Making Everything Easier!

Learn to:

* Master Windows PowerShell 2 without
complicated jargon

* Automate Windows Servere
administration tasks

» Use the new features of Windows
PowerShell 2

* Debug scripts, remotely invoke
commands, and more

Steve Sequis

Windows
PowerShell 2

FOR

DUMMIES

by Steve Seguis

WILEY
Wiley Publishing, Inc.

Windows PowerShell™ 2 For Dummies®

Published by

Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sonms, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http: //
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affiliates in the United States and other countries, and may not be used without written permission.
Windows PowerShell is a trademark of Microsoft Corporation in the United States and/or other countries.
All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLIAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS
WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2009931743
ISBN: 978-0-470-37198-5

Manufactured in the United States of America
109 87654321

WILEY

www.wiley.com
www.wiley.com/go/permissions
www.wiley.com/go/permissions
www.wiley.com/techsupport

About the Author

Steve Seguis lives with his amazing wife, Annalene, in New York City, New
York. He is a twelve-year Windows Systems Engineer veteran and specializes
in systems automation. He was a Microsoft Most Valuable Professional (MVP)
for Windows Server — Admin Framework from 2004-2007. He is also a con-
tributing writer and technical editor for Windows IT Pro and, most recently,
has published a book on Windows Server 2008 Administration.

Dedication

To my parents, Romeo and Lourdes, who gave me the opportunities that
have allowed me to pursue my dreams and become who [am today.

Author’s Acknowledgments

I've always been a fan of the For Dummies books, which has often resulted

in one or two chuckles from my colleagues due to the incorrect perception
that somehow reading a For Dummies book implies a lack of intelligence.
The reality is that I'm a fan of making complex things simple and I like books
that focus on getting me the information I need in an easy, digestible format.
The For Dummies books have been doing this for years, and ever since I read
my first For Dummies book (specifically C For Dummies by Dan Gookin, over
a dozen years ago), I was captured by the ease at which [was able to gain
knowledge while having the occasional laugh. I never in my wildest imagina-
tion thought I'd ever have the opportunity to write one myself . . . that is until
my agent, David Fugate, got me in touch with the good people over at Wiley
Publishing and got this journey started. Thanks David!

I'd like to thank Greg Croy, Executive Editor, for getting my proposal for this
book approved. He actually retired before | was done writing the book, but
kudos to him for getting the ball rolling. Thanks goes out to Blair Pottenger,
Project Editor, for keeping me well-informed, answering all my questions,
and putting in a lot of work to get the book finished. Of course, I'd also like to
thank Katie Mohr, Acquisitions Editor, who took over Greg’s role in this proj-
ect after he retired. Katie went on maternity leave just before we got done
with the book, so congratulations Katie on the new baby. The project had hit
a bit of a plateau half way through, but when she took over we were able to
regroup and get everything back on track.

I have to thank my very patient and supportive wife, Annalene, who puts up
with me disappearing into the cubby hole I call my home office for late night
writing sessions and generally dealing with all my quirks. We somehow work
together to stay sane despite our lives going at 100 miles an hour.

[also have to thank my parents and my family for understanding how busy
I get, generally staying out of my hair (what hair [have left), and letting me
pursue my interests even though they continue to say that I need to slow
down a bit and get some more sleep.

Finally, I'd like to thank the guys over at Microsoft for creating this awesome
scripting language called Windows PowerShell. We've come a long way since
batch files and as a long-time Windows administrator, I bow to your great-
ness. Windows PowerShell is truly empowering and more Windows folks in
every company need to embrace it.

Publisher’s Acknowledgments

We're proud of this book; please send us your comments through our online registration form located
at http://dummies.custhelp.com For other comments, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisition, Editorial, and Media Composition Services

Development Project Coordinator: Lynsey Stanford

Project Editor: Blair J. Pottenger Layout and Graphics: Melanee Habig,

Executive Editor: Greg Croy Melissa K. Jester
Acquisitions Editor: Katie Mohr Proofreaders: Melissa Cossell,
Copy Editors: Virginia Sanders, Kathy Simpson Christopher M. Jones
Technical Editor: David Dalan Indexer: Potomac Indexing, LLC
Editorial Manager: Kevin Kirschner

Media Development Project Manager:
Laura Moss-Hollister

Media Development Assistant Project
Manager: Jenny Swisher

Media Development Associate Producer:
Josh Frank

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant (www. the5thwave.
com)

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Acquisitions Director
Mary C. Corder, Editorial Director
Publishing for Consumer Dummies
Diane Graves Steele, Vice President and Publisher
Composition Services

Debbie Stailey, Director of Composition Services

Contents at a Glance

Introductioneeeeeeeaeeeeeaeeaeeeeeaeneneeaenanecneesaecneens |
Part I: Getting a Bird's-Eye View of PowerShell 2.......... 9

Chapter 1: The Windows PowerShell Rap Sheet..........cccoccevviiniinvieniinenneeneeiecieeene 11
Chapter 2: Customizing and Shortcutting the Environment............cccccceevvecieenennnn. 21
Chapter 3: A Pinch of Shell, a Pound of POWETc.ccccoevmininninennincncncneecneene 37
Part I1: PowerShell’s Basic Structure and Syntax.......... 47
Chapter 4: Shelling Out Commands and SCripts........cccecevvienienieneenenneeneeieeieeeens 49
Chapter 5: When Dollars Turn into Variables...........ccccooeeveievienenenineeiecienieee s 61
Chapter 6: A Bit of Logic to Save the Dayccccecieviieiieciiniicieeeeceeeeeeee e 77
Chapter 7: Working on a PIPEliNecoceririririieeiceeeeteeeeeeee et 89

Part I11: Complex Data Description and Sharing........... 97

Chapter 8: Working with Windows Management Instrumentationccccceceeunee. 99
Chapter 9: Bringing Strings into the Limelight...........ccccocovviiniininiiiieieee 117
Chapter 10: I'll Take Numbers for $100, Please..........cccocevrerreeneereeniereenieiesrierennes 137
Chapter 11: Grouping Data Using Arrays and Hash Tables...........ccoccevvrervreeenee. 147
Chapter 12: Readin’ and Writin’ Files.........cccccoeviiiiiiiiiiicieceeeece e 159
Chapter 13: Going On a Date with PowerShell...........c.ccocoviiniininniniinieniecieneee 175

Part 1U: Controlling Where and How
You Operate PowerShellcccccccecceccccccaaaaaanne 185

Chapter 14: Using Functions to Divide and Conquerccoceveevervierviennienceeneenne 187
Chapter 15: PowerShell Ninjas: Running Jobs Remotely or in the Background 209
Chapter 16: Making Your Script Speak Different Languages...........c.cccecvvvveevennnnnee. 223
Chapter 17: Smashing ThoS€ BUZSccecerieriiriririeeeeceeee e 231

Part U: Real-World Windows Administration
Using PowerShell..............cccaaaaaiaaiiiaaaaaannnnnneeneeeeeeeee 285

Chapter 18: Mission Control: All Systems GO.........ccceecveeierienieneenieeieeieeie e 247
Chapter 19: Taming the Windows Registryccocevvrviininininieeeeeeeeeene, 261
Chapter 20: Reaching Out to Active Directory.......ccccocevviiriiniininninienieeieeieeeee 273
Chapter 21: PowerShell LoCKAOWI.......cccoviiiiiriiiriiriieieeiectceecee e 287

Chapter 22: Converting Your Old Scripts: Out with the Old, In with the New 301

Part Ul: Configuring and Reporting Uia PowerShell 317

Chapter 23: Controlling Your Network Configuration..........cc.cceeceeverciernienniencieneenne. 319
Chapter 24: Managing Your Hardware.............cccceecveeieeienienieneeneeseesveesieeveeaeene e 331
Chapter 25: Making Reporting EaSYcccceceviriririeiereeceeeeeeeeeeee e 345
Part VIl: The Part of Tens........ccccceeeeceeecceeeareesaeeesceese 357
Chapter 26: The Ten Most Important Cmdletsccooeeeeeciiieiiieciieieeeeecee e, 359
Chapter 27: Ten Common PowerShell Mistakes...........cccccevcverieneeneniennienienieneene 365
Bonus Chapter 1: Handling EXCEPIONS........ccccccieciiiciieieciecicceeseeeeeee e 1

JHACK «..ennnneneeeeeeeeeeeeeeeeeeeeeeeeennnnnnnnnnnnnaaaasaaaasasseeeeeee 315

Table of Contents

JOCEOAUCEION aaaeeaeeeeeeeeeennaaaeaeeeeeeennnnnssseeeeeessnnnnnseeees]

ADbOUt This BOOKccuiiiieiieiieiiceeeteteste ettt ens 1
Conventions Used in This BOOK.........cccccoccvvviiriiiriiniiiienieeeeeeeeeee 2
What You're Not to Read........ccocueviiniiniiniiiciicececestetcseeseese e 3
Foolish ASSUMPLIONS........ccoiiiiiieieeecee e e 3
How This Book Is Organizedcc.ccoecieeiiieiiieciieceeeeeeee e 4
Part I: Getting a Bird’s Eye View of PowerShell 2..............ccocceenenee. 4
Part II: PowerShell’s Basic Structure and Syntax..........ccccceecveereennnns 4
Part IlI: Complex Data Description and Sharing..........c.ccceceevveeennnns 5
Part IV: Controlling Where and How You Operate PowerShell........ 5
Part V: Real-World Windows Administration Using PowerShell......6
Part VI: Configuring and Reporting Via PowerShell........................... 6
Part VII: The Part of Tens........cccceeeiiiiniineniinerieeeeneetesteeeeieeeene 6
Icons Used in This BOOKccccooiiiiiiiiiiiiiiiieieceeeeee e 7
What’s on the Web Sit€......ccoociieiiiiiiieieteteeceeeeeee e 7
Where to GO from HETe........c.cocuiviiiiiniiieieecccceceeeetes et 7

Part I: Getting a Bird's-Eye View of PowerShell 2........... 9

Chapter 1: The Windows PowerShell Rap Sheet.................. "
Addressing the Need for a Powerful, Windows-Focused

Scripting LANGUAZEcooveveiirieiieieeieeieeieeie et eeesne e se e e saeesaeeaeenees 12

Watching Monad morph into PowerShell...........ccccooevirviinninniinnnns 12

A little bit on Windows PowerShell 1.0ccccoovevveniinviinneniienennns 13

Windows PowerShell 2, the Next Evolutioncccovevvenviniininncnnennee. 14

Installing Windows PowerShell 2.............ccooeviririiniinineneeeceeese e 15

Firing up the Windows PowerShell Command Shell................ccccccueeunnnee. 16

Going GUI: The Windows PowerShell Integrated Shell

Environment (ISE)......ccccooviiiiiniiniiiieieeieeieciecie et 18

Chapter 2: Customizing and Shortcutting the Environment 21

Personalizing the Look and Feel of the Command Shell.......................... 22

Adding color to your Worldccceeieviiniiniiniiieneeeee 22

Getting size-specific with your windowsccccoeevveeciienciveeieennen. 22

A window by any other nameccoceceiierininenieeeeee e 24

Changing Your PowerShell Profile...........cccccoeevueevieniiinienieieseeeeieeeeen 24

