
by Bill Sempf

Visual Basic® 2008
FOR

DUMmIES
‰

01_182383 ffirs.qxp 2/21/08 7:28 PM Page iii

01_182383 ffirs.qxp 2/21/08 7:28 PM Page ii

Visual Basic® 2008
FOR

DUMmIES
‰

01_182383 ffirs.qxp 2/21/08 7:28 PM Page i

01_182383 ffirs.qxp 2/21/08 7:28 PM Page ii

by Bill Sempf

Visual Basic® 2008
FOR

DUMmIES
‰

01_182383 ffirs.qxp 2/21/08 7:28 PM Page iii

Visual Basic® 2008 For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. Visual Basic and Visual Studio
are registered trademarks of Microsoft Corporation in the United States and/or other countries. All other
trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any
product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2008923124

ISBN: 978-0-470-18238-3

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_182383 ffirs.qxp 2/21/08 7:28 PM Page iv

www.wiley.com
http://www.wiley.com/go/permissions
www.wiley.com/techsupport

01_182383 ffirs.qxp 2/21/08 7:28 PM Page vi

About the Author
I am Bill Sempf, and you’ll notice that I don’t write in third person. I have
spent an inordinate amount of time in the last several years writing about,
thinking about, and coding in VB.NET. I am a coauthor of Professional Visual
Studio.NET, Effective Visual Studio.NET, Professional ASP.NET Web Services
and Professional VB.NET (among others), and a frequent contributor to the
Microsoft Developer Network, Builder.com, Hardcore Web Services, Inside
Web Development Journal, and Intranet Journal. I have recently been an
invited speaker for DevEssentials, the International XML Web Services Expo,
and the Association of Information Technology Professionals. As a graduate of
Ohio State University with a Bachelor of Science in Business Administration,
Microsoft Certified Professional, Certified Internet Business Strategist, and
Certified Internet Webmaster, I have developed over one hundred Web
applications for startups and Fortune 500 companies alike.

I began my career in 1985 by helping my father (also named Bill) manage
Apple IIe systems for the local library. Since then, I have built applications for
the likes of Lucent Technologies, Bank One, the State of Ohio, Nationwide
Insurance, and Sears, Roebuck and Co. I specialized in data-driven Web
applications of all types, both public and private. Currently, I am the Senior
Technology Consultant at Products of Innovative New Technology in Grove
City, Ohio, a Microsoft Certified Partner, working on a Learning Management
System for OmniPath, inc. (www.omnipath.com). I can be reached at
bill@pointweb.net.

01_182383 ffirs.qxp 2/26/08 4:51 PM Page v

Dedication
This edition of the book was heavily influenced by the thousands of readers
all over the world who took the time to e-mail with thoughts, questions, com-
plaints, criticism, praise and ideas. To be honest, they are why I write. The
majority of my good projects have come from people who read my books and
call to collaborate.

This book is dedicated to those readers. If you have taken the time to e-mail
me or review the book or contact Wiley — good or bad — about this book
series, thank you. Even if you are peeved because of a problem or error, you
are helping make this a better product and that helps everyone.

Despite what people often think, even with the best of editing and authoring,
these books aren’t perfect — they are a community effort. Without that com-
munity, the books wouldn’t be good or necessary. It’s a self-replicating cycle,
and I love it.

01_182383 ffirs.qxp 2/26/08 4:51 PM Page vii

01_182383 ffirs.qxp 2/21/08 7:28 PM Page viii

Author’s Acknowledgments
I cannot begin to thank the amazing team at Wiley who led me ever so care-
fully through the process of updating this book. Katie Feltman kept on me to
revise the ideas I presented, and Mark Enochs saw to it that I stuck to sched-
ule. The entire Wiley team, in fact, is the best an author could ever hope to
have. I have gotten to know them well over the last several years, and I love
them all.

A project at Wendy’s International led me to ask the most detail-oriented
person I have ever met — Mike Spivey — to review the technical details of
this edition. Jeff Simmons reviewed the original code, and did a good job, but
this book is all the better for multiple sets of eyes.

My army of peer reviewers from the original edition was fantastic: Theresa
Alexander, Jim Andrews, David Deloveh, Rex Mahel, Greg McNamara, Rob
Morgan, Blake Sparkes, and Gary Spencer. Here’s a special note about my
father, William E. Sempf, whose education background was of inestimable
help in reviewing the early concepts for the book. Then, he let me use him as
a guinea pig for Part I! What a trooper!

Finally, a shout to the many Microsoft people who gave me a hand with spe-
cific questions about VB, Visual Studio, and the framework in general: Jan
Shanahan and Susann Ragsdale in the Author Support Group, and Brad
McCabe, Daniel Roth, Jay Roxe, and Steve Lasker, among many others, on the
development teams.

01_182383 ffirs.qxp 2/26/08 4:51 PM Page ix

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media
Development

Senior Project Editor: Mark Enochs

Senior Acquisitions Editor: Katie Feltman

Copy Editor: John Edwards

Technical Editor: Mike Spivey

Editorial Manager: Leah Cameron

Media Development Project Manager:
Laura Atkinson

Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Kristie Rees

Layout and Graphics: Alissa D. Ellet,
Shane Johnson, Christine Williams,
Erin Zeltner

Proofreaders: John Greenough, Caitie Kelly

Indexer: Potomac Indexing, LLC

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_182383 ffirs.qxp 2/26/08 4:51 PM Page x

Contents at a Glance
Introduction ...1

Part I: Getting to Know .NET Using Visual Basic.............9
Chapter 1: Wading into Visual Basic ..11
Chapter 2: Using Visual Studio 2008 ..23
Chapter 3: Designing Applications in VB 2008..43

Part II: Building Applications with VB 200859
Chapter 4: Building Windows Applications ..61
Chapter 5: Building Web Applications ...83
Chapter 6: Building Class Libraries..107
Chapter 7: Building Web Services ..123
Chapter 8: Debugging in VB 2008 ...139

Part III: Making Your Programs Work155
Chapter 9: Interpreting Strings and Things...157
Chapter 10: Making Decisions in Code ..175
Chapter 11: Getting Loopy ..187
Chapter 12: Reusing Code ...197
Chapter 13: Making Arguments, Earning Returns ..219

Part IV: Digging into the Framework237
Chapter 14: Writing Secure Code..239
Chapter 15: Accessing Data...253
Chapter 16: Working with the File System...271
Chapter 17: Accessing the Internet ..283
Chapter 18: Creating Images ...297

Part V: The Part of Tens ..309
Chapter 19: Ten Tips for Using the VB User Interface ...311
Chapter 20: Ten Ideas for Taking Your Next Programming Step325
Chapter 21: Ten Resources on the Internet ..337

Index ...343

02_182383 ftoc.qxp 2/21/08 7:29 PM Page xi

02_182383 ftoc.qxp 2/21/08 7:29 PM Page xii

Table of Contents
Introduction..1

About This Book...2
Conventions Used in This Book ...2
What You Don’t Have to Read ..3
Foolish Assumptions ...4
How This Book Is Organized...4

Part I: Getting to Know .NET Using Visual Basic4
Part II: Building Applications with VB 2008 ..5
Part III: Making Your Programs Work...5
Part IV: Digging into the Framework ..5
Part V: The Part of Tens...5

Icons Used in This Book..6
Where to Go from Here..6

Part I: Getting to Know .NET Using Visual Basic9

Chapter 1: Wading into Visual Basic .11
Visual Basic’s Role in the Framework..11
Saying Hello to VB 2008! ..13

Installing Visual Studio ..14
Starting a Windows Forms project...15
Adding functionality to the form with VB code................................18
Running and operating your Windows form.....................................19

Finding More Power in Visual Studio...20
Visual Studio doesn’t just do Windows! ..20
Visual Basic goes mobile ...21
VB as your one-stop development shop ...22

Chapter 2: Using Visual Studio 2008 .23
Understanding Visual Studio Tools..23

Touring the Design View..24
Accessing controls with the Toolbox ..26
Changing details with the Properties window..................................27
Organizing your project with the Solution Explorer........................29
Accessing outside resources with the Server Explorer...................30
Dynamically editing data with the Data Sources window...............33

Moving a Tool Window ..35

02_182383 ftoc.qxp 2/21/08 7:29 PM Page xiii

Working with Code...36
Getting to Code View ...36
Using IntelliSense ...37
Reading the documentation..38

Customizing with Options...40
Increasing Efficiency with Third-Party Tools ...41

Chapter 3: Designing Applications in VB 2008 .43
Making Software Simple Using the .NET Framework.................................44

Getting to the operating system...46
Integrating servers and services..47
Interacting with the user ...48

Comparing Abstract Concepts with the Real World..................................48
Classes ...48
Objects...49

Planning for a Project Using the Project Lifecycle.....................................49
Scoping out the system ...51
Gathering requirements...51

Designing the Date Calculator ..52
Storing data ...53
Designing screens...54
Defining logic ..56
Writing a test plan ..57
Sticking to the plan ..58

Part II: Building Applications with VB 2008.................59

Chapter 4: Building Windows Applications .61
A Quick Look Back at Visual Basic...61
Discovering Windows Controls ..63
Making a Windows Application ..65
Adding Functionality to a Windows Form...68
Adding Features to Windows Forms..70

Managing text input with the TextBox...71
Communicating with the user using the status strip.......................73
Giving hints with the ToolTip control..75
Navigating with the MenuStrip control ...78
Activating the right-click with the ContextMenuStrip.....................80

Chapter 5: Building Web Applications .83
Seeing How ASP.NET Works with Your Web App84

PostBack: Not a returned package ...85
A matter of State...85

Discovering the Web Controls ..86

Visual Basic 2008 For Dummies xiv

02_182383 ftoc.qxp 2/21/08 7:29 PM Page xiv

Building Your First Web Application..89
Viewing the extras in Web Forms ...89
Constructing the Web Forms application..90
Viewing the results in Source View ..93
Running your Web application ...95

Looking Below the Surface of Web Forms...97
Validating user input ..98
Dealing with State...101

Checking Out Some Cool Web Tricks ..102
Getting from one page to another ..103
Adding pretties ...104
Getting information about the user ...104

Chapter 6: Building Class Libraries .107
Past to Present: DLLs Defined ..108
Designing a Library..109

Objects and classes..110
The parts of a class library ...110
Coding a class library ..112

Creating a Class Library ..113
Getting started..114
Building the Date Calculator ...114
Doing math with a subroutine ..115
Running a DLL file ..116

Delving Deeper into DLLs..118
Telling between friends and foes..119
Be nice and share ...119
Getting more out of less ..120

Chapter 7: Building Web Services .123
Getting to Know XML Web Services ..123

Web services: Characteristics ..125
Web services: Quirks ...125

Designing for Web Services...126
Planning the design strategy...126
Getting a grip on the tactics..127

Building a Web Service ..127
Building the DateCalc Web service ..129
Viewing the DateCalc service in action ...130

Consuming a Web Service...132
Web Services in More Depth...135

Chapter 8: Debugging in VB 2008 .139
Cool Visual Tools for Debugging ..139

Breakpoints ...140
The Watch window...143
The Immediate Window...144

xvTable of Contents

02_182383 ftoc.qxp 2/21/08 7:29 PM Page xv

Using the Debugging Tools in the .NET Framework145
The Debug class ...146
Error handling...147

Debugging the Projects ...148
Windows Forms ..149
Web Forms...150
Class libraries ...152
Web services ...153

Part III: Making Your Programs Work155

Chapter 9: Interpreting Strings and Things .157
Types of Information in Visual Basic ...158

Understanding types in Visual Basic ...158
Changing types with CType ..159
Controlling types with validation...163

Making Words Work with the String Type...164
The fantastic tools built into strings..164
Emptiness — handling nulls ...165

Finding Tools for Managing User Input ...167
Constructing strings with the StringBuilder class167
Manipulating strings with regular expressions168

Things That Aren’t Strings — Numbers and Dates..................................170
Integers and reals and imaginaries, oh my!170
Working with dates and date math ..171

Changing Types with Parse and TryParse ..173

Chapter 10: Making Decisions in Code .175
Designing Business Logic..175
Depicting Logic with Flowchart Components ..176

Communicating with the user...176
Defining the process ..178
Making a decision...178

Implementing These Processes in Visual Basic180
Single process ...180
Multiple choice ...182
Exception...183

Chapter 11: Getting Loopy .187
Dealing with Zero ...188

Starting at zero ...188
Comparing specific loops and indefinite loops188

Writing Loops with For-Next...190
Using the For-Each Listing with Collections...191

Visual Basic 2008 For Dummies xvi

02_182383 ftoc.qxp 2/21/08 7:29 PM Page xvi

Writing Indefinite Loops with Do-Loop ...193
Do-While loop, checked at start ...194
Do-While loop, checked at end...194
Do-Until loop, checked at start...195
Do-Until loop, checked at end...195

Checking at the Beginning with While...196

Chapter 12: Reusing Code .197
Reusing Code to Build Software ...197

Building functions with reuse in mind...198
Extending reusability with class files ..201

Avoiding the Code-Complexity Trap..203
Protecting the values of parameters..204
Handling errors effectively in an abstract environment205

Finding Other Ways to Reuse Code..207
Creating custom controls ..207
Adding user controls..209
Making master pages ...210

Reusing Programs Outside of the Framework..211
Referencing the old Component Object Model212
Calling methods in COM objects ..213
Using other programs with the Process class213

Accessing DOS: But Only as a Last Resort..216
Running command-line programs with Shell216
Getting focus with AppActivate..217

Chapter 13: Making Arguments, Earning Returns 219
Using Classes Effectively...220

Making and destroying objects ..220
Resource utilization ...221
With and Using..221

Using Event Handlers ..222
Event handling using the Properties window.................................222
Event handling using IntelliSense...224
Relaxed event handlers ...224

Making Sensible Procedures with Overloading..226
Reusing your procedure names..226
Changing built-in functions with operator overloading227
Designing for overloading ...228
Optional parameters ..229

Flexible Objects with Generics...230
Building generics ..230
Designing for generics ...231

Controlling Objects with Threading ..232
Designing for threading ...232
Implementing threading ..233

xviiTable of Contents

02_182383 ftoc.qxp 2/21/08 7:29 PM Page xvii

Part IV: Digging into the Framework...........................237

Chapter 14: Writing Secure Code .239
Designing Secure Software..240

Determining what to protect...240
Documenting the components of the program240
Decomposing the components into functions................................241
Identifying potential threats in those functions241
Rating the risk...242

Building Secure Windows Forms Applications...242
Authentication using Windows logon..243
Encrypting information ...245
Deployment security..246

Building Secure Web Forms Applications ...247
SQL Injection attacks ...247
Understanding SQL Injection ..247
Script exploits...248
Best practices for securing your Web Forms applications250

Using System.Security ...251

Chapter 15: Accessing Data .253
Getting to Know System.Data ...254
How the Data Classes Fit into the Framework..256
Getting to Your Data ..256
Using the System.Data Namespace..257

Connecting to a data source ...257
Working with the visual tools ...262
Writing data code ...266

Using LINQ ..269

Chapter 16: Working with the File System .271
Getting to Know System.IO ...271
Using the System.IO Namespace..273

Opening a file ..274
Changing the contents of a file ...277
Saving a file..277
Listing directories and files...279
Viewing file information...279
Keeping an eye on files ..280

Chapter 17: Accessing the Internet .283
Getting to Know System.Net ...284
How the Net Classes Fit into the Framework ...285

Visual Basic 2008 For Dummies xviii

02_182383 ftoc.qxp 2/21/08 7:29 PM Page xviii

Using the System.Net Namespace..286
Checking the network status ..287
Downloading a file from the Internet ...288
E-mailing a status report ...290
Logging network activity ...293

Chapter 18: Creating Images .297
Getting to Know System.Drawing...298

Graphics ..298
Pens..299
Brushes..299
Text...300

How the Drawing Classes Fit into the Framework300
Using the System.Drawing Namespace ...302

Getting started..302
Setting up the project ..304
Drawing the board..305

Part V: The Part of Tens ...309

Chapter 19: Ten Tips for Using the VB User Interface311
Generating Event Handlers from the Properties Window.......................311
Generating Event Handlers from the Code View......................................313
Pasting Text as HTML ..314
Customizing Your Toolbars for Every File Type315
Adding Extender Providers...316
Using Visual Components That Are Not So Visual...................................317
Recording Macros ..319
Using the Task List ...322
Inserting Snippets in Your Code...323

Chapter 20: Ten Ideas for Taking
Your Next Programming Step .325

Get Visual Basic 2008 for Home Use ..325
Update Code to Use New Tools ..326
Join an Online Competition at TopCoder..326
Participate in an Open Source Project ..327
Use Third-Party Tools in Your Projects...328
Integrate a Public Web Service...329
Try Out CodeRush and Other Code Generators331
Write a Web Part...332
Use the DTE ..334
Write an Article about What You Have Discovered335

xixTable of Contents

02_182383 ftoc.qxp 2/21/08 7:29 PM Page xix

Chapter 21: Ten Resources on the Internet .337
MSDN Library ...337
VBForDummies.net ..337
Channel 9...338
ASP.NET Web...338
The Microsoft Public Newsgroups...339
.NET 247...339
Google CodeSearch..339
kbAlertz ...340
CodePlex..340
<Microsoft> Google for Searching..340

Index..343

Visual Basic 2008 For Dummies xx

02_182383 ftoc.qxp 2/21/08 7:29 PM Page xx

Introduction

Welcome to the new version of Visual Basic for 2008. As its name implies,
Visual Basic is a visual way to create new programs for the Microsoft

Windows family of operating systems.

And though it is basic in many ways, the Visual Basic language is also very
powerful. You can create new class libraries and XML Web services, as well
as programs that you can use on your PC or your Web browser, or even your
phone or PDA. Anything that can be done in Windows can be done in Visual
Basic.

Programming in Visual Basic is easier than you might think, thanks to the
visual tools supplied by Visual Studio. You don’t have to type line after line
of code to create a working program — Visual Studio automatically generates
some code for you when you drag and drop components with the visual tools.
Of course, being able to read and write code is important, too, and this book
provides plenty of code samples so that you can understand the inner work-
ings of your programs.

This book also shows you some best practices to keep in mind as you get fur-
ther along in your programming. Your first programs may be very simple, but
when you start getting into more complicated applications, you really need to
plan out your program before you start writing the code.

Previous versions of Visual Basic were complete development environments.
The latest version of Visual Basic is really only one part of a three-part pro-
gramming strategy:

� A language: For this book, it is Visual Basic 2008. Other popular languages
include C#, J#, Perl, and 24 others.

� An Integrated Development Environment (IDE): For this book, it is
Visual Studio 2008. Other IDEs include Borland, Adobe, and several
other tools.

� A project: In this book, I cover four types of projects: Windows Forms,
Web Forms, class libraries, and XML Web services. You can also use VB
to build Windows services, console applications, Smart Device applica-
tions, Mobile Web Forms, and many other project types.

03_182383 intro.qxp 2/21/08 7:29 PM Page 1

About This Book
No matter who you are or what your background is, you are not a dummy if
you’re reading this book. You might, however, be a dummy about what Visual
Basic is, how to use it, or why it can help you do your job better.

This book is expressly designed to make you a good Visual Basic programmer.
As such, I don’t spend every page talking about the features of the language,
how to use Visual Studio, or how to connect to a database. I spend a fair
amount of time talking about how to make good decisions, build the right
software for the problem you need to solve, and not make common mistakes.

Visual Basic — despite all appearances — is really very easy to use. Much of
the complexity of the language is hidden in tools provided to you by Microsoft.
Many of these tools are not expressly for Visual Basic, but they will become
very important to your success as a programmer. This book is also about
those tools, because they make writing good, working programs faster and
easier.

This book is also about you, the programmer. I’m a programmer like you. I
have been writing in BASIC since 1981, and I’ve lived through all the ups and
downs. For about 15 years, Visual Basic was a program, not a language, and I
lived through that. Now the tables have turned — Visual Basic is again a lan-
guage (Visual Studio is the program). In this book, I help you become a good
Visual Basic programmer.

Conventions Used in This Book
I have written this book to be easy to read while you are programming. As
such, I use certain conventions to make for easier reading:

� Words that I want to emphasize or that I’m defining are placed in italics.

� Terms that are used in Visual Basic code are in monotype font.

� Menu selections look like this: File➪New. This is shorthand for “From
the File menu, select New.”

I use numbered lists to guide you through a sequential process such as build-
ing a Windows Forms application. The bold part of the step is a technical
description of the action you are to perform, and the normal (not bold) text
that follows provides further explanation or describes how I implemented the
step in my examples.

2 Visual Basic 2008 For Dummies

03_182383 intro.qxp 2/21/08 7:29 PM Page 2

Bulleted lists are used to create memorable lists. For me, one of the toughest
things about programming is remembering key points, like features or best
practices. I use the bulleted lists to help with those kinds of things.

Code examples are broken out from the rest of the paragraph, as follows:

If DateNumber.Text.Length > 0 Then
DateInterval = CInt(DateNumber.Text)

End If
NextWeek.Text = DateChooser.Value.Add(TimeSpan.FromDays(7)).ToString()

The code blocks are usually written in such a way that you can copy them
right into your program. They will be in monotype font, and sometimes will
have linefeeds (the space and underscore character at the end of the line) in
inappropriate places because the printed page is only so wide. Remember
that when you’re writing out the code and you’re looking at it on-screen, you
won’t need to use so many linefeeds. If you have a question about where a
break should be, check out the sample code, which you can find on this
book’s companion Web site, www.vbfordummies.net.

What You Don’t Have to Read
If you’re not working with graphics right now, you can skip the chapter on
graphics. If you don’t use a database, you can skip the database chapter.
See where I am going? If you don’t use Web services, you don’t have to read
about them.

Effectively, this is a modular book. Aside from Part I, which everyone needs
to read, there are no requirements to read anything in any particular order.
Read what you need, and ignore the rest until someone comes into your
office and needs something done on that topic. Then you can pull the book
out again and read that chapter.

If you have a copy of Visual Basic 2005 For Dummies, you will find many simi-
larities to this book There were not too many changes between VB 2005 and
VB 2008, fortunately. I will strive to document the differences between this
book and the 2005 book and post them on www.vbfordummies.net.

3Introduction

03_182383 intro.qxp 2/21/08 7:29 PM Page 3

Foolish Assumptions
I assume that by buying this book and reading it, you are interested in finding
out how to program in Visual Basic. Beyond that, I also assume that you have
the following:

� A PC running some flavor of Windows (Windows Vista or XP, most likely)

� A copy of Visual Studio 2008 Professional installed on your PC

� Access to the Internet, for downloading code samples and further reading

How This Book Is Organized
This book is meant to be read as a series of articles, but it can easily be used
as a reference or read straight through. I recommend reading it at your com-
puter, with Visual Studio running.

Each part is designed to teach you something that you need to know. The only
part that I strongly suggest you read, however, is Part I, “Getting to Know .NET
Using Visual Basic.” After that, you can read whatever you need to get the job
done, or read the whole book all the way through — it is up to you.

Part I: Getting to Know .NET
Using Visual Basic
After a quick jump start, I discuss the tools and concepts in this part. Chapter 1
is a Hello World introduction to the language, which experienced VB program-
mers will find useful and new programmers will find vital. Chapter 2 is a tour of
the development tool you will be using, Visual Studio 2008.

Chapter 3 is arguably the most important chapter in the book. It is about
designing good software with Visual Basic. You may want to read that one
twice. I wanted to print it twice, but the publisher wouldn’t let me.

4 Visual Basic 2008 For Dummies

03_182383 intro.qxp 2/21/08 7:29 PM Page 4

Part II: Building Applications
with VB 2008
This part gets you started programming. You find one chapter here for each
of the four most-used project types (Windows and Web Forms, DLL files, and
XML Web services) and then a chapter discussing how to debug all of them.

Part III: Making Your Programs Work
This part is actually about Visual Basic the language. You see, the projects
discussed in Part II are actually available to lots of languages. You can write
a Windows Forms project in Java (Microsoft calls it J#) if you want to. The
actual VB language doesn’t kick in until you write a program that needs more
than the visual design.

Part IV: Digging into the Framework
Finally, in Part IV, you look at the last part of the puzzle — what the .NET
Framework can do for you. Tons of tools that are built right into the frame-
work are available to all languages but have a special twist when used with
Visual Basic.

I begin with the important stuff, specifically security. Then I cover data, files,
networks, and drawing. Throughout all these chapters, I provide code exam-
ples that can help you through the tougher problems that you may encounter
in your VB career.

Part V: The Part of Tens
Some things fit nowhere. That’s what the Part of Tens is for. In this part, I col-
lected the most useful tips that didn’t fit elsewhere and made them into top-
ten lists. For more of these kinds of lists, check out this book’s companion
Web site at www.vbfordummies.net.

5Introduction

03_182383 intro.qxp 2/21/08 7:29 PM Page 5

Icons Used in This Book
One of the things I like best about the For Dummies series of books is the ease
of reading. Important facts are easily distinguishable from tips or technical
details by this cool series of icons in the margins. I hope you find them as
useful as I do.

This is the icon I use most often. It highlights a best practice, a common
usage, or just something that I think you will find good to know about a fea-
ture or tool.

I use this icon to point out something that you want to, well, remember. The
famous gotchas that all programmers are so familiar with get this icon. Some
usages aren’t always obvious. I hope to help you help yourself by pointing
them out.

This icon points out something you do not want to do unless you’re willing to
suffer the consequences. Read the paragraphs next to the Warning icon so
that you’ll know how to avoid the pitfall, trap, or mistake.

These icons are pointers to places where the My object, new to Visual Basic
2008, can be useful.

Sometimes, I give you more information that you really need. When I do that,
I try to use the Technical Stuff icon. You will find things you never wanted to
know about the inner workings of the .NET Framework, design ideas, and
other geeky stuff alongside this icon.

I use this icon to highlight a new feature in Visual Basic 2008.

Where to Go from Here
If you’re completely new to Visual Basic and Visual Studio, start out by flip-
ping the page and reading Chapter 1. If you’re interested in looking up a par-
ticular topic, skim through the Table of Contents or the Index and turn to the
indicated page.

When you’re feeling more familiar with the language, tool, and project type,
branch out by checking out the list of tips in the Part of Tens to take your
next programming step.

6 Visual Basic 2008 For Dummies

03_182383 intro.qxp 2/21/08 7:29 PM Page 6

You can, of course, read the book all the way through. Another great way to
figure out how Visual Basic works is to follow a project path all the way
through. For example, start with a Windows Forms project with System.
Drawing elements, and go through the examples in the chapters that discuss
those topics (Chapters 4 and 18, in this case).

Be sure to use the code samples for this book, provided at www.vbfor
dummies.net. They will give you a broad starting point for a lot of other,
larger programs that you might want to write.

You also might be in the position where you have to quickly learn how to use
this language for your job, and there might be special libraries and standards
that you have to work with there. I recommend that you take the book home,
where you can work undistracted, and give yourself a good foundation in the
language. Then you can take the book back to work and use it as a reference
for your future programming efforts.

Things change in the software world, and Microsoft software is especially
prone to change. Things have probably changed since I wrote this book. If the
software changes, I can’t update the books that have already been printed.
However, I can (and do) list any errata and updates on this book’s companion
Web site, www.vbfordummies.net. Check it out often.

7Introduction

03_182383 intro.qxp 2/21/08 7:29 PM Page 7

8 Visual Basic 2008 For Dummies

03_182383 intro.qxp 2/21/08 7:29 PM Page 8

Part I
Getting to Know

.NET Using
Visual Basic

04_182383 pp01.qxp 2/21/08 7:29 PM Page 9

In this part . . .

Everyone must start somewhere, and I start at the
beginning in this part. You write your first Visual Basic

program, and, in doing so, you discover some of the ideas
behind the .NET Framework (the backbone of this version
of the language). You then get to do the only required read-
ing in this entire book. First, you go over the use of the tool,
Visual Studio. Second, you design the example application
that you write in the next part.

04_182383 pp01.qxp 2/21/08 7:29 PM Page 10

Chapter 1

Wading into Visual Basic
In This Chapter
� Seeing where Visual Basic fits in with .NET

� Writing your first Visual Basic 2008 program

� Exploiting the newfound power of Visual Basic

To get started with Visual Basic 2008, I recommend that you jump right in
and write software! And to help you with such an assertive approach, this

chapter gives you just what you need to test the waters of the Visual Basic
pool and get comfortable with its place in the larger Visual Studio environment.

Then you can really get your feet wet as you build Hello World — your first
VB 2008 Windows Forms application — right here in the first few pages! You
find out how to launch Visual Studio 2008 (the development tool for your VB
applications), how to start a new project, and how to build a form visually
and make it work with code.

Also in this chapter, I give you a glimpse into the deeper power of Visual Basic.
Specifically, I introduce how VB 2008 integrates with the Microsoft .NET
Framework and offer insight into what that means to you as a programmer.

Visual Basic’s Role in the Framework
Microsoft created the .NET Framework to make development for the various
Windows operating systems easier. But because of the differences between
Visual Basic 6.0 and Visual Basic 7.0 (the first .NET version), most VB devel-
opers found development much harder. For example, VB 7.0 made all variables
into objects, which removed the programmer’s ability to define a variable type
on the fly.

But developing applications in .NET doesn’t have to be harder than it was in
VB 6.0. The .NET Framework and Visual Basic 2008 can be powerful tools, and
the trick is discovering how they work together through the Visual Studio
Integrated Development Environment (IDE).

05_182383 ch01.qxp 2/21/08 7:29 PM Page 11

Part of the difficulty that many programmers face when moving to the .NET
Framework is the terminology, which can get confusing. I’d like to put
the problem with terminology to bed right now, so check out this list of the
potentially confusing terms used in .NET development:

� Visual Basic 2008: The programming language described throughout
this whole book. No longer can you run or load Visual Basic as a sepa-
rate entity. It is simply one programming language that speaks to the
Microsoft .NET Framework, which is the next term in the list.

� .NET Framework: The layer that sits between the language (in this case,
Visual Basic) and the operating system, which can be Windows 98,
Windows Me, Windows 2000, Windows XP, Windows Server 2003, or any
of the subversions of those (such as the Tablet PC edition). The .NET
Framework layer serves to provide functionality based on the operation
of the Windows system on which it resides, as well as to provide libraries
for other functionality (such as math computations and database access).
Figure 1-1 is a visual representation of the relationship of all the layers in
the framework.

� Visual Studio 2008: The tool that you use to create any kind of applica-
tion using any compatible programming language. Visual Studio replaces
the Visual Basic 6.0 program that was formerly part of the Visual Studio
suite (all individual suite components were labeled Version 6.0). When
you go to write a new program in the .NET environment, you run Visual
Studio 2008 and select the kind of program you want to write in the pro-
gramming language you want to use. For example, you may choose to
create a Windows Forms program using the Visual Basic language, just
like the old days. Or you might want to write an application for a smart
device using C#. You can also mix languages, for example, writing the
forms in VB and the classes in C#. In this book, I will be using VB for
everything — because it is a book about VB!

.NET Framework 3.5

LINQ

.NET Framework 2.0 + SP1

ASP.NET 3.5 CLR Add-in
Framework

Additional
Enhancements

.NET Framework 3.0 + SP1

Windows
CardSpace

Windows
Workflow

Foundation

Windows
Communication

Foundation

Windows
Presentation
Foundation

Figure 1-1:
The .NET

Framework
hierarchy.

12 Part I: Getting to Know .NET Using Visual Basic

05_182383 ch01.qxp 2/21/08 7:29 PM Page 12

� Windows Forms: The new term for an old-fashioned Visual Basic appli-
cation. This term refers to an application that is written using the .NET
Framework and has a Windows user interface.

� Web Forms: The term for an application with a Web page interface writ-
ten using the .NET Framework. Creating a Web Forms application is very
similar to writing a Windows Forms application.

� Web services: The class libraries that are written using a standard defined
by the same people who defined standards for the World Wide Web. Web
services are used for interaction between divergent systems.

The .NET Framework is what you may already know as the Win32 layer in the
old Windows DNA system. Like the new .NET Framework, the Win32 layer
gave you the ability to get to the functions of the operating system when
developing for a Windows platform. Also, the .NET Framework includes a lot
of adjunct functionality, such as math and data libraries, that makes program-
ming a more cohesive experience.

Basically, everything that Windows does is exposed by the .NET Framework.
Specifically, the .NET Framework gives a programmatic name to nearly every
object and event that Windows can control. A programmer can use that name
to refer to anything existing in the operating system. Do you need to tell the
printer to make two copies of your document? Try referring to My.Computer.
Printers.DefaultPrinter.PrinterSettings.Copies = 2. Do you
need to paint some item on the screen blue? Try referring to System.
Drawing.Brushes.Blue.

In this .NET world, the programming language becomes just a way to interact
with the framework and, therefore, with the Windows operating system. All
programs need a set of established rules to handle the flow (decisions, loops,
and so on) within programs. Visual Basic provides one such set of rules, and
the framework provides the objects and events to interact with.

Saying Hello to VB 2008!
In the following sections, I get you started with the classic Hello World pro-
gram. Although this isn’t the single most exciting application you can build, it
helps to make sure that your development environment is set up the best
way possible.

13Chapter 1: Wading into Visual Basic

05_182383 ch01.qxp 2/21/08 7:29 PM Page 13

Installing Visual Studio
To follow this example, you need to start by running Visual Studio 2008, which
is the development environment used throughout this book to build applica-
tions in Visual Basic. Before you can run Visual Studio, you need to install it!

Visual Studio comes in a number of editions:

� Team System: Designed for full programming staffs in large corporations,
this edition includes large-scale application system design tools such as
test-driven development and Team Foundation Server.

� Professional Edition: Designed for the developers working with users in
a stand-alone setting. The Professional Edition is more common for the
solo developer or for mid-sized application development. This is the edi-
tion I use in this book.

� Standard Edition: Designed for building smaller, stand-alone applica-
tions, this version is perfectly functional for 80 percent of applications
built. But if you plan to build large systems that need to be enterprise
quality and may have many users, go for the Professional Edition.

� Express Edition: Designed for students and hobbyists. This version lacks
a lot of the project types that the other versions have. If you are running
Express, some of the examples in this book won’t work for you. On this
book’s Web site (www.vbfordummies.net), I have posted a few Express
articles and some projects that I have altered to work in Express edition.

14 Part I: Getting to Know .NET Using Visual Basic

How VB 2008 differs from VB 6
Visual Basic 6 was a stand-alone program,
and Visual Basic 2008 is one language in a
larger development system. To go back to VB’s
roots, Basic was a programming language used
20 years ago as part of MS-DOS. In 1985, Basic
became Visual Basic and was made into a part
of the Windows application-building tool. You
find a lot more to the Visual Basic 6 program
than just the language — its form-building soft-
ware, for example, is called Ruby.

Visual Basic has gone through a few revisions
since VB 6. VB 2002 (a.k.a. VB 7), VB 2003 (VB
7.1), and VB 2005 (VB 8) are all just revisions of

the language as it uses the .NET Framework. VB
2002 brought on board a whole new way to think
about building applications in Windows, and VB
2005 brought back a lot of the features that VB 6
programmers depended on — like ease of use.

In Visual Basic 2008, you have a new way to
build user experiences and, with it, a new way
to interact with the Windows operating system.
The real reason to understand the extent of this
larger development system — and the com-
plexity of the .NET Framework that surrounds
VB 2008 — is so that reading related books and
documentation is easier.

05_182383 ch01.qxp 2/21/08 7:29 PM Page 14

If you don’t have access to the MSDN Library (Microsoft’s handy technical
archive), I highly recommend getting it. You can load up a machine with your
choice of sample code, documentation, and other reference material on
Visual Studio editions, operating systems, and server software. You can find
out about the library at http://msdn.microsoft.com, and you can buy
subscriptions from several resellers, including your favorite software dealer.

Installing Visual Studio can be rough, so I recommend going with the defaults
for your first time. The installation process takes quite a while, too. Even if
you are using the DVD, expect to spend two hours installing the program.
If you are working from the CDs, expect to spend four hours.

After installing Visual Studio, you can run it by choosing Start➪All Programs➪
Microsoft Visual Studio 2008➪Microsoft Visual Studio 2008. The environment
loads, and you can get started on a program by choosing File➪New➪Project.
Next, you need to make choices about your project type and language, as
described in the next section.

Starting a Windows Forms project
After you choose File➪New➪Project in Visual Studio, the New Project dialog
box appears, as shown in Figure 1-2. In the Project Types pane, you find a
folder structure that lists the languages loaded with your installation and the
project types available for those languages. I suggest beginning with a plain
old Windows Forms Application — which is the Visual Basic 2008 answer to
the traditional (and perhaps familiar) VB 6.0 application.

Figure 1-2:
The New

Project
dialog box.

15Chapter 1: Wading into Visual Basic

05_182383 ch01.qxp 2/21/08 7:29 PM Page 15

To get started building your Hello World application, follow these steps:

1. Select the project type from the Templates pane in the New Project
dialog box.

For this example, select Windows Forms Application. Also, make sure
that Visual Basic is the language selected in the Project Types pane. If
you loaded other languages during installation, you may have other
choices.

2. Type the name you want to give your project to replace the default
name in the Name text box.

In this example, I type Hello World in the text box.

3. Click the OK button.

Visual Basic loads the default form (called Form1) and presents it to you
in the Design View. The default form comes complete with a workspace,
the title bar, and familiar Windows elements like the Resize buttons and
the Close button. You do most of the work to customize your form using
this visual view.

4. Click the word Toolbox on the left side of the screen and open the
Common Controls tree.

The Toolbox appears, with Windows Forms controls loaded, as shown in
Figure 1-3.

5. Double-click the Button control.

Visual Studio loads a button onto the default form in Design View.

6. On the default Form1, click the Button control and drag it to reposi-
tion it on the form.

Figure 1-4 shows the result of dragging the button to the middle of the
Form1 window.

This step list gives you the beginnings of the Windows Forms application,
which you see as Form1 in the Design View. But to see where Visual Basic
comes in, you have to find the code behind the form. Visual Studio offers you
(surprise!) the Code View when you’re ready to use Visual Basic to add func-
tionality to your form.

16 Part I: Getting to Know .NET Using Visual Basic

05_182383 ch01.qxp 2/21/08 7:29 PM Page 16

Figure 1-4:
Moving

the button
around

the form.

Figure 1-3:
Choosing

the Button
control from
the Toolbox.

17Chapter 1: Wading into Visual Basic

05_182383 ch01.qxp 2/21/08 7:29 PM Page 17

Adding functionality to
the form with VB code
To add a little functionality to the Windows form you build in the preceding
section, follow these steps:

1. Double-click the Button control to enter Code View.

In the Code View window, you see basic button-click code that looks like
the following:

Public Class Form1

Private Sub Button1_Click(ByVal sender As _
System.Object, ByVal e As System.EventArgs) _
Handles Button1.Click

End Sub
End Class

This code is a template that wraps the code that will be run when you
click the button. Visual Studio does the hard part for you, making sure
that the formatting of the Sub is correct!

2. In the Code View window, type a line of code to change the text that
appears on the Button control to Hello World.

Specifically, type the following code on the line preceding the End Sub
line:

Button1.Text = “Hello World”

Your button’s code now looks like the following:

Public Class Form1
Private Sub Button1_Click(ByVal sender As _

System.Object, ByVal e As System.EventArgs)
_

Handles Button1.Click

Button1.Text = “Hello World”

End Sub
End Class

18 Part I: Getting to Know .NET Using Visual Basic

05_182383 ch01.qxp 2/21/08 7:29 PM Page 18

Running and operating your Windows form
So this experience is pretty cool, right? Programming with Visual Basic is so
easy that, here in Chapter 1, you can already write a Windows Forms applica-
tion. But what can you do with it? Check out the following:

� Run your Windows Forms application within the Visual Studio envi-
ronment. Press F5, and Visual Studio opens your active project as a
Windows program. It appears on your taskbar and everything. Click
the button on your form, and the button text changes to “Hello World”
(or whatever text you specified in the code). Pretty neat, huh? Your
Windows form should look something like the image in Figure 1-5.

� Run your application outside of the Visual Studio environment. If you
are still in Debug mode, you will need to stop your program first by
using the Stop button on the toolbar or by closing the form window.
Then you can save and move on.

The very simple way to run an application outside of Visual Studio is as
follows:

1. Choose File➪Save All.

Visual Studio will save your project using the defaults you supplied
in the Add New Project dialog box.

2. Choose Build➪Build Program Name.

In this example, choose Build➪Build Solution, and Visual Studio
compiles your application into a usable Windows program (with
the file extension .exe) and stores it in the default folder.

3. Navigate to the default folder containing your new Windows
application.

For my application, the path is C:\Documents and Settings\
sempf\My Documents\Visual Studio 2008\Projects\
VBFD\Chapter1\Hello World\bin\Debug.

Figure 1-5:
Your Hello

World
application.

19Chapter 1: Wading into Visual Basic

05_182383 ch01.qxp 2/21/08 7:29 PM Page 19

If your local configuration for the project happens to be set to Release mode
(not recommended for this book), you might find it in C:\Documents and
Settings\sempf\My Documents\Visual Studio 2008\Projects\
VBFD\Chapter1\Hello World\bin\Release.

4. Double-click the filename for the compiled program to run it.

You may see a lot of files in the default folder, but in the example,
Hello World.exe is the file you’re looking for.

There is a more complex method for running your VB programs outside the
Visual Studio environment. You use a Setup Project, which is a very cool tool
but beyond the scope of this book. Research the term Setup Project in the
MDSN Library when you’re ready to find out more about this device, which
helps you distribute your application to other users.

Finding More Power in Visual Studio
Earlier in this chapter, I showed you the Windows Forms application develop-
ment environment and a little of the new Visual Basic 2008 code. If you are
familiar with VB 6.0, the form and the code look pretty familiar at this point.
In fact, the major Windows development tools for any programming language
work pretty much this way.

But when you look beyond the Windows form and the code structure, a few
more details become evident. For instance, Visual Studio takes your VB code
beyond the Windows form. The following sections give you an overview of
the development power that you find in Visual Studio.

Visual Studio doesn’t just do Windows!
The first evident change that sets Visual Studio apart as a development tool
is this: You can use Visual Studio to write programs that run on the World
Wide Web as well as on Windows computers. When you click the File menu
to add a new project, notice the second option in the menu. As shown in
Figure 1-6, the second project option is a new Web site.

Choose this option to create a Web application, which incorporates a whole
host of technologies — the .NET Framework, ASP.NET, Visual Basic, and
HTML — that each have essential roles for enabling an application to run
online.

20 Part I: Getting to Know .NET Using Visual Basic

05_182383 ch01.qxp 2/21/08 7:29 PM Page 20

Visual Basic goes mobile
Mobile computing made its appearance in Visual Basic 2005 and really shines
now in Visual Studio 2008. If you follow development for mobile devices, you
may have noticed the plethora of releases from the Mobile team over the past
few years. They are all baked right into Visual Studio 2008. Pocket PC 2003,
Mobile 5.0, and Mobile 6.0 all make their appearance in Visual Studio 2008,
and can be programmed in VB 2008 — just like every other type of project.

I don’t give examples of these specific project types in this book because you
can create a mobile device application in the same manner that you create a
Windows Forms application (like the Hello World program discussed earlier
in the chapter). You should know that getting familiar with the Visual Basic
language as presented in this book puts you on the right track for creating
applications for a Pocket PC. Mobile computing applications require some
special programming practices, so make sure to grab some device-specific
information when you work on those project types.

Writing routines to use with other software is easier with Visual Basic 2008.
You can write add-ins for Microsoft Office apps, including Excel and Word
templates with VB code running behind them. These routines don’t use the
VBScript that you may have seen before; a completely new part of Office 2007
allows you to write templates with special, built-in functionality. For example,
I’ve built a Word template that automates a reporting process by asking the
user for a report number, checking that number against a database of all the
reports filed, and filling out part of the document-in-process with the relevant
information from the database. You can also customize the ribbon bar and
create and deploy add-ins easily.

Figure 1-6:
The File
menu in

Visual
Studio.

21Chapter 1: Wading into Visual Basic

05_182383 ch01.qxp 2/21/08 7:29 PM Page 21

VB as your one-stop development shop
Generally, Visual Studio and the .NET Framework are designed to be the one-
stop shop for any kind of development on Windows machines. But in this ver-
sion, Visual Basic 2008 can also do it all. The language can now touch all the
parts of the .NET Framework that any of the other languages can get to, with-
out resorting to the cryptic function calls necessary in prior versions of VB.

The new features covered in this book include the following:

� The Windows Presentation Foundation: Microsoft has updated the for-
mula to design new user experiences again with even more power.

� The Windows Communication Foundation: Making interconnected
applications even more powerful, the WCF is an advanced step that I’ll
touch on later in the book.

� Language Integrated Query: LINQ brings data constructs right into your
code with new query mechanisms for collections of objects.

� System.XML: If you are working with Extensible Markup Language, VB
2008 brings new meaning to the word simple.

22 Part I: Getting to Know .NET Using Visual Basic

05_182383 ch01.qxp 2/21/08 7:29 PM Page 22

Chapter 2

Using Visual Studio 2008
In This Chapter
� Going over Visual Studio tools

� Discovering how the code ties it all together

� Customizing with options

� Using third-party tools

Before you can effectively work with Visual Basic, you must know its tools
inside and out. For the purpose of this chapter and this book, I will focus

on just one — Visual Studio 2008. Visual Studio gives you access to the drag-
and-drop controls that were introduced in earlier versions of Visual Basic.

Although I don’t cover the specifics of code in this chapter, I do cover all the
code-generating tools that Visual Studio 2008 provides for Visual Basic. For
example, I discuss the new, improved IntelliSense, which can help you
remember the 288,000 methods, properties, and events in the .NET Frame-
work, but I don’t cover the framework itself.

Understanding Visual Studio Tools
Part of the joy of programming in Visual Basic 2008 is using the tools that are
provided by Visual Studio. Rapid Application Development (RAD) is a buzz-
word now, but when Visual Basic was first developed, it described (among
other things) the ability to code faster by reusing bits of code built into the
development tools.

This ability has never been more apparent than it is with Visual Basic 2008.
Even though Visual Basic is a language, and it depends on Visual Studio for
its environment, many tools make RAD real. In the following sections, I cover
these tools. These tools are language independent, project independent, and
indispensable.

06_182383 ch02.qxp 2/21/08 7:30 PM Page 23

Keep in mind that Visual Studio isn’t necessary to make Visual Basic programs.
You can, in fact, make complete applications in the old-school style by using
a command-line compiler.

Additionally, much of the documentation provided by the Microsoft Developer
Network (MSDN) Library assumes an understanding of the tools. The docu-
mentation refers to the tools by name and often doesn’t clearly describe
them. You must know where you are working before you can work, so the
following sections take you on a tour of the Visual Studio tools.

When you installed Visual Studio, you were probably asked to install the
MSDN Library. You will find it an indispensable tool (it’s what you get when
you go to the Help menu, in fact). Additionally, you can find the library online
at http://msdn.microsoft.com/library.

Touring the Design View
When you launch Visual Studio (usually by selecting its icon on your Start
menu) and begin any visual project, you see the Design View. The Design
View is where the Graphical User Interface (GUI) work takes place. Generally
speaking, anytime you are working with pictures of forms, not code, you are
working with the Design View. When I use the term designer window, I am
referring to the actual place you do the work. The term Design View refers
to the state the application is in.

In the Design View, you can accomplish the following:

� Manufacture windows, Web, and smart device forms by dragging controls
directly to the form in a What-You-See-Is-What-You-Get (WYSIWYG)–type
environment

� Work with databases and XML files visually

� Create software components by visually managing the parts

In general, Design View is the core part of Visual Studio. Many of the other
tools in Visual Studio depend on the Design View, in fact, and are disabled
when you use another view, such as Code View, to work on your project.

Using the Design View tabs
The designer tabs have the word [Design] in the tab name, as shown in
Figure 2-1, to indicate that you are using the Design View. Tabs are used in
the Design and Code Views. The gray tab represents files that are open but
not active. An asterisk (*) next to the filename means that you’ve made
changes, but not yet saved the file.

24 Part I: Getting to Know .NET Using Visual Basic

06_182383 ch02.qxp 2/21/08 7:30 PM Page 24

The white tab is active and contains the editable form. When you have more
than one document open, you can edit only the active form. You can drag the
tabs to the left and right to change their order. Right-clicking a tab gives you
a menu from which you can choose several screen management options, as
shown in Figure 2-2.

Figure 2-2:
Managing

tab groups.

Figure 2-1:
A form in

Design
View.

25Chapter 2: Using Visual Studio 2008

06_182383 ch02.qxp 2/21/08 7:30 PM Page 25

Understanding tab groups
Tab groups make it easier to copy information out of one form and into
another. For example, you can have one set of pages on the top half of the
screen and another on the bottom half, and copy from one and paste into the
other without changing screens. You can also save and close from this menu,
or get information, such as the current path or the containing folder.

Accessing controls with the Toolbox
To add form components, such as buttons and text, to the form in the Designer
window, you simply drag them from the Toolbox. The Toolbox, usually seen
on the left side of the Visual Studio environment and to the left of the Designer
window, is where the RAD components of various project types are held for
use until you need them. The Toolbox is shown in Figure 2-3.

Figure 2-3:
The Toolbox.

26 Part I: Getting to Know .NET Using Visual Basic

06_182383 ch02.qxp 2/21/08 7:30 PM Page 26

The Toolbox is project-sensitive, meaning that controls for Web pages and
smart devices don’t show up when you are writing a Windows Forms project.
Because those controls can’t be used in those project types, the Toolbox
doesn’t even let you see them.

You can access the controls in the following ways:

� Click a control and drag it to a form, dropping it exactly where you want it.

� Double-click the control, and it appears in the upper-left corner of the
active form.

If you lose the Toolbox, or if it isn’t showing on your screen, you can open it
by choosing View➪Toolbox or by pressing Ctrl+Alt+X. Right-clicking the
Toolbox gives you layout options, including ordering and movement. One of
the options is Reset Toolbox, which puts it back the way Microsoft had it —
a great feature.

The gray dividers, labeled Data or Windows Forms among other things,
divide the tools in the Toolbox by category. To open a closed category, click
the divider.

Visual Studio is extendable because of the Toolbox. You can use third-party
components with your programs. For example, a clock control that enables
the user to set the time would show up in the Toolbox. You can also use the
Toolbox to store often-used pieces of text, such as comment blocks.

You can actually drag a little block of code onto the Toolbox for reuse, such
as a common comment block or a sample. I use this all the time when I am
presenting. I just make a new section by right-clicking the Toolbox and select-
ing Add Tab. Then I can just select code in the Code View (which I cover in a
few pages) and drag it right under the new section header.

Changing details with
the Properties window
After you drop the controls on the form designer, you will need to edit their
properties. Size, name, activity, color . . . these are the kinds of things you
find in the Properties window. The Properties window, shown in Figure 2-4,
is usually on the right side of the screen. It contains all the editable values
associated with a control.

If the Properties window isn’t on the right side of the screen, you can find it
by choosing View➪Properties Window, or you can press F4.

27Chapter 2: Using Visual Studio 2008

06_182383 ch02.qxp 2/21/08 7:30 PM Page 27

At the top of the Properties window, you see the form element whose proper-
ties are being viewed. You can select a different control by clicking it in the
Designer window or by selecting a new control from the drop-down list. In
Figure 2-4, the form itself is selected.

Beneath the selected control, you find a few buttons that resort the list or
filter by category. Of special interest is the lightning-bolt button, which
allows you to define what the control does under certain circumstances —
a pattern called events. I cover events in depth throughout Part II.

The table that takes up the majority of the Properties window contains the
properties of the control. This is a simple hash table format — the properties
are on the left, and the possible values are on the right. To change a value,
you can usually type in the cell and press Enter. Some properties have an
ellipsis button (...) that opens a form to simplify adding complex details, and
I cover those as I discuss them in other chapters.

The grouping buttons at the top of the Properties window are a useful fea-
ture. The Category button is great when you are just starting out, because
you can find the properties based on what you need. The A-Z list is better
later on, when you know exactly what property you are looking for.

Figure 2-4:
The

Properties
window.

28 Part I: Getting to Know .NET Using Visual Basic

06_182383 ch02.qxp 2/21/08 7:30 PM Page 28

The bottom of the Properties window has a brief description of the property
that is being edited. This information is right out of the documentation and is
a very handy feature.

Organizing your project with
the Solution Explorer
Solutions and projects hold forms and components like files in folders. In
fact, solutions and projects are represented by folders in the Visual Studio
Projects directory of your My Documents folder. The Solution Explorer is
Visual Studio’s tool that allows you to manage the files that make up your
project.

If you envision your projects like folders, you can imagine that you would
group like folders together in a folder one level up, right? That’s what solu-
tions do. They are both physically and logically exactly that — folders full
of projects.

In Figure 2-5, you see the important files in your project, and a whole bunch
of buttons above to help manage them.

To open a file, double-click the file’s icon or name. To rename, copy, or delete
a file, right-click the file and choose the desired action from the context-
sensitive menu that appears. In the Solution Explorer, you can also make new
folders and move files into them, or right-click the project to make a new form
or support file.

The buttons above the files themselves are the most significant part of the
Solution Explorer. They are as follows, from left to right:

� Properties: Opens the Properties window.

� Show All Files: Shows hidden files. This is more significant in VB 2008
than before. Even more files are hidden from normal view.

Figure 2-5:
The Solution

Explorer.

29Chapter 2: Using Visual Studio 2008

06_182383 ch02.qxp 2/21/08 7:30 PM Page 29

� Refresh: Checks the solution folder for new files that may have been
added by another tool. This button is very handy when you’re using
third-party tools.

� View Code: Opens the selected file in Code View.

� View Designer: Opens the selected file in Design View.

� View Class Diagram: Opens the selected file in Diagram View.

Visual Studio stores a lot of files that keep metadata about the project in the
My Project folder in Solution Explorer. Metadata is information about data —
in this case, extra information about your project. If you click the Show All
Files button in Solution Explorer and expand My Project, you will see no less
than seven files with information about your project. You won’t need to edit
these files often, but if you just can’t find something, you might want to check
them out.

Accessing outside resources
with the Server Explorer
Going outside of your project to access needed resources is one of the most
common features that isn’t supported by most development environments.
That all changed with Visual Studio 2002 and has gotten better ever since
with the addition of the Server Explorer, shown in Figure 2-6. You can open
Server Explorer by pressing Ctrl+Alt+S or by selecting it on the View menu.
Now getting to the servers that provide your necessary services is easier
than ever.

The Server Explorer is one of the more dynamic tools in the Visual Studio
environment. In Figure 2-6, I am using my virtual development machine, XP.
What you see in the Server Explorer depends on your local configuration.

Figure 2-6:
The Server

Explorer.

30 Part I: Getting to Know .NET Using Visual Basic

06_182383 ch02.qxp 2/21/08 7:30 PM Page 30

The Servers node in this explorer shows up in some editions of Visual Studio.
At press time, the Professional edition was one of them. Also, the Team System
edition certainly has it, and you can get that edition from the Microsoft Web
site in a trial version.

Server Explorer gives you access to remote (or local) resources from a man-
agement and a code perspective. The tree view inside the Server Explorer
can show many servers, and beneath each server are the functional bits that
you have access to.

Most developers are looking for a one-stop shop for development; most often,
that includes needing the ability to manage development server(s) and look
at databases. The Server Explorer handles both of these, but the new Data
Sources window is even better, and I cover it in the following section.

The services available to you in your Server Explorer depend on your envi-
ronment, but here is a brief description of some of the services that are
common:

� Crystal Reports Services: Crystal is a third-party reporting tool that is
included with Visual Studio. The services include Crystal Enterprise,
Report Application Server, and Web Services.

� Event Logs: This represents the normal old Windows NT–style event
logs that you can access from the Control Panel. Logs are available both
programmatically in .NET and for management from the Server Explorer.

� Management Classes: Management Classes represent Windows Manage-
ment Instrumentation (WMI) classes such as Network Adapters, Printers,
and Services, all of which you can touch programmatically on remote
machines.

� Management Events: They allow you to register for WMI events, like
network changes and hardware warnings.

� Message Queues: Message Queues are a way to help manage the number
of requests to a very large application. The individual queues are made
available here.

� Performance Counters: This is access to PerfMon from the Windows
operating system. Each counter is available both for viewing and
programming.

� Services: The services from the Control Panel are available here. You
can stop and start the Web services, for example.

� Data Connections: This is a special category that isn’t directly related
to the servers shown. The Data Connections relate to connections you
have set up over time on your instance of Visual Studio, and are remem-
bered for your convenience.

31Chapter 2: Using Visual Studio 2008

06_182383 ch02.qxp 2/21/08 7:30 PM Page 31

In Design View, you can actually drag an Event Log or Performance Counter
into the form to write code to adjust its properties. Aside from these pro-
grammatic capabilities, the Server Explorer does provide that one-stop
management shop.

The Data Connections node allows you to connect your application to a data
source. Right-click the Data Connections node and choose Add Connection to
add a new connection. After selecting a Data Provider (I picked SQL Server),
the Add Connection dialog box appears, as shown in Figure 2-7.

Visual Studio installs SQL Server Express as part of the package of programs
provided. If you have access to no other databases, you can always use that
one. It will appear as Machine/SqlExpress in the Add Connection dialog box.

In Figure 2-7, I selected my local machine (XP), the SQL Express instance, and
the Northwind database. You probably don’t have the Northwind database
installed by default. You can get it from www.microsoft.com/downloads
or www.vbfordummies.net.

This selection connects your project with a database, which then allows you
to use the Data Sources window, manage the data objects within the data-
base, and edit data directly. When you have finished adding the values to the
connection, click the Test Connection button to make sure that your project
can get the database you selected.

Figure 2-7:
The Add

Connection
dialog box.

32 Part I: Getting to Know .NET Using Visual Basic

06_182383 ch02.qxp 2/21/08 7:30 PM Page 32

Dynamically editing data with
the Data Sources window
When you start a new project, the Data Sources window says “Your project
currently has no data sources associated with it.” (If you can’t see the Data
Sources window, choose Data➪Show Data Sources with a project open, or
press Shift+Alt+D.) To maintain data in the .NET world, as with any other
environment, you must connect your application to a data source. The Data
Sources window is the primary way to do that.

To connect to a data source (like a database or XML file), follow these steps:

1. Click the Add a New Data Source button.

Doing so starts the Data Source Configuration Wizard.

2. Click the Next button.

The wizard shows the data source options. You can select the Database
option to use an SQL Server or Oracle database, the Service option to
connect to an XML Web service, or the Object option to connect to a
data access layer.

3. Select the connection to Northwind that you made in the “Accessing
outside resources with the Server Explorer” section, and then click
the Next button (shown in Figure 2-8).

Figure 2-8:
The Data

Source
Configuration

Wizard.

33Chapter 2: Using Visual Studio 2008

06_182383 ch02.qxp 2/21/08 7:30 PM Page 33

4. Accept the default connection name (probably NorthwindConnection)
and click the Next button.

You are given a choice of what objects to include in your dataset. I cover
datasets in Chapter 15.

5. For now, select the first view in the Views checklist: Alphabetical List
of Products.

6. Click the Finish button.

As shown in Figure 2-9, each of the columns in the view you selected appears
as the editable object types that can represent them. You can now drag them
to the Design View to create a data-bound control.

Just for fun, drag the QuantityPerUnit field onto the blank form that was cre-
ated for you when you started the project. Visual Studio will create a bunch
of data piping for you and then add the field and a label to the form. Using the
Data Sources window like this provides you with fantastic functionality for
quickly developing data applications.

In Figure 2-10, I have a picture of my screen as I dragged the field into the
form. You can see in the Design View bottom, where the background is gray,
that five components have been added to Form1. Components are functional
items from the Toolbox, not things that are visible on the screen. The Data
Sources window makes all those components and adds the control to the
page, just based on the field you moved. That is the point of these RAD tools.

Frankly, the Diagram View is a very sophisticated tool, which I don’t cover in
this book. It allows enterprise architects to build component-based software
by taking whole blocks of code and moving them in a graphic environment.

Figure 2-9:
The Data
Sources
window.

34 Part I: Getting to Know .NET Using Visual Basic

06_182383 ch02.qxp 2/21/08 7:30 PM Page 34

Every now and again, when you have written something in Visual Basic, go
ahead and load up the Diagram View. You can enter Diagram View by right-
clicking a file in the Solution Explorer and selecting View in Designer from the
context-sensitive menu. It will create a new file called Classdiagram1.cd in
your Solution Explorer and show you the piping behind the software you
have built. It can be an educational experience — try it!

Moving a Tool Window
You can customize the Visual Studio environment to make it easier for you
to work in. All the tools, windows, and views are part of an Integrated
Development Environment (IDE) that provides a home location. This makes
organization of your personal development space a lot easier.

Most often, you will want to move a tool window around to put it in a more
convenient spot. You can display a tool window in the following ways:

� Floating: A floating window is very mobile — you can drag it around by
its handle to place it anywhere you want.

Figure 2-10:
Using the

Data
Sources
window.

35Chapter 2: Using Visual Studio 2008

06_182383 ch02.qxp 2/21/08 7:30 PM Page 35

� Dockable: When you drag a dockable window, though, you are given the
option by Visual Studio to dock the window. This is demonstrated in
Figure 2-11, where I am dragging the Solution Explorer window around
in the Design View.

� Tabbed Document: You also have the choice to drag the window to the
center and have it become a tab at the top of the view window, like
the Form1.vb and Start Page files shown in Figure 2-11.

You have five options to dock the window. If you drag the window over the
top, bottom, left, or right arrow, it will dock to that side. When a window is
docked, it has a thumbtack that you can pin or unpin. When pinned, it stays
on the side, moving the Design View over. When unpinned, it slides out of the
way toward the side it is pinned to. It is a brilliant feature.

If you drag the window to the center of the four-pointed star, the window
becomes a tab in the other central windows — much easier than the old
triple-click that was so hard to use. The triple-click still works, but you
don’t need it anymore!

Working with Code
Of the programs you create with Visual Studio, most of what you want the
user to see are the controls and the forms. But you will be spending most of
your time working with code. Fortunately, Visual Studio has a ton of tools to
help you write code.

Getting to Code View
Code View, like Design View or Diagram View, is just another way to look at a
file in the Solution Explorer. To get to Code View, you have several choices:

� You can right-click a form in the Solution Explorer or in Design View and
select View Code from the context-sensitive menu.

� You can click the View Code button in the Solution Explorer.

� You can double-click an object in a form.

When you’re working in Code View, most of the tool windows will become
inactive. The Toolbox and Properties windows, for instance, have little to
nothing available because their features are designed for use with the Design
View rather than the Code View. This is by design, to keep the code out of
your way when building business logic.

36 Part I: Getting to Know .NET Using Visual Basic

06_182383 ch02.qxp 2/21/08 7:30 PM Page 36

Using IntelliSense
The problem with using Code View is that you need to know what to type.
Welcome to programming! To help you get started, you can use some very
productive code-based tools, such as IntelliSense and Smart Tags.

The remainder of the book is about the language, but I want to give you
something to start with so that you can see how great these tools are. When
you are working with the code as the primary goal, the tools should be
second nature. Get started with these steps:

1. In the default project, double-click the blank Form1 to move to
Code View.

2. Start to type My. in the Form1_Load method. (Just press M on the
keyboard, and you can see what I mean).

A special context-sensitive menu (the IntelliSense menu) appears when
you start typing, as shown in Figure 2-12. This menu shows the code that
is available to you. It guesses what you need based on what you are
doing — in this case, it doesn’t have much to work with so it started
with the MID method.

Figure 2-11:
Moving

windows.

37Chapter 2: Using Visual Studio 2008

06_182383 ch02.qxp 2/21/08 7:30 PM Page 37

Finish typing ‘My.’ and you will get all the available methods, properties,
and events in the My object. It’s a great way to remember the best way
to get things done.

You can continue to use IntelliSense menus as long as Visual Studio thinks
there are more types after the selected object. For instance, double-click
Application in the context-sensitive menu and then type . (period). You see
another IntelliSense menu.

Using this method, you can access everything in the Visual Basic language.
Even when you write your own reusable code, IntelliSense will pick it up for
this special context-sensitive menu. It makes it much easier to work in the
.NET Framework with Visual Basic.

Reading the documentation
Rarely does an author have to write about how to read the documentation,
but in the case of Visual Studio, there is so much power in the documentation
model that it deserves a little space. The most straightforward use of the
documentation requires little more than clicking on or in the object that you
have a question about and pressing F1 to launch context-sensitive Help.

Figure 2-12:
Using

IntelliSense.

38 Part I: Getting to Know .NET Using Visual Basic

06_182383 ch02.qxp 2/21/08 7:30 PM Page 38

For instance, in any application, click somewhere on the form (make sure that
you click the form and not an object on the form) and press F1. The Microsoft
Document Explorer launches with the Form object documentation loaded.

The Document Explorer has a sophisticated set of tools, mostly represented
in the Document Explorer toolbar, shown in Figure 2-13. The tools you find
there give you various ways to access the documentation, as follows:

� The toolbar’s first section has navigation buttons, a Refresh button, and
font size maintenance.

� The How Do I button has preset questions that relate to the selected
topic, and may help with general queries about certain types of develop-
ment; if you are stuck, give it a try.

� Clicking the Search button allows phrase searching. The Index button
and Contents button allow browsing through the index or TOC (table
of contents) of the documentation. You can save favorites in the Help
Favorites just like you can in Internet Explorer. The double arrow is
handy — it synchronizes the Contents panel with the page you are cur-
rently viewing.

� The Ask a Question button takes you directly to the NNTP newsgroups
(using a Web-based viewer) hosted by Microsoft, where you can ask
questions and have them answered by Microsoft MVPs, authors, and
other experts. If you aren’t participating in the user community, please
do so — see Part V for more information.

You have all these options, and they’re only one part of the documentation in
Visual Studio. IntelliSense shows information from the user documentation
when you pause the mouse cursor over a piece of code. The Properties
window shows the documentation for a property when it is selected. Every-
where you look, Help is there!

And don’t overlook the online tools provided by Microsoft. Choose Help➪
Technical Support to access a wealth of information available on the Web,
right from inside Visual Studio.

Figure 2-13:
The

Document
Explorer
toolbar.

39Chapter 2: Using Visual Studio 2008

06_182383 ch02.qxp 2/21/08 7:30 PM Page 39

Customizing with Options
The options available in Visual Studio are amazing. For starters, as with many
other Windows applications, the toolbars and menus are completely editable.
Choose Tools➪Customize to access the Customize dialog box. Click the
Commands tab to get lists of all commands available in Visual Studio. To add
a button for a command to a toolbar, simply drag a command from the list to
the toolbar.

For instance, as shown in Figure 2-14, I dragged the Build icon to a toolbar so
that I can access it anytime. It is a fantastic feature for designing your own
custom environment.

The other significant customization is available by choosing Tools➪Options.
The Options dialog box has many options that are in a tree view on the left
side of the dialog box. Well over 100 options screens are available for editing
in such categories as Environment, Source Control, Database Tools, and
Windows Forms Designer.

