to read Chapters 1 through 7 in order
before you begin discovering other parts of the book.

You might have used VBA before and want to know only what you can add
to your knowledge. The programs become progressively more complex
and application specific as the book progresses. When you want to find out
how to work with Word only, feel free to select Chapter 13. You might find
Chapter 17 a good place to start because, in it, I tell you about interesting
VBA resources that you might not know about. Of course, all the content in
this book is great, and I hope that you eventually read it all.

2 VBA For Dummies, 5th Edition

03_046500 intro.qxp 12/5/06 5:32 PM Page 2

Because Office 2007 is so different from previous versions, I provide a special
chapter to address those changes. Although you’ll find tips for working with the
Ribbon interface spread throughout the book, anyone moving from toolbars
and menus to the Ribbon will want to pay particular attention to Chapter 12.

What You Don’t Have to Read
Most chapters contain some advanced material that interests only some
readers. When you see one of these specialized topics, such as writing infor-
mation to the Windows Registry, feel free to skip it. You can also skip any
material marked with a Technical Stuff icon. This material is helpful, but you
don’t have to know it in order to use VBA. I include this material because I
find it helpful in my programming efforts and hope that you will, too.

Foolish Assumptions
You might find it difficult to believe that I have assumed anything about you
(after all, I haven’t even met you yet!), but I have. Although most assumptions
are indeed foolish, I made these assumptions to provide a starting point for
the book.

I assume that you’ve worked with Windows long enough to know how the
keyboard and mouse work and how to use menus and other basic Windows
features. It’s essential to know how to use at least one Office application.
If you’re working with a Ribbon example, I assume that you have spent
time discovering how to use the Ribbon in a new Office 2007 application.
Some portions of the book work with Web pages, and others use eXtensible
Markup Language (XML); you need to know at least a little about these tech-
nologies to use those sections. You don’t have to be an expert in any of these
areas, but more knowledge is better.

How This Book Is Organized
This book contains several parts. Each part demonstrates a particular VBA
feature and helps you build your VBA knowledge. In each chapter, I discuss a
particular topic and include example programs that you can use to discover
more about VBA on your own. You can find the source code for this book,
along with Bonus Chapters, on the Dummies.com Web site at http://
www.dummies.com/go/vbafd5e.

3Introduction

03_046500 intro.qxp 12/5/06 5:32 PM Page 3

Part I: An Overview of VBA
The main purpose of this part of the book is to help you use the VBA IDE to
write programs. In Chapter 1, I tell you about the various windows and other
physical features of the VBA IDE. In Chapter 2, I tell you about the parts of a
VBA program and show you various methods for running any VBA program
you create. You also gain some experience with the Microsoft help files in
this chapter.

Part II: Learning the Ropes
The main purpose of this part of the book is to help you understand the VBA
language. VBA uses statements (commands) to perform work. Just like in any
language, parts of these statements are very much like human language.
In Chapter 3, I show you how to create various kinds of VBA program contain-
ers. In Chapter 4, you see how to store and manage data. Controlling a program
is important (you don’t want it to run amok), so in Chapter 5 you see exam-
ples of how to perform this task. We all know the results of buggy programs,
so in Chapter 6 I show you how to avoid this problem. Finally, in Chapter 7,
I demonstrate methods of interacting with the user.

Part III: Expanding Your VBA Horizons
The main purpose of this part of the book is to help you build your VBA
knowledge. In Chapter 8, you see how to work with objects — an essential
skill when you discover the benefits of writing programs to create documents
automatically. In Chapter 9, I demonstrate how to use arrays and collections,
which are special kinds of data storage containers that VBA uses. Storing
information on disk is very important, so read Chapter 10 to discover how
to access the disk drive. Microsoft is touting XML as the next best thing for
Office users; see Chapter 11 for how to use XML files to your benefit.

Part IV: Programming for Applications
The main purpose of this part of the book is to help you become productive
by using VBA with a particular application. However, before you begin read-
ing about a specific Office application, in Chapter 12 I show you how to make

4 VBA For Dummies, 5th Edition

03_046500 intro.qxp 12/5/06 5:32 PM Page 4

some Office-specific changes by using VBA code. Make sure that you read
Chapter 12 to understand how the Ribbon interface will affect your existing
applications.

In this part, I discuss the three main Office applications: Word (Chapter 13),
Excel (Chapter 14), and Access (Chapter 15). You probably don’t use just one
application, so in Chapter 16 I extend the idea of individual application pro-
gramming into working with multiple applications by using a single program.

Part V: The Part of Tens
We all accumulate cool tips and techniques that other people find helpful.
Chapter 17 tells about ten kinds of resources that you can use to make VBA
better, easier to use, or simply more productive. Chapter 18 describes ten
ways to upgrade your existing VBA code quickly.

The accompanying Web site
This book contains a lot of code, and you might not want to type it. Fortunately,
you can find the source code for this book on the Dummies.com Web site at
http://www.dummies.com/go/vbafd5e. The source code is organized by
chapter, and I always tell you about the example files in the text. The best way
to work with a chapter is to download all the source code for it at one time.

The Web site also has three Bonus Chapters: one on FrontPage, a second on
Visio, and a third on ten cool things that you can do with VBA. The FrontPage
chapter describes how you can use VBA to make FrontPage easier to use.
In fact, you’ll find an application that lets you create the initial part of a
Web page automatically. Other programs show how to discover more about
FrontPage features and demonstrate how to customize those features to meet
specific needs, such as exchanging data between applications.

The Visio chapter describes how you can use VBA to automate some Visio
drawing tasks. For example, you’ll discover that you can create Visio draw-
ings significantly faster by automating required setup tasks that you can’t
easily perform using a stencil or template. This Bonus Chapter relies on Visio
2007. Although many of the macros will work with older versions of Visio,
you’ll still want to use Visio 2007 to obtain the maximum benefit from this
Bonus Chapter.

5Introduction

03_046500 intro.qxp 12/5/06 5:32 PM Page 5

Icons Used in This Book
The tips in this book are timesaving techniques or pointers to resources that
you should try in order to get the maximum benefit from VBA.

I don’t want to sound like an angry parent or some kind of maniac, but you
should avoid doing anything marked with a Warning icon. Otherwise, you
could find that your program melts down and takes your data with it.

Whenever you see this icon, think advanced tip or technique. Skip these bits
of information whenever you like.

This material usually contains an essential process or bit of material that you
must know to write VBA programs successfully.

You’ll see this icon whenever the book has Web content to present — the
source code and Bonus Chapters that come with this book. You’ll definitely
want to download the Web content to get the most from this book and reduce
the work required to use the book.

This icon helps you locate features that Microsoft has added to VBA as part of
Office 2007. Use this icon to look for upgrade issues as well. Anyone who has
existing VBA applications that they want to upgrade should look for this icon.

Where to Go from Here
It’s time to start your VBA adventure! I recommend that anyone who has only
a passing knowledge of VBA go right to Chapter 1. This chapter contains
essential, get-started information that you need to write your first program.

Those who already know VBA might want to skip to Part IV to sink their teeth
into some complex examples. You might want to check out the resources in
Part V if you find your current VBA experience lacking. The VBA refresher
course begins in Part II and ends in Part III. Start with the part that best suits
your needs.

6 VBA For Dummies, 5th Edition

03_046500 intro.qxp 12/5/06 5:32 PM Page 6

Part I
An Overview

of VBA

04_046500 pt01.qxp 12/5/06 5:33 PM Page 7

In this part . . .
You might wonder whether you need to visit this part

of the book. This section of the book contains essen-
tial information that you need to use VBA effectively. In
Chapter 1, I introduce all the windows and other graphical
elements of the VBA Integrated Development Environment
(IDE). In addition, you create your first program in this
chapter. In Chapter 2, I describe the steps for creating a
program and show you four methods to run it. This chap-
ter contains the first permanent program for the book. The
most important idea to take away from these initial chap-
ters is that you can write programs by using VBA — it’s
not something that only advanced computer users can do.

04_046500 pt01.qxp 12/5/06 5:33 PM Page 8

Chapter 1

Getting to Know VBA
In This Chapter
� Finding uses for Visual Basic for Applications (VBA) programs

� Discovering where VBA appears other than in Microsoft Office

� Using the VBA Integrated Development Environment (IDE)

� Writing a one-line program

Have you ever talked with someone about an application that you’re
using and said that you thought the vendor who created the applica-

tion was clueless? The application is just too hard or too time consuming to
use because the features are difficult to access. In a few cases, I’ll bet you saw
a feature that almost does what you want it to do . . . but not quite. Something
that almost works is frustrating to use, and many of us have wished for a
solution to the problem.

At some point, someone at Microsoft made something that fixes all these
problems and more: Visual Basic for Applications (VBA). VBA is a simple pro-
gramming language. By using VBA, you can have things your way — you can
customize your applications to meet your needs and expectations. No longer
are you a slave to what the vendors want. If you use an application that sup-
ports VBA, you can add new features — such as automated letter writing and
special equation handling — to change things around to the way that you
want. In short, it becomes your custom application and not something that
the vendor thinks that you want.

VBA works with many applications, including the Microsoft Office applica-
tions. You use VBA to write programs to accomplish tasks automatically or
change the application environment. Many people think that they can’t write
even simple programs. This book helps you understand that anyone can
write a program. In fact, you write your first program in this chapter. Of
course, first you find out the secret handshake for starting the VBA Editor.
Using the VBA editor is just a little different from the word processors you’ve
used in the past. Along the way, you see some interesting uses for VBA and
just how many applications you can modify by using it.

05_046500 ch01.qxp 12/5/06 5:33 PM Page 9

Batteries Included — VBA Comes
with Office

A good many people have written to ask me whether VBA really does come
with Office. The answer is yes. All Office products support VBA, and you can
use VBA to perform a wealth of tasks, many of which will seem impossible
now. Older versions of Office provide a convenient method for accessing the
VBA editor. Simply use the Tools➪Macro➪Visual Basic Editor command to
display the VBA editor where you type your VBA commands and store them
for later use.

One of the reasons for this section is that Microsoft no longer feels that the
average user is smart enough to work with VBA. I find it amazing that the
company keeps dumbing down its products and making them more difficult
to use in the process, but it does. Newer versions of Office hide VBA from
view. If you’re using a product such as Word 2007, you actually need to look
for VBA before you can use it. Don’t bother to scour the new Ribbon interface
because you won’t find it there. The following steps help you reveal the VBA
hidden in your copies of Word, Excel, and PowerPoint.

1. Choose the Word, Excel, or PowerPoint button and click Word
Options, Excel Options, or PowerPoint Options.

You see the Word Options (see Figure 1-1), Excel Options, or PowerPoint
Options dialog box. All three dialog boxes are similar and have the VBA
option in the same place.

2. Check Show Developer Tab in the Ribbon.

3. Click OK.

Word, Excel, or PowerPoint displays the Developer tab, shown in
Figure 1-2, which contains VBA options described in this book.

Depending on which Office 2007 product you use, you’ll find the VBA options
in different places. You already know that Word, Excel, and PowerPoint place
these buttons on the Developer tab of the Ribbon. When working with
Access, you’ll find the VBA buttons located on the Database Tools tab of the
Ribbon. The actual buttons look the same as those shown in Figure 1-2. Even
though Outlook does use the new Ribbon interface, you’ll find VBA on the
Tools➪Macro menu, just as you always have.

Another way in which the Ribbon changes things is that you can no longer
right-click a toolbar (because the toolbars don’t exist) and choose Customize
to add new menu entries. The Ribbon doesn’t allow any changes without some
programming on your part. Chapter 12 describes the process you use to add
new buttons to the Ribbon. Any toolbars you created programmatically with
VBA in the past now appear on the Add-Ins tab of the Ribbon, so even program-
matically created toolbars have lost some of their effectiveness in Office 2007.

10 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 10

Interestingly enough, Microsoft didn’t upgrade OneNote, Publisher, Visio, and
Project to use the new Ribbon interface. Consequently, you access VBA using
the same method you always have on the Tools➪Macro menu. In addition,
you’ll find that these products lack many of the new features that Microsoft is
touting for its core Office products.

Figure 1-2:
The

Developer
tab of the

Ribbon
contains the
features you
used to find
in the Tools

menu.

Figure 1-1:
The Word

Options
dialog box
helps you
configure
Word for
specific

needs.

11Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 11

VBA: It’s Not Just for Programmers
One of the things that you should think about is why you want to use VBA. I
know that some of you are probably just interested in using VBA, but most of
you need a good reason for taking time out of your busy schedules. It’s impor-
tant to think about what tasks you can use VBA to do. It won’t take out the
garbage or fold your laundry, but you can use it to write some types of letters
automatically. With this in mind, you find out about a few things in this section
that I’ve done with VBA. Knowing you, I’m sure you’ll come up with more.

Automating documents
I hate writing letters, especially if the letter contains most of the same infor-
mation that I wrote for the last letter. Sometimes you can automate letters by
using mail merge, but that generally doesn’t work too well for individualized
letters. In these situations, I set up a form that contains the common informa-
tion that I include in some letters but not in others. I check off the items that I
need for the current letter, and VBA automatically writes it for me. You can
see my automated letter secrets in Chapter 13.

Document automation isn’t limited to word processing. You can also auto-
mate a spreadsheet. I have several programs that I’ve created for Excel. For
example, whenever I get a new client for my business, I click a button, and
VBA creates all the required client entries in Excel for me. Because Excel per-
forms the task the same way every time, I can’t forget anything and each
client receives the same level of high-quality service. You can see techniques
for creating automated Excel worksheets in Chapter 14.

If you have to move the data that you create in your word processor or
spreadsheet to the Internet, VBA can help make the process nearly auto-
matic. Chapter 16 contains everything that you need to know to move infor-
mation from one Microsoft Office product to another without the usual
modification and reformatting. In Bonus Chapter 1 on the Web site (at
http://www.dummies.com/go/vbafd5e), you see how to create auto-
mated documents in FrontPage. Bonus Chapter 2 shows how to work with
Visio. The Visio applications focus on automating drawing tasks, but you’ll
see other examples as well.

Customizing an application’s interface
Sometimes an application feature just bugs you. You could turn it off if it bugs
you that much, but that might not be an option if you need that function in

12 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 12

your work. Use VBA to create a new version of the feature with everything
that you need and nothing that you don’t. For example, I never liked how
Word performs a word count, so I created my own program to perform the
task. Chapter 12 shows you some of my secrets for taming unruly interfaces.

Changing an application interface to your liking is easy. You can create a cus-
tomized menu system or toolbars. You can move some interface elements out
to a form or get rid of them completely. In addition, any interface change that
you want to make is probably doable by using VBA. In addition, you don’t
necessarily have to use just one interface. You can create programs to change
the interface as needed for the task that you’re performing. For example, I
have a program to switch between book, article, and client document-writing
modes. Chapter 7 shows a number of interesting ways to use forms.

Performing calculations
One of the most common uses of special applications is to perform complex
calculations. You can create many types of equations by using any of the
Microsoft Office products. Sometimes, however, you need to change the data
before you can use it or perform the calculation differently depending on the
value of one or more inputs. Whenever a calculation becomes too compli-
cated for a simple equation, use VBA to simplify things by solving the calcula-
tion problem using small steps rather than one big step. Chapters 4 and 14
show a number of ways to work with calculations.

Sometimes the number that you create using a calculation doesn’t mean
much — it’s just a number until someone makes a decision. Some decisions
are easy to make yet repetitive. Chapter 5 shows the methods that your appli-
cation can use to make decisions automatically with VBA. Smart applications
save you more time for playing that game of Solitaire.

Getting stuff from a database
I use Access to store a variety of information — everything from my movie
collection to a list of clients that I work with regularly. You use databases to
store information, although that doesn’t help much if you can’t get it out. Use
VBA to get the information from your database in the form that you need it.
For example, you can display that information on a form so that you can
review it, or use that same data to create a report.

I love databases because they provide the most flexible method for storing
repetitive information, such as a client list or any other kind of list that you
can imagine. Don’t assume that databases are so complicated that you’ll

13Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 13

never understand how they work. Most productivity databases are actually
quite simple to use. All you need is a little easily understood VBA code to
gain access to them. Chapter 15 shows you everything you need to know to
work with productivity databases.

VBA even includes ways of creating temporary databases for those lists that
you need only today. This can save you a lot of time and still force the com-
puter to do the work for you. You can see these alternatives in Chapter 9.

Adding new application features
With all the features that vendors have stuffed into applications, you’d think
that every possible need would be satisfied. However, I’m convinced that ven-
dors never actually use the applications that they build. (A nifty new screen
saver for Windows is not my idea of a necessary feature.) However, the window-
sizing program that I really needed came from a third-party vendor.

Most of this book covers adding new application features. Discover how to
add specific features by reading specific chapters. (See the preceding sec-
tions to find where.) If you read this book from cover to cover, you’ll be able
to use VBA to add just about any feature to any product that supports VBA.
Your friends will be impressed and think that you’re a genius. Maybe your
boss will become convinced that you’re the most valuable employee in the
world and give you a large bonus. Reading this book could make you famous,
but more importantly, it will make you less frustrated.

Making special tools
If you have to send information to other people who might not have Microsoft
Office and they need the information formatted, you might have to work a
long time to find a solution. Chapters 10 and 11 contain two methods for stor-
ing information in alternative formats. Chapter 10 uses the trusty text file,
and Chapter 11 relies on eXtensible Markup Language (XML) files.

Having things your way
Sometimes I’d just like to scream. Microsoft seems to think that it knows pre-
cisely what I want — based on what people tell it. Who these other people
are remains a mystery, but I wouldn’t trust the person in the dark suit sitting
next to you.

Fortunately, you can use VBA to help customize Microsoft’s well-intentioned
application features. If Word decides that it absolutely must display the infor-
mation you don’t want on startup, store your settings to disk and restore

14 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 14

them every time you launch Word. The use of automatically executing pro-
grams (see Chapter 2) can help you have things your own way. Chapter 10
shows you how to store your settings in text format, and Chapter 11 shows
you how to store them in XML format.

Other Products Use VBA, Too
Don’t assume that VBA is good only if you’re using Microsoft Office or a few
other Microsoft products. With VBA at your command, you can control a lot
of different applications. Go to the Microsoft site http://msdn.microsoft.
com/vba/companies/company.asp to see a list of companies that have
licensed VBA. You’ll be amazed at the number of applications that you can
work with using VBA. Here are a few of my favorites:

� Corel products (http://www.corel.com/): Corel makes WordPerfect
and Draw. WordPerfect is a word processing program that many legal
offices still use. One of my first professional writing jobs required the
use of WordPerfect. CorelDRAW, a drawing program that many profes-
sionals enjoy using, supports a wealth of features. All the line art in this
book was originally drawn using CorelDRAW, and all my drawing setups
are performed automatically by using VBA programs.

� Micrografx iGrafx series (http://www.micrografx.com/): This prod-
uct can help you create flowcharts or organizational charts. Unlike a lot
of drawing tasks, both flowcharts and organizational charts are
extremely repetitive, making them a perfect place to use VBA.

� IMSI TurboCad (http://www.turbocad.com/): I love to work with
wood, which means that I have to draw plans for new projects from time
to time. TurboCad is the drawing program that I prefer to use. It’s rela-
tively inexpensive, and the VBA programs I’ve created for it automate
many of the drawing tasks, such as creating 3⁄4" boards.

VBA hasn’t been around forever. If you drag out that old, dusty copy of
WordPerfect for DOS, you’ll be disappointed because it doesn’t support VBA.
The Microsoft vendor participant list doesn’t tell you which version of a
product supports VBA for the most part, so you either have to check the
product packaging or ask the vendor.

A Room with a View
Many people approach VBA with the same enthusiasm and clarity of thought
with which the condemned person faces the gallows. When you work with an
application, you see what the developer wants you to see and not much more.
You’re in the user room — the one without a view. Approach using VBA like

15Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 15

entering a new room: You now have a room with a view — you’re the one who
sees what will happen and when.

Looking at the Integrated Development
Environment (IDE)
VBA is a visual programming environment. That is, you see how your pro-
gram will look before you run it. Its editor is very visual, using various win-
dows to make your programming experience easy and manageable. You’ll
notice slight differences in the appearance of the editor when you use it with
Vista as compared to older versions of Windows. In addition, you might notice
slight differences when using the editor with a core Office application — one
that uses the new Ribbon interface. Figure 1-3 shows what this Integrated
Development Environment (IDE) looks like when it’s opened using Excel in
Vista. No matter which Office product and version of Windows you use, the
editor has essentially the same appearance (and some small differences), the
same menu items, and the same functionality.

Standard toolbar Code window

Project Explorer window

Properties window

Figure 1-3:
The VBA
IDE is an
editor for

writing VBA
applications.

16 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 16

An IDE is an editor, just like your word processor, spreadsheet, or database
form. Just as application editors have special features that make them espe-
cially useful for working with data, an IDE is a programming editor with spe-
cial features that make it useful for writing instructions that the application
should follow. These instructions are procedural code — a set of steps.

As you can see from Figure 1-3, the VBA IDE consists of a menu system, tool-
bars, a Project Explorer window, a Properties window, and a Code window, to
start with. The IDE can show other windows when it needs to, but these are
the three windows that you see when you start VBA. Here’s a brief summary
of what each of the windows does. (The upcoming “Starting the Visual Basic
Editor” section shows how to use them.)

� Project Explorer: This window contains a list of the items in your pro-
ject, which contains all the document elements in a single file. Your appli-
cation exists within a file that appears in the Project Explorer window.

� Properties: Whenever you select an object, the Properties window tells
you about it. For example, this window tells you whether the object is
blue or whether it has words on it.

� Code: Eventually, you have to write some code to make your application
work. This window contains the special words that tell your application
what to do. Think of it as a place to write a specialized to-do list.

Looking at the VBA Toolbox
You won’t have to write code for every task in VBA. The IDE also supports
forms, just like the forms that you use to perform other tasks. In this case,
you decide what appears on the form and how the form acts when the user
works with it. To make it easier to create forms, VBA provides the Toolbox,
like the one shown in Figure 1-4, which contains controls used to create forms.

Each Toolbox button performs a unique task. For example, clicking one button
displays a text box, but clicking another displays a command button. The
form features that these buttons create are controls. Chapter 7 shows you

Figure 1-4:
Use the

VBA
Toolbox to

add controls
to forms you

create.

17Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 17

how to use all these controls, as well as how to add other controls when the
controls that the Toolbox provides don’t meet a particular need.

Looking at objects
You see the term object quite a bit while you read this book and use VBA to
create your own applications. An object used in a program is very much like
an object in real life. Programmers came up with this term to make programs
easier to understand. Read on while I use the real-world example of an apple
to explain what an object is in VBA — and to understand why objects are
such an important part of VBA and how they make things easier.

Property values are up
When you look at an apple, you can see some of its properties: The apple is
red, green, or yellow. VBA objects also have properties — for example, a
button can have a caption (the text that users see when they look at the
button). Some of the apple’s properties are hidden. You don’t know what the
apple will taste like until you bite into it. Likewise, some VBA objects have
hidden properties.

There’s a method to my madness
You can do a number of things with an apple. For example, picking an apple
from a tree is a method of interacting with the apple. Likewise, VBA objects
have methods. You can move a button from one place to another with the
Move method. Methods let the developer do something to the object.

And now, for a special event!
An apple usually changes color when it ripens. No one did anything to the
apple; it turned ripe because it reached maturity. This is an event. Likewise,
VBA objects can experience events. A user clicks a command button, and the
command button generates a Click event. As a developer, you didn’t do any-
thing to the command button. The command button decides when to gener-
ate the event. In short, events let the developer react to changing object
conditions.

Starting the Visual Basic Editor
How you start the Visual Basic Editor depends on the application that you’re
using. Newer versions of Office use a different approach than older versions.

18 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 18

In all cases, you see a Visual Basic Editor window, similar to the one shown in
Figure 1-3. This section describes each of these variations.

Word 2007, Excel 2007,
and PowerPoint 2007
Make sure that you enable the use of VBA by using the procedure in the
“Batteries Included — VBA Comes with Office” section, earlier in this chapter.
After you have the Developer tab displayed on the Ribbon, select it. Click
Visual Basic on the left side of the Developer tab (refer to Figure 1-2). You’ll
see the Visual Basic Editor.

Access 2007
Access 2007 displays the Database Tools tab of the Ribbon whenever it’s pos-
sible to use the Visual Basic Editor. Because you must have a database open
and meet certain other conditions, you won’t always see the Database Tools
tab. When you do see this tab, select it and click Visual Basic. You’ll see the
Visual Basic Editor.

OneNote 2007, Publisher 2007,
Visio 2007, Project 2007, and
all older versions of Office
If you’re using any of the products listed in the heading to this section, start
the Visual Basic Editor by choosing Tools➪Macro➪Visual Basic Editor. When
you execute this command, you’ll see the Visual Basic Editor.

Security under Vista
Vista places extra security constraints on Office products. The User Access
Control (UAC) makes it impossible to run some macros that would ordinarily
work under previous versions of Windows. Even setting the macro security
won’t help, in some cases, depending on the security policies set by the
administrator, your personal security settings, and the task the macro

19Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 19

performs. In general, you want to sign your macros before you use them
under Vista. See the “Adding a Digital Signature to Your Creation” section of
Chapter 8 for details.

Setting macro security for Word 2007,
Excel 2007, PowerPoint 2007,
and Access 2007
Office 2007 sets the security bar very high. It’s unlikely that you’ll be able to
run most of the macros in this book without changing your security settings.
The following steps help you make the required changes:

1. Select the Developer or Database Tools tab on the Ribbon.

2. Click Macro Security.

You see the Trust Center dialog box, shown in Figure 1-5.

Figure 1-5:
Use the

Trust Center
to adjust the

security
settings for
your Office

product.

20 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 20

3. Select Enable All Macros unless you plan to sign each of the macros in
this book before running them.

4. Check Trust Access to the VBA Project Object Model.

5. Click OK.

You can now run macros, but with greatly reduced security. Make sure
you change the settings back as soon as possible.

Setting macro security for OneNote 2007,
Publisher 2007, Visio 2007, Project
2007, and all older versions of Office
Depending on which version of Microsoft Office you use and how you set it
up at the beginning, the macro security feature might be set too high to allow
you to use the examples in this book. To change the macro security level, use
the following procedure.

1. Choose the Tools➪Options command.

The Microsoft Office application displays the Options dialog box.

2. Select the Security tab.

3. Click Macro Security.

The Microsoft Office application displays the Security dialog box.

4. Select the Security Level tab and choose the Low option.

5. Click OK twice to close the Security and Options dialog boxes.

Using Project Explorer
Project Explorer appears in the Project Explorer window. You use it to inter-
act with the objects that make up a project. A project is an individual file used
to hold your program, or at least pieces of it. The project resides within the
Office document that you’re using, so when you open the Office document,
you also open the project. See Chapter 3 for a description of how projects
and programs interact. Project Explorer works much like how the left pane of
Windows Explorer does. Normally, you see just the top-level objects, like the
Excel objects shown in Figure 1-6.

21Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 21

The objects listed in Project Explorer depend on the kind of application that
you’re working with. For example, if you’re working with Word, you see docu-
ments and document templates. Likewise, if you’re working with Excel, you
see worksheets and workbooks. However, no matter what kind of application
you work with, the way that you use Project Explorer is the same.

Figure 1-6 also shows some special objects. A project can contain forms,
modules, and class modules. Here’s a description of these special objects:

� Forms: Contain user interface elements and help you interact with the
user. Chapter 7 shows how to work with forms.

� Modules: Contain the nonvisual code for your application. For example,
you can use a module to store a special calculation. Most of this book
contains modules.

� Class modules: Contain new objects that you want to build. You can use
a class module to create a new data type. Chapter 8 shows how to work
with objects.

To select an object so that you can see and change its properties, highlight it
in Project Explorer. To open the object so that you can modify it, double-click
the object.

Right-clicking everything
Project Explorer has a number of hidden talents, which you can find by right-
clicking objects to see what you can do with them. For example, right-click
the VBAProject (Book1) entry at the top of Figure 1-6 to see the context
menu shown in Figure 1-7.

Figure 1-6:
Use Project
Explorer to
work with

project
objects.

22 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 22

It’s amazing to see what’s hidden on this menu. Don’t worry about using all of
the menu entries now. Each of the menu entries appears at least once and
probably more often in the book. For example, Chapter 3 shows how to use
the VBAProject Properties entry. The important thing to remember now is
that most objects have context menus that you can access by right-clicking
or using the Context Menu button on your keyboard.

Working with special entries
Sometimes you see a special entry in Project Explorer. For example, when
you work with a Word document, you might see a References folder, which
contains any references that the Word document makes. Normally, it contains
a list of templates that the document relies upon for formatting.

In many cases, you can’t modify the objects in the special folders. This is the
case with the References folder used by Word document objects. The Refer-
ences folder is there for information only. To modify the referenced template,
you need to find its object in Project Explorer. In this book, I don’t discuss
special objects because you normally don’t need to work with them.

Using the Properties window
Most of the objects that you click in the VBA IDE have properties that
describe the object in some way. The earlier “Property values are up” section
of this chapter tells about properties if you haven’t worked with them before.
The following sections provide details about the Properties window (refer to
Figure 1-3).

Understanding property types
A property needs to describe the object. When you look at an object, you
naturally assume something about the information provided by a particular

Figure 1-7:
Right-click

VBA objects
to display

context
menus.

23Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 23

property. For example, when describing the color of an apple, you expect to
use red, yellow, or green. Likewise, VBA object properties have specific types.

One of the most common property types is text. The Caption property of a
form is text. The text appears at the top of the form when the user opens it.

Another common property type is a logic, or Boolean, value. For example, if a
control has a Visible property and this property is set to True, the control
appears onscreen. Set this property to False, and the control won’t appear
onscreen even though it still exists as part of the application.

Object properties can also have numeric values. For example, to describe
where to place a control onscreen, set the Top and Left properties to spe-
cific numeric values. These values tell how many pixels are between the top
and left corner of the screen and the top-left corner of the control.

In some cases, a property can display a drop-down list box from which you
can choose the correct value. Other properties display a dialog box like the
one for color, shown in Figure 1-8.

Getting help with properties
Don’t expect to memorize every property for every object that VBA applica-
tions can create. Not even the gurus can do that. To determine what a partic-
ular property will do for your application, just highlight the property and
press F1, and, in most cases, VBA displays a Help window similar to the one
shown in Figure 1-9.

The older versions of Office Help don’t include quite as many features as shown
in Figure 1-9. For example, you won’t find an option to tell Microsoft whether the
information is helpful. Notice also that the bottom of the Help window now con-
tains a status bar that tells you whether the information you’re seeing is static
or taken directly from Microsoft’s Web site. Finally, the Standard toolbar now
includes a button that looks like a thumbtack. When placed in one position, the
Help window always remains on top so that you can see it no matter what you
might be doing. When placed in the second position, the Help window hides
(like any other window) when you cover it with another window.

Figure 1-8:
Some

properties
display a

dialog box
to select the

correct
value.

24 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 24

Such help screens tell you about the property and how it’s used as well as
provide you with links for additional information. The additional information
is especially important when you start changing the property values in your
application code. For example, click the Example link, and the help system
shows how to write code that uses that property. (You don’t have to click the
Example link when working with newer versions of Office — the example
appears at the bottom of the help screen.)

Click the See Also link on help screens for more information about a topic,
such as info about objects, properties, methods, and events associated with
the topic. In some cases, you also get recommended ways to work with an
object, property, method, or event. (You don’t have to click the See Also link
when working with newer versions of Office — the additional information
links appear in the middle or bottom of the help screen.)

Using the Code window
The Code window is where you write your application code. It works like any
other editor that you’ve used, except that you type in a special language:
VBA. Figure 1-10 shows a typical example of a Code window with some code
loaded. Notice that the Project Explorer window and the Properties window
are gone — you can display them again by using the View➪Project Explorer

Figure 1-9:
Help

documents
the

properties
that VBA
supports.

25Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 25

and View➪Properties Window commands. As an alternative, press Ctrl+R to
display Project Explorer or F4 to display the Properties window.

Opening an existing Code window
Sometimes you won’t be able to complete an application and need to work on
it later. To open an existing Code window, find the module that you want to
open in Project Explorer. Double-click the module entry, and the IDE displays
the code within it with your code loaded.

The Code window also appears when you perform other tasks. For example,
if you double-click one of the controls on a form, the Code window appears
so that you can add code to the default event handler. VBA calls the event
handler (special code that responds to the event) every time that the speci-
fied event occurs.

Creating a new Code window
When you start a new module within an existing document or template, open
a new Code window by using either the Insert➪Module or Insert➪Class
Module command. After you save this module or class module, it appears in
Project Explorer (refer to Figure 1-3) with the other modules and class mod-
ules in your project.

Figure 1-10:
Use the

Code
window to

modify your
program.

26 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 26

Typing text in the Code window
When you type code, VBA checks what you type. If you make a major error,
such as typing a word that VBA doesn’t understand, you see an error mes-
sage explaining what you did wrong (see Figure 1-11). If you don’t understand
the error, click the Help button for additional information.

While you type the code for your application, VBA also formats it. For exam-
ple, if you type a keyword in lowercase letters, VBA changes it so it appears
as shown in the help file. Hint: Keywords also appear in a different color so
that you can easily identify them. This book contains examples of the
common VBA keywords.

Finding more Code window features
The Code window has a context menu, just like other objects in VBA. When
you right-click the Code window, you see a list of optional actions that you
can perform. For example, you can obtain a list of properties and methods
that apply to the object that you’re currently using in the window. Chapter 3
shows how to use many of the special Code window features.

Getting help with code
Because it’s hard to remember precisely how to use every function and
method that VBA supports, use the VBA help feature. For any keyword that
you type in the Code window, highlight the keyword and press F1, and VBA
will look for help on the keyword that you selected.

Make sure that you select the entire keyword, or VBA might not find the infor-
mation that you need. Double-click the keyword to ensure that you highlight
the entire word.

Using the Immediate window
Although you can use the Immediate window for debugging applications, this
window can actually help you learn about VBA and save you from having to

Figure 1-11:
VBA

displays an
error

message
when you

make a
mistake.

27Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 27

write reams of code. You can execute statements one at a time. Use the
View➪Immediate Window command to display the Immediate window. This
window normally appears at the bottom of the IDE, and it won’t contain any
information until you type something in it.

Creating a variable in the Immediate window
Most developers spend their days using the Immediate window to check their
applications for errors. You can use the Immediate window to ask VBA about
the value of a variable, for example. (A variable acts as a storage container
for a value, such as Hello World.) This feature is always available in the
VBA IDE, even if you aren’t using VBA for anything at the moment. To try this
feature, type MyVal = “Hello World” (don’t forget the double quotes) in the
Immediate window and then press Enter. Now type ? MyVal and then press
Enter. Figure 1-12 shows the output of this little experiment.

You asked VBA to create a variable named MyVal and assign it a value of
Hello World. The next step is to ask VBA what MyVal contains by using the
? operator. Figure 1-12 shows that MyVal actually does contain Hello World.

Creating a one-line program
Experimenting with the Immediate window is one of the fastest ways to learn
how to use VBA because you get instant results. You can also copy successful
experiments from the Immediate window and paste them into the Code
window. Using this method ensures that your code contains fewer errors
than if you type it directly into the Code window.

If you’ve read the earlier section “Creating a variable in the Immediate window,”
you created a variable named MyVal. The variable still exists in memory
unless you closed VBA. You can use this variable for a little experiment —
your first program. Type MsgBox MyVal into the Immediate window and then
press Enter. You see a message box like the one shown in Figure 1-13.

Congratulations! You just completed your first VBA application! The code
that you typed asked VBA to use the MsgBox function to display the text in
the MyVal variable. Click OK to clear the message box.

Figure 1-12:
Use the

Immediate
window to
check the
value of a
variable.

28 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 28

Using Object Browser
VBA provides access to a lot of objects, more than you’ll use for any one pro-
gram. With all the objects that you have at your disposal, you might forget
the name of one or more of them at some time. Object Browser helps you find
the objects that you need. In fact, you can use it to find new objects that
could be useful for your next project. Use the View➪Object Browser com-
mand to display Object Browser, as shown in Figure 1-14. Normally, you need
to filter the information in some way.

Figure 1-14:
View the

objects that
VBA makes

available
via Object
Browser.

Figure 1-13:
The

MsgBox
function

produces a
message

box like this.

29Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 29

Browsing objects
Object Browser contains a list of the contents of all projects and libraries
loaded for the VBA IDE. You can view the list of projects and libraries by
using the Project/Library drop-down list box. When you start Object Browser,
this list box reads <All Libraries>, which means that you’re viewing
everything that VBA has to offer — usually too much for someone to make
sense of it all.

Projects and libraries are different, but you won’t normally need to worry
about them to use the objects that they contain. A project is the VBA code
contained in one of the files that you load into the application. In most cases,
you use a project to store the code that you create. A library is external code
contained in a Dynamic Link Library (DLL) file. The DLL contains support
routines used by the application or VBA. This code is normally written by a
developer using a language such as Visual Basic or Visual C++. You can’t
easily edit the code in a DLL.

The list of projects and libraries might look complicated at first, but you can
narrow it to a few types of entries. Of course, you always see your project
templates. In addition to project templates, you find these libraries in the list:

� Application: This library has the name of the application, such as Excel
or Word. It also includes the features that the application provides for
VBA users. For example, the Excel library has a Chart object, which
contains a list of chart-related methods, properties, and events that
Excel supports.

� Office: This library contains a list of objects that Microsoft Office sup-
ports. For example, this is where you find the objects used to support
Office Assistant. Of course, if you’re using an application other than
Microsoft Office, you won’t see this library. Your application might pro-
vide an alternative.

� StdOLE: This library contains some of the Object Linking and
Embedding (OLE) features that you use in the application. For example,
when you embed a picture into a Word document, this library provides
the required support. You can use this library in your VBA applications,
too, but the Office or application-related library usually provides access
to objects that are easier and faster to use.

� VBA: This library contains special utility objects that VBA developers
need. For example, it contains the MsgBox function, which I demonstrate
in the earlier “Using the Immediate window” section of this chapter.

Whenever you want to browse the libraries for a specific object, limit the
amount of material that you have to search by using the options in the
Project/Library drop-down list box (filtering the content). This is a helpful
technique when you perform searches as well.

30 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 30

Looking for names and features in Object Browser
When you remember . . . almost, but not quite . . . the name of a method or
other programming feature that you want to use, using the search feature of
Object Browser can make your life easier. Simply type the text that you want
to look for in the Search Text field (the empty box beneath All Libraries), and
then click the Search button (the one with a symbol that looks like binocu-
lars) in Object Browser. The Search Results field shown in Figure 1-15 shows
what happens when you look for MsgBox.

Whenever you choose (highlight) one of the entries in the Search Results
field, the bottom two panes change to show that entry. This feature helps you
locate specific information about the search result and see it in context with
other methods, properties, and events. Notice that the bottom pane tells you
more about the selection item. In this case, it tells you how to use the
MsgBox function.

Search text

Project/
Library

View definition

HelpGo back

Go forward

Copy to Clipboard

Hide search resultsSearch

Figure 1-15:
Search for

the method
that you

want to use.

31Chapter 1: Getting to Know VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 31

Cutting and pasting in Object Browser
Whenever you find a method, property, or event that you want to use in
Object Browser, you can copy the information to the Clipboard by clicking
the Copy to Clipboard button (the one with a symbol that looks like two doc-
uments) and then pasting that information directly into your application
code. Using this feature means not only that you type less code, but also that
you have fewer errors to consider.

Getting help in Object Browser
Sometimes the information at the bottom of the Object Browser display isn’t
enough to tell you about the element that you’re viewing. When this happens,
highlight the element that you want to know more about and press F1, and
VBA displays the help screen for that element.

32 Part I: An Overview of VBA

05_046500 ch01.qxp 12/5/06 5:33 PM Page 32

Chapter 2

Your First VBA Program
In This Chapter
� Creating an application plan

� Defining the steps to create an application

� Using different methods to run your application

� Getting and using code found in the help files

In Chapter 1, I show you how to work with the VBA Integrated Development
Environment (IDE). In that chapter, I also show you how to use the

Immediate window to create one-line test programs. However, the programs
that you create by using the Immediate window aren’t the same as permanent
programs (because Immediate window programs aren’t permanent), and
you’d find it difficult to perform useful work with them.

This chapter shows you how to move from the Immediate window into the
Code window. The Code window is where you create programs of a lasting
nature — the kind that you can use to perform the same task more than once.
Because of the time required to write the code, it only pays to create an appli-
cation that you can use more than once. The benefit of writing a program is
that you can perform a repetitive task quickly.

One trick that you can use is to get hold of pre-made code whenever you can.
I end this chapter by showing you one of the techniques that is used most
often — stealing the code directly from Microsoft. (You’ll see that it isn’t
really stealing, but, considering all you get for free, it’s a steal in a sense.)
The help files that come with VBA contain a lot of code that you can use in
a number of ways. Microsoft knows that some developers want to use the
code, so it tries to make the samples as flexible as possible.

06_046500 ch02.qxp 12/5/06 5:33 PM Page 33

Deciding What to Do
Whenever you decide to create a program, start with a plan. Just like a
builder needs a plan to construct a house, you need a plan to construct your
program. You can easily tell whether a builder decided to build a house with-
out using a plan, and it’s just as easy to determine when someone writes a
program without using a plan. Application users can see that the application
isn’t well designed because it doesn’t work as anticipated. The plan that you
use doesn’t have to be very complicated, but you do need to think about
these questions:

� What will the program do?

� How will the program accomplish its task?

� When will the program run?

� Who will use the program?

� Why is the program important?

Professional developers use a number of complex and hair-raising methods
to answer these questions. You work on much smaller programs, and you can
normally answer the questions quite easily. Don’t make this more compli-
cated than you need to. You might answer the first question by saying, for
example, that the program will count the number of words in a document.

The reason that you want to go through this planning process is to ensure
that you’ve thought about the program you want to create. It’s easier to
answer the questions before you write any code than to fix the code later.
Writing down your answers also helps you avoid making the program into
something that you didn’t intend. This problem is a common one for every-
one; even developers with a lot of experience write programs that quickly
grow beyond the original intent.

Another good reason to go through this planning process is to ensure that
you actually need to write the program. By describing a program in unam-
biguous terms, you can seek help from other people. In many cases, you’ll
find that you won’t need to write the application because

� Someone else has already written the program.

� You can obtain the program from a third-party vendor for less money
than it would require for you to write the application.

� An update to the existing application includes the functionality of the
program as a feature.

34 Part I: An Overview of VBA

06_046500 ch02.qxp 12/5/06 5:33 PM Page 34

Steps to Create a VBA Program
Writing a program usually involves four steps. In this section, I tell you about
the four steps while you create your first permanent program — one that you
can run as often as you like. The permanent program displays a dialog box,
just like the example in Chapter 1.

Step 1: Design the program
In the “Deciding What to Do” section, earlier in this chapter, I tell you how to
plan your program. I also tell you what questions you should ask in prepara-
tion for writing the program. This step is actually part of the design phase,
but most developers make it a separate step. Thinking through your applica-
tion before you commit something to paper is important.

After you plan your application, you can use any of a number of techniques to
design the program. Some people use the flowcharting technique, which uses
special symbols to replace programming elements. Other people use special-
ized engineering software to do the job. You might read about these methods
when you get more involved with VBA. However, the best way to design most
simple applications is to use pseudo-coding, a method in which you write
down a list of steps in your own words that say what you want VBA to do.

Using pseudo-code is a good way to think about how you want to write the
code without getting too concerned about coding issues. This example dis-
plays a dialog box. The pseudo-code can be as easy as

Display the message box.
See which button the user clicked.
End the program.

Don’t worry about being precise about the pseudo-code. The idea is to write
a list of steps that you can understand before you begin writing code. If you
don’t understand what you want to do, it’s unlikely that you can tell VBA how
to do it. Pseudo-code is a method for putting your words into a form that you
can convert to code later.

You can also add pseudo-code as comments to the VBA code that you write.
In Chapter 3, I show you how to use comments in your code. Using your pseudo-
code as a basis for comments that appear in your code helps you tell others
about the thought process used to design the program. Never write a program
that is devoid of comments because you might need to make changes later.

35Chapter 2: Your First VBA Program

06_046500 ch02.qxp 12/5/06 5:33 PM Page 35

Step 2: Implement the design
The wording for this step is just a fancy way of saying that you need to write
some code. You often hear programmers use the phrase “implement the
design,” and it also appears as commonly used jargon in many magazines.

Before you can write some code, you need to open the Visual Basic Editor in
older versions of Office by using the Tools➪Macro➪Visual Basic Editor com-
mand. When working with Office 2007, all you need to do is click Visual Basic
the Developer tab on the Ribbon. I’m using Excel for this example, but the
same steps work in Access, Word, FrontPage, PowerPoint, and most other
applications that support VBA. The only change is that your screen shots
won’t look precisely like mine when you use another product.

The first thing to do is create a Code window. To do that, use the Insert➪
Module command. The Visual Basic Editor creates a blank Code window
where you can type your program. A blank Code window can be a scary
experience, but you don’t need to worry because you already have some text
(the code snippet in the previous section, “Step 1: Design the program”) to
put into it. The Code window is a kind of container (an editor) where you
create a Sub (or sub-procedure). The Sub contains your pseudo-code and,
eventually, the code you write to implement the pseudo-code. (Chapter 3
describes the Sub in detail, so you don’t need to worry about it for now.)
Add a single-quote character (‘) in front of each pseudo-code statement to
ensure that VBA knows that this is pseudo-code. All VBA comments begin
with a single quote. Figure 2-1 shows how your Code window should look.

You can run the Sub shown in Figure 2-1, but it doesn’t do anything. To make
this example do something, add to it some code that VBA understands.
This means converting the English statements, such as “Display the message
box,” into VBA. To display a message box, use the MsgBox function, which I
describe in Chapter 1.

Figure 2-1:
The Code

window
starts blank,

but you
already have

information
to add to it.

36 Part I: An Overview of VBA

06_046500 ch02.qxp 12/5/06 5:33 PM Page 36

The MsgBox function is capable of doing more than the Chapter 1 example
shows. First, the function can return a Result that shows which button the
user selected. The Result variable holds the selection information so that
you can use it in other ways. You can also tell MsgBox which buttons to dis-
play and to provide a title. Here’s a more advanced version of the MsgBox
function that I use in Chapter 1 — type this line directly beneath the
‘Display the message box comment:

Result = MsgBox(“Click a Button”, vbYesNoCancel, “A
Message”)

This code tells VBA to display a message box with “Click a Button” as
the text and “A Message” on the title bar. The message box includes the
Yes, No, and Cancel buttons. After VBA displays the message box, it waits for
the user to make a decision. When the user clicks one of the three buttons,
VBA stores the choice in the Result variable. Wow, that’s a lot for one piece
of text to do!

The pseudo-code says that the code needs to detect which button the user
pressed. You can use another message box to display the information like this:

MsgBox Result

This is the same technique that I use in Chapter 1. The only difference is that
the information contained in Result relies on a user selection. You don’t
know in advance which button the user will select, but this code works no
matter which button the user clicks.

The final piece of pseudo-code says that VBA should end the program. You do
this with the End Sub statement shown in Figure 2-1. Whenever VBA runs
out of instructions to process, it ends the program. Figure 2-2 shows what
your code should look like now. Make sure that you save the code at this
point by using the File➪Save command.

Figure 2-2:
Writing

code is easy
when you

use pseudo-
code to

describe
it first.

37Chapter 2: Your First VBA Program

06_046500 ch02.qxp 12/5/06 5:33 PM Page 37

Step 3: Test, test, test
It’s time to run the application for the first time. The easiest way to run an
application is to click the Run Sub/User Form button on the Standard toolbar
in the Visual Basic Editor. (It’s the one that looks like the Play button on a VCR.)
Click the button to see the first message box. It should look like the one
shown in Figure 2-3. If the program won’t run, use the appropriate procedure
in the “Starting the Visual Basic Editor” section of Chapter 1 to set macro
security.

The message box contains the title, message, and buttons that you asked
VBA to display in the code. Checking the contents of the message box to
verify that it contains everything that you thought it would contain is testing.
If you want to ensure that your program always works the way you originally
designed it, you need to test as many features as possible.

Click Yes to see another message box like the one shown in Figure 2-4. Look at
the code again. Notice that this message box contains the result (the return
value) of the MsgBox function. The number 6 isn’t very useful to humans, but
it’s quite usable for the computer. An actual program converts this number to
something that humans can understand. For now, you know that clicking Yes
produces a number 6.

Figure 2-4:
The

MsgBox
function

return value.

Figure 2-3:
The first

message
box asks the
user to click

a button.

38 Part I: An Overview of VBA

06_046500 ch02.qxp 12/5/06 5:33 PM Page 38

When you click OK, the program ends, and you don’t see any other message
boxes. This condition verifies that the last step of the pseudo-code is complete.

Don’t assume that the testing process is over; there are two other buttons
on the initial message box. Unless you test the buttons, you won’t know that
they work. Run the program again, but try the No button the second time and
the Cancel button the third time.

The return value displayed in the second message box (refer to Figure 2-4)
should change for each button. Clicking No should produce a value of 7, and
clicking Cancel should produce a value of 2. If you don’t see these values,
your program has an error. Professionals call a programming error a bug.

Step 4: Swat the bugs
Bugs can appear when you test your program. Planning and writing your
code carefully reduces the number of bugs, but everyone makes mistakes.
It’s often a matter of not understanding how a function works. Testing your
programs helps you find the bugs. After you find the bugs, you have to look
at your code and discover the coding errors that create the bugs.

Not every bug is even your fault — it could be an error in the documentation
for the function. Microsoft is well known for committing mistakes of this sort
and then telling everyone that they were intentional. (Microsoft is fond of
calling these mistakes undocumented features.) You might find that a bug isn’t
actually in your program but is somewhere in VBA itself. Microsoft might tell
you about these errors, but it often leaves them as surprises for you to discover.

Microsoft won’t knock on your door to tell you that it made a mistake.
You have to search for these errors on your own at a central Web site that
Microsoft has set up. The Microsoft Knowledge Base is a special kind of
search engine that helps you find information about problems with VBA
and their associated fixes. You can find the Microsoft Knowledge Base at
http://search.support.microsoft.com/search/default.aspx.

You must get rid of as many bugs as possible in your program. This task is so
important that I devote an entire chapter to it: In Chapter 6, I provide details
on how to locate and fix bugs in your program. Chapter 6 also tells you how
to keep the user from making mistakes by detecting the error before the pro-
gram does. The important idea for this chapter is that you need to fix bugs in
your application; don’t worry too much about the precise details for this task
right now.

39Chapter 2: Your First VBA Program

06_046500 ch02.qxp 12/5/06 5:33 PM Page 39

Four Ways to Run Your Program
Running your program from within the Visual Basic Editor is fine when you want
to test it. However, the goal is to run it from the application and not have to
open the Visual Basic Editor first. You have a lot of choices for running any
VBA program — more than most people want to remember. VBA provides
four common methods for running applications, but most VBA users never
need to think beyond the first method, which is using the Macro dialog box.

Using the Macro dialog box
The Macro dialog box is the most common way to run a VBA program. Every
time that you create a new Sub, it appears in the list of macros that you can
run. You don’t have to do anything special. This feature means that you can
always access every program that you create by using this method, which is
why it’s the most popular method.

When working with older versions of Office, use the Tools➪Macro➪Macros
command to display the Macro dialog box. When using newer versions of
Office, click Macros on the Developer tab on the Ribbon to display the Macro
dialog box, as shown in Figure 2-5. You can also display this dialog box by
pressing Alt+F8 in Office applications. (Other applications use different key
combinations.) Notice that Figure 2-5 shows the macro, SayHello, that
appears in the earlier “Step 2: Implement the design” section of this chapter.

When you want to run the program, highlight it and then click the Run button.
Try it now. You should see the same two dialog box sequences that you saw
when you tested the program earlier in this chapter.

40 Part I: An Overview of VBA

The origins of computer bugs
You might wonder why professionals call a pro-
gramming error a bug. There are many versions
of this story, but all of them begin in the early
annals of computer history. At that time, com-
puters were immense devices that could take up
an entire building. Instead of the small chips used
in today’s computers, these older devices used

switches and vacuum tubes. The story holds
that one day a programmer of one of these mas-
sive machines experienced an error. After a
long search, the programmer found an actual
bug in one of the switches used to control the
computer. The term stuck — all programming
errors are now blamed on insects.

06_046500 ch02.qxp 12/5/06 5:33 PM Page 40

You can also use this dialog box to perform other tasks. Highlight the macro
name, and then click the Edit button; the application opens the Visual Basic
Editor. The Code window displays the code associated with the program that
you highlighted. You can also remove old programs by clicking the Delete
button.

Notice the Macro Name field near the top of the Macro dialog box shown in
Figure 2-5. This field normally contains the name of the macro that you’ve
highlighted in the list. However, you can also use the Macro dialog box to
create new programs. Type SayGoodbye in the Macro Name field, and the
Macro dialog box enables the Create button and disables everything else, as
shown in Figure 2-6. You can use this dialog box to create any new programs
that you need.

Figure 2-6:
Typing a

non-existent
macro name
in the Macro

Name field
enables the

Create
button.

Figure 2-5:
Use the
Macro

dialog box to
access the

programs
that you
create.

41Chapter 2: Your First VBA Program

06_046500 ch02.qxp 12/5/06 5:33 PM Page 41

Using the quick-launch methods
It isn’t always convenient or efficient to open the Macro dialog box to run the
programs that you design. If you use the same program several times a day,
opening the Macro dialog box can become a time-wasting event. What you
need is a quick-launch method — a way to start the program that doesn’t
require you to open the Macro dialog box.

Defining a shortcut key
The Macro dialog box, shown in Figure 2-5, has one other use that helps
you create quick-launch programs. Open the Macro dialog box by using the
Tools➪Macro➪Macros command or by clicking Macros on the Developer
tab on the Ribbon. Highlight the program that you want to launch quickly
(SayHello, for this example). Click the Options button. Excel opens the
Macro Options dialog box. Type h in the Shortcut Key field and This is a
simple program. in the Description field. Your dialog box should look like the
one shown in Figure 2-7.

Click OK to close the Macro Options dialog box, and then click Cancel to close
the Macro dialog box. When you press Ctrl+H, the program that you created
earlier should run and display the same two dialog box sequences as before.

Defining a toolbar button
Using shortcut keys is fine when you don’t have a lot of them to remember
and you don’t mind performing finger gymnastics. However, you don’t have
to limit yourself to keyboard shortcuts. If you’re using an older version of
Office or one of the newer versions with the standard toolbar interface, you
can place a button on a toolbar that starts your program. When working with

Figure 2-7:
Make a

program
quick-launch
by using the

Macro
Options

dialog box.

42 Part I: An Overview of VBA

06_046500 ch02.qxp 12/5/06 5:33 PM Page 42

an Office 2007 product that sports the Ribbon interface, you can’t easily add
anything to the Ribbon, so this section isn’t for you (see the “Working with
the New Ribbon Interface” section of Chapter 12 for details on adding buttons
to the Ribbon interface using VBA). Using this method means that all you
have to remember to do is to look at the toolbar.

Many people place custom buttons on the same toolbars that the application
uses for other purposes. This is fine if you don’t mind seeing the toolbar
grow longer and longer, right off the right side of the screen. It’s better to
create a custom toolbar so that you can show or hide the buttons associated
with your programs when you need them.

To add a VBA program to a toolbar, you can begin by creating a custom tool-
bar for the task or selecting an existing toolbar. The SayHello example uses
an existing toolbar, Standard, to speed things up. The Standard toolbar is pro-
vided with just about every Windows application that uses VBA, but you
might need to use another toolbar. The following steps show how to add a
program to your toolbar:

1. Right-click in the toolbar area, and then choose Customize from the
context menu that appears.

The Customize dialog box appears.

2. Select the Commands tab and scroll through the Categories list until
you find Macros.

Figure 2-8 shows that you have two options for adding macros to your
toolbar — as a menu item or as a button.

Figure 2-8:
Add your

program to
the toolbar

by using
either a

button or a
menu item.

43Chapter 2: Your First VBA Program

06_046500 ch02.qxp 12/5/06 5:33 PM Page 43

Use a button when you need to save space on a toolbar. However, make
sure that you add a name to the button that explains what the button is
used for, or else you might forget its purpose. Use a menu item to make
the button’s purpose easier to remember. Choosing the menu item
option displays a new toolbar button. The new button has the name that
you assigned to the button displayed on the toolbar, making it easier to
see what the button does.

3. To add a custom button, drag a Custom Menu Item object from the
Customize dialog box to the Standard toolbar.

The application should add a new (blank) button to the toolbar.

4. Right-click the new button on the toolbar, and then select the Name
option. (This entry has a text box next to it.)

5. In the Name field, type &Say Hello.

This action assigns a name to the button. The ampersand (&) places an
underline beneath the S in Say. A user can press Alt+S to access the
button quickly when the toolbar is selected.

6. Right-click the new button on the toolbar, and then select Assign Macro.

An Assign Macro dialog box appears, like the one shown in Figure 2-9.

7. Highlight the SayHello entry, and then click OK.

8. Click Close to close the Customize dialog box.

That’s it! The Say Hello toolbar button is now functional. Click it to see the
same two dialog box sequences that you see in the previous examples.

Figure 2-9:
Use the
Assign
Macro

dialog box
to add a

macro to the
toolbar
button.

44 Part I: An Overview of VBA

06_046500 ch02.qxp 12/5/06 5:33 PM Page 44

Defining a menu entry
You might use a program often enough to attach it to a regular program ele-
ment but not often enough to take up space on a toolbar. In this case, you can
use a menu to hold the quick-launch option when working with versions of
Office that don’t rely on the Ribbon interface. You use the same set of steps
shown in the preceding “Defining a toolbar button” section to perform this
task. The only difference is that you drag the custom button or custom menu
item to the menu that you want to use instead of to a toolbar (Step 3).

Accessing the program
from other VBA code
Never write a piece of code twice when you can write it once and use it every-
where. Saving time is one reason to use VBA, so saving time by writing VBA
code is a good way to increase the benefits that you receive. In Chapter 3, I
discuss many of the methods that you can use to reuse code. However, the
first idea that you have to understand is that you can call (tell VBA to execute)
any VBA program that you create from another program. Here’s a simple
example that you can add to the Code window:

Sub SayHello2()
‘ Show that we’re using the SayHello2 program.
MsgBox “We’re in SayHello2!”

‘ Call SayHello
SayHello
End Sub

Notice how this sample uses pseudo-code to describe what happens when
you run the program. Remember that pseudo-code is a list of steps, written in
a form that you can understand, that the program must perform. The first
task is to prove that you executed the SayHello2 program by displaying a
message box containing a message that doesn’t appear in SayHello. The
second task is to call SayHello. Make sure that you save your program at
this point.

When you run this program, it displays three message boxes. The first one
reads We’re in SayHello2! The second and third message boxes look
just like the ones you see for the SayHello program used throughout this
chapter.

45Chapter 2: Your First VBA Program

06_046500 ch02.qxp 12/5/06 5:33 PM Page 45

Executing the VBA program automatically
In rare cases, you need to write a VBA program that does something when
you start the associated application or perform some other task, such as
open a document. You should use this method of executing your programs
automatically only if it serves a very special purpose. Using this technique to
perform a setup that you only use once in a while doesn’t make sense. If you
set up something every day, it usually pays to make it a permanent part of
the application configuration rather than run a program to make the changes.

The smartest VBA users avoid using this technique, for two reasons. First,
many users have disabled automatic macro execution on their machines,
which means that this technique won’t work at all. The reason that people
disable automatic macro execution is that some crackers (nefarious fiends
who write viruses) have used automatic macro execution as a weapon in the
past. (You can read more about macro viruses at http://www.cert.org/
advisories/CA-2001-28.html — this is just one of over 400 sites I’ve found
that discuss this problem.) Microsoft actually tells you how to remove these
macros in the Knowledge Base article at http://support.microsoft.
com/?scid=kb;en-us;918064. Second, the precise method for creating an
automatically executing program varies by application. The technique used
in Word might not work in Excel and vice versa.

The program used most often in this chapter is SayHello. The name that
you give your program is important because it can have special effects on
the application. When you name your program AutoExec, the application
(Word, Excel, Access, and so on) automatically executes the macro whenever
it’s started. Table 2-1 contains a list of special program names that you can
use to perform tasks automatically in some applications.

Table 2-1 Special Program Names That Automatically Execute
Name When It Runs

AutoClose When the user closes a document

AutoExec When the application starts

AutoExit When the application ends

AutoNew When the user creates a new document

AutoOpen When the user opens an existing document

46 Part I: An Overview of VBA

06_046500 ch02.qxp 12/5/06 5:33 PM Page 46

Using Help to Your Advantage —
Stealing Microsoft’s Code

This book contains a lot of code — most of it very practical code that you
can use today to improve your Microsoft Office experience. Even with as
much as this book has to offer, you still won’t find examples of every function
that VBA has to offer. Fortunately, Microsoft does provide you with lots of
sample code in the help files. In fact, you can even copy this code right out of
the help file and use it for your next program.

To see the sample code associated with a function, open the help page to
that function. You might want to highlight one of the MsgBox entries in the
sample code for this chapter and then press F1. In Chapter 1, I describe some
of the information on this page. However, notice the links at the top of the
page. (Newer versions of Office include all the information inline, so you
won’t see the links.) Three of the most common links are See Also, Example,
and Specifics. Click Example or scroll down to the bottom of the help page to
see an example of the MsgBox function, like the one shown in Figure 2-10.

Figure 2-10:
Copy any of

the code
that you

need from
the help file

to reduce
program-
ming time
and effort.

47Chapter 2: Your First VBA Program

06_046500 ch02.qxp 12/5/06 5:33 PM Page 47

This code is a little complex given what you know from this chapter, but in
this book I show you how to read and understand it. More importantly, you
can highlight the code, right-click it, and then choose Copy from the context
menu that appears. Paste the code into the Code window for your VBA pro-
gram to use it.

48 Part I: An Overview of VBA

06_046500 ch02.qxp 12/5/06 5:33 PM Page 48

Part II
Learning
the Ropes

07_046500 pt02.qxp 12/5/06 5:34 PM Page 49

In this part . . .

Every adventure begins with a discovery phase. This
part of the book is all about discovery. You consider

all the elements that define VBA as a language. Good
structure is the basis of most projects in life. When you
build a house, you create the basic structure first and
then add on to it. Chapter 3 is all about VBA program
structure. You discover how to create a framework for the
programs that you build later.

In Chapter 4, I help you understand how to manage data
by using VBA. Data management is the single most impor-
tant skill that a programmer can learn. This chapter also
provides useful information about questions that VBA pro-
grammers ask most often, such as when to use + or & to
concatenate strings (add them together).

In Chapter 5, I tell you how to control program flow by
using several techniques. Controlling program flow lets
you do things like make decisions. In Chapter 6, I show
you techniques for debugging your program (removing
errors). Debugging is an essential part of creating great
applications. In Chapter 7, I help you discover the joys of
creating a user interface.

07_046500 pt02.qxp 12/5/06 5:34 PM Page 50

Chapter 3

Writing Structured VBA Programs
In This Chapter
� Discovering the structure used by most programs

� Using structure to your advantage

� Creating programs by using the Macro Recorder

� Creating a program by using a Sub

� Creating a program by using a Function

� Hiding some program elements by using scope

� Adding white space to programs

� Adding comments to your code

In Chapters 1 and 2, I concentrate on describing the basics of VBA pro-
gramming without discussing an important element that VBA programs

need — structure. Adding structure makes code easier to read and use.
It’s also a mandatory part of the development process.

There are a number of ways to look at structure in a program. Just as you use
an outline to structure a presentation, you need to add structure to your pro-
gram to make it work properly. Using structure in a program is like using a
checklist with a large customer order — it helps you ensure that all the pro-
gram elements are in place. The structure that you add to a program is like
presenting numeric information with a graph — it makes the content of the
program easier to see and understand.

In this chapter, I present various forms of structure. The obvious structuring
element is physical. By using physical structure, you can divide your pro-
gram into small pieces that are easy to write and understand. Many people
divide programs into task-oriented pieces. It helps to use the Macro Recorder
to see how you can create small tasks out of larger procedures, so this chap-
ter discusses how to use the Macro Recorder to discover more about your
specific program needs.

Another form of structure includes the concept of privacy. Consider who can
see your program and how they can use it. Scope, which is the act of deter-
mining the range of program access, is important because you want to make
some parts completely private and other parts completely public.

08_046500 ch03.qxp 12/5/06 5:34 PM Page 51

Finally, there are visual elements of structure. How you use white space when
you write your program can make the difference between reading it and
scratching your head. In Chapter 2, I discuss the use of comments in the
form of pseudo-code, but you might find that you need additional comments
to help someone truly understand your program (and to jog your memory
when you need to make alterations).

Parts of a Program
The examples in Chapters 1 and 2 use some physical structure. You can’t
write a program, not even a simple one, without using at least a little struc-
ture because VBA needs that structure to understand what you want it to do.
A VBA user can ignore the structure, but VBA can’t. This chapter formalizes
the meaning for each structural element.

Defining the parts of a program
A program is the highest level of physical structure. It contains everything
needed to perform a given task. A program can cross module, class module,
and form boundaries. (Modules, class modules, and forms are special containers
for holding program code. You can save them as individual files for access
later, but Office embeds them within an application document or template
for use.) The concept of a program comes from the earliest use of computers.
A program acts as a container for the code used to implement a set of features
required by the operating system or the user.

Some people have a hard time understanding what a program is because modern
software packages often define the term incorrectly. When you open a copy of
Word, you’re using a program. Conversely, Microsoft Office is a set of programs,
or an application suite. Microsoft Office isn’t a single program; it’s a set of pro-
grams that includes Word, PowerPoint, Excel, and other individual programs.
Likewise, when you open a copy of Notepad, that’s a program. Notepad and
Word each contain a set of features required by the user to perform a given task.

Programs also extend into other areas of computing. A single device driver
(say, the driver that you installed for your mouse), is a program. The user
interface that helps you configure the mouse is often a separate program.
It’s not part of the device driver even though it controls the device driver’s
actions. When you control Excel from Word, the two programs don’t become
a single unit. You’re still using two programs to accomplish a single task.

Don’t assume that a program equates to a project. (A project is the container
used to hold the embedded modules, class modules, and forms associated
with a given document.) You’re not creating a new program when you create
a new project. A VBA project can actually contain a number of VBA programs.

52 Part II: Learning the Ropes

08_046500 ch03.qxp 12/5/06 5:34 PM Page 52

Every public Sub that a user can access by using the Macro dialog box (as I
describe in Chapter 2) is a separate program. The SayHello program that I
use in Chapter 2 is an example of a simple program that relies on a single
Sub, but you can create programs of any complexity.

In Chapter 16, I demonstrate that a single program can cross project bound-
aries. All the examples in that chapter rely on the services of at least two
Microsoft Office products to perform a single task. Even though the program
is calling on the services of more than one Microsoft Office product, and it
resides in more than one location, it’s still a single program. Each example
contains a set of features required by the user to perform a given task. The
physical location and the use of external modules don’t affect this definition.

Understanding the VBA
programming blocks
A VBA program consists of building blocks. In fact, because programming is
abstract, people tend to use physical examples to explain how things work.
You still need to know about the abstract elements of VBA programming, or
else you can’t write a program. This section explains the basic constructs of
VBA programming. In the upcoming “Taking the Lego Approach” section of
this chapter, I use a physical example as a means of describing these abstract
elements in detail. Consider only the four elements that I describe here:

� Project: The project acts as a container for the modules, class modules,
and forms for a particular file. In Word, you normally see a minimum of
three projects loaded into the Visual Basic Editor: the normal template,
the document template, and the document. Excel users normally see
just one project for the file that they have open.

� Module, class module, and form: These three elements act as containers
for main programming elements such as class descriptions and proce-
dures. A single project can have multiple modules, class modules, and
forms in it. However, each of these elements requires a unique name.

� Function and Sub: The Function and Sub elements hold individual
lines of code (also called statements). A Function returns a value to the
caller, but a Sub does not. Microsoft Office provides access to code func-
tionality through the Sub, not through the Function. Consequently, you
must always provide access to your VBA program by using a Sub.

� Statement: Many people call an individual line of code a statement.
The pseudo-code in Chapter 2 shows why. Each line of pseudo-code is a
statement of what the application should do. The example in the “Step 2:
Implement the design” section of Chapter 2 shows how these lines of
pseudo-code are translated into code that VBA can understand. You’re
still making a statement when you use VBA code to perform a task —
you’re just doing it in VBA’s language.

53Chapter 3: Writing Structured VBA Programs

08_046500 ch03.qxp 12/5/06 5:34 PM Page 53

Using the Macro Recorder
The Macro Recorder lets you record keystrokes and actions that you perform
as a VBA program. You can use it to record complete tasks, such as setting up
a document, or for partial tasks, such as highlighting text and giving it certain
attributes. The Macro Recorder can help you perform the following tasks:

� Create a macro based on your actions.

� Discover how Word performs certain tasks.

� Decide how to break your program into tasks.

� Help you create the basis for a more complex program.

The Macro Recorder isn’t a complete solution for your VBA needs. For exam-
ple, you can’t use the Macro Recorder to create interactive programs without
extra coding. The same holds true for programs that must change based on
user input, the environment, or the data you’re manipulating. All of these
tasks require you to add more code. However, it’s a good starting point for
many structured programming tasks. You can get the basics down quickly
using the Macro Recorder and then make changes as needed. The macro
recording process follows the same basic steps no matter which version of
Office you use:

1. Start the Macro Recorder.

2. Perform all of the steps that you normally perform to accomplish a task.

3. Stop the Macro Recorder.

4. Save the macro when the Office application prompts you.

5. Optionally, open the resulting macro and make any required changes.

Recording a macro using the Ribbon interface
Recording a macro with the new features provided by the Office 2007 Ribbon
interface is easier than in past versions. Microsoft has added features that
reduce the complexity of creating a macro. For example, when you press Alt,
you see the number or letter you must press to perform a particular action in
little boxes over each control on the Ribbon.

If you’re used to using the mouse to perform most Office tasks, you may want
to practice the keystrokes you need to use to record the macro several times.
Recording the macro without mistakes makes it run faster and also makes it
easier to edit the recorded macro later. The following steps describe how to
record a macro using the Ribbon interface:

54 Part II: Learning the Ropes

08_046500 ch03.qxp 12/5/06 5:34 PM Page 54

1. Select the Developer tab.

Because Office 2007 doesn’t display this tab by default, see the “Batteries
Included — VBA Comes with Office” section of Chapter 1 for details on
displaying it.

You see the Developer tab, shown in Figure 3-1.

2. Click Record Macro.

The Office application displays the Record Macro dialog box, shown in
Figure 3-2.

3. Type a descriptive name for the macro.

4. Type a control-key combination for the macro when you want to
access it from the keyboard.

Use this option only for major macros because you don’t want to use up
all of the available key combinations.

Figure 3-2:
Use the
Record
Macro

dialog box
to type
details

about your
macro.

Figure 3-1:
The

Developer
tab contains

most of the
items you

need to
work with

macros.

55Chapter 3: Writing Structured VBA Programs

08_046500 ch03.qxp 12/5/06 5:34 PM Page 55

5. Select a storage location in the Store Macro In field.

The storage locations vary by Office application. Here’s an explanation
of the locations for Excel:

• This Workbook: Use this option when you want to store the macro
within the local file. Anyone opening the file can access the macro.

• Personal Macro Workbook: Use this option when you want to
store the macro in a special workbook that contains all of your
personal macros. This storage location makes the macro available
to you at all times. It doesn’t matter which workbook you open.

• New Workbook: Use this option when you want to store the macro
in a new workbook.

The storage locations for Word are similar, as explained in the follow-
ing list:

• Document: Use this option to store the macro within the local file.
Anyone opening the file can access the macro.

• Document Template: Use this option to store the macro within the
template used with the document. Anyone who creates a docu-
ment that relies on the template can access the macro.

• All Documents (Normal.dotm): Use this option to store the macro
within the global template. Storing the macro here means that
anyone opening a document of any kind can access the macro.

6. Type a macro description in the Description field.

It’s essential to type a complete description because this comment is the
only one the macro will contain when you complete it.

7. Click OK.

The Office application begins recording the macro. Notice that the Record
Macro button changes to a Stop Recording button and that the button
icon is now blue instead of red.

8. Perform any tasks that you would normally perform to complete
the task.

The Office application records all of your keystrokes. However, it doesn’t
record mouse movements. Consequently, you should avoid using the
mouse and perform all tasks using the keyboard.

9. Click Stop Recording.

The Office application finishes the macro.

You can view your new macro by clicking Macros on the Developer tab.
The Macro dialog box shows the macros associated with the current docu-
ment whether they appear locally or as part of an external document or
template. The “Modifying the macro” section, later in this chapter, describes
this dialog box in more detail.

56 Part II: Learning the Ropes

08_046500 ch03.qxp 12/5/06 5:34 PM Page 56

Recording a macro using the menu interface
Older versions of Office and some Office 2007 products require that you
use the menu interface to activate the Macro Recorder. The following steps
describe how to record a macro using the menu interface:

1. Choose Tools➪Macro➪Record New Macro.

The Office application displays a Record Macro dialog box similar to the
one shown in Figure 3-2.

2. Type a descriptive name for the macro.

3. Type a control-key combination for the macro when you want to
access it from the keyboard.

Use this option only for major macros because you don’t want to use up
all of the available key combinations.

Some older Office products include other options. For example, when
working with an older version of Word, you can choose to associate the
macro with either the keyboard or the toolbar, or both, by clicking the
appropriate button and making the assignment.

4. Select a storage location in the Store Macro In field.

(This is an Office 2007 feature; older versions always store the macro in
the local document.)

The storage locations vary by Office application. Here’s an explanation
of the locations for Visio:

• Active Document: Use this option when you want to store the
macro within the local file. Anyone opening the file can access
the macro.

• Stencil: Stores the file within the stencil file. Anyone using the sten-
cil can access the macro no matter which document is opened.

5. Type a macro description in the Description field.

It’s essential to type a complete description because this comment is the
only one the macro will contain when you complete it.

6. Click OK.

The Office application begins recording the macro. You see the Stop
Recording toolbar, shown in Figure 3-3. This toolbar includes options
for stopping and pausing the macro recording. Pausing the recording
lets you make changes that aren’t required for the macro. Click Pause
Recording a second time to start recording again.

7. Perform any tasks that you would normally perform to complete
the task.

The Office application records all of your keystrokes. However, it doesn’t
record mouse movements. Consequently, you should avoid using the
mouse and perform all tasks using the keyboard.

57Chapter 3: Writing Structured VBA Programs

08_046500 ch03.qxp 12/5/06 5:34 PM Page 57

8. Click Stop Recording.

The Office application finishes the macro. The Stop Recording toolbar
disappears.

You can see your new macro by choosing Tools➪Macro➪Macros. The Macro
dialog box contains a list of the macros associated with the current docu-
ment, whether they’re local or part of another document, stencil, template,
or other associated file.

Although this book proper doesn’t contain much material on Visio or
FrontPage, you’ll find a Visio Bonus Chapter on the Dummies.com Web site.
Visit www.dummies.com/go/vbafd5e to download both the source code
and the Bonus Chapters (one for Visio and another for FrontPage).

Modifying the macro
Modifying a macro recorded using the Macro Recorder is much like modifying
any other macro. The only differences are that you didn’t write the initial code
and the Macro Recorder doesn’t add any comments for you. As an example,
open the Excel macro created earlier in this chapter, in the “Recording a
macro using the Ribbon interface” section. The following steps describe how
to perform this task:

1. Open the Macro dialog box. When using the Ribbon interface, you
click Macros on the Developer tab. When using the menu interface,
choose Tools➪Macro➪Macros.

You see the Macro dialog box, shown in Figure 3-4.

2. Choose the macro you want to edit and then click Edit.

The Office application opens the Visual Basic Editor with the selected
macro opened, as shown in Figure 3-5. (You may see other macros files
opened as well.)

3. Add comments to the recorded macro so that you can retrace your
steps later.

Stop Recording

Pause Recording

Figure 3-3:
Stop or

pause the
macro

recording
process as
necessary.

58 Part II: Learning the Ropes

08_046500 ch03.qxp 12/5/06 5:34 PM Page 58

4. Make any required macro changes.

5. Save the macro and close the Visual Basic Editor.

Figure 3-5:
You use the

Visual Basic
Editor to

modify any
macros you

create using
the Macro
Recorder.

Figure 3-4:
The Macro
dialog box
contains a

list of
available
macros.

59Chapter 3: Writing Structured VBA Programs

08_046500 ch03.qxp 12/5/06 5:34 PM Page 59

It isn’t necessary now to understand the macro shown in Figure 3-5. However,
this macro begins by assigning a value of 1 to the worksheet cell at A1. Because
the cursor was already in cell A1 when the macro recording started, this
action doesn’t appear in the macro. This omission points out one of the rea-
sons you want to edit macros you create with the Macro Recorder. The macro
then moves the cursor to cell B2 and assigns it a value of 2. Finally, the macro
moves the cursor to cell C3 and enters an equation in it that sums the two
numbers. You’d probably edit this macro by adding the missing cell reference
for A1, adding comments, and removing the one extra statement, as shown in
Figure 3-6.

Using Subs
I use a sub-procedure, or Sub, in Chapter 2. A Sub is the easiest method of
packaging code, and it’s the only packaging method that appears in the
Macro dialog box. In fact, the example in the “Writing Your First Function”
section (later in this chapter) demonstrates this feature. Consequently, the
one place where you always use a Sub is the main entry point for a program
unless the program is a utility that you use only for programming purposes.

A second way to use a Sub is to perform a task and not receive a direct
return value. You can use a Sub to display an informational message, such as
the ones in Chapter 2. A Sub can modify information in a number of ways; it

Figure 3-6:
Editing
Macro

Recorder
output is

important
when you

want to use
the macro

for multiple
tasks.

60 Part II: Learning the Ropes

08_046500 ch03.qxp 12/5/06 5:34 PM Page 60

just can’t return a value — only a Function can do that. However, you can
use arguments as one method for modifying information by using a Sub (see
the example in the upcoming “Writing Your First Function” section). A second
method relies on global variables (see the example in the later “Defining the
effects of scope” section).

Many VBA users also use the Sub as a means of breaking up code. Instead of
creating code that goes on for miles and miles, using several Subs can break
up the code into page-sized pieces. Using this method makes the code a lot
easier to read.

Using Functions
You might not see a use for the Function after spending some time working
with the Sub. However, not every problem is a screw requiring the use of a
screwdriver or a nail in search of a hammer. You use a Function for different
problems than a Sub can answer. In most cases, there’s definitely a correct
answer to using a Function or a Sub. For example, you always use a Sub
when you want to access program code from within the host application, and
you always use a Function when you want to perform a calculation with a
return result.

A Function always returns a value, which makes it different from a Sub.
For this reason, you can write functions that contain code that you plan to
repeat a lot within a program. To process a list of names, you might create a
Function to process each name individually and then call that Function
once for each name. The Function can provide the processed information
as a return value. In Chapter 5, I describe how to create repeating code using
structures such as Do...Until.

You can also use a Function for public code that you don’t want to list in
the Macro dialog box. You normally don’t see a Function listed in the Macro
dialog box — this dialog box usually lists only Subs.

Modifying the project settings
So far, you’ve used VBA without configuring many of the options, and the
examples have relied on defaults that VBA normally uses. Most of the VBA
program levels have some type of configuration, including the project. In this
section, I describe the various project-setting options.

61Chapter 3: Writing Structured VBA Programs

08_046500 ch03.qxp 12/5/06 5:34 PM Page 61

To open the project settings, right-click the project in the Project Explorer
window and then choose the Project Properties option from the context
menu that appears. You see the Project Properties dialog box, shown in
Figure 3-7. See the “Looking at the Integrated Development Environment
(IDE)” section of Chapter 1 for a description of the Project Explorer window.
(Note that I’ve already filled out the various options that I describe in the fol-
lowing sections.)

Describing your project
Describing your project makes it easier to track when you view it in the VBA
IDE windows. Start by giving your project a meaningful name. It shouldn’t be
long, but calling your project VBAProject isn’t very meaningful because it
doesn’t describe what the project does. The Project Name field, shown in
Figure 3-7, has a meaningful project name for this chapter because the exam-
ples show how to add structure to your programs.

Although the Project Name field value shows up in a number of places, the
Project Description field value shows up only in Object Browser. You can
write a longer text description of the project so that it’s easier to track each
entry that Object Browser shows. Otherwise, you might have a hard time
finding the project that you want.

Some people don’t see help files as a necessary project description, but
a help file is a detailed description of what your project can do. The Help
File Name field tells where to locate the help file and which one to use.
The Project Help Context ID field contains the number of the help topic that
relates to the project. This entry normally contains the topic number of an
overview page.

Figure 3-7:
Define basic
information

for your
projects.

62 Part II: Learning the Ropes

08_046500 ch03.qxp 12/5/06 5:34 PM Page 62

Adding conditional compilation
Conditional compilation is an essential feature for creating multiple versions
of your program. Normally, VBA goes through your list of statements and per-
forms them one at a time. However, using conditional compilations allows
VBA to perform a task in one way while you write and test the program, and
in another way when you finish it.

The most common use for this feature is to help debug a program. In Chapter 6,
I show you how to use conditional compilation to debug your application.
However, for now, just to have a little fun, you can create a very simple
program that shows how this feature works. First, make sure that you
type myDebug = 0 in the Conditional Compilation Arguments field and
then click OK. Then type the following program in a module (see the
“Step 2: Implement the design” section of Chapter 2 for instructions on
creating a module):

Public Sub CheckConditional()
#If myDebug = 0 Then

MsgBox “In Standard Mode”
#Else

MsgBox “In Debug Mode”
#End If

End Sub

This program says that if myDebug is set to 0, the program should display a
message box that reads In Standard Mode. If myDebug is set to any other
value, the program should display a message box that reads In Debug
Mode. Run the program, and you should see a message box that reads In
Standard Mode.

63Chapter 3: Writing Structured VBA Programs

Avoiding code-locking security issues
One consideration for code locking is that it can
provide a false sense of security. Although code
locking keeps novice users from modifying your
code, it doesn’t keep out dedicated crackers. The
Internet contains offerings from many vendors
who offer to unlock your Office documents for
you when you lose the password. Unfortunately,

the same application that can help you retrieve
your documents when you forget the password
can also give crackers access to it. The best
policy to follow is to use code locking when you
need to protect novice users from themselves,
rather than as a means for protecting your
investment in the code itself.

08_046500 ch03.qxp 12/5/06 5:34 PM Page 63

Open the Project Properties dialog box again. Change the Conditional
Compilation Arguments field so that it reads myDebug = 1. Click OK and then
run the program again. The program displays a message box that reads In
Debug Mode.

Locking your code
At some point, you might decide that you want to lock away your code
forever so that no one can modify it. The Protection tab of the Project
Properties dialog box, shown in Figure 3-8, helps you accomplish this task.
Simply select the Lock Project for Viewing check box, and then supply the
same password in both the Password and Confirm Password fields. Click OK
to complete the process.

Locking your project might seem like a good idea, but you should carefully
consider whether to do so, for a number of reasons. The most important
reason is that you can’t unlock the project without the password. If you
forget the password, the project might remain locked forever. The second
reason is that locking your project doesn’t prevent someone from viewing
your code. The only thing that locking the project does is to prevent some-
one from modifying the code. Consequently, when you need to hide the code
for some reason, VBA isn’t the best tool for the job. (If hiding your code is
essential, you need a native code compiler, such as Visual C++, or a product,
such as Visual Studio Tools for Office [VSTO], that can integrate managed
code solutions with Office products.)

Figure 3-8:
Locking

your code
can keep it

safe from
prying eyes.

64 Part II: Learning the Ropes

08_046500 ch03.qxp 12/5/06 5:34 PM Page 64

Defining compiler options
When you first start VBA, it makes certain assumptions about how you want
to write code. These assumptions might not be accurate, so Microsoft pro-
vides a way for you to tell VBA to do something else. The compiler options
listed in Table 3-1 help you define how VBA works with your code. (A compiler
reads your code and translates the words into instructions that Windows can
understand.) You can add these options at the very beginning of a module,
class module, or form, before any other code appears.

Table 3-1 Compiler Options for VBA
Option Description

Option Base Use this option to change how VBA numbers array
<Number> elements. You can number array elements beginning at

0 or 1. In Chapter 9, I describe how to use arrays.

Option Explicit Smart VBA programmers always add this compiler option
to their code. This option tells VBA that you want to
define variables before you use them. This option not only
makes your code easier to read, but can also help you
find typos in your code. Although the standard setting
treats MyVar and MVar as two variables, this option
forces VBA to question the misspelled version.

Option Compare Use this option to change how VBA compares strings.
<Method> When you’re using the Binary technique, VBA considers

hello and Hello different because the first form is in low-
ercase. Using the Text method means that VBA considers
hello and Hello as the same word because it doesn’t take
into consideration the case of the letters. The Database
technique, which is available only in Access, uses the
database sort order for string-comparison purposes.

Option Private Use this option to make a module private so that no other
Module module can see what it contains. The concept of public

and private is the object’s scope. The upcoming section
“Getting the Scoop on Scope” describes in greater detail
what scope means.

The Option Explicit statement is so important that you should always
add it to a program. Listing 3-1 is a short example of how this feature works.

65Chapter 3: Writing Structured VBA Programs

08_046500 ch03.qxp 12/5/06 5:34 PM Page 65

Listing 3-1 Using Option Explicit to Reduce Errors

‘ Tell VBA to ensure we define variables.
Option Explicit

‘ This Sub will fail because it doesn’t
‘ define the variable.
Public Sub OptionCheck()

MyVar = “Hello”
MsgBox MyVar

End Sub

‘ This Sub will succeed.
Public Sub OptionCheck2()

‘ Define the variable.
Dim MyVar As String

‘ Add a value to the variable.
MyVar = “Hello”

‘ Display a message box.
MsgBox MyVar

End Sub

In both cases, the Sub defines a value for a variable named MyVar. The
OptionCheck Sub fails because it doesn’t define the variable before it uses
it. VBA doesn’t know anything about MyVar, so it can’t use it. Look at the
second Sub, OptionCheck2. This Sub works because it defines MyVar first
and then assigns a value to it. Although using the Option Explicit state-
ment might seem like a lot of work, it really does save time spent debugging
typos in your program.

Taking the Lego Approach
It’s easy to make writing a program harder than it needs to be by getting caught
up in the abstract nature of code. The biggest mistake that you can make is to
write one long program that goes on for pages and pages that no one can
understand — not even you. Code that looks more like a copy of War and
Peace rather than a simple set of instructions is usually called spaghetti code.

The Lego approach to writing code is one in which the programmer breaks up
the program into easily understood modules and writes just one module at a
time. Using this approach helps you write code that is easy to modify later
and that most people can understand with ease. The Lego approach also
makes it easy for you to move pieces of code when writing another program.

66 Part II: Learning the Ropes

08_046500 ch03.qxp 12/5/06 5:34 PM Page 66

Creating an application plan
In Chapter 2, I describe how to use pseudo-code to write a program. The pro-
gram in that chapter uses only one module because it’s quite simple. Not
every program that you create is that simple. Sometimes a program performs
complex tasks, and you need to create an overview, or application plan, first.
Think of the Lego approach again: Each block is separate, but you don’t get
the whole picture until you put the blocks together. The application plan
shows how to put the blocks together to get a particular result. You have
three sizes of blocks that you can use:

� Projects

� Modules, forms, and class modules

� Sub-procedures and functions

Think about the writing of a VBA program this way: You have a pile of
blocks, and you have a picture of what you want to create in your mind.
To make the creation a reality, you choose and add blocks that look like
they fit. You can choose standard blocks from this book, the VBA help
file, or online sites, such as FreeVBCode.com at http://www.
freevbcode.com/.

You can use a number of techniques to create your application plan. I usually
start with a list of major tasks, such as printing a report or finding a word.
This isn’t pseudo-code. You’re not writing a procedure for VBA to follow.
All that you’re thinking about are the major tasks that VBA has to perform.
Maybe your program performs only one major task. In that case, you might
be able to get by with a single project, module, and sub-procedure, like in the
example in Chapter 2.

67Chapter 3: Writing Structured VBA Programs

Understanding the Lego approach
I call the method that I describe in this chapter the
Lego approach because most people are familiar
with this toy and it’s an easy way to explain good
programming technique. Some people use other
names for this kind of programming. You might

hear it called modular programming, for example,
because it relies on modules to hold individual
pieces of code. Don’t confuse all these terms with
object-oriented programming, which I describe
in Chapter 8.

08_046500 ch03.qxp 12/5/06 5:34 PM Page 67

Defining the project
You may never need to define more than one project for a program. This is espe-
cially true of Access and Excel projects, in which everything needed to hold
the data appears in one file in most cases. You can also place everything that
you need into a single Word template if this is the only template that you
need and the program is appropriate for use with more than one document.

However, think about Word for a moment, and you discover something about
projects. Figure 3-9 shows a typical Project Explorer window setup. Notice
that this window contains three projects: Normal, Project (Document1), and
TemplateProject (LETTER).

Word always loads the Normal template. (This template can have one of a
number of different extensions, including DOT, DOTX, and DOTM in Office
2007.) Older versions of Word always use the Document Template (DOT)
extension. Word 2007 can also use Microsoft’s new XML format (DOTX) or
macro-enabled format (DOTM). If you want to create macros for Word 2007,
the best file format to use for compatibility is the DOT file, but you get the
greatest flexibility and feature set by using the DOTM file. You can’t store
macros in the DOTX file.

You can also use a custom template. Custom templates contain special for-
matting and macros for a particular document type, such as a letter. As with
the Normal template, custom templates come with DOT, DOTX, and DOTM
extensions. You can never store macros in a DOTX file.

Finally, you also have the document, which also counts as a project. A docu-
ment can have a DOC, DOCX, or DOCM file extension. You can store macros
only in the DOC and DOCM file formats. In this case, I wrote a program for
the individual document that uses template-specific sub-procedures and

Figure 3-9:
A single
program

can span
more than

one project.

68 Part II: Learning the Ropes

08_046500 ch03.qxp 12/5/06 5:34 PM Page 68

functions in the Letter template as well as generic utility sub-procedures
and functions in the Normal template. You can see this example in Chapter 13.
You might run into some situations like this when you create your Word
programs, too.

Another situation in which you use multiple projects is when you create pro-
grams in which multiple applications have to work together. I have a program
for Word that asks CorelDRAW to import a drawing and convert it into a form
that Word can use. Word receives the converted drawing and places it in the
current document. Word then asks Access to look up the drawing in a data-
base. Access performs this task and returns a description of the drawing to
Word, which then formats the description and places it under the drawing in
the current document. If I had to perform this whole loop every time that I
needed a drawing, it would take 20 minutes per drawing. My Word VBA pro-
gram can perform the task in less than a minute, and the results are perfect
every time.

Defining the program means figuring out how many building blocks you need
in order to accomplish a task. You can take the simple approach and use just
one project for many programs. However, don’t make life difficult. If you need
to use multiple projects, VBA makes it easy to use them.

Adding a module
Most of your beginning programs use a single module. However, good design
begins with module definitions. You could create a huge module called utility
that contains every utility program you’ve ever written, but it would be a
mess. It’s like the overstressed dresser drawer that hides the tie tack or other
jewelry that you want to wear tonight: After you throw out all the contents of
the drawer into the room, you finally find the one item that you were looking
for. Instead of creating a single utility module, try creating a module for disk
utilities and another for data manipulation. Be unique! Try arranging your
modules to see what works best.

When your programming skills improve, you might want to interact with the
user in some way. You might want to ask the user questions, for example.
This task requires that you add a form to your program. Every form that you
want to create requires a separate form addition to the program. Make sure
that you create forms that ask for one kind of information — don’t confuse
the user by asking for all kinds of unrelated information on one form. (See
Chapter 7 for a description of forms and how to use them.)