Making the Windows PowerShell ISE Work for You..........ccceceevverreenennnn. 27

Customizing the ISE.........ccovviiriiiniiieeceeeeee e 28

Adding your own functions to the ISE menu........cccccccoovvervieninnnnnns 28

Creating ALIASESc.c.ovuiriiirieriecteteeee ettt ettt e 30

X

Windows PowerShell 2 For Dummies

Deleting ALIASES.....c.c.evviiriiirieriertertereee ettt ettt et e ae e 31
Accessing the Alias DIIVeccceeveeiiiiecieeeece e 32
Creating Persistent AIASES.........ccceeeririeiienineneeieeeesteecete e 33
Getting to Know Tab EXpansionccccceevievieecieeieeiesieneeseeeeeeeeenenn 34
Chapter 3: A Pinch of Shell, a Pound of Power.................... 37
Getting a Taste of Windows PowerShell...........ccccecivvienienienienieneeieene. 38
Creating Your First SCriPt......ccccevievieniieiieicececte et 39
Breaking Down Your First SCriptccccoovivvirveniiiniiinienienececeeieeieeenn 41
Sneaking a Peek at Complex SCripts........cccovevvieriieniiiniiniinieeeeeeeeeeene 43
Examining the Nuts and Bolts of the Complist Script.......c.cccccvvevveenennee. 45

Part II: PowerShell’s Basic Structure and Syntax 47

Chapter 4: Shelling Out Commands and Scripts................... 49
Cmdlets: The Little Commands That Could!...........ccccevviiniininninninnennen. 49
Putting Cmdlets under a MiCroSCOPE........cccvvverviercverienienieneeieene. 50

Checking out existing Cmdlets...........ccoeeeeevieciecieecieeieceeeeeeeeeane, 51

Making Cmdlets understand YOU...........ceccecvevierenenericenierieneseeeeene 53

One Shell to Rule Them All..........cccooiirieininieieeee e 55
WiIindows Shell SCHPEScoivuiiiiieieiee e 55

Windows Scripting HOSt........ccccovevieviiiieeeeeeeee e 59

Chapter 5: When Dollars Turn into Variables 61
Discovering Variables: They Vary Very Much.........c.ccoecveviiniininnenniennnen. 62
Getting to Know Data TYPESccooeevuiiniiiiiiiiinieeientententeie et 62
Dealing with data types.......cccceeeiieeciieeeeeeeeeee e 64

Explicitly defining the data typecccceeeeeieciieciecieceeeeceeeeee, 65

Casting VAIUESeoovieiieiicieciectee ettt eeesae s 67

Constant and Read-Only Variables.........ccccooevuirvienviiniiniiniciceeeeeeen, 70
Understanding Automatic Variables.........ccccocevvieriiiniiiniieniinicneeeeieeenn 71
Working with Objects through Variables..........c.cccocvvviinviniiniiniinieenen, 74
Chapter 6: A Bit of Logic to Save theDay 11
A LOZIC PHIMEY ...cniiiiiiiiiecieeeeetetet ettt sttt 77
Branching Using If/EISe...........cccocoiieoiieiiieieeeeeeeee e 80
Using the Switch Statement...........cccooieieiieiininiee e 83
Doing It Over and Over and Over Again with Loops.........cccccceevvevueenennen. 83
Looping With FOTcciiiiiiiiiiiiieeececee e 84

Using Foreach to loop through collections.........ccccecevvvinienennnnnee. 85

Looping for a While ..ot 86

Running a loop at least once with Do While............c.ccccvvrvnnnennnen. 86

Taking a look at Do Until.........ccccoviiiiiniiniiiiieeeeeeeee, 87

Avoiding 100p Pitfallsccceevieeiiieiieieeeeceeeeeeeeeee e 88

Table of Contents Xi

Chapter 7: Workingona Pipeline.....................coiintt, 89
Using Pipelines to Streamline Your Commands..........ccccoeceeveeveenieecnennen. 90
Stringing Commands Togethercccocieviievieeieeiieeieceeeeeeeee e 91
Getting the Right OUtPULcccoeviiiiiieiceeeeeeeee e 94

Part 11I: Complex Data Description and Sharing............ 97

Chapter 8: Working with Windows Management

Instrumentation. 99
Getting Familiar with Windows Management Instrumentation.............. 100
Examining the WMI architecturecccooveriiniiniiniininccneeen. 100
Poking around in WMI namespacescceecueeeieeniieeniieessieenneenns 101
Securing WMLL........cocoiiinieniieieeceeieeieeie ettt sae v s 103
Making Windows PowerShell Interact with WMI...........cccccvevvinennenninns 103
Using SQL Syntax in WMI to Get WQL........ccccooviiviiniininniiieieceeieeiens 106
Harnessing the Power of WMIL........ccccooiiiiiniiniiniiieeeeceeeeies 108
Querying Service Statusc.cceeeeevieecieeciieieceeeee e 108
Looking for event 10g entries..........cccceecveeeiiecieeciecieciecieeeeeeeieeen 109
Changing WMI Authentication Levels..........cccocovieniienienienieneeneeieeiens 109
Pretending to Be Someone Else Using Impersonation.........c.ccccccecuenueene 111
Using the New WMI Cmdlets.........ccocvviiviiniiiniinienieceeeieeieceeie e 112
Making things happen with Invoke-WMIMethod 113
Deleting objects using Remove-WmiObjectcccccververeenneennen. 114
Setting WMI properties using Set-Wmilnstance............cccocceueeneee. 114
Chapter 9: Bringing Strings into the Limelight 117
Taking Your First LooK at Strings.......ccccceceeveeienienieenieeseeseeseeseesieeiens 117
Differentiating between empty and null strings.........ccc.cceecveuennnen. 118
Creating literal Strings.........cccceevieveiiieniiinierierteeeeeeeee e 118
Simplifying using Here-Stringscccoccovvevvieniiencieninnieneeneeeeenn 119
Performing String SUIGErYcoccovviriiriiiniieniertecteteteeeeee e 120
Combining StriNGS......ccecvevieiiieiierieeeeie ettt e e e e seeesaeeaees 120
Combining strings with nonstringsccccoceeveiiienenenininene 121
SPItHING StrINGS ..vviviiiiieieeeeeeee et 122
Snipping off a piece of a String.......cccccecevviervieriiencieneereeeeeeen 123
Performing string substitutions...........ccccceveveveneereeneseeeeeeene 125
Working with String POSItionsccceeveeiecieneniniececeeeeeeene 125
Changing the Case of Strings.........cccccveviievieeiieieceeeeeeeeeee e 127
Using Regular EXPressions.........ccoceeveeieeienienienienieneecieesieeseeeseeeeeseeas 127
Creating the simplest RegEx using literal characters 128
Performing more dynamic searches using character sets........... 130
Using modifiers to define optional or repeating sequences......... 132
Using anchors to maintain positionccccecevveeviinieneencenennnen. 134
Coming up with alternativescccceeeeeiiecieeciecciecceceeceeeeeeee, 135

Making use of RegEx in Windows PowerShell.............ccccoceeenee 136

Xii Windows PowerShell 2 For Dummies

Chapter 10: I'll Take Numbers for $100, Please 137
Putting Numeric Data Types under a Microscope..........ccccceeevveecveennnenn. 137
Having a look at integral data types........cccccceecveecverceenienieeeeieenen, 138
Getting precise using nonintegral data typescccccoevververueennen. 139
Doing Some CalCulationsccceecverviiriieriieniiinienieneeneese e see e 139
Adding things UDccceeviiiiirierieneeeeeeee e 140
Reducing values with subtraction.........ccccocceevevviniiniinnincnncnnen. 142
Expanding through multiplication.........c..ccocceeviniiniininnnnnncnen. 143
Reducing through divisioncocooeiiiinininieee 143
Rounding Off Values..........cocceiriiiiiininiiiieeceeeteeeeseee e 144
Creating Random NUMDETSc.ccceviiiieniiniinienieceeeeieeie e 145
Converting NUMDETSccccceeeieieieiieeeeeeetete e 145
Watching Out for OVerflow..........coceviiiiiniiiiniinienienteneeseeeeseeee e 146
Chapter 11: Grouping Data Using Arrays and Hash Tables 147
Taking an In-Depth Look at Arrays........cccceceeeeiieeciieecieeeieecieeereeevee e 148
Creating and USING AITAYS.......ccceoerierieriririeieiereeieereeeeeesae e eenes 148
Accessing array elements..........cocveeveeeecieeniienieecieesie e seeseees 149
Looping through arrayscccceceeeeeeeevienenececeeeeeee e 150
Growing Arrays Dynamicallycccocceeverviiniiiniiinienieenieeereeeeeee e 151
Creating Multidimensional ATrayscccceceevierienieenieeneeneeneeseesieseenns 152
Finding Other Uses for Arraysc.ccceveeveeviienienieniieneeneeeeiecsieeeeseens 153
Working with Hash Tables: The Array’s Useful Cousin..........ccccecceeunenn. 155
Creating and using hash tables..........ccccoccovininniininineee 155
Modifying hash tables ... 157
Looping through hash tablescccooeiiininiininicecceee, 158
Chapter 12: Readin’ and Writin' Files 159
Having Some Fun with the File Systemccccooovieieviiveneniceeeeeee 159
Moving around the file system.........ccccccovvierviiriiinciiniiniinieneeeeen. 160
Managing direCtories.......cccceviiriirieriieriienieeieeteste et 160
Manipulating files in the file system........ccccocoevevinenenenineeee 162
Reading TeXt FIleSccucoieiiiiieiieieeeeeeee ettt ees 163
WIHING FILES ..ottt sae e ens 164
Working With XIML......cccieoiiiiiiiiiiieneetctcieeeee e eee e 166
Reading and writing XML files........ccccceccevviinvieniiiniiiniinieneeneeeeenn 168
Saving objects in XML filescccocceeviriiiniiiniiinienienieeeeeeeeeeen 169
Working with HTMLcocoiiiiiiiieeee et 171
Chapter 13: Going On a Date with PowerShell................... 175
Going On Your First Date.........cccoovevieriririnieieiereceeeeeeee e 175
Getting the date and time in a specific format...........ccccoeeueennennen. 176
Creating your OWn dates.........cccceevueevieerieeieniieniesieeeeseeseeseesaeeseees 178
Using Date Math (It’s Not Just for Nerds)ccceceveeerienienieneeneeneniens 179
Calculating time differences...........coccevvevviirvieniienieeniienieneeneeeeen 179
Looking into the future...........coceoviiiieniiniinieeecceees 180

Checking whether it’s daylight saving time............ccccceevveeeeneennen. 181

aaa

Table of Contents X[[[

Dealing with Time ZOnesccccoeviriiiriiinieniinienienteseeeeseee e 182
Standardizing with Coordinated Universal Time........................... 182
Using the TimeZone Classccccoveeverviiriienienienieneceeeceeeeenn 183

Part IV: Controlling Where and How You Operate
PowerShell..........ccccccccaaaannieaaaacacaannnnneeecaasacacnnnneees 185

Chapter 14: Using Functions to Divide and Conquer.............. 187
Reusing Code Using FUNCHIONS..........cocoieieeiiiiiiieceeseeeeeeee e 187
Creating your first functioncccceceeviieiiinviiniineceeeeeceeeen 188
Defining parametersccccoceeveenieeiieniieniieniententesee st seeseeeseeeneees 189
Returning Valuescooveveriiiiiiiinieiiecieeiestestestese et 191
USING SCOPE ...oitiiteeteeteettete ettt ettt te et e st e s e e s e e s taesse e seesbaessaessaenseenseans 193
Understanding sCope rules..........cccoceevieriennieniienieenieeneeneeneeseeenn 193
Watching out for name overlapcccoccoeeevieviiecienieeieeieeeeeeeeen 195
Defining functions in Global SCOpE........ccceevvercierierciinieeieeeeieeeen 197
Creating Your Own Cmdlets — Advanced Functions!cccccecenneenns 197
Understanding the structure of Advanced Functions................... 198
Defining attributescccovveiieiiiieeeeeeee e 199
Defining parametersccocevererieieieniereeeeeeeeee e 200
USING MEtNOAS......cioiiieiieieceeteeee et 204
Running Advanced FUunctions...........cccecceveirviinciencieniienieneeseeseennn 204
Finding uses for Advanced Functionsccceecevvienvieneeneenennnen. 207