Figure 2-14:
The

Customize
dialog box.

40 Part I: Getting to Know .NET Using Visual Basic

06_182383 ch02.qxp 2/21/08 7:30 PM Page 40

The General Environment variables in the Options dialog box are shown in
Figure 2-15. I don’t discuss every option available in the Options dialog box
because there are bunches of them, but take ten minutes to look at these
options and see how they can help you develop programs. You might not see
what they all do now, but when you do need them, you will know that they
are there.

The Restore File Associations button changes the layout of the windows, tool-
boxes, and panels to the Microsoft default for your profile. It’s great to use if
you changed everything around as described in the earlier section “Moving a
Tool Window.”

Increasing Efficiency with
Third-Party Tools

Visual Studio offers a structure for third-party developers to write piggyback
programs called add-ins. Add-ins give you, the programmer, more flexibility
and functionality in Visual Studio. Most companies actually use Visual Studio
to develop these add-ins. I don’t cover third-party add-ins in this book, but it
makes a great topic for later research.

Microsoft has included a number of add-ins with the Visual Studio 2008 instal-
lation. While Microsoft provides a remarkable tool, it doesn’t provide every-
thing, and instead leans on partners to provide extra functionality in the way
of add-ins.

Figure 2-15:
The Options

dialog box.

41Chapter 2: Using Visual Studio 2008

06_182383 ch02.qxp 2/21/08 7:30 PM Page 41

Take Dotfuscator, for instance. By definition, .NET applications are self-
documenting. Anyone can take an application written in .NET and look at
the basic structure of the code with little effort. With tools available on the
Internet, you can reverse-engineer this code to Visual Basic. (Bet they didn’t
tell you that in the marketing.) I’m sure you can imagine that this fact upsets
a few people.

Enter Dotfuscator. This add-in application, which is completely integrated into
Visual Studio, provides the ability to obfuscate compiled .NET applications,
making it very difficult to reverse-engineer the code to Visual Basic — thus
the product name. To run Dotfuscator, choose Tools➪Dotfuscator Community
Edition and accept the terms. You then see the default Dotfuscator window, as
shown in Figure 2-16.

This application allows you to specify a finished project and perform some
magic. Dotfuscator speeds execution, shrinks the package size, and protects
your intellectual property. In my opinion, Dotfuscator was a good choice for
Microsoft to include with Visual Studio, and it shows the power of third-party
add-ins.

Figure 2-16:
Dotfuscator
Community

Edition.

42 Part I: Getting to Know .NET Using Visual Basic

06_182383 ch02.qxp 2/21/08 7:30 PM Page 42

Chapter 3

Designing Applications in VB 2008
In This Chapter
� Getting deep in the .NET Framework

� Planning your work

� Working your plan

� Describing software

Before you discover the diversity of all the projects you can build, the
ease of Visual Basic, and the power of the .NET Framework, you must

know how to design software. By design, I mean planning your work. The clas-
sic comparison is that building software is like building a house. Would you
hire a contractor who was going to build your house without blueprints? Of
course not. Likewise, you shouldn’t expect to be able to write software with-
out designs.

In this one and only design chapter, I show how the .NET Framework makes
it easy for you to figure out how to build software right from the start. I also
show you the structure of the .NET Framework and describe how it works
with Visual Basic and Visual Studio.

Next, you discover the foundation upon which the .NET Framework is built. I
explain the abstract concepts that make the .NET Framework so easy to use
and some concrete examples of how it is used.

Planning for building software is also covered in this chapter. Believe it or not,
accepted, structured ways exist to design software. Following this structure
is a great way to get your design plans on paper. In this chapter, I discuss how
to design the software that you build in Part II.

Finally, I cover how to describe software from the perspectives of reading and
writing the designs. When you finish reading this chapter, you can plan an
actual software project.

07_182383 ch03.qxp 2/21/08 7:31 PM Page 43

Making Software Simple Using
the .NET Framework

.NET as a concept is a library of connected software developed by Microsoft
that connects people and the systems and devices they use with the infor-
mation that they need. The .NET Framework is the development environment
that makes it all happen from the Visual Basic perspective.

Visual Basic is just a piece of the .NET Framework. As shown in Figure 3-1, Visual
Basic is only used to write the client, server, and connectivity software that
makes it all happen.

Well-designed applications include the following layers:

� Clients in the .NET world include devices like cell phones and PDAs, PCs
running Windows, a Smart Client like Microsoft Office, or a Web browser
on any operating system.

� Servers in .NET usually run Windows Server and SQL Server. The server
platform is much less flexible than the client platform in the .NET world.
Other options are available, too, such as the Oracle database. Sometimes,
servers like BizTalk or SharePoint Services are used. Generally, servers
provide services. Makes sense!

� In the middle are XML Web services or other connectivity. XML Web serv-
ices represent a cross-platform strategy to get information from servers
to clients, clients to other clients, or even among the services themselves.

The developer tools represented in Figure 3-1 are Visual Basic and Visual
Studio. Visual Basic is the language, and Visual Studio is the tool. The third
piece of the puzzle is the plan — the project type. The plan is the focus of
this chapter.

At the top of Figure 3-2, you can see all the structures that make up the devel-
oper tools represented in Figure 3-1. The focus of this book, VB (Visual Basic)
is way up in the upper-left corner.

How VB interacts with the other parts of the diagram is very important, too —
that’s what your software does. Your program will use the services provided
by the .NET Framework via the tools in the language. This interaction is the
key to everything — it is where you need to focus your planning. How do you
take advantage of the interaction of the framework’s pieces? That’s what you
design for.

44 Part I: Getting to Know .NET Using Visual Basic

07_182383 ch03.qxp 2/21/08 7:31 PM Page 44

Common Language Specification

ADO.NET and XML

Base Class Library

Common Language Runtime

COM+ ServicesWindows

...JScriptC#C++VB

Windows FormsASP.NET

Vi
su

al
 S

tu
di

o.
N

ET

Figure 3-2:
The .NET

Framework.

Network Protocols

Web Services

NET Framework

Developer
tools, like

Visual Basic

T Y
5 6

R
4

E
3

W
2

Q
1

G
=

F
-

D
+

S
/

A
*

V
?

C
)

X
(

Z
$

NUM CAP

B
!

P
0O

9I
8U

7

M
.

N
,

L
@K "J 'H

:

SYMBOL SPACE

5:14 PM

MESSAGES

DEL

Figure 3-1:
The

structure
of an

application.

45Chapter 3: Designing Applications in VB 2008

07_182383 ch03.qxp 2/21/08 7:31 PM Page 45

Before you get to the plan, you need to know what the .NET Framework can
do for you as a part of Visual Basic. One of the hardest parts of planning soft-
ware is knowing what your program needs to do, and what is done for you by
the services in the .NET Framework. In the next few sections, I explain what
the .NET Framework can do for you.

Getting to the operating system
The primary function of the core of the .NET Framework is the Base Class
Library (BCL), which provides access to the functions of the operating
system and services like graphics and databases. A lot of auxiliary pieces of
the framework cover other things, but getting to the operating system is the
big sell for Visual Basic. Why? Visual Basic programmers used to have to
jump through hoops to get to these services.

The path to the Windows operating system from Visual Basic is long and wind-
ing. The My object is the shortcut to that path. It is also a fantastic example of
how the .NET Framework can help you, the VB programmer, get the job done.

The My object gives you access to the computer through the eyes of the oper-
ating system. The My.Computer object allows your program to easily inter-
act with all the computer parts, such as

� Keyboard and mouse

� Printers

� Audio and video

� Clipboard

� Clock

� File system

Some of the common tasks that can be performed easily with the My object
include

� Uploading and downloading a file

� Reading from, writing to, and clearing the Clipboard

� Controlling the computer’s connection to the Internet

These tasks are fairly difficult in most business languages, but are made
easier in Visual Basic 2008 using the .NET Framework.

46 Part I: Getting to Know .NET Using Visual Basic

07_182383 ch03.qxp 2/21/08 7:31 PM Page 46

Furthermore, you find two more primary objects in the My collection. The
My.Application object helps your programs learn about the environment
in which they are running. The My.User object helps you gather information
about the user who’s logged in to the computer, such as his or her name and
e-mail address.

Look for the My object icon throughout the book for tips on making your
development easier with the My object.

Integrating servers and services
In Figure 3-2, four boxes are in the middle section — two are user-interface
oriented and two are service oriented. ASP.NET and Windows Forms are user-
interface oriented, and I cover those in the next section. ADO.NET and other
components in the BCL are important, in part because they help you to inte-
grate servers like databases and services like BizTalk.

ADO.NET covers the primary server that you will want to integrate — a data
server. Databases, like Microsoft SQL Server 2005, represent the most
common kind of interaction for Visual Basic programs. Business programs
tend to need to get information from user to user, and that information is
often stored in databases.

ADO.NET allows you to take data from the database, show it to users, accept
their manipulation of that data, and update the database without a lot of
wiring code. By that, I mean you can concern yourself with building the busi-
ness logic of your application, and not with how the database connection
itself works. I cover database connections and ADO.NET in Chapter 15.

You find more types of servers than database servers. Enabling you to con-
nect to those servers without writing piping code is part of the job of the
Base Class Libraries. Some of the prebuilt plumbing provided by the BCL
includes the following:

� Enterprise Services: Tools needed by very large applications, like trans-
actions and activation, provided by the Component Service.

� Input Output (IO): Access to the file system, drives, and storage on
servers of various operating systems. I cover IO in Chapter 16.

� Messaging: Use of the Queuing service in Windows. (Not instant messag-
ing, I should add — that is different!) This kind of messaging is used
by applications to get messages back and forth about data and user
interaction.

47Chapter 3: Designing Applications in VB 2008

07_182383 ch03.qxp 2/21/08 7:31 PM Page 47

� Management: Access to the Windows Management Instrumentation ser-
vices, which give you an idea of the health of the server.

� Net: The network and Internet. All Web sites and e-mail servers are acces-
sible thanks to the Net collection in the BCL. I cover Net in Chapter 17.

� Drawing: Making decent art is tough, and the BCL gives you that power
by simplifying the set of Windows graphics tools known as GDI+. I cover
drawing in Chapter 18.

Interacting with the user
The other two boxes in the middle section of Figure 3-2 are ASP.NET and
Windows Forms. ASP.NET and Windows Forms help you the most of any of
these by enabling interaction with the user.

I mention previously that you find three parts of development with Visual
Basic. The first is the language, Visual Basic itself. The second is the tool
Visual Studio 2008, which I discuss in Chapter 2.

The third and final piece to this puzzle is the project type or platform, and
that is controlled by the ASP.NET or Windows Forms. ASP.NET has all the bits
for Web pages, mobile Web, and XML Web services. Windows Forms has all
the bits for Windows applications, console applications, and smart device
applications.

For more information on interacting with the user, see Chapters 4 and 5.

Comparing Abstract Concepts
with the Real World

You spend a tremendous amount of your time reading about abstract and
concrete concepts when working in .NET. Though it isn’t as common in this
book, when you search for articles or documentation on the Web, you’ll read
a lot about classes and objects.

Classes
Classes are a philosophical construct. They are vessels that can be filled with
things. They are frameworks, skeletons awaiting their flesh. They are a series
of pots with dirt, waiting for plants. They are conceptual, not concrete.

48 Part I: Getting to Know .NET Using Visual Basic

07_182383 ch03.qxp 2/21/08 7:31 PM Page 48

A class is a definition of a thing, with a list of what can be done to it, what is
known about it, and what it can do. Without being “instantiated” into an
“instance of the class,” a class is just a series of holding pens for animals
that aren’t there.

Objects
Objects are concrete items that exist in your application. They are what classes
become when they grow up. When you instantiate a class, the class goes and
gets dressed, and it becomes an object.

When you define something in an application, you are making a class. “A
House has a Color and a FrontDoor” would be an example of a class. It
is just the definition. An instance of the House class would occur when you
instantiate that class and it fills with data, and becomes your house, the
MyHouse object. You can build as many houses as you want from the blue-
print that is the class, because each one has its own space in memory where
it stores its own information, called its state.

I cover developing classes in Chapter 6, but classes and objects are dis-
cussed throughout the book and throughout the language. Everything in .NET
is an object, fleshed out by the existence of the application itself. When
Microsoft developed the objects, though, they were just classes!

Planning for a Project Using
the Project Lifecycle

Preparation to create a new project consists of two distinct stages, planning
and design. Planning consists of defining the project and gathering the
requirements. Design consists of writing down the screens and logic that will
fulfill the requirements, and figuring out how to test to see whether they are
right.

Rather than just write about how to follow this prescription, I walk you
through the planning and design of a project that you build in Part II. The
sample project is a program that calculates dates. What the Date Calculator
program does and how it works are things that you figure out as part of the
project development lifecycle.

The project lifecycle is a process that is best shown on the Gantt Chart in
Figure 3-3.

49Chapter 3: Designing Applications in VB 2008

07_182383 ch03.qxp 2/21/08 7:31 PM Page 49

Projects should be completed using this process. If you have been coding in
Visual Basic for a while, you might have noticed that a lot of programmers of
other languages are sometimes disdainful of Visual Basic. Part of the reason
is that it is so very easy to write programs without any planning with Visual
Basic. Doing so is not a good thing.

I should tell you that this project lifecycle is just one of many design processes.
You may hear a lot of industry terms thrown around, and these terms repre-
sent various angles on the same basic paradigm. Just remember that no
matter what you call your development process, planning and design are
good things.

To write a decent application, you must first have a plan. Even though steps
may overlap, each step should be completed. Even in small projects, an hour
spent in design is worth the time. The bugs that you discover while planning
are about ten times cheaper in terms of time than the bugs you find and
squash in development and testing.

As you’re going through the steps in the project development lifecycle (refer
to Figure 3-3), you’ll find that the first three steps raise questions that you
need to answer to figure out the requirements of your project. When planning
the application that you are creating in Part II, the questions might look
something like this:

� Scope: Does the date calculator need any other calculation capabilities?
What platform is it for? Does it need to be international?

� Requirements: Exactly what is the program calculating? How will the
user enter dates? What results does the user expect?

Scope

Requirements

Design

Code

Test

Deploy

Figure 3-3:
Project

lifecycle.

50 Part I: Getting to Know .NET Using Visual Basic

07_182383 ch03.qxp 2/21/08 7:31 PM Page 50

� Design: How will the program calculate the dates? What user-interface
elements will best show the data? What will trigger the application to
calculate? How will the screen look?

Scoping out the system
Scope is the most important part of the design process because it defines
exactly what the application will do. If someone asks you what your applica-
tion does, you should be able to tell him or her while standing on one foot.
Maybe more importantly, the scope defines what your application won’t do.
The term “out of scope” refers to this.

Try writing the definition of the application in 101 words or less. Doing so
enables you to keep the scope short because you are thinking about the
meaning of every word.

For the Date Calculator, a 101-word scope might be a little much, because the
system is fairly simple. Bullet lists are convenient ways to write scopes:

� The Date Calculator is an application that finds differences between two
U.S. dates.

� It runs on a Web page or Windows computer, or as a function in any kind
of application.

This scope defines the application. When a user says that he or she expects
that the Date Calculator would add two numbers because it is a calculator,
you can reply that the feature was out of scope. If this is an expected require-
ment, the scope must be altered, which takes you back to the drawing board
in the planning stages.

Gathering requirements
Requirements are the specific rules that govern the application. Think of
requirements as the problems that must be solved in the design step
of the project lifecycle. For the Date Calculator, these problems are fairly
straightforward:

� The Date Calculator accepts a U.S. date startDate and an integer
span, and returns the date endDate that is span number of days from
startDate.

� The Date Calculator also may accept two U.S. dates startDate and
endDate and return the number of days between the two dates as an
integer span.

51Chapter 3: Designing Applications in VB 2008

07_182383 ch03.qxp 2/21/08 7:31 PM Page 51

� The Date Calculator must be able to be implemented as:

• A Windows application, as an executable file

• A Web application, run in a client/server environment

• A reusable component in Windows

• An XML Web service

� If possible, the previous five calculations will be stored by the applica-
tion and saved from use to use.

“If possible” requirements are surprisingly common. Basically, they consist
of features that may or may not fit into the budget. Leave those for last.

I have collected all the information that I need to describe the functionality of
the application. This information should be placed in a document, appropri-
ately enough called a requirements document. This document can be a Word
file, a text file, a piece of notebook paper, or a cocktail napkin. Creating and
using a requirements document helps ensure that the finished application
does what it is supposed to do.

Each of the points of the requirements document must be covered by a point
in the next stage, the design document. You may want to number the points
in your requirements document and in your design document to ensure that
each requirement has a related design.

When the requirements are settled, it is time to describe the software from a
technical perspective: the end of the design phase. In the following section, I
cover the steps: drawing screens and defining logic.

Designing the Date Calculator
The steps at the bottom of the project development lifecycle chart are more
technical topics. The design, code, test, and deploy steps are usually handled
by the developers rather than the business analysts in a large development
shop. If you are working alone, you get to do it all!

You should describe software carefully and thoroughly so that you could
hand the document to an intern to code. For the Date Calculator, you need to
look at three primary points. Dividing the effort into these logical sections
makes your life easier when building most software:

� Design your data.

� Draw your user interface.

� Diagram the connections between the business layer and the data layer.

52 Part I: Getting to Know .NET Using Visual Basic

07_182383 ch03.qxp 2/21/08 7:31 PM Page 52

Storing data
The Date Calculator stores the information that it collects and calculates. If
you carefully read the requirements given in the “Gathering requirements”
section, earlier in this chapter, you will note that only three values exist:

� The first date, startDate

� The second date, endDate

� The number of days between the startDate and endDate, span

You may also want to consider storing the following data:

� The date that the calculation was last run

� The user who last ran the Date Calculator program

� Some way to refer to the search

You can store these in one data entity, which you can call Calculations.
Usually, these are described using a grid that looks like Figure 3-4. This dia-
gram is an Entity Relationship (ER) diagram because, if more than one entity
existed, the relationships would appear as lines between the grids. Databases
are commonly shown in this way.

53Chapter 3: Designing Applications in VB 2008

Understanding n-tier design
An n-tier system is one that has the presenta-
tion layer, business logic, and data access phys-
ically running on different platforms, with at
least one single layer divided among those plat-
forms. Web applications are perfect for n-tier
architecture, because the presentation layer is
divided between the Web browser and Web
server, and the business and data components
can be divided — much like a client/server
application — among an Object Request Broker
and a Database Management System.

When designing a large system, I like to define
the database first, known as the Data Layer.
Then I usually build the User Interface, or the

Presentation Layer. Finally, I tie the two together,
using the Business Logic Layer.

The benefit to an n-tier system is twofold. The
modularity of a good n-tier design allows the
removal or replacement of a particular compo-
nent without affecting the functionality of the
rest of the application. Also, separation of the
business logic from the database allows load
balancing, security, and general stability in
highly available systems. The bottom line is that
n-tier transactional systems are replacing the
reams of COBOL code that run the world econ-
omy. If you want to have an impact, you need to
understand n-tier systems.

07_182383 ch03.qxp 2/21/08 7:31 PM Page 53

By using the ER diagram, you can see the type of information that your appli-
cation will be handling — a very useful endeavor. Three of these pieces of
information, or fields, represent user information, and three of them repre-
sent system information. In the following section, I show you how to design
a screen mockup that uses these fields appropriately.

Designing screens
Referring back to the “Gathering requirements” section, you can see that this
application must be a multiplatform application. Of the four platforms that
you need to develop, only two of them (Windows and Web Forms) have user
interfaces, and they are pretty similar. You should be able to use the same
user interface design for both of them.

Based on the requirements and the data design, you need to create three
user-identifiable field controls and have some way to submit the information
to the system. Then you need to create some type of control to handle the
“last five” features.

My recommendation is to start with the field input and output. You will need
three implementations of the fields. The simplest way to gather the user’s
input is to just use three text entry boxes for this, and label each text box
appropriately.

This is where the user interaction parts of the Base Class Library come in. If
you do a little digging in the documentation, you’ll discover that both the
ASP.NET and Windows Forms boxes hold a control that allows the user to
pick a date from a calendar. This is where knowledge of what the system can
do for you comes in handy. Many developers might build their own date
chooser, not knowing that one was already available.

So knowing that, you need to use two date choosers, one text input box, and
a button the user can click to have the program perform the calculation to
determine the number of days between the two dates. The mockup of these
components looks something like the window shown in Figure 3-5.

Figure 3-4:
The Entity

Relationship
diagram for

calculations.

54 Part I: Getting to Know .NET Using Visual Basic

07_182383 ch03.qxp 2/21/08 7:31 PM Page 54

At this point, you might not know exactly how the calendars will work, so you
can’t create an accurate picture. But that’s okay. You know what the calendars
are going to do — let the user pick a date.

User interface design is sometimes a matter of experience. I can see that this
design will work in both the Web and Windows worlds. That is not obvious
to everyone. If you are not familiar with Web design and have an ASP.NET
requirement, get a Web developer to help. Nothing is harder than trying to
write a Windows application using the Web as a platform.

The second major requirement is the ability to save the last five searches. For
example, you might choose to show this requirement in the design as an
expandable grid that appears to show the user what searches had been
saved. This breaks into both ADO.NET and the user interface controls. In
ADO.NET, you can collect the last five searches for this user by asking the
database for them, and both Windows and Web Forms have a Data Grid
viewer.

Therefore, you need a grid that will show the user the starting date, ending
date, span, and date searched, and that will allow the user to click a saved
search and view it. This grid can just be added to the bottom of the screen,
as shown in Figure 3-6.

You use software, and you know what interfaces you like and don’t like. Strive
to design interfaces that you would like to use. Take popular software, such
as Windows, Office, Quicken, and so on, and design your own apps that way.
Remember, as proven several years ago, you can’t patent look and feel!

Figure 3-5:
The Date

Calculator
initial user

interface
design.

55Chapter 3: Designing Applications in VB 2008

07_182383 ch03.qxp 2/21/08 7:31 PM Page 55

Defining logic
So now you know what the software is storing and how it will look to the user.
The last step is to connect the user interface and the data. This is usually
called the Business Logic Layer, and sometimes it is separated from the rest
of the application and put on a totally different machine.

You will find that in the world of Windows development, it is best to just
figure out everything that a user can do in the application, and then write
pseudocode that describes that functionality.

Pseudocode is language-neutral instructions that describe functionality. Think
of it as writing your program’s code in English. The goal is to create a line-by-
line description of what a given user interaction is supposed to do so that if
someone else happens to code it, or figure it out after you are gone, that
person can see what you wanted to accomplish. Most methodologies call
these use cases, user stories, or scenarios.

A limited number of user actions are in this application, and the application
can do a limited number of things. Here is a breakdown, and what your
design would look like:

� Application load:

• Set the startDate and endDate equal to the current date and
leave span empty.

• The assumption is that the user wants to search for the numbers
of days between two given dates.

• Load up the Saved Search grid from the data source, listing saved
searches in the inverse order of date and time saved.

Figure 3-6:
The finished

Date
Calculator

mockup.

56 Part I: Getting to Know .NET Using Visual Basic

07_182383 ch03.qxp 2/21/08 7:31 PM Page 56

� When the user clicks the Calculate Date Difference button:

• If a value is in the startDate and span fields, add the span
number of days to the startDate and display the calculated
date in the endDate field.

• If a value is in startDate and endDate, put the difference in days
between the two dates in the span field.

• If a value is in all three fields, assume that the user wants to calcu-
late the span.

Assumptions kill software projects. Never make an assumption in
the design, like I just did. Always ask the user what he or she wants.
I just made this assumption for the sake of simplifying the example.

� Save this search:

• Add the startDate, endDate, span, current date and time, and
current user to the data storage fields.

• Refresh the grid with the new search, keeping the newest search
on the top.

� When the user clicks a search in the grid:

• Load up the startDate, endDate, and span values into the fields.

• Replace the current values in the startDate, endDate, and span
fields with the values from the search.

Everything else remains the same!

That should about cover the functionality that the user expects from the
application, and it meets all the requirements. The system is designed!

Writing a test plan
Before you start coding, write a test plan. It is simple and will make sure that
you have hit all the important parts of your design. The steps are simple:

1. Review the requirement that a particular design point supports.

For instance, the Date Calculator application has the requirement that
the user can enter a starting date, ending date, and a span.

2. List the design point in question.

The Date Calculator interface must have controls that accept data entry
from the user.

3. Describe what will be needed to make sure that the design point works.

You make sure that the user enters dates by focusing the entry using a
Calendar control. And what about the span? It needs to be an integer!

57Chapter 3: Designing Applications in VB 2008

07_182383 ch03.qxp 2/21/08 7:31 PM Page 57

4. Describe what could happen to make the design point break or cause
an error.

One question you need to ask in the test plan is “What happens if the
user enters a noninteger in the span field?” Of course, under normal
circumstances, such an entry will cause an error of some kind.

You might need to alter your design to make sure that the user can enter only
a number. Does a text box allow that? If you do a quick Google search, you
find that such a text box exists for Windows, but not for the Web. For more in-
depth information about how Visual Basic can help you validate user input,
see Chapters 4 and 5.

Just make sure to have a written test plan that you can give to a third party
to make sure that your application does what you expect. It is best for you
not to test your own application. You should either have another person
work through the plan or use an automated test system like NUnit or
Microsoft Team System.

Sticking to the plan
Now that you’ve created the plan, the trick is to follow it. The following point-
ers may help you stick to the plan:

� Don’t reinvent the wheel. Look for solutions in similar applications or
sample applications before you rewrite something.

� Research and read the documentation. Don’t be a power user, an “I’ll
figure it out myself” kind of person. The .NET Framework is just too big.
Learn how to use the docs — I discuss them in Chapter 2.

� Code the way you want to see the application look. Don’t give up. If
you think you should be able to do something, keep digging until you
see how it is done. If it isn’t worth it, you can redesign it.

� Write less code. Use the user-interface tools that Visual Studio gives
you. Don’t give in to the code snobs who think you should hand-code
everything.

� Be consistent. Use the same names as you did in your design. Decide
what to call concepts. Don’t use x to refer to a number.

58 Part I: Getting to Know .NET Using Visual Basic

07_182383 ch03.qxp 2/21/08 7:31 PM Page 58

Part II
Building

Applications
with VB 2008

08_182383 pp02.qxp 2/21/08 7:31 PM Page 59

In this part . . .

Visual Basic is about writing software, and, in Part II,
you write programs for Windows and the Web. You

start by creating a traditional Windows application, and
you also build class libraries to go with it. Then you build
a Web application and XML Web services.

08_182383 pp02.qxp 2/21/08 7:31 PM Page 60

Chapter 4

Building Windows Applications
In This Chapter
� Experiencing the power of Visual Studio to build Windows applications

� Creating your first Windows application

� Empowering your application with code

� Looking at Windows Forms in more depth

Building a Windows Forms project with Visual Basic 2008 is a great way
to start working with the language. You are familiar with Windows appli-

cations, such as Microsoft Word, which I’m using to write this book. When
you are done reading this chapter, you might check your e-mail with Outlook
Express or Groupwise. Every program that is used on a Microsoft Windows
computer is a Windows application by definition, but they are not all devel-
oped by Microsoft. Some are developed by programmers using a tool such as
Visual Studio 2008, using a language like Visual Basic 2008.

In this chapter, I take a look back at how the language has changed since
Visual Basic 6.0. Then I cover the building blocks of Windows Forms — the
collection of Windows Controls provided with the language. You also find
out how to build your first application — the Date Calculator you design in
Chapter 3. Finally, I go over adding the features your users will expect to find
to your Windows Forms applications — features such as text entry, menus,
status bars, and ToolTips.

A Quick Look Back at Visual Basic
When you think about Visual Basic, you probably also think about Microsoft
Windows applications. For 15 years, developers have used the Visual Basic
program’s Ruby Forms engine (shown in Figure 4-1) to write common busi-
ness applications. When a program was defined as a VB program, it was, by
default, a Windows application.

09_182383 ch04.qxp 2/21/08 7:32 PM Page 61

But the scope and versatility of Visual Basic grew with the introduction of
Visual Basic.NET. (Refer to Chapter 1 for in-depth information about this
transformation.) Visual Basic.NET is a language, just like Java, COBOL, or
C++, that you can use to write any kind of application that is supported by an
API (Application Programming Interface). Now when a program is defined as
a Visual Basic program, you must ask, “What kind of program? Is it a Windows
application? A Web site? A Windows service or XML Web Service?”

The Windows application — now called a Windows Forms application — is
far from dead. Although Web applications are clearly growing in popularity,
the rich environment of a Windows application is not only familiar but also
hard to beat for many uses. In this chapter, you discover how to use the
still-powerful tool, Visual Studio, to build a Windows Forms application.
Specifically, I show you the kinds of elements that Microsoft provides, how
to structure a Windows Forms application in VB 2008, and details beneath
the surface of Windows Forms.

Windows Forms has many more features than I can cover here in this one
chapter. Over 60 Windows Forms controls are built into Visual Studio 2008,
and you can also very simply create your own. Visual Basic is a powerful
language in its own right, and combining it with the controls you find in
Windows Forms brings almost complete control over the user experience.

Figure 4-1:
The Ruby

Forms
Engine

in Visual
Basic 6.0.

62 Part II: Building Applications with VB 2008

09_182383 ch04.qxp 2/21/08 7:32 PM Page 62

Discovering Windows Controls
Over the years, a standard way to build Windows applications has developed
because users expect applications to work in a certain way. Menus, toolbars,
status bars, and cursors have all become standard equipment. As shown in
Figure 4-2, the calculator has a title bar, text boxes, and a button, as well as
text on the screen. All of these standard Windows interfaces are developed
using controls provided to you by the Toolbox in Visual Studio 2008.

To make using standard Windows features easier, Visual Studio includes all of
them as standard equipment for the developer, too. These pieces of standard
equipment are called controls. Controls are preprogrammed pieces of user
interface code that handle a lot of the plumbing for you, the Visual Basic pro-
grammer. You can use them in your Windows Forms application to provide
the features your users want.

The word control is generic and often overused — even by Microsoft.
Generally, though, I use this term to refer to the code that makes a feature
you recognize (such as a text box or a button) work the way you expect.

Using controls is easy. In the following sections, you find out how to do the
following:

� Position a control by dragging it from the Toolbox onto the form.

� Write code for a control by double-clicking it in the form, which takes
you into Code View.

� Change the properties of a control by clicking it and changing values in
the Properties window. For more details on changing properties of a con-
trol, see the section “Adding Features to Windows Forms,” later in this
chapter.

Figure 4-2:
The Date

Calculator
as a

Windows
application.

63Chapter 4: Building Windows Applications

09_182383 ch04.qxp 2/21/08 7:32 PM Page 63

The power of using Visual Basic.NET to build Windows Forms is in the con-
trols. Table 4-1 shows you some common form controls and their uses.

Table 4-1 Some Form Controls
Control Toolbox Icon Uses

Label Displays text on the screen that isn’t
editable by the user

TextBox Accepts basic text input from the user

RichTextBox Offers word processing types of functional-
ity such as bold and italics

Button Causes the application to perform a
predefined task

DataGridView Displays an editable table on a form

DateTime Allows the user to select a date from
Picker a calendar

TabControl Provides user-interface navigation, along with
other tools such as buttons and tree views

MenuStrip Displays a menu bar, as you would find in
Word or Outlook

ToolStrip Offers Office-type toolbar functionality,
including open/save and cut/copy/paste

PrintDialog Gives users easy access to printing

ErrorProvider Communicates input problems to users

WebBrowser Includes a browser right in your application

DomainUpDown Allows users to select from a list

64 Part II: Building Applications with VB 2008

09_182383 ch04.qxp 2/21/08 7:32 PM Page 64

Making a Windows Application
A good place to start building an application is with a user input form
(because that’s what a VB programmer does most often), and the following
steps lead you through that process. The example I use is a Date Calculator
that accepts input (a date) from the user and then returns a calculated
value (a future date) based on that input. Follow these steps to make a new
Windows application:

1. Open Visual Studio 2008 and click the New Project button to access
the New Project dialog box.

No matter what kind of VB application you want to make, you begin at
the New Project dialog box, shown in Figure 4-3.

2. Select Windows as the Visual Basic project type and select the
Windows Forms Application template.

3. Enter an appropriate project name in the Name and Solution Name
text boxes, and click the OK button.

I named my application DateCalc and then put it in a solution name
called Chapter 4, because I build a similar application for Chapters 5,
6, and 7.

Visual Studio generates a new project for you, including a new form
(Form1.vb) and the MyProject folder.

At this point, Visual Studio does a bunch of work for you. Initially, it
seems as though a form (Form1.vb) and a Project file (MyProject)
are created, but actually much more is accomplished. Visual Studio
creates the following:

Figure 4-3:
The New

Project
dialog box.

65Chapter 4: Building Windows Applications

09_182383 ch04.qxp 2/21/08 7:32 PM Page 65

• A References folder to hold parts of the framework that you will
be using for this project.

• A bin folder to hold the finished program and any components.

• An obj folder to hold any resources specific to the application.

• The MyProject folder to hold configuration files. You can edit this
folder by double-clicking it in the Solution Explorer. Visual Studio
provides you with a tabbed form to use to edit the various configu-
ration details, as shown in Figure 4-4.

4. Rename the default form (Form1.vb) by right-clicking it in the
Solution Explorer and choosing Rename from the context menu.

I named the form DateCalc in the sample application. In your pro-
grams, name the forms appropriately so that your projects are some-
what self-documenting. After you rename the file, Visual Studio prompts
you to rename all referencing objects. Go ahead and let it.

5. Resize the default form by clicking the handle in the lower-right
corner of the form in the designer and dragging it to a new position.

In this step, design starts to become important. If you don’t know how
many controls are going in the form, you don’t know what size to make
it. Although you can always resize it later, it is much easier to just know
what you plan to put in there! (I cover the design of the Date Calculator
in Chapter 3.)

Figure 4-4:
The

MyProject
configura-
tion form.

66 Part II: Building Applications with VB 2008

09_182383 ch04.qxp 2/21/08 7:32 PM Page 66

6. Drag controls from the Windows Forms toolbar onto the renamed
default form.

You can add controls such as the TextBox or a MenuBar to your forms
by simply dragging them from the Windows Forms Toolbox to the form.
The type, number, and location of the controls you add to your form
define its look and eventual function. When you drag controls to your
form, the controls assume the default properties that Visual Studio sup-
plies. Specifically, the name of the instance of your control is set to the
name given to that type of control followed by a number. For example,
Label1 is for a Label control, or DateTimePicker1 is for a
DateTimePicker control.

I used a DateTimePicker control as one of the primary controls on the
form. Adding this control enables users to pick the starting date.

You also need to add a Label control to show the results of the opera-
tion. A Label control can be preset now, at design time, and left static.
Or it can be modified by your code, at runtime, to show the results of an
operation.

There are controls, and there are instances of controls. The term control
applies to a DateTimePicker. After you drag a control onto your form,
it becomes an instance of the control, referred to by a reference name.
Default reference names are the type name followed by a number in
sequence.

7. After all the appropriate controls have been added, right-click each
one and press F4 to open the Properties window, where you can
change each default name to something memorable.

I name my DateTimePicker control DateChooser and my Label con-
trol NextWeek because that’s what it will show when the user selects a
date.

Leaving your controls’ properties set to the default values (for Name and
Content Text) is a bad idea. If you don’t reset the values to something
more logical, you probably won’t remember what controls you’re work-
ing with when you see the default values in Code View.

You can also change the Text value of the form to show something nice
in the title bar of the application. I used Date Calculator.

8. Save the project by clicking the Save button.

At this point, you should have a form that looks about how you want it to
look when it runs. The form in my sample application looks like Figure 4-5.
Your form might look a little different from mine, and that’s okay. Next,
you need to add some business logic to the form so that it actually does
something.

67Chapter 4: Building Windows Applications

09_182383 ch04.qxp 2/21/08 7:32 PM Page 67

Adding Functionality to a Windows Form
As with most other Integrated Development Environments (IDEs), Visual
Studio 2008 separates the look of the forms you are creating from the func-
tionality behind them. When you assign the controls a meaningful name, you
give yourself a way to refer to those controls from code. Each control has
predefined functionality that you can access from the code.

You can add VB 2008 code to controls in Code View. You can get to the Code
View window in several ways, but the easiest way is to double-click a control.
Doing so generates an event handler for that control’s default event and
switches the interface to Code View. For example, double-clicking a command
button takes you to the button’s click event in Code View.

Event handlers are special methods that are run when a particular event
occurs, like a button being clicked or a timer reaching its assigned time.

To get started entering the business logic for the controls on your form,
follow these steps:

Figure 4-5:
The Date

Calculator
with

controls
added.

68 Part II: Building Applications with VB 2008

09_182383 ch04.qxp 2/21/08 7:32 PM Page 68

1. Double-click a control to create its event handler and go to Code View.

Controls in a Windows application have to do more than look good; they
must also do something in response to a user interaction, or an event.
Visual Studio helps you easily add functionality to your controls. When
you double-click a control, Visual Studio does two things: It creates the
definition for the code that runs when the default event occurs — such
as a value changing or a button being clicked — and it adds some linking
code (which you can view in the Windows Forms Designer Generated
Code section) that links the event itself with the code that needs to run.

I started with the DateTimePicker that I named DateChooser.
Double-clicking this control creates a ValueChanged event handler.
That is, the code in the event handler is run when the value in the con-
trol is changed for whatever reason (usually by the user). The subrou-
tine template for the event handler looks like this:

Public Class DateCalc

Private Sub DateChooser_ValueChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles DateChooser.ValueChanged

End Sub

End Class

2. Add code to the event handler to perform appropriate functions.

All the magic is based in those few simple words. Aside from the func-
tionality built into the controls themselves, all the functionality of every
application that you write will be in one event handler or another.

For the Date Calculator, you need a piece of code that will fulfill the
requirement from Chapter 3 — that is, accept the date, add a value, and
then display the result. With the .NET Framework, you can do all of that
with one line of code. Between the line beginning with Private and the
line beginning with End, enter the following:

NextWeek.Text = DateChooser.Value.AddDays(7)).ToString()

Here’s a breakdown of that line of code:

� On the left of the equal sign is the Text property of the NextWeek
object, which is a Label control. This means that you are setting the
text of a label equal to something.

� On the right side of the equal sign is the DateChooser object. You are
adding something to its value — which would be the date that the user
has set. In this case, you are adding seven days and then converting it to
a string.

69Chapter 4: Building Windows Applications

09_182383 ch04.qxp 2/21/08 7:32 PM Page 69

So the finished code looks something like that shown in Figure 4-6. Visual
Studio inserts a lot of code for you, and you add the important functional
code that makes everything perform to the functional requirements. Click
the Start Debugging button, shown in Figure 4-6, or press F5 to run your new
application.

Pick a date, and the label will change from a blank value to display a date that
is one week from the date you selected. It’s a neat toy, but it doesn’t do too
much for the user. Next, I show you how to add a few features to the program.

Adding Features to Windows Forms
To meet the functional requirements of your applications, you need features.
The more complex the feature request, the more complex the code has to
be. Take the current application, the Date Calculator, for example. All inputs
have to be variable for the calculations to be truly useful. Currently, only the
starting date is variable. You need to change this situation if you want to add
functionality and features.

Start Debugging button

Figure 4-6:
The Code

View, ready
to run

the Date
Calculator.

70 Part II: Building Applications with VB 2008

09_182383 ch04.qxp 2/21/08 7:32 PM Page 70

Managing text input with the TextBox
Clearly, the number of days (now set at seven) that the Date Calculator uses
to calculate the new date should be variable. Follow these steps to accept
input from the user, specifically the period in number of days:

1. Add a TextBox control to the form.

Change the name of the TextBox control to DateNumber using the
Properties window. This text box is the control where the user enters
the number of days to add to the selected date.

2. Align the text box with other objects on the form.

Drag the text box around until the left side aligns with the left side of the
date DatePicker — use the guidelines to help make that alignment, as
shown in Figure 4-7.

You can also use the Align feature on the Format menu. This feature makes
laying out your forms the way you want them a lot easier by giving you options
such as Align All Controls Center and Even Spacing Between Controls.

Figure 4-7:
Guidelines

that help
you line
up your

controls.

71Chapter 4: Building Windows Applications

09_182383 ch04.qxp 2/21/08 7:32 PM Page 71

At this point, you should have two tabs at the top of the designer, Date
Calculator.vb [Design] and DateCalculator.vb. The Design tab
represents the form designer, which should be selected now. The other
tab represents the Code View, which you opened before by double-clicking
a control.

You need a default value for the number of days. If the user doesn’t add any-
thing in the text box, the application must be able to set the interval value
to something. For now, define a new variable in the Code View. Under the
Inherits class definition, add a dimension statement like the following:

Dim DateInterval As Integer = 7

Then replace the body of the DateChooser_ValueChanged event handler
with the following:

Private Sub DateChooser_ValueChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles DateChooser.ValueChanged

If DateNumber.Text.Length > 0 Then
DateInterval = CInt(DateNumber.Text)

End If
NextWeek.Text = DateChooser.Value.AddDays(DateInterval).ToString()

End Sub

What have you done here? You added a text box that allows a user to over-
ride the default number of days you are calculating from the date in the date
chooser. Click the Start button to enter debug mode again and give it a try.
You see something like the calculator shown in Figure 4-8.

You now have an application that does the following:

� Accepts a starting date from the user or uses a default date

Figure 4-8:
The Date

Calculator
so far.

72 Part II: Building Applications with VB 2008

09_182383 ch04.qxp 2/21/08 7:32 PM Page 72

� Accepts a span (number) of days from the user or uses a default number
of days

� Calculates and displays the date that falls the entered span of days from
the input date

Next, you just need to add a few of the features that users will expect of a
Windows application, and you’ll just about be done.

Communicating with the
user using the status strip
Now that you have the base functionality of the Date Calculator, you need to
add those features that users expect of a Windows application. Menus, status
strips, and mouseover ToolTips are part of the Windows experience. Visual
Studio 2008 supports all of these and more.

As I write this chapter using Microsoft Word 2007, a fairly complex status
strip appears at the bottom of the window, as shown in Figure 4-9. It shows
the current page, the section, the line and column, and what features I have
active, such as recording of macros or tracking changes.

This status strip is another control provided by the team that developed
Visual Studio. Find the StatusStrip control in the Toolbox and drag it onto
the Date Calculator form, as shown in Figure 4-10. Rename it to something
like mainStatusStrip.

The StatusStrip is just a container for stuff. You can add stuff to the bar as
needed from the Properties window, in the property collection called Items. A
shortcut is available for adding these properties, in the form of a Smart Tag
(see Figure 4-10).

Also, note the Edit Items link in the Properties window. Clicking this link
opens the Items Collection Editor dialog box, as shown in Figure 4-11.

Figure 4-9:
The status

strip in
Microsoft

Word.

73Chapter 4: Building Windows Applications

09_182383 ch04.qxp 2/21/08 7:32 PM Page 73

The Items Collection Editor dialog box is a tool that will become very
familiar — it is common throughout Visual Studio as a tool to edit items in
collections. Next, you add some reference items to the StatusStrip just
placed on the form.

Figure 4-11:
The Items
Collection

Editor
dialog box.

Figure 4-10:
Adding a

status strip
to the Date
Calculator.

74 Part II: Building Applications with VB 2008

09_182383 ch04.qxp 2/21/08 7:32 PM Page 74

1. To add an item, click the Add button.

The instance will appear to the left, in the Members window, and the
properties will appear to the right, in the Properties window.

2. Add two StatusLabels, and name them datePanel and userPanel.

3. In the Properties window, set the Spring property to True.

4. Click the OK button to close the Items Collection Editor dialog box.

To do something with these new members of your StatusStrip, you need
to set that text value and other properties programmatically, when the form
loads. You can do that in another event handler, called Form_Load. To edit
the Form_Load event handler, double-click the form.

The Form_Load event handler is one of the first things to run when a new
form is brought onto the screen.

In this type of single-form application, the Form_Load event handler will be
close enough to the first code that runs that all your setup code should go
here. Because you want to set up the StatusStrip instance when the form
loads, you add the following code to that event handler:

Private Sub DateCalc_Load(ByVal sender As System.Object, _ ByVal e As
System.EventArgs)

Handles MyBase.Load
datePanel.Text = System.DateTime.Now.ToShortDateString()
userPanel.Text = My.User.Name

End Sub

Giving hints with the ToolTip control
The ToolTip control gives you the ability to add a different ToolTip to every
control on a certain page and control them as a collection. You can assign a
ToolTip object to any set of objects, but each individual object can only be
associated with one ToolTip object. Note that you can change the individual
ToolTip.

Because you have a ToolTip referenced on the form, you have access to a
ToolTip property in each control on that form. Drag a ToolTip object
onto the Date Calculator form, and note that a component appears in the
Component Tray. Click the component and change the Name property to
primaryToolTips.

75Chapter 4: Building Windows Applications

09_182383 ch04.qxp 2/21/08 7:32 PM Page 75

Now if you look at the Properties window for, say, the DateNumber text box,
you find a new property, ToolTip on primaryToolTips, as shown in
Figure 4-12. Select the property value, type Enter the number of days here,
and then run the program. When you hover the mouse pointer over the text
box, the famed ToolTip appears next to the pointer, as shown in Figure 4-13.

ToolTips are only one of many ways an application communicates with the
user in real time.

76 Part II: Building Applications with VB 2008

Of controls and values . . .
Look at the DateCalc_Load subroutine in
this chapter’s application, and see whether you
can find some higher truths. When you create a
control, it is an instance of an object. The con-
trol knows it can have a text value, and the con-
trol knows where to show the value, but it
doesn’t know what that value is until you set it.
You can set the value at design time (when the
code is written), or you can set it at runtime
(meaning when the code is executed). Run-time
versus design-time variables are an important
development consideration, as in the following
examples:

� Setting text at design time is handled like I
handled setting the text date interval. You
can set the text in the designer, and then
largely leave it alone. This is great for titles
of forms, labels on radio buttons, and stuff
like that.

� Setting run-time text depends on more than
your whim as a developer — it is based on

the environment at the time the program is
executed on the user’s machine. In the
example for the status strip, the date and
the current value of the period are set as
the two panels. The date is obviously a run-
time decision because that value changes
day by day. To handle run-time changes,
you set the value as I did in the Date
Calc_Load event handler.

� But why set form width at run time?
Because the actual size of the form is
another variable that you have little control
over. Various preferences that the user can
set in Windows can control the size of new
forms, such as requiring that they open
maximized. The StatusStrip itself
changes with the form. The panels,
because of their static nature, do not. Thus,
you will need to calculate the width of the
panels when an application loads, not when
you build the form.

09_182383 ch04.qxp 2/21/08 7:32 PM Page 76

Figure 4-13:
The ToolTip

in action.

Figure 4-12:
The

ToolTip
on

primary
ToolTip

property.

77Chapter 4: Building Windows Applications

09_182383 ch04.qxp 2/21/08 7:32 PM Page 77

Navigating with the MenuStrip control
Throughout the history of Windows application development software,
nobody has come up with a decent way to deal with the development of
menus. Visual Studio 2008 uses a draggable control as the core visual repre-
sentation of the menu, as shown in Figure 4-14.

Drag a MenuStrip control anywhere on the form in Design View, as shown in
Figure 4-14, and rename it to mainMenu. The form designer provides you with
a Type Here prompt, which brings you to the key part of developing Windows
Forms applications and software with accepted standards.

Have you noticed that almost every application you run in Windows has a
menu bar that shows “File, Edit, View, Insert, Window, Help” or something of
the sort, as shown in Figure 4-15? Nothing forces developers to make such a
menu bar, but they do it because this menu configuration is an accepted stan-
dard.

To beef up your main menu according to the accepted standard, follow these
steps:

1. To add a File menu, type File (after adding the MenuStrip control), as
shown in Figure 4-14.

A prompt appears to the right of and below the new menu item just
added.

78 Part II: Building Applications with VB 2008

Some controls come with extras
ToolTips and context menus can be dragged
into the designer from the Toolbox, and the
properties can be set in the Properties window
by selecting the objects in the Component Tray.

Take a look at the ToolTip object, for exam-
ple. The ToolTip object, as do many unob-
servable objects in the Windows Forms world,
provides additional functionality not usually
available to a given set of controls. Unlike the
MenuStrip object, which specializes in user
interaction, or the StatusStrip object,

which specializes in user information, the
ToolTip control gives Windows Forms con-
trols extra properties.

Extra properties added to an object? How is that
possible? Polymorphism. Visual Basic.NET is an
object-oriented language, and thus it has to
adhere to four rules — objects must be inheri-
table, extensible, relatable, and polymorphic.
Therefore, you can define an object that rede-
fines the properties of another, if you wish.

09_182383 ch04.qxp 2/21/08 7:32 PM Page 78

2. To add an Edit menu, click and type to the right of the last menu item
added.

For this example though, just add an Exit option on the File menu.

Notice that the MenuStrip object adds a component to the Component
Tray at the bottom of the Design window, as shown in Figure 4-16. To
access properties of the menu instance, you can click on the control
instance rather than the menus at the top of the form.

3. To add functional code to the menu, just click away from the menu;
then go back and click the File menu to open the Exit item.

A lot of menu items have form-wide functionality, so you will make a lot
of use of the Me object. Me is a useful Visual Basic alias that refers to the
object that is currently the focus of the application. Double-click that
item, and the already well-named item will create its own event handler.

Figure 4-15:
A standard

menu bar.

Figure 4-14:
The Main

Menu in
the Design

View.

79Chapter 4: Building Windows Applications

09_182383 ch04.qxp 2/21/08 7:32 PM Page 79

4. Double-click the Exit item and add the Me.Close() statement to the
event handler for this item.

This is the code’s way of saying, “Run the close function of the container
object” — in this case, the form — so that it closes the window when the
menu item is selected.

Activating the right-click with
the ContextMenuStrip
Another type of menu is the context menu, which is accessed by right-clicking
a control in a running application.

You probably use context menus constantly, without even thinking about it.
Right-clicking an image in a Web browser allows printing and saving. Right-
clicking a scroll bar provides a Page Down and Page Up option. You can pro-
vide this functionality, like I did in the form shown in Figure 4-17, with the
ContextMenuStrip object.

Like ToolTips, context menus are objects in the Component Tray, and they
can be assigned certain properties. Like the MenuStrip object, you can
assign a context menu to the ContextMenuStrip property of a form after
using the neat little Menu Builder in the Design View.

Figure 4-16:
Component
Tray of the

Date
Calculator.

80 Part II: Building Applications with VB 2008

09_182383 ch04.qxp 2/21/08 7:32 PM Page 80

Drag a ContextMenuStrip object from the Toolbox into the Component
Tray and change the default name to primaryContextMenu. The Context
MenuStrip builder appears in the form designer, and you can build it just as
with the MenuStrip. Then, in the code, you can assign the property, just as
with the MenuStrip. When you run the form, the MenuStrip appears in the
upper-left corner, and the ContextMenuStrip appears when you right-click
the form or other control. To determine what control gets what context
menu, add a little code to the Load event of the form:

DateNumber.ContextMenuStrip = primaryContextMenu

You can use code like this to predefine a few context menus and assign them to
certain user interface controls based on what options the user needs to see.

Figure 4-17:
A context

menu.

81Chapter 4: Building Windows Applications

09_182383 ch04.qxp 2/21/08 7:32 PM Page 81

82 Part II: Building Applications with VB 2008

09_182383 ch04.qxp 2/21/08 7:32 PM Page 82

Chapter 5

Building Web Applications
In This Chapter
� Understanding the inner workings of ASP.NET

� Knowing the processes that make Web applications different

� Finding out about the tools for Web development

� Creating your first Web application

� Communicating with the user

Web application programming has changed drastically since its origin in
the ’90s. But no matter how much programming characteristics may

have changed, the applications still spring from a single concept: Based on a
request from the Web application, a server passes data to a preexisting client
(the Web browser), which then renders that data into an interface that the
Web application user sees.

The addition of form elements and Common Gateway Interface (CGI) to the
Web scene in 1993 boosted the Web servers’ capacity to accept input from a
user and return a processed response. Over the next 10 years, everything
changed and remained the same. Currently, Web developers can use hun-
dreds of preprocessing languages on dozens of platforms, but all these tools
essentially use the CGI protocol to get information from the browser to the
server and back again. ASP.NET — part of the .NET Framework — is the
newest rendition of the original CGI protocol.

In this chapter about ASP.NET, I cover the difference between Windows and
Web applications, and I tell you how the .NET Framework provides you with
tools to simplify the difference for you as a developer. I explain how ASP.NET
works and tell you about the problems that being disconnected (that is, not
having a constant connection between the Web browser and the Web server)
causes, specifically with the application issues of State and the reality of the
PostBack.

You can build your first Web application — a Date Calculator, as designed in
Chapter 3 — using Web tools and view it in a Web browser. And you find out a
little about the immense power of ASP.NET through the details about hyper-
links, images, and the HttpRequest object.

10_182383 ch05.qxp 2/21/08 7:33 PM Page 83

Seeing How ASP.NET Works
with Your Web App

ASP.NET is a preprocessor that works with Internet Information Server (IIS)
5.1 or higher to serve HTML to Web browsers. What you must remember —
throughout this description of how ASP.NET works — is that it is essentially
CGI for managing a request from browser to server and a response from
server to browser. ASP.NET is built into the .NET Framework and is used to
build Web Forms in Visual Studio 2008. For use on the Web, ASP.NET has sev-
eral benefits over Windows Forms:

� Clients using the Web Forms application don’t need to have the .NET
Framework installed because information is returned to the browser
making the request as only HTML — and not as some proprietary ASP
format.

� Clients don’t even have to be using Microsoft Windows or Internet
Explorer. You can tell ASP.NET to render HTML that will work in any
contemporary browser.

� Complex processing or data access happens on the server, which allows
the browser to reside on a simpler workstation.

� Code for an ASP.NET application is stored on the server. Any change
to an application has to be made in only one place.

Of course, ASP.NET has constraints as well:

� The client computer must be able to access the server via a network
connection. This connection can come from a local network behind or
through a firewall.

� The server has little control over the software that the client uses to
view the information. Web Forms designs must remain simpler than
those in Windows Forms so that the majority of users can get a satisfac-
tory viewing experience.

� Everything that the client needs to do is sent in clear text in the form
of HTML. The programmer must be very careful how forms are coded
for stability and security reasons.

Two processes heavily differentiate the handling of Web Forms and Windows
Forms. The first process is PostBack, which is how ASP.NET handles the CGI
transmissions for transfer of information. The second process involves how
ASP.NET manages the State of the application (that is, the way the server
remembers what the client is doing inside your program).

84 Part II: Building Applications with VB 2008

10_182383 ch05.qxp 2/21/08 7:33 PM Page 84

PostBack: Not a returned package
The PostBack — a quasi-automated request from the browser to the server —
is the magic behind the ASP.NET model. The PostBack communication
process is how ASP.NET identifies a request for the same page in order to
handle an in-page request by the user. Every user-initiated event — from
typing in the initial URL, to clicking a button, to even changing a radio button
selection — can cause a PostBack.

Visual Studio 2008 treats PostBacks as events, just like an event in a Windows
Forms application. In Chapter 4, you find out about double-clicking a button
to generate event handler code for that button. The process is much the same
for Web Forms. If you are designing a Web Forms application and add a button,
double-clicking that button in the Design View gets you event handler code,
too. Although the coding process is very similar, the code that Visual Studio
writes for you is different, and the amount of control you have is different.

The programmer really has no control over the way the browser makes
requests to the server. If you have coded Web applications before — using
ASP Classic or another preprocessor — the PostBack code that’s automati-
cally generated will feel very different. If you’re coding your first Web applica-
tion, using ASP.NET’s automatic method will seem very easy. Either way, let
Visual Studio do its thing and don’t try to force the program to work the way
you’re used to. Like playing piano with a metronome, the framework that ini-
tially seems like a constraint will actually give you a lot of freedom.

A matter of State
Web applications differ from Windows applications in regard to managing the
State of the application. The State of an application is characterized by what
the application knows about itself at any given moment. For example, if you
set a variable to a value in a Windows Forms application, the variable keeps
that value until the application changes it or is closed (provided that the vari-
able is declared in the program’s Declarations section).

In a Web Forms application, however, the moment the server finishes render-
ing a page and sends it to the browser, the server promptly forgets any asso-
ciated variable value until a request comes back from the client and the
server looks up the State for that user. The Web Forms application itself has
no State whatsoever unless the programmer specifically stores that variable
somewhere.

85Chapter 5: Building Web Applications

10_182383 ch05.qxp 2/21/08 7:33 PM Page 85

Part of the power of ASP.NET is its capacity to save the application State
in the server’s memory until the browser makes another request. At that
time, the server will remember the user session that the browser is referring
to in the request, and it will call up the saved variable values.

ASP.NET saves different elements of your Web application in different ways,
as follows:

� The values in Web Forms controls — such as text boxes and data grids —
are saved automatically unless you specifically ask the values not to be
saved.

� The values of your variables aren’t saved unless you explicitly write code
to save them and include it in your Web application.

� Details about the browser making the request are saved every time, but
you have to know where to look for them. (These details are called server
variables, and you can find out more about them in the documentation —
you won’t need them for this chapter.)

PostBack and State management may seem confusing in theory, but they
become much clearer after you see them in action. I show you how these
processes relate to the controls and structures that you use for the develop-
ment of Web Forms applications.

Discovering the Web Controls
ASP.NET is more than just the sum of its form controls, but the controls do
make up a significant part of the total. For example, take a look at Figure 5-1,
where you can see the Date Calculator (the same one you find in Chapter 3)
formatted as a Web application. The controls, like the calendar and the text
box, look much the same as those found in the Windows Forms application
that appears in Chapter 4.

Table 5-1 shows often-used Web server controls and their main uses. In addi-
tion to these and other core controls (such as a data grid and a button),
Visual Basic offers a number of other controls that have less obvious visual
impact on a page, but are just as significant in application development.
Table 5-2 contains a list of categories for these less obvious controls.

Table 5-1 Often-Used Web Server Controls
Control Toolbox Icon Uses

Button Submits a request (thereby
causing a PostBack)

86 Part II: Building Applications with VB 2008

10_182383 ch05.qxp 2/21/08 7:33 PM Page 86

Control Toolbox Icon Uses

Calendar Allows the user to select a date
from a calendar

RadioButtonList Offers easy access to a selection
list like a DDL

ImageMap Creates a dynamic version of the
HTML classic

FileUpload Handles the complexity of the
multipart form

Panel Acts as a collation mechanism for
other controls on a page

Figure 5-1:
The Date

Calculator
as a Web

Forms
application.

87Chapter 5: Building Web Applications

10_182383 ch05.qxp 2/21/08 7:33 PM Page 87

Table 5-2 Other Server Control Categories
Control Category Uses

Web Forms Page-level controls, such as the Crystal Report viewer, or
PDF controls

Data Data access providers, such as data sources and grids

Personalization Web Parts, such as Business Intelligence tools, as devel-
oped for SharePoint

Security Login functionality that integrates with other Windows
security controls, for example, NTFS Security

Validation Input validation controls that produce their own client-
side script code

Navigation Prebuilt systems for getting from page to page

HTML Simply prewritten HTML for easy access

The goal of the ASP.NET developers was to reduce by 70 percent the amount
of code that a Web developer (like you) must write. And giving you all these
server controls to choose from goes a long way toward reaching that goal.

Outside the scope of server controls is the Web Forms namespace that is part
of ASP.NET. Because Web application design is so outside the normal scope of
a regular development effort, ASP.NET provides a significant number of classes
to assist with the management of the application. For instance, the concepts
of PostBack and State, described in the previous section, provide some chal-
lenges that ASP.NET is well suited to meet because of this added functionality.
Table 5-3 lists some of these namespace classes.

Table 5-3 Some Classes in the System.Web Namespace
Class Uses

HttpApplication Defines properties of the entire application

HttpSession Identifies properties of one session within an application

HttpContext Offers access to the HTTP-specific properties of a
specific request

HttpBrowser Gives access to the Server_Variables collection
Capabilities provided by CGI

HttpCookie Reads and saves cookies to a client PC

HttpRequest Grants access to the values sent by a request

88 Part II: Building Applications with VB 2008

10_182383 ch05.qxp 2/21/08 7:33 PM Page 88

Class Uses

HttpResponse Provides access to the values sent to the client in a
response

HttpUtility Defines generic utilities to encode and decode HTTP
messages

HttpWriter Allows passing values to an HttpResponse

Building Your First Web Application
The following sections take a look at building the Date Calculator (like the
application appearing in Chapter 3) as a Web application. Essentially, the Web
version of the Date Calculator works much the same way as the Windows
Forms version discussed in Chapter 4. The difference in the Web Forms ver-
sion is the extra code required to ensure that the application can forget and
re-remember everything between refreshes of the form. That is, the applica-
tion must save State every time the browser calls back to the server on a
PostBack request.

Viewing the extras in Web Forms
As with Windows Forms (Chapter 4), you have a selection of views in the
designer window, as shown in Figure 5-2. But unlike the views in Windows
Forms, the Web Forms views have the names Design, Source, and Server.
When you view the Design or Source, you have an option to view them
together in a Split view, new in 2008.

The Server view is for the code-behind. These views show you the following:

� Design View: As you may expect from Windows Forms, Design View
shows you Web Forms in What-You-See-Is-What-You-Get (WYSIWYG)
format.

� Source View: Shows you the display code, which is essentially the HTML
that the browser downloads. The exception to that is the ASP.NET server
controls, which are rendered by IIS before they get to the browser. For
those controls, you see special ASP.NET markup.

� Server View: Shows the Visual Basic 2008 code that is compiled and
saved into a class library for use by the server in processing the incom-
ing browser requests.

89Chapter 5: Building Web Applications

10_182383 ch05.qxp 2/21/08 7:33 PM Page 89

ASP.NET pages that accompany a Web application are actually represented
by two editable files. The .aspx file contains the presentation code, that is,
the HTML, which formats the material that shows up in the user’s Web
browser. The .aspx.vb file, which is called the CodeBehind file, contains the
functional stuff (the Visual Basic code) that the user never sees. You can look
at both files from the designer window, as you do with the Windows Forms.

Constructing the Web Forms application
Follow these steps to start your Web Forms application and populate it with
the controls you need:

1. Choose File➪New Web Site from the Visual Studio main menu.

Web Forms are set up a little differently than Windows Forms projects:
They appear as Web sites rather than projects. Visual Studio gives you
a few template options in the New Web Site dialog box, as shown in
Figure 5-3.

2. Select ASP.NET Web Site from the Visual Studio Installed Templates
list and type a name for the site in the appropriate text box.

Figure 5-2:
The views

available for
Web Forms.

90 Part II: Building Applications with VB 2008

10_182383 ch05.qxp 2/21/08 7:33 PM Page 90

In Figure 5-3, notice the Location drop-down list to the left of the file
selection drop-down list. This Location list gives you the choice to pub-
lish to an IIS site or an FTP site. If you use the local File System — which
I recommend during development — others won’t be able to access the
site until after you publish it using the Copy Web or another deployment
tool. Search MSDN for the term ASP.NET deployment to find out more
about publishing your ASP.NET applications.

I named my Web site DateCalcChapter5, and I recommend saving the
site in the default location. Visual Studio creates a new Web site from the
template with the name you specify. The site includes a default page,
which I left with the name default.aspx. When you run the site from
Visual Studio for testing, it will run with a special custom Web server. If
you want other users to be able to see the site, you need to copy it to a
regular Web server.

3. Click the Design tab to go to Design View and drag the controls you
need from the Toolbox onto the form.

Layout in the Web designer is different than in the Windows designer.
Generally speaking, Web pages are laid out relative to the upper-left
corner of the screen. Because you as the developer don’t control the
size of the users’ screen (or the font size, or just about anything), the
design for a Web application has to be a lot more flexible than a
Windows application.

In this example, I start with a Label control. The Label control provides
server-controlled text on a Web page. Unlike with Windows Forms, Web
Forms allow you to type static text directly on a Web page, so you actu-
ally have two different ways to present text to the user.

When you place your first control, two characteristics become obvious
right away:

• The object in question aligns itself with the upper-left corner of the
form, no matter where you dragged it.

Figure 5-3:
The New
Web Site

dialog box.

91Chapter 5: Building Web Applications

10_182383 ch05.qxp 2/21/08 7:33 PM Page 91

• The properties available when you work with a Web Forms control
are very different from those of a Windows Forms control having
the same name.

4. To add all controls for the Date Calculator application, drag a Label,
Calendar, and Button to your form.

Figure 5-1 shows the placement of these controls in my sample date cal-
culator form.

5. Format the Calendar control by selecting one of the formats and click-
ing the OK button.

When you drag the Calendar control onto the page, you see another fea-
ture of the SmartTags (which you may have discovered in the Windows
Forms application built in Chapter 4) — the AutoFormat dialog box, as
shown in Figure 5-4. The AutoFormat dialog box gives you the opportu-
nity to quickly implement one of the predesigned looks for a given con-
trol. For my example, I choose the Professional 1 format from the Select
a Scheme list. Make your choice, and the new design shows up in the
designer.

6. Click to place the cursor in front of the Label control you added at the
upper left, and press Enter twice to add space.

7. Click to place the cursor back at the top of the page and type your
application name.

In this example, I type Date Calculator to name my Web application.
Highlight the text and use the first drop-down list on the Text Formatting
toolbar to change the Block Formatting to Heading 1.

Figure 5-4:
Autoformat-

ting for the
Calendar

control.

92 Part II: Building Applications with VB 2008

10_182383 ch05.qxp 2/21/08 7:33 PM Page 92

8. Press F4 to open the Properties window; then click each control (the
Label, the Button, and the Calendar) and change the ID property to
usable names.

I used NextWeek for the Label, SubmitButton for the Button, and
DateChooser for the Calendar.

When you add the Web Forms controls, you have made a good start on your
first Web application.

In Visual Studio, developing Web applications with Web Forms is very differ-
ent from developing Windows applications with Windows Forms. Web devel-
opment adds another layer — ASP.NET — which is a central topic for the first
several pages in this chapter. (But this is a book about Visual Basic, and don’t
worry, this chapter does relate ASP.NET to VB 2008.) If you are completely
new to Web development, and you need to become very good very quickly, I
recommend reading ASP.NET 2 For Dummies by Bill Hatfield (published by
Wiley) in addition to finishing this chapter.

Viewing the results in Source View
To view your work in Source View and also add some functionality to your
form, follow these steps:

1. Click the Source tab to change to Source View.

You suddenly can see the specific layout of the form in HTML format.
The HTML code for my date calculator application appears in Listing 5-1.