Working with objects means using classes. To create a special object, add a
class module to your application. As when you’re adding forms, you should
add one class module for every new object that you want to create. Make
sure that any object that you create performs only one task. (Chapter 8
demonstrates methods for working with objects.)

69Chapter 3: Writing Structured VBA Programs

08_046500 ch03.qxp 12/5/06 5:34 PM Page 69

Designing procedures
Most of the example programs in this book rely on a single project and a
single module. You might find that most (if not all) of your programs rely on
just one of each of these blocks, too. When using this strategy, think about
how to break your program into sub-procedures and functions. Use the infor-
mation found in the earlier “Using Subs” and “Using Functions” sections in
this chapter to determine which kind of module to use.

The important thing when working at the sub-procedure and function levels
is to write code in convenient chunks. Use your sub-procedures and func-
tions as containers to hold a certain kind of task. Think again about Legos.
Every Lego is an individual unit. You need to write sub-procedures and func-
tions so that you can break them apart easily — making each element an
individual unit. The examples in this book show you various methods for
breaking your code apart because this skill is one of the most important in
programming.

It’s easy to figure out how to break apart simple code. The MsgBox function
that you’ve used so often is a good example. Look at how this function works:
You send some information to it, and the function takes care of all the details
for displaying the message box onscreen. You don’t have to worry about how
MsgBox accomplishes this task, and there aren’t any weird conditions for
using MsgBox.

Writing statements
After all the other organization is complete, you’re left with one or more pro-
jects that contain one or more modules that contain at least a sub-procedure.
All your Legos are put together, but they’re empty. The statements that you
write ultimately create the program. All the organization makes the task of
writing the statements easier because you need to concentrate on only one
task at a time.

In Chapter 2, I emphasize the importance of using an organized approach to
writing statements. You begin by creating a pseudo-code procedure, and
then you change that pseudo-code into statements that VBA can understand.
This process provides two levels of organization for your program: code and
documentation. However, there are two other forms of organization. In the
upcoming “Creating Readable Code” section, I describe the importance of using
white space to make your code readable. In the upcoming “Telling Others
about Your Code” section, I show how to use comments to describe how your
code works.

70 Part II: Learning the Ropes

08_046500 ch03.qxp 12/5/06 5:34 PM Page 70

Writing Your First Sub
Most Microsoft Office products provide a Properties dialog box, similar to
the one shown in Figure 3-10, that contains a Summary tab for documents.
You can also find a variation of this Properties dialog box for most third-party
products. The Summary tab can provide a lot of valuable information for
your programs. You can find out basic statistics, such as the author’s name
and the company that created the document. The document information also
includes statistics, such as the number of words that the document contains.
See the BuiltinDocumentProperties help topic in the VBA help file for addi-
tional information.

Unfortunately, Office 2007 products that rely on the Ribbon interface hide
the Properties dialog box. The following steps describe how to display the
Properties dialog box shown in Figure 3-10:

1. Click the Office button to display the Office menu.

2. Choose Finish➪Properties.

The Office product displays the standard proprieties list.

3. Click Standard.

You see an Advanced option on the drop-down list that appears.

4. Click Advanced.

The Properties dialog box shown in Figure 3-10 appears.

Figure 3-10:
Many

applications
include a
Summary

tab, like
this one.

71Chapter 3: Writing Structured VBA Programs

08_046500 ch03.qxp 12/5/06 5:34 PM Page 71

This is the first example where you work directly with an object. The property
that you want to use is BuiltinDocumentProperties. This property is
available for most of the Microsoft Office products, but it’s attached to a dif-
ferent object in each one. When using Word, you find this property attached
to both the Word.Document and Word.Template objects. Excel users find
the property attached to the Excel.Worksheet object. Use Object Browser
(press F2 to display Object Browser, if necessary), which I discuss in Chapter 1,
to find this property for your product. Type BuiltinDocumentProperties in
the Search text field and then click Search. Figure 3-11 shows typical results
for Excel.

Notice the text at the bottom of Figure 3-11. The information includes the full
object name for the property, which comes in handy when you write the code
shown in Listing 3-2. Here’s the code that you need in order to create this
example in Excel. Change the ActiveWorkbook object to the object that
your application supports, such as Document or Template in Word, when
using another application.

Listing 3-2 Getting Author Information from a Document

Public Sub GetSummary()
‘ Declare a DocumentProperty object to hold the
‘ information.
Dim MyProperty As DocumentProperty

‘ Set the DocumentProperty object equal to the author
‘ information.
Set MyProperty = _

Figure 3-11:
The docu-
mentation
often tells
you about

an interest-
ing property

but not
where to

find it.

72 Part II: Learning the Ropes

08_046500 ch03.qxp 12/5/06 5:34 PM Page 72

ActiveWorkbook.BuiltinDocumentProperties(“Author”)

‘ Display a message box containing the property value.
MsgBox MyProperty.Value, vbOKOnly, “Author Name”

End Sub

This example begins by declaring a variable named MyProperty. However,
MyProperty is different from other variables because it’s actually an object.
This is a DocumentProperty object that can hold any document property,
including the author or company name.

The next line of code sets MyProperty equal to the author information pro-
vided by the BuiltinDocumentProperties(“Author”) object. You can
set one object equal to another if they’re the same kind of object. It’s like
looking at two apples: You can say that one apple is like another, but you
can’t say that an apple is like an orange. In this case, you’re storing the
author information located in MyProperty in the
BuiltinDocumentProperties(“Author”) object.

If a line of code is too long, you can continue it on the next line in VBA by
adding an underscore, _, like the one shown in the code example. The under-
score is a continuation character. You should add a continuation character
when the text onscreen requires scrolling. It’s easier to read the code if you
don’t have to scroll from side to side.

The last line of code displays the Value property of the MyProperty object.
VBA already knows how to work with other variables that you have seen. An
object usually requires special handling. In this case, you ask MyProperty
what its value is and display it in a message box.

Run this program to see a dialog box containing the name of the document
creator. In most cases, the creator is you. Try changing the Author field entry,
shown in Figure 3-10, to something else. The output of the program changes
to match whatever you type in this field.

Writing Your First Function
The example in the preceding “Writing Your First Sub” section is nice (refer
to Listing 3-2), but you might want more than one piece of information. VBA
users commonly rely on functions to perform repetitive tasks (see the earlier
“Using Functions” section). That’s what the example in this section shows.

Listing 3-3 uses a Sub named GetSummary2 to call the GetDocProperty
sfunction multiple times. In every case, a special variable stores the result.
At the end of the program, GetSummary2 displays all the information that
the program has accumulated.

73Chapter 3: Writing Structured VBA Programs

08_046500 ch03.qxp 12/5/06 5:34 PM Page 73

Listing 3-3 Using a Function to Retrieve Document Information

Public Sub GetSummary2()
‘ Declare a string to hold the output information.
Dim DocumentData As String

‘ Store the name of the information.
DocumentData = “Author Name: “

‘ Get the author name.
DocumentData = DocumentData + GetDocProperty(“Author”)

‘ Add an extra line.
DocumentData = DocumentData + vbCrLf

‘ Store the name of the information.
DocumentData = DocumentData + “Company: “

‘ Get the company name.
DocumentData = DocumentData +

GetDocProperty(“Company”)

‘ Display a message box containing the property value.
MsgBox DocumentData, vbOKOnly, “Summary”

End Sub

Private Function GetDocProperty(Name As String) As String
‘ Declare a DocumentProperty object to hold the
‘ information.
Dim MyProperty As DocumentProperty

‘ Set the DocumentProperty object equal to the author
‘ information.
Set MyProperty = _

ActiveWorkbook.BuiltinDocumentProperties(Name)

‘ Return the information.
GetDocProperty = MyProperty.Value

End Function

Listing 3-3 begins with GetSummary2. Much of what you see looks simi-
lar to previous examples. However, notice how the code works with
DocumentData. The example builds the text output by adding the previous
content of the string to itself. So, first DocumentData contains “Author
Name: “, and then you add the actual author name to it by using
GetDocProperty.

Another new addition is the use of a constant. The vbCrLf constant contains
special characters that act the same as when you press Enter at the end of a
line of text in a word processor.

74 Part II: Learning the Ropes

08_046500 ch03.qxp 12/5/06 5:34 PM Page 74

The GetDocProperty function introduces several new ideas. The first idea
is a return value. Functions can return a value to the caller. The second idea
is the use of an argument. An argument is input to a Sub or Function. In this
case, Name is the input to the GetDocProperty function.

The actual code within the GetDocProperty function looks the same as the
example in the earlier “Writing Your First Sub” section. However, in this case,
the code uses Name (a variable) as input to ActiveWorkbook.Builtin
DocumentProperties instead of as a constant. Also, notice that the code
makes the function equal to the MyProperty.Value property. This is how
you return a value to the caller.

Getting the Scoop on Scope
You might think that the concept of scope is confusing and difficult to under-
stand because you think that it’s complex. Actually, scope is simply the range
of what a program can see and how much it lets others know. When you look
at the MsgBox function, you care about the inputs that you provide and the
output that the function produces. These are the public (or visible) elements
of the MsgBox function. You don’t care too much about what happens inside
the MsgBox function even though this information is important to the MsgBox
function itself. These inner workings — the ones that you can’t see — are the
private (or invisible) elements of the MsgBox function.

There are two reasons that scope is important to you as a VBA user. First, if
every part of a program could see every other part of a program, chaos would
result because there would be too much information to track. Second, programs
have to protect their data to ensure that it doesn’t get damaged in some way.
In short, you want to make some parts of your program visible so that people
can use them, but leave other parts invisible so that they remain protected.

Understanding the purpose of scope
You’ve seen two keywords used for all the Sub and Function examples so
far: Public and Private. These two keywords can affect other elements as
well. You can use them to define the scope of variables or of classes. Scope
has an effect on just about every kind of programming element that you use
in this book, so it’s important to understand how scope works:

� Public: Tells VBA that it should allow other program elements to see
the affected elements

� Private: Tells VBA that it should hide the affected elements from other
programming elements

75Chapter 3: Writing Structured VBA Programs

08_046500 ch03.qxp 12/5/06 5:34 PM Page 75

Defining the effects of scope
The best way to learn about scope is to begin working with it. You can experi-
ment with simple uses of scope to see how a change in scope affects your
programs. The most important rule is that scope only affects everything out-
side the current block. That’s right: The Lego example works here, too. (See
the earlier section “Taking the Lego Approach.”)

Making a module private by adding Option Private Module at the begin-
ning of the module means that everything in that module is invisible to the
outside world. Even if the module contains a Public Sub, only the other
elements inside the module can see it — the Public Sub is invisible to
everything outside the module. Likewise, when you’re declaring a Private
Sub, everything within the current module can still see it, but nothing out-
side the current module can.

Listing 3-4 demonstrates some of the basic elements of scope. Other exam-
ples in the book refine this concept, but this is a good starting point.

Listing 3-4 Using Global Variables

‘ Declare a private global variable.
Private MyGlobalVariable As String

Public Sub GlobalTest()
‘ Set the value of the global variable.
MyGlobalVariable = “Hello”

‘ Display the value.
MsgBox MyGlobalVariable

‘ Call the GlobalTest2 Sub.
GlobalTest2

‘ Display the value on return from the call.
MsgBox MyGlobalVariable

End Sub

Private Sub GlobalTest2()
‘ Show that the global variable is truly global.
MsgBox MyGlobalVariable

‘ Change the value of the global variable.
MyGlobalVariable = “Goodbye”

End Sub

76 Part II: Learning the Ropes

08_046500 ch03.qxp 12/5/06 5:34 PM Page 76

Notice that MyGlobalVariable is private. You can’t access this global vari-
able outside the current module. However, both of the sub-procedures in this
module can access the global variable.

As another example, GlobalTest is a public Sub, but GlobalTest2 is pri-
vate. To verify the use of scope in this case, open the Macro dialog box by
using the Tools➪Macro➪Macros command. You see GlobalTest listed, but
GlobalTest2 doesn’t appear in the list.

Type and run the example code in Listing 3-4 to see how the two Sub elements
affect each other. You should see three dialog boxes. The first dialog box
reads Hello because GlobalTest sets the value of MyGlobalVariable.
The second dialog box also reads Hello because MyGlobalVariable is
truly global. Even though the value of this variable was set in GlobalTest,
GlobalTest2 can read it. Finally, the third dialog box reads Goodbye
because GlobalTest2 has set MyGlobalVariable to another value.

Creating Readable Code
You might have noticed how the examples in this chapter use white space to
make the code more readable. If you type all the statements for your program
one right after the other, the code still works. VBA doesn’t care about white
space. However, you might care because code without white space is nearly
unreadable.

Most VBA users rely on two kinds of white space. You’ve seen the first type in
this chapter. Notice that every comment and statement pair in the code is fol-
lowed by a blank line. This blank line tells anyone reading the code that he
has reached the end of this particular statement or step in the procedure.

The second kind of white space is indention. The examples in this chapter
indent the code within a Sub or Function to make the body of the Sub or
Function clear.

Telling Others about Your Code
The pseudo-code technique that I describe in Chapter 2 is a good way to start
documenting your code. However, at some point, you need to add informa-
tion because simply reading the procedure presented by the pseudo-code
might not be enough. You might want to add your name, a project title, and
other forms of documentation to your code.

77Chapter 3: Writing Structured VBA Programs

08_046500 ch03.qxp 12/5/06 5:34 PM Page 77

Writing basic comments
Comments can take a number of forms. The pseudo-code comment is the first
kind of comment that everyone writes because it’s the kind of comment that’s
most natural to use. Developers quickly move on to adding documentation
comments, such as who wrote the program or when it was originally written
and a list of updates made to code. Some developers move on to better com-
ments at this point.

One of the more important comments that you can add to your code is why
you chose to write the program in a certain way. Simply saying that the code
performs a specific task isn’t enough because you can usually perform the
same task in several different ways. Telling why you made certain choices
can reduce mistakes during code updates and serve as reasons for perform-
ing updates later, when your coding technique improves.

As a good programmer, you should also include mistakes that you make in
the code as comments if you think that someone else might make the same
mistake. These experiential comments have helped me in many situations
because I actually end up using them for notes. When I start a new project,
I look back at my notes for things that I should avoid.

Knowing when to use comments
Use comments wherever and whenever you think that you need them. You
might think that comments are difficult to type and include only one or two
paltry comments for each program that you write. You’re correct — writing
good comments can be time consuming and can be difficult because writing
them makes you think yet again about the code. However, the programs with
the fewest comments usually generate the most head scratching during an
update. In fact, I’ve seen a few situations where the lack of comments in code
actually caused a company to start writing the code from scratch during an
update rather than pay someone to spend the time relearning what the old
code meant.

Understanding how to create
a good comment
A good comment is one that you can understand. Don’t use fancy terms —
write everything in plain terms that you can understand. When you feel that
you need to explain something, feel free to do it. Good comments should
answer the six essential questions: who, what, where, when, why, and how.
Make sure that your comments are complete and that they fully answer any
questions that someone reading your code might have.

78 Part II: Learning the Ropes

08_046500 ch03.qxp 12/5/06 5:34 PM Page 78

Chapter 4

Storing and Modifying
Information

In This Chapter
� Using variables in programs

� Using constants in programs

� Working with various data types

� Changing data by using operators

� Designing a report for Excel

In this chapter, I refine the concept of a variable by describing variable
types and how you can modify their content. Understanding how a com-

puter stores information is very important. Computers don’t see information
the same way that you do — many methods of representing information that
seem obvious to you are invisible to the computer.

As far as the computer is concerned, everything is a series of bits that it has
to move around. Data types were invented, sometimes by trial and error, to
make the bits easier for humans to understand. For example, when you see
the letter C on the display, all that the computer sees is a series of 8 bits
that form a special number. Interpretation of this number as the letter C is
for your benefit. Understanding that everything is a series of bits makes this
chapter easier to understand.

When you begin to realize that you’re in control — that you decide how to
organize and interpret the bits the computer is moving around for you —
you’ve taken a large step in understanding how VBA works. VBA helps you
tell the computer how you want the bits moved around. In the following sec-
tions, I describe various ways in which you can interpret and modify the bits
that the computer stores for you.

09_046500 ch04.qxp 12/5/06 5:54 PM Page 79

Understanding Variables and Constants
VBA provides many levels of data interpretation. Some data interpretations
help you make your program reliable, others make it run faster, still others
provide accuracy, and a few make the data easier to interpret. One of the two
big distinctions is between variables and constants. You can modify a variable
anytime the program can actually access it. A constant, however, retains the
same value all the time. You use variables as storage containers for data that
changes, and you use constants for data that doesn’t change. Variables are
more flexible than constants are, but constants make your program run
faster, so each type of storage has its place.

Making the declaration
All data in a VBA program looks like a series of bits to the computer. The
computer doesn’t understand the difference between a constant and a
variable — VBA provides this distinction for your benefit. You use different
methods to mark variables and constants in your program.

Variables have a scope and a data type. See the “Defining the Data Types” sec-
tion, later in this chapter, for data type descriptions and how to use them. See
the “Getting the Scoop on Scope” section of Chapter 3 for scope issues. Declare
variables with both scope and data type so that VBA knows how to work with
them. Constants can also have a scope, but they don’t have a data type associ-
ated with them. A special constant type, #Const, lets you define conditional
constants — those that help you tell the compiler how to compile an applica-
tion. Listing 4-1 shows some examples of variable and constant declarations.

Listing 4-1 Examples of Variable and Constant Declarations with Scope

Option Explicit

‘ This variable is visible to other modules.
Public MyPublicVariable As String
‘ This variable is visible only to this module.
Private MyPrivateVariable As String
‘ Using Dim is the same as making the variable private.
Dim MyDimVariable As String

‘ A constant is only used for conditional compilation.
#Const MyConditionalConstant = “Hello”
‘ This constant is visible to other modules.
Public Const MyPublicConstant = “Hello”
‘ This constant is visible only to this module.
Private Const MyPrivateConstant = “Hello”

Public Sub DataDeclarations()

80 Part II: Learning the Ropes

09_046500 ch04.qxp 12/5/06 5:54 PM Page 80

‘ Only this Sub can see this variable.
Dim MyDimSubVariable As String

‘ Only this Sub can see this constant.
Const MySubConstant = “Hello”

End Sub

Begin by looking at the variables in Listing 4-1. The example includes three
declarations, along with their associated comments. Always include com-
ments with your declarations so that you know what purpose the variable
serves. The variable declarations rely on Public and Private for scope
as well as on a data type keyword following the variable name to define the
data type. All the variables in this example are strings (or text), but VBA
supports many other data types. Using the Dim keyword makes a variable
private. However, actually using the word Private is clearer, so that’s what
you should use in your code.

The next three declarations in Listing 4-1 are for constants. Notice that the first
constant declaration is for conditional compilation. This kind of declaration
always uses the #Const keyword. You can use this declaration in place of the
Conditional Compilation Arguments field entry (see the “Adding conditional
compilation” section of Chapter 3 for details). You can’t define this type of con-
stant as private or public because VBA hides the value from other modules.

The other two kinds of constant declaration do rely on Public or Private
for scope. Notice that you do include the keyword Const to mark the value
as a constant. The constant has a name and a value assigned to it. However,
notice that it doesn’t have a data type because you can’t assign a data type
to a constant. VBA stores constants as a series of bits by using the type of
the information that you provide. Because you can never change the value
of a constant, the question of data type isn’t important. The fact that a con-
stant doesn’t have a data type is one reason that it improves application per-
formance and is more efficient to store.

The next section of Listing 4-1 contains a Sub that includes both a constant
and a variable declaration. Variables or constants defined within a Sub or
Function are private to that Sub or Function. Consequently, VBA requires
that you use the Dim keyword in this case. Notice that the constant still
includes the Const keyword but lacks a Private or Public keyword for
the same reason.

Knowing which storage type to use
At first, it might seem like you should always use variables so that you can
always access the data and change it. Variables do provide flexibility that

81Chapter 4: Storing and Modifying Information

09_046500 ch04.qxp 12/5/06 5:54 PM Page 81

constants don’t provide, and you can use variables more often than not to
store your data. However, constants also have distinct advantages, including

� Speed: Using constants can make your application faster. Constants
require less memory, and VBA can optimize your program to perform
better when you use them.

� Reliability: Constants have a reliable value. If a constant has a specific
value when you start the program, that value remains until the program
ends.

� Ease of reading: Most VBA users rely on constants to make their pro-
grams easier to read. The vbCrLf constant shown in the examples in
Chapter 3 is the same no matter how many programs you create. Every
developer who sees this constant knows that VBA adds what amounts
to pressing Enter (adding a carriage return and line feed combination)
when you use the constant in an application.

There are other reasons to use constants in place of variables. For example,
Object Browser makes it easy to work with constants. Whenever you high-
light a constant in Object Browser, you see the value associated with that
constant, as shown in Figure 4-1. Notice that the entry at the bottom of
Object Browser tells you that the highlighted entry is a public constant
with a value of “Hello”.

Figure 4-1:
Use con-
stants to
provide

quick
access to
standard
values in

Object
Browser.

82 Part II: Learning the Ropes

09_046500 ch04.qxp 12/5/06 5:54 PM Page 82

To see this constant for yourself, load the code example for this chapter. You
can download the code from the Dummies.com Web site at http://www.
dummies.com/go/vbafd5e. Choose View➪Object Browser or press F2 to dis-
play Object Browser. Select DataTypes in the Library field, as shown in Figure
4-1. Highlight <globals> in the Classes list, and highlight MyPublicConstant in
the Members list.

Even though you don’t need to know about them now, VBA supports one
additional constant type: enumerated constants. An enumerated constant
provides a list of values, and you select one value from the list to use in your
application. The “Using enumerated constants” section of Chapter 8 demon-
strates the use of this constant type. Enumerated constants help document
objects that you create and make them easier to use. Using enumerated con-
stants also reduces the potential for error when someone uses an object that
you create.

Defining scope
Listing 4-1 demonstrates that variable and constant scope rules work about
the same. Always use Private to keep a variable or constant hidden from
the outside world. Use Public to provide access to the variable or constant
outside the current module. Any variable or constant that you define within a
Sub or Function is always private to that Sub or Function. See the “Getting
the Scoop on Scope” section of Chapter 3 for additional information.

Defining the Data Types
A data type is a method of defining data to make it easier to work with in a
program. The computer still sees the data as a series of bits, but VBA works
with different data types in different ways. The computer can see the binary
value, 1000001b, but it doesn’t do anything special with that value. VBA can
see this binary value as the number 65 or the letter A depending on the data
type that you assign to the value. The data type is important in understand-
ing the value and working with it. Using a data type also ensures that the
program follows certain rules. Otherwise, the data could become corrupted
because the program could mishandle it.

Although a variable in general is simply a box for storing data, you can think
of these data types as special boxes for storing specific kinds of data. Just
as you would use a hatbox to store a hat and not a car engine, you use these
special box types to store particular kinds of data. For example, you use a
string to hold text, not logical (true/false) values.

VBA supports a number of standard data types, including Byte, Boolean,
Integer, Long, Currency, Decimal, Single, Double, Date, String,

83Chapter 4: Storing and Modifying Information

09_046500 ch04.qxp 12/5/06 5:54 PM Page 83

Object, and Variant. In addition to using the defined data types, you
can create user-defined data types so that you can mark the information as
needed for your program. A user-defined data type gives you the power to
extend the VBA interpretation of data. (The computer still looks at the data
as binary information.) Each of the data type descriptions that follows has a
different purpose, and you can work with the data type in a variety of ways.

Using strings for text
The first data type that I discuss in this chapter is one that you’ve already
seen in the message box examples: the string. When you create a message
box, you use a string as input. The string is the most useful and most-often
used data type in VBA.

In this chapter, I discuss only the essential string functions. VBA provides a
rich set of string manipulation functions. You can discover more about these
functions in the Working with Strings help topic. (Always access VBA help
topics from within the VBA Integrated Development Environment [IDE] by
using the Help➪Microsoft Visual Basic Help command or by pressing F1.)

Understanding strings
Programmers often use fancy terms for things that the average person easily
recognizes. Strings are simply text, just like the text that you’re reading now.

A string is a sequence of characters. The characters aren’t always printable
but can include control characters that determine how the text appears
onscreen. A string can also include special characters, such as punctuation,
or even special features, such as a circumflex or an umlaut. Although a string
can contain all these elements, the main content of a string is always text.

Adding strings together with + or &
Sometimes you’ll want to concatenate two or more strings to make a longer
string. Concatenation is the process of adding strings together. For example,
you might want to add a person’s first name to their last name to create their
full name. Often, you need to take information from more than one place and
join it together to create a new kind of information. You’ll see many examples
of concatenation as the book progresses.

Concatenation is so important that VBA provides a number of ways to do it.
The two most popular methods are using the + (plus sign) or the & (amper-
sand) symbol. Here are examples of both concatenation techniques:

MyVar = “A” & “B”
MyVar = “A” + “B”

84 Part II: Learning the Ropes

09_046500 ch04.qxp 12/5/06 5:54 PM Page 84

In most cases it doesn’t matter whether you use the + or the &. The & is the
traditional symbol, so you’ll see it used most often. However, it’s important to
realize that the + and & aren’t precisely the same, even though they normally
work the same. When in doubt, use the &.

The + is actually a math operation; it adds two items together. When you add
two strings, VBA concatenates them as long as there are actually two values
to add. Using the + symbol can help you achieve a performance benefit, espe-
cially when you need to add many strings together. The performance benefit
occurs because VBA performs fewer checks.

The & is the safer symbol and the one you should use in situations where the
+ doesn’t work. For example, when you try to add a string that contains infor-
mation to a string that doesn’t contain anything (a null string), the result is a
null string. (You must use the Variant data type to create a null string; dis-
cover more about this data type in the “Working with variant data” section of
the chapter.) However, when you concatenate the two strings by using the &,
the result is a string with a blank (for the null) attached.

You must also use the & when you want to place text within an Excel or other
application calculation. Using = “Hello” + “Goodbye” results in an error,
but using = “Hello” & “Goodbye” concatenates the two strings.

Use of the + assumes that the two data types are the same or that you’re adding
a string to a Variant that contains a string. The Variant data type can contain
anything or nothing (null). You must use & to concatenate dissimilar data types,
such as a string to a number.

Sometimes you’ll use the & and the + together to achieve a particular result. For
example, you might experience a situation where you don’t know in advance
whether a particular variable will contain a null or a string. An address might
contain a second address line, or it might contain a null value. If you use & for
all of the concatenation tasks, the output will contain a blank line. However,
using the + correctly displays the data without a blank line. Listing 4-2 shows
an example of how to use & and + together.

Listing 4-2 Adding versus Concatenating Strings

Public Sub AddVersusConcatenate()
‘ Create three strings for testing.
Dim Address1 As String
Dim Address2 As Variant
Dim OtherInfo As String

‘ Place a value into the strings.
Address1 = “123 First Street”
OtherInfo = “Somewhere, NV 12345”

(continued)

85Chapter 4: Storing and Modifying Information

09_046500 ch04.qxp 12/5/06 5:54 PM Page 85

Listing 4-2 (continued)

‘ Place a Null value into the second address line.
Address2 = Null

‘ Concatenate the string to a null.
Dim ConString As String
ConString = Address1 & vbCrLf & _

Address2 & vbCrLf & _
OtherInfo

‘ Display the result. You see a blank line for the
‘ null.
MsgBox ConString

‘ Add the string to a null.
Dim AddString As String
AddString = Address1 & vbCrLf & _

(Address2 + vbCrLf) & _
OtherInfo

‘ Display the result. You see no blank line.
MsgBox AddString

‘ Show that the results are correct when Address2
‘ contains a value.
Address2 = “Apt 3G”
AddString = Address1 & vbCrLf & _

(Address2 + vbCrLf) & _
OtherInfo

MsgBox AddString
End Sub

When you run this code, the first MsgBox call displays the output with a
blank line between Address1 and OtherInfo because Address2 is Null.
However, the second MsgBox call displays the data correctly because it relies
on + for concatenation.

Now that you’ve seen the first two cases showing a Null value, it’s time to
see what happens when Address2 contains a string. The code places a value
into Address2, re-creates the AddString value, and displays the message
box again. This time, the Address2 value appears between Address1 and
OtherInfo, just as it should.

The + can improve performance in other ways. For example, when you need to
check for a null in a variable, you can use the + instead of the & to improve per-
formance. Because of the way + works, you don’t need to use the IsNull()
function to verify that a variant contains a null value before you process it.

86 Part II: Learning the Ropes

09_046500 ch04.qxp 12/5/06 5:54 PM Page 86

Using character codes
Strings can contain a number of elements. In previous examples, I show you
strings that contain control character constants such as vbCrLf. This con-
stant actually contains two control characters: a carriage return and a line
feed. The carriage return sends the cursor back to the beginning of the line;
the line feed places the cursor on the next line. The result of using both con-
trol characters together is the same as pressing Enter on the keyboard.

Strings can also use a special function, Chr, to create special characters. You
can combine this function with the Character Map utility (normally available
on the Start➪Programs➪Accessories menu) to produce any character that
you need for your program. Figure 4-2 shows a typical Character Map display.
(Vista doesn’t include Character Map in the list of applications. To access
Character Map in Vista, choose Start➪Run. Type Charmap in the Open field
of the Run dialog box and click OK.)

When you hover the mouse over a character, the balloon help displays the
Unicode character number in hexadecimal or base 16 (see the upcoming
“Defining hex and octal values” section for details). Selecting the character
displays the Unicode number in the lower-left corner of the Character Map
dialog box and displays the character in a larger size. Listing 4-3 shows the
Chr function in use.

Listing 4-3 Creating Special Characters

Public Sub ShowCharacter()
‘ Declare the string.
Dim MyChar As String

(continued)

Figure 4-2:
Character
Map dis-

plays all the
printable

characters
available

for a
particu-
lar font.

87Chapter 4: Storing and Modifying Information

09_046500 ch04.qxp 12/5/06 5:54 PM Page 87

Listing 4-3 (continued)

‘ Tell what type of character the code displays.
MyChar = “Latin Capital Letter A with Circumflex: “

‘ Add the character.
MyChar = MyChar + Chr(&HC2)

‘Display the result.
MsgBox MyChar, vbOKOnly, “Special Character”

End Sub

This program displays a capital letter A with a circumflex when you run it.
Notice how the code uses the Chr function. The hexadecimal value from
Character Map appears as &HC2. The &H denotes a hexadecimal value, and
the C2 is the number of the character.

You can also get the Unicode number for a special character. A program
might use this number to ensure that the string actually contains the
requested value. The Asc function converts any single character into its
numeric equivalent. Listing 4-4 shows an example of the Asc function.

Listing 4-4 Getting the Numeric Value of a Character

Public Sub GetCharacter()
‘ Declare the output variables.
Dim MyChar As String
Dim CharNum As Integer

‘ Add the special character to MyChar.
MyChar = Chr(&HC2)

‘ Determine the Unicode number for the character.
CharNum = Asc(MyChar)

‘ Display the result as a decimal value.
MsgBox “Character “ + MyChar + _

“ = Decimal Value “ + CStr(CharNum), _
vbOKOnly, _
“Special Character Decimal Value”

End Sub

The program shows that the capital letter A with a circumflex has a decimal
value of 194. This value equates to the hexadecimal value of C2h shown in
the code. Note that when you see a lowercase h follow a number, the number
is a hexadecimal value. VBA always writes hexadecimal numbers with a lead-
ing &H, such as &HC2. This program also includes the CStr function, which
accepts an expression, such as a number, as input and outputs a string. See
the upcoming “Defining hex and octal values” section for more information
on the CStr function.

88 Part II: Learning the Ropes

09_046500 ch04.qxp 12/5/06 5:54 PM Page 88

Removing excess space
Some strings come with extra baggage in the form of spaces that you don’t
need. The spaces can appear at either end of the string or at both ends. VBA
provides three essential functions for removing excess space:

� LTrim: Removes the excess spaces from the left side of the string

� RTrim: Removes the excess spaces from the right side of the string

� Trim: Removes excess spaces from both ends of the string

You can combine these three functions with other string functions to pro-
duce specific information. Listing 4-5 shows the LTrim, RTrim, and Trim
functions in action. It also demonstrates how to combine these three func-
tions with other functions to produce new information.

Listing 4-5 Removing Spaces from a String

Public Sub RemoveSpace()
‘ Declare a string with spaces.
Dim IStr As String

‘ Declare an output string.
Dim Output As String

‘ Add a string to IStr
IStr = “ Hello “

‘ Show the original string length.
Output = “Original String Length: “ + CStr(Len(IStr))

‘ Get rid of the spaces on the left.
Output = Output + vbCrLf + _

“LTrim Length: “ + CStr(Len(LTrim(IStr))) + _
“ Value: “ + Chr(&H22) + LTrim(IStr) +

Chr(&H22)

‘ Get rid of the spaces on the right.
Output = Output + vbCrLf + _

“RTrim Length: “ + CStr(Len(RTrim(IStr))) + _
“ Value: “ + Chr(&H22) + RTrim(IStr) +

Chr(&H22)

‘ Get rid of all the extra spaces.
Output = Output + vbCrLf + _

“Trim Length: “ + CStr(Len(Trim(IStr))) + _
“ Value: “ + Chr(&H22) + Trim(IStr) +

Chr(&H22)

‘ Display the result.
MsgBox Output, vbOKOnly, “Trimming Extra Spaces”

End Sub

89Chapter 4: Storing and Modifying Information

09_046500 ch04.qxp 12/5/06 5:54 PM Page 89

The program begins by creating a string that has extra spaces on both ends.
It then performs four steps to create an output string that demonstrates the
various string features. The first step determines the current string length by
using the Len function. However, the Len function outputs a number, so the
code uses the CStr function to convert the number to a string. Notice how
the Len function acts as input to the CStr function. You can nest functions
like this to produce special effects.

The three function strings work the same. The code first computes the
output string size and places it in the Output string. It then removes
the excess spaces and places this value into the Output string as well.

Notice that the code uses Chr(&H22) in several places. This function and
value produce a double quote. Because VBA uses the double quote to show
the beginning and end of a string value, this is one of the few ways that you
can add a double quote to your string. In this case, the double quote shows
the beginning and end of the string so that you can better see the space
removal feature.

Getting the data you need
Strings can contain more information than you actually need or can contain
it in a form that you can’t use. You might use a string to provide storage
for several pieces of information that you need to send to another location.
When the string arrives at its destination, the receiving program unpacks the
individual data elements from the string.

All these actions rely on some form of parsing, which is the act of removing
and interpreting sub-elements from a storage element, such as a string. You
can create a single string that contains Hello World and separate it into
two pieces, Hello and World, by using parsing. A program could store
these separate elements and use this technique for various purposes.

The three functions that you use to extract information from a string are
Left, Right, and Mid. As their names suggest, you use the first to extract
the left side of the string, the second to extract the right side, and the third
to extract the middle. These three functions require location information and
input on where to start and stop extracting information. You use the InStr
and InStrRev functions to find this information. Listing 4-6 shows some of
the techniques that you can use to parse a string.

Listing 4-6 Finding Information in Strings by Using Parsing

Public Sub ParseString()
‘ Create a string with elements the program can parse.
Dim Mystr As String

‘ Create an output string.
Dim output As String

90 Part II: Learning the Ropes

09_046500 ch04.qxp 12/5/06 5:54 PM Page 90

‘ Fill the input string with data.
Mystr = “A string to parse”

‘ Display the whole string.
output = “the whole string is: “ + Mystr

‘ Obtain the first word.
output = output + vbCrLf + “The First Word: “ + _

Left(Mystr, InStr(1, Mystr, “ “))

‘ Obtain the last word.
output = output + vbCrLf + “The Last Word: “ + _

Right(Mystr, Len(Mystr) - InStrRev(Mystr, “
“))

‘ Obtain the word string.
output = output + vbCrLf + “The Word String: “ + _

Trim(Mid(Mystr, _
InStr(1, Mystr, “string”), _
Len(Mystr) - InStr(1, Mystr,

“to”)))

‘Output the result.
MsgBox output, vbOKOnly, “parsing a String”

End Sub

The code begins by creating two variables: one to hold the input data and
a second to hold the output data. The input string has a simple phrase that
code can parse. The first parsing task is easy: Locate the first word in the
phrase. To perform this task, the Left function retrieves text starting at
the first character and continuing until the first space. The InStr function
returns the position of the first space as a number.

The second parsing task is more complicated. The Right function returns
the right end of the string. The InStrRev function returns the number of
characters from the beginning of the string to the last space. The Len func-
tion returns a value of 17 (the length of the string), and InStrRev returns
12 (the number of characters from the beginning of the string to the last
space). The result is 5. Count the number of letters in Parse (the last word in
the string) — it contains five characters. The Right function returns Parse
in this case.

The third parsing task is to look for the word String in MyStr. The example
code shows that you can perform nesting as needed. The nesting begins
with the Trim function, which removes any extra characters. The Mid func-
tion requires three arguments for this example. The first is the string that
you want to work with. The second is the starting position. Notice that the
code uses the InStr function, but it searches for String and not a space this
time. The third is the length of the string. The length of the string is still 17,

91Chapter 4: Storing and Modifying Information

09_046500 ch04.qxp 12/5/06 5:54 PM Page 91

and the position of To within the string is 10, for a total of 7 characters. The 7
characters include the word String and the space that follows, which is the
reason for using the Trim function.

Using numbers for calculations
Numbers form the basis for a lot of the information computers store. You
use numbers to perform tasks in a spreadsheet, to express quantities in a
database, and to show the current page in a document. Programs also use
numbers to count things such as loops, to determine the position of items
such as characters in a string, and to check the truth value of a statement.
Finally, VBA uses numbers in myriad ways, such as determining which
character to display onscreen or how to interact with your code.

Understanding the numeric types
You look at numbers as a single entity — a number is simply a number. The
computer views numbers in several different ways. The reason for this diver-
sity of viewpoints is that the processor actually works with different kinds of
numbers in different places: one for integer values (those without a decimal
point) and another for floating-point values (those with a decimal point). At
one time, the math coprocessor that was used to work with money and num-
bers with decimal points was a separate chip within the computer. Today a
single processor performs both integer and floating-point (real) number cal-
culations. The four basic number types include

� Integer: This is a number without a decimal. An integer can hold any
whole number, such as 5, but not a number with a decimal, such as 5.0.
Although these two numbers are the same, the first is an integer, and the
second isn’t.

� Real: A real number is one that contains a decimal point. The decimal
portion doesn’t have to contain a value. The number 5.0 is a perfectly
acceptable real number. A real number is stored in a completely differ-
ent format than an integer. (The storage technique only matters to the
processor — you don’t need to know it to use VBA.)

� Currency: Financial calculations usually require special accuracy. Even
a small error can cause problems. The currency numeric type stores
numbers with extreme precision but at an equally large cost in both
processing time and memory use.

� Decimal: Computers normally store information by using a base 2, or
binary, format. You use a base 10, or decimal, format for working with
numbers. Small errors can occur when converting from one numbering
system to the other and accumulate to create huge errors. The decimal
numeric system stores numbers in a simulated base 10 format, which
eliminates many computing errors. However, this system requires more
memory and processing time than any other numeric type.

92 Part II: Learning the Ropes

09_046500 ch04.qxp 12/5/06 5:54 PM Page 92

Computers also determine a numeric type based on the amount of memory
that the data requires. VBA supports three integer types, including Byte (1
byte of storage), Integer (2 bytes of storage), and Long (4 bytes of storage).
The extra memory stores larger numbers: 0 to 255 for Byte; –32,768 to 32,767
for Integer; and –2,147,483,648 to 2,147,483,647 for Long. See the Data Type
Summary help topic for additional details. Listing 4-7 is an example that demon-
strates various data types.

Listing 4-7 Demonstrating the Differences in Data Type Ranges

Public Sub DataRange()
‘ Declare the numeric variables.
Dim MyInt As Integer
Dim MySgl As Single
Dim MyDbl As Double
Dim MyCur As Currency
Dim MyDec As Variant

‘ Define values for each variable.
MyInt = 30 + 0.00010001000111
MySgl = 30 + 0.00010001000111
MyDbl = 30 + 0.00010001000111
MyCur = 30 + 0.00010001000111
MyDec = CDec(30 + 0.00010001000111)

‘ Display the actual content.
MsgBox “Integer:” + TwoTab + CStr(MyInt) + _

vbCrLf + “Single:” + TwoTab + CStr(MySgl) + _
vbCrLf + “Double:” + TwoTab + CStr(MyDbl) + _
vbCrLf + “Currency:” + vbTab + CStr(MyCur) + _
vbCrLf + “Decimal:” + TwoTab + CStr(MyDec), _
vbOKOnly, _
“VBA Data Types”

End Sub

The first few variable types use standard declarations. However, notice that
you can’t declare the decimal data type directly — you must declare it as a
Variant in VBA. See the upcoming “Working with variant data” section for
more information about the Variant type. The code assigns each variable
the same value. Notice that the code must use the CDec function to insert a
decimal value into the Variant.

The output shown in Figure 4-3 demonstrates something interesting about
the numeric data types. Each type silently dropped any decimal data that it
couldn’t hold. This is just one of many reasons why you have to carefully
consider the numeric data type that you use.

Defining hex and octal values
Using base 10 numbers is natural. You usually don’t worry about anything
other than base 10 numbers. However, computers use base 2, or binary,
numbers. The switch in the circuitry is either on or off — 1 or 0.

93Chapter 4: Storing and Modifying Information

09_046500 ch04.qxp 12/5/06 5:54 PM Page 93

Working in binary is quite difficult because even small numbers require many
digits. Using either octal (base 8) or hexadecimal (base 16) numbers is easier,
so computers group the output of their switches to work in these two bases,
even though the computer itself still sees just binary numbers. Both octal
(also abbreviated as oct) and hexadecimal (also called hex) convert directly
to base 2. The binary bit positions convert easily to these other two bases, so
VBA doesn’t even support binary numbers directly.

Generally, the need to work with other bases is obvious. The VBA documenta-
tion might provide values in hex for you to use in your program. You might have
to convert a number from one base to another because a program supports only
a specific base. Your program might also rely on flags, which are essentially on
or off indicators based on the value of a specific bit within a number.

Most people don’t work well with other bases of numbers. We just don’t
use them often enough. To keep yourself from going crazy, you can use
the calculator that comes with Windows. Switch to scientific mode by using
the View➪Scientific command. Figure 4-4 shows what the Calculator program
looks like. To convert a number by using this program, click the initial base of
the number (Hex, Dec, Oct, or Bin), type any number that you need to convert
to another base into the input area, and then click the base that you want to
see as output. The result is shown in the input area where you typed the orig-
inal number.

Figure 4-4:
The

Calculator
provides

a fast and
easy method

for
converting

between
numeric

bases.

Figure 4-3:
Seeing

the actual
content of

the numeric
types

demon-
strates

their range.

94 Part II: Learning the Ropes

09_046500 ch04.qxp 12/5/06 5:54 PM Page 94

VBA also provides a number of helpful functions and formatting features that
you can use to work with other bases. Listing 4-8 is an example of all these
features in action.

Listing 4-8 Converting between Numeric Bases

Public Sub ShowBase()
‘ Define the three number bases.
Dim OctNum As Integer
Dim DecNum As Integer
Dim HexNum As Integer

‘ Define an output string.
Dim Output As String

‘ Assign an octal number.
OctNum = &O110

‘ Assign a decimal number.
DecNum = 110

‘ Assign a hexadecimal number.
HexNum = &H110

‘ Create a heading.
Output = vbTab + vbTab + vbTab + “Oct” + _

vbTab + “Dec” + _
vbTab + “Hex” + vbCrLf

‘ Create an output string.
Output = Output + “Octal Number:” + _

vbTab + vbTab + Oct$(OctNum) + _
vbTab + CStr(OctNum) + _
vbTab + Hex$(OctNum) + _
vbCrLf + “Decimal Number:” + _
vbTab + vbTab + Oct$(DecNum) + _
vbTab + CStr(DecNum) + _
vbTab + Hex$(DecNum) + _
vbCrLf + “Hexadecimal Number:” + _
vbTab + Oct$(HexNum) + _
vbTab + CStr(HexNum) + _
vbTab + Hex$(HexNum)

‘ Display the actual numbers.
MsgBox Output, _

vbInformation Or vbOKOnly, _
“Data Type Output”

End Sub

The code begins with three integers. It then assigns values to each of these
integers. Notice that the octal number is set by using the &O prefix (that’s the
letter O and not a zero), and the hex number is set by using the &H prefix.

95Chapter 4: Storing and Modifying Information

09_046500 ch04.qxp 12/5/06 5:54 PM Page 95

This example also adds a new constant to your list. The vbTab constant
adds a tab character to the output string. (See the Visual Basic Constants
help topic for a complete list of VBA constants.) Notice that this example
provides both a header and some data in the dialog box, which shows how
to display data in a tabular format.

Whenever you want to convert a number to a string, you need to use a con-
version function. This example shows the three common conversion func-
tions for octal (Oct$), decimal (CStr), and hex (Hex$) numbers. Run this
program to see how the functions interact. Notice that you can see the header
and each of the numbers in different bases.

Performing conversions between numbers and strings
Most display features, such as the MsgBox function and forms, require
strings, even for numbers. When you work with numeric data, you convert
the data to a string. The preceding “Defining hex and octal values” section
shows some techniques for converting numbers to strings (and vice versa),
but this example is only the beginning. Listing 4-9 demonstrates some of the
essential string-to-number and number-to-string conversion functions.

Listing 4-9 Converting between Numbers and Strings

Public Sub NumberConvert()
‘ Create some variables for use in conversion.
Dim MyInt As Integer
Dim MySgl As Single
Dim MyStr As String

‘ Conversion between Integer and Single is direct
‘ with no data loss.
MyInt = 30
MySgl = MyInt
MsgBox “MyInt = “ + CStr(MyInt) + _

vbCrLf + “MySgl = “ + CStr(MySgl), _
vbOKOnly, _
“Current Data Values”

‘ Conversion between Single and Integer is also direct
‘ but incurs data loss.
MySgl = 35.01
MyInt = MySgl
MsgBox “MyInt = “ + CStr(MyInt) + _

vbCrLf + “MySgl = “ + CStr(MySgl), _
vbOKOnly, _
“Current Data Values”

‘ Conversion between a String and a Single or an
‘ Integer can rely on use of a special function. The
‘ conversion can also incur data loss.
MyStr = “40.05”

96 Part II: Learning the Ropes

09_046500 ch04.qxp 12/5/06 5:54 PM Page 96

MyInt = CInt(MyStr)
MySgl = CSng(MyStr)
MsgBox “MyInt = “ + CStr(MyInt) + _

vbCrLf + “MySgl = “ + CStr(MySgl), _
vbOKOnly, _
“Current Data Values”

‘ Conversion between a Single or Integer and a String
‘ can rely on use of a special function when making a
‘ direct conversion. The conversion doesn’t incur any
‘ data loss.
MyInt = 45
MySgl = 45.05
MyStr = MyInt
MsgBox MyStr, _

vbOKOnly, _
“Current Data Values”

‘ You must use a special function in mixed data
‘ situations.
MyStr = “MyInt = “ + CStr(MyInt) + _

vbCrLf + “MySgl = “ + CStr(MySgl)
MsgBox MyStr, _

vbOKOnly, _
“Current Data Values”

End Sub

The code begins by declaring an Integer, a Single (a real number), and a
String. Although the code relies on these three data types, the principles
shown apply to any of the data types. Notice that you can perform direct
conversion between numeric types without relying on a function. An integer
value can always convert to a real number without data loss. Be careful about
going the other way, though, because you can run into problems with data
loss. The conversion process drops the decimal value but uses proper round-
ing, as do the CInt and CLng functions.

Conversion from a string to a numeric value might not require the special
functions shown in the code. Use the conversion functions, as shown (CInt
for Integer conversion and CSng for Single conversion), to ensure that
VBA converts the data correctly. Try changing the source code so that it
reads MyInt = MyStr — it works as normal in this case, but this behavior
isn’t guaranteed.

The code also shows that you can assign a numeric value directly to a string
as long as that’s the only assignment that you make. Always use the correct
conversion function when you work with mixed data types. Read the Type
Conversion Functions help topic to see other data conversion functions.

97Chapter 4: Storing and Modifying Information

09_046500 ch04.qxp 12/5/06 5:54 PM Page 97

Using Boolean values to make decisions
The Boolean type is the easiest to use and understand. This type is used to
indicate yes or no, true or false, and on or off. You can use this type to work
with any two-state information. It’s commonly used to represent data values
that are diametrically opposed. Chapter 5 shows how to use Boolean values
to make decisions. Listing 4-10 shows several conversion techniques that you
can use with Boolean values.

Listing 4-10 Making Decisions with Boolean Values

Public Sub BooleanCheck()
‘ Create a Boolean data type.
Dim MyBool As Boolean

‘ Set MyBool to True
MyBool = True

‘ Display the native value.
MsgBox “MyBool = “ + CStr(MyBool), _

vbOKOnly, _
“Native Value”

‘ Display the numeric value.
MsgBox “MyBool = “ + CStr(CInt(MyBool)), _

vbOKOnly, _
“Numeric Value”

‘ Make MyBool equal to a number. Only the number
‘ 0 is False; everything else is True.
MyBool = CBool(0)
MsgBox “MyBool = “ + CStr(MyBool), _

vbOKOnly, _
“Converted Numeric Value”

End Sub

The code begins by declaring a Boolean variable and setting its value. As with
numeric variables, you can assign a Boolean variable directly to a string as
long as that’s the only thing that you do. When working in a mixed data type
environment, such as the one shown in the code, you must use the appropri-
ate function (such as CStr) to perform the conversion.

The Boolean type isn’t numeric — it’s logical . . . simply a decision value.
You can convert it to a number, as shown in the example code. The value is
always -1 for True values and 0 for False values.

VBA also lets you convert a numeric value to a Boolean type by using the
CBool function shown in the code. Any value that you store in the Boolean,
other than 0, equates to True. Converting the Boolean back to a number
still shows -1 for True values and 0 for False.

98 Part II: Learning the Ropes

09_046500 ch04.qxp 12/5/06 5:54 PM Page 98

Using scientific values for math calculations
VBA provides a number of math functions normally used for scientific calcu-
lations. You can use the Atn, Cos, Sin, and Tan functions for trigonometric
calculations. The Abs and Sgn functions help you work with the sign of a
number. Listing 4-11 shows some of the math functions in action.

Listing 4-11 Performing Scientific Calculations

Public Sub ScientificCalcs()
‘ Define an input value.
Dim MyInt As Integer
MyInt = 45

‘ Create an output string.
Dim Output As String

‘ Display the trigonometric values for a 45 degree
‘ angle.
MsgBox “The original angle is: “ + CStr(MyInt) + _

vbCrLf + “Arctangent is: “ + CStr(Atn(MyInt)) +
_
vbCrLf + “Cosine is: “ + CStr(Cos(MyInt)) + _
vbCrLf + “Sine is: “ + CStr(Sin(MyInt)) + _
vbCrLf + “Tangent is: “ + CStr(Tan(MyInt)), _
vbOKOnly, _
“Trigonometric Values”

‘ Change the sign of the number using Sgn and Int.
‘ Add the value to Output each time.
Output = “The sign of 0 is: “ + CStr(Sgn(0))
MyInt = -45
Output = Output + vbCrLf + _

“The sign of “ + CStr(MyInt) + “ is: “ + _
CStr(Sgn(MyInt))

MyInt = Abs(MyInt)
Output = Output + vbCrLf + _

“The sign of “ + CStr(MyInt) + “ is: “ + _
CStr(Sgn(MyInt))

MsgBox Output, vbOKOnly, “Using Sgn and Abs”
End Sub

The code begins by defining an input value. The VBA documentation leads
you to believe that you can use a Double only as input to the trigonometric
functions. This example shows that you can use any numeric type as long as
the value that it contains is correct. The code builds an output string for the
first message box by using the various trigonometric functions.

The second portion of the example begins by showing the output of the
Sgn function when you supply a value of 0. The output is 0 to show that the
number is neither positive nor negative. The input value is set to a negative

99Chapter 4: Storing and Modifying Information

09_046500 ch04.qxp 12/5/06 5:54 PM Page 99

value for the next part of the Output string construction, so the Sgn function
returns -1. Finally, the code uses the Abs function to remove the sign from
MyInt and calls on Sgn once again to show that the value is indeed positive.

The Math Functions help topic contains more information on the math func-
tions that VBA supports. The Derived Math Functions help topic contains
additional examples of how to combine the math functions to produce spe-
cific results.

Using currency values for
money calculations
Money usually requires special handling on a computer because you don’t
want to introduce rounding or other errors. Even small incremental errors
can result in large errors if they accumulate over time. The Currency data
type provides special handling for money calculations but at a slight perfor-
mance hit because the Currency data type requires additional memory and
processing cycles.

Along with the Currency data type, VBA provides a number of special func-
tions for calculating common monetary values. These are the same special
functions available to you in your Excel spreadsheet. For example, you still
have access to the Pmt function. The main concern when working with
monetary values in a VBA program is to ensure that you use the Currency
data type as needed. Listing 4-12 shows how the Currency data type and the
Pmt function work together.

Listing 4-12 Working with Monetary Values

Public Sub ShowPayment()
‘ Create the required variables. All non-monetary
‘ values use the Double type to ensure accuracy. The
‘ monetary values use the Currency data type.
Dim Rate As Double
Dim Periods As Double
Dim PresentValue As Currency
Dim FutureValue As Currency

‘Calculate the monthly payment on a mortgage.
Rate = 0.005 ‘ 6 Percent divided by 12

Months
Periods = 60 ‘ 5 years
PresentValue = 120000 ‘ $120,000.00 loan
MsgBox CStr(Pmt(Rate, Periods, PresentValue)), _

100 Part II: Learning the Ropes

09_046500 ch04.qxp 12/5/06 5:54 PM Page 100

vbOKOnly, _
“Mortgage Output”

‘ Calculate the monthly payments required to build
‘ a savings account to 120000.
Rate = 0.0025 ‘ 3 Percent divided by 12

Months
Periods = 240 ‘ 20 years
PresentValue = -5000 ‘ $5,000 current savings.
FutureValue = 120000 ‘ $120,000.00 savings in 20

years
MsgBox CStr(Pmt(Rate, Periods, PresentValue, _

FutureValue)), _
vbOKOnly, _
“Savings Output”

End Sub

The code shows two examples. The first determines the minimum amount
that you would need to pay each month on a 5-year loan of $120,000.00 com-
pounded at a 6 percent interest rate. The second example shows how much
you would need to pay into a savings account each month to have $120,000.00
saved at 20 years when starting with $5,000 in the account and a 3 percent
interest rate from the bank. Running the example shows that the mortgage pay-
ment is $2,319.94 per month and that the savings rate is $337.79 per month.

Using date and time values
Tracking time and date in your program can be important. Client contact entries
in Access usually require the date that the client was last contacted. A spread-
sheet might require dates for each entry in a ledger. It’s helpful to include
dates in Word documents so that you know the last time that someone
accessed or changed it. You might need to know how long a task takes or
have an indicator of when time has elapsed.

Both date and time variables rely on the Date data type. This data type con-
tains both date and time information. However, you can separate the informa-
tion as needed. You can also assign date and time independently to the variable
by using the Date and Time functions or assign both date and time by using
the Now function. These are the same functions that you use to perform this
task within a spreadsheet.

As with a spreadsheet, you can work with time values individually. Listing
4-13 demonstrates various time functions. Notice that you can control indi-
vidual elements, making it easy to change just what you need.

101Chapter 4: Storing and Modifying Information

09_046500 ch04.qxp 12/5/06 5:54 PM Page 101

Listing 4-13 Keeping Track of the Time

Public Sub ShowTime()
‘ Create a time variable.
Dim MyTime As Date

‘ Obtain the current time.
MyTime = Time

‘ Display the hours, minutes, and seconds.
MsgBox “The current time is: “ + _

vbCrLf + “Hours: “ + CStr(Hour(MyTime)) + _
vbCrLf + “Minutes: “ + CStr(Minute(MyTime)) + _
vbCrLf + “Seconds: “ + CStr(Second(MyTime)), _
vbOKOnly, _
“Current Time”

End Sub

VBA provides access to the whole time value by using the Time function.
You can also use the Hour, Minute, and Second functions for specific infor-
mation. Not shown in the example is how you can set the current time by
using Time on a line by itself and supplying a time value such as Time =
#1:0:0# (for 1 a.m.). In this case, Time acts as a property rather than as a
statement and accepts input in any valid format, such as #1 PM# for 1 p.m.
(or 1300 military time). Notice that time and date values always appear
within the # symbol rather than with the double quotes used for strings.

Using dates is similar to using time in a program. Listing 4-14 demonstrates
that you can use the Date function directly instead of placing the information
in a variable. The listing also shows how to set the date (provided that you
have sufficient security rights on the workstation that you use).

Listing 4-14 Displaying Date Values

Public Sub ShowDate()
‘ Create a date variable.
Dim MyDate As Date

‘ Obtain the current date.
MyDate = Date

‘ Set the date.
Date = #1/1/1980#

‘ Display the Day, Month, and Year.
MsgBox “The current date is (DD/MM/YYYY): “ + _

CStr(Day(Date)) + “/” + _
CStr(Month(Date)) + “/” + _
CStr(Year(Date)), _
vbOKCancel, _
“Modified Date”

102 Part II: Learning the Ropes

09_046500 ch04.qxp 12/5/06 5:54 PM Page 102

‘ Reset the date.
Date = MyDate

‘ Display the Day, Month, and Year.
MsgBox “The current date is (DD/MM/YYYY): “ + _

CStr(Day(MyDate)) + “/” + _
CStr(Month(MyDate)) + “/” + _
CStr(Year(MyDate)), _
vbOKCancel, _
“Actual Date”

End Sub

The code begins by creating MyDate and using it to store the current date
information. The next step is to change the date by using Date as a property.
As when you’re using Time, you can modify Date by using any valid date
format. You must have sufficient security to perform this task. If the program
fails, ask your network administrator whether you have time- and date-setting
privileges. The code creates a message box to demonstrate that the date change
actually occurred. You can verify this change by looking at the clock area of
the Taskbar Notification area.

After you click OK, the code continues by resetting the date to its original
value. Again, the code displays a message box to show that the change has
actually occurred. Notice how the code relies on the Day, Month, and Year
functions to display both message boxes.

Working with variant data
The earlier “Understanding the numeric types” section demonstrates one
use of the Variant data type: A Variant can hold any data type, including
objects. The earlier “Adding strings together with + or &” section shows
another use of the Variant data type: Variant variables can hold nothing
(a null value) or a string. A program can use a Variant when VBA doesn’t
provide direct support for a data type (such as the Decimal type); when the
type of information that the program user will provide is unknown when you
write the program; or when the native data type doesn’t support a certain
kind of storage, such as a null string. In short, a Variant is the universal
data type for VBA.

VBA does track the data type of the Variant variables that you create. In
Chapter 6, I demonstrate how you can see this information while debugging
the program. The data type names begin with Variant and end with the
native data type. Thus, a Date stored in a Variant would appear as a
VariantDate data type.

103Chapter 4: Storing and Modifying Information

09_046500 ch04.qxp 12/5/06 5:54 PM Page 103

You can also use the Variant type as a means for data conversion. Place a
date within a Variant, such as 1/1/80, and you can convert it to a String
or an Integer. The Integer value for this date normally appears as 29221
when using the default Windows settings. You can use the Integer value as
input to the Date function to convert the number back into a Date and then
place the result back into the Variant.

About now, you may think that the Variant data type is the best data type
to use for all situations, and it’s definitely the right choice in many situations.
However, all of the added functionality that the Variant data type supports
comes with a price. Variant variables consume more memory than any
other data type because the Variant data type must support all data types
equally well. In addition, the Variant data type slows application perfor-
mance because VBA must first discover how to interact with the Variant
variable. Because a Variant variable is essentially undefined, you’ll also find
it harder to debug applications that use them, and the VBA automation won’t
work as well with Variant variables. Many security problems that you could
locate using other data types are completely hidden when using Variant
variables because the data type plays a part in making your applications
more secure (for example, you can’t place a string in a number). In short,
the Variant data type does solve a host of problems, but adds a significant
number of problems of its own.

Presenting data in a pleasing format
Most programs can use the default formatting that VBA provides for output.
However, you might need some way to present the data in another way, such
as a short or long date (04/24/06 or 24 April 2006). It’s important to know how
to format data so that you can create astounding reports and concise analysis.

Using the Format function
The Format function is the most common way to change the appearance of
data. This function accepts any valid expression as input. You can also supply
an expression that defines how to format the data. The Named Date/Time
Formats help topic describes predefined formats for date and time, and the
Named Numeric Formats help topic describes numeric formats. Listing 4-15
demonstrates some of the common, named formats for time and date.

Listing 4-15 Changing the Format of a Date

Public Sub FormatDemo()
‘ Create the date variable.
Dim MyDate As Date

104 Part II: Learning the Ropes

09_046500 ch04.qxp 12/5/06 5:54 PM Page 104

‘ Fill MyDate with the current date and time.
MyDate = Now

‘ Display the date using standard formats.
MsgBox “Standard Format =” + vbTab + CStr(MyDate) + _

vbCrLf + “Long Date =” + vbTab + _
Format(MyDate, “Long Date”) + _
vbCrLf + “Short Time =” + vbTab + _
Format(MyDate, “Short Time”), _
vbOKOnly, _
“VBA Named Formats”

End Sub

The program displays the standard date/time format, the long date format,
and the short time format. You get the raw format by using the CStr function.
The Format function requires the MyDate variable and a string containing
the named format as input.

Creating custom formatting
Named formats don’t always provide the output that you need. In these cases,
you can create your own formatting by using custom strings. The elements of
these strings are described in three help topics: User-Defined Date/Time
Formats, User-Defined Numeric Formats, and User-Defined String Formats.
(Press F1 in the VBA IDE to access help.) Listing 4-16 shows how you can
create a custom date-and-time string.

Listing 4-16 Defining a Custom Date Format

Public Sub CustomFormatDemo()
‘ Create the date variable.
Dim MyDate As Date

‘ Fill MyDate with the current date and time.
MyDate = Now

‘ Display the date using standard formats.
MsgBox “Custom Date/Time = “ + _

Format(MyDate, “dd mmmm yyyy Hh:Nn:Ss”), _
vbOKOnly, _
“VBA Custom Formats”

End Sub

The essential difference in this example is the string input for the Format func-
tion. This example tells VBA that you want a date/time display that uses a day
with a leading 0, the full month name, and a four-digit year. The time appears as
hours, minutes, and seconds — all of which have a leading 0 when needed.

105Chapter 4: Storing and Modifying Information

09_046500 ch04.qxp 12/5/06 5:54 PM Page 105

Working with other formatting functions
VBA provides four custom formatting functions: FormatNumber,
FormatDateTime, FormatCurrency, and FormatPercent. These
functions don’t do anything that you can’t do with the Format function. The
reasons why some VBA users rely on these functions is that their names make
clearer the purpose of the formatting and using them requires less typing.

All four functions return a string, just like the Format function. The only
input that you must provide is the expression that you want formatted. The
default settings return a formatting string that relies on the regional settings
that the user has set for the computer. You can override these settings by
specifying the optional arguments provided for each function.

Working with Operators
Operators determine how VBA works with two variables and what result it
produces. The examples in this chapter use operators to add numbers and
concatenate (add) strings. In both cases, your code uses the + operator to
perform the task. However, the result differs. When you’re using numbers,
the result is a summation, such as 1 + 2 = 3. When you’re using strings,
the result is a concatenation, such as Hello + World = Hello World.
VBA groups operators into four areas:

� Arithmetic: Operators that perform math operations, such as addition
(+), subtraction (-), division (/), and multiplication (*)

� Comparison: Operators such as less than (<), greater than (>), and
equal (=) that compare two values and produce a Boolean result

� Concatenation: Operators such as & and + that are used to add two
strings together

� Logical: Operators such as Not, And, Or, and Xor that are used to per-
form Boolean operations on two variables

The Operator Summary help topic explains in detail each of these operator
categories and the associated operators. The examples in this book demon-
strate how to use the various operators, such as the + (plus) operator, shown
in Listing 4-15.

VBA also assigns operators a precedence, or order of use. When your code
contains the equation MyVal = 1 + 2 * 3, VBA performs the multiplica-
tion first and then the addition to receive a value of 7 because multiplication
has a higher precedence than addition. However, the equation MyVal = (1
+ 2) * 3 has a result of 9 because parentheses have a higher precedence

106 Part II: Learning the Ropes

09_046500 ch04.qxp 12/5/06 5:54 PM Page 106

than multiplication. The rules that VBA uses for precedence are the same
rules that you learned in math class. See the Operator Precedence help topic
for more information.

Applying What You Know to
Design an Excel Report

All the examples up to this point in the book have worked with abstract (or
demonstration) code. Abstract code is practical for presenting concepts, but
you wouldn’t actually add it to a document because it doesn’t perform useful
work. The reason that you use VBA is to accomplish useful work.

The example in this section relies on code to create an Excel report. You
begin by typing the entries shown in Figure 4-5. These entries serve as a
basis for the report.

The report contains data entries. It also has a summary when the code exe-
cutes. Listing 4-17 provides the code to use.

Figure 4-5:
The report

example
begins with
a few sim-

ple entries.

107Chapter 4: Storing and Modifying Information

09_046500 ch04.qxp 12/5/06 5:54 PM Page 107

Listing 4-17 Designing an Excel Report

Public Sub CreateReport()
‘ Create some output variables.
Dim DataSum As Integer
Dim Output As String

‘ Begin by adding data to the report.
Sheet1.Cells(3, 2) = 1
Sheet1.Cells(4, 2) = 2
Sheet1.Cells(5, 2) = 3

‘ Create a sum of the cell content.
DataSum = Sheet1.Cells(3, 2) + _

Sheet1.Cells(4, 2) + _
Sheet1.Cells(5, 2)

‘ Create an output string.
Output = “The sum of the three numbers is: “ + _

CStr(DataSum)

Sheet1.Cells(7, 1) = Output
End Sub

The code begins by declaring two variables. The first, DataSum, holds the
sum of the three data entries that the code creates. The second, Output,
contains a string that holds the report summary. The worksheets in an Excel
file are objects, just like any other object. You access the worksheet objects
by using the name assigned to them — Sheet1 in this case.

Worksheets contain Cells objects. Each Cells object uses two numbers to
identify its row and column. You can assign a value to the cell by using the =
operator as shown in the code.

It’s also possible to retrieve values from the Cells objects. The code shows
how to use this feature to create a summation of the three numbers entered
as data on the worksheet.

The last two lines of code create a summary statement that includes the sum-
mation in DataSum. Figure 4-6 shows the result of running this program.

108 Part II: Learning the Ropes

09_046500 ch04.qxp 12/5/06 5:54 PM Page 108

Figure 4-6:
The Excel

report is
simple but

demon-
strates that

you know
enough to

perform
simple
tasks.

109Chapter 4: Storing and Modifying Information

09_046500 ch04.qxp 12/5/06 5:54 PM Page 109

110 Part II: Learning the Ropes

09_046500 ch04.qxp 12/5/06 5:54 PM Page 110

Chapter 5

Creating Structured Programs
In This Chapter
� Using the If...Then statement

� Using the Select Case statement

� Using Do loops

� Using For Next loops

� Using the GoTo statement

Structures help organize your VBA code so that it can perform more tasks
more efficiently. Special statements can help organize the code so that it

accomplishes tasks based on decisions or performs the same task multiple
times. In this chapter, I demonstrate how to use the special statements used
to make decisions, perform tasks more than once, or redirect control to
another area of the program. The result of using these statements is increased
program structure, which makes controlling program execution easier.

These statements also improve program flexibility. A program that uses the
right statements can perform a wider variety of tasks and take into account
outside conditions, such as the day of the week or the current state of the
computer. Statements that control program flow are essential to writing pro-
grams that need less input from you and perform more tasks automatically.
For example, VBA can help you create Word documents that automatically
reflect special days, such as a business anniversary, or Excel reports where
VBA automatically tracks business quarters.

Exercising Control with Structures
Few programs use all the statements in the program file all the time. You
might want the program to perform one task when you click Yes and another
task when you click No. The statements for both tasks appear in the code,
but the program executes only one set of statements.

10_046500 ch05.qxp 12/5/06 5:35 PM Page 111

To control program execution, the developer adds special statements — such
as the If...Then statement — that show the beginning and end of each task
and also decide which task to execute. You might think that letting the com-
puter decide which task to execute would cause the developer to lose control
of the program. However, the developer hasn’t lost control of the program,
because the decision-making process is predefined as part of the program
design.

Most developers refer to the beginning and ending statements for a task as a
control structure because the statement combination adds control to a pro-
gram. When you see the If...Then statement with its accompanying End
If statement in code, the two statements combine to form an If...Then
structure.

Because the program contains more than one task, it has more than one path
of execution. When you add control structures, the number of execution
paths increases exponentially. For example, a program with one control
structure has two paths of execution, but a program with two control struc-
tures has four paths. As you can imagine, the task of debugging the applica-
tion becomes harder when you add control structures, so designing your
program carefully is important.

You can also nest control structures. A program might require multiple deci-
sion points to address a specific need. For example, the program might need
to decide whether you requested an apple or an orange. When you select an
apple, the program then might have to decide between a yellow, green, or red
apple. The program can’t make the second decision without the first, so the
second decision is nested within the first.

Making a Decision with the
If...Then Statement

Most programs require decision-making code. When you need to make the
same decision every time that you perform a task and the outcome of the
decision is always the same, then making the decision is something that you
can tell VBA to do for you by using the If...Then statement. Decision-
making code has several benefits:

� Consistency: The decision is made by using the same criteria and in the
same manner every time.

� Speed: A computer can make static decisions faster than humans can.
However, the decision must be the same every time, and the decision
must have the same answer set every time.

112 Part II: Learning the Ropes

10_046500 ch05.qxp 12/5/06 5:35 PM Page 112

� Complexity: Requesting that the computer make static decisions can
reduce program complexity. Fewer decisions translate into ease of use
for most people.

All forms of If...Then statements can use any expression that equates to
a Boolean value, including a variable of the Boolean data type. The term
expression refers to any equation or variable that VBA can interpret as a
means of determining when it should perform the tasks within the
If...Then structure. The expression 2 > 1 is true, so VBA would perform
the tasks within the If...Then structure. You can also use variables for an
expression such as A = B. Anything that equates to a Boolean value can be
used as an expression for the If...Then statement.

Using the If...Then statement
The If...Then statement is the simplest form of decision-making code. This
statement tells VBA to perform a task if a condition is true. If the condition
isn’t true, VBA ignores the statements within the If...Then structure.

The example in this section checks the highlighted text in a document. To
test the If...Then statement in VBA, create a Word document. Type Hello,
press Enter, and then type Goodbye. Then double-click the word Hello to
select the text. The code in Listing 5-1 shows how a simple If...Then
statement works. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing 5-1 Using an If...Then Statement for Decisions

Public Sub IfThenTest()
‘ Create a variable for the selected text.
Dim TestText As String

‘ Get the current selection.
TestText = ActiveWindow.Selection.Text

‘ Test the selection for “Hello.”
If TestText = “Hello” Then

‘ Modify the selected text to show it’s correct.
TestText = “Correct!” + vbCrLf + “Hello”

End If

‘ Test the selection for end of line.
If TestText = Chr(13) Then

‘ Modify the selected text to show the control

(continued)

113Chapter 5: Creating Structured Programs

10_046500 ch05.qxp 12/5/06 5:35 PM Page 113

Listing 5-1 (continued)

‘ character.
TestText = “End of line selected!”

End If

‘ Test the selection for a space.
If TestText = Chr(32) Then

‘ Modify the selected text to show the space.
TestText = “Space selected!”

End If

‘ Display the selected text.
MsgBox TestText

End Sub

The code begins by creating a variable to hold the selected text. It then
shows how to use a new object, ActiveWindow. The ActiveWindow object
is useful for a number of tasks, but in this case you use it to get hold of the
selected text, if any. If you don’t have any text selected, the resulting message
box may simply display an OK button without any additional information.

The first If...Then structure determines whether you select the word
Hello. If so, the statement TestText = “Correct!” + vbCrLf +
“Hello” executes. Otherwise, VBA ignores the statement and moves on to
the next test.

The second If...Then structure determines whether the cursor is at the
end of the line. This test tells you two things about selections. First, VBA
always sees at least one character selected. If you haven’t selected anything,
ActiveWindow.Selection.Text returns the next character in line.
Second, the vbCrLf constant does have two control characters in it. The
code tests for Chr(13) or a carriage return because that’s always the first
character in the vbCrLf sequence. If you set the cursor at the end of the line,
VBA modifies TestText as shown in the code.

The third If...Then structure checks for a space. Although it isn’t always
essential to check for spaces, in this case viewers will see a blank dialog box
when they place the cursor immediately before a space in the line of text.
Making this additional check reduces the risk that the user will see some-
thing unexpected. You should always try to include checks such as this one
in your code. Unfortunately, you won’t always find all of these difficult sce-
narios immediately, which is why you should ask other people to check your
applications for potential problems.

114 Part II: Learning the Ropes

10_046500 ch05.qxp 12/5/06 5:35 PM Page 114

The final line of code shows whatever TestText contains. Unless you select
Hello or the end of the line, the message box contains the selected text. Try
out the example code by using various selections, or set the cursor at the
end of the line, and you can see the usefulness of this feature.

Using the If...Then...Else statement
The If...Then...Else statement makes one of two choices. If the expres-
sion controlling the statement is true, VBA executes the first set of state-
ments. On the other hand, if the expression is false, VBA executes the second
set of statements.

The example in this section determines whether two numbers are equal or
whether one is greater than the other. To test the If...Then...Else state-
ment, create a new Excel worksheet. The code relies on input from the work-
sheet for test purposes. Figure 5-1 shows the setup and some sample input.

The code used for this example makes three checks: equal to, greater than,
and less than. Listing 5-2 shows the code that you need in order to make
these three checks. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Figure 5-1:
Use this

worksheet
to compare

the value
of two

numbers.

115Chapter 5: Creating Structured Programs

10_046500 ch05.qxp 12/5/06 5:35 PM Page 115

Listing 5-2 Using the If...Then...Else Statement for Comparisons

Public Sub CompareNumbers()
‘ Create variables to hold the two numbers.
Dim Input1 As Double
Dim Input2 As Double

‘ Create an output string.
Dim Output As String

‘ Fill the variables with input from the worksheet.
Input1 = Sheet1.Cells(3, 2)
Input2 = Sheet1.Cells(4, 2)

‘ Determine if the first number is greater than or
‘ equal to the second number.
If Input1 >= Input2 Then

‘ Determine if they are equal.
If Input1 = Input2 Then

‘ Tell the user they are equal.
Output = “The values are equal.”

Else

‘ The first number must be greater than the
‘ second.
Output = “First Number is greater than “ + _

“Second Number.”
End If

Else

‘ The first number is less than the second.
Output = “First Number is less than Second

Number.”
End If

‘ Place the output on the worksheet.
Sheet1.Cells(6, 2) = Output

End Sub

The code begins by getting the contents of the two input cells from the work-
sheet. Always use a Double data type when you don’t know what kind of
number that you might type into a worksheet, because this data type is more
flexible than an Integer. The first number for the Cells property is always
the row, and the second is the column. Although the worksheet uses letters
for the columns, you must use numbers.

116 Part II: Learning the Ropes

10_046500 ch05.qxp 12/5/06 5:35 PM Page 116

You might find it confusing to continually convert between column letters
and numbers when working with large worksheets. To avoid this problem,
you can define global constants with the numbers. A Column_A constant
would equal 1 and so on. Using this technique can make your code easier to
read when you use large worksheets.

The first If...Then statement checks whether the first number is greater than
or equal to the second. You might wonder why the code doesn’t simply check
for equality. Using this technique reduces the amount of code that you have to
write. Notice that the second If...Then statement immediately chooses
between equality and greater than. It relies on a nested If...Then...Else
structure to choose between two values for the Output string. This is a good
example of how to use nesting within your programs.

If the first If...Then statement is false, the Else statement immediately exe-
cutes. Notice how the use of nesting saves VBA two checks. When you use indi-
vidual If...Then statements, VBA must make three decisions every time that
it compares the two numbers. Using the nested If...Then...Else structure
shown in the code reduces the number of decisions to one.

The final line of code outputs the comparison results to the worksheet. Try
various numbers, and you can see how the nested decision technique works.

Using the If...Then...ElseIf statement
When making multiple comparisons, you can use the If...Then...ElseIf
statement to make the code easier to read. Using this format can also reduce
the number of decisions that VBA must make, which ensures that your code
runs as quickly as possible. Listing 5-3 shows an alternative form of the exam-
ple in the preceding “Using the If...Then...Else statement” section. (You can
find the source code for this example on the Dummies.com site at
http://www.dummies.com/go/vbafd5e.)

Listing 5-3 Using the If...Then...ElseIf Statement for Comparisons

Public Sub CompareNumbers2()
‘ Create variables to hold the two numbers.
Dim Input1 As Double
Dim Input2 As Double

‘ Create an output string.
Dim Output As String

‘ Fill the variables with input from the worksheet.

(continued)

117Chapter 5: Creating Structured Programs

10_046500 ch05.qxp 12/5/06 5:35 PM Page 117

Listing 5-3 (continued)

Input1 = Sheet1.Cells(3, 2)
Input2 = Sheet1.Cells(4, 2)

‘ Determine if the first number is greater than
‘ the second number.
If Input1 > Input2 Then

‘ Tell the user the first number is greater.
Output = “First Number is greater than “ + _

“Second Number.”

‘ Determine if they are equal.
ElseIf Input1 = Input2 Then

‘ Tell the user they are equal.
Output = “The values are equal.”

Else

‘ The first number is less than the second.
Output = “First Number is less than Second

Number.”
End If

‘ Place the output on the worksheet.
Sheet1.Cells(6, 2) = Output

End Sub

The first thing that you should notice is that this code avoids nesting, which
makes it easier to read. VBA will see the first If...Then statement and
determine whether Input1 is greater than Input2. If the first statement is
true, VBA sets the value of Output and leaves the structure. However, if the
first statement is false, VBA checks the ElseIf statement. Finally, if the first
two statements are false, VBA executes the statements within the Else part
of the structure. You can use as many ElseIf statements as you need to
check every possible condition in your code.

This code is almost as efficient as the first version — it requires just one deci-
sion for greater than, two for equality, and three for less than. The ease of
reading might become more important to you when the complexity of your
programs increases, so this is a perfectly acceptable way to write your code.
In short, this example demonstrates that there’s usually more than one way
to write a program, many of which work fine; the choice of which method to
use depends on your personal tastes.

118 Part II: Learning the Ropes

10_046500 ch05.qxp 12/5/06 5:35 PM Page 118

Using the IIf function
You might need to make a decision in a single line of code instead of the
three lines (minimum) that other decision-making techniques require. The
IIf function is a good choice when you need to make simple and concise
decisions in your program. It has the advantage of providing decision-making
capability in a single line of code. Listing 5-4 shows an example of the IIf
function in action. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing 5-4 Using IIf to Make Inline Decisions

Public Sub IIfDemo()
‘ Create variables to hold the two numbers.
Dim Input1 As Double
Dim Input2 As Double

‘ Create an output string.
Dim Output As String

‘ Fill the variables with input from the worksheet.
Input1 = Sheet1.Cells(3, 2)
Input2 = Sheet1.Cells(4, 2)

‘ Use nested IIf functions to check all three
‘ conditions.
Output = IIf(Input1 = Input2, _

“The values are equal.”, _
IIf(Input1 > Input2, _

“First Number is greater.”, _
“Second Number is greater.”))

‘ Place the output on the worksheet.
Sheet1.Cells(6, 2) = Output

End Sub

This example begins by getting the input from the worksheet. It also creates
an Output string.

The IIf function requires three arguments, none of which is optional. The
first argument is an expression. The second is a single-line statement of
what to do if the expression is true, and the third is a single-line statement
of what to do if the expression is false.

119Chapter 5: Creating Structured Programs

10_046500 ch05.qxp 12/5/06 5:35 PM Page 119

The first IIf function determines whether Input1 is equal to Input2. If the
expression is true, the first IIf function returns The values are equal.
to Output. Otherwise, the first IIf function calls the second IIf function.

The second IIf function determines whether Input1 is greater than Input2.
If it is, the second IIf function returns First Number is greater. to the
first IIf function, which returns it to Output. Likewise, if the expression is
false, the second IIf function returns Second Number is greater.

You can see that this technique could easily become impossible to read and
is nearly impossible to comment. However, it uses only one line of code. The
nearest contender appears in the preceding “Using the If...Then...ElseIf state-
ment” section and requires seven lines of code.

Making a Choice by Using
the Select Case Statement

You can use the If...Then...Else or If...Then...ElseIf statement to
meet all decision-making needs. However, using these statements can quickly
make your code hard to read when you need to make a lot of decisions in
rapid succession. Using these statements is required when you want to per-
form complex expression checking. VBA provides the Select Case state-
ment as an easier-to-read choice when making a single selection from a list of
choices. If you know that a variable contains one of several choices and all
you need to check is the choice, using the Select Case statement makes
sense.

Using the Select Case statement
The Select Case structure begins with the Select Case statement and
ends with an End Case statement. You provide a variable that the Select
Case statement can use for selection. Within the Select Case structure are
Case clauses, or values that the Select Case structure uses for compari-
son. When the value of a clause matches the value of the input variable, the
Select Case structure performs all tasks required by that clause.

In this section, I use examples of the Select Case statement to make a
choice of which room to use to store a product. You could easily make this
example into a database program, but this section uses a spreadsheet for
ease of explanation. Figure 5-2 shows the two input columns used for this
example along with typical output in the third column.

120 Part II: Learning the Ropes

10_046500 ch05.qxp 12/5/06 5:35 PM Page 120

This decision-making process uses the Bin Number column as input to a
Select Case structure. Each clause assigns a number based on a particular
number or a range of numbers. Listing 5-5 shows the code that you need in
order to make the choices. (You can find the source code for this example on
the Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing 5-5 Using a Select Case Statement for Multiple Decisions

Public Sub MakeChoice()
Dim CursorPosition As Integer ‘ Current row

selection.
Dim BinValue As Integer ‘ Bin for selected

row.
Dim Output As Integer ‘ Storage room number.

‘ Determine if the user has selected more than one
‘ row.
If ActiveWindow.RangeSelection.Rows.Count = 1 Then

‘ Get the cursor position.

(continued)

Figure 5-2:
Make a

choice by
using this

worksheet
and its

associated
program.

121Chapter 5: Creating Structured Programs

10_046500 ch05.qxp 12/5/06 5:35 PM Page 121

Listing 5-5 (continued)

CursorPosition = ActiveWindow.RangeSelection.Row
Else

‘ Tell the user to select only one cell.
MsgBox “Select only one cell!”, _

vbExclamation Or vbOKOnly, _
“Selection Error”

‘ Exit the Sub without further processing.
End

End If

‘ Get the selected bin number.
BinValue = Sheet2.Cells(CursorPosition, 2)

‘ Select a choice of storage room based in the bin.
Select Case BinValue

Case 1
Output = 1

Case 2
Output = 2

Case 3 To 4
Output = 1

Case 5 To 6
Output = 3

End Select

‘ Store the number in the worksheet.
Sheet2.Cells(CursorPosition, 3) = Output

End Sub

This example demonstrates some new techniques. The code begins by check-
ing the number of rows that you select. If you select only one row, the code
retrieves this value by using the ActiveWindow.RangeSelection.Row
property. You can also get hold of the column number by using the Column
property, or the row and column by using the Address property.

When you select more than one row, it’s hard for the program to know which
row to work with. The code displays an error message and then exits without
performing further processing by using the End statement. This is the first
time that you’ve used error trapping in a program, which means figuring out
that an error will happen before it can cause problems. See Chapter 6 for
more information on debugging and error trapping.

The next step is to retrieve the Bin Number entry by using the row informa-
tion contained in CursorPosition. The BinValue variable acts as input to

122 Part II: Learning the Ropes

10_046500 ch05.qxp 12/5/06 5:35 PM Page 122

the Select Case statement. Notice how this statement uses Case clauses
to determine which action to take. You can provide a single value, a range of
values, or a list of values separated as commas. The final step is to place the
Output value in the worksheet.

Using the Case Else clause
A Select Case statement should normally contain the optional Case Else
clause to ensure that you handle all cases, even those that you don’t expect
when you write the program. Adding this clause requires little time and adds
an important error-trapping feature to your program. You could easily change
the program from the previous section to include a Select Case statement
like the one shown in Listing 5-6. (You can find the source code for this exam-
ple on the Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing 5-6 Handling Unforeseen Decisions with Case Else

‘ Select a choice of storage room based in the bin.
Select Case BinValue

Case 1
Output = 1

Case 2
Output = 2

Case 3 To 4
Output = 1

Case 5 To 6
Output = 3

Case Else
‘ Tell the user to select only one cell.
MsgBox “Provide a Bin Number between 1 and 6”, _

vbExclamation Or vbOKOnly, _
“Bin Number Input Error”

‘ Exit the Sub without further processing.
End

End Select

The older version of the code could cause problems when you type a non-
existent bin number. This version provides an error message telling you what
range of numbers to use. It exits before the code has a chance to create an
error condition.

123Chapter 5: Creating Structured Programs

10_046500 ch05.qxp 12/5/06 5:35 PM Page 123

Performing a Task More than
Once by Using Loops

Many tasks that you perform require more than one check, change, or data
manipulation. You don’t change just one entry in a worksheet; you change all
the affected entries. Likewise, you don’t change just one word in a document;
you might change all occurrences based on certain criteria. Databases
require multiple changes for almost any task.

Loops provide a method for performing tasks more than one time. You can
use loops to save code-writing time. Simply write the code to perform the
repetitive task once and then tell VBA to perform the task multiple times.

When using loops, you decide how the code determines when to stop. You
can tell the loop to execute a specific number of times or to continue execut-
ing until the program meets a certain condition.

Using the Do While...Loop statement
A Do While...Loop statement keeps performing a task until a certain con-
dition is true. The loop checks the expression first and then executes the
code within the structure if the expression is true. You use this loop to per-
form processing zero or more times. A Do While...Loop works especially
well if you can’t determine the number of times that the loop should execute
when you design your program.

One example of a file that could require zero or more changes is a Word docu-
ment. You might need to format certain words in a specific way for each file,
but you have no idea which words you’ll use or whether you’ll use them at
all. The code in Listing 5-7 shows a technique for checking specific words and
formatting them. You could easily adapt this program to meet your format-
ting needs. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing 5-7 Modifying Words by Using a Do While...Loop Statement

Public Sub ChangeWords()
Dim CurrentWord As Long ‘ Current word selection.
Dim TotalWords As Long ‘ Total number of words

‘ Get the total number of words.

124 Part II: Learning the Ropes

10_046500 ch05.qxp 12/5/06 5:35 PM Page 124

TotalWords = ActiveDocument.Words.Count

‘ Select the first word in the document.
ActiveDocument.Words(1).Select
CurrentWord = 1

‘ Keep selecting words until we run out.
Do While CurrentWord < TotalWords

‘ Make a change based on the word.
Select Case Trim(ActiveWindow.Selection.Text)

Case “Hello”
Selection.Font.Italic = True

Case “Goodbye”
Selection.Font.Bold = True

Case “Yes”
Selection.Font.Color = wdColorGreen

Case “No”
Selection.Font.Color = wdColorRed

End Select

‘ Move to the next word.
CurrentWord = CurrentWord + 1
ActiveDocument.Words(CurrentWord).Select

Loop
End Sub

The code begins by getting the word count for the active document — the
one currently selected for editing. The program uses this number to deter-
mine when to stop making changes. The ActiveDocument.Words document
has a number of other interesting uses (such as those shown in the example
code), so you should keep it in mind when working with Word.

The next task is to select the first word in the document. You do this by
telling ActiveDocument.Words which word to select and then using the
Select method as shown. It’s also important to keep track of the current
word selection, so the code sets CurrentWord to 1. This variable uses the
Long data type because ActiveDocument.Words.Count can return a Long
value. VBA won’t tell you whether you use the wrong data type — you must
verify the data type needs by viewing the return data type from method calls
and properties.

The Do While...Loop structure compares the CurrentWord value with
the TotalWords value. If CurrentWord is less than TotalWords, it exe-
cutes the statements contained within the structure.

125Chapter 5: Creating Structured Programs

10_046500 ch05.qxp 12/5/06 5:35 PM Page 125

Notice how the code uses a Select Case statement to choose between
word choices. This Select Case statement also lacks a Case Else clause
because it doesn’t rely on user input. This is one example where the Case
Else clause can’t contribute anything to error trapping or default process-
ing. This example also introduces techniques for modifying the font charac-
teristics of text in a document.

The next two lines of code are especially important. First, the code updates
CurrentWord. You must do this, or else the loop will continue forever
because CurrentWord is always less than TotalWords. Not updating the
CurrentWord value results in an endless loop — a common source of bugs
in programming code. The second statement moves the selection to the next
word in the document by using the updated CurrentWord value. Note the
order of the statements. You must update CurrentWord first and then move
to the next word in the text. Figure 5-3 shows the document used to test this
program with the interesting formatting in place.

Using the Do...Loop While statement
The Do...Loop While statement works the same as the Do While...Loop
statement. The difference is that this statement always executes once because
the expression used to verify a need to loop appears at the end of the struc-
ture. Even if the expression is false, this statement still executes at least one
time. You can use this statement when you want to ensure that a task is
always completed at least one time.

Using the Do Until...Loop statement
The Do Until...Loop statement continues processing information until
the expression is false. You can view the Do While...Loop statement as a
loop that continues while a task is incomplete. The Do Until...Loop state-
ment continues until the task is finished. The subtle difference between the
two statements points out something interesting: They rely on your perspec-
tive of the task to complete. These two statement types are completely inter-
changeable. The big difference is how you define the expression used to
signal the end of the looping sequence.

Using the Do...Loop Until statement
The Do...Loop Until statement is the counterpart of the Do
Until...Loop statement. This statement examines the expression at the
end of the loop, so it always executes at least once even if the expression is
false.

126 Part II: Learning the Ropes

10_046500 ch05.qxp 12/5/06 5:35 PM Page 126

Using the For...Next statement
The For...Next statement is very handy for performing a task a specific
number of times. As long as you can determine how many times to do some-
thing in advance, this is the best looping option to use because there’s less
chance of creating an infinite loop. You can create absurdly large loops, but
they eventually end.

The Sub created in the earlier section “Using the Select Case statement” and
augmented in other areas of this chapter works fine for determining the stor-
age room for a single entry. Figure 5-2 shows multiple entries, however, so
creating a method for processing all of them would make it easier to assign
storage rooms to a new worksheet. The code shown in Listing 5-8 does just
that — it makes changing all rows possible with a single program execution.
(You can find the source code for this example on the Dummies.com site at
http://www.dummies.com/go/vbafd5e.)

Figure 5-3:
Create

programs
that help

you perform
repetitive

tasks,
such as

formatting
text.

127Chapter 5: Creating Structured Programs

10_046500 ch05.qxp 12/5/06 5:35 PM Page 127

Listing 5-8 Changing Datasheets with the For...Next Statement

Public Sub ChangeAllRooms()
Dim ActiveRows As Integer ‘ Number of active rows.
Dim Counter As Integer ‘ Current row in process.

‘ Select the first data cell in the worksheet.
Range(“A5”).Select

‘ Use SendKeys to select all of the cells in the
‘ column.
SendKeys “+^{DOWN}”, True

‘ Get the number of rows to process.
ActiveRows = ActiveWindow.RangeSelection.Rows.Count

‘ Reset the cell pointer.
Range(“C5”).Select

‘ Keep processing the cells until complete.
For Counter = 5 To ActiveRows + 5

‘ Call the Sub created to change a single cell.
MakeChoice3

‘ Move to the next cell.
Range(“C” + CStr(Counter)).Select

Next
End Sub

The SendKeys function works with the active window. Unlike with many of
the other examples in this book, you must run this example from the Excel
worksheet. Make sure that the Excel worksheet is open, open the Macro dialog
box by clicking Macros on the Ribbon or choosing Tools➪Macro➪Macros,
highlight ChangeAllRooms, and click Run. If you run this particular macro
from within the Visual Basic Editor, you’ll experience an error.