Chapter 15: PowerShell Ninjas: Running Jobs Remotely or

intheBackground 209
Using Background JODS.........ccevvuieiiiiiiiriiinieciecicstesceseeieeste e 210
Enabling WINRM........cocoiiiiiiiiiiieiececieeeseetesteste st 210
Starting @ NEW JODcoouiiiiiiiiiieiecececeeee s 210
Getting TESUILSeocuiiiieicieceeeee ettt ae s 211
Waiting for @ JOD.....coiiiieieeececeee e 213
Terminating @ JOD......oocieeieeieiiecieeeeee e 214
Bringing a job to a grinding haltccceccevverviiniiniinieneeeeeee, 214
Running Commands Remotely..........cccoceevieriiiniiniinienieecneeeenieeieeiens 215
Using Windows PowerShell everywhere...........ccccecvvviiniinenncnnnen. 215
Getting what you need for remote commands...........c.ccceecuveenneenee 216
Speaking PowerShell with a different computer............................ 216
Invoking commands remotely.........ccccocceeeriiiniiiiniieeniienee e 217
Creating a persistent connection...........ccceeeevvenceencenienieeneeneenen. 218
Running remote background jobsccccocvevvierciiniiiniinieeneenieeen. 219

Understanding policies, profiles, and precedence........................ 221

X'i(/ Windows PowerShell 2 For Dummies

Chapter 16: Making Your Script Speak Different Languages 223
Seeing the Importance of Internationalizing Scripts........cccccoevereernenene. 224
Giving Your Scripts Different TONGUEScccevevevieeienienieeeceeieeiens 224

Using new internationalization featurescccccocevvverveneenennen. 225
Understanding CUltUresccceveeviercieniienieniienieneeseeseese e 226
Putting it all together........ccccooviviiiiiiiiniieeeen 226
Sharing Scripts with Othersc.cccooiiviriiniiniieeeee 229

Chapter 17: Smashing ThoseBugst 231

Finding Out Where the Bugs Come From..........ccccoceecvecievienenenenceienene 231
Guarding against unexpected inPutccocoeceeeeceeneneneneneeeeene 232
Watching out for incorrect 10gicC........cccevieviieiiiecieciieiiecieeeeeee, 232
Expecting the unexpected: System errors..........cccoceecverveneenueennen. 233

Understanding the Debugging Process..........ccccoevvevienieninnieneeneenenniens 233

Working On Your Defense............cccooeveveeieeenienieneeeseeeetesee e 235

Working with Debugging ToOIS.........cccoocirmiiviriiniinieneeetceceeeeiee 237
Working with breakpointsc..ccoccoeeiviiiiniinieniinieceeeen, 238
Setting fancier breakpoints..........ccoceeveevievienininniieeeeee 240
[ssuing debugger commands...........cccceecveeeieevieeiieniiesiieseeneeseeseeennens 240
Listing all breakpoints.........cocceevievierieriieniiinienieeteseeseeseese e 241
Disabling and enabling breakpoints..........ccccecevciinviinieneeneenennnen. 242
Removing breakpointsccccoceeveeienviiniieniienienteseceeneeeeieeen 243

Part U: Real-World Windows Administration
Using PowerShellccccaaaaaaiaaiaaaaaannnnnnaneaeeeeeeee 285

Chapter 18: Mission Control: All Systems Go 247
Monitoring Drive SPaCecccociiieiiiriirieeeieeeeeeee e 247
Converting to Windows Management Infrastructure

from System.IO.Drivelnfo.........ccccooeieieieieciiceeeceeeeee e 251
Managing Windows SEIVICES.........ccvvuirrierieriienienieneeneeseenieeseeeseeesaeseenns 253
Controlling SEIVICES.......cccveieieiiriieieeeeeterte e 254
Configuring SEIVICESccvvirieiiiieieeeeeere et 256
Checking Your Event LOgSs........ccooereririririeieiereeeceeeee e 257
Querying EventLogs Using WMIcccecveeiiniiiienieceeceeseeee e eve e 258

Chapter 19: Taming the Windows Registry...................... 261
Following the Registry TIeec.cccoveviieiiieiicciieieceeseeeeeeeee e 262
Connecting to the Windows Registry.......ccccccovviiviiniinieenienieeceeieeiens 263

Navigating the registry by using the PowerShell drives............... 264
Using Microsoft.Win32.RegistryKey to access the registry.......... 265
Reading Keys and Values...........ccocerviiriiniiniiiniinienicccecieeieceeieeiens 267
Writing Keys and Values..........ccocooieiiiiiiiinniniinieeeecieeeeeeeeeeeiene 268
Writing keys and values using the PSDriveccccoceeveevenneennen. 268

Writing registry values using Microsoft.Win32.RegistryKey........ 269

Table of Contents
Renaming and Deleting Registry Keys and Values..........cccccoocvevennenninns 270
Renaming and deleting registry keys and Values
USING PSDTIVE ...ttt 271
Using Microsoft.Win32.RegistryKey to delete registry
KeYS and VAIUEScovierieiieiieiicieeieete ettt sae e ens 271
Chapter 20: Reaching Out to Active Directory 273
A Really Brief Active Directory Primercccccocvvvenvieniiinienieneeneeiens 274
Connecting to Active DIr€CtOrycccevvierieriiniinienieneeeeeee e eee e 274
Querying for Objects and Attributes.........ccoccovvievieniiinienieniieceeeeies 275
Creating your LDAP filter.........cccooievieeciieciieieceeeeeceeceeeee e 277
Dynamically obtaining a user’s distinguishedName...................... 282
Modifying Object AttribUutes........cccoevviecieeiieeiicieceeeeeeeee e 283
Updating Group Membershipc.ccccevieieriiiniiinieneeseeeeseee e 284
Getting to the Raw ADSI Object Using psbase........cccocceveevveneenersennienns 285
Chapter 21: PowerShell Lockdown. 287
PowerShell Security Featuresc.ccooevvieniiniiiniiniienieeeeeeceeieeiens 288
Getting rid of the current directory loophole.............cccceeeennennnen. 288
Stopping the double-click bIUes...........c.cccoeevveecieeieniieeieceeeeeeeaee, 288
Protecting through ExecutionPolicyccceceeviviienieniecieieenen. 288
Generating a Code-Signing Certificate..........cccecvvvevercienieeneenieneereeieeiens 290
Creating a self-signed certificate........ccccocvvvevvierciencincienieeeeeee, 290
Requesting a certificate from your Enterprise CA......................... 293
Browsing the Certificate Store........coccoovevieviiiniiiniineeeeececeeeeies 294
SigNiNg YOUT SCIIPS ..c.ueiiiiiiiiiiieiecieceeeee ettt ve e saeeaeeare e 295
Managing the Windows Firewall...........cccccooviniiiniiniiniiniiiicieeenes 297
Defining globally Open POrtsccccceecieecieecieecieciecieeieeeeeeeseeeeeen 298
Listing firewall SErVICES.......cccvvvviiviiiiiieiieiecieeieeeesee e 299
Allowing applications to get through.........cccooovvviviiniiniiniienen. 299
Chapter 22: Converting Your Old Scripts: Out with the 0ld,
Inwiththe Newco i 301
Converting a Windows Shell Script to Windows PowerShell................. 302
Echoing to the SCreen..........cocvvvivviieiiiniiiniiieeietceeeeeee e 302
Using conditional statements.........cccccecevviirvieniieniienienieneeneeeeenn 303
Migrating that FOR commandc.ccccocevveviieciieieniicieceeceeeee, 304
Converting a Windows Scripting Host Script to Windows
POWEISHEL ..ottt e 306
Comparing the basiCS......cocvvieriieniiiieciecieceereecee e 307
Working with COM ObJECtS......cociiviiriiiiieeiieieeieeieee e 307
Understanding the difference between CreateObject and
GELODJECT ..ttt ens 309
Handling I/O......ooiiieeeeeee et 311
Working with ActiveX Data Objects (ADO)cccceevveeveeiereeneeennen. 312
Leveraging ADO.NET to your advantagecccceeeverveneeneenneennen. 313

xv

X'(/i Windows PowerShell 2 For Dummies

Part Vl: Configuring and Reporting Via PowerShell..... 317

Chapter 23: Controlling Your Network Configuration 319
Managing Your Network Settingsccccocevevineninieiinieeneeeceeene 320
Familiarizing yourself with
Win32_NetworkAdapterConfigurationcccceeerviervieneennnenne. 320
Retrieving your TCP/IP settings......ccccccevvirvieriiencienienieneenceieeenn 322
Manipulating your TCP/IP settings........c.cccoccevvievciinienieneenceneenen. 323
Managing Your Windows Firewall...........cccccoeerininininiiinieeeeeeceene 325
Getting to know the Windows Firewall COMmander 326
Enabling and disabling the Windows Firewallccccceuene.n. 327
Making yourself Visiblecccooieviiviiriiniinieciecececceeeeeeen 328
Getting a list of all authorized applications..........c.ccccceervereenuennnen. 328
Getting a list of all globally open ports.........ccceeceevvieniineencnncennen. 329
Using the big reset buttoncccoeeveieeiieiieeieceeeeee e 329
Chapter 24: Managing Your Hardware.......................... 331
Polling Your Hardware............ccccooverieviininirieieeeeeeeeeeeeee e 332
Finding out what hardware you have..........c.cccccecvevvviniinveeneenneennen. 332
Checking hardware Stateccccoeeeeieecieeciiecieeiecieceeeeeseeseesiee e 340
Controlling Your Printersccceceevieriieniienciinienieseeseeseesieeee e esee e 341
Connecting to a shared network printer..........cccccecevvienvieneenennnen. 341
Disconnecting a shared network printer..........ccccocevieniencnnennnen. 342
Setting the default printer........c.cccceeviinncnnincnencncceeees 342
Checking up on printer state..........ccocevevieneneninieereeeeeeeene 342
Keeping an eye on the printer queue..........c.ccoceeceevienenenencnneenene. 343
Chapter 25: Making ReportingEasyc.cveut 345
Using Built-In Reporting Cmdletsc.cccceeviieieriencienieereeneeeeseeieeiens 346
Generating REPOYTScociiiiiiiiiiieieceeeeeeteste et 346
Customizing tabular output with Format-Table............................ 347
Setting column width in Format-Table..........ccccceccovviiniininninnnnnnen. 348
Using an interactive data tableccceviieeiiinciencieecee e 348
Preparing data for other reporting tools........cccccceevvvevereeceenneennen. 349
Making your data table readycccceceeviieiieriienciecieeieeeeseeieeen 350
Making Reports Prettyccccceevvevieiiniieiceceeeeeeeeeee e 352
Formatting Using Cascading Style Sheetscccccovviervieniinienennennennienns 353