Listing 5-1: The HTML Code for Default.aspx
<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”Default.aspx.vb”

Inherits=”_Default” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Untitled Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Label ID=”Label1” runat=”server” Text=”Label”></asp:Label>
<asp:Calendar ID=”Calendar1” runat=”server” BackColor=”White”

BorderColor=”White”
BorderWidth=”1px” Font-Names=”Verdana” Font-Size=”9pt”

ForeColor=”Black” Height=”190px”

(continued)

93Chapter 5: Building Web Applications

10_182383 ch05.qxp 2/21/08 7:33 PM Page 93

Listing 5-1: (continued)

NextPrevFormat=”FullMonth” Width=”350px”>
<SelectedDayStyle BackColor=”#333399” ForeColor=”White” />
<TodayDayStyle BackColor=”#CCCCCC” />
<OtherMonthDayStyle ForeColor=”#999999” />
<NextPrevStyle Font-Bold=”True” Font-Size=”8pt” ForeColor=”#333333”

VerticalAlign=”Bottom” />
<DayHeaderStyle Font-Bold=”True” Font-Size=”8pt” />
<TitleStyle BackColor=”White” BorderColor=”Black” BorderWidth=”4px”

Font-Bold=”True”
Font-Size=”12pt” ForeColor=”#333399” />

</asp:Calendar>

</div>
<asp:Button ID=”Button1” runat=”server” Text=”Button” />

</form>
</body>
</html>

You can work with (add, delete, change, and so on) your controls in this
view or in Design View — although you must know that a mistake in
code in the Source View will cause a problem in Design View. Figure 5-5
shows the message resulting from an error made in the Source View.

Figure 5-5:
An Error
Creating

Control
message.

94 Part II: Building Applications with VB 2008

10_182383 ch05.qxp 2/21/08 7:33 PM Page 94

Generally, I would advise that you focus on being either an HTML editor
or a design editor. If your background is in Web design, use and stick
with the HTML Source View. If most of your experience is in form design-
ers like Visual Basic or Delphi, focus on using the Design View. Switching
between the two is confusing and can cause logistical problems.

2. Click the Design tab to go back to Design View.

3. Double-click the Button control to add a Click event handler.

Visual Studio changes to Server View, where you have the opportunity
to add code to the instance of that click event. The methods, properties,
and events for the Button control here are slightly different from those
of the Windows application Button control because they need to sup-
port the PostBack model of the ASP.NET engine.

For this example, I add code that increments the chosen date by seven
days, as follows:

Partial Class _Default
Inherits System.Web.UI.Page
Protected Sub SubmitButon_Click(ByVal sender As Object, ByVal e As

System.EventArgs) Handles SubmitButton.Click
NextWeek.Text =

DateChooser.SelectedDate.Add(TimeSpan.FromDays(7)).ToString()
End Sub

End Class

After you complete these steps, you have the basics of a date calculator
application. When you run the application, you can click a date on the calen-
dar, click the button, cause a PostBack event, and get a refreshed Web page
that displays the date a week hence as your result.

Running your Web application
Generally, Internet Information Server is required for running an ASP.NET
Web application. When you develop the application with Visual Studio, how-
ever, that isn’t the case. The Visual Web Developer (VWD) Web Server is an
integral part of Visual Studio 2008 and makes development on a nonserver
platform painless. You can take advantage of the close integration of these
products and test out the Web applications you’re developing on your local
machine. With your application open in Visual Studio, follow these steps to
run it in debug mode:

1. Press F5 or click the Play button on the toolbar to launch the Web
application in debug mode.

Debug mode is not automatically set up on a Web project, so you are ini-
tially prompted to set it up via the Debugging Not Enabled dialog box
shown in Figure 5-6.

95Chapter 5: Building Web Applications

10_182383 ch05.qxp 2/21/08 7:33 PM Page 95

2. Accept the default option — Modify the Web.config File to Enable
Debugging — and click the OK button.

VWD Web Server appears in your system tray as hosting the site on the
local machine with a random port number. See Figure 5-7.

Your application runs with your Web page active and visible in the
default Web browser you set up in the Visual Studio options. (See the
Cheat Sheet at the front of this book for information on setting these
options.) Figure 5-8 shows my Date Calculator application open in
Internet Explorer.

Figure 5-7:
Notification
of the VWD

Web Server.

Figure 5-6:
Setting up

debugging.

96 Part II: Building Applications with VB 2008

10_182383 ch05.qxp 2/21/08 7:33 PM Page 96

3. Activate your Web application (by clicking a button, typing into a text
box, or otherwise interacting with your program) and watch the
results.

In my application, I click a date (October 29, to be exact) and click the
button, and the calendar changes to highlight the date one week out
(Remember, remember, the fifth of November), as shown in Figure 5-9.

4. Close the Web browser that is running your application.

Visual Studio comes out of Debug mode, and the VWD Web server also
closes.

Looking Below the Surface of Web Forms
ASP.NET is a framework within a framework — a comprehensive Web server
management system provided for free as part of the .NET Framework from
Microsoft. ASP.NET is insanely sophisticated and powerful, and it does much
more than I can cover here. But I can help you with an important basic under-
standing of how ASP.NET encapsulates the CGI (Common Gateway Interface)
functionality that has been around for ten years.

Figure 5-8:
A sample

Date
Calculator

application
running in

Debug
mode.

97Chapter 5: Building Web Applications

10_182383 ch05.qxp 2/21/08 7:33 PM Page 97

Validating user input
User input controls on Web Forms look just like user input controls on
Windows Forms. Text boxes, drop-down lists, check boxes, and so on all
accept user input, and buttons submit that information to the application.
The difference between Web and Windows Forms comes from how the
forms handle user information under the hood.

From the development perspective, text boxes and other controls work simi-
larly to accept user input. For example, you can get to the value submitted by
the user using the Text property of a text box or the SelectedValue prop-
erty of a drop-down list. One development issue that differs significantly
between Web and Windows applications is validation of the user input.
Because (for Web apps) the client is separated from the server, making sure
that the client requests are formatted correctly is something that developers
want to do on the client rather than the server. ASP.NET makes verifying
format simple with the Validation controls available in Visual Studio 2008.

You can find the Visual Studio Validation controls, as shown in Figure 5-10, in
the Toolbox under the (go figure!) Validation section. Web application users
may forget to provide all the data your application needs to work correctly;
they also may mistype an entry or enter the wrong type of data (for example,
entering text in a field where you expect numbers).

Figure 5-9:
My sample

Date
Calculator

highlighting
the new date

after the
PostBack.

98 Part II: Building Applications with VB 2008

10_182383 ch05.qxp 2/21/08 7:33 PM Page 98

Common reasons that you want to validate input include the following:

� Confirming that required information meets the rules of the applica-
tion: For instance, checking to make sure that a date entered falls after
the current date, if that is what your application requires.

� Verifying the type of data entered: Making sure that a date is formatted
properly or that a number is entered in a numeric field.

To use Validation controls in your application, simply select the on-screen
element that requires validating and drag the control (or controls) onto
the page you’re designing. I include a RequiredFieldValidator and
ValidationSummary control on my Date Calculator page. The Required
FieldValidator accepts a control to “watch” as a parameter, and reacts if
the requirements set for that control are not met. The ValidationSummary
sits at the top of the page and provides one of those nice bulleted lists of
problems, without any code!

Drag a text box onto the page, select it, and change the ID property name to
DateSpan. You can use this text box to do the same thing as the text box in
the Windows Forms project (see Chapter 4). In this text box, the user speci-
fies the number of days out to calculate from the selected date in the calen-
dar. Figure 5-11 shows how my Web application’s Design View looks after I
added the RequiredFieldValidator and ValidationSummary controls
(for which I set the ID to DateSpanValidator and DateSummary). I can set
up this validation to look for users to enter a number and send them warning
messages if they don’t.

Figure 5-10:
The

Validation
controls.

99Chapter 5: Building Web Applications

10_182383 ch05.qxp 2/21/08 7:33 PM Page 99

You need to do three important things to set up a RequiredFieldValidator
control. You can do all of these things in the Property panel with the validator
selected in Design View:

1. Type in the error message.

This message is what appears in the ValidationSummary control when
the user misses filling in the field. I set my error message to “DateSpan is
Required.”

2. Set the Text parameter.

This is what the validator itself shows when it is triggered. I usually use
an asterisk (*).

3. Set the Control to Validate parameter.

This setting shows the control that the validator is watching. In this
case, the control is the DateSpan text box.

When I run my Date Calculator program and try to change the date without
typing a number into the DateSpan text box, the user input validation that
these steps put in place displays the error message shown in Figure 5-12.

Figure 5-11:
My

application’s
Design View
after putting

in the text
box and

Validation
controls.

100 Part II: Building Applications with VB 2008

10_182383 ch05.qxp 2/21/08 7:33 PM Page 100

Dealing with State
As I mention in the introduction of this chapter, the State of an application is
described by the current value of controls, variables, and object properties at
any given time. When the server stops processing a page and sends it to the
browser, the server gives up (forgets) almost all the elements that comprise
the State. ASP.NET provides you with a few mechanisms to preserve State in a
Web Forms application. The most useful of these are the ViewState and the
Session objects, which I describe in the following sections.

ViewState
ViewState is a new concept for ASP.NET. In a nutshell, the server packages
up the values of the form controls that were passed to it, compresses them,
and saves them in a hidden form field that is rendered into the info that’s sent
back to the browser. The user doesn’t know (or care) that the variable is there,
but the server sure knows (and cares). This hidden form variable is passed
back to the server when the user causes another PostBack (by asking for the
same page again), and the server can decompress the variable to find out
what values to set when it returns the page to the client.

Knowing the working details is less important than knowing how to use the
ViewState object. In addition to the values of form controls, you can save
noncontrol variable values to the ViewState as well. If your program needs

Figure 5-12:
Input

validation
in action.

101Chapter 5: Building Web Applications

10_182383 ch05.qxp 2/21/08 7:33 PM Page 101

to remember a variable from PostBack to PostBack, you can do so by saving
and then retrieving the variable to the ViewState, as shown by the following
two lines of code:

Me.ViewState(“_NextWeek”) = NextWeek.Text

NextWeek.Text = CStr(Me.ViewState(“_NextWeek”))

In these lines, the Me object is just a shortcut that refers to the current object,
which in this case is the Web page in general. You see this structure used a
lot more in Part IV of this book. The CStr string conversion appears in this
code because when a value comes back from the ViewState, it is just an
object type, and your code needs to tell Visual Basic that the type value is a
String. (For more on types, see Chapter 9.)

Session object
The ViewState object is great for saving a variable within a page, but what
happens if you need to save a value across several pages? When a user
changes pages, the ViewState object is lost. This situation makes sense if
you think about it because your code refers to the ViewState object with
Me, and that Me is the page. If the user moves to a different page, your pro-
gram has a different instance of ViewState.

So to take care of this problem, enter the Session object. The Session
object represents a particular user working with a particular application.
While the Session object has several methods (which you can see if you
check out the IntelliSense), the important method to know helps you save
values — just like you do with ViewState object. But with the Session
object, these values stay around until the user stops using the application,
even if that use involves multiple pages.

The following two lines of code show that setting and getting variable values
with the Session object are just as easy as using the ViewState object:

Session(“_NextWeek”) = NextWeek.Text

NextWeek.Text = CStr(Session(“_NextWeek”))

Checking Out Some Cool Web Tricks
The Web has a ton of toys. Because the Web is a disconnected technology,
and many of the toys are cross platform, they are kind of cool. Some of them
are even expected — more or less — by users, and a few of them are worth
knowing about.

102 Part II: Building Applications with VB 2008

10_182383 ch05.qxp 2/21/08 7:33 PM Page 102

Getting from one page to another
One of the most important capabilities of a Web application is allowing users
to move from one Web page to another. If you are just creating straight navi-
gation, you can use a simple Anchor tag and never even get involved with
Visual Basic. The following line of code shows how an Anchor tag looks in
the Source View, and Figure 5-13 shows how the coded link appears in the
browser.

This goes to the next page and this does not.

ASP.NET gets involved when you need to set the value of the HREF property
of the Anchor tag in your .vb file (the file that contains your application’s
Visual Basic code). Suppose that you need to pick which page you want the
user to reach during a PostBack. In Visual Basic, you could use a Hyperlink
Web user control and set the value of the NavigationUrl property in the
CodeBehind as needed. Following is an example of what that code would look
like if you want to set the HREF based on input gathered from the user. In the
case of the Date Calculator application (which you see in the section
“Building Your First Web Application,” earlier in this chapter), the DateSpan
control (text box) retrieves the number of days to span from the user.

If DateSpan.Text > “7” Then
HyperLink1.NavigateUrl = “thispage.aspx”
Else
HyperLink1.NavigateUrl = “thatpage.aspx”
End If

This example shows an If-Then-Else statement used to handle the navigation
decision. (I cover using the If-Then-Else decision statement in Chapter 10.)
You can use this coding technique for site navigation (as depicted) or even

Figure 5-13:
A hyperlink
caused by
an Anchor

tag.

103Chapter 5: Building Web Applications

10_182383 ch05.qxp 2/21/08 7:33 PM Page 103

for security. For example, you could look up an ID entered by a user in a data-
base that matches the user ID with a list of Web pages (URLs) that the user is
allowed to access.

Adding pretties
Web sites just aren’t Web sites without images. Like anchors, images can be
handled just with normal HTML, with an image tag that looks like this:

This tag refers to a Web-ready image (usually a GIF, JPEG, or PNG file) that is
in the same directory as the HTML code file referring to it. The path can, of
course, be changed in the src attribute to point to another directory in the
project.

Keep in mind that all paths are relative to the root of the project. If you always
reference the location of images with a complete path from the root of the pro-
ject — for example, with src=”/images/navigation/image.gif” — no
matter where your code is used, the browser will be able to find your image.

Just as the NavigateUrl property of the Hyperlink control changes the
HREF attribute of an Anchor tag that it renders, the ImageUrl property of
the image object changes the src attribute of the img tag it renders. So, if
you drag an image object to a Web page you’re designing and want it to
render the tag as shown in the preceding line of code, you would write the
following to add to the VB CodeBehind file:

Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles
Me.Load

Image1.ImageUrl = “image1.gif”
Image1.Height = 100
Image1.Width = 100
End Sub

Getting information about the user
In the earlier section “Discovering the Web Controls,” I discuss some controls
that give server-based Web applications access to the browser environment.
Sometimes browser information is very useful.

Take the security controls, for example. As part of its request to the server,
the browser sends information about the user in the form of an object called
a WindowsIdentity. Remember, because ASP.NET is disconnected, the
server doesn’t know which user is making a request at any given time unless

104 Part II: Building Applications with VB 2008

10_182383 ch05.qxp 2/21/08 7:33 PM Page 104

it checks every request. You can use the HttpRequest object passed to your
application from the server to get a WindowsIdentity object and then
check the object for user information, including the username.

The following code is the Source View for a Web Forms page containing a
little text and a label:

<%@ Page Language=”VB” AutoEventWireup=”false” CompileWith=”ThisPage.aspx.vb”
ClassName=”ThisPage_aspx” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
<title>Untitled Page</title>

</head>
<body>
<form id=”form1” runat=”server”>
<div>
The current user is <asp:Label ID=ThisUserNameLabel Runat=server></asp:Label>
</div>
</form>

</body>
</html>

When you double-click the form in the Design View, you get the Page.Load
event handler (see the following code), where you can add the VB code that
lets your application access Web environment objects. This code gets a copy
of the WindowsIdentity object from the Request object and then gets the
Name property from the WindowsIdentity.

Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

Dim thisUser As System.Security.Principal.WindowsIdentity =
Request.LogonUserIdentity()

Dim thisUserName As String = thisUser.Name.ToString()
ThisUserNameLabel.Text = thisUserName

End Sub

This method follows the general pattern for getting information out of the
http objects. Generally, such objects return some kind of subobject that you
need to declare in your application. For more information about getting infor-
mation out of objects, check out Chapter 13.

You can use the Request terminology to refer to the current HttpRequest
object because it is an artifact from earlier versions of ASP.

Suppose that your application has now received a request from the user,
gotten the Request object fired up, and extracted a copy of its LogonUser
Identity, which is an instance of a WindowsIdentity object. The Logon
UserIdentity object has a Name property, which you have set equal to the

105Chapter 5: Building Web Applications

10_182383 ch05.qxp 2/21/08 7:33 PM Page 105

text of a Label Web control (ThisUserNameLabel.Text = thisUserName).
When you create and run this Web Forms application, you see a screen that
(hopefully) has your machine and username, rather than mine, as shown in
Figure 5-14!

The HttpRequest object offers a lot more than simply security; it passes
information about cookies, the Header collection, the client’s PC, and so on.
For more details on what this object provides, you can heed my continued
encouragement to read ASP.NET 3.5 For Dummies by Ken Cox (by Wiley
Publishing, Inc.) and the MSDN documentation.

Figure 5-14:
The

username
in the Web

browser.

106 Part II: Building Applications with VB 2008

Other good Web development things to know
You need to know more details to effectively write
ASP.NET applications. Information on HTML,
client-side scripting, and image development
come to mind. ASP.NET — a server preprocess-
ing platform — is just one piece of the whole, and
a lot more technologies and practices go into
making a good Web application. This chapter
gets you started with ASP.NET, and this book
deals with the CodeBehind VB language details
you need to know. But you still have an opportu-
nity to glean much more information about the
workings of Web applications before you become
an expert Internet application designer. Take a
look at the following:

� Elements of HTML, such as tables and lists,
that help you lay out pages

� The impact of image processing — includ-
ing converting files to GIF, PNG, or JPEG —
on the usability of the Web page

� Scripting languages such as JavaScript, to
provide interactive functionality on the
client that isn’t otherwise provided by
ASP.NET

� Configuration and management of a Web
server, specifically Internet Information
Server, to help maintain the environment for
your applications

10_182383 ch05.qxp 2/21/08 7:33 PM Page 106

Chapter 6

Building Class Libraries
In This Chapter
� Understanding the history of DLLs

� Building a class library

� Using a class library to isolate the program’s logic

� Getting information into and out of objects

To say that understanding class libraries is important would be a gross
understatement. (A class library is a collection of reusable code organized

into groups.) The entirety of the .NET Framework is a class library. All the
groups of controls discussed in Chapters 4 and 5 are class libraries. In fact,
all of Windows is a set of class libraries, even before .NET.

I cover a lot of details on a very complicated topic in this chapter. I describe
how to use a class library to encapsulate logic, save on memory usage, and
share code between applications. You should understand the parts of the
class library and the parts of the class itself after reading this chapter.

In this chapter, you build a simple class that handles the logic of the Date
Calculator designed in Chapter 3. The class you build here could be part of
a larger class library (libraries usually have multiple classes). I discuss the
difference between a class and an object. Also, I talk about some of the in-
depth features of class libraries in this chapter.

I hope that classes and class libraries will become a significant part of your
development pattern. You can, of course, write perfectly functional software
without creating class libraries, but you really shouldn’t. You should design
your application first so that you can decide whether your software has no
reusable code or anything that can be componentized before you dispense
with the class libraries. Even if you just build them into the project and do
not create separate DLLs, as described in this chapter, you should use class
libraries for code encapsulation. Code encapsulation and reuse (covered in
detail in Chapter 12) makes your code much more maintainable and easy to
build other software with — you can even reuse the same code in Windows
and Web applications this way.

11_182383 ch06.qxp 2/21/08 7:33 PM Page 107

Past to Present: DLLs Defined
Flash backward to November 1985. Microsoft has just released Windows 1.0,
based on work at Xerox and Apple. At the time, Windows was really just a
monolithic application for MS-DOS 2.0, meaning that all the code for the
application was compiled into one executable file. When you wanted to use
Windows, you ran the program. When you closed it, you went back to DOS,
and the computer forgot all about it.

Windows 1.0 applications, in sum total, required more memory than the hard-
ware was able to give them. To get all the features in place, stay within the
memory constraints, and give the users a seamless experience, Microsoft
built its software in component pieces. When Windows needed a particular
feature, it loaded only the piece that was needed, as shown in Figure 6-1.
These pieces are called Dynamic Link Libraries, or DLLs.

User
Interface

findApplicant()

findPerson()

Applicant()

MakeApplication()

Application()

addApplication()

addPerson()

Business
DII

Person
Object

Application
Object

Application
Object

Application
ListObject

Figure 6-1:
How

Windows
uses DLLs.

108 Part II: Building Applications with VB 2008

11_182383 ch06.qxp 2/21/08 7:33 PM Page 108

As it turned out, DLLs are good for more than memory management. They are
good for encapsulation of functionality. Encapsulation is the localization of
knowledge within a module, and it is one of the core tenants of object-oriented
programming, as well as a handy feature to have when writing an operating
system. When you need to upgrade a function, you need to replace only the
DLL, not the whole program. If a particular function needs to be secure, iso-
lating the DLL helps to secure the function. If you have several programs that
use the same function, they can share a DLL.

Note that DLLs aren’t executable programs — you can’t double-click on them
and run them. They’re designed to be referenced by other programs that are
executable and provide extra functionality. In the programming world, it’s
common to have a Windows or Web Forms program in Visual Studio along-
side a class library project in the same solution. The class library is providing
necessary shared functions to the Windows or Web program.

A DLL is just a particular kind of class library that’s specific to the Windows
operating system. You can build class libraries for other platforms. When you
build a class library for the Windows platform, the end result is a DLL.

As it turns out, the DLL thing stuck. DLLs are used to build all of Office, con-
temporary Windows, the .NET Framework — more or less everything in the
Windows world. DLLs are just the best way to make software for the Windows
platform.

Designing a Library
A class library on a Windows computer is a component of a program and is
implemented as a DLL file, as described in the preceding section. The follow-
ing sections cover how and why you can build a class library.

In the .NET world, class libraries are used to encapsulate functionality. For
instance, take the Date Calculator that I discuss in Chapter 3. This application
has some functionality involving adding a number of days to a date. (This
functionality has nothing to do with the user interface, which is covered in
Chapters 4 and 5. No matter what the user interface looks like, the program
changes the date in the same way.)

Ideally, you write the code that makes the program work, or business logic, in
a separate DLL file and include that file by reference in the calculator project.
This separates the logic and the user interface and brings all the benefits I
talk about in the previous section of this chapter.

109Chapter 6: Building Class Libraries

11_182383 ch06.qxp 2/21/08 7:33 PM Page 109

That is an example of functionality that can be encapsulated. Though it is
obviously a simple example, a well-structured Windows program — either a
Windows Forms or Web Forms application — should encapsulate this func-
tionality in a class library. An application that uses a class library references
that library as part of the code. It then uses the functions and subroutines of
that class library just as though they were part of the original program.

Objects and classes
So you have a class library, and classes are in it, as one would expect of a
class library. You expect that, because it is a library, you can check out the
classes within like you check out books from a regular library, and you can
do exactly that. The difference is that when you check out a class from a
class library, you get a copy of the class, so the original class remains in the
library. This copy is called an object, and it is an instance of that class.

Classes are more or less like molds. They have holes in which to put infor-
mation. When you get information together, you can get an instance of the
class — an object — to hold the information. Take the Date Calculator exam-
ple. You can define a class, called DateCalcClass, that has two properties
and a subroutine. At design time, those properties are empty, and the subrou-
tine is just a tool. When you instantiate the class in another program, how-
ever, it becomes an active vessel.

The program can put things in the object, because it is a three-dimensional
vessel, whereas the class was only a two-dimensional mold. When the user
sets the initial date — the first property — the subroutine Calculate is
called. That sets the second property to the answer, which you can then use
elsewhere in the application. The benefit is that after you are done, you can
remove this logic from the computer memory, and of course if you need the
logic elsewhere in the application, you don’t have to rewrite it; you just add
a call for the class library.

The parts of a class library
From the development perspective, the class library starts with a file, just
like all the other projects. In the case of VB 2008, it is a .vb file that contains
the following:

� Classes: The formal description of an object

� Namespaces: An abstract container of classes, as opposed to a class
library, which is a concrete collection of classes

� Functions: A sequence of code that performs a specific task and returns
a specific value

110 Part II: Building Applications with VB 2008

11_182383 ch06.qxp 2/21/08 7:33 PM Page 110

� Subroutines: A sequence of code that performs a specific task but doesn’t
return any values

� Properties: The qualities of an object

The structure of a .vb file is shown in Figure 6-2. Contained within the .vb
file are namespaces. Within the namespaces are classes. Finally, within the
classes are functions, subroutines, and properties, among other things.

This structure makes a lot of sense when you go to use a class file. For
instance, take the method System.String.Compare(). The namespace is
System, the class is String, and the function is Compare. The following
code demonstrates this structure:

Namespace System
Class String

Public Function Compare(ByRef a as String, ByRef b as String) as Integer
‘Functional code would be in here
‘In the end, you would Return an Integer

End Function
End Class

End Namespace

Namespace

Property

Class

Function

Subroutine

Figure 6-2:
The class
library file
structure.

111Chapter 6: Building Class Libraries

11_182383 ch06.qxp 2/21/08 7:33 PM Page 111

Inside the class are the code-building parts of the VB 2008 language. Instead
of using them now, however, you are building them:

� Functions return a value. Generally, functions accept input and return
output. The Date Calculator would use a function that accepts a date as
input and returns a date one week into the future as output. Functions
are denoted by the Function keyword.

� Subroutines don’t return a value. Generally, subroutines modify some-
thing else about the system, such as properties within the class. If you
wrote code to set the value of a label, it would be a subroutine because
it wouldn’t return a value when you called it. Instead, it acts on some-
thing else in the system. Subroutines are denoted by the Sub keyword.

� Properties maintain a value. An instance of a class maintains its own
data in properties. For instance, when you set the value of a label in a
Windows Forms or Web Forms application (as discussed in Chapters 4
and 5), you modify its text property. Properties are denoted by the
Property keyword.

Don’t let me fool you. There is a lot more to a class in any language than func-
tions, subroutines, and properties, but those are enough to get you started.

Coding a class library
The following list describes some of the important things you need to know
about a class library:

� Class files are, by nature, code-heavy devices.

� Class libraries are designed and built with a language, and they are meant
to be used in a language.

� Class libraries are not generally built using a designer, as are Windows
and Web Forms.

� Class libraries make use of the same .NET Framework tools that Windows
or Web Forms use in the Code View. In fact, the code for Windows or Web
Forms is actually a class library.

A class library has three parts that are important to understand right now:

� The class definition: This is where you define one of what might be many
classes in your library.

� The operation declaration: Here you define something about that class
for later use. These are the functions, subroutines, and properties that I
define in the previous section.

112 Part II: Building Applications with VB 2008

11_182383 ch06.qxp 2/21/08 7:33 PM Page 112

� The functional code: This is the innermost piece of the puzzle, and it goes
inside an operation declaration. Here you write the code that does the
work.

Listing 6-1 shows the parts of the class.

Listing 6-1: The Parts of the Class
Class Sample

Public Function SampleFunction(ByVal input as String) as String
‘Functional code goes here
‘The function returns a string

End Function

Public Sub SampleSub(ByVal input as String)
‘Functional code would be in here
‘No return value because it is a subroutine

End Sub

Public Property SampleProperty() as String
Get

‘Code to get the value goes here
‘Returns a string based on property return type

End Get
Set(ByVal value As DateTime)

‘Code to set the value goes here
‘Uses the value parameter to set the base property

End Set
End Property

End Class

The difficulty in coding class libraries becomes apparent when I say, “That is
all you need to know.” The fact is, nearly anything can go in the functional
code, as long as it doesn’t depend on other code elsewhere in the program.
The procedures can be defined however you wish. The classes can be struc-
tured in practically any way. You have lots of room for doing things poorly,
and the only way to find out how to code class libraries efficiently is to prac-
tice and review code from other programs.

Creating a Class Library
A good place to start when you’re creating a new class library (perhaps your
first) is to write a piece of code that manages the functionality of the Date
Calculator. (See Chapter 3 for more about the Date Calculator.)

113Chapter 6: Building Class Libraries

11_182383 ch06.qxp 2/21/08 7:33 PM Page 113

Getting started
To get started building a class library, follow these steps.

1. Open Visual Studio and choose File➪New Project.

2. Select VB.NET Class Library from the project templates.

3. Rename the default class file, class1.vb, to something more appro-
priate to your project.

For example, I named the library DateCalc2008.vb.

4. Add appropriate code inside the Class block.

In this case, I added the code described in the following section of this
chapter.

5. Choose Build➪Build Solution to create the DLL file.

The DLL file is the file that you use with the user interface to implement
the code that you write.

The process of building a class library is very simple. Because the majority of
the code is designed to make your program run, you won’t always get a lot of
guidance from Visual Studio. This makes figuring out what goes into the class
library all the more difficult, and puts the burden on you. The only guidance
you have in creating a class library comes from the design of your applica-
tion (see Chapter 3), which points to one reason why design is so important.

Building the Date Calculator
When you have a design, you know what procedures you need to define and
what functions the code needs. If you followed the steps in the preceding sec-
tion, you’re looking at a blank class like the following code, one of the scari-
est things in all of Visual Basic programming — or one of the most liberating:

Public Class DateCalc2008

End Class

To start, you need three properties: the start date, the end date, and the span
you want between them. To create properties, you need local storage for the
values of the properties, in the form of private variables.

A private variable is a variable that is defined outside of an operation and that
is available to all the procedures within the same class file; private variables
are sometimes called fields. By convention, private variables that provide
local storage to properties use the same name as the property, but start
with an underscore character, as follows:

114 Part II: Building Applications with VB 2008

11_182383 ch06.qxp 2/21/08 7:33 PM Page 114

Private _startDate As DateTime
Private _endDate As DateTime
Private _span As Integer

Next, you need the properties themselves. Start by typing Public Property
StartDate as Datet between the lines of the class declaration, and the
IntelliSense feature pops up with DateTime selected. Press Tab to complete
the statement.

Then press Enter to finish the line, and enjoy one of the nicest, simplest fea-
tures of class library development with Visual Studio. The code template for
the property is completed for you by Visual Studio, as follows:

Public Property StartDate() As DateTime
Get

End Get
Set(ByVal value As DateTime)

End Set
End Property

This feels a little more like Visual Basic. All you have to do is finish the code.
Visual Studio built two mini-procedures for you, which are predefined parts
of a property — Get and Set. They work exactly as expected: Get has the
code that gets the value of the property, and Set has the code that sets
the value of the property. The finished property declaration looks like the
following:

Public Property StartDate() As DateTime
Get

StartDate = _startDate
End Get
Set(ByVal value As DateTime)

_startDate = value
End Set

End Property

Make two more properties by following the same procedure, but substitute
EndDate and Span for your names. Remember that the value for Span
should be Integer.

Doing math with a subroutine
Next, you need to teach the library to do the math necessary to use the prop-
erties. As described in Chapters 4 and 5, this code is fairly simple, and nothing
has changed. Instead of using the values of DateTimePickers and Labels,
you use the properties, and instead of an event, you use a subroutine.

115Chapter 6: Building Class Libraries

11_182383 ch06.qxp 2/21/08 7:33 PM Page 115

A subroutine is an operation that doesn’t return a value — it only affects inter-
nal values. In this case, the internal values are the private variables in the
class. An example of how the subroutine works is as follows:

Public Sub IncreaseDate()
EndDate = StartDate.AddDays(Span)

End Sub

The logic to this is a little convoluted. It assumes that the user of the system
sets the properties, so by the logic in the Set statement, the private vari-
ables are set as well in the instance of the class the user is working with.

You use the private variables to do the math and set the private _endDate
variable. When the user goes to get the finished value — the EndDate
property — the logic for the Get statement is called, and the user gets the
current value in the private property.

These properties are a simple example of a very complex, powerful idea. This
may seem like a lot of extra code to do something so simple, but when you’re
developing applications, you rarely create a program as simple as the Date
Calculator. And as a developer, you’ll often find — in a real project — that a
little extra code makes the project much easier to write.

When you build the project, you have a class library that calculates a given
number of days from a given date. What’s more, the class library is compiled
into a DLL file usable by any .NET application. In the next section, I show you
how to use your DLL file.

Running a DLL file
As I mention at the beginning of this chapter, a DLL needs to be used by an
application with a user interface, such as a Windows Forms application.

To run your new DLL file, you need to add a project with a user interface to
the same solution that holds your DLL project. The following steps help you
get this working:

1. Choose File➪Add➪New Project.

2. Select a new Windows application and give it an appropriate name.

I named mine DateCalcShell, representing that it is a shell around the
DLL it will reference.

3. Rename the default form to something appropriate.

Naming strategies never cease. I named my form Calculator.

4. Right-click the new project and select Add Reference.

The Add Reference dialog box appears.

116 Part II: Building Applications with VB 2008

11_182383 ch06.qxp 2/21/08 7:33 PM Page 116

5. Click the Projects tab, select the project that appears there, and click
the OK button.

In this example, CalcClass2008 appears in the list under Project
Name, as shown in Figure 6-3.

6. Double-click the My Project file in Solution Explorer, and when it
opens in the Design View, click the References tab.

CalcClass2008 appears in the References grid, as shown in Figure 6-4.

Figure 6-4:
The

References
tab of the

My Project
file.

Figure 6-3:
Calc
Class
2008

in the Add
Reference
dialog box.

117Chapter 6: Building Class Libraries

11_182383 ch06.qxp 2/21/08 7:33 PM Page 117

7. Go back to the form file and move appropriate controls to the form.

Add a Label and a DateTimePicker control. (See Chapter 4 for more
about these controls.)

8. Change the names of the controls to something appropriate.

I used StartDatePicker for the DateTimePicker control and
EndDate for the Label control.

9. Instantiate your class from your class library as a new object in Code
View.

Getting a new DateCalc object is the same as getting a new instance of
the String object. Remember, everything is an object in .NET. A simple
dimension does the trick: Dim myCalc as New DateCalcClass
Chapter6.CalcClass2008().

10. Double-click controls to add code.

In this case, double-click the StartDatePicker control to add a Value
Changed event handler. Then use the new component that you defined
in Step 9. You can set the StartDate property from the value of the
DateTimePicker control, set the Span property to 7 to represent a
seven-day span, and then call the Calculate method so that the object
sets the EndDate for you. Finally, set the EndDate label text to the
endDate property of the myCalc object. This code is as follows:

Private Sub StartDatePicker_ValueChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles StartDatePicker.ValueChanged

Dim myCalc As New 2008DateCalsClassChapter6.CalsClass2008()
myCalc.StartDate = StartDatePicker.Value
myCalc.Span = 7
myCalc.IncreaseDate()
EndDate.Text = myCalc.EndDate.ToString()

End Sub

11. Click the Start button to test the application.

Set the DateTimePicker control to some value and watch the label
change. For a cheap thrill, use the debugger, which is covered in Chapter
8. Set a breakpoint in the DLL file, and use the debugger to watch the
code walk through two projects. It’s neat. You might need to right-click
the Project file for the Windows Application and set it as the Startup
Application.

Delving Deeper into DLLs
There is more to discover about DLLs than I can put in this chapter. However,
you should understand a few more points about DLLs before you start using
them.

118 Part II: Building Applications with VB 2008

11_182383 ch06.qxp 2/21/08 7:33 PM Page 118

Telling between friends and foes
Throughout this chapter, you use the Public keyword to describe class pro-
cedures. This is not the only way to describe procedures, however, and the
differences among the procedures are notable, especially when it comes to
the touchy subject of security. I discuss security in depth in Chapter 14, but I
discuss accessibility keywords here briefly.

Five accessibility keywords can be used to describe procedures. They describe
a gradually more restrictive security outlook. Generally, you want to pick the
most restrictive accessibility possible for your expected use of the procedure
in question:

� Public: These methods essentially give no restrictions. Any application
with physical access to the DLL can use Public methods.

� Protected: These methods are only available from other methods within
their own class, or a class that is derived from their class.

� Friend: These methods work anywhere in the application where they are
declared.

� Protected Friend: These methods are a combination of the Protected
and Friend keywords, so they are available only in an application
where the class and calling program are in the same class and assembly.

� Private: These methods are accessible only from within their own scope.

Be nice and share
Shared functions are handy because the programmer doesn’t have to instanti-
ate the class into an object with a dimension statement to use it. You can just
directly call the functions — but you don’t have the benefit of a stateful object
with properties and so on. Using the shared keyword is another tool in your
programmer’s toolbox.

To build a shared function, you need to accept and return values. For this
example, I built a shared function that accepts the StartDate and Span
values and returns a value for DateTime, which should be the end date.

This shared function is completely different from the subroutine because you
don’t use the properties. It is a separate function altogether. I am showing
you for the sake of example: This shared function and the subroutine/prop-
erty solution are two ways to do the same thing.

So, as you do with the properties in the earlier section “Building the Date
Calculator,” type the beginning of the function declaration, and IntelliSense
picks up that you are declaring variables, as shown in Figure 6-5.

119Chapter 6: Building Class Libraries

11_182383 ch06.qxp 2/21/08 7:33 PM Page 119

The functional code then takes the StartDate and Span values that are
passed in, does the date math, and sets the value of the function equal to
the result. The code looks like the following:

Public Function IncreaseDate(ByVal startDate As
DateTime, _
ByVal span As Integer) As DateTime

span = CDbl(span)
IncreaseDate = startDate.AddDays(span)

End Function

Getting more out of less
Without saying anything, I used one of the more useful features of VB 2008
class design in the playbook — functional overloading. Notice something
interesting about the finished class, especially the IncreaseDate function . . .
oh, wait, was it a subroutine? No, it was both! How is this possible?

It is possible through overloading. To simplify class design, two methods can
have the same name if they have a different method signature, meaning para-
meter types and number. In this case, you have a function that doesn’t use
the properties, so it accepts the start date and span as parameters, and then
returns the end date. A subroutine has the same name, but it has zero para-
meters and returns nothing.

Figure 6-5:
Declaring a

function.

120 Part II: Building Applications with VB 2008

11_182383 ch06.qxp 2/21/08 7:33 PM Page 120

Because of the different signatures, you can have two methods that do approxi-
mately the same thing, but in a different way. The IDE is even prepared to
handle this with a special feature of IntelliSense, as shown in Figure 6-6.

When you call the method in the code, after you type the first parenthesis,
you can see that the method is described with two lines. Use the arrow keys
to move between them. You don’t have to choose a specific one explicitly;
the IntelliSense is just there for reference.

Figure 6-6:
Overloading
in the IDE —
IntelliSense
shows two
overloads.

121Chapter 6: Building Class Libraries

11_182383 ch06.qxp 2/21/08 7:33 PM Page 121

122 Part II: Building Applications with VB 2008

11_182383 ch06.qxp 2/21/08 7:33 PM Page 122

Chapter 7

Building Web Services
In This Chapter
� Understanding Web services

� Using IIS to provide business logic

� Designing applications with Web services

� Building your first Web service

This chapter covers the fourth of what I consider the four most significant
project types: the XML Web service. In the grand scheme of things, an

XML Web service is an open-source version of the class library (described in
Chapter 6). It can be used in a Windows or Web application (see Chapters 4
and 5, respectively) as needed.

The two main parts of developing a Web service are producing and consum-
ing. Producing a Web service is what you do as a programmer: develop a ser-
vice for users’ consumption (as with the class libraries built in Chapter 6).
Consuming a Web service is what the end user does: make use of the service
in your application.

This chapter also examines how you bridge the gap between producing and
consuming Web services — for example, documenting your service so that
the default page that IIS creates for it will actually make sense to the reader.
The players in XML Web services show up in the final act of the chapter,
including a parade of the great acronyms — XML, SOAP, WSDL, and UDDI —
and what they mean.

Getting to Know XML Web Services
If creating a Web service seems a little familiar, it’s no accident; if not, no
problem. An XML Web service is to a DLL what Web Forms are to Windows
Forms — and (like a DLL) it’s a class library — only more so. A Web service
is more versatile than a DLL or Windows Forms — after all, those are com-
piled only for use on Microsoft Windows computers. XML Web services and
Web Forms can be used on any platform because they follow open standards.
Figure 7-1 sums up the similarities and differences of these project types.

12_182383 ch07.qxp 2/21/08 7:34 PM Page 123

The figure shows the extension of familiar Windows concepts into open-source
versions that XML makes usable on the Web:

� Windows Forms have their equivalent in Web Forms (detailed in
Chapter 5), which create a user interface that can be viewed on any
platform.

� Windows DLLs are compiled from class libraries (see Chapter 6) to help
build applications on Windows platforms; a Web service is an open-
source equivalent of a DLL.

� XML Web services represent a novel combination of the best features of
class libraries and Windows Forms. What’s new here is XML; it gives Web
services a standard format that is available to a variety of platforms —
including (but not limited to) Windows.

Of course, this basic relationship between XML Web services and their ances-
tors is just scratching the surface. Properly used, they could be the Next Big
Thing in application development. To produce a solid Web service and have
it used (consumed) correctly, however, you have to get a handle on a lot of
practical details — such as security policies, the management of transactions,
and the availability of system resources. The next sections give you a closer
look at what makes a Web service tick.

Windows Only

Ex
ec

ut
ab

le
Li

br
ar

y

Windows
Forms Project

Class Library
Project

Open Platform

Web Forms
Project

Web Services
Project

Figure 7-1:
Four project

types and
their

platforms.

124 Part II: Building Applications with VB 2008

12_182383 ch07.qxp 2/21/08 7:34 PM Page 124

Web services: Characteristics
DLLs have broad functionality within Windows; it makes sense that as their
talented offspring, XML Web services are broadly usable. If you’re designing
a broad enterprise system, this flexibility means that you can (and probably
should) develop a complete suite of tools for a wide range of users. Remember,
however, the following four vital characteristics of XML Web services:

� Architecture-neutral: Web services don’t depend on any proprietary
wiring configuration, cable type, file format, schema description, operat-
ing system, or discovery standard.

Discovery is how other consumers can find out what your Web service
does.

� Ubiquitous: Web services are “all for one and one for all,” everywhere.
Any Web service that supports the standards can support the service
you’re creating.

� Simple: Creating Web services is easy, quick, and even (sometimes) free.
That’s partly because the description of the data is human-readable,
making for a better development experience. Any programming language
can participate.

� Interoperable: Because the Web services all follow the same standards,
they can all speak to one another.

Web services: Quirks
Designing Web services feels like designing class libraries because (basically)
that’s what they are. These particular class libraries are Web-driven, though,
so here are some design differences to watch for:

� All communication between an application and the service happens
over the Internet. That means you incur at least some overhead to send
each individual message; the wise developer reduces the overall number
of messages.

� Chunky beats chatty. Sending fewer messages means making fewer —
and larger — function calls. Rather than make several calls to get pieces
of a document, for instance, you make one call and get the whole docu-
ment. This practice is called making chunky rather than chatty calls.

� These class libraries aren’t stateful. There are no properties (or any-
thing like them) in a Web service–based class library; in effect, all opera-
tions are shared.

125Chapter 7: Building Web Services

12_182383 ch07.qxp 2/21/08 7:34 PM Page 125

� Because functions are shared, subroutines are not very effective. After
all, no properties or local variables are available for the subroutines to
alter when called. As with Web applications, the problem is a lack of
statefulness. Your service, then, ends up as a set of tools, implemented
as functions with return values.

Designing for Web Services
The overall goal of building Web services is to get your business logic exposed
to the masses. (Business logic is the code that sits between your user-interface
form and your data source or file and that tells the program what to do; you
can read more about it in Chapters 3 and 6.) Because a standard exists for con-
suming Web services, as well as for creating them, you can focus your develop-
ment on providing tools for a very broad range of applications.

Planning the design strategy
The root of Web-service design is a basic contrast: DLLs are stateful — and
Web services are not. When you instantiate a DLL with a Dim statement in
your application code, you are creating an in-memory representation of the
class. Not so with Web services; they are using IIS to support themselves, so
you can’t instantiate them in the same way. Treat them as though you were
developing a bunch of static functions, rather than a group of stateful objects.

This strategy actually has a name — Service-Oriented Architecture, or SOA.
When you’re designing for SOA, the approach is different from what you may
be used to: In effect, you treat it more like a toolbox and less like a living
piece of software.

It’s no surprise that designing for SOA requires a sort of thousand-yard view.
Fortunately, Visual Studio provides this big picture — one that system archi-
tects can use to tie Windows and Web Forms applications into the same
bundle with class libraries built from both Web services and DLLs. From this
bird’s-eye view, the map looks like Figure 7-2.

Okay, Figure 7-2 lays out the basic frame of reference for your design strategy.
What turns your project into an actual Web service is another consideration
that’s just as important to software development: how you use your program-
ming language. Stay tuned.

126 Part II: Building Applications with VB 2008

12_182383 ch07.qxp 2/21/08 7:34 PM Page 126

Getting a grip on the tactics
Developing a Web service requires two very different sets of tactics: one set
for producing the Web service and one set for controlling how the service is
consumed. Some specific — but probably familiar — tactics come into play
when you use Visual Basic 2008 to create tools that work within SOA:

� The tactics you use to produce Web services will be just like those used
to create class libraries and compile them into DLLs.

� The tactics that control how a Web service is consumed are similar to
referencing a DLL and using its methods and properties in a Windows
Forms project (as described in Chapter 6).

Building a Web Service
The whole process of creating a Web service and setting it up for use
involves three stages: producing the service, viewing the service to make
sure that it’ll do what you want, and making the service available to the users
who consume it.

Portal Services

WSDL Contract

Custom Web
Services

WSDL Contract

Internet
Appliances

Live
Devices

The Internet

Developer
Applications

Our
Applications

Browsers

Structural
Services

WSDL Contract

Application-
Specific
Services

WSDL Contract

Corporate Environment

Figure 7-2:
Gazing

down on an
application

that uses
XML Web
services.

127Chapter 7: Building Web Services

12_182383 ch07.qxp 2/21/08 7:34 PM Page 127

Producing a Web service begins with (surprise, surprise) a project template.
Use these steps to get one started:

1. Open Visual Studio and choose File➪New➪Web Site.

The output of a Web service project is a Web site, just like the output of
a class library project is a DLL file.

2. Under Visual Basic, select ASP.NET Web Service as the Visual Studio
installed template.

You’ll also notice that a WCF service is available. More about that later.

3. Under Location, change the name to something appropriate for the
project.

Here, I changed my sample project’s name to Chapter7DateCalc. I
changed the solution name to Chapter7.

Visual Studio creates a project template for you. The new template
includes a default service file called Service.asmx.vb, a Data folder,
and an ASMX file called Service.asmx. The Service.vb file contains
your class library code. The Service.asmx file contains display code
that the Web server will use to make an automatic page of documenta-
tion for your Web service.

4. Add a new Web Service file, and rename the files and class to some-
thing appropriate for the project.

Here, I used DateCalc, so my class is DateCalc, my ASMX file is Date
Calc.asmx, and my class file is DateCalc.asmx.vb.

5. Write code in the class as Public Functions, overwriting the sample
method.

Notice the default code in Listing 7-1.

Listing 7-1: The Default Web Service
1: Imports System.Web
2: Imports System.Web.Services
3: Imports System.Web.Services.Protocols
4: <WebServiceBinding(ConformanceClaims:=WsiClaims.BP10,

EmitConformanceClaims:=True)> _
5: Public Class Service

Inherits System.Web.Services.WebService
6: <WebMethod()> _
7: Public Function HelloWorld() As String
8: Return “Hello World”
9: End Function
10: End Class

128 Part II: Building Applications with VB 2008

12_182383 ch07.qxp 2/21/08 7:34 PM Page 128

Is that all there is to a Web service? Well, yes, but more is going on here than
meets the eye. Here’s a closer look:

� After the Imports statements and before the Class statement, a Web
ServiceBinding statement (on line 4) serves as a compiler directive.
It tells the .NET Framework that this particular class will be used as a
Web service.

� The standard-looking Class statement on line 5 is followed by an inheri-
tance statement that gives you as the programmer of the class access to
the methods, properties, and events of the Web service classes.

� Another compiler directive appears on line 6 — the WebMethod directive,
which gives you a few documentation choices later on and also shows the
compiler that this specific method will be exposed to the service when
you have it up and running.

� Lines 7, 8, and 9 are pretty standard in Visual Basic 2008: just a function
that accepts nothing and returns a string: “Hello World”. The End
Class statement completes the class. It is just a test line of code, to
make sure that the wiring works.

You can replace lines 7 through 9 with most any VB function. In the Microsoft
world, such a function can return any object in the .NET universe. But let’s
not get too far afield here. In reality, you must consider that a UNIX or main-
frame computer might call this service. If cross-platform (or backward) com-
patibility is an issue, it might be necessary to limit the return value to a
primitive type. (I cover types in Chapter 9.)

When you have your completed project template in hand, you’re ready to
build the Web service.

Building the DateCalc Web service
This section of the chapter builds the DateCalc Web service as a detailed
example. I have replaced the sample code in lines 7 through 9 with a function
for the class library in your DLL file (see Chapter 6 for details of this func-
tion). Listing 7-2 shows the sample code for the finished service.

Listing 7-2: The DateCalc Service
1: Imports System.Web
2: Imports System.Web.Services
3: Imports System.Web.Services.Protocols
4: <WebService(Namespace:=”http://services.vbfordummies.com/”)> _
5: Public Class DateCalc

Inherits System.Web.Services.WebService

(continued)

129Chapter 7: Building Web Services

12_182383 ch07.qxp 2/21/08 7:34 PM Page 129

Listing 7-2: (continued)
6: <WebMethod(Description:=”A Web Service implementation of the Date

Calculator”)> _
7: Public Function IncreaseDate(ByVal startDate As DateTime, ByVal span As

Integer) As DateTime
8: IncreaseDate = startDate.AddDays(CDbl(span))
9: End Function
10: End Class

Okay, I admit it, I changed a few things here (that was the point):

� Line 4 has changed from a WebServiceBinding directive to a Web
Service directive. I did that so that I could easily describe a default
namespace. Default namespaces are important for the consumer; they
validate the expected location of the service with its actual location.
(The WebServiceBinding directive is more often used for enterprise-
level services, which aren’t of interest here.)

� Line 6 now includes a Description property so that the service is
more self-documenting.

� Line 7, the function declaration, now accepts a startDate and span
as input.

� Line 8 contains the code that has a starring role in all four chapters in
Part II — the date math that increases the start date.

When the appropriate Web-service features are in place, give the new service
a test drive before you send it out there to meet the users.

Viewing the DateCalc service in action
Click the Play button to start the service. (Now, there’s something you can’t
do with a DLL.) Web services come with a default display page; in this case, I
have named it DateCalc.asmx. IIS will create a nice page for you (as shown
in Figure 7-3), with some documentation as described in the WebMethod
directive.

When you click the IncreaseDate link, you see the test page for the function
I created, as shown in Figure 7-4.

You don’t get this if you aren’t working with the built-in development Web
server. If you are using IIS, it will block the test code because it is a security
concern.

At this point, enter a starting date and a time span in the startDate and span
text boxes, respectively. (I entered 7/25/75 in the startDate text box and 13

130 Part II: Building Applications with VB 2008

12_182383 ch07.qxp 2/21/08 7:34 PM Page 130

in the span text box.) Click the Invoke button, and your browser opens a new
window with the answer in its full date format glory, as shown in Figure 7-5.

Figure 7-5:
The

DateCalc
response.

Figure 7-4:
The test
page for

Increase-
Date.

Figure 7-3:
The opening

page of the
DateCalc
.asmx file.

131Chapter 7: Building Web Services

12_182383 ch07.qxp 2/21/08 7:34 PM Page 131

Pretty cool — but this exercise is not really the point of the XML Web service
I created. It’s just a simple way to test a Web service — even a sophisticated
set of services — regardless of whether you’ve written them yourself or have
tried someone else’s handiwork.

The goal of any Web service (as I mention in the section “Designing for Web
Services,” earlier in this chapter) is to provide other applications with access
to your business logic. Notice that all these sample pages are shown in a Web
browser — and that the namespace of the service is at a Web address. Neither
of those choices is an accident. If this function is published, I want it to be
available at a URL on the World Wide Web — like this one:

http://yourMachine/Chapter7DateCalc/DateCalc.asmx

With the Web service built and tested, the next step is to consume the service
in an application. The next section shows you how.

Consuming a Web Service
At first, building an application that consumes a Web service seems similar to
building a test application for a class library. You start by building a Windows
Forms application similar to the one described in Chapter 4 — but then you
reference the Web service in much the same way as you reference a DLL (see
Chapter 6).

In fact, Visual Studio treats a Web service much the same as it treats a class
library in development. When you reference a Web service and then compile
a project, Visual Studio actually builds a small DLL file that remembers the
details of the Web service. (Fortunately, this happens automatically, as you
can see in the upcoming steps.)

To build an application that consumes a Web service, follow these steps:

1. Create a new project of any type.

Here I use a Windows Forms application called DateCalcConsumer, but
any .NET project can consume a Web service.

2. Right-click the project file and select Add Service Reference.

The Add Service Reference dialog box shown in Figure 7-6 appears, offer-
ing to help you reference the service.

3. Type the URL of the service you are trying to reference into the
Address text box.

Okay, if you are doing the exercise in the previous section, you don’t
actually type in the URL. You click the Discover button, then open the
tree view to show DateCalc, and then select DateCalcSoap. Select

132 Part II: Building Applications with VB 2008

12_182383 ch07.qxp 2/21/08 7:34 PM Page 132

DateCalcSoap, and the IncreaseDate function shows in the right
side of the window. Finally, change the Namespace to Chapter7.

If you don’t want to run the service from your local machine — and you
want to try running the service from the Internet — try the service I
have running on www.vbfordummies.com. The URL for that service
is as follows:

http://www.vbfordummies.com/Chapter7/Services/DateCalc.asmx

After the browser locates the service, the screen changes to the refer-
ence format, as shown in Figure 7-7. I used the Discover button to find
the other project in the solution here.

Figure 7-7:
Adding a

reference
to the

DateCalc
service.

Figure 7-6:
The Add
Service

Reference
dialog box.

133Chapter 7: Building Web Services

12_182383 ch07.qxp 2/21/08 7:34 PM Page 133

4. If you want, change the name of the Namespace in the box at the
bottom to something appropriate for your project and then click OK.

Keep in mind that Visual Studio creates a class file for this, just like you
do manually in Chapter 6. Naming is important so that you can find the
service easily later in your code. After you click OK, Visual Studio cre-
ates a proxy class and gives you a reference to it in the Service
References folder. An example appears in Figure 7-8.

5. Add code to your project that references the Service Reference you
just added.

In my case, I have a Windows Forms application, so I add a DateTime
Picker and a Label, and then double-click the DateTimePicker to
get the ValueChanged event handler.

6. Reference the Service by instantiating a new copy of the proxy class.

In my sample project, here’s what this looks like:

Dim myDateCalc As Chapter7.DateCalcSoap

7. Call the methods of the Web service, just as you would for any other
function in VB.

The finished code for the Date Calculator that uses the Web service
looks like Listing 7-3.

Figure 7-8:
A Web

reference in
the Solution

Explorer.

134 Part II: Building Applications with VB 2008

12_182383 ch07.qxp 2/21/08 7:34 PM Page 134

Listing 7-3: The Date Calculator Using the Web Service
Public Class DateCalc

Private Sub StartDatePicker_ValueChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles StartDatePicker.ValueChanged

Dim myDateCalc As Chapter7.DateCalcSoap
Label1.Text = myDateCalc.IncreaseDate(StartDatePicker.Value, 13

End Sub
End Class

The proxy class has a state, but that doesn’t mean that the service itself has
any sense of state. If you want to get fancy, you can use this fact in ways that
make the Web service emulate a class — but you are still dealing with a dis-
connected Web service; it doesn’t keep track of its own state.

Web Services in More Depth
Ah, Web services — now, there’s a topic that could fill several books (in fact,
I’ve written a few that you can still find floating around). Though you don’t
have to understand how all the players (systems, policies, applications, and
users) use Web services, it helps if you are working on a team of developers
to make sure that you are all speaking the same language.

From the serene bird’s-eye perspective of Web services (refer to Figure 7-2),
you generally won’t have to deal with a few parts of the big picture as a devel-
oper — for example, actually presenting your completed Web service to the
users. Internet Information Services (IIS) is the Microsoft Web server applica-
tion that makes these services public. Four protocols — XML, SOAP, WSDL,
and UDDI — are what make that minor miracle possible:

� IIS: Internet Information Services plays the same role with XML Web ser-
vices as it does with Web Forms. The page that you see when you run a
service from Visual Studio, or type the URL into a browser, is automati-
cally generated by ASP.NET and passed to the browser by IIS. You can
see this flow in Figure 7-9.

Consuming
Applications

Local
Workstation

The Internet IIS Server XML Web
Service

IRS

Figure 7-9:
IIS handling

an XML
Web

service.

135Chapter 7: Building Web Services

12_182383 ch07.qxp 2/21/08 7:34 PM Page 135

IIS treats a Web services application just like a Web Forms application.
Bottom line: It needs the same tender loving care from your administra-
tor. Remember, you’re exposing your business logic to the world.
Security is important and is covered in Chapter 14.

� XML: Of the four protocols that make Web services work, eXtensible
Markup Language (XML) is the one you’re likeliest to run into. Generally
considered a data-storage protocol, XML is the backbone that supports
all the messages passed as part of Web services.

� SOAP: Simple Object Access Protocol describes the messages that are
passed. It’s a meta-language of XML. The .NET Framework spares you
(almost completely) from having to deal with SOAP.

� WSDL: Web Services Description Language is the XML meta-language
that describes the service’s input and output parameters for public con-
sumption. Again, the .NET Framework shields you almost completely
from having to hassle with WSDL. Almost.

Occasionally, however, a Web services directory will need a link to your
WSDL for listing purposes. To get the WSDL from any ASMX-based ser-
vice, add ?WSDL to the end of the URL. For instance, the WSDL for the
URL I list here would be at:

http://www.vbfordummies.com/Chapter7/Services/DateCalc.asmx?WSDL

� UDDI: Universal Discovery and Description Language is another XML
meta-language that assists consumers with the discovery of your Web
services. More information about UDDI can be found at http://uddi.
microsoft.com.

UDDI could easily take up an entire new book, and in fact it has. I at least get
you started by telling you how to enable UDDI. The industry standard is a
DISCO file — an XML file with a set of standard tags that tells a UDDI server
what services are in your project.

The process in which a UDDI or other server gets Web services (in this case,
from a DISCO file) is called discovery.

To create a DISCO file, follow these steps:

1. Create a new XML file in your Web service project by right-clicking
the project and selecting XML File.

2. Add the standard discovery tags to the document.

For this purpose, this process can be as simple as the one shown in the
following code, though it will be tougher as the services get more com-
plex. (All that you would need to change for another project would be
the two tags ending in Ref, which I set in boldface in the following
code.)

136 Part II: Building Applications with VB 2008

12_182383 ch07.qxp 2/21/08 7:34 PM Page 136

<?xml version=”1.0”?>
<discovery xmlns=”http://schemas.xmlsoap.org/disco/”>
<discoveryRef ref=”/Folder/Default.disco”/>
<contractRef ref=”http://TheServerUrl/DateCalc.asmx?WSDL”

xmlns=”http://schemas.xmlsoap.org/disco/scl/”/>
</discovery>

3. Rename the file.

In this case, base it on the DISCO file by using default.disco.

Now, when you register this service with UDDI — for example, on a Universal
Business Registry on a Windows 2003 server — the site there knows where to
browse. Then your service appears in the listing for everyone to use.

UDDI is unusually handy for large-scale deployments of company-wide ser-
vices, or public services of any size. Remember, if you are in a multiserver
environment, you can create UDDI servers that go find functions they need
by using DISCO files. Potentially, that’s a very powerful system.

137Chapter 7: Building Web Services

12_182383 ch07.qxp 2/21/08 7:34 PM Page 137

138 Part II: Building Applications with VB 2008

12_182383 ch07.qxp 2/21/08 7:34 PM Page 138

Chapter 8

Debugging in VB 2008
In This Chapter
� Using visual tools to squash bugs

� Implementing debugging with tools from the .NET Framework

� Finding bugs in different types of projects

In the examples in Part II, you play your code to see it run in a Web browser
or as a Windows application. As you may have guessed, there is more to

this functionality than meets the eye.

Debugging is the process of finding and fixing problems in an application of
any type. Often, debugging code takes as long as writing it did in the first
place, according to most software development lifecycle systems, such as
CMM (Capabilities Maturity Model). One of the most significant reasons for
using an integrated development environment to build applications is to take
advantage of the included debugging tools.

Visual Studio 2008 is replete with debugging tools that work in some of or all
the project types. Throughout this chapter, I give you a blow-by-blow descrip-
tion of what debugging tools are available — both visual tools and tools in
the .NET Framework. I then show you how to debug each project type.

Cool Visual Tools for Debugging
Debugging is so important that it has its own menu in the Visual Studio envi-
ronment. The ability to watch your code run, review values in variables, and
check the contents of objects is the primary reason why experienced devel-
opers use an IDE such as Visual Studio instead of just writing their code in a
text editor.

13_182383 ch08.qxp 2/21/08 7:34 PM Page 139

Before you can use the visual tools, you must meet the following requirements:

� You must have a runnable project open to debug. Class library projects
such as the ones I discuss in Chapter 6, for instance, will not run without
some kind of visual shell. See the later section “Class libraries” for
instructions.

� Visual Studio must be in Debug mode (also called Paused or Break
mode). When you press F5 or click the Play button to run your project
from Visual Studio, you are putting the project in Debug mode.

� The project must be paused to see runtime variables. You pause the
project with a breakpoint, which I talk about in the next section. Also,
you can enter a project in Break mode, which I cover in the later section
“Debugging the Projects.”

Visual Studio provides a number of debugging tools of varying complexity. I
cover the three most often-used tools:

� Breakpoint: A marker that you place on a line of code to pause the exe-
cution of a program.

� Watch window: A window that shows the runtime values of variables
and objects.

� Immediate window: A command window that lets you type in runtime
VB 2008 commands and see potential results.

Breakpoints
The breakpoint is your friend.

Allow me to suggest a scenario. You have a complicated algorithm that gener-
ates a final price for a user. Two object properties and three variables are
used to create the final price. When you test your application, the price is
wrong.

How do you figure out what the problem is? You know what line it is in, but
you don’t know the values of the variables. You could laboriously put five
labels on your form and set the values of the labels equal to the two proper-
ties and three variables. Then, when you find the problem, you need to delete
all the labels. A better way to find the problem is to set a breakpoint at that
line and check the variables while the application is paused.

140 Part II: Building Applications with VB 2008

13_182383 ch08.qxp 2/21/08 7:34 PM Page 140

To view the values of variables, your application must be in a paused state,
such as provided by a breakpoint. If you try and look at variable values while
the application is running, you won’t get what you expect. This is why devel-
opers use breakpoints.

Setting up breakpoints
When you play your applications from Visual Studio, you are actually enter-
ing Debug mode. From this mode, you can ask Visual Studio to pause the
execution of the application at a specific line of code with a breakpoint.

You create a breakpoint by clicking the gray bar to the left of the line of code
at which you would like the program to stop. This action leaves a little red
dot on the gray bar, as shown in Figure 8-1.

When you play the project, the execution stops at that location. Press F5
after putting in a breakpoint, and you see execution stop at that line of code,
as shown in Figure 8-2. Pressing F5 again continues execution of the program
from that point.

Figure 8-1:
Making a

breakpoint.

141Chapter 8: Debugging in VB 2008

13_182383 ch08.qxp 2/21/08 7:34 PM Page 141

Managing breakpoints
Fast-forward to the middle of the development project, and you may find that
you have way too many breakpoints to be useful. Visual Studio provides a tool
for you to manage them all — the Breakpoints window, shown in Figure 8-3,
which you invoke by pressing Ctrl+Alt+B.

The default Breakpoints window is useful when in a paused state, or just in
normal development mode. The default columns include the Hit Count column,
which describes when the breakpoint is hit during the execution of the code,
and the Condition column, which describes an expression that must evaluate
as true for the execution of the application to stop. Other considerations for
deciding how to work with breakpoints include the following:

� You can add other Breakpoint window columns by selecting them from
the Columns drop-down list, including columns that show what function
the breakpoint is in, the Language, and When Hit. The When Hit column
allows you to define a message to print or a macro to run when the
breakpoint is reached.

� You can edit debugging functions — such as Hit Count, Condition, and
When Hit — by right-clicking the breakpoint marker to the left of the
code or by right-clicking the breakpoint in the Breakpoints window. The
context menu that appears contains selections for each of these options
that enable you to manage breakpoint functions.

Figure 8-2:
Stopping

at a
breakpoint.

142 Part II: Building Applications with VB 2008

13_182383 ch08.qxp 2/21/08 7:34 PM Page 142

� Breakpoint properties simply make breakpoints quicker to use. While
debugging, you can easily just set a breakpoint and go look at values
to see what the problems are. Using the options, though, reduces the
number of steps you need to go through to get the answer you need.

A breakpoint strategy becomes like a standard set of chess openings over
time. Experience dictates how you use the debugging tools, based on your
personal programming style.

The Watch window
Watches are little programmatic spies that you can place on objects to keep
an eye on their values while stepping through code. Visual Studio provides
four Watch windows, and on a project-by-project basis, they remember what
you have chosen to watch.

To show the Watch window, choose Debug➪Windows➪Watch while in Debug
mode, and then select one of the four Watch windows. The Watch window
itself is essentially a table that shows the name of the object being watched,
its type, and its value, as shown in Figure 8-4.

Figure 8-4:
The Watch

window.

Figure 8-3:
The

Breakpoints
window.

143Chapter 8: Debugging in VB 2008

13_182383 ch08.qxp 2/21/08 7:34 PM Page 143

To add a watch to the watch list, follow these steps:

1. Pause the project, either by reaching a breakpoint or by clicking the
Pause button on the toolbar.

2. In Code View, right-click the object that you want to watch and select
Add Watch from the context menu.

To see the value of a variable, it must be in scope. A variable is in scope when
it exists within the block of code currently running. For instance, if you
declare a variable within an event handler for a button, only when you click
that button do the values of that variable become available to watch.

When in Debug mode, a variable is either with or without a value, just as it is
when a program runs. The Watch window shows this very well, as shown in
Figure 8-5.

When the variable is without value, it appears with the error icon and the fol-
lowing text:

Variable.Name is not declared or the module containing it is not loaded in
the debugging session.

When the variable has a value, it is described with all properties.

The Watch window is a great way to watch whole objects, rather than just
values in variables. Collections, such as arrays and datasets, often have a
wide variety of properties and values that you need to check on every break.
The Watch window provides a simple method for a structured check on
values.

The Immediate Window
Sometimes a watch isn’t enough, and you need to run a command while the
application is paused. The Immediate Window, shown in context in Figure 8-6,
is designed for just such a situation.

Figure 8-5:
Variables
in and out
of scope.

144 Part II: Building Applications with VB 2008

13_182383 ch08.qxp 2/21/08 7:34 PM Page 144

The basic syntax for the Immediate Window is that of writing the values of
expressions to the window using the Debug.Print method, which I cover
in the next section. The shortcut for this method is the question mark.

To use the Immediate Window, as with most other debug tools, your project
must be paused. To write the value of a variable to the screen, then, you
simply type ?VariableName into the window. In the example in Figure 8-6,
I typed ?DatePanel. to get the value of that property. If the value is out of
scope, I would receive the same out-of-scope error as displayed in the Watch
window.

Using the Immediate Window is more of a spot check than using many of the
other debugging tools. If you are using conditional breakpoints that only
break when variables contain certain values, you will find yourself using
the Immediate Window to see what brought about the stoppage.