Of course, the need to run the macro in the active window begs the question
of how to debug a macro that has this particular problem. You’ll run into it
relatively often when a macro has to perform tasks with the active window
but could just as easily perform the task in the Visual Basic Editor. You need
to use two techniques in this case. First, never set breakpoints on the
SendKeys function. Second, use message boxes as often as possible to
report the content of variables and potential errors.

This example shows several new functions that you can use. The code begins
by selecting the first data row in the worksheet. This selection is important
because you want to start at the very beginning of the entries.

128 Part II: Learning the Ropes

10_046500 ch05.qxp 12/5/06 5:35 PM Page 128

The SendKeys function call comes next. This function is interesting because
it helps you duplicate keystrokes that you normally make in the worksheet
using code. The advantage of this method is that after you get used to the
special characters, you can make writing a program very similar to using the
program normally. This example sends a Shift (+), Ctrl (^), down-arrow
(+^{DOWN}) sequence to the worksheet to select the entire column. The
SendKeys Statement help topic provides full documentation of this function.
You can also find other SendKeys examples in other parts of this book.

The SendKeys function is extremely useful. However, don’t use it in place of
functions that VBA supplies for specific tasks. Using SendKeys can make
your code difficult to read and can also slow execution of the program.

By using the ActiveWindow.RangeSelection.Rows.Count property, the
code determines how many rows it must process. The code places this value
in ActiveRows for later use. Unfortunately, now the worksheet has a range
of rows selected rather than a single cell. The code calls on the
Range(“C5”).Select method to select a single cell again.

The For...Next statement requires three inputs as a minimum. You must
provide a counter variable so that the statement knows the current count.
The second variable sets the counter to a specific value. This value can be
any integer. The code uses 5 in this case because that’s the first data row in
the worksheet. The third input is the ending count. Counter equals
ActiveRows + 5 when the loop completes.

The worksheet is ready to receive the first storage room value, so the code
calls MakeChoice3. This is an augmented version of the code in the earlier
“Using the Select Case statement” section of this chapter. MakeChoice3
modifies a single cell at a time, so when it returns, only the first data cell has
a storage room value in it. The Range(“C” + CStr(Counter)).Select
method call moves the cell pointer to the next storage room cell. The code
continues until all the cells have appropriate storage room numbers.

Using the For Each...Next statement
The For Each...Next statement is similar to the For...Next statement in
operation. However, this statement doesn’t rely on an external counter. The
statement uses an object index as a counter. The advantage of using this
statement is that you don’t have to figure out how many times to perform the
loop — the object provides this information. The disadvantage of using this
statement is that you lose a little control over how the loop executes because
the counter is no longer under your control.

129Chapter 5: Creating Structured Programs

10_046500 ch05.qxp 12/5/06 5:35 PM Page 129

You can use this statement for a number of purposes, but generally it’s easier
and faster to use the For...Next statement for standard code. You must
use the For Each...Next statement with arrays and collections. See
Chapter 9 for details on using arrays and collections.

Redirecting the Flow by Using GoTo
You might run into situations where the existing program flow doesn’t work,
and you have to disrupt it to move somewhere else in the code. The GoTo
statement provides a means of redirecting program flow. Used carefully, the
GoTo statement can help you overcome specific programming problems.

Unfortunately, the GoTo statement has caused more problems (such as creat-
ing hard-to-understand code and hiding programming errors) than any other
programming statement because it has a great potential for misuse. Novice
programmers find it easier to use the GoTo statement to overcome program-
ming errors rather than to fix these problems. Always use the GoTo state-
ment with extreme care. Designing your code to flow well before you write it
and fixing errors when you find them are both easier than reading code with
misused GoTo statements.

Using the GoTo statement correctly
The GoTo statement provides the essential service of helping you redirect pro-
gram flow. Before you use the GoTo statement, ask yourself whether there’s
some other means of performing the redirection, such as using a loop. If there
isn’t any other way to perform the programming task efficiently, using a GoTo
statement is acceptable. Listing 5-9 shows an example of correct GoTo usage.
It’s an update of the example shown in the earlier “Using the Select Case state-
ment” section of this chapter. (You can find the source code for this example
on the Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing 5-9 Using the GoTo Statement

‘ The restart point.
RestartCheck:

‘ Determine if the user has selected more than one row.
If ActiveWindow.RangeSelection.Rows.Count = 1 Then

‘ Get the cursor position.

130 Part II: Learning the Ropes

10_046500 ch05.qxp 12/5/06 5:35 PM Page 130

CursorPosition = ActiveWindow.RangeSelection.Row
Else

‘ Tell the user to select only one cell.
Result = MsgBox(“Select only one cell!” + vbCrLf + _

“Choose the first row in the range?”,
_

vbExclamation Or vbYesNo, _
“Selection Error”)

‘ Determine if the user selected Yes.
If Result = vbYes Then

‘ Modify the selection.
Range(“A” + _

CStr(ActiveWindow.RangeSelection.Row)).Select

‘ Try the check again.
GoTo RestartCheck

End If

‘ Exit the Sub without further processing.
End

End If

This version of the code extends the error trapping found in the earlier
“Using the Select Case statement” section of this chapter. The original ver-
sion correctly identifies an error condition, but then it rudely ends without
helping you fix the problem. Rude programs make people mad, so it’s best to
provide some helpful assistance when you can.

Notice that the message box now displays a message that gives you a chance
to fix the error. Result is a VbMsgBoxResult data type, and it stores the
button click information.

When you click Yes, the code changes the current selection by using the
Range function. Notice how the code converts the numeric ActiveWindow.
RangeSelection.Row property value to a string and combines it with a
column letter for the Range function. After the code moves the selection
point, it uses the GoTo statement to return to a point before the row selection
check in the code. Because there’s only one row selected now, the check is
completed successfully.

Avoiding misuse of the GoTo statement
Many programmers misused the GoTo statement so severely in the past that
most books tell you not to use it at all. Misuse of the GoTo statement leads to

131Chapter 5: Creating Structured Programs

10_046500 ch05.qxp 12/5/06 5:35 PM Page 131

buggy code that is hard to read. In addition, GoTo statements can hide poor
program design. However, the GoTo statement can also accomplish useful
work, so the goal is to avoid misuse of the GoTo statement and concentrate
on useful tasks. Here are some ways to avoid misusing the GoTo statement:

� Loops: Never use a GoTo statement as a loop replacement. The state-
ments used for loops signal others about your intent. In addition, stan-
dard loop statements contain features that keep bugs, such as endless
loops, to a minimum.

� Exits: Avoid using a GoTo statement as a means of exiting a program.
You can always use the End statement for that task.

� Program flow problems: If you detect problems with the flow of your
program, check your pseudo-code and design documents again. Make
sure that you implement the design correctly. The design might require
change as well. Don’t assume that the design is correct, especially if this
is a first attempt.

132 Part II: Learning the Ropes

10_046500 ch05.qxp 12/5/06 5:35 PM Page 132

Chapter 6

Trapping Errors and
Squashing Bugs

In This Chapter
� Understanding the various types of bugs

� Understanding how to prevent bugs

� Figuring out how to track down bugs

� Getting to know the Locals window

� Getting to know the Watch window

Even the best programmer in the world makes mistakes. It’s part of the
human condition. Don’t be surprised when a bug creeps into your well-

designed and well-implemented VBA program. Bugs are the gremlins of the
computer industry — they’re insidious and evil.

Fortunately, you can hunt down bugs and squash them. You can also prevent
bugs from occurring in the first place by coding your VBA program carefully.
The goal of this chapter is to help you understand what you can do to pre-
vent bugs in your VBA program and what to do when they get in anyway.

You won’t figure out how to write perfect programs because no one does. As
a result, you use error trapping to detect bugs and do something about them
before they can cause problems. In the cases where you can’t detect the
bugs, you use error handling to fix the problems that the bugs cause and to
help your VBA programs recover.

11_046500 ch06.qxp 12/5/06 5:35 PM Page 133

Knowing the Enemy
Users look at bugs as non-entities devoid of any characteristics. All a user
knows is that a bug causes the program to crash and lose data. You can’t
afford to have that perspective. Bugs have personalities, in that they vary by

� Type

� Cause

� Effect

� Severity

� Other factors that you include in your personal classification system

Locating a bug means knowing about its personality so that you can find it
quickly. It helps to classify the bug by type. Each bug type has a different
method for prevention and troubleshooting. You can classify bugs into the
following four types:

� Syntax

� Compile

� Run-time

� Semantic

The best way to find bugs is to know your coding style. Keeping notes helps
you understand patterns in your programming so that you can correct tech-
niques that lead to bugs. More importantly, understanding your personal
style helps you develop techniques for finding bugs based on past mistakes.
Knowing what you did in the past helps you locate and squash bugs today.

Understanding syntax errors
Syntax errors are the easiest errors to avoid but are also some of the hardest
errors to find. A syntax error can include a spelling mistake, misuse of punctu-
ation, or misuse of a language element. When you forget to include an End
If for an If...Then statement, it’s a syntax error.

Typos are common syntax errors. They’re especially hard to find when you
make them in variable names. For example, VBA views MySpecialVariable
and MySpecialVaraible as two different variables, but you might miss the
typing error. Adding Option Explicit to the beginning of every module,
form, and class module that you create eases this problem. (See the upcom-
ing “Understanding compile errors” section for details on using Option

134 Part II: Learning the Ropes

11_046500 ch06.qxp 12/5/06 5:35 PM Page 134

Explicit.) You can rely on VBA to find most variable typos when you add
this simple statement to your code. In fact, this statement should become a
standard part of every program that you create.

You can easily miss some of the subtle aids to locating syntax errors if you
don’t view carefully enough the tasks that the Integrated Development
Environment (IDE) performs. The balloon help shown in Figure 6-1 for the
MsgBox function provides a cue that you could miss. VBA displays the bal-
loon help shown in the figure only when it recognizes the function name that
you type. When you don’t see the balloon help, it’s a cue that VBA doesn’t
recognize the function name and that you need to look at your code.
Unfortunately, this feature works only where VBA normally displays balloon
help — it doesn’t work when you type property names.

No matter what you do, a few syntax errors can slip by and cause bugs in
your program. You can look at the errors for hours and not actually see them
because you’ve worked with the code for so long. Asking someone else to
look at your code often helps because that person isn’t familiar with the
code. Make sure that you ask someone with the same level of programming
skills that you have (or better) to ensure that they understand your code.

Syntax errors also include errors in logic (the construction of expressions in
your program). You can create a loop that processes the loop structure state-
ments once too often or not often enough. An If...Then statement can use
an expression that works most of the time but isn’t quite right, so it doesn’t
produce the correct result all the time. Code with logic errors runs because
VBA doesn’t know that the expression is incorrect. The only way to find this
kind of syntax error is to debug the program. See the upcoming “Time for a
Bug Hunt” section for details.

Understanding compile errors
The VBA compiler is actually a syntax checker. Unlike compilers used by
other languages, the VBA compiler doesn’t produce a freestanding module
that you can execute outside the Office environment. VBA uses the compiler

Balloon help

Figure 6-1:
Balloon help
helps locate

syntax
errors in

your code.

135Chapter 6: Trapping Errors and Squashing Bugs

11_046500 ch06.qxp 12/5/06 5:35 PM Page 135

to look for errors that prevent the program from running properly. You might
create an If...Then statement and not include the corresponding End If
statement. The compiler runs constantly, so VBA finds some mistakes almost
immediately after you make them.

VBA uses the compiler to find many of the syntax errors that you make and
displays an error message. You can try this feature. Open a new project,
create a Sub (the name isn’t important), and type MsgBox(). Then press
Enter. VBA displays a message box stating that it was expecting an equals
sign (=). When you use parentheses after MsgBox, VBA expects that you want
to include a result variable to hold the result, such as MyResult =
MsgBox(“My Prompt”). You should also notice that the errant line of code
appears in a highlight color, which is normally red.

Missing elements are another syntax error that VBA finds with relative ease.
When you fail to include an End If statement for an If...Then statement,
VBA always finds it and displays an error message. However, VBA doesn’t
find this error in most cases until you try to run the program. In addition, it
doesn’t show the errant If...Then statement — VBA normally highlights
the End Sub or End Function statement instead, thus making this error a
little harder to find.

The compiler also finds many of the punctuation errors that you can make in
your code. When a line of code becomes too long and you try to move to the
next line without adding a continuation character, the compiler notices the
error and tells you about it. (See the “Writing Your First Sub” section of
Chapter 3 for a description of the continuation character.) The compiler also
notes missing periods between elements of a statement or missing parenthe-
ses from function calls (when needed).

When you add Option Explicit to your code, the compiler checks vari-
ables for a number of problems. You could try to assign a string value to an
integer. VBA allows you to make this error when you type the code. However,
when you try to run the code, the compiler sees the type mismatch and tells
you about it. The compiler can detect many variable errors that would go
unnoticed otherwise, thus making your code less likely to contain errors.

Understanding run-time errors
A run-time error happens when something outside your program is incorrect.
A disk access request can fail, or you can type the wrong information. Your
VBA code is correct, but the program still fails because of this external error.
Run-time errors are the reason why many large companies, such as Microsoft,
run beta programs. (A beta program is a vendor-sponsored method of getting
a program before its developers have finished it for the purpose of testing

136 Part II: Learning the Ropes

11_046500 ch06.qxp 12/5/06 5:35 PM Page 136

and evaluation.) A large base of users can help you find run-time errors that
depend on particular machine configurations or specific kinds of user-entry
techniques.

You can trap run-time errors or change the program flow to ensure that they
don’t happen. In Chapter 5, I show several forms of error trapping. See the
upcoming “Prevention Is Better than a Cure” section of this chapter for addi-
tional examples. The remainder of this book contains yet more examples of
error trapping because this is an important topic. Error trapping helps your
program overcome errors that you can’t predict when you write a program.

Understanding semantic errors
A particularly difficult error to find and understand is the semantic error,
which happens when the VBA code and logic are correct but the meaning
behind the code isn’t what you intended. For example, you could use a
Do...Until loop in place of a Do...While loop. Even if the code is correct

137Chapter 6: Trapping Errors and Squashing Bugs

Difficult-to-diagnose run-time errors
Sometimes VBA actually creates problems for
you when it comes time to diagnose bugs. The
SendKeys() function is one example. You
can see this function in use in Listing 5-8. The
biggest problem with the SendKeys() func-
tion is that it works in only the active window. If
you have the Visual Basic Editor displayed
when you call SendKeys(), VBA sends the
SendKeys() output to the Visual Basic Editor
rather than to the active Office window, as you
might expect. Consequently, a procedure that
you write that normally works perfectly well
suddenly fails because of a poor implementa-
tion of the SendKeys() function by Microsoft.

The best way to overcome this kind of problem
is to place debugging code in your Sub
or Function. Use the MsgBox() function
to display a message containing the
SendKeys() information immediately before
the actual SendKeys() call in your code. For

example, you might add a MsgBox() call like
this:

‘ Use SendKeys to select all
of the cells in the
column.

MsgBox “Select all of the
cells in the column.”

SendKeys “+^{DOWN}”, True

Using this technique lets you keep the focus on
the Office application, yet also helps you deter-
mine what actions are taking place in the back-
ground. Although this solution is less than
perfect, it’s probably the best solution in most
cases because you can change the debugging
statements as needed. Of course, you can add
MsgBox() calls after SendKeys() as well
when needed, but the important location is
before you make the call so that the focus is in
the right place when the actual SendKeys()
call is made.

11_046500 ch06.qxp 12/5/06 5:35 PM Page 137

and you use the correct logic, the code doesn’t produce the result that you
expected because the meaning of a Do...Until loop is different from the
meaning of a Do...While loop.

The meaning that you assign to your code has to match the words that you
use to write the code. Just as a good book uses precise terms, a good pro-
gram relies on precise statements to ensure that VBA understands what you
want to do. The best way to avoid semantic errors is to plan your application
carefully, use pseudo-code to “pre-write” the design, and then convert the
pseudo-code to VBA code. When you skip steps in the process, you can
introduce semantic errors because you don’t communicate your ideas well
to VBA.

Introducing semantic errors in subtle ways is easy. Writing an equation the
wrong way can result in output errors. When you use the wrong equation to
determine the next step in a loop, the problem becomes worse because the
error looks like a syntax or run-time error. The steps between loops and the
expression used to make a decision are very important. The most common
error is leaving a parenthesis out of an equation. For example, VBA interprets
1 + 2 * 3 as 7 but (1 + 2) * 3 as 9. A missing parenthesis is easy to miss when
you frantically search for an error.

Prevention Is Better than a Cure
Avoiding an error is always easier than trapping or handling it later. However,
any form of prevention is better than letting the error occur without any
intervention at all. Whenever your program experiences an unhandled error,
it stops running (crashes). Here are some reasons why you want to handle
errors rather than just let them happen:

� You can provide specific error information.

� Programs can recover from many errors.

� Programs can reduce or prevent data loss.

� You can include special handling that tracks the error for later
debugging.

� The host application (such as Office) can help reduce the effects of
the error.

� The operating system can help with some errors and reduce the effect
of others.

138 Part II: Learning the Ropes

11_046500 ch06.qxp 12/5/06 5:35 PM Page 138

Avoiding run-time errors
Run-time errors can include many unforeseen events. You can’t handle all
run-time errors in your program. For example, a storm that removes power
from the computer isn’t something that you can control. You need an uninter-
ruptible power supply (UPS) attached to the computer to handle that error.
Even so, such an error can result in data loss.

However, you can avoid other kinds of run-time errors. Input errors are one
of the most common run-time problems that you face when working with
VBA. In Chapter 5, I show some techniques for avoiding run-time errors
caused by improper input. You can also use these techniques:

� Check every input for data type, length, value, and meaning.

� Provide easy-to-understand prompts for your application.

� Make the prompts and error messages as specific as possible.

� Offer to fix the problem automatically whenever possible.

� Offer to retry the operation after you correct the error.

� Reduce the chances of error by providing complete context-sensitive
help that includes examples and other resource information.

Checking the input is the most important task that your program can per-
form. If the program needs a word as input, don’t accept a number. Ensure
that the length of the input matches expectations. This check is especially
important to avoid buffer overrun, which is a condition where the program
receives too much input. Buffer overrun errors often make the news as secu-
rity breaches. If possible, look for specific values. Even if you don’t have spe-
cific input values, check for strange characters or values that seem out of
place. It’s also possible in some cases to examine the meaning of the input. A
street address usually requires a street number and name. When you want to
ensure that the address information is correct, try looking for this informa-
tion in the input.

Program resource problems are the second-most common source of run-time
errors. You might not have enough space on the hard drive to save a file, or
the program might not find a file that it needs. Checking for the resource
before you need it helps avoid the associated run-time error. If the resource is
something that you can fix, such as a lack of hard drive space, include code
that allows you to perform this task and then ask the program to check again.

Errors can also creep into your applications when you don’t include required
library references. A library is code that resides outside of your application.
The code might appear in many forms, but the form doesn’t really matter. All
you’re concerned about is the functionality that the library provides. You’ll

139Chapter 6: Trapping Errors and Squashing Bugs

11_046500 ch06.qxp 12/5/06 5:35 PM Page 139

see library references used in many places in this book. For example, when
you work with the hard drive, you need to add a new library to your applica-
tion. The following section of this chapter describes how to add a reference
to a library. If you don’t include all the library references that your applica-
tion requires, the application displays a run-time error.

Recovering from an error
Recovering from an error is important. Adding recovery code means that you
can count on your program to help you overcome problems with the system
and keep your data safe. You can add two kinds of recovery code to your
program:

� Code that recovers before the error happens

� Code that recovers after the error happens

It’s always better to detect an error and recover from it before the error actu-
ally happens. You can always recover from a resource error, such as lack of
hard drive space, before the error happens. Likewise, you can always recover
from input errors by making the required checks and asking for the correct
input. The only time you must wait for the error to happen is when you can’t
predict the error, such as a sudden loss of power.

A common run-time error is lack of hard drive space. To add a drive-checking
feature to your program, you need to add a new library to your program. Use
the Tools➪References command to display the References dialog box, as
shown in Figure 6-2. Notice that the Microsoft Scripting Runtime check box is
selected. Look for this entry in your dialog box and select it. Click OK. The
new library is ready for use.

Figure 6-2:
Use this

dialog box
to add a

new library
to your

program.

140 Part II: Learning the Ropes

11_046500 ch06.qxp 12/5/06 5:35 PM Page 140

The Microsoft Scripting Runtime Library has many powerful features that I
explore in detail in other parts of this book. The feature that you use in this
section (see Listing 6-1) demonstrates how to check for disk space and
recover from an error when the disk drive doesn’t have enough space. (You
can find the source code for this example on the Dummies.com site at
http://www.dummies.com/go/vbafd5e.)

Listing 6-1 Determining the Amount of Free Disk Space

Public Sub DriveTest()
‘ Create a variable to hold the free space.
Dim FreeSpace As Double

‘ Create a reference to the file system.
Dim MyFileSystem As FileSystemObject

‘ Create a reference for the target drive.
Dim MyDrive As Drive

‘ Create a dialog result variable.
Dim Result As VbMsgBoxResult

‘Provide a jump back point.
DoCheckAgain:

‘ Fill these two objects with data so they show the
‘ available space on drive C.
Set MyFileSystem = New FileSystemObject
Set MyDrive = MyFileSystem.GetDrive(“C”)

‘ Determine the amount of free space.
FreeSpace = MyDrive.AvailableSpace

‘ Make the check.
If FreeSpace < 1000000000 Then

‘ The drive doesn’t have enough space. Ask what to
‘ do.
Result = MsgBox(“The drive doesn’t have enough “ +

_
“space to hold the data. Do you” +

_
“ want to correct the error?” + _
vbCrLf + _
Format(FreeSpace, “###,###”) + _
“ bytes available, “ + _
“1,000,000,000 bytes needed.”, _

(continued)

141Chapter 6: Trapping Errors and Squashing Bugs

11_046500 ch06.qxp 12/5/06 5:35 PM Page 141

Listing 6-1 (continued)

vbYesNo Or vbExclamation, _
“Drive Space Error”)

‘ Determine if the user wants to correct the
‘ error.
If Result = vbYes Then

‘ Wait for the user to fix the problem.
MsgBox “Please click OK when you have freed” +

_
“ some disk space.”, _
vbInformation Or vbOKOnly, _
“Retry Drive Check”

‘ Go to the fallback point.
GoTo DoCheckAgain

Else

‘ The user doesn’t want to fix the error.
MsgBox “The program can’t save your data “ + _

“until the drive has enough space.”, _
vbInformation Or vbOKOnly, _
“Insufficient Drive Space”

‘ End the Sub.
Exit Sub

End If
End If

End Sub

The code begins by creating some variables. The FileSystemObject object
contains information about every drive that you can access from your
machine. The Drive object contains information about a specific drive. The
code uses the Set keyword with objects. You Set a variable equal to an
object. See Chapter 8 for details on using objects.

The code places the amount of space available into FreeSpace and com-
pares it with the space needed to hold the information. You might have to
change the value in the If...Then statement to match your drive. Make the
number larger than the space that your drive has available.

One interesting issue to note is that FreeSpace is a Double. Using earlier
versions of VBA, you would use a Long, and it would provide more than suffi-
cient space. Because hard drives are getting larger, you actually need a
Double to make the AvailableSpace() method work. If you used a Long
today, you’d very likely see an error message because a Long isn’t large

142 Part II: Learning the Ropes

11_046500 ch06.qxp 12/5/06 5:35 PM Page 142

enough to hold the number required to express the amount of available drive
space. Office 2007 has updated variables wherever the old variable isn’t large
enough to hold the expected data values. Consequently, you might find that
some of your old macros have broken because the data type has changed.

Because the drive doesn’t have enough space, the code displays an error
message. The message shown in the code might seem long and complicated,
but it provides all the information needed to make a decision. It tells what’s
wrong, provides you with a choice of actions, and contains specifics about
the amount of space needed. Notice the use of the Format function for the
message. It shows how to use a custom formatting string to display the free
space with comma separators but without a decimal point.

If you say that you want to fix the drive space error, the code presents a mes-
sage box that tells you to click OK when it’s okay to make the change again.
The code uses the GoTo statement to redirect execution to the drive space
check again.

On the other hand, if you decide not to fix the error, the program tells you the
result of the action. It then exits the Sub without doing anything else. This
step is important. Otherwise, the program attempts to save the file, and the
error occurs.

Understanding error handlers
Error handlers are your option of last resort in dealing with bugs. You use an
error handler to work with any errors that you can’t trap. The important thing
to remember is that the error has happened — you can’t prevent it at this
point. The best that you can do is to display a message box saying that the
error happened and to tell whether your program can recover from the error.

When your program can’t recover, it should fail gracefully. However, failing
gracefully shouldn’t be a standard option — always try to recover from the
error. A program that fails gracefully performs the following tasks:

� The program doesn’t rely on the standard VBA message. It uses a
custom message that contains detailed failure information instead.

� The user is always informed about the consequences of the failure, pos-
sible fixes, and whom to contact (when necessary).

� The reporting information should also appear in the Windows Event Log
when necessary to ensure that the administrator sees the error. VBA
doesn’t support this feature directly.

� If possible, the program includes you as part of the reporting loop so
that you can keep track of bugs in your application.

143Chapter 6: Trapping Errors and Squashing Bugs

11_046500 ch06.qxp 12/5/06 5:35 PM Page 143

� The host application doesn’t fail (and cause data loss) because of an
error in the program.

� Instead of using default error handling, the program provides robust
error handling that leaves the operating system in a stable state.

Writing your own error-handling code
Adding an error handler to your program is a two-part process. First, you
must tell VBA that you’ve included an error handler. Otherwise, VBA uses the
default error handler, even when error-handler code appears in the program.
Second, you must provide the error-handling code. Listing 6-2 shows an
example of a Sub that uses error handling. (You can find the source code for
this example on the Dummies.com site at http://www.dummies.com/go
/vbafd5e.)

Listing 6-2 Defining a Custom Error Handler

Public Sub ErrorHandle()
‘ The variable that receives the input.
Dim InNumber As Byte

‘ Tell VBA about the error handler.
On Error GoTo MyHandler

‘ Ask the user for some input.
InNumber = InputBox(“Type a number between 1 and “ + _

“10.”, “Numeric Input”, “1”)

‘ Determine whether the input is correct.
If (InNumber < 1) Or (InNumber > 10) Then

‘ If the input is incorrect, then raise an error.
Err.Raise vbObjectError + 1, _

“ErrorCheck.ErrorCondition.ErrorHandle”,
_

“Incorrect Numeric Input. The number “ +
_

“must be between 1 and 10.”
Else

‘ Otherwise, display the result.
MsgBox “The Number You Typed: “ + CStr(InNumber),

_
vbOKOnly Or vbInformation, _
“Successful Input”

End If

‘ Exit the Sub.

144 Part II: Learning the Ropes

11_046500 ch06.qxp 12/5/06 5:35 PM Page 144

Exit Sub

‘ The start of the error handler.
MyHandler:

‘ Display an error message box.
MsgBox “The program experienced an error.” + vbCrLf +

_
“Error Number: “ + CStr(Err.Number) + vbCrLf +
_
“Description: “ + Err.Description + vbCrLf + _
“Source: “ + Err.Source, _
vbOKOnly Or vbExclamation, _
“Program Error”

‘ Always clear the error after you process it.
Err.Clear

End Sub

This example introduces a few new VBA features that you haven’t seen in pre-
vious examples. Notice the use of the GoTo statement. You can use a number
of forms of On Error, but the GoTo form shown here is the most common.
Another common form is On Error Resume Next, which tells VBA to
ignore the line of code with a problem and continue with the next line. The
problem with this second form is that you haven’t really handled the error. It
remains unreported and could cause a severe crash later.

Never use the On Error GoTo 0 statement. This statement turns off error
handling, which means that errors go unhandled and VBA doesn’t even tell
you about them. This setting can cause a range of problems, including appli-
cation failure and data loss.

The InputBox function is an interesting way to get hold of one piece of infor-
mation. This example uses the InputBox function for testing, which is the
most common way that I’ve seen it used. In general, you never use the
InputBox function in a program because you normally need more than one
input. The first argument prompts for information, the second contains a
default value, and the third provides a title for the dialog box. You can also
include arguments for placement of the dialog box onscreen and provide a
help context.

Notice the InNumber data type. Using this data type ensures that you can’t
input a letter or special character without generating an error. If you try to
input the wrong information, VBA detects the error and generates an error
number 13 (type mismatch). The Byte data type also limits the acceptable
input range. If you overflow the buffer by using a number that’s too large,
VBA generates error 6 (overflow). You can detect these errors in your error
handler and take appropriate action.

145Chapter 6: Trapping Errors and Squashing Bugs

11_046500 ch06.qxp 12/5/06 5:35 PM Page 145

The If...Then statement performs a special task. This is one method for
performing a range check — something that you should do for every instance
of input that you receive from a user. The check ensures that the input is
within a specific range. If the input isn’t within the specified range, the code
uses the Err.Raise function to generate an error. User-defined errors fall
within a specific range, so you should always add your custom error number
to vbObjectError to ensure that the number is within the proper range. All
error numbers must be less than 65,535.

Whenever you define a custom error (one that you define), you should tell
yourself exactly where the error occurred. I always include the filename, the
module name, and the Function or Sub name. Notice that the description
information for this error is complete and descriptive. Just because Microsoft
provides ambiguous information doesn’t mean that you have to follow its bad
example. Always include descriptive error messages so that you have a good
idea of what went wrong.

The error handler begins at the MyHandler label. The handler shows the var-
ious Err object properties that you can access to determine the source and
cause of an error. The example could easily include a retry feature, but I
chose to keep things simple. See the earlier “Recovering from an error” sec-
tion for details on a retry feature.

The last statement might not look like much, but it’s very important. Always
clear errors after you handle them, by using the Err.Clear method. If you
don’t, VBA might think that the error is still a problem and fail again.

Reporting errors
It’s essential to report program errors. You can’t overcome problems with
your program when you don’t know about them. In addition, knowing about
errors makes it possible to create a recovery plan. Here are some techniques
that you can use to report errors:

� Message box: Many of my examples in this chapter use message boxes,
which is the standard method that most programs use.

� Text file: You can create a text file with error information. A formatted
text file — one that uses tabs to separate individual entries — can act as
input to a database. See Chapter 10 for details on working with disk files.

� Windows Event Log: You can use a Windows Event Log entry to hold the
error information. The Event Log uses a standard format for error mes-
sages. It’s the place where a network administrator looks for errors.

� E--mail: You can create an e-mail message with error information about
your program. See Chapter 16 for details on working with Outlook from a
VBA program.

146 Part II: Learning the Ropes

11_046500 ch06.qxp 12/5/06 5:35 PM Page 146

Saving and Restoring Code
Some VBA code is generic, which means that you can use it in more than one
place. Keeping this code in a separate module that you move from applica-
tion to application is always a good idea. When you use generic modules, you
write the code once and then you always have it when you need it. This sec-
tion describes how to export modules from one application and import them
into another.

Exporting a module from a program
When you work with VBA, you might create some modules that you want to
use in other places. This means exporting your module to a BAS (BASIC) file.
(Forms rely on the FRM file, and class modules rely on the CLS file.) The fol-
lowing steps tell you how to perform this task.

1. Highlight the module, form, or class module that you want to export
from a program in the Project Explorer window.

2. Right-click the entry and then choose Export File from the context
menu that appears.

You see the Export File dialog box.

3. Choose a location for the module, form, or class module and then
click Save.

VBA exports the file.

Importing a module in a program
The library that you build while you write VBA programs is an important
resource because it reduces the need to write new code. Every time that you
need to reuse existing code, you can import the module by using the follow-
ing procedure:

1. Right-click anywhere in the Project Explorer window and then choose
Import File from the context menu that appears.

You see the Import File dialog box.

2. Locate the BAS, FRM, or CLS file that you want to import.

3. Highlight the file and then click Open.

The module appears in the Project Explorer window in the appropriate
folder.

147Chapter 6: Trapping Errors and Squashing Bugs

11_046500 ch06.qxp 12/5/06 5:35 PM Page 147

Time for a Bug Hunt
You aren’t alone when you have a bug to find in your program, because the
VBA IDE provides a special tool called a debugger. The debugger is a built-in
feature that you access by using a special Debug toolbar. Figure 6-3 shows the
Debug toolbar. Add it to your IDE by right-clicking the toolbar area and then
choosing Debug from the list of available toolbars.

Executing a break
Whenever you open your program in the VBA IDE and execute it from there,
the program is in debug mode. Using debug mode lets you stop the program
and see what it’s doing at any particular moment. Stopping the program can
help you not only find bugs but also discover more about VBA and how to
use it. You can use this feature to view other people’s code to see how they
perform programming tasks.

Before you can stop execution of your program, you need to tell VBA where
to stop. A stop within a VBA program is a breakpoint. To add a breakpoint to
your code, highlight the stopping point and then click Toggle Breakpoint on
the Debug toolbar. When you click Run Sub/User Form, VBA automatically
stops at the point that you selected.

When your program has a natural stop, such as in a form or at an InputBox
statement, you can also click Break on the Debug toolbar to stop the pro-
gram. (See the earlier “Writing your own error-handling code” section for an
example of the InputBox statement.) The Break button differs from the
Reset button because it only pauses execution. Clicking Reset always stops
the program, and you have to restart it from the beginning.

Run Sub/User Form

Break

Toggle Breakpoint

Step Into

Step Out

Immediate window

Quick Watch

Reset Step Over

Locals window Watch window

Call Stack

Figure 6-3:
Use the
Debug

toolbar to
access

debugger
features.

148 Part II: Learning the Ropes

11_046500 ch06.qxp 12/5/06 5:35 PM Page 148

Another way to execute a break is to use the Debug.Assert method. You
can use any Boolean expression with this method. If the expression is true,
program execution continues as normal. However, if the expression is false,
the program breaks so that you can examine the value. This form of break is
helpful when you know that a program should have variables with a certain
range of values.

Whenever you execute a break, the program is temporarily stopped. Click
Run Sub/User Form to start the program from the current stopping point. As
far as the program is concerned, it never stopped.

Taking individual steps
Whenever you execute a break in a running program, the debugger enables
the Step Into, Step Over, and Step Out buttons (refer to Figure 6-3). You use
these three buttons to take individual steps within the program — to execute
one line of code at a time. The reason why you want to do this is to see the
effect of each statement on the program data. When you think that a state-
ment changes a string in a certain way, you can prove it to yourself by view-
ing the effect of that particular statement.

You use the Step Over button in most cases because you want to see the
effects of statements in the current Sub or Function. Clicking Step Over
moves from line to line in the current code. The code still executes in any
Function or Sub called from the current Function or Sub, but you don’t
see it. The code executes in the background.

When you suspect that the called Function or Sub has an error, use the
Step Into button to go into that Function or Sub from the current location.
The IDE moves the cursor from the current position to the called Function
or Sub so that you can see the code while it executes. You still view one line
at a time when using this button. The difference is that you see the called
code in addition to the Function or Sub of interest.

When you debug a called Function or Sub, you might decide that there
really isn’t an error in that section of the code. Instead of stepping through
one statement at a time until you return to the calling code, you can use the
Step Out button to return immediately. VBA still executes all the code in the
called function — it just happens in real time rather than one line at a time.

Viewing the data tips
When you execute a program break, you can view the current value of vari-
ables in several ways. The easiest way is to use the data tips feature, shown

149Chapter 6: Trapping Errors and Squashing Bugs

11_046500 ch06.qxp 12/5/06 5:35 PM Page 149

in Figure 6-4. (See the upcoming “Using the Locals Window” and “Using the
Watches Window” sections for other techniques.) To see this view, simply
hover the mouse over any variable, even an object.

Using the Immediate window
to your advantage
The Immediate window is a valuable debugging tool. You can display the
Immediate window by clicking the Immediate Window button on the Debug
toolbar (refer to Figure 6-3). In Chapter 1, I show how you can actually create
a mini-program by using the Immediate window. It can perform simple assign-
ments, and you can use it to determine the value of a variable.

The Immediate window can act as an output screen. The most common way
to use the Immediate window as an output is the Debug.Print method.
Here in Listing 6-3 is some code showing how to use this valuable debugging
method. (You can find the source code for this example on the Dummies.com
site at http://www.dummies.com/go/vbafd5e.)

Listing 6-3 Using the Debug Object

Public Sub UseDebug()
‘ The variable that receives the input.
Dim InNumber As Byte

‘ Ask the user for some input.
InNumber = InputBox(“Type a number between 1 and “ + _

“10.”, “Numeric Input”, “1”)

‘ Print the value of InNumber to the Immediate window.
Debug.Print “InNumber = “ + CStr(InNumber)

‘ Stop program execution if InNumber is not in the

‘ correct range.

Figure 6-4:
Rely on

data tips
whenever

possible to
see the

value of a
variable.

150 Part II: Learning the Ropes

11_046500 ch06.qxp 12/5/06 5:35 PM Page 150

Debug.Assert (InNumber >= 1) And (InNumber <= 10)

‘ Display the result.
MsgBox “The Number You Typed: “ + CStr(InNumber), _

vbOKOnly Or vbInformation, _
“Successful Input”

End Sub

Notice how this sample uses the Debug.Print and the Debug.Assert
methods in combination. The Debug.Print method outputs the current
values to the Immediate window, and the Debug.Assert method checks for
a specific input range. When the range is incorrect, the program breaks, and
you can see the errant value in the Immediate window.

Using the Locals Window
The Locals window shows all the variables that the current code segment can
see. You can see variables defined within the current Sub or Function as
well as global variables. You display the Locals window by clicking the Locals
Window button on the toolbar. Figure 6-5 shows a typical example of the
Locals window.

The Locals window displays three kinds of information: variable name, value,
and data type. You can see two global variables at the top of Figure 6-5.
Immediately below the global variables is FreeSpace, a local Double. The
current value is the amount of space on the C drive of my system.

Figure 6-5:
Use the
Locals

window to
see visible
variables.

151Chapter 6: Trapping Errors and Squashing Bugs

11_046500 ch06.qxp 12/5/06 5:35 PM Page 151

Two objects appear next in the list. Normally, just the object name appears in
the list. Click the plus sign next to the name, and you see the object proper-
ties and their values. Notice that the MyDrive.AvailableSpace property
matches the FreeSpace value because I stopped the program immediately
after the drive space assignment. (See the earlier “Recovering from an error”
section for details.)

Objects can contain other objects. MyDrive is a Drive object that contains a
RootFolder object. Notice the plus sign next to RootFolder in Figure 6-5.
Click this plus sign, and the Locals window shows the contents of the second
object. You can continue looking through a hierarchy of objects until you
reach the last one contained within the original object.

The Locals window is also handy for playing what-if scenarios with your pro-
gram. The DriveTest program always fails because the check value is too
high. You can double-click the Value field of the FreeSpace entry to change
its value to 1,000,000,001. The check passes now because FreeSpace is one
more than the check value. Try this test; the program exits without error.

Using the Watches Window
The Watches window works similarly to the Locals window, but has a differ-
ent purpose. The Locals window shows variables in their raw format and
only the variables that you can see locally. You might want to see other vari-
ables, or you can use a function to change a variable before viewing it. The
Watches window helps you perform these kinds of tasks, but it requires a
little more work to use. You can display the Watches window by clicking the
Watch Window button on the toolbar. Figure 6-6 shows a typical example of
the Watches window.

Notice that this window adds a Context field. This field tells you where a vari-
able is defined. Because you can use variables from any location, knowing
where they come from is important.

Figure 6-6:
The

Watches
window

tracks
variables

and
expressions.

152 Part II: Learning the Ropes

11_046500 ch06.qxp 12/5/06 5:35 PM Page 152

Adding a new watch expression
The easiest way to add a watch expression is to highlight the expression in
your code and then drag it to the Watches window. VBA automatically enters
all the correct information for you — you don’t need to do anything but look
at the value. You can also highlight the expression and click the Quick Watch
button on the toolbar. When you use this method, you see a Quick Watch
dialog box that tells you about the new watch expression. Click Add to add
the new watch or click Cancel to change your mind.

Using the Add Watch window
A watch expression might be more complex than a single variable or even an
expression in your code. Look at the first expression shown earlier, in Figure
6-6. This expression doesn’t come from the code — I created it by using the
Add Watch dialog box. The Add Watch dialog box (see Figure 6-7) gives you
full control over the expression. To display the Add Watch dialog box, high-
light any expression in your code, right-click the selection, and then choose
Add Watch from the context menu that appears.

You can modify an expression by changing the content of the Expression
field. For example, as you can see in Figure 6-6, I first highlighted the
FreeSpace entry in the code and then added the CStr part of the expres-
sion. You can also use the Add Watch dialog box to change the context of a
watch expression. It might help to have access to global variables in every
procedure and not just in the current procedure. A common local variable
could also appear in more than one Sub or Function.

Figure 6-7:
The Add

Watch
dialog box
helps you

modify
existing

expressions
or create

new ones.

153Chapter 6: Trapping Errors and Squashing Bugs

11_046500 ch06.qxp 12/5/06 5:35 PM Page 153

Notice the three options in the Watch Type group. VBA assumes that you
want to create a watch expression. That’s what you get when you create a
quick watch or use the drag-and-drop method. You can also set a watch to
cause the program to break when the value is true or when it changes.
Creating a break condition is one of the more interesting ways to use the
Watches window.

154 Part II: Learning the Ropes

11_046500 ch06.qxp 12/5/06 5:35 PM Page 154

Chapter 7

Interacting with the User
In This Chapter
� Using forms to interact with the user

� Creating forms by using controls

� Designing forms for specific Microsoft Office applications

VBA utility programs can usually perform their jobs without much input.
However, a VBA program that helps you perform a task usually needs

some type of input. A form provides fields where you can enter or read addi-
tional information, objects (such as labels) that display information, and con-
trols (such as command buttons) that help you interact with the form.

You might need a form that asks about the machine environment or how to
interact with the data. Forms can also provide formatted output in ways that
a message box can’t. You can include fields on the form that format data and
present it in a useful manner. You use forms constantly in Windows, in the
form of dialog boxes and data entry windows.

This chapter provides an overview of VBA forms. You can also find forms in
most of the remaining chapters of this book. VBA forms can include complex
concepts, but the best forms are simple and easy to use. The examples in this
chapter concentrate on the idea of simplicity. Other chapters build on this
base and demonstrate special kinds of forms.

Understanding Forms
It’s easy to think of forms as blobs with controls attached because so many
examples of bad form design are available. Well-designed forms consider a
number of requirements, such as how the information flows from one area
to the next. A form also needs prompts that are easy to understand and a
pleasing presentation. You might think that designing such a form is hard,
but if you follow the same strategy as you do with other areas of program-
ming, you can create great forms with relative ease.

12_046500 ch07.qxp 12/5/06 5:35 PM Page 155

Using forms creatively
Good design begins when you consider how your application uses the infor-
mation that appears on the form and how you want to interact with it. A form
that presents every piece of information that you might ever need sounds
good until you try to use it. A form should contain focused information that
easily fits on any display that you use. You might find that you need to design
a series of forms that appear in sequence.

Another consideration is clutter. Even if you create a focused form, it might
contain too much nonessential information. That’s why you see Details and
Properties buttons of various kinds on forms. When you need to see the
details, you can click the button to present another form or expand the exist-
ing form. Otherwise, you can ignore the details and provide just the essentials.

Add informational forms to your program as needed. When a program com-
pletes a task, the program should tell you about it. A message box that says
“I’m done” might seem appropriate, but often it’s a nuisance. The exception
to this rule is when the user is actually waiting for confirmation that the
application has completed a task, in which case you should display the
message box. Otherwise, you can include program statistics or other helpful
information as part of an informational field or a status bar. I often build sta-
tistical forms into my programs so that I can monitor performance. When I
see that the program isn’t performing as expected, I know that I need to look
for potential problems. I often fix the problem long before it becomes a work-
stopping issue.

The important issue to consider is that a form is an interaction between a
person and the program running on the computer. If the form that you design
doesn’t evoke a response, perhaps you haven’t used the form creatively enough.
You should be able to look at a form and have a good idea of its purpose. Each
control (such as a pushbutton) should provide a ToolTip (the little window
that pops up when you hover the mouse over the control) that helps anyone
using the form to understand the intent of that control. Finally, context-
sensitive help and other forms of visual aid should make difficult forms easy
to understand.

Designing a form for your application
When you use the Forms Designer, you can easily get the idea that the VBA
Integrated Development Environment (IDE) is somehow performing magic on
your behalf by creating forms visually. A form is simply a specialized kind of
code, and you use code to perform a number of tasks in this book. Forms are
simply an extension of what you do when you perform any other task. The
only difference is that a form is visual: It presents information onscreen in a
form that the user can see.

156 Part II: Learning the Ropes

12_046500 ch07.qxp 12/5/06 5:35 PM Page 156

To begin this example, you need to add a few references that VBA doesn’t pro-
vide. Use the Tools➪References command to display the References dialog
box. Select the Microsoft Visual Basic for Applications Extensibility 5.3 and
Microsoft Windows Common Controls (any version is fine) libraries, as shown
in Figure 7-1. Make sure that you also have selected the other references shown.

Anyone who has used VBA for a while will notice that the version numbers
of the libraries in Figure 7-1 are for Office 2007. However, the interesting fact
is that the Visual Basic Editor didn’t require any changes to use the new
libraries. The editor automatically used the updated libraries when I loaded
this code from the previous edition of this book for updating.

The easiest way to design a form is by using the IDE. In the upcoming “Using
the Basic Controls” section of this chapter, you see this traditional method of
form design in action. A form that you design using these tools is static —
you decide how it looks during the design phase of your program.

Considering the form layout
The way that you design your form is important. When you use a well-designed
form, you feel good about the program. A form with a good layout is easy to
use and understand. Here are some design elements that you should con-
sider for your form (all of which appear in examples in this chapter):

� Flow: The controls on a form should naturally flow from one element to
the next. For example, you should place the fields on the form so that
someone performing a task, such as typing an address, types the name
first, the company second, the address third, and so forth. Make sure
that the tab order follows the flow you provide. You can change the tab
order by choosing View➪Tab Order.

Figure 7-1:
Adding

these
references

can make
it easy

to create
your own
dynamic

forms.

157Chapter 7: Interacting with the User

12_046500 ch07.qxp 12/5/06 5:35 PM Page 157

� Prompts: Forms should always have prompts for every field. Some
forms in applications that you use probably have blank fields that don’t
contain any information. Unless you hover the mouse over the field, you
don’t know the field’s purpose.

� Decoration: Gaudy forms make people ill, but you can still embellish
the forms that you create. A company logo or other form of simple
decoration makes a drab form nicer to use. An icon that enhances the
user’s ability to understand any textual prompts (such as a Delete icon
on a Delete command button) is also acceptable and helpful when you
must support users who speak the application’s language as a second
language.

� Accelerator keys: You might not like moving your hand from the key-
board to the mouse every time that you want to select a new control.
In fact, many people find this requirement difficult or impossible. Using
accelerator keys (shown as underlined letters) lets someone use just the
keyboard to access the controls on your form.

� Control choice: VBA provides you with a good selection of useful tools
in the Toolbox. If you find these choices limiting, you can always add
new controls to the Toolbox. Always use the right control for the job.
Not every data-entry task requires a TextBox. Some tasks require a
ListBox, a ComboBox, a CheckBox, or an OptionButton control.
(See the upcoming Figure 7-2 for a list of standard controls.)

� Flexibility: A form requires some level of flexibility to display properly
on every system. You might need to use your program on a system with
a smaller display, which means that you might have to resize the form.
If you use a laptop, you might have to use the high-contrast setting to
see the display, which means that the characters are larger and that the
form might not display correctly.

Using the Basic Controls
VBA provides a good set of basic controls, as shown in Figure 7-2. You might
use VBA to create a number of programs and never need anything more than
the basic control set. In fact, the basic control set meets just about every
need, and you seldom see anything other than these controls used in
Windows programs.

Click the Select Objects button (refer to Figure 7-2) whenever you want to
select any object on a form. VBA selects this button by default. It also picks
the Select Objects button after you add a new control to a form.

158 Part II: Learning the Ropes

12_046500 ch07.qxp 12/5/06 5:35 PM Page 158

Adding controls to the form
Before you can add controls to a form, you need a form. Right-click any-
where in the Project Explorer window and then choose Insert➪UserForm
from the context menu that appears. After you add the form, make sure that
you give it an easily remembered name by changing the Name property in
the Properties window. Use the Caption property to change the text on the
title bar.

The easiest and least error-prone method of adding a control to a form is to
select the control in the Toolbox and then click the area of the form where
you want the control to appear. The mouse cursor points to the upper-left
corner of the control. The cross cursor makes it easy to place the control
accurately. You might need to organize the controls after you add them
because it isn’t easy to add the controls precisely. See the upcoming
“Making your form pretty” section for details.

Another method for adding controls to a form is to drag the control from
the Toolbox and then drop it on the form. The reason why this method is
less precise is that you don’t always see the control’s location. The IDE dis-
plays a box showing the outline of the control, so you do see the basic layout
when using this method.

OptionButton

ListBox

TextBox

ComboBox

Label

CheckBox

Select
Objects

SpinButton

MultiPage

TabStrip ScrollBar

Image

CommandButton

ToggleButton

RefEditFrame

Figure 7-2:
VBA pro-

vides a
useful set of
controls that

meet most
needs.

159Chapter 7: Interacting with the User

12_046500 ch07.qxp 12/5/06 5:35 PM Page 159

Understanding the two parts of a form
Forms, and the controls they hold, provide the visual portion of a user inter-
face. This is the part of the form interface that the user sees, but it isn’t much
good without some code. You need code to tell VBA what to do when the
user interacts with the form. Any user interaction is an event, and the code
you build is an event handler. Consequently, when you create a form, you
work with two windows. The first is a UserForm window, where you address
the visual elements; the second is the Code window, where you add code to
handle user events, such as clicking a command button.

When you add a new form to an application, the Visual Basic Editor opens
the UserForm window immediately and displays the Toolbox so that you can
add controls. However, it doesn’t display the Code window. You can use any
of the following techniques to open the Code window:

� Choose View➪Code or press F7.

� Right-click the UserForm entry in Project Explorer and choose View
Code from the context menu.

� Right-click the control you want to work with and choose View Code from
the context menu.

The last option on the list not only displays the Code window but also creates
a handler for the default event for that control. All standard VBA controls have
a default event. For example, the CommandButton control uses the Click
event, which occurs when the user clicks the command button. Even the form
has a default event, Click, so this last option always results in the creation
of an event handler. The default event depends on the action that the user is
most likely to perform. See the later “Handling form events” section of this
chapter for more information about events.

Using the Label control to display text
You use the Label control to display text onscreen. A Label is for informa-
tional purposes. Although you can copy the content of a Label, you can’t
change it directly. The most common use for labels is to identify other controls
and to provide accelerator key access to them. (See the upcoming “Modifying
the form and control properties” section of this chapter for details on adding
an accelerator key.) Labels also act as output for read-only text.

Figure 7-3 shows a simple form with two labels. The first label has Message
Text in the Caption property. The label uses M as the Accelerator prop-
erty value, so the M in Message Text is underlined. When you press Alt+M,
VBA selects the TextBox control associated with the first label.

160 Part II: Learning the Ropes

12_046500 ch07.qxp 12/5/06 5:35 PM Page 160

The second label contains Message Output: in the Caption property. This
label receives the output from the TextBox when you click the Test button.
Here’s some sample code that shows the btnTest_Click event handler.
(You can find the source code for this example on the Dummies.com site at
http://www.dummies.com/go/vbafd5e.)

Private Sub btnTest_Click()
‘ Move the information from the TextBox input to the
‘ label output.
lblOutput.Caption = “Message Output: “ + vbCrLf + _

txtInput.Text
End Sub

VBA executes this code whenever you click the Test button. The name of the
control is btnTest, and the name of the event is Click, so the name of the
Sub is btnTest_Click. The result of this code is that lblOutput, the output
label, contains the text that it originally contained plus the contents of the
TextBox control, txtInput.

You might wonder why I begin the control names in this example with lbl,
txt, or btn. The most important reason why I use this naming strategy (or
notation) is that VBA sorts the controls for me so that I can quickly find the
one that I want. For example, Figure 7-4 shows the object list in the Properties
window. Notice that using the notation makes it easy to find the controls.

Getting user input with text boxes
The TextBox control makes it possible to request information from the user.
This control doesn’t have a Caption property because it doesn’t provide
any visual identification. You should always use the TextBox control with a
Label control, as shown in Figure 7-4, so that everyone can see what kind of
input the TextBox is supposed to get.

Figure 7-3:
Labels

identify
other

controls
or con-

tain output.

161Chapter 7: Interacting with the User

12_046500 ch07.qxp 12/5/06 5:35 PM Page 161

You use the Text property to access the content of the TextBox control.
Even if you type a number, the TextBox control treats it like a string. VBA
automatically performs a conversion between a numeric variable and the
TextBox control for you in many cases. For example, the code in Listing 7-1
works just fine. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing 7-1 Using the Text and Caption Properties

Private Sub btnTest_Click()
‘ Create the input variable.
Dim InputValue As Integer

‘ Tell VBA about the error handler.
On Error GoTo NotANumber

‘ Get the string value and place it in the numeric
‘ variable.
InputValue = txtInput.Text

‘ Tell the user what they typed.
lblOutput.Caption = InputValue

‘ Exit the Sub.
Exit Sub

‘ Handle non-numeric input.
NotANumber:

MsgBox “You must type a number!”
End Sub

Figure 7-4:
Use a

standard
notation

for control
names.

162 Part II: Learning the Ropes

12_046500 ch07.qxp 12/5/06 5:35 PM Page 162

The example code places the value contained in the txtInput.Text prop-
erty into Input. VBA performs the conversion automatically as long as the
user types a number. If you use this technique, always provide error handling,
as shown in the example code after the NotANumber label. Otherwise, if the
user types something other than a number, the program displays an error
message.

The conversion process works in both directions. Notice that the lblOutput.
Caption property accepts InputValue as acceptable input. If you decide to
add text to the output value, you still need to use the CStr function to con-
vert the number to a string. Otherwise, VBA displays a type mismatch error.

Executing tasks with command buttons
Command buttons are the main form of action. The default event (action) is
a click. Whenever you click the button, it generates a special message known
as an event. See the later “Handling form events” section for details on events
and how they work.

Like the Label control, the CommandButton control has a Caption property
so that you can type text that appears on the button face when you start
the program. In addition, you can use the Accelerator property to make
it easy to access the button by using an Alt+key combination. The example
in this section uses three command buttons to perform three different tasks.
Figure 7-5 shows the output of the example.

Listing 7-2 shows the code that you need to create this example. (You can
find the source code for this example on the Dummies.com site at http://
www.dummies.com/go/vbafd5e.)

Figure 7-5:
Command

buttons help
you choose

actions to
perform

with your
program.

163Chapter 7: Interacting with the User

12_046500 ch07.qxp 12/5/06 5:35 PM Page 163

Listing 7-2 Using the Clipboard to Copy Data

Private Sub btnCopy_Click()
‘ Create a Clipboard storage object.
Dim ClipData As DataObject
Set ClipData = New DataObject

‘ Place the text in lblOutput in the Clipboard.
ClipData.SetText lblOutput.Caption

‘ Place the object on the Clipboard.
ClipData.PutInClipboard

End Sub

Private Sub btnQuit_Click()
‘End the program.
End

End Sub

Private Sub btnTest_Click()
‘ Create a string to hold the data.
Dim Output As String

‘ Create a document property holder.
Dim DocProp As DocumentProperty

‘ Handle properties that the application doesn’t
support.

On Error Resume Next

‘ Start creating the output string.
For Each DocProp In _
ActiveWorkbook.BuiltinDocumentProperties

Output = Output + DocProp.Name + “ = “ + _
CStr(DocProp.Value) + vbCrLf

Next

‘ Display the output onscreen.
lblOutput.Caption = Output

‘ Enable the Copy Data button.
btnCopy.Enabled = TrueEnd

Sub

VBA puts your code in alphabetical order when you work with forms, which
changes the appearance of the code, but not the actual flow. This technique
makes it easier to find a particular Sub. However, it can also make it more
difficult to follow the expected flow of the program. The code begins with
btnTest_Click because btnCopy is disabled when you start the program.

The “Writing Your First Sub” section of Chapter 3 shows how to retrieve just
one value from the BuiltinDocumentProperties collection. This example

164 Part II: Learning the Ropes

12_046500 ch07.qxp 12/5/06 5:35 PM Page 164

shows how to use the For Each...Next statement to retrieve all the values
available for an application.

Notice that btnTest_Click uses the On Error Resume Next statement.
This program shows one of the few times where that statement is the correct
one to use. Not every application supports every built-in property. If you try
to retrieve the value of a built-in property that the application doesn’t sup-
port, VBA generates an error. Because there’s nothing that you should do
to correct the error, resuming with the next statement is the correct error-
handling strategy.

After the code retrieves all the built-in document properties, it places the
information in the lblOutput.Caption property, which displays the infor-
mation onscreen. The code also enables btnCopy by setting its Enabled
property to true.

The btnCopy_Click sub-procedure introduces the DataObject type. You
might need to interact with the Clipboard when writing an application. This
object is what you use to perform the interaction. The DataObject methods
help you retrieve information from the Clipboard, place information on the
Clipboard, and format Clipboard data.

Working with the Clipboard is normally a two-step process. To place data on
the Clipboard, the code must place it in the DataObject first by using the
SetText method. The next step uses the PutInClipboard method to
move the data from the DataObject to the Clipboard. To get data from
the Clipboard, follow the opposite procedure. Use the GetFromClipboard
method to place the text on the Clipboard into the DataObject and then use
the GetText method to move the data from the DataObject to a variable.

Every program that you create should include some means of ending. A
dialog-box–based program, like the one in this section, normally includes a
Quit or an Exit button. A configuration dialog box normally relies on the OK
or Cancel button to perform cleanup and then exit. The btnQuit_Click
sub-procedure for this example performs a simple task — it uses the End
statement to end the program.

Saying yes or no with check
boxes and toggle buttons
The CheckBox and ToggleButton controls are Boolean — controls with a
true or false value. The implication of each control is different. A CheckBox
control normally indicates yes or no. On the other hand, a ToggleButton
control indicates an on or off condition. You can use the controls as you see
fit, but this is the normal way to work with them.

165Chapter 7: Interacting with the User

12_046500 ch07.qxp 12/5/06 5:35 PM Page 165

Both controls use the Click event to indicate a change in status. In addition,
both controls use the Value property to show their status (checked or tog-
gled). Each control maintains its status information automatically — you
don’t have to do anything special. This feature is useful when you’re creating
various types of toggled setups in addition to the more mundane task of pro-
viding input to a form.

The example in this section displays a message box each time you click the
check box or toggle button. Listing 7-3 shows the code that you need to
create this example. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing 7-3 Using Check Boxes

Private Sub cbChecked_Click()
‘ Verify the checked status.
If cbChecked.Value Then

‘ Display a message.
MsgBox “CheckBox Checked”

Else
‘ Display a message.
MsgBox “Checkbox Cleared”

End If
End Sub

Private Sub tbCBEnable_Click()
‘ Check the state of cbChecked.
If tbCBEnable.Value Then

‘ Disable cbChecked.
cbChecked.Enabled = True

‘ Change the caption.
tbCBEnable.Caption = “CheckBox Enabled”

Else
‘ Enable cdChecked.
cbChecked.Enabled = False

‘ Change the caption.
tbCBEnable.Caption = “CheckBox Disabled”

End If
End Sub

When the program starts, cbChecked is disabled and tbCBEnable is in
the non-depressed state. Click the CheckBox Disabled button, and the code
calls tbCBEnable_Click. This sub-procedure checks the status of the
tbCBEnable.Value property to determine which course of action to take.
In both cases, it changes the state of cbChecked by using the Enabled prop-
erty and the ToggleButton Caption property. The code doesn’t need to
consider the Value property because the control changes it automatically.

166 Part II: Learning the Ropes

12_046500 ch07.qxp 12/5/06 5:35 PM Page 166

After the CheckBox is enabled, you can click it. This time, the code calls the
cbChecked_Click sub-procedure. The code checks the cbChecked.Value
property and displays the appropriate message box. Again, the control auto-
matically changes the value, so you don’t have to keep track of it.

You could easily exchange the roles of the controls in this case. There’s
no reason to avoid using the ToggleButton as a yes/no indicator or the
CheckBox as an on/off toggle. However, when you build your application,
you need to consider how the visual presentation affects you. Although the
two controls work precisely the same, the ToggleButton does present as
an on/off switch and the CheckBox does present as a yes/no indicator.

Making choices with option
buttons and frames
You never use the OptionButton control alone. This control always appears
in a group. A group of OptionButton controls lets you make one selection
from a list of selections. Only one OptionButton control is selected at any
given time, so selecting one automatically deselects all the other buttons.

Because the OptionButton controls work in a group, you have to tell VBA
which controls belong to which group, especially if a form contains more
than one group. You can create groups in one of two ways. The first technique
is to add the same string to the GroupName property of each memory of the
group. The advantage of using this method is that it requires less space and
can make your program work faster. In addition, this method is transparent,
so any background image you use on the form shows through.

The second method is to place the OptionButton controls in a Frame con-
trol. To use this technique, you must create the Frame control first and then
place the OptionButton controls within the Frame control. The advantage
of using this method is that it’s less error prone (the first method depends
on you typing the same string each time and not making a typo), and you
can visually see which buttons belong in the same group. Frames can also
provide special visual effects, such as a sunken control group.

Unfortunately, a group of OptionButton controls still acts as individual con-
trols. You have to monitor each control separately.

One way to monitor option button groups is to create a global variable and
use the Click event of each control to change it. This method provides a
slight performance boost because you don’t have to determine which
OptionButton is selected when you want to perform a task — the status
is always known. The disadvantages of this method are that it requires
slightly more code and a little more memory, and the global variable could

167Chapter 7: Interacting with the User

12_046500 ch07.qxp 12/5/06 5:35 PM Page 167

be a source of errors. Listing 7-4 shows an example of using the global variable
approach. (You can find the source code for this example on the Dummies.com
site at http://www.dummies.com/go/vbafd5e.)

Listing 7-4 Using Global Variables with Option Buttons

Private ColorSelect As String
Private NumberSelect As String

Private Sub btnStatus_Click()
‘ Create an output string.
Dim Output As String
Output = “The selected color is: “ + ColorSelect + _

vbCrLf + _
“The selected number is: “ + NumberSelect

‘ Display the result.
MsgBox Output

End Sub

Private Sub obBlue_Click()
‘ Change the ColorSelect value.
ColorSelect = obBlue.Caption

End Sub

Private Sub obGreen_Click()
‘ Change the ColorSelect value.
ColorSelect = obGreen.Caption

End Sub

Private Sub obOne_Click()
‘ Change the NumberSelect value.
NumberSelect = obOne.Caption

End Sub

Private Sub obRed_Click()
‘ Change the ColorSelect value.
ColorSelect = obRed.Caption

End Sub

Private Sub obThree_Click()
‘ Change the NumberSelect value.
NumberSelect = obThree.Caption

End Sub

Private Sub obTwo_Click()
‘ Change the NumberSelect value.
NumberSelect = obTwo.Caption

End Sub

Private Sub UserForm_Initialize()

168 Part II: Learning the Ropes

12_046500 ch07.qxp 12/5/06 5:35 PM Page 168

‘Set the initial global values.
ColorSelect = obRed.Caption
NumberSelect = obOne.Caption

End Sub

Using global variables means that you have to set them to some initial value.
The UserForm_Initialize sub-procedure performs this task when you
start the program. When you click each OptionButton control, VBA calls
the appropriate Click event handler. The event handler changes one of the
two global variables, ColorSelect or NumberSelect, as appropriate. Click
the Status button, and VBA calls the btnStatus_Click sub-procedure. Notice
that this sub-procedure has little work to do because the program tracks the
option button status.

Another approach is to use a series of If...Then...ElseIf statements to
determine which OptionButton control is selected by using the Value
property. Listing 7-5 shows a sample of the selection process that uses this
second method.

Listing 7-5 Making Selections with Option Buttons

Private Sub btnElseIfSelect_Click()
‘ Create an output string.
Dim Output As String
Output = “The selected color is: “

‘ Determine the color value.
If obRed.Value Then

Output = Output + “Red”
ElseIf obGreen.Value Then

Output = Output + “Green”
Else

Output = Output + “Blue”
End If

‘ Add the number string.
Output = Output + vbCrLf + “The selected number is: “

‘ Determine the number value.
If obOne.Value Then

Output = Output + “One”
ElseIf obTwo.Value Then

Output = Output + “Two”
Else

Output = Output + “Three”
End If

‘ Display the result.
MsgBox Output

End Sub

169Chapter 7: Interacting with the User

12_046500 ch07.qxp 12/5/06 5:35 PM Page 169

The code begins by determining the status of the color option buttons. It
uses the Value properties to perform this task. After the code determines
the color option status, it creates that part of the Output string and moves
on to the number values. The code uses the same procedure as before to
determine the number option status.

Both of these techniques display the same output. The difference between
the two techniques is where they perform their work. If you use the first
technique, you write more code to gain a performance advantage. The
second method requires just one sub-procedure and no global variables
but can result in a performance hit.

Choosing options with list
boxes and combo boxes
You use OptionButton controls when you want to create a static list — one
that doesn’t ever change. The ListBox and ComboBox controls help you
create dynamic lists — lists that can change while the program runs or from
session to session. The list of options doesn’t have to change, but knowing
that you have the option is helpful.

Both controls require that you populate (fill) them with information. The
easiest method is to use the AddItem method. Use this method when you
populate the control with the same information each time that the program
starts. You can also create an array and add the array to the List property.
The advantage of this second method is that you can pass different arrays to
a function or sub-procedure when the list content requirements change. (See
Chapter 9 for details on using arrays.)

You need to consider differences in these two controls when you’re designing
an application. The ComboBox is smaller, but it displays only the selected
option. To see all the options, you have to click the down arrow. The ListBox
is a bit more accessible because it displays many (but not necessarily all of
the) options at once.

The default ComboBox setting also lets the user type in a value other than
those presented. This makes the ComboBox more flexible, but it also means
that you have to deal with input errors. Set the MatchRequired property
to True if you want the ComboBox to limit the input to the choices that you
provide. A ListBox always limits input to the choices that you provide, so
there’s never a chance for input that causes a program error.

The advantage of using a ListBox is that you can set the MultiSelect
property to allow the user to make more than one choice. This feature lets
you limit the input choices while allowing multiple inputs. Use the Selected

170 Part II: Learning the Ropes

12_046500 ch07.qxp 12/5/06 5:35 PM Page 170

property to determine which entries are highlighted. The Value property is
always Null (set to nothing) when you allow multiple selections.

Both of these controls require less code than the OptionButton control to
perform approximately the same task. Listing 7-6 shows an example of both
the ComboBox and the ListBox in action. (You can find the source code for
this example on the Dummies.com site at http://www.dummies.com/go/
vbafd5e.)

Listing 7-6 Working with List Boxes and Combo Boxes

Private Sub btnStatus_Click()
‘ Create an output string.
Dim Output As String
Output = “The selected color is: “ + _

comboColors.Value + vbCrLf + _
“The selected number is: “ +

listNumbers.Value

‘ Display the result.
MsgBox Output

End Sub

Private Sub UserForm_Initialize()
‘ Populate the ListBox control.
listNumbers.AddItem “One”
listNumbers.AddItem “Two”
listNumbers.AddItem “Three”
listNumbers.AddItem “Four”
listNumbers.AddItem “Five”
listNumbers.AddItem “Six”

‘ Select the default value.
listNumbers.Value = “One”

‘ Populate the ComboBox control.
comboColors.AddItem “Red”
comboColors.AddItem “Green”
comboColors.AddItem “Blue”
comboColors.AddItem “Yellow”
comboColors.AddItem “Orange”
comboColors.AddItem “Purple”

‘ Select the default value.
comboColors.Value = “Red”

End Sub

The code begins in the UserForm_Initialize sub-procedure. You must
populate the two controls by using the AddItem method. Setting the Value
property to one of the values that you provide selects that value in the list.

171Chapter 7: Interacting with the User

12_046500 ch07.qxp 12/5/06 5:35 PM Page 171

The btnStatus_Click sub-procedure retrieves the current selections that
use the control’s Value property. It displays a message box containing essen-
tially the same information as the OptionButton example in the preceding
“Making choices with option buttons and frames” section.

Although this code performs essentially the same task as the OptionButton
code, it requires far less code. In fact, this code actually provides more input
choices than the OptionButton example.

Adding controls to the Toolbox
You might find that you need other controls in order to create your program.
Windows provides a wealth of controls that you can use. The Toolbox that
VBA provides has only a few essential controls in it — you can always add
more by using the following procedure:

1. Right-click anywhere on the Controls page of the Toolbox, and then
choose Additional Controls from the context menu that appears.

You see the Additional Controls dialog box, shown in Figure 7-6.

2. Select the control that you want to add to your Toolbox by placing a
check mark next to its entry.

3. Click OK.

VBA adds the selected control to your Toolbox.

The Toolbox can get crowded after you add a few controls to it. You can
add pages to the Toolbox by right-clicking outside the existing pages and
then choosing New Page from the context menu that appears. Getting rid of
a page is as easy as selecting that page, right-clicking outside the page area,

Figure 7-6:
Add

controls
to your

Toolbox by
using the

options
in this

dialog box.

172 Part II: Learning the Ropes

12_046500 ch07.qxp 12/5/06 5:35 PM Page 172

and then choosing Delete Page from the context menu that appears. It’s also
easy to move and rename pages by using context menu entries.

Using the Forms You Create
Forms are useful only if they’re usable. This means modifying the form and
control properties to provide a pleasant appearance. You should change
certain properties every time that you create a form to ensure that everyone
can use it easily. Arranging the content of the form onscreen is important,
as is making sure that the form operates correctly. Finally, you need to know
how to handle events that the form generates to ensure that you see the
expected results.

Modifying the form and control properties
In previous sections of this chapter, you discovered properties that you can
change on your form or control to get specific results. Whenever you select
the form or a control that it contains, the Properties window changes to
match the selection.

You might look at the enormous list of properties provided with the form and
controls and wonder how you can memorize them all. The fact is that you
don’t have to memorize any of them. To see what task a property performs,
highlight that property and then press F1. VBA provides property-specific help.

Some properties provide exceptional value from a user perspective. Always
define the Accelerator property for your controls. This property lets some-
one use the keyboard, rather than the mouse, to access the control. It’s an
essential property if you want to make your program accessible to those with
special needs.

When you use a Label control to provide accelerator key access for a con-
trol that doesn’t include a Caption property, make sure that the TabIndex
property value for the Label is one less than the control that it references.
For example, if a TextBox has a TabIndex value of 5, the associated Label
should have a TabIndex value of 4. Otherwise, the accelerator key doesn’t
work as anticipated.

Another important property is ControlTipText. Type a description of the
control’s purpose in this property. When you hover the mouse over the con-
trol, VBA displays the text that you typed as balloon help. This kind of help is
a halfway point between the prompt that you type and the context-sensitive
help that your program should provide. It gives additional information with-
out opening the help file.

173Chapter 7: Interacting with the User

12_046500 ch07.qxp 12/5/06 5:35 PM Page 173

Every control should have a Caption property entry. If the control doesn’t
provide a Caption property (such as a TextBox control), make sure that
you add a Label to act as a prompt for the control.

Making your form pretty
Creating a neat appearance for your form is important. You want to use a
form that looks nice because the appearance of the form affects the attitude
of those who use it. VBA provides a number of options in the Format menu
for making your form look nice. These same options appear on the UserForm
toolbar in button form (see Figure 7-7).

Notice that some of the buttons on the UserForm toolbar have down arrows
associated with them. Click the down arrow, and you see a list of potential
button functions for that button. Select the option that you want to use.

Aligning controls begins when you select two or more controls on the same
form, as shown in Figure 7-7. Use a Ctrl+left-click to select each control in
turn. The last control that you select acts as the guide for aligning the other
controls, so make sure that the last control is in the position that you want
to use for the other controls. If you want to align the tops of the controls,
choose the Format➪Align➪Tops command. You can perform tasks such as
centering individual controls by using the Format➪Center in Form menu
options.

Figure 7-7:
Make your

form look
nice by

using the
Designer
window

features.

174 Part II: Learning the Ropes

12_046500 ch07.qxp 12/5/06 5:35 PM Page 174

Creating a connection between
forms and modules
Generally, you need to make some type of connection between a form and
a module to display the form. The user can only access Subs contained in a
module through the Macro dialog box. Consequently, the code you include
with a form should affect only the handling of data locally to that form. When
you want to interact with the user programmatically, you use a module. The
example in this section shows how to display a form from a module. You’ll
see a number of other examples of interactions between forms and modules
as the book progresses.

Displaying a form onscreen is easy. Access the form by simply using its name,
and use the Show method to display it, as shown in Listing 7-7.

Listing 7-7 Displaying a Form

Public Sub ShowAForm()
‘ Use the Show method to show a form.
‘ You can perform other tasks using a modeless form.
ButtonDemo.Show vbModeless

‘ A modal form requires that you complete the task
‘ with that form before you proceed to other tasks.
NumericText.Show vbModal

End Sub

The problem that many developers face is deciding between a modal form
and a modeless form. Always use a modeless form if you want to display
other forms or perform other tasks while the current form is displayed. Use a
modal form when you want to ensure that any tasks for the current form are
complete before you display another form.

The example code shows both kinds of forms. You can try to select the
ButtonDemo form, but you won’t be able to do it. The NumericText form
insists that you complete tasks with it before you do anything else. As soon
as you finish working with the NumericText form, the program completes.
VBA displays modeless forms and essentially forgets about them.

Validating user input
Always validate user input. The main source of security problems and many
types of application errors is user input. If the user doesn’t provide the

175Chapter 7: Interacting with the User

12_046500 ch07.qxp 12/5/06 5:35 PM Page 175

correct input, your program doesn’t run no matter how much effort you put
into it. In addition, many security exploits rely on poor program validation. A
buffer overrun, one of the well-known causes of security problems, is simply
a failure to check input. Validating user input means that you should do the
following:

� Always ensure that the input uses the correct data type.

� Always check the range of numeric information. If you want numbers
between 1 and 5, don’t let the user input anything else.

� Always check the value of text input whenever possible. If you’re
expecting an address, look for elements in the text that make up an
address.

� Never allow the user to input special characters unless you actually
need the special characters to make the input work.

� Keep input simple enough that the user knows what you want and it’s
easy to check. For example, use separate entries for city, state, and zip
code in a contact management program.

Handling form events
Events are a part of most objects. Whenever the system, a user, or an exter-
nal input interacts with your program, it’s likely to generate an event. For
example, when you click a button, it generates a Click event. An event is
simply a way of saying that something has happened.

Forms and every control that they contain support a number of events. Look
at the top of the Code window, and you see two Combo Boxes. The first is the
Object list. It contains a list of every object associated with the current form.
Figure 7-8 shows an example of this list. The UserForm entry is the actual
form object.

Figure 7-8:
Use the

Object list
to select

objects
associated

with the
current

form.

176 Part II: Learning the Ropes

12_046500 ch07.qxp 12/5/06 5:35 PM Page 176

Whenever you select an object, VBA automatically creates a sub-procedure
for the default event that the object supports (the Click event in many
cases). You can remove this entry if you’re interested in writing code for
some other event.

The second Combo Box is the Procedure list. Figure 7-9 shows an example of
this list box. The Procedure list contains a list of events associated with the
current object. This list changes when you change entries in the Object list.

When you look through the Procedure list, notice that some entries are in
bold. A bolded entry is one that you’ve added to the program. The entries
shown in normal text are events that you can choose to handle but haven’t
so far. To add a new event handler to the program, simply select the entry
from the Procedure list. VBA adds the event Sub to your code — type your
code within this Sub to handle the event.

Figure 7-9:
Use the

Procedure
list to select

events
associated

with the
current
object.

177Chapter 7: Interacting with the User

12_046500 ch07.qxp 12/5/06 5:35 PM Page 177

178 Part II: Learning the Ropes

12_046500 ch07.qxp 12/5/06 5:35 PM Page 178

Part III
Expanding Your
VBA Horizons

13_046500 pt03.qxp 12/5/06 5:36 PM Page 179

In this part . . .

This is the part of the book where you move from
knowing the language to using the language for benefi-

cial work.

In Chapter 8, I show how VBA can use objects to model
program elements. (For example, VBA sees every docu-
ment that you create as an object with its own, unique fea-
tures.) Arrays and collections in VBA share similar char-
acteristics to real-world collections. Chapter 8 also shows
you how to sign your work so that others know that the
application is from you and not from someone else.

In Chapter 9, I help you understand the value of the indi-
vidual elements and the collection as a whole. You can’t
perform many tasks with Office without using collections;
this exceptionally useful programming technique appears
everywhere.

In Chapter 10, I demonstrate techniques for using disk
storage. Microsoft considers XML the next storage tech-
nology that everyone will want to use.

In Chapter 11, I describe how XML can benefit you and
how to use it within VBA.

13_046500 pt03.qxp 12/5/06 5:36 PM Page 180

Chapter 8

Object-Oriented
Programming

In This Chapter
� Understanding how classes work

� Creating your own classes

� Using the classes that you create in a program

� Knowing how to handle errors in your classes

� Understanding how to create well-constructed classes

� Signing your classes

If you’ve followed each chapter of the book to this point, you’ve used
objects to perform tasks. For example, forms and all the controls that

they contain are objects. The Clipboard also requires use of an object. In
short, objects are an essential part of working with VBA because they
reduce the amount of code that you have to write.

In this chapter, I describe the underlying mechanisms behind objects. You
can create your own objects by using VBA to design classes, which are essen-
tially object blueprints. In fact, you can create these objects and share them
with other people who might need to use the same features. Using and creat-
ing objects by designing classes makes your VBA programming experience
better.

Understanding Classes
A class is a description of an object: It’s the blueprint that VBA uses to build
an object when you request one. The class isn’t the object; it’s merely the set
of building instructions for the object. You can use the class to visualize what
the object will look like, but you can’t use a class to perform any tasks. Once

14_046500 ch08.qxp 12/5/06 5:36 PM Page 181

VBA builds the object using the class, it doesn’t look at the class any more
unless it wants to build another object. This differentiation between classes
and objects is important to remember because many information sources
confuse the two concepts. You need to keep them separate to better under-
stand how objects work. The sections that follow describe classes and
objects in detail.

Understanding object-oriented
programming concepts
At one time, developers had to worry about every variable, construct, and
step in their code. Procedural languages use step-by-step instructions to
tell the computer how to perform a task. Many developers continue to use
procedural languages because they find them easy to use and understand.
Object-oriented programming (OOP) hides implementation details from the
developer. All the developer needs to know is that an object accomplishes a
specific task; how the object performs the task is up to the object’s developer.
The act of hiding the working details of an object is called encapsulation.

The idea behind using objects is that you don’t worry about how the informa-
tion you type gets turned into executable code. This concept may sound really
odd to anyone who’s used to working with a procedural language, but that’s
the way it is. I had similar difficulties when I moved from assembler and C
to C++. It took some time for me to learn that although the object code does
get translated into executable code in some way, the whole reason for using
objects is to create an abstraction so that you worry less about the actual
underlying code than you do about the task the object is supposed to per-
form. The object creator takes care of the internal workings of the object.

Using classes also benefits the developer because it’s possible to inherit all
of the features of another class. Inheritance is the act of creating a new class
based on the content of a parent class. For example, you might already have
a class called Dog and want to create a new class called BorderCollie.
Because a border collie is a kind of dog, you can inherit the feature of the
Dog class into the new BorderCollie class.

Class theory can become quite complex, but you really don’t need to worry
about the complexities when working with VBA. You can find all kinds of
OOP topics online that discuss everything from the intricacies of good class
definition to whether OOP is really better than procedural code. If you really
want to know the low-level concepts behind OOP, one of the best places to
begin is Wikipedia (http://en.wikipedia.org/wiki/Object-oriented_
programming).

182 Part III: Expanding Your VBA Horizons

14_046500 ch08.qxp 12/5/06 5:36 PM Page 182

Understanding properties,
methods, and events
All classes include some comment elements. Because a class is essentially
a black box that accepts input and provides output, you need some way
to interact with it. Classes provide three common constructions that help
you interact with them: properties, methods, and events. The following list
describes each of these constructions.

� Properties: A property provides a means to access data within the
object. Unlike a variable, a property can include code that controls
the interaction with the object data. The property might check the data
type of the incoming request or format the outgoing data in some way.
Properties can provide read/write access so that you can change the
object data as well as use it in your own code. However, a class devel-
oper can also choose to make a property read-only or write-only.

� Methods: A method provides a means of asking the object to perform
a task. As with a Function or Sub, a method can return a value and
accept data as input. Unlike with a Function or Sub, you need not
worry about the inner workings of the method. Your only concern is
that you must provide certain input to obtain specific output. In some
cases, you will find methods that accept no input and provide no output
but still perform a task. For example, a Refresh() method may tell the
object to refresh its data. Methods always perform a task, but need not
work with data (from an external perspective) to do it.

� Events: An event is the object’s way of interacting with the outside world.
An event signals that something has happened. A user might have clicked
a button, or the status of a text box might have changed. The events that
an object signals depend on the communication that the class designer
chooses to provide. Even when an object signals an event, however, noth-
ing takes place in your code unless you create an event handler, a special
Sub or Function, to do something with the event.

Defining classes
You might want to think of a class as a substitute for a Function or a Sub, but
classes are separate. A Function or Sub always describes a procedure — a
list of steps. A class describes a thing. You can visualize a file because it’s a
thing. That’s why VBA uses classes to describe the file system and uses objects
to work with individual file system elements, such as a drive. Although you
might read that objects are substitutes for procedures, the two kinds of pro-
gramming have definite places in your programmer’s toolbox. Make sure that
you work with both as needed.

183Chapter 8: Object-Oriented Programming

14_046500 ch08.qxp 12/5/06 5:36 PM Page 183

To build an object, you tell VBA to instantiate (create an instance of) the
object. All the code required to build the object appears in the class. As a
VBA user, you create the class and not the object. Here’s a simple example of
the two-step process used to instantiate an object:

‘ Create a reference to the file system.
Dim MyFileSystem As FileSystemObject

‘ Create a reference for the target drive.
Dim MyDrive As Drive

‘ Fill these two objects with data so they show the
‘ available space on drive C.
Set MyFileSystem = New FileSystemObject
Set MyDrive = MyFileSystem.GetDrive(“C”)

VBA creates the object, MyFileSystem, based on the blueprint provided by
the FileSystemObject class. Likewise, VBA creates the object, MyDrive,
based on the Drive class.

Telling VBA that you want to create these two objects by using the Dim state-
ment is not the same as instantiating them. The Set statement instantiates
the object. You Set an object equal to the blueprint contained within a class.

You can instantiate objects by using a number of techniques — the previous
example shows two of them. In the first case, MyFileSystem is instantiated
by using the New keyword and the name of the class, FileSystemObject.
In the second case, MyDrive is instantiated based on an existing object con-
tained within the MyFileSystem object. The GetDrive method tells VBA
which Drive object to use within the MyFileSystem object.

Considering class types
Classes come in two varieties: components and controls. A component is a
class that describes an object without a user interface. The FileSystem
Object class is a component. It shows VBA how to create an object that
lacks a user interface. You usually create components with VBA. All the
examples in this book (such as the upcoming Listing 8-1) show how
to create components.

A control is a class that describes an object that includes a user interface or
affects the user interface. The CommandButton class is a control because it
includes a user interface. Don’t assume that every control provides a view-
able piece of the user interface. When you use the Timer class, it’s still a
control (even if it doesn’t have a user interface) because it interacts with the
user and affects the user interface. It’s very hard to create controls with VBA.
You should use another language — such as Visual Basic (not VBA), Visual

184 Part III: Expanding Your VBA Horizons

14_046500 ch08.qxp 12/5/06 5:36 PM Page 184

C++, or Visual C# — when you want to create special controls for your VBA
program.

Note that the Timer class might not appear with VBA, but you can read
about it at http://msdn.microsoft.com/library/en-us/vbcon98/
html/vbcontimercontrol.asp. This control is so incredibly useful that
you might want to download the version that appears at Programmers
Heaven (http://www.programmersheaven.com/download/29614/
download.aspx) even if VBA includes the standard Timer control. The
Programmers Heaven version provides better control over the timing
interval and can provide long-term timing.

Using classes to improve your applications
VBA generally relies on a combination of classes and procedural code to create
an application. The previous chapters of this book have demonstrated that
you can create applications in VBA that rely entirely on procedural code, but
these applications are limited. In some cases, you must use objects to inter-
act with the host application. For example, when you want to interact with
the Ribbon in Word, you must use an object to do it. All of these objects rely
on classes that are built into the host application.

Once you begin seeing the power of classes, you can decide whether to
create classes of your own. There isn’t a right or wrong position to take on
using classes of your own, despite what you might hear other people say.
Many developers create complex VBA applications without ever building a
class. It’s a matter of personal preference.

The advantages of using classes are many. The biggest advantages, however,
are that classes hide details that you might not want to think about as you
create an application, and you can easily reuse class code to create other
classes. The biggest disadvantages of using classes are that you do pay a
small performance and resource penalty, and modifying applications with
classes can become complex. A developer can lose contact with the code
in the application and then have to relearn it when it comes time to make a
change.

Designing a Basic Class
Because a class is a blueprint for an object, you need to have some idea of
what you want to build. The best classes are ones that answer specific needs
that you have. A class requires a specific look and feel. VBA includes this look
and feel as part of the objects that it creates from the class.

185Chapter 8: Object-Oriented Programming

14_046500 ch08.qxp 12/5/06 5:36 PM Page 185

It helps to look at existing classes when you think about your own class, to
see what other people have done. All the controls provided with VBA make
a good starting point because you can play with them in code to see how
Microsoft designed a particular feature. You should also examine VBA
objects, such as the ones used in the examples in this book. Control and
component examples are readily available for your use as patterns for your
own class. (See the “Locating Just the Right Code” section of Chapter 17 for
ideas on where to find examples.) Here’s a list of the items that you should
consider copying:

� Property, method, and event names: Use recognizable (similar) names
for properties, methods, and events. For example, don’t call your Click
event a Pushed event, because no one will know what you mean.

� Mandatory features: It’s easy to forget to include a feature in your class.
Existing classes can help you create a complete list of mandatory features,
such as a Caption property, so that nothing is left out.

� Design style: Your control provides unique features and functionality.
However, it helps to look at the way other people design classes,
especially their visual elements. For example, something as simple as
providing a True/False drop-down list box for Boolean properties is very
helpful.

� Visual aids: A class can provide visual aids, such as special dialog boxes
for some types of information. Look at other classes for ideas on how
you can add visual aids to your class that make it easier to use.

� Privacy: You might find it tempting to expose every feature to anyone
who might use it. However, that approach can lead to problems because
objects are only supposed to expose necessary elements. Use other
classes as examples of what you should keep hidden in your own class.

The example in this section shows how to create a simple class. The compo-
nent encapsulates the MsgBox function and makes it easier to use by helping
you see the options clearly. More importantly, the example demonstrates
how to construct properties, methods, and events for this simple class.

Defining properties
A property describes a feature of the object, such as its color, the caption, a
method of presentation (such as sunken or etched), or some other character-
istic. Don’t assume that a property has to describe a physical characteristic
of the object. A filename is a perfectly acceptable property. A property is a
special kind of object-specific data.

186 Part III: Expanding Your VBA Horizons

14_046500 ch08.qxp 12/5/06 5:36 PM Page 186

Property construction methods
VBA provides three kinds of construction methods for properties. You can
choose to use one or all three methods. A property requires at least one of
the methods described in this list:

� Let: The Let method helps you set the value of a property. Use it when
the property has a standard data type as an input value.

� Set: Use the Set method when you create objects that contain other
objects. For example, a FileSystemObject contains Drive objects.
To access these objects, you must use the Set method and not the Let
method.

When creating an object within an object, you’re essentially creating a
pointer to a location in memory; but unlike in C or other low-level lan-
guages, the location isn’t important. Within the referenced object are
properties that hold values that affect the operation of the object. You
don’t care how the object works with the property. All you know is that
if you set the Caption property of a control, you’ll see that text dis-
played somehow onscreen. Other properties work the same way —
they affect the operation of the object in some documented way. The
property is yet another kind of indirect pointer, so you need some way
to dereference that pointer and work with the data that it points to.
That’s where Let and Get come into play. Use Let to set a property in
a referenced object to a specific value. Use Get to obtain the value of a
property within the referenced object.

� Get: The Get method returns the stored property value to the caller.
The method that you use for objects is different from other data types,
but you can return any property value by using this method.

When you create a property, you decide not only the name and data type,
but also its accessibility. The accessibility is read only (using the Get
method), write only (using the Set or Let method), or read/write (using
the Get method along with the Set or Let method).

Properties have scope, just like everything else in VBA. Besides Public and
Private, a property can also have a special Friend scope. The Friend
scope is a step between Public and Private. Everything within the current
project can see the property, but nothing outside the current project can.
The Friend scope is useful for local configuration. Any part of the local
project — the part of the program that controls the functionality of the
object — can configure the property, but your other projects can’t see it.

You can also add the Static keyword to properties. Always add the Static
keyword when you want the property to maintain its value between calls but
not when you want to make sure that the property resets to the default value.
The Static keyword is important when you want the object to maintain its
settings.

187Chapter 8: Object-Oriented Programming

14_046500 ch08.qxp 12/5/06 5:36 PM Page 187

Here in Listing 8-1 is an example of two of the read/write properties used for
this example. The example actually contains several properties, but these
two represent standard data type and object coding. (You can find the
source code for this example on the Dummies.com site at http://www.
dummies.com/go/vbafd5e.)

Listing 8-1 Creating Object Properties

Private UseIcon As VbMsgBoxStyle
Private NewIcon As Image

Public Static Property Let Icon(Value As IconTypes)
‘ Change the value of the message icon based on the
‘ input value.
Select Case Value

Case Critical
UseIcon = vbCritical

Case Question
UseIcon = vbQuestion

Case Exclamation
UseIcon = vbExclamation

Case Information
UseIcon = vbInformation

End Select
End Property

Public Static Property Get Icon() As IconTypes
‘ Return the value of the message icon.
Select Case UseIcon

Case vbCritical
Icon = Critical

Case vbQuestion
Icon = Question

Case vbExclamation
Icon = Exclamation

Case vbInformation
Icon = Information

End Select
End Property

Public Static Property Set SpecialIcon(Value As Image)
‘ Set the custom icon value. Make sure the user has
‘ supplied a valid image.
If Not Value Is Nothing Then

Set NewIcon = Value
End If End Property

Public Static Property Get SpecialIcon() As Image
‘ Return the custom icon value.
Set SpecialIcon = NewIcon

End Property

188 Part III: Expanding Your VBA Horizons

14_046500 ch08.qxp 12/5/06 5:36 PM Page 188

The first property, Icon, uses a standard data type. In this case, it’s an enu-
merated data type that ensures that you provide the correct values. See the
“Using enumerated constants” section, later in this chapter, for details on
using enumerated types. Notice that the code transfers the input value to
the private UseIcon variable only after it checks the input for correctness.
When you work with a non-enumerated data type, it pays to include an Else
Case clause that displays a message with correct input values. Using an
enumerated type means that you don’t have to include this feature.

Notice that UseIcon is a variable that is based on the VbMsgBoxStyle enu-
meration. An enumeration is a special kind of data structure that contains
special values — it’s based on the enum data type, so the UseIcon variable
lets you select one of the enumeration values. Using an enumeration simply
makes the code easier to read.