Using Third-Party Reporting ToolSsccccecvevvrerineeicieeeeeeeeene 355

Table of Contents X(/l‘l‘

Part UlL: The Part of Tens..........cccecceeieeeieeeseeeseecseecaes 357

Chapter 26: The Ten Most Important Cmdlets.................... 359
Getting Help with Get-Help........cocooiviriniiiieeee e 359
Getting to Know Your Objects with Get-Memberccceevevueevennnnns 360
Navigating with Set-Locationcoccoeveevieniiiniiinienieecececeeeeeeiens 360
Reading Text Files with Get-Content..........cccccecuevieniieniinninneineineeeniens 361
Writing to a File with Out-File ..o 361
Leveraging WMI with Get-WMIODjectccccceviverieiriieneeeeeeeeene 362
Creating New Objects with New-Object........cccccovvenininiiininininirceeene 362
Getting Picky with Select-Objectccceverviiiiinienieceeceeeeeeeeie e 362
Going Through Collections with Foreach-Object.........cccccocvevievienenninns 363
Controlling the Pipeline with Where-Objectcccccoceviiniiniinennenninns 364

Chapter 27: Ten Common PowerShell Mistakes 365
Forgetting to Change the Execution PoOliCy.......c.cccoceevvieniiniiniinenienninns 365
Using Commas to Separate Parameters When Calling a Function........ 366
Defining Functions After You Use Them.........cccocevveeiecienienenenenceeeene 367
Treating Pipeline Data as Strings........c.ccoccecevevinineniniinieeseeeeeeene 368
Forgetting to Cast Variables as a String.........c.cceceevveeveeneenieneeneecieeiens 369
Using Incorrect Comparison Operatorsc.ccecveveerveeneeneeneeseesenneenns 370
Trying to Do Too Much in One Pipeline.........c.cccoccovviiniininninniincnneninns 372
Forgetting About Variable SCOpe..........cccocevviiviiniiniiinieieeeeeeeeeiens 372
Not Using the DebUZZEr..........coeeciiieiiiiieieeeee et 373
Not Using .NET Classes When Available............cccooeeieiiiniininininceene 374

Bonus Chapter 1: Handling Exceptions 1
Handling Errors the Old-Fashioned Wayccccccoeeveeieeviereenieneeeeiee 1
Understanding EXCEPHIONScccccveviiviieiiieiicieciecie st 2
Trapping EXCEPIONSc.oociiviiiiiieteiectceeece ettt 3
Throwing EXCEPLIONScccviviiiiiniiiieieciteeceete ettt 6

JOACK «eaeeeaeeeeeeeeeeeeeeeeeaeaeaeaaeaaaaaaaaaaaaannnnnnsnnnsseseeeeeeeee 31D

X’(/'[li Windows PowerShell 2 For Dummies

Introduction

Welcome to Windows PowerShell 2 For Dummies, your ticket to the awe-
some and magical world of Windows PowerShell. (Well, maybe it’s not
quite so magical, but at least your co-workers will think you're magical when
you're done reading this book.) This book is a no-fluff, get-you-the-information-
you-need-today kind of book, so if you like to read chapter after chapter of
boring technical literature that keeps going around in circles, put this book
back on the shelf, and walk away quietly. If, however, you want to read a book
that is engaging, gives you the information you need to know rather than just
a bunch of things you might want to know, and gets you up and running with
Windows PowerShell as quickly as possible, then this book is for you!

About This Book

Windows PowerShell 2 For Dummies is an introductory guide to this relatively
new and fascinating Windows scripting environment that’s revolutionizing
the way programmers think about Windows scripting. Before Windows
PowerShell 2, there was Windows PowerShell 1.0 (what a shocker!).

Windows PowerShell 2 takes the best elements of Windows PowerShell 1.0
and greatly improves on them, thanks in great part to the feedback from

the Windows PowerShell community.

My goal in this book is to give you a concrete understanding of how things
work in Windows PowerShell and fortify that knowledge with plenty of real-world
examples that 'm sure you'll be able to relate to. In many cases, very short and
quick examples are sufficient, but I also make sure to provide larger, slightly
more complicated (yet infinitely useful) scripts whenever possible so that you
can see how various concepts can be strung together into one cohesive unit.

This book is logically organized so that if you read it from cover to cover, you'll
build on knowledge from earlier chapters to keep advancing your Windows
PowerShell skills and level up (as they say in the role playing gaming world).
Each chapter, however, is written as an independent unit that you can use as a
reference for years to come as you find the need to go back and brush up

on things.

2

Windows PowerShell 2 For Dummies

A\\S

Because Windows PowerShell 2 can be installed in different Windows oper-
ating systems, the examples are designed to be operating system-agnostic
whenever possible. This way, you aren’t going to miss anything, regardless of
whether you run the program under Windows XP, Windows Vista, Windows
Server 2003, Windows Server 2008, or even Windows 7.

After reading this book, you’ll be able to piece together your own Windows
PowerShell scripts that’ll be sure to impress your boss, not to mention save
you a ton of work and time. In fact, when you know how to use Windows
PowerShell to your advantage, you’ll have much more free time to do more
interesting things, such as read this book again.

To mention briefly what this book is not, it’s not an all-inclusive, everything-
you’ll-ever-want-to-know-about-Windows PowerShell reference. As you read
this book, however, you'll realize how truly powerful Windows PowerShell is,
because the book covers all the most important things you need to know.

This book is written to Windows PowerShell 2 CTP3. Windows PowerShell 2 has
already come a long way since it was first announced to be under develop-
ment, and [feel that any changes that Microsoft might make before the final
release is out will be some bug fixes and perhaps some changes to some very
advanced features (which this book doesn’t delve into). That being said, we’ll
keep you up to date with any applicable changes through the Windows Power
Shell 2 For Dummies Web site (www . dummies . com/go/powershell2fd), so
keep yourself informed by visiting the site regularly.

Conventions Used in This Book

MBER
é&
&

In this book, you enter a lot of commands at the Windows PowerShell com-
mand prompt or write scripts in a text editor such as Notepad. Scripts and
code listings always appear in monofont, like this:

Sstrl = "Hello "
Sstr2 = "World!"
write-output $strl + $str2

Make sure that when you enter commands, you type them exactly as they
appear in the book. Windows PowerShell is forgiving about things like spaces,
but in general, if you encounter problems running any of the examples, first
make sure that you've entered the example exactly as it appears in the book.

You'll be required to use your keyboard quite a bit with Windows PowerShell.
Fortunately, you can make your life a bit easier by taking advantage of
several keyboard shortcuts. When I direct you to use a keyboard-shortcut

Introduction 3

sequence such as Ctrl+S, press these keys on your keyboard simultaneously;
then release them together. The plus sign is there to show that the keys are
to be pressed together; you don’t type the + sign.

What Vou’ve Not to Read

This book contains everything you need to know and a few things that are good
to know. I've separated the good-to-know stuff into sidebars (which are shaded
in gray) and paragraphs marked with the Technical Stuff icon. You can skip
these sections and still survive the day, but feel free to read them; some of
them contain some pretty useful information that you may need someday to
win a game show.

Foolish Assumptions

Whenever I pick up a technical book, I want to know that it was written for
someone like me, so [want to be clear about my assumptions of what you
know and what you don’t know before you dive into this book.

For starters, 'm assuming that you know how to use a computer. (Yes, if you
haven’t noticed already, you're holding a computer book. If you thought it
was something else, such as a cookbook, feel free to nod a few times; put the
book down; and walk a few aisles down to find the other For Dummies book
you had in mind.)

You should also know how to use at least one of the operating systems
supported by Windows PowerShell, such as Windows XP, Windows Vista,
Windows Server 2003, Windows Server 2008, or Windows 7.

[don’t expect you to know any kind of scripting or programming language
(although it helps if you do). I go over everything you need to know, even if this
is your first time. (It’s okay; [don’t bite.) Many of my examples cover ways to
use Windows PowerShell to manage a Windows environment, including Active
Directory, so preferably, you have some Windows administration under your
belt. If you don’t, don’t worry; you still find plenty of useful information in

this book.

Finally, although the title of this book is Windows PowerShell 2 For Dummies,
I know that you're not a dummy (but I bet that guy who’s staring at you
for having a For Dummies book in your hand is). I know that you're a smart

4

Windows PowerShell 2 For Dummies

individual who knows that the best way to start any new topic (especially a
scripting or programming language) is to pick up a For Dummies book.

So without attracting too much attention, give yourself a round of applause;
then quickly move toward the counter and buy this book. While you’re at
it, get copies for your colleagues, too. It’s the best compliment you can give
them. Seriously, it is!

How This Book Is Organized

There are no surprises here. I've organized the book to make it easy for you
to find what you’re looking for. Whether you need to look up something

quickly or feel like reading this book in your leisure time, you'll feel right at
home. I've broken this book into seven parts so that you can pace yourself.

Part I: Getting a Bird’s-Eye
View of PowerShell 2

I find it easy to see trees and miss out on the entire forest, so I'm starting this
book with a soaring, 10,000-foot (3,048-meter) view of Windows PowerShell 2.
Chapter 1 helps you get your arms around Windows PowerShell by giving you
an understanding of how it got where it is today. | show you how to customize
the environment to best fit your style and some different time-saving tech-
niques that help get you going faster in Chapter 2. Finally, Chapter 3 gives
you your first taste of this amazing shell. Consider Part I to be your gateway
to the world of Windows PowerShell.

Part 1I: PowerShell’s Basic
Structure and Syntax

Part [gives you your first taste of Windows PowerShell. Part Il takes a step
back by providing a detailed look at the structure and syntax that define
Windows PowerShell. Think of this part as me showing you how to speak the
Windows PowerShell language. Every scripting and programming language
defines constructs for how to interact with it. Unfortunately, unlike humans
(well, most humans), computers need precise instructions on what you want
them to do, so getting this part right will pave the way for a smooth experi-
ence later.

Introduction

Chapter 4 goes over Cmdlets, which are the basic commands that form the
foundation of Windows PowerShell. I show you how to store data temporarily
in your scripts using variables in Chapter 5. Chapter 6 goes on to show the
different ways you can put some intelligence into your code by using logic
expressions to control the flow of code within your script. Finally, Chapter 7
shows how you can make very effective command sequences by feeding the
output of one command to the input of another command creating a com-
mand pipeline.

Part 11I: Complex Data Description
and Sharing

Now that you know how to speak the language, Part Ill raises the bar and
introduces more complex Windows PowerShell activities, such as interacting
with Windows Management Instrumentation (WMI) in Chapter 8 and manipu-
lating text in Chapter 9. You also get to see the power of numbers in Chapter 10.
You discover how to take advantage of groups of data by using arrays in Chapter
11 and how to deal with reading and writing files in Chapter 12. Chapter 13 takes
you on a journey through time by showing how you can use dates and times
within PowerShell. The great thing about Windows PowerShell is that it
makes even these relatively complex operations a breeze.

Part IU: Controlling Where and
How Vou Operate PowerShell

Many of the features I cover in this part are, unfortunately, quite lacking in
Windows PowerShell 1.0. After months of crying and whining (who said
whining doesn’t work?) from the Windows PowerShell community, the
super-smart Windows PowerShell developers at Microsoft responded
with some enhancements that really make Windows PowerShell 2 shine.

In this part, I go into the more advanced features of Windows PowerShell,
including many new cool features introduced in Windows PowerShell 2. You
create your own commands using Advanced Functions in Chapter 14 and
obtain the ability to run scripts remotely in Chapter 15. I also show you how
to make your scripts work with in an international setting in Chapter 16 and
track down those ever-elusive bugs in Chapter 17. The enhanced capabilities
for debugging your scripts in Windows PowerShell 2 are some of the best
improvements in this new version of PowerShell.