Using the Debugging Tools
in the .NET Framework

Visual Studio provides great tools for debugging, but the .NET Framework
itself also has some fantastic features that make debugging easier. These
tools are more code-based and less visual. I go over a few of them here, and

Figure 8-6:
The

Immediate
Window

in use.

145Chapter 8: Debugging in VB 2008

13_182383 ch08.qxp 2/21/08 7:34 PM Page 145

then cover a few more when I discuss debugging specific project types later
in this chapter.

The Debug class
What would debugging be without a Debug class, right? Just like the windows
earlier in this chapter are sort of the Windows Forms implementation of
debugging, the Debug class is the DLL implementation of debugging.

The Debug class has a whole host of methods, properties, and events that
assist you in seeing what your application does while it runs. The simplest
example of a method in the Debug class is the Write method. The following
steps get you started:

1. In Visual Studio 2008, choose File➪Project/Solution to open a Windows
Application project.

For example, I opened the DateCalcChapter4 from the Sample
applications.

2. Double-click an empty place on the form to create a Form_Load event
handler.

This example creates a DateCalc_Load function that handles the form
load event.

3. Insert a Debug.Write statement in the DateCalc_Load function, as
follows:

Private Sub DateCalc_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Debug.WriteLine(“Loading Form”)
End Sub

4. Click the Play button in Visual Studio to enter Debug mode.

5. The Output window displays your message.

There is more to the Debug class than the Write statement, but the most
common use of the class is to track program execution, and the best way to
track program execution is to drop breadcrumbs as parts of the program
execute.

146 Part II: Building Applications with VB 2008

13_182383 ch08.qxp 2/21/08 7:34 PM Page 146

Error handling
Error handling and debugging go hand in hand. Debugging is the act of track-
ing down errors, and error handlers are designed to, well, handle errors!

Error handling is a big part of debugging, because the errors that are created
by bugs in software should be caught and handled. An interesting phrase
describes error handling in Visual Basic — Try-Catch. You try a piece of code.
If a problem occurs, Visual basic throws an error, and you can catch that error.

The Try-Catch block looks like the following code. Visual Studio writes most
of it for you. Just type Try in a function and press Enter, and Visual Studio
automatically inserts the rest of the block.

Try

Catch ex As Exception

End Try

You can see that the Catch statement is catching something in particular
that deserves a closer look — the Exception object.

The Exception object is what you get back from Visual Basic in runtime
when an error occurs. It is what Visual Basic throws to you so that you can
catch it with your error handling.

For instance, follow the steps in the previous section to get a Form_Load
event handler method, except insert the code in Listing 8-1. Inside the Try
block (line 2 of Listing 8-1), an Integer is set equal to a String, which you
cannot do. (For more information, see Chapter 9.)

This test causes an error to occur, and an Exception object is the result.
In the Catch part of the block (line 3 of Listing 8-1), you can get to the
Exception object with its declaration ex.

Listing 8-1: Causing an Error in the Form_Load Event Handler

Try
Dim bugInCode As Integer = String.Empty

Catch ex As Exception
Debug.Write(ex.Message)

End Try

147Chapter 8: Debugging in VB 2008

13_182383 ch08.qxp 2/21/08 7:34 PM Page 147

In Debug mode, you can look at the contents of the Exception object by
typing ?ex in the Immediate Window. Set a breakpoint on the Debug.
Write(ex.Message) line and run the project. For the code in Listing 8-1,
the Exception object returns all this useful information in the Immediate
Window:

Data: {System.Collections.ListDictionaryInternal}
HelpLink: Nothing
HResult: -2147467262
InnerException: {System.FormatException}
IsTransient: False
Message: “Conversion from string “” to type ‘Integer’ is not valid.”
Source: “Microsoft.VisualBasic”
StackTrace: “ at Microsoft.VisualBasic.CompilerServices.

Conversions.ToInteger(String Value)
at DateCalcChapter4.DateCalc.DateCalc_Load(
Object sender, EventArgs e) in C:\Documents and Settings\sempf\
My Documents\Visual Studio\Projects\OSIA\DateCalcChapter4\
DateCalcChapter4\DateCalc.vb:line 9”

The Exception object returns a wealth of information about what went
wrong. Some details may be hidden in objects that you need to look at sepa-
rately, but two main pieces of information are front and center: The Message
property (of the Exception object, which you name ex) has the error that
occurred, and the StackTrace property has the line number. With those two
pieces of information and the date you originally sent to the method, you
have what you need to know 80 percent of the time.

All of this information can be used in application-level error handling. You
can e-mail this information to yourself, return it to the user, or write it to a log
file. More information on the various ways to get this done can be found on
the Web. I would recommend the Microsoft Exception Management Blocks
component, available from the Microsoft Patterns and Practices Web site at
http://msdn2.microsoft.com/en-us/practices/default.aspx.

Debugging the Projects
Each of the projects I cover earlier in Part II — Windows Forms, Web Forms,
class libraries, and XML Web services — have a similar set of debugging
tools. The details I talk about earlier in this chapter work for all projects, but
each of the project types has its own specific tweaks. I cover these in the fol-
lowing sections.

148 Part II: Building Applications with VB 2008

13_182383 ch08.qxp 2/21/08 7:34 PM Page 148

Windows Forms
Windows Forms applications are the most straightforward to debug, because
they are stand-alone applications over which you have complete control. A
few tricks are required when debugging Windows Forms, but I take this
opportunity to cover the debugging feature you use most often — stepping
through code. You can apply this feature to all project types, but it is best
shown as part of a Windows Forms application.

The “Breakpoints” section, earlier in this chapter, describes how to use break-
points and demonstrates how powerful they are. You can use this power to
execute your code one line at a time and keep an eye on the specifics of object
properties and variable values. The following steps get you started stepping
through code:

1. Load a Windows Application project by choosing File➪Project/Solution
and selecting a project file.

For example, I use the DateCalcChapter4 project.

2. Press F10 to start debugging the project.

This starts running the project in Debug mode and stops the project on
the first breakpoint found. For the DateCalcChapter4 example, you
can set one at the Form_Load handler.

3. To continue stepping through the code, press F10.

This walks through the code one line at a time in Break mode. You can
use the Immediate Window, or you can mouse over variable names to
see their values.

4. To step over a method call, press F10.

This passes over the internal code of a method so that you stay in the
flow of the original program.

5. To step into a method, press F11.

This enters the functional code of a method call and may change the file
you are looking at.

6. To continue running the program in Run mode (that is, to exit Break
mode), press F5.

This continues to run the program outside of Debug mode.

Using a combination of the breakpoints and stepping through code, you can
solve most of the logic and execution problems that your program may have.

149Chapter 8: Debugging in VB 2008

13_182383 ch08.qxp 2/21/08 7:34 PM Page 149

Web Forms
Web Forms are different, as I mention in Chapter 5, because they are running
on an Internet Information Server (IIS) rather than directly on your worksta-
tion. While you can be running a Web Forms application on your workstation
using either IIS or Visual Web Developer Web Server, it is still considered
remote debugging, because the application is being handled by a separate
system.

This brings whole new problems to debugging. First, you may need to debug
a Web Forms application that is not running on your workstation. Second,
environment variables (such as Session variables, which I discuss in
Chapter 5) can make a large impact on your application. Knowing the
values of these variables is important — in Break mode or Run mode.

Remote debugging
Remote debugging is necessary because if you are running a Web Forms
application on a server that doesn’t have Visual Studio installed, it won’t
have the necessary program to allow debugging. To install that program,
follow these steps:

1. Insert the Visual Studio 2008 Remote Debugger CD in the remote
machine.

2. The Remote Debugger Setup program should run automatically.

If not, open the CD drive from Windows Explorer and launch the Remote
Debugger Setup program.

Often, to debug on a remote machine, you need to have an Administrator
account on that machine. When you open a Web project with a remote
address, you can debug the project as if it were running locally on Visual
Web Developer Web Server.

Trace
Some information about Web applications is not best gathered through
debugging in Break mode. Sometimes if a page can be viewed in Run mode,
but with comprehensive information about the execution of the page avail-
able, your problems can be solved.

Trace enables just that. Trace is enabled by changing the @Page directive at
the top of an ASPX file. To do this, follow these steps:

1. Open a Web project by choosing File➪Project/Solution and selecting
an ASP.NET project file.

For this example, I use DateCalcChapter5.

150 Part II: Building Applications with VB 2008

13_182383 ch08.qxp 2/21/08 7:34 PM Page 150

2. Open a page by double-clicking it in the Solution Explorer.

I use the default.aspx page that I created with the Date Calculator in it.

Note the @Page directive at the top of the page, like the following code.
This appears on every ASP.NET page, and it is what the Web server uses
to link the page to the code-behind file and set the language, among
other things.

<%@ Page Language=”VB” AutoEventWireup=”false”
CompileWith=”Default.aspx.vb” ClassName=”Default_aspx” %>

3. Add a Trace attribute to the @Page directive, setting Trace=”true”,
as follows:

<%@ Page Language=”VB” AutoEventWireup=”false”
CompileWith=”Default.aspx.vb” ClassName=”Default_aspx”
Trace=”true” %>

4. Save your changes, and then compile the application by choosing
Build➪Build Web Site.

5. Right-click the file you changed and select View in Browser.

The information provided by Trace appears at the bottom of the page.

Trace works great for XML Web services too!

Like the Exception object that I discuss earlier in this chapter, Trace has a
whole host of information, well organized by ASP.NET. Sections include the
following:

� Request Details: Gives the basic information about the request made to
the server.

� Trace Information: Details the timing from step to step in the request,
which is very important for discovering performance problems.

� Control Tree: Shows every Server and User control being used by the
application.

� Session State and Application State: Displays the contents of the
Session and Application variables at response time.

� Request Cookies Collection and Response Cookies Collection: Details
the collections of cookies at response time.

� Headers Collection and Response Headers Collection: Shows the stan-
dard HTTP headers, usually used for debugging Web server problems.
The Headers Collection is what came into the server, and the Response
Headers Collection is what went to the client.

� Form Collection: Gives the values of all the form fields sent to the server.

151Chapter 8: Debugging in VB 2008

13_182383 ch08.qxp 2/21/08 7:34 PM Page 151

� QueryString Collection: Displays the values of variables sent to the
server in the URL.

� Server Variables: Shows a standard set of variables passed between all
clients and servers, independent of platform or middleware.

You can see that this information is invaluable when debugging problems
with Web applications. There is even more, too, because with the Trace
class in the .NET Framework, you can insert notifications into your code that
only appear in the Trace mode. Because changing a page to Trace mode just
requires a change to the ASPX file, you can even do it in a production system.
It is a very powerful tool; more can be discovered by searching for ASP.NET
Trace in the MSDN Library at http://msdn.microsoft.com/library.

Class libraries
Class libraries are an interesting debugging problem just because they are
not runnable by themselves. As I mention in Chapter 6, class libraries are
used by other applications to componentize functionality. For this reason,
they are only usable as part of other applications.

Chapter 6 describes how to use two projects in one solution. That is what
you need to do to debug a class library. If you run a Windows Forms applica-
tion that references a class library, and you have the project for the refer-
enced class library in the same solution, when you step through the code in
the Windows Forms application, the app steps right into the class library
when you call a method or property of that class library.

To make this happen, follow these steps:

1. Open a class library solution in Visual Studio.

For this example, I use the class library that I developed for Chapter 6,
DateCalcClassChapter6.

2. Add a project to the solution by choosing File➪Add➪New Project.

3. Select a Visual Basic Windows Application project from the Add New
Project dialog box, name it something appropriate, and click the OK
button.

I call mine DateCalcShell.

4. Right-click the new project and select Add Reference from the context
menu.

5. Click the Project tab, select the class library file project, and then
click the OK button.

6. Double-click the Form1 form to get a Page Load handler.

152 Part II: Building Applications with VB 2008

13_182383 ch08.qxp 2/21/08 7:34 PM Page 152

7. Add the code that calls a function of the class library project.

In my example, I just added a quickie variable called myDate that I set to
a week from now using the IncreaseDate function, as follows:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Dim dateCalculator As New CalcClass2008.DateCalc()
Dim myDate As DateTime
myDate = dateCalculator.IncreaseDate(System.DateTime.Now, 7)

End Sub

8. Press F10 to step into the application. Continue pressing F10 to move
line by line through the code.

As you step into line 4 of the preceding code, the debugger opens the
class library project and steps you through the code of the Increase
Date function, and then returns you to the Form_Load event handler.

If you used Visual Basic 6 or 7, you may recognize this feature — it has been
around for a while. The new object-oriented flavor of Visual Basic makes it
look a little different, but it is really very much the same thing.

Web services
Web services are by far the most challenging to debug. Like with class
libraries, you have to use some tricks to debug Web services. After you get
past those tricks, it is very much like debugging any other type of project.

The key thing to remember about debugging Web services is that you can’t
debug unless you have access to the source code of the service itself. If you
are using someone else’s service, for instance, and a bug is in the code, your
debugging doesn’t show you all the advanced debugging information. If you
have the code for both the Web service and the client application, you can
debug both.

If you are debugging a Web service that you have developed locally — as
described in Chapter 7 — you can just press F10 and enter Break mode to
step through the code, just as in the preceding examples in this chapter. If
the service is already running on a Web server, you may need to attach to
the process that is running on that server.

To attach to a process to debug a Web service, do the following:

1. Open a Web service project.

For this example, I use the project I developed for Chapter 7 called
DateCalcChapter7.

153Chapter 8: Debugging in VB 2008

13_182383 ch08.qxp 2/21/08 7:34 PM Page 153

2. Choose Tools➪Attach to Process.

The Attach to Process dialog box appears, as shown in Figure 8-7.

3. Select the server running the Web service from the Qualifier drop-
down list.

4. In the Available Processes box, choose either aspnet_wp.exe or
w3wp.exe.

The aspnet_wp.exe file is used on Windows XP and 2000 servers;
w3wp.exe is for Windows 2003 servers.

5. Click the Attach button.

6. Click the OK button.

When you press F8 to step into the project, Visual Studio can watch code run-
ning on the remote server that you have selected in the Attach to Process
dialog box.

This method is also useful for other debugging actions. For more information,
search for Debugging Deployed ASP.NET Applications in the MSDN Library at
http://msdn.microsoft.com/library.

Figure 8-7:
The Attach
to Process
dialog box.

154 Part II: Building Applications with VB 2008

13_182383 ch08.qxp 2/21/08 7:34 PM Page 154

Part III
Making Your

Programs Work

14_182383 pp03.qxp 2/21/08 7:35 PM Page 155

In this part . . .

Much of programming is about the details of business
logic — the rules of the program you are writing.

This part covers how to make decisions, do things more
than once, and use and reuse code that is already out
there, ripe for the picking, to make your job easier.

14_182383 pp03.qxp 2/21/08 7:35 PM Page 156

Chapter 9

Interpreting Strings and Things
In This Chapter
� Finding out how Visual Basic stores the most basic of information

� Manipulating information

� Validating user input

� Working with numbers and dates

� Changing input from one type to another

The core of an object-oriented programming language such as Visual Basic
is the movement of information. Some other programming languages spe-

cialize in maintaining a link with hardware and some specialize in the man-
agement of machinery, but Visual Basic specializes in information.

How Visual Basic stores information internally is of great importance to you,
the developer. Words, numbers, digital pictures, and locations inside the
computer each have their own special types. These types all have their own
methods, properties, and events because they are treated as objects in Visual
Basic 2008.

In this chapter, I describe this feature of the language by showing how words,
numbers, and dates (all types) are treated when referred to in programs. I
discuss the functionality that an integer automatically acquires as part of a
program, and the cool things that you can do with text the user enters.

I go over how to use types to your best advantage, too. For instance, validation
of type is essential for making sure that the user enters the correct information
(numbers, text, and so on) into your application. You can also manipulate infor-
mation in interesting ways by using fantastic tools called regular expressions.

I briefly cover dates and date math in this chapter. You have a lot to under-
stand about dates. To get there, though, you need to start at the beginning —
by discovering the differences among types.

Changing one type into another is also covered in this chapter. For example,
you can handle changing a number to a word in several different ways. Some
of these methods are best used in specific situations, which I describe in this
chapter.

15_182383 ch09.qxp 2/21/08 7:35 PM Page 157

Types of Information in Visual Basic
Computer programs, at their most basic, have two kinds of storage: volatile
and nonvolatile. Volatile storage is the storage that the program uses while
it is running; when the program stops, the stored information is gone. It is
physically stored in the random-access memory (RAM) of your PC.

Nonvolatile storage is permanent storage, such as databases and text files; I
cover nonvolatile storage in Part IV. Nonvolatile information is usually stored
on the hard drive.

Volatile information is stored in “buckets” labeled by the kind of information
that can go in them. Words, numbers, and dates, for instance, are different
kinds of information. They are stored in volatile memory in buckets called
variables, which are sorted by type.

Some of the types of information you frequently need to store in variables
include the following:

� Text: Words are usually stored in the String type.

� Dates: Time and dates are stored in the DateTime type.

� Numbers: Numbers can be stored in several different ways — if you are
a math specialist, you’ll appreciate the Integer and Double types.
Integers are whole numbers, and doubles are fractions stored as decimal
numbers.

When working in Visual Basic, most of your programming time is spent writ-
ing the code to accept input from users, figuring out what type to put the
input into, and putting it there.

Understanding types in Visual Basic
To create a new variable of a certain type in Visual Basic, you use the Dim
statement. Dim stands for dimension, and it refers to the old days when you
needed to set aside a parcel of memory to store the contents of the variable.
That is actually what is still happening, so programmers still use the term.
For instance, to declare a new string, you would code the following:

Dim MyNewString as String = “This is the content of my string variable!”

String values are surrounded by quotation marks. If you need to have a quo-
tation mark in a string, use two quotation marks; for example, “I use the
word “”bucket”” too much in this chapter”. Using two quotation
marks is called escaping the mark. Other type values, such as numbers and
dates, are referenced without quotation marks.

158 Part III: Making Your Programs Work

15_182383 ch09.qxp 2/21/08 7:35 PM Page 158

A string is an object, like all types, and sometimes the value of another object
is of a String type. This can get confusing when enough objects are on the
page. Essentially, you only need to dimension a new string object when you
need to handle it individually.

The types, such as string and integer, available for use are many and varied.
Table 9-1 covers the most often used types. You should know that more types
exist and that you can create your own.

Table 9-1 Intrinsic Types in Visual Basic
Type Description

Byte A single-digit number, such as 8.

Char A single character, such as r.

DateTime A date and time together, such as 3/4/2004 12:45:54 PM.

Double A decimal number, such as 4.534.

Integer A whole number, such as 56386.

Object Anything. An object type can hold anything in the .NET
Framework.

String Words, such as This is a string.

When you get data from a user or another source, such as a database, it will
already have a type, usually String or Object. To use the data to do math,
for instance, you need to change that string or object into the Integer or
Double type. That is done with CType.

Changing types with CType
CType is Visual Basic’s way of letting you change the type of a variable.
Seeing how this works is best done by using a real-world example. Follow
these steps to change the type of a variable:

1. Open Visual Studio 2008 and choose File➪New➪Project.

2. Select a Windows Application project, and name it in the Name
text box.

I named mine StringsAndThings. You could also use a Web Forms
project for these steps.

159Chapter 9: Interpreting Strings and Things

15_182383 ch09.qxp 2/21/08 7:35 PM Page 159

3. Change the solution name to Chapter 9 and click the OK button.

This isn’t a requirement, but it will help to keep things organized if you
choose to add other projects related to this chapter.

4. Put two text boxes, a label, and a button on the default form, as
shown in Figure 9-1.

You can use the Format➪Center in Form➪Horizontal function to center
the fields, if you so desire.

For this and all the chapters in Part III, I leave the default names for sim-
plicity. Never do this in a production application. It makes the applica-
tion hard for you to debug and impossible for someone else to maintain.

5. Double-click Button1 to create an OnClick event handler.

6. Put the following code in the event handler for Button1:

Label1.Text = TextBox1.Text + TextBox2.Text

7. Press F5 to run the program.

8. Enter 4 in the first text box and 56 in the second text box.

9. Click Button1.

Figure 9-1:
The

StringsAnd
Things

sample
application.

160 Part III: Making Your Programs Work

15_182383 ch09.qxp 2/21/08 7:35 PM Page 160

Figure 9-2 shows the results. Whoops. Must be new math: 4 + 56 = 456? What
happened?

What happened was that the program concatenated two strings (put them one
after another) instead of adding two numbers. Visual Basic assumes that —
because you didn’t tell it differently — the two pieces of information entered
into the text boxes were strings. This is usually a good assumption, but in
this case, it was incorrect.

So what do you do? You need to tell Visual Basic that those values are inte-
gers. To do that, you use the aforementioned CType function. Try putting the
following code in the event handler for Button1:

Label1.Text = CType(TextBox1.Text, Integer) + CType(TextBox2.Text, Integer)

The CType statement tells Visual Basic that it can expect integers from the
Text property of TextBox1 and TextBox2. When you run the application
again and enter the same values in the text boxes, you get the correct value
in the label when you click the button.

Some shortcuts to the CType statement are throwbacks to earlier versions of
BASIC:

� CStr casts from an object to a string. (To cast is to describe the action
of using a CType.)

� CInt casts from a string to an integer. You could use CInt in the preced-
ing code line if you wanted to, as follows:

Label1.Text = CInt(TextBox1.Text) + CInt(TextBox2.Text)

� CDate casts strings to dates.

� CBool casts a string or integer to a Boolean — a true or false value.

Figure 9-2:
New math.

161Chapter 9: Interpreting Strings and Things

15_182383 ch09.qxp 2/21/08 7:35 PM Page 161

� CObl casts anything to an object — useful if you are interacting with an
older language.

� CDbl casts types to a double, which is a decimal number.

Using a CType statement has certain implications, though. What happens if
the user enters a few letters or words in those text boxes instead of num-
bers? In that case, Visual Basic gives the error message shown in Figure 9-3.

Visual Basic throws an InvalidCastException error because you can’t
change a letter to an integer easily — or at all. As they say, you just can’t do
that.

So what do you do? You have to force the user to only enter integers in this
case. That is handled on the user interface side of things. What’s more, it
gives me the chance to introduce another new idea in types — using the
Type as a static class.

In the following example, you are going to use a method of the Integer object,
called TryParse. It’s just like any other function, except it accepts its return
value as a parameter, called an Out Parameter. I discuss classes and methods
in more detail in Chapters 12 and 13.

Figure 9-3:
You can’t

enter text in
a text-box
cast as an

integer!

162 Part III: Making Your Programs Work

15_182383 ch09.qxp 2/21/08 7:35 PM Page 162

Controlling types with validation
You can do validation in Windows forms in many different ways — and in
Web Forms for that matter. I have selected one of many ways because it
works well in simple applications. To restrain the user to entering only a
specified type of information (integers, in this case), follow these steps:

1. In the StringsAndThings project you have been using, change to
Code View.

2. Add two new variables in the Declaration section, right under the
Form statement:

Dim firstnumber As Integer = 0
Dim secondNumber As Integer = 0

3. Change the Button1_Click event code to the following:

Try
‘Check for integers first
If Not Integer.TryParse(TextBox1.Text, firstnumber) Then

Throw New ApplicationException(_
“The first number must be an integer”)

End If
If Not Integer.TryParse(TextBox2.Text, secondNumber) Then

Throw New ApplicationException(_
“The second number must be an integer”)

End If

‘Do the math if we haven’t errored out.
Label1.Text = firstnumber + secondNumber

Catch ex As Exception
MessageBox.Show(ex.Message, “Error in entry”, _

MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try

4. Choose Debug➪Start Debugging to run the program.

5. Try and enter something other than an integer in one of the text boxes.

The new code will warn you with the error message that you entered.

Obviously, I have added a whole lot of code to this simple example. An
unspoken rule says that for every line of functional code, four lines of code
make sure that it works. When you add in the code, you have to add more
code to make sure the user hasn’t entered bad data . . . well, you get the idea.

163Chapter 9: Interpreting Strings and Things

15_182383 ch09.qxp 2/21/08 7:35 PM Page 163

How this works is pretty straightforward. It follows principles that program-
mers use in even more complex examples:

� Start by setting up holding variables for the values that you want to
work with.

� Test the values in the text boxes, and if the values are valid, set the
holding variables equal to the tested values.

TryParse is very convenient for this, because it returns False if the
change to an integer doesn’t work and leaves the holding variable that
was passed in unchanged. I discuss TryParse at the end of the chapter.

� If all of that worked, do the original function code, using the holding
variables.

You are done with the text boxes.

� If it didn’t work, you have wrapped the whole thing in a Try Catch
block.

This informs the user of the problem and could implement any global
error handling that you have set up.

Making Words Work with the String Type
When you do want words, not numbers, you are dealing with the String
type. Traditionally, the BASIC languages — Visual Basic included — were
weak in string handling. Because of the .NET Framework backing up Visual
Basic 2008, many of those problems have disappeared.

The fantastic tools built into strings
When you declare a string and fill it, the string becomes an object with its
own methods, properties, and events. To get started using strings, open
a new Windows Forms application and add a button, two text boxes, and a
label, as described in the earlier section “Changing types with CType.” Then
add a title string to your program by following these steps:

1. In Design View, drag a second label to the form.

2. Double-click a blank part of the form to switch to Code View with a
Form1_Load event handler.

3. Enter the following code in the Form1_Load event handler:

Dim TitleString As String = “This is my sample program.”
Label2.Text = TitleString

164 Part III: Making Your Programs Work

15_182383 ch09.qxp 2/21/08 7:35 PM Page 164

When you run the application, it should have a title on the form where you
dropped the second label. Now that you have a String object in your pro-
gram, you have the opportunity to look at some of the cool things that you
can do with a String object.

For instance, look at the ToUpper method. Instead of Label2.Text =
TitleString, enter the following:

Label2.Text = TitleString.ToUpper.

The form shows the uppercase version of the string without changing the
original string! To replace a specified character with another character, use
the Replace method, as follows:

Label2.Text = TitleString.Replace(“i”, “!”)

The String object has 46 methods, properties, and events built in, and all of
them are available to any declared string. Find out more by searching for
“String class, methods” in the Help files.

I would be remiss if I didn’t mention String.Format. It is a tool that is built
into the String type itself — not any particular string. It uses a string-
formatting basic: referring to an argument with an ordinal. For instance:

MessageBox.Show(String.Format(“The text in Label2 is {0}”,Label2.Text))

The ordinal in the curly braces refers to the first argument. If another argu-
ment followed the Label2.Text statement, it would be referred to as {1}.

Essentially, this is a yet another way to build text strings, just like concatena-
tion and the StringBuilder class. (For more about StringBuilder, see
the section “Constructing strings with the StringBuilder class,” later in this
chapter.) String.Format is great for building URLs in ASP.NET pages.

Emptiness — handling nulls
Because strings are objects, they can be set to various values that one would
not think of as strings. Primarily, these values are different ways to say that
the string is empty.

For instance, one preset value is called String.Empty. What is it equal to,
you ask?

“”

Yup. Nothing. A whole property to refer to nada. Why? In case the value of
nothing changes. It is a little more elegant than coding MyString = “”.

165Chapter 9: Interpreting Strings and Things

15_182383 ch09.qxp 2/21/08 7:35 PM Page 165

The worst of these empty values are nulls, variables full of nothing, not even
zero or an empty string. Nulls come in two flavors — those assigned by the
.NET Framework and those given to you by databases. The database nulls,
additionally, come in one flavor for each kind of database. (No, I am not kid-
ding.) I cover databases in Chapter 15.

The nulls used by the framework are pretty simple. Setting a string to the
value of null is just like saying that it equals nothing — not String.Empty,
not “”, not 0, but actually nothing.

To see whether a string contains a null value, you can use the IsDbNull
method built into Visual Basic. I cover If-Then statements in Chapter 10, but
here is a preview:

If IsDbNull(MyString) Then
MessageBox.Show(“That string is null”)

End If

Frankly, null values should be avoided because of the need to check for them
at every turn. You don’t need to use null values to code good programs. In
the flow of your application, make sure that every variable has a type and a
value.

To further confuse matters, not just any variable can be set to be nullable. I
don’t recommend this, because a null variable is usually a mark of a problem
and should be handled like the error that it usually represents, a Null
ReferenceException. Nonetheless, if you do need it, just add a question
mark to the end of the declaration, like this:

Dim MyString as String?

This is actually shorthand for the following generic expression:

Dim MyString as Nullable(Of String)

Both do the same thing. Now in addition to being empty, MyString can be
null, or Nothing in VB dialect. It is more or less the same as the database null,
except you can test for it like this:

If IsNothing(MyString) Then
MessageBox.Show(“It is nothing”)

End If

166 Part III: Making Your Programs Work

15_182383 ch09.qxp 2/21/08 7:35 PM Page 166

Finding Tools for Managing User Input
Continuing on the thread of discussing getting values from users, you may
need to manage the input you get from the users after the input becomes
values inside your system. Strings, especially, are subject to manipulation,
either by building new strings for output or by changing existing strings for
storage.

The StringBuilder class is a fantastic tool that was new for the .NET
Framework 1.0, and it has been updated for the 3.5 version of the
.NET Framework. It allows you to systematically make decisions about
how to make big strings out of many little strings.

Several high-end programming books are devoted entirely to regular expres-
sions, which is a special language devoted to handling string patterns. I don’t
cover even 10 percent of what there is to know about regular expressions
here, but I give you enough information so that you can read a book about
regular expressions without being lost.

Constructing strings with
the StringBuilder class
StringBuilder is a class that is designed to help you manipulate strings. Often,
it is used for creating output strings from various sources of input, such as a
database, an input file, or user input.

The StringBuilder class is part of the .NET Framework that isn’t included
in the default project. To use it, you need to add a new line of code to the
very top of the Code View. The new line 1 is as follows:

Imports System.Text

You need to add this line because the StringBuilder class is really the
System.Text.StringBuilder class. To reference it, you need to use
the Imports statement. You can reference an object with the entire path,
but it’s simpler to just add the System.Text reference.

After you have that, you can create a new StringBuilder object in the code
for the Form1_OnLoad event handler. Then you can build new strings!

167Chapter 9: Interpreting Strings and Things

15_182383 ch09.qxp 2/21/08 7:35 PM Page 167

The great little functions available in the StringBuilder class include the
following:

� Append: Adds the provided text to the end of the original string.

� Insert: Places the provided text into the original string at the specified
location.

� Remove: Takes a range of characters from the string.

� Replace: Similar to the Replace method I describe in the section “The
fantastic tools built into strings,” earlier in this chapter, this method
replaces specified instances of strings with the string you supply.

The StringBuilder class performs string manipulations that you can do
other ways. However, it is a very elegant solution to a problem that you will
face all the time: Visual Basic programmers must constantly stitch strings
together and then go back and make changes based on changed require-
ments. The StringBuilder class makes implementing changes to strings
easier if you use it to start with.

For instance, take a look at the code that you could use to construct a new
title string, as described in the earlier section “The fantastic tools built into
strings.” Replace the lines of code that assign the title . . .

Dim TitleString As String = “This is my sample program.”
Label2.Text = TitleString

. . . with the following lines:

Dim sb As StringBuilder = New StringBuilder
sb.Append(“This “)
sb.Append(“is “)
sb.Append(“a “)
sb.Append(“title.”)
sb.Insert(10, “new “)
Label2.Text = sb.ToString()

This code writes a title in Label2 that reads “This is a new title.” The
Insert statement puts the word new in the middle of the string — some-
thing that is notoriously difficult to do in the course of programming logic.
The StringBuilder class does this for you — and does it faster and better
than any other method.

Manipulating strings with
regular expressions
After a string is built, you often need to search or modify the string. Regular
expressions, a traditional part of the Perl language, are a complex way to

168 Part III: Making Your Programs Work

15_182383 ch09.qxp 2/21/08 7:35 PM Page 168

manage strings using fantastic, intricate, innovative coded strings to describe
what you need to change.

Regular expressions are based on patterns. Patterns are just what they sound
like — combinations of characters that are recognizable by a definition, such
as [a-z] for all lowercase letters. The complexity comes in when you try
and make the definition.

Regular expressions are used for a number of wonderful things:

� Searching a string for values, right within your code

� Editing strings using a pattern

� Validating user input against values too complicated to be shown as a
string

Two major components make up a pattern:

� Literals: Exact representations of a string that you are looking for —
like the examples earlier in this chapter. “0” is a literal, as is “Sample.”

� Metacharacters: Descriptions of categories of characters. Metacharacters
are normally defined by using square brackets and dashes. For instance,
the range of numbers from 0 to 1000 would be described as “[0-1000]”.

For instance, if you wanted to make sure that TitleString contained the
string “sample,” you could do it using Regular Expressions. You just generate
a new Regex object and use the Match function, as follows:

Dim myPattern As New Regex(“sample”)
If myPattern.IsMatch(TitleString) Then

MessageBox.Show(“The title is Valid”)
End If

You will probably need to add Imports
System.Text.RegularExpressions as the first line of your code — above
the class declaration — for regular expressions to work.

Regular expressions aren’t just for validation, either. For instance, you can
split a string using a pattern, breaking another string into parts using the
characters and metacharacters specified in the pattern.

You can also replace characters using a pattern. The Replace method of the
Regex object tells the string, “Hey, replace anything that matches this pat-
tern with this new text.” This is astonishingly powerful, as I am sure you can
imagine. When working with data manipulation, you are constantly asked to
change large strings. “Replace all integers with an X” is a common one. The
following code actually works:

myPattern.Replace(newString, “[0-9]”, “X”)

169Chapter 9: Interpreting Strings and Things

15_182383 ch09.qxp 2/21/08 7:35 PM Page 169

I spent one section on a topic that could — and does — fill an entire book. If
you are into string manipulation, regular expressions will be a powerful tool
for you. For more information, search for “regular expressions” online.

Things That Aren’t Strings —
Numbers and Dates

Though you spend most of your time in Visual Basic with words and strings,
sometimes you need to work with other types. Numbers and dates have a big
place, and they are fairly tough to work with.

Integers and reals and
imaginaries, oh my!
Numbers are covered by a whole host of types. For the purpose of this dis-
cussion, I cover only two — whole numbers and decimals. Whole numbers
use the Integer type. Decimals use the Double type.

Numbers are really fairly simple — the main thing to remember is that unlike
strings, you do not refer to them using quotation marks. When setting a vari-
able equal to an integer or a double, you just directly refer to the number, as
follows:

Dim myInteger as Integer = 65
Dim myDouble as Double = 6.555

Any number type can be manipulated with operator symbols, as shown in
Table 9-2.

Table 9-2 Operators
Operator Description

+ Addition

– Subtraction

* Multiplication

/ Division

% Modulo (the remainder of a division)

170 Part III: Making Your Programs Work

15_182383 ch09.qxp 2/21/08 7:35 PM Page 170

To add two numbers using an operator, you build code that looks just like the
code used to concatenate the input from two text boxes, as described in the
earlier section “Changing types with CType.” It is just myAnswer = my
Number + myDouble. Numbers of any sort can usually be added together,
as long as the variable for the answer is of a type that can handle it. In this
case, myAnswer has to be a Double type, or the numbers after the decimal
point in myDouble will get lost.

Just like all the great tools that are built into strings, numbers have a few
built-in methods that assist with making sure that they are as expected. For
instance, the Integer type has a MaxValue and MinValue method, so you
can make sure that an operation won’t overload the variable.

Variables are just memory locations and have a specific amount of space allo-
cated. Integers can only be between –2,147,483,647 and 2,147,483,647. This
sounds like a big range for numbers, but you will be surprised how easily you
can overwhelm that range.

Doubles have a few other methods that represent wild math values. You can
test for values that represent PositiveInfinity, NegativeInfinity,
and Epsilon — that wonderful number approaching zero but not reaching
zero that your freshman-year calculus teacher kept talking about. Because all
of these imaginary numbers are possible outcomes to mathematical equa-
tions, it is great to be able to test for them.

Working with dates and date math
Dates are a whole different story. Not only does a whole separate category of
applications use dates — as compared with heavy numerical applications —
but it also takes a different mind-set to use the DateTime types in Visual
Basic.

Let me start with one straightforward fact — whether you need a date or a
time or both, Visual Basic essentially stores the whole bunch in a single type.
The type that you use most often is DateTime; as you may expect, it holds
both a date and a time.

In Part II, I show you date math by building the Date Calculator program that
finds the difference between two dates using a method built into the Date
Time type, just as you use the ToUpper and ToLower methods to manipu-
late the content of the string variable.

The DateTime type has a blue million built-in methods. The following list
describes just a few of the most powerful:

� Add: You can add any type of span to a date in a DateTime type. For
instance, Hours, Minutes, and Days are some of the spans available
in the Add method.

171Chapter 9: Interpreting Strings and Things

15_182383 ch09.qxp 2/21/08 7:35 PM Page 171

� Component: The Component properties allow you to just get a part of a
DateTime type. For instance, the Month property gets just the month
out of a date.

� Conversion: The Conversion methods help you to change a date to
another common format. For instance, the ToUniversalTime method
converts the date in the DateTime object to UTC universal time —
handy for international applications.

In addition, a few methods and properties don’t fall into any category; instead,
they do something specific. For example, the IsDaylightSavingsTime
determines whether the date depends on daylight saving time in the United
States.

To get a better idea of how the DateTime type works, take a look at the chap-
ters in Part II. I use it extensively while designing and building the Date
Calculator application.

You can find a lot more to dates than this, though. For instance, to get the
current date in a DateTime variable, you can use the Now function, as in the
following code line. It gives you the current date down to the nanosecond.

Dim myDate as DateTime = Now

You can also get the string representations of dates and times. For instance,
say that you need the name of a month that you uncovered using one of the
Component categories of DateTime type methods. The MonthName function
gives you a string that contains the actual name of the month:

Dim MyMonth As Integer = 4
Dim Name As String
Name = MonthName(MyMonth)
MessageBox.Show(Name)

You get a message box that says “April” — a very handy tool for user interface
creation, because users don’t want to see a number; they want to see a word!

One last thing on dates — format providers allow you to show dates in any
wonderful way you want. The DateTimeFormatProvider is a global tool
that allows you to format dates in a flexible, universal way. The most
common way to use the format provider is with the ToString method. The
following code returns “Saturday, August 7, 1971 12:00:00 AM”:

Dim myDate As DateTime = “8/7/1971”
MessageBox.Show(myDate.ToString(“F”))

Some of the other format providers for dates include those shown in Table 9-3.
Notice that the case of the value used in the ToString method is impor-
tant. More can be discovered by searching for “DateTime.Parse method” at
the MSDN Library Web site.

172 Part III: Making Your Programs Work

15_182383 ch09.qxp 2/21/08 7:35 PM Page 172

Table 9-3 DateTime Format Providers
Format Provider Sample Output

D 8/7/1971

D Saturday, August 7, 1971

G 8/7/1971 12:00 AM

G 8/7/1971 12:00:00 AM

S 1971-08-07T00:00:00

Y August 1971

Changing Types with Parse and TryParse
Parse is a term used by system architects when they need to get something
from one format to another, but they don’t really know how. In Visual Basic,
the Parse and TryParse methods give you a way to get a value into a new
format while controlling exactly how it is done.

To use the Parse method, you need to understand something complex about
Visual Basic — types are objects, too. Just as a variable can be declared as a
DateTime type, the DateTime type itself is an object of Type type. That
means types have their own methods, properties, and events.

Note that every object has a ToString() method. The ToString() method
isn’t always what it seems. Ostensibly, it is designed so that you can see the
object as a string, but it isn’t always obvious what should be shown when you
ask for a string version of an object (such as the ToString() method of a
Graphics object, for example). Don’t depend on the ToString() method —
use Parse, ConvertTo, or CStr instead, and allow the system to throw an
error if it gets confused. Better that than bad data.

One of the most common problems is taking a string from the Text property
of a TextBox and making it into a usable type such as a date. When someone
enters “8/7/1971” into a text box, it is just a string, not a DateTime type.
Strings are useful, but you can’t add a number of days to a date entered as
a string because, according to Visual Basic, it isn’t a date!

To make, for instance, a string into a date, you use the Parse method of the
DateTime type. Logically, you follow a number of steps:

1. Get a date as a string, myString, from a database or user input.

2. Declare a new DateTime type called myDate to handle the new date.

173Chapter 9: Interpreting Strings and Things

15_182383 ch09.qxp 2/21/08 7:35 PM Page 173

3. Use the DateTime.Parse method to make a new DateTime variable
from the string, as follows:

Dim myString as String = “8/7/1971”
Dim myDate as new DateTime
myDate = DateTime.Parse(myString)

The TryParse method is very much the same, but it is more useful if you
aren’t sure that the value in myString is a date. Because TryParse doesn’t
return a value, but instead accepts a value such as a subroutine, it will not
throw an error if the value in myString is not able to be parsed. Instead, it
will return a null. The following code shows what the preceding code would
look like using TryParse:

Dim myString as String = “8/7/1971”
Dim myDate as new DateTime
DateTime.TryParse(myString, myDate)fv

174 Part III: Making Your Programs Work

15_182383 ch09.qxp 2/21/08 7:35 PM Page 174

Chapter 10

Making Decisions in Code
In This Chapter
� Diagramming program flow

� Directing flow with If-Then statements

� Choosing with Select-Case statements

� Handling exceptions with Try-Catch statements

They don’t call the code in business applications logic for nothing. Many
applications that you write in Visual Basic involve logic, and much of

logic involves making decisions. In fact, making decisions represents the
single most important process in business. You can’t proceed with producing
business applications without understanding the complexities of replicating
the human decision-making process using Visual Basic 2008 code.

In this chapter, I give you a design procedure to follow when describing a
business process for your applications. This process, which is a derivative
of basic flowcharting, assists you in all decision-making designs — not just
programming code.

Then I show you how to work with the three decision-making tools in Visual
Basic — single process, multiple choice, and exceptions — which are utilized
in the Visual Basic code by the If-Then-Else, Select-Case, and Try-
Catch constructs, respectively. You see how these three constructs can be
used to assure that your business applications most closely replicate the
human decision-making processes you are trying to replace.

Designing Business Logic
I have a client who describes all business process logic as those if-then-goto
diagrams. Given the number of degrees this client has under his belt, I always
assumed that he really knew what he was talking about. And I was right!
When I showed this gentleman a four-page, sophisticated process flow (the
diagrams I present in this chapter), he picked out the only flaw in my logic
in about 15 minutes. (Wouldn’t I love for all my clients to think like that?)

16_182383 ch10.qxp 2/21/08 7:35 PM Page 175

I use this example to illustrate that outlining the business logic is the single
toughest situation that a programmer deals with on a daily basis. The busi-
ness logic serves as the basis for the mechanical code between the user
interface and the data in an application. This code determines how the user
views the information he or she is after, and how that information gets manip-
ulated when saved.

Before I delve into each example of code in the following sections, I discuss a
process for designing business logic using a flowchart. I go over the basics of
application design in Chapter 3, but the problem of logic design is a specific
situation that not all business applications encounter.

The reason for using a flowchart to describe business logic is straightforward.
Modeling the process➪decision➪direction system using a flowchart is exactly
what you will need to do when modeling program logic. Even with a large
system, it benefits you as the programmer to model complex loops and deci-
sions using flowcharts.

Depicting Logic with
Flowchart Components

A flowchart is a “pictorial representation of an orderly step-by-step solution
to a problem,” according to Indiana State University. I couldn’t agree more. A
flowchart is simply lines that connect three structures representing commu-
nication, processes, and decisions. Flowchart magic — that is, the business
or application logic — is depicted by how you combine these components
(also known as nodes).

For example, a comprehensive flowchart that describes a morning routine
might look something like Figure 10-1. This particular flowchart uses the
process and decision components, depicted by rectangles (like Wake Up) and
diamonds (like Shower last night?), respectively. Obviously, this morning rou-
tine is something that you would not replicate in code, but because you have
hopefully performed a similar process in the last 24 hours, it makes a great
example!

Communicating with the user
Of the three components of an application flowchart, communicating with
the user becomes the part of the program visible to the outside world. To the
user, this communication may come across as a message written to the
screen, or a printout. Program flow for user communication is represented by
a box with rounded corners, as in the In/Out diagram shown in Figure 10-2.

176 Part III: Making Your Programs Work

16_182383 ch10.qxp 2/21/08 7:35 PM Page 176

Are there two
numbers?

Multiply
them

Show them to
the user

Figure 10-2:
Communica-

tion with
the user.

Wake Up

Shower last
night?

Brush teeth

If anything goes
wrong, go back to

bed.

Drink coffee Drink tea Drink hot
chocolate

Shower
No

No

Yes Yes Yes

Yes

No No
Drink colaCoffee

made?
Tea

made?
Hot chocolate

maybe?

Figure 10-1:
The wake-
up routine

as a
flowchart.

177Chapter 10: Making Decisions in Code

16_182383 ch10.qxp 2/21/08 7:35 PM Page 177

Your program successfully communicates with the user when the following
happens:

� The output is tangible.

� The program produces a printout, even if it’s just printed to the screen.

The user would expect feedback from the program at this point.

Defining the process
A process component of a program flowchart depicts a block of code that
handles a single interaction with an entity. For example, acquiring input from
the user and updating the database are processes that may be depicted in a
flowchart. Process components (like the drinking processes from the morn-
ing routine depicted in Figure 10-1) are represented by rectangles, as shown
in Figure 10-3.

The following three characteristics identify a process component:

� The node has no output.

� It represents a business rule.

� It describes a function that would usually be performed manually.

Making a decision
The core of the flowchart is the decision component, which has associated
branches that allow the chart’s flow to change direction. Branching (that is,
following a branch in the flowchart) is that magic that adds flexibility and
substance to the program logic. Without decisions to make, the flowchart is
just a list of things to do (processes) and stuff to show to (or ask of) people
(communication).

Drink
coffee

Drink
tea

Drink hot
chocolate

Figure 10-3:
Morning

routine
processes.

178 Part III: Making Your Programs Work

16_182383 ch10.qxp 2/21/08 7:35 PM Page 178

The decision node is physically very simple; it’s a diamond in the diagram
that requests a yes or no answer. Figure 10-4 shows the decision diamond
and its branches. One branch comes in with the input, and two branches go
out — one for yes and one for no.

A decision component

� Has one input and two outputs.

� Is phrased as a question (like a contestant’s “answers” in Jeopardy!).

� Requires a feat of logic to pass the node.

You can think of the decision component as management input to the normal
processes of business. Suppose you have a bunch of staffers who perform a
set of processes day in and day out. If this group suddenly needs to deal with
a single unusual decision, a multiple-choice question, or an exception, it may
call in the managers to make a decision. Such a situation would constitute a
decision node in a human process flowchart.

A computer process has similar decision-making situations, which you can
divide into three categories:

� Single process: A simple “If this, then that; else go on as usual” sort of
decision. An example of a single-process decision would be driving on
the highway: “If the car in front of me stops, then I should hit my brakes;
else I keep going.”

� Multiple choice: A process that has a lot of options. “If she wants it blue,
then buy blue paint; if she wants it green, then buy green paint; if she
wants it red, then buy red paint; else drink beer.”

� Exception: A special kind of single process. This is a decision when you
didn’t want to make a decision. “Go on as usual. If it breaks, call the
manager.”

Coffee
made?

No

Yes Yes Yes

NoTea
made?

NoHot chocolate
made?Figure 10-4:

Morning
routine

decisions.

179Chapter 10: Making Decisions in Code

16_182383 ch10.qxp 2/21/08 7:35 PM Page 179

Implementing These Processes
in Visual Basic

To describe the processes in code, you need to know what the processes
look like in a diagram. Properly designed, the diagram tells you what you
are describing in code.

Single process
The single process is fairly simple — a single decision, isolated within a flow,
is usually a single process. In some cases, you are actually looking at an
exception. Largely, though, if you are looking at an image like Figure 10-5, it
is a single process.

Single-decision processes execute a block of code if a statement is true. In
Visual Basic, you need to provide the program’s decision point with a
Boolean statement — that is, something that can be evaluated as either true
or false — to decide whether the code is to be executed. For example, check
out these steps for a quick single-decision project:

1. Open Visual Studio and create a new Visual Basic 2008 Windows
Application project.

2. Drag a Textbox control and a Button control from the Toolbox to the
form.

3. Double-click the Button control to have Visual Studio generate its
OnClick event handler.

Shower last
night?

No

Yes

Brush
teeth

Shower

Figure 10-5:
The single

process in a
flowchart.

180 Part III: Making Your Programs Work

16_182383 ch10.qxp 2/21/08 7:35 PM Page 180

4. In Code View for the OnClick event handler, add the code that gives
your program a single decision to make.

In my example, I add the following code to display a message box if the
right word is typed into the text box:

If TextBox1.Text = “Showered” Then
MessageBox.Show(“Brush Teeth!”)

End If

Notice that this code shows an If statement followed by an End If state-
ment. An If statement requires an End If statement only when you have
multiple statements to execute. A single statement can be put on one line,
like so:

If TextBox1.Text = “Showered” Then MessageBox.Show(“Brush teeth!”)

But in general, every control-flow statement in Visual Basic has a start and an
end line. Also, the start line (the If condition is this example) can become
more complex. If either of two possible answers can cause the message box
to show, you can generate a Boolean statement by connecting exactly two
statements with a conditional operator.

For example, if you want to support showers or baths, the code can be writ-
ten as follows to mimic the English in this requirement:

If TextBox1.Text = “Showered” OR TextBox1.Text = “Took Bath” Then
MessageBox.Show(“Brush Teeth!”)

End If

You can link two conditional If statements. Use two linked If statements
when two possible results to the decision can cause two different lines of
code to be executed in an exclusive way. You can link two conditional If
statements with an Else statement, which works just like the English “If this,
then that; else the other.”

The Else statement is for the “No” branch on the decision box in your flow-
chart. An Else statement shows up in the following code:

If TextBox1.Text = “Showered” Then
MessageBox.Show(“Brush Teeth!”)

Else
MessageBox.Show(“Shower.”)

End If

181Chapter 10: Making Decisions in Code

16_182383 ch10.qxp 2/21/08 7:35 PM Page 181

You can also link several If-Then-Else statements to handle a multiple-
choice process. The ElseIf statement can help with that, as follows:

If TextBox1.Text = “Showered last night” Then
MessageBox.Show(“Brush teeth!”)

ElseIf TextBox1.Text = “Showered two nights ago” Then
MessageBox.Show(“Shower again!”)

Else
MessageBox.Show(“Shower!”)

End If

This example is startlingly like the next in a series of conditional statements
that are available in Visual Basic — proving once and for all that you can
accomplish the same task in more than one way in Visual Basic. For many
multiple-choice environments, the best choice in code is the Select-Case
statement.

Multiple choice
Multiple-choice processes are equally obvious to code if you are very honest
in your diagram. The fact is that few designers are honest enough to write a
diagram like that shown in Figure 10-6. This tiered structure, though, is the
unquestionable signature of a multiple-choice process.

Effectively, this diagram shows several single-process diagrams in a row. Visual
Basic 2008 provides you with a structure that handles this kind of situation. A
good software design takes advantage of as much of the language in question
as possible.

Whereas an If-Then-ElseIf statement evaluates a number of different
answers, the Select-Case statement evaluates the same variable against a
number of possible answers.

Yes

Drink
coffee

Yes

Drink
tea

Yes

Drink hot
chocolate

Drink
cola

Coffee
made?

No NoTea
made?

NoHot chocolate
made?

Figure 10-6:
The

multiple-
choice

process.

182 Part III: Making Your Programs Work

16_182383 ch10.qxp 2/21/08 7:35 PM Page 182

For example, the If-Then-ElseIf statement shown in the previous section
compares the same text box to two different values. It could have just as
easily compared two different text boxes to two different values.

The Select-Case statement is designed to compare the same variable to several
possible values. The following code shows how to write a Select-Case state-
ment that accomplishes the same thing as an If-Then-ElseIf statement.

Select TextBox1.Text
Case “Coffee Made”

MessageBox.Show(“Drink Coffee!”)
Case “Tea Made”

MessageBox.Show(“Drink Tea!”)
Case “Hot Chocolate Made”

MessageBox.Show(“Drink Hot Chocolate!”)
Case Else

MessageBox.Show(“Drink Cola!”)
End Select

The code in a Select-Case statement can do exactly the same thing as the
code in an If-Then-ElseIf statement (as in the preceding code and
the code shown in the previous section), but the Select-Case statement is
much easier to read, and it actually runs a little faster.

You can also put a comma-delimited list of values in each case to give almost
a two-dimensional grid feel to the process. Using a comma-delimited list that
way is pretty slick, and an elegant way to code the multiple-choice process as
designed in the preceding code.

The Select-Case statement isn’t the only process that is similar to the If-
Then-ElseIf statement. Another process is the exception process, where
you find yourself writing a flow that says, “Try to go on unless something
goes wrong; then do this.” In VB 2008, this is called a Try-Catch statement.

Exception
The exception is a special case of the single-process model. When you’re writ-
ing a flow, and you suddenly need to put in a process that says “If this isn’t as
expected, do that,” you’re dealing with an exception. Figure 10-7 shows what
an exception looks like in a flowchart.

If anything goes
wrong, go back to

bed.

Figure 10-7:
How I

handled an
exception.

183Chapter 10: Making Decisions in Code

16_182383 ch10.qxp 2/21/08 7:35 PM Page 183

An exception is different from an error. An error is a flaw in one of the layers
of an application — for example, a bad database row or a failed network con-
nection; or in the worst case, an error is a bad piece of code. An exception is
an expected error. It is something that you figure might happen, though you
don’t want it to, and you have a piece of logic to deal with it. For more about
exceptions, see Chapter 12.

The Try-Catch statement is different from the other two decision structures.
It assumes the following:

� You have a list of processes that you want to perform.

� You want to redirect the process flow if an error occurs.

� You have processes to follow if an error is encountered.

The Try-Catch statement is best for that process that is hard to diagram —
“Do this unless something goes wrong; then do that.”

The list of things to do goes under the Try statement, and each expected
error goes with a Catch statement. Each Catch statement includes the
process that is to be run if that Catch statement is reached. If no errors
occur, the code in the Catch statements is ignored.

The following code shows an example of a Try-Catch statement based on
Figure 10-1, just to keep things consistent. The MorningRoutine function
would consist of all the decision code in the chapter so far.

Try
MorningRoutine()

Catch somethingWentWrong as Exception
MessageBox.Show(“Something went wrong – go back to

bed”)
End Try

When using a Try-Catch block to catch a logic exception (like the data is in
error) rather than a technical error (like the database is broken), use an
ApplicationException rather than an Exception with the Catch clause.

The following code is a much more common use of a Try-Catch statement.
Notice how I use the Message property of the exception that is caught to
tell the user what went wrong:

Dim smallNumber as Integer
Dim largeNumber as Integer
Try

smallNumber = 4534
largeNumber = 7654
largeNumber = smallNumber * LargeNumber

Catch badNumber as InvalidCastException
MessageBox.Show(“The number was bad - “ & badNumber.Message)

184 Part III: Making Your Programs Work

16_182383 ch10.qxp 2/21/08 7:35 PM Page 184

Catch somethingElse as Exception
MessageBox.Show(“Something else went wrong - “ & somethingElse.Message)

End Try

The exceptions that make up the Catch statements are an exciting part of
the .NET Framework and a little beyond the scope of this chapter — or even
this book. When something unexpected happens, such as an error, the frame-
work throws an exception, and that exception is what you are catching with
the preceding code.

I should mention Finally. After a Try-Catch statement, sometimes you need
to do things regardless of whether an error occurred. If that is the case, put
the code in a Finally statement. For instance, if you are dealing with a data-
base, you should close the connection to the database on success or failure.
That instruction would appear in a Finally block, after your last Catch
block.

You can find hundreds of exception types, and you can write your own. For
more on exception management, see Chapters 8 and 12; for further research,
search for “Exception Management” in the MSDN library.

185Chapter 10: Making Decisions in Code

16_182383 ch10.qxp 2/21/08 7:35 PM Page 185

186 Part III: Making Your Programs Work

16_182383 ch10.qxp 2/21/08 7:35 PM Page 186

Chapter 11

Getting Loopy
In This Chapter
� Confirming the concepts of counting in code

� Digging into your looping options

There are two kinds of control structures in Visual Basic — decisions and
loops. In Chapter 10, I cover decisions, which are all about branching the

flow based on some input to the program.

Looping, the second type of control structure, is about repeating the same
command (or series of commands) until a certain condition is met. Business
applications, especially, have to repeat program logic for a certain amount of
time or a certain number of iterations — resulting in the programming equiv-
alent of “lather, rinse, repeat.” Of course, you wouldn’t want to wash and
rinse your hair all day, so this phrase really should read “lather, rinse, and
repeat once.” A sequence of events like this is analogous to a looping struc-
ture — known as the For-Next loop — in a Visual Basic program.

Programmers often use looping and decisions together. Visual Basic provides
a construct for that, too. The Do-While loop is an example of this — the pro-
gram loops through a command or series of commands (the Do part) as long
as a certain condition (the While part) is true. As soon as the condition
becomes false, the looping stops.

In this chapter, I go over the design and code for the four kinds of loops in
Visual Basic 2008:

� For-Next

� For-Each

� Do-Until

� While-End

All of these looping control structures have some common characteristics.
They repeat a block of code, and they make a decision about when to stop.
The differences among them are completely based on counting logic.

17_182383 ch11.qxp 2/21/08 7:36 PM Page 187

Dealing with Zero
Making decisions about which loop to use is tough. Using the wrong loop can
significantly change the processing of the program, and it can really mess up
the user experience. So the following sections help you determine which
looping structure to use and where to start counting your loops.

Starting at zero
Everything important about loops can be broken down by looking at counting.
Ever tried to count the number of hours between the end of lunch and the end
of the workday? You count, “One o’clock, two, three, four, five! Five hours!”

But your workday afternoon isn’t five hours long; it’s four hours long. To
count the right number of hours, you need to skip the first time increment.
What you need to count are the spaces between hours, as follows: “One to
two, two to three, three to four, four to five. Four hours.”

Looping through code in a program is similar: If you’re counting the spaces
between the numbers, you skip the first number. That is, you always run the
loop the first time, and then check the condition at the end.

Figure 11-1 shows two diagrams. The one on the right is the wrong way to
count the hours after lunch. This diagram starts counting at 1:00 PM. The dia-
gram on the left starts counting at 2:00 PM, which is the same as counting the
spaces between the numbers.

Comparing specific loops
and indefinite loops
Another difference among the different types of loops is whether the loop
repeats for a specific number of times or repeats for an indefinite number of
times. A specific loop is looped a definite number of times; an indefinite loop
makes a decision, either at the beginning or the end of the loop, to stop.

A loop that runs a specific number of times is like “ten lashes with a wet
noodle.” This concept is implemented with a For-Next or For-Each loop.
Effectively, you are translating the example to, “For each in a collection of
ten, lash with a wet noodle.” This example is shown in Figure 11-2. That
seems a bit overboard, but it makes a lot of sense in context.

188 Part III: Making Your Programs Work

17_182383 ch11.qxp 2/21/08 7:36 PM Page 188

A loop that has an indefinite quantity is like “lather, rinse, repeat.” How many
times to repeat? Well, that’s the joke in the example — you don’t know. You
assume that it means repeat until clean, but you don’t really know.

Assuming that the goal is to repeat until clean, you’re back to the counting
problem. Do you assume that it is dirty, and then start with the lather? Or do
you check first before you lather the first time? Figure 11-3 shows you how
Figure 11-1 could be changed to show those two options for the shampoo
example.

Do the process
Has the

process run 10
times?

No

StopYes
Figure 11-2:

The iterative
loop.

Start at 1PM

Increment hour

Is it 5?

Done

Yes

Start at 1PM

Is it 5?

Increment hour

Yes

NoNo

Done

Figure 11-1:
Two looping

styles.

189Chapter 11: Getting Loopy

17_182383 ch11.qxp 2/21/08 7:36 PM Page 189

Writing Loops with For-Next
The For-Next loop is an iterative loop. At the beginning of the loop, you define
a quantity, and the loop repeats that many times. When the loop is done
repeating, the code after the loop runs. The following is an example of a
simple For-Next loop that shows the number in a message box:

Dim Counter as Integer
For Counter = 1 to 5

MessageBox.Show(“The number is “ & counter)
Next Counter

You can do a lot with a For-Next loop. Whenever you are manipulating some-
thing a set number of times, when you need to make sure that something hap-
pens a set number of times, or when you must retrieve a set number of items
from a group, this is your loop.

For-Next loops can do a few neat tricks, too. For instance, imagine that you
need to do something to every other line of a collection. You could test in the
middle of the loop to see whether your counter is even, or you could use
the Step statement the way I do in the following code:

Dim Counter as Integer
For Counter = 2 to 10 Step 2

MessageBox.Show(“The number is “ & counter)
Next Counter

This code block shows you 2, 4, 6, 8, and 10 in the message box. Pretty slick.
You could use this to access every other item in a collection by using
Counter in the collection index.

Lather

Clean?

Done

Yes

Clean?

Lather

Yes

NoNo

Done

Figure 11-3:
Lather,

rinse,
repeat.

190 Part III: Making Your Programs Work

17_182383 ch11.qxp 2/21/08 7:36 PM Page 190

Also, the Step statement can be used to count backward, like I show in the
following code. When you do this, make sure that the first number is bigger
than the second, or the loop won’t run!

Dim counter as Integer
For Counter = 5 to 1 Step -1

MessageBox.Show(“The number is “ & counter)
Next Counter

As I’m sure you guessed, this code gives you 5, 4, 3, 2, and 1. I suppose this
adds another use — counting down for a rocket launch or something.

One last thing about For-Next loops: Sometimes you need to get out of a loop
before the loop is done. This situation usually happens when the start and
end values are variables, and you don’t know going in exactly what they are.

For example, say you don’t want to go below 0 in the following example. You
can use an If-Then statement and an Exit-For statement to stop the loop.

Dim Counter as Integer
Dim startValue as Integer = 5
Dim endValue as Integer = -1
For Counter = startValue to endValue Step -1

If counter < 1 Then Exit For
MessageBox.Show(“The number is “ & Counter)

Next Counter

This code will stop when the counter gets to 0 and moves to the line after the
Next Counter statement.

Using the For-Each Listing
with Collections

A collection is a special construct of the .NET Framework that contains a
number of objects and is accessed with an index that refers to the item
in the collection. Although a collection isn’t found only in the Windows
world, the specifics are rather unique to the .NET Framework.

I don’t have enough space in this chapter to go into the specifics of collec-
tions. You see them in examples in the book, usually as a plural property of
an object. For instance, all the controls in a form (such as buttons and text
boxes) are held in a collection called ControlCollection.

191Chapter 11: Getting Loopy

17_182383 ch11.qxp 2/21/08 7:36 PM Page 191

The collection is implemented using an interface called IEnumerable. This
library of code specifies that the code using IEnumerable must be able to
be iterated using the For-Each listing. If you need to know whether you can
use For-Each to iterate through a collection, look at the documentation of the
object to find out if it implements IEnumerable. For instance, the Control
collection — which is iterative — looks like this in the documentation:

Public Class Control.ControlCollection _
Inherits ArrangedElementCollection _
Implements IList, ICollection, IEnumerable,

ICloneable

To loop through the Control collection using the For-Each listing, you need
to set up a little sample application by following these steps:

1. Open Visual Studio and start a new Windows Application project.

2. Drag four text boxes to the form.

3. Drag a button to the form.

The application should look like Figure 11-4.

4. Double-click the button to fire up the OnClick event handler.

Figure 11-4:
The For-

Each
example

form.

192 Part III: Making Your Programs Work

17_182383 ch11.qxp 2/21/08 7:36 PM Page 192

5. Add the following code to the method created:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

For Each myControl As System.Windows.Forms.Control In Me.Controls
If myControl.GetType Is TextBox1.GetType Then

myControl.Text = myControl.Location.ToString
End If

Next
End Sub

6. Click the button to start the code in the method.

Note that the text is changed in each of the text boxes.

Although you didn’t tell the loop how many times to run, it was still a con-
strained number of times, because the collection contains a discrete number
of form controls. Also notice how I further isolated the number of controls
acted upon by checking the type in the loop with an If-Then statement.

Why did I have to do that, you ask? Because no collection of text boxes exists,
just a collection of form controls. If you only want the TextBox controls, you
need to filter using an If-Then statement the way I did.

Writing Indefinite Loops with Do-Loop
Indefinite loops are loops that aren’t counted, but that continue infinitely until
something happens. Indefinite loops are a little tougher to write, because two
things can happen to lock up your application — forgetting to move to the
next item in a group, or setting the criteria for when to stop the loop to a con-
dition that will never be true.

You can use the Do-Loop in four ways:

� Loop while something is true, checked before you start.

� Loop while something is true, checked after the first iteration.

� Loop until something becomes true, checked before you start.

� Loop until something becomes true, checked after the first iteration.

The Do-Loop is by far the most flexible looping construct because it handles
almost everything. In fact, with a counter that you manually increment, a Do-
Loop can replace a For-Next loop.

Generally, though, programmers use the Do-Loop as a last resort because it is
so prone to error. A Do-Loop is so very broad that it is very easy to create a
situation where the loop would end prematurely, never run, or go on endlessly.

193Chapter 11: Getting Loopy

17_182383 ch11.qxp 2/21/08 7:36 PM Page 193

The Do-Loop is a very useful construct, however, and worth learning to use
well. I discuss each of the four options, first in a flowchart and then in code.

Do-While loop, checked at start
The following example of using the Do-While loop describes running a routine
for every day in a month when you aren’t sure whether you are in the month
you want. For instance, say you had a process that you wanted to run once
for every day of the month, but only in the month of December. Charted out,
this would look like Figure 11-5.

Running this would look like the following code:

Dim myDate as DateTime = Date.Now()
Do While myDate.Month = 12

RunTheProcess()
myDate = myDate.AddDays(1)

Loop

Don’t forget to increment your loop iterator!

Do-While loop, checked at end
Taking the opposing perspective of this daily-process example entails a
process that you know you always want to run once, no matter what the
month. For instance, say the process runs at least once for every month, in
every month, and you just want the loop to stop when the day counter
doesn’t fall in December, as shown in Figure 11-6.

Start

Run the process

Is it December? Stop

Yes

No

Figure 11-5:
Running

a daily
process for

the month of
December.

194 Part III: Making Your Programs Work

17_182383 ch11.qxp 2/21/08 7:36 PM Page 194

Building Figure 11-6 in code would look like the following:

Dim myDate as DateTime = Date.Now()
Do

RunTheProcess()
myDate = myDate.AddDays(1)

Loop While myDate.Month = 12

Do-Until loop, checked at start
Following along with the date theme, say you have a process you want to run
every day of the week until Saturday. If it starts on a Saturday, though, it
shouldn’t run, right? So the logic reads like this: “Run the routine once for
every day until Saturday.”

Running this would look like the following code:

Dim myDate as DateTime = Date.Now()
Do Until myDate.DateOfWeek = DayOfWeek.Saturday

RunTheProcess()
myDate = myDate.AddDays(1)

Loop

Do-Until loop, checked at end
You can run the routine at least once every time, and run it until the day
shows as Saturday. This means that if it starts on a Saturday, it would run
until the next Saturday, meaning eight days total. Maybe that is what you
want — but make sure first!