The second property, SpecialIcon, requires an object as input. This means
that you must use the Set and Get methods rather than the Let and Get
methods that the first property uses. Data-type checking is less intense in this
case because VBA always provides a type mismatch error message if you pro-
vide the wrong value.

NewIcon is an object based on the Image class. The Image class describes
how to build a container for holding an image, such as a bitmap. The NewIcon
object actually holds the image that you provide as input to the SpecialIcon
property.

Notice that you still have to check for empty objects that don’t contain any-
thing. The code shows how to perform this task by using the Is Nothing
keyword sequence. When you require specific kinds of input for objects, you
need to check object property values as well. This example doesn’t perform
this task, but it’s something that you should consider for complex properties.
For example, an image should have a valid Picture property value.

Property conversion considerations
When you choose to encapsulate a function to make it easier to use, you
can run into situations where there isn’t a direct conversion between
the function and the object version. The MsgBox function includes the
vbMsgBoxHelpButton style. This feature works better as a Boolean
property, so you use the following code to create a property for it:

Public Static Property Let HelpButton(Value As Boolean)
‘ Should the example use the vbMsgBoxHelpButton style?
UseHelpButton = Value

End Property

Public Static Property Get HelpButton() As Boolean
‘ Return the vbMsgBoxHelpButton value.
HelpButton = UseHelpButton

End Property

189Chapter 8: Object-Oriented Programming

14_046500 ch08.qxp 12/5/06 5:36 PM Page 189

The code for this property is very simple. It simply passes the UseHelp
Button value back and forth. Notice that the comment for the Let method
includes a reference to the vbMsgBoxHelpButton style. (Whenever you con-
vert a function or other real-world entity into an object, try to preserve the
original information in the comments that you write.) This comment helps
you remember that this property replaces the vbMsgBoxHelpButton style.

Property naming considerations
You normally want to use the same names for properties in your object that
other programmers use for their objects. This technique makes it easier for
you to remember the purpose of a property. However, you also want to avoid
confusion. If a property doesn’t provide precisely the same functionality, it’s
better to use a different name. For example, the MsgBox function provides the
vbMsgBoxRight style to allow flush-right text alignment. You might think that
you should use the TextAlign property found in other objects, such as the
Label control. However, the TextAlign property allows left, center, and
right text alignment, so using this name for the example could prove confusing
because the MsgBox function doesn’t allow center alignment. The example
uses a Boolean value and a different name for the property, as shown here:

Public Static Property Let RightAlignText(Value As
Boolean)

‘ Should the example use the vbMsgBoxRight style?
UseRightAlignment = Value

End Property

Public Static Property Get RightAlignText() As Boolean
‘ Return the vbMsgBoxRight value.
RightAlignText = UseRightAlignment

End Property

Notice that the property name is very specific. The name makes it clear that
left alignment is the default and that you can only choose right alignment as
an option.

The MsgBox Context argument does precisely match the HelpContextID
property used by many existing objects, so the example does use that name
for the property. I ran into a problem with the MsgBox Prompt and Title
arguments. Theoretically, both arguments should appear as part of the
Caption property. When you set the Caption property of a UserForm,
you set the title bar text. Likewise, the Caption property sets the text that
appears in a Label control. The example uses the Caption property for
the Prompt argument and uses a Title property for the Title argument.
Because you use the Prompt argument more often, setting it equal to the
Caption property makes sense.

190 Part III: Expanding Your VBA Horizons

14_046500 ch08.qxp 12/5/06 5:36 PM Page 190

Defining methods
Methods help you interact with an object by defining the form of interaction.
The example in this chapter has only one method, Show. After you configure
a message box for use, you want to show it onscreen, so the name is appro-
priate. The UserForm control also uses this name for the same purpose.

A method can rely on a Public Sub if it doesn’t return a value, or a Public
Function if it does. You call a method by using the same technique that you
would with a Sub or Function. The difference is that a method is associated
with a specific object and relies on the property values contained within that
object. This difference means that when you call a method, you don’t have
to supply every value that the method needs to perform a task — the object
supplies many (if not all) of the required arguments. Listing 8-2 contains the
Show method code for this example.

Listing 8-2 Creating an Object Method

Public Function Show() As VbMsgBoxResult
‘ Create a variable to hold the message box result.
Dim Result As VbMsgBoxResult

‘ Create and build the option list.
Dim Options As VbMsgBoxStyle
Options = UseIcon
Options = Options Or UseButtons
Options = Options Or UseDefault
Options = Options Or UseModal

‘ Each of the Boolean values requires conversion to a
‘ style equivalent.
If UseForeground Then

Options = Options Or vbMsgBoxSetForeground
End If
If UseRightAlignment Then

Options = Options Or vbMsgBoxRight
End If
If UseRightToLeft Then

Options = Options Or vbMsgBoxRtlReading
End If

‘ The help button requires special handling.
If UseHelpButton Then

‘ Verify the user has supplied all required
‘ help information.
If TheHelpFile = “” Then

‘ If the help filename is missing, the message
‘ box can’t display help. Raise an error to

tell

(continued)

191Chapter 8: Object-Oriented Programming

14_046500 ch08.qxp 12/5/06 5:36 PM Page 191

Listing 8-2 (continued)

‘ the user about the problem.
Err.Raise vbObjectError + 1, _

“SpecialMsg.Show”, _
“You must provide a HelpFilename “ +

_
“property value to use the Help “ +

_
“button in a message box.”

Else
‘ The user has provided all required help
‘ information, so set the help button option.
Options = Options Or vbMsgBoxHelpButton

End If
End If

‘ Determine if the message box will display help.
If ((TheHelpFile = “”) And (Not UseHelpButton)) Then

‘ Display a message box without help.
Result = MsgBox(ThePrompt, Options, TheTitle)

Else
‘ Display a message box that includes help.
Result = MsgBox(ThePrompt, Options, TheTitle, _

TheHelpFile, TheHelpContext)
End If

‘ Raise the Click event so the caller can react to it.
RaiseEvent Click(Result)

‘ Return a result.
Show = Result

End Function

The MsgBox function provides access to a number of styles. It’s easy to
forget how many styles until you start looking at code like this. The code
creates an Options variable that contains all the style options that you’ve
set up through object properties. It selects an icon, a button set, a default
button, and a modality type (application or system). These options always
appear in the list, and the Class_Initialize method sets them to default
values. (See the upcoming “Defining initialization” section for details.) The
Options variable can also contain a number of optional settings. The code
checks the Boolean values, such as UseForeground, to determine whether
you want to include these optional styles. It then adds the actual style to the
Options variable.

Notice that the UseHelpButton If...Then statement includes error
handling. See the upcoming “Adding Error Handling to Classes” section for a
description of class error handling. In this case, the class determines whether
you’ve assigned a help file to the message object. If not, clicking the Help
button causes an error. The MsgBox function doesn’t protect you from this
error, but the SpecialMsg class does.

192 Part III: Expanding Your VBA Horizons

14_046500 ch08.qxp 12/5/06 5:36 PM Page 192

The code uses one of two methods for displaying the message box. When you
don’t define help, it passes just the prompt, the style options, and the title to
the MsgBox function. When you do define help, the code also passes the help
filename and the help context to the MsgBox function.

At this point, the Show method pauses. It waits for you to click one of the but-
tons on the message box. After you click one of the buttons, control returns
to the Show method.

The code calls the RaiseEvent method next. See the following “Defining
events” section for more information about events. In this case, the code
raises the Click event to show that you’ve clicked a button. Notice that the
Click event receives the return value from the MsgBox function call. Finally,
the Show method also returns the result to the caller. Using this approach
lets you react to a message box return value as either a method call return or
an event, which increases the flexibility of the MsgBox function. You can also
choose to ignore the return value.

Defining events
Events are an essential part of most classes. They signify that you’ve done
something to the control. The example provides two kinds of events, but
the actual number that you can create is unlimited. Anytime that an action
occurs, you can fire (raise) an event. However, most classes limit their events
to a user action or a change in data.

The example code in the preceding “Defining methods” section shows one
way to fire an event. You use the RaiseEvent method to perform this task.
Before you can fire an event, you must define it. Events are always public,
but you should include the Public keyword to ensure that your event works
with future versions of VBA and that you avoid making the code hard to read.
Here are some examples of event declarations:

‘ Define an event that occurs when the user clicks a
button.

Public Event Click(Result As VbMsgBoxResult)

‘ Define events for various property changes.
Public Event ChangeButton(Result As ButtonTypes)
Public Event ChangeIcon(Result As IconTypes)

The event declarations always include the Event keyword and the event
name. The example uses Click as an event name because that’s what other
VBA objects use for this particular event. Arguments are optional. All three of
the declarations use single arguments in this case. I prefer to include informa-
tion that I think I might need later as part of the event declaration rather than
get that information by using other means.

193Chapter 8: Object-Oriented Programming

14_046500 ch08.qxp 12/5/06 5:36 PM Page 193

Monitoring data change is an important event. You might need to perform
verification or to modify other object settings when a data change occurs.
For example, when you decide to change the button style, you also need
to check the default button setting to ensure that it falls within the desired
range. Listing 8-3 shows a typical example of a data modification event.

Listing 8-3 Creating an Object Event

Public Static Property Let Buttons(Value As ButtonTypes)
‘ Change the value of the message button based on the
‘ input value.
Select Case Value

Case OKOnly
UseButtons = vbOKOnly

Case OKCancel
UseButtons = vbOKCancel

Case AbortRetryIgnore
UseButtons = vbAbortRetryIgnore

Case YesNoCancel
UseButtons = vbYesNoCancel

Case YesNo
UseButtons = vbYesNo

Case RetryCancel
UseButtons = vbRetryCancel

End Select

‘ Raise an event to show the button type has changed.
RaiseEvent ChangeButton(Value)

End Property

Notice in this code and in the code in the earlier “Defining methods” section
that the RaiseEvent method isn’t called until after the action takes place.
Always raise the event after you verify that it has occurred. Otherwise, you
might react to an event that hasn’t taken place yet (and might not take place
at all).

Using enumerated constants
The example uses a number of enumerated constants. These constants serve
to limit the number of acceptable input values. They also act as reminders of
the acceptable inputs. Listing 8-4 contains an example of a public enumeration.

Listing 8-4 Using Constants in an Object

‘ This enumeration shows the button types.
Public Enum ButtonTypes

OKOnly = 0
OKCancel = 1

194 Part III: Expanding Your VBA Horizons

14_046500 ch08.qxp 12/5/06 5:36 PM Page 194

AbortRetryIgnore = 2
YesNoCancel = 3
YesNo = 4
RetryCancel = 5

End Enum

You assign values to each of the constants within the enumeration. The
values don’t have to follow any particular order, and you don’t have to start
with 0. It helps to order the enumeration in some way. The example uses the
help topic order to make it easier to compare the help files with the values
that the code contains. You can also order the entries alphabetically or in
order of usage frequency. When a class uses an enumeration for a particular
value, VBA displays the acceptable values.

Look at the MsgObj.Buttons line of code shown in Listing 8-6. When you
type = at this line, you see a list of acceptable values for that property. The
list contains the acceptable button values for the example. The advantage of
this technique is that you don’t have to remember the individual values, and
the probability of providing an incorrect value drops dramatically. Always
use enumerated constants, when you can, to reduce errors and typing time.

Defining initialization
Every class should provide property and local variable initialization. Adding
initialization ensures that your class won’t fail because of a lack of input. In
addition, initialization can help you create objects with less code because
many of the values are already defined. The Class_Initialize method
performs all the initialization tasks for any class. See Listing 8-5 for the
initialization code used for the example.

Listing 8-5 Initializing a Class

Private Sub Class_Initialize()
‘ Set the initial prompt.
ThePrompt = “Hello World”

‘ Define a simple title.
TheTitle = “”

‘ Don’t include a default help file or context.
TheHelpFile = “”
TheHelpContext = 0

‘ Initialize the variables.
‘ Use the Information icon.

(continued)

195Chapter 8: Object-Oriented Programming

14_046500 ch08.qxp 12/5/06 5:36 PM Page 195

Listing 8-5 (continued)

UseIcon = vbInformation

‘ Display only the OK button.
UseButtons = vbOKOnly

‘ Make the first button the default button.
UseDefault = vbDefaultButton1

‘ Ensure the message box is application modal. The
user

‘ must clear the message box before doing anything
else

‘ with the application.
UseModal = vbApplicationModal

‘ Don’t display a help button.
UseHelpButton = False

‘ It’s not essential that the message box always
appear

‘ in the foreground.
UseForeground = False

‘ Left-align the message box text.
UseRightAlignment = False

‘ Display the text in left-to-right order.
UseRightToLeft = False

‘ Initialize the special icon, but don’t load a
picture.

Set SpecialIcon = New Image
End Sub

The code shows that initialization is simply the task of assigning values to
every variable. However, the code also demonstrates some subtleties that
you should consider. The MsgBox function has only one required input: a
prompt. The code defines a value for ThePrompt because it’s a required
input. The Show method works even when you simply instantiate the object
and make the method call.

The title, help filename, and help context are all optional MsgBox function
arguments, so the code doesn’t define a value for them. The empty string
ensures that the variable is usable, but nothing else.

Variables such as UseIcon must use one of the enumerated values. In this
case, the initialization process sets the variable to use the default value that
the MsgBox function uses or the value that you use most often. For example,
the MsgBox function doesn’t require that you provide an icon, but the object
does provide one for the sake of onscreen appearance.

196 Part III: Expanding Your VBA Horizons

14_046500 ch08.qxp 12/5/06 5:36 PM Page 196

Setting the Instancing property
You can create two kinds of classes for your program: private and public. The
default setting is private, which means that no one outside the program can
see the class or create objects from it. When you create a class that’s so spe-
cial that there’s no chance that you can use it outside the current program,
this is the setting that you should use.

You’ll use most of the classes that you create in multiple programs. You should
set the Instancing property of these classes to Public. Figure 8-1 shows
the Instancing property in the Properties window.

The not-creatable portion of this property value means that other VBA pro-
grams can use objects contained within your class, but only if your class
creates them. In the case of the example, this means that other programs
can use the SpecialIcon object, but they can’t create the SpecialIcon
object directly. The SpecialMsg class must create the SpecialIcon object,
and then the caller can assign a value to that object.

Creating useful classes
You might wonder why a class that encapsulates the MsgBox function would
be useful. This class is useful for a number of reasons. The most important is
that it makes using the MsgBox function less of a memory teaser. The MsgBox
function provides a wealth of style options, but trying to memorize them all
is a waste of time. Creating a class that eliminates the memory gymnastics for
you saves time and effort.

Using the class also reduces the chance of error. Each property provides
access to mutually exclusive styles. You can combine multiple icon types
when using the MsgBox function like this:

MsgBox “Hello”, vbCritical Or vbInformation

Figure 8-1:
Modifying

the
Instancing

property for
class usage.

197Chapter 8: Object-Oriented Programming

14_046500 ch08.qxp 12/5/06 5:36 PM Page 197

The result is a message box that doesn’t display any icon. The class version
eliminates this problem. You can choose only one icon, and you don’t have to
remember the icon choices.

The class form of the MsgBox function also makes setups easier. You can use
this class to set up certain types of message boxes that you use regularly at
the beginning of the program. For example, you can use it to set up an error
message box. When an error occurs, you can quickly set the Caption property
and use the Show method to display the message box. The idea is that the error
message box is consistent and easy to use.

The example class in this chapter shows the three reasons to encapsulate
functions and also the three things that you should consider when you’re
creating new objects. The following list summarizes these three elements:

� Ease of use: A class should always make coding easier. Useful classes
reduce the programming burden rather than increase it.

� Reduced learning curve: A class should reduce the need to memorize
things or to figure out odd programming techniques. A class should pro-
vide easy-to-understand methods, properties, and events.

� Enhanced reliability: A well-designed class provides error handling not
found in a function. The class should sensibly restrict actions that result
in coding errors. It should also check inputs to ensure that the information
is correct.

Using Your New Object in an Application
The SpecialMsg class is ready for use in an application. You can use it in
place of the MsgBox function . . . and in some places where the MsgBox func-
tion simply won’t work. For example, you can’t ask the MsgBox function to
generate events, but the SpecialMsg class does. The code in Listing 8-6
shows an example of the SpecialMsg class in action.

Listing 8-6 Testing the New Object

Private WithEvents MsgObj As SpecialMsg

Private Sub btnTest_Click()
‘ Instantiate the special message box.
If MsgObj Is Nothing Then

Set MsgObj = New SpecialMsg
End If
‘ Assign some property values.
MsgObj.Caption = “This is a message object.”
MsgObj.Title = “Special Message”

198 Part III: Expanding Your VBA Horizons

14_046500 ch08.qxp 12/5/06 5:36 PM Page 198

MsgObj.Buttons = YesNoCancel
MsgObj.Icon = Question

‘ Display the message box.
MsgObj.Show

End Sub

Private Sub MsgObj_ChangeButton(Result As ButtonTypes)
‘ Show the new button type.
lblButtonType = Result

End Sub

Private Sub MsgObj_Click(Result As VbMsgBoxResult)
‘ Show the return value.
lblReturnValue = Result

End Sub

Notice that the example declares the MsgObj object as Private WithEvents.
The WithEvents statement is important because it tells VBA that you want
the object to handle events. When you leave out this statement, the object
doesn’t respond to any events declared in the class.

The example uses a standard form with Test and Quit buttons to test the class. The
form also contains two labels for displaying output values from the class.
The btnTest_Click sub-procedure instantiates the object, performs all the
required setups, and then displays the message box by using the Show method.

Changing the button type automatically generates a ChangeButton
event. The example handles this event by displaying the new button type
in lblButtonType. Like with most event handlers, the sub-procedure is
private and uses a combination of the object name and the event, MsgObj_
ChangeButton.

The example also handles the Click event. The MsgObj_Click sub-proce-
dure produces the same result as the output of the Show method. Which tech-
nique you use in your code depends on the results that you want to achieve.

Because you can’t directly access a form by using the Macro dialog box,
you also need to create some simple code to display the form. Create a new
module for your application and create a simple Sub to show the form, as
shown here:

Sub ShowMsgBox()
‘ Display the special message box.
SpecialMsgTest.Show

End Sub

199Chapter 8: Object-Oriented Programming

14_046500 ch08.qxp 12/5/06 5:36 PM Page 199

Adding Error Handling to Classes
Classes have to provide exceptionally robust error handling so that they’re
reliable. The earlier “Defining methods” section shows one type of error
handling that you can add to a class. Keeping track of property interactions
before you perform a task such as displaying the message box is important.

You can add other forms of error handling to your class. Tracking actual
input values is another good form of error handling when you can’t use enu-
merated constants. It’s also important to monitor property values based on
other input values. Here’s an example of code (see Listing 8-7) that monitors
the DefaultButton property based on the number of buttons that the mes-
sage box has. The code ensures that the default button is a button that actu-
ally exists on the message box.

Listing 8-7 Providing Error Handling in an Object

Public Static Property Let DefaultButton(Value As
DefaultButtonTypes)

‘ Change the value of the message icon based on the
‘ input value.
Select Case Value

Case Button_1
UseDefault = vbDefaultButton1

Case Button_2
If ((UseButtons = vbOKOnly) And _

(Not UseHelpButton)) Then
‘ Can’t have a single button setting if
‘ there is no Help button, so raise an
‘ error.
Err.Raise vbObjectError + 2, _
“SpecialMsg.DefaultButton”, _
“The selected default button value is “ +

_
“incorrect. Choose a default button “ + _
“that matches the message box settings.”

Else
‘ Set the default button value.
UseDefault = vbDefaultButton2

End If
Case Button_3

If ((UseButtons = vbOKOnly) Or _
(((UseButtons = vbOKCancel) Or _
(UseButtons = vbRetryCancel) Or _
(UseButtons = vbYesNo)) And _
(Not UseHelpButton))) Then

‘ This setting doesn’t support a single
‘ button option at all. It also doesn’t
‘ support any of the double button options

200 Part III: Expanding Your VBA Horizons

14_046500 ch08.qxp 12/5/06 5:36 PM Page 200

‘ if there is no Help button. Raise an
error

‘ if any of these conditions is true.
Err.Raise vbObjectError + 2, _
“SpecialMsg.DefaultButton”, _
“The selected default button value is “ +

_
“incorrect. Choose a default button “ + _
“that matches the message box settings.”

Else
‘ Set the default button value.
UseDefault = vbDefaultButton3

End If
Case Button_4

If Not UseHelpButton Then
‘ Can’t have four buttons if there is no
‘ Help button, so raise an error.
Err.Raise vbObjectError + 2, _
“SpecialMsg.DefaultButton”, _
“The selected default button value is “ +

_
“incorrect. Choose a default button “ + _
“that matches the message box settings.”

Else
‘ Set the default button value.
UseDefault = vbDefaultButton4

End If
End Select

End Property

The logic that you use for error handling can become quite complex. There’s
no error handling for a DefaultButton value of Button_1 because you
can’t create a message box with no buttons (every message box has at least
one button). Only one setting results in a message box with just one button.
When you create a message box with vbOKOnly and leave out the Help
button, there’s only one button on the message box. The Case Button_2
clause checks for this possibility and generates an error message when you
ask for the second button as a default on a message box with only one button.

The Case Button_3 error-handling logic is especially complex. When you
encounter a situation where the logic becomes this complex, it pays to take the
problem apart, solve the individual pieces, and then put the pieces together. A
message box has three buttons when you request the vbYesNoCancel option.
The message box also has three buttons when you request the vbYesNo
option and a Help button. The message box never has three buttons when
using the vbOKOnly option — even adding the Help button increases the
number of buttons to only two. The code uses all these criteria to look for

201Chapter 8: Object-Oriented Programming

14_046500 ch08.qxp 12/5/06 5:36 PM Page 201

situations where the message box won’t have three buttons. When the mes-
sage box lacks the proper number of buttons, the code produces an error.

The Case Button_4 error-handling logic demonstrates a situation where
you can turn something very complicated into something very simple. None
of the button options has more than three buttons. Therefore, the only time
you can set the default button to the fourth button is when there’s a Help
button. The code looks for this button. When you don’t include it, the code
generates an error.

Using the With Statement
VBA does provide an interesting feature that makes it easier to write code for
an object. The With statement tells VBA that you plan to perform a number
of tasks by using the same object. Every dotted statement within the struc-
ture applies to that object. Using this technique reduces the amount of code
that you have to type and can reduce the chance of typos. Listing 8-8 shows
an example of the With statement in use.

Listing 8-8 Using an Alternative Object-Testing Technique

Private Sub btnTest2_Click()
‘ Instantiate the special message box.
If MsgObj Is Nothing Then

Set MsgObj = New SpecialMsg
End If
‘ Assign some property values.
With MsgObj

.Caption = “This is a message object.”

.Title = “Special Message”

.Buttons = YesNoCancel

.Icon = Question

‘ Display the message box.
.Show

End With
End Sub

Notice that this code is similar to the code in the earlier “Using Your New
Object in an Application” section. The only difference is that you don’t have
to type MsgObj so many times. The code works precisely the same as before,
and you get the same prompts as before. This is a personal-taste coding tech-
nique. You don’t lose anything by not using it, and you don’t gain anything
significant when you do.

202 Part III: Expanding Your VBA Horizons

14_046500 ch08.qxp 12/5/06 5:36 PM Page 202

Adding a Digital Signature
to Your Creation

You might eventually want to send your class to someone else. In some cases,
this means sending the entire project to them. Whenever you send your pro-
ject to someone else, make sure that you sign it so that the recipient knows
that you actually created it.

Obtaining a digital signature
A digital signature isn’t anything special in its own right. You can create a
digital signature quite easily and use it to sign your VBA projects. The magic
in a digital signature is in the trust it provides. Consequently, you need to
sign your projects with a digital signature that people can trust. In most
cases, this means obtaining a digital signature from a third-party Certificate
Authority (CA), such as VeriSign. You can find a list of CAs at http://
msdn.microsoft.com/library/?url=/library/en-us/dnsecure/
html/rootcertprog.asp.

Creating a test digital signature
Not everyone will want to buy a digital signature from a third party. If you
create VBA applications exclusively for your own use, buying a digital signa-
ture is a waste of time and money. In addition, you might not want to use a
third-party digital signature for testing. To receive full benefit from a third-
party certificate, you must keep it secret. For these reasons and more, you’ll
probably want to create a test or personal certificate at some point. The fol-
lowing steps describe how to perform this task:

1. Choose Start➪Programs➪Microsoft Office➪Microsoft Office Tools➪
Digital Certificate for VBA Projects.

You see the Create Digital Certificate dialog box.

2. Type a name for your certificate in the Your Certificate’s Name field.

3. Click OK.

You see a success message.

4. Click OK.

The test certificate is ready to use.

203Chapter 8: Object-Oriented Programming

14_046500 ch08.qxp 12/5/06 5:36 PM Page 203

Applying the digital signature to a project
After you have a digital signature, you need to apply it to your project. Use
the following steps to sign your creation:

1. In the VBA Integrated Development Environment (IDE), choose
Tools➪Digital Signature.

You see a Digital Signature dialog box, like the one shown in Figure 8-2.

2. Click the Choose button.

You see a Select Certificate dialog box.

3. Highlight a certificate in the list and then click OK.

VBA signs the target project using your certificate.

4. Click OK to close the Digital Signature dialog box.

Figure 8-2:
Verify the
signature
status of

your project.

204 Part III: Expanding Your VBA Horizons

14_046500 ch08.qxp 12/5/06 5:36 PM Page 204

Chapter 9

Working with Arrays
and Collections

In This Chapter
� Using arrays within a program

� Using collections within a program

� Creating new data types

� Defining collections within a program

To this point in the book, all the data types you’ve used have one thing in
common — they store a single data element. When you create an integer,

it holds a single number. Placing a new number within the integer removes
the old value. However, the real world doesn’t work this way. A computer can
have more than one disk drive. Your contact database contains more than
one name. A mailbox can contain more than one piece of mail. You need a
method of storing more than one piece of information in a single variable so
that you can model the real world in your programs. VBA provides two meth-
ods of doing this: arrays and collections.

Arrays provide a way for your programs to store more than one item in a
single container. Think of the array as a large box with a bunch of small boxes
inside. Each small box can store a single value. You decide how many small
boxes the array can hold when you create the array. Use arrays when you
need to store a number of related items of the same data type.

Collections always relate to a group or series of objects that are combined in
a single container. In most cases, a main object contains one or more sub-
objects. For example, an Excel Application object contains a Workbooks
collection, and a Workbook object contains a Sheets collection. The
Application can contain one or more Workbooks, and an individual
Workbook can contain one or more Sheets. A Word Section object can
contain a HeadersFooters collection. Microsoft Office and many third-party
products are packed with object collections that you can access from VBA.

15_046500 ch09.qxp 12/5/06 5:36 PM Page 205

In this chapter, I also demonstrate how you can create your own data types.
A data type is a way to mark information so that you can understand it better.
The computer doesn’t care about data types. VBA uses data types to enforce
certain data behaviors, but it doesn’t really understand them. The use of a
data type is for your benefit so that you can understand the information
better.

Using Arrays for Structured Storage
An array is a list of items. When you write a list of tasks to perform for the
day, you create an array. The piece of paper is a single container that holds a
number of strings, each of which is a task that you have to perform. Likewise,
you can create a single piece of paper in your VBA program — an array —
and use that array to hold multiple items.

Understanding array usage
You can define arrays by using several techniques. However, all these tech-
niques use the same basic approach. Listing 9-1 contains an example that
demonstrates the essential array usage process. (You can find the source
code for this example on the Dummies.com site at http://www.dummies.
com/go/vbafd5e.)

Listing 9-1 Creating and Using an Array for String Data

‘ Tell VBA to start all arrays at 0.
Option Base 0

Public Sub SingleDimension()
‘ Define an output string.
Dim Output As String

‘ Define a variant to hold individual strings.
Dim IndividualString As Variant

‘ Define the array of strings.
Dim StringArray(5) As String

‘ Fill each array element with information.
StringArray(0) = “This”
StringArray(1) = “Is”
StringArray(2) = “An”
StringArray(3) = “Array”

206 Part III: Expanding Your VBA Horizons

15_046500 ch09.qxp 12/5/06 5:36 PM Page 206

StringArray(4) = “Of”
StringArray(5) = “Strings”

‘ Use the For Each...Next statement to get each array
‘ element and place it in a string.
For Each IndividualString In StringArray

‘ Create a single output string with the array
‘ array elements.
Output = Output + IndividualString + “ “

Next

‘ Display the result.
MsgBox Trim(Output), _

vbInformation Or vbOKOnly, _
“Array Content”

End Sub

Notice that the code begins with an Option Base 0 statement. This state-
ment tells VBA whether you want to start counting array elements at 0 or 1.
The default setting is 0. Most programming languages use 0 as the starting
point, which is why Microsoft made 0 the default for VBA. However, older ver-
sions of Visual Basic (including VBA) use 1 as the starting point. When you
want to ensure that your program works in every environment, include the
Option Base statement.

The code for SingleDimension begins with some variable declarations.
Notice the StringArray declaration. When you want to create an array, you
follow the variable name with a pair of parentheses that contains the number
of elements. You can also create an empty array by leaving out the number,
but then you need to use the ReDim statement to set the number of elements
later. See the upcoming “Understanding the array types” section for details.

Because the array begins at 0 and not at 1, you can actually store six items in
an array that is defined as having five elements. The number that you include
in the declaration is always the top element number of the array and not the
actual number of elements.

The code that follows the array declaration fills each of these elements with a
string. Notice the use of numbers in the statement. This number is an index.
You use the index to access individual members of the array, just as you use
letters or numbers to access individual apartments in an apartment complex.
The statement StringArray(1) = “Is” places the word Is in the second
array element by using an index of 1. You can always access an individual ele-
ment by using its index.

207Chapter 9: Working with Arrays and Collections

15_046500 ch09.qxp 12/5/06 5:36 PM Page 207

This example shows how to use a For Each...Next statement to access
each array element in turn. Notice that you don’t need to use an index in this
situation because the For Each...Next statement keeps track of it for you.
The IndividualString variable is a Variant — the only acceptable type
when using a For Each...Next statement. You don’t have to convert
IndividualString when you add it to Output because VBA tracks it as a
Variant/String. Check out this statement in the Debugger, and you can
see how it works.

The final statement displays a message box containing the value of Output.
This message box presents the list of the strings originally added to the
array. Notice that the output is a single string that the code created from the
individual array elements.

Understanding the array types
You can classify arrays in several ways. The first method is by the kind of
data that the array holds. A String array is different from an Integer array.
An array always keeps the array data type unique. Using a Variant data type
lets you mix data types within an array. You should use this technique care-
fully because it can lead to bugs that are difficult to debug.

A second method is to define the number of array dimensions. A dimension is
the number of directions in which the array holds information. A simple list,
such as the one in the earlier “Understanding array usage” section, is a
single-dimensional array. A table that consists of rows and columns is a two-
dimensional array. You can create arrays with any number of dimensions.

Listing 9-2 shows an example of a two-dimensional array that holds the result
of a calculation. Note that this is the first example to mix forms into the pro-
gram, and it also shows how to use the ReDim statement. (You can find the
source code for this example on the Dummies.com site at http://www.
dummies.com/go/vbafd5e.)

Listing 9-2 Creating and Using a Two-Dimensional Array

‘ Define some data exchange values for the
‘ GetArrayDimensions form.
Public Input1Value As Integer
Public Input2Value As Integer
Public ClickType As VbMsgBoxResult

Public Sub TwoDimension()
‘ Create an array to hold the calculation results.
Dim CalcResult() As Integer

208 Part III: Expanding Your VBA Horizons

15_046500 ch09.qxp 12/5/06 5:36 PM Page 208

‘ Create some loop variables for the calculation.
Dim Loop1 As Integer
Dim Loop2 As Integer

‘ Create an output string for the display.
Dim Output As String

‘ Display a form to obtain the array dimensions.
GetArrayDimensions.Show

‘ Determine which button the user clicked.
If ClickType = vbCancel Then

‘ If the user clicked Cancel, exit.
Exit Sub

End If

‘ Redimension the array.
ReDim CalcResult(Input1Value, Input2Value)

‘ Perform the calculation.
For Loop1 = 1 To Input1Value

For Loop2 = 1 To Input2Value
CalcResult(Loop1, Loop2) = Loop1 * Loop2

Next
Next

‘ Create a heading.
Output = “Calculation Results” + vbCrLf + _

“In Tabular Format” + vbCrLf + vbCrLf

‘ Define the column heading values.
For Loop1 = 1 To Input2Value

Output = Output + vbTab + CStr(Loop1)
Next

‘ Define the rows.
For Loop1 = 1 To Input1Value

Output = Output + vbCrLf + CStr(Loop1)
For Loop2 = 1 To Input2Value

Output = Output + vbTab + _
CStr(CalcResult(Loop1, Loop2))

Next
Next

‘ Create a message box to show the result.
MsgBox Output, vbInformation Or vbOKOnly, “Results”

End Sub

209Chapter 9: Working with Arrays and Collections

15_046500 ch09.qxp 12/5/06 5:36 PM Page 209

The program declares three public variables. These variables hold the results
from the dialog box created to ask you how many values to compute. This
technique is regularly used to get information.

The TwoDimension sub-procedure begins by declaring some variables.
Notice that it doesn’t define the number of elements in CalcResult — the
code only tells VBA that it’s an array.

The code displays a dialog box containing one input text box for each dimen-
sion using the GetArrayDimensions.Show method. The program uses this
dialog box to get the array dimensions.

This dialog box has several interesting features to consider. First, unlike the
standalone dialog boxes in Chapter 7, this dialog box interacts with a sub-
procedure. Consequently, you can’t simply end the dialog box — the code
within the dialog box has to report back to the calling sub-procedure in some
way. This is the reason for creating the global Input1Value, Input2Value,
and ClickType variables. Listing 9-3 shows the essential code from the Two-
Dimensional Array Dimensions dialog box.

Listing 9-3 Creating a Form to Interact with a Two-Dimensional Array

Private Sub btnOK_Click()
‘ Change the click type.
ArrayTypes.ClickType = vbOK

‘ Check the two input values.
txtInput1_Change
txtInput2_Change

‘ End the form.
Me.Hide

End Sub

Private Sub txtInput1_Change()
‘ Verify the user has input a number greater than 1.
If Val(txtInput1.Text) = 0 Then

‘ If not, display an error message box.
MsgBox “Type a numeric value greater than 1.”

‘ Return the text to an acceptable value.
txtInput1.Text = “5”

Else
‘ Otherwise, store the numeric value.
ArrayTypes.Input1Value = CInt(txtInput1.Text)

End If
End Sub

The txtInput1_Change sub-procedure monitors any change to the
txtInput1 control. (The txtInput2 control has a similar event handler

210 Part III: Expanding Your VBA Horizons

15_046500 ch09.qxp 12/5/06 5:36 PM Page 210

associated with it.) The If...Then statement verifies that you have input a
number by using the Val function to compare the number with 0. You can’t
use the CInt function because it generates a type mismatch error when you
type a letter or special character. Typing an incorrect character generates an
error message and returns the value to something correct. A correct entry
places the integer value into the Input1Value variable in the ArrayTypes
module (the one with the sub-procedure).

The btnOK_Click sub-procedure sets the ClickType variable in the
ArrayTypes module to vbOK. Likewise, clicking Cancel sets the ClickType
variable to vbCancel. The code then calls Me.Hide. The special keyword Me
refers to the current object. The Hide method removes the form from sight
but not from memory.

When you want to remove an object from memory, you use the Unload
method and supply the object name. This method works only if VBA is done
using the object. Likewise, when you want to load an object into memory
(but not display it), use the Load method. This method works only when VBA
has memory and other resources available to load the object.

When the GetArrayDimensions UserForm completes (you click OK or
Cancel), control returns to the TwoDimension sub-procedure. The code
checks the ClickType value. Click Cancel, and the sub-procedure exits.

At this point, the code has the information needed to dimension the array
(that is, make it a certain size), so it uses the ReDim statement to change the
CalcResult dimensions. Changing the dimensions erases the content of the
array unless you include the Preserve keyword. A double loop serves to
address the two dimensions of the CalcResult array. The calculation is
simple multiplication, but you can perform any task in the loop.

After the array is filled with data, it’s time to create an output string. The
code uses simple assignment to create a heading, generates the row heading
using a single loop, and then uses a double loop to create the output informa-
tion. The final statement displays an output message box containing a table
of the information.

Copying data from one array to another
You might need to copy data from one array to another. For example, you can
base a new array on the content of an existing array. It’s also safer to make
changes to a copy of an array rather than to change the original and poten-
tially damage the data. Listing 9-4 shows an example of code that you can use
to copy one array to another. (You can find the source code for this example
on the Dummies.com site at http://www.dummies.com/go/vbafd5e.)

211Chapter 9: Working with Arrays and Collections

15_046500 ch09.qxp 12/5/06 5:36 PM Page 211

Listing 9-4 Copying an Array

Public Sub ArrayCopy()
‘ Create a loop variable.
Dim Counter As Integer

‘ Create an original array of strings and a copy.
Dim OriginalArray(4) As String
Dim CopiedArray(5) As String

‘ Create an output variable.
Dim Output As String

‘ Fill the array with data.
OriginalArray(0) = “This”
OriginalArray(1) = “is”
OriginalArray(2) = “the”
OriginalArray(3) = “original”
OriginalArray(4) = “array!”

‘ Copy the data.
For Counter = 0 To UBound(OriginalArray)

CopiedArray(Counter) = OriginalArray(Counter)
Next

‘ Modify some data elements.
CopiedArray(3) = “copied”
CopiedArray(4) = “array”

‘ Add a new element.
CopiedArray(5) = “too!”

‘ Create the first part of the output string.
Output = “The first string:” + vbCrLf
For Counter = 0 To UBound(OriginalArray)

Output = Output + OriginalArray(Counter) + “ “
Next

‘ Create the second part of the output string.
Output = Output + vbCrLf + “The Second String:” +

vbCrLf
For Counter = 0 To UBound(CopiedArray)

Output = Output + CopiedArray(Counter) + “ “
Next

‘ Display the results.
MsgBox Output, vbInformation Or vbOKOnly, “Results”

End Sub

The code begins by creating two arrays and filling the original array with
information. Copying the OriginalArray elements to the CopiedArray

212 Part III: Expanding Your VBA Horizons

15_046500 ch09.qxp 12/5/06 5:36 PM Page 212

elements comes next. Follow this process in the Debugger, and you see that
the two arrays are the same except that the CopiedArray has one extra ele-
ment. Notice how the code uses the UBound function to determine the last
element of the array. Use the LBound function to determine the lower bound-
ary of the array subscripts.

At this point, the code modifies CopiedArray. First, the code changes the
content of two of the elements. Second, it adds information to the last ele-
ment. These changes don’t affect the original array. If an error occurs, you
can always reconstruct CopiedArray by using OriginalArray as a start-
ing point. The message box that the code constructs shows that the original
array is the same, but the copied array is different.

Using Collections to Create Data Sets
You can view a collection as an advanced form of an array. Like an array, a
collection maintains a list of items in one package. Because these items are
related in more than a superficial way, such as a group of worksheets, many
people refer to the list of items as a data set. Using a collection is different
from an array, however, and you might find that you like using them better
than arrays. A collection has some advantages, such as not requiring the
ReDim statement, but is a little more complicated to use. This section explains
these differences in detail and shows how to use collections in a program.

Understanding collection usage
If you’ve followed the book to this point, you’ve used collections in previous
chapters. For example, the “Recovering from an error” section of Chapter 6
relies on a collection to retrieve information from a specific hard drive. The
FileSystemObject object contains a collection of Drive objects. The
example in the “Designing a form for your application” section of Chapter 7
also relies on collections. This example adds control objects to the Controls
collection of the UserForm object. VBA uses a lot of collections — you can’t
escape their use.

The easiest way to understand a collection is to create one of your own. You
can create collections and add them to a class that you create or use them by
themselves. VBA doesn’t place any restrictions on how you use collections.
Listing 9-5 shows an example of a simple collection. It creates the collection
and then provides the means for adding, removing, and listing elements in the
collection. (You can find the source code for this example on the Dummies.com
site at http://www.dummies.com/go/vbafd5e.)

213Chapter 9: Working with Arrays and Collections

15_046500 ch09.qxp 12/5/06 5:36 PM Page 213

Listing 9-5 Creating and Using a Simple Collection

‘ Declare the collection.
Private MyCollection As Collection

Private Sub btnAdd_Click()
‘ Add a new item.
MyCollection.Add _

InputBox(“Type a new item.”, “Add Item”, “Hello”)

‘ List the items.
ListItems

End Sub

Private Sub btnDelete_Click()
‘ Define variables to hold the selection.
Dim UserInput As String
Dim Selection As Integer

‘ Define an error handling result variable.
Dim Result As VbMsgBoxResult

‘ Get the input from the user.
RetryInput:

UserInput = InputBox(“Type an existing item number.”,
_

“Remove Item”, _
“1”)

‘ Validate the input.
If Val(UserInput) > 0 And _

Val(UserInput) < MyCollection.Count + 1 Then

‘ Use good input to delete a value.
Selection = CInt(UserInput)

Else
‘ Display an error message.
Result = MsgBox(“Type a number greater than 1 “ +

_
“and less than or equal to the “ +

_
“number of elements.”, _
vbExclamation Or vbRetryCancel, _
“Input Error”)

‘ Allow for a retry.
If Result = vbRetry Then

GoTo RetryInput
Else

Exit Sub

214 Part III: Expanding Your VBA Horizons

15_046500 ch09.qxp 12/5/06 5:36 PM Page 214

End If
End If

‘ Delete the existing item.
MyCollection.Remove Selection

‘ List the items.
ListItems

End Sub

Private Sub UserForm_Initialize()
‘ Initialize the collection.
Set MyCollection = New Collection

End Sub

Public Sub ListItems()
‘ Create the listing variable.
Dim Element As Variant

‘ Clear the current list.
lblCollection.Caption = “”

‘ Display each element in turn.
For Each Element In MyCollection

lblCollection.Caption = lblCollection.Caption + _
Element + vbCrLf

Next

‘ Determine whether to enable the Delete button.
If MyCollection.Count > 0 Then

btnDelete.Enabled = True
Else

btnDelete.Enabled = False
End If

End Sub

This is a standalone form program. The code declares MyCollection as a
private global variable so that all the sub-procedures can access it. The
UserForm_Initialize sub-procedure initializes the collection.

The example provides two CommandButtons for changing the collection:
Add and Delete. The Delete button is disabled at program startup because
you can’t delete a non-existent element from the collection without produc-
ing an error. Consequently, the first button that you click is Add. The
btnAdd_Click event handler displays an InputBox that requests string
input. After making the addition by using the Add method, the code calls the
ListItems sub-procedure.

215Chapter 9: Working with Arrays and Collections

15_046500 ch09.qxp 12/5/06 5:36 PM Page 215

The ListItems sub-procedure provides a convenient place to put common
code for the event handlers. You should use this type of sub-procedure
with common code for programs that you create. The code begins by creat-
ing a Variant to hold individual collection members. It also sets the
lblCollection.Caption to “” (nothing) in order to erase the current con-
tent from the display. Notice the use of the For Each...Next statement to
fill the lblCollection.Caption property with new data.

It’s important to check the status of the collection to ensure that the program
enables or disables btnDelete as appropriate. The If...Then statement
compares the number of collection items using the Count method with 0.
When the If...Then statement is true, the collection is empty, and the code
disables btnDelete. Otherwise, the code enables btnDelete.

The btnDelete_Click event handler requires some error handling to
ensure that the program operates as expected. You can add any string
desired to the collection, but you can’t enter just any information during a
deletion because incorrect input causes an error.

216 Part III: Expanding Your VBA Horizons

Knowing when to use a collection
Throughout this chapter, I show examples of
both arrays and collections. The examples
demonstrate that the techniques for using each
storage technique are different, but the results
can be the same in many cases. For example,
you can store strings equally well in a collection
or an array. You can also access the information
by using similar techniques. It might be difficult
to determine which method to use. In some
cases, it doesn’t matter — it’s a matter of per-
sonal taste.

Consider both advantages and disadvantages
when you make your decision. Here’s a list of
the things that you should consider:

� Arrays have a slight performance advan-
tage and use less memory to store the same
information.

� Collections are more flexible than arrays —
they can grow and shrink as needed.

� Arrays are easier to conceptualize, and you
might find them easier to use.

� Collections excel at storing objects, and
they work well with complex data types.

� Arrays can appear in multiple dimensions —
there’s no limit. (Collections are limited to a
single list.)

� Collections are self-contained, so you don’t
have to memorize a list of external functions
to work with them.

Although you can use either an array or a col-
lection in some situations, you must use a spe-
cific option in other cases. For example, arrays
are the only solution when you need to perform
complex matrix math because collections are
simple lists and don’t include the concept of
dimensions. On the other hand, when you want
to include a list of objects within an object, you
must use a collection. However, you can use
either solution when you want to create a list of
simple items, such as names.

15_046500 ch09.qxp 12/5/06 5:36 PM Page 216

The InputBox places the information that it receives in UserInput. An If...
Then statement compares the UserInput with specific numeric values. When
you type a character or a special symbol, it’s the same as typing a 0 — the
Val function returns a 0 for non-numeric input. The If...Then statement
also compares the UserInput with the upper limit of the collection entries
by using the Count method. If the input meets the criteria, the code places
the integer part of the input into Select by using the CInt function.

When an input error occurs, the code displays a message box that tells you
about the correct input and asks whether you want to try again. An If...
Then statement compares your button click with vbRetry and takes appro-
priate action.

The deletion process relies on the Remove method. You must supply an inte-
ger value that reflects the index of the entry that you want to remove. A col-
lection can also use keys — strings that stand in for the actual values. You
can see a demonstration of this technique in the upcoming “Adding keyed
data to the collection” section. The event handler ends with a call to
ListItems.

Adding keyed data to the collection
You can normally create collections without keys, and they work fine. A col-
lection that relies on user input is an exception. It’s easier to get string input
from users than to ask them to count down a row of entries to provide a
number. Database collections provide opportunities to use keyed entries. In
fact, many predefined collections use keyed entries to make it easier for you
to develop programs with them.

This example shows an Access contact database. It uses keys to make finding
an entry easier. The database contains only three fields: a contact name, the
telephone number, and the last date of contact. To use this example, you must
add a reference to the Microsoft DAO 3.6 Object Library. Listing 9-6 shows the
code for this example. (You can find the source code and associated database
for this example on the Dummies.com site at http://www.dummies.com/
go/vbafd5e.)

Listing 9-6 Using Keyed Data with a Collection

Public Sub DisplayContacts()
‘ Create a loop counter variable.
Dim Counter As Integer
Counter = 1

‘ Create a recordset object.
Dim CurrentData As DAO.Recordset

(continued)

217Chapter 9: Working with Arrays and Collections

15_046500 ch09.qxp 12/5/06 5:36 PM Page 217

Listing 9-6 (continued)

‘ Create the collection variable.
Dim ContactList As Collection
Set ContactList = New Collection

‘ Create the output variables.
Dim Element As Variant
Dim Output As String

‘ Get the current data.
Set CurrentData = _

Application.CurrentDb.OpenRecordset(“Contacts”)

‘ Create the collection from the data.
While Not CurrentData.EOF

‘ Get the information and place it in the user
‘ data type.
ContactList.Add _

CurrentData.Fields(“Name”).Value, _
“Name” + CStr(Counter)

ContactList.Add _
CurrentData.Fields(“Telephone”).Value, _
“Telephone” + CStr(Counter)

ContactList.Add _
CurrentData.Fields(“LastContact”).Value, _
“LastContact” + CStr(Counter)

‘ Update the Counter.
Counter = Counter + 1

‘ Move to the next database record.
CurrentData.MoveNext

Wend

‘ Create an output string by getting the values from
‘ the collection.
For Counter = 1 To (ContactList.Count / 3)

‘ Access the collection elements by name.
Element = ContactList(“Name” + CStr(Counter))
Output = Output + Element

Element = ContactList(“Telephone” + CStr(Counter))
Output = Output + vbTab + Element

Element = ContactList(“LastContact” +
CStr(Counter))

Output = Output + vbTab + CStr(Element) + vbCrLf

218 Part III: Expanding Your VBA Horizons

15_046500 ch09.qxp 12/5/06 5:36 PM Page 218

Next

‘ Create the message box.
MsgBox Output, vbInformation, “Contact List”

End Sub

The code begins by defining and initializing some variables. Notice the
CurrentData declaration. It’s a DAO.Recordset, not the default
ADODB.Recordset object. When you use the default, the program fails with
a type mismatch error. This example points out one of the problems that you
can encounter when working with objects. Make sure that you use specific
object references as necessary.

You can use a number of methods to get hold of the Contacts table in the exam-
ple database. The easiest method is to use the Application.CurrentDb.
OpenRecordset method. This method includes constants that determine
how VBA opens the recordset. For example, you can tell VBA that you want
to read only the recordset by using the dbReadOnly constant. See the
OpenRecordset Method help topic for additional information.

The code uses a While...Wend structure to retrieve the individual data ele-
ments. Notice the use of a string to access the Fields collection, which acts
as the first argument for the ContactList.Add method. The second argument
for the Add method used to add a new item to the ContactList collection is
the string key that you can use to access it. When you look at ContactList
in the Debugger, you see that it contains a single list of entries. Make sure
that you use the CurrentData.MoveNext method to select the next record
at the end of the loop, or else the database never reaches the end of the file
(the EOF property set to True).

In this case, the code relies on a For...Next loop to create the output string.
The collection isn’t in a configuration where one element equals one database
record — the code requires three elements for each database record. The
code shows how you can create a loop to compensate for this fact.

The For...Next loop expression isn’t actually optimal in this case. I use this
presentation to make the example clearer. Notice the ContactList.Count
/ 3 portion of the expression. VBA has to calculate that value during every
loop. Calculating the value outside the loop would save time and make this
program faster.

Accessing predefined collection items
VBA uses collections quite often. For example, the Fields collection of a
database is a collection of Field objects. Likewise, the Drives collection
contains multiple Drive objects.

219Chapter 9: Working with Arrays and Collections

15_046500 ch09.qxp 12/5/06 5:36 PM Page 219

You should notice something interesting about the relationship between col-
lections and objects. Microsoft usually uses an s at the end of the name to
denote a collection, such as the Drives and Fields collections.

The balloon help that you see when you type an object name normally con-
tains methods and properties for that object. It can also contain other
objects and collections. When you look through the list of items, anything
plural is normally a collection.

You see another clue when you double-click a property and then press F1 to
display help. VBA help not only tells you that the item is a collection, but usu-
ally also displays a hierarchical chart to show where the collection fits within
the object hierarchy and what types of items the collection can contain.

The Debugger can also help you ferret out collections. The Watches window,
shown in Figure 9-1, shows how the CurrentData Recordset object holds
the Fields collection, which contains multiple Field objects. (Type
CurrentData.Fields in the Expression field of the Add Watch dialog box to
obtain the view shown in Figure 9-1.) You can click the plus sign next to each
item to see each field and its current content. Look especially in the Type
column, where you can see the data type used for each item in the collection.

Another place to acquaint yourself with collections is in the Object Browser.
The Help file is useful only when you know what you’re looking for. The
Debugger is also problematic because you have to build something to see
what it contains. The Object Browser is different. When you know what you
need but not what to call it, you can select the library in question and browse.

Figure 9-2 shows the DAO library used for the example in the preceding
“Adding keyed data to the collection” section. This figure shows three collec-
tions and the objects that they contain: Errors, Fields, and Groups. When
you find something interesting, highlight it, and then press F1. When you
know what you’re looking for, help can be useful.

Figure 9-1:
Use the

Debugger
to see

predefined
collections.

220 Part III: Expanding Your VBA Horizons

15_046500 ch09.qxp 12/5/06 5:36 PM Page 220

Defining Your Own Data Types
A VBA user-defined data type is nothing more than a list (collection) of data
elements that you want to use together. You aren’t really creating a new data
type — at least not one that you could identify as a unique entity, such as a
String or an Integer. In this section, I show how to benefit from user-
defined data types and demonstrate their use.

Understanding user-defined data types
Creating a user-defined type means defining the data that you want to use
together and deciding which native data types work best. The example in the
earlier “Adding keyed data to the collection” section uses a database connec-
tion to get hold of data and place it in a collection. The implementation (the
actual coding) in that example is difficult because you have to make three
entries in the collection for each database record. Here’s a user-defined type
that places all the information in one entry. (You can find the source code for
this example on the Dummies.com site at http://www.dummies.com/
go/vbafd5e.)

‘ Define a user type.
Public Type APerson

Name As String ‘ The person’s name.
Telephone As String ‘ The contact telephone number.
LastContact As Date ‘ The date of last contact.

End Type

You create a user-defined type by using the Type keyword followed by the
name of the new data type. The structure contains native data types. Each

Figure 9-2:
Browse

for the
collections

that you
need to use

in your
program.

221Chapter 9: Working with Arrays and Collections

15_046500 ch09.qxp 12/5/06 5:36 PM Page 221

variable also has a name. VBA helps you create user-defined types of any
complexity. They can include arrays, other user-defined types, and even
objects. However, you always want to make the user-defined type as simple
as possible and document it fully so that you remember later what it does.

Knowing when to create
your own data type
Before you create a user-defined data type, always ask whether any existing
type (including objects and collections) can fulfill your need. After you know
that you have to create a user-defined type, make sure that you think about
the purpose that the user-defined type fulfills.

A user-defined data type can save time and effort by letting you declare all
the data elements that you normally use together for a task in one place. It
can also group data so that you don’t have to perform finger gymnastics to
locate your data. However, the main reason to create a user-defined type is to
make your program easier to understand. A well-defined data type can make
your code simpler and keep the number of code lines to a minimum.

Accessing and manipulating data
The example in the earlier “Adding keyed data to the collection” section
works well because it doesn’t have to work with complex data. A program
that modifies multiple tables and 20 or 30 fields might not work so well by
using the technique shown in that section. (It would work, but it wouldn’t be
fun to program.) By using the new data type that you just created, you can
make the programming example in the “Adding keyed data to the collection”
section easier to understand.

The example in this section relies on a user-defined data type. It builds an
object on that data type and then adds the object to a collection. This exam-
ple shows how to create your own collections to make working with your
data faster and easier.

Defining an individual contact
When you decide to create your own collection, begin with the individual
object. Make sure that you know what one copy of an object looks like before
you create multiple copies of it. See Chapter 8 for a complete object creation
demonstration.

222 Part III: Expanding Your VBA Horizons

15_046500 ch09.qxp 12/5/06 5:36 PM Page 222

‘ Create an instance of this type.
Private ThePerson As APerson

Public Property Get Name() As String
‘ Get the current user name.
Name = ThePerson.Name

End Property

Public Property Let Name(Value As String)
‘ Set the new user name.
ThePerson.Name = Value

End Property

The object for this example essentially maintains a reference to the user-
defined data type and exposes the individual elements as properties. The list-
ing shows the user-defined type declaration. Notice that the declaration
doesn’t vary from that used for native data types.

The code consists of three pairs of property declarations — one for each
variable in the APerson data type. Each property provides both read and
write capabilities. Although this is an object, the individual variables aren’t
objects, so you use the Let and Get methods of exposing them.

Defining a collection of contacts
After you have a single object to use, it’s time to create a collection of them.
A collection doesn’t have to implement the methods and properties found in
the Collection class, but it helps if it does. It pays to look at the collections
in VBA for ideas on which methods and properties you can implement.
Always implement the Item property because you need it for most of your
code. Listing 9-7 shows an example of a typical collection.

Listing 9-7 Manipulating Data in Collections

‘ Declare the collection.
Private PersonCollection As Collection

Public Sub Add(Item As Person, _
Optional Key As String, _
Optional Before As Integer, _
Optional After As Integer)

‘ Determine whether there is a Key.
If Not Key = “” Then

‘ Determine whether there is a Before value.
If Before > 0 Then

(continued)

223Chapter 9: Working with Arrays and Collections

15_046500 ch09.qxp 12/5/06 5:36 PM Page 223

Listing 9-7 (continued)

‘ Add an entry with a Key and Before value.
PersonCollection.Add Item, Key, Before

‘ Determine whether there is an After value.
ElseIf After > 0 Then

‘ Add an entry with a Key and After value.
PersonCollection.Add Item, Key, , After

Else

‘ The entry is just an Item and a Key.
PersonCollection.Add Item, Key

End If
Else

‘ Determine whether there is a Before value.
If Before > 0 Then

‘ Add an entry with a Before value.
PersonCollection.Add Item, , Before

‘ Determine whether there is an After value.
ElseIf After > 0 Then

‘ Add an entry with an After value.
PersonCollection.Add Item, , , After

Else

‘ The entry is just an Item.
PersonCollection.Add Item

End If
End If

End Sub

Public Property Get Count() As Long
‘ Return the current collection count.
Count = PersonCollection.Count

End Property

Public Sub Remove(Index As Variant)
‘ Remove the requested item.
PersonCollection.Remove Index

End Sub

Public Property Get Item(Index As Variant) As Person
‘ Return the requested item.
Set Item = PersonCollection.Item(Index)

224 Part III: Expanding Your VBA Horizons

15_046500 ch09.qxp 12/5/06 5:36 PM Page 224

End Property

Private Sub Class_Initialize()
‘ Initialize the collection.
Set PersonCollection = New Collection

End Sub

Notice that the code begins by creating a Collection object. You could also
use the Implements statement to implement the Collection class, but
this technique is easier. The Class_Initialize method initializes
PersonCollection so that other methods can use it.

The Add method is the most complex sub-procedure that you write for a col-
lection in most cases. The reason for the complexity is that this method has
so many optional arguments. In addition, when you supply a Before argu-
ment, you can’t supply an After argument — the two are mutually exclusive.
The code divides the task of determining what to do into a Key or no Key
decision. It then decides whether you supplied a Before or After argument,
or neither, and takes the appropriate action. Look through the Add method
code, and you see that each decision results in a different Add method-calling
syntax.

The Count property returns the PersonCollection.Count property. You
never need to add error-handling code to this property because it’s read only.
Never make this property read/write. You don’t want someone using the col-
lection to change the count.

The Remove method makes a direct call to the PersonCollection.Remove
method. You could add range checking to this method by using the same
techniques that I use in previous examples. The PersonCollection.Remove
method raises an error when you supply an incorrect value. Notice the use of
a Variant for this method so that it can accept a string or an integer as input.

The Item property is also read only. Again, you should never make this prop-
erty read/write. Always use the Add method to add new entries to the collec-
tion. Notice that this method returns an object, so you have to use the Set
statement.

Creating a default property
No matter which collection you look at, Item is the default property or func-
tion. Figure 9-3 shows that Item uses a special symbol. The explanation for
Item in the lower pane of the Object Browser window also says that this is
the default property of the Fields collection. The only problem is that VBA
doesn’t provide a direct method for you to create a default property or
method for your class.

225Chapter 9: Working with Arrays and Collections

15_046500 ch09.qxp 12/5/06 5:36 PM Page 225

You have to use a little-known and somewhat undocumented method of
adding a default property to the example. When you look at the
Persons.cls file in the source code, you see that the code actually looks
like the code in Listing 9-8:

Listing 9-8 Creating a Default Property Declaration

Public Property Get Item(Index As Variant) As Person
‘ Tell VBA this is the default property.
Attribute Item.VB_UserMemId = 0

‘ Return the requested item.
Set Item = PersonCollection.Item(Index)

End Property

However, the first line of code doesn’t appear in the IDE. VBA forces you to
use a simple but odd procedure to add this line of code. Simply use the fol-
lowing procedure to add this line of code:

1. Right-click the Persons entry in the Project Explorer window, and
then choose Export File from the context menu that appears.

You see the Export File dialog box.

2. Click Save to save the file as Persons.cls.

VBA exports the file.

3. Open the file in any text editor, such as Notepad.

Never use Word for this task because it can add control characters.

4. Type Attribute Item.VB_UserMemId = 0 as the first entry for the
Item property.

5. Save the Persons.cls file and then exit the editor.

Figure 9-3:
Create a

default
Item

property or
method

to ensure
that your

collection
works

properly.

226 Part III: Expanding Your VBA Horizons

15_046500 ch09.qxp 12/5/06 5:36 PM Page 226

6. Right-click the Persons entry in the Project Explorer window, and
then choose Remove Persons from the context menu that appears.

VBA asks whether you want to export Persons before you remove it.

7. Click No.

VBA removes the class module.

8. Right-click anywhere in the Project Explorer window, and then
choose Import File from the context menu that appears.

VBA displays the Import File dialog box.

9. Highlight the Persons.cls file and then click Open.

VBA imports the updated file. It appears that nothing has changed. The
code looks the same as before. However, the unseen Attribute entry
has changed.

10. Open Object Browser and view the updated Persons class.

You notice that Item is now the default property for this class.

Developing the test program
The test program in Listing 9-9 is similar to the one used in the earlier section
“Adding keyed data to the collection” (refer to Listing 9-6). You can find it in
the source code as DisplayContacts2 (on the Dummies.com site at
http://www.dummies.com/go/vbafd5e). The new example in Listing 9-9
still begins by creating variables, and it opens the same recordset.

Listing 9-9 Updating the Key Data Collection Example

‘ Create the collection from the data.
While Not CurrentData.EOF

‘ Define a new element.
Set Individual = New Person

‘ Get the information and place it in the user
‘ data type.
Individual.Name = _

CurrentData.Fields(“Name”).Value
Individual.Telephone = _

CurrentData.Fields(“Telephone”).Value
Individual.LastContact = _

CurrentData.Fields(“LastContact”).Value

‘ Add the information to the collection.
ContactList.Add Individual, Individual.Name

(continued)

227Chapter 9: Working with Arrays and Collections

15_046500 ch09.qxp 12/5/06 5:36 PM Page 227

Listing 9-9 (continued)

‘ Move to the next database record.
CurrentData.MoveNext

Wend

‘ Create an output string by getting the values from
‘ the collection.
For Counter = 1 To ContactList.Count

‘ Get the current element.
Set Individual = ContactList(Counter)

‘ Access the collection elements by name.
Output = Output + Individual.Name + _

vbTab + Individual.Telephone + _
vbTab + _
CStr(Individual.LastContact) + vbCrLf

Next

The code is easier to understand now because you can quickly identify the
data elements, and each collection entry is equal to a single database record.
Notice that you create a single Person object (Individual) to store the
information. A single call to the Persons collection object, ContactList,
adds all the information at once.

Creating the output is also easier. A single call to ContactList places the
information in Individual. The Output string uses information from this
single object to create an entry for the message box. Notice that you don’t
need any strange math for the expression in the For...Next loop.

228 Part III: Expanding Your VBA Horizons

15_046500 ch09.qxp 12/5/06 5:36 PM Page 228

Chapter 10

Working with Disk Files
In This Chapter
� Working with data storage by using various techniques

� Interacting with the data found in data storage files

� Using data storage to perform tasks such as saving program settings

You use disk storage every time that you work with an application. Disk
storage is the most convenient and least expensive means of perma-

nently saving data on a computer system. Permanent storage means that the
information on the disk drive remains there after you turn off the computer.

Modern drives include everything from internal hard drives to flash disk
thumb drives that you place in USB ports. In general, VBA disk storage is lim-
ited to devices you can access as standard hard drives unless you’re willing
to turn to exotic programming techniques not discussed in this book. Standard
hard drive access includes flash disks and rewriteable CD-RW/DVD-RW drives,
but doesn’t include media you must burn. You may also find it difficult to use
online (Internet) storage that requires special processing. Windows Vista
promises to make many forms of media that are hard to access under Windows
XP and earlier operating systems accessible using the same techniques you
use with an internal hard drive, so you may have other options when working
with Vista. Consequently, you need not limit VBA to an internal drive; you can
easily place your data on a removable drive and carry it with you.

Disk storage can hold several kinds of information. The program that you use
to write VBA code is an executable file — it contains information but not user
data. The documents that you save are user data. The program that you use
to work with VBA already supports the documents that you want to use.
However, you might want to save information in other formats, which is one
reason to write a VBA program that works with disk storage.

A third kind of disk storage is settings. Some applications use initialization
(INI) files exclusively. In fact, Microsoft has begun recommending using some-
thing other than the Registry or Active Directory to store your settings to

16_046500 ch10.qxp 12/5/06 5:36 PM Page 229

make applications easier to move from one machine to another. Using INI or
eXtensible Markup Language (XML) files works perfectly for this purpose.
(Chapter 11 discusses using XML with VBA in detail.) Most new applications
rely heavily on the Registry for setting storage options, and some applica-
tions use server storage in the form of Active Directory. All three forms of set-
tings storage are viable, but the INI or XML file is the easiest method to use
from VBA.

This chapter demonstrates various methods for working with disk files. You
might find that you want to store data in a new format or save program set-
tings after you see how easy it is to work with disk files.

Using Disk Storage
Placing information on disk is an essential task for most applications. The
data that an application creates is the main reason why you have an interest
in it. However, the application already handles data storage for you, so you
don’t need to consider this use for disk files in your program. You might think
that that’s the extent of the data storage needs for your program, but it isn’t.
Your program also has valuable data that it must maintain.

Application configuration information
When a user interacts with your program, you might want to retain any set-
tings that the user makes. It’s always a good idea to store the user interface
settings so that they’re restored every time the user starts the program.

You can also store usage information. For example, when you open a Word
document, you can press Shift+F5 to return to your previous editing location
in the document. Microsoft stores that information between writing sessions
so that you can resume your work quickly.

The easiest place to store these settings is on disk in an INI file. However, you
can also use a plain-text file, if you want. You might find the text file easier to
understand and use than an INI file. It’s important to choose a convenient
location for the information. Here are places that you should consider:

� User folder: Place user-specific information in the user’s folder, which is
normally the \Documents and Settings (older versions of Windows)
or \Users (Vista) directory of the machine. Every user has a personal
directory, and you can create a subdirectory in that folder for your pro-
gram. Using this technique lets users have their own settings.

230 Part III: Expanding Your VBA Horizons

16_046500 ch10.qxp 12/5/06 5:36 PM Page 230

� Document folder: When a series of settings applies to a specific docu-
ment and not to a particular user, it pays to use a document folder for
configuration storage. Using this technique ensures that any custom
document settings are stored with the document.

� Project folder: A setting can affect all documents in a particular project.
You can store the configuration settings with the project to ensure that
everyone working with the project can access the configuration settings.
Using a project folder also ensures that the settings remain safe because
the same security settings that keep the data safe keep your configura-
tion file safe.

� Workgroup folder: Your program can affect how the members of a work-
group interact. When everyone uses the same settings, you want to be
sure that the settings are in a central place. The question to ask yourself,
in this case, is whether the settings are truly necessary. You might want
to consider writing your program so that it uses those settings by
default rather than stores the settings in a file.

Data translation
Data translation is a task that you might have to perform from time to time.
You might have to transfer information to another system, or you might
simply require the information in another form. Before you break out the VBA
Integrated Development Environment (IDE), though, make sure that the appli-
cation doesn’t provide the required translation for you. Most applications
install with just the most popular data conversion choices and support many
others. In addition, a vendor often creates new translation options for its
application that you can download from a Web site.

After you know that you need to translate the data, try to choose an easy
format. Pure text is the easiest method of transferring information between
two programs. Unfortunately, pure text lacks formatting information. The con-
tent is still intact, but notes and other information that you added in the appli-
cation might not appear with the data. In some cases, transferring the content
is the best you can hope to achieve, but you should look for other options.

Data storage
You might find that you have program data storage needs. This information is
in addition to the data that the program normally tracks. For example, you
might want to create a log file that contains activities performed by your pro-
gram so that you can detect errors or security problems. It also helps to

231Chapter 10: Working with Disk Files

16_046500 ch10.qxp 12/5/06 5:36 PM Page 231

create performance logs when you suspect that your program doesn’t work
as fast as it could.

Program data storage should appear in a format that’s convenient for you
because you’re the only one who will see it. You should try to store the
information by using the program itself. This is relatively easy to do with a
program such as Word or Excel. In some cases, you might want to go to the
extra trouble of creating the document by using indirect programming of
another application. See Chapter 16 for details on this technique. Finally, you
can use an informational Event Log entry to store the information.

When no other technique will work (or other techniques are just too inconve-
nient), you can always rely on a simple text file to store the program informa-
tion. The problem with using text files for complex data is that you can’t
format them, and they can’t contain information in easy-to-use formats, such
as graphs. The best reason to use a text file is that it’s an easy and conve-
nient method for storing text information.

Working with Settings
Many applications, including Windows, use INI files to store information. The
INI file has a standard format that is easy to work with. View any of the INI
files in the Windows folder, such as Win.INI or System.INI, and you see
two kinds of entry. The first is the section entry, which is surrounded by square
brackets, such as the [fonts] section in the Win.INI file. The second kind of
entry is a key-and-value pair. The key comes first and is separated from the
value by an equals sign.

You might need to create an INI file for your program. The INI file provides
the means for storing settings and restoring them later. The Dictionary
object provides the perfect means for working with INI settings because it
uses a key-and-value pair for storing information. The example in this section
shows how to read and write an INI file.

Writing an INI file
It pays to create one Dictionary object for each section of your INI file.
Using the objects in this way makes it easy to quickly locate the information
that you need. The trade-off is that you have more objects to work with, and
your program will experience a small performance hit. Listing 10-1 contains
the code that you need to use a Dictionary object to write to an INI file.
(You can find the source code for this example on the Dummies.com site at
http://www.dummies.com/go/vbafd5e.)

232 Part III: Expanding Your VBA Horizons

16_046500 ch10.qxp 12/5/06 5:36 PM Page 232

Listing 10-1 Using a Dictionary Object

Public Sub WriteDictionary()
‘ Create a variable to hold the data.
Dim DataString As Variant

‘ Create the dictionary for user settings.
Dim UserSetting As Dictionary
Set UserSetting = New Dictionary
UserSetting.Add “Greeting”, “Hello”
UserSetting.Add “Language”, “English”

‘ Create the dictionary for application configuration.
Dim AppConfig As Dictionary
Set AppConfig = New Dictionary
AppConfig.Add “ShowHelpMenu”, “True”
AppConfig.Add “AllowChanges”, “True”

‘ Create the configuration file.
Dim TheConfig As TextStream
OpenWriteConfig “DictionaryDemo”, “Data.INI”,

TheConfig

‘ Write the UserSetting Dictionary.
TheConfig.WriteLine “[UserSetting]”
For Each DataString In UserSetting

TheConfig.Write DataString
TheConfig.Write “=”
TheConfig.WriteLine UserSetting.Item(DataString)

Next

‘Write the AppConfig Dictionary.
TheConfig.WriteLine “[AppConfig]”
For Each DataString In AppConfig

TheConfig.Write DataString
TheConfig.Write “=”
TheConfig.WriteLine AppConfig.Item(DataString)

Next

‘ Close the configuration file.
TheConfig.Close

End Sub

The code begins by creating two Dictionary objects — one for each section
of the INI file. It fills these objects with data for the example. In your program,
you fill the Dictionary objects with your program settings or other data.

The code calls the OpenWriteConfig sub-procedure next. This special func-
tion that I wrote looks almost exactly the same as the beginning code in the
earlier “Writing to the file” section. When this call returns, TheConfig points
to a TextStream that the code can use for writing.

233Chapter 10: Working with Disk Files

16_046500 ch10.qxp 12/5/06 5:36 PM Page 233

It’s important to provide a section header for each of your Dictionary
objects, or else you can’t parse the file later. The code writes this heading
first, and then it writes the individual key/value pairs by using a For
Each...Next statement. You can create a single routine to perform this
task, but using the technique shown in the code is actually easier to under-
stand and is self-documenting to a point. As always, make sure that you close
the configuration file before you exit the sub-procedure.

It’s time to look at the OpenWriteConfig sub-procedure in a little more
detail. Listing 10-2 shows this code.

Listing 10-2 Opening a Configuration File for Writing

Public Sub OpenWriteConfig(_
AppName As String, _
Filename As String, _
ByRef Output As TextStream)

‘ Define the path variable.
Dim DataPath As String

‘ Create a path string for the file. Start with the
‘ default program settings path. Add a special folder
‘ for this program.
DataPath = Application.UserLibraryPath + AppName + “\”

‘ Create a file system object.
Dim FS As FileSystemObject
Set FS = New FileSystemObject

‘ Verify the path exists.
If Not FS.FolderExists(DataPath) Then

‘ If not, create it.
FS.CreateFolder DataPath

End If

‘ Create a text file object.
Set Output = FS.CreateTextFile(DataPath + Filename)

End Sub

The code begins by determining the location of the user folder. It then adds
the application name to the path to locate the folder for this application. You
can use this same code no matter what user setting file you open. Creating a
connection to other common folder types follows a similar pattern.

At this point, you need to create a FileSystemObject and use it to deter-
mine whether the application folder exists. If the folder doesn’t exist, you
must create it before you can write data to it. The example uses the
FS.CreateFolder method to create the new folder.

234 Part III: Expanding Your VBA Horizons

16_046500 ch10.qxp 12/5/06 5:36 PM Page 234

Finally, the code creates a text file to hold the data that the application saves.
Because an INI file is essentially a text file, you work with it as a text file by
using FS.CreateTextFile(). When the call is completed, Output contains
a pointer to the new file.

You might wonder why the application separates the code in the
OpenWriteConfig sub-procedure from the rest of the code. Generally, you
do this to make the code a little more generic. You can use OpenWriteConfig
to open any file necessary for this application. In fact, the sub-procedure is
so generic that you can use it as is with any application.

Reading an INI file
Reading the INI file is a little more difficult than writing to it. The problem is
that you have straight text and don’t know whether someone has changed
the file in some way. Parsing straight text means reading key values and
acting on them. (Parsing is the act of reading each word individually and
determining what that word means in the context of the task at hand.) Listing
10-3 contains the code that you need in order to read an INI file.

Listing 10-3 Reading an INI File with a Dictionary

Public Sub ReadDictionary()
‘ Create an individual data element.
Dim DataElement As String

‘ Create a dictionary selector.
Dim Selector As Dictionary

‘ Create a string indexer.
Dim Index As Long

‘ Create the dictionary for user settings.
Dim UserSetting As Dictionary
Set UserSetting = New Dictionary

‘ Create the dictionary for application configuration.
Dim AppConfig As Dictionary
Set AppConfig = New Dictionary

‘ Try to open the configuration file.
Dim TheConfig As TextStream
If Not OpenReadConfig(“DictionaryDemo”, “Data.INI”,

TheConfig) Then

(continued)

235Chapter 10: Working with Disk Files

16_046500 ch10.qxp 12/5/06 5:36 PM Page 235

Listing 10-3 (continued)

‘ Exit the sub if not successful.
Exit Sub

End If

‘ Read the file into the dictionaries.
While Not TheConfig.AtEndOfStream

‘ Read the data element.
DataElement = TheConfig.ReadLine

Select Case DataElement
‘ Set the selector for AppConfig.
Case “[AppConfig]”

Set Selector = AppConfig

‘ Set the selector for UserSetting.
Case “[UserSetting]”

Set Selector = UserSetting

‘ Fill the selected dictionary with data.
Case Else

Index = InStr(1, DataElement, “=”)
Selector.Add Left(DataElement, Index - 1),

_
Mid(DataElement, Index + 1)

End Select
Wend

‘ Close the configuration file.
TheConfig.Close

End Sub

The code begins by creating the two Dictionary objects that you need in
order to hold the information. It also creates a special Dictionary object
named Selector and a few variables that it needs in order to parse the file
content.

The program begins by opening the configuration file and creating the
TextStream by using the OpenReadConfig function. This function is very
similar to the beginning code for the example in the earlier “Reading from the
file” section. When the function returns, it’s True if it opened the file. If the
return value is False, the ReadDictionary sub-procedure exits because
there’s no file information to parse.

Notice how this example uses the AtEndOfStream property. This use is
more common than the use shown in the earlier “Reading from the file” sec-
tion. The While...Wend loop continues reading data until there’s no more

236 Part III: Expanding Your VBA Horizons

16_046500 ch10.qxp 12/5/06 5:36 PM Page 236

data to read. Each iteration of the loop selects an action based on the content
of DataElement.

Notice the Set Selector = AppConfig statement. This statement does
more than you might think. It actually makes Selector and AppConfig
equal so that any changes made to Selector also appear in AppConfig.
This technique provides a generic reference when parsing the key/value pairs
in the file. The routine doesn’t have to do anything special because the cor-
rect Dictionary object is already selected.

The final piece of coding to consider is the key/value pair parsing. The INI
file stores them as two strings separated by an equals sign. The information
appears on a single line. Using the string manipulation functions shown
separates the two values so that the code can add them to the appropriate
dictionary.

Now it’s time to discuss the OpenReadConfig function. As with OpenWrite
Config, this is a generic function for working with files. Listing 10-4 shows
how this function looks.

Listing 10-4 Opening a Configuration File for Reading

Public Function OpenReadConfig(AppName As String, Filename
As String, ByRef Output As TextStream) As
Boolean

‘ Define the path variable.
Dim DataPath As String
DataPath = Application.UserLibraryPath + AppName + “\”

‘ Create a file system object.
Dim FS As FileSystemObject
Set FS = New FileSystemObject

‘ Determine whether the file exists.
If Not FS.FileExists(DataPath + Filename) Then

‘ Tell the user there are no config settings.
OpenReadConfig = False

‘ Exit the Sub without reading the file.
Exit Function

End If

‘ Create a text file object.
Set Output = FS.OpenTextFile(_

DataPath + Filename, ForReading)

(continued)

237Chapter 10: Working with Disk Files

16_046500 ch10.qxp 12/5/06 5:36 PM Page 237

Listing 10-4 (continued)

‘ Determine whether there is data in the file.
If Output.AtEndOfStream Then

‘ Tell the user the file is empty.
OpenReadConfig = False

Else

‘ Tell the user the file was opened successfully.
OpenReadConfig = True

End If
End Function

The function begins by creating a path to the user’s settings. It then checks
for the existence of the user file. Notice that in this case the function exits
rather than creates the file. In many cases, you don’t want to create a file
when you’re opening it for reading.

When the file does exist, the code opens the file for reading by using
FS.OpenTextFile(). Notice the special ForReading argument. If you
don’t specify this value, FS.OpenTextFile() uses the default settings.

The next check ensures that the data file actually contains information. When
Output.AtEndOfStream is true, the file is empty and the function returns
to the caller with False. Otherwise, the return value is True.

238 Part III: Expanding Your VBA Horizons

16_046500 ch10.qxp 12/5/06 5:36 PM Page 238

Chapter 11

VBA Programming with XML
In This Chapter
� Defining the features of Word Markup Language (WordML)

� Designing your first XML document

� Working with XML data

� Creating an XML document

� Using eXtensible Style Language Transformation (XSLT) to modify presentation

The eXtensible Markup Language (XML) is a special way of marking text
so that it contains both information and context. Using this technique

means that the recipient knows not only the information but also the mean-
ing behind the information. For example, if you see 12.99 in a text file, you
don’t know what it means. It’s a number, but that’s all you know. However, by
adding context to the number, you can say that the number means 12 dollars
and 99 cents.

XML began on the Internet as a means to make information exchange possi-
ble. You can use XML to exchange data with others, even if they don’t have
the same program or even the same operating system that you do. The only
requirements are that both machines can read text and that you have a pro-
gram that can understand the XML.

This chapter describes how you can use XML to enhance the documents that
you create with Office. Although you can manually perform many of the tasks
that I describe in this chapter, using VBA to perform them makes sense
because the actions are both lengthy and repetitive. In addition, you must
perform some XML tasks, such as defining precise output content, with VBA
because there’s no manual alternative. This chapter also shows how to write
programs that can interpret the XML. This final task is important because
you can then use XML to send information in any format needed.

17_046500 ch11.qxp 12/5/06 5:37 PM Page 239

Comparing WordML with Saved XML
When you save a Word document either manually or programmatically, you
can save it as an XML document. However, not all XML documents are cre-
ated equal. Figure 11-1 shows a Word Save As dialog box set up to save a doc-
ument as XML.

Figure 11-1:
Save your
document
as XML by

using the
Save As

dialog box.

240 Part III: Expanding Your VBA Horizons

Getting the scoop on XML
XML has become such a significant part of the
computer environment that you probably use it
every day, possibly without even knowing it. The
Internet has a considerable number of resources
to help you understand XML better. For example,
the W3C Schools site at http://www.
w3schools.com/xml/ provides a com-
plete XML tutorial, and you can discover XML
namespaces at http://www.zvon.org/
index.php?nav_id=172&ns=34.

Many people already know enough about XML
to use it effectively, but they need a reference
to make XML easier to use. One of the better ref-
erence resources appears on the ZVON Web
site at http://www.zvon.org/xxl/xml
Schema2001Reference/Output/index.

html. However, make sure that you also look at
the references at http://www.zvon.org/
xxl/xmlSchemaReference/Output/
index.html for complete information. The
annotated XML reference at http://www.
xml.com/axml/axml.html is handy for
seeing the specification and expert commentary
side by side.

If you need a full text on XML, get XML All-in-
One Desk Reference For Dummies, written by
Richard Wagner and Richard Mansfield (and
published by Wiley). This text provides, in a
series of seven books, everything you need in
order to work with XML. You’ll also find com-
plete coverage of XML-related technologies,
such as XSLT (described later in this chapter).

17_046500 ch11.qxp 12/5/06 5:37 PM Page 240

This dialog box shows the default setup, which is to save the document by
using WordML (Word Markup Language) and not as standard XML. Using
WordML preserves the information in your document in an XML file that
Word can understand. Figure 11-2 shows a Firefox view of the information in a
simple Word document.

For those of you who are aware that both Firefox and Internet Explorer can
open an XML file, the two applications have a significant difference. Notice the
<?mso-application progid=”Word.Document”?> processing instruction
at the top of Figure 11-2. This instruction tells Internet Explorer to open a copy
of Word to process the file. Consequently, when you open the file by using
Internet Explorer, what you see is a copy of Word open, which means that you
don’t see the underlying XML. Internet Explorer is the only application that
appears to perform this automatic processing, so you can use any other XML
viewer or browser that supports XML to look at the Word XML file.

You might think this document is complex, but it isn’t too hard to understand
if you take it apart one piece at a time. For example, if you open the
<pkg:part pkg:name=”/docProps/core.xml”> element, you see a list
of document-information entries, such as the name of the author and the
company. Every entry that appears in the Document Properties dialog box
also appears as part of this element. You can also see elements devoted to
the document properties (such as the document view and default tab stop
settings), fonts, and styles.

Figure 11-2:
Use Firefox
to discover

important
information
about your

WordML
file.

241Chapter 11: VBA Programming with XML

17_046500 ch11.qxp 12/5/06 5:37 PM Page 241

If you have used the WordML output in the past, you’ll notice significant dif-
ferences in the WordML that Word 2007 outputs. For example, Word 2003
places the document information in the W:DOCINFO element. The content
that used to appear in the W:BODY element now appears in the <pkg:part
pkg:name=”/word/document.xml”> element. The change in format means
that any eXtensible Stylesheet Language Transformations (XSLT) processing
you performed with Word 2003 WordML won’t work with the Word 2007
version.

When you need the Word 2003 version, make sure that you select Word 2003
XML Document, as shown in Figure 11-3, rather than XML Document, as
shown in Figure 11-1. The output is closer than the Word 2007 version, but
you still face a few naming and namespace problems. For example, the
W:DOCINFO element appears as o:DocumentProperties, even though
the W:BODY element is the same.

The sample code for this chapter includes the original Word 2003 output as
WordML Example.xml, the native Word 2007 output as WordML Example
2.xml, and the converted Word 2007 output as WordML Example 3.xml,
so you can compare the differences. (You can find the source code for
this example on the Dummies.com site at http://www.dummies.com/
go/vbafd5e.)

The Word 2003 settings include a few special features you need to know
about. When you try to save a standard Word document as pure XML by
selecting the Save Data Only check box (lower-left area of Figure 11-3), Word
doesn’t generate WordML; instead, it generates standard XML. Unfortunately,
your Word template file probably doesn’t include the entries required to
create standard XML. As a result, the output is 0 bytes long. That’s right:
Nothing is saved because your document isn’t tagged for use with standard
XML. See the upcoming “Creating a Simple Word XML Document” section for
details on creating a template that saves your data to standard XML.

Figure 11-3:
Use the
special

Word 2003
setting for

saving XML
in a

compatible
state.

242 Part III: Expanding Your VBA Horizons

17_046500 ch11.qxp 12/5/06 5:37 PM Page 242

When you don’t need to save all the information provided by WordML and
you don’t want to create a special template to do the job, you can rely on
XSLT to transform your data into standard XML. The benefit of using this
technique is that it’s faster than using a specialized template. The problem
with using this technique is that you can’t rely on it to provide complete data
translation if you don’t use the correct tags or if the XSLT file isn’t formatted
correctly. See the upcoming “Saving your Word document by using XSLT” sec-
tion for details on using this technique.

Manipulating XML Data
Microsoft is making it easier to create, change, delete, import, and export
XML by using Office products. XML makes it easier to manage data on the
Internet and also to exchange data with other people. This section demon-
strates several ways to work with XML data by using Office.

Writing the data to disk
The easiest way to export your data to disk is to save it as an XML document
by using the SaveAs method. Here’s an example of this method:

Public Sub OutputInventory()
‘ Use the standard SaveAs method to export XML.
Sheet1.SaveAs “ExcelXML.XML”, xlXMLSpreadsheet

End Sub

You can also accomplish this task by choosing the File➪Save As command.
The advantage of this method is that you can concentrate on a single work-
sheet, a set of records, or an area of a document rather than save the whole
document. The first argument is the filename. The second argument varies by
Office application. Excel uses the xlXMLSpreadsheet to create XML output,
and Word uses the wdFormatXML constant.

The only problem with this technique is that it saves only the content and
information about the content. Figure 11-2 shows some typical output for Word
when using this method. This method works best if you plan to manipulate the
data outside Office by using another program, interpret the data by using XSLT,
or require portions of the data where interpretation isn’t required.

Defining a schema
A schema is a definition of the structure of your data. You can look at the data
and figure out the structure, but the computer can’t — it needs additional

243Chapter 11: VBA Programming with XML

17_046500 ch11.qxp 12/5/06 5:37 PM Page 243

information. Database managers such as Access always use a schema (you
define it when you create a table), but other Office applications don’t
because you normally don’t need to organize the information by using a
schema. Figure 11-4 shows a typical worksheet. The data structure is proba-
bly obvious to you because each of the columns is named, but the computer
doesn’t have a clue to what that data means.

An XML Schema Definition (XSD) file contains a description of the information
that you want to export from or import to an Office application. It doesn’t
matter which application you use because, at some point, you have to create
an XSD file to perform pure XML data transfers. Listing 11-1 shows an example
of an XSD file that describes the data shown in Figure 11-4. (You can find the
source code for this example on the Dummies.com site at http://www.
dummies.com/go/vbafd5e.)

Listing 11-1 Creating an XSD Description

<?xml version=”1.0”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:element name=”Items”>
<xs:complexType>
<xs:sequence>
<xs:element name=”Item” maxOccurs=”unbounded”>
<xs:complexType>
<xs:sequence>
<xs:element name=”Name” type=”xs:string”/>
<xs:element name=”Value” type=”xs:decimal”/>
<xs:element name=”Total” type=”xs:decimal”/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

Figure 11-4:
Understand-

ing data
formats is

easy for you
but hard

for the
computer.

244 Part III: Expanding Your VBA Horizons

17_046500 ch11.qxp 12/5/06 5:37 PM Page 244

This is yet another XML file, so it begins with the standard XML processing
instruction. The second line contains the URL for the XSD file definitions. You
must include this line in all your XSD files. You can include other information,
such as a personal namespace, as part of this header, but it’s all optional. See
the tutorial at http://www.w3schools.com/schema/default.asp for
additional information.

The structure of your information comes next. Chapter 9 describes how VBA
collections work. The tags that XSD relies on to define your data act much
like a collection. The top element, Items, defines the collection name. The
<xs:complexType> tag tells the XSD parser that you’re defining something
other than a string or an integer. You use the <xs:sequence> tag to tell the
XSD parser that the next set of elements must appear in the order shown and
that the parser can’t skip any of the elements.

The <xs:element name=”Item” maxOccurs=”unbounded”> tag shows
how to create an individual item within an XSD collection. The two things
that set this tag apart from the <Items> tag is that it appears within the
<Items> tag and also uses the special maxOccurs attribute. Notice that the
maxOccurs attribute is defined as unbounded (unlimited) so that the Items
collection can contain as many individual Item elements as needed.

The <Item> tag is also a complex type and requires elements in a specific
sequence. This time, the individual elements are simple types. The <Name>
tag is a string, but the <Value> and <Total> tags are both in decimal nota-
tion. XSD doesn’t currently support a currency type, so your best choice is to
use a decimal to ensure that the XSD parser preserves the accuracy of the
data that you transfer.

Defining XSD to worksheet linkage
Writing the XSD file creates a definition that you can use to work with data in
Excel. However, you still haven’t created linkage between the XSD file and the
Excel document. (You should perform this task by using a document tem-
plate in Word — see the upcoming “Creating a Simple Word XML Document”
section for details.) Here’s how to create linkage in Excel 2007:

1. Open Excel and load the document that you want to export.

2. Select the Developer tab on the Ribbon.

3. Click XML Source.

You see the XML Source task pane.

4. Click XML Maps in the XML Source task pane.

Excel displays the XML Maps dialog box.

245Chapter 11: VBA Programming with XML

17_046500 ch11.qxp 12/5/06 5:37 PM Page 245

5. Click Add in the XML Maps dialog box.

The Select XML Source dialog box appears. This dialog box works the
same as any other file-opening dialog box. The filter makes it easy to
locate XSD files on your system.

6. Locate the XSD file you want to use and then click Open.

Excel adds the new map to the XML Maps dialog box.

7. Click OK to close the XML Maps dialog box.

Excel displays the new map in the XML Source task pane.

8. Right-click the element you want to map in the XML Source task pane,
and choose Map Element from the context menu.

9. Highlight the data you want to map to the element, and press Enter.

Excel changes the appearance of the data so that it looks like a database
entry, as shown earlier, in Figure 11-4.

10. Repeat Steps 8 and 9 for every data element in the XSD file.

Exporting the data to disk
After you create a schema and link it to an Office document, you can perform
a true export of the information as XML. There are two separate methods to
perform this task. The first, ExportXml, creates a string that you can manip-
ulate by using various XML features built into Office. The second, Export,
performs a standard export to a file. Listing 11-2 shows examples of both
methods.

Listing 11-2 Two Methods for Exporting XML Data

Public Sub OutputInventory2()
‘ Use the ExportXml technique to save data and the
‘ data interpretation.
MsgBox Workbooks(1).XmlMaps(“Items_Map”).ExportXml()

‘ Use the standard Export method to create a file.
Workbooks(1).XmlMaps(1).Export “ExcelXML2.XML”, True

End Sub

In both cases, you rely on collections to obtain the information. Notice that
you can use a number or a string to reference the particular XML map that
you want to use for export purposes. Both the ExportXml and Export meth-
ods include an optional argument that forces the parser to check the XML for

246 Part III: Expanding Your VBA Horizons

17_046500 ch11.qxp 12/5/06 5:37 PM Page 246

proper form before exporting. When using the Export method, you must
supply a string, and you should tell the method to overwrite any existing file
of the same name.

Importing the data from disk
Importing data from disk varies in difficulty based on the kind of XML file that
you want to import. Excel normally does a good job of figuring out how to
import well-formed XML. Listing 11-3 shows the code that you need to import
a standard XML file.

Listing 11-3 Importing XML from Disk

Public Sub ImportInventory()
‘ Obtain the XML from disk using the XmlImport.
ThisWorkbook.XmlImport “ExcelXML2.XML”, _

True, _
Sheet2.Range(“A1”)

End Sub

The XmlImport method requires three arguments. The first is the name of the
file that you want to import. The second indicates whether you want to over-
write any existing data. Finally, you must supply a location to hold the data.