5

6

Windows PowerShell 2 For Dummies

Part U: Real-World Windows
Administration Using PowerShell

I know that the main reason you’re reading this book is to upgrade your skills
and become more efficient in your job. This part is dedicated to showing the
real power of Windows PowerShell through practical real-world examples.
You get to see for yourself how you can tie everything that you've accom-
plished in the preceding four parts into some truly useful scripts that’ll have
your co-workers looking at you with pure awe and admiration.

In this part, you get to see some scripts to monitor your system in Chapter 18,
meddle around in the Windows registry in Chapter 19, interact with Active
Directory in Chapter 20, and monitor system status and manage security in
Chapter 21. If you're an old-time script writer who’s using Windows Shell
Scripti-ng or Windows Scripting Host, you get a glimpse of how those scripts
can be converted to Windows PowerShell in Chapter 22. Although this chap-
ter is aimed mostly at IT pros, there’s plenty of information in it for you, even
if all you manage is your own PC.

Part Ul: Configuring and
Reporting Via PowerShell

In this part, I show you more real-world scenarios in which Windows
PowerShell can make your job easier. You find out how to control your net-
work configuration, such as TCP/IP and firewall settings in Chapter 23, and
how to manage your hardware with nothing but Windows PowerShell in
Chapter 24. You also find out how you can make your boss happier and your
life easier by using the built-in features of Windows PowerShell to generate
reports right from your script’s output in Chapter 25.

Part Vll: The Part of Tens

What would a good For Dummies book be without a good Part of Tens? After
all, it takes weeks of perspiration to weed through mountains of information
to bring you these lists of things you absolutely need to know. Find out in
Chapter 26 what the top ten Cmdlets are; in Chapter 27, you see the top ten
mistakes to avoid. It’s okay — [know you’re going to flip to the end of this
book to take a sneak peek, so go ahead.

Introduction

Icons Used in This Book

\\3

Tips highlight a point that can save you a lot of time and effort. Make sure that
your eyeballs light up whenever you see one of these icons.

Warnings point out things you need to know to prevent something bad from
happening. Imagine nuclear meltdown — or worse, such as running out of
ketchup.

This icon marks the stuff you can skip because it goes into some pretty techni-
cal details. Although this material isn’t critical to your understanding of how
to use Windows PowerShell, some stuff in these sections will make you sound
downright intelligent!

Remember to remember anything that has the Remember icon. Remember that!

What's on the Web Site

As much as [know how much you love typing lines and lines of code, I provide
the code for all the code listings in this book right on the book’s Web site
(www . dummies . com/go/powershell2£d) for you to download and use. This
site will save you time and also give you something to compare your code with
if, for some reason, you type the code manually and it doesn’t work correctly.

Again, this book is written to Windows PowerShell 2 CTP3. If there are any
changes to Windows PowerShell 2 in releases after CTP3, I will put that up as
errata on the Windows PowerShell 2 For Dummies Web site (www . dummies .
com/go/powershell2fd), so if something in this book doesn’t work quite
right, check the Web site for any tips or code updates.

Where to Go from Here

Go forth and multiply! Wait — wrong audience. Now that the easy part is done,
and I've got you salivating over Windows PowerShell, it’s time to get you to do
some work . . . err, have some fun! Sit down in front of a computer, get a can of
your favorite energy drink, and get ready for hours of eye-opening goodness.
Welcome to the world of Windows PowerShell. You'll wonder how you ever
survived without it!

/

8 Windows PowerShell 2 For Dummies

Part|
Getting a Bird's-
Eye View of
PowerShell 2

The 5th Wave By Rich Tennant
CRIGHTENNANT ?
/*'@

Well, heck — that’s just
darn impressive! And
you say it’s programmed
to sew up and dress
the incision atterward

as well? J

In this part . . .

t’s hard to really understand something without put-
ting it in context. These first three chapters paint the
scene for the rest of the book and give you a taste of what
Windows PowerShell 2 is like. I like to think of this part as
a quick tour of Windows PowerShell, past and present, so
that you not only understand why Windows PowerShell is

the way it is but also to demonstrate some of the things
you can accomplish with it that | hope will create a thirst
for more.

Chapter 1 helps you get your arms around Windows
PowerShell by giving you an understanding of how it got
where it is today. [show you how to customize the environ-
ment to best fit your style and some different time-saving
techniques that help get you going faster in Chapter 2.
Finally, Chapter 3 gives you your first taste of this amazing
shell.

Chapter 1

The Windows PowerShell
Rap Sheet

In This Chapter

Following the birth and evolution of Windows PowerShell
Installing Windows PowerShell 2

Interacting with the Windows PowerShell command shell
Using the Integrated Scripting Environment (ISE)

‘'m a really lazy person by nature. I'm not lazy in the sense that I like to sit

down and do nothing all day long, but rather [hate doing things over and
over again. Whenever I find myself doing something very mundane, the first
thing that pops into mind is “there has to be a way to automate this!” Computers
are great work horses. They can run day in and day out and never complain.
Logically, it makes sense to make your computer work for you rather than the
other way around, so in my infinite laziness I'm constantly cooking up ways
to make my computer work harder so I can have time to do more important
things . . . like write this book for you.

Whether you're completely new to scripting or have done some level of auto-
mation in the past using other scripting languages, you'll really love Windows
PowerShell. It gives Windows users a true shell that provides the same power
over the Windows system that only people in the Unix/Linux community enjoyed
previously. Microsoft has spent years and years trying to make Windows easier
to use, and in the process of doing so have made some things quite frustrating
for power users. (Remember when Microsoft was trying to force you to use wiz-
ards only?) Windows PowerShell is, in my mind, Microsoft’s way of acknowledg-
ing that a significant number of users know what they want and don’t want to sit
around all day long clicking through dialog boxes to get their jobs done.

’ 2 Part I: Getting a Bird's-Eye View of PowerShell 2

Addressing the Need for a Powerful,
Windows-Focused Scripting Language

You've always had the standard Windows Shell, also known as the command
shell or the DOS prompt (for those who can’t let go of the past), to interact
with Windows at the command line. You can automate various aspects of
Windows from the command shell using built-in commands, other command
line applications, and even string them together into Windows Shell scripts
(or batch files for those still clamoring for the good old DOS days). If you want
a bit more power and control, you can use Windows Scripting Host (WSH)
and then use VBScript or JScript to automate your tasks. So the obvious
question is “why add Windows PowerShell to this mix?” After all, can’t you
accomplish everything you need to do using these existing methods?

Sure, a good portion of everything you need to do in Windows can be accom-
plished by writing a Windows Shell or WSH script. I've been doing it for years
with no problems, and when I first heard of Windows PowerShell being devel-
oped several years ago (when it was still under the codename Monad) I had
mixed feelings. On one hand, it promised a whole new way of doing things,
which was exciting, but on the other hand it just became one more thing |
needed to learn. As Windows PowerShell came into maturity, I clearly saw
that it really did live up to its promises, and [found myself jumping on the
Windows PowerShell bandwagon.

Watching Monad morph into PowerShell

Windows PowerShell was architected by Jeffrey P. Snover back in August 2002,
under the codename Monad. According to the original Monad Manifesto, it was
designed as the next-generation platform for administrative automation. It was
based loosely on the tried and proven approach for administrative automation
in Unix.

In traditional command shells, you achieve a desired action by manipulating
generally unstructured text output of a previous command to generate the
desired output or effect using another command. In a regular Windows
Command Shell, for example, you can use the following command sequence
to find out if pinging www .whitehouse.gov returns any replies.

ping www.whitehouse.gov | find "Reply"

In the example, you pass the output of the ping command against www .
whitehouse.gov into the find command because you want to filter the

Chapter 1: The Windows PowerShell Rap Sheet ’3

output so only the lines containing the word Reply get displayed. Monad tack-
led the limitations of this traditional method by devising a new approach for
building commands by leveraging the .NET framework and its object model.
Monad does this by defining an automation model where commands called
Cmdlets (read as command-lets) can pass data to each other as structured
objects rather than a loose collection of text.

My intent isn’t to give you a history lesson on Windows PowerShell but
rather to help you understand why it looks and acts the way it does. As you
use Windows PowerShell, you might notice, for example, that the command
syntax has a Unix feel to it. This isn’t by coincidence but rather due to the
language being modeled from powerful Unix shells with the added .NET twist.
Don’t be intimated, however — PowerShell is one of the easiest scripting lan-
guages to use and is very intuitive.

If you want to read the Monad Manifesto as it originally appeared in 2002, you
can view it on the Windows PowerShell team blog (http://blogs.msdn.
com/powershell/archive/2007/03/19/monad-manifesto-the-
origin-of-windows-powershell.aspx).

A little bit on Windows PowerShell 1.0

Windows PowerShell brings together the best parts of interacting with the
traditional Windows Shell along with the power of writing WSH scripts. It
creates a rich command line-based environment that puts more power into
your hands by letting you run new PowerShell commands called Cmdlets.
These are .NET class-based commands that give you the flexibility of high-
level scripting while allowing you to access very low-level Application
Programming Interfaces (APIs) through .NET wrappers.

Windows PowerShell 1.0 was the first full-production release of Windows
PowerShell, and even though it delivered on many of the key elements
needed to use it, it was adopted slowly for a few reasons:

v It wasn’t built into any of the existing Windows operating systems, so
administrators who wanted to use it had to make a conscious effort to
deploy the PowerShell run-time.

v Administrators who had already mastered existing scripting languages
didn’t feel the need to use a new shell to accomplish the same tasks.

v As a new product, it took a while for enough people to start using it
before the Windows PowerShell community became proficient enough
to be able to demonstrate the more creative ways to use it.

’ 4 Part I: Getting a Bird's-Eye View of PowerShell 2

Eventually Microsoft’s own developers started taking advantage of Windows
PowerShell 1.0, and it was soon adopted in their mainstream products like
Microsoft Exchange 2007 and Systems Center Operations Manager (SCOM,
formerly known as MOM). PowerShell 1.0 was then released with Windows
Server 2008 as an installable, out-of-box feature. You and I should be excited
about this because it really brings Windows PowerShell into the mainstream
and also demonstrates Microsoft’s commitment to bringing Windows
PowerShell into the forefront of its systems management strategies.

Windows PowerShell 2,
the Next Evolution

Despite the slow adoption of Windows PowerShell 1.0, a growing Windows
PowerShell community emerged and put it through its paces. The Windows
PowerShell developers at Microsoft took a lot of this feedback and criticism
to produce what promises to be a much more production-worthy scripting
environment — Windows PowerShell 2.

I'm sure enough time has now elapsed since you first heard about Windows
PowerShell that it has piqued your curiosity (which is probably one of the
reasons why you picked up this book). It’s a great time for you to discover
this scripting language because many of the limitations people faced while
working with Windows PowerShell 1.0 have since been worked out. What
you're all left with is a much more usable command shell that offers a host of
different ways to do things. Your only real limit is your own creativity.

[know you're already asking the obvious: What’s new in Windows PowerShell 2
that makes it so special? Here are some of the major changes and enhancements
made to Windows PowerShell:

v PowerShell remoting: Gives you the ability to execute Cmdlets and
scripts remotely. See Chapter 15.