Start

Run the process

Is it December? Stop

Yes

No

Figure 11-6:
Running

a daily
process for
the current

month.

195Chapter 11: Getting Loopy

17_182383 ch11.qxp 2/21/08 7:36 PM Page 195

Running this routine would look like the following code:

Dim myDate as DateTime = Date.Now()
Do

RunTheProcess()
myDate = myDate.AddDays(1)

Loop Until myDate.DateOfWeek = DayOfWeek.Saturday

Checking at the Beginning with While
In the code in the “Do-While loop, checked at start” and “Do-While loop,
checked at end” sections, earlier in this chapter, you can see the While state-
ment in the Do-Loop. Why, then, is there a While-End loop?

The difference is the Exit While statement. You can’t exit a Do-Loop. The
While-End loop can be exited like a For-Next loop can by using the Exit
While statement. Other than that, as you can see in the following code, the
differences between a Do-While loop and a While-End loop are minimal:

Dim myDate as DateTime = Date.Now()
While myDate.Month = 12

RunTheProcess()
If MyDate.DayOfWeek = DayOfWeek.Saturday Exit While
myDate = myDate.AddDays(1)

End While

196 Part III: Making Your Programs Work

17_182383 ch11.qxp 2/21/08 7:36 PM Page 196

Chapter 12

Reusing Code
In This Chapter
� Writing functions and subroutines for reuse

� Reusing code versus keeping it simple

� Taking advantage of existing programs

� Talking to DOS

A lot of functionality is floating around out there. Old VB 6 programs, DOS
apps, other people’s DLL files, and even module files that the last pro-

grammer left are all potential sources of code to reuse for your new VB 2008
application.

In Chapter 6, I show you how to write library programs, called Dynamic Link
Libraries, or DLLs. And although I recommend a DLL as the project type to turn
to when you need to write reusable code, it is far from the only way to reuse
your code’s functionality. You can also create reusability by writing functional
code within your programs themselves. That is, you can easily add helper
subroutines and functions to your programs without having to use a DLL
project.

A program that is losing prominence but is still out there is the old Disk
Operating System, or DOS. Many people who started with early personal
computers still swear by the command-line interface. Admittedly, some
things are much easier using the command line, and .NET allows you to
touch the old DOS commands right from your VB 2008 code.

In this chapter, I cover how to get values into and out of functions and sub-
routines. You also find out where to find the hooks for outside programs and
when to use DOS.

Reusing Code to Build Software
Every piece of code in any program in Visual Basic must be inside a proce-
dure like a function or a subroutine. The event handlers that show up
throughout the programs in this book (see Chapters 4 and 5 for examples)

18_182383 ch12.qxp 2/21/08 7:36 PM Page 197

are all functions. However, controlling program operation by using event han-
dlers is not the only way to build software. Moving repeated code — that is,
the same lines of code that show up in more than one event handler — into
auxiliary procedures is the accepted way to build applications. The reason
for this is simple: Debugging and maintaining an application that was built
this way are quicker and less prone to introduced errors. Specifically, making
changes to code lines that appear in one place (the reusable procedure) is
much more efficient than making changes to the same code lines that appear
in several places (the individual event handlers).

Creating reusable functions or subroutines is not more difficult that coding
specific event handlers, but it does require a little different approach. You
construct reusable code by building a stand-alone function or subroutine in a
class file and then calling it from the event that requires it. Keep the following
items in mind when you set out to make truly reusable code:

� Know the difference between encapsulating code and creating
reusable code. Encapsulated code is common code that you put in a
file or location away from your main program — within a class file, for
example — for convenience and logical separation. Encapsulated code
keeps a specific piece of logic together for the use of a specific set of
functional code. Reusable code is code that you encapsulate and use
again without changes. A company-wide data library is an example of
reusable code that can be used in several programs.

� Understand that good reusable code contains an element of abstrac-
tion. That is, the reusable code must not depend on the specific names
of controls that call it or, in fact, on controls at all. Being abstract means
that the reusable code operates on passed parameters and returned
values. It needs to accept base types (like integers and strings) or known
constructs (like datasets and collections) and return the same.

� Make the reusable function part of a separate file, rather than placing
it within the project that calls it. This is the encapsulation part. You
want to encapsulate your code so that you can easily move it from one
project to another.

Building functions with reuse in mind
To show you how reusable code looks in a real application, I start with code
from the Date Calculator built in Chapter 4 and alter it to meet the require-
ments of reusability. The Date Calculator contains event-handler code —
LateDate_ValueChanged and EarlyDate_ValueChanged — which is the
actual code that does the date math and sets the returned value. The follow-
ing code shows both event handlers:

198 Part III: Making Your Programs Work

18_182383 ch12.qxp 2/21/08 7:36 PM Page 198

Private Sub EarlyDate_ValueChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles EarlyDate.ValueChanged
NumberOfDays.Text = CStr(System.Math.Abs(CInt((EarlyDate.Value -
LateDate.Value).Days)))

End Sub

Private Sub LateDate_ValueChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles LateDate.ValueChanged
NumberOfDays.Text = CStr(System.Math.Abs(CInt((EarlyDate.Value -
LateDate.Value).Days)))

End Sub

Notice that the same code line appears as the middle line in both private subs
(it is the bold line of code in both functions). Repeating this code line is no
good, because it violates the concept of reusing functionality. If you need to
change the functionality of this code line later on, you have to change the
same line in both places. Instead, you can put the repeated functional code
in one place in your program, give it a public name, and call it from the event
handler. To do this, you can build a procedure — just as in the class library in
Chapter 6 — and place it right in the code of the form.

Now when you want to do the date math, you can just call this function, and
it does the work. The following code shows the FindDateDiff function:

Public Sub FindDateDiff()
NumberOfDays.Text = CStr(System.Math.Abs(CInt((EarlyDate.Value -

LateDate.Value).Days)))
End Sub

And the following code shows what the event handlers look like now that
they call the FindDateDiff function instead of repeating the code line:

Private Sub EarlyDate_ValueChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles EarlyDate.ValueChanged
FindDateDiff()

End Sub

Private Sub LateDate_ValueChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles LateDate.ValueChanged
FindDateDiff()

End Sub

When you place this new public subroutine within your Date Calculator form,
it is an example of encapsulated code (common code that appears in one
subroutine within a form for convenience). If you move the routine outside
the form, you can use it in another form only if you name the other form’s
controls exactly the same as you named them in this application. That situa-
tion might not be possible, so making the function itself as abstract (that is,
independent of the controls) as possible is best.

199Chapter 12: Reusing Code

18_182383 ch12.qxp 2/21/08 7:36 PM Page 199

Even with its limitations, I show you an example of code encapsulation
because sometimes encapsulating is more important than reusing. Not every
function needs to be abstracted to the nth degree. In fact, most of your code
won’t be in the form of abstract functions. Understanding when you need to
reuse code and when it doesn’t matter depends on your business model —
that is, your program’s overall purpose. For example, if a particular function
is just maintenance code within the application itself — conversion from one
local data format to another, for instance — it probably won’t need to be
reused outside the program.

To make a function appropriate for reuse by making it independent of specific
names from the calling routine, you need to pass parameters to your function
and accept returned values from it. In the Date Calculator application exam-
ple, you accomplish this abstraction by:

� Passing the start date

� Passing the end date

� Accepting the returned interval (in days) as an integer

Effectively, you set the value of the NumberOfDays.Text text box equal to
the return value of the FindDateDiff function by passing it the values of
the two date pickers. I show this truly reusable function in Listing 12-1.

Listing 12-1: Abstracting Using a Function Rather than a Subroutine
Private Sub EarlyDate_ValueChanged(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles EarlyDate.ValueChanged
NumberOfDays.Text = CStr(FindDateDiff(EarlyDate.Value, LateDate.Value))
End Sub

Private Sub LateDate_ValueChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles LateDate.ValueChanged

NumberOfDays.Text = CStr(FindDateDiff(EarlyDate.Value, LateDate.Value))
End Sub

Public Function FindDateDiff(ByVal startdate As Date, ByVal enddate As Date) As
Integer

Dim difference As Integer
difference = (startdate - enddate).Days ‘#1
Return difference
End Function

Notice the interesting element in the line numbered as 1. This line takes
advantage of the property of the date calculation. That is, because (start
date - enddate) is a subtraction of two dates, it returns an object of the
DateSpan data type. An object of that type includes a Days property, which
line #1 hooks on to. (To find out more about types and how they work, look
at Chapter 9.)

200 Part III: Making Your Programs Work

18_182383 ch12.qxp 2/21/08 7:36 PM Page 200

Extending reusability with class files
For real reusability, you need to make the function part of a separate file called
a class file. These class files are sort of in-project libraries and are handy when
the code may be reused within a project, but the code is not likely to be used
outside a project. A class file in a project is exactly the same kind of creature
as a class file inside a DLL.

Follow these steps to set up and use a class file:

1. With your program open in Visual Studio, make a new folder in your
project.

I recommend that you store classes in a separate folder — with the
clever name of Classes — inside your project. That way, your class
files are easy to find.

2. Right-click the Solution Explorer and choose Add➪Class to make a
new class file. (See Figure 12-1.)

3. Type a name for your class file when prompted; make the name some-
thing appropriate for the kind of code it will be holding.

I named my new file DateMath.vb.

Figure 12-1:
Adding a

class file to
your project.

201Chapter 12: Reusing Code

18_182383 ch12.qxp 2/21/08 7:36 PM Page 201

4. Copy and paste the reusable code (your function) from your applica-
tion’s form code into the class file.

My finished class file code looks like Listing 12-2.

Listing 12-2: The Function Code in a Class File
Public Class DateMath
Public Function FindDateDiff(ByVal startdate As Date, ByVal enddate As Date) As

Integer
Dim difference As Integer
difference = (startdate - enddate).Days
Return difference
End Function

End Class

When you create reusable functions and put them in class files, you naturally
move the related code into a separate physical file in your project. In the
Date Calculator example, taking the date-calculating function out of the Date
Calc form code means that Visual Studio can no longer find the FindDate
Diff method. You can tell as much because a blue squiggly line appears
under the method name. The ability to call the date-calculating code is effec-
tively lost because the method is no longer located in the same class that
calls it.

Visual Basic gives you two ways to fix the problem. You get no real benefit by
choosing one way of referencing over the other; it is just personal preference
for how you want your code to look. You have these choices:

� You can add a reference in your form to the new class you created to
hold your reusable functions. This process is similar to adding a refer-
ence to a new class library, as I describe in Chapter 6. Add the necessary
code above the class name using the Imports statement, as I show in
the following code:

Option Strict On
Option Explicit On
Imports DateCalc2008.DateMath
Public Class CalculatorMain

� You can directly reference the function by using the class name in
front of the function name when calling the function, as demonstrated
by DateCalc2008.DateMath.FindDateDiff in the following code:

Private Sub EarlyDate_ValueChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles EarlyDate.ValueChanged
Dim dateCalc as new DateCalc2008()
NumberOfDays.Text = CStr(dateCalc.DateMath.FindDateDiff(_
EarlyDate.Value, LateDate.Value))

End Sub

202 Part III: Making Your Programs Work

18_182383 ch12.qxp 2/21/08 7:36 PM Page 202

To directly reference a method in a class, the method must be Shared, or
you must Dim a new instance of the class and reference the method by the
new variable name. In the case where you are writing a class file that is
mostly oriented toward sharing, marking the methods as Shared allows you
to use them without instantiating an instance of the class. If the object repre-
sented by the class needs to be created first, though, you have to Dim a new
instance of the class before calling the method. In that case, you use the vari-
able name to refer to the method in question. To see a great example of
Shared classes, check out File and FileInfo in the System.IO name-
space, covered in Chapter 16.

Avoiding the Code-Complexity Trap
Complexity, that is, writing more code than is necessary to solve a program-
ming quandary, is a problem for all applications, no matter what platform or
language they are built with. Complexity causes problems, such as programs
you can’t maintain, and it also makes existing problems harder to find because
it is difficult to follow the logic represented by the code.

As a developer, you need to balance complexity with common sense. Making
code so sophisticated that you can never find errors is a particularly danger-
ous situation. Imagine a function that calls a function that calls a function
that calls a function . . . you get the idea. You can lose yourself in the flow of
the code very fast.

203Chapter 12: Reusing Code

Public and Private stuff
The Public and Private keywords for
class files and functions become especially
important when you’re creating reusable code.
You have been using them all along as part of
forms, but they take on a new significance
when it comes to calling a function outside of
the class in which it was declared.

A Public function can be seen and called by any
program that references the class in which it
resides. The Imports statement in the exam-
ple in the nearby section “Extending reusability
with class files” references the class, and then

you can use all the Public statements within
it. A Private class can only be seen and used by
other functions within the same class. In the
example in the “Extending reusability with
class files” section, if FindDateDiff were
Private, it would be invisible even if an
Imports statement were used. Friend and
Protected are other options, but they con-
trol access within assemblies (compiled blocks
of code). Public and Private are the
options you will see most often.

18_182383 ch12.qxp 2/21/08 7:36 PM Page 203

However, you can’t put all the procedural code into one large file either. If
your button1.click method has all the logic in it to handle an order, from
billing to shipping, you will have a 1,000-line event handler. This isn’t the way
to go either.

You can employ two good programming practices that help you avoid com-
plexity problems in your procedures:

� Prevent logic problems by protecting the parameters you pass to the
functions in the procedures.

� Incorporate error handling to help you with procedural programming.

Protecting the values of parameters
When using a procedure, you have two ways to pass the parameters. You can
pass a copy of the information held by the variable you use as the parameter,
or you can pass the actual variable.

Determining how to pass your parameters harkens back to the programming
languages that use pointers. For example, the C language made use of point-
ers to reference information expected to be in certain memory locations.
You could pass a copy of information or a pointer to the actual information.

Ask yourself this question to decide how to handle passing parameters: Do
you need your original data to be protected from the procedure you’re call-
ing, or are you expecting the called procedure to change your data? Answer
this question and then choose the Visual Basic structure that gets you the
result you want. Visual Basic handles passing parameters with the following
keywords:

� ByVal refers to By Value, and using this keyword assures that a copy of
the parameter’s data (its value) is made before it’s passed to the func-
tion. If the function changes the value of the parameter, that changed
value is discarded at the end of the functional life of the parameter
(which is at the end of the subroutine or function). In general, functions
don’t change the values that are passed to them, but if you want to be
absolutely sure, you should protect those values by choosing to pass
parameters ByVal. This is the default option.

� ByRef stands for By Reference, and this keyword sees to it that a refer-
ence to the original variable passes to the function as the parameter.
The reference points to the actual location of the variable value, so i
f the function changes the parameter, the variable in the host program
changes as well. You may actually want the function to change the origi-
nal values — for instance, a billing operation might always want to zero
out a cumulative fees variable passed into a function. In this case, using
ByRef allows the function to directly access the original variable and
saves you a lot of code.

204 Part III: Making Your Programs Work

18_182383 ch12.qxp 2/21/08 7:36 PM Page 204

You may notice that if you don’t type in the keyword yourself, Visual Basic
sets the default parameter passing to ByVal for all functions and subrou-
tines. Having ByVal as the default state is safer (because the variable’s origi-
nal value is preserved) and avoids the logic errors (such as accidentally
overwriting a value that the calling code expects to be the same) that can
result from using ByRef and that are difficult to find later.

Handling errors effectively
in an abstract environment
Another consideration for limiting complexity in procedural programming
relates to handling errors. I cover error handling using the Try-Catch block in
Chapter 10. In this section, I talk about the details of determining how to deal
with errors thrown in procedural programming.

The problem with errors in procedural code is one of abstraction (the same
functional separation you are aiming for when you create a reusable class). If
you create reusable code using class files and procedures, you can lose the
ability to communicate with the user interface and thereby inform users
when an error occurs. Figure 12-2 illustrates this concept.

So what happens when an error occurs in the procedure that is abstracted
from the application? You handle this situation by allowing exceptions to
bubble up from the procedure to the user interface, rather than trying
to handle them in the class file itself. For example, rather than handling a
database conversion error in a reusable function with a Try-Catch statement,
you should just allow the error to be thrown up to the source application.

Abstraction, therefore, has an impact beyond facilitating code sharing. When
you move a procedure containing reusable code into an isolated environment
(like a class file), you cannot assume that the program using the class file can

theClassFile

The class file has
no access to the
error handling
devices of
Windows, like
MessageBoxes

interface

interface
Your Application

The
Windows

Environment
Figure 12-2:
A downside

of code
abstraction.

205Chapter 12: Reusing Code

18_182383 ch12.qxp 2/21/08 7:36 PM Page 205

pop up a message box if (and when) an exception occurs! You must make
good decisions about when and how to deal with exceptions. Here are a few
pointers:

� Allow the majority of errors to bubble up to the code that calls the
procedure. Don’t try to handle errors that you can let the system handle
for you. When an error occurs that is covered by a system exception
(such as the database being out of whack), the error will cause the proce-
dure to stop executing and then pass execution back to the calling pro-
gram. This automatic process is good enough to deal with most errors.

� Organize your business logic to avoid exceptions in the class files.
Procedures that you design to be shareable need to be better than they
have to be. In other words, your reusable functions and subroutines
must be as infallible as possible. Do the little things that reflect careful
programming practices — like making sure that your loops won’t over-
stretch their bounds or that your data won’t be subject to type confu-
sion. Check that the values your procedure accepts as parameters are
what the code really needs so that you don’t have to worry about con-
version errors. Taking care of details like this makes reusable code much
more useful.

� When a business logic error occurs, inform the calling program by
creating an error of your own. This programming practice is called
throwing an error, and it is unsurprisingly handled by the keyword
Throw. For instance, suppose your procedure wants to make sure that
the passed parameter called startdate is always earlier than the
passed parameter called enddate. The following code shows how to
throw an error after checking the two values:

Public Shared Function FindDateDiff(ByVal startdate As Date, _
ByVal enddate As Date) As Integer
Dim difference As Integer
If enddate > startdate Then
Throw New ApplicationException(“End Date cannot “ + _

“be before Start Date”)
End If
difference = (startdate - enddate).Days
Return difference
End Function

If the startdate is not earlier than the enddate, this code causes the exe-
cution of the procedure to stop, and control is returned to the calling pro-
gram with the ApplicationException in tow. If your program wraps the
call to the procedure in the Try-Catch block (which I discuss in Chapter 10),
the program handles the exception. If not, Windows handles it for you!

206 Part III: Making Your Programs Work

18_182383 ch12.qxp 2/21/08 7:36 PM Page 206

Finding Other Ways to Reuse Code
Other ways to write reusable code are built into the Visual Studio environ-
ment. The Server controls (components such as text boxes and buttons)
that you can use in Windows and Web Forms are built into the environment,
and you can create your own reusable components. You also find a simpler
control concept, a user control, in ASP.NET pages. And you can build easy-to-
reuse page templates, such as master pages in ASP.NET, as well.

Creating custom controls
Server controls — such as the TextBox and Button controls that I show in
many examples — are easily built using a special project type in Visual
Studio. Although creating custom controls is a little beyond the scope of this
book, follow these steps to create a simple custom control and make it avail-
able to your Windows Forms projects:

1. Open Visual Studio and select a new Windows Forms Control Library
project.

The editor opens with a workspace that looks much like the regular
Windows Forms designer, but with just a gray area to work in. I name
my example Sample Windows Control.

2. Drag one or more controls from the Toolbox to the gray area, and
resize the area to fit around them.

I drag three text boxes to the gray area in my project and arrange them
as shown in Figure 12-3.

3. Right-click the default .vb file in the Solution Explorer, and give your
control a name you can remember.

I call my file PhoneNumber.vb.

4. Choose Build➪Build Solution from the main menu to compile the
project.

5. Choose File➪Add➪New Project and select a new Windows Application
project to add another project to the solution.

I call my new project Sample Control Test.

6. Right-click the new project and choose Set as Start Up Project.

7. Right-click the new project again and choose Add Reference.

The dialog box shown in Figure 12-4 appears.

207Chapter 12: Reusing Code

18_182383 ch12.qxp 2/21/08 7:36 PM Page 207

8. Click the Projects tab, select the SampleControlTest project, and click
the OK button.

9. Expand the Toolbox and note the addition of your new control.

In my example, I see the PhoneNumber control. It should be in a new
group above the All Windows Forms group.

Figure 12-4:
Adding a

project
reference.

Figure 12-3:
The start of

a custom
control.

208 Part III: Making Your Programs Work

18_182383 ch12.qxp 2/21/08 7:36 PM Page 208

10. Drag your new control onto the default form.

The new control appears on your form just as if it were any of the built-
in controls.

How making custom controls helps you share code is obvious. If you define a
common set of controls that have common logic, you can create custom con-
trols and write the code for these controls just once. Your logic is protected
by the compilation, and you can redistribute the customized controls within
your organization. In short, making custom controls is a tremendous tool in
terms of sharing code.

Adding user controls
Another great tool in the code-sharing arena is the ASP.NET user control. A
user control is a simpler version of the custom control and is represented by
a special file — an ASCX file — in the ASP.NET Web project.

Otherwise, a user control works and acts the same as a custom control. A
user control

� Encapsulates other controls and the logic around them.

� Shows up as a separate object within the project.

� Is built in a separate design space.

If you open a Web project and right-click the project file in the Solution
Explorer, you can see that one of the options is the Web User Control, as
highlighted in Figure 12-5. Click the Web User Control icon to add a user
control to your project.

Figure 12-5:
Selecting a

Web User
Control.

209Chapter 12: Reusing Code

18_182383 ch12.qxp 2/21/08 7:36 PM Page 209

The process for developing a user control is just like the process for develop-
ing a Web Forms page. Drag controls to the screen and double-click to add
code to the control. To add your new control to a Web page, just drag the
ASCX file to the ASPX page in Design View.

You should keep in mind, though, that ASP.NET user controls are not as ver-
satile as custom controls. User controls are not compiled into class files, but
are built into the Web site itself. To reuse the user control code in another
project, you need to copy the code from one project to the other. And when
you add user controls to a page, they don’t appear exactly as you designed
them, but are represented by a placeholder.

Regardless of their shortcomings, user controls can be important parts of a
Web project. Lots of Web-page elements are repeated — for example, naviga-
tion controls, footers and headers, and so on. All such elements make fantas-
tic user controls.

Making master pages
Another ASP.NET feature, along the lines of a user control, is a master page. A
master page is effectively a page template for Web sites, so it isn’t shared code
as much as it’s a common framework for a project.

You add master pages to projects just as you add user controls. You can right-
click the project file and select the Master Page icon to add one to a project.
From that point, you edit a document that is just like a Microsoft Word tem-
plate for Web pages.

The master page uses a construct called a content placeholder to determine
the layout and placement for content of the ASPX pages. The ContentPlace
Holder construct allows you to structure where on the page the content
from a content page is placed. The content control in the ASPX pages defines
what content goes with each control. For instance, the following code shows
a master page with two ContentPlaceHolder controls right next to one
another in a table:

<%@ Master Language=”VB” CompileWith=”MasterPage.master.vb”
AutoEventWireup=”false” ClassName=”MasterPage_master” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
<title>Untitled Page</title>

</head>
<body>
<form id=”form1” runat=”server”>

210 Part III: Making Your Programs Work

18_182383 ch12.qxp 2/21/08 7:36 PM Page 210

<table>
<tr>
<td>
<asp:ContentPlaceHolder id=”ContentPlaceHolder1” runat=”server”>
</asp:ContentPlaceHolder>
</td>
<td>
<asp:ContentPlaceHolderid=”ContentPlaceHolder2” runat=”server”>
</asp:ContentPlaceHolder>
</td>
</tr>
</table>
</form>

</body>
</html>

To run this master page with content, the content page must have

� A Master attribute in the Page directive.

� Two content controls in the page that have the content to be placed in
the ContentPlaceHolder1 and ContentPlaceHolder2 controls
in the master page.

Using a master page to control the layout prevents you from having to recode
the HTML tags repeatedly from page to page. You can also accomplish this
reusable structure with user controls, but the master pages are much more
efficient.

Reusing Programs Outside
of the Framework

I know of two reasons to think about reusing program functionality outside of
the .NET Framework:

� You may have older programs — legacy code written before the .NET
Framework existed — that have business logic you still want to use.

� You may need to work with parts of the Windows operating system that
are not available in the .NET Framework.

At least 90 percent of programmers have legacy code to work with. While you
can rewrite most of your legacy code into VB 2008, you won’t always have the
time or energy. The ability to directly implement the world of COM (the
Component Object Model architecture used prior to .NET) in Visual Basic and
the .NET Framework will significantly simplify your work environment.

211Chapter 12: Reusing Code

18_182383 ch12.qxp 2/21/08 7:36 PM Page 211

Fortunately for VB 2008 programmers, working with COM objects is now
easier than ever. Additionally, the Visual Basic developers had a very realistic
view of the Windows platform. While Microsoft’s developers are very focused
on the .NET Framework, not every product sold by their third-party providers
is .NET ready. Also, certain Windows elements (such as NT file properties)
still don’t have .NET objects associated with them.

I start my discussion about connecting to old code with implementing COM
because that topic covers a lot of the legacy code reuse problems you will
have to solve. Then I talk about getting down to the operating system’s
legacy operations. You may not connect to the old OS operations a lot, but
some situations — like dealing with older hardware — still require that you
know how.

Referencing the old Component
Object Model
The Component Object Model (COM) is the library of code that allowed the
development of DLL files before .NET existed. Nothing is wrong with COM
per se, but .NET is much more appropriate for development in today’s
environment.

Nonetheless, at times you will need to write code that uses logic in old COM
objects. Visual Basic 2008 provides a function, called CreateObject, that is
built into the language. This function allows you to dimension an object and
then assign it to an existing COM class if you know the reference to that class.

For example, to make a new Microsoft Word file, you could use the following
code. The code simply defines a new object placeholder and assigns it to the
Word.Application class, which is the old COM class for Microsoft Word
functionality. The class exposes several methods, properties, and events, but
this code uses the Save method and supplies the newly created object with a
filename.

Public Sub MakeWordFile()
Dim myWord as Object
myWord = CType(CreateObject(“Microsoft.Office.Interop.Word.Application”),

WordApplication)
myWord.Save(“c:\NewFile.doc”)

End Sub

Before you have access to any of this functionality, you need to reference
the DLL file in your project. In this case, you click the COM tab in the Add
Reference dialog box (refer to Figure 12-4). From this dialog box, you need to
add a reference to the local version of Word. On my PC, it is Version 11, and
the DLL is called Microsoft Word 11.0 Object Library.

212 Part III: Making Your Programs Work

18_182383 ch12.qxp 2/21/08 7:36 PM Page 212

When you use Visual Basic’s CreateObject function and link to old COM
classes, you may get some pushback from Visual Studio. In the Code View,
Visual Studio may warn you that the Late Bound Resolution could cause
errors. Such a warning appears because you didn’t use Visual Studio to
create the new object, and that means Visual Studio can’t confirm that the
Save method actually exists.

Calling methods in COM objects
If you don’t need an actual instance of the object defined by a COM class, you
can use the CallByName function to just run a method as defined by a class.
For example, the following code shows how you could call the Save method
in the preceding example without using an object:

CallByName(myWord, “Save”, CallType.Method,
“c:\NewFile.doc”)

Using other programs
with the Process class
By far, the best way to get information to another program from a VB 2008
program is the Process class. The Process class makes use of the file-
extension mappings in Windows to determine what application to launch. A
great example of this use involves the Google Search Tool. The Google Search
Tool is a very simple Windows application that presents users with a text box
and a button. It returns a URL based on the search term entered in the text
box and lets Windows decide what application to launch to view the URL.

To build your own Google Search Tool, follow these steps:

1. Open Visual Studio and start a new Windows Forms Application
project.

Surprisingly enough, I name my application Google Search Tool.

2. Right-click the project and choose Add a Reference.

The Add Reference dialog box appears.

3. On the .Net tab, add a reference to the System.Web component.

4. Drag a text box and button from the Toolbox to the form.

My form looks like the one shown in Figure 12-6.

213Chapter 12: Reusing Code

18_182383 ch12.qxp 2/21/08 7:36 PM Page 213

5. Double-click the button to get to the OnClick event handler and add
the code to incorporate the outside program.

The code looks like the following:

Dim myProcess As New Process()
Dim searchString As String = _

System.Web.HttpUtility.UrlEncode(TextBox1.Text)
Dim urlString As String = “http://www.google.com/search?q=” + searchString
myProcess.StartInfo.FileName = urlString
myProcess.Start()

6. Click the Play button to run the application. Type a search term in the
text box and click the button to cause your default browser to load.

Figure 12-7 shows my results. For this example, I use Mozilla Firefox
rather than Internet Explorer, and the Process class still works great!

The code to include this outside application is surprisingly simple. The lines
work as follows:

� Get the search term from the text box, and combine it with the search
URL that Google provides to create a new variable called urlString:

Dim searchString As String =
System.Web.HttpUtility.UrlEncode(TextBox1.Text
)

Figure 12-6:
The simple

Google
Search Tool.

214 Part III: Making Your Programs Work

18_182383 ch12.qxp 2/21/08 7:36 PM Page 214

Dim urlString As String =
“http://www.google.com/search?q=” +
searchString

� Set the new variable equal to the StartInfo.FileName property of the
new Process object I created. If I had wanted a Word document instead
of a URL, I could have provided a Word filename:

myProcess.StartInfo.FileName = urlString

� Call the Start method, and VB 2008 looks in the registry to see what
application is set to handle a URL:

myProcess.Start()

Visual Basic then runs the app for me, sets the URL in the address bar, and
away it goes!

Though I did not use it, the Windows Forms program created to incorporate
the Google Search Tool now has control of the browser process it has
spawned. I can review its progress, pause its execution, or end it from the
program if I so desire. For a complete list of the functionality of the Process
class, you can search for “Process Class” in the MSDN documentation.

Figure 12-7:
The Process

class at
work

loading
a URL.

215Chapter 12: Reusing Code

18_182383 ch12.qxp 2/21/08 7:36 PM Page 215

Accessing DOS: But Only
as a Last Resort

DOS is dead. The operating system that many experienced programmers cut
their teeth on in the PC world is simply emulated in newer operating systems
such as Windows Vista systems and the even newer Windows Server sys-
tems that are in development as I write this book.

Nonetheless, you may want to use bits of DOS and older Windows applica-
tions in your programs, and VB 2008 supports that, too. For a number of rea-
sons (such as the possibility of Microsoft removing the function in a later
version of Windows), digging into the older operating systems is not some-
thing you want to do — unless you have no other choice. But it’s nice to
know that if you have to go that low, you can.

Running command-line
programs with Shell
If you have done any systems administration work, you know that a lot of
powerful and necessary applications are available only from the command
line. Also, you can write a command-line application in Visual Studio by using
the Console project type. To run such programs from your VB 2008 programs,
you can use the Shell command.

The following code shows a very simple example that launches the Windows
Calculator using its command name, calc.exe. I implemented this code by
putting it in the OnClick handler of a button on a blank form.

Private Sub Button1_Click(ByVal sender As System.Object,_
ByVal e As System.EventArgs) Handles
Button1.Click

Dim CalcId As Integer
CalcId = Shell(“C:\Windows\system32\calc.exe”, _

AppWinStyle.NormalFocus)
End Sub

The process ID returns to your program in the form of an integer (in this case,
CalcId), and the program can refer to the application or process as long as
that process remains running. As with the Process class, the process ID
gives you the ability to hold up your application while the referenced process
runs, check its progress, or kill it as you wish.

216 Part III: Making Your Programs Work

18_182383 ch12.qxp 2/21/08 7:36 PM Page 216

The Shell command takes a few parameters. The first is (obviously) the name
of the process to be run, complete with the parameters the process might
accept. The second parameter is the AppWinStyle, which is a collection that
defines how the process will appear to the user. It includes the following:

� Hide: Doesn’t show in the taskbar.

� NormalFocus: Shows normally, based on the system default.

� MinimizedFocus: Is minimized in the taskbar and has focus as though
the user had clicked on it.

� MaxamizedFocus: Fills the screen and has focus.

� NormalNofocus: Shows normally with no focus.

� MinimizedNoFocus: Is minimized without having focus.

The third parameter of Shell, which I didn’t use in my example, is a Boolean
parameter that tells the program whether the calling program should wait for
the process called to finish. The fourth, and final, parameter is a timeout
value that tells the calling program when to let go of the reference.

Getting focus with AppActivate
No matter what tool you use to run a program from your VB 2008
application — whether it’s a Process class, the Shell command, or the
Interop function — you can give the program focus with AppActivate.
The AppActivate function accepts a window name of a running program
or a process ID, and gives focus to that application.

For example, running Calculator as shown in the following code initially sets
the application to have no focus. The AppActivate line then gives the applica-
tion focus using the process ID that was returned from the Shell command.

Private Sub Button1_Click(ByVal sender As System.Object,_
ByVal e As System.EventArgs) Handles Button1.Click

Dim CalcId As Integer
CalcId = Shell(“C:\Windows\system32\calc.exe”, _

AppWinStyle.MinimizedNoFocus)
AppActivate(CalcId)
End Sub

217Chapter 12: Reusing Code

18_182383 ch12.qxp 2/21/08 7:36 PM Page 217

In the Process example from the section “Using other programs with the
Process class,” earlier in this chapter, you can give the browser focus if you
know exactly what the window name will be. The following code demon-
strates this:

Dim myProcess As New Process()
Dim searchString As String = System.Web.HttpUtility.UrlEncode(TextBox1.Text)
Dim urlString As String = “http://www.google.com/search?q=” + searchString
myProcess.StartInfo.FileName = urlString
myProcess.Start()
AppActivate(“Google Search: Bill Sempf – Mozilla FireFox”)

Using AppActivate would not be the best solution in many circumstances.
In this example, if you aren’t using Mozilla Firefox, this code will not work for
you! You want to avoid using the Windows name string when the name varies
based on the user. As it turns out, the Process object has a ProcessId
parameter that gives you a much more flexible result.

218 Part III: Making Your Programs Work

18_182383 ch12.qxp 2/21/08 7:36 PM Page 218

Chapter 13

Making Arguments,
Earning Returns

In This Chapter
� Discovering tricks for using classes

� Building event handlers

� Leveling out performance with threading

� Finding flexibility in generics

Visual Basic 2008 is still, at its heart, a very functional language. Much of
the benefit from using VB revolves around calling functions and getting

values back. Even with the movement toward more object- and service-
oriented use of the language, you will always need to know how to call a func-
tion and get a return value — no matter what the higher cause happens to be.

The Visual Basic language is heavily based on designing, defining, and calling
procedures, passing arguments, and getting return values that are useful to
your program. Understanding how to make highly intricate functions and
subroutines makes your programs run better and your code more readable.

In this chapter, I discuss advanced procedure design — sophisticated func-
tions and subroutines. In Chapter 6, you design class files, and in Chapter 12,
you make reusable code realistic. The information in this chapter gives you
the last bit of detail that you need to make the best possible functional code
you can.

This chapter covers the last few details of function design and creation that
haven’t been discussed in previous chapters. You find the following:

� An in-depth description of the parameters and return values of functions

� Procedures that accept different sets of values using overloading

� Tricks for calling and using classes

� An introduction to making flexible objects with generics

19_182383 ch13.qxp 2/21/08 7:37 PM Page 219

� A description of event handling

� A fun example of object timing that uses threading

Using Classes Effectively
Although I discuss class library design, programming, and testing in Chapters
6 and 8, in this chapter, I discuss the most effective ways to use classes. The
logic contained in classes is important because you use it over and over. You
can significantly improve overall reliability of your programming efforts if
you follow a few of the suggestions I go over in the following sections.

For example, how you instantiate and destroy objects can have a distinct
impact on your application’s memory management. Understanding whether
an expensive resource is being utilized is important. Finally, you should
know about a few tricks of the trade that can make your code cleaner.

Making and destroying objects
Behind the scenes, when you make an object, you are taking information from
the program file and storing it in the RAM of the machine. You have a lot more
room on the hard drive than in RAM, so you should be cautious using your
RAM.

Every Dim statement takes up more memory on the machine. Some things,
such as graphics and network connections, take up more memory than
others. Because of this fact, you must be cautious what you make and when
you destroy it.

For the small programs I go over in this book, you don’t need to worry about
making and destroying objects in a timely fashion. Because the programs are
so small, the memory management is negligible.

However, it’s easy to create a program that would need to use tons of memory
and where memory management would become important. For instance,
imagine a program that looped through a large number of records in a file and
started a mechanism to confirm them. At the end of the loop, that process will
have one copy of the mechanism for every line of the file alive in memory!

.NET has something called garbage collection that gets rid of unused objects.
It usually takes objects that were used in a method and destroys them after
that method has run. If the method is particularly long, however, you might
want to get rid of an object early. I show an example of this garbage collection
in the following code. To get rid of an object early, you use a method that all
objects inherit from the .NET Framework: Finalize.

220 Part III: Making Your Programs Work

19_182383 ch13.qxp 2/21/08 7:37 PM Page 220

‘Get a new instance of the Date Calculator
Dim currentCalculator as new Calculator
‘Get rid of it for good!
currentCalculator.Finalize()

Resource utilization
Another consideration in deciding when to destroy an object is what happens
to the resources handled by the class you instantiated. I cover resources
(such as network and database connections) in greater detail in Chapters 15
and 17. The resource may be locked by the object, and if you’re depending on
having that resource later, this lock could be a bad thing.

The following constraints should govern how you make and destroy objects.
If you are in a tight resource situation, consider the following best practices:

� Use a Dim or Private statement to dimension the object right before
you are ready to use it, rather than at the beginning of your code.

� When you are through with the object, call its Finalize method.

Keep in mind that using Finalize is for specific situations. I try to imple-
ment Resource Utilization Management when I am having a problem with a
resource, or I am working with objects like networks, files, or databases.
Generally speaking:

� The garbage collector will run after every method signature.

� Most classes in .NET are very lightweight, and the garbage collector will
handle them just fine.

With and Using
When working with objects, don’t type them so often. Really — take a look at
the following code! The With keyword tells VB that the next few lines of code
are to be used “With” a given object — it’s pretty cool.

With myArray
.Add(1)
.Add(3)
.Sort()

End With

Like With, Using defines a new resource that should be used as part of the
code inside the block and then discarded. The MSDN documentation has a
great example using a Font in the Drawing classes, which I show here:

221Chapter 13: Making Arguments, Earning Returns

19_182383 ch13.qxp 2/21/08 7:37 PM Page 221

Public Sub makeBig(ByVal myControl As Control)
Using myFont As New System.Drawing.Font(“Garamond”, 18.0F, FontStyle.Normal)

myControl.Font = myFont
myControl.Text = “Big Garamond Title!!”

End Using
End Sub

Using Event Handlers
Event handlers are methods that automatically run when an event occurs that
the .NET Framework knows about. The most obvious example is a button
click — when the user clicks a button, the framework knows it as an OnClick
event. It looks in the code for that screen for a method designed for that
button’s OnClick event. That method is an event handler. An example follows:

Private Sub Button1_MouseEnter(ByVal sender As Object,
ByVal e As System.EventArgs) Handles
Button1.MouseEnter

End Sub

Two qualities designate an event handler:

� The Handles statement: The Handles statement tells the framework
that this method in particular is designed to deal with a specific event
for a specific object.

� Special parameter types that event handlers require: These are the
Sender and the Event arguments. The Sender represents a reference
to the object that sent the event, and the Event arguments are a custom
collection of properties that relate to the request — like the position of
the mouse on a click or the exact time of a network event.

To support an event handler, the event must be exposed by an object. Using
Visual Studio, you can see what events are exposed by an object in Design
View by using the Properties window and by using IntelliSense. The following
sections look at both of them.

Event handling using the
Properties window
By far the easiest way to work with event handlers is by using the Design
View. The Properties window, which I go over in Chapter 2, has a special
panel designed for working with events.

To get started, try this little sample:

222 Part III: Making Your Programs Work

19_182383 ch13.qxp 2/21/08 7:37 PM Page 222

1. Open Visual Studio 2008 and create a new Visual Basic Windows
Application project by choosing File➪New Project.

2. In the Form1 designer, add a button and a timer.

The Timer control is under the Components tab in the Toolbox.

3. Select the button, and then open the Properties window.

4. Click the Events button, shown in the margin.

5. Note the events available for use.

Figure 13-1 shows what can happen to a button in the user environment.
Do you want code to run when the user hovers the mouse cursor over
your button, rather than when it is clicked? If so, use the MouseEnter
event. Do you want code to run when the user drags something over
the button? Use the DragDrop event. The Events panel is shown in
Figure 13-1.

6. To see how this can be used, double-click in the property area to the
right of the MouseEnter event.

Visual Studio will automatically generate an event handler for you and
send you to Code View. The event will probably be called Button1_
MouseEnter. Notice the Handles statement? It tells the .NET
Framework that you want this method to handle any instance of that
event. Here’s an example of an event handler for the MouseEnter event:

Figure 13-1:
The Events

panel.

223Chapter 13: Making Arguments, Earning Returns

19_182383 ch13.qxp 2/21/08 7:37 PM Page 223

Private Sub Button1_MouseEnter(ByVal sender As Object,
ByVal e As System.EventArgs) Handles
Button1.MouseEnter

End Sub

Event handling using IntelliSense
The second way to create methods for event handlers is using IntelliSense
and the Code View. While in the Code View, you can use the selectors at the
top of the screen to pick event handlers! For instance, pick the timer in the
drop-down list at the top of the code window, on the left side, as shown in
Figure 13-2. The right-hand drop-down list changes to show all the events of
the timer that are available.

Now that right-hand drop-down list has all the events that would show in the
Events panel. Just pick one (as shown in Figure 13-3) to generate an event
handler for it.

If you aren’t sure what the event is all about, generate the handler, highlight
the name of the event in the Handles statement, and press F1 for help. You
can always delete the method without penalty.

Relaxed event handlers
It’s clear that event handlers are just subroutines. Just like any other subrou-
tine, you might or might not need input parameters. Fact is, if you are adding
the date in one datetimepicker with the date in another datetimepicker,
you might just not need any input parameters.

Until now, the compiler has just required that you include those input para-
meters: the sender and the event arguments. Now, with partial classes, they
aren’t really necessary, and you don’t have to put them in. If you get a default
handler, by double-clicking a control for instance, you will get the parameters
by default. If you are just typing code, you don’t need them. For instance:

Private Sub Button1_MouseEnter() Handles Button1.MouseEnter
‘Functional code here

End Sub

Where this really helps you is when you are just creating an event for some-
thing at the code level, and you are using IntelliSense to help you along.
Sometimes you just want to type Private Sub NewFunction Handles and see
what IntelliSense will make available to solve a certain problem. Before this,
you needed to figure out the formatting of the input parameters. Now, you
don’t.

224 Part III: Making Your Programs Work

19_182383 ch13.qxp 2/21/08 7:37 PM Page 224

Figure 13-3:
Picking

an event.

Figure 13-2:
Picking an

object in
Code View.

225Chapter 13: Making Arguments, Earning Returns

19_182383 ch13.qxp 2/21/08 7:37 PM Page 225

Making Sensible Procedures
with Overloading

Overloading is an organizational feature that allows a variety of parameter
counts and types to be used in one logical procedure. For instance, you could
have a method that adds two numbers or three numbers. When you are using
the procedure, it seems to work like one function that takes two or three
numbers. When you are writing the procedure, though, it is actually two
functions.

Although overloading doesn’t do anything you can’t do by coding multiple
procedures, you can use it to make your code make more sense.

Reusing your procedure names
Let me show you an example by reusing a procedure that you have already
written with overloading. Take the previously mentioned specification — an
add function that can add two or three numbers. You can imagine the func-
tion in VB; it would look like the following:

Public Function add(ByVal numberOne As Integer, ByVal
numberTwo As Integer) As Integer

Return numberOne + numberTwo
End Function

With the requirement in the introduction, you will need to create an add pro-
cedure that accepts three integers. You could make a whole new function, but
wouldn’t you rather just use the add name again, with the new method signa-
ture? As you can see in the following code, with overloading you can:

Public Function add(ByVal numberOne As Integer, ByVal
numberTwo As Integer, ByVal numberThree As
Integer) As Integer

Return numberOne + numberTwo + numberThree
End Function

If you are experienced in VB.NET 1.0 or 1.1, you will notice that I didn’t use
the Overloads keyword. It is no longer required unless you are overloading
a built-in function.

What does this do for you in the development environment? Primarily, it
makes IntelliSense make a lot more . . . sense. I show this in Figure 13-4.

If you use IntelliSense, you can see the two add methods shown as one
method. This has no real impact on functionality — it is just a convenience —
but boy does it help your code make a lot more sense!

226 Part III: Making Your Programs Work

19_182383 ch13.qxp 2/21/08 7:37 PM Page 226

Changing built-in functions
with operator overloading
Overloading isn’t limited to methods you have written yourself. You can over-
load built-in methods and operators, too! As I discuss in Chapter 9, operators
are mostly math symbols, with a few Boolean logic bits thrown in. Operators
are shortcuts for longer math expressions.

For instance, instead of the add method shown in the preceding section, you
can just write answer = numberOne + numberTwo + numberThree. It’s
much easier to create something like that.

If you want the add function to do something different, such as warn people
if they are adding a negative number to a positive number, you could write a
function to do this, or you could overload the + operator. The following code
shows an example of this:

Public Shared Operator + (ByVal numberOne as Integer,
ByVal numberTwo as Integer) as Integer

If (numberOne < 0) Or (numberTwo < 0) Then
MessageBox.Show(“You are adding a negative
number!”)

End If
End Operator

Figure 13-4:
Overloading

and
IntelliSense.

227Chapter 13: Making Arguments, Earning Returns

19_182383 ch13.qxp 2/21/08 7:37 PM Page 227

When you do this, the add operator works as originally designed, but it has
this added functionality that you have placed on it — and only when you add
two integers.

This is new functionality in VB 2008, though it has been available in other
Microsoft languages for a while. Overloading might seem to be a theoretical
programming concept, but in general it really does have a big place in writing
clear, concise code. See what I mean in the next section.

Designing for overloading
Even though overloading doesn’t have a direct impact on functionality, it can
have a big impact on how you think about software. When you are writing
Windows or Web Forms, overloading doesn’t have a big impact, but when you
are writing libraries of classes or a DLL file, it is very significant.

For the ultimate example, look at the .NET Framework itself. Remember arrays,
those lists of things one can keep in memory? You sort a few in Part II. Anyway,
that Sort subroutine has 18 different versions, each one accepting a slightly
different set of parameters based on the needs of the programmer.

Each of those versions of the Sort subroutine is coded separately and looks
like different subroutines in the source code of the .NET Framework. But to
you, the user of the framework, there is just one method, Sort, and it just
happens to take exactly the parameters you need!

Without overloading, the Array class would have 18 Sort subroutines, rather
than just one. And when you were coding for an array, you would need to
remember just the particular Sort subroutine you wanted or dig through all
18 in IntelliSense or the documentation.

Twenty-four methods are already part of the Array class. With all the over-
loads, my rough count shows that there would be 107 methods — functions
and subroutines — in the Array class. That’s over four times as many. Now,
220,000 methods, properties, and events exist in the .NET Framework, so
without overloading, almost a million would exist if the ratio held. That’s
significant!

Note that you can overload too much. If you find yourself overloading a
method 250 times to deal with a lot of parameters, you might want to check
into a parameter array. These arrays allow you to pass in a variable quantity
of parameters.

So overloads are really a design issue. When you are building a class library,
think about how the methods are named and whether your patterns make

228 Part III: Making Your Programs Work

19_182383 ch13.qxp 2/21/08 7:37 PM Page 228

sense. Have another programmer look over them. Compare it to what has
already been done in the .NET Framework. Then see whether overloading
can help you design better classes.

Optional parameters
Using optional parameters is another way to structure procedure naming, but
rarely does it have benefits over overloading. Since early versions of Visual
Basic, optional parameters have been available for use when writing subrou-
tines or functions. In fact, Visual Basic is the only contemporary language
that allows optional parameters.

Optional parameters are used by including parameters at the end of the
method signature that are not required for the method to run. For instance,
I could implement optional parameters in my add method, as shown in the
following code:

Public Function add(ByVal numberOne As Integer, ByVal
numberTwo As Integer, Optional ByVal
numberThree = 0) As Integer

Dim result as Integer
If numberThree > 0 then

result = numberOne + numberTwo + numberThree
Else

result = numberOne + numberTwo
End If
Return result

End Function

The differences between optional parameters and overloaded procedures are
pretty clear:

� You find a third parameter called numberThree, which has an
Optional keyword.

� The optional parameter has a default value.

� I had to include logic in the code to handle the possibility that the
optional parameter was left as the default value.

Because of the rules of addition, I could have just used the optional parame-
ter no matter what — it would have either been a number or 0, right? Adding
anything to 0 returns the original value. But that is specific to this example. If
this were a divide method, that wouldn’t be the case.

Generally, use overloading rather than optional parameters. Overloading
makes a lot more sense to the end programmer using the method.

229Chapter 13: Making Arguments, Earning Returns

19_182383 ch13.qxp 2/21/08 7:37 PM Page 229

Flexible Objects with Generics
Generics are exactly what they sound like — objects that accept their own
type as a parameter. In Chapters 6, 9, and 12, I mention that properties of
objects are of certain types, such as strings or integers. With generics, you
can make an object that holds items of a generic type so that you can define
it when you use it, rather than when you code it.

Confused? Don’t be. The keyword you want to remember is Of. Of is your
best friend. When you build a new generic class, it should be declared as Of a
certain type. Then a list within that object can be a list of anything you need
the object to be at code time. At runtime, then, the object can be declared to
be Of a type, like Integers or Apples, to make sure that it gets the right
types of values.

Building generics
I have a very simple example in the following code. The Staff object is a list
of people. You may want to hold the names in the list, or their IDs, or even
Person objects if you were to create one. You might not know when you
build the Staff object, so you make it generic, as follows:

‘First, declare the object with the generic type.
‘The name can be anything, I just invented the staffType
Public Class Staff(Of staffType)
‘You need a private array to hold your list of ten

People
Private peopleArray(10) as staffType
‘The Add method will add one of whatever you have
‘instantiated the object as to the collection.
Public Sub Add(ByVal person as staffType)
peopleArray.SetValue(person, peopleArray.Length + 1)

End Sub
End Class

So now when you go to use the Staff object, you have to declare what kind
of things you will be keeping in it. This is shown in the following code:

‘This could hold a list of names
Dim myStaffofStrings as New Staff(Of String)

‘This could hold a list of IDs
Dim myStaffOfIntegers as New Staff(of Integer)

‘Or even a list of People for a previously coded Person
object

Dim myStaffOfPeople as New Staff(Of Person)

230 Part III: Making Your Programs Work

19_182383 ch13.qxp 2/21/08 7:37 PM Page 230

What you have created here is a generic Staff list capable of holding what-
ever you want to be in it when you use it. When you declare what you are
going to put in it, it holds you to it. In Figure 13-5, you can see that when I
declared the Staff object as holding Integers, it even showed up in
IntelliSense.

Designing for generics
Perhaps you’re wondering what the point is, and I can understand that.
Basically, you are preventing having to write classes twice. If Staff can be a
collection of names or ID numbers, you would have to write it twice (without
generics) and name it two different things. With generics, that is no longer
necessary.

From a design perspective, this is just like overloading. Overloading prevents
you from having to write two methods to handle two different parameter
types. Generics prevent you from having to write two different classes to
hold collections of two different kinds of types.

Figure 13-5:
Using

generics.

231Chapter 13: Making Arguments, Earning Returns

19_182383 ch13.qxp 2/21/08 7:37 PM Page 231

If you think of classes as molds and objects as the items that come out of
those molds, you can think of generics as a way to modify the mold on the fly.
It is another tool in your toolkit, and it isn’t a requirement for class design.
When you have a problem that can only be solved by using generics, though,
you will know about it.

Controlling Objects with Threading
I show you a lot about building and using objects, but not much about their
feeding and care. Generally, the .NET Framework takes care of the objects for
you, but at times, you need to take control. That’s when you need to know
about threading.

Designing for threading
From a design perspective, threading is very simple. If you have a very time-
consuming operation, you may need to put it on the back burner and return
control to the user. Have you ever done something in Word and had the hour-
glass show up? That’s an example of a blocking operation. The whole applica-
tion had to wait for that operation to complete before returning control to
the user.

If the operation is such that the application doesn’t have to wait, you as the
programmer can run that operation on a separate thread, running parallel to
the application as a whole, and leave the user’s control of the application on
the original thread. (I demonstrate this concept in Figure 13-6.) The user
might not even know that another process is running!

Application

User’s flow

Blocking operation in a separate thread

Time

Figure 13-6:
Designing

for
threading.

232 Part III: Making Your Programs Work

19_182383 ch13.qxp 2/21/08 7:37 PM Page 232

Lots of applications that you use every day use separate threading. Word uses
it when you spell-check or print. Outlook uses it when it sends or receives
e-mail. Excel uses it while calculating values in cells. All of these things go on
while you are still typing away, for the most part. The number of simultaneous
threads is only limited by the amount of memory in the machine.

The Office examples are good ones because they show the most-often-used
reason for implementing threading — access to a resource. Network connec-
tions, dictionaries, and databases might only accept one connection at a
time. If you want to let the user continue using the program while the applica-
tion is processing, you need to use threading.

Implementing threading
To get an idea of how a blocking operation works in and out of a thread, try
this simple example using a timer to emulate a troublesome operation:

1. Start Visual Studio and create a new Windows Application project in
Visual Basic.

I called mine ThreadingExample. You can find it on this book’s com-
panion Web site at www.vbfordummies.net.

2. Add two buttons, called StartThread and TestLocking, to the form.

3. Change the text of StartThread to “Start The Timer.”

4. Change the text of TestLocking to “Test The Lock.”

Figure 13-7 shows an example of how the form should look.

5. Double-click the Start the Timer button to launch the Code View and
get the OnClick event handler.

6. Add an imports statement to the top of the code — Imports
System.Threading.

This will make available the new Timer methods to allow the timer to
run in a separate thread.

7. Add the following code to the StartThread_Click event handler:

Dim NetworkEmulator As New Timer(New _
TimerCallback(AddressOf FakeNetworkCall), _
Nothing, 0, 4000)

8. Add the following code to the class to generate the FakeNetworkCall
that you are emulating with the timer:

Public Sub FakeNetworkCall(ByVal state As Object)
MessageBox.Show(“This is a network call!!”)

End Sub

233Chapter 13: Making Arguments, Earning Returns

19_182383 ch13.qxp 2/21/08 7:37 PM Page 233

This will pop up a message box every four seconds — not usually
recommended.

9. Add the following code in the Code View to make an event handler
for the click event of the TestLocking button:

Dim TestNumber As Integer = 0
Private Sub TestLocking_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs)
Handles TestLocking.Click

TestNumber = TestNumber + 1
Me.Text = Me.Text + TestNumber.ToString

End Sub

When you run this code, you will find that nothing happens until you click
the Start the Timer button. Then, every four seconds, you will get a dialog
box with the test message inside. Try and keep up with them. Every now and
again, click the Test the Lock button. The counter should increment in the
name of the form. You can see my crazy test in Figure 13-8.

What does this program prove? It shows that an application can run two
things at the same time — for real. At the same time, the program was count-
ing to 4,000 over and over, and it was still allowing you to work with the form.

Figure 13-7:
The

Threading-
Example

form.

234 Part III: Making Your Programs Work

19_182383 ch13.qxp 2/21/08 7:37 PM Page 234

This was all due to the TimerCallBack object, which is a thread encapsula-
tion. You told the .NET Framework, “Hey, launch a thread that does a timer
every four seconds and calls this method.” It works pretty well. There are
other things that threading will do for you, too, including the following:

� Many network calls have an asynchronous set of methods, which enable
threading.

� Priority is built in, so when you have several threads, you can say which
thread is the most important.

� File reading and writing can be automatically threaded.

� You can define a block of code as threaded.

All of this is in the MSDN documentation, of course. Just search for “thread-
ing,” and start with About Threading. If you are writing large-scale Windows
applications that do more than read from and write to a database, you will be
interested — I promise!

Figure 13-8:
The test

of the
threading

application.

235Chapter 13: Making Arguments, Earning Returns

19_182383 ch13.qxp 2/21/08 7:37 PM Page 235

236 Part III: Making Your Programs Work

19_182383 ch13.qxp 2/21/08 7:37 PM Page 236

Part IV
Digging into the

Framework

20_182383 pp04.qxp 2/21/08 7:37 PM Page 237

In this part . . .

The .NET Framework is the backbone of Visual Basic
2008. It provides access to databases, graphics,

security, files, and just about everything that your pro-
gram might want to use. In this part, you use the tools
that do that work for you, and, trust me, you’ll be amazed
at how that framework makes some very difficult features
seem very, very easy.

20_182383 pp04.qxp 2/21/08 7:37 PM Page 238

Chapter 14

Writing Secure Code
In This Chapter
� Designing for security

� Building secure Windows and Web applications

� Digging into System.Security

Security is a big topic. Ignoring for a moment all the buzzwords surround-
ing security, I’m sure you realize that you need to protect your applica-

tion from being used by people who shouldn’t be using it. You also know that
you need to prevent your application from being used for things it shouldn’t
be used for.

At the beginning of the electronic age, security was usually performed by
obfuscation. If you had an application that you didn’t want people peeking
at, you just hid it, and no one would know where to find it. Thus, it would be
secure. (Remember the movie War Games? The military just assumed that no
one would find the phone number to connect to their mainframes — but
Matthew Broderick’s character did.)

That obviously doesn’t cut it anymore, and now you need to consider secu-
rity as an integral requirement of every single system that you write. Your
application might not have sensitive data in it, but can it be used to get to
other information on the machine? Can it be used to gain access to a network
that it shouldn’t? The answers to these questions matter.

The two main parts to security are authentication and authorization.
Authentication is the process of making sure that a user is authentic — that
is, that the user is who he or she claims to be. The most common method
of authentication is to require the use of a username and password, though
other ways exist, such as thumbprint scans. Authorization is the act of making
sure that a user has the authority to do what he or she asks to do. File per-
missions are a good example of this — users can’t delete system-only files,
for instance.

The silent partner of security is making sure that your system can’t be fooled
into believing a user is authentic and/or authorized. Because of this require-
ment, there is more to security than just inserting username and password

21_182383 ch14.qxp 2/21/08 7:37 PM Page 239

text boxes in your program. In this chapter, I tell you what tools are available
in the .NET Framework to help you make sure that your applications are
secure.

Designing Secure Software
Software security is a fair amount of work to design accurately. If you break
the process into pieces, you find that it is a lot more reasonable to accom-
plish. The Patterns and Practices team (a group of software architects at
Microsoft who devise programming best practices) has created a systematic
approach to designing secure programs that I think you will find very
straightforward, so I describe it in the following sections.

Determining what to protect
Different applications have different artifacts that need protection, but all
applications have something that needs protection. If you have a database in
your application, that is the most important item to protect. If your applica-
tion is a server-based application, the server should rate pretty high when
you’re determining what to protect.

Even if your program is just a little single-user application, the software should
do no wrong — an outsider shouldn’t be able to use the application to break
into the user’s computer.

Documenting the components
of the program
If you think this section’s title sounds similar to the “documentation” part
of the design process described in Chapter 3, you’re right. A lot of threat-
modeling is just understanding how the application works and describing
it well.

First, describe what the application does. This description becomes a func-
tional overview. If you follow the steps laid out in Chapter 3, the use cases,
requirements, or user stories document (depending on your personal
methodology) should give you a good starting point.

Next, describe how the application gets all of that stuff done at the highest
level. A Software Architecture Overview (SAO) diagram is a great way to do
this. This diagram shows which machines and services do what in your
software.

240 Part IV: Digging into the Framework

21_182383 ch14.qxp 2/21/08 7:37 PM Page 240

If you happen to be using Visual Studio Team System, building a diagram in
the Enterprise Architect version is the ultimate SAO diagram and is a good
model.

Sometimes the SAO is a very simple diagram — if you have a stand-alone
Windows Forms program like a game, that’s all there is! A stand-alone pro-
gram has no network connection and no communication between software
parts. Therefore, the software architecture is just the one machine.

Decomposing the components
into functions
After you have a document that says what the software is doing and how, you
need to break out the individual functional pieces of the software. If you have
set up your software in a component fashion, the classes and methods show
the functional decomposition. It’s really simpler than it sounds.

The end result of breaking the software into individual pieces is having a pretty
decent matrix of what components need to be protected, what parts of the
software interact with each component, what parts of the network and hard-
ware system interact with each component, and what functions of the soft-
ware do what with each component.

Identifying potential threats
in those functions
After you have the list of components that you need to protect, you get to do
the tough part: Put two and two together. Identifying threats is the process
that gets the security consultants the big bucks, and it is almost totally a
factor of experience.

For instance, if your application connects to a database, you would have to
imagine that the connection could potentially be intercepted by a third party.
If you use a file to store sensitive information, it is theoretically possible that
the file could be compromised.

To create a threat model, you need to categorize the potential threats to your
software. An easy way to remember the different categories of threats is as
the acronym STRIDE:

� Spoofing identity: Users pretending to be someone they are not.

� Tampering with data or files: Users editing something that shouldn’t be
edited.

241Chapter 14: Writing Secure Code

21_182383 ch14.qxp 2/21/08 7:37 PM Page 241

� Repudiation of action: Users having the opportunity to say they didn’t
do something that they actually did.

� Information disclosure: Users seeing something that shouldn’t be seen.

� Denial of service: Users preventing legitimate users from accessing the
system when they need to.

� Elevation of privilege: Users getting access to something that they
shouldn’t have access to.

All these threats must be documented in an outline under the functions that
expose the threat. This strategy not only gives you a good, discrete list of
threats, but it also focuses your security hardening on those parts of the
application that pose the greatest security risk.

Rating the risk
The final step in the process is to rate the risks. Microsoft uses the DREAD
model to assess risk to its applications. DREAD is an acronym that defines
five key attributes used to measure each vulnerability:

� Damage potential: The dollar cost to the company for a breach.

� Reproducibility: Are there special conditions to the breach that could
make it harder or easier to find?

� Exploitability: How far into a corporate system could a hacker get?

� Affected users: Who is affected? How many users?

� Discoverability: How easy is it to find the potential breach?

You can research the DREAD model at http://msdn.microsoft.com
/security, or just position your threat model to consider those attributes.
The key is to determine what threats are most likely to cause problems and
to mitigate them as best you can.

Building Secure Windows
Forms Applications

The framework lives in a tightly controlled sandbox when running on a client
computer. Because of the realities of this sandbox, the configuration of secu-
rity policy for your application becomes very important.

242 Part IV: Digging into the Framework

21_182383 ch14.qxp 2/21/08 7:37 PM Page 242

The first place you need to look for security in writing Windows Forms is in
the world of authentication and authorization. Authentication is confirming
the identity of a user, and authorization is determining what he or she can
and can’t do within an application.

When you are threat modeling, you can easily consider all the possible
authentication and authorization threats using the STRIDE acronym. (See
the earlier section “Identifying potential threats in those functions” for
more about STRIDE.)

Authentication using Windows logon
To be straightforward, I have to say that the best way for an application to
authorize a user is to make use of the Windows logon. A whole host of argu-
ments exist for this and other strategies, but it all comes down to simplicity:
Simple things are more secure.

For much of the software developed with Visual Studio, the application will
be used in an office by users who have different roles in the company; for
example, some of those users might be in the Sales or Accounting depart-
ments. In many environments, the most privileged users are managers or
administrators — yet another set of roles. In most offices, each employee has
his or her own user account, and each user is assigned to the Windows NT
groups that are appropriate for the roles he or she plays in the company.

Using Windows security only works if the Windows environment is set up
correctly. You can’t effectively build a secure application in a workspace
with a bunch of Windows XP machines where everyone logs on as the
Administrator, because you can’t tell who is in what role.

Building a Windows Forms application to take advantage of Windows security
is pretty straightforward. The goal is to check to see who is logged on
(authentication) and then check that user’s role (authorization).

The following steps show you how to create an application that protects the
menu system for each user by showing and hiding buttons:

1. Start a new Windows Application project by choosing File➪New
Project, and give your new project a descriptive name.

For example, I named my project Windows Security.

2. Add three buttons to your form — one for Sales Menu, one for
Accounting Menu, and one for Management Menu.

My example is shown in Figure 14-1.

243Chapter 14: Writing Secure Code

21_182383 ch14.qxp 2/21/08 7:37 PM Page 243

3. Set all the buttons’ visible properties to False so that they are not
seen on the form by default.

4. Double-click the form to get to the Form1_Load event handler.

5. Above the Class statement, import the System.Security.
Principal namespace, as follows:

Imports System.Security.Principal

6. In the Class statement, dimension a new Identity object that repre-
sents the current user with the GetCurrent method of the
WindowsIdentity object by adding the following code:

Dim myIdentity As WindowsIdentity =
WindowsIdentity.GetCurrent

7. Get a reference to this identity with the WindowsPrincipal class, as
follows:

Dim myPrincipal As WindowsPrincipal = New
WindowsPrincipal(myIdentity)

8. Finally, in the Form1_Load subroutine, run a little If-Then statement
to determine which button to show. All the code is shown in Listing
14-1.

Listing 14-1: The Windows Security Application’s Code
Public Class Form1

Dim myIdentity As System.Security.Principal.WindowsIdentity =
System.Security.Principal.WindowsIdentity.GetCurrent

Figure 14-1:
The

example
Windows

Security
application.

244 Part IV: Digging into the Framework

21_182383 ch14.qxp 2/21/08 7:37 PM Page 244

Dim myPrincipal As WindowsPrincipal = New
System.Security.Principal.WindowsPrincipal (myIdentity)

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

If myPrincipal.IsInRole(“Accounting”) Then
AccountingButton.Visible = True

ElseIf myPrincipal.IsInRole(“Sales”) Then
SalesButton.Visible = True

ElseIf myPrincipal.IsInRole(“Management”) Then
ManagementButton.Visible = True

End If
End Sub

End Class

To successfully run this code, you must have an environment that has
Accounting, Sales, and Management NT user groups.

In some cases, you don’t need this kind of diversification of roles. Sometimes
you just need to know whether the user is in a standard role. System.
Security provides that, too. Using the WindowsBuiltInRole enumerator,
you can describe actions that should take place when, for example, the
Administrator is logged on:

If myPrincipal.IsInRole(WindowsBuiltInRole.Administrator) Then
‘Do something

End if

Encrypting information
Encryption is — at the core — an insanely sophisticated process. Five name-
spaces are devoted just to different algorithms. (Because encryption is so
complex, I’m not going to get into its details in this book.)

Nonetheless, you must understand one cryptographic element for a key ele-
ment of security — encrypting files. When you work with a file in a Windows
Forms application, you run the risk of someone just loading it in a text editor
and looking at it, unless you have encrypted the program.