When you run this program, you see an Error in Schema dialog box. The data
exported with the example doesn’t include an XSD reference. Excel doesn’t
know how to interpret the data because it has no data definition. In this case,
you can safely click the Infer button to get the correct result.

Creating a Simple Word XML Document
Word automates the process of linking an XSD file to your document by
adding this feature through the document templates. When you create a doc-
ument by using a properly designed template, the XML tags are automatically
added according to the XSD schema that you create.

You might want to create searchable letters. One way to do this is to export
the letters as XML and to use a standard search engine. Start by creating a
letter template file. The example includes the usual features, such as To and
From addresses, the date that the letter was written, a greeting, the letter
body, and a closing element. Listing 11-4 shows the XSD file used to describe
this document. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/vbafd5e.)

247Chapter 11: VBA Programming with XML

17_046500 ch11.qxp 12/5/06 5:37 PM Page 247

Listing 11-4 Creating an XSD File to Export a Letter

<?xml version=”1.0”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://www.mysite.com”
xmlns=”http://www.mysite.com”
elementFormDefault=”qualified”>

<xs:element name=”MyLetter”>
<xs:complexType mixed=”true”>
<xs:sequence>
<xs:element name=”FromAddress” type=”xs:string”/>
<xs:element name=”Sent” type=”xs:string”/>
<xs:element name=”ToName” type=”xs:string”/>
<xs:element name=”ToCompany” type=”xs:string”/>
<xs:element name=”ToAddress” type=”xs:string”/>
<xs:element name=”ToCity” type=”xs:string”/>
<xs:element name=”ToState” type=”xs:string”/>
<xs:element name=”ToZIP” type=”xs:string”/>
<xs:element name=”Greeting” type=”xs:string”/>
<xs:element name=”Body” type=”xs:string” maxOccurs=”unbounded”/>
<xs:element name=”Closing” type=”xs:string”/>

</xs:sequence>
</xs:complexType>

</xs:element>

</xs:schema>

This example doesn’t require a collection of items, such as those found in a
database, so it doesn’t require a complex structure. Each of the elements
appears only one time except for the Body element, which can appear once
for each paragraph in the letter. Notice that this XSD file includes a
targetNamespace. Think of this as the default namespace for the XSD file.
Word requires this entry. Word also requires that you include the
mixed=”true” attribute for the <xs:complexType> tag. Otherwise, it con-
tinually reports that the MyLetter element can’t contain text.

After you create the template and the XSD file, you need to link the two. The
procedure for accomplishing this task is different from working with an indi-
vidual file. Here are the steps that you need to follow:

1. Click the Word button to display the Word options. Click Word
Options.

Word displays the Word Options dialog box.

2. Select the Add-Ins folder.

248 Part III: Expanding Your VBA Horizons

17_046500 ch11.qxp 12/5/06 5:37 PM Page 248

3. Choose XML Schemas in the Manage field and click Go.

Word displays the XML Schema tab of the Templates and Add-ins
dialog box.

4. Click Add Schema.

You see the Add Schema dialog box.

5. Locate the XSD file that contains the schema you want to use. Click
Open.

The Schema Settings dialog box appears. The dialog box always contains
the Uniform Resource Identifier (URI) of the schema and its physical
location on the hard drive. You can optionally assign an alias to the
schema.

6. Type an alias for the schema and click OK.

7. Click OK to close the Templates and Add-ins dialog box.

Word displays the XML Structure task pane.

8. Highlight an item and then click the schema entry at the bottom of the
task pane.

Word asks whether you want to apply the schema to the entire document.

9. Click Yes.

Word applies a beginning tag and an ending tag for the schema to the
template.

10. Highlight each element in turn and click its schema entry in the XML
Structure task pane.

Word applies individual element tags to each field in the template.

11. Save the new template.

After you create a document by using the new template, you can use the Save
Data Only check box of the Save As dialog box (refer to Figure 11-3). The new
document contains just the data that you created in a true XML format.

Changing the Face of XML with XSLT
Looking at Figure 11-2, earlier in this chapter, shows you that XML by itself is
a little tough to read. You might also find that some XML files contain too
much information. XSLT helps correct both of these problems. It can format

249Chapter 11: VBA Programming with XML

17_046500 ch11.qxp 12/5/06 5:37 PM Page 249

the information so that it’s easier to read. You can also use XSLT to limit the
amount of information that you see. XSLT transforms XML into something
usable.

Note that you might see two definitions for XSLT: eXtensible Style Language
Transformation and eXtensible Stylesheet Language Transformations. Both
definitions refer to the same technology. I prefer the second form because it
better describes how XSLT works.

This section describes how you can use XSLT to change the way that the
output from your applications looks. After you save your document as XML,
you can present it on a Web site for someone else to see. XSLT can transform
the XML into HTML so that other people can enjoy your work.

XSLT can perform other kinds of transformations, so don’t limit yourself to
the techniques that you see demonstrated in this chapter. For example, you
can use XSLT to create another XML document or even a text file. XSLT is all
about transforming your data into the form that you want rather than forcing
you to accept data in a less-than-optimal form. There’s an excellent XSL tutor-
ial at http://www.w3schools.com/xsl/default.asp. You can also find
a good XSLT reference at http://www.zvon.org/xxl/XSLTreference/
Output/index.html.

Saving your Word document by using XSLT
You can use XSLT to work with any XML file generated by an Office applica-
tion — even the WordML documents created by default with Word (see the ear-
lier “Comparing WordML with Saved XML” section for details). When you use
the Save As dialog box (refer to Figure 11-3) to save a Word document as XML,
you can choose to use an XSLT file to modify the output. (Although this chapter
provides enough information about XSLT to work with the examples, XSLT For
Dummies, by Richard Wagner, provides additional insights that you might find
helpful.) You might want only the document information or only the document
content. It’s even possible to build a list of all the fonts used in every Word doc-
ument on your machine. Any information that WordML provides is available.

The example in this section helps you overcome one of the problems with the
output options provided with Word. By using XSLT, you can create an HTML
page containing any information about your document. (Even though the XML
Paper Specification, or XPS, file format creates a Web page for your document,
it creates an exact replica of the file and doesn’t present just the data you want
the viewer to see.) This example shows document information, but the tech-
nique works with fonts, options, or the content of the file as well. The main
reason I chose document information is that this particular technique works
well if you want to create a Web site with a listing of all the documents that
you’ve created. Using this technique creates a searchable Web site that’s infi-
nitely easier to mine for data than using the Word documents directly.

250 Part III: Expanding Your VBA Horizons

17_046500 ch11.qxp 12/5/06 5:37 PM Page 250

Before you can export data from Word by using XSLT, you need an XSLT file
containing the proper code. Listing 11-5 shows the XSLT code for this exam-
ple. (You can find the source code for this example on the Dummies.com site
at http://www.dummies.com/go/vbafd5e.)

Listing 11-5 Using XSLT to Save a Word Document

<?xml version=’1.0’?>
<xsl:stylesheet version=’1.0’
xmlns:xsl=’http://www.w3.org/1999/XSL/Transform’
xmlns:w=”http://schemas.microsoft.com/office/word/2002/8/wordml”>
<xsl:output method=”html” indent=”yes” />
<xsl:template match=”/”>

<!-- Create the HTML Code for this stylesheet. -->
<HTML>
<HEAD>

<TITLE>Word Document Properties</TITLE>
</HEAD>

<BODY>
<CENTER><H3>Word Document Property Values</H3></CENTER>

<TABLE BORDER=”2”>
<TR>

<TH>Property</TH>
<TH>Value</TH>

</TR>
<xsl:apply-templates select=”//w:title”/>

</TABLE>

</BODY>
</HTML>
</xsl:template>

<!-- XSL template section that describes table content. -->

<xsl:template match=”w:title”>
<TR>

<TD>
Title

</TD>
<TD>

<xsl:value-of select=”@w:val”/>
</TD>

</TR>
</xsl:template>

</xsl:stylesheet>

251Chapter 11: VBA Programming with XML

17_046500 ch11.qxp 12/5/06 5:37 PM Page 251

The code shows only one of the o:DocumentProperties values. This docu-
ment begins with the standard XSL tags. Notice that it includes a special
namespace entry, xmlns:w=”http://schemas.microsoft.com/office/
word/2002/8/wordml”. You must include this namespace to transform
WordML documents. Otherwise, you can’t interpret them by using XSLT.

Notice that the <xsl:output> tag uses the method=”html” attribute
to ensure that the output is in pure HTML. The result is displayed as
HTML in Internet Explorer even if you use the method=”xml” attribute.
However, you experience fewer problems with other browsers if you use
the method=”html” attribute.

The <xsl:apply-templates> tag is the first place where you notice the
effect of working with WordML. This tag references the new namespace
added at the beginning of the file. If you don’t include the namespace, none
of the entries in the WordML file matches, and there isn’t any output in the
XSLT file.

Look at the template. It also includes the WordML namespace. You must also
include it for entries such as attributes. Many o:DocumentProperties
values rely on the @w:val attribute to store their content.

To use the XSLT file to translate a Word file, simply select the Apply Transform
check box (see the lower-left area of Figure 11-3) and select the XSLT file by
clicking the Transform button. The output that you create has an XML exten-
sion. Simply change it to HTM, and you can view the information as a Web
page.

Automating the Word XML process
You can easily automate the task of saving your Word document by using var-
ious XSLT files. All you need is a form of the program shown in Listing 11-6.

Listing 11-6 Automatically Saving a Word XML Document

Public Sub SaveXMLDocumentInfo()
‘ Create a File Open dialog box.
Dim GetFile As FileDialog
Set GetFile =

Application.FileDialog(msoFileDialogOpen)

‘ Modify the settings to show XSLT files.
GetFile.Filters.Clear

252 Part III: Expanding Your VBA Horizons

17_046500 ch11.qxp 12/5/06 5:37 PM Page 252

GetFile.Filters.Add “XSLT File”, “*.XSLT”
GetFile.Show

‘ Make sure the save process uses the template.
ThisDocument.XMLSaveThroughXSLT = _

GetFile.SelectedItems (1)

‘ Re-create GetFile as a File Save dialog box.
Set GetFile = Nothing
Set GetFile =

Application.FileDialog(msoFileDialogSaveAs)

‘ Modify the settings to show HTM files.
GetFile.FilterIndex = 4
GetFile.Show

‘ Save the document.
ThisDocument.SaveAs GetFile.SelectedItems(1), _

wdFormatXML
End Sub

The code begins by creating a FileDialog object. You use this object to let
the user select files during program execution. When you create a file Open
dialog box, you can change the filters to meet specific needs. Use the Clear
method to remove the default filters and the Add method to create new fil-
ters. A filter consists of a description and the file extension that you want to
support in the dialog box. A file Save dialog box doesn’t allow you to modify
the filters, but you can choose a default filter to help the program user
choose the correct save file type quickly.

This example shows the two essential steps that you must perform to save a
file by using XSLT. They include setting the XMLSaveThroughXSLT property to
the name of the template that you want to use and using the Save As dialog box
to save the document. Notice the new wdFormatXML file format option. This
option doesn’t appear in older versions of Word (and wasn’t documented at
the time this book was written). The example code forces a save to an HTM
document, so you don’t even need to rename the file afterward.

253Chapter 11: VBA Programming with XML

17_046500 ch11.qxp 12/5/06 5:37 PM Page 253

254 Part III: Expanding Your VBA Horizons

17_046500 ch11.qxp 12/5/06 5:37 PM Page 254

Part IV
Programming for

Applications

18_046500 pt04.qxp 12/5/06 5:37 PM Page 255

In this part . . .

In this part of the book, I get into the details of using
VBA with specific applications. In fact, you discover

that VBA can cross application boundaries and perform
useful work with more than one application at a time.
Office, in general, provides many customization oppor-
tunities. Although you can make most Office changes
manually, it helps to know how to make them automati-
cally, too.

In Chapter 12, I show a technique for changing the Office
environment to meet changing requirements. This chapter
emphasizes the differences between the older toolbar-
and-menu interface and the new Ribbon interface. This
chapter is essential for anyone upgrading applications.

In Chapters 13 through 15, I demonstrate how to add func-
tionality to Word, Excel, and Access, respectively. Each of
these host applications provides a unique environment
where you can change data and create new information at
the click of a button.

When you become more proficient with VBA, you want to
build better programs that save you more time. In Chapter
16, I demonstrate how to work with more than one Office
application at a time, but you can easily apply what you
learn to work with applications from other vendors, too.

18_046500 pt04.qxp 12/5/06 5:37 PM Page 256

Chapter 12

VBA Programming in Office
In This Chapter
� Creating new features in the user environment

� Changing menus and tools to meet new requirements

� Designing tabs for the Office Ribbon interface

� Modifying the Ribbon interface externally

You have the skills required to write any program that you want for your
copy of Office. However, you can improve efficiency most by personaliz-

ing the user environment. A tenfold increase in computer performance is of
little consequence if you can’t employ that performance productively. Yet a
small change in the user interface that does nothing to improve computer
performance can net huge gains in your productivity by enhancing efficiency.

Microsoft tuned the Office interface to meet the needs of faceless crowds of
people. Microsoft provides options that help you modify the older menu
interface manually, but that’s time consuming. (The newer Ribbon interface
doesn’t even provide manual customization options.) You might find that you
need a custom interface to perform each task most efficiently, so manual
methods are just counterproductive. VBA is the answer to making these
changes automatically as you move from document to document.

This chapter demonstrates two things. First, by using VBA, you can modify
the Office user interface to meet your specific needs and not those that
Microsoft thinks that you might have. Second, VBA helps you perform these
interface changes automatically so that you can have a customized environ-
ment for every task that you perform.

Working with the User Environment
The user environment is where you spend most of your time. It’s the visible
part of any application. Because it’s the visible part of any application, the
user environment is the basis on which you make a decision about the appli-
cation. First impressions are important to how you view an application.

19_046500 ch12.qxp 12/5/06 5:37 PM Page 257

Think of a user environment as immersive — as a package of features that
present you with a view of the application as a whole. Don’t assume that the
user environment is the same as the user interface. The user environment
includes several features:

� User interface: The active portion of the user environment, the user
interface includes the controls that make the application functional.

� Graphics: The physical appearance of the environment affects how you
feel about your program. Helpful graphics can direct your attention to
specific application features. Some graphics add aesthetic appeal to the
application without making it harder to use.

� Colors and aesthetics: The use of color can affect your mood. If you use
the wrong colors, you can also make some program elements difficult for
anyone with certain forms of color blindness to see. A program can
really be a thing of beauty.

� Accessibility: The difficulty that you encounter using an application
affects the way that you view it. An application should include context-
sensitive help in addition to the main help. It should also include features
that make each control easy to use with either the keyboard or mouse.

� Logic and flow: The work required to locate, evaluate, modify, add, and
delete data affects your view of an application. Controls should always
flow in a logical order to make typing information easy. Data fields
should be large enough to include all the information that you need to
see at a glance but not so large that you have to move the cursor to see
the entire field.

Beneficial changes that you can make
You can make your program a work of art. The beneficial changes that you
make to the user environment mean the difference between a program that
makes you efficient and one that actually requires more time to use. When
you look at your program initially, you think of practical matters — getting
the code to work and putting some essential elements in place. After you get
past that stage in development, you need to consider the user environment.
Here are some beneficial changes that you should consider:

� Menus and toolbars: Create a special menu for features that you use
during every session. Note that a feature isn’t necessarily a VBA pro-
gram. For example, it could also be a shortcut to a document template
so that you can simply click a button to start a new document that
requires a certain template. You could also use toolbar buttons for quick
access to special symbols, such as the section (§) symbol used for legal

258 Part IV: Programming for Applications

19_046500 ch12.qxp 12/5/06 5:37 PM Page 258

abbreviations. Menu entries are always visible and quite easy to use. Use
a special toolbar for features that you use during some sessions but not
others. Toolbars are easy to hide. Use both a menu and a toolbar for fea-
tures that you always use and that require quick access.

� Balloon help: Every control should have a ControlTipText property
entry. This includes any toolbar entries that you add. The balloon help
text is helpful for anyone who needs additional information about your
program features. It’s also the only method that ensures that someone
who’s using a screen reader or other accessibility aid can use your pro-
gram successfully.

� Helpful graphics: A graphic can prove more helpful than text in some
cases, especially if the graphic clearly illustrates the intent of a feature
better than text can explain (a graphic that’s worth a thousand words).
You might also want to combine graphics with text to ensure complete
understanding.

� Simplified displays: You might find that a display becomes too complex
after you add the special features that you need to the features that
Microsoft thinks that you want. A program that configures a display
with features needed to perform a specific task is helpful because
reduced complexity makes it easier to find what you need. In fact, a
series of task buttons, such as one for letters, another for notes, and
still another for lists, can be quite helpful.

� User settings: Any time that you can involve the people using your
program in the configuration process, you provide a way for them to
express their needs.

Problems that you should consider
Whenever you change something in the user environment, you should con-
sider the problems that such a change can create, as described in the following
list. The user environment can make or break any program that you create. It
might be tempting to add every feature to a menu, drown the display in color,
or add graphics to dress up the display.

� Increased training costs: Whenever you change the user environment,
you add a certain amount of confusion. The new features might cause
the user to pause and think, or the user might not understand them at
all. Training helps users understand the new features and use them effi-
ciently, but training isn’t free.

� Update incompatibility: A new feature that you introduce might cause
compatibility problems with future versions of a product. You need to
consider how the change will affect the future use of the program.

259Chapter 12: VBA Programming in Office

19_046500 ch12.qxp 12/5/06 5:37 PM Page 259

� Reduced efficiency: Too many features, controls, display elements,
graphics, and other distractions tend to reduce efficiency. It doesn’t
matter how skilled you are at using a program, too many display ele-
ments slow you down because you have to look for what you need.
The most efficient program is one that contains just the features that
you use and no others.

� Security holes: Any change that you make to an application can create
security holes that the original vendor didn’t anticipate and you can’t
see because you don’t have the application code. The very act of turning
on macro support in an application opens it to certain types of virus
attack. Adding a feature could also make it easier to circumvent security
measures, such as the use of data encryption and passwords. Complete
testing is usually the only way to ensure that you haven’t introduced a
security problem.

Manipulating Toolbars and Menus
Office 2007 now has two interfaces, which means that Microsoft has made it
more difficult for users of all types. The toolbar-and-menu interface used by
previous versions of Office appears in products such as Visio and Outlook,
and the new Ribbon interface appears in the core office applications, such
as Word and Excel. This section of the chapter works mainly with the older
toolbar and menu interface. The “Working with the New Ribbon Interface”
section, later in this chapter, describes the newer interface.

No matter what program you create, you need to provide a way to run it.
Using the Tools➪Macro➪Macros command to display the Macro dialog box
works fine for a program that you don’t use very often, but you want to make
some programs easier to access. Manually adding a favorite program to a
toolbar or menu works fine if you always want to have it available, but some-
times you don’t want to see this option.

This section describes how you can change the toolbar and menu content
of an Office application to meet your needs. These techniques don’t work
well with Office 2007 applications such as Excel and Word, but they do
work well with Visio 2003/2007, Outlook 2003/2007, Word 2003, Excel 2003,
and other Office products that rely on the menu interface. You can modify
existing menus and toolbars as well as add new entries for your custom
programs. These changes can occur automatically as the result of environ-
mental conditions, as the result of actions on your part, or on command.
Office applications change their appearance to match conditions anyway —
this is simply an extension of that idea to meet your specific needs.

260 Part IV: Programming for Applications

19_046500 ch12.qxp 12/5/06 5:37 PM Page 260

Don’t create a document template with special toolbars and think that you
can use it effectively with both the menu and Ribbon interfaces. Toolbars
created as part of a template (those you add manually by right-clicking the
toolbar area and choosing Customize from the context menu) don’t even
show up with the new Ribbon interface. However, toolbars that you create
programmatically do show up in the new Ribbon interface, albeit in the
wrong place. You don’t see the actual toolbar any longer, but you see the
functionality you added on the Add-Ins tab, shown in Figure 12-1.

Even though this approach displays all the buttons on the toolbar so that
they’re usable no matter which interface users require, the buttons are asso-
ciated with a specific toolbar only when you use the menu interface. Each
toolbar appears onscreen with a separator, but that doesn’t really help iden-
tify it. You see up to three different areas on the Add-Ins tab:

� Menu Commands (associated with any new menus you create)

� Toolbar Commands (associated with any new toolbar commands you
create)

� Custom Toolbars (the actual buttons on a toolbar)

Displaying or hiding toolbars and menus
It’s helpful to hide or display menus or toolbars as needed. Keeping the dis-
play free from clutter is always helpful in improving efficiency and reducing
confusion. Both menus and items use the same technique. Working with
menus is a little more cumbersome because you have to figure out the name
of the menu bar first. It would be nice if Microsoft used the same name for the
menu bar in every Office application, but that’s just not the case. For example,
Excel’s menu bar is named Worksheet Menu Bar, but Word uses just Menu Bar.
To learn the name of the menu bar for your Office application, simply drag the
menu bar from the top and place it somewhere in the editing pane. The name
appears on the title bar, as shown in Figure 12-2 for the Word 2003 Menu Bar.

Figure 12-1:
Toolbars
you add

program-
matically

appear on
the Add-Ins

tab of the
Ribbon.

261Chapter 12: VBA Programming in Office

19_046500 ch12.qxp 12/5/06 5:37 PM Page 261

After you know the name of the menu or toolbar that you want to change,
you can use that information to show or hide it. Listing 12-1 is an example
that shows how to work with the Edit➪Cut menu option. (You can find the
source code for this example on the Dummies.com site at http://www.
dummies.com/go/vbafd5e.)

Listing 12-1 Hiding the Edit➪Cut Menu Option

Public Sub HideAndShowEditCutMenu()
‘ Create the menu command bar.
Dim TopMenu As CommandBar
Set TopMenu = _

Application.CommandBars(“Worksheet Menu Bar”)

‘ Access the Edit menu control.
Dim EditControl As CommandBarControl
Set EditControl = TopMenu.Controls(“Edit”)

‘ Use the control to access the command bar.
Dim EditMenu As CommandBar
Set EditMenu = _

TopMenu.Controls(EditControl.Index).CommandBar

‘ Access the Cut submenu.
Dim EditCut As CommandBarControl
Set EditCut = EditMenu.Controls(“Cut”)

‘ Change the visible state according to the current
‘ setting.
EditCut.Visible = Not EditCut.Visible

‘ Display the current setting.
If EditCut.Visible Then

MsgBox “The Cut option is visible.”
Else

MsgBox “The Cut option isn’t visible.”
End If

End Sub

Figure 12-2:
A complete
list of menu

entries
supported

by Word
2003.

262 Part IV: Programming for Applications

19_046500 ch12.qxp 12/5/06 5:37 PM Page 262

This code shows that you need to work your way down to the menu that
you want to change. Begin by getting the top-level menu by using the
Application.CommandBars collection. This collection accepts the name
of the toolbar or menu that you want to work with as in index. Because this
is an Excel example, the code uses Worksheet Menu Bar as input. You
can use precisely the same code in Word by using Menu Bar instead.

After the code can access the top-level menu, it has to drill down to the
Edit➪Cut option. Don’t assume that the person who is using your program
hasn’t changed things around. You need to ask for the various menu entries
by name rather than by numeric value. Consequently, the code must retrieve
the Edit menu CommandBarControl by using the Controls collection. A
CommandBarControl is the actual menu entry and not the list of items that
it contains.

To get the Edit menu CommandBar, which is the object that contains the list
of items on that menu, the code uses the EditControl.Index property.
This property contains a number that indicates the position of the Edit menu
on the main menu. VBA doesn’t return the CommandBar unless the code sup-
plies this number. It’s a subtle point that will likely cause a lot of errors.

The code can access the Cut option of the Edit menu at this point by using
the EditMenu.Controls collection. The code uses the Visible property
to hide or show the option as a toggle.

The Ribbon interface displays only those menus or toolbars that you add to
the user interface. Because this example hides an existing menu entry, it
appears to do nothing when used with Excel 2007 or Word 2007. The code
doesn’t produce an error either, so you don’t need to worry about an older
macro like this one displaying an error message, but the user environment
might not be set up as you intended because the Ribbon interface simply
ignores this code. The “Working with the New Ribbon Interface” section of
this chapter describes how you could perform approximately the same task.
(Since there isn’t an Edit➪Cut command with the Ribbon, you can’t replicate
this code completely.)

Modifying the toolbar or menu content
Toolbars and menus have a lot of properties that you can change. Anything
that you can change with the Customize feature of the Office application is
also available from code. For example, you might want to provide better
tooltips for your program or change the wording of the prompt. Here’s an

263Chapter 12: VBA Programming in Office

19_046500 ch12.qxp 12/5/06 5:37 PM Page 263

example of code that modifies a ToolTip associated with the B (bold) button
on the Formatting toolbar. (You can find the source code for this example on
the Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Public Sub ChangeBoldToolTip()
‘ Get the Formatting toolbar.
Dim FormatBar As CommandBar
Set FormatBar = Application.CommandBars(“Formatting”)

‘ Get the Bold control.
Dim BoldControl As CommandBarControl
Set BoldControl = FormatBar.Controls(“&Bold”)

‘ Change the tooltip.
BoldControl.TooltipText = “Make the text bold!”

End Sub

I purposely selected the TooltipText property because it’s one of the few
that’s difficult or impossible to change manually. If you want to add ToolTips
to common menu or toolbar entries, you have to do it with a program. It’s
a shame that you have to go to this extreme because many accessibility
devices rely on the ToolTips to tell those with special needs about the con-
trol. For example, most screen readers used by those with special visual
needs rely on these ToolTips, so not adding a ToolTip means that someone
with special needs will have difficulty using your program.

The code for this example works much like the earlier “Displaying or hiding
toolbars and menus” example. Rather than access the menu, the code
accesses the Formatting toolbar that appears in every Office program (so you
can move this example to Word or Access unaltered).

After it gains access to the toolbar, the code accesses the B button. Notice
that the FormatBar.Controls collection uses &Bold and not just Bold.
You need to know the Name property value of the button that you want to
change. Use this procedure to obtain the value:

1. Right-click anywhere in the toolbar area and then choose Customize
from the context menu that appears.

The Office application displays the Customize dialog box.

2. Right-click the menu entry or toolbar control of interest.

The Office application displays a list of properties associated with the
entry.

3. Note the Name property value and then click Close in the Customize
dialog box.

264 Part IV: Programming for Applications

19_046500 ch12.qxp 12/5/06 5:37 PM Page 264

Adding and removing toolbars and menus
You might want to add custom toolbars and menus to hold entries for your
programs. Using custom setups means that you can show or hide custom
programs as needed. This technique also keeps your code separate from the
entries that Microsoft has made to ensure that there’s little chance of com-
patibility problems. Listing 12-2 shows one technique for adding a new tool-
bar. (You can find the source code for this example on the Dummies.com site
at http://www.dummies.com/go/vbafd5e.)

Listing 12-2 Adding a New Toolbar

Public Sub AddToolbar()
‘ Add the toolbar.
Dim MyToolbar As CommandBar
Set MyToolbar = _

Application.CommandBars.Add(“My Toolbar”)

‘ Add a control to the toolbar.
Dim SayHello As CommandBarButton
Set SayHello = _

MyToolbar.Controls.Add(msoControlButton)

‘ Configure the control.
With SayHello

.Caption = “Say Hello”

.DescriptionText = “This button displays a
message.”

.OnAction = “DoSayHello”

.TooltipText = “This button displays a message.”

.Visible = True

.Style = msoButtonIconAndCaption

.FaceId = 59
End With

‘ Make the toolbar visible.
MyToolbar.Visible = True

End Sub

The entire toolbar structure in Office applications consists of collections.
As with any collection, you use the Add method to add a new entry. Because
there’s only one main menu, any new CommandBar object that you add is
treated as a toolbar. When adding a new menu entry, you must retrieve the
main menu first and then add your menu to it.

265Chapter 12: VBA Programming in Office

19_046500 ch12.qxp 12/5/06 5:37 PM Page 265

Microsoft supplies a number of controls that you can add to a toolbar. The
most common option is a CommandBarButton object. You can also choose
the CommandBarComboBox, CommandBarControl, or CommandBarPopup
object. The Help file doesn’t even begin to tell you how many kinds
of CommandBarControl objects that you can create. Look at the MsoControl
Type enumeration in Object Browser. However, if you want to stick to the
controls that Microsoft recommends, use the msoControlButton,
msoControlEdit, msoControlDropdown, msoControlComboBox, or
msoControlPopup types.

After you add a control to your new toolbar, you need to configure it. The
new button is blank. The entries that you should always include appear in
the code. Make certain that you define an OnAction member that reflects
an existing Office application command or a Public Sub that you’ve
defined. The FaceId value, in this case, is the standard smiley face. You
do have access to a number of other icon values that are, unfortunately,
not documented. Notice also that you must make the individual controls
visible by using the Visible property as well as the toolbar.

Removing a toolbar isn’t nearly as difficult as creating it. Here’s the code that
you need:

Public Sub RemoveToolbar()
‘ Remove the custom toolbar.
Application.CommandBars(“My Toolbar”).Delete

End Sub

This single command removes the toolbar permanently. Unfortunately, there
isn’t a good way to save completed toolbars to disk, so hiding the toolbar
by using the Visible property or deleting it completely are the only two
options.

Working with the New Ribbon Interface
Some, but not all, of the Office 2007 applications come with the new Ribbon
interface. You probably noticed quite quickly that the Ribbon doesn’t provide
any simple means of customization. When working with the older menu and
toolbar interface, all you needed to do was right-click the toolbar area and
choose Customize, but Microsoft doesn’t offer this feature in Office 2007. The
new interface relies on XML files instead. These XML files describe the struc-
ture of the Ribbon.

266 Part IV: Programming for Applications

19_046500 ch12.qxp 12/5/06 5:37 PM Page 266

Understanding the application file content
You can change the Ribbon only when using an Office 2007 file. This means
that you must convert any compatibility files (those used with Office 2003
and earlier) before you can make any changes to the Ribbon. The Office 2007
file itself is actually a zip file. In fact, you can change the extension on any
Office 2007 file to zip and open it with a product such as WinZIP.

When you open the Office 2007 file as a ZIP file, you see a number of XML files
inside. Generally, you don’t want to modify these files directly unless you
know precisely what they do. In fact, it’s better to use tools to modify the
content of the Office 2007 file whenever you can. You can use the Office 2007
Custom UI Editor, described later in this section, to do everything you need
to do to add or remove tabs, groups, and buttons.

The Office 2007 files contain a number of common elements. The important
element for a custom Ribbon is the customUI.xml file. This file contains all
the definitions for your custom Ribbon. However, just having a list of defini-
tions doesn’t do much for you; you must connect the definitions to the docu-
ment by using the .rels (relations) file. Note that this file doesn’t have a
filename; just an extension. When your custom Ribbon includes icons or other
graphics, you also see a customUI.xml.rels file that contains pointers to
those items. These are all the entries related specifically to your Ribbon.

You also find a few other common elements in the Office 2007 files. The
app.xml contains application-specific settings for the document, so you may
need to interact with it at times. The core.xml file contains all the proper-
ties for the file, such as the author name and title. Generally, you should
access these entries by using the objects discussed in other chapters of this
book rather than work with the XML files directly.

Obtaining and using the Office 2007
Custom UI Editor
The official method for modifying the Ribbon has you changing the file
extension, extracting the required files, making modifications in an editor,
archiving the files again, and, finally, changing the file extension back every
time you want to make any change at all. You can see this grueling and
error-prone method at http://msdn2.microsoft.com/en-us/
library/ms406046.aspx. The better way to make changes is to rely
on a utility named Office 2007 Custom UI Editor, or Custom UI Editor, for
short (http://openxmldeveloper.org/articles/CustomUIeditor.
aspx). The direct download link is at http://openxmldeveloper.org/
attachment/239.ashx.

267Chapter 12: VBA Programming in Office

19_046500 ch12.qxp 12/5/06 5:37 PM Page 267

Using the Custom UI Editor is easier than the difficult process that Microsoft
suggests. All you do is open your document, template, or add-in, make the
required Ribbon additions, and save the file. The next time you open the file
in the Office application, it contains the updated Ribbon. Figure 12-3 shows a
typical example of the Custom UI Editor in action.

Don’t let the XML in this example scare you. As with every XML file, this one
starts with an XML processing instruction. The root node, which contains
everything else, is <customUI>. The child of interest for this example is
<ribbon>, which contains all the Ribbon additions. You can use other child
elements on complex setups, such as the <commands> element that lets you
change an existing command to do something else.

Most Ribbon additions consist of three elements. First, you need a tab, which
is the selection you choose to locate a particular Ribbon display. The default
tabs have names such as Home and Insert. Second, you need a group to hold
and organize various controls. For example, the Clipboard group on the Home
tab organizes the Cut, Copy, Paste, and Format Painter controls. Third, you
need a button or other control to perform an action. Buttons are the easiest
controls to use, so that’s what this chapter uses as a starting point. Figure 12-3
shows the entries you need in order to add one tab, one group, and one con-
trol to the Ribbon.

Figure 12-3:
The Custom

UI Editor
makes short

work of
Ribbon

changes.

268 Part IV: Programming for Applications

19_046500 ch12.qxp 12/5/06 5:37 PM Page 268

This chapter gives you a good starting point for working with the Ribbon.
You find, as the book progresses, other information about the Ribbon in
specific applications. However, at some point, you need to know information
about a Ribbon element that doesn’t appear in this book. Microsoft provides
detailed Ribbon information at http://msdn2.microsoft.com/en-us/
library/ms406047.aspx.

Adding a tab, group, and button
One of the tasks that you commonly perform is creating your own tabs
on the Ribbon. However, just creating a tab isn’t enough; you must also
create a group and a control of some sort. Figure 12-3 shows a typical set-
up in the Custom UI Editor. The following steps describe the setup for this
example:

1. Download and install the Custom UI Editor on your system by using
the information in the section “Obtaining and using the Office 2007
Custom UI Editor,” earlier in this chapter.

2. Create a file to hold the new Ribbon tab, group, and button.

The example uses Excel, but you can also create the example using Word
or any other Office 2007 application that relies on the Ribbon. The
Ribbon has certain advantages over the older toolbar and menu setup
because it relies on a generic XML file to define the setup.

269Chapter 12: VBA Programming in Office

What’s a callback?
You see the term callback used quite often
when you work with the Ribbon. A callback is a
special kind of an event. When the user clicks a
button, the Ribbon receives the event. The event
handler for the Ribbon then makes a call to any
Sub you define for handling that event in VBA.
A callback is more like a function call in VBA
than it is an actual event handler. Callbacks can
occur for a number of reasons, not just user
actions. For example, you can receive a call-
back when the application loads.

Anyone who is familiar with older programming
languages, such as C or C++, or who worked
with the Windows Application Programming
Interface (API), is already familiar with call-
backs because these environments rely heavily
on them. The Ribbon callback may sound like a
new idea, but it has been around for quite some
time.

19_046500 ch12.qxp 12/5/06 5:37 PM Page 269

3. Close the application you used to create the data file.

Always close the host application before you make any changes to the
target file using the Custom UI Editor. After you make the changes, save
them and reopen the file in the host application. Never make any
changes in the Custom UI Editor while you have the host application
open. Although your data will remain safe, making changes with both
the Custom UI Editor and the host application on the same file can have
unpredictable results, including lost VBA code.

4. Start the Custom UI Editor.

5. Open the data file you created. (You may need to set the Files of Type
field to All Files (*.*) to see templates and documents.)

The Custom UI tab in the editor is blank because you haven’t added any
custom UI features to this file yet.

6. Choose Sample➪Custom Tab in the Custom UI Editor.

The Custom UI Editor automatically creates the entries for a custom tab
for you.

7. Modify the entries to look like those shown in Figure 12-3.

Notice especially the onAction attribute shown in Figure 12-3. This entry
tells the Ribbon to call a Sub with a specific name in your VBA code.

8. Select the first line of the file. Type <?xml version=”1.0” encoding=”
utf-8” ?> and press Enter.

This step adds the XML processing instruction, which is a requirement
for every XML file. If you don’t add this element, the tab fails to appear
as anticipated.

9. Click Save.

10. Open the file in the application you used to create it.

You see a new tab like the one shown in Figure 12-4. The tab isn’t func-
tional yet, but you can see it.

Figure 12-4:
Adding a
new tab,
group, or
control is

the first step
to pro-

gramming
the Ribbon.

270 Part IV: Programming for Applications

19_046500 ch12.qxp 12/5/06 5:37 PM Page 270

Now that you have a new button you can access, it’s time to write some code
for it. Writing code for the Ribbon is significantly different from writing code
for the menu-and-toolbar setup. Fortunately, the Custom UI Editor can help
reduce the difficulty of the coding experience for you.

1. Open the VBA Editor and add a new module called RibbonX.

2. Select the Custom UI Editor again and click Generate Callbacks on the
toolbar.

You see a Callbacks tab appear with VBA code in it. The code provides
precisely what you need to access the button you created. Using this
approach takes the guesswork out of creating a Sub for your button.
Notice that the callback includes a variable you can use to access the
button. You can’t access the button directly from VBA.

3. Highlight all the code and press Ctrl+C.

4. Select the VBA Editor. Place the cursor on a new line at the end of the
file and press Ctrl+V.

You see the VBA code added to the module.

At this point, you can finally add code to interact with your new button. The
control variable provides only a few, but essential, values you can use.
The following code shows how you can display the control’s identifier:

‘Callback for myButton onAction
Sub myButton_ClickHandler(control As IRibbonControl)

MsgBox control.ID + “ Clicked”
End Sub

Add the MsgBox call as shown to display a dialog box. Save the file and click
My Button on the My Tab tab. You see a dialog box that contains the My
Button identifier.

The same techniques described for a Ribbon addition also work for the appli-
cation menu. However, rather than use the <tabs> element shown earlier,
in Figure 12-3, you use the menu element that you want to change, such as
the <fileMenu> element. You can obtain a complete list of all the Ribbon
schema elements (the special elements you use to write Ribbon additions)
at http://www.microsoft.com/downloads/details.aspx?familyid=
15805380-F2C0-4B80-9AD1-2CB0C300AEF9.

Performing tasks when the Ribbon loads
You have access to a wealth of information about the Ribbon. However, most
of this information comes from callbacks. One of the most important callbacks

271Chapter 12: VBA Programming in Office

19_046500 ch12.qxp 12/5/06 5:37 PM Page 271

concerns Ribbon loading. You use the onLoad attribute for the <customUI>
element, as shown here:

<customUI
xmlns=”http://schemas.microsoft.com/office/2006/01/customui”
onLoad=”RibbonLoaded”>

This callback looks for a RibbonLoaded Sub in your VBA code. As with
button and other control events, you can ask the Custom UI Editor to gener-
ate the required Sub code for you automatically. All you need to do then is fill
in the Sub with the actions you want to perform. Listing 12-3 shows an exam-
ple of a common task you could perform in the Ribbon onLoad callback. (You
can find the source code for this example on the Dummies.com site at
http://www.dummies.com/go/vbafd5e.)

Listing 12-3 Defining a Callback for Ribbon Loading

‘Define a global variable to hold the Ribbon reference.
Dim Rib As IRibbonUI

‘Callback for customUI.onLoad
Sub RibbonLoaded(ribbon As IRibbonUI)

‘Save the ribbon reference.
Set Rib = ribbon

‘ Tell the user the Ribbon is loaded.
MsgBox “Ribbon Loaded”

End Sub

This example may not look like much, but you often need the Ribbon refer-
ence (Rib in this case) when you make changes to the Ribbon. You use the
Invalidate method to tell the Ribbon to redraw itself to display any fea-
tures you remove, change, or add.

Modifying existing tabs
You can modify any existing element as long as you know the required
identifier. Microsoft provides these identifiers as a download at http://
www.microsoft.com/downloads/details.aspx?familyid=
4329d9e9-4d11-46a5-898d-23e4f331e9ae. You can also view the
identifiers by using a special feature of the Office products with the Ribbon
interface. The following steps describe how:

1. Select the Office application’s button to display its menu.

2. Click the Options button (such as Word Options in Word).

You see the Options dialog box for that application.

272 Part IV: Programming for Applications

19_046500 ch12.qxp 12/5/06 5:37 PM Page 272

3. Select the Customization folder in the Options dialog box.

4. Select an entry in the Choose Command From field.

5. Hover the mouse cursor over the control you want to work with.

You see a ToolTip that displays the identifier for that control in paren-
theses after the control name.

Unfortunately, this technique works with controls only. If you want to find the
identifiers for tabs or groups, you need to download the Microsoft-supplied
documentation.

The example in this section shows how to work with a particular control. It
demonstrates two techniques. First, the example adds a new group and con-
trol to an existing tab. Second, you see how to change the behavior of an
existing control by using a technique called repurposing. You repurpose a
control when you change its behavior from the default to a custom action
and optionally perform the default action afterward.

Creating the custom user interface
Repurposing usually involves two steps. First, you must determine some
mechanism to signal the change in behavior. The example uses a simple toggle
button for the task, but you could use anything. For example, you might want
to disable printing when the user is on the road and doesn’t have a printer
connected to the system. Second, you must provide the required linkage to
repurpose the control. Listing 12-4 shows the code for the simple toggle button
used in this example. You would insert this code into the <ribbon> element
as shown earlier, in Figure 12-3. (You can find the source code for this example
on the Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing 12-4 Creating a Toggle Button

<tab idMso=”TabHome”>
<group id=”BehaviorChange”

label=”Behavior”
insertAfterMso=”GroupFont”>

<toggleButton
id=”StopUnderline”
label=”Stop Underlining”
onAction=”StopUnderline_ClickHandler”
getPressed=”StopUnderline_GetPressed”
size=”large”
imageMso=”ColorPickerXLFill”/>

</group>
</tab>

273Chapter 12: VBA Programming in Office

19_046500 ch12.qxp 12/5/06 5:37 PM Page 273

This new group actually appears on the Home tab. Notice that the <tab> ele-
ment uses idMso instead of id as the identifier. The idMso attribute defines
an existing identifier — TabHome in this case. The <group> element defines a
new group on the existing tab. The example inserts the new group after the
GroupFont group, as shown in Figure 12-5.

The toggle button includes a number of new features. Notice that you must
provide two callbacks: onAction and getPressed. The onAction callback
performs the same task as a standard button by letting you know when the
user clicks the toggle button. The getPressed callback records the state of
the toggle button. Notice that this example uses ColorPickerXLFill as the
imageMso value. You can use the icon from any existing button for controls
you create.

The linkage for the repurposing appears as a new child of the <customUI>
element rather than in the <ribbon> element. The <commands> provides a
list of commands you want to repurpose and the VBA scripts that handle
them. Here is the repurposing linkage for this example:

<commands>
<command idMso=”Underline” onAction=”myUnderline”/>

</commands>

Because you’re creating linkage to an existing control, you must use the
idMso attribute with a value that tells which control to repurpose. In this
case, the code repurposes the Underline control. The Sub used as a callback
is myUnderline.

Reacting to user input
Now that you have the custom Ribbon changes made, you can create code
required to interact with the Ribbon in VBA. Listing 12-5 shows the code
required to make this part of the example work. (You can find the source
code for this example on the Dummies.com site at http://www.dummies.
com/go/vbafd5e.)

Figure 12-5:
You can

place new
groups

anywhere
within an

existing tab.

274 Part IV: Programming for Applications

19_046500 ch12.qxp 12/5/06 5:37 PM Page 274

Listing 12-5 VBA Interaction with the Ribbon

‘Determines the behavior button state.
Dim lBehavior As Boolean

‘Callback for StopUnderline onAction
Sub StopUnderline_ClickHandler(_

control As IRibbonControl, _
pressed As Boolean)

‘ Change the behavior state.
lBehavior = pressed

‘ Update the control.
Rib.InvalidateControl (control.ID)

End Sub

‘Callback for StopUnderline getPressed
Sub StopUnderline_GetPressed(_

control As IRibbonControl, _
ByRef returnedVal)

‘ Return the current behavior state.
returnedVal = lBehavior

End Sub

‘Callback for myUnderline onAction
Sub myUnderline(control As IRibbonControl, _

pressed As Boolean, _
ByRef fCancelDefault)

If (lBehavior) Then
MsgBox “No Underlined Allowed!”
pressed = False
fCancelDefault = True

Else
fCancelDefault = False

End If
End Sub

The code begins by defining a variable to track the behavioral state of the
application. You need this variable to ensure that the Stop Underlining con-
trol you added reflects the correct state.

The StopUnderline_ClickHandler() Sub receives the current control
and its pressed state. Theoretically, you can use the same Sub for all your
controls by checking the control’s identifier. However, most developers use
a separate Sub for each control. The code stores the state of the control in
lBehavior and then uses InvalidateControl() to redraw everything.

275Chapter 12: VBA Programming in Office

19_046500 ch12.qxp 12/5/06 5:37 PM Page 275

The StopUnderline_GetPressed() Sub completes the process of show-
ing the current toggle button state by returning lBehavior to the Ribbon.
Because the Ribbon calls this Sub when you first load the document, you
must also provide a default value for lBehavior in RibbonLoaded().

You can repurpose a control to perform any task you want, or you can turn
it off completely. In this case, myUnderline() performs the default action
when lBehavior is False. However, when the user sets Stop Underlining
and lBehavior is True, the code displays a message telling the user that
no underlining is allowed. In addition, the code tells the Ribbon not to
depress the Underline toggle button or to perform the default action.

276 Part IV: Programming for Applications

Using the Control UI Editor with care
I am showing you this example because the Control UI Editor doesn’t always provide the correct
arguments for some events, such as onAction. When you run this application, you see an error
message stating that something has the wrong number of arguments. Unfortunately, VBA doesn’t
tell you what piece of code has the wrong number of arguments, and troubleshooting doesn’t help
you find the problem. In this case, the signature (the arguments) for the Underline toggle button
callback is incorrect. You can see these signatures at http://msdn2.microsoft.com/
en-us/library/ms406047.aspx. The correct callback signature looks like this:

sub OnAction(control as IRibbonControl, _
pressed as Boolean, _
ByRef fCancelDefault)

19_046500 ch12.qxp 12/5/06 5:37 PM Page 276

Chapter 13

VBA Programming in Word
In This Chapter
� Working with Word-related objects

� Creating access to Word windows and manipulating objects that they contain

� Creating access to the Word document

� Interacting with the Registry

� Modifying document objects in Word

� Using shapes effectively

� Adding, deleting, moving, and editing text in Word

� Creating envelopes and labels

Word is the Microsoft Office application that you use to create and edit
text, which means spending hours typing. All that typing takes time.

However, you have at your disposal a personal secretary that can type thou-
sands of words per minute (without error), and you might not even realize it.
The programs that you create for Word can do more than simply change the
user environment, convert data to text or eXtensible Markup Language
(XML), and perform other helpful, nontyping tasks. The fastest typist that
you’ll ever know is the Word program that you create by using VBA.

Creating a document is more than just typing, though. You also have to con-
sider the formatting of the text and how to divide it into pieces so that it’s
easy to read. A document might require graphics, and you might want to add
special features to make some sections easier to find. Word programs can
handle all these needs, too. Simply decide what you want Word to do and
write a program to handle the task.

This chapter demonstrates VBA programming techniques that you can use
to make your next Word session more enjoyable and productive. Rather than
type the same material over and over again, you can concentrate on the cre-
ative part of the document. In addition, formatting can become a thing of the
past (except for unique situations). A VBA program lets you rely on Word to
do the formatting for you.

20_046500 ch13.qxp 12/5/06 5:38 PM Page 277

Understanding the Word-Related Objects
If you’ve followed the book to this point, you’ve already created a number of
programs by using objects. In fact, you’ve even looked at Word-specific objects
in a few cases. (See the “Creating a Simple Word XML Document” section of
Chapter 11 as an example.) Word has three special collections (Documents,
Templates, and Windows) that you can use to access the details of the Word
environment, which includes any documents that you create.

Using the Documents collection
Documents are the essence of working with Word. They contain the data
that you create, format, and print for the world to see. Consequently, the
Documents collection is the one that you use most when manipulating
content.

The Documents collection contains one copy of each Document object cur-
rently opened in Word. If you have more than one copy of the same docu-
ment open, Word includes a single Document object for each copy.

A Document object isn’t the same as a Template object. Word keeps these
two object types separate. See the upcoming “Using the Templates collec-
tion” section for details on working with templates. A document can include
content imported from other files. If you open a TXT file or an XML file, Word
treats it as a Document object.

The Documents collection is most useful when you don’t know the name of
the document that you want to manage. For example, you might create a pro-
gram that adds contractions to all documents that use the XYZ template. You
don’t know how many documents use this template or what the user named
them, but you know that you need to make the same change to all open docu-
ments. Listing 13-1 shows an example that demonstrates how to use a For
Each...Next statement to get information about each document that uses
the Normal.dot template. (You can find the source code for this example on
the Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing 13-1 Getting Word Document Information

Public Sub MyDocuments()
‘ Create a variable to hold the individual documents.
Dim MyDocs As Document

‘ Create a variable to hold information about selected
‘ documents.

278 Part IV: Programming for Applications

20_046500 ch13.qxp 12/5/06 5:38 PM Page 278

Dim Output As String

‘ Look at each document in the Documents collection.
For Each MyDocs In Application.Documents

‘ Check for the appropriate template name.
If UCase(MyDocs.AttachedTemplate) _

= “NORMAL.DOT” Then

‘ Create a list of information about the
‘ document.
With MyDocs
Output = Output + “Name: “ + vbTab + vbTab + _

.Name + vbCrLf + _
“Window Caption: “ + vbTab + _
.ActiveWindow.Caption + vbCrLf + _
“Document Type: “ + vbTab + _
IIf(.ActiveWindow.Creator = wdCreatorCode,

_
“Word Document”, _
“Other Document”) + vbCrLf + _

“Writing Style: “ + vbTab + _
.ActiveWritingStyle(wdEnglishUS) _
+ vbCrLf + “Characters: “ + vbTab + _
CStr(.Characters.Count) + vbCrLf + _
“Words: “ + vbTab + vbTab + _
CStr(.Words.Count) + vbCrLf + vbCrLf

End With
End If

Next

‘ Output the result.
MsgBox Output, _

vbInformation Or vbOKOnly, _
“Documents that Use the Normal Template”

End Sub

The example shows just a few of the properties available with the Document
object. The example begins by creating the Document object, MyDocs, and a
String, Output, that the code uses to hold the document information. The
For Each structure retrieves one Document object at a time from the
Documents collection and works with it.

Notice that the template comparison relies on the UCase function. You
don’t know how the user or Word will capitalize the name of the template,
normal.dot, so using the UCase function is the safest way to perform the
comparison. The property used, in this case, is MyDocs.AttachedTemplate,
which is the individual template used for each document. Word always uses

279Chapter 13: VBA Programming in Word

20_046500 ch13.qxp 12/5/06 5:38 PM Page 279

the entry found in the Document Template field on the Templates tab of the
Templates and Add-ins dialog box for this property even when a document
has more than one template attached to it.

Unlike in previous versions of Windows, where you could count on finding
the Normal.dot template, you can actually find one of three templates when
working with Word 2007. The Normal.dot template is for compatibility pur-
poses and is purposely used in this example to show that your old macros
really will work. The Normal.dotx template provides general support with-
out macros, and the Normal.dotm template provides general support with
macros. Consequently, you might actually have to search for three different
Normal templates, depending on your application needs. In addition, the
Normal.dot template doesn’t show up unless you reattach it using the
Templates and Add-ins dialog box. Microsoft has hidden this dialog box in
Word 2007, but here are the steps to access it:

1. Click the Office button and click Word Options.

You see the Word Options dialog box.

2. Select the Add-Ins folder.

3. Choose Templates in the Manage field and click Go.

You see the Templates and Add-ins dialog box.

The code gathers various kinds of input from the document. Some informa-
tion, such as .ActiveWindow.Caption, is already in text format, so the
code doesn’t do much more than record the value in Output. Notice the
use of the IIf function to perform the .ActiveWindow.Creator =
wdCreatorCode inline comparison. Excel uses a similar constant for its
documents, xlCreatorCode. The creator code can tell you what kind
of document you’re working with.

A few of the properties require special handling. For example, because Word
is internationalized, you must provide a constant for some properties to
ensure that you see the correct value. The .ActiveWritingStyle property
value varies by language, so you have to tell VBA which language value to
retrieve by using the constant for your country. Because I live in the United
States, I used the wdEnglishUS constant.

Many applications maintain statistics for the documents that they maintain,
and Word is no exception. The Document object contains a number of
statistics that it maintains over the life of the object. The example shows
the .Characters.Count and .Words.Count statistics. Figure 13-1
shows the output from this program.

280 Part IV: Programming for Applications

20_046500 ch13.qxp 12/5/06 5:38 PM Page 280

Using the Templates collection
Word users know that templates provide the information required to give a
set of documents the same look and feel. For example, a letter template could
include special formatting for the heading and body text. It might include all
the text that is the same for each letter, such as your name and address.
Specialized templates often include automatic setups so that the initial docu-
ment is as close as possible to the final product. Templates can use the DOT,
DOTX, or DOTM file extensions. Only the DOT and DOTM templates have
macros in them. You can still interact with a DOTX template, but you can’t
store macros in it.

The Templates collection contains a list of all the templates in use by your
document. Each Template object corresponds to a single template file. If you
open several documents that rely on the same template, Word creates only
one Template object. No matter which document you open, Word opens a
copy of the Normal template in addition to any special template that the docu-
ment uses. Word 2007 uses the Normal.dotx or Normal.dotm template by
default. The template that Word 2007 chooses depends on whether you enable
macros for the current document. You can also add the Normal.dot template
for compatibility documents. The special template is still the main template
that Word uses, but Word always adds the features found in Normal.dotm.
Consequently, you should only make changes to Normal.dotm that you want
to see in every file that you create when using Word.

After you understand how the templates interact with your document, you
can change template functionality in a way that makes creating the document
easier. In general, you use template programs to make changes to the docu-
ment as a whole and to all documents affected by that template. Listing 13-2
shows an example of the Templates collection in use. (You can find the
source code for this example on the Dummies.com site at http://www.
dummies.com/go/vbafd5e.)

Figure 13-1:
Uncover the
mysteries of
your data by

using the
Document

object.

281Chapter 13: VBA Programming in Word

20_046500 ch13.qxp 12/5/06 5:38 PM Page 281

Listing 13-2 Listing Word Template Properties

Public Sub MyTemplates()
‘ Holds the current template.
Dim CurrTemp As Template

‘ Holds the built-in properties.
Dim CurrProp As DocumentProperty

‘ Holds the property name length.
Dim PropLen As Integer

‘ Holds the output.
Dim Output As String

‘ Look at each template in the Templates collection.
For Each CurrTemp In Application.Templates

‘ Get information about the current template.
With CurrTemp

Output = Output + _
“Name: “ + .Name + vbCrLf + _
“Full Name: “ + .FullName + vbCrLf

‘ Check property values for the template.
For Each CurrProp In _

.BuiltInDocumentProperties

‘ Some entries will fail.
On Error Resume Next

‘ Determine the property name length.
PropLen = Len(CurrProp.Name)

‘ Get the information.
Output = Output + _

CurrProp.Name + “ (“ + _
CStr(CurrProp.Type) + “): “ + _
CStr(CurrProp.Value) + vbCrLf

Next

‘ Add space at the end of the entry.
Output = Output + vbCrLf + vbCrLf

End With
Next

‘ Output the result.
MsgBox Output, _

vbInformation Or vbOKOnly, _
“Templates Currently in Use”

End Sub

282 Part IV: Programming for Applications

20_046500 ch13.qxp 12/5/06 5:38 PM Page 282

The code begins by creating Template and DocumentProperty objects.
These two objects hold the information that the program examines during
execution. The PropLen variable contains the length of the current property
name. The Output variable contains the output string for this example.

This example uses a double For Each...Next statement. The first For
Each...Next statement controls the selection of a template from the list in
the Application.Templates collection. The second For Each...Next
statement controls the selection of properties within the template by using
the .BuiltInDocumentProperties collection.

Don’t assume that Word templates contain only one set of properties. If you
want to get a complete list of document properties, you also need to look at
the CustomDocumentProperties collection. Theoretically, a template
could contain custom property collections as well, so you need to check for
other additions.

Notice that the code includes both the .Name and .FullName property
values in Output. The .Name property value includes only the document
template name, but the .FullName property includes the path information
as well. If you want just the path information, use the Path property. The
seeming replication of information in some Word classes helps you create
programs with less work. In this case, you need to know only which property
to use instead of having to parse the information from a complex property.

The second loop begins with an On Error Resume Next statement. Always
include this statement whenever you work with properties. The code calcu-
lates the length of the CurrProp.Name property next. You could include this
calculation in every place that it’s needed in the code, but using this tech-
nique is more efficient and saves time writing code.

The Output variable next receives the name of the property, the property
type, and the property value. In previous versions of Word, you could create
nicely formatted output by relying on tabs to space the information. The
combination of Word 2007 and Vista makes this kind of formatting very diffi-
cult. Consequently, rather than use tabs, you need to rely on other forms of
formatting for standard message boxes, as shown in the code. Notice that the
property type appears in parentheses after the name. If you really do need to
create a custom display with columnar formatting, you need to use a custom
form with Word 2007. Figure 13-2 shows the output of this program.

Using the Windows collection
The Windows collection contains one Window object entry for each window
that you have open. You use the Window object to manage the overall view of
a document. For example, you use this object to add or remove scroll bars or
the ruler.

283Chapter 13: VBA Programming in Word

20_046500 ch13.qxp 12/5/06 5:38 PM Page 283

Don’t confuse a Window object with a Pane object. A Window object can con-
tain up to two panes. (Older versions of Word let you create multiple panes;
newer versions limit you to two.) The Window object is a container for the
Pane object. You use the Pane object to view, add, delete, and otherwise
manipulate the current content of a document. A disk file contains the data
as of the last save — this object contains the data as it appears in memory.

The panes operate independently of each other. You can select an area of text
in one pane and not have it affect the selection in the other pane. However,
data changes made in one pane do appear in the other pane. Listing 13-3
shows an example of the Windows collection. (You can find the source code
for this example on the Dummies.com site at http://www.dummies.com/
go/vbafd5e.)

Listing 13-3 Determining Window Properties

Public Sub MyWindows()
‘ Holds a Window object.
Dim MyWin As Window

‘ Holds the output.

Figure 13-2:
Rely on the
properties

found in
both docu-
ments and
templates
for identi-

fication
information.

284 Part IV: Programming for Applications

20_046500 ch13.qxp 12/5/06 5:38 PM Page 284

Dim Output As String

‘ Used for loop counting.
Dim Counter As Integer

‘ Look at each Window in the Windows collection.
For Each MyWin In Application.Windows

‘ Get the current window information.
With MyWin
Output = Output + “Caption: “ + .Caption + _

vbCrLf + “Panes: “ + _
CStr(.Panes.Count) + vbCrLf

‘ Check each of the panes for selected data.
For Counter = 1 To .Panes.Count

Output = Output + “Pane “ + CStr(Counter) + _
“ Selection: “ + _
CStr(.Panes(Counter).Selection) + _
vbCrLf

Next

‘ Add a new pane if possible.
If .Panes.Count = 1 Then

.Panes.Add
End If

‘ Add space to the output.
Output = Output + vbCrLf

End With
Next

‘ Output the result.
MsgBox Output, _

vbInformation Or vbOKOnly, _
“Windows Currently in Use”

End Sub

The example shown in Listing 13-3 begins like the other collection examples
in this section (see Listings 13-1 and 13-2) by creating an individual object
and some associated variables. The Application.Windows contains all the
existing windows that are processed one at a time in the code.

Every Window object has a Caption property. This Caption appears as part
of the Word title bar text. A Window doesn’t have a Name property, like many
other objects ,because you never manipulate it by name.

285Chapter 13: VBA Programming in Word

20_046500 ch13.qxp 12/5/06 5:38 PM Page 285

After the code determines the Window caption, it looks at the number of
panes associated with that window. In Office 2007, Office 2003, Office XP, and
Office 2000, the value is always 1 or 2. The code processes each window in
turn. In this case, it retrieves the selected text.

The code shows how you can add another pane to the code. If the user isn’t
using both panes, you can open a second pane, perform any work that you
need to do to the data in that pane, and then close the pane when you finish.
This technique lets you work on the data quickly yet return the view to the
user’s original view. Figure 13-3 shows typical output for this example.

When you run this program a second time, each of the open windows has two
panes open even if it had only one pane open to begin with. None of the win-
dows will ever have more than two panes open. If you try to open more than
two, VBA generates an error. (The precise error message can vary — some-
times the VBA error messages aren’t clear, and you need to look carefully for
the cause.)

Accessing the Word Document
Accessing the Word document means accessing specific text elements so that
you know what they contain. For example, you might want to process the text
one paragraph or one sentence at a time. It’s possible to select individual let-
ters in Word along with individual objects, such as pictures. However, sen-
tences are a good place to start because working with sentences exercises
many of the calls that you need for other forms of access. Listing 13-4 shows
an example that accesses sentences one at a time in the test document. (You
can find the source code for this example on the Dummies.com site at
http://www.dummies.com/go/vbafd5e.)

Figure 13-3:
Windows

and panes
work

together to
provide

access to
your data.

286 Part IV: Programming for Applications

20_046500 ch13.qxp 12/5/06 5:38 PM Page 286

Listing 13-4 Retrieving a Specific Sentence from a Document

Public Sub AccessTheText()
‘ Holds the current pane.
Dim CurrPane As Pane

‘ Holds a specific paragraph on the page.
Dim CurrPara As Paragraph

‘ Holds a single sentence.
Dim CurrSent As String

‘ Holds the output.
Dim Output As String

‘ Acts as a loop counter.
Dim Counter As Integer

‘ Locate the window based on the expected name.
Dim LocateWindow As Window ‘ The current window.
Dim WinString As String ‘ The window caption.
For Each LocateWindow In Application.Windows

If Left(LocateWindow.Caption, 15) = _
“WordObjects.doc” Then

WinString = LocateWindow.Caption
End If

Next

‘ Make sure you can access the pane properly.
Application.Windows(WinString).View _

= wdNormalView

‘ Access the test document pane.
Set CurrPane = _

Application.Windows(WinString).ActivePane

‘ Access the second paragraph in that pane.
Set CurrPara = CurrPane.Document.Paragraphs(2)

‘ Access the second sentence in that paragraph.
For Counter = 1 To CurrPara.Range.Sentences.Count

‘ Get the current sentence content.
CurrSent = CurrPara.Range.Sentences(Counter)

‘ Add the content to the Output string.
Output = Output + “Sentence “ + CStr(Counter) + _

“: “ + CurrSent + vbCrLf
Next

‘ Display the sentence.
MsgBox Output

End Sub

287Chapter 13: VBA Programming in Word

20_046500 ch13.qxp 12/5/06 5:38 PM Page 287

The code begins by creating the individual objects needed to hold various
document elements. The kind of objects that you create depends on the tasks
that you need to perform and on the view option in some cases. For example,
if you want to work with the Pages collection, the document must appear in
Print Layout view.

Because Word 2007 adds the words Compatibility Mode to every one of your
older documents, macros that relied on a specific document name, such as
WordObjects.doc in this example, will fail. What you need to do instead is
search for the document you want by using a For Each loop as shown. After
you find the document you want based on a substring, using the Left()
function in this case, you can store the actual caption in a variable and use
the variable in place of the document name you anticipated. This change in
coding technique lets the example work without problem with Word 2007 as
well as with earlier versions of Word.

To ensure that you can access the document by using the method that you
need, you must set the pane or the window to a specific view. The code sets
the window to Normal view by setting the View property to wdNormalView.
Also notice that you must use the name and extension of a document to
select its window — using just the name isn’t enough because you could
load multiple documents with the same name and different extensions. Make
sure that you add a window number when necessary.

You must use the Pane object to access data within the document. It’s usu-
ally a good idea to create an actual Pane object rather than go through the
long object hierarchy to access it each time. This program actually takes
a microscopic performance hit when using this technique, but the time
that you save by not typing is well worth it. Notice that the code uses the
ActivePane property in this case. You can also use the Panes collection.

One of the tricky parts about working in Normal view is that you need to
access the document by using paragraphs. If the document has just a few
paragraphs, debugging the code isn’t difficult. However, life can become
interesting for long documents because finding a particular paragraph can
become difficult. You can use search techniques to make finding a paragraph
easier in many cases.

Collections include a Count property that you can use to access individual
members by using a For...Next loop rather than a For Each...Next
loop. This example makes use of that feature to create a counter setup that
displays the sentence number and the content of that sentence. When you
run this program, VBA displays each sentence in the second paragraph of the
document in turn. It doesn’t display any other sentences.

288 Part IV: Programming for Applications

20_046500 ch13.qxp 12/5/06 5:38 PM Page 288

The document hierarchy continues to words and individual characters.
By using Listing 13-4, when you want to select individual words, select
the CurrPara.Range.Sentences(Counter).Words collection. Use the
CurrPara.Range.Sentences(Counter).Characters collection to select
individual characters in the sentence.

Using the Registry with VBA
Microsoft assumes that you always want to access the Registry to store set-
tings for your program, so it created special functions that let you store set-
tings under one specific key, \HKEY_CURRENT_USER\Software\VBA. If you
want to store program settings, simply use the SaveSetting function.
Likewise, the GetSetting and GetAllSettings functions retrieve informa-
tion from the Registry. These functions are always safe to use, even when you
have User Account Control (UAC) enabled under Vista.

Overcoming UAC problems in Vista
Many Word 2007 applications rely on Registry access, as this one does.
Unfortunately, the UAC feature of Vista restricts Registry access. You may
find that some of your code doesn’t run unless you disable the requisite UAC
policy. Rather than disable UAC completely, you can overcome this problem
by using the following procedure:

1. Open the Local Security Policy console, located in the Administrative
Tools folder of the Control Panel. If necessary, give permission to Vista
when asked to open the console (you’ll see a dialog box when you have
some UAC features enabled).

2. Select the Local Policies\Security Options folder.

You see a list of local policies for the machine.

3. Locate the policy named User Account Control: Virtualize File and
Registry Write Failures to Per-User Locations.

4. Right-click the policy and choose Properties.

You see the User Account Control: Virtualize File and Registry Write
Failures to Per-User Locations Properties dialog box.

5. Select the Disabled option and click OK.

6. Close the Local Security Policy console.

289Chapter 13: VBA Programming in Word

20_046500 ch13.qxp 12/5/06 5:38 PM Page 289

Accessing any Registry locations in Office
Unfortunately, SaveSetting and GetSetting functions don’t provide
access to the rest of the Registry. In addition, these functions affect only the
current user. The example in the upcoming section “Selecting Objects in a
Word Document” shows why this is a problem. You need access to the entire
Registry to write functional programs. Consequently, you have to augment
the functionality that VBA provides by accessing the Windows 32-bit
Application Programming Interface (Win32 API) directly. The Win32 API
is the entire set of functions that Windows supports. Listing 13-5 shows
the code that’s required in order to perform the task of reading other parts
of the Registry. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing 13-5 Accessing the Registry with VBA

‘ This Windows API function opens a Registry key.
Public Declare Function RegOpenKey _

Lib “advapi32.dll” _
Alias “RegOpenKeyA” (ByVal HKey As Long, _

ByVal lpSubKey As String, _
phkResult As Long) As Boolean

‘ Use this enumeration for the top-level keys.
Public Enum ROOT_KEYS

HKEY_CLASSES_ROOT = &H80000000
HKEY_CURRENT_USER = &H80000001
HKEY_LOCAL_MACHINE = &H80000002
HKEY_USERS = &H80000003
HKEY_PERFORMANCE_DATA = &H80000004
HKEY_CURRENT_CONFIG = &H80000005
HKEY_DYN_DATA = &H80000006

End Enum

‘ This Windows API function reads a value from a key.
Declare Function RegQueryValue _

Lib “advapi32.dll” _
Alias “RegQueryValueA” (ByVal HKey As Long, _

ByVal lpSubKey As String, _
ByVal lpValue As String, _
lpcbValue As Long) As Boolean

‘ This Windows API function closes a Registry key.
Public Declare Function RegCloseKey _

Lib “advapi32.dll” (ByVal HKey As Long) As Boolean

290 Part IV: Programming for Applications

20_046500 ch13.qxp 12/5/06 5:38 PM Page 290

VBA lets you access specific Win32 API functions by using the Declare key-
word, shown in these three examples. You must give your function a name, as
usual. Use the same name as the Win32 API function whenever possible so
that you remember the purpose of this function. VBA also requires that you
provide the name of the Dynamic Link Library (DLL) file that contains the
function by adding the Lib keyword. All Registry functions appear in
advapi32.dll, located in the \Windows\System32 folder.

Two of these functions use the Alias keyword. A Win32 API function might
have a common name, such as RegOpenKey. However, the DLL might actu-
ally hold two or more versions of the function. The RegOpenKeyA alias tells
VBA to use the ASCII version of the function. You could also use the Unicode
(or W) version of the function.

After you provide all the information required to locate the function, you
supply a list of arguments. Again, it’s a good idea to use the same names that
the Microsoft documentation uses so that you remember the purpose of each
argument.

Selecting Objects in a Word Document
Complex Word documents often contain objects. An object can be any kind of
external application data that you wish to associate with the Word document.
A report might require that you include information from Excel. You might
place Visio drawings in your Word document or use Access when creating a
letter. Objects help you create complex documents, which in turn help you
better define your data.

Understanding object connectivity
You can link or embed objects into your Word document. Object Linking and
Embedding (OLE) is a feature found in most high-end applications. Linking
places a pointer to the information within the Word document. Every time
Word wants to display that object, it invokes the required OLE server (the
application that usually manages the data) and tells it where to find the file
on disk. The advantage to this method is that the OLE server updates the
data every time that you view the object. Linking also keeps the Word docu-
ment small because the pointer consumes very little space.

Embedding actually places the data from the file into the Word document.
Every time that you view the object, Word passes the data to the OLE server
for display and manipulation. The advantage of this method is that the data

291Chapter 13: VBA Programming in Word

20_046500 ch13.qxp 12/5/06 5:38 PM Page 291

remains with the document, so you have to send only one file to someone if
you want to share the information. Although the individual Word file is larger
and doesn’t receive updated information, an information package is usually
smaller, especially if you compress it using something like WinZip.

Working with embedded objects by using
the InlineShape collection
No matter which form of object connectivity you use, Word considers it an
InlineShape. The InlineShape collection contains all the objects linked
or embedded in the Word document. Because you can use OLE with so many
applications, Microsoft had to devise an object-handling strategy that will
work with all Word-compatible objects. The example document supplied with
the source code, WordObjects, has two embedded objects in it. The first is
a picture, and the second is a sound. Listing 13-6 contains some code that
demonstrates techniques for working with those two objects. (You can find
the source code for this example on the Dummies.com site at http://
www.dummies.com/go/vbafd5e.)

Listing 13-6 Using the Registry to Work with Objects

Public Sub AccessAnObject()
‘ Holds an indeterminate object.
Dim AObj As InlineShape

‘ Holds the BMP file class.
Dim BMPClass As String

‘ Holds picture statistical data.
Dim Output As String

‘ Holds the Registry key reference.
Dim RegKeyRef As Long

‘ Holds the length of the Registry data.
Dim RegLength As Long

‘ Get the BMP file class.
‘ Open the Registry key.
RegOpenKey ROOT_KEYS.HKEY_CLASSES_ROOT, _

“.bmp”, RegKeyRef

‘ Determine whether the key exists.
If RegKeyRef = 0 Then

‘ Display an error.
MsgBox “Couldn’t open BMP file Registry setting.”, _

292 Part IV: Programming for Applications

20_046500 ch13.qxp 12/5/06 5:38 PM Page 292

vbOKOnly Or vbExclamation, _
“Registry Error”

‘ Exit the sub.
Exit Sub

End If

‘ Determine whether the required information exists. If
‘ so, get the data length.
RegQueryValue RegKeyRef, “”, BMPClass, RegLength

‘ Fill the string with the required spaces.
BMPClass = VBA.String(RegLength, “ “)

‘ Retrieve the value.
RegQueryValue RegKeyRef, “”, BMPClass, RegLength
BMPClass = Left(BMPClass, Len(BMPClass) - 1)

‘ Close the Registry.
RegCloseKey (RegKeyRef)

‘ Check each inline shape.
For Each AObj In ThisDocument.InlineShapes

‘ Select the object and show that it is selected.
AObj.Select
MsgBox “Object Number “ + _

CStr(AObj.Field.Index) + “ is Selected”, _
vbInformation Or vbOKOnly, “Object Select”

‘ If this is a sound object, play it.
If AObj.OLEFormat.ClassType = “SoundRec” Then

AObj.OLEFormat.DoVerb wdOLEVerbPrimary
End If

‘ If this is a picture object, display some
‘ statistics.
If AObj.OLEFormat.ClassType = BMPClass Then

‘ Get the height and width and then display it.
Output = “Height: “ + CStr(AObj.Height) + _

vbCrLf + _
CStr(Application.PointsToInches(AObj.Height))

_
+ “ Inches” + vbCrLf + _
“Width: “ + CStr(AObj.Width) + vbCrLf + _
CStr(Application.PointsToInches(AObj.Width)) _
+ “ Inches”

MsgBox Output, vbInformation Or vbOKOnly, _
“Picture Statistics”

End If
Next

End Sub

293Chapter 13: VBA Programming in Word

20_046500 ch13.qxp 12/5/06 5:38 PM Page 293

The code begins by creating variables to hold the information used in the
example. Note the inclusion of an InlineShape object to hold each of the
objects in the document.

The next section uses the special Registry functions described in the “Using
the Registry with VBA” section, earlier in this chapter. This section requires a
little more explanation than simply saying what the code does.

Whenever you double-click an icon in Windows Explorer, Windows goes to
the Registry and asks what application to use to open that file. Windows
stores this information by file extension in the HKEY_CLASSES_ROOT hive of
the Registry. (The term HKEY stands for hive key.) Figure 13-4 shows the
entry for the .bmp file extension.

The (Default) value tells Windows which application type to use to open
the file. (Other Registry entries contain precise instructions for using this
program.) Any file with a .bmp extension on my machine uses Paint Shop Pro
as a default, but your machine setup might be different from mine. Because
another application creates the objects linked or embedded in a document,
Word needs the same kind of information as Windows does to open the OLE
server. This information appears in the ClassType property of the
InlineShape.OLEFormat object.

When you want to work with an object created by another application in Word,
you can’t necessarily assume that the program you use to work with that file is
the same program used on the machine executing the program. This is the pur-
pose for the Registry code in this example. It shows how you can retrieve the
program type information for a particular file extension, such as .bmp.

The code begins by using RegOpenKey to open the Registry and get a refer-
ence (also called a handle) to a specific Registry key. This function requires
the hive key, a subkey (the file extension), and a variable to hold the Registry
key reference as arguments. You must include code that checks the key for a
0 return value. This value tells you that the key doesn’t exist on the target
machine. If the key doesn’t exist, you can’t open that object on that target
machine because it lacks the required support.

Figure 13-4:
Use the
Registry
Editor to
discover

more about
how OLE

works.

294 Part IV: Programming for Applications

20_046500 ch13.qxp 12/5/06 5:38 PM Page 294

After the code gets a Registry key reference, it uses it to ask for the program
type information by using the RegQueryValue function. To request the infor-
mation in the (Default) value, you send an empty string as the second
argument. Otherwise, you can include a string that has a specific value name
in it, such as the PerceivedType value, shown in Figure 13-4. The third argu-
ment is a string that holds the name of the program class when the function
returns. The RegLength argument tells you how long the BMPClass value is.

The first call to the RegQueryValue function determines only the length of
BMPClass. The code uses the VBA.String function to fill BMPClass with
spaces. The Win32 API doesn’t do this task for you, like the VBA functions do,
so it’s something that you have to do manually. A second call to the
RegQueryValue function fills BMPClass with the program type name.

However, there’s still a problem with this string. If you look carefully in the
Debugger, you notice that BMPClass has a funny character at the end. This is
the 0 termination required by languages such as C. VBA doesn’t need a 0 ter-
minator, so the code gets rid of it by using the Left function. The final
Registry step is to close the Registry by using the RegCloseKey function.

The code finally begins looking at the individual objects. It begins by select-
ing the object onscreen and displaying a message box. This code lets you see
how the Select method works. It also shows which object the code is work-
ing with now.

The example file contains two objects. The WAV file relies on the SoundRec
program type, in most cases, so I simply used that value for the example. You
can certainly use the Registry technique to look up the program type in your
programs. If the object is a sound file, the code plays it by using the DoVerb
method with the wdOLEVerbPrimary argument. OLE supports a number of
other verbs (action words). To see which verbs work with a particular object,
right-click the object and see which Object menu entries appear on the con-
text menu. For example, you can play (wdOLEVerbPrimary), edit
(wdOLEVerbShow), or open (wdOLEVerbOpen) a sound file.

Notice how the code treats the picture object. In this case, the code com-
pares the picture object with the program type received from the Registry. If
the two match, the code displays the height and width of the picture. Notice
how this code uses the Application.PointsToInches function to convert
to inches the point values that Word normally uses. VBA includes a number
of these handy conversion functions that you can use to present data in a
format that the viewer understands.

Manipulating Text
The task that you perform most often in Word is manipulating text. The sec-
tion “Accessing the Word Document,” earlier in this chapter, shows how to

295Chapter 13: VBA Programming in Word

20_046500 ch13.qxp 12/5/06 5:38 PM Page 295

access the text in your document. You can access every text element, includ-
ing individual letters, as needed. Selecting text is as easy as using the Select
method. (See the section “Selecting Objects in a Word Document,” also ear-
lier in this chapter, for an example of how the Select method works.)

After you select the text, you can use simple properties to change its appear-
ance or manipulate it in other ways. For example, you could change the text
by making the selection equal to another value. The Font property contains
a number of interesting features, including the ability to add special effects,
such as strikethrough and underlining. You can also use the Font property to
change the font face or size.

The example in Listing 13-7 shows another type of text manipulation. You
might need the ability to look for a particular word in a document and just
highlight it. It’s not necessary to change every occurrence of the word, so a
standard search-and-replace doesn’t work. All you want to do is find all the
occurrences of the target word without a lot of extra work. (You can find the
source code for this example on the Dummies.com site at http://www.
dummies.com/go/vbafd5e.)

Listing 13-7 Highlighting Text in Word

Public Sub HighlightText()
‘ Holds the current pane.
Dim CurrPane As Pane

‘ Locate the window based on the expected name.
Dim LocateWindow As Window ‘ The current window.
Dim WinString As String ‘ The window caption.
For Each LocateWindow In Application.Windows

If Left(LocateWindow.Caption, 15) = _
“WordObjects.doc” Then

WinString = LocateWindow.Caption
End If

Next

‘ Make sure you can access the pane properly.
Application.Windows(WinString).View _

= wdNormalView

‘ Access the test document pane.
Set CurrPane = _
Application.Windows(WinString).ActivePane

‘ Get the word to highlight.
Dim Highlight As String
Highlight = InputBox(“Highlight which word?”, _

296 Part IV: Programming for Applications

20_046500 ch13.qxp 12/5/06 5:38 PM Page 296

“Highlight Word”, _
“document”)

‘ Go to the beginning of the document.
CurrPane.Selection.GoTo wdGoToLine, wdGoToFirst

‘ Creates a search for the word.
Dim DoSearch As Find
Set DoSearch = CurrPane.Selection.Find

‘ Perform the search.
With DoSearch

‘ Clear any existing formatting information.
.ClearFormatting
.MatchCase = False

‘ Continue until there is nothing else to search.
While DoSearch.Execute(FindText:=Highlight)

‘ Highlight any found text in the right color.
With CurrPane.Selection.FormattedText

.HighlightColorIndex = wdTurquoise
End With

Wend
End With

‘ Go to the beginning of the document.
CurrPane.Selection.GoTo wdGoToLine, wdGoToFirst

End Sub

The code begins by accessing the current pane. Notice that you must locate
the window by using a different technique than in the past because Word
2007 displays the words Compatibility Mode with any older file you choose to
open. This technique is the same one described earlier, for Listing 13-4. The
code then uses the InputBox function to ask what word to search for in the
document. Highlight contains the work on return from the call.

Before you begin a search of any kind, you should consider placing the selec-
tion point at a known location. The code does this with the .Selection.
GoTo method. The arguments for this call literally tell the code to place the
selection point on the first line.

Search-and-replace works with the current pane. The code uses the Find
property to create DoSearch object. At this point, the code begins setting
the search. You must always use the .ClearFormatting function to clear
any existing formatting from the search, or else the search is likely to fail. It’s
also possible to define replacement parameters. The code uses the
DoSearch.Execute method to perform the search.

297Chapter 13: VBA Programming in Word

20_046500 ch13.qxp 12/5/06 5:38 PM Page 297

The highlight occurs with the CurrPane.Selection.FormattedText
object. This object determines the appearance of the text as a whole,
including special features, such as highlighting. The code sets the
.HighlightColorIndex property to wdTurquoise, which highlights
any selected text onscreen. The text is highlighted automatically as part
of the search process.

Unless you want to remove all those highlights by hand, you need a program
to remove them for you. The program in Listing 13-8 removes only turquoise
highlights. If you have highlights of other colors in the document, the pro-
gram doesn’t remove them.

Listing 13-8 Removing Specific Highlights from a Word Document

Public Sub RemoveHighlight()
‘ Holds the current pane.
Dim CurrPane As Pane

‘ Locate the window based on the expected name.
Dim LocateWindow As Window ‘ The current window.
Dim WinString As String ‘ The window caption.
For Each LocateWindow In Application.Windows

If Left(LocateWindow.Caption, 15) = _
“WordObjects.doc” Then

WinString = LocateWindow.Caption
End If

Next

‘ Make sure you can access the pane properly.
Application.Windows(WinString).View _

= wdNormalView

‘ Access the test document pane.
Set CurrPane = _
Application.Windows(WinString).ActivePane

‘ Go to the beginning of the document.
CurrPane.Selection.GoTo wdGoToLine, wdGoToFirst

‘ Creates a search for the word.
Dim DoSearch As Find
Set DoSearch = CurrPane.Selection.Find

‘ Perform the search.
With DoSearch

‘ Clear any existing formatting information.
.ClearFormatting

298 Part IV: Programming for Applications

20_046500 ch13.qxp 12/5/06 5:38 PM Page 298

.Highlight = True

.MatchCase = False

‘ Continue until there is nothing else to search.
While DoSearch.Execute()

‘ Remove the highlight as needed.
With CurrPane.Selection.FormattedText

If .HighlightColorIndex = wdTurquoise Then
.HighlightColorIndex = wdNoHighlight

End If
End With

Wend
End With

‘ Go to the beginning of the document.
CurrPane.Selection.GoTo wdGoToLine, wdGoToFirst

End Sub

The code for this program works similarly to the text search. However, notice
that it searches for a highlight instead, by setting the .Highlight to True.
Unfortunately, DoSearch can’t look for a specific highlight color, so the code
sets up an If...Then statement that ensures that only turquoise highlights
are removed.

One final point to consider: You can usually perform most tasks in more than
one way when working with VBA. In this case, you can substitute the state-
ment CurrPane.Selection.HomeKey Unit:=wdStory for CurrPane.
Selection.GoTo wdGoToLine, wdGoToFirst, if you want, because both
statements perform the same task. I used the code shown in Listing 13-8
because I think it’s easier to understand. However, you get no performance
or other type of advantage when using either statement — both forms of the
statement are equally correct.

Working with Envelopes and Labels
One of the items that Word 2007 users commonly want to customize is the
output of envelopes and labels. The perceived use for each item is the same —
to create a recipient or return address for a package of some sort. Whether the
package is an envelope or a box is unimportant. Fortunately, you can create
custom code for both envelopes and labels by using built-in VBA features.

299Chapter 13: VBA Programming in Word

20_046500 ch13.qxp 12/5/06 5:38 PM Page 299

Designing the envelope and label form
The example in this section uses a single form for either envelopes or labels.
It includes fields for name, address, city, state, and zip code. I purposely kept
the form simple so that you can concentrate on technique rather than on cus-
tomization. The form itself isn’t all that special. It includes two command but-
tons — one for creating the output and another for canceling it. Each of the
required fields is a text box. (You can find the source code for this example
on the Dummies.com site at http://www.dummies.com/go/vbafd5e.)

After you create a form, you must add a little code to it to make it interact
properly with the macro used to perform the actual work. The first addition
is an enumeration that tells the caller which button the user clicked. Using an
enumeration makes it far simpler to add features to the form later because
you don’t have to worry about working with actual values in your code — the
enumeration makes it simpler to define the values correctly. Here’s the enu-
meration used with this example (simply right-click the form and choose
View Code from the context menu to add the enumeration):

‘ A list of click values.
Public Enum DialogResult

Cancel
Create

End Enum

You also need to define a public variable to hold the button press state. The
example uses a value named Result of type DialogResult. Now it’s time to
add event handlers. The easy way to perform this task is to double-click the
buttons on the front of your form. Here’s all you need for the event handler
code:

Private Sub btnCreate_Click()
‘Set the result value.
Result = Create

‘ Hide the form.
Me.Hide

End Sub

The event handler sets Result to the correct value (Create for the Create
button and Cancel for the Cancel button). It then calls Me.Hide to hide the
form from view.

300 Part IV: Programming for Applications

20_046500 ch13.qxp 12/5/06 5:38 PM Page 300

Printing envelopes
Word associates envelopes with the document. Consequently, when you work
with envelopes, you must have a document in place, it must be active, and
you must use the correct document. In addition, you must provide some
means for providing input text. The easiest way to do this is to ask the user
to select text within the document or to enter it using a form. Because the
“Manipulating Text” section, earlier in this chapter, shows how to perform
text selections, this example uses the form described in the preceding sec-
tion. Listing 13-9 shows the code you need in order to interact with the form
and print the envelope. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing 13-9 Creating and Printing an Envelope

Public Sub CreateEnvelope()
Dim GetData As frmAddress

‘ Get the recipient’s address.
Set GetData = New frmAddress
GetData.Show (vbModal)

‘ Determine whether the user wants to
‘ create the envelope.
If GetData.Result = Cancel Then

‘ Display a result message and exit.
MsgBox “Envelope Cancelled”, _

vbOKOnly Or vbInformation, _
“No Envelope Today”

Exit Sub
End If

‘ Define the Recipient
Dim Recipient As String
Recipient = _

GetData.txtName + vbCrLf + _
GetData.txtAddress + vbCrLf + _
GetData.txtCity + “, “ + _
GetData.txtState + vbTab + _
GetData.txtZIP

‘ Send the envelope to the printer.
ActiveDocument.Envelope.PrintOut _

Address:=Recipient, _
ReturnAddress:=Application.UserAddress, _
Size:=”Size 10”, _
PrintBarCode:=True

End Sub

301Chapter 13: VBA Programming in Word

20_046500 ch13.qxp 12/5/06 5:38 PM Page 301

The example begins by creating the form. You don’t want the code to perform
any more work until the user has a chance to interact with the form, so the
code uses GetData.Show (vbModal) to display the form. The code pauses
at this point to wait for the user. After the user clicks either Create or Cancel,
execution resumes.

At this point, you don’t know whether the user clicked Create or Cancel
because VBA doesn’t provide a convenient method for obtaining this infor-
mation. Only by testing the public variable GetData.Result can you deter-
mine the result. When the user clicks Cancel, the code informs the user of the
choice and exits without doing anything else.

When the user clicks Create, the code begins by creating a string variable,
Recipient, to hold the destination address. Notice how the code accesses
each of the text boxes in the form in turn to obtain their values. The default
property is the value, so you don’t need to add a property here. However,
you can access other properties by specifying their names.

Now that the code has the destination defined, it calls the ActiveDocument.
Envelope.PrintOut method. This method has a wealth of input arguments,
most of which don’t appear in this example. Rather than go through each vari-
able individually, the example uses the named-argument approach to provid-
ing input. This method is a handy way of working with some complex VBA
methods.

The envelope must include an address and a return address, which are the
first two arguments shown. Notice how the code uses the user’s address,
Application.UserAddress, as defined in Word as part of the Mailing
Address field in the Advanced folder of the Word Options dialog box for
Word 2007.

The example also shows how to use optional properties. In this case, the code
specifies the envelope size (any of the default sizes that Word provides will
do) and the bar code for routing the envelope more quickly. Unfortunately,
Word 2007 doesn’t provide the bar code feature and Microsoft isn’t saying
why it took it out. Consequently, even if you set this value to True, Word 2007
doesn’t provide a bar code as output.

Printing labels
Word associates labels with the application. Consequently, you can print
labels at any time, even if you don’t have a document loaded. Like the enve-
lope example, this example uses the form described in the “Designing the
envelope and label form” section, earlier in this chapter. Listing 13-10 shows

302 Part IV: Programming for Applications

20_046500 ch13.qxp 12/5/06 5:38 PM Page 302

the code you need for this example. (You can find the source code for this
example on the Dummies.com site at http://www.dummies.com/
go/vbafd5e.)

Listing 13-10 Creating and Printing a Label

Public Sub CreateLabels()
Dim GetData As frmAddress

‘ Set the form’s properties for labels.
Set GetData = New frmAddress
GetData.Caption = “Create Labels”
GetData.btnCreate.ControlTipText = _

“Create the labels.”
GetData.btnCancel.ControlTipText = _

“Don’t print the labels.”

‘ Get the recipient’s address.
GetData.Show (vbModal)

‘ Determine whether the user wants to
‘ create the envelope.
If GetData.Result = Cancel Then

‘ Display a result message and exit.
MsgBox “Label Printing Cancelled”, _

vbOKOnly Or vbInformation, _
“No Labels Today”

Exit Sub
End If

‘ Send the labels to the printer.
Application.MailingLabel.PrintOut _

Name:=”5160”, _
Address:= _

GetData.txtName + vbCrLf + _
GetData.txtAddress + vbCrLf + _
GetData.txtCity + “, “ + _
GetData.txtState + vbTab + _
GetData.txtZIP

End Sub

The default form setup is for envelopes. The first task that the code in this
example performs is changing the form content to work with labels. You can
use this technique any time you have a form that could serve multiple pur-
poses with just a little adjustment. In this case, the code changes the form’s
title bar and the ToolTips provided for the two command buttons.

303Chapter 13: VBA Programming in Word

20_046500 ch13.qxp 12/5/06 5:38 PM Page 303

The method for providing user input is the same as when you’re working
with envelopes. The code displays the form, obtains the user input, checks
Result to verify that the user hasn’t clicked Cancel, and begins processing
the label data.

A label doesn’t have a return address, so all the code really needs to provide
is an address. Now, an address can be anything. Nothing says that you have
to print labels that have only addresses on them. However, the Address
argument always specifies the label content — it can contain anything you
choose as long as the content fits on that label.

The Name argument contains the label type. Normally, this value is the label
number. This example uses an Avery label number, but any number that
Word supports works just fine.

304 Part IV: Programming for Applications

20_046500 ch13.qxp 12/5/06 5:38 PM Page 304

Chapter 14

VBA Programming in Excel
In This Chapter
� Working with Excel-related objects

� Accessing and using Excel objects

� Changing the contents of individual cells

� Creating your own functions to use in Excel

� Adding pizzazz to your Excel worksheet

� Defining your own special-purpose worksheets

Microsoft Excel provides a wealth of opportunities for custom VBA
programs. You can do everything from creating special equations

to designing eye-grabbing presentations. With some effort, you can create
detailed graphs and charts on the fly. It’s also possible to design self-checking
worksheets, where a press of a button verifies the data you entered.

Of all the Office products, the third-party add-in product market for Excel is
the largest and includes a vast array of product types, including add-ins that
you can use with your VBA programs. Although you probably wouldn’t want
to write War and Peace with Excel, products are available that you can use to
turn it into a simple word processor. Many products provide advanced math
modeling and other calculation tasks. You’ll also find an assortment of graph-
ics products designed to make charting easier.

You should always check for an existing solution before you write a program
that you have to debug and maintain. However, you still need to write pro-
grams for Excel because the potential of this program is far from exhausted.
This chapter provides the tools that you need in order to write exceptional
Excel programs so that you can complete your work quickly and easily. The
content focuses on the worksheet instead of on charts because you’ll likely
spend more time in that area.