+ Background jobs: As the name implies, this improvement allows you to
run commands in the background while you continue to work on other
things. See Chapter 15.

v Advanced functions: Cmdlets used to be written only in C# and VB.NET.
Now you can write your command pseudo-Cmdlets using Windows
PowerShell itself. See Chapter 14.

v~ Data language: Gives you the ability to separate your code from the
data, making it more portable and easier to share.

v Script internationalization: Helps scripts that have to accommodate
multiple languages easier to implement. See Chapter 16.

Chapter 1: The Windows PowerShell Rap Sheet ’5

v Script debugging: Finally, real debugging. You can set breakpoints in
your scripts so you can halt execution to find out what’s going on at a
particular point in the script. See Chapter 17.

+* Some new operators and automatic variables: Some new operators
to make it easier to split and join strings and automatic variables for
accessing user interface language information. See Chapter 5.

v Additional new Cmdlets: Mostly to support the preceding features.

v Constrained runspaces: Gives you the ability to constrain what
commands and scripts Windows PowerShell can run within a given
runspace.

+* Runspace pools: You can think of these as ways to manage command
execution by pooling together runspaces.

v Integrated Scripting Environment (ISE): A graphical version of the
command shell that adds some cool new features such as multi-tabbed
panes for working with multiple scripts at the same time. See Chapter 2.

v Out-GridView: You can output the results of your commands in an inter-
active table where you can then sort, search, and group the results. See
Chapter 25.

v New PowerShell APIs: If you're a programmer, you can get to the new
features provided in PowerShell directly using these APIs.

+* Some minor enhancements to existing commands and shell behavior:
Some additional parameters to existing commands have been added to
increase functionality.

Even if you haven’t used Windows PowerShell in the past, you can tell just
by this list of new features that there are some significant enhancements to
Windows PowerShell that go beyond the surface. I think Windows PowerShell 2
is a more complete product that still makes it easy for new users like you to
master it while leaving plenty of room for you to grow.

What'’s really amazing is that while I'd classify many of the changes in Windows
PowerShell 2 under an advanced feature category, discovering how to use
them is a quick and easy thing even for a beginner. Before you know it, and
with the help of this really cool book you're reading, you too will be taking
advantage of these new features.

Installing Windows PowerShell 2

Words are just words. [know your heart is pumping already and you’re
about to scream at the top of your lungs “I want to use Windows PowerShell
already, stop talking and tell me how!” Because Windows PowerShell 2

’ 6 Part I: Getting a Bird's-Eye View of PowerShell 2

N\

doesn’t ship with any of the Windows operating systems except Windows 7,
you’ll generally need to install it first. Luckily, this task is relatively pain-free,
so stick with me for a few seconds.

Windows PowerShell 2 is a replacement for Windows PowerShell 1.0. They
can’t co-exist on the same system, so if you already have Windows PowerShell
1.0 installed, make sure you uninstall it first. Note: To uninstall Windows
PowerShell 1.0, you might have to select the Show Updates option in the Add/
Remove Programs control panel applet for it to be visible.

Windows PowerShell 2 can be installed on both the x86 and x64 platforms of
Windows XP with SP3, Windows Server 2003 with SP2, Windows Vista with
SP1, Windows Server 2008, and Windows 7.

You install Windows PowerShell 2 using these four simple steps:

1. Download and install Microsoft .NET Framework 2.0
2. Download and install Microsoft .NET Framework 3.5.1.

Required for Windows PowerShell Integrated Scripting Environment
(ISE) and Out-GridView.

3. Download and install WinRM 2.0 CTP3.

This is required if you want to take advantage of the remoting and back-
ground jobs features.

4. Download and install Windows PowerShell 2.

I'm not going to give you step-by-step instructions here because it’s a
straightforward “next, next, next” installation.

Firing up the Windows PowerShell
Command Shell

\\J

Congratulations! Now that you’ve got Windows PowerShell 2 installed, you
can finally have some fun.

First, going forward, you might see me referring to Windows PowerShell 2
simply as PSH. Not only will this save me from carpal tunnel syndrome, but
Windows PowerShell is often referred to as PSH within Windows PowerShell
community, so don’t be surprised if you see that abbreviation. (It’s also some-
times just called PS.)

Chapter 1: The Windows PowerShell Rap Sheet ’ 7

Fire up the PSH command shell by choosing Start=>All Programs=>Windows
PowerShell V22>Windows PowerShell V2.

A\

If you're running Windows Vista, you may need to right-click the shortcut and
choose the option to run as Administrator (running elevated) even if you have
administrative rights on the system if you get access denied errors.

Windows PowerShell 2 launches and the command shell opens, as shown in
Figure 1-1. It looks a lot like your old Windows command shell, except that
by default the background is blue and the prompt is prefixed by PS. You

can run some familiar DOS commands (such as DIR and CD), and they’ll still
work, but the output might look a bit different. Also, running some existing
command line applications like XCOPY . EXE works too! I get into how this all
works in future chapters, but the ability to run non-PowerShell commands is
one of the greatest things about PSH — you can start using PSH today as a
replacement command shell and run your old commands while getting famil-
iar with the new PSH way.

PSH runs your regular command line applications as normal, but the built-in
commands such as CD and DIR are actually aliases to new PSH Cmdlets. This
is why the output of DIR looks a bit different. Also notice that you can’t use
the old switches (such as DIR /W) with DIR. The reason is because the under-
lying Cmdlet that DIR is mapped to uses different parameters. I talk more
about aliases in Chapter 2.

k3 Windows PowerSheli V2 =T
PS C:\Windows\Systen32>

|
Figure 1-1:
The
Windows
PowerShell
command
shell.
|

’ 8 Part I: Getting a Bird's-Eye View of PowerShell 2

Going GUI: The Windows PowerShell
Inteqmted Shell Environment (ISE)

The Windows PowerShell Integrated Shell Environment (ISE) is a bit of a
mouthful, but it’s really just a more graphically rich interface (see Figure 1-2)
for interacting with PSH. You launch it the same way as the regular PSH com-
mand shell (see the preceding section), but you select Windows PowerShell
ISE instead; select Start=>All Programs=>Windows PowerShell v2>Windows

PowerShell ISE.
Script pane/Editor pane
PowerShell Integ Scripting Envi (ISE) [ES=Es
File Edit View Debug Help
~ [Untitledt ps1 %
Q0 =
A
|
Figure 1-2:)
Txhe 0\) PS C\Windows> =
Windows by
PowerShell g
ISE. T
Completed Ln1 Col1 12
|

Output pane Command pane

Chapter 1: The Windows PowerShell Rap Sheet ’ 9

Here’s what you get with this handsome interface:

v Script/Editor pane: This is where you can view and edit your PSH scripts.

v Qutput pane: This is where the output of all your command or script is
displayed.

v Command pane: You can enter commands in this pane just as you
would in a regular PSH command shell.

You can also create PSH scripts by choosing File>New to display the editor
pane above the output pane. If you're working on multiple scripts, a tabbed
interface is displayed so you can easily switch back and forth between the
different script windows, as shown in Figure 1-3.

-4 Windows P Integrated Scripting Envi {ISE) EIEEs
File Edit View Debug Help
Uniitied1 ps1* % | Untitled2.psi |
| 3 m
00 ‘
i write-Host "Script number 17| Al
o
i
i
11, ZZ’ZOUE 8;52 v 0 setuber’r:'\cﬂ
1/15/2009 4:39 PM 32768 SPInstall.etl
A 9/18/2006 5:46 PM 219 system.ini
1/15/2009 4:13 PM 1313 TSSysprep.log
11/2/2006 8:35 AM 94784 twain.dll
11/2/2006 8:35 AM 50688 twain_32.d11
_ 11 Zf'ZCIEIE 8:35 AM 49680 twunk_16. exe
11/2/2006 8133 AM 31232 twunk_32.exe
- 11/2/2006 9:03 AaM 144 win.ini
- 3/12/2009 2:39 AM 1216110 WindowsUpdate. log
Flgure 1 3 ijisf'zcme 5:43 PV 256192 winhelp.exe
Th 11/2/2006 5:45 AM 9216 winhl1p32. exe
e 11/2/2006 8:36 AM 316640 WMSysPr9.prx
. 9/18/2006 5:43 PM 707 _default.pif =
Windows
PowerShell
ISE window o o
with the TZ] QQ Fscwindows> ES
tabbed 2
script editor | |
interface. . e
Completed Ln1 Col 29 12
|

20 Part I: Getting a Bird's-Eye View of PowerShell 2

N\

You'll also notice that when you have a script open, you can run it simply by
clicking the Run button (the right-pointing triangle, similar to the Play button
on a CD player) on the toolbar. The toolbar has all the standard text-editing
features as well as syntax highlighting, which makes editing your scripts a
bit easier on the eyes. The best part is that the debugger is easily accessible
from the Debug menu. (I cover debugging concepts in-depth in Chapter 17.)
The ISE is an excellent tool for writing, running, and debugging your scripts
in one easy-to-use environment. Think of it as a miniature Visual Studio for
Windows PowerShell. I talk more about the ISE in the next chapter.

Although the ISE script pane is primarily designed for writing and editing
scripts, it’s a pure text editor, so you can use it to open or create plain text
files and XML files.

Chapter 2

Customizing and Shortcutting
the Environment

In This Chapter
Adding your own personal touch to the PSH Command Shell

Making changes to your PowerShell Profile

Customizing the Windows PowerShell Integrated Scripting Environment
Working with Aliases

Understanding the Tab key

like to watch people while they work in front of their computers. I find it

fascinating. Call me weird (it’s okay; plenty of people do), but it’s interest-
ing to see the different ways people choose to interact with their computers.
For instance, [used to work with a Windows administrator who rarely used
the keyboard shortcuts Ctrl+C and Ctrl+V to copy and paste items. He always
used the right-click-then-copy-and-paste method because he felt he was more
in control. (Yes, | make the same face you’re making now.) I also used to work
with someone who tried to do everything using the keyboard whenever pos-
sible and stayed away from the mouse as if it were the plague. I know others
who are very finicky about what toolbars they use and some on the extreme
end who even organize icons alphabetically. Whatever methods you use are
a-okay — after all, it’s always best to organize your work whichever way
makes you the most efficient.

I thought that before getting started working with Windows PowerShell, you
might find it useful to know different ways to customize the environment to
best fit your style. After all, the more comfortable you are with the interface,
the more intuitive and pleasant your experience will be. Also, following the
whole “I'm a lazy guy” theme, I show you different time-saving techniques that
help get you going faster. Does this sound interesting to you? Then read on!

22 Part I: Getting a Bird's-Eye View of PowerShell 2

Personalizing the Look and Feel
of the Command Shell

If you're anything like me, you eventually find yourself with multiple com-
mand line windows open simultaneously because you, just like your com-
puter, like to multitask. One of the problems with having multiple command
shells open at the same time is figuring out which window does what. After
all, they all look the same, right? Well, not necessarily. You can use a few
handy tricks to make different windows more distinguishable:

v Change the background and foreground colors.

1 Change the window size.

v+ Change the window title.

The following sections tell you how.

Adding color to your world

You can easily change the background and foreground colors to suit your
preference. For example, you can change the background color to magenta
and the foreground color (the color the text is displayed in) to blue by typing
these commands at the PSH prompt.

SHost .UI.RawUI.BackgroundColor="magenta"
SHost .UI.RawUI.ForegroundColor="blue"

$Host is a special variable that is a reference to the current console object.
You assign the appropriate color to the UI .RawUI.BackgroundColor and
UI.RawUI.ForegroundColor properties of the console object.