DES (Data Encryption Standard) is a common encryption scheme that is
implemented simply in .NET. It is not the strongest encryption in these days
of 64-bit desktop machines, but it is strong enough to encrypt the data files
for a Windows application. You can find the methods to encrypt for DES in
the DESCryptoServiceProvider in the System.Security.Cryptography
namespace.

245Chapter 14: Writing Secure Code

21_182383 ch14.qxp 2/21/08 7:37 PM Page 245

Deployment security
If you are deploying your application using ClickOnce, you need to define
the access to the PC that the application will request. ClickOnce is a
server–based deployment strategy that allows users to run Windows Forms
applications from a Web browser or file share. This is accomplished with the
Security tab in the My Project configuration file, as shown in Figure 14-2.

Getting to the My Project configuration file is fairly straightforward. Follow
these steps:

1. From an open project, go the Solution Explorer by pressing
Ctrl+Alt+L.

2. Double-click the My Project file.

3. Click the Security tab.

Here, you can define the features that your application uses so that the user
installing it will receive a warning at installation rather than a security error
when running the application.

Figure 14-2:
The Security

tab of the
My Project

configuration
file.

246 Part IV: Digging into the Framework

21_182383 ch14.qxp 2/21/08 7:37 PM Page 246

Building Secure Web Forms Applications
Web Forms applications are disconnected, loosely coupled programs that
expose a server to potential attacks through the exposed ports used by the
applications. By loosely coupled, I mean that they have a transact-and-wait
relationship with the server.

Because of this coupling, building for security becomes more important than
ever with a Web Forms application. A side effect of this is that your applica-
tion can become less functional due to security considerations.

When building Web-based applications, you spend less of your time worrying
about authentication (especially if your application is made publicly avail-
able) and more time worrying about crackers. Because you are making a
server — usually something you would keep private — available to the
public, your programs are subject to a whole new set of rules for security.

The key to protecting a public server is honesty. You have to be honest with
yourself about the weaknesses of the system. Don’t think, “Well, a cracker
could figure out the password by doing XYZ, but no one would ever do that.”
Trust me; someone will figure it out.

The two main types of attacks you should be concerned about for a Web
Forms application are SQL Injection attacks and script exploits.

SQL Injection attacks
A SQL Injection attack occurs when a hacker enters a line of SQL code into an
input field used to query a database in a form on a Web page (such as the
Username and Password text boxes in a logon form). This malicious SQL
code is written to cause the database to act in an unexpected way or to
allow the hacker to gain access to, alter, or damage the database.

Understanding SQL Injection
The best way to understand how a hacker uses an SQL Injection is to see an
example. For instance, a Web page has code in place that accepts a Product
ID from the user in a text box and returns product details based on the
Product ID the user entered. The code on the server might look like this:

247Chapter 14: Writing Secure Code

21_182383 ch14.qxp 2/21/08 7:37 PM Page 247

‘Get productId from user
Dim productId As String = TextBox1.Text
‘Get information from the database.
Dim selectString As String = “SELECT * FROM Items WHERE

ProductId = ‘“ & productId & “‘;”
Dim cmd As SqlCommand = New SqlCommand(selectString, conn)
conn.Open()
Dim myReader As SqlDataReader = cmd.ExecuteReader()
‘ Process results.
myReader.Close()
conn.Close()

Normally, a user would enter the appropriate information into the text box.
But a cracker attempting an SQL Injection attack would enter the following
string into textBox1:

“FOOBAR’;DELETE FROM Items;--”

The SQL code that would be run by your code would look like this:

SELECT * FROM Items WHERE ProductID = ‘FOOBAR’;DELETE FROM
Items;--’

The SQL server executes some code you didn’t expect; in this case, the code
deleted everything in the Items table.

The easiest way to prevent SQL Injection is to never use string concatenation
to generate SQL. Use a stored procedure and SQL parameters. You can read
more about that in Chapter 15.

Script exploits
A script exploit is a security flaw that takes advantage of the JavaScript engine
in a user’s Web browser. Script exploits take advantage of one of the more
common features of public Web Forms applications — enabling interaction
among users. For instance, a Web Forms application may enable a user to
post a comment that other users of the site can view, or it may allow a user
to fill out an online profile.

Understanding script exploits
If a malicious user were to put some script code in his or her profile or com-
ment, that hacker could take over the browser of the next user who came to
the site. Several outcomes are possible, and none of them are good.

248 Part IV: Digging into the Framework

21_182383 ch14.qxp 2/21/08 7:37 PM Page 248

For instance, the cookies collection is available to JavaScript when a user
comes to your site. A malicious user would put some script code in his or her
profile that could copy the cookie for your site to a remote server. This could
give the malicious user access to the current user’s session because the ses-
sion identifier is stored as a cookie. The malicious user would then be able to
spoof the current user’s identity.

Preventing script exploits
Fortunately, ASP.NET prevents users from typing most script code into a form
field and posting it to the server. Try it with a basic Web Forms project by fol-
lowing these steps (you will get the error shown in Figure 14-3):

1. Create a new Web Forms project.

2. Add a text box and a button to the default page.

3. Run the project.

4. Type <script>msgbox()</script> into the text box.

5. Click the button.

Additionally, you can use the Server.HTMLEncode method to encode any-
thing that the Web Forms application sends to the screen — this will make
script code appear in real text rather than in actual HTML.

Figure 14-3:
Script

exploits are
blocked by

default.

249Chapter 14: Writing Secure Code

21_182383 ch14.qxp 2/21/08 7:37 PM Page 249

Best practices for securing your
Web Forms applications
Aside from making sure that your Web Forms application will prevent SQL
Injection attacks and script exploits, you should keep in mind some good
practices for securing your Web applications.

The following list outlines some of the most important practices for securing
your Web applications:

� Keep your IIS box up to date.

� Back up everything.

� Avoid using a Querystring variable.

� Don’t leave HTML comments in place. Any user can view the HTML code
and see your comments by choosing View➪Source in a browser.

� Don’t depend on client-side validation for security — it can be faked.

� Use strong passwords.

� Don’t assume what the user sent you came from your form and is safe. It
is easy to fake a form post.

� Make sure that error messages don’t give the user any information about
your application. E-mail yourself the error messages instead of display-
ing them to the user.

� Use Secure Sockets Layer.

� Don’t store anything useful in a cookie.

� Close all unused ports on your Web server.

� Turn off SMTP on IIS unless you need it.

� Run a virus checker if you allow uploads.

� Do not run your application as Administrator.

� Use temporary cookies, if possible, by setting the expiration date to a
past date. The cookie will only stay alive for the length of the session.

� Put a size limit on file uploads. You can do this in the Web.Config file,
as follows:

<configuration>
<system.web>

<httpRuntime maxRequestLength=”4096” />
</system.web>

</configuration>

� Remember that the ViewState of Web Forms is easily viewable.

250 Part IV: Digging into the Framework

21_182383 ch14.qxp 2/21/08 7:37 PM Page 250

Using System.Security
While much of the security tools are built into the classes that use them, some
classes defy description or classification. For that reason, System.Security
is the holding pot for stuff that doesn’t fit anywhere else.

The more common namespaces for System.Security are described in
Table 14-1. I show how to use the Security.Principal namespace in the
earlier section “Authentication using Windows logon.”

Table 14-1 Headings and Rules
Namespace Description Common Classes

Security Serves as the base CodeAccessPermission,
class for security SecureString

AccessControl Hosts more AccessRule, AuditRule
sophisticated control
for authorization

Authorization Contains enumerations CipherAlgorithmType
that describe the security
of an application

Cryptography Contains several CryptoConfig,
namespaces that DESCryptoService
help with encryption Provider

Permissions Controls access to PrincipalPermission,
resources SecurityPermission

Policy Defends repudiation Evidence, Site, Url
with classes for
evidence

Principal Defines the object that WindowsIdentity,
represents the current WindowsPrincipal
user context

251Chapter 14: Writing Secure Code

21_182383 ch14.qxp 2/21/08 7:37 PM Page 251

252 Part IV: Digging into the Framework

21_182383 ch14.qxp 2/21/08 7:37 PM Page 252

Chapter 15

Accessing Data
In This Chapter
� Understanding the System.Data namespace

� Connecting to a data source

� Working with data from databases

� Making quick data management screens

Not to predispose you to the contents of this chapter, but you will proba-
bly find that data access is the most important part of your use of the

.NET Framework. You’re likely to use the various features of the System.
Data namespace more than any other namespace.

Unquestionably, one of the most common uses of Visual Basic is the cre-
ation of business applications. Business applications are about data. This
is the black and white of development with Visual Basic 2008. While under-
standing a little of everything is important, complete understanding of the
System.Data namespace is very important when you’re building business
applications.

You can look at the data tools in VB 2008 in three ways:

� Database connectivity: Getting information out of and into a database is
a primary part of the System.Data namespace.

� Holding data in containers within your programs: The DataSet, Data
View, and DataTable containers are useful mechanisms for holding
data. If you are a Visual Basic 6 or an ASP programmer, you remember
Recordsets, which have been replaced by the new constructs.

The Language Integrated Query now lets you get the data out of the data
containers using Structured Query Language (SQL) instead of compli-
cated object language.

22_182383 ch15.qxp 2/21/08 7:38 PM Page 253

� Integration with data controls: The System.Web and System.Windows
namespaces function to integrate with the data controls. Data control
integration uses database connectivity and data containers extensively.
This makes data controls a great target for your reading in this chapter.

Getting to Know System.Data
Data in .NET is different from data in any other Microsoft platform you have
used before. Microsoft has and continues to change the way data is manipu-
lated in the .NET Framework. ADO.NET, whose implementation is contained
in the new data library System.Data, provides yet another new way to think
about data from a development perspective:

� Disconnected: After you get data from a data source, your program is no
longer connected to that data source. You have a copy of the data. This
cures one problem and causes another:

• You no longer have a row-locking problem. Because you have a
copy of the data, you don’t have to constrain the database from
making changes.

• You have the last in wins problem. If two instances of a program get
the same data, and they both update it, the last one back to the
database overwrites the changes made by the first program.

� XML driven: The data copy that is collected from the data source is
actually XML under the hood. It might be moved around in a custom
format when Microsoft deems it necessary for performance, but it is just
XML either way, making movement between platforms, applications, or
databases much easier.

� Database-generic containers: The containers don’t depend on the type
of the database — they can be used to store data from anywhere.

� Database-specific adapters: Connections to the database are specific to
the database platform, so if you want to connect to a specific database,
you need the components that work with that database.

The process for getting data has changed a little, too. You used to have a
connection and a command, which returned a Recordset. Now, you have an
adapter, which uses a connection and a command to fill a DataSet container.
What has changed is the way that the user interface helps you get the job
done.

254 Part IV: Digging into the Framework

22_182383 ch15.qxp 2/21/08 7:38 PM Page 254

System.Data has the classes to help you connect to a lot of different data-
bases and other types of data. These classes are broken up into the name-
spaces shown in Table 15-1.

Table 15-1 The System.Data Namespaces
Namespace Purpose Most Used Classes

System.Data Classes common to all The containers DataSet,
of ADO.NET DataView, DataTable,

DataRow

System.Data. Utility classes used by DbCommand,
Common database-specific classes DbConnection

System.Data. Classes for connections OdbcCommand,
ODBC to ODBC databases such OdbcAdapter

as dBASE

System.Data. Classes for connections OleDbCommand,
OleDb to OleDb databases such OleDbAdapter

as Access

System.Data. Classes for connections OracleCommand,
OracleClient to Oracle OracleAdapter

System.Data. Classes for connections SqlCommand,
SqlClient to Microsoft SQL Server SqlDataAdapter

System.Data. For referencing the native SqlDateTime
SqlTypes types common to SQL

Server

Though there is a lot to the System.Data namespace and related tools, I
focus on the way Visual Studio implements these tools. In previous versions
of the development software of all makes and models, the visual tools just
made things harder because of the black box problem.

The black box problem is that of having a development environment do things
for you over which you have no control. Sometimes, it’s nice to have things
done for you, but when the development environment doesn’t build things
exactly how you need them, it ends up generating code that isn’t very useful.

Fortunately, that isn’t the case anymore. Visual Studio now generates com-
pletely open and sensible VB code when you use the visual data tools. I think
you will be pleased with the results.

255Chapter 15: Accessing Data

22_182383 ch15.qxp 2/21/08 7:38 PM Page 255

How the Data Classes Fit
into the Framework

The data classes are all about information storage. In Chapter 13, I talk about
collections, which are for storage of information while an application is run-
ning. Hashtables are another example of storing information. Collections hold
lists of objects, and hashtables hold name and value pairs.

The data containers hold data in larger amounts and help you manipulate
that data. The data containers include the following:

� DataSet: Kind of the granddaddy of them all, the DataSet container is
an in-memory representation of an entire database.

� DataTable: A single table of data stored in memory, the DataTable
container is the closest thing you can find to a Recordset, if you are a VB
6 programmer and are looking. DataSet containers are made up of
DataTable containers.

� DataRow: Unsurprisingly, this is a row in a DataTable container.

� DataView: A copy of a DataTable that can be used to sort and filter
data for viewing purposes.

� DataReader: A read-only, forward-only stream of data that is used for
one-time processes such as filling list boxes. Usually called a fire hose.

Getting to Your Data
Everything in the System.Data namespace revolves around getting data
from a database, such as Microsoft SQL Server, and filling these data contain-
ers. You can get to this data manually. Generally speaking, the process goes
in stages that look something like this:

1. You create an adapter.

2. You tell the adapter how to get information from the database (the
connection).

3. The adapter connects to the database.

4. You tell the adapter what information to get from the database (the
command).

5. The adapter fills the DataSet container with data.

6. The connection between the adapter and the database is closed.

7. You now have a disconnected copy of the data in your program.

256 Part IV: Digging into the Framework

22_182383 ch15.qxp 2/21/08 7:38 PM Page 256

Not to put too fine a point on it, but you shouldn’t have to go through that
process. Visual Studio does a lot of the data management for you if you let it,
and I recommend that you do.

Using the System.Data Namespace
The System.Data namespace is another namespace that gets mixed up
between the code world and the visual tools world. Though it is more of a
relationship between the form controls and the Data namespace, it often
seems like the data lives right inside the controls, especially when you’re
dealing with Visual Basic.

In the following sections, you deal primarily with the visual tools, which are as
much a part of the Visual Basic experience as the code. First, I go over connect-
ing to data sources, and then I show you how to write a quick application using
one of those connections. Finally, I go over a little of the code side.

Connecting to a data source
There is more to connecting to a database than establishing a simple connec-
tion to Microsoft Access. Visual Basic developers have to connect to main-
frames, text files, unusual databases, Web services, and other programs. All
of these disparate systems get integrated into windows and Web screens,
with update, add, and delete functionality to boot.

Getting to these data sources mostly depends on the Adapter classes of the
individualized database namespaces. Oracle has its own, as does SQL Server.
Databases that are ODBC (Open Database Connectivity) compliant (such as
Microsoft Access) have their own Adapter classes, and the newer OLEDB
(Object Linking and Embedding Database) protocol has one, too.

Fortunately, a wizard handles most of this. The Data Source Configuration
Wizard is accessible from the Data Sources panel, where you spend much of
your time when working with data. To get started with the Data Source
Configuration Wizard, follow these steps:

1. Start a new Windows Application project by choosing File➪New
Project. Select a Visual Basic Windows Application and give it an
appropriate name.

For this example, I named the Windows Application project Accessing
Data.

257Chapter 15: Accessing Data

22_182383 ch15.qxp 2/21/08 7:38 PM Page 257

2. To open the Data Sources panel, choose Data➪Show Data Sources, or
press Shift+Alt+D.

It should tell you that you have no data sources, as shown in Figure 15-1.

3. Click the Add New Data Source link in the Data Sources panel.

This brings up the Data Source Configuration Wizard. The wizard has a
variety of data source types that you can choose from. The most inter-
esting of these is the Object source, which gives you access to an object
in an assembly to bind your controls to.

Click the Object source type to see the options there, as shown in Figure
15-2, and click the Previous button to go back to the previous screen.

You can pick a Web service to connect to a function on another com-
puter. I cover Web service creation and consumption in Chapter 7, but
this functionality sets you up to have a data source along with the Web
service reference. It’s pretty cool. I selected the USZipSoap from
WebServiceX as an example in Figure 15-3.

When you are done looking around, click the Cancel button to come back.

Figure 15-1:
The Data
Sources

panel.

258 Part IV: Digging into the Framework

22_182383 ch15.qxp 2/21/08 7:38 PM Page 258

4. Click the Database data source type to be taken to the Choose Your
Data Connection screen, as shown in Figure 15-4.

The most common point of access is a database.

5. If you have an existing data connection, it appears in the drop-down
list. Otherwise, you need to click the New Connection button to open
the Add Connection dialog box, as shown in Figure 15-5.

For this example, I click the New Connection button and select
Northwind, the Microsoft sample database.

Figure 15-3:
Using a

Web service
for a data

source.

Figure 15-2:
Using an

object for a
data source.

259Chapter 15: Accessing Data

22_182383 ch15.qxp 2/21/08 7:38 PM Page 259

The Add Connection dialog box assumes that you are going to connect
to an SQL server. If that isn’t the case, click the Change button to select
a different database from the Change Data Source dialog box, as shown
in Figure 15-6. For this example, I chose Microsoft SQL Server and
clicked the OK button.

Figure 15-5:
The Add

Connection
dialog box.

Figure 15-4:
Choosing
your data

connection.

260 Part IV: Digging into the Framework

22_182383 ch15.qxp 2/21/08 7:38 PM Page 260

6. Select a server from the Server Name drop-down list.

7. Select the Northwind database from the Select or Enter a Database
Name drop-down list.

8. Click the OK button.

You go back to the Choose Your Data Connection screen.

9. Click the Next button to save the connection string to the application
configuration file.

10. Accept the defaults by clicking the Next button.

You go the Choose Your Database Objects screen. Here you can choose
the tables, views, or stored procedures that you want to use.

11. Under Tables, select Orders and Order Details (as shown in Figure
15-7), and click the Finish button.

Figure 15-7:
Selecting
your data

objects.

Figure 15-6:
The Change
Data Source

dialog box.

261Chapter 15: Accessing Data

22_182383 ch15.qxp 2/21/08 7:38 PM Page 261

You’re done! If you look at the Data Sources panel, you find that the new data
connection was added, as shown in Figure 15-8.

Note that the Data Sources panel has the Orders tables, and the Data
Connections panel has all the tables. This is because the DataSet container
that you built in the wizard just has the Orders table and related tables in it.
The Data Connections panel shows everything in the database.

By following the preceding steps, you create two significant entities in Visual
Studio:

� You create a connection to the database, shown in the Database
Explorer. You find that it sticks around — it is specific to this installation
of Visual Studio.

� You also create a project data source that is specific to this project, and
it won’t be there if you start another project.

Both of them are important, and they provide different functionality. In this
chapter, I focus on the project-specific data source displayed in the Data
Sources panel.

Working with the visual tools
The RAD data tools for Visual Basic are a massive improvement over what has
previously been provided by Microsoft. The RAD data tools in Visual Basic
2008 are usable, do what you need, and actually write decent code for you.

Figure 15-8:
New data

connections
appear in
the Data
Sources

panel.

262 Part IV: Digging into the Framework

22_182383 ch15.qxp 2/21/08 7:38 PM Page 262

You need to know that I would never, ever show this kind of black magic if it
was not a best practice. In the past, tools that did something that you couldn’t
see often did their job poorly. Using the tools, in the long run, actually made
your program worse. The new tools, though, are a pretty good way to build
software. People may tell you that I am wrong, but it really isn’t bad. Try it!

If you click a table in the Data Sources panel, a drop-down arrow appears.
Select it and you see something very interesting, as shown in Figure 15-9. A
drop-down list appears that enables you to choose how that table is inte-
grated into Windows Forms.

Change the Orders table to a Details view. It is used to create a detail type
form — one that easily allows the user to view and change data. Then drag
the table to the form, and the Details view is created for you, as shown in
Figure 15-10.

A whole lot of things happened when you dropped the table on your form:

� The fields and field names were added.

� The fields are in the most appropriate format — note that the Order
Date is a date chooser.

� The field name is a label.

� Visual Studio automatically adds a space where the case changes.

Note that each field gets a Smart Tag that allows you to specify a query for
the values in the text box. You can also preset the control that is used by
changing the values in the Data Sources panel, as shown in Figure 15-10.

Figure 15-9:
Table

Options
drop-down

list.

263Chapter 15: Accessing Data

22_182383 ch15.qxp 2/21/08 7:38 PM Page 263

Also, a VCR Bar (technically called the BindingNavigator) is added to the
top of the page. When you run the application, you can use the VCR Bar to
cycle among the records in the table.

Finally, five completely code-based objects are added in the Component Tray
at the bottom of the page: the DataSet called NorthwindDataSet, the
BindingSource called OrdersBindingSource, the TableAdapter called
OrdersTableAdapter, the TableAdapterManager and the
BindingNavigator called OrdersBindingNavigator objects.

Click the Play button and you can easily see the VCR Bar work. You can walk
through the items in the database with no problems, as shown in Figure
15-11. It’s just like working in Access or FoxPro, but with enterprise quality!

It gets better. Follow these steps to create a child table interface:

1. Open the Order table in the Data Sources panel by clicking the plus
sign next to the table.

2. Scroll down until you see the Order Details table nested in the Orders
table.

3. Drag that instance of the table over to the form and place it under the
Orders fields that you placed on the form earlier in this section (refer
to Figure 15-10).

4. Click the Play button to run the example, as shown in Figure 15-12.

Figure 15-10:
Creating an

Orders
Detail data

form.

264 Part IV: Digging into the Framework

22_182383 ch15.qxp 2/21/08 7:38 PM Page 264

You have a running, easy-to-use parent/child form, with orders and order
details. Creating this form would have required you to write 100 lines of code,
even in previous versions of VB. With the ability to choose an assembly for a
data source that Visual Basic 2008 grants you, the form is even enterprise
ready. It’s pretty slick stuff.

Figure 15-12:
A complete

edit form.

Figure 15-11:
Running the

example.

265Chapter 15: Accessing Data

22_182383 ch15.qxp 2/21/08 7:38 PM Page 265

Writing data code
In most enterprise development environments, you won’t be using the visual
tools to build data access software. Generally, an infrastructure is already in
place.

The reason for this is that often enterprise software has very specific require-
ments, and the easiest way to manage those specifications is with unique and
customized code. In short, some organizations don’t want things done the
way Microsoft does them.

Output of the visual tools
The reason that the visual tools are often not used in enterprise environ-
ments is that the code the tools put out is rather sophisticated. If you
switch to Code View, right-click an instance of an object (such as the
CustomersTableAdapter object), and select Go to Definition, you go
to the code behind the designer. I count 212 lines of code in that file —
much of it going to defining the data objects being used, as shown in the
following code:

‘NorthwindDataSet
Me.NorthwindDataSet.DataSetName = “NorthwindDataSet”
‘CustomersBindingSource
Me.CustomersBindingSource.DataMember = “Customers”
Me.CustomersBindingSource.DataSource = Me.NorthwindDataSet
‘CustomersTableAdapter
Me.CustomersTableAdapter.ClearBeforeFill = True
‘CustomersBindingNavigator
Me.CustomersBindingNavigator.AddNewItem = Me.bindingNavigatorAddNewItem
Me.CustomersBindingNavigator.BindingSource = Me.CustomersBindingSource
Me.CustomersBindingNavigator.CountItem = Me.bindingNavigatorCountItem
Me.CustomersBindingNavigator.CountItemFormat = “of {0}”
Me.CustomersBindingNavigator.DeleteItem = Me.bindingNavigatorDeleteItem
Me.CustomersBindingNavigator.Items.AddRange(New

System.Windows.Forms.ToolStripItem()
{Me.bindingNavigatorMoveFirstItem,
Me.bindingNavigatorMovePreviousItem, Me.bindingNavigatorSeparator,
Me.bindingNavigatorPositionItem, Me.bindingNavigatorCountItem,
Me.bindingNavigatorSeparator1, Me.bindingNavigatorMoveNextItem,
Me.bindingNavigatorMoveLastItem, Me.bindingNavigatorSeparator2,
Me.bindingNavigatorAddNewItem, Me.bindingNavigatorDeleteItem,
Me.bindingNavigatorSaveItem})

Me.CustomersBindingNavigator.Location = New System.Drawing.Point(0, 0)
Me.CustomersBindingNavigator.MoveFirstItem = Me.bindingNavigatorMoveFirstItem
Me.CustomersBindingNavigator.MoveLastItem = Me.bindingNavigatorMoveLastItem
Me.CustomersBindingNavigator.MoveNextItem = Me.bindingNavigatorMoveNextItem
Me.CustomersBindingNavigator.MovePreviousItem =

Me.bindingNavigatorMovePreviousItem
Me.CustomersBindingNavigator.Name = “CustomersBindingNavigator”
Me.CustomersBindingNavigator.PositionItem = Me.bindingNavigatorPositionItem

266 Part IV: Digging into the Framework

22_182383 ch15.qxp 2/21/08 7:38 PM Page 266

Me.CustomersBindingNavigator.Size = New System.Drawing.Size(292, 25)
Me.CustomersBindingNavigator.TabIndex = 0
Me.CustomersBindingNavigator.Text = “BindingNavigator1”
‘bindingNavigatorMoveFirstItem
Me.bindingNavigatorMoveFirstItem.DisplayStyle =

System.Windows.Forms.ToolStripItemDisplayStyle.Image
Me.bindingNavigatorMoveFirstItem.Image =

CType(resources.GetObject(“bindingNavigatorMoveFirstItem.Image”),
System.Drawing.Image)

Me.bindingNavigatorMoveFirstItem.Name = “bindingNavigatorMoveFirstItem”
Me.bindingNavigatorMoveFirstItem.Text = “Move first”

Nothing is wrong with this code, but it is purposely very generic to support
anything that anyone might want to do with it. Enterprise customers often
want to make sure that everything is done the same way. For this reason,
they often define a specific data code format and expect their software devel-
opers to use that, rather than the visual tools.

Basic data code
The code of the sample project is pretty simple:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

‘TODO: This line of code loads data into the ‘NorthwindDataSet.Customers’ table.
You can move, or remove it, as needed.

Me.CustomersTableAdapter.Fill(Me.NorthwindDataSet.Customers)
End Sub

Private Sub bindingNavigatorSaveItem_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles bindingNavigatorSaveItem.Click

If Me.Validate Then
Me.CustomersBindingSource.EndEdit()
Me.CustomersTableAdapter.Update(Me.NorthwindDataSet.Customers)

Else
System.Windows.Forms.MessageBox.Show(Me, “Validation errors occurred.”,

“Save”, System.Windows.Forms.MessageBoxButtons.OK,
System.Windows.Forms.MessageBoxIcon.Warning)

End If
End Sub

While this is fairly straightforward, it obviously isn’t everything you need.
The rest of the code is in the file that generates the visual form itself, sup-
porting the visual components.

This becomes useful especially when you want to build a Web service or a
class library — though it should be noted that you can still use the visual
tools in those project types.

267Chapter 15: Accessing Data

22_182383 ch15.qxp 2/21/08 7:38 PM Page 267

A time may come when you want to connect to a database without using the
visual tools. I discuss the steps in the earlier section “How the Data Classes
Fit into the Framework,” and here I show the code to go with it:

Dim myConnection As New SqlConnection
myConnection.ConnectionString =

“server=(local);database=Northwind;Trusted_Connection=True”
Dim myAdapter As SqlDataAdapter
myAdapter = New SqlDataAdapter(“SELECT * FROM Customers”, myConnection)
Dim myDataSet As New DataSet
myConnection.Open()
myAdapter.Fill(myDataSet)
myConnection.Close()

After running this code, you would have the Customer’s table in a DataSet
container, just as you did in the visual tools in the earlier section “How the
Data Classes Fit into the Framework.” To access the information, you would set
the value of a text box to the value of a cell in the DataSet container, like this:

TextBox1.Text = myDataSet.Tables(0).Rows(0)(“CustomerName”)

To change to the next record, you would need to write code that changes the
Rows(0) to Rows(1) in the next example. As you can see, it would be a fair
amount of code.

That’s why few people use the basic data code to get the databases. Either
you use the visual tools, or you use a data broker of some sort.

Using data brokers
A data broker is a block of code that makes data access simpler. Basically, it
puts all the complicated piping of the database connection in a class file so
you can call — from one place — the code that’s common to all your data-
base access.

The Patterns and Practices team at Microsoft (http://msdn.microsoft.
com/practices) created a broker called the Enterprise Library Data Access
Application Block that does exactly this. It is designed for use by the large
enterprises I mention throughout this chapter, but the broker is excellent for
use in stand-alone applications as well, especially if you find that the visual
tools don’t do the trick for some reason.

With the Enterprise Library Data Access Application Block data broker, you
only need to be concerned about the most customized parts of the data
access process, specifically these three general steps:

268 Part IV: Digging into the Framework

22_182383 ch15.qxp 2/21/08 7:38 PM Page 268

1. Create the database object.

2. Supply the parameters for the command, if they are needed.

3. Call the appropriate method.

These steps can be executed in one line of code that looks something like this:

myDataSet = DatabaseFactory.CreateDatabase(“Northwind”).ExecuteDataSet(“SELECT *
FROM Customers”);

These steps assume that you have the Enterprise library already installed,
referenced, and configured. You can find the Enterprise library at
http://msdn.microsoft.com/practices/default.aspx?pull=/
library/en-us/dnpag2/html/entlib.asp, or you can get it from this
book’s companion Web site at www.vbfordummies.net.

Using LINQ
LINQ is a set of classes in the .NET Framework designed to help you with data
manipulation — just like some of the classes in System.Data. It is more or
less a new way to handle data in .NET, rather than the ADO.NET methods of
DataSets. The goal is to make relational databases, like those found in
Microsoft Access and SQL Server, look more like the classes discussed in
Chapter 6.

LINQ is a very large topic. Even the introductory article on it in the MSDN is
50 printed pages. While a full discussion is beyond the scope of this book,
here’s a brief introduction.

In the example in this section, you get the Order information from NorthWind.
Using LINQ, first you would define what you’re going to get from the table using
a class, just the way we did with the DateCalculator in Chapter 6. Adding a
few modifiers makes the class data-aware so we can query the information with
LINQ. Use the following steps to get started with a basic LINQ project:

1. Add a reference to System.Data.Linq, using the Add Reference
panel (as shown in Figure 15-13).

2. Add a few Imports statements to the code that will have the LINQ
statements:

Imports System.Data.Linq
Imports System.Data.Linq.Mapping

269Chapter 15: Accessing Data

22_182383 ch15.qxp 2/21/08 7:38 PM Page 269

3. Make a class in your project that references the Table attribute, as
shown in the following code:

<Table(Name:=”Orders”)> _
Public Class Orders

<Column()> _
Public OrderDate As DateTime
<Column()> _
Public ShipName As String

End Class

4. Generate a way to get data out of the database using a DataContext
object, as shown here:

Dim currentContext As DataContext = New _
DataContext(“server=(local);database=Northwind;Trusted_Connection=True”)
Dim myOrders As Table(Of Orders) = currentContext.GetTable(Of Orders)()

5. Now you have a collection drawn from a database.

If you wanted to loop through them, you could put a For Each order in
latestOrders and process them that way.

As you can see, LINQ is another way of handling data. If you are building
large-scale systems, LINQ makes a lot of sense. For smallish Windows applica-
tions, LINQ is not a lot better than ADO.NET.

For more information, check out LINQ to SQL: .NET Language Integrated
Query for Relational Data, at http://msdn2.microsoft.com/en-us/
library/bb425822.aspx. The VB code in the article has a few bugs, but
the principles discussed are sound.

Figure 15-13:
Adding a

reference to
System.

Data.Linq.

270 Part IV: Digging into the Framework

22_182383 ch15.qxp 2/21/08 7:38 PM Page 270

Chapter 16

Working with the File System
In This Chapter
� Understanding the classes and controls in System.IO

� Using the System.IO file management controls

� Opening, saving, listing, and viewing files in your applications

Storing information in files is one of the most common tasks of a computer
program, and Visual Basic makes it simpler to perform those tasks in the

2008 version. Visual Basic is not known as a strong file-handling language.
With the addition of the .NET Framework, though, a surprising number of file-
handling tools are available for your use.

In this chapter, I show you how to work with the directories and files on your
computer. The System.IO namespace and its classes, along with the My.
Computer.FileInfo class, contain the tools you need to read directories,
parse files, save information to files, get file information, and more.

I also describe the controls that Visual Studio provides for manipulating files
in Windows Forms applications. The OpenFileDialog, SaveFileDialog,
and FolderBrowserDialog speed development of programs that manage
files. The FileSystemWatcher component makes it easier to maintain com-
munication between an application and its files.

The key to working with files in .NET is getting familiar with them. While it
requires some effort to design in a file format or to figure out an existing
format, I recommend that you use files when you need files. The controls
in Visual Basic 2008 make using files much more straightforward than ever
before.

Getting to Know System.IO
System.IO has two categories of classes and a set of components that you
want to become familiar with: the stream classes, the file and directory
classes, and the Dialog controls.

23_182383 ch16.qxp 2/21/08 7:38 PM Page 271

Stream classes allow you to handle the contents of files as a sequence of
characters. Table 16-1 describes some of the common stream classes avail-
able in Visual Basic.

Table 16-1 Stream Classes in System.IO
Classes Description

BinaryReader, Used to read and write nontext files, such as images, in
BinaryWriter a stream

FileStream Can be used to make any file into a stream

TextReader, Specifically used for reading and writing text to streams
TextWriter

Streams are tricky tools, and I don’t cover them much here. They are mostly
used for movement of information in various states of connection, and, while
this is important, it is beyond the scope of this book. I instead focus on the
file and directory tools in System.IO, which you are much more likely to
need on a daily basis.

The file and directory maintenance classes are partially shared, meaning that
you don’t need to get a copy to use them because they are always available.
You can also use the instance implementations, which accept the path to the
file or directory in question as a parameter. The file management classes are
shown in Table 16-2.

Table 16-2 File Management Classes in System.IO
Classes Description

Directory, Shared and instance tools for maintaining directories
DirectoryInfo

DriveInfo Helps with maintaining a drive (such as a hard drive or
a virtual drive)

File, FileInfo Shared and instance tools for maintaining files

FileSystem A really cool class that keeps an eye on the file system
Watcher and raises events when specific things happen

Path Helps to maintain UNC paths to files and so on

The File Management classes in System.IO replace the old
FileSystemObject in VB 6 and VBScript.

272 Part IV: Digging into the Framework

23_182383 ch16.qxp 2/21/08 7:38 PM Page 272

The classes that end in Info are instance classes, meaning that you need to
dimension them before you use them and give them a path to start out with.
This is handy when you are doing a lot of operations on a single file or direc-
tory. The classes without Info at the end are shared, meaning that you can
use them whenever you want, like a digital toolbox. The shared classes are
great for a quick change to a file or directory.

You get the most use out of the File and Directory classes. For instance,
both classes support an Exists method, which accepts a path and returns a
Boolean value that shows whether that file or directory exists — very simple,
useful, and something you just can’t live without.

The third important category of tools that the System.IO classes provide
isn’t really made up of classes — it is made up of controls. What used to be
called the CommonDialog control is now a set of controls, among those
generically categorized as Dialogs.

These controls make a lot of use of the File and Directory classes, and
they make it a lot easier for you to give the users control over the files that
relate to the application. You have seen these Dialog controls in other pro-
grams (such as Microsoft Office programs). Table 16-3 describes the Dialog
controls available in Visual Basic.

Table 16-3 The Dialog Controls
Class Description

FolderBrowser Shows a dialog box that enables the user to browse for
Dialog and choose a directory

OpenFileDialog Shows an Open dialog box that allows the user to select
a file from the local file system

SaveFileDialog Shows a Save dialog box that enables the user to save a
file to the local file system

Using the System.IO Namespace
Some of the applications you write will require a lot of file access. Some appli-
cations need practically no file access. No matter what, being able to quickly
set up an application to get to a file, move it, copy it, read it, or delete it is an
important part of day-to-day programming.

The following sections provide a series of the most common tasks that your
programs need to perform with files and describe how System.IO and the
related tools in the VB language make handling files easy.

273Chapter 16: Working with the File System

23_182383 ch16.qxp 2/21/08 7:38 PM Page 273

All the following examples — where appropriate — use a text file in the
C:\ directory called inputFile.txt and write to a text file called
outputFile.txt.

Opening a file
You have a few ways to open a file in Visual Basic, but there is only one good
way to have the user select a file to open — the OpenFileDialog control.
The OpenFileDialog control is a Component Tray control — it doesn’t go
right on a form, but you call it from another firm object, such as a button.

Start a new Windows Application project by choosing File➪New Project. Name
your new Windows application something appropriate; I used the name File
Management for this example. When you have a new Windows Application
project ready, follow these steps to use the OpenFileDialog control to
enable the user to open a file:

1. Drag an OpenFileDialog control from the Toolbox into the form.

The OpenFileDialog component is in the Dialogs portion of the
Toolbox. It appears in the Component Tray.

274 Part IV: Digging into the Framework

Saving files to a Web server
The classes described in Table 16-3 are
Windows Forms controls. Web applications that
need to work with files are subject to the whims
of the browser and are stuck using HTTP
Upload.

HTTP Upload gives you access to a few con-
trols, namely the FileUpload control. The
FileUpload control allows the user to select
a file on his or her local file system to upload to
the server. Remember, the Web is discon-
nected, so the files that the user sees in the
browser are on his or her machine.

After the file is uploaded on the server, the
File and Directory classes are used to

save the file on the server. For instance, the fol-
lowing code might be used to handle a file
uploaded with the FileUpload control:

myPath = “C:\files\”
Dim fileName As String =

FileUpload1.FileName
myPath += fileName
FileUpload1.SaveAs(myPath)

Behind the scenes, this code uses a Stream
Writer to save the file, which is part of the
System.IO class. You see this a lot, and are
shielded from it a lot, throughout the .NET
Framework.

23_182383 ch16.qxp 2/21/08 7:38 PM Page 274

2. Drag a Label control from the Toolbox onto the form. Change the
Text value to be blank, and name it FileName. Set the AutoSize
to False, and change the BackColor to ActiveCaption.

3. Drag a TextBox control onto the form. Change the Multiline prop-
erty to True. Change the name to FileContents.

4. Drag a new button to the form, and set the Text value to Open a
File. Name the button OpenFile.

Your environment should look something like Figure 16-1.

5. Double-click the button to enter the code editor. Visual Studio then
makes the OpenFile_Click event handler.

6. Add the following code into OpenFile_Click to get the contents of
the file into a String variable:

Imports System.IO
Public Class Form1

‘This is for the contents of the file.
Dim myFileContents As String
Private Sub OpenFile_Click(ByVal sender As System.Object, ByVal e As _

System.EventArgs) Handles OpenFile.Click
‘Open the dialog and make sure it was successful
If OpenFileDialog1.ShowDialog() = DialogResult.OK Then

‘Open a streamreader with the file name from the dialog
Dim myStreamReader As New _
StreamReader(OpenFileDialog1.FileName)
‘Read the file with the streamreader
Dim myFileContents As String = myStreamReader.ReadToEnd()
‘Close the streamreader - it uses resources
myStreamReader.Close()
‘Set the output fields
FileName.Text = OpenFileDialog1.FileName.ToString
FileContents.Text = myFileContents

End If
End Sub

End Class

7. Run the application, and click the button.

If all is well, when you click the button, you will be able to select a file
and see its contents. If you put the inputFile.txt file in the C:\
directory, you can see the results in Figure 16-2.

You can choose from a lot of options for the OpenFileDialog control. You
can set the default file type that is to be opened, the title of the dialog box,
and the starting directory, just for starters. Check out the Properties window
for the control to see what I mean.

275Chapter 16: Working with the File System

23_182383 ch16.qxp 2/21/08 7:38 PM Page 275

Figure 16-2:
Running
the File

Manage-
ment

application.

Figure 16-1:
The File

Manage-
ment

project
so far.

276 Part IV: Digging into the Framework

23_182383 ch16.qxp 2/21/08 7:38 PM Page 276

Changing the contents of a file
If you followed the steps in the previous section, you have a string with a
file’s contents, and you need to get something else into the file. You use the
StreamReader to get the information out of a file, and, not surprisingly, you
use the StreamWriter to get the information back into the file.

Though the examples in this chapter use text files, you should be aware of
two caveats. First, any file that is formatted as text can be managed this way.
(Open the file in Notepad first to make sure that you do indeed have a text
file.) Second, binary files such as images can be handled with streams, too,
but the output will be something other than a string (a bitmap, for instance).

For this example, the contents of the file are in a string called myFile
Contents. To get the filename, you use the SaveFileDialog, which is dis-
cussed in the next section. To use the same filename, you can follow these
steps:

1. Add a button to the form and name it SaveFile.

2. In the code, make a new StreamWriter and give it the filename and
contents:

Private Sub SaveFile_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles SaveFile.Click

‘You can get the filename from the label
Dim myStreamWriter As StreamWriter = New StreamWriter(FileName.Text)
‘Then use the TextBox to get the contents.
myStreamWriter.Write(FileContents.Text)
myStreamWriter.Close()

End Sub

3. Run the application. Change the content in the text box, and click the
Save File button to save the contents.

Saving a file
If you want the user to be able to save the file with a different filename, you
can use the SaveFileDialog. This is just like the OpenFileDialog, except
it allows the user to make a new filename and to save the renamed file in a
different directory.

277Chapter 16: Working with the File System

23_182383 ch16.qxp 2/21/08 7:38 PM Page 277

To use it, just drag a SaveFileDialog to the form and then change the code
in the SaveFile_Click subroutine to the following:

Private Sub SaveFile_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles SaveFile.Click

If SaveFileDialog1.ShowDialog() = DialogResult.OK Then
Dim myStreamWriter As New StreamWriter(SaveFileDialog1.FileName)
If Not (myStreamWriter Is Nothing) Then

‘Then use the TextBox to get the contents.
myStreamWriter.Write(FileContents.Text)
‘Close the StreamWriter - it uses resources
myStreamWriter.Close()

End If
End If

End Sub

When you run the application, you have a chance to give the file a new name.
Note that the SaveFileDialog, like the OpenFileDialog, has a lot of
yummy options to define what the user can and can’t do. You can see some
of them in Figure 16-3.

Figure 16-3:
Properties

for the
SaveFile

Dialog
control.

278 Part IV: Digging into the Framework

23_182383 ch16.qxp 2/21/08 7:38 PM Page 278

Listing directories and files
Directories and files are in collections as part of the System.IO.File and
System.IO.Directory objects. When you call one of those methods, you
get an array of strings that are the subdirectories in the directory you specify.

So, for instance, if you write a little code like this . . .

Dim subDirectory As String
For Each subDirectory In Directory.GetDirectories(“C:\”)

Console.Write(subDirectory)
Next

. . . you get something like this:

C:\Documents and Settings
C:\Program Files
C:\WINDOWS

The same thing works for files. Notice, though, that I didn’t have to dimen-
sion a copy of the Directory class — I just got to use it. That’s because the
Directory class is shared, which allows you to use it without instantiating
it. This cuts down on clutter in your code — and on memory use as well.

On the other hand, the shared classes in System.IO check their security
access every time they are called, while the instantiated classes check only
once, when they are instantiated. If you are going to use the classes repeat-
edly, you should use the DirectoryInfo and FileInfo classes, described
in the next section.

Viewing file information
If, for instance, you need more information about a directory than the other
directories in it, you might want to use the DirectoryInfo (or FileInfo,
for files) class. This class is similar to the related class without the Info tag,
but it requires a New statement, as shown in the following code:

Dim subDirectory As String
For Each subDirectory In Directory.GetDirectories(“C:\”)

Console.Write(subDirectory)
Dim myDirectory As DirectoryInfo = New

DirectoryInfo(subDirectory)
Console.Write(myDirectory.CreationTime)
Console.Write(myDirectory.LastAccessTime)
Console.Write(myDirectory.Parent)
myDirectory = Nothing

Next

279Chapter 16: Working with the File System

23_182383 ch16.qxp 2/21/08 7:38 PM Page 279

The purpose of using DirectoryInfo in line 4 is to clarify the use of the file
system and set up an object, however briefly, that has a base directory. If you
are going to use the Directory object (here, myDirectory) more than once,
it is worth using the DirectoryInfo and FileInfo classes.

Keeping an eye on files
FileSystemWatcher is a great little tool that keeps an eye on files for you. If
something happens, such as a rename or file content change, it lets you know
by throwing an event that you can catch with code.

To see how FileSystemWatcher can be used, you can add a little feature to
the file editor you build in the preceding sections. The addition of a File
SystemWatcher informs you when something about the files change. Follow
these steps to add a FileSystemWatcher:

1. Add a FileSystemWatcher to the File Management application.

2. Add a Label under the label you added previously.

You may need to widen the form.

3. Change the BorderStyle of the Label to Fixed3D, and set the
AutoSize value to False.

4. Stretch the Label out to an appropriate size. Set the TextAlign value
to MiddleCenter.

Your application should look something like Figure 16-4.

5. Add the following two lines of code to the OpenFile_Click event
handler:

FileSystemWatcher1.Path = “C:\”
FileSystemWatcher1.EnableRaisingEvents = True

6. Click the Object drop-down list in the Code View and select the
FileSystemWatcher; then, in the Event drop-down list, select the
Changed event.

Visual Studio creates an event handler subroutine.

7. Add the following bold line of code that writes the details of the file
change to the Label object into the FileSystemWatcher1_Changed
handler that was generated for you:

Private Sub FileSystemWatcher1_Changed(ByVal sender As
Object, ByVal e As
System.IO.FileSystemEventArgs) Handles
FileSystemWatcher1.Changed

Label1.Text = String.Format(“{0} was written to at
{1}”, e.Name, DateTime.Now.ToString)

End Sub

280 Part IV: Digging into the Framework

23_182383 ch16.qxp 2/21/08 7:38 PM Page 280

The event arguments provide the filename and other details. Other events,
such as Renamed, even provide the OldName. This would be exceptionally
useful for logging file access or changes to files in your system. It’s a powerful
object for system management.

Figure 16-4:
Adding the

File
System
Watcher
to the File
Manage-

ment
application.

281Chapter 16: Working with the File System

23_182383 ch16.qxp 2/21/08 7:38 PM Page 281

282 Part IV: Digging into the Framework

23_182383 ch16.qxp 2/21/08 7:38 PM Page 282

Chapter 17

Accessing the Internet
In This Chapter
� Taking a tour of the System.Net namespace

� Using built-in tools to access the network

� Making the network tools work for you

In my honest opinion, the reason that Microsoft had to create the .NET
Framework in the first place was the lack of Internet interoperability

within the existing infrastructure. Visual Basic 6 just couldn’t handle the
Internet. The Internet works differently than most platforms, such as PCs.
The Internet is based on protocols — carefully defined and agreed upon ways
to get things like mail and file transfers working. Microsoft’s environment
before 2002 distinctly didn’t handle those as well.

As you can see throughout this book, the .NET Framework is designed from
the ground up to take the Internet and networking in general into considera-
tion. Not surprisingly, that is nowhere more clear than it is in the System.
Net namespace. The Internet takes first chair here, with Web tools taking up
nine of the classes in the namespace.

In this second version of the framework, even more Internet functionality is
baked in. While in version 1, the focus was on tools used to build other tools
(low-level functions), now it contains features that are useful to you, such as
Web, mail, and FTP. Secure Sockets Layer — the Internet’s transport security —
is much easier to use in this version, as is FTP and mail, which previously
required other harder-to-use classes.

System.Net is a big, meaty namespace, and finding your way around it can
be difficult. My goal for this chapter is to take things that you do often and
show the basics, and then give you the tools to research the more complex
features of the classes.

24_182383 ch17.qxp 2/21/08 7:39 PM Page 283

Networking is a big part of the .NET Framework, and all the functionality is in
this namespace — a whole book can be (and has been) written on the subject.
For the purposes of this introduction to networking with VB, I show you
these features:

� Getting a file from the network

� Sending e-mail

� Logging the transfers

� Checking into the status of the network around your running application

Keep in mind that I am not denying the importance of sockets, IPv6, and
other advanced Internet protocols. I am just suggesting those parts of the
namespace that you will be using every day. As always, there is more to
find out about System.Net.

Getting to Know System.Net
The System.Net namespace is full of classes that are very confusing if
viewed in the documentation, but make a lot of sense when used in an appli-
cation. The namespace removes all the complexity of dealing with the vari-
ous protocols used on the Internet.

Over 2,000 RFCs exist for Internet protocols (an RFC is a Request For
Comments, a document that is sent to a standards body to get reviewed by
peers before it becomes a standard), and if you have to learn all of them sep-
arately, you will never get your project done. The System.Net namespace is
about making that less painful.

System.Net is not just for Web projects. As with everything else in the base
class library, you can use System.Net with all kinds of projects. You can do
the following:

� Get information out of Web pages on the Internet and use it in your
programs

� Move files via the Internet using FTP (File Transfer Protocol)

� Send e-mail easily

� Use more advanced network structures

� Secure communications over the Internet using the SSL protocol

If you need to check on the connectivity of a computer from a Windows appli-
cation, you can use System.Net. If you need to build a class that will down-
load a file from a Web site, System.Net is the namespace you need. Just

284 Part IV: Digging into the Framework

24_182383 ch17.qxp 2/21/08 7:39 PM Page 284

because most of the classes relate to the Internet doesn’t mean that only Web
applications can use it. That’s the magic of System.Net. Any application can
be a connected application. While some parts of the namespace function do
make the development of Web applications easier, the namespace in general
is designed to make any application work with the Web.

How the Net Classes Fit
into the Framework

The System.Net namespace contains 62 classes and six smaller namespaces.
Even as I write this, I am overwhelmed. However, if you look closely, you can
see patterns.

If you need help using classes, you can find more information in Chapters 1
and 3.

The classes are very well named, and you will note that a few protocols get a
number of classes each. After you translate, you can narrow down what you
need based on the way the protocol is named:

� Authentication and Authorization: These classes provide security.

� Cookie: This class manages cookies from Web browsers and is typically
used in ASP.NET pages.

� DNS (Domain Name Services): These classes help to resolve domain
names into IP addresses.

� Download: This class is used to get files from servers.

� EndPoint: This class helps to define a network node.

� FileWeb: This brilliant set of classes describes network file servers as
local classes.

� FtpWeb: This class is a simple File Transfer Protocol implementation.

� Http (HyperText Transfer Protocol): This class is the Web protocol.

� IP (Internet Protocol): This class helps to define network endpoints that
are specifically Internet related.

� IrDA: This class is an infrared endpoint. Infrared ports are networks, too!

� NetworkCredential: This class is another security implementation.

� Service: This class helps manage network connections.

� Socket: This class deals with the most primitive of network connections.

285Chapter 17: Accessing the Internet

24_182383 ch17.qxp 2/21/08 7:39 PM Page 285

� Upload: This set of classes helps you to upload information to the
Internet.

� Web: These classes help with the World Wide Web — largely implementa-
tions of the http classes that are more task-oriented.

This list is so extensive because the classes build on each other. The End
Point classes are used by the socket classes to define certain network
specifics, and the IP classes make them specific to the Internet. The Web
classes are specific to the World Wide Web. You will rarely use highest-
level classes, but it is often tough to see what is needed when.

Most of the functions that you use every day, though, are encapsulated
within seven mostly new namespaces under the System.Net namespace:

� Cache: This function has a lot of enumerators that manage the browser
and network-caching functions built into the namespace.

� Configuration: This function grants access to the properties that you
need to set to make many of the other System.Net classes work.

� Mail: This function takes over for System.Web.Mail to facilitate the
sending of Internet e-mail.

� Mime: This function bundles file attachments with the Mail namespace.

� NetworkInformation: This function gets details about the network
around your application.

� Security: This function implements the network security managed by
many classes of System.Net.

� Sockets: This function utilizes the most basic of network connections
available to Windows.

Using the System.Net Namespace
The System.Net namespace is very code-oriented, which means that few
implementations are specifically for user interfaces. Almost everything you
do with these classes is behind the scenes. You have few drag-and-drop user
controls — the System.Net namespace is used in the Code View.

To demonstrate this, in the rest of this chapter, I go over building a Windows
Forms application that has the following requirements:

� Check the network status.

� Get a specific file from the Internet.

� E-mail it to a specific e-mail address.

� Log the whole transaction.

286 Part IV: Digging into the Framework

24_182383 ch17.qxp 2/21/08 7:39 PM Page 286

This is not an insignificant set of requirements. In fact, even in the 1.0 and 1.1
versions of VB.NET, this would be very difficult. One of the main goals of the
System.Net namespace in this version is to make these kinds of tasks —
very common tasks — much easier. You can get started by loading the
sample code or by starting a new project and following the steps in the fol-
lowing sections.

Checking the network status
First, you need to inform the user about network connectivity by following
these steps:

1. Create a new Windows Application project in Visual Studio.

I called mine NetworkTools.

2. Reference the System.Net namespace by adding the line Imports
System.NET to the top of the code.

3. Add a StatusStrip control to the form by dragging it from the
Toolbox.

4. Select the SmartTag that appears and add a StatusLabel.

5. Back in Design View, double-click the form to get the Form_Load
event handler and move to Code View.

6. Add the code in bold from the following listing to see whether the
network is available and display it in the status bar:

Imports System.Net
Public Class Form1

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

If NetworkInformation.NetworkInterface.GetIsNetworkAvailable Then
ToolStripStatusLabel1.Text = “Connected”

Else
ToolStripStatusLabel1.Text = “Disconnected”

End If
End Sub

End Class

That’s all there is to it. The NetworkInformation class contains a bunch of
information about the status of the network, current IP addresses, the gate-
way being used by the current machine, and more.

Keep in mind that the NetworkInformation class will only work on a local
machine. If you use this class in an ASP.NET Web Forms application, you will
be getting information about the server.

287Chapter 17: Accessing the Internet

24_182383 ch17.qxp 2/21/08 7:39 PM Page 287

Downloading a file from the Internet
So, next, you need to get a file from the Internet. This can be accomplished a
number of ways, but one of the most common is by using FTP. FTP is a light-
weight protocol that is favored because it is secure and supported on many
systems.

To build an application that uses FTP, follow these steps:

1. Drag a button onto the form from the Toolbox.

2. Double-click the button to get the Click event handler.

3. Add the required imports — System.Net, System.Net.Mail, and
System.IO — to the top of the code.

4. Create a new subroutine called Download File that accepts a remote
filename and a local filename as strings.

5. In the new subroutine, dimension a new FileStream (called local
FileStream) and FTPWebRequest (called myRequest), as shown in
Listing 17-1.

The FileStream references a local file and accepts the local file that is
passed into the subroutine. The FtpWebRequest is the same thing for
the remote file.

6. Set the Method parameter of the FtpWebRequest to
WebRequestMethods.Ftp.Downloadfile.

7. Set the Credentials property of the FtpWebRequest to a new
NetworkCredential with anonymous information, as I did in
Listing 17-1.

8. Create a new WebResponse object from the myRequest method.

This gets the statement back from the FTP server regarding how your
request will be handled.

9. Get the Stream from the response object.

10. Read the file into a 1,024-byte buffer, one block at a time, using a
While loop, as shown at the end of Listing 17-1.

Listing 17-1: The DownloadFile Method

Protected Sub DownloadFile(ByVal remoteFile As String, _
ByVal localFile As String)

Dim localFileStream As New FileStream(localFile, FileMode.OpenOrCreate)
Dim myRequest As FtpWebRequest = WebRequest.Create(remoteFile)
myRequest.Method = WebRequestMethods.Ftp.DownloadFile

288 Part IV: Digging into the Framework

24_182383 ch17.qxp 2/21/08 7:39 PM Page 288

myRequest.Credentials = New NetworkCredential(“Anonymous”, _
“bill@sempf.net”)

Dim myResponse As WebResponse = myRequest.GetResponse
Dim myResponseStream As Stream = myResponse.GetResponseStream
Dim buffer(1024) As Byte
Dim bytesRead As Integer = myResponseStream.Read(buffer, 0, 1024)
While bytesRead > 0

localFileStream.Write(buffer, 0, bytesRead)
bytesRead = myResponseStream.Read(buffer, 0, 1024)

End While
localFileStream.Close()
myResponseStream.Close()

End Sub

11. Call the DownloadFile method from the Button1_Click event
handler, as I show in the following code:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

DownloadFile(“ftp://ftp.vbfordummies.com/sampleFile.bmp”, _
“c:\sampleFile.bmp”)

End Sub

This is a very watered-down FTP example, but it gets the point across. The
WebRequest and WebResponse classes in the System.Net namespace are
fully utilized to create the more complete FtpWebRequest, for instance.
Properties such as the Method of download and Credentials make it an
easy call.

In fact, the toughest part of this process is dealing with a FileStream object,
which is still the best way to move files and is not specific to the System.Net
namespace. Streams are discussed in Chapter 16, which covers the System.
IO namespace, but they have significance to the network classes, too. Streams
represent a flow of data of some kind, and a flow of information from the
Internet qualifies.

That’s what you are doing when you get a Web page or a file from the Internet —
gathering a flow of data. If you take a second to think about it, it makes sense
that this is a flow, because the status bar in an application shows a percent-
age of completion. It’s just like pouring water into a glass; the flow of data is a
stream, so the concept is named Stream.

This concept holds true for getting a file from the World Wide Web, as well.
HTTP, the protocol of the Web, is just another protocol that defines how a
document is moved from a server on the Internet to your local machine. In
fact, the code even looks strikingly similar to the FTP example, as you can see
in the following example. The same stream is recovered; just the formatting is
different.

289Chapter 17: Accessing the Internet

24_182383 ch17.qxp 2/21/08 7:39 PM Page 289

Protected Sub DownloadWebFile(ByVal remoteFile As String, _
ByVal localFile As String)

Dim localFileStream As New FileStream(localFile, FileMode.OpenOrCreate)
Dim myRequest As WebRequest = WebRequest.Create(remoteFile)
myRequest.Method = WebRequestMethods.Http.Get
Dim myResponse As WebResponse = myRequest.GetResponse
Dim myResponseStream As Stream = myResponse.GetResponseStream
Dim buffer(1024) As Byte
Dim bytesRead As Integer = myResponseStream.Read(buffer, 0, 1024)
While bytesRead > 0

localFileStream.Write(buffer, 0, bytesRead)
bytesRead = myResponseStream.Read(buffer, 0, 1024)

End While
localFileStream.Close()
myResponseStream.Close()

End Sub

You will need to pass in a Web address, so your subroutine call would look
like this:

DownloadWebFile(“http://www.vbfordummies.com/sampleFile.bmp”,
“c:\sampleFile.bmp”)

Note the changes, which are marked as bold. myRequest is now a Web
Request rather than an FtpWebRequest. Also, the Method property of
myRequest has been changed to WebRequestMethods.Http.Get. Finally,
the Credentials property has been removed because the credentials are
no longer required.

E-mailing a status report
E-mail is a common requirement of networked systems. If you are working in
an enterprise environment, you are going to write a larger-scale application
to handle all e-mail requirements, rather than make each individual applica-
tion e-mail-aware.

However, if you are writing a stand-alone product, it might require e-mail sup-
port. Because I happen to be writing a stand-alone application, that is exactly
what I’m going to do.

E-mail is a server-based operation, so if you do not have an e-mail server that
you can use to send from, this might be hard. Many ISPs no longer allow relay-
ing, which is sending an outgoing message without first having an account and
logging on. Therefore, you might have trouble running this part of the sample.

290 Part IV: Digging into the Framework

24_182383 ch17.qxp 2/21/08 7:39 PM Page 290

If you are in a corporate environment, however, you can usually talk to your
e-mail administrator and get permission to use the e-mail server. Because
outgoing requests are usually only harnessed inside the firewall, relaying is
often available. To build your e-mail function, try these steps:

1. Add a text box to the default form in Design View, and then change to
Code View.

2. At the top of the Code View, make sure that you have referenced the
System.Net.Mail namespace.

3. Create a new subroutine called SendEmail.

It should accept the From e-mail address, the To e-mail address, the
subject of the e-mail, and the body of the e-mail.

4. Dimension a new MailMessage and pass in the fromAddress,
toAddress, subject, and body parameters, as follows:

Dim message As New MailMessage(fromAddress, toAddress,
_

subject, body)

5. Dimension a new SmtpClient, and pass in the address of your mail
server.

This can be an IP address, machine name, or URL.

6. Use the Send method of the SmtpClient object you created to send
the MailMessage, which is passed in as a parameter.

When you’re finished, make sure that you set the values of the Mail
Message and SmtpClient to Nothing, because they do take up
resources.

Listing 17-2 shows the completed subroutine.

Listing 17-2: The SendEmail Subroutine

Sub SendEmail(ByVal fromAddress As String, ByVal toAddress As String, _
ByVal subject As String, ByVal body As String)

Dim message As New MailMessage(fromAddress, toAddress, _
subject, body)

Dim mailClient As New SmtpClient(“localhost”)
mailClient.Send(message)
message = Nothing
mailClient = Nothing

End Sub

291Chapter 17: Accessing the Internet

24_182383 ch17.qxp 2/21/08 7:39 PM Page 291

Notice that I used localhost as the e-mail server name. If you have e-mail
server software installed locally, even just IIS 6.0 with SMTP, this will work.
Most of the time, you will have to put another e-mail server name in the
SmtpClient constructor. The e-mail server name can often be found in your
Outlook preferences.

After you have written your method, you need to call it after the file is down-
loaded in the Button1_Click event handler. Change the code of that sub-
routine to the following to call that method:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

DownloadFile(“ftp://ftp.vbfordummies.com/sample
File.bmp”, _

“c:\sampleFile.bmp”)
SendEmail(TextBox1.Text, TextBox1.Text, “FTP

Successful”, _
“FTP Successfully downloaded”)

End Sub

Notice that I sent in the value of the text box twice: once for the To address
and once for the From address. This isn’t always necessary, because you may
have a situation where you want the e-mail to come only from a Webmaster
address or to go only to your address.

You should have enough code in place to run the application now. Press F5 to
launch the application in Debug mode and give it a try.

When you click the button, the application should download the file to the
local drive and then e-mail you to inform you that the download is complete.
A whole host of things can go wrong with network applications though, and
you should be aware of them. Here are just a few:

� For most network activity, the machine running the software must be
connected to a network. This isn’t a problem for you as the developer,
but you need to be conscious of the end users, who may need connectiv-
ity to have access to the features they want to use. Use of the network
status code can help inform users as to the availability of those features.

� Firewalls and other network appliances sometimes block network traffic
from legitimate applications. Some examples of this include:

• FTP is often blocked from corporate networks.

• Network analysis features of .NET are often blocked on corporate
servers. If the server is available to the public, these openings can
cause holes for hackers to crawl through.

292 Part IV: Digging into the Framework

24_182383 ch17.qxp 2/21/08 7:39 PM Page 292

• Speaking of hackers, make sure that if you do use incoming net-
work features in your application, you have adequately secured
your application. More on this can be found in the excellent book
Writing Secure Code, Second Edition, by Michael Howard and David
C. LeBlanc (published by Microsoft Press).

• E-mail is especially fragile. Often, Internet service providers will
block e-mail from an address that is not registered on a mail server.
This means that if you are using your localhost server (as in the
example in Listing 17-2), your ISP might block the e-mail.

� Network traffic is notoriously hard to debug. For instance, if the sample
application works, but you never receive an e-mail from the SmtpServer
you coded, what went wrong? You may just never know. XML Web services
(covered in Chapter 7) have a similar problem — it is spectacularly tough
to see the actual code in the SOAP envelope to tell what went wrong.

Logging network activity
This brings me to the next topic, which is network logging. Because network
activity problems are so hard to debug and reproduce, Microsoft has built in
several tools for the management of tracing network activity.

What’s more, as with the available ASP.NET tracing, System.Net namespace
tracing is managed completely by using the configuration files. This means
you don’t need to change and recompile your code when you want to use the
functions. In fact, with a little management, you can even show debug infor-
mation to the user by managing the config files your application uses.

Each kind of application has a different kind of configuration file. For Windows
Forms applications, which you are using here, the file is called app.config
and is stored in the development project directory. When you compile, the
name of the file is changed to the name of the application, and it is copied
into the bin directory for running.

If you open your app.config file now, you see that some diagnostic informa-
tion is already in there, as shown in Listing 17-3. You are going to add some
information to that.

Listing 17-3: The Default app.config File

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

<system.diagnostics>
<sources>

<!-- This section defines the logging configuration for
My.Application.Log in Windows Forms projects.-->

(continued)

293Chapter 17: Accessing the Internet

24_182383 ch17.qxp 2/21/08 7:39 PM Page 293

Listing 17-3: (continued)

<source name=”Microsoft.VisualBasic.Logging.Log.WindowsFormsSource”
switchName=”DefaultSwitch”>
<listeners>

<add name=”FileLog”/>
<!-- Uncomment the below section to write to the Application

Event Log -->
<!--<add name=”EventLog”/>-->

</listeners>
</source>

</sources>
<switches>

<add name=”DefaultSwitch” value=”Information” />
</switches>
<sharedListeners>

<add name=”FileLog”
type=”Microsoft.VisualBasic.Logging.FileLogTraceListener,

Microsoft.VisualBasic, Version=8.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a, processorArchitecture=MSIL”

initializeData=”FileLogWriter”/>
<!-- Uncomment the below section and replace APPLICATION_NAME with

the name of your application to write to the Application Event Log
-->

<!--<add name=”EventLog”
type=”System.Diagnostics.EventLogTraceListener”
initializeData=”APPLICATION_NAME”/> -->

</sharedListeners>
</system.diagnostics>

</configuration>

First, you need to add a new source for the System.Net namespace. You see
that a source is already in place for the My object (introduced in Chapter 3);
you add one for the System.Net namespace as well.

Next, you add a switch to the Switches section for the source you added.
Finally, you add a SharedListener to that section and set the file to flush
the tracing information automatically.

The finished app.config file, with the adds in bold, is shown in Listing 17-4.
It is also in the sample code on this book’s companion Web site.

Listing 17-4: The Finished app.config File

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

<system.diagnostics>
<sources>

<source name=”Microsoft.VisualBasic.Logging.Log.WindowsFormsSource”
switchName=”DefaultSwitch”>
<listeners>

<add name=”FileLog”/>

294 Part IV: Digging into the Framework

24_182383 ch17.qxp 2/21/08 7:39 PM Page 294

</listeners>
</source>
<source name=”System.Net”>

<listeners>
<add name=”System.Net”/>

</listeners>
</source>

</sources>
<switches>

<add name=”DefaultSwitch” value=”Information” />
<add name=”System.Net” value=”Verbose” />

</switches>
<sharedListeners>

<add name=”FileLog”
type=”Microsoft.VisualBasic.Logging.FileLogTraceListener,

Microsoft.VisualBasic, Version=8.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a, processorArchitecture=MSIL”

initializeData=”FileLogWriter”/>
<add name=”System.Net”

type=”System.Diagnostics.TextWriterTraceListener”
initializeData=”my.log”/>

</sharedListeners>
<trace autoflush=”true” />

</system.diagnostics>
</configuration>

Run the application again and watch the Output window. Advanced logging
information is shown there because of your changes to the configuration file.
Additionally, a log file was written. In the development environment, this is in
the bin/debug folder of your project. You might have to click the Show All
Files button at the top of the Solution Explorer to see it.