21_046500 ch14.qxp 12/5/06 5:38 PM Page 305

Understanding the Excel-Related Objects
Excel relies on some essential objects to provide access to the various data
elements. Because of the nature of worksheets, you’ll find that each of these
objects can actually perform multiple duties. For example, you don’t have to
access a worksheet through a Workbook object unless you don’t know the
name of the worksheet. Most objects also include links to objects above and
below the current position in the hierarchy so that you can use the object of
convenience to access a data element.

You also have to consider the way that objects appear in the document. For
example, a chart can appear as a separate item, or it can appear within a
worksheet. When the chart appears as a separate item, you see it listed in
Project Explorer and you can work with the object directly. Always access
charts included within a worksheet by using the Sheet object.

This section focuses on Excel object issues. The demonstrations show how
the various objects interact and what you need to consider while you design
and build your Excel program. For example, you need to consider where to
add charts and graphs while you build them so that they’re most convenient
in displaying the data.

Using the Workbooks collection
The Workbooks collection contains a list of all the workbooks that are open
at any given time. From this list, you can select a single Workbook object to
use in your program. The Workbook object contains general information
about the file, such as its name and location. You can also use the Workbook
object to access any other major object in the document, which includes all
Worksheet objects and standalone Chart objects. Listing 14-1 shows an
example of the Workbooks collection in use. (You can find the source code
for this example on the Dummies.com site at http://www.dummies.com/
go/vbafd5e.)

Listing 14-1 Using the Workbooks Collection

Public Sub WorkbookDemo()
‘ Holds the output data.
Dim Output As String

‘ Get the test workbook.
Dim CurrBook As Workbook

306 Part IV: Programming for Applications

21_046500 ch14.qxp 12/5/06 5:38 PM Page 306

Set CurrBook =
Application.Workbooks(“ExcelObjects.xls”)

‘ Get the workbook name and location.
Output = “Name: “ + CurrBook.Name + vbCrLf + _

“Full Name: “ + CurrBook.FullName + vbCrLf + _
“Path: “ + CurrBook.Path + vbCrLf + vbCrLf

‘ Holds the current sheet.
Dim CurrSheet As Worksheet

‘ Look for every sheet.
Output = “Worksheet List:” + vbCrLf
For Each CurrSheet In CurrBook.Worksheets

Output = Output + CurrSheet.Name + vbCrLf
Next

‘ Holds the current chart.
Dim CurrChart As Chart

‘ Look for every chart.
Output = Output + vbCrLf + “Chart List:” + vbCrLf
For Each CurrChart In CurrBook.Charts

Output = Output + CurrChart.Name + vbCrLf
Next

‘ Display the output.
MsgBox Output, vbInformation Or vbOKOnly, “Object List”

End Sub

The code begins by using the Application.Workbooks collection to
retrieve a single Workbook object. Notice that you must use the full name
of the Excel file, including the file extension, as an index into the collection.
The resulting Workbook object contains the name and path information for
the document. It also contains settings such as the summary information.
You can use this object to control windows and add new main elements,
such as a worksheet.

After the code has access to the workbook, it uses the CurrBook object to
access the list of worksheets. As usual, the code relies on a For Each...Next
statement. You can also use an index to access individual worksheets in your
code. The Worksheet, CurrSheet, contains properties and methods for
manipulating any data that the Worksheet contains, including embedded
objects, such as charts or even pictures. Every worksheet appears in the
CurrBook object list by its object name (not the friendly name that you give
it), so you can access them without using the Worksheets collection.

307Chapter 14: VBA Programming in Excel

21_046500 ch14.qxp 12/5/06 5:38 PM Page 307

Unlike worksheets, only independent charts appear as part of CurrBook. You
use the same technique to access a Chart object as a Worksheet object.
The only difference is that you must use the Charts collection. Note that
chart names appear in the list of objects presented by CurrBook, so you can
also access the chart directly as an object without using the Charts collec-
tion. Figure 14-1 shows typical output from this program.

Although you must use the object name to access a worksheet or chart
directly in CurrBook, the name property used for a collection is actually the
friendly name. It’s easy to become confused. The Project Explorer window
always lists both the friendly name and the object name, so always look to it
for guidance when it’s unclear which name you should use.

Using the Sheets collection
The Sheets collection is the easiest method for accessing worksheets in
many situations. You don’t have to drill down through the Excel object hier-
archy to find the worksheet that you want. However, accessing the work-
sheets at the top of the hierarchy means that you don’t have the objects that
exist at lower levels available either, so this technique is a tradeoff.

Designing a basic example
You can use the Sheets collection to access all kinds of sheets, not just work-
sheets. Any standalone Chart objects also appear in this collection. Look at
the example in the earlier section “Using the Workbooks collection,” and you
see that it treats charts and worksheets as separate objects. Listing 14-2
shows an example of the Sheets collection in use. (You can find the source
code for this example on the Dummies.com site at http://www.dummies.
com/go/vbafd5e.)

Figure 14-1:
Retrieving a

list of
worksheets
and charts.

308 Part IV: Programming for Applications

21_046500 ch14.qxp 12/5/06 5:38 PM Page 308

Listing 14-2 Using the Sheets Collection

Public Sub ListSheets()
‘ An individual entry.
Dim ThisEntry As Variant

‘ Holds the output data.
Dim Output As String

‘ Get the current number of worksheets.
Output = “Sheet Count: “ + _

CStr(Application.Sheets.Count)

‘ List each worksheet in turn.
For Each ThisEntry In Application.Sheets

‘ Verify there is a sheet to work with.
If ThisEntry.Type = XlSheetType.xlWorksheet Then

Output = Output + vbCrLf + ThisEntry.Name
End If

Next

‘ Display the result.
MsgBox Output, _

vbInformation or vbOKOnly, _
“Worksheet List”

End Sub

The code for this example begins by creating a Variant to hold the various
sheet types. If you use a Worksheet or a Chart object, the code fails
because the Sheets enumeration can return any valid type — not just one
valid type. The problem with using a Variant is that VBA can’t provide bal-
loon help or automatic completion. You must be sure that you type the cor-
rect method and property names without the usual help.

After the code creates the required variables, it gets the number of sheets in
the workbook. This number includes all the worksheets and charts and not
just the worksheets.

A For Each...Next loop retrieves each sheet in turn. Notice how the
code uses an If...Then statement to compare the Variant type with
the XlSheetType.xlWorksheet constant. Using this technique lets you
separate the worksheets from other Sheets collection types as needed.
Figure 14-2 shows the output from this example.

Note that the number of sheets doesn’t match the number of names in the
list. The ExcelObjects.xls example file supplied with the source code
contains three worksheets and three charts. I embedded one of the charts on
a worksheet, so the total number of Sheets collection members is seven.

309Chapter 14: VBA Programming in Excel

21_046500 ch14.qxp 12/5/06 5:38 PM Page 309

Extending test code for practical use
You might look at some of the example programs that you create to discover
something new and then wonder how you can use these examples in an appli-
cation. Example code (also called test code) is often more practical than you
think; you simply have to look at it from another perspective. For example,
the code in the “Designing a basic example” section, earlier in this chapter,
shows how to list a particular type of member from the Sheets collection,
but it might not look that useful. Listing 14-3 contains an example of how you
can extend that example to do something more practical.

Listing 14-3 Determining the Name of the Last Sheet

Public Function GetLastSheet() As String
‘ An individual entry.
Dim ThisEntry As Variant

‘ Holds the output data.
Dim Output As String

‘ List each worksheet in turn.
For Each ThisEntry In Application.Sheets

‘ Verify there is a sheet to work with.
If ThisEntry.Type = XlSheetType.xlWorksheet Then

Output = ThisEntry.Name
End If

Next

‘ Display the result.
GetLastSheet = Output

End Function

The GetLastSheet function performs essentially the same task as the listing
example, but now it tells you the name of the last worksheet in a Sheets col-
lection. The examples in the upcoming sections “Adding and formatting a
worksheet” and “Deleting a worksheet” rely on this function — you can’t per-
form the task with any other technique.

Figure 14-2:
Retrieving a

list of
worksheets.

310 Part IV: Programming for Applications

21_046500 ch14.qxp 12/5/06 5:38 PM Page 310

Normally, when you want to add another sheet to the end of the collection, you
use the Application.Sheets.Add After:=Worksheets(Worksheets.
Count) statement. This command adds the new worksheet to the end of the
collection, which might not be convenient in many cases. You might prefer
to store charts at the end of the list and store worksheets at the beginning of
the list.

The example code in the upcoming “Adding and formatting a worksheet”
section performs the Add method in a special way. It places the new work-
sheet at the end of the worksheets and not at the end of the list of objects.
This code uses the function to add a worksheet by using this statement:
Application.Sheets.Add After:=Worksheets(GetLastSheet),
Type:=XlSheetType.xlWorksheet. See the next section for additional
details.

Adding and formatting a worksheet
You might need to use code to add a worksheet to a workbook, for a number
of reasons. For example, the information that you need might be a calculated
value that Excel doesn’t include, or you might need to get the information
from an outside source. Listing 14-4 shows some techniques that you can use
to add a worksheet to a workbook.

Listing 14-4 Adding a Worksheet to a Workbook

Public Sub AddSheetToEnd()
‘ Create a new sheet.
Dim NewWorksheet As Worksheet
Set NewWorksheet = _

Application.Sheets.Add(_
After:=Worksheets(GetLastSheet), _
Type:=XlSheetType.xlWorksheet)

‘ Rename the worksheet.
NewWorksheet.Name = “Added Worksheet”

‘ Place a title in the worksheet.
NewWorksheet.Cells(1, 1) = “Sample Data”

‘ Add some headings.
NewWorksheet.Cells(3, 1) = “Label”
NewWorksheet.Cells(3, 2) = “Data”
NewWorksheet.Cells(3, 3) = “Sum”

‘ Format the title and headings.
With NewWorksheet.Range(“A1”, “B1”)

.Font.Bold = True

.Font.Size = 12

.Borders.LineStyle = XlLineStyle.xlContinuous

(continued)

311Chapter 14: VBA Programming in Excel

21_046500 ch14.qxp 12/5/06 5:38 PM Page 311

Listing 14-4 (continued)

.Borders.Weight = XlBorderWeight.xlThick

.Interior.Pattern = XlPattern.xlPatternSolid

.Interior.Color = RGB(255, 255, 0)
End With
NewWorksheet.Range(“A3”, “C3”).Font.Bold = True

‘ Create some data entries.
Dim Counter As Integer
For Counter = 1 To 6

‘ Add some data labels.
NewWorksheet.Cells(Counter + 3, 1) = _

“Element “ + CStr(Counter)

‘ Add a random integer value between 1 and 10.
NewWorksheet.Cells(Counter + 3, 2) = _

CInt(Rnd() * 10)

‘ Add an equation to the third column.
If Counter = 1 Then

NewWorksheet.Cells(Counter + 3, 3) = _
“= B” + CStr(Counter + 3)

Else
NewWorksheet.Cells(Counter + 3, 3) = _

“= C” + CStr(Counter + 2) + _
“ + B” + CStr(Counter + 3)

End If
Next

End Sub

The code begins by adding a new worksheet to the Sheets collection (and
therefore the workbook) by using the Add method. Make sure that you make
a variable that is equal to the output of the Add method when you want to
add data or format the worksheet after creating it. Notice the Type argument
for the Add method. This argument defines the kind of object to add. This fea-
ture lets you use the same call to add any legal object to the Sheets collec-
tion by changing this one argument.

After the code adds the new worksheet, it uses the NewWorksheet object to
perform formatting and add data. The NewWorksheet.Name property affects
the name that you see on the tab at the bottom of the page. Note that the
example doesn’t include code to prevent you from adding this worksheet
twice. Make sure that you call the function only one time, or else it fails at the
point where VBA attempts to rename the worksheet.

The code adds a title and some headings. These entries appear in the default
font and style unless you change them.

312 Part IV: Programming for Applications

21_046500 ch14.qxp 12/5/06 5:38 PM Page 312

You use the Range collection to make formatting changes. The code begins
by modifying the heading area. It changes the font to bold, makes the font a
different size, adds a thick line around the affected boxes, and, finally, makes
the inside of the box yellow. Notice the use of various enumerations to make
it easier to provide values that VBA understands. Also, notice the use of the
RGB function to create a color value. The headings appear in bold type but
are the same as the other text in all other ways.

The example code shows how to add three kinds of data to an Excel work-
sheet. The first entry is a simple string that labels the data values. The
second entry is an integer value. Notice the use of the Rnd function to create
a random value between 1 and 10. The code uses the CInt function to con-
vert the value from a Single to an Integer. The third entry is a function,
which is a special kind of string that begins with an equals sign. Figure 14-3
shows the output from this program.

Figure 14-3 demonstrates that the code met all its objectives. The Added
Worksheet appears at the end of the worksheet list but before Last Chart.
Look at the Formula bar and notice that Excel converted the formula string
into an actual formula. The text characteristics of the title and heading are all
correct. (Although you can’t see the title-block cell color in the book, running
the example code shows that it appears in yellow.) The data elements include
a label, a random number, and a sum, as expected.

Figure 14-3:
Defining all
worksheet

elements by
using code.

313Chapter 14: VBA Programming in Excel

21_046500 ch14.qxp 12/5/06 5:38 PM Page 313

Deleting a worksheet
You don’t need to use code to delete a worksheet very often. In fact, you
should avoid using this technique to delete a worksheet because your code
might not always detect important information that the worksheet contains.
However, if you create a temporary worksheet for some quick calculations or
you want to perform an automated cleanup of old data, using code can be
quite helpful.

Removing a worksheet from a Sheets collection is relatively simple. Here’s
an example of how you can perform this task:

Public Sub RemoveLastSheet()
‘ Remove the last worksheet.
Application.Sheets(GetLastSheet).Delete

End Sub

Notice that this code removes the last sheet in the example workbook. This
example is generic enough that you can use it to remove the last worksheet
in any workbook. However, to see how this example works, you can remove
the worksheet added in the section “Adding and formatting a worksheet,”
earlier in this chapter.

Using the Charts collection
One of the most useful purposes of the Charts collection is building a custom
chart whenever you need one. The advantage of creating uncommon charts
by using code is that they take up less space. In addition, you can create varia-
tions on a theme without a lot of work. Listing 14-5 shows an example of the
Charts collection in action. (You can find the source code for this example
on the Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing 14-5 Creating an Excel Chart

Public Sub BuildChart()
‘ Create a new chart.
Dim NewChart As Chart
Set NewChart = Charts.Add(After:=Charts(Charts.Count))

‘ Change the name.
NewChart.Name = “Added Chart”

‘ Create a series for the chart.
Dim TheSeries As Series
NewChart.SeriesCollection.Add _

Source:=Worksheets(“My Data Sheet”).Range(“A$3:B$8”)

314 Part IV: Programming for Applications

21_046500 ch14.qxp 12/5/06 5:38 PM Page 314

Set TheSeries = NewChart.SeriesCollection(1)

‘ Change the chart type.
TheSeries.ChartType = xl3DPie

‘ Change the series title.
TheSeries.Name = “Data from My Data Sheet”

‘ Perform some data formatting.
With TheSeries

.HasDataLabels = True

.DataLabels.ShowValue = True

.DataLabels.Font.Italic = True

.DataLabels.Font.Size = 14
End With

‘ Modify the chart’s legend.
With NewChart

.HasLegend = True

.Legend.Font.Size = 14
End With

‘ Modify the 3-D view.
With NewChart

.Pie3DGroup.FirstSliceAngle = 90

.Elevation = 45
End With

‘ Format the chart title.
NewChart.ChartTitle.Font.Bold = True
NewChart.ChartTitle.Font.Size = 18
NewChart.ChartTitle.Format.Line.DashStyle _

= msoLineSolid
NewChart.ChartTitle.Format.Line.Style = msoLineSingle
NewChart.ChartTitle.Format.Line.Weight = 2

‘ Compute the optimal plot area size.
Dim Size As Integer
If NewChart.PlotArea.Height > NewChart.PlotArea.Width

Then
Size = NewChart.PlotArea.Width

Else
Size = NewChart.PlotArea.Height

End If

‘ Reduce the plot area by 10%.
Size = Size - (Size * 0.1)

‘ Format the plot area.
With NewChart.PlotArea

.Interior.Color = RGB(255, 255, 255)

(continued)

315Chapter 14: VBA Programming in Excel

21_046500 ch14.qxp 12/5/06 5:38 PM Page 315

Listing 14-5 (continued)

.Border.LineStyle = XlLineStyle.xlLineStyleNone

.Height = Size

.Width = Size

.Top = 75

.Left = 100
End With

‘ Format the labels.
Dim ChartLabels As DataLabel
Set ChartLabels = TheSeries.DataLabels(0)
ChartLabels.Position = xlLabelPositionOutsideEnd

End Sub

The code begins by creating a new chart. This chart should appear as the last
chart in the workbook but not necessarily as the last item in the workbook.
Any worksheets that appear after the existing last chart also appear after the
new chart. The NewChart.Name property changes the name that appears on
the tab at the bottom of the chart — the property doesn’t change the chart
title.

The chart is blank at this point. To display any data, you must add at least one
data series to the chart. A pie chart uses only one data series at a time, but
other charts can support (or might even require) multiple data series. For
example, a bubble chart requires multiple data series. Consequently, the next
task that the code performs is creating a data series based on the My Data
Sheet worksheet supplied with the example. Notice that the code can’t set
TheSeries equal to the output of the Add method in this case, so it uses an
extra step to get the new series from the SeriesCollection collection.

Notice that the Range property contains two columns of information. When
you’re working with Excel 2007, the first column defines the XValues prop-
erty for the chart. The XValues property determines the entries in the
legend for a pie chart. On the other hand, these values appear at the bottom
of the display for a bar chart. In both cases, you want to display the labels
onscreen so that you can see their effect on the overall display area.

Excel 2007 introduces breaking changes into the creation of charts. Listing
14-5 shows the code you need with the new version. Excel 2003 and older ver-
sions use different code to define the XValues property, as shown here:

With TheSeries
.XValues = _

Worksheets(“My Data Sheet”).Range(“A$3:A$8”)

316 Part IV: Programming for Applications

21_046500 ch14.qxp 12/5/06 5:38 PM Page 316

If you try to use this code in Excel 2007, you receive an error message. Excel
2007 doesn’t separate the series from the XValues information. It uses the
first column in the range for the XValues. You can change the column selec-
tion programmatically when needed. In addition, when defining a series in
Excel 2003 and earlier, you specified only the data values, as shown here:

NewChart.SeriesCollection.Add _
Source:=Worksheets(“My Data Sheet”).Range(“B$3:B$8”)

It’s important to change the ChartType property at the outset if you want to
see the correct changes while you build and debug your program. Otherwise,
the chart displays the default chart type, and you might not see the changes
that you expect. For example, the Legend property works differently when
you use a pie chart versus a bar chart.

Notice the appearance of the HasDataLabels and the HasLegend proper-
ties in the code. If you don’t include these properties, the code displays some
rather odd error messages, none of which relates to the problem at hand.
When you have problems resolving data-label or legend-formatting errors,
always verify that you’ve added these two property settings to your code.

The 3D property settings appear in several places. Notice the Pie3DGroup
object in the code. VBA supports other kinds of objects for other kinds of
charts, so you must use the correct object for the type of chart that you want
to create. Some global 3-D settings appear as part of the chart. For example,
the Elevation property, which affects the angle of presentation, is part of
the global settings group. Don’t assume that two settings that appear on the
same page of a property sheet will also appear in the same object in VBA.

Changing the ChartTitle format is almost a requirement because VBA uses
the default font for every entry that the code creates. The example code
shows a few of the changes that you might want to make. However, VBA pro-
vides a relatively large number of formatting features that you can choose.
For example, the larger font size normally used by the ChartTitle lets you
use special effects, like Shadow.

Excel 2007 formats the ChartTitle differently than older versions do.
Consequently, you need different code between versions — there isn’t any
way to use the same code for both versions. Although you can format text as
you did before, Excel 2007 complains when you attempt to access the Font
property from within a With structure, as shown here:

With NewChart.ChartTitle
.Font.Bold = True
.Font.Size = 18
.Border.LineStyle = XlLineStyle.xlContinuous
.Border.Weight = XlBorderWeight.xlMedium

End With

317Chapter 14: VBA Programming in Excel

21_046500 ch14.qxp 12/5/06 5:38 PM Page 317

In addition, older versions of Excel use the Border property. This property
doesn’t exist in Excel 2007 — use the Format property instead, as shown in
Listing 14-5. The Format property uses different constants than before. For
example, the LineStyle property value of XlLineStyle.xlContinuous is
now msoLineSolid for the Line.DashStyle property.

The plot area is one of the last elements that you should work on because
every other setting change that you make affects it. The example shows some
of the changes that you always want to make to the plot area. The plot area
background begins as gray, which actually makes some chart types difficult
to read if you don’t change it. It’s also a good idea to get rid of the border
around some charts. (You want to keep it for bar charts in many cases.)
Finally, you generally want to optimize the position and size of the chart to
make it as large as possible. Figure 14-4 shows the output from this example.

The Ribbon takes up considerable space. Consequently, chart code you
wrote in the past may suddenly appear to stop working. In fact, what you see
is the chart flashing onscreen as though a severe error has occurred in Excel.
A chart that might have fit fine in a 450-x-450-pixel area in Excel 2003 might
cause problems in Excel 2007. Listing 14-5 shows a technique you can use to
make the chart fit no matter which version of Excel you use. The downside to
this approach is that it’s harder to create the custom look that hard coding
afforded in previous versions of Excel.

Figure 14-4:
Dynamically

created
charts offer

flexibility
that you

don’t get
with static

charts.

318 Part IV: Programming for Applications

21_046500 ch14.qxp 12/5/06 5:38 PM Page 318

In addition to having problems in fitting the chart correctly, you find that
Excel 2007 uses a best-fit method for placing the data labels. Consequently, a
label that used to appear on the outside of the pie chart when working with
Excel 2003 may very well appear inside the pie chart with Excel 2007.
Because of the effect of the Ribbon, you should probably add label position-
ing code, as shown in Listing 14-5, to obtain accurate label placement
between Excel versions.

Using the Windows collection
Excel records one Window object in the Windows collection for every file that
you open. Consequently, the Windows collection doesn’t tell you much about
the data except at a very high level. For example, you could use the Window
object to determine the names of files that you have opened. The Window
object can also determine the active Sheet object (see the section “Using the
Sheets collection,” earlier in this chapter, for details) and tell you about gen-
eral settings, such as whether Excel displays grids on the worksheets. In gen-
eral, you don’t use the Windows collection for low-level data manipulation in
Excel because there are easier methods of getting access to what you need.
Listing 14-6 shows an example of the Windows collection at work. (You can
find the source code for this example on the Dummies.com site at
http://www.dummies.com/go/vbafd5e.)

Listing 14-6 Listing Application Windows

Public Sub ListWindows()
‘ Holds a Window object.
Dim MyWin As Window

‘ Holds the output.
Dim Output As String

‘ Look at each window in the Windows collection.
For Each MyWin In Application.Windows

‘ Get the current window information.
With MyWin
Output = Output + “Caption: “ + .Caption + vbCrLf +

_
“Display Tabs: “ + _
IIf(MyWin.DisplayWorkbookTabs, “Yes”, “No”) + _
vbCrLf + “Zoom Factor: “ + CStr(MyWin.Zoom) + _
vbCrLf + “Panes: “

‘ Determine the number of panes.

(continued)

319Chapter 14: VBA Programming in Excel

21_046500 ch14.qxp 12/5/06 5:38 PM Page 319

Listing 14-6 (continued)

If .ActiveSheet.Type = -4167 Then

‘ Store the number of panes.
Output = Output + CStr(.Panes.Count) + vbCrLf

‘ Add a new pane if possible.
If .Panes.Count = 1 Then

.SplitHorizontal = 200

.SplitVertical = 200

‘ Remove extra panes if possible.
ElseIf .Panes.Count = 4 Then

.SplitHorizontal = 0

.SplitVertical = 0
End If

Else
Output = Output + “No Panes on a Chart” + vbCrLf

End If

‘ Add space to the output.
Output = Output + vbCrLf

End With
Next

‘ Output the result.
MsgBox Output, _

vbInformation Or vbOKOnly, _
“Windows Currently in Use”

End Sub

The code begins by creating a Window object from the Application.
Windows collection. It uses this object to determine some characteristics
about the window, such as

� The window name (not the tab name)

� Whether the workbook tabs are visible

� The current zoom factor

Excel presents a few problems when you use this approach. Notice that the
code looks for a worksheet by using the constant number -4167. The
number for charts is equally odd: -4102. These aren’t the constants used for
other code in this chapter, and this issue points out one reason why you want
to avoid using the Windows collection when you can.

320 Part IV: Programming for Applications

21_046500 ch14.qxp 12/5/06 5:38 PM Page 320

Charts don’t have panes. However, you can split a worksheet both horizon-
tally and vertically, for a total of four panes. The code shows how to perform
both types of splits and also how to close them. Notice that you don’t use the
standard Panes.Add method that other applications, such as Word, use.
When you want to split the view, you must tell VBA how many pixels to dis-
play on the left or top of the split. Figure 14-5 shows the output from this
example.

Selecting Objects within Excel
You can place any object that you want in an Excel worksheet, including pic-
tures and sounds. These kinds of objects work very much the same in Excel
as they do in Word. (See the “Selecting Objects in a Word Document” section
of Chapter 13.) The main difference is that you use the OLEObjects collec-
tion of the sheet that holds the object. However, Excel can also embed Chart
objects in a worksheet. Because this is such a special feature, I show you in
this section how to work with embedded Chart objects.

The same data can say different things depending on how you present it. A
pie chart tells the viewer about parts of a whole, and a bar chart compares
individual values. The problem with charts that you create in Excel is that
they’re static — they continue to say the same thing unless you redesign
them. Fortunately, you can control the appearance of an embedded chart just
as easily as you can control a standalone chart. The code in Listing 14-7

Figure 14-5:
Displaying

Excel
window

statistics.

321Chapter 14: VBA Programming in Excel

21_046500 ch14.qxp 12/5/06 5:38 PM Page 321

demonstrates a rotating chart technique. (You can find the source code for
this example on the Dummies.com site at http://www.dummies.com/
go/vbafd5e.)

Listing 14-7 Designing a Rotating Chart Presentation

Public Sub SelectObject()
‘ Select the worksheet.
Sheet2.Select

‘ Select the object.
Sheet2.ChartObjects(1).Select

‘ Create a chart object.
Dim EmbeddedChart As Chart
Set EmbeddedChart = Sheet2.ChartObjects(1).Chart

‘ Make sure the chart has a title.
EmbeddedChart.HasTitle = True

‘ Look for the chart object.
With EmbeddedChart

‘ Rotate between chart types. Change the title as
‘ needed to match the chart type.
Select Case .ChartType

Case XlChartType.xlPie
.ChartType = xlArea
.ChartTitle.Caption = “More Data (Area)”

Case XlChartType.xlArea
.ChartType = xlLine
.ChartTitle.Caption = “More Data (Line)”

Case XlChartType.xlLine
.ChartType = xlColumnClustered
.ChartTitle.Caption = “More Data (Column)”

Case XlChartType.xlColumnClustered
.ChartType = xlPie
.ChartTitle.Caption = “More Data (Pie)”

End Select
End With

End Sub

The code begins by selecting the correct worksheet and the chart embedded
on that worksheet. The ChartObjects collection contains one entry for
each embedded chart on the worksheet. The Select method highlights the
chart of interest on the worksheet.

322 Part IV: Programming for Applications

21_046500 ch14.qxp 12/5/06 5:38 PM Page 322

You should notice two significant differences between Excel 2007 and older
versions of Excel. First, the Chart Tools tab appears at the top of the Ribbon.
Selecting the tab shows you design tools for charts. You can choose from
three subtabs, including Design, Layout, and Format. Second, the selection
square is far more noticeable. Microsoft made it significantly thicker than in
previous versions, so the selected object is more obvious.

Unlike many collections, the ChartObjects collection doesn’t return the
selected chart by default. You must specifically request the chart by using
the Sheet2.ChartObjects(1).Chart property.

After the code gets hold of the chart, it checks the HasTitle property. It’s
possible that this property is set to False, so you must check it each time;
otherwise, changing the ChartTitle object results in an error.

The Select Case statement relies on the current ChartType property
value to choose the next chart. The code sets the ChartType property value
to one of the standard constants and then changes the chart’s caption to
match the chart type. Notice that you must use the ChartTitle.Caption
property to change the title. The ChartTitle object is self contained and
includes a number of other formatting properties. Figure 14-6 shows typical
output from this program.

Figure 14-6:
Rotating

through a
number of

chart
selections.

323Chapter 14: VBA Programming in Excel

21_046500 ch14.qxp 12/5/06 5:38 PM Page 323

Developing Custom Functions in Excel
Formulas are the lifeblood of Excel. You can’t find too many worksheets that
are devoid of formulas because you need formulas to figure out new values
based on your existing data. Microsoft includes a wealth of standard formulas
in Excel. In fact, it’s possible that you’ll never need anything more than the
Microsoft formulas. However, formulas are extremely important, so it’s handy
to know how to create one of your own.

All formulas in Excel rely on functions. If you want to create a special formula
for your worksheet, all you need is a function to perform the task. The func-
tions that you create appear in the User Defined category of the Insert
Function dialog box, which you access by using the following procedure:

1. Select the Formulas tab of the Ribbon.

2. Click Function Wizard.

You see the Insert Function dialog box, shown in Figure 14-7.

3. Select User Defined in the Or Select a Category field.

4. Highlight the function you want to insert.

5. Click OK.

You might see the optional Function Arguments dialog box, shown in
Figure 14-8 (this one is for the Pythagoras function described in the
“Defining math calculations” section, later in this chapter). Notice how
the dialog box shows the result of the calculation, which means that you
could use this dialog box to perform a what-if analysis without ever
inserting the function. Simply click Cancel when you finish working with
the function.

Figure 14-7:
Choosing a

user-
defined

function to
insert in a

worksheet.

324 Part IV: Programming for Applications

21_046500 ch14.qxp 12/5/06 5:38 PM Page 324

6. Type the arguments required for the function, and then click OK.

Excel inserts the function into the current cell.

Performing data conversion
One of the more interesting uses for specialized formulas is data conversion.
A data conversion can convert one type of data to another, or it can manipu-
late the data in some way. Listing 14-8 shows an example of a function that
reverses the order of letters in a string. (You can find the source code for
this example on the Dummies.com site at http://www.dummies.com/
go/vbafd5e.)

Listing 14-8 Performing a String Conversion

Public Function ConvertString(Original As String) As
String

‘ Used for loops.
Dim Counter As Integer

‘ Contains the string length.
Dim StrLen As Integer
StrLen = Len(Original)

‘ Holds the output string.
Dim Output As String
Output = “”

‘ Reverse the string.
For Counter = StrLen To 1 Step -1

Output = Output + Mid(Original, Counter, 1)
Next

‘ Return the result.
ConvertString = Output

End Function

Figure 14-8:
Add any
required

arguments
for the

function you
select.

325Chapter 14: VBA Programming in Excel

21_046500 ch14.qxp 12/5/06 5:38 PM Page 325

The code begins by getting the length of the input string. It uses this value as
part of a For...Next loop. Notice how the function relies on the Mid func-
tion to retrieve one letter at a time from the end of the string to build
Output. The function ends by returning the final Output value. To use this
function, simply type =ConvertString(“Hello”) into the cell of a worksheet,
where “Hello” is the string that you want to convert.

Defining math calculations
Another common type of formula is the math equation. The Pythagoras
function, shown in Listing 14-9, computes the length of the hypotenuse of
a triangle, given the length of two sides. (You can find the source code for
this example on the Dummies.com site at http://www.dummies.com/
go/vbafd5e.)

Listing 14-9 Calculating the Hypotenuse of a Triangle

Public Function Pythagoras(Side1 As Double, _
Side2 As Double) As Double

‘ Perform the calculation.
Pythagoras = Math.Sqr((Side1 * Side1) + (Side2 *

Side2))

End Function

Math calculations are usually simple in that you don’t have to create any
special variables to use them. However, splitting complex calculations into
pieces can help you debug them. To use this function, type =Pythagoras(3,4).

Adding comments to your functions
When you open the Insert Function dialog box, Excel displays a message
saying that no help is available for your function. You can use one of two
techniques to add comments to your functions. Use the following procedure
to add the comment with the first technique:

1. Click the Developer tab and then click Macros.

VBA displays the Macro dialog box.

2. Type the name of your function in the Macro Name field.

Notice that VBA doesn’t highlight the Create button because it knows
that the function exists even though the function doesn’t appear in the
macro list.

326 Part IV: Programming for Applications

21_046500 ch14.qxp 12/5/06 5:38 PM Page 326

3. Click Options.

Excel displays the Macro Options dialog box.

4. Type a description of the function in the Description field, but don’t
change anything else.

5. Click OK.

The Macro dialog box appears.

6. Click Cancel.

Excel closes the Macro dialog box.

7. Save the file and close Excel.

When you open the file again, the functions have a description. Closing and
reopening Excel is necessary to reload the file.

The advantage of the second technique, shown in Listing 14-10, is speed. You
can use this technique to add descriptions to several functions quickly. Begin
by exporting the file from the VBA Integrated Development Environment
(IDE). (See the “Exporting a module from a program” section in Chapter 6.)
Open the file by using a text editor, such as Notepad. Immediately after the
function declaration, type a VB_Description attribute, such as this one.

Listing 14-10 Adding a Comment by Using an Attribute

Public Function Pythagoras(Side1 As Double, _
Side2 As Double) As Double

Attribute Pythagoras.VB_Description = “Returns the value of the hypotenuse.”

‘ Perform the calculation.
Pythagoras = Math.Sqr((Side1 * Side1) + (Side2 * Side2))

End Function

Notice the way that the description appears in the file. You must type the
keyword Attribute followed by the name of the function and the keyword
VB_Description. Type the text that you want to appear as a description for
the function in the Insert Function dialog box.

Save the file. Remove the old copy of the file from the modules list and
import the new copy. (See the section “Importing a module in a program,” in
Chapter 6.) You see the description in the Insert Function dialog box even
though you can’t see it in the VBA IDE.

327Chapter 14: VBA Programming in Excel

21_046500 ch14.qxp 12/5/06 5:38 PM Page 327

328 Part IV: Programming for Applications

21_046500 ch14.qxp 12/5/06 5:38 PM Page 328

Chapter 15

VBA Programming in Access
In This Chapter
� Working with Access-related objects

� Developing programs with a database engine in mind

� Creating utility programs with the database objects

� Using Structured Query Language (SQL) statements in your code

� Designing form-based applications

� Designing automatic execution applications

Microsoft Access is a database management system (DBMS) that pro-
vides a number of opportunities for developing programs with VBA.

In fact, it’s safe to say that some people make a good living performing this
very task. The kinds of tasks that you can perform by using a database are
also varied — everything from writing reports to creating new and better
methods for data entry. You can also use Access as a data storage method
for everything from scientific needs to your CD collection.

This chapter introduces you to database programming in Access. I’m assum-
ing that you know how to use Access and that you have already used it to
create elements such as tables, which are composed of records (individual
entries in the table) and fields (the individual entries in the record). Consider
this chapter your doorway to a much larger world. I could easily write an
entire book on the topic of database management and still not exhaust the
topic. In fact, database management books consume a large part of my per-
sonal library. Consequently, this chapter discusses just the VBA portion of
Microsoft Access. By using VBA, you can

� Make the task of managing your Access data easier by reducing data
entry requirements or ensuring that the data the user enters meets cer-
tain requirements

� Perform data manipulation, such as extracting just the records that you
need

� Provide customized data output, such as reports

22_046500 ch15.qxp 12/5/06 5:38 PM Page 329

Of course, you might want to know more about database programming in
Access than this single chapter can provide. As I’ve said, I have a bookshelf
full of database books, and sometimes find that even all these resources
aren’t sufficient to meet every need because you can perform so many tasks
with databases. With this in mind, you might want to look at Access 2007 For
Dummies (by John Kaufeld, Laurie Ulrich Fuller, and Ken Cook) for some addi-
tional basics. This book is the one to get if you have no idea of how Access
works and you really want to know more. If you’re ready to have a more sig-
nificant look at Access development, consider getting Access 2007 All-in-One
Desk Reference For Dummies, by Alan Simpson, Margaret Levine Young, and
Alison Barrows. The All-in-One contains about twice as much material as
Access 2007 For Dummies. To give you some idea of how closely some books
examine Access, you should check out Access 2007 Forms & Reports For
Dummies, by Brian Underdahl. Imagine having an entire book talk solely
about the topic of creating great forms and reports. (All three books are pub-
lished by Wiley.)

Because database management (the organized storage of data in one or more
tables) is such a large topic, you need to consider just how you’ll use data-
base management to answer an immediate need. Small, easy projects are the
best way to start with Microsoft Access. However, you should also choose a
database project that makes a difference. My first project was a contact man-
agement database that I’ve improved over the years and still use today. This
contact management system is a good way to use Access, and it’s something I
care about, so I understand Access better today — because I wrote the con-
tact management system — than if I had chosen an inconsequential project.

This chapter also focuses on some key areas that you can use immediately to
increase your personal productivity and to help others in a small group
(office) setting. For example, I increased my personal productivity by using
an Access database to maintain lists of interesting words that I learn. I also
have one that maintains the inventory for my office. Folks can use either of
these databases to discover new VBA programming techniques, improve
their personal productivity, and help other people in a small office setting.

Microsoft Access is actually a very good database to use for a number of
office tasks. It’s small, you don’t need a server to use it, and it doesn’t require
complex knowledge that only a computer expert could love. Although Access
includes all the support required to work on a server, you can also create
databases for personal use. You could create something as simple as a to-do
list that will make you more productive, even though you wouldn’t necessar-
ily want to share it with anyone else.

Access 2007 supports three file formats: Access 2000, Access 2002–2003, and
Access 2007. The Access 2002–2003 format runs with the fewest compatibility
problems in the widest range of Access versions currently available. The VBA
macros you write don’t require conversion even when used in Access 2007.
You don’t apparently gain any VBA functionality by choosing the Access 2007

330 Part IV: Programming for Applications

22_046500 ch15.qxp 12/5/06 5:38 PM Page 330

format, either, so the choice is relatively easy to make from a purely VBA per-
spective. Consequently, this book uses the Access 2002–2003 format. You
can’t open the files used for the examples in this chapter by using Access
2000 or earlier versions, but you can use the BAS files found with the example
files to create your own Access files, if you want to do so.

Understanding the Access-Related
Objects

Microsoft Access provides more objects than just about any other Office
application that you’ll use. You can create a database, populate it with infor-
mation, and print it out without ever using the user interface. In addition,
these objects are interesting because they perform so many tasks well.
Access even has a special object (see the upcoming “Accessing special com-
mands with the DoCmd object” section) that performs little utility tasks.
You need to know about a variety of collections and objects in order to
perform many tasks programmatically. (See the object hierarchy chart
at http://msdn.microsoft.com/library/en-us/vbaac10/html/
acsumAccessObjHierarchy.asp for a complete list of Access objects.)

Don’t assume that you need to perform every task by using code. In fact, it’s
to your advantage to play around with the user interface for some time
before you even consider using VBA with Access. The user interface includes
a wealth of features for creating objects that you need by using the Access
Designer rather than imagining them by using code.

The macro system provided with Access is also superior to (and different
from) other Office applications. Access macros reside separately from VBA,
and you can use them to perform a number of tasks. In fact, you’ll find that
macros are a required addition to VBA to create some types of programs.
Access presents some unique problems and opportunities for the VBA user.

Understanding Access and
sub-procedure use
When you create a program for Word or Excel, you normally create it by adding
sub-procedures (the Sub statement). However, when you work with Access,
you normally use a Function statement instead. If you want to execute the
function independently, you need to create a macro with the RunCode action.
The Function Name field contains the name of the function and any arguments
that it requires. Figure 15-1 shows an example of such a macro.

331Chapter 15: VBA Programming in Access

22_046500 ch15.qxp 12/5/06 5:38 PM Page 331

When you do decide to create sub-procedures, you must call the sub-
procedure by using a function. Although a sub-procedure executes within
the VBA Integrated Development Environment (IDE), it doesn’t do you
much good outside that environment.

Unlike other Office Applications, Access 2007 provides access to the Visual
Basic Editor on the Database Tools tab (rather than on the Developer tab) of
the Ribbon. Simply click Visual Basic on the Database Tools tab to display the
editor. You’ll also find several other interesting buttons on this tab. Click Run
Macro to display a list of macros that you can run. Instead of a big green
arrow, the icon is smaller and appears near the Visual Basic button. Rather
than have to jump through major hoops to add macros to the Ribbon, high-
light the macro you want to use and click Create Shortcut Menu from Macro.
Finally, you can convert macros to Visual Basic by highlighting the macro and
clicking Convert Macros to Visual Basic on the Database Tools tab.

Using the Application object effectively
Access has a number of interesting and useful features in the Application
object. When you’re using other Office applications, the Application object
tends to provide a means for access collections, such as the Sheets collec-
tion in Excel. In Access, you can use the Application object to perform
other tasks. Listing 15-1 shows an example of a few of the features that you
should try. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Figure 15-1:
Create

functions in
Access and
run them by

using
macros.

332 Part IV: Programming for Applications

22_046500 ch15.qxp 12/5/06 5:38 PM Page 332

Listing 15-1 Using a Progress Meter in Access

Public Function UseApplication()
‘ Create an output string.
Dim Output As String

‘ Fill it with text version of a numeric error.
Output = Application.AccessError(14)

‘ Display the result.
MsgBox “Error number 14 is “ + Chr(&H22) + Output + _

Chr(&H22), vbInformation, “Error Number Text”

‘ Add this database to the favorites list.
Application.AddToFavorites

‘ Perform some system commands.
‘ Create a progress meter.
Application.SysCmd acSysCmdInitMeter, “Progress Meter”,

5
Dim Counter As Integer

‘ Update the meter until finished.
For Counter = 1 To 5

Application.SysCmd acSysCmdUpdateMeter, Counter
MsgBox “Click to proceed”, vbInformation, “Progress”

Next

‘ Remove the meter.
Application.SysCmd acSysCmdRemoveMeter

‘ Say you’re done by changing the status bar text.
Application.SysCmd acSysCmdSetStatus, _

“Progress meter is done.”
End Function

The example performs three unique tasks, but you can use many others. The
first task is to determine what an error code means. You often receive error
numbers from VBA that you then have to look up somewhere (such as online
or in a help file or by asking someone online) in hopes of finding a meaning.
The Application.AccessError method takes the guesswork out of find-
ing a human-readable explanation for a numeric error.

You might want to include the next method in an installation program
or as part of the automatic execution sequence. The Application.
AddToFavorites method places a pointer to the database in your Favorites
folder. You can access the database by using the Start➪Favorites menu or
from within Internet Explorer.

333Chapter 15: VBA Programming in Access

22_046500 ch15.qxp 12/5/06 5:38 PM Page 333

When you write a program that performs a number of tasks, it could require
some time to complete. In fact, you might even begin thinking that the task is
taking so long that the computer has failed. A progress meter can help in this
situation by providing visual feedback that something is indeed going on with
the computer.

The Application.SysCmd method can display a progress meter on the
status bar when you call it with the acSysCmdInitMeter as the first argu-
ment. The second argument contains the text that you want to display on the
status bar while the progress meter is visible. The third argument tells how
many segments the project meter requires. You should include one segment
per each major task that the program performs. Figure 15-2 shows a typical
example of the progress meter for this program.

Notice how the example uses a For...Next loop to update the progress
meter. You use the Application.SysCmd acSysCmdUpdateMeter method
call to provide update information. The second argument should contain the
amount of the update — a higher number increases the length of the progress
meter indicator. You can use this feature to your advantage. Counting down
instead of up can show negative progress, such as backing out of an unsuc-
cessful database update.

When you finish using the progress meter, you remove it by calling the
Application.SysCmd acSysCmdRemoveMeter method. Normally, this
act displays the word Ready on the status bar. However, you can make the
status bar say anything that you want by calling the Application.SysCmd
acSysCmdSetStatus method. The second argument contains the text that
you want to display in this case. The example uses this technique to tell you
that the progress meter portion of the example is complete.

Defining your work area with the
Workspaces collection
You can use the Workspaces collection for a number of tasks. Each
Workspace object within the collection contains an environment in which
you can perform database- or Access-related tasks. The Workspaces collec-
tion contains a single, default Workspace object when you first start Access,
which is enough to perform most of the work that you need to do.

Figure 15-2:
A progress

meter.

334 Part IV: Programming for Applications

22_046500 ch15.qxp 12/5/06 5:38 PM Page 334

Most Access programming tasks never require that you open more than one
database at a time, which is why the default Workspace is sufficient. You can
use this default Workspace to perform a number of tasks, such as add a new
user or perform database maintenance. Listing 15-2 shows an example of a
generic function for adding a user to a database. (You can find the source
code for this example on the Dummies.com site at http://www.dummies.
com/go/vbafd5e.)

Listing 15-2 Adding a User to a Database

Public Function ConfigureUser()
‘ Get the default workspace.
Dim CurWrk As Workspace
Set CurWrk = DBEngine.Workspaces(0)

‘ Get the username and password.
Dim Username As String
Dim Password As String
Username = InputBox(“Type a user name.”, “New User”)
Password = InputBox(“Type a password.”, “New User”)

‘ Create a new user.
Dim NewUser As User
Set NewUser = CurWrk.CreateUser(Name:=Username, _

Password:=Password, _
PID:=Username)

‘ Add the user to the database.
CurWrk.Users.Append NewUser

‘ Modify the user setup for a default user.
Dim AddGroup As Group
Set AddGroup = NewUser.CreateGroup(“Users”, “Users”)
NewUser.Groups.Append AddGroup

End Function

The code begins by accessing the default Workspace object in the
Workspaces collection. Notice that the code uses the DBEngine object
as the source of the Workspaces collection. Even though you shouldn’t
have to use this extra reference, the program fails intermittently if you
don’t. The default Workspace object doesn’t actually exist until you call
on the Workspaces collection the first time. Access creates this object
automatically during the first request. You can add workspaces to the
Workspaces collection by calling the CreateWorkspace method.

The next step is to get a username and password by calling the InputBox
function. You can also use a custom form or request the information as part
of the calling syntax for the function. The point is to obtain the required user
information. In some cases, you might even want to include multiple options
to add to the flexibility of your program.

335Chapter 15: VBA Programming in Access

22_046500 ch15.qxp 12/5/06 5:38 PM Page 335

After the code gets the username and password, it creates the NewUser
object. The CurWrk.CreateUser method fills the NewUser object with data.
You must provide a name, password, and personal identifier (PID) as argu-
ments. This example uses the Username value as the PID. You can use any
string containing between 4 and 20 characters. The Username should be
unique, so using it as the PID value tends to ensure this fact.

However, creating the NewUser object doesn’t add the user to the database
even though you used the CurWrk.CreateUser method to perform the task.
The code uses the CurWrk.Users.Append method to add the user to the
list of users in the database.

At this point, you have a new user without any rights. To add rights, you
must assign the user to a group. This three-step task begins by creating a
group entry in the NewUser object. When the group has the same name as
an existing group, Access adds the user to the existing group rather than
create a new one. The user has the same rights as everyone else in that
group. Consequently, the NewUser.CreateGroup method can result in a
new group, or it can simply reference an existing group. The code adds the
user to the existing group in the database by using the NewUser.Groups.
Append method.

Working with the DBEngine object
The DBEngine object is useful for performing several tasks. You can use it to
access the Workspaces collection, as shown in the earlier section “Defining
your work area with the Workspaces collection.” This section presents the
most useful features of the DBEngine object. See the help topic at http://
msdn.microsoft.com/library/en-us/vbaac11/html/acproDBEngine_
HV05187151.asp for a complete reference.

336 Part IV: Programming for Applications

Vista and Access security
Vista strictly controls access to just about every-
thing related to Access. You’ll very likely run into
problems with the User Account Control (UAC)
feature of Vista when you’re working with
Access. In fact, some security-related macros in
this chapter might not run at all solely because

Vista prevents you from running them. Make sure
that you have the proper privileges to use Access
when you’re working with security features, by
ensuring that you set up security in Access as
required using the features on the Database Tools
tab of the Ribbon.

22_046500 ch15.qxp 12/5/06 5:38 PM Page 336

This object is also useful for some database maintenance tasks. It’s important
to perform tasks such as compacting the database from time to time (nor-
mally accomplished by executing the Office➪Manage➪Compact and Repair
Database command). Using the DBEngine.CompactDatabase method helps
you perform this task automatically. You can even use this object to register
an Open Database Connectivity (ODBC) source automatically by calling the
DBEngine.RegisterDatabase method. (You manually register an ODBC
source by using the Data Sources [ODBC] applet in the Control Panel.)

You might not realize that Access can work in one of several database modes
by using a number of different technologies. When you use the DBEngine
approach, you can choose between the Microsoft Jet Engine (the set of DLLs
that Access uses natively for communicating with the database) or ODBCDirect
(a special set of DLLs that many programming environments, including
Access, can use to communicate with the database) by using the DBEngine.
DefaultType property. The Microsoft Jet Engine approach is best suited to
situations where you know the location of the MDB file and want to work
directly with it. The ODBCDirect approach is best suited for named sources
created with the Data Sources (ODBC) applet of the Control Panel.

However, one of the most useful ways to use the DBEngine object is to per-
form some types of security tasks. For example, you can use the DBEngine
object to modify workgroup setups and change the default settings for the
database as a whole. Listing 15-3 shows an example of how you can get the
default settings. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing 15-3 Getting the Default DBEngine Settings

Public Function GetDBEngineProperties()
‘ Create an output string.
Dim Output As String

‘ Make a place for the property values.
Dim CurProp As Property

‘ Some properties won’t have a value.
On Error Resume Next

‘ Get the current properties.
For Each CurProp In DBEngine.Properties

Output = Output + CurProp.Name + “: “ + _
CStr(CurProp.Value) + vbCrLf

Next

‘ Display the results.
MsgBox Output, vbInformation, “DBEngine Properties”

End Function

337Chapter 15: VBA Programming in Access

22_046500 ch15.qxp 12/5/06 5:38 PM Page 337

Many of the objects in Access have a Properties collection. Each
Property is a separate object that controls some aspect of the database
operation. The properties define a database characteristic or the location of
configuration information, as shown in Figure 15-3. This is a standard list of
properties for the DBEngine when you use it in Microsoft Jet Engine mode.

The essential information for Access appears in the Version property. This
property tells you the version of Data Access Objects (DAO) installed on the
host machine. When this value is less than 3.6, you encounter problems get-
ting some DAO features listed in the help file to work. (Access 2002 and
Access 2003 use the 3.6 version, and Access 2007 uses the 12.0 version, as
shown in the figure.) Consequently, when you run your program on another
machine and it fails — even though it worked on your machine — verify the
DAO version number.

The IniPath property contains the location of the information for Access in
the Registry. See the “Using the Registry with VBA” section of Chapter 13 for
details on using the Registry. The contents of the Registry vary by machine
and installation. However, you can usually find a list of database conversion
entries in HKEY_LOCAL_MACHINE as well as the path to the security settings
for this user under HKEY_CURRENT_USER.

Getting the security settings is a little more difficult. Listing 15-4 shows an
example of how you can determine the settings for a particular object type,
such as a table or a report. These are general settings for the entire class of
objects and not for a specific object. (You can find the source code for this
example on the Dummies.com site at http://www.dummies.com/go/
vbafd5e.)

Figure 15-3:
Use the

DBEngine
properties

to determine
the

database
character-

istics.

338 Part IV: Programming for Applications

22_046500 ch15.qxp 12/5/06 5:38 PM Page 338

Listing 15-4 Getting DBEngine Security Settings

Public Function GetDBEngineSecurity()
‘ Create an output string.
Dim Output As String

‘ Set the system database value if necessary.
If DBEngine.SystemDB = “” Then

DBEngine.SystemDB = “System.mdw”
End If

‘ Get the current database.
Dim TheDB As Database
Set TheDB = DBEngine.Workspaces(0).Databases(0)

‘ Create a container object to hold the security data.
Dim AContainer As Container

‘ Check each container for data.
For Each AContainer In TheDB.Containers

With AContainer

‘ Store the name of the permission object.
Output = Output + .Name + “:” + vbCrLf

‘ Check the flag values.
If .AllPermissions And dbSecReadDef Then

Output = Output + “Can Read Definition” + vbCrLf
End If

... other permissions ...

If .AllPermissions And dbSecDBOpen Then
Output = Output + “Can Open” + vbCrLf

End If
End With

‘ Display the results.
MsgBox Output, vbInformation, “DBEngine Security”

‘ Erase the data.
Output = “”

Next

End Function

The code begins by checking the DBEngine.SystemDB property value.
When this property is blank, the DBEngine object can’t retrieve security
information. You must make this check before you do any other work with
the DBEngine object. Generally, setting the property as shown lets you
retrieve the security information.

339Chapter 15: VBA Programming in Access

22_046500 ch15.qxp 12/5/06 5:38 PM Page 339

Access places security information in the Containers collection. Each
Container object has properties, such as the permission object name. One
of the more important features is the AllPermissions property. This prop-
erty looks like any Long value that you might have seen in the past, but it
really consists of a number of individual flag values. A flag is an individual bit
within the Long value. Setting the flag to 1 turns on that entry, and setting it
to 0 turns it off. Consequently, if you want to let someone read the definition
for a particular property object, you set the dbSecReadDef flag on.

The If...Then statements perform a logical And on the AllPermissions
property. Each flag entry, such as dbSecDBOpen, has one bit set. If this bit is
also set in the AllPermissions property, the If...Then statement expres-
sion is true. Figure 15-4 shows some typical output from this example when
you use the default configuration or log in as the admin account.

Setting the flag value in the AllPermissions property requires a little differ-
ent technique. The idea is to perform a Boolean operation that results in the
right bit result in the AllPermissions property. Here’s typical code for set-
ting a flag on or off within the AllPermissions property:

‘ Set the flag on.
.AllPermissions = .AllPermissions Or dbSecDBOpen

‘ Set the flag off.
.AllPermissions =.AllPermissions And Not dbSecDBOpen

You can use the Windows Calculator to make this more understandable.
When you place the calculator in Bin mode, it displays the individual bits of
the number that you type. Combine this utility with either the Immediate or
Locals window to work out the effect of the flag changes. The Not, And, Or,
and Xor buttons on the Calculator work just like the commands in VBA, so

Figure 15-4:
Every object

type has a
separate
security

container
that you can

validate.

340 Part IV: Programming for Applications

22_046500 ch15.qxp 12/5/06 5:38 PM Page 340

you can check for the results that you want before you commit them to code.
(See the “Defining hex and octal values” section of Chapter 4 for details on
using the Windows Calculator.)

Using the CurrentDB and related objects
The latest version of Access has new and interesting ways to perform a task.
The CurrentDB object originally appeared in Office 2000 as an updated ver-
sion of the DBEngine.Workspaces(0).Databases(0) object. You should
use the CurrentDB object, whenever possible, to perform actual database
work because this object includes a few new features that make it a better fit
for multi-user environments. However, when you want to use multiple work-
spaces, you still need to use the DBEngine.Workspaces collection.

You use the CurrentDB object to gain full control over the information
contained in the current MDB file. This is a complete database object and
not a single table. Listing 15-5 shows an example of how you can use the
CurrentDB and its related objects. See the upcoming section “Understanding
the Database objects” for details on elements such as the Recordsets and
Fields collections. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing 15-5 Getting Database Configuration Information

Public Function CheckCurrentDB()
‘ Create an individual table definition.
Dim CurTblDef As TableDef

‘ Create an individual recordset.
Dim CurRec As Recordset

‘ Create an individual field.
Dim CurField As Field

‘ Create an output string.
Dim Output As String

‘ Check each recordset in the database.
For Each CurTblDef In CurrentDb.TableDefs

‘ Open a recordset for each table definition.
Set CurRec = CurrentDb.OpenRecordset(CurTblDef.Name)

‘ Get the recordset name.
Output = Output + CurRec.Name + vbCrLf

‘ Check for records.

(continued)

341Chapter 15: VBA Programming in Access

22_046500 ch15.qxp 12/5/06 5:38 PM Page 341

Listing 15-5 (continued)

If CurRec.RecordCount = 0 Then

‘ Tell the user and exit.
Output = Output + “No Records Available”
GoTo SkipFields

End If

‘ Check each field definition in the recordset.
For Each CurField In CurRec.Fields

‘ Get the field name, type, and current value.
Output = Output + “Name: “ + CurField.Name + _

vbCrLf + vbTab + “Type: “ + _
CvtType(CurField.Type) + vbCrLf + vbTab + _
“Value: “

‘ Some values are null.
If IsNull(CurField.Value) Then

Output = Output + “Null” + vbCrLf
Else

Output = Output + CStr(CurField.Value) +
vbCrLf

End If
Next

SkipFields:
‘ Display the results.
MsgBox Output, vbInformation, “CurrentDB

Information”

‘ Erase the data.
Output = “”

‘ Close each recordset in turn.
CurRec.Close

Next
End Function

The code begins by creating objects that represent various database elements
that you’ve used in the past. For example, a TableDef object is a representa-
tion of the table design that you create by using the Access Designer. The
CurrentDB object contains a TableDefs collection with every table that the
MDB file contains. It might surprise you to learn that Access has seven or more
internal tables that it maintains in addition to the tables that you create. When
you run this program on the sample database, you see eight table definitions
because there really are eight tables in the database. These internal tables can
provide useful information, but you generally don’t want to use them.

Although the example code doesn’t show them, the CurrentDB object also
contains a QueryDefs collection for queries and a Containers collection

342 Part IV: Programming for Applications

22_046500 ch15.qxp 12/5/06 5:38 PM Page 342

for security objects. You use these objects in the same way that you use the
objects for the Workspaces collection. See the earlier section “Working with
the DBEngine object” for details.

To work with a particular table or query, you must create a Recordset
object. The code performs this task by using the OpenRecordset method.
The first argument for this method contains the name of the table that you
want to open or the query that you want to create. The example shows one
technique for opening an individual table when you don’t know the table
name when you write the code.

The presence of a table doesn’t necessary indicate that it contains any data.
You can check for this condition by using the RecordCount property. If this
property is 0, the table lacks records, and you shouldn’t attempt to do any-
thing other than add records or determine configuration information. The
example code shows one situation where you really do need to use a GoTo
statement. In this case, you must skip the record-specific code if there are no
records to process.

The record processing code works with individual fields, much as you will when
writing code to change the information in the database. The code gets the field
name, type, and current value. A field can contain a Null (or nothing) value.
It’s important to remember that VBA uses Null for values and Nothing for
objects. The IsNull function returns True when a field is Null. You must use
this technique instead of the Is Nothing method that is used with objects.

The Type field also requires special processing in this case. When you con-
vert an enumerated value to a string and that value resides in a variable, VBA
returns a number and not the string value of the enumeration. If you want to
see a string value, you need to write an enumeration conversion function,
such as the CvtType function, shown in Listing 15-6. (You can find the source
code for this example on the Dummies.com site at http://www.dummies.
com/go/vbafd5e.)

Listing 15-6 Converting a Numeric Type Value into a String

Public Function CvtType(DataType As Long) As String
‘ Use a case statement to choose a data type.
Select Case DataType

Case DataTypeEnum.dbBigInt
CvtType = “dbBigInt”

... Other Cases ...
Case DataTypeEnum.dbVarBinary

CvtType = “dbVarBinary”
Case Else

CvtType = “Type Unknown”
End Select

End Function

343Chapter 15: VBA Programming in Access

22_046500 ch15.qxp 12/5/06 5:38 PM Page 343

This function ends up as a giant Select Case statement. Always include
a Case Else clause in case the function receives a nonstandard value.
Otherwise, your code could fail. Figure 15-5 shows typical output from this
example.

Figure 15-5 shows one of the hidden Access tables that you encounter when
working with the CurrentDB object. Notice that the example provides the
data types and values for each field, along with the appropriate field name.
Although it’s fun to poke around a bit, exercise care when working with the
CurrentDB object because you could damage one of these hidden system
tables.

Understanding the Database objects
Access provides a number of Database objects that you commonly use to
create programs. Here’s a list of the common objects and collections that you
use for database programs:

� Connections collection: You must create at least one connection for
each Access database. The connection determines how the program
communicates with the database. However, you can create more than
one connection when you’re using ADO. By way of contrast, when you’re
using DAO, the Connection object and the Database object are the
same. The Connections collection contains one Connection object
for each database connection.

Figure 15-5:
Use

TableDef,
Record,

and Field
objects to
work with

tables.

344 Part IV: Programming for Applications

22_046500 ch15.qxp 12/5/06 5:38 PM Page 344

� Databases collection: A Database object is the representation of the
physical storage for all the tables, queries, reports, and other database
elements. The Database object is the container — not the content. The
Databases collection contains one Database object for each database
that the program has opened.

� Recordsets collection: A Recordset object is the representation of one
data set. A data set could reference a single table, or it could reference
multiple tables by using a query. A query is a SQL statement that defines
the data that you want to retrieve and what technique to use to combine
data from multiple tables. (See the upcoming section “Understanding SQL:
A Quick Overview” for details.) The Recordsets collection contains one
Recordset object for each query made against a Database object. You
can create multiple Recordset objects for each database.

� Command object: This is the representation of a SQL statement in object
form. The Command object also contains any arguments required by the
SQL statement. You execute a command against a Connection object to
open the query and retrieve a Recordset object for use in your program.

� Fields collection: A Recordset object contains one or more Field
objects that define each record. The Fields collection contains the list
of Field objects for a given Recordset.

� TableDefs collection: Every time that you create a new table by using
the Access Table Designer, Access adds a TableDef object to the
TableDefs collection of the database. The TableDef object defines
every element of the table, including field names and data types.

� QueryDefs collection: A query defines how you want to get data from
the database. Access provides the means to create static Query objects
by using the Query Designer and stores each QueryDef (query defini-
tion) object in the QueryDefs collection.

� Relations collection: A table represents a single set of related data. A
data set can contain one or more tables that contain data in a particular
relationship. For example, a customer record can reference multiple
invoice records. The customer record and the invoice records reside in
different tables. A Relation object defines the references between two
tables. Access stores each of these Relation objects in the Relations
collection.

Accessing special commands
with the DoCmd object
The DoCmd object provides you with a number of interesting methods that
look similar to the list of macros that you find in the Macro dialog box. You
can’t perform every macro task by calling on DoCmd object services, but this
object is exceptionally useful if you want to perform some tasks in code

345Chapter 15: VBA Programming in Access

22_046500 ch15.qxp 12/5/06 5:38 PM Page 345

rather than write a macro to do them. Think of the DoCmd object as a means
of bypassing the Access macro requirements, in some situations, so that you
can make your VBA code easier to read, as shown in Listing 15-7. (You can
find the source code for this example on the Dummies.com site at
http://www.dummies.com/go/vbafd5e.)

Listing 15-7 Using the DoCmd Object for Special Tasks

Public Function SpecialCommands()
‘ Sound a beep.
MsgBox “Sounding a beep!”, vbInformation, “DoCmd Event”
DoCmd.Beep

‘ Turn echo off and then back on.
DoCmd.Echo False, “Echo is off!”
MsgBox “Echo is off!”, vbInformation, “DoCmd Event”
DoCmd.Echo True, “Echo is on!”
MsgBox “Echo is on!”, vbInformation, “DoCmd Event”

‘ Open and close a query.
DoCmd.OpenQuery “GetWordList”, acViewNormal, acReadOnly
MsgBox “Query is open!”, vbInformation, “DoCmd Event”
DoCmd.Close acQuery, “GetWordList”
MsgBox “Query is closed!”, vbInformation, “DoCmd Event”

‘ Run a macro.
DoCmd.RunMacro “RunSayHello”

End Function

Public Function SayHello()
‘ Say hello to the user.
MsgBox “Hello!”, vbExclamation, “Say Hello Message”

End Function

This code performs a number of interesting tasks. First, it tells the system to
beep. In most cases, you want to avoid using the Beep method because it
only tells the user that there’s an error and doesn’t say what error the user
made or how to fix it. In some cases, such as when a user reaches the end of
the database records, using the Beep method works fine because the mean-
ing of the beep is clear to most users.

Access normally echoes every change to the environment onscreen. An echo
is the display of a command and its consequences. Having the commands
flash onscreen while your program performs its task is distracting and
could cause some users problems. Consequently, you might want to turn
off the echo by using the DoCmd.Echo method. The first argument is True
or False depending on whether you want to turn echo on or off. The second
argument is a string that VBA displays on the status bar. It’s important to
display this information so that the user knows that Access is working in
the background.

346 Part IV: Programming for Applications

22_046500 ch15.qxp 12/5/06 5:38 PM Page 346

You can also use the DoCmd object to open and close various kinds of Access
objects, such as tables, reports, and queries. For example, you can use it
to open and close a query by calling the OpenQuery and general Close
methods.

Notice that you can define the query that you want to open, the view that
you want to use, and the kind of access to provide. The example opens the
GetWordList query in Normal view for read-only access. You could just as
easily open a query in Design view for read/write access.

The Close method works for a variety of objects. If you use Close by itself,
VBA closes the currently selected object. However, you can also provide the
kind of object that you want closed, along with the object name. This second
method is safer because you don’t close by mistake an object that you really
want open. Closing an object means that it’s no longer available for any use,
so closing an object by mistake could mean that your program experiences
an error even if the code is normally correct.

You can also use DoCmd to run a macro by using the RunMacro method.
This macro indirectly runs the SayHello function. You could also call the
SayHello function directly, but macros often contain a series of instructions
that you wouldn’t want to include in your code.

A few of the DoCmd object functions seem to have odd results or might not
work at all. For example, the AddMenu function doesn’t appear to work, and
Microsoft has documented this issue on its Web site. Make sure that you test
the program by using the same platform that the user will use when you use
the DoCmd object in your code. (If you don’t know what platform the user will
have, you had better research the user to find out.)

Understanding SQL: A Quick Overview
SQL (pronounced “SEE-quel”) is a specialized language used by many data-
base management systems (DBMSes) to manipulate data. You normally don’t
need to use SQL in Access programs because you can create a query by using
the Access Query Designer. The Query Designer is one of the first tools that
you learn to use because you need it to link tables and create complex data
sets. None of the techniques that you use for designing a database changes
when you write VBA programs — you can still create queries and use them
just as you always have.

Creating a SQL query the easy way
The only time that you need to consider using SQL directly is if you want to
get data from an external source, such as SQL Server or SQL Server Express,

347Chapter 15: VBA Programming in Access

22_046500 ch15.qxp 12/5/06 5:38 PM Page 347

or you need a temporary query that you don’t want cluttering up the Access
environment. I don’t show you in this book how to gain access to external
data sources because using external data sources could fill an entire book.
However, the following procedure gives you a very fast and easy method for
creating temporary queries:

1. Create a query as you normally do.

Figure 15-6 shows a somewhat complex query for the example database.
It includes all the fields from the Word List table. The query has two cri-
teria. Notice that the first criterion uses the VBA Left function.

2. Right-click the upper pane and then choose SQL View from the con-
text menu that appears.

Access displays the SQL for the query that you just created graphically.
Figure 15-7 shows the SQL for the test query shown in Figure 15-6.

3. Highlight the SQL query (all the text shown in Figure 15--7) and then
click the Copy button on the toolbar.

Access places the query on the Clipboard.

Figure 15-7:
View the

SQL query
with the SQL
View option.

Figure 15-6:
Create a

temporary
SQL query

with the
same

technique
you usually

use.

348 Part IV: Programming for Applications

22_046500 ch15.qxp 12/5/06 5:38 PM Page 348

4. Open the VBA IDE, position the cursor, and then click the Paste button
on the toolbar.

VBA pastes the query text for you.

5. Close the SQL query without saving it.

Note that you can always test your query before you use it in code by using
the Datasheet View option. Using this technique ensures that you write the
code only once to get the precise results that you want.

Using the SQL query
After you create a SQL query, you can use it in a program to get information
from the database. Listing 15-8 shows a short example that uses the test
query to get a list of words with acronyms that begin with the letter C. (You
can find the source code for this example on the Dummies.com site at
http://www.dummies.com/go/vbafd5e.)

349Chapter 15: VBA Programming in Access

Discovering more about SQL
SQL isn’t something that you can understand in
a few short lessons. You don’t need to spend a lot
of time learning SQL to create simple commands,
such as retrieving information from a single
table, but the commands get more complicated
when you ask SQL to do more for you. (The more
advanced commands are also product specific,
in some cases, so you need to exercise caution.)
The best way to build your knowledge of SQL is
a little at a time, such as through a newsletter.
One such newsletter is SQL Server Professional
eXTRA. You can subscribe to it at http://
www.freeenewsletters.com/.

A number of online sites also make SQL easy and
interesting to learn. A Gentle Introduction to SQL
(http://sqlzoo.net/) provides a number
of tutorials and some great how-to links. The
advantage of this Web site is that the author pro-
vides links for multiple flavors of SQL, which
means that you can see how other products use
SQL. You get a step-by-step tutorial on standard
SQL at http://www.w3schools.com/
sql/default.asp. The site at http://

www.sqlcourse.com provides an interac-
tive course where an interpreter tells you how
well you do in typing basic commands. Finally,
the SQL Tutorial site at http://www.
1keydata.com/sql/sql.html provides
clear demonstrations of individual commands.

When you simply need information about
SQL, you should try a few other Web sites.
A complete set of reserved words (SQL
commands) appears on the Microsoft Web
site at http://msdn.microsoft.com/
library/en-us/tsqlref/ts_ra-rz_
9oj7.asp. You can find an outstanding list of
SQL resources on the Ocelot Web site at
http://www.ocelot.ca/. The links and
book reviews are especially helpful.

If you want to learn about SQL starting with the
basics, check out SQL For Dummies, 6th Edition,
by Allen G. Taylor (Wiley). This book begins with
the basics and then helps you discover advanced
techniques, such as working with XML.

22_046500 ch15.qxp 12/5/06 5:38 PM Page 349

Listing 15-8 Performing a Database Query in VBA

Public Function QueryCAcronyms()
‘ Create a recordset.
Dim Rec As Recordset
Set Rec = _

CurrentDb.OpenRecordset(_
“SELECT [Word List].* “ + _
“FROM [Word List] “ + _
“WHERE (((Left([Acronym],1))=’C’) “ + _
“AND (([Word List].IsAcronym)=True))”, _

Type:=dbOpenDynaset)

‘ Create an output string.
Dim Output As String

‘ Check each record in the recordset.
While Not Rec.EOF

‘ Get the information.
Output = Output + Rec.Fields(“Acronym”) + vbTab + _

Rec.Fields(“Word”) + vbCrLf

‘ Move to the next record.
Rec.MoveNext

Wend

‘ Display the result.
MsgBox Output, vbInformation, “Words and Acronyms”

‘ Close the recordset.
Rec.Close

End Function

Notice that you still use the CurrentDb.OpenRecordset method to get the
Recordset object. The query is simple text, so you can substitute variables
as input. For example, you might add a Letter argument to the program that
lets you define which letter to use for the search.

A Recordset provides the EOF property that tells when you reach the end
of the file (or recordset). Notice that the code addresses the content of the
recordset by using indexed Fields collection entries. In this case, the record-
set doesn’t contain the whole table, just those records that match the criteria.

The Rec.MoveNext method is the most important piece of code in this loop.
You must provide some means of moving from record to record, or else the
code never reaches the end of the recordset. The result of leaving out this
piece of code is an endless loop. Whenever you run into this problem, press
Ctrl+C to interrupt program execution.

350 Part IV: Programming for Applications

22_046500 ch15.qxp 12/5/06 5:38 PM Page 350

The code uses the Rec.Close method to close the recordset. Always close
the recordset when you finish using it. Otherwise, you might experience
problems using the database later without a machine reboot. For example,
when you lock a table for exclusive use and don’t close it when you’re done,
Access keeps the table locked and no one else (not even you) can use it until
you reboot the machine.

Adding Form-Related Applications
The example database, queries, data, and associated form in this chapter
all come from 1 of about 15 databases that I use personally. This word list is
handy because it contains all the words that I’ve ever had to define in a book.
A personal word list is one of the handier database programs that you can
maintain because finding the meaning of words (especially jargon related to
a specific industry) can prove difficult.

In other examples in this chapter, I show you bits and pieces of the tables
and queries that the database contains. In this section, I discuss the form
used to query, add, and retrieve words. The form includes a number of help-
ful buttons and the word information shown in Figure 15-8.

You often need to hide and show fields as needed on a form to reduce clutter
and potential confusion. The Is This an Acronym field performs this task by
hiding the Acronym field when it isn’t needed. Right-click this field and then
choose Properties from the context menu that appears. Select the Event tab,
and you see a list of events for the check box. Whenever someone marks the

Figure 15-8:
Design

forms with
the idea that

you can
perform

specialized
tasks with

macros and
programs.

351Chapter 15: VBA Programming in Access

22_046500 ch15.qxp 12/5/06 5:38 PM Page 351

check box, the form executes the AcronymCheck macro. This macro runs
the SetAcronymLabel function, shown in Listing 15-9. (You can find the
source code for this example on the Dummies.com site at http://www.
dummies.com/go/vbafd5e.)

Listing 15-9 Hiding or Showing a Form Field As Needed

Public Function SetAcronymLabel()
‘ Check the status of the Acronym check box.
If Forms![DataCon Word List]![IsAcronym] = True Then

Forms![DataCon Word List]![Acronym Label].Visible = True
Forms![DataCon Word List]![Acronym].Visible = True

Else
Forms![DataCon Word List]![Acronym Label].Visible = False
Forms![DataCon Word List]![Acronym].Visible = False

End If
End Function

This macro selects the DataCon Word List form from the Forms collection
and locates the IsAcronym field on that form. If this field is True, which
means that the database entry has an acronym, the macro makes the Acronym
field and its associated label visible. Otherwise, it hides both items.

I set up this program to accept three kinds of entries: An entry can contain a
word and a definition, an acronym and a definition, or all three. I often need
to send a definition of a word to someone else, so I created a special button
that copies the information from the database to the Clipboard so that I can
paste it in an e-mail message. Of course, I don’t want to send someone an old
definition — one that I haven’t updated for a while — so this function has to
check the date when I last updated the definition. In addition, it’s handy to
know when I last used an entry so that I can get rid of old words that I no
longer need. Consequently, the Copy to Clipboard button (refer to Figure
15-8) has a lot of work to do, as shown here. Listing 15-10 contains code that
you can use to copy a record to the Clipboard.

Listing 15-10 Copying a Record to the Clipboard

Public Function Create_Record_Copy()
‘ Create some variables.
Dim strWord As String
Dim strAcronym As String
Dim strDefinition As String
Dim strDate As String
Dim RecordDate As Date

‘ Some records will start out with a null date that indicates it
‘ hasn’t been checked since the check was implemented.
Forms![DataCon Word List]![Last_Updated].SetFocus
If Forms![DataCon Word List]![Last_Updated].Text = “” Then

MsgBox “This definition hasn’t been checked before, so ask “ _
“John to check it!”, vbOKOnly, “Must Check Definition”

352 Part IV: Programming for Applications

22_046500 ch15.qxp 12/5/06 5:38 PM Page 352

Forms![DataCon Word List]![Copy_Text] = “ “
Exit Function

End If

‘ Get the last updated date from the record.
strDate = Forms![DataCon Word List]![Last_Updated]
RecordDate = DateValue(Forms![DataCon Word List]![Last_Updated])

‘ If there is a date, add 366 to it to represent one year.
RecordDate = RecordDate + 366

‘ The date on some records will be too old, which means it’s time
‘ for another check.
If RecordDate < Now() Then

MsgBox “The definition dated “ + strDate + “ is too old, add “ _
“word to the list!”, vbOKOnly, “Time to Redefine”

Forms![DataCon Word List]![Copy_Text] = “ “
Exit Function

End If

‘ Set the last used field to today.
Forms![DataCon Word List]![Last_Used] = Now()

‘ Get the values of the word and definition since they’ll always be present.
strWord = Forms![DataCon Word List]![Word]
strDefinition = Forms![DataCon Word List]![Definition]

‘ Place the data we want to copy on the form.
Forms![DataCon Word List]![Copy_Text] = strWord + “ -- “ + strDefinition

‘ Check to see if we need to store the acronym value as well.
If Forms![DataCon Word List]![IsAcronym] = True Then

‘ If we do need to store the acronym, then place it in a variable.
strAcronym = Forms![DataCon Word List]![Acronym]

‘ Check to see if there is a definition for this acronym.
If UCase(strDefinition) = “N/A” Then

‘ If not, then simply place the word and its meaning on the
‘ Clipboard.
Forms![DataCon Word List]![Copy_Text] = _

strAcronym + “ -- “ + strWord
Else

‘ Otherwise, place the acronym and associated definition on the
‘ Clipboard.
Forms![DataCon Word List]![Copy_Text] = _

strAcronym + “ -- See “ + strWord + Chr(13) + Chr(10) + _
strWord + “ (“ + strAcronym + “) -- “ + strDefinition

End If
End If

End Function

353Chapter 15: VBA Programming in Access

22_046500 ch15.qxp 12/5/06 5:38 PM Page 353

The code begins by checking the last date of update. Notice that it sets the
focus to the Last_Updated control. When this field is blank, the program
displays a message to me saying that I need to update the definition. If the
form does contain a Last_Updated value, the code retrieves this value and
adds 366 to it. I require that I update my definitions every year, so if it has
been more than a year since the last update, the code displays an error mes-
sage and exits.

After the code knows that the definition isn’t too old, it sets the Last_Used
field to today’s date. This entry lets me know when I last used the definition
so that I can remove old entries later.

At this point, the code begins the process of creating the text that it will place
on the Clipboard. The simplest case is a word and definition without an
acronym, so the code performs that copying process first. The code checks
for an acronym next and exits when there isn’t one.

When there’s an acronym, the code tests to see whether there’s a definition.
The second case is when there’s an acronym and an associated series of
words but no definition. A definition of N/A signifies this condition, and the
code copies just the acronym and associated words to the Clipboard.

The third condition is one when there’s a word, an acronym, and a definition.
In this case, the code copies all three entries to the Clipboard.

Creating Automatic Applications
The focus of automatic execution in Access is the Autoexec macro. When
you want a database to perform a task automatically after opening, create a
macro named Autoexec. Any actions that you add to this macro are executed
when you open the database file. This feature works like any other macro, so
you can easily add one or more RunCode actions to execute programs associ-
ated with the file.

354 Part IV: Programming for Applications

22_046500 ch15.qxp 12/5/06 5:38 PM Page 354

Chapter 16

Applications that Work Together
In This Chapter
� Discovering how working with more than one application makes sense

� Working with external applications

� Using Word to view Outlook e-mail messages

� Creating new e-mail messages with Word

� Using Word to create Excel notes

You might never have an interest in using any program other than Word
or Excel by itself. It’s possible to create some interesting and useful doc-

uments with either program. As a database administrator (DBA), you might
never need to wander outside the world provided by Access. However, as
you move on in your career, you find that you wear more hats and need to
manage your data more effectively. Often, this means combining several tools
because one tool can’t perform a portion of a task effectively. Yes, you can
always force Word to create spreadsheets and use Excel as a word processor,
but this really isn’t efficient.

This chapter shows you how to write programs where a main application
such as Word, Excel, or Access calls on a subordinate application to perform
some work. In some cases, you need to work with an external program, one
that may not even support VBA. The first examples describe how to work in
this environment with the idea that you can do anything you might normally
do from the command line using VBA. For the remaining examples, I chose to
concentrate on Office products because that’s what I discuss in most of this
book. However, don’t limit yourself to the examples in this chapter. Any appli-
cation that supports VBA can act as a main program. For example, you can
just as easily ask CorelDRAW to perform services for Word as ask Excel.
Subordinate programs need not support VBA at all when you can work with
the result in some way, such as by saving the output to a text file.

23_046500 ch16.qxp 12/5/06 5:39 PM Page 355

Understanding Why You Should Work
with More than One Application

Feature bloat (where the vendor adds useless or unnecessary features) is an
incredible problem in applications today. Part of the problem is that users
ask vendors to keep adding features to programs so that they don’t have to
leave the comfortable confines of the single program that they know and
learn how to use other programs. Another part of the problem is that ven-
dors want to provide you with a good reason to upgrade to the next version
of a product. They hope that adding new features will grab your attention as
something that you must have. Whether the feature is a request or a market-
ing idea is beside the point — the problems of feature bloat are numerous.

With feature bloat, a single program consumes more resources, such as
memory and disk space. In addition, the added complexity makes the pro-
gram less stable (it tends to cause errors more often) and increases the pro-
gram’s learning curve. The features are often poorly defined and don’t work
as well as the same features offered by another program that is dedicated to
that purpose. For example, the drawing features in Word can’t compare to the
drawing features in a program such as CorelDRAW.

The problems with feature bloat addressed by this chapter are functionality
and efficiency. Dedicated applications usually provide better functionality
than an add-in for an application dedicated to some other purpose. In addi-
tion, the dedicated application can usually perform the task faster and with
fewer data compatibility problems. Using the dedicated program costs more
when you first set up a system, but it pays back the investment by making
the system more flexible.

Your main application might not include a feature that you desperately need.
For example, when you want to send an e-mail, you need to use a project
such as Outlook to do it. Don’t assume that e-mail means content. A program
might need to send an e-mail to report an application or a system error to
the network administrator. It could also track usage statistics and send them
to a central collection point for analysis. You might even want a user to fill
out a survey after he uses a new program that you create for a specific length
of time.

It would be easy to limit your multi-application programs to simple data
exchange or data manipulation. However, you can also use the multiple appli-
cation technique in a workgroup environment for collaboration. When you
complete a task on a project, a program can send your completed data to the
next person in line for her additions. The other person might find out about the
new file through an e-mail message or an addition to her task list. Your program
can interact with the next application in line and also send notifications.

356 Part IV: Programming for Applications

23_046500 ch16.qxp 12/5/06 5:39 PM Page 356

Starting and Stopping External
Applications

VBA may not seem particularly powerful when it comes to performing some
tasks, such as interacting with external programs, and the truth is that you do
need to perform more work than normal to accomplish some tasks. However,
VBA offers access to the entire Win32 Application Programming Interface
(API) as long as you’re willing to create the required prototypes (descriptions
of the information required for the call you want). Consequently, anything you
see listed on the Microsoft MSDN Web site (http://msdn.microsoft.com/
library/en-us/winprog/winprog/windows_api_reference.asp) for
the Win32 API is also accessible from VBA. You may have already seen one
example of such calls, in the section “Accessing any Registry locations in
Office” in Chapter 13. However, accessing an external application requires
more work. The example in this section is more difficult, but definitely doable.

Deciding how to perform the task
Before you begin working with the Win32 API, you must know which call
to use. Accessing an external program is called creating a process. Conse-
quently, you must use the CreateProcess()call. However, you must
know more. The CreateProcess()call comes in two forms: one for ASCII
text named CreateProcessA()and another for Unicode text named
CreateProcessW(). In general, you’ll find that using ASCII text is much
easier in VBA, so this section uses the CreateProcessA()call.

When you create a process using CreateProcessA(), VBA makes the call
and immediately begins any other work that you want to perform. This kind
of call is an asynchronous call, or one that doesn’t wait. If you want to perform
an asynchronous call, you can use the Shell()function in VBA and not
bother with the Win32 API call. However, you’re trying to interact with an
external application, which means that you must wait for it to complete its
task before moving on. In this case, you need to perform a synchronous call,
one where VBA waits for the results of the external call before it proceeds to
the next task. Unfortunately, VBA doesn’t provide a way to wait that works
well with an external process, so you must again turn to the Win32 API. In
this case, the example uses the WaitForSingleObject()call. You make
this call after you create the external application to force VBA to wait.

Win32 API calls require that you perform certain housekeeping chores. You
don’t have to do anything special to free memory and other resources in VBA
because VBA does that task for you. However, the Win32 API isn’t quite so

357Chapter 16: Applications that Work Together

23_046500 ch16.qxp 12/5/06 5:39 PM Page 357

helpful. When you create a process, the Win32 API returns something called a
handle, which is a means of grabbing the process and doing something with
it, such as waiting for it to end. When you finish using the handle, you must
close it by using the CloseHandle()call. At this point, you know the three
steps that this example must perform:

1. Create a new, external process using the CreateProcessA()call.

2. Wait for the external process to finish using the
WaitForSingleObject()call.

3. Clean up any Win32 API call variables, such as handles, using the
required cleanup calls, such as CloseHandle().

In addition to following these three steps, you may need to add code to
process the external program results. For example, you might want to exe-
cute any of the hundreds of command-line utilities that Windows makes avail-
able. You can view the results of these commands in most cases by sending
(redirecting) their output to a text file using the redirection symbol (>>) on
the command line. The “Using Files with the Open Command” section of
Bonus Chapter 3 shows one way you can use text file output with your Office
applications. (You can find Bonus Chapter 3 on the Dummies.com site at
http://www.dummies.com/go/vbafd5e.)

Creating the Win32 API calls
The best way to work with the Win32 API in VBA is one step at a time. Define
a call, the structures and enumerations to go with that call, and any required
cleanup before you move on to the next call. Make sure you understand the
sequence of steps you must perform to accomplish the task.

Always create Win32 API calls in a separate module. Because the Win32 API
calls are so flexible, you should concentrate on making them modular so that
you can use them with other applications. In addition, after you debug the
Win32 API calls, you don’t want to contaminate the code with application code.

Defining CreateProcessA()
This example uses the CreateProcessA()call as a starting point. You can
find the actual definition for this call at http://msdn.microsoft.com/
library/en-us/dllproc/base/createprocess.asp. However, you
need a VBA version of this call for the example. Listing 16-1 shows the code
you need. (You can find the source code for this example on the Dummies.com
site at http://www.dummies.com/go/vbafd5e.)

358 Part IV: Programming for Applications

23_046500 ch16.qxp 12/5/06 5:39 PM Page 358

Listing 16-1 Defining CreateProcessA()

‘ This Win32 API call creates an external process.
Private Declare Function CreateProcessA Lib “kernel32” (_

ByVal lpApplicationName As String, _
ByVal lpCommandLine As String, _
ByVal lpProcessAttributes As Long, _
ByVal lpThreadAttributes As Long, _
ByVal bInheritHandles As Long, _
ByVal dwCreationFlags As Long, _
ByVal lpEnvironment As Long, _
ByVal lpCurrentDirectory As String, _
lpStartupInfo As STARTUPINFO, _
lpProcessInformation As PROCESS_INFORMATION) _
As Long

‘ This structure describes how to start the process. For
‘ example, it tells what title to give the application
‘ window and where to display it onscreen. You must tell
‘ Windows how long this structure is, but Windows uses
‘ default values for any values you don’t supply.
Private Type STARTUPINFO

cb As Long
lpReserved As String
lpDesktop As String
lpTitle As String
dwX As Long
dwY As Long
dwXSize As Long
dwYSize As Long
dwXCountChars As Long
dwYCountChars As Long
dwFillAttribute As Long
dwFlags As Long
wShowWindow As Integer
cbReserved2 As Integer
lpReserved2 As Long
hStdInput As Long
hStdOutput As Long
hStdError As Long

End Type

‘ This is an output structure. Windows fills this
‘ structure with useful information about the external
‘ process that includes a handle to the process, a handle
‘ to the main thread (because processes can have multiple
‘ threads), and both the process and thread identifiers.
Private Type PROCESS_INFORMATION

hProcess As Long
hThread As Long
dwProcessID As Long
dwThreadID As Long

End Type

359Chapter 16: Applications that Work Together

23_046500 ch16.qxp 12/5/06 5:39 PM Page 359

You have many options for defining the CreateProcessA()call, but this one
seems to work best because it combines maximum flexibility with reduced
potential for errors. For example, some people define lpApplicationName
as a Long because they never give an application name. You can then set this
value to 0 rather than use vbNullString. The data types you choose to rep-
resent the various Win32 API call arguments are important because the selection
determines how you use the call in your VBA code.

The Win32 API is very inconsistent when it comes to input and output argu-
ments, so you have to exercise care in how you use the functions it supports.
In this case, CreateProcessA()returns a value of 0 when it fails and a non-
zero value when it succeeds. Consequently, you use the return value for error
trapping.

The example takes a shortcut with the lpProcessAttributes and
lpThreadAttributes arguments. Normally, you can provide an
LPSECURITY_ATTRIBUTES (http://msdn.microsoft.com/library/
en-us/secauthz/security/security_attributes.asp) structure
to define security for these arguments. Because of the way you use
CreateProcessA()in VBA, you don’t normally need to provide these
data structures. The only time you would need to define these data struc-
tures is when the external application you call creates child processes itself
and you want to control how those child processes inherit rights from the
parent.

How you create the process is important. You tell Windows how you want the
process to appear to the user by using the dwCreationFlags argument.
The MSDN Web site tells you these values at http://msdn.microsoft.
com/library/en-us/dllproc/base/process_creation_flags.asp.
Note that all these values are in hexadecimal. Consequently, you need to
define the values using &H, as shown here:

Private Const NORMAL_PRIORITY_CLASS = &H20&

Win32 API calls sometimes require you to provide input, even when you don’t
use the input as part of the call. The STARTUPINFO data structure is one
such case. You can use CreateProcessA()just fine without it, but you must
provide a structure that contains the structure size as a minimum. This argument
is also odd because you can provide one of two data structure inputs. The
example shows STARTUPINFO (http://msdn.microsoft.com/library/
en-us/dllproc/base/startupinfo_str.asp), but you can also provide
STARTUPINFOEX (http://msdn.microsoft.com/library/en-us/
dllproc/base/startupinfoex.asp), which supplies additional information

360 Part IV: Programming for Applications

23_046500 ch16.qxp 12/5/06 5:39 PM Page 360

when you need it. It’s very unlikely that you’ll need to use the added function-
ality of STARTUPINFOEX with VBA.

The final argument isn’t one that you supply; Windows returns it to you.
The lpProcessInformation argument tells you about the process that
Windows has created when CreateProcessA()returns. This information is
helpful for a number of reasons. For example, many Win32 API calls require
that you provide a Process Identifier (PID) or a Thread Identifier (TID) as
input. The PROCESS_INFORMATION (http://msdn.microsoft.com/
library/en-us/dllproc/base/process_information_str.asp) data
structure supplies this information.

Defining WaitForSingleObject()
You can create specialized processes using CreateProcessA(), but the
point of this example is to create a synchronous process; one where VBA
waits so that you can do something with the output of the application if you
want to do so. The WaitForSingleObject()call (see the details for this
call at http://msdn.microsoft.com/library/en-us/dllproc/base/
waitforsingleobject.asp) is quite simple in concept: It forces VBA to
wait until some event occurs, such as the ending of the application. Listing
16-2 shows the code you need for this part of the example. (You can find the
source code for this example on the Dummies.com site at http://www.
dummies.com/go/vbafd5e.)

Listing 16-2 Defining WaitForSingleObject()

‘ This function causes VBA to wait for the external
‘ process and defines how long to wait.
Private Declare Function WaitForSingleObject _

Lib “kernel32” (_
ByVal hHandle As Long, _
ByVal dwMilliseconds As Long) As Long

The input arguments are simple. The handle is the handle returned by
CreateProcessA(). The dwMilliseconds argument tells how long to
wait in milliseconds. Of course, you might not know how long to wait, so
WaitForSingleObject()also provides a special INFINITE value, as
described here:

Private Const INFINITE = -1&

361Chapter 16: Applications that Work Together

23_046500 ch16.qxp 12/5/06 5:39 PM Page 361

Unlike CreateProcessA(), which returns a simple value telling you whether
the call failed or succeeded, WaitForSingleObject()provides specific
return values to indicate levels of success or failure. Many Win32 API calls
take this approach, so you always have to check the documentation before
you assume specific success or failure values. Here are the values for
WaitForSingleObject():

‘ Defines the possible results of the wait.
‘ The wait was successful.
Private Const WAIT_OBJECT_0 = &H0

‘ The process was killed for some unknown reason
‘ before it completed or the wait timed out.
Private Const WAIT_ABANDONED = &H80

‘ The wait timed out.
Private Const WAIT_TIMEOUT = &H102

Defining CloseHandle()
Of the three calls needed for this example, CloseHandle()is the easiest. In
fact, all you need is a handle to close, as shown here:

‘ Close any Windows handle.
Private Declare Function CloseHandle Lib “kernel32” _

(ByVal hObject As Long) As Boolean

This call always succeeds for a valid handle. The only times you should
receive a return value of False are when you try to close something other
than a handle or the handle you supply is invalid. You can discover more
about CloseHandle() at http://msdn.microsoft.com/library/
en-us/sysinfo/base/closehandle.asp.