Getting size-specific with your windows

The $Host .UI.RawUI object is actually pretty useful. You can query or
manipulate additional properties through this object to affect the console’s
appearance besides the foreground and background colors. You can change
the window size, the buffer size, and even change the window’s title. (The fol-
lowing section covers how to change the title.)

The buffer size is the width and height of the window retained in memory
where as the window size is the portion of the buffer that’s visible. Because
of this, the only real constraint is that your window size must be smaller than

Chapter 2: Customizing and Shortcutting the Environment

\\3

SMBER

your buffer size. (PSH won’t let you screw this up even if you try.) The buffer
height is important because it controls essentially how far back you can scroll
in your window as you run more and more commands. The default buffer
height is 3,000, which means the buffer keeps up to 3,000 lines of output before
it starts to discard older entries.

You change the window or buffer size by changing the value of either the
BufferSize or WindowSize property of $Host .UI.RawUI. If you want to
find out the current value, run the following PSH commands:

SHost .UI.RawUI.BufferSize
SHost .UI.RawUI.WindowSize

The output of either command is the width and height displayed in a tabular
format. Now, you might be tempted to try something like this to change the
window size:

SHost .UI.RawUI.WindowSize.Width = 110
SHost .UI.RawUI.WindowSize.Height = 40

Although PSH doesn’t complain, the window size doesn’t change, and if you
query the value of WindowSi ze again, you’ll find that the old values are still
there. The correct way to change WindowSize is by assigning a new value to
this property directly. Because WindowSize is an object, you need to some-
how create an object of that type, set its width and height properties, then
assign this new value to WindowSize. You can change the window size by
using the following command sequence:

Ssize = S$Host.UI.RawUI.WindowSize
Ssize.wWidth = 100
Ssize.Height = 25
SHost .UI.RawUI.WindowSize = S$size

Here I store the value of WindowSize in a variable called $size.ldon’t
really care so much about what the current value is, but [need to have an
object that’s the same data type as WindowSize so I can make the change.
Now that I have such an object, I assign my new width and height values to
it and then reassign this entire object back to WindowsSize. If you want to
change the buffer size, simply replace WindowSize with BuffersSize.

I talk more about data types and objects in Chapter 5, so if you're eager to find
out more about what these things are right now, you can mark this page and
jump over to it if you want.

Window and buffer width and height dimensions aren’t measured in pixels —
rather, width is measured by the number of characters that fit on one row,
and height refers to the number of rows it can accommodate.

23

24 Part I: Getting a Bird's-Eye View of PowerShell 2

A window by any other name . . .

Probably one of the easiest and most useful properties to modify is the
WindowTitle property. You can change the title to something interesting
like “Windows PowerShell Rules!” (see Figure 2-1) by running this line:

SHost .UI.RawUI.WindowTitle="Windows PowerShell Rules!"

Now you can easily distinguish one PSH window from another by quickly
reading the window’s title.

|
Figure 2-1:
Windows
PowerShell
with a
renamed
window
title.
|

Changing Vour PowerShell Profile

I'm sure you had fun playing with colors and resizing your PSH window in
the previous sections, but as you probably observed, the changes aren’t
preserved when you close the window. Sure, you can enter these commands
each and every time you open a new PSH window, but that can get a bit
tedious. What if you want these settings to be applied by default every time
you open a PSH shell? No worries. Whenever you open Windows PowerShell,
one of PSH’s regular startup chores is to run your profile script (if it exists).
Your profile script is a special script that runs every time you open a new PSH
command shell. If it doesn’t exist (which it doesn’t, by default), PSH skips it
and moves on.

Chapter 2: Customizing and Shortcutting the Environment

A\\S

MBER
@&
&

You can find out where your profile is by running this command at the PSH
prompt:

Sprofile

Yep, that’s it! By default, the profile location should point to a file called
Microsoft.PowerShell profile.psl in afolder called WindowsPower
Shell in your My Documents folder. For example, on my workstation, it
returns C: \Documents and Settings\steguis.MONKEY\Documents\
WindowsPowerShell\Microsoft.PowerShell_profile.psl.

The Windows PowerShell Integrated Scripting Environment (ISE) has its own
profile script, which is in the same location (by default) as the regular profile
script, except it’s called Microsoft.PowerShellISE_profile.psl.

If you happen to have an existing profile, open it up in Notepad; otherwise,
create a blank text file using Notepad in the location pointed to by $pro-
file. This profile is really just a PSH script that gets executed whenever a
shell is launched.

Before you can create the profile file, you might have to create the
WindowsPowerShell folder in your My Documents folder if it doesn’t
already exist.

You can stick any PSH code you want executed every time a shell is opened
in your profile. Because you want to customize your interface, you can enter
something like this:

SShell = $SHost.UI.RawUI

SShell .WindowTitle="PowerShell Obeys Me"
$Shell.BackgroundColor="White"
SShell.ForegroundColor="Blue"
Ssize = S$Shell.WindowSize
Ssize.width=120
Ssize.height=55

SShell .WindowSize = S$size
Ssize = $Shell.BufferSize
Ssize.width=120
Ssize.height=5000
SShell.BufferSize = S$Ssize
Clear-Host

Save this file and then open a new PowerShell window. Unless Windows Power
Shell was installed and preconfigured for you by someone else, chances are
good that all you get is an error that looks something like Figure 2-2.

What’s this all about? Believe it or not, this error is Microsoft’s way of looking
out for you. Remember all those viruses that started spreading like wildfire when
Microsoft started shipping Windows Scripting Host (WSH) with Windows

25

26 Part I: Getting a Bird's-Eye View of PowerShell 2

|
Figure 2-2:
Error
loading the
Windows
PowerShell
profile
script.
|

2000? That was because by having WSH installed, you automatically had the abil-
ity to run any WSH script, and a lot of malicious people out there took advantage
of this behavior to get unsuspecting users to run their code. Well, the folks over
in Redmond got a bit smarter this time around and have taken a bit of a more
conservative approach. By default, Windows PowerShell won'’t let you run any
script (not even your profile) unless it has been signed using a trusted certificate
issued either by a Certificate Authority or a self-generated certificate using the
Microsoft .NET Framework Software Development Kit (SDK).

This is really for your protection. Imagine if Windows PowerShell automati-
cally executes a profile script without checking with you first. All a virus or
worm writer needs to do is create or replace your PSH profile script, and the
next time you open PSH, the malignant profile script will automatically do its
nasty deeds.

I'm not going to discuss the creation of certificates or even how to sign scripts
right now because I get to that in greater detail in Chapter 22. However, | strongly
recommend that if you do decide to use PowerShell heavily in your environment
that you take advantage of this security feature. For now, if you want to see how
the profile works, you can change the default behavior of PSH and tell it to allow
any script that’s local to the system but still require any scripts run from other
locations (such as network drives) to require a signature. You change this
behavior by running this command:

Set-ExecutionPolicy RemoteSigned

&3 Windows PowerShell V2 -(0l]

PS C:\Users\steguis MONKEY> _

Chapter 2: Customizing and Shortcutting the Environment

\\3

By default, the execution policy is Restricted, which means no scripts can be
run and only interactive commands are allowed. When you change the execu-
tion policy to RemoteSigned, it eases up this restriction for locally stored
scripts. Close your PSH window and open up a brand-new shell and watch
how the title, color, and size all change before your very eyes.

Notice the Clear-Host command I added at the end of the profile script. All
I'm doing is clearing the screen. This command is also useful if you have a lot
of things on the screen and want to quickly clear it so you have a blank slate.
You can also simply run c1s to perform this task just as you could do in the
traditional Windows shell.

Making the Windows PowerShell
ISE Work for You

a\\J

The Windows PowerShell ISE makes it really easy to work with Windows
PowerShell. You launch the PowerShell ISE by choosing Start=All
Programs=>Windows PowerShell V2coWindows PowerShell V2. Because it’s
designed around very common Windows concepts, it doesn’t take long to
figure out how to use it. However, some improvements might not be directly
obvious. For instance, getting help has never been easier. Just highlight the
Cmdlet you want more help for, press F1, and the handy Windows help file
showing the Cmdlet’s syntax and all other kinds of useful information is
displayed.

If you have the name of a Cmdlet in one of the panes and that pane is active
(for example, the script pane or the command pane), pressing F1 automati-
cally brings up the help for that Cmdlet without you selecting the Cmdlet
name first.

In the command pane, if you want to enter multiple commands before running
them in Windows PowerShell, you can press Ctrl+Enter to go to the next line
without running the command in that pane. When you’re ready, you can run
the command sequence by pressing the green Run button or by pressing Enter.

If you want to run only part of a script or maybe even a single command
within a script, you can do so by highlighting the section you want to run
and then pressing the Run button. Only the portion of the script that’s high-
lighted runs, rather than the entire script.

27

28 Part I: Getting a Bird's-Eye View of PowerShell 2

Customizing the ISE

Just as the Windows PowerShell console has a $host variable that you can
use to access the console object, the ISE has a $psISE variable that lets
you access the ISE host. Because you can access and even control the ISE
through the $SpsISE variable, you can customize the color scheme of your
ISE through the $psISE variable’s options property.

Here’s what I get when I check to see what the $psISE.options object
contains:

PS C:\Windows>$psISE.options
TokenColors : {[Attribute, #FFADD8E6], [Command, #FF0000FF],
[CommandArgument, #FF8A2BE2], [CommandParameter, #
FF000080] ...}

DefaultOptions : System.Management.Automation.Host.DefaultOptions
FontSize : 12

FontName : Lucida Console

OutputPaneBackground : #FFFOF8FF

OutputPaneTextBackground : #FFFOF8FF

OutputPaneForeground : #FF000000

CommandPaneBackground : #FFFFFFFO

ScriptPaneBackground : #FFFFFFFF

ShowWarningForDuplicateFiles : True
ShowWarningBeforeSavingOnRun : True

LocalHelp : True
CommandPaneUp : False
ScriptPaneRight : False

You can change any one of those values to your liking. For instance,
you change the output pane background to black by setting the
OutputPaneBackground property to black:

SpsISE.options.OutputPaneBackground="black"

As in the Windows PowerShell console, you can put any of these changes into
your ISE profile script so that when you launch it, it has all the customiza-
tions you want.

Adding your own functions
to the ISE menu

By far, one of the best features within the ISE is the ability add your own
menu items. This feature allows you to add whatever kind of automation you
want and make it available as both a menu item and a keyboard shortcut.

To do this, you write your own function then access the $psISe variables’s
CustomMenu . Submenus collection using the Add method. Here’s a very

Chapter 2: Customizing and Shortcutting the Environment 29

simple bit of code you can stick in your ISE profile script to demonstrate this
functionality:

function My-Custom-Function
{
Write-Host "Running my custom function!"

}

SpsISE.CustomMenu.Submenus.Add ("Run Custom Function", {My-Custom-
Function}, "Shift+Ctrl+f")

This code defines a simple function called My-Custom-Function, which
displays the text “Running my custom function!” in the output pane. The
$SpsISE.CustomMenu. SubMenus .Add method takes three parameters.