In that folder, you should see a file called my.log. This is where the Shared
Listener that you added to the app.config file directed the logging infor-
mation. My copy of that file is shown in Listing 17-5 — your mileage may vary.

Listing 17-5: The Log Information

System.Net Information: 0 :
WebRequest::Create(ftp://ftp.vbfordummies.net/sample.bmp)

System.Net Information: 0 : Exiting WebRequest::Create() ->
FtpWebRequest#37460558

System.Net Information: 0 : FtpWebRequest#37460558::GetResponse()
System.Net Information: 0 : Exiting FtpWebRequest#37460558::GetResponse()
System.Net Information: 0 : Associating Message#59487907 with

HeaderCollection#23085090
System.Net Information: 0 : HeaderCollection#23085090::Set(mime-version=1.0)
System.Net Information: 0 : Associating MailMessage#6964596 with

Message#59487907
System.Net Information: 0 : SmtpClient::.ctor(host=24.123.157.3)

(continued)

295Chapter 17: Accessing the Internet

24_182383 ch17.qxp 2/21/08 7:39 PM Page 295

Listing 17-5: (continued)

System.Net Information: 0 : Associating SmtpClient#17113003 with
SmtpTransport#30544512

System.Net Information: 0 : Exiting SmtpClient::.ctor() -> SmtpClient#17113003
System.Net Information: 0 : SmtpClient#17113003::Send(MailMessage#6964596)
System.Net Information: 0 : SmtpClient#17113003::Send(DeliveryMethod=Network)
System.Net Information: 0 : Associating SmtpClient#17113003 with

MailMessage#6964596
System.Net Information: 0 : Associating SmtpTransport#30544512 with

SmtpConnection#44365459
System.Net Information: 0 : Associating SmtpConnection#44365459 with

ServicePoint#7044526
System.Net Information: 0 : Associating SmtpConnection#44365459 with

SmtpPooledStream#20390146
System.Net Information: 0 : HeaderCollection#30689639::Set(content-transfer-

encoding=base64)
System.Net Information: 0 : HeaderCollection#30689639::Set(content-transfer-

encoding=quoted-printable)
System.Net Information: 0 : HeaderCollection#23085090::Remove(x-receiver)
System.Net Information: 0 : HeaderCollection#23085090::Set(from=bill@sempf.net)
System.Net Information: 0 : HeaderCollection#23085090::Set(to=bill@sempf.net)
System.Net Information: 0 : HeaderCollection#23085090::Set(date=1 Apr 2008

16:32:32 -0500)
System.Net Information: 0 : HeaderCollection#23085090::Set(subject=FTP

Successful)
System.Net Information: 0 : HeaderCollection#23085090::Get(mime-version)
System.Net Information: 0 : HeaderCollection#23085090::Get(from)
System.Net Information: 0 : HeaderCollection#23085090::Get(to)
System.Net Information: 0 : HeaderCollection#23085090::Get(date)
System.Net Information: 0 : HeaderCollection#23085090::Get(subject)
System.Net Information: 0 : HeaderCollection#30689639::Get(content-type)
System.Net Information: 0 : HeaderCollection#30689639::Get(content-transfer-

encoding)
System.Net Information: 0 : Exiting SmtpClient#17113003::Send()

Reading this file, you can see that the reference numbers that match the
requests on the server all appear, dramatically improving the ease of debug-
ging. Also, because everything is in order of action, finding out exactly where
the error occurred in the process is much easier.

296 Part IV: Digging into the Framework

24_182383 ch17.qxp 2/21/08 7:39 PM Page 296

Chapter 18

Creating Images
In This Chapter
� Understanding the System.Drawing namespace

� Finding out how the drawing classes fit into the .NET Framework

� Using System.Drawing to create a simple game application

No one is going to write the next edition of Bioshock using Visual Basic. It
just isn’t the kind of language that you use to write graphics-intensive

applications such as shoot-’em-up games.

That said, Visual Basic packs a fair amount of power into the System.
Drawing classes. While these classes are somewhat primitive in some areas,
and using them might cause you to have to write a few more lines of code
than you should, there isn’t much that these classes can’t do with sufficient
work.

The drawing capability provided by the .NET Framework is divided into four
logical areas by the namespace design provided by Microsoft. All the general
drawing capability is right in the System.Drawing namespace. Then you
find several specialized namespaces:

� System.Drawing.2D has advanced vector drawing functionality.

� System.Drawing.Imaging is mostly about using bitmap graphic for-
mats, such as .bmp and .jpg files.

� System.Drawing.Text deals with advanced typography.

In this chapter, I focus on the base namespace and cover just the basics of
drawing in Visual Basic. (Discussing every aspect of drawing could easily fill
an entire book.)

25_182383 ch18.qxp 2/21/08 7:39 PM Page 297

Getting to Know System.Drawing
Even at the highest level, graphics programming consists of drawing polygons,
filling them with color, and labeling them with text — all on a canvas of some
sort. Unsurprisingly, this leaves you with four objects that you find are the
core of the graphics code you write: graphics, pens, brushes, and text.

Graphics
Generally speaking, the Graphics class creates an object that is your palette.
It is the canvas. All the methods and properties of the Graphics object are
designed to make the area you draw upon more appropriate for your needs.

Also, most of the graphics- and image-related methods of other classes in the
framework provide the Graphics object as output. For instance, you can
call the System.Web.Forms.Control.CreateGraphics method from a
Windows Forms application and get a Graphics object back that enables
you to draw in a form control in your project. You can also handle the Paint
event of a form, and check out the Graphics property of the event.

Graphics objects use pens and brushes — discussed later in this chapter in
the “Pens” and “Brushes” sections — to draw and fill. Graphics objects have
methods such as the following:

� DrawRectangle

� FillRectangle

� DrawCircle

� FillCircle

� DrawBezier

� DrawLine

These methods accept pens and brushes as parameters. You might think
“How is a circle going to help me?” but you must remember that even com-
plex graphic objects such as the Covenant in Halo 2 are just made up of cir-
cles and rectangles — just thousands and thousands of them. The trick to
useful art is using math to put together lots of circles and squares until you
have a complete image. The sample application described later in this chap-
ter is a very simple example of just that.

298 Part IV: Digging into the Framework

25_182383 ch18.qxp 2/21/08 7:39 PM Page 298

Pens
You use pens to draw lines and curves. Complex graphics are made up of
polygons, those polygons are made up of lines, and those lines are generated
by pens. Pens have properties such as

� Color

� DashStyle

� EndCap

� Width

You get the idea: You use pens to draw things. These properties are used by
the pens to determine how things are drawn.

Brushes
Brushes paint the insides of polygons. While you use the pens to draw the
shapes, you use brushes to fill in the shapes with color, patterns, or gradi-
ents. Usually, brushes are passed in a parameter to a DrawWhatever method
of the pen objects. When the pen draws the shape it was asked to draw, it
uses the brush to fill in the shape — just the way you did in kindergarten
with crayons and coloring books (the brush object always stays inside the
lines though).

Don’t look for the Brush class, however. It is a holding area for the real
brushes, which have kind of strange names. Brushes are made to be cus-
tomized, but you can do a lot with the brushes that come with the framework
as is. Some of the brushes include

� SolidBrush

� TextureBrush

� HatchBrush

� PathGradientBrush

While the pens are used to pass into the Draw methods of the Graphics
object, brushes are used to pass into the Fill methods that form polygons.

299Chapter 18: Creating Images

25_182383 ch18.qxp 2/21/08 7:39 PM Page 299

Text
Text is painted with a combination of fonts and brushes. Brushes work just
like pens; the Font class uses brushes to fill in the lines of a text operation.

System.Drawing.Text has collections of all the fonts installed in the system
running your program, or installed as part of your application. System.
Drawing.Font has all the properties of the typography, such as the following:

� Bold

� Size

� Style

� Underline

The Graphics object, again, provides the actual writing of the text on the
palette.

How the Drawing Classes
Fit into the Framework

The System.Drawing namespace breaks drawing into two steps:

� Create a System.Drawing.Graphics object.

� Use the tools in the System.Drawing namespace to draw on it.

It seems straightforward, and it is. The first step is to get a Graphics object.
Graphics objects come from two main places — existing images and
Windows Forms.

To get a Graphics object from an existing image, look at the Bitmap object.
The Bitmap object is a great tool that allows you to create an object using an
existing image file. This gives you a new palette that is based on a bitmap
image (a JPEG file, for example) that is already on your hard drive. It’s a very
convenient tool, especially for Web images. Here is how you load a bitmap:

Dim myBitmap As New Bitmap(“c:\images\myImage.jpg”)
Dim myPalette As Graphics = Graphics.FromImage(myBitmap)

300 Part IV: Digging into the Framework

25_182383 ch18.qxp 2/21/08 7:39 PM Page 300

Now the object myPalette is a Graphics object whose height and width
are based on the image in myBitmap. What’s more, the base of the my
Palette image looks exactly like the image referenced in the myBitmap
object.

You can use the pens, brushes, and fonts in the Graphics class to draw right
on that image, as if it were a blank canvas. I use it to put text on images
before I show them on Web pages and to modify the format of images on the
fly, too.

The second way to get a Graphics object is to get it from Windows Forms.
The method that you are looking for is

System.Windows.Forms.Control.CreateGraphics

This method gives you a new palette that is based on the drawing surface of
the control being referenced. If it is a form, it inherits the height and width
of the form and has the form background color. You can use pens and
brushes to draw right on the form.

301Chapter 18: Creating Images

Printing a form
In VB6 and earlier, one of the most common
ways to get information to paper was to just
print a form. This functionality was lacking in VB
2002, 2003, and 2005 but came back in a Power
Pack and is now built into Visual Studio 2008. It
is available to all languages, but should be most
useful to VB programmers.

If you need to build a report, you should use
Microsoft Report Viewer, which I don’t cover in
this book. If you just want to get some text and
images to the user’s printer, though, the
PrintForm component should do the trick.

To use the PrintForm component, drag it
from the Toolbox onto your form in Design View.
It will appear in the component tray. In the

event handler for your print function (the
MenuItem.Click function, for instance),
set up the Form property of the component, the
Print Action, and then call the Print command.
It looks like this:

With PrintForm1
.Form = TheFormIWantPrinted ‘use Me

for current form
.PrintAction = PrintToPrinter

‘other options are File or
Preview

.Print()
End With

The form will be sent to the windows Print func-
tion, just as if you had used the Print dialog box
to print a file.

25_182383 ch18.qxp 2/21/08 7:39 PM Page 301

When you have a Graphics object, the options are pretty much endless.
Sophisticated drawing is not out of the question, though you would have
to do a ton work to create graphics like those you see in Halo 3 using
Visual Basic. (There isn’t a Master Chief class that you can just generate
automatically.)

Nonetheless, even the most complex 3D graphics are just colored polygons,
and you can make those with the System.Drawing class. In the following
sections, I build a cribbage board with a Graphics object, pens, brushes,
and fonts.

Using the System.Drawing Namespace
Good applications come from strange places. Gabrielle (my wife) and I enjoy
games, and one of our favorites is the card game cribbage. We were on vaca-
tion in Disney World when she had the urge to play, but we didn’t have a crib-
bage board. We had cards, but not the board.

However, I did have my laptop, Visual Studio, and the System.Drawing
namespace. After just an hour or two of work, I built an application that
serves as a working cribbage board!

This is a fairly complete application, and I don’t have enough pages to walk
you through it step by step. Load the application from the Web site at www.
vbfordummies.net, and follow along with the rest of this chapter. This isn’t
a complex application, but it is long.

Getting started
Cribbage is a card game where hands are counted up into points, and the first
player to score 121 points wins. It’s up to the players to count up the points,
and the score is kept on a board.

Cribbage boards are made up of two lines of holes for pegs, usually totaling
120, but sometimes 60 holes are used and you play through twice. Figure 18-1
shows a typical cribbage board. Cribbage boards come in a bunch of different
styles — check out www.cribbage.org if you are really curious; it has a
great gallery of almost 100 boards, from basic to whimsical.

For this example, I just create the board image for an application that keeps
score of a cribbage game — but it wouldn’t be beyond Visual Basic to write
the cards into the game, too!

302 Part IV: Digging into the Framework

25_182383 ch18.qxp 2/21/08 7:39 PM Page 302

So the board for this application has 40 holes on each of three pairs of lines,
which is the standard board setup for two players playing to 120, as shown in
Figure 18-2. The first task is to draw the board, and then to draw the pegs as
the players’ scores — entered in text boxes — change.

The premise is this: A player plays a hand and enters the resulting scores in
the text box below his or her name (refer to Figure 18-2). When the score for
each hand is entered, the score next to the player’s name is updated, and the
peg is moved on the board. The next time that same player scores a hand,
the peg is moved forward and the back peg is moved into its place. Didn’t I
mention the back peg? Oh, yes, the inventor of cribbage was paranoid of
cheating — if you’re unfamiliar with cribbage, you may want to check out the
rules at www.cribbage.org.

Figure 18-2:
The digital

cribbage
board.

Figure 18-1:
A traditional

cribbage
board; photo
by AJ Turtle.

303Chapter 18: Creating Images

25_182383 ch18.qxp 2/21/08 7:39 PM Page 303

Setting up the project
To begin, create a playing surface. I actually set up the board shown in
Figure 18-2 without drawing the board itself — I paint that on later with
System.Drawing. My board looked a lot like Figure 18-3 when I was ready
to start with the business rules.

I used a little subroutine to handle score changes by calling the subroutine
from the two text boxes’ OnChange events. The code that calls the subrou-
tine follows:

Private Sub HandleScore(ByVal scoreBox As TextBox, ByVal points As Label,
ByVal otherPlayer As Label)

Try
If 0 > CInt(scoreBox.Text) Or CInt(scoreBox.Text) > 27 Then

ScoreCheck.SetError(scoreBox, “Score must be between 0 and 27”)
scoreBox.Focus()

Else
ScoreCheck.SetError(scoreBox, “”)
‘Add the score written to the points
points.Text = CInt(points.Text) + CInt(scoreBox.Text)

End If
Catch ext As System.InvalidCastException

‘Something other than a number
If scoreBox.Text.Length > 0 Then

ScoreCheck.SetError(scoreBox, “Score must be a number”)
End If

Catch ex As Exception
‘Eek!
MessageBox.Show(“Something went wrong! “ + ex.Message)

End Try
‘Check the score
If CInt(points.Text) > 120 Then

If CInt(points.Text) / CInt(otherPlayer.Text) > 1.5 Then
WinMessage.Text = scoreBox.Name.Substring(0,

scoreBox.Name.Length - 6) & “ Skunked ‘em!!!”
Else

WinMessage.Text = scoreBox.Name.Substring(0,
scoreBox.Name.Length - 6) & “ Won!!”

End If
WinMessage.Visible = True

End If
End Sub

All of this changing of screen values causes the Paint event of the form to
fire — every time VB needs to change the look of a form for any reason, this
event fires — so I just tossed a little code in that event handler that would
draw my board for me:

304 Part IV: Digging into the Framework

25_182383 ch18.qxp 2/21/08 7:39 PM Page 304

Private Sub CribbageBoard_Paint(ByVal sender As Object, ByVal e As
System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

PaintBoard(BillsPoints, GabriellesPoints)
End Sub

From that point on, my largest concern is drawing the board itself.

Drawing the board
I need to paint right on a form to create the image of the board for my crib-
bage application, so I use the CreateGraphics method of the form control.
From there, I need to do the following:

� Paint the board brown using a brush.

� Draw six rows of little circles using a pen.

� Fill in the hole if that is the right score.

� Clean up my supplies.

Figure 18-3:
The basic

board.

305Chapter 18: Creating Images

25_182383 ch18.qxp 2/21/08 7:39 PM Page 305

To that end, I came up with the PaintBoard method, which accepts the
labels that contain the standing scores for both players. It is shown in
Listing 18-1.

Listing 18-1: The PaintBoard Method

Private Sub PaintBoard(ByRef Bill As Label, ByRef Gabrielle As Label)
Dim palette As Graphics = Me.CreateGraphics
Dim brownBrush As New SolidBrush(Color.Brown)
palette.FillRectangle(brownBrush, New Rectangle(20, 20, 820, 180))
‘OK, now I need to paint the little holes.
‘There are 244 little holes in the board.
‘Three rows of 40 times two, with the little starts and stops on either end.
‘Let’s start with the 240.
Dim rows As Integer
Dim columns As Integer
Dim scoreBeingDrawn As Integer
Dim blackPen As New Pen(System.Drawing.Color.Black, 1)
Dim blackBrush As New SolidBrush(Color.Black)
Dim redBrush As New SolidBrush(Color.Red)

‘There are 6 rows, then, at 24 and 40, 80 and 100, then 140 and 160.
For rows = 40 To 160 Step 60

‘There are 40 columns. They are every 20
For columns = 40 To 820 Step 20

‘Calculate score being drawn
scoreBeingDrawn = ((columns - 20) / 20) + ((((rows + 20) / 60) - 1)

* 40)
‘Draw Bill
‘If score being drawn = bill fill, otherwise draw
If scoreBeingDrawn = CInt(Bill.Text) Then

palette.FillEllipse(blackBrush, columns - 2, rows - 2, 6, 6)
ElseIf scoreBeingDrawn = BillsLastTotal Then

palette.FillEllipse(redBrush, columns - 2, rows - 2, 6, 6)
Else

palette.DrawEllipse(blackPen, columns - 2, rows - 2, 4, 4)
End If
‘Draw Gabrielle
‘If score being drawn = Gabrielle fill, otherwise draw
If scoreBeingDrawn = CInt(Gabrielle.Text) Then

palette.FillEllipse(blackBrush, columns - 2, rows + 16, 6, 6)
ElseIf scoreBeingDrawn = GabriellesLastTotal Then

palette.FillEllipse(redBrush, columns - 2, rows + 16, 6, 6)
Else

palette.DrawEllipse(blackPen, columns - 2, rows + 16, 4, 4)
End If

Next
Next
palette.Dispose()
brownBrush.Dispose()
blackPen.Dispose()

End Sub

306 Part IV: Digging into the Framework

25_182383 ch18.qxp 2/21/08 7:39 PM Page 306

Aside from the math, note the decision making. If the score being drawn is
the score in the label, fill in the hole with a red peg. If it is the last score
drawn, fill in the hole with a black peg. Otherwise, well, just draw a circle.

It is tough to fathom, but this is exactly how large-scale games are written.
Admittedly, big graphics engines make many more If-Then decisions, but
the premise is the same.

Also, large games use bitmap images sometimes, rather than drawing all the
time. For the cribbage scoring application, for example, you could use a
bitmap image of a peg instead of just filling an ellipse with a black or red
brush!

307Chapter 18: Creating Images

25_182383 ch18.qxp 2/21/08 7:39 PM Page 307

308 Part IV: Digging into the Framework

25_182383 ch18.qxp 2/21/08 7:39 PM Page 308

Part V
The Part of Tens

26_182383 pp05.qxp 2/21/08 7:39 PM Page 309

In this part . . .

In this part, you find tips on everything from moving
on after reading this book to finding resources online.

There is even more information on the Web site: www.
vbfordummies.com. I hope you will find it to be a useful
reference!

26_182383 pp05.qxp 2/21/08 7:39 PM Page 310

Chapter 19

Ten Tips for Using
the VB User Interface

In This Chapter
� Finding multiple ways to generate event handler code

� Copying text the way you really want it

� Making good use of the toolbars

� Extending VB with your own creations

� Using the same cool tricks as the pros

Visual Studio is a great tool for writing Visual Basic code, but so much
goes into using this tool that you might not find the really neat features

until the next version is out! To help you find cool features for writing VB
code, I compiled this list of (almost) ten tips for working with the Visual
Studio interface. I hope that these tips make your coding more enjoyable!

Generating Event Handlers from
the Properties Window

When you’re working in the Design View for Web or Windows Forms and you
double-click a control, Visual Studio treats you to the code for the default
event handler. But what if you don’t want the default event handler? Any
given object often has several events that you might want to access, and
Visual Studio can just as easily (and automagically) generate code for any
one of those events.

27_182383 ch19.qxp 2/21/08 7:40 PM Page 311

Follow these few steps to give it a try:

1. Create a new Visual Basic 2008 Windows Application project. (It
works in Web Forms, too.)

2. Drag a control to the default form.

I use a text box in this example.

3. Select your control and then press F4 to expand the Properties
window.

4. In the Properties window, click the Event button (which looks like a
little lightning bolt).

You see a list of associated events, something like the list shown in
Figure 19-1.

Figure 19-1:
The listing

of events for
a text box

control.

312 Part V: The Part of Tens

27_182383 ch19.qxp 2/21/08 7:40 PM Page 312

5. Double-click an event from the list to generate the event handler code.

The events listed in Figure 19-1 are all the events exposed by the
TextBox object. I selected the MouseClick event. This means that any-
time the user clicks in the text box, my code will run.

When you double-click an event in the events window, the generated code
looks something like the following:

Private Sub TextBox1_MouseClick(ByVal sender As System.Object, _
ByVal e As System.Windows.Forms.MouseEventArgs) _
Handles TextBox1.MouseClick

End Sub

Check the Handles statement at the end of the declaration; it should match
the event you selected.

Generating Event Handlers
from the Code View

The preceding section shows you how to create event handlers from the
Design View — but the Design View isn’t the only part of the Visual Basic
interface with automatic features. The Code View has a few tricks, too.
Specifically, the events are handily listed along the top of the Code View, for
both navigation among events and creation of new ones. I show this place-
ment in Figure 19-2.

Figure 19-2 also shows the new default handler I created by double-clicking a
button and then clicking the drop-down list above and to the right of the
code window. You can see that MouseClick is bold, which means that the
MouseClick method exists. All other events exposed by the Button object
are shown as well.

The drop-down list just to the left shows the objects instantiated in the form.
In this example, the list would show just the Button and the Form objects.
The following steps outline the process for creating a new event in this view:

1. Right-click the form you want to edit, and choose View Code to go to
Code View.

2. Select the object you need to handle an event for from the leftmost
drop-down list.

313Chapter 19: Ten Tips for Using the VB User Interface

27_182383 ch19.qxp 2/21/08 7:40 PM Page 313

3. Select the event you would like to handle from the rightmost drop-
down list.

At this point, Visual Studio creates the stub of the subroutine for you,
and you can add the code you need right to it.

Later, if the code in the form gets long, you can navigate back to the event
handler the same way and make changes.

Pasting Text as HTML
When making Web pages in Web Forms, you may often find yourself pulling
content from other Web pages open in Internet Explorer or from Office docu-
ments. For example, when you’re creating static Web sites, the content may
come to you in the form of a Word document.

The problem with getting content this way comes from the interactivity
between Microsoft programs. Did you ever notice that, when you cut from
Excel and paste to Word, the table structure remains? Microsoft products try
to maintain formatting whenever possible. Take a look at this example:

1. Open any Word document that contains formatted text.

For this example, I just use the Word document for this chapter.

Figure 19-2:
The event

selector in
Code View.

314 Part V: The Part of Tens

27_182383 ch19.qxp 2/21/08 7:40 PM Page 314

2. Open Visual Studio and start a new Web site.

3. In the default page, click the Design tab to change to Design View (if
you’re not already in Design View).

4. Highlight text from the Word document and choose Edit➪Copy.

5. Back in Visual Studio, position the cursor in the default Web page and
choose Edit➪Paste.

6. Click the Code tab to change to Code View, and look at the text your
cut-and-paste job left behind.

My example leaves the text shown in Listing 19-1.

Listing 19-1: Messy HTML from the Paste Command

<h1>
Paste as HTML</h1>

<p class=”MsoNormal”>
When making Web pages in Web Forms, you may often find yourself pulling content

from other
Web pages open in Internet Explorer or from Office documents

. For example, when you’re
creating static Web

sites, the content may
<?xml namespace=”” prefix=”st1” ?>
<st1:state w:st=”on”><st1:place w:st=”on”>come</st1:place></st1:state>
to you in the form of a Word Document.</p>

Most of the time, you don’t want to retain the formatting from other pro-
grams when dealing with a Web application. You want to copy content from
the other program (Word document, Excel spreadsheet, and so on) and paste
just the text so that you can apply styles suitable for a Web page. If that’s the
case, choose the Edit➪Paste Alternate command instead of the Edit➪Paste
command in the preceding Step 5.

Customizing Your Toolbars
for Every File Type

While in the Web Forms builder of Visual Studio, you may notice something
else that is cool. When you switch between the Design View and Code View,
your toolbars — the buttons under the menus — change. In fact, your work-
ing area might even change size because toolbars are added or removed.

315Chapter 19: Ten Tips for Using the VB User Interface

27_182383 ch19.qxp 2/21/08 7:40 PM Page 315

This changing-of-the-toolbars happens because Visual Studio supports a dif-
ferent toolbar setup for each file type and view. HTML and ASPX pages can
have totally different toolbars, and the Design View and Code View can have
different toolbars for each file type.

You can customize your workspace by specifying the toolbars you want to
see for any given file type or view. Simply open a file of the desired type and
right-click in the ribbon bar (the gray area under the menus). When you do,
you get a long list of the toolbars available, and you can just click the ones
you want. I list some toolbars and their contents in Table 19-1.

Table 19-1 Toolbars for Different File Types and Views
Toolbar Name What It’s Good For

Build Has buttons that match the Build menu and enable you to
compile your project with various options.

Class Designer Holds design tools that are appropriate for making DLL
files.

Debug Has buttons that function similarly to the Debug menu
and enable you to enter Debug mode or debug other run-
ning programs.

Device Contains tools to help you work with Smart Devices
(such as mobile phones) and give you access to the
emulators for Pocket PCs.

Layout Holds tools (such as the Alignment feature mentioned in
Chapter 4) that are useful for structuring forms.

Query Designer Has tools to help create SQL and XML data queries.

Style Sheet Contains buttons for applying CSS styles to HTML.

Adding Extender Providers
Extender providers could really use their own chapter, but because of every-
thing else about Visual Basic I need to tell you, I give you a brief look at
them here. An extender provider provides an extension — specifically new
properties — to an existing object or group of objects. Try this:

316 Part V: The Part of Tens

27_182383 ch19.qxp 2/21/08 7:40 PM Page 316

1. Open Visual Studio and start a new VB Windows Application project.

2. Drag a Button object onto the form.

Suppose that you want to enhance your button with a ToolTip — the
little floating window that appears in some applications when you
mouse over an object on the screen. In a VB Windows Application pro-
ject, you can’t add a ToolTip directly to the Button object.

3. To add a ToolTip property to the button, add a ToolTip object to the
form.

You can find the ToolTip object in the Toolbox. The ToolTip will appear
in the Component Tray.

4. Return to the Properties window for the button.

Notice that, at the bottom of the window in the Misc category, a ToolTip
now exists!

Because the ToolTip is an extender provider, it is designed to give all objects
that populate an interface a new property, in this case, a ToolTip. Although
adding a property to an object might seem a little odd, it is actually a great
way to extend the functionality of a set of controls. And I think that
Microsoft’s doing so was quite brilliant.

You can actually create your own extender providers to do everything from
adding textual strings for reference all the way to making new functional and
graphical elements. These properties give you a powerful way to extend the
user interface controls provided by Microsoft.

Using Visual Components
That Are Not So Visual

I would be remiss if I didn’t tell you about the Component Tray and, espe-
cially, the visual components that are not so visual. Though Visual Basic is
set up as a rapid, point-and-click development tool, lots of objects (that
aren’t all that visible) still should be and are managed by the visual develop-
ment tools.

The Component Tray is a special section of the form designer that shows up
when you are using a nonvisual component such as the timer or dataset.
Figure 19-3 shows the Component Tray, which displays only a few actual fea-
tures, because the majority of the point-and-click development involves
moving visual components around on the screen.

317Chapter 19: Ten Tips for Using the VB User Interface

27_182383 ch19.qxp 2/21/08 7:40 PM Page 317

Other parts of the book refer to nonvisual components a number of times. In
Part II, you find out about the Menu object. In Part III, I show you the Timer
object. Part IV has information about Data objects. In this chapter’s previous
section, I show you the ToolTip object. Not all of these have usable parts
that you see on-screen, but they do show up in the Component Tray.

And, although you can’t reposition these components on-screen, you can do
the following:

� Right-click the component to get a context-sensitive menu, just like you
do for a button or other window component.

� Open the Properties window and click the component in the tray to
select it for editing purposes. In the Properties window, you can change
the component name and other common properties.

Here’s one caveat to keep in mind: Declaring the object in Code View doesn’t
immediately make it a Component Tray object. Generally speaking, if you
want to edit a component in Design View, you need to create it in Design
View. Most developers are primarily either Code View developers or Design
View developers. As you find your personal style, you’ll get to know how
often you’ll use the Component Tray.

Figure 19-3:
The

Component
Tray

showing a
ToolTip.

318 Part V: The Part of Tens

27_182383 ch19.qxp 2/21/08 7:40 PM Page 318

Recording Macros
Macros are so cool that they get their own user interface, which I show in
Figure 19-4. And macros are so powerful and flexible, they have the potential
to totally change your development patterns. Here, I present a small part of
their power. (I leave the experimenting up to you.)

One of the neatest things you can do is record a keystroke-saving macro for
later playback. If you have a task (such as formatting text) that you expect to
do more than once, record it as a macro.

One of my favorite ways to use a macro is to record HTML formatting. I have
a whole host of macros I recorded to format strings for paragraphs and lists.
Formatting with prerecorded macros makes site management with Visual
Studio a breeze.

To get to the macros, you can do a few things:

� Press Alt+F8 to open the Macro Explorer in Visual Studio.

� Select Tools➪Macros➪Macros IDE from the menu bar.

� Right-click in the ribbon bar and select Macros.

Figure 19-4:
The Macro

IDE.

319Chapter 19: Ten Tips for Using the VB User Interface

27_182383 ch19.qxp 2/21/08 7:40 PM Page 319

Fire up the Macro Explorer (press Alt+F8) and follow these steps to see how
it’s done:

1. Start with a new Web project in Visual Studio. Right-click the HTML
Designer and select View Code to change to Code View.

2. Open the default Web page and paste a few lines of text into the Code
View.

For example, copy some text from Notepad, just as if you received it
from a client, and paste the text in the Code View. Each paragraph will
be one long line of text in the Code View screen.

3. Click to the left of the first line of text to leave the cursor at the begin-
ning of the first line that you want to format.

4. Choose Tools➪Macro➪Record Temporary Macro.

The Record panel appears and starts capturing every significant com-
mand you give Visual Studio.

5. Type the following to record formatting for an HTML paragraph:

• Type the HTML paragraph tag, <p>, at the start of the text you
want to format. If Visual Studio adds the rest of the paragraph tag,
just delete it by pressing Delete.

• Press End to move the cursor to the end of the line of text.

• Type the HTML close paragraph tag, </p>.

• Press the right-arrow key, which moves the cursor to the start of
the next line.

6. Click the Stop Recording button on the Record panel.

The macro is now recorded and, what’s more, it is actually code that resides in
the temporary macro spot in the Macro Explorer. Listing 19-2 shows this code.

Listing 19-2: The Paragraph Macro

Imports EnvDTE
Imports EnvDTE80
Imports System.Diagnostics

Public Module RecordingModule
Sub TemporaryMacro()
DTE.ActiveDocument.Selection.Text = “<P>”
DTE.ActiveDocument.Selection.Delete(4)

320 Part V: The Part of Tens

27_182383 ch19.qxp 2/21/08 7:40 PM Page 320

DTE.ActiveDocument.Selection.EndOfLine()
DTE.ActiveDocument.Selection.Text = “</P>”
DTE.ActiveDocument.Selection.CharRight()
End Sub
End Module

If you right-click TemporaryMacro and select Edit, you can see the code in
the Macro IDE, where you can do the following:

� Make changes to the macro.

� Delete unnecessary code lines (such as the line created when I deleted
the automatically generated paragraph close tag in my example) to save
a cleaner macro.

� Make the macro permanent by copying the code into another module in
the macro recorder and saving it.

� Right-click and choose Save As to save the file with a different name in
the Macro Explorer.

� Run the macro from the Macro Explorer by double-clicking it, or use the
context menu in Code View, as shown in Figure 19-5.

Figure 19-5:
Running a

macro.

321Chapter 19: Ten Tips for Using the VB User Interface

27_182383 ch19.qxp 2/21/08 7:40 PM Page 321

Using the Task List
The Task List is a very cool personal project management feature of the
Visual Studio IDE. To show it, choose View➪Other Windows➪Task List or
press Ctrl+Alt+K. To use it, just click the Create New User Task button and
then start typing. When you’ve completed the task in your Task List, you can
just check it off.

You can do a lot more with this tool than just make to-do lists. It is fully inte-
grated with source control, too, so pending check-ins and so on show up in
the list. Also, you can add tokens into the code that show up in the Task List.

To add a token, open any project and add a comment that starts with TODO.
You’ll notice that after you add a TODO comment, a Comment shows up with
Comments in the Task List drop-down list, as shown in Figure 19-6. Double-
clicking a Comment Task brings you to the file and line where the comment
was inserted. You can use this to keep track of things you need to remember
as you do them.

Figure 19-6:
The Task

list.

322 Part V: The Part of Tens

27_182383 ch19.qxp 2/21/08 7:40 PM Page 322

The other tokens include HACK and UNDONE. These don’t usually get their
own Task List filter, but you can use them for marking questionable code that
you might need to revisit, or work that needs to be completed. You can add
new tokens in the Environment section of the Options panel.

Inserting Snippets in Your Code
A really cool Visual Studio feature, like CodeSwap, is the Insert Snippet fea-
ture. This organizational tool has several easy-to-use but hard-to-remember
bits of code in various categories, including those shown in Figure 19-7.

To use the Insert Snippet feature, just right-click your VB code in the Code
View and select Insert Snippet. The code is well-factored and includes a lot of
template-type things, too, such as array looping and complex algorithms. All
the new stuff in VB 2008 is in there, too, like Linq and Windows Presentation
Foundation. If you have a tough problem to solve, take a look at the Insert
Snippet feature.

Figure 19-7:
Using the

Insert
Snippet
feature.

323Chapter 19: Ten Tips for Using the VB User Interface

27_182383 ch19.qxp 2/21/08 7:40 PM Page 323

324 Part V: The Part of Tens

27_182383 ch19.qxp 2/21/08 7:40 PM Page 324

Chapter 20

Ten Ideas for Taking Your Next
Programming Step

In This Chapter
� Making new kinds of projects

� Participating in contests

� Trying out other people’s ideas

Without a doubt, by the time you’ve worked through the examples in
this book, you’ll be an expert. Experts shine by going out on their

own and trying new things. This chapter is all about the things that you can
go and try in the real world after you’ve gotten down the basics of Visual
Basic and you’re ready to find some programming challenges.

Get Visual Basic 2008 for Home Use
If you primarily use Visual Basic for work, you may want to get a copy of
Visual Basic 2008 Express Edition for home use so that you can have fun
with after-hours projects. While you can download the .NET SDK and use
the command line, I recommend using the Express Edition.

The Express Edition is a copy of Visual Studio 2008 for hobbyists. It is missing
a few of the features of the Professional version that I discuss elsewhere in
this book, but nothing significant is left out. The Express Edition is perfect for
the odd open-source project.

Express editions are — at the time of this writing — free. Note that the
Professional edition contains a lot of stuff that you can’t do in Express,
which is why I chose Professional for this book. Nonetheless, it is a great
learning tool.

28_182383 ch20.qxp 2/21/08 7:40 PM Page 325

Update Code to Use New Tools
This used to be a section on writing your own tools, and it had some sample
code from my Data Object Generator. Honestly, I don’t use that tool anymore,
because I think DataSets and the Visual DataSet Designer are so much better.
In fact, I have gone back to a number of old projects and updated them to use
the DataSet designer.

In and of itself, that is a great tip. Update your applications to use the new
tools. If you are working on a heavily object-driven application, use Linq in
your business layer code to get the right data out at the right time. If you
have a program that you have maintained for years that notifies managers
that they need to approve documents, update it to use Windows Workflow
Foundation.

The new tools that Microsoft provides are just a reflection of what we, the
community, have shown that we need on a regular basis. Don’t overlook
them. Table 20-1 shows a list of the new things that I have updated projects
with recently, and what I replaced. As always, your mileage may vary, but do
pick a project and give it a try.

Table 20-1 Things to Update
Update This With This

Hand-coded data objects DataSets

Logic for moving information around Windows Workflow Foundation
among interested groups

Old, tired Windows Forms code Windows Presentation Foundation

COM+ Windows Communication Foundation

INI files Config files

Complex object-mapping code Linq

Join an Online Competition at TopCoder
Another great thing to do to stretch your coding legs is to participate in an
online competition. TopCoder (www.topcoder.com) is the best you’ll find —
a free competition in which you can answer problems using VB and compete

326 Part V: The Part of Tens

28_182383 ch20.qxp 2/21/08 7:40 PM Page 326

for fame, fortune, and projects. For example, one of the easier problems to
solve involves taking data about students and figuring out a way to extract
the oldest student by using a specified class and method.

The Single Round Match user interface is one of the best Java UIs I have seen,
as shown in Figure 20-1. You are in a virtual room with other coders, which
gives you some level of insight on how others are tackling the problems. It’s
pretty exciting.

Another popular use of TopCoder is its Component Development Contests.
These aren’t times, but have due dates, and if you are judged the best by
your peers, you could garner a little cash. It’s a good test of abilities.

The problems you find on TopCoder sound a lot like quizzes in a program-
ming class, and that’s a fair comparison. The goal is to write the best code
you can that solves the problem and to have your code compared to that of
other programmers.

Participate in an Open Source Project
Open source software is software governed by one of a myriad of free licenses,
which state rules such as “This software is free for use, but any adjustments
made to it must also be provided for free to the community.” Open source’s
most famous output, Linux, might get all the press, but a ton of open source
.NET projects are available, too.

Figure 20-1:
The

TopCoder
arena.

327Chapter 20: Ten Ideas for Taking Your Next Programming Step

28_182383 ch20.qxp 2/21/08 7:40 PM Page 327

Before you just jump in, though, take a look around. Two of the best places
to find projects are SourceForge.net (http://sourceforge.net) and
CodeZone (www.codezone.com/MyCodezone.CodezoneCom). Log on and
look at the projects. Find one that interests you, get the code, and play
around with it. See whether you can make improvements.

Then log on to the message board and talk to the designers. These should be
people you could go have a drink with, you know? Talk about the project. See
whether it is something that you would want to donate a handful of hours a
month to.

You can garner a ton of benefits from working on open source projects. First,
it might be the only chance you get, depending on your situation, to work
with expert .NET programmers. Second, you get a genuine chance to practice
coding on a peer-reviewed project. Third, you may end up being able to point
to a public application that you participated in building. This is a great
resume builder.

Above all that, though, open source projects are fun. As I write this, a quick
look at the applications available on a few project sites include the following:

� A Web portal project

� XML documentation tools

� An object relational framework

� IIS Web managers

� Line-counting utilities

� An HTTP proxy

This points out another benefit — some really cool software is available, free
for the downloading. All you are morally obligated to do to pay for it is to
help out a little. It’s a fair price; that’s for sure!

Use Third-Party Tools in Your Projects
When you are looking to do more sophisticated things with VB, look at some
third-party tools to integrate into your projects. Great examples of third-party
tools are user controls for Web Forms projects and form controls for
Windows Forms applications.

Software created by third-party individuals is a great way to inexpensively
expand your horizons without spending hundreds of hours programming and
testing. Don’t be put out by “Not-built-here syndrome” — third-party software
has its benefits.

328 Part V: The Part of Tens

28_182383 ch20.qxp 2/21/08 7:40 PM Page 328

For starters, third-party software is often peer reviewed. Take a look at
www.windowsforms.net. The top-ten user-ranked controls are right there
on the home page. Search for a form that you might need. All the controls
have a download and view rating, and many of them are reviewed by users.

For Web Forms, check out www.asp.net. As with the Windows Forms .NET
Web site, the code samples in the Control Gallery of the ASP.NET site are
rated and counted by other users.

Programmers use third-party software, and when you know your way around
the language, you should, too. If you still aren’t sure, look for a Microsoft-
certified vendor — called an ISV (Independent Software Vendor). My com-
pany is one — many others are, too. It’s Microsoft’s mark for a company that
knows what it is building.

To look for certified vendors, check out the resource directory at
http://directory.microsoft.com/mprd. This page allows you to find a
partner by specialty (you would want an ISV) and location (which might not
matter for just finding control builders).

Also in the arena of third-party software for programmers are add-ins for
Visual Studio. The Visual Studio Integration Program (available at
http://msdn.microsoft.com/vstudio/extend) provides vendors with
a ton of great tools for integrating their products into Visual Studio, and it
just helps you to move right along.

Dotfuscator, which I mention in Part I, is an example of an add-in. It is a
Windows Forms application that seamlessly integrates into Visual Studio to
assist you with programming chores — in this case, to protect your source
code. You can find out more about Dotfuscator in the Visual Studio help files.

Trying add-ins from vendors is a lot like trying a control — research, check
the reviews, and test, test, test. And have fun! Half of the reason to try out
new things is for the thrill.

Integrate a Public Web Service
Chapter 7 describes how to build and integrate a Web service, but integrating
a public service is a special treat. Many people and companies with special
information have provided said information in public XML Web services for
you to try out. You have to pay to use some of these services, while others
are free. Even if it is just for a fun side project, you should certainly try to
integrate a public service once or twice.

Public Web services are going through something of a shift in power as of this
writing, with the small startups gradually being replaced with the Net Internet
Monsters like Amazon and Google. The principles are still the same, though.

329Chapter 20: Ten Ideas for Taking Your Next Programming Step

28_182383 ch20.qxp 2/21/08 7:40 PM Page 329

As you look at these, keep in mind that you are stepping out of the .NET
world in many instances. XML Web services are cross platform, so as many
Perl and Java services as ASMX services are out there. Some of them might
return something unexpected and, as such, mess up a perfectly good pro-
gram. Be prepared, and trap errors often.

One of the small free startup service hosters that is still around that doesn’t
require a bunch of registration (like Google and Amazon do) is WebServicesX.
It has a number of good sample services that are easy to consume. I’ll start
with the Zip Code Info service, to get a city name from the zip code.

To use a service you find on a public service host site, first make sure that
you are connected to the Internet, and then download and use the service by
following these steps:

1. Open Visual Studio and start a new Windows Application project.

2. On the form, add a label object and keep the default name.

3. Right-click the project and select Add Service Reference.

The Add Service Reference dialog box appears, as shown in Figure 20-2.

4. Enter the URL for the service in the URL text box and click the Go
button.

For example, the WSDL file for the service I use for this example is at
www.webservicex.net/uszip.asmx?WSDL.

Figure 20-2:
Adding a

reference to
the USZip

Code.

330 Part V: The Part of Tens

28_182383 ch20.qxp 2/21/08 7:40 PM Page 330

5. Enter a name for the service in the Web Reference Name text box and
click the Add Reference button.

For example, I entered the name ZipService.

6. Double-click the form to get the Form1_Load event handler.

7. Add the code to enable the service.

I entered the following code to enable USZipCode:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Dim myZipService As ZipService.USZipSoapClient = New
ZipService.USZipSoapClient()

Dim myCity As Xml.XmlNode =
myZipService.GetInfoByZIP(“43123”).FirstChild

Label1.Text = myCity.FirstChild.InnerText.ToString
End Sub

8. Run the code by pressing F5.

The service returns the current temperature, based on the zip code you
supply in the myTempService.getTemp method, as shown in Figure 20-3.

And there you are — that’s all it takes to integrate a public Web service! Give
it a try in your next for-fun project.

Try Out CodeRush and
Other Code Generators

CodeRush is a code generator, which is a program that writes the code for you,
or at least makes it much easier to write the code. Largely, code generator

Figure 20-3:
Running the

USZip
Code.

331Chapter 20: Ten Ideas for Taking Your Next Programming Step

28_182383 ch20.qxp 2/21/08 7:40 PM Page 331

programs are based around taking a database schema and writing the access
code. Some code generators, though, do oh so much more.

The goal is to write better code more quickly, and enjoy it. CodeRush — and
other code generator programs like it — are a great way to start. They are not
a substitute for knowing how to do it yourself, but they are a great tool when
you are in the production world. You can find out more about CodeRush at
www.coderush.com.

To be fair, CodeRush is more than a simple code generator. For instance,
CodeRush has the following neat features:

� It allows you to see the code you have built in a visual tool, even if the
code is a class library!

� It intelligently selects code for you, rather than just selecting a line.

� It has a very sophisticated copy feature that makes sure that you get the
entire block of code. For example, if you select a Try-Catch block, it
copies to the End Try statement.

� It, of course, generates code with a set of great code templates.

When you’re setting up a project, and you’re at the point where you really
know what you’re up against, you should look into using a productivity tool
such as CodeRush to help you code faster and more accurately. Using a code
generator can improve the whole experience of writing a program!

Write a Web Part
SharePoint is a portal server by Microsoft for the corporate set. By portal
server, I mean a predesigned intranet page that includes space to store docu-
ments, schedules, and so on. Don’t cringe — it is actually a pretty good prod-
uct, unlike a lot of similar efforts.

Web Parts are the little holes in which the documents and schedules are
placed. Basically, instead of writing a custom page or user control every time
you need a new page or control on your intranet, you can invoke a standard
Web Part and configure it slightly to fit your needs.

SharePoint comes with 15 or so Web Parts, which include the following:

� Discussion board

� Fax control

332 Part V: The Part of Tens

28_182383 ch20.qxp 2/21/08 7:40 PM Page 332

� Document storage

� Link list

� Help Desk

What should interest you, though, as a VB programmer, is the ability to write
a new Web Part. In total, the process for writing a Web Part from scratch is
actually very complicated. Microsoft makes it much easier by providing a
new project type for Web Parts — just like a Windows Application project or
a Web Service project.

The output of a Web Part is a DLL, just like a class library project (in fact,
it is a class library). The trick to getting rolling with a new Web Part,
though, is to download the SDK from the SharePoint site at http://msdn.
microsoft.com/sharepoint and install it. Then you will have access to
a new project type when you open Visual Studio and choose File➪New➪
Project.

A new product, called SharePoint Designer, is also out there; it makes it easy
for even end users to develop SharePoint Web Parts. It is part of the MSDN
Library, and is downloadable from http://office.microsoft.com/
en-us/sharepointdesigner/default.aspx. SharePoint Designer, shown
in Figure 20-4, is a high-powered HTML designer that has all the piping for
SharePoint built in.

Figure 20-4:
SharePoint

Designer.

333Chapter 20: Ten Ideas for Taking Your Next Programming Step

28_182383 ch20.qxp 2/21/08 7:40 PM Page 333

Outside of Web Parts are Workflows, which is more the direction in which
SharePoint is going. These define the process around the distribution of
information, and can be developed using Windows Workflow Foundation.
To take a look at a starter Workflow, look at the Windows Workflow Foundation
project type in Create Project in Visual Studio.

Use the DTE
The DTE (Design Time Environment) is the automation object model — the
class library that you use to create new add-ins and wizards for Visual Studio
itself. Yes, that’s right; I am recommending that you further your understand-
ing of Visual Basic by creating an add-in for Visual Studio itself.

I could get into the philosophical implications of this, but I’ll leave it at this:
The more you work in depth with something, the better you get at it.

To use the DTE, you again need to start a new project type by choosing
File➪New➪Project. In the New Project dialog box, look in the Project Types
list on the left, click the plus sign next to Other Project Types, and then select
Extensibility. In the Templates box on the right, select the Visual Studio Add-
in (shown in Figure 20-5) and then click the OK button.

What is great about this is that like the SharePoint Web Part, Microsoft has
done all the plumbing for you. A lot of code is involved in making an add-in
work, but much of the code is automatically supplied by the project type.

Figure 20-5:
Selecting an
add-in in the
New Project

dialog box.

334 Part V: The Part of Tens

28_182383 ch20.qxp 2/21/08 7:40 PM Page 334

When you’ve loaded the Visual Studio Add-in project, you have access to
almost every part of a Visual Studio project. Need to loop through the files in
a project? No problem. Want to check out a selected piece of code? Done.
Want to change a line of text into an HTML paragraph? Check this out:

Sub MakeParagraph()
DTE.ActiveDocument.Selection.Text = “<P>”
DTE.ActiveDocument.Selection.EndOfLine()
DTE.ActiveDocument.Selection.Text = “</P>”
DTE.ActiveDocument.Selection.CharRight()

End Sub

Like the data object generator, the DTE can be a powerful ally. It’s worth
giving it a shot!

Write an Article about What
You Have Discovered

Say you’ve become pretty knowledgeable about Visual Basic, or perhaps
you’ve figured out a clever way to fix a problem you encountered while creat-
ing a program. Especially when you figure out something on your own by
creating a unique block of code to solve a problem, you may want to share
your knowledge by writing an article.

A bunch of great, popular sites accept short articles from new authors. Don’t
expect money, but you do get two important things if your article is accepted
and published: the acknowledgment of your peers and the firm education
that comes with researching something solidly enough to write about it. To
get started, check out these sites:

www.dotnetjunkies.com/community.aspx

www.asptoday.com/Info.aspx?view=WriteForUs

www.4guysfromrolla.com/authors.shtml

www.asp101.com/resources/submit.asp

If you’re interested in writing an article, write it! Don’t make up excuses like
you’re too shy or unknown to publish an article. In 2001, I wrote an article
for Intranet Journal that is still up (www.intranetjournal.com/
articles/200107/ia_07_25_01a.html), and I couldn’t believe the furor
it started. Now look where I am!

335Chapter 20: Ten Ideas for Taking Your Next Programming Step

28_182383 ch20.qxp 2/21/08 7:40 PM Page 335

336 Part V: The Part of Tens

28_182383 ch20.qxp 2/21/08 7:40 PM Page 336

Chapter 21

Ten Resources on the Internet
In This Chapter
� Researching with Web sites

� Sharing ideas with online communities

� Finding sample code

What would we do without the Internet to turn to? In this chapter, I
show you my favorite online sites for getting information about Visual

Basic. You can find a lot of junk out there on the Internet, but you can also
find a lot of good stuff, too. The trick lies in telling the two apart.

MSDN Library
http://msdn.microsoft.com/library

The MSDN Library is without a question the number one resource for .NET
research. MSDN stands for Microsoft Developer Network, and the name MSDN
Library suits the site just fine; it is effectively a big online document storage
location.

The site’s search feature works great (type your sought-after term in the
Search For text box and click the Go button), but don’t overlook just brows-
ing through the site. The tree to the left has a very intelligently designed
table of contents built in, and you can find a ton of sample code and
resources just by digging through. Be careful, though, the content includes
some older stuff, and you want to focus on VB 2008 documents.

VBForDummies.net
www.vbfordummies.net

VBForDummies.net is my site. My goal for using this type of site is to post
bits of the book, as well as other documents and code. I’m using Graffiti, the

29_182383 ch21.qxp 2/21/08 7:40 PM Page 337

ASP.NET content management system, to build the site. It allows for a log of
community involvement that you’re probably used to by now, such as com-
ments to my blog posts and forums to ask questions.

Channel 9
http://channel9.msdn.com

A discussion platform extraordinaire, Channel 9 answers all the tough ques-
tions about the internals at Microsoft. All the programming geeks in the com-
pany hang out there, and the discussions are frank and enlightening.

Additionally, you find a lot of features that replace the now-defunct GotDotNet,
such as the SandBox, where you can find user samples of code both simple
and impossibly complex.

My favorite part of the site, though, is the blue card interviews. The site was
originally manned by blogger-extraordinaire Robert Scoble, and the feeling
on the site is as though he had never left. The interviews are relaxed and nat-
ural, and they have tons of great information.

ASP.NET Web
www.asp.net

As with GotDotNet, the ASP.NET community was started by a Microsoft team —
but this time it was the ASP.NET team. ASP.NET Web is the place to go for any
download, control, or question about Web Forms development.

http://quickstarts.asp.net/QuickStartv20/default.aspx

Also — don’t miss this — the ASP.NET site is the hosting location for the
QuickStart Tutorials. You may find that these tutorials are similar to this
book, with to-the-point explanations and lots of examples. The QuickStart
Tutorials are solution driven, too, so they answer real rather than theoretical
questions. The code samples are based on the inline scripting model, which I
didn’t use in this book. This model offers another way to build ASP.NET Web
Forms projects. You can catch on to this model pretty quickly by looking at
the examples in the QuickStart.

338 Part V: The Part of Tens

29_182383 ch21.qxp 2/21/08 7:40 PM Page 338

The Microsoft Public Newsgroups
http://msdn.microsoft.com/newsgroups/managed

I used to be a huge fan of the Usenet, but with the proliferation of spammers,
it has really gone downhill. Microsoft has made a major effort, though, to get
the Usenet started up again for Microsoft developers using the Managed
Newsgroup model. If you have an MSDN subscription and have signed up
with the Managed Newsgroup service, you get an answer to any posted ques-
tion within 48 hours (or two business days) from a Microsoft employee or
MVP. It’s a great plan, and it’s free with the MSDN subscription.

.NET 247
www.dotnet247.com/247reference/default.aspx

I’ll admit it — I am going to promote another author here. Matt Reynolds is a
fantastic writer and coder, and he has put up a fantastic resource in .NET 247.
This site looks through the Usenet for posts that actually have something
interesting in them, and then indexes these posts to make the information
useful. I highly recommend that you take advantage of the content on .NET 247.

Google CodeSearch
www.google.com/codesearch

While much of the Google Code Repository is not Microsoft code, it is still a
tremendously valuable resource. Aside from searching for off-color phrases
(which is tremendously amusing), you can find algorithms that can easily be
translated to VB with a little know-how.

Regular expressions out of Perl are very useful, for instance. Perl is a lan-
guage that makes heavy use of Regular Expressions, and our .NET Regular
Expressions are similar. With good search criteria, it is easy to find Perl regu-
lar expressions that match things you might need — search “Regex Email,”
for example.

339Chapter 21: Ten Resources on the Internet

29_182383 ch21.qxp 2/21/08 7:40 PM Page 339

kbAlertz
www.kbalertz.com

What is kbAlertz.com? The kbAlertz site says it best:

“kbAlertz.com is an e-mail notification system that scans the entire
Microsoft Knowledge Base every night, and e-mails you when updates
or additions are made to the technologies you subscribe to. Since we
scan the entire knowledge base, we also have a pretty good search
system for you to use on the left menu.”

Using kbAlertz isn’t about VB 2008 as much as it’s about having access to
information that’s handy for anyone in a Windows environment. I subscribe
to the alerts and get information on changes to the security best practices,
among other things.

CodePlex
www.codeplex.com

Speaking of open source code (weren’t we?), don’t overlook CodePlex —
Microsoft’s new Open Source Management System. This is an all-.NET library
of open source projects that you can join, use, or browse.

I use open source projects as my own personal education medium. Throughout
my career, I have looked at how other people have done things, both good
and bad, and formulated my own plans. CodePlex is a great place to do that.

It’s also a lot of fun. Right now, the most popular project is a .NET driver for
the nunchucks from the Wii. Cool stuff.

<Microsoft> Google for Searching
www.google.com/microsoft

With all of these specialty sites for finding and sharing code, don’t forget
about good old Google. The trick for using Google to find useful bits of code
is to refine your search technique. I search for the exact class I need code for
and add the term VB.NET, and I usually find what I need. For instance, I needed

340 Part V: The Part of Tens

29_182383 ch21.qxp 2/21/08 7:40 PM Page 340

to connect to an Excel spreadsheet as a data source recently. I could have
pieced together the needed code from the MSDN documentation, but instead
I turned to Google. I searched with the phrase “vb.net OleDbConnection
Excel” and got four examples as the first four hits.

Now to do a proper search, you need to know a little about what you are
searching for. So don’t go off half-cocked, or your results will be too broad.
To narrow your search and get good results on Google, use one very specific
term (like OleDbConnection) with one or more broad terms (like vb.net and
Excel).

341Chapter 21: Ten Resources on the Internet

29_182383 ch21.qxp 2/21/08 7:40 PM Page 341

342 Part V: The Part of Tens

29_182383 ch21.qxp 2/21/08 7:40 PM Page 342

• Symbols •
... (ellipsis) button, in a

property, 28
/ (division) operator, 170
- (subtraction) operator, 170
+ (addition) operator, 170,

227–228
* (asterisk), next to a filename

in Design View, 24
% (modulo) operator, 170
* (multiplication) operator, 170
_ (underscore character),

starting private variables,
114–115

• A •
abstract concepts, comparing

with real world, 48–49
abstract environment, handling

errors in, 205–206
abstraction, contained by

reusable code, 198
access to a resource,

implementing threading
for, 233

AccessControl namespace,
251

accessibility keywords, 119
AccessRule class, 251
Adapter classes, 257
adapters

creating and using, 256
database-specific, 254

Add a New Data Source
button, 33

Add Connection dialog box, 32,
259–260

add function, 226
add-ins

described, 41
included with Visual Studio

2008, 41–42
for Microsoft Office

applications, 21
Add method, with DateTime,

171–172
Add New Data Source link,

258–259

Add Reference dialog box,
116–117, 207–208, 212

Add Reference panel, 269, 270
Add Service Reference dialog

box, 132–133, 330
Add Tab option, in the Toolbox,

27
Add Watch, selecting in Code

View, 144
addition (+) operator, 170,

227–228
ADO.NET

collecting searches, 55
compared to LINQ, 270
described, 47
implementation of, 254

Affected users, in DREAD, 242
Align All Controls Center

option, 71
Align feature, on the Format

menu, 71
Alphabetical List of Products

view, 34
Alt+F8, 319–320
Anchor tab, in Source View, 103
AppActivate function,

217–218
app.config file, 293–295
Append function, in the

StringBuilder class,
168

Application State, in Trace,
151

ApplicationException
throwing, 206
using, 184

applications
adequately securing, 293
building for Windows, 65–68
compiling into Windows

programs, 19
connecting to a data

source, 32
creating in Visual Studio 2008,

12
designing

screens for, 54–56
in Visual Basic 2008, 43–58

developing in .NET, 11
gathering requirements for,

51–52
layers of, 44

running, 19–20, 70
state of, 85–86
storing data for, 53–54
writing test plans for, 57–58

AppWinStyle parameter, of
the Shell command, 217

architecture-neutrality, of Web
services, 125

Array class, methods in, 228
articles, writing, 335
ASCX file, 209–210
Ask a Question button, on

the Document Explorer
toolbar, 39

ASMX-based service, getting
WSDL from, 136

ASP.NET
accompanying Web

applications, 90
applications, publishing, 91
code samples, 329
compared to Windows Forms,

84
constraints, 84
described, 83–84, 93
enabling interaction with the

user, 48
encapsulating CGI

functionality, 97–102
saving the application

State, 86
server controls, 89
user controls. See user

controls
as user-interface oriented, 47
Web Forms namespaces,

88–89
ASP.NET 2.0 For Dummies

(Hatfield), 39, 93, 106
ASP.NET Trace, in the MSDN

Library, 152
ASP.NET Web

overview, 338
Service template, 128
Site template, 90–91

aspnet_wp.exe file, 154
aspx.vb file, 90
.aspx.vb file, 90
assemblies, controlling access

within, 203
assumptions, killing software

projects, 57

Index

30_182383 bindex.qxp 2/21/08 7:41 PM Page 343

asterisk (*), next to a filename
in Design View, 24

Attach to Process dialog
box, 154

AuditRule class, 251
authentication

defined, 239, 243
using Windows logon, 243–245

Authentication class, in
System.Net, 285

authorization, defined, 239, 243
Authorization class, in

System.Net, 285
Authorization namespace,

251
AutoFormat dialog box, in Web

Forms, 92
automated test systems, 58

• B •
Base Class Libraries (BCL)

accessing, 46
piping prebuilt code, 47–48
user interaction parts of, 54

basic data code, 267–268
Basic programming

language, 14
BCL (Base Class Libraries)

accessing, 46
piping prebuilt code, 47–48
user interaction parts of, 54

best practices, for securing Web
Forms applications, 250

bin folder, 66
BinaryReader class, 272
BinaryWriter class, 272
BindingNavigator object,

264. See also VCR Bar
BindingSource object, 264
Bitmap object, 300
bitmaps, loading, 300–301
black box problem, 255
blocking operation, 232
blue card interviews, 338
book

about, 2
author assumptions, 4
conventions used in, 2–3
future directions, 6–7
icons used in, 6
organization of, 4–5
in overall programming

strategy, 1–2
parts which can be skipped, 3

Boolean statement, 180
Boolean value, casting to, 161

box with rounded corners, in a
flowchart, 176–177

branching, 178
Break mode, 149. See also

Debug mode
Breakpoint properties, 143
breakpoints

creating, 141
described, 140–143
managing, 142–143
setting up, 141–142

Breakpoints window, 142–143
browsers

giving focus, 218
making requests to the

server, 85
brushes

painting the insides of
polygons, 299

types of, 299
used by Graphics

objects, 298
bugs, discovering while

planning, 50
Build icon, dragging to a

toolbar, 40
Build toolbar, 316
building

class libraries, 107–121
Date Calculator application,

89–95, 114–115
DateCalc Web service,

129–130
e-mail function, 291
functions with reuse in mind,

198–200
generics, 230–231
Google Search Tool, 213–215
Hello World application, 16–17
reports, 301
reusing code to build

software, 197–203
shared functions, 119–120
URLs in ASP.NET pages, 165
user experiences, 14
user input form, 65–68
Web applications, 89–95
Web Forms applications,

247–250
Web services, 127–132
Windows Forms applications,

17–18, 242–246, 286–296
Windows Security

application, 243–245
built-in functions, changing,

227–228
bullet lists, writing scopes, 51
business applications, creation

of, 253

business logic
defined, 126
depicting with flowchart

components, 176–179
designing, 175–176
entering for controls, 68–70
organizing to avoid

exceptions to class
files, 206

providing other applications
access to, 132

separation from the database,
53

writing in a separate DLL
file, 109

Business Logic Layer
in an n-tier system, 53
designing, 56

business model, 200
button click, described, 222
Button control

adding in Web Forms, 95
described, 64
selecting from the Toolbox, 16
for Web applications, 86

Button object, events exposed
by, 313–314

buttons, moving around on a
form, 16–17

ByRef (By Reference) keyword,
204

Byte type, 159
ByVal (By Value) keyword,

204–205

• C •
Cache function, in

System.Net, 286
calc.exe, 216
Calculate method, calling,

118
Calendar control

formatting in Web Forms, 92
for Web applications, 87

CallByName function, 213
calls, chunky beating chatty,

125
casting, 161
Catch statement, 147, 184, 185
categories, of Web server

controls, 88
Category button, in the

Properties window, 28
CBool, 161
CDate, 161
CDBl, 162
Center in Form option, 160

344 Visual Basic 2008 For Dummies

30_182383 bindex.qxp 2/21/08 7:41 PM Page 344

certified vendors, looking for,
329

CGI (Common Gateway
Interface)

ASP.NET encapsulating,
97–102

protocol, 83
Change Data Source dialog box,

260–261
Channel 9, 338
Char type, 159
characters, replacing using a

pattern, 169
chatty calls, compared to

chunky, 125
Cheat Sheet, at the front of this

book, 96
child table interface, 264–265
Choose Your Data Connection

screen, 259–260
Choose Your Database Objects

screen, 261
chunky calls, compared to

chatty, 125
CInt, 161
CipherAlgorithmType class,

251
class(es)

described, 48–49, 110
holding reusable

functions, 202
shared, 272–273
using effectively, 220–222
in a .vb file, 110–111

class definition, in a class
library, 112

Class Designer toolbar, 316
class files

extending reusability, 201–203
setting and using, 201–202

class libraries
building, 107–121
coding, 112–113
compared to Web services,

125, 132
creating, 113–118
debugging, 152–153
defined, 107
designing, 109–113
encapsulating

functionality, 109
parts of, 110–113
providing shared

functions, 109
Click event handler, adding in

Web Forms, 95
ClickOnce, deploying an

application using, 246
client-side validation, not

depending on, 250

clients, in the .NET world, 44
CObl, 162
code

adding to a menu, 79
for ASP.NET applications, 84
dragging onto the Toolbox for

reuse, 27
executing one line at a

time, 149
inserting snippets in, 323
linefeeds in, 3
looping through, 188–189
moving repeated, 198
output by visual tools,

266–267
reusing to build software,

197–203
reverse-engineering to Visual

Basic, 42
samples on Visual Basic For

Dummies Web site, 7
updating to use new tools,

326
working with in Visual Studio,

36–39
writing

to access data, 266–269
functional, 163
secure, 239–251, 293

code abstraction, downside of,
205

code-based objects, adding in
the Component Tray, 264

code complexity trap, avoiding,
203–206

code encapsulation
example of, 200
using class libraries, 107

code generators, 23, 331
code-oriented aspects, of

System.Net, 286
code samples, for this book, 7
Code View

generating event handlers
from, 313–314

IntelliSense in, 224
opening a file in, 30
tabs in, 24
working in, 36

Code View window
entering, 18
opening, 68

CodeAccessPermission
class, 251

CodeBehind file, in ASP.NET, 90
CodePlex, 340
CodeRush, 331–332
CodeZone, 328
coding, class libraries, 112–113
collections, 191–192, 256

COM+, updating, 326
COM (Component Object

Model)
COM tab, in the Add

Reference dialog box, 212
implementing in Visual Basic,

211–212
objects, calling methods

in, 213
referencing, 212–213

comma-delimited list, of values,
183

command-line programs,
running with Shell,
216–217

Common Gateway Interface
(CGI)

ASP.NET encapsulating,
97–102

protocol, 83
CommonDialog control, 273
communication, program flow

for user, 176–178
Compare function, 111
compiling, applications into

Windows programs, 19
complexity, 203
Component Development

Contests, 327
Component method, with

DateTime, 172
Component Object Model

(COM)
COM tab, in the Add

Reference dialog box, 212
implementing in Visual Basic,

211–212
objects, calling methods

in, 213
referencing, 212–213

Component Tray
adding components to, 79–80
controls, 274
described, 317
nonvisual components in, 318

components
in the Data Sources

window, 34
decomposing into

functions, 241
of programs, 240–241

computer process, decision-
making situations, 179

concatenation, of strings, 161
Condition column, in the

Breakpoints window, 142
Config files, 326
config files, 293
Configuration function, in