Encapsulating the process
You can use the Win32 API calls in this example any way you want and in any
order you want. The ability to perform tasks any way you see fit makes the
Win32 API both flexible and dangerous. Because you’ll likely perform some
tasks more than once, it pays to encapsulate the process you use into an
easy-to-manage function. Listing 16-3 shows the code used for this example. It
encapsulates the process of calling an external program and waiting for it to
finish. The return value tells the caller what happened during this process.
(You can find the source code for this example on the Dummies.com site at
http://www.dummies.com/go/vbafd5e.)

362 Part IV: Programming for Applications

23_046500 ch16.qxp 12/5/06 5:39 PM Page 362

Listing 16-3 Performing the External Call

‘ This Sub provides specific steps to access external
‘ programs.
Public Function AccessExternalProgram(CommandAndPath) _

As Long

‘ Create the required structures.
Dim StartUp As STARTUPINFO
Dim ProcessOutput As PROCESS_INFORMATION

‘ Create a variable to check the results of calls
Dim Result As Long

‘ Because the startup information is input
‘ you must provide at least the data structure
‘ length.
StartUp.cb = Len(start)

‘ Start the external application.
Result = CreateProcessA(_

vbNullString, CommandAndPath, 0&, 0&, 1&, _
NORMAL_PRIORITY_CLASS, 0&, vbNullString, _
StartUp, ProcessOutput)

‘ Perform error trapping to ensure the application
‘ started.
If Result = 0 Then

AccessExternalProgram = -1
Exit Function

End If

‘ Wait for the application to finish.
AccessExternalProgram = _

WaitForSingleObject(_
ProcessOutput.hProcess, INFINITE)

‘ When the call completes, then free the handles.
‘ You must free both the thread and the process
‘ handles.
Call CloseHandle(ProcessOutput.hThread)
Call CloseHandle(ProcessOutput.hProcess)

End Function

The code begins by creating the variables needed by CreateProcessA().
It also creates a variable to test the return value of CreateProcessA()to
ensure that the system actually created the external process. Notice that
you must initialize StartUp because this structure is provided as input to
CreateProcessA(), but you don’t have to do anything with ProcessOutput
because Windows manages this data structure.

363Chapter 16: Applications that Work Together

23_046500 ch16.qxp 12/5/06 5:39 PM Page 363

After the code calls CreateProcessA(), it checks the result. When the
result is 0 (the call wasn’t successful), the function exits with a value of -1.
You can use any method you want to tell the caller that the call isn’t success-
ful, but you should provide unique values for each kind of error output.
Otherwise, the caller doesn’t know how to react to problems.

When the CreateProcessA()call is successful, the code calls WaitFor
SingleObject(). The example uses an INFINITE wait because you don’t
know how long the user will require to perform an external task. It’s possible
that the system will actually freeze at this point, so you should use an
INFINITE wait only when you’re sure the task will succeed. If you provide
a millisecond value, the system can still recover by stopping the waiting
period even if the user never responds. Always provide a millisecond value
when you can predict the response time with reasonable accuracy.

The final step of the process is to close the handles. You must close both
the thread and the process handles. Otherwise, the system experiences a
memory leak; a condition where Windows can’t recover memory that it’s
using for a particular task when it finishes that task. Memory leaks force you
to eventually reboot the system to recover the lost memory.

Calling the AccessExternalProgram
function
At this point, you’re ready to call the external program. I chose a complex
example in this case because external program access is quite powerful; it’s
more powerful than you might think at first. Listing 16-4 shows the example
code in this case. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing 16-4 Performing an External Call

Sub TestExternalAccess()
‘ Obtains the result of the call.
Dim Result As Long

‘ Perform the call.
Result = AccessExternalProgram(“CMD.EXE /k “ + _

Chr(34) + _
“Dir >> Output.TXT | Notepad.EXE Output.TXT” + _
Chr(34))

‘ Show the call results.
Select Case Result

364 Part IV: Programming for Applications

23_046500 ch16.qxp 12/5/06 5:39 PM Page 364

Case -1
MsgBox “Couldn’t Start Application”

Case WAIT_OBJECT_0
MsgBox “Everything Worked!”

Case WAIT_ABANDONED
MsgBox “Application Failed to Wait”

Case WAIT_TIMEOUT
MsgBox “Application Timed Out”

End Select
End Sub

The code begins by creating a result variable. It then makes the call. In this
case, the external program is a command prompt. Using the /k argument is
quite powerful because you can tell the command processor to execute any
command you want. The example calls the Dir command, which displays a
directory of the current location on the hard drive. The Dir command output
is redirected to Output.TXT using the redirection symbol. After the Dir call
is complete, the command process pipes the information to Notepad.EXE,
which displays the content of the Output.TXT file onscreen.

At this point, you see a command prompt, and a copy of Notepad opens on
your display. Close Notepad first and then the command prompt. Only after
you close both windows does the AccessExternalProgram() function
return a result to the test program. The test program displays the result
onscreen based on the Result value.

Processing Outlook E-Mail
Messages with Word

Outlook is a capable e-mail program. You can use it to get your personal mail
or to view newsgroups online. However, you might run into situations when
the formatting features that Outlook provides are less than useful. That’s the
purpose of the example in this case. Word requests the messages that you
mark in Outlook and formats them in preparation for printing or just viewing.
I use this program to create quick reference resources from my e-mail.

The marking feature of this program is especially helpful because you can
mark just some of the messages in a thread instead of outputting them all.
This program uses a red flag, but you could modify it to use any flag. In addi-
tion, the program automatically marks the message as completed after pro-
cessing it. This means that you don’t have to clear the flags individually.

365Chapter 16: Applications that Work Together

23_046500 ch16.qxp 12/5/06 5:39 PM Page 365

Unfortunately, the program shown in Listing 16-5 works only with Outlook
and not with Outlook Express. You can’t work with Outlook Express mes-
sages directly with VBA unless you’re willing to create your own library or
use a third-party COM object, such as DBX2XML (http://www.bizon.
org/ilya/dbx2xml.htm). After you translate an Outlook Express DBX
(e-mail) file into XML, you can easily import it by using the XML features
provided with Office.

Depending on which version of Outlook you use, how you have your security
set up, and whether you’re running on Vista, you may see one or more warn-
ing messages when you run this example. Click OK or Yes to continue running
the example; don’t compromise your security by changing the application
settings. Listing 16-5 shows the code for this example. (You can find the
source code for this example on the Dummies.com site at http://www.
dummies.com/go/vbafd5e.)

Listing 16-5 Working with Flagged Outlook Messages

Public Sub GetFlagged()
‘ Create the Outlook application reference.
Dim OutlookApp As Outlook.Application
Set OutlookApp = CreateObject(“Outlook.Application”)

‘ Create the MAPI namespace reference.
Dim MAPI_NS As Outlook.NameSpace
Set MAPI_NS = OutlookApp.GetNamespace(“MAPI”)

‘ Create a reference to the Inbox.
Dim Inbox As Outlook.MAPIFolder
Set Inbox = MAPI_NS.GetDefaultFolder(olFolderInbox)

‘ Holds the current message.
Dim CurMsg As Outlook.MailItem

‘ Look at all of the messages.
For Each CurMsg In Inbox.Items

‘ Determine whether this message requires
processing.

If CurMsg.FlagStatus = olFlagMarked And _
CurMsg.FlagIcon = olRedFlagIcon Then

‘ Place the information in the Word document.
With ActiveWindow.ActivePane.Selection

‘ Create a From header and content.
.BoldRun
.TypeText “From: “

366 Part IV: Programming for Applications

23_046500 ch16.qxp 12/5/06 5:39 PM Page 366

.BoldRun

.TypeText CurMsg.SenderName + “ <” + _
CurMsg.SenderEmailAddress + “>”

‘ Go to the next line.
.InsertParagraph
.GoTo What:=wdGoToLine, Which:=wdGoToLast

‘ Create a Subject header and content.
.BoldRun
.TypeText “Subject: “
.BoldRun
.TypeText CurMsg.Subject
.InsertParagraph
.GoTo What:=wdGoToLine, Which:=wdGoToLast

‘ Create a Content header and content.
.BoldRun
.TypeText “Content: “
.BoldRun
.TypeText CurMsg.Body

‘ Create a page separator.
.InsertParagraph
.InsertBreak wdPageBreak
.GoTo What:=wdGoToLine, Which:=wdGoToLast

End With

‘ Show this action is complete.
CurMsg.FlagStatus = olFlagComplete

End If
Next

End Sub

The code begins by creating some Outlook objects, including the application,
the namespace, the folder, and an individual message. You might wonder how
you gain access to these objects. Add a reference to the Microsoft Outlook
Object Library to your program by using the Tools➪References command.

You can use several techniques to create OutlookApp. For example, the
code could use Set OutlookApp = new Outlook.Application. This
technique works fine as long as Outlook is already running. However, using
this statement can cause an error when Outlook isn’t running, so, whenever
possible, you should use the CreateObject method shown in the example
to ensure reliable program operation.

367Chapter 16: Applications that Work Together

23_046500 ch16.qxp 12/5/06 5:39 PM Page 367

Outlook might eventually have the ability to use more than one communica-
tion technique. For now, Outlook uses Messaging Application Programming
Interface (MAPI). You must create a reference to the communication tech-
nique or namespace in the program. The code uses the namespace to get a
message folder (or other data, such as a contact) by using the method named
GetDefaultFolder.

After the code creates the objects that it needs, it uses a For Each...Next
loop to check each message in the folder. This program uses the Inbox, but
you can use the same technique on any folder. If the message is marked with
a red flag, the program processes it. Notice that you must make two checks
to see whether the message requires processing. First, you must ensure that
the message is marked by using the FlagStatus property. Second, you
check the color of the flag by using the FlagIcon property (which seems a
tad counterintuitive, even for Microsoft).

The program spends most of its time writing to the document, so the code
uses a With ActiveWindow.ActivePane.Selection statement. The for-
matting in this example is simple: All the headings appear in bold; everything
else appears in normal text.

The message format is very predictable, so it performs a minimum of text
processing commands. It uses the TypeText method to send text to the cur-
rent document. Notice the use of the InsertParagraph method. Inserting
the paragraph mark doesn’t move the selection point. If you don’t also use
the GoTo method to change the selection point, the program happily contin-
ues inserting text at the beginning of the first line. Each message loop ends
by inserting a page break after the message by using the InsertBreak
wdPageBreak method. I like each message to start on a new page, but you
can certainly change this behavior.

The final step in this program is to change the message flag status. Use the
CurMsg.FlagStatus = olFlagComplete statement to perform this task.
The reason you want to use a completed flag is that it signifies that you’ve
completed working with this message. If you cleared the flag, you might go
back later and mark the message for printing again.

Sending E-Mail Messages with Outlook
Creating e-mail with Outlook is straightforward. If you don’t like the format-
ting capabilities of Outlook, you can always create a message in Word and use
the Word document as content for the e-mail. However, these two methods of
message creation assume that a list of people will receive precisely the same
message. When you want to create every message with the same general con-
tent and some messages with special content, you need a program.

368 Part IV: Programming for Applications

23_046500 ch16.qxp 12/5/06 5:39 PM Page 368

I often need to send customized announcements by using e-mail, so I created
the program shown in the upcoming Listing 16-6. This example is a simplified
version of my program, but it presents all the code that you need to create
your own custom version. The program relies on a specially formatted Word
document that includes tags for particular kinds of information. Figure 16-1
shows the document for this example.

The Word document used for this example has three sections. (You can
download it from the Dummies.com Web site at http://www.dummies.
com/go/vbafd5e.) Using section breaks makes each document area obvious
and has advantages when the code processes the document. (See Listing 16-6
and the accompanying code description for details on the advantages of
using this technique.) The first section of the example document in Figure 16-1
contains the e-mail subject. Just like in any e-mail message, the subject must
appear on a single line.

The second section of the example document in Figure 16-1 contains the gen-
eral text — the information that you want everyone to see. This section can
contain as many or as few lines as you want. The example doesn’t process any
formatting information, and it doesn’t recognize objects, such as pictures.

Figure 16-1:
Using a

specially
formatted

document to
create
e-mail.

369Chapter 16: Applications that Work Together

23_046500 ch16.qxp 12/5/06 5:39 PM Page 369

The third section of the document example shown in Figure 16-1 contains the
person’s name and e-mail address and any special text. The identification
could include just the name or just the address, but the example uses both.
Notice that you must include the e-mail address in angle brackets, as shown
in the figure. Any special text must appear in a single paragraph. You must
mark the paragraph with the Special tag, as shown in Figure 16-1. Listing
16-6 shows the code to process this Word document as e-mail messages.
Here’s the code for this example. (You can find the source code for this exam-
ple on the Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing 16-6 Processing a Word Document into an Outlook Message

Public Sub CreateMessage()

With ActiveWindow.Selection

‘ Go to the beginning of the document.
.GoTo What:=wdGoToLine, Which:=wdGoToFirst

‘ Holds the subject and general text.
Dim Subject As String
Dim General As String

‘ Get the subject.
‘ Start by selecting the first word.
.End = .Start + 8
‘ Make sure it’s a subject.
If .Text = “Subject:” Then

‘Go to the next line and select the subject.
.GoTo What:=wdGoToLine, Which:=wdGoToNext
.EndOf Unit:=wdParagraph, Extend:=wdExtend
.End = .End - 1
Subject = .Text

Else
‘ Display an error message.
MsgBox “You must include a subject line!”, _

vbCritical, “File Formatting Error”
Exit Sub

End If

‘ Get the general text.
‘ Start by selecting the keyword.
.GoTo What:=wdGoToLine, Which:=wdGoToNext
.Start = .Start + 1
.End = .Start + 8
‘ Make sure it’s the general text.
If .Text = “General:” Then

‘Go to the next line and select the general text.
.GoTo What:=wdGoToLine, Which:=wdGoToNext
.EndOf Unit:=wdSection, Extend:=wdExtend
.End = .End - 1
General = .Text

370 Part IV: Programming for Applications

23_046500 ch16.qxp 12/5/06 5:39 PM Page 370

End If
End With

‘ Tracks the end of the text.
Dim EndOfText As Boolean
EndOfText = False

‘ Holds the user name.
Dim UserName As String

‘ Holds any special greeting.
Dim Special As String

‘ Create the Outlook application reference.
Dim OutlookApp As Outlook.Application
Set OutlookApp = CreateObject(“Outlook.Application”)

‘ Create the MAPI namespace reference.
Dim MAPI_NS As Outlook.NameSpace
Set MAPI_NS = OutlookApp.GetNamespace(“MAPI”)

‘ Create a reference to the Inbox.
Dim Outbox As Outlook.MAPIFolder
Set Outbox = MAPI_NS.GetDefaultFolder(olFolderOutbox)

‘ Holds the current message.
Dim CurMsg As Outlook.MailItem

‘ Holds the existing and new start range.
Dim OldStart As Long
Dim MyRange As Range

‘ Process the next section.
ActiveWindow.Selection.GoTo What:=wdGoToSection, _

Which:=wdGoToNext

‘ Keep processing until there is no more text.
While Not EndOfText

‘ Get the user name and e-mail address.
With ActiveWindow.Selection

.EndOf Unit:=wdParagraph, Extend:=wdExtend
UserName = .Text

‘ Determine if the next line is a special
‘ greeting.
OldStart = .Start
Set MyRange = .GoTo(What:=wdGoToLine, _

Which:=wdGoToNext)
If MyRange.Start = OldStart Then

EndOfText = True

(continued)

371Chapter 16: Applications that Work Together

23_046500 ch16.qxp 12/5/06 5:39 PM Page 371

Listing 16-6 (continued)

End If
.End = .Start + 8
‘ Make sure it’s a subject.
If .Text = “Special:” Then

‘ Select the Special text.
.Start = .End + 1
.EndOf Unit:=wdParagraph, Extend:=wdExtend
.End = .End - 1
Special = .Text
.HomeKey

Else
‘ Reset the Special text.
Special = “”

‘ Go back to the previous text.
.GoTo What:=wdGoToLine, Which:=wdGoToPrevious

End If

‘ Select the next name in the list. If this is
‘ the end of the text section, set the indicator.
OldStart = .Start
Set MyRange = .GoTo(What:=wdGoToLine, _

Which:=wdGoToNext)
If MyRange.Start = OldStart Then

EndOfText = True
End If

End With

Set CurMsg = Outbox.Items.Add()

‘ Add some content.
CurMsg.Recipients.Add UserName
CurMsg.Subject = Subject
CurMsg.Body = General + vbCrLf + vbCrLf + Special

‘ Send the message.
CurMsg.Send

Wend

‘ Display the number of messages sent.
MsgBox CStr(Outbox.Items.Count) + “ message sent.”, _

vbInformation, “Messages Sent”
End Sub

372 Part IV: Programming for Applications

23_046500 ch16.qxp 12/5/06 5:39 PM Page 372

The code begins by processing the subject and general message. One of the
most important considerations is that you have to keep the selection pointer
and range in the correct places throughout the processing, or else the mes-
sages don’t appear correctly.

The reason for the peculiar document format shown in Figure 16-1 becomes a
little more obvious when you read the code for this example. The document
takes maximum advantage of the text selection features that Word provides.
Notice that after the code determines that the Subject tag appears on the first
line, it moves to the second line and selects the entire line by calling the
EndOf method. Unfortunately, this method also selects the paragraph mark,
and you don’t want to see that in the message title. (The paragraph mark
appears as a square because Outlook can’t make it visible.) Consequently, the
program uses selection range math to change the selection. The .End =
.End - 1 statement simply changes the selection so that it doesn’t include
the paragraph mark.

Selecting text correctly is a big issue when working with Word. The subject
and general text use similar selection techniques. However, the code uses the
Unit:=wdSection argument of the EndOf method in the second case to
select the rest of the section. Using this technique lets you select an indeter-
minate number of paragraphs, which makes the program more flexible.

This example uses the same Outlook objects as those used in the earlier sec-
tion “Processing Outlook E-Mail Messages with Word.” See that section for a
description of the Application, NameSpace, MAPIFolder, and MailItem
objects. The only difference is that this example writes to these objects
rather than reads from them.

Processing the names and special text requires a little extra work because
you don’t know whether every name will have special text associated with it.
In addition, the document can contain any number of names, so the code
needs to know when it has reached the end of the document (or else it will
continue adding names forever). A special variable, EndOfText, tracks the
end-of-the-document condition.

The code begins by selecting the username. It doesn’t matter whether you
provide a name, an e-mail address, or both because Outlook knows how to
handle all three conditions.

Checking for a special greeting is the next step. The code doesn’t know
whether the text exists, so it must make an assumption, validate the results,
and take the appropriate action. This example assumes that the special text
exists. It selects the text in the next line to see whether it begins with the

373Chapter 16: Applications that Work Together

23_046500 ch16.qxp 12/5/06 5:39 PM Page 373

Special keyword. If this word is present, the example selects the text that
follows the keyword and places it in the Special string. Otherwise, the code
clears the Special string and places the cursor on the previous line so that
processing continues as though nothing happened.

The code has to track the last line. There are two possibilities. The entry
could include a special line of text, or it might simply contain a recipient iden-
tity. The first range check that appears as part of the special greeting code
checks for a condition where the last line is a recipient identity. The second
range check code looks for a condition where the last line is a special greet-
ing. You need both checks to ensure that the code works properly because in
the second case, the code won’t actually be at the last line until it processes
the special message. Leaving out this second check lets the code post an
extra e-mail message. However, if you leave out the first check, the code that
returns the selection pointer to the previous line prevents the loop from
ending.

The loop ends with the code required to send the message that the code cre-
ates. The message includes a recipient, the subject, and the text (including a
special message). The Send method places the message in the Outlook
Outbox.

Sending Notes from Word to Excel
You might find the need to create a utility simply because a task becomes
unwieldy in the host program. For example, many of my worksheets contain
extensive notes. Editing those notes in Excel can become a real problem after
the note gets to a certain size. However, Word provides a great editor, and
I can make the notes as long as needed. The example shown in Listing 16-7
includes part of a program that I created for moving notes between Word and
Excel so that they’re easier to edit. (You can find the source code for this
example on the Dummies.com site at http://www.dummies.com/go/
vbafd5e.)

Listing 16-7 Moving Notes from Word to Excel

Public Sheet As Integer
Public Row As String
Public Column As String

Public Sub SendNote()
‘ The text used as a note.

374 Part IV: Programming for Applications

23_046500 ch16.qxp 12/5/06 5:39 PM Page 374

Dim NoteText As String

With ActiveWindow.Selection

‘ Go to the beginning of the document.
.GoTo What:=wdGoToLine, Which:=wdGoToFirst

‘ Select the document text.
.EndOf Unit:=wdSection, Extend:=wdExtend

‘ Get the text.
NoteText = .Text

End With

‘ Create a file dialog.
Dim GetFile As FileDialog
Set GetFile = Application.FileDialog(msoFileDialogOpen)
GetFile.AllowMultiSelect = False
GetFile.Filters.Clear
GetFile.Filters.Add “Excel Files”, “*.XL*”

‘ Get the Excel file.
GetFile.Show

‘ Get the selected file.
Dim Filename As String
Filename = GetFile.SelectedItems(1)

‘ Open the Excel workbook.
Dim TheBook As Excel.Workbook
Set TheBook = Excel.Workbooks.Open(Filename)

‘ Request the sheet and cell number for the note.
NoteSelect.Show

‘ Get the worksheet.
Dim TheSheet As Excel.Worksheet
Set TheSheet = TheBook.Sheets(1)

‘ Add the comment.
TheSheet.Range(Column + Row).AddComment NoteText

‘ Close the workbook.
TheBook.Close True

End Sub

The code begins by getting the note text from the Word document. This
means placing the cursor at the beginning of the document, selecting a range
of text, and copying that text to a local variable.

375Chapter 16: Applications that Work Together

23_046500 ch16.qxp 12/5/06 5:39 PM Page 375

The next step is to figure out which Excel file to modify. The GetFile object is
a file dialog box. Unfortunately, the file dialog box filters for Word point to Word
documents (not to the Excel documents you need), so the code has to change
the filter by using the Filters.Clear and Filters.Add methods. It’s also
important to set GetFile so that it doesn’t allow multiple selections — this
program works with only one file at a time.

After the code displays the dialog box and you select a file, GetFile con-
tains the name of the selection. This is the full path to the file, so you can
select a file anywhere, and the code still works.

It’s time to open the Excel file. You don’t actually see Excel open — everything
takes place in the background. The code uses the value in Filename as input
to the Excel.Workbooks.Open method.

Notice that everything to do with Excel begins with the word Excel. Word and
Excel often use objects with the same name. Adding the word Excel avoids
confusion.

This program also requires a custom form. Figure 16-2 shows what this form
looks like. The NoteSelect form appears onscreen long enough for you to
select a sheet, column, and row for the note.

After the code knows what you want to write and where to place the informa-
tion, it can open the Excel worksheet by using the Sheets collection. Notice
how the code combines the Column and Row values to create a range for the
comment. The AddComment method accepts the note text. Always make sure
that you close the Workbook object when you’re finished, or else you’ll end
up with multiple background copies of Excel.

The NoteSelect form has a few interesting features. The code shown in
Listing 16-8 makes the OK button shown in Figure 16-2 functional.

Figure 16-2:
Design

forms as
needed to

get program
input.

376 Part IV: Programming for Applications

23_046500 ch16.qxp 12/5/06 5:39 PM Page 376

Listing 16-8 Getting the Sheet, Row, and Column Values

Private Sub btnOK_Click()
‘ Add error handling.
On Error GoTo EntryError

‘ Check the Sheet range.
If Not CInt(txtSheet.Value) > 0 Then

MsgBox “Please type a number greater than 0.”, _
vbOKOnly Or vbCritical, “Data Entry Error”

Exit Sub
End If

‘ Check the Row range.
If Not CInt(txtRow.Value) > 0 Then

MsgBox “Please type a row number greater than 0.”, _
vbOKOnly Or vbCritical, “Data Entry Error”

Exit Sub
End If

‘ Check the Column range.
If Not Asc(txtColumn.Value) > 64 Then

MsgBox “Please type a letter greater than A.”, _
vbOKOnly Or vbCritical, “Data Entry Error”

Exit Sub
End If

‘ Save the data values.
SendExcelNotes.Sheet = CInt(txtSheet.Value)
SendExcelNotes.Row = txtRow.Value
SendExcelNotes.Column = txtColumn.Value

‘ Close the dialog box.
Me.Hide

‘ Exit the Sub.
Exit Sub

EntryError:
‘ Tell the user what went wrong.
MsgBox “You must enter a number for the Sheet and “ + _

“Row fields, and a letter for the Column field.”, _
vbOKOnly Or vbCritical, “Data Entry Error”

‘ Return the fields to appropriate values.
txtSheet.Value = “1”
txtRow.Value = “1”
txtColumn.Value = “A”

End Sub

377Chapter 16: Applications that Work Together

23_046500 ch16.qxp 12/5/06 5:39 PM Page 377

Whenever you need external input from the user, including yourself, it pays
to add error trapping. Even I type the wrong text sometimes and find the
error trapping helpful in preventing data damage. This form uses two levels
of error trapping. First, it checks the data type. When the data type is wrong
(such as typing a letter when you really meant to type a number), the pro-
gram normally goes to the EntryError label for standard error handling.

Notice that the code after the EntryError label performs two tasks. First, it
displays an error message that tells you what went wrong. Second, it returns
the three values to default settings. This technique ensures that you can see
the correct input, and it reduces the chances of additional errors. Of course,
if you have a long form to fill out, this might not be the best solution. You
might want to simply say that the data is incorrect and try to point out the
problem field (a task that can prove hard to tackle).

The second level of error trapping is range checking (making sure that the
entry value falls within a specific range of numbers). You can’t completely
prevent errors, but you can reduce the risk of fatal errors. In this case, the
code checks to ensure that the sheet and row numbers are greater than 1 and
that you typed as the column value a letter A or greater (remember that let-
ters have a numeric value to the computer, as described in Listings 4-2 and
4-3 in Chapter 4). Unfortunately, that’s about all the range checking that you
can do.

After the code checks the input, it places the information in three global vari-
ables found in the SendExcelNotes module. These global variables supply
the placement information that you can see earlier in this section.

The code ends by hiding the form. Unless you specifically hide the form, it
stays visible, and clicking the OK button doesn’t appear to have any effect.

378 Part IV: Programming for Applications

23_046500 ch16.qxp 12/5/06 5:39 PM Page 378

Part V
The Part of Tens

24_046500 pt05.qxp 12/5/06 5:39 PM Page 379

In this part . . .

Use Chapter 17 to discover new resources that you
can use to build your own VBA library. This chapter

contains ten types of resources that you can use to make
your VBA programming experience better, easier, faster,
or more fun. VBA is a language that lets you decide what
you want your host application to do. The VBA resources
in this chapter give you ideas of what’s possible.

Chapter 18 is a special chapter for anyone upgrading their
applications. You’ll find that the changes Microsoft made
to Office 2007 present special challenges because your
code from previous Office versions may not work any-
more. These ten helpful tips will make the conversion
process easier.

24_046500 pt05.qxp 12/5/06 5:39 PM Page 380

Chapter 17

Ten Kinds of VBA Resources
In This Chapter
� Using traditional paper magazines and periodicals

� Getting information through free electronic newsletters

� Getting the latest scoop using RSS

� Accessing Microsoft newsgroups

� Using third-party newsgroups

� Joining list servers and other e-mail-based systems

� Finding coding examples and non-Microsoft documentation

� Locating tools to make programming easier

� Downloading cool ActiveX controls and components

� Using the author of this book as a resource

You aren’t alone in your quest for the perfect VBA program. Many other
companies and individuals produce resources that you can view online

or download from the Internet. The resources come in a variety of forms —
everything from informational Web sites to newsgroups where you can talk
with other people who use VBA to free tools and code. In this chapter, I don’t
present every VBA resource, but I do present some interesting ideas. The
first three sites that you should visit to answer your VBA questions are

� Microsoft Visual Basic for Applications home page: http://msdn.
microsoft.com/isv/technology/vba/default.aspx

� Microsoft Visual Basic home page: http://msdn.microsoft.com/
vbasic/

� Microsoft Office home page: http://msdn.microsoft.com/
office/

25_046500 ch17.qxp 12/5/06 5:39 PM Page 381

Using Magazines and Periodicals
Articles come in all shapes, sizes, complexity levels, and forms. Some maga-
zines specialize in a particular reader group, and others tackle a specific
product. You can find high-quality articles in both free and paid forms. The
length of the articles varies according to the magazine and its goals. In short,
you can find one or more magazines that meet particular needs.

Traditional paper magazines
and periodicals
Traditional paper magazines and periodicals offer a permanent form of docu-
mentation that you can keep on your bookshelf for reference and read just
about anywhere. This list is by no means complete but has the advantage of
providing a Web reference:

� Microsoft Certified Professional Magazine Online: http://www.
mcpmag.com/

� Visual Studio Magazine: http://www.fawcette.com/vsm/

� Access-SQL-VB Advisor Magazine: http://accessvbsql
advisor.com/

� VBUG Magazine: http://www.vbug.co.uk/shop/magazines.asp

Free electronic newsletters
Free newsletters often contain short articles, tips, links, and the occasional
coding example. (You might see them listed as e-newsletters or eNewsletters.)
They’re a good source of continuous information for building your VBA
knowledge base. Here are a few of the better examples:

� Office Watch: http://office-watch.com/

� Eli Journals: http://www.elementkjournals.com/tips.asp

� The Office Experts: http://www.theofficeexperts.com/
newsletter.htm

� Microsoft Office Tips: http://www.worldstart.com/
msofficetips.htm

� DevX.com: http://www.windx.com/

382 Part V: The Part of Tens

25_046500 ch17.qxp 12/5/06 5:39 PM Page 382

� DevSource: http://www.devsource.com/

� InformIT: http://www.informit.com/articles/

� AbleOwl: http://www4.ableowl.com/ableowl/ablehome.aspx

Many of these sites also provide free downloads. For example, you can find
downloads on The Office Experts site at http://www.theofficeexperts.
com/downloads.htm. Some sites, such as AbleOwl, provide news about
seminars as well as training and support. The reason I list these sites here
is that they focus on a newsletter — the other features add to an already
great site.

It’s important to realize that VBA has a worldwide presence and that not
everyone speaks a particular language. For example, one magazine devoted
specifically to VBA is VBA Magazine (http://www.vba-almere.nl/
index.php?id=34), which is produced in the Netherlands. Fortunately,
Google provides a solution to this problem. You can use the Google Language
Tools (http://www.google.com/language_tools) to translate Web
sites from one language to another when Google supports the language. All
you need to do is provide the Web site URL in the Translate a Web Site field,
choose the desired translation (such as from German to English), and click
Translate. Although the translation isn’t perfect, it normally works well
enough to provide the information you need. Look for the Translate link
when you search for Web sites using Google as well.

Using RSS to Obtain the
Latest Information

One of the biggest news items today is Rich Site Summary (RSS) (some sources
call it Really Simple Syndication and others call it RDF Site Summary — all
three terms mean the same thing). The RSS technology sends short descrip-
tions of articles to a special application on your machine, called a reader, at
regular intervals. The summary lets you quickly decide whether you want to
read the entire article. All you have to do is click the supplied link when you
want to review the material.

Using RSS, you can obtain the latest news within moments after it becomes
available. Of course, speed is nice, but knowing that something exists at all is
important, which is the real purpose behind using RSS. You subscribe to RSS
feeds, and the RSS reader you use provides you with automatic updates. A
number of RSS readers exist. For example, you find one supplied with newer
versions of Outlook (not Outlook Express).

383Chapter 17: Ten Kinds of VBA Resources

25_046500 ch17.qxp 12/5/06 5:39 PM Page 383

Most of the magazines described in this chapter now provide RSS feeds. In
many cases, all you need to do is click the RSS feed link on the magazine’s
Web page to subscribe to the RSS feed. You also find a wealth of Microsoft-
specific RSS feeds at http://msdn.microsoft.com/office/rss.xml.
These RSS feeds are the best ones to use when you want to keep in touch
with what Microsoft is doing. You should also review the Microsoft sugges-
tions for using RSS at http://www.microsoft.com/communities/
guide/rss.mspx.

Finding Interesting Newsgroups
and List Servers

Most methods of information gathering are unidirectional: A vendor or
advanced computer user chooses to share code, techniques, or general infor-
mation through a Web site or newsletter. Although this method of sending
information works great for most needs, it’s still nice to have two-way com-
munication when you have a question. Newsgroups can really help in this
case. All you need to do is point your news reader to the correct group to
learn more.

You can also access a newsgroup by typing the news server and newsgroup
name in your browser or other Internet address bar like this: news://news.
microsoft.com/microsoft.public.word.vba.addins. This second
technique works well when your ISP doesn’t support a particular newsgroup
but you know the name of the news server that hosts the newsgroup.

List servers work like newsgroups except that you use your e-mail or a Web
site to correspond with other people. You normally have to sign up for a list
server, and they’re usually moderated to keep conversations on track. You
might find that these tightly focused and controlled sources of information
help you get what you need quickly, or they might be too confining for words.

This chapter doesn’t list the Microsoft or third-party Visual Basic news-
groups; however, because VBA is a true subset of Visual Basic, you can usu-
ally find good information in these newsgroups as well. Go to a VBA-specific
newsgroup when you can, but look to Visual Basic newsgroups when you
can’t find what you need.

Microsoft-specific newsgroups
Microsoft provides a number of VBA newsgroups. In fact, you can probably
find in this one place everything that you need in order to talk with other
VBA users. Most ISPs carry the Microsoft newsgroups. However, you can
also access the Microsoft newsgroups directly by using its server at

384 Part V: The Part of Tens

25_046500 ch17.qxp 12/5/06 5:39 PM Page 384

news.microsoft.com. (If you want to use your browser, you type news://
news.microsoft.com/microsoft.public.access.modulesdaovba, for
example; however, it’s usually easier to find the newsgroup in your newsgroup
reader.) Here are some VBA newsgroups that you can visit for additional infor-
mation. (Note: Most of these sites are product specific, so you need to go to
the VBA site for your particular product, such as Access or Excel.)

� microsoft.public.access.modulesdaovba

� microsoft.public.access.modulesdaovba.ado

� microsoft.public.frontpage.programming.vba

� microsoft.public.office.developer.outlook.vba

� microsoft.public.office.developer.vba

� microsoft.public.outlook.program_vba

� microsoft.public.project.vba

� microsoft.public.visio.developer.vba

� microsoft.public.word.vba.addins

� microsoft.public.word.vba.beginners

� microsoft.public.word.vba.customization

� microsoft.public.word.vba.general

� microsoft.public.word.vba.userforms

Third-party newsgroups
Newsgroups are either news-reader–based or Web-based. The number of
third-party, news-reader–based newsgroups that you find depends on your
ISP and can depend on the vendor. In some cases, you find that the vendor
runs a special news server that you can access by using the same technique
as for the Microsoft newsgroups. Web-based newsgroups rely on a special
Web site interface that you access with your browser. Here are a few of the
third-party newsgroups that you can find without too many problems:

� AutoDesk AutoCAD newsgroup: autodesk.autocad.
customization.vba

� General VBA help newsgroup: ingr.cserve.msbbeta.vba-prog

� Expresso Code Cafe: http://www.vbdesign.net/expresso/

� VBWire VB Forums: http://www.vbforums.com

Some newsgroups, such as Experts Exchange (http://www.
experts-exchange.com/Applications/MS_Office/), require that
you pay a fee to join. In most cases, these groups provide very high-quality

385Chapter 17: Ten Kinds of VBA Resources

25_046500 ch17.qxp 12/5/06 5:39 PM Page 385

information, but you end up paying a relatively high fee to get it. Whether one
of these groups makes sense for your needs depends on how often the site
provides information you need that you can’t find elsewhere. Generally, you
should avoid this kind of Web site unless it becomes apparent that you’ll use
the service often.

Don’t forget to try third-party, general newsgroups, too. For example, you can
find various Corel products newsgroups where you can ask about the
CorelDRAW or WordPerfect form of VBA at corel.developers (and the
associated sub-newsgroups). You can also ask general support questions at
corel.support, which includes a number of sub-newsgroups.

List servers that you access through
e-mail and Web sites
List servers have several advantages over newsgroups. For one thing, the
noise level (unwanted postings) is much lower. These groups are very
focused, which means that you normally get good information. A moderator
keeps discussions on track, so there’s less chance of seeing a discussion enti-
tled Great New VBA Trick that’s actually about Uncle Al’s birthday party. In
many cases, you subscribe by sending the list owner or another special
e-mail address an e-mail with the word Subscribe as the subject. Here are
some list servers that you can try:

� AccessRabbit: mailto:AccessRabbit-subscribe@topica.com

� Microsoft Office Tips and Tricks: http://lists.topica.com/
lists/tutorials-list/

� Microsoft Office Freelist Group: http://www.freelists.org/
cgi-bin/webpage?webpage_id=mso

Topica is one of the more famous list servers. To find a particular kind of con-
tent on Topica, go to http://www.topica.com/lists/. Type a search term,
such as Microsoft Office, in the Search field, choose Lists, and click Search.

Locating Just the Right Code
A number of Web sites cater to the VBA user by proving example code that you
can use anywhere in your own code. Most of these sites copyright their code
so that you can’t use it for profit or as part of a magazine article. The developer
provides the code as is, so you might need to debug it a little or modify it to
meet your needs. The point is that the code helps you better understand a pro-
gramming concept, which makes writing your own version of the example
much faster. Use these links as your gateway to some great coding examples:

386 Part V: The Part of Tens

25_046500 ch17.qxp 12/5/06 5:39 PM Page 386

� VB2theMax: http://www.devx.com/vb2themax/Door/18897
(archive) or http://www.vb2themax.com/ (current material)

� MVPs.org: http://www.mvps.org/

� Walker Software: http://www.papwalker.com/links.html

� Contract CADD Group: http://www.contractcaddgroup.com/
download/

� FreeVBCode: http://www.freevbcode.com

� VBCode.com: http://www.vbcode.com

� Word-VBA Code Samples: http://www.jojo-zawawi.com/
code-samples-pages/code-samples.htm

Some of these sites include more than just code. For example, the VB2theMax
site includes newsletters, articles, tips, and other resources in addition to
code downloads. Make sure that you take time to explore these sites fully.

Getting Tools to Make
Programming Easier

When you build more programs, you begin to notice that VBA doesn’t always
provide all the features that you need. In some cases, you might find that
the VBA IDE lacks functionality. You might think that Microsoft hasn’t really
addressed every need and that some tasks require too many steps to com-
plete. Rather than reinvent the wheel and write the addition yourself, con-
sider using one of these third-party products:

� MZ-Tools (http://www.mztools.com/): An interesting addition to the
VBA Integrated Development Environment (IDE) that provides missing
functionality. The menu-driven product contains a wealth of features to
make your next coding session faster and less error prone.

� EducationOnlineforComputers.com (http://www.educationonline
forcomputers.com/): A list of interesting links for discovering new
facts about VBA in general and Microsoft office products in specific.

� Add-ins.com (http://www.add-ins.com/): A listing of various add-ins
that you can use to enhance your Office experience. Many of these add-
ins are also programmable. All these products are shrink wrapped,
which means that you must buy before you try.

� The Spreadsheet Page (http://www.j-walk.com/ss/): A collection
of tips, hint, code, and useful downloads. Everything is either freeware
(no payment required) or shareware (try before you buy).

� ZDNet Downloads (http://downloads-zdnet.com.com/): A site that
you need to search carefully for development tools. However, the search

387Chapter 17: Ten Kinds of VBA Resources

25_046500 ch17.qxp 12/5/06 5:39 PM Page 387

is worthwhile because this site contains a wealth of development tools
and utilities.

� PRIME Freeware Products (http://www.primeconsulting.com/
freeware/): A site that has only free products. You can find everything
from a list of VBA annoyances to a bookmark pop-up utility that makes
using this feature easier. The site includes a number of other free
resource links.

Downloading ActiveX Controls
and Third-Party Components

A developer can never have too many controls and components. You don’t
necessarily have to use them all every time that you write a program. A well-
stocked toolbox of controls and components simply makes it easier to find
just the tool that you need. Use the following sites as a starting point to build-
ing your own control and component toolbox:

� VBA Store at ComponentSource: http://www2.componentsource.
com/Marketplace/

� ActiveX.COM: http://www.active-x.com/

� c|net Download.com: http://download.com.com/

� TopShareware: http://www.topshareware.com/

Using the Author As a Resource
The last resource in this chapter is me. That’s right — you can call on me at
any time to help you with any question that you might have with this book.
No, I won’t write your next college paper for you, and I don’t provide free
consulting on projects outside the scope of this book, but I can answer your
questions on how collections work.

I also want to hear your thoughts about this book. What do you think I can do
to improve it? What would you like to see in the next edition? If you think that
I can provide more information in a certain area, feel free to let me know. Any
errors or problems that you find are also issues that I want to know about.

You can contact me at JMueller@mwt.net. Unless I’m on vacation (rare), I
usually answer in around two days. Even if I don’t have an answer immediately,
I’ll let you know that I received your e-mail. Make sure that you check my Web
page for updates. Of course, you also find the source code and a few extras on
the Dummies.com site at http://www.dummies.com/go/vbafd5e.

388 Part V: The Part of Tens

25_046500 ch17.qxp 12/5/06 5:39 PM Page 388

Chapter 18

Ten Ways to Update Your Old VBA
Code Quickly

In This Chapter
� Using the Debugger to your advantage

� Fixing errant code using search-and-replace

� Locating Microsoft fixes

� Locating third-party fixes

� Keeping track of fixes that you create

� Getting free code from help

� Developing good listening skills

� Planning an update strategy

� Discovering update viability

� Using this book

Microsoft has made some subtle and not-so-subtle changes to Office
products that also affect your interactions with them. An example of a

subtle, but necessary, change is the size of the variable used to hold the size
of a disk drive. Because disk drives have increased in size so dramatically,
using a larger variable makes sense, but the change results in an error in your
code nonetheless. The best example of a not-so-subtle change is the Ribbon.
I’m sure that more than a few VBA programmers are wondering what to do
about that. Microsoft has supposedly promised a tool to fix the problem, but
might not come out with it very soon.

The focus of this chapter is how to update your code quickly. Not all these
tips will be useful in every situation. A search-and-replace fix works only
when there’s a direct change you can make, when you have a concise way to
express the search, and when there are enough places in which you must
make the fix to make using search-and-replace viable. For example, if you
have a variable that you use in a number of places in a module and the size
of that variable is wrong, you can probably fix it using search-and-replace.

26_046500 ch18.qxp 12/5/06 5:40 PM Page 389

Debugging Your Code Before
Making Changes

It may sound backward, but the easiest way to find problems in your code
is to use the Debugger. If your code is simple enough, you can usually get
through a module in a short time. Simply debug the code one message at a
time. At some point, the Debugger will report that your code is clean and you
can begin working on the less obvious problems (at least to the Debugger),
such as missing controls on the Ribbon.

Make sure you record every change you make because you might have the
same problems in other modules. By leveraging what you learn from the
Debugger, you can further speed the update. For example, you might be able
to combine what you learn with the search-and-replace technique. Make sure
you employ the techniques described in the “Asking Others About a Fix” sec-
tion, later in this chapter, as you debug your code. Sometimes you don’t need
to come up with an answer at all because someone else has already found it.

Using Search-and-Replace
to Your Advantage

Search-and-replace is something that just about everyone has used at one
time or another. You specify a search term and then ask the computer to look
for it and then replace the search term with the new expression you provide.
The process seems pretty straightforward, so many people don’t give it the
thought and consideration it deserves. However, search-and-replace can be
an enemy when it comes to code. Replacing some search terms fixes your
code; replacing others breaks it. Consequently, I usually don’t use the
Replace All option and check each change carefully unless there’s no doubt
that the search term appears only in the places that I think it will.

You display the Replace dialog box by using the Edit➪Replace command in
the Visual Basic Editor. The Find What field contains the search term, and the
Replace With field contains the new expression. It’s easy to change the scope
of the search by using the options in the Search area as follows:

� Current Procedure: Limits the search to the Sub or Function in which
the cursor appears. This option works best when you want to update a
single Sub or Function before you move on to the rest of the applica-
tion. Make sure that the changes you make are to standalone code that
doesn’t depend on the rest of the module for support.

390 Part V: The Part of Tens

26_046500 ch18.qxp 12/5/06 5:40 PM Page 390

� Current Module: Limits the search to the current file. Modules appear
as separate items in Project Explorer. Any change you make affects the
entire file, but doesn’t affect other files in the project. This option works
best when you’ve divided application functionality into individual mod-
ules and you want to update the module as a whole.

� Current Project: Doesn’t limit the search at all — the Visual Basic Editor
searches all the files in the current project. However, this feature doesn’t
change other projects that you might have loaded. Consequently, you
would need to change a document and its associated template sepa-
rately when a particular change affects both of them. This option works
best after you’ve located all the required changes and tested the fixes
and you want to update your entire application.

� Selected Text: Limits the search to the text you highlighted before dis-
playing the Replace dialog box. This option works best when you experi-
ence problems with a particular area of a procedure and want to update
only that part.

It’s also possible to limit the search by choosing a search direction (up,
down, or all), finding only whole words, or matching the case of the search
term. All these filters are common to any application that implements search-
and-replace. However, the Visual Basic Editor provides one other search
filter: pattern matching. A pattern is a combination of standard characters
and wildcard characters used to match more than one search term. For
example, typing S* would locate all words beginning with the letter S. Here is
a list of the wildcard character combinations:

� *: Matches any number of characters. For example, R*N would match
any word that begins with R and ends with N. The number of characters
between them is unimportant.

� ?: Matches a single character. For example, R?N would match RUN, but
not RETURN.

� #: Matches a single digit, 0 through 9. For example, R#N would match
R1N, but not RUN.

� [charlist]: Matches a single character in a list. For example, R[AU]N
would match either RAN or RUN, but not RON.

� [!charlist]: Matches a single character that doesn’t appear in a list. For
example, R[AU]N would match RON, but not RAN or RUN.

Asking Others About a Fix
Many people have a tendency to think that they’re the only ones experienc-
ing a particular problem. In other cases, the pressures of fixing a problem
now, not five minutes from now, keep people from looking for solutions that

391Chapter 18: Ten Ways to Update Your Old VBA Code Quickly

26_046500 ch18.qxp 12/5/06 5:40 PM Page 391

might help them. However, when it comes to VBA, you have a whole world of
people to ask. Unless you’re very unlucky, someone out there has experi-
enced a problem that’s similar to yours. It may not be precisely the same
problem, but the help is there if you want it. The following sections discuss
two sources of valuable fixes: Microsoft and third parties.

Finding fixes that Microsoft provides
Microsoft has gotten better about providing fixes in recent years. It isn’t the
best at it yet, but it has gotten better. Unfortunately, in the usual Microsoft
way of doing things, you can’t find what you need in a centralized location;
the information is usually spread out all over. However, you can use a struc-
tured approach to finding the fixes you need.

The first place you should look is in the newsgroups described in Chapter 17.
In many cases, people in the know will provide an answer or two that you
might have a hard time finding. Make sure you search the newsgroup first for
the answer you need, rather than simply assume that no one has asked the
question.

Another good place to look is in the Microsoft Knowledge Base. Whenever
a problem becomes significant enough to garner major public attention,
Microsoft posts a Knowledge Base article about it. When it comes to VBA,
Microsoft often posts sample code with the Knowledge Base article, so you
might have the fix you need without writing any code yourself. When you
perform a search of this type, it pays to use the advance search at http://
support.microsoft.com/search/?adv=1. Make sure you specify a prod-
uct (Office in most cases) and the keywords for your problem. Generally, you
should include VBA as one of the keywords.

The next place to look is Google. Interestingly enough, you can perform tar-
geted searches with Google that work far better than vendor search engines
in many cases. Don’t bother with the standard search in this case; use the
advanced search at http://www.google.com/advanced_search?hl=en.
Now, here’s the special search technique to remember. You enter your key-
words as normal in the Find Results area. However, you filter those results
by adding to the Domain field the Microsoft domain you want to search.
For example, if you want to search the Microsoft Office content, type
office.microsoft.com in the Domain field. Likewise, if you want to find
technical information, type msdn.microsoft.com or msdn2.microsoft.com
in the Domain field. Don’t forget to check the blogs in the blogs.msdn.com
domain. Lest you think that the blogs aren’t helpful, I found over 3,100 blog
entries related to VBA while writing this book.

392 Part V: The Part of Tens

26_046500 ch18.qxp 12/5/06 5:40 PM Page 392

Finding third-party solutions to problems
Third-party sources of fixes abound. Finding them is another matter. The
problem is locating what you need in printed or online form without wasting
the entire day. Generally, there aren’t any one-stop places to find a solution,
so don’t waste time going to your favorite Web sites and hoping to find an
answer. The best solution is to assume that you have an entire world at your
disposal and search with that idea.

The problem is to define your search well enough to avoid becoming over-
whelmed with hits you can’t use. The first two search terms you should use
are VBA and the name of your application, such as Word. When a problem is
specific to a particular version of a product, include the version as well, such
as 2007. When you use a search engine that supports it, such as Google,
include the error message as a phrase rather than as individual words. If
you have an error number, try including it as well.

Most people don’t realize it, but most search engines return different results
based on the order of the words you provide. Consequently, if you don’t see
what you need the first time, try the search terms again, but in a different
order.

Searches can sometimes fail when you’re too specific. If you don’t find what
you need in a couple of tries, use fewer search words. Try using individual
keywords from the error phrase or eliminate the phrase altogether in favor
of an error number. When you don’t see what you need, try asking your ques-
tion on a newsgroup or list server (after searching for your question).

Maintaining a Log
Creating a log of your VBA adventures may seem like a time-consuming task
in search of a problem, but it really can work. I set up an Access database for
my log. Whenever I encounter a problem, I go to my log first to determine
whether I’ve run into that problem before. It amazes me that I do commonly
run into the same problems more than once. Because I’ve recorded my expe-
rience, complete with source code, a fix is usually moments away.

What you put into your log depends on what kind of record you want to
create. A good log includes the date, product, and version, along with a short
description of the problem and a detailed description. You might also want to
include keywords to make searching easier. However, if you use keywords,
make sure you use the same keywords consistently so that the search
process really is easier.

393Chapter 18: Ten Ways to Update Your Old VBA Code Quickly

26_046500 ch18.qxp 12/5/06 5:40 PM Page 393

Grabbing Helpful Code from VBA Help
Microsoft will never tell you that it changed the size of a variable from one
version of Office to another. You see a What’s New section in the help system,
but generally it turns into a sales brochure that tells you how great Office is
and why you should recruit others to use it. So, it might seem at first that
help is pretty useless when it comes to updating your software. However, the
opposite is true.

Let’s say you find a bug in your program that appears only in Office 2007 and
that you’ve localized it to a short piece of code using the Debugger. At this
point, you have to ask yourself about assumptions you make regarding the
code. Compare your code to the example code in help. The comparison
process can often help you understand a difference in your code and what
Microsoft is expecting. For many developers, the “light” suddenly goes on
when they’re performing the comparison — the change becomes obvious.

Don’t be afraid to set up a test case using that example code and single-
stepping through it using the Debugger. In many cases, the act of single-
stepping through code and seeing how the variables change can help you
recognize a flaw in your own logic.

Getting Your Users to Help You
Users really aren’t annoying — at least not all the time. The reason I publish
my e-mail address throughout this book is that I depend on readers, people
who use my book and its associated code, to help me locate the errors that
somehow crept into the book when I wasn’t looking. You can do the same
thing. Ask users to provide help in locating problems with your application.
However, insist that they provide this input in a specific form that answers
these questions:

� What is wrong with the application? (Make sure that this information is
specific and not just worded as “It doesn’t work.”)

� Why is it wrong?

� How did you find the problem? (Insist on a set of steps.)

� Can you reproduce the problem every time you use the application?

� What do you suggest as a fix?

� How severe is this problem?

� Are you willing to test the fix?

394 Part V: The Part of Tens

26_046500 ch18.qxp 12/5/06 5:40 PM Page 394

Creating an Update Plan
Nothing works well without a plan. You created a plan to build the applica-
tion, and now you need a plan to update it. Chapter 2 discusses the planning
process for a new application, and that part of the process differs very little
for an update. You still have to know exactly what the application will do.
However, you shouldn’t have to start from scratch because you wrote down
your original design and can use it as a starting point. (You did, didn’t you?)

Updates require several planning steps that you don’t face with an original
application. The first question you have to ask is what to update. You need to
determine which modules and procedures within modules require a change
before you can do anything.

After you know what you have to update, you have to prioritize the changes. A
non-critical feature should appear lower on the list than a piece of code used
by every part of the application. Prioritizing your update makes it easier for
you to make the changes that count most first. Users can begin testing these
features before you make all the updates, so you’ll find potential problems ear-
lier in the process when they’re easier to fix. In addition, management knows
that you’re making progress because they see the updates you’re providing.

Make sure you discuss your plan and go over everything on paper before you
begin working with the code. It’s important that everyone agrees with the
changes you want to make and approves of the priority that you assign to
each update. In addition, other people may see problems with your plan that
you don’t see. For example, your application might rely on a module that you
can’t update properly because of changes that Microsoft has made.

Learning When That Old
Code Won’t Update

I’m almost positive that I’m not the only one in the world who has Word Basic
applications hanging around. Just in case you’ve never heard about Word
Basic, it’s an early form of VBA. This code is just about as incompatible as
it can get. In fact, unless your Word Basic application runs without a hitch
when you try it, you’ll probably want to decide between using your old ver-
sion of Word or updating the macros. That’s right: There is a point at which it
doesn’t pay to update really old code any longer, and for Word Basic applica-
tions, that point has come.

395Chapter 18: Ten Ways to Update Your Old VBA Code Quickly

26_046500 ch18.qxp 12/5/06 5:40 PM Page 395

However, Word Basic applications aren’t the only macros that are ready for
the trash heap. Because Office 2007 introduces so many incompatibilities, it
might be a good time to review your entire code base. Sometimes, it doesn’t
pay to update poorly maintained and documented code because there simply
isn’t any way to make it better. Given the new Office environment, especially
for the applications that use the Ribbon, now might be the best opportunity
you’ll ever have to get a clean start on some of your code.

Before you begin ripping your hair out, it’s important to remember that there
are many levels of update. You may decide to keep the business logic from
your current applications (usually a good decision) and rework the user
interface. An update of this sort acknowledges that there were probably
problems with the user interface anyway, and the update merely cleans
house. Always consider the state of your application before you make the
decision to update, stay with your current environment, create a new applica-
tion based on the old one, or do something in-between.

Using the Code in This Book for Updates
All the examples in this book run well under Office 2007, and they’ve also
been tested to work with Office 2003. In some cases, you can’t make the code
work in both places, but knowing that is actually an advantage. For example,
you need separate code to determine the size of a disk drive in Office 2003
and earlier, and in Office 2007 because the variable sizes are different (and
incompatible). Listing 6-1, over in Chapter 6, shows you the technique for
determining the amount of space on a drive, and you’ll find the information
about the new variable size later in that chapter. These little tidbits of infor-
mation can prove quite helpful as you begin updating your code.

Even when you can’t use the information in this book directly, you can use
the examples as prototypes. A prototype is an example of what you’ll do in
your code. It’s purposely generic so that it can fit a variety of situations. In
addition, a prototype is really meant as a model rather than as a precise solu-
tion. The idea behind using a prototype is to get an idea of what you want to
do from the prototype so that you don’t have to reinvent the wheel. The idea
is there — now all you need to do is expand it to fit your particular needs.

396 Part V: The Part of Tens

26_046500 ch18.qxp 12/5/06 5:40 PM Page 396

• Symbols •
& (ampersand), adding strings together

with, 84–86
+ (plus sign), adding strings together with,

84–86

• A •
abstract code, 107
abstraction, creating with objects, 182
accelerator keys, on forms, 158
Access 2007 All-in-One Desk Reference For

Dummies (Simpson, Young, and
Barrows), 330

Access 2007 For Dummies (Kaufeld, Fuller,
and Cook), 330

Access 2007 Forms & Reports For Dummies
(Underdahl), 330

AccessExternalProgram function, calling,
364–365

accessibility, of user environment, 258
Acronym fields, hiding, 351–352
ActiveX controls, Web sites offering, 388
Add Watch dialog box, modifying

expressions with, 153–154
aesthetics, of user environment, 258
ampersand (&), adding strings together

with, 84–86
application configuration information,

storing, 230–231
application library, overview, 30
Application object, using in Access,

332–334
application plans, creating, 67
arguments, in IIf function, 119
arithmetic operators, overview, 106
arrays

classifying, 208
copying data between, 211–213
function of, 205

two-dimensional, 208–211
understanding usage of, 206–208

asynchronous calls, accessing external
programs with, 357

automatic macro execution, reasons for
disabling, 46

• B •
balloon help, changing, 259
Barrows, Alison (Access 2007 All-in-One

Desk Reference For Dummies), 330
base 2 format, computers using, 93–94
base 8 format, using, 94–96
base 10 format, defined, 92
base 16 format, using, 94–96
beta programs, finding run-time errors in,

136–137
binary numbers, computers using, 93–94
bits, computer storing information as, 79
Boolean data type, making decisions with,

98
breakpoints

executing, 148
viewing current value of variables at,

149–150
buffer overrun

avoiding, 139
validating user input to avoid, 176

bugs. See also Debug tool; debugging
avoiding buffer overrun, 176
finding with conditional compilation, 63–64
fixing in one-line programs, 39
from GoTo statement, 130
origins of, 40
reasons for avoiding, 138
recovering from, 140–143
reporting, 146
understanding, 134
understanding compile errors, 135–136
understanding run-time errors, 136–137

Index

27_046500 bindex.qxp 12/5/06 5:40 PM Page 397

bugs (continued)
understanding semantic errors, 137–138
understanding syntax errors, 134–135
using error handlers for, 144–145
ways of avoiding run-time, 139–140
writing error handlers for, 145–147

buttons
adding to Ribbon interface, 269–271
creating toggle, 273–274

• C •
calculations

ability to perform, 13
performing in Excel, 326
using currency values for money, 100–101
using numbers for, 92–97
using scientific values for math, 99–100

callbacks
performing tasks while loading Ribbon

interface, 271–272
understanding, 269

calls
accessing external programs with,

357–358
creating in Win32 API, 358–362
encapsulating to external programs,

362–364
to external programs, 364–365

Caption property, for Window objects,
285–286

Case Else clause, adding to Select Case
statement, 123

character codes, using in strings, 87–88
characters

creating special, 87–88
getting numeric value of, 88

Chart object, accessing, 306–308
charts

creating in Excel with Charts collection,
314–319

designing rotating presentation of in
Excel, 321–323

Charts collection, creating charts in Excel
with, 314–319

check boxes, using on forms, 165–167

class modules
function of, 22
as VBA program element, 53

classes
adding error handling to, 200–202
advantages in object-oriented

programming, 182
basic design overview, 185–186
defining properties for, 186–190
versus Functions/Subs, 183
initializing, 195–196
instantiating objects with, 184
versus objects, 181–182
types of, 184–185
useful, 197–198

Clipboard
copying record to, 352–354
interacting with when writing

applications, 165
CloseHandle() call, defining, 362
code

abstract, 107
accessing VBA programs from other VBA, 45
adding breakpoints to, 148
adding comments to, 77–78
adding modules, 69
creating application plans for, 67
creating readable, 77
debugging before changing, 390
debugging run-time errors with, 137
defining projects for, 68–69
designing procedures for, 70
error recovery, 140–143
executing one line at a time, 149
for handling user events, 160
Lego approach to writing, 66
Microsoft providing fixes for, 392
saving and restoring, 147
taking from VBA Help feature, 394
updating with search-and-replace feature,

390–391
using Microsoft to create VBA programs,

47–48
Web sites offering, 386–387
writing error-handling, 144–146
writing statements for, 70

398 VBA For Dummies, 5th Edition

27_046500 bindex.qxp 12/5/06 5:40 PM Page 398

code locking
for security, 63
using, 64

Code window
function of, 17
implementing one-line program design

with, 36
using, 25–27

collections. See also specific collections
accessing predefined objects from,

219–220
adding keyed data to, 217–219
Charts, 314–319
common used in Access, 344–345
Connections, 344
creating own, 222–228
creating/using, 213–217
Databases, 345
deciding when to use, 216
Documents, 278–280
Fields, 345
InlineShape, 292–295
overview, 213
QueryDefs, 345
Recordsets, 345
Relations, 345
Sheets, 308–314
TableDefs, 345
Templates, 281–283
understanding, 205
Windows, 283–286, 319–321
Workbooks, 306–308
Workspaces, 334–336

color, of user environment, 258
combo boxes, using on forms, 170–172
command buttons, executing tasks with,

163–165
Command object, 345
commands, accessing special in Access

with DoCmd object, 345–347
comments

adding to code, 77–78
adding to custom functions in Excel,

326–327
comparison operators, overview, 106

comparisons, using If...Then...Else
statement for, 115–117

“Compatibility Mode,” added to early Word
files, 288, 297

compile errors, understanding, 135–136
compiler, function of, 135–136
compiler options, understanding, 65–66
complexity, If...Then statement

reducing, 113
component class, understanding, 184. See

also classes
concatenation, of strings, 84–86
conditional compilation, adding, 63–64
configuration files

reading, 235–238
writing, 232–235

Connections collection, 344
consistency, If...Then statement

providing, 112
constants

advantages of using, 82–83
declaring, 80–81
defining scope for, 83
using enumerated, 194–195
versus variables, 80

content, modifying on toolbars/menus,
263–264

content nation operators, overview, 106
continuation characters, using, 73
control class, understanding, 184–185. See

also classes
control structures, function of, 112. See

also structures
controls

adding to forms, 159
adding to Toolbox, 172–173
basic, 158–159
CheckBox, 165–167
ComboBox, 170–172
for forms, 158
Frames, 167–170
Label, 160–161
ListBox, 170–172
OptionButton, 167–170
TextBox, 161–163
ToggleButton, 165–167

399Index

27_046500 bindex.qxp 12/5/06 5:40 PM Page 399

conversions
considerations for properties, 189–190
performing between strings and numbers,

96–97
performing in Excel, 325–326

Cook, Ken (Access 2007 For Dummies), 330
Corel applications, using VBA with, 15
CreateProcessA() call

accessing external programs with, 357–358
defining, 358–361

creating a process, understanding, 357–358
currency, defined, 92
currency values, using for money

calculations, 100–101
CurrentDB object

converting numeric type values into
strings in Access, 343–344

getting database configuration
information with in Access, 341–343

Custom UI Editor
adding tabs/groups/buttons to Ribbon

interface with, 267–269
changing Ribbon interface with, 267–269
potential errors using, 276

cutting, in Object Browser, 32

• D •
data

adding keyed to collections, 217–219
classifying arrays by, 208
computer storing, 79
copying from array to array, 211–213
creating and using array for string,

206–208
defining schema for XML, 243–245
exporting XML to disk, 246–247
finding in strings using parsing, 90–92
formatting, 104–106
storing in arrays, 206–213
storing in collections, 213–220
storing on disk, 231–232
writing XML to disk, 243

data conversion, performing in Excel, 325–326
data sets

accessing collection items, 219–220
adding keyed data to collections for,

217–219
using collections for, 213–217

data tips feature, 149–150
data translation, storing, 231
data types
Boolean, 98
creating own, 222–228
Currency, 100–101
Date and Time, 101–103
InNumber, 145
numbers, 92–97
overview, 83–84
reasons to create own, 222
scientific, 99–100
strings, 84–92
understanding user-defined, 221–222

database management, defined, 330
databases. See also Microsoft Access

accessing information from, 13–14
adding data to, 217–219
adding users to, 335–336
getting configuration information on,

341–343
Databases collection, 345
date values, using, 101–103
DBEngine object, modifying security with

in Access, 336–341
Debug tool

accessing, 148
executing breakpoints for, 148–149
executing one line of code at a time with, 149
using with collections, 220

Debug.Assert method
executing breaks with, 149
using with Immediate window, 150–151

debugging
code before changing, 390
with conditional compilation, 63–64
with Immediate window, 150–151

debugging code, using for run-time errors,
137

Debug.Print method, using with
Immediate window, 150–151

decimal format, defined, 92
decisions

handling unforeseen, 123
using If...Then statement for, 113–115
using IIf function for inline, 119–120
using Select Case statement for

multiple, 120–123

400 VBA For Dummies, 5th Edition

27_046500 bindex.qxp 12/5/06 5:40 PM Page 400

declarations, constant versus variables,
80–81

decoration, on forms, 158
digital signature, adding to projects,

203–204
dimensions, array, 208
disk storage. See also storage

of application configuration information,
230–231

of data, 231–232
for data translation, 231
overview, 229–230
writing INI files for, 232–235

disks
exporting XML data to, 246–247
importing XML data from, 247

displaying, toolbars/menus, 261–263
displays, changing user environment, 259
DLL (Dynamic Link Library) files, libraries

in, 30
Do Until...Loop statement, using, 126
Do While...Loop statement, using,

124–126
DoCmd object, accessing special commands

in Access with, 345–347
document automation, abilities, 12
document folders, storing application

configuration information in, 231
documents

accessing specific text elements in Word,
286–289

automatically saving using XSLT, 252–253
creating simple XML, 247–249
getting information on, 278–280
manipulating text in Word, 295–299
manually saving using XSLT, 250–252
saving in WordML versus XML, 240–243
selecting objects in Word, 291–295
sending notes from Word to Excel

worksheets, 374–378
sending Word by Outlook e-mail, 368–374

Documents collection, using in Word, 278–280
Documents objects, in Documents

collection, 278
Do...Loop Until statement, using, 126
Do...Loop While statement, using, 126
Dynamic Link Library (DLL) files, libraries

in, 30
dynamic lists, versus static lists, 170

• E •
editing, using Do While...Loop

statement, 124–126
efficiency, with changed user environment,

260
e-mail

list servers accessed through, 386
processing Outlook with Word, 365–368
reporting errors with, 146
sending with Outlook, 368–374

encapsulation, in object-oriented
programming, 182

e-newsletters, for VBA resources, 382–383
enumerated constants, using in objects,

194–195
enumerating constants, value of, 83
envelopes

designing form for, 300
printing, 301–302

error handling
adding to classes, 200–202
adding to programs, 145–147
understanding, 144–145
usefulness of, 133

error trapping
usefulness of, 133
using with Select Case statement, 122

errors. See also Debug tool; debugging
avoiding buffer overrun, 176
finding with conditional compilation,

63–64
fixing in one-line programs, 39
from GoTo statement, 130
origins of, 40
potential using Custom UI Editor, 276
reasons for avoiding, 138
recovering from, 140–143
reporting, 146
understanding, 134
understanding compile, 135–136
understanding run-time, 136–137
understanding semantic, 137–138
understanding syntax, 134–135
using error handlers for, 144–145
ways of avoiding run-time, 139–140
writing error handlers for, 145–147

event handler, code as, 160

401Index

27_046500 bindex.qxp 12/5/06 5:40 PM Page 401

events
firing, 193–194
handling form, 176–177
understanding object, 18
user interaction as, 160

exits, using GoTo statement for, 132
exporting, XML data to disk, 246–247
eXtensible Markup Language (XML)

creating document in Word, 247–249
defining schema for data, 243–245
exporting data to disk, 246–247
importing data from disk, 247
overview, 239–240
using XSLT with, 249–253
versus WordML, 240–243
writing data to disk, 243

eXtensible Style Language Transformation
(XSLT)

automatically saving Word documents
using, 252–253

manually saving Word documents using,
250–252

overview, 249–250
external programs. See also programs

accessing, 357–358
calling, 364–365
encapsulating call process to, 362–364
interacting with, 357

• F •
failing gracefully, 144–145
feature bloat, problems of, 356
features

adding to applications, 14
searching in Object Browser, 31

fields, defined, 329
Fields collection, 345
files

“Compatibility Mode” added to early
Word, 288, 297

compatibility with Ribbon interface, 267
libraries in Dynamic Link Library, 30
reading configuration, 235–238
reporting errors with text, 146
writing configuration, 232–235

flexibility, of form display, 158

flow
form, 157
redirecting program, 130–132
of user environment, 258

flowcharting technique, designing VBA
programs with, 35

folders, storing application configuration
information in, 230–231

For Each...Next statement, using, 129–130
Format function, using, 104–105
formatting, data, 104–106
forms

adding controls to, 159
creating attractive, 174
creating connection between modules, 175
creating to interact with two-dimensional

arrays, 209–211
designing, 156–157
designing envelope/label in Word, 300
displaying text on with Label control,

160–161
executing tasks with command buttons

on, 163–165
function of, 22
getting user input with text boxes on,

161–163
handling events for, 176–177
layout considerations of, 157–158
modeless versus modal, 175
modifying form and control properties of,

173–174
overview, 155
two parts of, 160
using check boxes and toggle buttons on,

165–167
using creatively, 156
using lists boxes and combo boxes on,

170–172
using option buttons and frames on,

167–170
validating user input for, 175–176
as VBA program element, 53
working within Access, 351–354

For...Next statement, using, 127–129
frames, using on forms, 167–170
Fuller, Laurie Ulrich (Access 2007 For

Dummies), 330

402 VBA For Dummies, 5th Edition

27_046500 bindex.qxp 12/5/06 5:40 PM Page 402

Function elements
versus classes, 183
function of, 53
using, 61
writing, 73–75

• G •
Get method, constructing properties with,

187
global variables

defining scope with, 76–77
using with option buttons, 168–169

GoTo statement
misuse of, 131–132
overview, 130
using correctly, 130–131

graphics
changing user environment, 259
of user environment, 258

groups, adding to Ribbon interface,
269–271

• H •
handles, Win32 API returning, 358
hard drive space, checking for lack of,

140–143
Help window, using with properties, 24–25
hexadecimal numbers, using, 94–96
hiding, toolbars/menus, 261–263
highlights

applying to text in Word, 296–298
removing from text in Word, 298–299

• I •
IDE (Integrated Development

Environment), overview, 16–17
If...Then statement

benefits of, 112–113
using for decisions, 113–115

If...Then...Else statement, using for
comparisons, 115–117

IIf function, using, 119–120
Immediate window

debugging with, 150–151
using, 27–29

importing, XML data from disk, 247
IMSI TurboCad, using VBA with, 15
index, in arrays, 207
information. See data
inheritance, in object-oriented

programming, 182
INI files

reading, 235–238
writing, 232–235

initialization, of classes, 195–196
inline decisions, using IIf function for,

119–120
InlineShape collection, working with

embedded objects using, 292–295
InNumber data types, function of, 145
input

getting user with text boxes, 161–163
reacting to user, 274–276
validating user, 175–176

input errors, avoiding, 139
InputBox function, function of, 145
instancing property, setting, 197
integers, defined, 92
Integrated Development Environment

(IDE), overview, 16–17

• K •
Kaufeld, John (Access 2007 For Dummies),

330

• L •
Label control, displaying text with,

160–161
labels

designing form for, 300
printing, 302–304

Lego approach
adding modules, 69
creating application plans, 67
defining projects, 68–69
designing procedures, 70
overview, 66
writing statements, 70

Let method, constructing properties with,
187

libraries, versus projects, 30

403Index

27_046500 bindex.qxp 12/5/06 5:40 PM Page 403

library references, missing, 139–140
list servers, as VBA resource, 386
lists

dynamic versus static, 170
using lists boxes and combo boxes for,

170–172
using option buttons for, 167–170

lists boxes, using on forms, 170–172
Locals window, using, 151–152
logic, of user environment, 258
logical operators, overview, 106
logs, maintaining for troubleshooting, 393
loops
Do Until...Loop, 126
Do While...Loop statement, 124–126
Do...Loop Until, 126
Do...Loop While, 126
For Each...Next, 129–130
For...Next, 127–129
overview, 124
replacing with GoTo statement, 132

LTrim, function of, 89

• M •
Macro dialog box

modifying macros through, 58
running programs with, 40–41

Macro Recorder
modifying macros with, 58–60
overview, 54
using menu interface with, 57–58
using Ribbon interface with, 54–56

macros
automatically executing, 46
displaying available in Access 2007, 332
modifying with Macro Recorder, 58–60
recording using menu interface, 57–58
recording using Ribbon interface, 54–56
setting security for in Office, 20–21
using under Vista, 19–20

magazines, for VBA resources, 382
Mansfield, Richard (XML All-in-One Desk

Reference For Dummies), 240
math calculations

performing in Excel, 326
using scientific values for, 99–100

memory leaks, avoiding, 364
menu entries, defining, 45

menus
adding/removing, 265–266
changing, 258–259, 260–261
displaying/hiding, 261–263
modifying content on, 263–264

message boxes, reporting errors with, 146
methods

calling, 191–193
understanding object, 18

Micrografx iGrafx series, using VBA with, 15
Microsoft Access

accessing special commands in with
DoCmd object, 345–347

adding form-related programs to, 351–354
common objects in collections used in,

344–345
converting numeric type values into

strings with CurrentDB object,
343–344

creating automatic programs, 354
creating SQL query in, 347–349
creating sub-procedures in, 331–332
defining work area with Workspaces

collection in, 334–336
getting database configuration

information with CurrentDB object in,
341–343

modifying security with DBEngine object
in, 336–341

objects in, 331
overview, 329–331
using Application object in, 332–334
using SQL queries in, 349–351

Microsoft Excel
accessing worksheets with Sheets

collection in, 308–311
adding and formatting worksheets with

Sheets collection in, 311–313
adding comments to custom functions in,

326–327
creating charts in with Charts collection,

314–319
creating linkage to XSD file, 245–246
deleting worksheets with Sheets

collection in, 314
designing report in, 107–109
developing custom functions in, 324–325
document automation in, 12
macro storage locations in, 56

404 VBA For Dummies, 5th Edition

27_046500 bindex.qxp 12/5/06 5:40 PM Page 404

performing data conversion in, 325–326
performing math calculations in, 326
selecting objects in, 321–323
sending notes to from Word, 374–378
using Windows collection in, 319–321
using Workbooks collection in, 306–308

Microsoft Internet Explorer, opening XML
documents with, 241

Microsoft Knowledge Base
finding Microsoft mistakes on, 39
providing code fixes, 392

Microsoft Office. See also specific
applications

accessing Registry, 290–291
finding VBA in, 10–11
home page, 381
setting macro security for, 20–21
starting Visual Basic Editor in, 18–19
using VBA with, 12–15

Microsoft Outlook
processing e-mail from with Word, 365–368
sending e-mail with, 368–374

Microsoft Scripting Runtime Library,
checking for lack of hard drive space
with, 141

Microsoft Visual Basic for Applications
home page, 381

Microsoft Visual Basic home page, 381
Microsoft Word

accessing documents in, 286–289
automatically saving documents using

XSLT, 252–253
creating XML document in, 247–249
designing envelope/label forms in, 300
document automation in, 12
macro storage locations in, 56
manipulating text in, 295–299
manually saving documents using XSLT,

250–252
processing Outlook e-mail with, 365–368
saving documents in WordML versus

XML, 240–243
selecting objects, 291–295
sending documents by Outlook e-mail,

368–374
sending notes to Excel from, 374–378
using Documents collection in, 278–280
using Templates collection in, 281–283
using Windows collection in, 283–286

Microsoft-specific newsgroups, as VBA
resource, 384–385

modal forms, choosing, 175
modeless forms, choosing, 175
modular programming. See Lego approach
modules

adding, 69
creating connection between forms in, 175
exporting from programs, 147
function of, 22
importing in programs, 147
as VBA program element, 53

money, using currency values for
calculations of, 100–101

Mozilla Firefox, opening XML documents
with, 241

MsgBox function, displaying MessageBox
with, 36–37

• N •
names, searching in Object Browser, 31
naming

projects, 62
properties, 190

nesting, control structures, 112
newsgroups

providing code fixes, 392
as VBA resource, 384–386

newsletters, for VBA resources, 382–383
Normal.dot template, 280, 281
Normal.dotm template, 280, 281
Normal.dotx template, 280, 281
notes, sending from Word to Excel, 374–378
numbers

converting into strings in Access, 343–344
performing conversions between strings,

96–97
understanding types of, 92–93
using octal and hex values, 93–96

• O •
Object Browser

using, 29–32
using with collections, 220

Object Linking and Embedding (OLE),
understanding, 291–292

405Index

27_046500 bindex.qxp 12/5/06 5:40 PM Page 405

object-oriented programming (OOP),
understanding, 182

objects
in Access, 331
accessing predefined from collections,

219–220
Application, 332–334
browsing, 30
Chart, 306–308
versus classes, 181–182
Command, 345
common used in Access, 344–345
creating, 222–223
creating collection of, 223–225
creating event, 194–195
creating method, 191–193
CurrentDB, 341–344
DBEngine, 336–341
DoCmd, 345–347
Documents, 278
instantiating, 184
Pane, 283, 288
providing error handling in, 200–202
seeing in Project Explorer, 21–22
selecting in Excel, 321–323
Templates, 278, 281
testing, 198–199
understanding, 18
using enumerated constants in, 194–195
using With statement with, 202
Window, 283–286
Workbook, 306–308
working with embedded, 292–295
Worksheet, 306–308
Workspace, 334–336

octal numbers, using, 94–96
Office library, overview, 30
OLE (Object Linking and Embedding),

understanding, 291–292
On Error GoTo 0 statement, function of, 145
one-line programs

creating in Immediate window, 28–29
designing, 35
fixing bugs in, 39
implementing design of, 36–37
planning creation of, 34
testing design as, 38–39

OOP (object-oriented programming),
understanding, 182

operators, understanding, 106–107
Option Base Number statement, function

of, 65
option buttons, using on forms, 167–170
Option Compare Method statement,

function of, 65
Option Explicit statement

finding variable typos with, 134–135
function of, 65

Option Private Module statement,
function of, 65

overview, creating, 67

• P •
Pane object

accessing data within Word documents
with, 288

versus Window object, 283
parsing, extracting information from

strings using, 90–92
pasting, in Object Browser, 32
periodicals, for VBA resources, 382
planning, creation of one-line programs, 34
plus sign (+), adding strings together with,

84–86
printing

envelopes, 301–302
labels, 302–304

privacy, including in program structure, 51
Private keyword, function of, 75
procedural languages, versus object-

oriented programming, 182
procedures

designing, 70
Functions/Subs for, 183

program resource problems, avoiding, 139
programs. See also external programs; VBA

programs; specific programs
ability to modify, 9, 14–15
adding error handlers to, 145–147
adding new features to, 14
customizing interface of, 12–13
debugging with conditional compilation,

63–64

406 VBA For Dummies, 5th Edition

27_046500 bindex.qxp 12/5/06 5:40 PM Page 406

developing test for user-defined data
types, 227–228

disrupting existing flow of, 130–132
exporting/importing modules from/to, 147
failing gracefully, 144–145
listing windows in, 319–321
problems of feature bloat in, 356
understanding, 52–53
using new objects in, 198–199

progress meter, using in Access, 333–334
Project Explorer, using, 21–23
Project Explorer window, function of, 17
project folders, storing application

configuration information in, 231
projects

accessing setting options for, 61–62
adding conditional compilation to, 63–64
adding digital signature to, 203–204
defining, 68–69
versus libraries, 30
locking, 64
naming, 62
versus programs, 52–53
understanding, 21
as VBA program element, 53

prompts, on forms, 158
properties

construction methods for, 187–189
conversion considerations for, 189–190
creating default for user-defined data

types, 225–227
function of, 186
modifying form, 173–174
modifying on toolbars/menus, 263–264
naming considerations for, 190
setting instancing, 197
understanding object, 18
using Help window with, 24–25

Properties dialog box, displaying in Office, 71
Properties window

function of, 17
using, 23–25

property types, understanding, 23–24
prototypes, for Win 32 API, 357
pseudo-code

designing one-line programs with, 35
implementing program design with, 36–37

Public keyword, function of, 75

• Q •
queries

creating an SQL, 347–349
using SQL in Access, 349–351

QueryDefs collection, 345

• R •
real numbers, defined, 92
records, defined, 329
Recordsets collection, 345
recovery, from errors, 140–143
Registry

accessing in Office, 290–291
storing settings, 289
Vista restricting access to, 289
working with embedded objects using,

292–295
Relations collection, 345
reports, designing in Microsoft Excel,

107–109
Ribbon interface

adding tabs/groups/buttons to, 269–271
changes in Office 2007, 10–11
changing menus and toolbars versus,

260–261
changing with Custom UI Editor,

267–269
customizing in Excel, 318–319
displaying toolbars, 263
file compatibility with, 267
modifying existing tabs on, 272–276
overview, 266
performing tasks while loading, 271–272
recording macros using, 54–56

Rich Site Summary (RSS), as VBA resource,
383–384

right-clicking, in Project Explorer, 22–23
rotating chart presentation, designing in

Excel, 321–323
RTrim, function of, 89
Run Sub/User Form button, running VBA

programs with, 38
run-time errors

lack of hard drive space, 140–143
understanding, 136–137
ways of avoiding, 139–140

407Index

27_046500 bindex.qxp 12/5/06 5:40 PM Page 407

• S •
SaveAs method, writing XML data to disk

with, 243
schemas, working with XML data with,

243–245
scientific values, using for math

calculations, 99–100
scope

defining effects of, 76–77
including in program structure, 51
overview, 75
of properties, 187
purpose of, 75
for variables and constants, 83

search-and-replace feature, updating code
with, 390–391

security
avoiding buffer overrun for, 176
with changed user environment, 260
code locking for, 63
issues when working with Vista and

Access, 336
modifying in Access, 337–341
setting for macros in Office, 20–21
setting property, 187
for Vista, 19–20

Select Case statement
adding Case Else clause to, 123
using, 121–123

semantic errors, understanding, 137–138
SendKeys function, 128–129
Setmethod, constructing properties with, 187
settings

changing user, 259
storing, 229–230
storing in Registry, 289
writing INI files for storing, 232–235

Sheets collection
accessing worksheets with, 308–311
adding and formatting worksheets with,

311–313
deleting worksheets with, 314

shortcut keys, defining, 42
Simpson, Allen (Access 2007 All-in-One

Desk Reference For Dummies), 330

space
checking for lack of hard drive, 140–143
removing excess from strings, 89–90

spaghetti code, defined, 66
special characters, creating, 87–88
special entries, working within Project

Explorer, 23
speed, If...Then statement providing,

112
SQL

creating query in, 347–349
overview, 347
resources for, 349
using queries from, 349–351

SQL For Dummies (Taylor), 349
statements

as VBA program element, 53
writing, 70

Static keyword, adding to properties, 187
static lists, versus dynamic lists, 170
StdOLE Library, overview, 30
Step Into button (Debug tool), 149
Step Out button (Debug tool), 149
Step Over button (Debug tool), 149
storage. See also disk storage

for macros, 56, 57
understanding computer, 79
using arrays for, 206–213
using collections for, 213–220
using constants versus variables, 80–83

strings
adding together, 84–86
converting in Excel, 325–326
converting numeric type values into in

Access, 343–344
creating and using arrays for data in,

206–208
finding information in, 90–92
overview, 84
performing conversions between

numbers, 96–97
removing excess space from, 89–90
using character codes in, 87–88

structures
controlling program execution with, 112
If...Then statement, 112–115
If...Then...Else statement, 115–117

408 VBA For Dummies, 5th Edition

27_046500 bindex.qxp 12/5/06 5:40 PM Page 408

IIf function, 119–120
overview, 51–52, 111
Select Case, 120–123

Sub elements
versus classes, 183
function of, 53
implementing one-line program design

with, 36
using, 60–61
writing, 71–73

Summary tab (Properties dialog box),
usefulness of, 71

synchronous calls, accessing external
programs with, 357

syntax errors, understanding, 134–135

• T •
TableDefs collection, 345
tabs

adding to Ribbon interface, 269–271
creating custom user interface for,

273–274
modifying on Ribbon interface, 272–273
setting to react to user input, 274–276

Taylor, Allen G. (SQL For Dummies), 349
templates

getting information on documents using
specific, 278–280

listing properties of Word, 282–283
understanding Word, 281

Templates collection, using in Word,
281–283

Templates objects
versus Documents objects, 278
understanding, 281

test program, developing for user-defined
data types, 227–228

testing
objects, 198–199
one-line program design, 38–39

text
displaying with Label control, 160–161
manipulating in Word, 295–299
typing in Code window, 27
using strings for, 84–92

text boxes, getting user input using,
161–163

text files, reporting errors with, 146
third-party components, Web sites

offering, 388
third-party fixes, for code problems, 393
time values, using, 101–103
toggle buttons

creating, 273–274
using on forms, 165–167

toolbar buttons, defining for VBA
programs, 42–44

toolbars
adding VBA program to, 43–44
adding/removing, 265–266
changing, 258–259, 260–261
displaying/hiding, 261–263
modifying content on, 263–264

Toolbox
adding controls to, 172–173
adding controls to forms with, 159
overview, 17–18

tools
ability to make special, 14
Web sites offering, 387–388

training, with changed user environment,
259

Trim, function of, 89
two-dimensional arrays

creating, 208–209
creating forms to interact with, 209–211

typos, as syntax errors, 134–135

• U •
Underdahl, Brian (Access 2007 Forms &

Reports For Dummies), 330
update plan, creating, 395
updating

with changed user environment, 259
code, 390–396

user environment
beneficial changes available, 258–259
overview, 257–258
potential problems with changing,

259–260

409Index

27_046500 bindex.qxp 12/5/06 5:40 PM Page 409

user folders, storing application
configuration information in, 230

user interface
adding controls to forms for, 159
basic controls for, 158–159
creating custom for Ribbon interface

tabs, 273–274
designing forms for, 156–157
displaying text for with Label control,

160–161
form layout considerations for, 157–158
getting input with text boxes, 161–163
reacting to user input, 274–276
of user environment, 258
using check boxes and toggle buttons for,

165–167
using forms for, 155–156
using option buttons for, 167–170
validating user input, 175–176

user-defined data types
creating collection, 223–225
creating default property for, 225–227
creating object, 222–223
developing test program for, 227–228
reasons to create, 222
understanding, 221–222

users, providing code assistance, 394

• V •
variables

advantages of using, 81–82
versus constants, 80
creating in Immediate window, 28
declaring, 80–81
defining scope for, 83
viewing current value of at breakpoints,

149–150
variant data, working with, 103–104
VBA library, overview, 30
VBA options, finding, 10–11
VBA programs. See also one-line programs

accessing from other VBA code, 45
defining toolbar button for, 42–44
elements of, 53
executing automatically, 46
planning creation of, 34
running with a shortcut key, 42

running with Macro dialog box, 40–41
running with menu entry, 45
running with Run Sub/User Form button, 38
structure in, 51–52
using Microsoft code to create, 47–48

views, setting to access Word document
data, 288

Visio, macro storage locations in, 57
Vista

restricting Registry access, 289
security for, 19
security issues when working with

Access, 336
Visual Basic Editor

accessing in Access 2007, 330–331
starting, 18–19

• W •
Wagner, Richard (XML All-in-One Desk

Reference For Dummies), 240
WaitForSingleObject() call, defining,

361–362
Watches window

adding watch expression with, 153
using, 152
using Add Watch dialog box in, 153–154

Web sites
for ActiveX controls and third-party

components resources, 388
for code resources, 386–387
for e-newsletter VBA resources, 382–383
for general VBA resources, 381
list servers accessed through, 386
for magazine and periodical VBA

resources, 382
for Microsoft-specific newsgroups, 384–385
for SQL resources, 349
for third-party newsgroups, 385–386
for tools resources, 387–388

wildcard characters, for search-and-
replace, 391

Win32 Application Programming Interface
(API)

accessing external programs through,
357–358

calling external programs with, 364–365
creating calls in, 358–362

410 VBA For Dummies, 5th Edition

27_046500 bindex.qxp 12/5/06 5:40 PM Page 410

encapsulating call process to external
programs, 362–364

VBA providing access to, 357
Window object, managing document view

with, 283–286
Windows collection

using in Excel, 319–321
using in Word, 283–286

Windows Event Log, reporting errors with,
146

With statement, using with objects, 202
WordML, versus XML, 240–243
words, modifying using Do While...Loop

statement, 124–126
Workbook object, using in Excel, 306–308
Workbooks collection, using in Excel,

306–308
workgroup folders, storing application

configuration information in, 231
Worksheet object, accessing, 306–308
worksheets

accessing with Sheets collection,
308–311

accessing with Workbooks collection,
306–308

adding and formatting with Sheets
collection, 311–313

deleting with Sheets collection, 314
selecting objects in Excel, 321–323
sending notes from Word documents to

Excel, 374–378
Workspace object, defining work area with

in Access, 334–336
Workspaces collection, defining work area

with in Access, 334–336

• X •
XML (eXtensible Markup Language)

creating document in Word, 247–249
defining schema for data, 243–245
exporting data to disk, 246–247
importing data from disk, 247
overview, 239–240
using XSLT with, 249–253
versus WordML, 240–243
writing data to disk, 243

XML All-in-One Desk Reference For
Dummies (Wagner and Mansfield), 240

XML Schema Definition (XSD)
creating, 244–245
creating linkage to Excel worksheet,

245–246
XSLT (eXtensible Style Language

Transformation)
automatically saving Word documents

using, 252–253
manually saving Word documents using,

250–252
overview, 249–250

• Y •
Young, Margaret Levine (Access 2007 All-in-

One Desk Reference For Dummies), 330

411Index

27_046500 bindex.qxp 12/5/06 5:40 PM Page 411

Notes

27_046500 bindex.qxp 12/5/06 5:40 PM Page 412

BUSINESS, CAREERS & PERSONAL FINANCE

Also available:
Business Plans Kit For Dummies
0-7645-9794-9
Economics For Dummies
0-7645-5726-2
Grant Writing For Dummies
0-7645-8416-2
Home Buying For Dummies
0-7645-5331-3
Managing For Dummies
0-7645-1771-6
Marketing For Dummies
0-7645-5600-2

Personal Finance For Dummies
0-7645-2590-5*
Resumes For Dummies
0-7645-5471-9
Selling For Dummies
0-7645-5363-1
Six Sigma For Dummies
0-7645-6798-5
Small Business Kit For Dummies
0-7645-5984-2
Starting an eBay Business For Dummies
0-7645-6924-4
Your Dream Career For Dummies
0-7645-9795-7

0-7645-9847-3 0-7645-2431-3

Also available:
Candy Making For Dummies
0-7645-9734-5
Card Games For Dummies
0-7645-9910-0
Crocheting For Dummies
0-7645-4151-X
Dog Training For Dummies
0-7645-8418-9
Healthy Carb Cookbook For Dummies
0-7645-8476-6
Home Maintenance For Dummies
0-7645-5215-5

Horses For Dummies
0-7645-9797-3
Jewelry Making & Beading
For Dummies
0-7645-2571-9
Orchids For Dummies
0-7645-6759-4
Puppies For Dummies
0-7645-5255-4
Rock Guitar For Dummies
0-7645-5356-9
Sewing For Dummies
0-7645-6847-7
Singing For Dummies
0-7645-2475-5

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

0-7645-8404-9 0-7645-9904-6

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

HOME & BUSINESS COMPUTER BASICS

Also available:
Cleaning Windows Vista For Dummies
0-471-78293-9
Excel 2007 For Dummies
0-470-03737-7
Mac OS X Tiger For Dummies
0-7645-7675-5
MacBook For Dummies
0-470-04859-X
Macs For Dummies
0-470-04849-2
Office 2007 For Dummies
0-470-00923-3

Outlook 2007 For Dummies
0-470-03830-6
PCs For Dummies
0-7645-8958-X
Salesforce.com For Dummies
0-470-04893-X
Upgrading & Fixing Laptops For
Dummies
0-7645-8959-8
Word 2007 For Dummies
0-470-03658-3
Quicken 2007 For Dummies
0-470-04600-7

0-470-05432-8 0-471-75421-8

Also available:
Blogging For Dummies
0-471-77084-1
Digital Photography For Dummies
0-7645-9802-3
Digital Photography All-in-One Desk
Reference For Dummies
0-470-03743-1
Digital SLR Cameras and Photography
For Dummies
0-7645-9803-1
eBay Business All-in-One Desk
Reference For Dummies
0-7645-8438-3
HDTV For Dummies
0-470-09673-X

Home Entertainment PCs For Dummies
0-470-05523-5
MySpace For Dummies
0-470-09529-6
Search Engine Optimization For
Dummies
0-471-97998-8
Skype For Dummies
0-470-04891-3
The Internet For Dummies
0-7645-8996-2
Wiring Your Digital Home For Dummies
0-471-91830-X

 INTERNET & DIGITAL MEDIA

0-470-04529-9 0-470-04894-8

* Separate Canadian edition also available
† Separate U.K. edition also available

28_046500 bob.qxp 12/5/06 5:40 PM Page 413

Also available:
3D Game Animation For Dummies
0-7645-8789-7
AutoCAD 2006 For Dummies
0-7645-8925-3
Building a Web Site For Dummies
0-7645-7144-3
Creating Web Pages For Dummies
0-470-08030-2
Creating Web Pages All-in-One Desk
Reference For Dummies
0-7645-4345-8
Dreamweaver 8 For Dummies
0-7645-9649-7

InDesign CS2 For Dummies
0-7645-9572-5
Macromedia Flash 8 For Dummies
0-7645-9691-8
Photoshop CS2 and Digital
Photography For Dummies
0-7645-9580-6
Photoshop Elements 4 For Dummies
0-471-77483-9
Syndicating Web Sites with RSS Feeds
For Dummies
0-7645-8848-6
Yahoo! SiteBuilder For Dummies
0-7645-9800-7

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

Also available:
Catholicism For Dummies
0-7645-5391-7
Exercise Balls For Dummies
0-7645-5623-1
Fitness For Dummies
0-7645-7851-0
Football For Dummies
0-7645-3936-1
Judaism For Dummies
0-7645-5299-6
Potty Training For Dummies
0-7645-5417-4
Buddhism For Dummies
0-7645-5359-3

Pregnancy For Dummies
0-7645-4483-7 †
Ten Minute Tone-Ups For Dummies
0-7645-7207-5
NASCAR For Dummies
0-7645-7681-X
Religion For Dummies
0-7645-5264-3
Soccer For Dummies
0-7645-5229-5
Women in the Bible For Dummies
0-7645-8475-8

Also available:
Alaska For Dummies
0-7645-7746-8
Cruise Vacations For Dummies
0-7645-6941-4
England For Dummies
0-7645-4276-1
Europe For Dummies
0-7645-7529-5
Germany For Dummies
0-7645-7823-5
Hawaii For Dummies
0-7645-7402-7

Italy For Dummies
0-7645-7386-1
Las Vegas For Dummies
0-7645-7382-9
London For Dummies
0-7645-4277-X
Paris For Dummies
0-7645-7630-5
RV Vacations For Dummies
0-7645-4442-X
Walt Disney World & Orlando
For Dummies
0-7645-9660-8

TRAVEL

GRAPHICS, DESIGN & WEB DEVELOPMENT

0-471-76871-5 0-7645-7841-3

0-7645-7749-2 0-7645-6945-7

0-7645-8815-X 0-7645-9571-7

Also available:
Access 2007 For Dummies
0-470-04612-0
ASP.NET 2 For Dummies
0-7645-7907-X
C# 2005 For Dummies
0-7645-9704-3
Hacking For Dummies
0-470-05235-X
Hacking Wireless Networks
For Dummies
0-7645-9730-2
Java For Dummies
0-470-08716-1

Microsoft SQL Server 2005 For Dummies
0-7645-7755-7
Networking All-in-One Desk Reference
For Dummies
0-7645-9939-9
Preventing Identity Theft For Dummies
0-7645-7336-5
Telecom For Dummies
0-471-77085-X
Visual Studio 2005 All-in-One Desk
Reference For Dummies
0-7645-9775-2
XML For Dummies
0-7645-8845-1

NETWORKING, SECURITY, PROGRAMMING & DATABASES

0-7645-7728-X 0-471-74940-0

28_046500 bob.qxp 12/5/06 5:40 PM Page 414

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Get smart @ dummies.com®
• Find a full list of Dummies titles

• Look into loads of FREE on-site articles

• Sign up for FREE eTips e-mailed to you weekly

• See what other products carry the Dummies name

• Shop directly from the Dummies bookstore

• Enter to win new prizes every month!

Also available:
Bipolar Disorder For Dummies
0-7645-8451-0
Chemotherapy and Radiation
For Dummies
0-7645-7832-4
Controlling Cholesterol For Dummies
0-7645-5440-9
Diabetes For Dummies
0-7645-6820-5* †
Divorce For Dummies
0-7645-8417-0 †

Fibromyalgia For Dummies
0-7645-5441-7
Low-Calorie Dieting For Dummies
0-7645-9905-4
Meditation For Dummies
0-471-77774-9
Osteoporosis For Dummies
0-7645-7621-6
Overcoming Anxiety For Dummies
0-7645-5447-6
Reiki For Dummies
0-7645-9907-0
Stress Management For Dummies
0-7645-5144-2

HEALTH & SELF-HELP

0-7645-8450-2 0-7645-4149-8

Also available:
The ACT For Dummies
0-7645-9652-7
Algebra For Dummies
0-7645-5325-9
Algebra Workbook For Dummies
0-7645-8467-7
Astronomy For Dummies
0-7645-8465-0
Calculus For Dummies
0-7645-2498-4
Chemistry For Dummies
0-7645-5430-1
Forensics For Dummies
0-7645-5580-4

Freemasons For Dummies
0-7645-9796-5
French For Dummies
0-7645-5193-0
Geometry For Dummies
0-7645-5324-0
Organic Chemistry I For Dummies
0-7645-6902-3
The SAT I For Dummies
0-7645-7193-1
Spanish For Dummies
0-7645-5194-9
Statistics For Dummies
0-7645-5423-9

EDUCATION, HISTORY, REFERENCE & TEST PREPARATION

0-7645-8381-6 0-7645-9554-7

* Separate Canadian edition also available
† Separate U.K. edition also available

28_046500 bob.qxp 12/5/06 5:40 PM Page 415

Check out the Dummies Specialty Shop at www.dummies.com for more information!

Do More with Dummies

Instructional DVDs • Music Compilations
 Games & Novelties • Culinary Kits
 Crafts & Sewing Patterns
Home Improvement/DIY Kits • and more!

28_046500 bob.qxp 12/5/06 5:40 PM Page 416

Bonus Chapter 1

VBA Programming in FrontPage
In This Chapter
� Understanding how VBA can make FrontPage better

� Working with FrontPage-related objects

� Creating FrontPage documents

� Developing FrontPage templates with automation

� Designing your own FrontPage template

FrontPage is the Microsoft Office Web page design tool. It provides some
of the more interesting situations in which you can use VBA to add new

features or provide increased functionality. Because Web pages are essen-
tially pure text, you can do a lot more with them.

The VBA environment for FrontPage is unique in that the programs you
create are part of the application and not the document. For example, when
you create a VBA program for Word, you can assign that program to either
the document or its associated template. Excel and Access both associate
the programs that you write with the document (database). Consequently,
every program that you write for FrontPage is accessible to every document.
Think about FrontPage macros as being global, akin to writing macros for
Word’s Normal.dot or Normal.dotm template.

Using FrontPage with VBA
In this chapter, you discover the various FrontPage-related objects that are
available in VBA. The FrontPage objects relate to FrontPage itself rather than
to a particular document. However, that doesn’t mean that you can’t create
some interesting Web pages by using VBA. The following list describes some
of the ways in which you can use VBA to make FrontPage significantly better:

� Create new document types as well as add to existing documents.

� Enhance templates and provide specialized formatting in your FrontPage
documents.

046500 bc01.qxp 12/1/06 10:38 AM Page BC1

� Create an automated code designer for your Web page. The automation
might add common elements that you can’t easily add by using tem-
plates. For example, a header or footer might contain common elements,
but these elements might be in a slightly different position based on the
kind of page you create.

� Define code snippets for common tasks. For example, you might want to
automate the creation of <meta> tags for your Web page.

� Track team projects with greater accuracy. You can use VBA to record
changes to a Web page automatically and to add documentation entries
that include the user’s login name.

� Implement a check-in and check-out system. Depending on the size of
your organization, using a good source code product might be neces-
sary, but smaller organizations can often make do with something
simpler.

� Automatically configure your environment based on the project. One of
the issues of working with FrontPage is that it doesn’t provide some of the
developer automation provided with other products. VBA can make the
automation gap smaller.

Understanding the FrontPage-Related
Objects

FrontPage provides a number of objects that you can use to interact with
the program and documents. You can perform any task, from creating
new documents to listing the templates installed in the current machine,
by using these objects. However, because FrontPage doesn’t associate your
program with any particular document, you must either provide additional
code to check for specific documents or write the code to work with any
document.

FrontPage works with several libraries. In addition to the standard Office,
VBA, and StdOLE (Standard Object Linking and Embedding) libraries, a mini-
mal FrontPage setup also includes the FrontPage, FrontPageEditor, and
Microsoft FrontPage libraries. Each of these libraries works with major
FrontPage object groups. Microsoft groups the FrontPage objects into two
major categories: Page and FrontPage.

The Page objects affect individual documents directly. These objects appear
in the FrontPageEditor library. The Microsoft documentation says that these
objects work with Internet Explorer 4.0 or above, but you can make the objects
work with other browsers by employing careful testing. You can find a detailed
list of these objects at http://msdn.microsoft.com/library/en-us/
vbafpd10/html/fphowExplorePOM.asp.

BC2 VBA For Dummies, 5th Edition

046500 bc01.qxp 12/1/06 10:38 AM Page BC2

The FrontPage objects affect the application, the application environment,
and the user. For example, this is where you find the CommandBars collection
used to change the application toolbars. (See the “Manipulating Toolbars and
Menus” section of Chapter 12 for details.) You can find a hierarchical chart
of these objects at http://msdn.microsoft.com/library/en-us/
vbafpw10/html/fptocObjectModelApplication.asp.

Normally, you work with FrontPage using the older toolbar-and-menu
approach because Microsoft didn’t upgrade this product for Office 2007.
However, when interacting with an Office 2007 product, you may need to
consider the Ribbon as part of your code. Make sure that you understand
the comparison between the old and new user interfaces, as described in
Chapter 12, before you begin writing an application that interacts with appli-
cations such as Word, Access, Excel, Outlook, or PowerPoint.

Using the Application object
You use the Application object to access most application features, such
as the product name and version. This object also contains information
about the user, such as the username and organization. Finally, you use this
object to access information about the current document, including format-
ting and content. Listing BC1-1 shows some of the ways that you can use the
Application object. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing BC1-1 Using the Application Object

Public Sub GetAppStats()
‘ Contains the application information.
Dim Output As String

‘ Get the application statistics.
With Application

Output = Output + .UserName + vbCrLf
Output = Output + .OrganizationName + vbCrLf
Output = Output + .Name + vbCrLf
Output = Output + .Version + vbCrLf + vbCrLf

‘ Get some of the active document information.
With ActiveDocument

Output = Output + “Active Document” + vbCrLf
Output = Output + vbCrLf + .nameProp + vbCrLf
Output = Output + .DocumentHTML

End With
End With

‘ Display the output.
MsgBox Output, vbInformation, “Application Statistics”

End Sub

BC3Bonus Chapter 1: VBA Programming in FrontPage

046500 bc01.qxp 12/1/06 10:38 AM Page BC3

The code in this example begins by working with the Application object
properties. You can get the user’s name and organization to verify identity, or
at least configuration. This information is suspect because it depends on the
user entering the correct information during installation. In addition, some-
one else might actually use the software or log in under the registered user’s
name. However, it’s one check that you can perform.

The Name and Version properties identify the product. This information is
always correct because the product generates it for you. You can also get
product-specific information, such as the product code.

Notice how the program uses nested With statements in this example.
The ActiveDocument With statement is actually nested within the
Application With statement, so you would read the internal statements as
Application.ActiveDocument and not just ActiveDocument. Exercise
caution when using nested With statements because you can confuse a prop-
erty or method at one level with a property or method of the same name at
another level, thus resulting in bugs that are extraordinarily difficult to find.

The ActiveDocument object contains a number of interesting properties
and methods, many of which appear in the remaining examples in this chap-
ter. The nameProp property indicates the active document name, and the
DocumentHTML property contains the complete HyperText Markup Language
(HTML) for the document. Figure BC1-1 shows the output from this program.

Figure
BC1-1:
Listing

application,
user, and

document
information.

BC4 VBA For Dummies, 5th Edition

046500 bc01.qxp 12/1/06 10:38 AM Page BC4

Using the FrontPageEditor (Page) objects
The FrontPageEditor and Page objects (Microsoft uses both terms to
refer to the same object class) are the most useful FrontPage elements that
you can discover. You use these objects to create Web pages. Any element
that you can add to a Web page is also accessible as a Page object.

Unfortunately, the documentation for this set of objects is a little skimpy if
you want to use the FrontPage-specific objects, even if you look online at
http://msdn.microsoft.com/library/en-us/vbafpd10/html/
fphowFPSpecMethods.asp. The secret is to look at the associated Internet
Explorer interface elements at http://msdn.microsoft.com/workshop/
browser/mshtml/reference/ifaces/interface.asp. For example,
if you want information about the FPHTMLHeaderElement, look at the
IHTMLHeaderElement documentation instead. You can also use the
IHTMLHeaderElement object directly.

Ultimately, you can build any kind of Web page that you want. The Web page
can use straight HTML tags or incorporate cascading style sheets (CSS). A
CSS is a technique used for separating the format of information from the
actual content on Web pages to make it easier to use and also make it more
accessible to those users with special needs. Listing BC1-2 shows one way to
use these objects. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/vbafd5e.)

BC5Bonus Chapter 1: VBA Programming in FrontPage

Vista and help files
You might find it odd that you can’t get help even
though the application provides it, but that’s the
very problem you might encounter when work-
ing with FrontPage. I’m writing this book based
on the Vista Release Candidate (which is still in
beta). Vista doesn’t currently support the older
HLP (help) file format. It does support newer
versions of HTML help, but not the older file
format.

What this change in support means to you is
that you might experience problems in getting
access to help in some versions of FrontPage
because this product uses HLP files. Vista dis-
plays what appears to be a non-helpful mes-
sage that indicates some problem with help.
What it’s really telling you is that you can’t find

help for FrontPage even though the files are
installed on your system.

Fortunately, you don’t really have to do without
the help resources you require. You can find
what you need on the Microsoft Web site. Look
for general FrontPage help at http://msdn.
microsoft.com/office/program/
frontpage/2003/getstarted/. Office
developer references appear at http://
msdn.microsoft.com/office/
reference/default.aspx, and you can
find a FrontPage-specific page at http://
msdn.microsoft.com/office/
program/frontpage/2003/; these two
Web pages include a link to the VBA references
you need for FrontPage.

046500 bc01.qxp 12/1/06 10:38 AM Page BC5

Listing BC1-2 Automating Web Page Creation

Public Sub ChangePage()

‘ Create the Web page elements.
With Application.ActiveDocument

‘ Create a heading.
Dim Heading As FPHTMLHeaderElement
Set Heading = .createElement(“H1”)
With Heading

.Id = “MainHeading”

.innerText = “Sample Web Page”

.Align = “Center”
End With

‘ Create some text.
Dim Greeting As FPHTMLParaElement
Set Greeting = .createElement(“P”)
With Greeting

.Id = “Greeting”

.innerText = “This is some sample text.”
End With

‘ Create a horizontal line.
Dim Separator As FPHTMLHRElement
Set Separator = .createElement(“HR”)
With Separator

.Id = “Separator”

.Size = “2”

.Width = “90%”
End With

‘ Create a combined element.
Dim Contact As FPHTMLParaElement
Dim EmailAddr As FPHTMLAnchorElement
Set Contact = .createElement(“P”)
Set EmailAddr = .createElement(“a”)
With EmailAddr

.Id = “EmailAddress”

.href = “mailto:JMueller@mwt.net”

.innerText = “John Mueller”
End With
With Contact

.Id = “Goodbye”

.insertAdjacentHTML “afterBegin”, _
“Please write “ + EmailAddr.outerHTML + _

“ for additional information.”
End With

‘ Change the Web page title.

BC6 VBA For Dummies, 5th Edition

046500 bc01.qxp 12/1/06 10:38 AM Page BC6

.Title = “An Automated Web Page”

‘ Design the Web page content.
.body.insertAdjacentHTML “afterBegin”, _

Heading.outerHTML + Greeting.outerHTML + _
Separator.outerHTML + Contact.outerHTML

End With
End Sub

All the objects in this section follow the same set of creation steps. The code
begins by defining the object. Make sure that you use the correct type because
your code will fail otherwise. Next, the code calls the createElement
method. The string that you provide is critical. For example, make sure that
you supply H1 as input when you want to create a level 1 header. After the
code creates the element, it defines the necessary properties. Make sure that
you include an Id property value because this value makes it easier to work
with the objects later by giving you a reference name.

BC7Bonus Chapter 1: VBA Programming in FrontPage

FrontPage and the Vista User
Account Control (UAC)

FrontPage, more than most Office products,
appears to run afoul of the Vista User Account
Control (UAC), a security feature designed to make
it harder for evil people to access your system.
Unfortunately, this feature also makes it harder
for you to access your system. You may find that
you can’t even save your edits, so check secu-
rity before you use FrontPage under Vista the
first time. Try to make a small, single character
and then edit and save it. Run the Web site to
ensure that it works. Test before you make any
major edits.

If you have problems, make sure that you give
yourself permission to access all required
directories on your system. FrontPage users
often need access to more of the hard drive
than someone using another product, such as
Word. When working with a network drive,
make sure that you have the proper rights to
that drive. In addition, set the zone for the net-
work drive by using the Internet Properties

applet of the Control Panel. The default setting
is for the Internet. Select Trusted Sites and click
Sites. Type file:// plus the name of your server
in the Add This Website to the Zone field and
click Add. You should have access at this point.

Vista also has a significantly enhanced firewall.
Make sure that you set an exclusion for your
FrontPage activities. This may mean using the
settings in the Windows Firewall with Advanced
Security applet of the Control Panel.

When all else fails, you may have to change the
local security policy to make UAC less restrictive.
You don’t want to take this step lightly because
UAC has a definite purpose in protecting your
system. Use the Local Security Policy console,
in the Administrative Tools folder of the Control
Panel, to make the required changes. The UAC
settings appear at the end of the list in the Local
Policies\Security Options folder.

046500 bc01.qxp 12/1/06 10:38 AM Page BC7

Notice that you can combine elements. The Contact object contains
text and the EmailAddr object. You combine elements by using the
insertAdjacentHTML method, which requires a location and the text value
as input. The code uses the EmailAddr.outerHTML property because it
contains the full HTML tag for the object.

As with all HTML documents, you can access the <head>, <title>, and
<body> tags from VBA. These essential tags give the HTML document structure.
The example shows how to modify the <title> and <body> tag content.
You set the Title property directly. The body property requires use of the
insertAdjacentHTML method. Only after the code sets the body property
does the content that you’ve created appear in the FrontPage editor, as
shown in Figure BC1-2.

Figure BC1-2 shows that the output of this program is well formed (complies
with all the required Web standards) and complete (no missing tag elements).
Using this technique can help you automate some of the page creation tasks.
This technique is especially helpful when the Web page follows the same
basic format each time but can contain variable elements. VBA is a lot more
flexible than using templates to create variable content. Of course, you can
get the best of both worlds by combining VBA and templates.

Figure
BC1-2:
Listing

application,
user, and

document
information.

BC8 VBA For Dummies, 5th Edition

046500 bc01.qxp 12/1/06 10:38 AM Page BC8

Understanding the Themes collection
FrontPage comes with a wealth of themes (files with configuration informa-
tion that helps you design a project in less time because some features, such
as background and colors, are predefined for you). You can create your own
themes or download themes created by other people. For example, you can
find free themes at FrontPage 2002.com (http://www.frontpage2002.
com/) and Theme Mart (http://www.thememart.com/). Because you
could have so many themes to track, it’s important to know how to list them.
Listing BC1-3 shows one way to perform this task by using the Themes collec-
tion. (You can find the source code for this example on the Dummies.com site
at http://www.dummies.com/go/vbafd5e.)

Listing BC1-3 Accessing FrontPage Theme Information

Public Sub ThemeLister()
‘ Holds an individual theme.
Dim ThisTheme As Theme

‘ Holds the theme list.
Dim ThemeArray(2, 100)

‘ Keeps track of the current theme number.
Dim Counter As Integer
Counter = 0

‘ Clear any existing list items.
MyThemeList.lbThemes.Clear

‘ Get the theme list.
For Each ThisTheme In Application.Themes

ThemeArray(0, Counter) = ThisTheme.Label
ThemeArray(1, Counter) = ThisTheme.Name
ThemeArray(2, Counter) = ThisTheme.Format
Counter = Counter + 1

Next

‘ Add the theme list to the list box.
MyThemeList.lbThemes.Column() = ThemeArray

‘ Display the list.
MyThemeList.Show

End Sub

This example begins by creating a single Theme object used to hold an individ-
ual theme, an array to hold the Theme values, and a counter to track which
theme is in use. The MyThemeList object is a UserForm used to display the
output from this example. You can also use a message box, but the number of
values makes a UserForm easier to work with in this case.

BC9Bonus Chapter 1: VBA Programming in FrontPage

046500 bc01.qxp 12/1/06 10:38 AM Page BC9

After the code creates the essential objects, it builds a list of themes. You might
wonder why I didn’t use a For...Next loop rather than the For Each...
Next loop shown. Attempting to use an index to access the individual Theme
objects in the Themes collection causes FrontPage to crash in some cases.
The method shown always works.

Notice that the code gets the Label, Name, and Format properties from the
ThisTheme object. You might also want to view the Version or other prop-
erties, but these three properties are all that you need in most cases.

The Format property contains the version of the theme and not the version
of FrontPage. Most recent themes use version 2.0. When you download a
FrontPage 98 theme, the version number is usually 0.0 or 1.0. Older themes
might not have the same functionality that newer themes provide. Make sure
that you use version 2.0 or newer themes to ensure maximum browser and
FrontPage compatibility.

The Label and Name properties provide essentially the same information.
The Label property contains the friendly version of the name. Use the Label
property when you want to create lists for users and the Name property when
you want to create lists for selecting a specific theme for a Web page. Combine
both fields (keeping the Name field hidden) when you need to ask the user
which theme to select; then use that information to add the theme to the cur-
rent Web page. You can keep the field hidden by setting its column width to 0.
Here’s an example of how you can hide the Name property for this example:

MyThemeList.lbThemes.ColumnWidths = “2in;0;”

Notice that you can include a measurement with the column width. FrontPage
normally uses points for column measurements, but including a measure-
ment overrides this feature. In this example, the first column is set to 2
inches, the second is hidden, and the third uses the remaining space.

After the code creates an array containing the values, it adds this list to the
MyThemeList list box. Use the Column versus the List property for this
kind of array. (For more about arrays, check out Chapter 9 of this book.)
The List property transposes the elements and displays the information
incorrectly. The MyThemeList.Show method displays the form. Figure BC1-3
shows how the form looks with all three columns in place.

Understanding the Webs collection
The Webs collection provides you with access to your Web site. The Web site
can be a remote location or a local hard drive. Any time that you open a site
in FrontPage, you create a new WebEx object that FrontPage places in the
Webs collection. However, as with any other collection that you might use,

BC10 VBA For Dummies, 5th Edition

046500 bc01.qxp 12/1/06 10:38 AM Page BC10

you can also add new Web sites to your FrontPage setup programmatically by
creating a new WebEx object by using the Webs.Add method. Listing BC1-4
shows how you can create a new WebEx object and then garner statistics and
information from it. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing BC1-4 Working with the Webs Collection

Public Sub DisplayWebs()
‘ Holds an individual Web object.
Dim AWeb As WebEx

‘ Holds an individual folder.
Dim AFolder As WebFolder

‘ Contains the output information.
Dim Output As String

‘ Define a Web object.
Application.Webs.Add “D:\My Web Site”
Application.Webs.Open “D:\OnlineSite”

‘ Display some statistics.
For Each AWeb In Application.Webs

‘ Get the site name.
Output = AWeb.Title + vbCrLf + vbCrLf

‘ Parse the folder list.
For Each AFolder In AWeb.AllFolders

Output = Output + AFolder.Name + vbCrLf
Next

‘ Display the results.
MsgBox Output, vbInformation, “Web Statistics”

Next
End Sub

Figure
BC1-3:
Listing

themes.

BC11Bonus Chapter 1: VBA Programming in FrontPage

046500 bc01.qxp 12/1/06 10:38 AM Page BC11

This example begins with FrontPage as you initially open it. There are no Web
sites open, so the code begins by opening two Web sites. Notice that one call
uses the Add method, and the second uses the Open method. You can use
either method when working with an existing Web site. However, if you’re
converting a folder to a Web site or establishing a new Web site, use the Add
method. Note that you need to change the locations shown in the example
code to match Web sites on your local system (unless you add these folders
to your machine).

After the code has some Web sites to work with, it uses the Webs collection
to access individual WebEx objects. Notice that this is one case where the
individual object has a slightly different name from the collection that it sup-
ports. Each WebEx object contains information about the individual Web site,
including a list of files and folders. You can also apply themes and templates,
search for files or folders, and set viewing options, such as hiding hidden files
and folders.

The code uses the AllFolders collection to get a list of all the folders that
the Web site contains. Each WebFolder object contains information about a
single folder and any files and folders that it contains. You can also use the
RootFolder object or Folders collection to access folders level by level
(rather than all at once). In this case, the code records just the folder name.
Figure BC1-4 shows the output from this program. (Your display will differ
from mine unless your Web site is precisely the same as mine.)

Figure
BC1-4:
Listing

folders on a
Web site.

BC12 VBA For Dummies, 5th Edition

046500 bc01.qxp 12/1/06 10:38 AM Page BC12

Theoretically, you can also open a remote site by using the Add or Open
method of the Webs collection by using a statement such as the following:

Application.Webs.Open “ftp://ftp.mysite.net/” ‘, “myname”, “mypassword”

You can certainly open a remote site by using manual methods from within
FrontPage. However, in practice, FrontPage seems to ignore Add and Open
method calls that contain remote locations. Interestingly enough, all the
Microsoft examples show local drives as the location. When you open a
remote site, the FrontPage display changes, as shown in Figure BC1-5.

FrontPage considers a remote location as a combination of a local and
a remote Web site. Consequently, every time that you open a remote
location, you add two WebEx objects to the Webs collection. The
DisplayWebsNoOpen sub-procedure supplied with the code example lets
you test a remote Web site by using display code similar to the code shown
in Listing BC1-4.

Figure
BC1-5:

A view of
a remote
Web site.

BC13Bonus Chapter 1: VBA Programming in FrontPage

046500 bc01.qxp 12/1/06 10:38 AM Page BC13

Understanding the WebWindows collection
The WebWindows collection contains one WebWindowEx object entry for
every FrontPage window that you have open. FrontPage associates every
window with a single Web site. Look again at Listing BC1-4, and you’ll notice
that the code opens two Web sites, which means that FrontPage opened two
WebWindowEx objects. Every time that you open a file located in the current
Web site or create a new file, FrontPage also creates a PageWindowEx object
that it places in the PageWindows collection. All these entries help you track
the status of the open Web sites that FrontPage is managing.

Understanding the relationships between these various objects is important
because you have to move from one to the next in a logical order. Listing
BC1-5 demonstrates how the various collections and objects interact.
Because you can use index values with the collections, you can access a
particular object quickly. (You can find the source code for this example on
the Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing BC1-5 Working with the Webs Collection

Public Sub ListWebWindows()
‘ Holds an individual Web window.
Dim AWindow As WebWindowEx

‘ Holds an individual Page window.
Dim APage As PageWindowEx

‘ Contains the output information.
Dim Output As String

‘ View each of the windows in turn.
For Each AWindow In Application.WebWindows

‘ Get the window information.
Output = Output + AWindow.Caption + vbCrLf

‘ Display the Web site associated with this window.
Output = Output + vbTab + AWindow.Web.Title + vbCrLf

‘ View each of the pages in turn.
For Each APage In AWindow.PageWindows

Output = Output + vbTab + APage.Caption + vbCrLf
Next

Next

‘ Display the results.
MsgBox Output, vbInformation, “Web Window Statistics”

End Sub

BC14 VBA For Dummies, 5th Edition

046500 bc01.qxp 12/1/06 10:38 AM Page BC14

The code begins by creating the various objects needed for this example.
Notice that the names don’t precisely correspond to the usual naming con-
ventions for collections and associated objects.

The first level of access is the WebWindows collection. The code uses this
collection to get a single WebWindowEx object. A WebWindowEx object
contains all the content for a single window, such as the one shown in
Figure BC1-5.

After the code gets the WebWindowEx object, it uses the Web object to deter-
mine the name of the Web site associated with the window. You have full
access to all Web site information through the Web object and can follow this
object down to locate both folders and files.

The WebWindowEx object also contains the PageWindows collection. Every
open file tab in a window appears within this collection as a PageWindowsEx
object. The code uses the Caption property to get the name of the file. The
final step is to output this information. Figure BC1-6 shows the results.

Figure BC1-6 shows that I have two windows open, both of which have an
open Web site. Each of the windows also has two files open. The filenames
include the file:/// protocol indicator to show that they’re a file rather
than some other object.

It’s also important to know that the WebWindows collection only deals with
the local copy of a file when you work with remote sites. Unlike the Webs col-
lection, which includes entries for both the local and remote WebEx objects,
the WebWindows collection contains only the local Web object. Consequently,
when you list the Web site shown in Figure BC1-5 (including two open files),
you see the output shown in Figure BC1-7.

Figure
BC1-6:

The
relationship

between
Web

windows,
pages, and

sites.

BC15Bonus Chapter 1: VBA Programming in FrontPage

046500 bc01.qxp 12/1/06 10:38 AM Page BC15

Working with FrontPage Documents
Documents are at the center of the FrontPage operation, just as they are for
any other application that you use. The purpose of using an application is to
manipulate data in some way. Even utilities, such as a server monitor or a
network security application, work with data. Consequently, getting the data
manipulation capability in the form of document control from your applica-
tions is important.

FrontPage documents are easier to work with than many documents because
they’re pure text. You can see any changes quickly, and you don’t have to
worry about hidden elements. On the other hand, the FrontPage document
environment is more complicated than many other environments because
you have the concept of a Web site to consider. The Web site contains multi-
ple folders, files, and resources, such as graphics and templates.

Although FrontPage provides a wealth of templates and art that you can
use for your documents, you might want additional resources. You can find
great art examples at Design Gallery Live (http://dgl.microsoft.com).
The Template Gallery at http://officeupdate.microsoft.com/
templategallery/ provides a wealth of templates that you can use with
FrontPage as well. Examining these templates can help you create custom
templates that better suit your needs. In addition, many of these templates
provide coding tricks that you can use.

Automating Web site creation
Preparing a new Web site for use is a time-consuming undertaking if you do it
regularly. Fortunately, FrontPage makes it easy to automate this process so
that you can perform the task literally in seconds without missing a single
setting and with extreme consistency. Listing BC1-6 shows one technique for
creating a Web site automatically and some of the settings that you might
want to change. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Figure
BC1-7:

Remote site
connections
include only
the local file

store.

BC16 VBA For Dummies, 5th Edition

046500 bc01.qxp 12/1/06 10:38 AM Page BC16

Listing BC1-6 Creating a Web Site

Public Sub CreateWebSite()
‘ Contains the new Web site.
Dim NewSite As WebEx

‘ Contains the default Web page.
Dim WelcomePage As WebFile

‘ Create the new site.
Set NewSite = Application.Webs.Add(“C:\MyTempSite”)

‘ Configure the new site.
With NewSite

‘ Define the navigation key values.
.Properties(“vti_navbuttonprevlabel”) = “Previous”
.Properties(“vti_navbuttonhomelabel”) = “Go Home”
.Properties(“vti_navbuttonnextlabel”) = “Next”
.Properties(“vti_navbuttonuplabel”) = “Up a Level”

‘ Set the language and character set.
.Properties(“vti_defaultlanguage”) = “en-us”
.Properties(“vti_defaultcharset”) = “windows-1252”
.Properties(“vti_encoding”) = “utf8-nl”

‘ Apply the changes.
.Properties.ApplyChanges

‘ Refresh the site to match the new properties.
.Refresh

‘ Define a theme for the site.
.ApplyTheme (“Spring”)

‘ Add basic folders to the new site.
.RootFolder.Folders.Add “Graphics”
.RootFolder.Folders.Add “Products”
.RootFolder.Folders.Add “Contact Us”

‘ Add an initial Web page.
Set WelcomePage = .RootFolder.Files.Add(“Index.HTM”)
WelcomePage.Open

End With
End Sub

The code begins by creating several objects. It uses the Application.
Webs.Add method to create the NewSite object. This is a local object that
you can publish later by using the NewSite.Publish method. For now, it’s
easier to work with the Web site locally so that data transfer times don’t
become a problem and so that you can maintain some level of security over
the new site.

BC17Bonus Chapter 1: VBA Programming in FrontPage

046500 bc01.qxp 12/1/06 10:38 AM Page BC17

Setting up a new Web site means modifying properties. You can see these set-
tings by right-clicking anywhere on the FrontPage Web Site tab and choosing
Site Properties from the context menu. Modifying the properties in code is a
little more difficult because you have to discover the names that Microsoft
uses for the standard property entries. The example shows some standard
properties that you can modify.

Microsoft doesn’t do a particularly good job of telling you about the 32 prop-
erties that a Web site supports. The help file for the Properties property
tells you about one property, and it isn’t even a default property. You can use
the Debugger to learn the names of any default property supported by any
FrontPage object. (See the “Using the Locals Window” section of Chapter 6
for details on using the Debugger to view properties.) In most cases, the vti
properties are FrontPage Server Extension meta keys. You can find a com-
plete list of these meta keys at the SharePoint Products and Technologies
site: http://msdn.microsoft.com/office/server/moss/
community/. Look in the SharePoint Team Services SDK\RPC
Protocol\FrontPage Server Extensions RPC Methods\Meta
Keys folder. The vti values appear in alphabetical order, as shown in
Figure BC1-8.

Figure
BC1-8:

The hidden
location of

the vti
values.

BC18 VBA For Dummies, 5th Edition

046500 bc01.qxp 12/1/06 10:38 AM Page BC18

After the code changes the properties, it uses the Properties.ApplyChanges
method to make the changes permanent. It then calls the Refresh method to
synchronize the information between the program and the FrontPage applica-
tion. You must perform both steps to ensure that you can see the changes
that your program makes later.

Generally, you want the same theme used for an entire Web site so that all the
pages look consistent. The ApplyTheme method lets you apply a theme to a
Web site before you create any pages for it. This step ensures that your Web
site has a consistent appearance from the very start.

When you know that you need to create certain folders for every Web site, it
pays to make them part of the setup routine. The code uses the RootFolder.
Folders.Add method to add the three standard folders to this Web site:
Graphics, Products, and Contact Us.

Every Web site also needs an index or default page. The code adds this page by
using the RootFolder.Files.Add method. Because you normally start work-
ing on this page immediately, it pays to have the code open it for you by using
the Open method. As a further refinement, you can automate the process of
creating this initial page by adding code to write some of the page automati-
cally. Listing BC1-2, earlier in this chapter, shows some techniques you can use
to perform this task. Figure BC1-9 shows the state of the Web site at this point.

Figure
BC1-9:

The results
of automatic
site creation.

BC19Bonus Chapter 1: VBA Programming in FrontPage

046500 bc01.qxp 12/1/06 10:38 AM Page BC19

Notice that the Web page includes the character set and the theme requested
in Listing BC1-6. These two additions will appear on every Web page, along
with any other defaults that you include. A seemingly small change when you
create a Web site can result in a large time savings as you develop the Web
site content.

Designing a basic template application
Templates can greatly reduce the work required to generate new Web pages
because they take care of the common coding for you. All you need to worry
about is the unique content of the page. Using templates also makes it easier
to maintain a consistent page appearance because every page starts with the
same content, layout, and functionality. A template consists of three essential
elements:

� HTML file: This contains the template code.

� Device Independent Bitmap (DIB) file: This contains a picture of the
template.

� Information (INF) file: This contains a description of the template.

The HTML file contains basic tags, any meta tags, and content that you want
every Web page to use. You can create this file within FrontPage by using all
the same FrontPage features that you’ve used in the past. Figure BC1-10
shows the HTML file used for this example.

Creating the DIB file comes next. Display the template file in a browser or by
using the FrontPage Preview mode. Use a good screen-capture and graphics-
manipulation program to get a copy of the screen. No, a copy of Microsoft
Paint won’t do the trick. I use Paint Shop Pro (http://www.jasc.com/)
because you can download a copy free, and the price for the shareware is
quite reasonable. You must resize the image to 110 x 124 pixels high. It’s fine
if you can’t quite read the image because you only want to provide the user
with an idea of what the page looks like. Save the captured and resized image
as a DIB file.

You can use any existing FrontPage template INF file as the basis for your
INF file. All the files have the same format. Listing BC1-7 shows the code
that you need for a template INF file. (You can find the source code for this
example on the Dummies.com site at http://www.dummies.com/go/
vbafd5e.)

BC20 VBA For Dummies, 5th Edition

046500 bc01.qxp 12/1/06 10:38 AM Page BC20

Listing BC1-7 Creating a Template INF

[info]
_LCID=1033
_version=1.0.0.0
title=Standard Page
description=Create a Standard web page.

The entries define the locale identifier (_LCID; essentially, your location and
language), version, title, and description of the template. The _LCID is always
1033 for United States English. Review the chart at http://krafft.com/
scripts/deluxe-calendar/lcid_chart.htm to find the _LCID value for
your location.

You can permanently add new templates to your FrontPage environment by
placing the template in the \Program Files\Microsoft Office\
Templates\1033\PAGES folder. Make sure that the template includes all
three files, or else it won’t be displayed properly in the Web Site Templates
dialog box.

Figure
BC1-10:

A template
file.

BC21Bonus Chapter 1: VBA Programming in FrontPage

046500 bc01.qxp 12/1/06 10:38 AM Page BC21

After you have a template to use, it’s time to make it work for you. Listing
BC1-8 shows how to automate template usage in FrontPage by using VBA.

Listing BC1-8 Adding Template Functionality

Public Sub MakeStandardPage()
‘ Contains the target Web site.
Dim TheSite As WebEx

‘ Get the site.
If (Application.Webs.Count > 0) Then

If (Application.Webs(0).Title = “C:/MyTempSite”)
Then

Set TheSite = Application.Webs(0)
Else

Set TheSite =
Application.Webs.Add(“C:\MyTempSite”)

End If
Else

Set TheSite = Application.Webs.Open(“C:\MyTempSite”)
End If

‘ Set the Web site to use a template.
TheSite.ApplyTemplate TheSite.Title + _

“\Templates\Standard.tem”, True

‘ Contains the target folder.
Dim Target As WebFolder

‘ Get the target folder.
Set Target = TheSite.RootFolder.Folders(“Products”)

‘ Contains the Web page template.
Dim StdPage As WebFile

‘ Create the new page.
Set StdPage = TheSite.RootFolder.Files(“Standard.HTM”)
StdPage.Copy Target.Url + “\NewFile.HTM”, True, True

‘ Contains the new Web page.
Dim NewPage As WebFile

‘ Open the page for editing.
Set NewPage = Target.Files(“NewFile.HTM”)
NewPage.Open

End Sub

BC22 VBA For Dummies, 5th Edition

046500 bc01.qxp 12/1/06 10:38 AM Page BC22

The code begins by determining the status of the Web site. If the Web site
isn’t open, the code opens it. Otherwise, the code uses the existing copy.
This code is a little crude, but it gets the job done. Your program will
require similar code to ensure that it detects the FrontPage status and
reacts accordingly.

Next, the code applies the new template to the Web site by using the
ApplyTemplate method. This method enables you to replace templates
as needed to ensure that you can switch between document types. For exam-
ple, you might use one template for product information and another for
contacts.

You normally need to provide a location for the new file. The code assumes a
standard location, but selecting a location is something that you could do in
code by using a form. The idea is to make the program flexible so that you
can use it for more than just one file.

At this point, the code has to make a copy of the template file and place it in
the target location. The TheSite.RootFolder.Files(“Standard.HTM”)
property contains the location of the template. The code uses the StdPage.
Copy method to create a copy in the target location. Notice that the code
renames the file to NewFile.HTM as part of the copy process.

Finally, the code assigns the new file to a WebFile object and uses the Open
method to open it for editing. You can add code here to perform automated
customization. For example, you can ask the user a series of questions that
helps to format the new file and add some content to it.

BC23Bonus Chapter 1: VBA Programming in FrontPage

046500 bc01.qxp 12/1/06 10:38 AM Page BC23

BC24 VBA For Dummies, 5th Edition

046500 bc01.qxp 12/1/06 10:38 AM Page BC24

Bonus Chapter 2

VBA Programming in Visio
In This Chapter
� Understanding how VBA can make Visio better

� Working with Visio-related objects

� Responding to Visio events

V isio helps you draw everything from floor plans to electronics circuits
to organizational charts. In fact, it would be hard to imagine anything of

a business nature that you can’t draw with Visio, except pure graphics. Visio
isn’t an artist’s tool, and you can’t use it as a Computer Aided Drafting (CAD)
replacement; it’s the tool for the rest of us. I’ve used Visio for many years to
draw the illustrations for my books and to accomplish personal tasks, such
as creating woodworking designs. It’s even possible to use Visio to design
software.

Because you can draw such a huge array of things with Visio, it would be
hard to describe everything you can do with it in a single chapter. However,
the vast array of drawing templates makes it possible to use VBA with Visio
in a big way, such as to automate common Visio drawing tasks. For example,
you could use a macro to set up a drawing, complete with company logo and
standardized title block, for particular customers.

A single chapter can’t tell you about Visio itself in much detail, so I’m
assuming that you know how to use the product to perform basic tasks.
My book Visio 2007 For Dummies (published by Wiley), provides you
with a step-by-step look at everything Visio can do and with only a little
drawing ability on your part. You’ll be amazed at how much you can do
with Visio — everything from creating organizational charts to analyzing
data for a report.

046500 bc02.qxp 12/1/06 10:39 AM Page BC25

BC26 VBA For Dummies, 5th Edition

Using Visio with VBA
Visio has a significant following of VBA developers because they can do so
much with Visio drawings. In fact, Microsoft has created a Visio Developer
Portal (http://msdn2.microsoft.com/en-us/library/aa395291.
aspx) in recognition of the level of developer participation. The following list
provides you with some ideas of how you can use VBA to make Visio even
better than it already is, but really, this is just the tip of the iceberg:

� Perform automatic shape settings and request user input for more.

� Automatically resize and reorganize the diagram as needed to accommo-
date new shapes.

� Create interactive diagrams for what-if analyses and public
demonstrations.

� Let Visio interact with other Office applications, such as Word (you can
see a floor plan solution at http://msdn.microsoft.com/library/
en-us/dnvisio00/html/executiveoffice.asp).

� Analyze data and present the output in graphical form, such as the net-
work costing solution shown at http://msdn.microsoft.com/
library/en-us/dnvisio00/html/executiveoffice.asp.

� Interact with external data sources (see the Smart Card reader demon-
stration at http://msdn.microsoft.com/library/en-us/
dnvisio00/html/executiveoffice.asp).

� Traverse connected diagrams to perform analysis on data relations — a
sort of data mining (see the stock portfolio example at http://
msdn.microsoft.com/library/en-us/dnvisio00/html/
executiveoffice.asp).

� Create parts lists based on the data in one or more diagrams.

� Automatically update support documents, such as organizational charts,
based on changes to a central database.

� Define new shape behaviors that can automate real-world tasks, such as
parts inventory and ordering.

Understanding the Visio-Related Objects
Visio doesn’t provide a global means of working with VBA. It doesn’t include
an application-level module like FrontPage or a Normal.dot (Normal.dotm for
Word 2007) solution. However, you do have options with Visio that aren’t
apparent immediately. Generally, you start creating a VBA application for
Visio by creating a drawing. However, after you have the drawing completed,

046500 bc02.qxp 12/1/06 10:39 AM Page BC26

you can save it as a template. Every drawing you create from that template
includes the macros you’ve created.

Macros you create in a template don’t automatically update the associated
diagram. Visio uses the template to create the diagram, but there isn’t any
permanent connection between the template and the diagram. Consequently,
the macros that exist in a template at the time you create the diagram also
exist in the diagram, but any changes you make to the template later don’t
appear in the diagram. You must update the diagram macros separately.

The Visio object model (http://msdn.microsoft.com/library/en-
us/vissdk11/html/viobjtocMain_HV01066071.asp) shows that Visio
provides access to the document, the shapes it contains, the user interface,
windows, and the current selection — everything you would expect to
access from VBA. Visio 2007 uses the standard toolbar-and-menu interface,
so you’ll find the usual CommandBar objects. One difference with Visio VBA
programming is that many tasks revolve around user drawing activities, so
you have to pay special attention to events (see the table at http://msdn.
microsoft.com/library/en-us/vissdk11/html/vievtEventCodes_
HV81901708.asp).

When working with Visio diagrams, you need to consider several objects that
include Document, Page, Layer, Shape, and Cell. Each of these objects has
a corresponding physical representation. A document is the entire diagram,
and it usually resides in a single file. A document can have multiple pages.
Each page represents a single drawing within the document, such as a single
room within an office or a circuit board within a larger device. A page can
have multiple layers. A layer provides a means of separating drawing ele-
ments into groups, such as movable furniture and electronics. Layers can
also contain revision marks or any other drawing element that requires sepa-
ration from other drawing elements. A page can contain one or more shapes.
A shape represents something you want to draw, anything from a piece of fur-
niture to a box. Even text and connectors are shapes within Visio. Finally,
even though a user never actually sees any cells, Visio uses them to hold
information about shapes. Think of a cell as an individual data element in a
spreadsheet-like organization of data about individual shapes in the diagram.

Microsoft has added a number of new VBA objects and methods to Visio
2007. All these new features provide access to the new templates and stencils
that Visio 2007 provides, along with the increased data access functionality.
You can find a list of these objects and methods at http://msdn2.
microsoft.com/en-us/library/aa395291.aspx.

Visio works with several libraries. In addition to the standard Office, VBA,
and OLE (Object Linking and Embedding) Automation libraries, a minimal
Visio setup also includes the Visio library. As with any other VBA application,
you can add more libraries as needed. However, everything you need to inter-
act with Visio itself appears as part of the Visio library. It’s interesting to note

BC27Bonus Chapter 2: VBA Programming in Visio

046500 bc02.qxp 12/1/06 10:39 AM Page BC27

that Visio provides a considerable number of non-default libraries, as defined
in the following list:

� Microsoft Visio 12.0 Diagram Launch Control

� Microsoft Visio 12.0 Drawing Control Type Library

� Microsoft Visio 12.0 Save As Web Type Library

� Microsoft Visio Database Modeling Engine Type Library

� Microsoft Visio UML Add-in for Microsoft Visual C++ 6.0

� Microsoft Visio UML Solution for Visual Basic Type Library

You can add any of these libraries to your application by choosing Tools➪
References to display the References dialog box. Place a check mark next to
each library you want to add and then click OK.

The diagram launch control library contains features for creating new dia-
grams. The drawing control library is interesting because it consists entirely
of events. This library is the one to load when you don’t find an event you
need. For example, this library includes a BeforeMasterDelete event that
fires whenever someone decides to remove a master page. The Save As Web
(SAW) feature lets you output your diagrams as a Web page. The database
modeling library is new with Visio 2007. It comes into play only when you
interact with databases. For example, you might want to add shape data
based on database input. Several of these libraries are specific to certain
kinds of diagrams. For example, the Unified Modeling Language (UML)
libraries are for software engineering diagrams.

Using the Application object
As with every other Office application, the Application object provides
access to the rest of Visio. I purposely created this macro in a template so
that you can see that templates really can contain macros. Any diagram you
create using this template also contains the macros. Listing BC2-1 shows how
you can interact with the Application object. (You can find the source code
for this example on the Dummies.com site at http://www.dummies.com/
go/vbafd5e.)

Listing BC2-1 Using the Application Object

Sub UseApplication()
‘ Holds the description.
Dim Description As String

‘ Get the document description.
With Application.ActiveDocument

Description = _

BC28 VBA For Dummies, 5th Edition

046500 bc02.qxp 12/1/06 10:39 AM Page BC28

“Name: “ + .Name + vbCrLf + _
“Description: “ + .Description + vbCrLf + _
“Paper Height: “ + _
CStr(.PaperHeight(“inches”)) + vbCrLf + _
“Paper Width: “ + _
CStr(.PaperWidth(“inches”)) + vbCrLf + _
“Paper Size: “

‘ The paper size requires special handling.
Select Case .PaperSize

Case VisPaperSizes.visPaperSizeA3
Description = Description + “A3”

Case VisPaperSizes.visPaperSizeA4
Description = Description + “A4”

Case VisPaperSizes.visPaperSizeA5
Description = Description + “A5”

Case VisPaperSizes.visPaperSizeB4
Description = Description + “B4”

Case VisPaperSizes.visPaperSizeB5
Description = Description + “B5”

Case VisPaperSizes.visPaperSizeC
Description = Description + “C”

Case VisPaperSizes.visPaperSizeD
Description = Description + “D”

Case VisPaperSizes.visPaperSizeE
Description = Description + “E”

Case VisPaperSizes.visPaperSizeFolio
Description = Description + “Folio”

Case VisPaperSizes.visPaperSizeLegal
Description = Description + “Legal”

Case VisPaperSizes.visPaperSizeLetter
Description = Description + “Letter”

Case VisPaperSizes.visPaperSizeNote
Description = Description + “Note”

Case VisPaperSizes.visPaperSizeUnknown
Description = Description + “Unknown”

End Select
End With

‘ Get the active page description.
With Application.ActivePage

Description = Description + vbCrLf + _
“Page Width: “ + _
CStr(.Shapes(“ThePage”).Cells(“PageWidth”)) + _
vbCrLf + “Page Height: “ + _
CStr(.Shapes(“ThePage”).Cells(“PageHeight”))

End With

‘ Display the description on screen.
MsgBox Description, _

vbInformation Or vbOKOnly, _
“Document and Page Description”

End Sub

BC29Bonus Chapter 2: VBA Programming in Visio

046500 bc02.qxp 12/1/06 10:39 AM Page BC29

The code begins by accessing the current document using the Active
Document object. You must remember that Visio has several drawing layers.
The document can contain multiple pages. Each page can contain several
layers. A page can also have a background page associated with it. All these
issues are important as you work with VBA. The ActiveDocument object
tells you only about the document, not about the pages it contains.
Consequently, when you access the PaperHeight and PaperWidth proper-
ties, you’re looking at the print specifications for the document, not the
actual size of the pages.

Visio also has a few odd conventions that you might not have seen in the
past. Notice that the PaperHeight and PaperWidth properties both have
what appears to be an index of inches. However, this argument is merely a
unit of measure. You’ll find that Visio requires units of measure in many
cases. Also, because this property is a Double, you must convert it to a
String using the CStr() function.

You run into more than a few enumerations in Visio, and the PaperSize
property shows just one of many cases. If you want a text equivalent for the
enumeration, you must create a Select Case statement such as the one
shown in the code.

Visio provides the ActivePage object so that you can interact with the
currently selected page. Pages are all about shapes. In fact, the page itself
is a shape, which is why you use Shapes(“ThePage”) to access the page.
Within a particular shape are cells that contain various pieces of information.
The Cells(“PageWidth”) contains the width of the page, and the Cells
(“PageHeight”) contains the height of the page. Figure BC2-1 shows the
output of this application. Notice that the page size is indeed different from
the document size.

Figure
BC2-1:
Listing

diagram
information

is just one
use of VBA

in Visio.

BC30 VBA For Dummies, 5th Edition

046500 bc02.qxp 12/1/06 10:39 AM Page BC30

You might wonder where ThePage comes from as an index in the listing.
It isn’t a magic name that you just have to know in order to work with Visio.
Sometimes the name of a shape isn’t obvious and you want to determine it
quickly without writing a lot of code. If you have a specific shape in mind, all
you need to do is choose View➪Shape Data Window. The title bar of the
Shape Data window always contains the name of the shape as you need it for
use with VBA. This technique even works with what appears to be unnamed
shapes. Select text, for example, and you see that it usually has the name
Sheet.XX, where XX is a number.

Listing multiple Page objects
Many drawings require that you work with just a single page. However, it’s
likely that you’ll eventually have to work with multiple pages in a single dia-
gram. For example, an office layout might include a single page for each
office. In short, you’ll find a need, at some point, for viewing individual
pages. Listing BC2-2 shows how to access each page and display its name.
(You can find the source code for this example on the Dummies.com site at
http://www.dummies.com/go/vbafd5e.)

Listing BC2-2 Locating and Listing Multiple Drawing Pages

Sub ListPages()
‘ Holds the list of pages.
Dim ThePages As Pages

‘ Holds the page information.
Dim PageNames As String
Dim ThisPage As Page

‘ Get the list of pages.
Set ThePages = ActiveDocument.Pages

‘ Obtain the page information.
For Each ThisPage In ThePages

‘ Check for a drawing page.
PageNames = PageNames + ThisPage.Name +

CStr(ThisPage.ObjectType) + vbCrLf
Next

‘ Display the results.
MsgBox PageNames, vbInformation Or vbOKOnly, “Drawing

Pages in Document”
End Sub

BC31Bonus Chapter 2: VBA Programming in Visio

046500 bc02.qxp 12/1/06 10:39 AM Page BC31

The code for this part of the example looks like the code used to work
through many collections in the book. It begins by accessing the Pages col-
lection in the ActiveDocument object. The code retrieves an individual
page from the collection and places its name in PageNames. Finally, the
example displays the list of pages, as shown in Figure BC2-2.

Notice that the code in this example lists all the pages. You can limit the
pages shown by detecting property values in the shapes’ cells. The “Working
with Shape cells” section of this chapter describes this concept in detail.
The important information for this example is that documents contain
multiple pages, in most cases, even if one of those pages is a background
and doesn’t contain any actual diagram data.

Listing the Shape objects in a drawing
The whole point of using Visio is to place shapes from a stencil onto a page.
That’s how you draw, and it’s one of the reasons that Visio is so easy for non-
artists to use. This example demonstrates how to access shapes within a page.
Normally, you use the active page, as shown in Listing BC2-3, but you can
also work with pages by using the Pages collection associated with any doc-
ument. (You can find the source code for this example on the Dummies.com
site at http://www.dummies.com/go/vbafd5e.)

Listing BC2-3 Accessing the Shapes in a Drawing

Sub ListShapes()
‘ Holds the list of shapes for a page.
Dim TheShapes As Shapes

‘ Obtain the list of shapes.
Set TheShapes = ActivePage.Shapes

‘ Holds individual shape data.
Dim ThisShape As Shape

Figure
BC2-2:

Displaying all
the pages in
a document.

BC32 VBA For Dummies, 5th Edition

046500 bc02.qxp 12/1/06 10:39 AM Page BC32

Dim ShapeNames As String

‘ Obtain each shape and add it to the list.
For Each ThisShape In TheShapes

ShapeNames = ShapeNames + ThisShape.Name + vbCrLf
Next

‘ Display the results onscreen.
MsgBox ShapeNames, _

vbInformation Or vbOKOnly, _
“Shapes on Current Page”

End Sub

The example works through the Shapes collection found in the ActivePage
object. Notice that you don’t have to even consider the document, in this
case, because the ActivePage object brings the current page to the fore-
ground. Because most of your Visio scripts will work with the shapes that the
user is currently drawing, you’ll find that using the ActivePage object is an
extremely efficient way to write code. The output from this example appears
in Figure BC2-3.

You should notice something about the listing of shapes in this dialog box.
First, the first item of every shape type has that shape’s name. For example,
the first bookshelf has the name Bookshelf. All shapes after the first shape
have a random number added to their name. In this case, the second book-
shelf in the room has the name Bookshelf.70. You need to exercise care
when writing shape code to consider this naming convention.

Figure
BC2-3:

Each shape
on a page

appears as
part of that

page’s
Shapes

collection.

BC33Bonus Chapter 2: VBA Programming in Visio

046500 bc02.qxp 12/1/06 10:39 AM Page BC33

Second, all objects have a name, even objects that you might not think have
a name. For example, some people might not think that a room will have a
name, but it does, in this case: Room. In addition, text and connectors also
have names. The Sheet.87 and Sheet.88 shapes in the listing are text added
to the diagram. This text is independent of any shape. Shape text doesn’t
have a name because it’s associated with a property within the shape itself.
Consequently, when you see a shape name such as Sheet.87, you know that
the diagram contains an independent, unnamed element, such as text or a
connector.

Working with Shape cells
Shape cells can be a difficult concept to understand unless you think about
them using some physical equivalent. My preference is to look at them as the
cells within a spreadsheet. Visio refers to cells by the terms Section, Row,
and Column. Think of a section as a page within the spreadsheet file. Just as
you use pages to hold different categories of data, a section holds different
categories of shape data. When you look at a spreadsheet, you see data orga-
nized by row and column. The rows and columns for a shape serve the same
purpose. A row might hold an individual data property, such as the Name field
for an organizational chart block. A column might hold a description of that
property, such as the property’s data type. The actual row and column defini-
tions can vary by section, but the idea is always one of organizing the data in
some way.

Much of the Visio code you see doesn’t work with sections, rows, and
columns, however, because Visio provides an easier method of locating a
particular cell using an index. For example, a cell index might appear as
Prop.Title. This index tells you that the cell is a property and that it’s for
the Title field. However, many of the cell index names aren’t nearly so easy
to figure out.

Unfortunately, as you view examples online and in the Visio help files, the
cell indexes will prove elusive. You won’t find a listing of them anywhere
because the names can be literally anything you choose. Many people give
up trying to figure them out in frustration. The focus of the example in this
section is to provide you with a quick and easy method for discovering all the
cell indexes associated with a given shape. Everything you need to perform
this task appears in Listing BC2-4. (You can find the source code for this
example on the Dummies.com site at http://www.dummies.com/go/
vbafd5e.)

BC34 VBA For Dummies, 5th Edition

046500 bc02.qxp 12/1/06 10:39 AM Page BC34

Listing BC2-4 Getting to the Cell Level of Visio

Sub ListCells()
‘ Holds the current shape.
Dim TheShape As Shape

‘ Loop counter variables.
Dim RowCount As Integer
Dim CellCount As Integer

‘ Holds the current cell information.
Dim TheCell As Cell
Dim CellName As String

‘ Obtain a selected shape.
Set TheShape = ActivePage.Shapes(“Telephone”)

‘ Open the file that will contain the cell names.
Open ThisDocument.Path + “\CellNames.txt” For Output

As #1

‘ Process each of the cell rows.
For RowCount = 0 To TheShape.RowCount(visSectionProp)

- 1

‘ Process each cell in the row.
For CellCount = 0 To

TheShape.RowsCellCount(visSectionProp,
RowCount) - 1

‘ Obtain the specific cell.
Set TheCell =

TheShape.CellsSRC(visSectionProp, RowCount,
CellCount)

‘ Save the name of the Cell.
CellName = TheCell.Name + vbCrLf

‘ Output the data.
Write #1, CellName

Next
Next

‘ Close the file.
Close #1

End Sub

BC35Bonus Chapter 2: VBA Programming in Visio

046500 bc02.qxp 12/1/06 10:39 AM Page BC35

The code begins by accessing a particular shape. You can determine the
shape name by opening the Shape Data window, selecting the shape you want
to work with, and viewing its name on the title bar. As an alternative, you can
always use the ListShapes macro, shown in listing BC2-3.

After the code obtains a reference to the shape, it opens a text file on disk to
store the information. Using this approach makes it easier to reference the
information later. Figure BC2-4 shows typical output from this application.
Each entry tells you about a particular shape property element. In this case,
you’re looking at the ShapeClass field, which includes all the usual elements,
including a prompt, label, and format. I showed this particular field because you
can’t access it directly within Visio, but you can access it by using VBA code.

Now that the code has a file to use, it proceeds to scan through the rows and
columns for a particular section. The section name you choose determines
the kind of data you receive from Visio because Visio places each object data
type in a different section. The VisSectionIndices enumeration contains a
list of sections that Visio recognizes. However, you’ll use some sections more
than others. The visSectionObject section returns non-repeating standard
object values, such as line color, height, and width. The visSectionProp
section contains definitions of the properties you create for an object, includ-
ing the values of those properties. The visSectionCharacter section
stores all the font information for the text displayed in the shape.

Figure
BC2-4:

The Cell
index names

can be a
mystery until
you discover

how to list
them.

BC36 VBA For Dummies, 5th Edition

046500 bc02.qxp 12/1/06 10:39 AM Page BC36

Notice how the code relies on Visio to tell it about the shape data. Do not
assume anything about the shape data because the data varies from shape to
shape. The TheShape.RowCount() function always returns the number of
rows for a particular section of the shape data. When you know the row you
want to work with, you can check for the number of cells in that row by using
the TheShape.RowsCellCount() function. The code obtains the name of
the individual cells and writes them to disk at this point. After you find the
name of the cell you want to work with, you can display its value using code
like this:

TheShape.Cells(“Prop.AssetNumber”).ResultStr(“inches”)

In this case, the code actually returns the asset number. If you want to obtain
one of the asset number property values, for example, such as the data type,
you use Prop.AssetNumber.Format or another cell name instead. The point
is that you can control every aspect of a property programmatically.

The code ends by closing the output file. Always make sure that you close
the file. Doing so ensures that the file contains all the data and reduces the
risk of introducing memory or resource leaks into your application.

Handling the ShapeAdded event
Visio includes a wealth of events. In fact, it may possibly provide more events
than you’ll ever interact with for any other Office application simply because
many VBA applications for Visio seem to respond to the user’s normal perfor-
mance of a task. One event that you’ll use most commonly is the ShapeAdded
event. This event fires every time the user places a shape on a page.

You can add events to your code in a number of ways. However, the easiest
method is to let Visio do the work for you. The following steps help you
insert an event handler into your application:

1. Double-click ThisDocument in the Project Explorer window.

You see a Code window appear. Visio opens a new Code window even
if you already have one open. Use this Code window for all Visio event
handlers.

2. Choose Document in the Object field (on the left) of the Code window.

3. Choose an event, such as ShapeAdded, in the Procedure field (on the
right) of the Code window.

Visio automatically creates a Sub for you. The Sub has any variables
needed for the event handler defined for you. For example, choosing
ShapeAdded creates an event handler with ByVal Shape As IVShape
defined.

BC37Bonus Chapter 2: VBA Programming in Visio

046500 bc02.qxp 12/1/06 10:39 AM Page BC37

After you define a new event handler, you can add code to it to perform a
task based on a user event. In this example, the code checks for particular
shape types and reacts to them. Listing BC2-5 shows everything you need to
begin this example. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/vbafd5e.)

Listing BC2-5 Handling Visio Events

Private Sub Document_ShapeAdded(ByVal Shape As IVShape)
‘ Create an object to determine the shape type.
Dim ShapeType As Master
Set ShapeType = Shape.Master

‘ Determine the shape type.
If Left(ShapeType.Name, 9) = “Executive” Then

‘ Change the executive block to the owner’s name
‘ and title.
Shape.Cells(“Prop.Name”).Formula = _

“=””George Smith”””
Shape.Cells(“Prop.Title”).Formula = _

“=””President”””

‘ Managers require special handling.
ElseIf Left(Shape.Name, 7) = “Manager” Then

‘ Holds the user response.
Dim Response As VbMsgBoxResult

‘ Ask the user about the person’s title.
Response = MsgBox(“Add a Vice President?”, _

vbYesNo Or vbQuestion, _
“Choose an Organization Chart Type”)

‘ Create the block based on the user’s input.
If Response = vbYes Then

‘ Use the appropriate title.
Shape.Cells(“Prop.Title”).Formula = _

“=””Vice President”””

‘ Set the shape’s line characteristics.
Shape.Cells(“LineColor”).Formula = _

“=THEMEGUARD(RGB(128,0,0))”
Shape.Cells(“LinePattern”).Formula = _

MsoLineDashStyle.msoLineDash
Shape.Cells(“LineWeight”).Formula = “=1 pt.”

Else

‘ Use the appropriate title.

BC38 VBA For Dummies, 5th Edition

046500 bc02.qxp 12/1/06 10:39 AM Page BC38

Shape.Cells(“Prop.Title”).Formula = _
“=””Department Head”””

‘ Set the shape’s line characteristics.
Shape.Cells(“LineColor”).Formula = _

“=THEMEGUARD(RGB(0,128,0))”
Shape.Cells(“LinePattern”).Formula = _

MsoLineDashStyle.msoLineSquareDot
Shape.Cells(“LineWeight”).Formula = “=0.8 pt.”

End If

‘ For everyone else, just display the organization
‘ chart type.
Else

MsgBox “You’ve added a “ + ShapeType.Name, _
vbOKOnly Or vbInformation, _
“New Shape Added”

End If
End Sub

The code begins by checking the shape type. You can determine the shape
type in a number of ways. However, checking the shape name should work
fine as long as you remember that the shape name can include a period
and numbers. For example, an Executive shape always begins with the
name Executive, even when the actual shape name is Executive.22.
Consequently, the code relies on the Left() function to obtain the impor-
tant part of the Name property string.

When the shape is an executive, the code changes the value of the Name
and Title fields to match the executive’s name and title. You can use this
technique with any shape that has a consistent value in your organization.
Using this approach saves time because the user doesn’t have to type the
data; this approach avoids frustration because the user doesn’t type the
same value repeatedly, and it reduces document errors.

Notice that you change the value of a cell by modifying its Formula property.
In this respect, a Visio shape acts precisely like a spreadsheet. However, the
entry of text might look confusing at first. What you really need to enter is
=”MyEntry” as the formula. However, if you type that formula, Visio displays
an error. You must always surround a formula with double quotes, so now the
formula becomes “=”MyEntry””. Unfortunately, this formula also raises an
error because now VBA doesn’t know what do to with MyEntry or how to
concatenate it with the equals sign and blank string. To make VBA see a
double quote as an internal part of a string, you must use two double quotes
together so that the formula becomes “=””MyEntry”””. Figure BC2-5 shows
the result of this code.

BC39Bonus Chapter 2: VBA Programming in Visio

046500 bc02.qxp 12/1/06 10:39 AM Page BC39

Sometimes a shape doesn’t fall into a single category. In this case, the
Manager shape can apply to vice presidents or department heads. You can
still use this technique to avoid potential problems in consistency by display-
ing an appropriate dialog box to ask the user which kind of shape to create.
The code uses a simple MsgBox() function, but you can use a custom form if
you want.

The code sets the title, but not the name, for the shape. You still want the user
to enter a name, and you could make this part of the form you create. The
example relies on the user to perform the standard data entry in this case.

You can access any element of a shape’s design by using VBA. The example
changes the line color, pattern, and weight, as shown in Figure BC2-5, depend-
ing on the shape you choose. Notice how each of these entries requires a
different formula to make the change. The LineColor index requires that
you use the =THEMEGUARD(RGB(128,0,0)) function. This function accepts
a Red, Green, Blue (RGB) value as input, so you use the RGB() function to
create this value.

Figure
BC2-5:

You can
manipulate
shapes as

needed
through

VBA code.

BC40 VBA For Dummies, 5th Edition

046500 bc02.qxp 12/1/06 10:39 AM Page BC40

The LinePattern formula requires a simple number as input. However,
knowing which number to choose can be a problem. In this case, you can use
the MsoLineDashStyle enumeration to obtain the value. Because the index
names aren’t documented, you often have to use the Object Browser to locate
the information you need. This is where the search techniques described in
Chapter 1 can come in very handy.

The LineWeight formula relies on what appears to be a string, but really isn’t.
In this case, you must provide a number and a unit of measure. The example
uses the common unit of measure for this value, the point, which is 1⁄72 of
an inch.

Of course, all these formula formats beg the question of how you figure
them out if Microsoft hasn’t documented any of this information anywhere.
The approach I use is to write a simple three-line macro, as shown in
Listing BC2-6.

Listing BC2-6 Obtaining a Formula

Sub TestFormula()
‘ Holds the test shape.
Dim TestShape As Shape

‘ Choose the selected shape.
Set TestShape = ActiveWindow.Selection(1)

‘ Display the desired cell.
MsgBox TestShape.Cells(“LineColor”).Formula

End Sub

Now all I need to do is select a shape in the target page and run the macro to
see the formula for the cell of interest. By varying the shape’s properties, you
can view the formula that will produce the effect you want. You can also
check for this information by setting a breakpoint at the MsgBox line, typing
? TestShape.Cells(“LineColor”).Formula in the Immediate window, and
pressing Enter.

BC41Bonus Chapter 2: VBA Programming in Visio

046500 bc02.qxp 12/1/06 10:39 AM Page BC41

BC42 VBA For Dummies, 5th Edition

046500 bc02.qxp 12/1/06 10:39 AM Page BC42

Bonus Chapter 3

Ten Really Cool Things
You Can Do with VBA

In This Chapter
� Writing programs that meet your personal needs

� Opening and using files as needed

� Working with Access to create complex documents

� Creating PowerPoint presentations automatically

� Using Object Linking and Embedding (OLE) to link and embed data

� Working with other controls on forms

� Developing programs that use non-Office components

� Using Microsoft’s online documentation for your programming needs

� Designing jigs and templates for your own use

� Creating reusable code libraries

You can write an impressive number of programs with VBA and not even
begin to use all the features that it provides. That’s the thing that I find

most interesting about working with VBA. When you need to perform a task,
such as automating your worksheet, there’s usually at least one way to accom-
plish it and generally more than one way. As discussed in Chapter 12, you
need some additional help when you’re working with the Ribbon in Office
2007, but you generally use VBA alone to perform most application tasks.

Personalizing Your VBA Applications
If you’ve already read most of the chapters in this book, you’re well on your
way to becoming a hotshot VBA programmer. You have all the skills required
to write any program that your mind can think to create and many programs
that you can’t even imagine at the moment. That’s the goal of this chapter:
After you master the programming techniques, it’s time to start considering
what you can do with them.

046500 bc03.qxp 12/1/06 10:39 AM Page BC43

The coolest thing that you can ever do with VBA is to make it your personal
tool for accomplishing tasks that you want to do. It doesn’t matter how you
use the program — personal programs are just as worthwhile as those that
you create for your business or fellow workers. The fact that you did some-
thing for your personal satisfaction and to meet your personal needs is the
best feeling that there is. You now have the power to write any program that
you need. Make sure that you take time to play.

Using Files with the Open Command
Many of the Microsoft and third-party online VBA references mention the
Open function, which is an older method of working with files that you won’t
use for opening standard application files. However, you might need to open
an INI (initialization settings) file or a file containing data produced in another
application that Office doesn’t support directly. This function requires a
number of arguments, including the name of the file and the kind of access
that you require. Listing BC3-1 is a simple example of how you can use the
Open function to open a text file on the local drive. This text file contains
data that could have resided on a mainframe or in another PC program.
The example translates this data and places it in Excel. (You can find the
source code for this example on the Dummies.com site at http://
www.dummies.com/go/vbafd5e.)

Listing BC3-1 Opening and Translating a Text File into an Excel Worksheet

Public Sub OldOpen()
‘ Create the input strings.
Dim DataLine As String
Dim ThisCell As String

‘ Used for looping.
Dim Counter As Integer
Counter = 1
Dim CellCounter As Integer

‘ Open the file.
Open ThisWorkbook.Path + “\Temp.txt” For Input As #1

‘ Read the data one line at a time.
While Not EOF(1)

Line Input #1, DataLine

‘ Verify whether there is a tab in the text. If so,
‘ place each text element in a separate column.
If InStr(1, DataLine, vbTab) Then

‘ Set the cell counter.

BC44 VBA For Dummies, 5th Edition

046500 bc03.qxp 12/1/06 10:39 AM Page BC44

CellCounter = 1

‘ Keep processing the line of text until finished.
While (Len(DataLine) > 0)

‘ Verify that the text still has tabs in it.
If InStr(1, DataLine, vbTab) Then

‘ Get the text to the left of the tab and place it in the cell.
ThisCell = Left(DataLine, InStr(1, DataLine, vbTab) - 1)
Sheet1.Cells(Counter, CellCounter) = ThisCell

‘ Make the current text the remaining tabbed text element.
DataLine = Mid(DataLine, InStr(1, DataLine, vbTab) + 1)

‘ Go to the next cell.
CellCounter = CellCounter + 1

Else
‘ The text is free of tabs. Make the cell equal to this last
‘ line and then clear the data line.
Sheet1.Cells(Counter, CellCounter) = DataLine
DataLine = “”

End If
Wend

Else

‘ Place the data in the worksheet.
Sheet1.Cells(Counter, 1) = DataLine

End If

‘ Update the counter.
Counter = Counter + 1

Wend

‘ Close the file.
Close #1

End Sub

This code reads a text file into a worksheet. Each line of text appears in a
separate worksheet row. When the text file contains tabs, it places each
tabbed element in a separate cell. The effect is precisely the same as shown
in this code:

Public Sub UseOpen()
‘ Open a text file as a workbook.
Dim TempBook As Workbook
Set TempBook = Workbooks.Open(ThisWorkbook.Path + “\Temp.txt”)

End Sub

BC45Bonus Chapter 3: Ten Really Cool Things You Can Do with VBA

046500 bc03.qxp 12/1/06 10:39 AM Page BC45

When you’re working with native application files, such as the .doc or .docm
extension for Word, the FileSystemObject method of working with files
that is demonstrated in Chapter 10 is normally superior because it provides
better access to the drive system and works more consistently than the Open
function. In addition, you need to think only about one or two objects and not
a host of individual functions.

You still need the Open function to perform certain tasks. The most impor-
tant is the use of binary (non-text) files. If you decide to work with binary
files outside of the objects that the host application provides, you must use
the Open function. The Erlandsen Data Consulting Web site at http://www.
erlandsendata.no/english/index.php?d=envbafileaccessbinary
provides a good example of using binary data records. You can find an
interesting alternative to using the Open function for binary data at the
DeveloperFusion.com Web site at http://www.developerfusion.
com/show/2542/. This method relies on using the ADODB object.

Record-based access also requires the Open function. You can create a file
with fixed-length records. You can use these text-based files to exchange
information between databases. The Microsoft Knowledge Base article at
http://support.microsoft.com/?kbid=209231 provides a good exam-
ple of how to use the Open function for random file access.

The most important consideration for using the Open function is that it pro-
vides better control than some of the newer methods that VBA provides.
The first example in this section uses a lot of code precisely because you
have to do everything, but that means that you get to decide how things will
work. Using a newer function requires less code, but it also means that you
have to do things the Microsoft way, which means a loss of flexibility and, in
some cases, functionality.

Defining Database Connections
When you develop complex programs, you might find that you want to use
data directly from a database, such as Access. In Chapter 15, you discover
how to use Data Access Objects (DAO) to accomplish this task. DAO works
fine for many tasks, but you gain additional flexibility by using ActiveX
Data Objects (ADO) to access databases, including Access, from other
programs. This example relies on the Microsoft ActiveX Data Objects 2.7
Library. You can add this library by using the Tools➪References command.
The code in Listing BC3-2 places the contents of the Word List table of the
AccessObjects database into an Excel worksheet. (You can find the source
code for this example on the Dummies.com site at http://www.dummies.
com/go/vbafd5e.)

BC46 VBA For Dummies, 5th Edition

046500 bc03.qxp 12/1/06 10:39 AM Page BC46

Listing BC3-2 Exporting an Access Table to an Excel Worksheet

Public Sub GetData()
‘ Create the database connection.
Dim DBConn As ADODB.Connection
Set DBConn = New ADODB.Connection
DBConn.ConnectionString = _

“Driver={Microsoft Access Driver (*.mdb)};” + _
“Dbq=” + ThisWorkbook.Path + “\AccessObjects.MDB;” +

_
“Uid=admin;Pwd=”

‘ Open the database.
DBConn.Open

‘ Create a recordset.
Dim DBRec As ADODB.Recordset
Set DBRec = New ADODB.Recordset

‘ Set the recordset parameters.
DBRec.ActiveConnection = DBConn
DBRec.Source = _

“Select * From [Word List] Where IsAcronym=True”

‘ Open the recordset.
DBRec.Open

‘ Display the fields as headers.
Dim CurrentCell As Integer
CurrentCell = 1
Dim AField As ADODB.Field
For Each AField In DBRec.Fields

Sheet2.Cells(1, CurrentCell) = AField.Name
CurrentCell = CurrentCell + 1

Next

‘ Display the data.
Dim RowCount As Integer
RowCount = 3
While Not DBRec.EOF

CurrentCell = 1
For Each AField In DBRec.Fields

Sheet2.Cells(RowCount, CurrentCell) =
AField.Value

CurrentCell = CurrentCell + 1
Next
DBRec.MoveNext
RowCount = RowCount + 1

Wend

‘ Close the dabase.
DBConn.Close

End Sub

BC47Bonus Chapter 3: Ten Really Cool Things You Can Do with VBA

046500 bc03.qxp 12/1/06 10:39 AM Page BC47

This program resides in Excel, yet it uses Access data. You can use a combi-
nation of sorting and filtering and different source statements to create the
data set that you need for a particular program. For that matter, you pick the
fields that you want or manipulate the data in various ways. The point is that
you can perform various kinds of data merges within your programs. Make
sure that you close the database connection to ensure that you don’t lose
data or corrupt the database file in some way.

Automating PowerPoint Presentations
PowerPoint, more than any other application, can benefit from the cross-
application benefits demonstrated in Chapter 16. A single VBA program could
rely on Word for the text in a PowerPoint presentation, Access for the presen-
tation data, and Excel for presentation graphs and statistics. The important
idea is to use each of the applications for their intended purpose. PowerPoint
is a consolidation tool: It’s best used to consolidate into a presentation the
data that you create in other applications. Think of this program as a con-
tainer for the other kinds of data that you create, and the requirements for
creating programs for it become a little easier to understand.

Creating Data Connections with OLE
Most of the examples in this book concentrate on creating new data, moving
data from one application to another, or manipulating data in some way.
An application might contain data in precisely the format that you need, so
all you really need is a reference to it. That’s where Object Linking and
Embedding (OLE) comes into play. You can use this technology to simply
place a copy of the data in another document. This technique is equivalent to
using the Edit➪Paste Special or the Insert➪Object command. Listing BC3-3
shows an example of adding a data connection by using OLE. (You can find
the source code for this example on the Dummies.com site at http://
www.dummies.com/go/vbafd5e.)

Listing BC3-3 Using OLE with VBA

Public Sub AddOLE()
‘ Create a reference to the current objects.
Dim Objs As OLEObjects
Set Objs = Sheet3.OLEObjects

‘ Add a new object.
Objs.Add Filename:=ThisWorkbook.Path + “\Cuckoo.wav”, _

Link:=False, Top:=20, Left:=40, _
IconLabel:=”The Cuckoo Sound”

End Sub

BC48 VBA For Dummies, 5th Edition

046500 bc03.qxp 12/1/06 10:39 AM Page BC48

The biggest reason to use this technique is to automate data additions to a
document. For example, you might want to construct a letter template that
automatically adds graphics based on the customer or the type of account.
In other cases, you could use this technique to automate the object-insertion
process for less-skilled users.

Adding Functionality with Controls
Chapter 7 provides a wealth of tips and hints about using standard VBA con-
trols. You also discover how to add new controls to your VBA palette in that
chapter’s “Adding controls to the Toolbox” section. However, that chapter
doesn’t really convey the power that controls can have over your develop-
ment efforts. A control is code that someone else has already debugged and
tested for you. It includes some type of graphical element (unlike compo-
nents, which include only code). In short, controls represent the fastest and
easiest method of adding functionality to your program.

You get controls from a variety of sources. For example, if you want to add
the ability to display PDFs to Word, just add an Acrobat Reader control to
your palette. Adobe installs this control whenever you install Acrobat Reader
(http://www.adobe.com/products/acrobat/readermain.html), so
you don’t even have to do anything special to receive the functionality.

Other programmers make their controls available for use. You have to exer-
cise care in downloading controls from the Internet, but some sites are quite
reliable. Here’s a list of some sites where you can look for controls:

� c|net Download.com: http://www.download.com/

� Tucows: http://www.tucows.com/

� SofoTex.com: http://www.sofotex.com/download/Programming/
ActiveX/

� freeDownloads Center:
http://www.freedownloadscenter.com/Programming/ActiveX/

� SHAREWAREORDER: http://www.sharewareorder.com/

After you download a control, you have to install it on your system. I set
aside a special folder for controls that I download so that I can find and
remove them later. To add a control to your system, open a command
prompt by choosing Start➪Programs➪Accessories➪Command Prompt.
Type RegSvr32 <Name of Control> at the command prompt and then press
Enter. Windows displays a success message when the control is registered
for use. Now you can add it to your VBA project.

BC49Bonus Chapter 3: Ten Really Cool Things You Can Do with VBA

046500 bc03.qxp 12/1/06 10:39 AM Page BC49

When you find that you no longer need a control, you have to unregister it
first so that the Windows Registry remains clean. To remove a control, open a
command prompt with the Start➪Programs➪Accessories➪Command Prompt
command, type RegSvr32 –u <Name of Control>, and then press Enter.
Windows displays a success message. At this point, you can erase the file.

Getting and Using Components
You have no idea how many useful components reside on your machine. I know
that I’ve delved into the components on my machine for years and have yet
to try them all. The undiscovered country of code that you can use to enhance
your programs extends to many areas. You can use .NET in your programs
because many features of the .NET Framework appear as standard compo-
nents. The same concept extends to Java applets, utilities that Windows
provides, or just about any other piece of code that you can imagine.

The magic word to access any component on your machine is CreateObject.
This function appears in many examples in this book. However, before you
can use a component, you need to know that it exists.

The OLE/COM Object Viewer utility is a special program that displays all the
components on your machine. This tool comes as part of Visual Studio and a
few other Microsoft products, but you can also download it from the Microsoft
Web site at http://www.microsoft.com/downloads/details.aspx?
FamilyID=5233b70d-d9b2-4cb5-aeb6-45664be858b6. The purpose of
this program is to show all the components and controls on your machine.
Simply double-click the file that you download to install the utility on your
machine.

When you open the OLE/COM Object Viewer, you see categories of objects
that you can use. For example, all the controls on your machine appear in the
Controls folder. These categories help VBA know which items to display in
the dialog boxes that let you add new controls to the Toolbox or add new
component references.

Using the OLE/COM Object Viewer can provide you with names of new com-
ponents to try. It can also tell you about the component. For example, look at
the InprocServer32 entry on the Registry tab, and you see the location of the
file that supports the component. In many cases, this location information
tells you who created the control and also provides clues to how you can use
the component to improve your code.

BC50 VBA For Dummies, 5th Edition

046500 bc03.qxp 12/1/06 10:39 AM Page BC50

Using Microsoft’s Online Documentation
In the Registry example in Chapter 13, you discover that you can use
Windows 32-bit Application Programming Interface (Win32 API) calls directly
in VBA. You can also access the .NET Framework by using new features in
Office 2003. Microsoft also provides a vast array of components and controls
that you can use. All this free code sounds great until you realize that you
don’t have any documentation for it.

Fortunately, Microsoft provides a wealth of online documentation to go with
the free code that it provides. The Microsoft Developer Network (MSDN)
Library at http://msdn2.microsoft.com/en-us/library/default.
aspx lets you search for just about any current Microsoft product. The table
of contents on the left side of the site helps you refine your search after you
locate something interesting. In addition to using the MSDN Library, you
also want to check the Microsoft Knowledge Base at http://support.
microsoft.com/default.aspx for updates, programming tips, and addi-
tional information.

Creating Your Own Jigs and Templates
You might think that I create every module, form, or code module by hand.
In some respects, this is true. I do write any custom code by hand. However,
there’s no reason for me to write my name and create basic functions or sub-
procedures that I know I’m going to use every time. I don’t feel any obligation
to write the code to create basic structures. VBA is your ally; use it to make
your workload just a little lighter. Listing BC3-4 shows an example of a tem-
plate that automatically creates a module and fills it with standard data. Note
that you must add a reference to the Microsoft Visual Basic for Applications
Extensibility component for this example. (You can find the source code for
this example on the Dummies.com site at
http://www.dummies.com/go/vbafd5e.)

Listing BC3-4 Automating the Module Creation Process

Public Sub ModuleStart()
‘ Create the new module.
Dim NewMod As Module
Set NewMod = Modules.Add

‘ Get the module name.

(continued)

BC51Bonus Chapter 3: Ten Really Cool Things You Can Do with VBA

046500 bc03.qxp 12/1/06 10:39 AM Page BC51

Listing BC3-4 (continued)

Dim ModName As String
ModName = InputBox(“Type the Module Name”, “Name”)
NewMod.Name = ModName

‘ Get the new projects
Dim MyProj As CodeModule
Set MyProj = Application.VBE.VBProjects(1).VBComponents(ModName).CodeModule

‘ Open the file.
MyProj.CodePane.Show

‘ Add the required option statement, module header, and opening Sub.
MyProj.InsertLines 1, “Option Explicit” + vbCrLf + vbCrLf + _

“‘ Module Name: “ + ModName + vbCrLf + “‘ Author: “ + _
Application.UserName + vbCrLf + “‘ Date: “ + CStr(DateTime.Now) + _
vbCrLf + vbCrLf + “Public Sub Main()” + vbCrLf + vbCrLf + “End Sub”

End Sub

Developing Reusable Libraries
When you build new programs with VBA, keep reusability in mind. Many
examples in this book appear as a single, large piece of code to make them
easier to explain. My own code contains smaller modules that accept one or
more arguments as input. Each module performs one task exceptionally well.
Using this technique means that code that I write today can also perform
work tomorrow.

All my tested code goes into a utility module (named Utility.bas). When I
begin a new project, I import Utility.bas and instantly have a lot of the
code that I need written. The functions and sub-procedures in the main module
for my program call each of these utility modules and ask it to perform its
special task. Some programmers call this the Lego approach to writing code
because of the similarity to the toy’s modularity of interchangeable pieces.
Reusable libraries can save you a great deal of time and make mundane pro-
gramming tasks a lot easier and fun.

BC52 VBA For Dummies, 5th Edition

046500 bc03.qxp 12/1/06 10:39 AM Page BC52

	VBA For Dummies, 5th Edition
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Conventions Used in This Book
	What You Should Read
	What You Don’t Have to Read
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: An Overview of VBA
	Chapter 1: Getting to Know VBA
	Batteries Included — VBA Comes with Office
	VBA: It’s Not Just for Programmers
	Other Products Use VBA, Too
	A Room with a View
	Starting the Visual Basic Editor

	Chapter 2: Your First VBA Program
	Deciding What to Do
	Steps to Create a VBA Program
	Four Ways to Run Your Program
	Using Help to Your Advantage — Stealing Microsoft’s Code

	Part II: Learning the Ropes
	Chapter 3: Writing Structured VBA Programs
	Parts of a Program
	Taking the Lego Approach
	Writing Your First Sub
	Writing Your First Function
	Getting the Scoop on Scope
	Creating Readable Code
	Telling Others about Your Code

	Chapter 4: Storing and Modifying Information
	Understanding Variables and Constants
	Defining the Data Types
	Working with Operators
	Applying What You Know to Design an Excel Report

	Chapter 5: Creating Structured Programs
	Exercising Control with Structures
	Making a Decision with the If... Then Statement
	Making a Choice by Using the Select Case Statement
	Performing a Task More than Once by Using Loops
	Redirecting the Flow by Using GoTo

	Chapter 6: Trapping Errors and Squashing Bugs
	Knowing the Enemy
	Prevention Is Better than a Cure
	Saving and Restoring Code
	Time for a Bug Hunt
	Using the Locals Window
	Using the Watches Window

	Chapter 7: Interacting with the User
	Understanding Forms
	Using the Basic Controls
	Using the Forms You Create

	Part III: Expanding Your VBA Horizons
	Chapter 8: Object-Oriented Programming
	Understanding Classes
	Designing a Basic Class
	Using Your New Object in an Application
	Adding Error Handling to Classes
	Using the With Statement
	Adding a Digital Signature to Your Creation

	Chapter 9: Working with Arrays and Collections
	Using Arrays for Structured Storage
	Using Collections to Create Data Sets
	Defining Your Own Data Types

	Chapter 10: Working with Disk Files
	Using Disk Storage
	Working with Settings

	Chapter 11: VBA Programming with XML
	Comparing WordML with Saved XML
	Manipulating XML Data
	Creating a Simple Word XML Document
	Changing the Face of XML with XSLT

	Part IV: Programming for Applications
	Chapter 12: VBA Programming in Office
	Working with the User Environment
	Manipulating Toolbars and Menus
	Working with the New Ribbon Interface

	Chapter 13: VBA Programming in Word
	Understanding the Word-Related Objects
	Accessing the Word Document
	Using the Registry with VBA
	Selecting Objects in a Word Document
	Manipulating Text
	Working with Envelopes and Labels

	Chapter 14: VBA Programming in Excel
	Understanding the Excel-Related Objects
	Selecting Objects within Excel
	Developing Custom Functions in Excel

	Chapter 15: VBA Programming in Access
	Understanding the Access-Related Objects
	Understanding SQL: A Quick Overview
	Adding Form-Related Applications
	Creating Automatic Applications

	Chapter 16: Applications that Work Together
	Understanding Why You Should Work with More than One Application
	Starting and Stopping External Applications
	Processing Outlook E-Mail Messages with Word
	Sending E-Mail Messages with Outlook
	Sending Notes from Word to Excel

	Part V: The Part of Tens
	Chapter 17: Ten Kinds of VBA Resources
	Using Magazines and Periodicals
	Using RSS to Obtain the Latest Information
	Finding Interesting Newsgroups and List Servers
	Locating Just the Right Code
	Getting Tools to Make Programming Easier
	Downloading ActiveX Controls and Third-Party Components
	Using the Author As a Resource

	Chapter 18: Ten Ways to Update Your Old VBA Code Quickly
	Debugging Your Code Before Making Changes
	Using Search-and-Replace to Your Advantage
	Asking Others About a Fix
	Maintaining a Log
	Grabbing Helpful Code from VBA Help
	Getting Your Users to Help You
	Creating an Update Plan
	Learning When That Old Code Won’t Update
	Using the Code in This Book for Updates

	Index
	Bonus Chapter 1: VBA Programming in FrontPage
	Using FrontPage with VBA
	Understanding the FrontPage-Related Objects
	Working with FrontPage Documents

	Bonus Chapter 2: VBA Programming in Visio
	Using Visio with VBA
	Understanding the Visio-Related Objects

	Bonus Chapter 3: Ten Really Cool Things You Can Do with VBA
	Personalizing Your VBA Applications
	Using Files with the Open Command
	Defining Database Connections
	Automating PowerPoint Presentations
	Creating Data Connections with OLE
	Adding Functionality with Controls
	Getting and Using Components
	Using Microsoft’s Online Documentation
	Creating Your Own Jigs and Templates
	Developing Reusable Libraries