System.Net, 286

345Index

30_182383 bindex.qxp 2/21/08 7:41 PM Page 345

connection, creating to a
database, 262

connection string, saving to the
application configuration
file, 261

Console project type, writing
command-line applications
using, 216

consuming, Web services, 123,
132–135

containers
database-generic, 254
holding data in, 253

content control, in ASPX pages,
210

content placeholder, in ASPX
pages, 210

ContentPlaceHolder
control, 210–211

Contents button, on the
Document Explorer
toolbar, 39

context menus, activating,
80–81

context-sensitive Help,
launching, 38–39

ContextMenuStrip builder, in
the form designer, 81

ContextMenuStrip object,
activating right-clicking,
80–81

ContextMenuStrip property,
of a form, 80–81

Control collection, 192–193
control-flow statements, 181
Control Gallery, of the ASP.NET

site, 329
control structures, 187
Control to Validate parameter,

100
Control Tree, in Trace, 151
ControlCollection

collection, 191–192
controls

accessing from Toolbox, 26–27
adding extra properties to, 78
creating custom, 207–209
double-clicking to add

code, 118
editing the properties of,

27–29
for forms, 64
included in Visual Studio, 63
using, 63
for Web applications, 86–89

conventions used in book, 2–3
Conversion method, with

DateTime, 172
Cookie class, in System.Net,

285

cookies, using temporary, 250
cookies collection, available to

JavaScript, 249
counting, the number of hours,

188–189
Create New User Task button,

322
CreateGraphics method, of

the form control, 305
CreateObject function, 212
creating

adapters, 256
add-in for Visual Studio

2008, 334
applications, in Visual Studio

2008, 12
breakpoints, 141
business applications,

creation of, 253
class libraries, 113–118
components, reusable, 207
connection to a database, 262
Create New User Task

button, 322
CreateGraphics method, of

the form control, 305
CreateObject function, 212
custom controls, 207–209
data broker, 268
DISCO file, 136–137
DLL files, 114
Form_Load event

handler, 146
functions or subroutines,

reusable, 198
images, 297–307
obj folder, in Visual Studio, 66
Orders Detail data form,

263–264
project data source, 262
project template, in Visual

Studio, 128
properties for a class library,

114–115
References folder, inVisual

Studio, 66
reusability, 197–198, 207
server controls, 207–209
threat model, 241
ValueChanged event

handler, 69
Web applications in Visual

Studio 2008, 20
WebResponse object, from

myRequest method, 288
Windows Forms program to

incorporate a Google
Search Tool, 215

Credentials property, of
FtpWebRequest, 288

cribbage boards, 302–303,
305–307

cribbage card game, 302–303
CryptoConfig class, 251
Cryptography namespace,

251
Crystal Reports Services, in

Server Explorer, 31
CStr string conversion, 102,

161
Ctrl+Alt+K, 322
Ctrl+Alt+L, 246
Ctrl+Alt+S, 30
Ctrl+Alt+X, 27
CType function, changing types

with, 159–162
custom controls, creating,

207–209
customizing, Visual Studio

2008, 35

• D •
Damage potential, in DREAD,

242
data

accessing, 256–257
editing dynamically, 33–35
gathering a flow of, 289
holding in containers, 253
storing for applications, 53–54
taking from a database, 47

data access process,
customized parts of,
268–269

data applications, developing
quickly, 34

data brokers, 268–269
data classes, 256
data code, writing, 266–269
Data Connections node, in

Server Explorer, 31–32
Data Connections panel, 262
data containers, 256
data controls

integration with, 254
for Web applications, 88

Data Encryption Standard
(DES), 245

Data Layer, in an n-tier
system, 53

Data Object Generator, 326
data objects, selecting, 261
Data Source Configuration

Wizard
accessing, 257–262
data source types, 258–259
using, 33–34

346 Visual Basic 2008 For Dummies

30_182383 bindex.qxp 2/21/08 7:41 PM Page 346

data sources, connecting to,
33, 254, 257–262

Data Sources panel
accessing the Data Source

Configuration Wizard,
257–262

clicking a table in, 263
contents of, 262
opening, 258

Data Sources window, 33–35
data tools, types of, 253
database connectivity, tools

for, 253
Database Management System,

in an n-tier system, 53
database nulls, 166
databases

connecting to without using
visual tools, 268

interaction with, 47
looking at, 31
walking through items in,

264, 265
DataContext object, getting

data out of a database, 270
DataGridView control, 64
DataReader container, 256
DataRow container, 256
DataSet container, 256
DataSet designer, updating

projects to use, 326
DataSet object, adding, 264
DataTable container, 256
DataView container, 256
Date Calculator application

adding code to, 69
building, 89–95, 114–115
defining logic for, 56–57
designing, 52–58
example scope statement, 51
gathering requirements for,

51–52
in Internet Explorer, 96–97
making appropriate for

reuse, 200
screen design, 54–56
storing data for, 53–54
user input form for, 65–68
as a Web Forms application,

86, 87
in Web services, 135
as a Windows application, 63
writing a test plan for, 57–58

Date Calculator form, placing a
public subroutine within,
199

date choosers, 54–55
DateCalc .asmx file, 130–131

DateCalc Web service
adding a reference to, 132–133
building, 129–130
viewing in action, 130–132

DateChooser object, adding a
value to, 69

dates
storing in variables, 158
string representations of, 172
working with, 171–173

DateSpan data type, returning
an object of, 200

DateTime types
described, 159
in Visual Basic, 171

DateTime variable, getting the
current date in, 172

DateTimeFormatProvider
tool, 172–173

DateTimePicker control, 64
Debug class, 146
Debug mode

placing Visual Studio in, 140
running Web applications in,

95–97
Debug toolbar, 316
debugging

class libraries, 152–153
defined, 139
functions, editing in the

Breakpoints window, 142
network traffic problems, 293
projects, 148–154
remote, 150
tools in .NET Framework,

145–154
visual tools for debugging,

139–145
Web Forms, 95–96, 150–152
Web services, 153–154
Windows Forms applications,

149
Debugging Deployed

ASP.NET
Applications, in the
MSDN Library, 154

Debugging Not Enabled dialog
box, in Web Forms, 95, 96

Debug.Print method, in the
Immediate Window, 145

Debug.Write statement,
inserting, 146

decimals, using the Double
type, 170

decision components
characteristics of, 179
in a flowchart, 176–179

decision making, in the
PaintBoard method, 307

decision-making tools, 175
decision node, in a flowchart,

179
decisions, described, 187
default app.config file,

293–294
default form

renaming in Solution
Explorer, 66

resizing in Visual Studio, 66
in Visual Basic, 16

default namespaces, in Web
services, 130

Default.aspx, HTML code
for, 93–94

Denial of service, in STRIDE,
242

deployment, ASP.NET, 91
deployment security, 246
DES (Data Encryption

Standard), 245
Description property, for a

Web service, 130
DESCryptoServiceProvide

r class, 245, 251
design, of a project, 51
design document, 52
design issue, overloads as,

228–229
design strategy, planning for

Web services, 126–127
design time, setting text at, 76
Design Time Environment

(DTE), 334–335
Design View

accessing in Web Forms, 91
described, 24–26
dragging field onto a blank

form, 34
generating event handlers

from, 311–313
main menu in, 79
opening a file in, 30
tabs in, 24–26
in Web Forms, 89
working with event

handlers, 222
designer tabs, 24
designer window, 24
designing

applications, 52–58
applications in Visual Basic

2008, 43–58
business logic, 175–176
Business Logic Layer, 56
class libraries, 109–113
DataSet designer, updating

projects to use, 326
Date Calculator application,

52–58

347Index

30_182383 bindex.qxp 2/21/08 7:41 PM Page 347

designing (continued)
defined, 49
described, 43
in development process, 50
of document, 52
form designer with

ContextMenuStrip
builder, 81

for generics, 231–232
for overloading, 228–229
of a project, 51
screens for applications,

54–56
secure software, 240–242
setting text at time of, 76
software, 43, 240–242
strategy, planning for Web

services, 126–127
for threading, 232–233
ToolTip objects, 75
user interface, 55
variables, run-time compared

to design-time, 76
View Designer button, in

Solution Explorer, 30
Web designer, layout in, 91
Web Forms designs,

compared to Windows
Forms, 84

Web services, 126–127
Details view, changing the

Orders table to, 263
development process,

planning and design in, 50
development server(s),

managing, 31
Device toolbar, 316
Diagram View

described, 34–35
opening a file in, 30

Dialog controls, 273
diamonds, in a flowchart,

176–177, 179
Dim statements

described, 158
dimensioning objects, 221
memory used by, 220

directories, listing, 279
Directory class, 272–273, 279
DirectoryInfo class, 272,

279–280
DISCO file, creating, 136–137
Discoverability, in DREAD, 242
discovery

defined, 125, 136
process of, 136–137

Disk Operating System (DOS),
216–218

display code, in Web Forms, 89
division (/) operator, 170

DLL (Dynamic Link Library)
files

creating, 114
impact of overloading on

writing, 228
running, 116–118

DLLs (Dynamic Link Libraries)
compared to Web services,

123–124, 126
defined, 108–109
described, 118–121
as a kind of class library, 109
as the output of Web

Parts, 333
as stateful, 126
uses of, 109

DNS (Domain Name Services)
class, in System.Net, 285

Do-Loop, 193–196
Do-Until loop, 195–196
Do-While loop

checking at end, 194–195
checking at start, 194
described, 187

dockable window, displaying a
tool window, 36–37

Document Explorer, 39
documentation

of the components of
programs, 240–241

reading, 38–39, 58
Domain Name Services (DNS)

class, in System.Net, 285
DomainUpDown control, 64
DOS (Disk Operating System),

accessing, 216–218
Dotfuscator Community

Edition, 42, 329
.NET 247, 44, 339
.NET applications, obfuscating

compiled, 42
.NET Framework

adjunct functionality, 13
as a class library, 107
defined, 12
described, 11, 44–46
giving programmatic

names, 13
interaction of the pieces of,

44–45
Internet functionality of, 283
layers in, 12
nulls used by, 166
reusing programs outside of,

211–215
terminology, 12
uses of, 46–48
using debugging tools in,

145–154
Visual Basic’s role in, 11–13

Double type, 158–159, 170–171
doubles, 158, 162, 171
Download class, in

System.Net, 285
DownloadFile method,

calling, 289
DownloadFile subroutine,

288–289
DragDrop event, 223
Draw methods, of the

Graphics object, 299
drawing

provided by the BCL, 48
provided by the .NET

Framework, 297
System.Drawing breaking

into steps, 300
Drawing classes, using a Font

in, 221–222
DREAD model, for rating risk,

242
DTE (Design Time

Environment), 334–335
Dynamic Link Libraries (DLLs)

compared to Web services,
123–124, 126

defined, 108–109
described, 118–121
as a kind of class library, 109
as the output of Web

Parts, 333
as stateful, 126
uses of, 109

Dynamic Link Library (DLL)
files

creating, 114
impact of overloading on

writing, 228
running, 116–118

• E •
e-mail

function building, 291
getting permission to use

server, 291
ISPs blocking, 293
as a server-based operation,

290
Edit Items link, in the

Properties window, 73
Edit menu, adding, 79
editions, of Visual Studio

2008, 14
Elevation of privilege, in

STRIDE, 242
ellipsis button (...), in a

property, 28
Else statement, 181

348 Visual Basic 2008 For Dummies

30_182383 bindex.qxp 2/21/08 7:41 PM Page 348

ElseIf statement, 182
encapsulated code, 198–199
encapsulation, of functionality,

109
encryption, 245
end line, in a control-flow

statement, 181
End statement, following an If

statement, 181
EndPoint classes

in System.Net, 285
used by socket classes, 286

Enterprise Library, accessing,
269

Enterprise Library Data Access
Application Block data
broker, 268–269

Enterprise Services, provided
by the BCL, 47

enterprise software, specific
requirements of, 266

Entity Relationship (ER)
diagram, 53–54

Epsilon, testing for, 171
ER (Entity Relationship)

diagram, 53–54
Error Creating Control

message, in Web Forms, 94
error messages

for a ValidationSummary
control, 100

for Web Forms applications,
250

ErrorProvider control, 64
errors

in abstract environment,
205–206

compared to exceptions, 184
defined, 184
handling, 147–148, 205–206

escaping the mark, 158
Even Spacing Between

Controls option, 71
Event arguments, 222
Event button, in the Properties

window, 312
event handlers

adding code to, 69
in the Date Calculation

application, 198–199
defined, 68
described, 222
as functions, 197–198
generating

from Code View, 313–314
from Properties window,

311–313
relaxed, 224
using, 222–225

event handling, using
IntelliSense, 224–225

event logs
dragging into forms, 32
in Server Explorer, 31

events
described, 28, 69
double-clicking to generate

event handler code, 313
exposing by objects, 222
treating PostBacks as, 85

Events button, clicking, 223
Events panel, 223
Evidence class, 251
Exception object

described, 147
looking at the contents of, 148

exceptions, 179, 183–185, 206
.exe file extension, 19
existing image, getting a

Graphics object from, 300
Exists method, supported by

File and Directory, 273
Exit-For statement, in

For-Next loops, 191
Exit option on File menu, 79
ExitWhile statement, in a

While-End loop, 196
Exploitability, in DREAD, 242
Express Edition, of Visual

Studio 2008, 14, 325
extender providers, adding,

316–317
eXtensible Markup Language

(XML)
data copy driven by, 254
described, 136
XML versions, of Windows

concepts, 124

• F •
F1, 38–39
F4

in Visual Studio 2008, 27, 67,
312

in Web Forms, 93
F5

in Visual Studio 2008, 70,
140–141, 149

in Web Forms, 95
F8, 154
F10, 149, 153
F11, 149
features, adding to Windows

Forms, 70–81

fields. See also private variables
described, 54, 114
dragging onto a blank form in

Design View, 34
implementations of, 54

File class, 272–273
File Management application

adding a FileSystem
Watcher to, 280–281

opening, 274–276
file management classes, in

System.IO, 272
File menu

adding an Exit option on, 79
adding to a form, 78–79

file system, working with,
271–281

file transfer protocol (FTP)
blocked from corporate

networks, 292
building an application using,

288
described, 288

file types, customizing
toolbars for, 315–316

FileInfo class, 272, 279–280
files

changing the contents of, 277
downloading from the

Internet, 288–290
encrypting, 245
listing, 279
monitoring, 280–281
opening, 29–30, 274–276
saving, 274, 277–278
storing information in, 271
viewing information, 279–280

FileStream class, 272, 288
FileStream object, 289
FileSystemObject, in VB 6

and VBScript, 272
FileSystemWatcher class,

272
FileSystemWatcher

component, 271
FileSystemWatcher tool,

adding, 280–281
FileUpload control, 87, 274
FileWeb set of clases, in

System.Net, 285
Fill methods, 299
Finalize method, 220–221
Finally statement, 185
FindDateDiff function, 199
fire hose, 256
firewalls, blocking network

traffic, 292
floating window, 35–36
flow of data, as a stream, 289

349Index

30_182383 bindex.qxp 2/21/08 7:41 PM Page 349

flowchart components,
depicting business logic,
176–179

flowcharts, 176
FolderBrowserDialog

control, 273
folders, in the Visual Studio

Projects directory, 29
Font class, using brushes, 300
For-Each listing, looping

through Control,
192–193

For-Next loop, 187, 190–191
Form Collection, in Trace, 151
form components, adding to

forms, 26
form controls, common, 64
form designer, ContextMenu

Strip builder in, 81
format providers, showing

dates, 172–173
Form_Load event handler

creating, 146
editing, 75

forms
adding functionality to, 18
coding for stability and

security reasons, 84
printing, 301

Friend keyword, 119
FTP (file transfer protocol)

blocked from corporate
networks, 292

building an application using,
288

described, 288
FTP site, publishing to, 91
FtpWeb class, in System.Net,

285
FTPWebRequest class, 288
Function keyword, 112
functional code, in a class

library, 113
functional overloading, 120–121
functional overview, of an

application, 240
functional pieces, breaking

individual components
into, 241

functionality
adding to Windows Forms,

68–70
concept of reusing, 199
describing for applications, 57

functions
building

with reuse in mind, 198–200
shared, 119–120

changing with operator
overloading, 227–228

making
as abstract, 199
appropriate for reuse, 200

referencing directly, 202–203
returning values, 112
in the StringBuilder class,

168
testing in Web services,

130–131
in a .vb file, 110–111

• G •
garbage collection, in .NET,

220–221
General Environment variables,

41
generating

code generators, 23, 331
Data Object Generator, 326
event handlers

from Code View, 313–314
from Properties window,

311–313
string concatenation, never

using to generate SQL, 248
generics

building, 230–231
defined, 230
designing for, 231–232

Get part, of a property, 115
GetCurrent method, of the

WindowsIdentity
object, 244

Google, using, 340–341
Google Code Repository, 339
Google CodeSearch, 339
Google Search Tool, building,

213–215
GotDotNet, 338
Graffiti, 337–338
Graphics class

described, 298
pens, brushes, and fonts in,

301
Graphics object

getting, 300–302
methods and properties of,

298
graphics programming, 298
gray tab, in Design View, 24, 25
guidelines, helping line up

controls, 71

• H •
HACK token, adding, 323
Handles statement

in an event handler, 222
described, 223

hashtables, 256
Hatfield, Bill

ASP.NET 2.0 For Dummies, 39,
106

Headers Collection, in Trace,
151

Hello World application,
building, 16–17

hidden form variable,
ViewState object as, 101

Hit Count column, in the
Breakpoints window, 142

home use, getting Visual Basic
2008 for, 325

How Do I button, on the
Document Explorer
toolbar, 39

HREF property, of the Anchor
tag, 103

HTML
ASP.NET rendering, 84
elements of, 106
pasting text as, 314–315

HTML code, for
Default.aspx, 93–94

HTML comments, not leaving in
place, 250

HTML controls, for Web
applications, 88

HTML formatting, recording,
319

HTML paragraph
changing a line of text into,

335
recording formatting for, 320

HTMLEncode method, 249
Http (HyperText Transfer

Protocol) class, in
System.Net, 285

http objects, getting
information out of, 105

HTTP Upload, 274
HttpApplication class, in

ASP.NET, 88
HttpBrowserCapabilities

class, in ASP.NET, 88
HttpContext class, in

ASP.NET, 88
HttpCookie class, in ASP.NET,

88
HttpRequest class, in

ASP.NET, 88

350 Visual Basic 2008 For Dummies

30_182383 bindex.qxp 2/21/08 7:41 PM Page 350

HttpRequest object
getting a WindowsIdentity

object, 105
information in, 106
referring to the current, 105

HttpResponse class, in
ASP.NET, 89

HttpSession class, in
ASP.NET, 88

HttpUtility class, in
ASP.NET, 89

HttpWriter class, in
ASP.NET, 89

Hyperlink Web user control, 103

• I •
icons used in book, 6
ID property, in Web Forms, 93
IDE (Integrated Development

Environment), 1, 35
identity, spoofing the current

user’s, 249
IEnumerable interface, 192
“if possible” requirements, 52
If statement, 181
If-Then-Else-If statement,

compared to Select-Case,
182–183

If-Then-Else statements
handling a navigation

decision, 103
linking several, 182

If-Then statement, 191
IIS (Internet Information

Server)
described, 84
presenting Web services, 135
required for running

an ASP.NET Web
application, 95

role with XML Web services,
135

IIS site, publishing to, 91
image processing, impact on

Web pages, 106
ImageMap control, for Web

applications, 87
images

creating, 297–307
handling with normal HTML,

104
setting paths to, 104

images tags, 104
ImageUrl property, 104
Immediate window, 140,

144–145

implementing
access to a resource, 233
ADO.NET, 254
COM (Component Object

Model), 211–212
fields, 54
processes in Visual Basic,

180–185
Resource Utilization

Management, 221
SOAP (Simple Object Access

Protocol), 136
threading, 233–235

Imports statement
adding to LINQ code, 269
referencing

a class, 203
a function, 202
the StringBuilder class,

167
indefinite loops, 188, 193
Independent Software Vendor

(ISV), 329
Index button, on the Document

Explorer toolbar, 39
information

disclosure, in STRIDE, 242
encrypting, 245
from http objects, 105
online sites, for Visual Basic

information, 337–341
storing in files, 271
types of information in Visual

Basic 2008, 157–164
viewing file information,

279–280
inheritance statement, in a

Web service, 129
INI files, updating, 326
inline scripting models, 338
input, gathering user’s, 54
Input Output (IO), provided by

the BCL, 47
input parameters, for event

handlers, 224
Insert function, in the

StringBuilder class, 168
Insert Snippet feature, 323
Insert statement, placing a

word in a string, 168
instance

of classes, 49, 110
of controls, 67
defined, 49
of objects, 76

instance classes, 273
instantiated classes, in

System.IO, 279
Integer object, TryParse

method, 162

Integer type
described, 158–159, 170
MaxValue and MinValue

method, 171
integers, 158
Integrated Development

Environment (IDE), 1, 35
IntelliSense

event handling using, 224–225
overloading in, 226
showing overloading, 121
showing user documentation

information, 39
using in Code View, 37–38

IntelliSense menu, opening,
37–38

Internet
accessing, 283–296
downloading files from,

288–290
resources on, 337–341
running Web services from,

133
Internet Information Server

(IIS)
described, 84
presenting Web services, 135
required for running

an ASP.NET Web
application, 95

role with XML Web services,
135

Internet Protocol (IP) class,
285–286

interoperability, of Web
services, 125

InvalidCastException
error, Visual Basic
throwing, 162

IO (Input Output), provided by
the BCL, 47

IP (Internet Protocol) class,
285–286

IrDA class, in System.Net,
285

IsDaylightSavingsTime
method, in the DateTime
object, 172

IsDbNull method, built into
Visual Basic, 166

ISV (Independent Software
Vendor), 329

Items Collection Editor dialog
box, opening, 73–74

iterative loop, 189

• J •
JavaScript engine, 248

351Index

30_182383 bindex.qxp 2/21/08 7:41 PM Page 351

• K •
kbAlertz, 340

• L •
Label control

adding to a Web page, 91–92
adding to forms, 67
described, 64

Label Web control, text of, 106
language, Visual Basic 2008

as, 1–2
Language column, in the

Breakpoints window, 142
Language Integrated Query

(LINQ)
described, 253, 326
LINQ to SQL: .NET Language

Integrated Query for
Relational Data, 270

as a new feature, 22
using, 269–270

last in wins problem, 254
Late Bound Resolution

warning, 213
Layout toolbar, 316
legacy code, 211
libraries of classes, impact of

overloading on writing, 228
lightning-bolt button, 28
linefeeds, in code, 3
linking code, added by Visual

Studio, 69
LINQ (Language Integrated

Query)
described, 253, 326
as a new feature, 22
using, 269–270

LINQ to SQL: .NET Language
Integrated Query for
Relational Data, 270

listing, directories and files, 279
literals, in patterns, 169
Load event, adding code to for

a form, 81
localhost, as the e-mail

server name, 292
Location drop-down list, in

the New Web Site dialog
box, 91

locking, resources, 221
logging, network activity,

293–296
logic. See also business logic

contained in classes, 220
defining for an application,

56–57
described, 175

logic errors, resulting from
using ByRef, 205

LogonUserIdentity, 105
looping, 187
loops, writing with For-Next,

190–191
loosely coupled programs, 247

• M •
Machine/SqlExpress, in the

Add Connection dialog
box, 32

Macro Explorer, opening, 319,
320

Macro IDE, 319, 321
macros, 319–321
Mail function, in

System.Net, 286
Main menu, in Design View, 79
Managed Newsgroup model,

339
management, provided by the

BCL, 48
Management Classes, in Server

Explorer, 31
Management Events, in Server

Explorer, 31
Master attribute, in the Page

directive, 211
master pages

adding to projects, 210
described, 210
making, 210–211
running with content, 211

Match function, Regex object,
169

math, subroutines for, 115–116
Me object

described, 79
referring to the current

object, 102
Me.Close() statement,

adding, 80
memory management,

importance of, 220
menu bar, standard, 78–79
menu system, protecting for

each user, 243–245
MenuBar control, adding to

forms, 67
menus, editable in Visual

Studio, 40
MenuStrip control

described, 64
navigating with, 78–80

MenuStrip object, 78
Message property, of the

Exception object, 148

Message Queues, in Server
Explorer, 31

messaging, provided by the
BCL, 47

metacharacters, in patterns, 169
metadata, storing, 30
Method parameter, of

FtpWebRequest, 288
method signature, 120–121
methods, calling in COM

objects, 213
Microsoft-certified vendor, 329
Microsoft Exception

Management Blocks
component, 148

Microsoft programs,
interactivity between, 314

Microsoft public newsgroups,
339

Microsoft Report Viewer, 301
Microsoft Team System, 58
Microsoft Word

making a new file, 212
status strip in, 73

Mime function, in
System.Net, 286

Mobile 5.0, 21
Mobile 6.0, 21
mobile computing, 21
Mobile team, releases from, 21
modularity, of an n-tier

system, 53
modulo (%) operator, 170
MonthName function, using,

172
MouseEnter event, 223–224
MSDN Library

accessing, 15
assuming an understanding

of tools, 24
described, 24, 337
installing, 24
Web site, 15

multiple choice decision, 179
multiple-choice processes,

182–183
multiplication (*) operator,

170
My collection, objects in, 47
My object, 46
My object icon, 47
My Project configuration file,

246
My.Application object, 47
My.Computer object, 46
my.log file, 295–296
MyProject configuration

form, 66
MyProject folder, 66
My.User object, 47

352 Visual Basic 2008 For Dummies

30_182383 bindex.qxp 2/21/08 7:41 PM Page 352

• N •
n-tier system, 53
Name property

of a LogonUserIdentity
object, 105–106

from WindowsIdentity, 105
namespace classes, in

ASP.NET, 88
namespaces, in a .vb file, 110,

111
naming

Namespaces in Web services,
134

Web applications, 92
navigating, with a MenuStrip

control, 78–80
Navigation controls, for Web

applications, 88
NavigationUrl property,

setting, 103
NegativeInfinity, testing

for, 171
.NET, 44
.NET 247, 339
.NET applications, obfuscating

compiled, 42
Net collection, in the BCL, 48
.NET Framework

adjunct functionality, 13
as a class library, 107
defined, 12
described, 11, 44–46
giving programmatic

names, 13
interaction of the pieces of,

44–45
Internet functionality of, 283
layers in, 12
nulls used by, 166
reusing programs outside of,

211–215
terminology, 12
uses of, 46–48
using debugging tools in,

145–154
Visual Basic’s role in, 11–13

network activity, logging,
293–296

network analysis features of
.NET, 292

network applications, potential
problems with, 292

network connections,
managing, 285

network status, checking, 287
network traffic, debugging, 293
NetworkCredential class, in

System.Net, 285

NetworkInformation class,
287

NetworkInformation
function, in System.Net,
286

New Project dialog box
accessing in Visual Studio

2008, 65
selecting an add-in, 334
in Visual Studio 2008, 15

New Web Site dialog box,
template options, 90, 91

NNTP newsgroups,
accessing, 39

nodes, on flowcharts, 176
noncontrol variable values,

saving to ViewState,
101–102

nonvisual components, using,
317–318

nonvolatile storage, 158
Northwind database,

installing, 32
Now function, using, 172
NullReferenceException

error, 166
nulls, 165–166
numbers

built-in methods, 171
storing in variables, 158
types covering, 170

NUnit test system, 58

• O •
obj folder, created by Visual

Studio, 66
Object Linking and Embedding

Database (OLEDB)
protocol, 257

object-oriented language, rules
of, 78

Object Request Broker, in an n-
tier system, 53

Object source, in the Data
Source Configuration
Wizard, 258–259

Object type, 159
objects

casting to strings, 161
controlling with threading,

232–235
described, 49, 110
making and destroying,

220–221
types as, 173
watching whole, 144

ODBC namespace, in
System.Data, 255

ODBC (Open Database
Connectivity) compliance,
257

Of keyword, 230
OleDb namespace, in

System.Data, 255
OLEDB (Object Linking and

Embedding Database)
protocol, 257

OnClick event, 222
OnClick event handler, 160
online competition, joing at

TopCoder, 326–327
online sites, for Visual Basic

information, 337–341
online tools, provided by

Microsoft, 39
Open Database Connectivity

(ODBC) compliance, 257
Open Source Management

System, Microsoft’s new,
340

open source project,
participating in, 327–328

open source software, 327
open-source versions, of

Windows concepts, 124
OpenFile_Click event

handler, 280
OpenFileDialog control

compared to
SaveFileDialog, 278

described, 273–274
options for, 275

opening, files, 274–276
operating system

described, 12
getting to, 46–47

operation declaration, in a
class library, 112

operations, running on
separate threads, 232

operator symbols,
manipulating numbers, 170

operators, 227–228
Optional keyword, 229
optional parameters, 229
options, available in Visual

Studio, 40
Options dialog box, in Visual

Studio 2008, 40–41
OracleClient namespace, in

System.Data, 255
Orders Detail data form,

creating, 263–264
organization of book, 4–5
out of scope, 51
Out Parameter, 162
outside resources, accessing

with Server Explorer, 30–32

353Index

30_182383 bindex.qxp 2/21/08 7:41 PM Page 353

overloading
compared to generics, 231
described, 120–121, 226
designing for, 228–229
overloaded procedures,

compared to optional
parameters, 229

Overloads keyword, 226

• P •
@Page directive, 150–151
Page.Load event handler, 105
PaintBoard method, 306–307
Panel control, for Web

applications, 87
Paragraph macro, 320–321
parameter array, 228
parameters

optional, 229
passing, 200, 204
protecting the values of,

204–205
types, for event handlers, 222

Parse method, 173–174
parsing, 173
partial classes, input

parameters for, 224
Paste Alternate command,

315–316
pasting, text as HTML, 314–315
Path class, 272
patterns, 169
Patterns and Practices team

data broker created by, 268
systematic approach to

designing secure
programs, 240

Paused mode. See Debug mode
pens

drawing lines and curves, 299
properties of, 299
used by Graphics objects,

298
PerfMon, accessing, 31
Performance Counters

dragging into a form, 32
in Server Explorer, 31

Perl, regular expressions out of,
339

Permissions namespace, 251
Personalization controls, for

Web applications, 88
phrase searching, from the

Document Explorer
toolbar, 39

planning. See also designing
defined, 49
for projects, 49–51

Play button, launching a Web
application, 95

Pocket PC 2003, 21
pointers, 204
Policy namespace, 251
polymorphism, 78
portal server, 332
PositiveInfinity, testing

for, 171
PostBack process, 84–85
potential threats, identifying,

241–242
presentation code, in

ASP.NET, 90
presentation layer, in an n-tier

system, 53
Principal namespace, 251
PrincipalPermission class,

251
Print command, calling, 301
PrintDialog control, 64
PrintForm component, 301
printing, forms, 301
priority, built in to threading,

235
Private class, 203
Private keyword, 119, 203
Private statement,

dimensioning objects, 221
private variables

defined, 114–115
using to do math, 116

procedures
making with overloading,

226–229
procedural programming, 205
reusing names, 226–227

Process class, 213–215
process components

characteristics of, 178
in a flowchart, 176
of program flowcharts, 178

process ID
described, 216
returned by a Shell

command, 217
Process object, ProcessId

parameter, 218
processes

attaching to, 153–154
implementing in Visual Basic,

180–185
producing, Web services, 123,

127–128
Professional Edition

Servers node in, 31
of Visual Studio 2008, 14

programmatic names, in .NET
Framework, 13

programming language,
interacting with the
framework, 13

programming practices,
avoiding complexity,
204–206

programs
documenting components of,

240–241
loosely coupled, 247
reusing outside of .NET,

211–215
running compiled, 20
using with the Process class,

213–215
project data source, creating,

262
project lifecycle, 49–51
project sensitivity, of the

Toolbox, 27
project template, created by

Visual Studio, 128
project type, selecting, 65
project type or platform,

controlled by ASP.NET or
Windows Forms, 48

Project Types pane, of the New
Project dialog box, 15

projects
connecting with databases, 32
debugging, 148–154
organizing with Solution

Explorer, 29–30
pausing, 140
planning for, 49–51
types of, 1
using third-party tools in,

328–329
properties

changing for a control, 63
creating for a class library,

114–115
maintaining values, 112
none in a Web service-based

class library, 125
of pens, 299
resetting for controls, 67
in a .vb file, 111

Properties window
changing details with, 27–29
event handling using, 222–224
expanding, 312
generating event handlers

from, 311–313
opening, 29, 67, 93

Property keyword, 112
Protected Friend keyword,

119
Protected keyword, 119

354 Visual Basic 2008 For Dummies

30_182383 bindex.qxp 2/21/08 7:41 PM Page 354

protection, artifacts needing,
240

protocols, Internet based on,
283

proxy class
instantiating in Web services,

134
state of in Web services, 135

pseudocode, 56
Public function, 203
Public keyword

for class files and functions,
203

describing class procedures,
119

public server, protecting, 247
public service host site, 330
Public Web services,

integrating, 329–331

• Q •
Query Designer toolbar, 316
QueryString Collection, in

Trace, 152
Querystring variable,

avoiding, 250
Queuing service, in Windows,

47
QuickStart Tutorials, on the

ASP.NET site, 338
quotation marks, surrounding

string variables, 158

• R •
RAD data tools, 262
RAD (Rapid Application

Development), 23, 262
RadioButtonList control, for

Web applications, 87
RAM, using, 220
Rapid Application Development

(RAD), 23, 262
Record panel, 320
Record Temporary Macro

option, 320
recording, macros, 319–321
Recordsets. See containers
rectangles, in flowcharts,

176–178
reference items, adding to a

StatusStrip, 74–75
reference names, for instances

of controls, 67
References folder, created by

Visual Studio, 66

References tab, of the My
Project file, 117

Refresh button, in Solution
Explorer, 30

Regex object, in Match
function, 169

registering for WMI events, 31
regular expressions

described, 167–169
finding, 339
manipulating strings, 168–170
uses of, 169

relaying, 290
Release mode, configurations

set to, 20
Remote Debugger Setup

program, running, 150
remote debugging, 150
Remove function, in the

StringBuilder class, 168
Replace function, in the

StringBuilder class, 168
Replace method

of the Regex object, 169
with String, 165

reports, building, 301
Reproducibility, in DREAD, 242
Repudiation of actions, in

STRIDE, 242
Request Cookies Collection, in

Trace, 151
Request Details, in Trace, 151
Requests for Comments

(RFCs), 284
RequiredFieldValidator

control
adding in Web Forms, 99–100
setting up, 100

requirements
gathering for an application,

51–52
of a project, 50

requirements document, 52
Reset Toolbox option, 27
Resource Utilization

Management,
implementing, 221

resources
on the Internet, 337–341
locking, 221
utilizing, 221

Response Cookies Collection,
in Trace, 151

Response Headers Collection,
in Trace, 151

Restore File Associations
button, in the Options
dialog box, 41

returned values, accepting
from functions, 200

reusability
code, 197–218
component creation, 207
extending with class files,

201–203
procedure names, 226–227
reusable code, 198
reusable functions

creating, 198
making part of a separate

files, 198
putting in class files, 202

Reynolds, Matt, 339
RFCs (Requests for

Comments), 284
RichTextBox control, 64
right-clicking, activating with

ContextMenuStrip,
80–81

risk, rating, 242
roles, in offices or a companies,

243
routines, writing to use with

other software, 21
row-locking problem, 254
Ruby form-building software, 14
Ruby Forms Engine, in Visual

Basic 6.0, 62
Run mode, running a program

in, 149
runnable project, as a visual

tool requirement, 140
runtime, setting text at, 76

• S •
SAO (Software Architecture

Overview) diagram,
240–241

SaveFileDialog control, 273,
277–278

scenarios, 56
Scoble, Robert, 338
scope

of a project, 50, 51
variable in, 144

screen
designing, 54–56
management options, in

Design View, 25
script code, displaying as real

text, 249
script exploits

described, 248
preventing, 249
understanding, 248–249

scripting languages, 106
Search button, on the Document

Explorer toolbar, 39

355Index

30_182383 bindex.qxp 2/21/08 7:41 PM Page 355

searching, on Google, 341
secure code, writing, 239–251,

293
secure software, designing,

240–242
SecureString class, 251
security, 239
Security controls, for Web

applications, 88
Security function, in

System.Net, 286
Security namespace, 251
security policy, configuring for

an application, 242–243
Security tab, of the My Project

file, 246
SecurityPermission class,

251
Select-Case statement, 183
SelectedValue property, of a

drop-down list, 98
SendEmail subroutine, 291–292
Sender argument, 222
Server Explorer, 30–32
Server Variables, in Trace, 152
server variables, saving, 86
Server View, in Web Forms, 89
Server.HTMLEncode method,

249
servers

configuration and
management of, 106

controls, 86–89
creating custom controls,

207–209
in .NET, 44
saving files to, 274

Servers node, in Server
Explorer, 31

Service class, in
System.Net, 285

Service-Oriented Architecture
(SOA), 126–127

Service.asmx file, 128
Service.asmx.vb file, 128
services, available in Server

Explorer, 31
Session object, in ASP.NET, 102
Session State, in Trace, 151
Set part, of a property, 115
Setup Project, 20
shared classes

described, 272–273
example of, 203
in System.IO, 279

shared functions, 119–120
shared keyword, 119
Shared methods, 203
SharePoint, Web Parts

included, 332–333

SharePoint Designer, 333
Shell command, 216–217
Shift+Alt+D, 33, 258
Show All Files button, in Solution

Explorer, 29–30, 295
Show Data Sources option, 258
simplicity, of Web services, 125
single-decision processes, 180–182
single process decision,

179–182
Single Round Match user

interface, 327
Site class, 251
Smart Tag, for each field in

Details view, 263
SmtpClient object, 291
snippets, inserting in code, 323
SOA (Service-Oriented

Architecture), 126–127
SOAP (Simple Object Access

Protocol), 136
Socket class, in System.Net,

285
Sockets function, in

System.Net, 286
software

describing from a technical
perspective, 52

designing, 43
designing secure, 240–242
reusing code to build, 197–203

Software Architecture
Overview (SAO) diagram,
240–241

Solution Explorer
editing the My Projects

folder, 66
organizing projects with,

29–30
renaming the default form, 66

Sort subroutine, for arrays, 228
Source View

accessing in Web Forms,
93–95

Anchor tab in, 103
viewing work in, 93–95
in Web Forms, 89

SourceForge.net, 328
specific loops, 188
Split view, in Web Forms, 89
Spoofing identity, in STRIDE, 241
SQL: .NET Language Integrated

Query for Relational Data,
270

SQL Injection, 247–248
SQL Server Express,

accessing, 32
SqlClient namespace, in

System.Data, 255

SqlTypes namespace, in
System.Data, 255

src attribute, changing the
path to an image, 104

StackTrace property, of the
Exception object, 148

Staff object, as a list of
people, 230–231

Standard Edition, of Visual
Studio 2008, 14

Start Debugging button,
clicking, 70

start line, in a control-flow
statement, 181

StartDatePicker control,
adding a ValueChanged
event handler, 118

StartThread_Click
event handler, in
ThreadingExample, 233

state, of an object, 49
state of an application

ASP.NET management of, 84
dealing with, 101–102
overview, 85–86

static functions, compared to
stateful objects, 126

static text, typing directly on a
Web page, 91

status report, e-mailing, 290–293
status strip, 73–75
StatusStrip control, 73–74
StatusStrip object, 78
Step statement

in For-Next loops, 190
using to count backward, 191

Stop Recording button, on the
Record panel, 320

storage, kinds of, 158
StreamReader, getting

information out of a file, 277
streams

described, 289
as tricky tools, 272

StreamWriter, 277
STRIDE acronym, 241–243
String class, 111
string concatenation, never

using to generate SQL, 248
String object, methods,

properties, and events, 165
String type

described, 164–166
as the value of another object,

159
StringBuilder class, 167–168
String.Empty preset value,

165

356 Visual Basic 2008 For Dummies

30_182383 bindex.qxp 2/21/08 7:41 PM Page 356

String.Format tool, 165
strings

casting, 161
concatenating, 161
making into dates, 173
manipulating with regular

expressions, 168–170
as objects, 159
tools built into, 164–165

Style Sheet toolbar, 316
Sub keyword, 112
subroutines

defined, 116
described, 112
event handlers as, 224
for math, 115–116
not effective in Web

services, 126
in a .vb file, 111

subtraction (-) operator, 170
System namespace, 111
System.Data namespace

described, 254–255
namespaces and classes, 255
role of, 253
using, 257–269

System.Drawing classes, 297
System.Drawing namespace

breaking into steps, 300
described, 297–300
using, 302–307

System.Drawing.2D
namespace, 297

System.Drawing.Imaging
namespace, 297

System.Drawing.Text
namespace

described, 297
fonts in, 300

System.IO namespace
categories of classes, 271–272
described, 271–273
file and directory tools in, 272
shared classes in, 279
using, 273–281

System.IO.Directory
object, 279

System.IO.File object, 279
System.Net namespace

capabilities of, 284
classes and namespaces in,

285–286
described, 284–285
functions encapsulated under

new namespaces, 286
tracing, 293
using, 286–296

System.Security, 251

System.String.Compare
method, 111

System.Text reference, for
the StringBuilder class,
167

System.XML, as a new
feature, 22

• T •
tab groups, in Design View, 26
tabbed document, displaying a

tool window, 36–37
TabControl control, 64
Table attribute, making a class

referencing, 270
Table Options drop-down list,

in Data Sources panel, 263
TableAdapter object, adding,

264
TableAdapterManager

object, adding, 264
tactics, for developing Web

services, 127
Tampering with data or files, in

STRIDE, 241
Task List, using, 322–323
Team System edition

Servers node in, 31
of Visual Studio 2008, 14

templates
selecting in Web Forms, 90–91
writing for Office 2007, 21

Templates pane, in the New
Project dialog box, 16

Test Connection button, in the
Add Connection dialog
box, 32

test plan, writing for an
application, 57–58

TestLocking button, click
event of, 234

text
painted with fonts and

brushes, 300
pasting as HTML, 314–315
presenting to users in Web

Forms, 91
storing in variables, 158

text box
adding in Web Forms, 99–100
aligning with other objects, 71
overriding the default number

of days, 72
text input, managing, 71–73
Text parameter, for a

ValidationSummary
control, 100

Text property
of the NextWeek object, 69
taking a string from, 173
of a text box, 98

TextBox control
adding to forms, 67
described, 64
managing text input, 71–73

TextBox object, events
exposed by, 313

TextReader class, 272
TextWriter class, 272
third parties, testing

applications, 58
third-party tools, using, 41–42,

328–329
thread encapsulation, 235
threading

designing for, 232–233
implementing, 233–235

ThreadingExample, on the
Web site for this book, 233

threat model, creating, 241
threats, identifying potential,

241–242
Throw keyword, 206
throwing an error, 206
timer, emulating a troublesome

operation, 233
Timer control, adding, 223
TimerCallBack object, 235
times, string representations

of, 172
title string

adding to a program, 164
constructing, 168

to-do lists, making, 322
TODO comment, adding, 322
tokens, adding into code, 322
tool window

displaying, 35–36
moving, 35–36
options for docking, 36

toolbars, editable in Visual
Studio, 40

Toolbox
accessing controls with, 26–27
opening, 27
as project-sensitive, 27
Validation controls in, 98–99
with Windows Forms controls

loaded, 16–17
tools

for managing user input,
167–170

updating code to use, 326
using third-party, 41–42
in Visual Studio 2008, 23–35
for writing code in Visual

Studio, 36–39

357Index

30_182383 bindex.qxp 2/21/08 7:41 PM Page 357

ToolStrip control, 64
ToolTip controls

enhancing buttons with, 317
giving hints with, 75–78

ToolTip objects
adding to forms, 317
described, 78
designing, 75

ToolTip property, in the
Properties window, 76–77

TopCoder, online competition,
326–327

ToString method
of every object, 173
format provider with, 172

ToUniversalTime method, in
the DateTime object, 172

ToUpper method, with
String, 165

Trace, 150–152
Trace attribute, 151–152
Trace class, in the .NET

Framework, 152
tracing network activity,

management of, 293
Try-Catch block

catching a logic
exception, 184

described, 147
Try-Catch statement, 184
Try statement, 184
TryParse method

described, 164
of the Integer object, 162
using, 173–174

Type, as a static class, 162
Type type, DateTime type as

an object of, 173
types

changing
with CType, 159–162
with Parse and
TryParse, 173–174

controlling with validation,
163–164

of information in Visual Basic
2008, 157–164

as objects, 173

• U •
UDDI (Universal Discovery and

Description Language),
136–137

underscore character (_),
starting private variables,
114–115

UNDONE token, adding, 323
Universal Discovery and

Description Language
(UDDI), 136–137

updates, on Visual Basic For
Dummies Web site, 7

Upload set of classes, in
System.Net, 286

Url class, 251
URLs

building in ASP.NET pages, 165
loading with the Process

class, 215
use cases, 56
use overloading, 229
Usenet, 339
user controls

adding, 209–210
characteristics of, 209
compared to master pages,

211
described, 209
developing, 210

user input
controls, on Web Forms, 98
form, building, 65–68
tools for managing, 167–170
validating, 58, 98–101

user interface
allowing exceptions to

bubble up from, 205
in an n-tier system, 53
design, 55
losing the ability to

communicate with, 205
for macros, 319
tools to minimize code, 58

users
communicating with, 176–178
experience building, 14
getting information about,

104–106
interacting with, 48
stories of, 56
user-initiated events, causing

PostBacks, 85
Using keyword, 221–222
USZipCode service, 331

• V •
validating

controlling types, 163–164
user input, 98–101

Validation controls
in Visual Studio 2008, 98–99
for Web applications, 88

ValidationSummary control,
adding in Web Forms,
99–100

ValueChanged event handler,
creating, 69

values, saving across several
pages, 102

variables
in and out of scope, 144
run-time compared to design-

time, 76
storing volatile information

in, 158
viewing the values of, 141

VB 2002, 14
.vb file

contents of, 110–111
HREF property in, 103
structure of, 111

VBForDummies.net, 337–338
vbfordummies.net Web site

about, 3, 7
DateCalc Web service,

129–130, 132–133
DownloadFile method,

288–290
Enterprise Library Data

Access Application Block
data broker, 269

log information, 295–296
Northwind database, 32
as resources, 337–338
SendEmail subroutine,

291–292
System.Drawing namespace,

302
ThreadingExample, 233
Visual Studio Express

Edition, 14
WSDL (Web Services

Description Language), 136
VB.NET Class Library

template, selecting, 114
VCR Bar, 264
View Class Diagram button, in

Solution Explorer, 30
View Code button, in Solution

Explorer, 30
View Designer button, in

Solution Explorer, 30
viewing, file information,

279–280
ViewState object, in ASP.NET,

101–102
Visual Basic

as a piece of the .NET
Framework, 44

revisions of, 14

358 Visual Basic 2008 For Dummies

30_182383 bindex.qxp 2/21/08 7:41 PM Page 358

Visual Basic 6
compared to Visual Basic

2008, 14
Ruby Forms Engine, 62

Visual Basic 2008. See also
specific topics

debugging, 139–154
Express Edition for home

use, 325
getting for home use, 325
loops in, 187
new features of, 22
as a one-stop development

shop, 22
online sites for information

about, 337–341
Visual Basic code, adding

functionality to a form, 18
Visual Basic For Dummies

(www.vbfordummies.net)
Web site

about, 3, 7
DateCalc Web service,

129–130, 132–133
DownloadFile method,

288–290
Enterprise Library Data

Access Application Block
data broker, 269

log information, 295–296
Northwind database, 32
as resources, 337–338
SendEmail subroutine,

291–292
System.Drawing namespace,

302
ThreadingExample, 233
Visual Studio Express

Edition, 14
WSDL (Web Services

Description Language), 136
Visual Basic language, 1
Visual Basic.NET, 62
Visual Studio 2008

add-ins for, 329, 334
code-generating tools, 23
creating an add-in for, 334
debugging tools, 139–145
described, 12
development power in, 20–22
editions of, 14
extendibility of, 27
installing, 14–15
not required for Visual Basic

programs, 24
running, 15
tools supplied by, 1

Validation controls, 98–99
working with the user

interface, 311–323
Visual Studio environment

customizing, 35
running applications in and

outside of, 19
Visual Studio Integration

Program, 329
visual tools

for debugging, 139–145
output of, 266–267
working with, 262–265

Visual Web Developer (VWD)
Web Server, 95–96

volatile strings, 158
VWD (Visual Web Developer)

Web Server, 95–96

• W •
w3wp.exe file, 154
Watch windows, 140, 143–144
watches, 143
WCF (Windows Communication

Foundation), 22, 326
Web, tricks for, 102–106
Web address, passing in, 290
Web applications

ASP.NET saving elements
of, 86

building, 89–95
creating in Visual Studio

2008, 20
naming, 92
running, 95–98
workings of, 106

Web browsers
giving focus, 218
making requests to the

server, 85
Web classes, in System.Net,

286
Web designer, layout in, 91
Web Forms

below the surface of, 97–102
compared to Windows

Forms, 124
defined, 13
extras in, 89–90
views, 89–90

Web Forms applications
best practices for

securing, 250
building secure, 247–250
constructing, 90–93
debugging, 95–96, 150–152
preserving State in, 101–102
State of, 85

Web Forms controls
properties available working

with, 92
values saved by ASP.NET, 86
for Web applications, 88

Web Forms designs, compared
to Windows Forms, 84

Web Forms namespace, of
ASP.NET, 88–89

Web pages
laying out, 91
making in Web Forms, 314
moving from one to another,

103–104
Web Parts, 332–334
Web servers

configuration and
management of, 106

controls, 86–89
in .NET, 44
saving files to, 274

Web service project, output of,
128

Web services
building, 127–132
characteristics of, 125
as a combination of class

libraries and Windows
Forms, 124

consuming, 127, 132–135
debugging, 153–154
defined, 13
described, 44–45, 123–126,

135–137
designing for, 126–127
developing, 127
parts of developing, 123
producing, 128
quirks, 125–126
using for data sources, 258,

259
Web Services Description

Language (WSDL), 136
Web sites

ASP.NET, 90–91, 128, 338
Channel 9, 338
Codeplex, 340
.net247, 339
Google CodeSearch, 339
Google for searching, 340–341
kbAlertz, 340
Microsoft Public Newsgroup,

339
MSDN Library, 15, 337
as a project option in Visual

Studio 2008, 20
Visual Basic For Dummies

about, 3, 7
DateCalc Web service,

129–130, 132–133

359Index

30_182383 bindex.qxp 2/21/08 7:41 PM Page 359

Web sites (continued)
DownloadFile method,

288–290
Enterprise Library Data

Access Application Block
data broker, 269

log information, 295–296
Northwind database, 32
as resources, 337–338
SendEmail subroutine,

291–292
System.Drawing

namespace, 302
ThreadingExample, 233
Visual Studio Express

Edition, 14
WSDL (Web Services

Description Language), 136
Web Forms appearing as, 90

Web User Control icon, 209
WebBrowser control, 64
WebMethod directive, in a Web

service, 129
WebRequest class, in

System.Net, 289
WebResponse class, in

System.Net, 289
WebResponse object, creating

from myRequest method,
288

WebService directive, 130
WebServiceBinding

directive, 130
WebServiceBinding

statement, 129
WebServicesX, 330
When Hit column, in the

Breakpoints window, 142
While-End loop, exiting, 196
While statement, in a Do-

Loop, 196
white tab, in Design View, 25
whole numbers, using the

Integer type, 170
Win32 layer, 13
Windows 1.0, 108
Windows applications,

building, 65–68
Windows Calculator,

launching, 216
Windows Communication

Foundation (WCF), 22, 326
Windows DLLs, 124
Windows form, running and

operating, 18–20
Windows Forms

adding
features to, 70–81
functionality to, 68–70

compared

to ASP.NET, 84
to Web Forms, 124

controls in Visual Studio
2008, 62

defined, 13
enabling interaction with the

user, 48
getting a Graphics object

from, 301
program created to

incorporate a Google
Search Tool, 215

as user-interface oriented, 47
Windows Forms Application

template, selecting, 65
Windows Forms applications

building
with Internet capabilities,

286–296
overview, 17–18
secure, 242–246

debugging, 149
described, 62
running within Visual

Studio, 19
using controls in, 63

Windows Forms project,
starting, 15–17

Windows Forms toolbar,
dragging controls from, 67

Windows interfaces, standard,
63

Windows logon, authentication
using, 243–245

Windows Management
Instrumentation (WMI)
classes, 31

Windows Presentation
Foundation, 22, 326

Windows Security application,
building, 243–245

Windows Workflow
Foundation, 326, 334

WindowsBuiltInRole
enumerator, 245

WindowsIdentity class, 251
WindowsIdentity object,

104–105
WindowsPrincipal class,

244, 251
With keyword, 221
WMI (Windows Management

Instrumentation) classes,
31

Word documents, opening with
formatted text, 314–315

Word.Application class, 212
Workflows, 334
workspace, customizing, 316

World Wide Web (WWW),
writing programs running
on, 20

Write method, in the Debug
class, 146

writing
access code, 266–269
articles, 335
business logic in a separate

DLL file, 109
code, 163, 239–251, 266–269
Command-line applications

using console project
type, 216

data code, 266–269
DLL files, 109, 228
functional code, 163
libraries of classes, impact of

overloading on writing, 228
loops, writing with For-Next,

190–191
routines, writing to use with

other software, 21
scopes for bullet lists, 51
secure code, 239–251, 293
templates for Office 2007, 21
test plans for applications,

57–58
tools for writing code in

Visual Studio, 36–39
World Wide Web, writing

programs
running on, 20

Writing Secure Code (Howard
and LeBlanc), 293

WSDL (Web Services
Description Language), 136

WWW (World Wide Web),
writing programs running
on, 20

• X •
XML (eXtensible Markup

Language)
data copy driven by, 254
described, 136
XML versions, of Windows

concepts, 124
XML Web services. See Web

services

• Z •
Zip Code Info service, 330

360 Visual Basic 2008 For Dummies

30_182383 bindex.qxp 2/21/08 7:41 PM Page 360

BUSINESS, CAREERS & PERSONAL FINANCE

Also available:
Business Plans Kit For Dummies
0-7645-9794-9
Economics For Dummies
0-7645-5726-2
Grant Writing For Dummies
0-7645-8416-2
Home Buying For Dummies
0-7645-5331-3
Managing For Dummies
0-7645-1771-6
Marketing For Dummies
0-7645-5600-2

Personal Finance For Dummies
0-7645-2590-5*
Resumes For Dummies
0-7645-5471-9
Selling For Dummies
0-7645-5363-1
Six Sigma For Dummies
0-7645-6798-5
Small Business Kit For Dummies
0-7645-5984-2
Starting an eBay Business For Dummies
0-7645-6924-4
Your Dream Career For Dummies
0-7645-9795-7

0-7645-9847-3 0-7645-2431-3

Also available:
Candy Making For Dummies
0-7645-9734-5
Card Games For Dummies
0-7645-9910-0
Crocheting For Dummies
0-7645-4151-X
Dog Training For Dummies
0-7645-8418-9
Healthy Carb Cookbook For Dummies
0-7645-8476-6
Home Maintenance For Dummies
0-7645-5215-5

Horses For Dummies
0-7645-9797-3
Jewelry Making & Beading
For Dummies
0-7645-2571-9
Orchids For Dummies
0-7645-6759-4
Puppies For Dummies
0-7645-5255-4
Rock Guitar For Dummies
0-7645-5356-9
Sewing For Dummies
0-7645-6847-7
Singing For Dummies
0-7645-2475-5

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

0-7645-8404-9 0-7645-9904-6

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

HOME & BUSINESS COMPUTER BASICS

Also available:
Cleaning Windows Vista For Dummies
0-471-78293-9
Excel 2007 For Dummies
0-470-03737-7
Mac OS X Tiger For Dummies
0-7645-7675-5
MacBook For Dummies
0-470-04859-X
Macs For Dummies
0-470-04849-2
Office 2007 For Dummies
0-470-00923-3

Outlook 2007 For Dummies
0-470-03830-6
PCs For Dummies
0-7645-8958-X
Salesforce.com For Dummies
0-470-04893-X
Upgrading & Fixing Laptops For
Dummies
0-7645-8959-8
Word 2007 For Dummies
0-470-03658-3
Quicken 2007 For Dummies
0-470-04600-7

0-470-05432-8 0-471-75421-8

Also available:
Blogging For Dummies
0-471-77084-1
Digital Photography For Dummies
0-7645-9802-3
Digital Photography All-in-One Desk
Reference For Dummies
0-470-03743-1
Digital SLR Cameras and Photography
For Dummies
0-7645-9803-1
eBay Business All-in-One Desk
Reference For Dummies
0-7645-8438-3
HDTV For Dummies
0-470-09673-X

Home Entertainment PCs For Dummies
0-470-05523-5
MySpace For Dummies
0-470-09529-6
Search Engine Optimization For
Dummies
0-471-97998-8
Skype For Dummies
0-470-04891-3
The Internet For Dummies
0-7645-8996-2
Wiring Your Digital Home For Dummies
0-471-91830-X

 INTERNET & DIGITAL MEDIA

0-470-04529-9 0-470-04894-8

* Separate Canadian edition also available
† Separate U.K. edition also available

31_182383 badvert01.qxp 2/21/08 7:41 PM Page 361

Also available:
3D Game Animation For Dummies
0-7645-8789-7
AutoCAD 2006 For Dummies
0-7645-8925-3
Building a Web Site For Dummies
0-7645-7144-3
Creating Web Pages For Dummies
0-470-08030-2
Creating Web Pages All-in-One Desk
Reference For Dummies
0-7645-4345-8
Dreamweaver 8 For Dummies
0-7645-9649-7

InDesign CS2 For Dummies
0-7645-9572-5
Macromedia Flash 8 For Dummies
0-7645-9691-8
Photoshop CS2 and Digital
Photography For Dummies
0-7645-9580-6
Photoshop Elements 4 For Dummies
0-471-77483-9
Syndicating Web Sites with RSS Feeds
For Dummies
0-7645-8848-6
Yahoo! SiteBuilder For Dummies
0-7645-9800-7

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

Also available:
Catholicism For Dummies
0-7645-5391-7
Exercise Balls For Dummies
0-7645-5623-1
Fitness For Dummies
0-7645-7851-0
Football For Dummies
0-7645-3936-1
Judaism For Dummies
0-7645-5299-6
Potty Training For Dummies
0-7645-5417-4
Buddhism For Dummies
0-7645-5359-3

Pregnancy For Dummies
0-7645-4483-7 †
Ten Minute Tone-Ups For Dummies
0-7645-7207-5
NASCAR For Dummies
0-7645-7681-X
Religion For Dummies
0-7645-5264-3
Soccer For Dummies
0-7645-5229-5
Women in the Bible For Dummies
0-7645-8475-8

Also available:
Alaska For Dummies
0-7645-7746-8
Cruise Vacations For Dummies
0-7645-6941-4
England For Dummies
0-7645-4276-1
Europe For Dummies
0-7645-7529-5
Germany For Dummies
0-7645-7823-5
Hawaii For Dummies
0-7645-7402-7

Italy For Dummies
0-7645-7386-1
Las Vegas For Dummies
0-7645-7382-9
London For Dummies
0-7645-4277-X
Paris For Dummies
0-7645-7630-5
RV Vacations For Dummies
0-7645-4442-X
Walt Disney World & Orlando
For Dummies
0-7645-9660-8

TRAVEL

GRAPHICS, DESIGN & WEB DEVELOPMENT

0-471-76871-5 0-7645-7841-3

0-7645-7749-2 0-7645-6945-7

0-7645-8815-X 0-7645-9571-7

Also available:
Access 2007 For Dummies
0-470-04612-0
ASP.NET 2 For Dummies
0-7645-7907-X
C# 2005 For Dummies
0-7645-9704-3
Hacking For Dummies
0-470-05235-X
Hacking Wireless Networks
For Dummies
0-7645-9730-2
Java For Dummies
0-470-08716-1

Microsoft SQL Server 2005 For Dummies
0-7645-7755-7
Networking All-in-One Desk Reference
For Dummies
0-7645-9939-9
Preventing Identity Theft For Dummies
0-7645-7336-5
Telecom For Dummies
0-471-77085-X
Visual Studio 2005 All-in-One Desk
Reference For Dummies
0-7645-9775-2
XML For Dummies
0-7645-8845-1

NETWORKING, SECURITY, PROGRAMMING & DATABASES

0-7645-7728-X 0-471-74940-0

31_182383 badvert01.qxp 2/21/08 7:41 PM Page 362

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Get smart @ dummies.com®
• Find a full list of Dummies titles

• Look into loads of FREE on-site articles

• Sign up for FREE eTips e-mailed to you weekly

• See what other products carry the Dummies name

• Shop directly from the Dummies bookstore

• Enter to win new prizes every month!

Also available:
Bipolar Disorder For Dummies
0-7645-8451-0
Chemotherapy and Radiation
For Dummies
0-7645-7832-4
Controlling Cholesterol For Dummies
0-7645-5440-9
Diabetes For Dummies
0-7645-6820-5* †
Divorce For Dummies
0-7645-8417-0 †

Fibromyalgia For Dummies
0-7645-5441-7
Low-Calorie Dieting For Dummies
0-7645-9905-4
Meditation For Dummies
0-471-77774-9
Osteoporosis For Dummies
0-7645-7621-6
Overcoming Anxiety For Dummies
0-7645-5447-6
Reiki For Dummies
0-7645-9907-0
Stress Management For Dummies
0-7645-5144-2

HEALTH & SELF-HELP

0-7645-8450-2 0-7645-4149-8

Also available:
The ACT For Dummies
0-7645-9652-7
Algebra For Dummies
0-7645-5325-9
Algebra Workbook For Dummies
0-7645-8467-7
Astronomy For Dummies
0-7645-8465-0
Calculus For Dummies
0-7645-2498-4
Chemistry For Dummies
0-7645-5430-1
Forensics For Dummies
0-7645-5580-4

Freemasons For Dummies
0-7645-9796-5
French For Dummies
0-7645-5193-0
Geometry For Dummies
0-7645-5324-0
Organic Chemistry I For Dummies
0-7645-6902-3
The SAT I For Dummies
0-7645-7193-1
Spanish For Dummies
0-7645-5194-9
Statistics For Dummies
0-7645-5423-9

EDUCATION, HISTORY, REFERENCE & TEST PREPARATION

0-7645-8381-6 0-7645-9554-7

* Separate Canadian edition also available
† Separate U.K. edition also available

31_182383 badvert01.qxp 2/21/08 7:41 PM Page 363

Check out the Dummies Specialty Shop at www.dummies.com for more information!

Do More with Dummies

Instructional DVDs • Music Compilations
 Games & Novelties • Culinary Kits
 Crafts & Sewing Patterns
Home Improvement/DIY Kits • and more!

31_182383 badvert01.qxp 2/21/08 7:41 PM Page 364

	Visual Basic 2008 For Dummies
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Conventions Used in This Book
	What You Don’t Have to Read
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Getting to Know .NET Using Visual Basic
	Chapter 1: Wading into Visual Basic
	Visual Basic’s Role in the Framework
	Saying Hello to VB 2008!
	Finding More Power in Visual Studio

	Chapter 2: Using Visual Studio 2008
	Understanding Visual Studio Tools
	Moving a Tool Window
	Working with Code
	Customizing with Options
	Increasing Efficiency with Third-Party Tools

	Chapter 3: Designing Applications in VB 2008
	Making Software Simple Using the . NET Framework
	Comparing Abstract Concepts with the Real World
	Planning for a Project Using the Project Lifecycle
	Designing the Date Calculator

	Part II: Building Applications with VB 2008
	Chapter 4: Building Windows Applications
	A Quick Look Back at Visual Basic
	Discovering Windows Controls
	Making a Windows Application
	Adding Functionality to a Windows Form
	Adding Features to Windows Forms

	Chapter 5: Building Web Applications
	Seeing How ASP.NET Works with Your Web App
	Discovering the Web Controls
	Building Your First Web Application
	Looking Below the Surface of Web Forms
	Checking Out Some Cool Web Tricks

	Chapter 6: Building Class Libraries
	Past to Present: DLLs Defined
	Designing a Library
	Creating a Class Library
	Delving Deeper into DLLs

	Chapter 7: Building Web Services
	Getting to Know XML Web Services
	Designing for Web Services
	Building a Web Service
	Consuming a Web Service
	Web Services in More Depth

	Chapter 8: Debugging in VB 2008
	Cool Visual Tools for Debugging
	Using the Debugging Tools in the .NET Framework
	Debugging the Projects

	Part III: Making Your Programs Work
	Chapter 9: Interpreting Strings and Things
	Types of Information in Visual Basic
	Making Words Work with the String Type
	Finding Tools for Managing User Input
	Things That Aren’t Strings — Numbers and Dates
	Changing Types with Parse and TryParse

	Chapter 10: Making Decisions in Code
	Designing Business Logic
	Depicting Logic with Flowchart Components
	Implementing These Processes in Visual Basic

	Chapter 11: Getting Loopy
	Dealing with Zero
	Writing Loops with For-Next
	Using the For-Each Listing with Collections
	Writing Indefinite Loops with Do-Loop
	Checking at the Beginning with While

	Chapter 12: Reusing Code
	Reusing Code to Build Software
	Avoiding the Code-Complexity Trap
	Finding Other Ways to Reuse Code
	Reusing Programs Outside of the Framework
	Accessing DOS: But Only as a Last Resort

	Chapter 13: Making Arguments, Earning Returns
	Using Classes Effectively
	Using Event Handlers
	Making Sensible Procedures with Overloading
	Flexible Objects with Generics
	Controlling Objects with Threading

	Part IV: Digging into the Framework
	Chapter 14: Writing Secure Code
	Designing Secure Software
	Building Secure Windows Forms Applications
	Building Secure Web Forms Applications
	Using System. Security

	Chapter 15: Accessing Data
	Getting to Know System. Data
	How the Data Classes Fit into the Framework
	Getting to Your Data
	Using the System. Data Namespace
	Using LINQ

	Chapter 16: Working with the File System
	Getting to Know System.IO
	Using the System.IO Namespace

	Chapter 17: Accessing the Internet
	Getting to Know System.Net
	How the Net Classes Fit into the Framework
	Using the System.Net Namespace

	Chapter 18: Creating Images
	Getting to Know System. Drawing
	How the Drawing Classes Fit into the Framework
	Using the System. Drawing Namespace

	Part V: The Part of Tens
	Chapter 19: Ten Tips for Using the VB User Interface
	Generating Event Handlers from the Properties Window
	Generating Event Handlers from the Code View
	Pasting Text as HTML
	Customizing Your Toolbars for Every File Type
	Adding Extender Providers
	Using Visual Components That Are Not So Visual
	Recording Macros
	Using the Task List
	Inserting Snippets in Your Code

	Chapter 20: Ten Ideas for Taking Your Next Programming Step
	Get Visual Basic 2008 for Home Use
	Update Code to Use New Tools
	Join an Online Competition at TopCoder
	Participate in an Open Source Project
	Use Third-Party Tools in Your Projects
	Integrate a Public Web Service
	Try Out CodeRush and Other Code Generators
	Write a Web Part
	Use the DTE
	Write an Article about What You Have Discovered

	Chapter 21: Ten Resources on the Internet
	MSDN Library
	VBForDummies. net
	Channel 9
	ASP.NET Web
	The Microsoft Public Newsgroups
	.NET 247
	Google CodeSearch
	kbAlertz
	CodePlex
	<Microsoft> Google for Searching

	Index