The first parameter is the name you see in the menu. The second parameter
defines what to run, which in this case is the My-Custom-Function func-
tion. The last parameter is the keyboard shortcut you want to assign to it.
Here, I assign Shift+Ctrl+F. When I press Shift, Ctrl, and F together on the key-
board, this key sequence causes the function to run as well. You can see how
the ISE adds a Custom menu and then adds the submenu item you created
using the Add method in Figure 2-3.

s
If you don’t want to assign a keyboard shortcut to a menu item, you can just
give the value $Snull in its place.
The Custom menu
<% Windows PowerShell Inte|jrated Scripting Environment (I1SE) ===
File Edit View Debug |Custom | Help
Untitiedi.ps?* X |1 Run Custom Functicn Ciri+Shift+F
00 2
§ function My-Custom-Function S|
2 {
= 3 N Write-Host “Running my custom function!”
1,
- : $psISE.CustomMenu. Submenus. Add("Run Custom Function”, {My-Custom-Function},"Shift=Ctri=f")
PS C:\Windows> My-Custom-Function
Running my custom function!
A
|
Figure 2-3: :
The Custom OJ PS C:\Windows> ES
menu of the 2
PowerShell |
ISE. Completed Ln1 Col28 | 70 12
|

30

Part I: Getting a Bird's-Eye View of PowerShell 2

Creating Aliases

As you work more in PSH, you’ll notice that you use some commands more
than others and, because all Windows PowerShell commands are in the verb-
noun format (for example, Set-ExecutionPolicy), the length of these
commands can get very tedious and error prone. This is where aliases come
in handy. An alias acts as a second name to whatever command you desig-
nate to it. Remember, in the traditional Windows Shell you normally write

a batch file to have this kind of behavior. In Windows PowerShell, the alias
feature is built in.

For some reason, I find myself using Notepad and the Windows calculator a
lot. If 'm in PSH, one of the easiest ways for me to start either of these pro-
grams is by typing notepad or calc in the command line and pressing Enter.
Because I'm lazy and like to save myself time whenever possible, rather than
typing notepad or calc I just want to type np for notepad or cl for calc. You
can easily do this by running

New-Item alias:cl -value c:\windows\system32\calc.exe
New-Item alias:np -value c:\windows\system32\notepad.exe

This method also works for PSH commands such as Set-Execution. If you
want to run Set-Execution by typing se, you run

New-Item alias:se -value Set-Execution

You need to specify the full path only if you’re pointing to an external com-
mand such as an application. If you change your mind and want the alias
se to refer to something completely different, you don’t need to delete and
recreate it. All you have to do is redefine it using the Set-Item command.
Here’s how you change the se alias to run a new, made-up command called
Show-Monkeys:

Set-Item alias:se -value Show-Monkeys

You can also define various scope options when creating a new alias. A scope
is just a definition for where an item can be accessed. The scope options are:

v None: A regular alias that you can use and delete at will. None is the
default option.

V¥ Constant: Constant aliases can’t be deleted, nor have their values
changed during the session.

¥ ReadOnly: ReadOnly aliases are like Constant aliases but can be
deleted and have its value changed, provided you specify the Force
parameter when it’s changed or deleted.

Chapter 2: Customizing and Shortcutting the Environment 3 ’

V¥ Private: Private scoped aliases can be seen only with the
current scope.

v AllScope: AllScope is visible across all new scopes that are created.

You can combine options as well. For example, if you want to make the
np alias ReadOnly while the c1 alias is Constant with its scope set to
AllScope, you can run this:

New-Item alias:cl -value C:\windows\system32\calc.exe -options
"AllScope,Constant"
° New-Item alias:np -value C:\windows\system32\notepad.exe -options "ReadOnly"
<\
You can also use Set-TItem to set the options for an alias after it has been
created.

One more thing that you might need at some point is the ability to rename
an alias. Suppose you have np defined as the alias for notepad but find that
it sometimes gets confused with other commands. You decide that you now
want the alias to be called note instead. The good news is you don’t have
to delete the alias and redefine it; instead, you can take advantage of the
Rename-TItem command. You can rename the np alias to note using the fol-
lowing command sequence:

Rename-Item alias:np -newname note

<P Another way to create and update aliases is using the New-Alias and Set-
Alias commands. These are more straightforward than using the New-Ttem
command. Using New-Alias, you can create the np alias with this command
sequence:

New-Alias np c:\windows\system32\notepad.exe

SMBER
S

& Any alias you create during your PSH session is valid only for that given

instance of PSH. As soon as you close that window (which in turn closes the
session), all the new aliases you defined no longer exist.

Deleting Aliases

Needless to say, if you can create and update aliases, you also need the abil-
ity to delete aliases. Deleting aliases isn’t difficult at all because the opposite
of New-Item is Remove-Item. If you want to get rid of the se alias you cre-
ated earlier for Set-Execution, you can run this line:

Remove-Item alias:se

32 Part I: Getting a Bird's-Eye View of PowerShell 2

You can also delete multiple aliases at once. For example, if you define a
bunch of aliases such as myaliasl, myalias2, and myalias3 and now want
to get rid of them, you can delete all aliases that start with myalias using
the following command:

Remove-Item alias:myalias*

If the alias you’re removing happens to be defined with the Readonly option,
you have to use the Force parameter to get rid of it (otherwise PSH will spit
out an error that it can’t be deleted), like so:

Remove-Item alias:se -force

Accessing the Alias Drive

I'm sure you know that you can use any letter in the alphabet as a drive letter,
but what’s an alias drive? Drives in PSH have a bit of a different concept. You
still have your usual drive letters that map to physical, logical, or network
drives, but you can also interact with other special drives. Among them is the
alias drive. The alias drive is a logical drive that stores aliases.

Think of the alias drive as a virtual drive that’s used much like a database
for your PSH shell. In this virtual drive, all your aliases are defined as items,
where each item contains a name and definition. The name is the alias name,
and the definition is whatever the alias is meant to represent. PSH has a long
list of predefined aliases, most of which are there to help users like you to
continue using familiar DOS-like commands to do traditional command line
tasks. For example, if you run the DIR command in PSH, PSH gives you a
directory listing, but the output looks a bit different. That’s because DIR is
actually an alias for the Get-ChildItem command, which is really different
from the “old” DIR command but, in the case of listing files and folders, is
functionally equivalent.

Want to find out what other aliases are out there? Easy! Run this:

Set-Location alias:
Get-ChildItem *

At the PSH prompt, the drive shows up as Alias:\ rather than your usual
drive letter. Also notice that there are lots and lots of predefined aliases, and

if you browse through the alias list you’ll notice a lot of familiar DOS and even
Unix/Linux commands in the mix. Notice anything else interesting? Both Set-
Location and Get-ChildItem have aliases, namely CD and DIR respectively.
I know what you're thinking and you’re right: This means that the following
command sequence and the previous command sequence are equivalent:

Chapter 2: Customizing and Shortcutting the Environment

CD alias:
DIR *

How’s that for backward compatibility? With this information in hand, I'm
sure the command you used for creating aliases (see the section “Creating
Aliases,” earlier in this chapter) makes more sense. The New-Item command
is a generic command used for creating a new item in a given namespace, so
when you create your alias you specify the path to the alias drive followed by
a colon and then the alias name followed by the value for this item. That com-
mand creates an alias item in the alias drive.

The fact that alias definitions can be treated as a drive is also the reason why
I chose to use New-Item in my examples for creating a new alias rather than
New-Alias — [want you to see the alias drive concept being used.
CMBER . . o .
Any alias you create during your PSH session is valid only for that given
instance of PSH. As soon as you close that window (which in turn closes the
session), all the new aliases you defined no longer exist.

Creating Persistent Aliases

Although creating aliases for each session is perfectly fine, most of the time
aliases are most effective and useful if they’re permanently available to you.
After all, you spend the time creating an alias to make running Notepad as
easy as typing np, but what’s the point if you have to redefine this alias every
time you open a new PSH window? What you need is a persistent alias — an
alias that is always defined no matter how many times you close and open
that PSH window.

This solution should be obvious to you if you read the “Changing Your
PowerShell Profile” section earlier in this chapter. Yes, that’s it; you can
create persistent aliases by defining aliases in your profile script! Because the
profile gets executed every time you open a new PSH window, it’s a perfect
location to define aliases so they're immediately available to you as soon as
you open that window.

PSH also has two nifty commands that can assist you in making these aliases
somewhat persistent. You can use the Export-Alias command to export
all the alias information to a file and then import it using Import-Alias.
This export-then-import method makes defining aliases in your profile very
easy because you just need to import aliases from a file. It’s also highly useful
when you need to define the same set of aliases on multiple computers. You
can define them on one system, export the alias definition, and then distrib-
ute it to all the other systems (or store it in a central location that can be
read by all hosts).

34 Part I: Getting a Bird's-Eye View of PowerShell 2

You can easily export and import your aliases with the following command
sequence:

Export-Alias c:\myaliases.txt
Import-Alias c:\myaliases.txt

That wasn’t too difficult, was it? Export-Alias has some other useful
options you can specify. By default, Export-Alias creates the output file,
but if the file already exists the command overwrites the contents of that file.
If you want to make sure this doesn’t happen, you can use the noclobber
parameter so the command returns an error if the file already exists:

Export-Alias C:\myaliases.txt -noclobber

You can also append to an existing alias file. This feature is great if you have
aliases defined in different locations and are trying to consolidate them into a
single file. Here’s how:

Export-Alias C:\myaliases.txt -append

Getting to Know Tab Expansion

Tab expansion is one of those great, time-saving features in any command
line-driven interface and is really nothing new. After all, this exists even in
the traditional Windows command prompt. Windows PowerShell just extends
its usefulness. Tab expansion occurs when you enter the partial name of a
command, file, or folder and then press the Tab key to automatically com-
plete it for you. As always, you can use Tab expansion to expand a path that
you’'ve started to enter at the prompt. If you are at the root of the C: drive
and want to get to Windows\System32, an easy way to do this would be the
following (assuming you are currently at the root of C:):

1. Type CD WIN then press the Tab key.

Unless you have any other folder that starts with Win, the text should
automatically expand to Windows.

2. Immediately after WINDOWS, type \SYS and press Tab again.

This will automatically expand to the first folder in C: \Windows that
starts with SYS. On a typical Windows installation, this will expand to
C:\Windows\System.

3. C:\Windows\System isn’t what you want, so keep pressing Tab until
it says C: \Windows\System32.

4. Now you can press Enter to execute the command and change to that
directory.

Chapter 2: Customizing and Shortcutting the Environment

\\J

Although Tab expansion of file and folder paths is useful, Windows
PowerShell now includes the ability to expand commands as well. Not only
does expanding commands save time, but it also helps if you remember only
the first part of a command and want an easy way to find what commands are
available.

Suppose you want to export aliases and somehow forgot that the command is
Export-Alias. You can open up a command shell, type in Export-, and then
press the Tab key. Each press of the Tab key shows the next command that
starts with the pattern you provided.

You can even use Tab expansion to display available properties or functions
of a given object. Remember that code to store the current window size,
which I explain earlier in the chapter? Here it is again:

Ssize = $Host.UI.RawUI.WindowSize

If you run this command in PSH, you have the current WindowSize object
stored in $size. Now, if you want to change the width property of that
object, you would normally type

Ssize.Width = 100

With Tab expansion, you can save your delicate fingertips by skipping a few
keystrokes. Rather than type $size.Width, you can just type $size.w, press
the Tab key, and voila, PSH automatically types $size.Width for you! See the
Tab, embrace the Tab, love the Tab .. . it’s simply Tabulicious!

If you're absolutely in love with Tab expansion and want more than what'’s
offered out of the box, then you'’re in luck. Marc von Orouw (MVP Windows
Admin Frameworks), otherwise known as the PowerShell guy, created Power
Tab, which is an expansion of the Tab expansion feature. (Wow, that was a
mouthful.) Think of it as Tab expansion on steroids. You can download it from
his blog at http://thepowershellguy.com/blogs/posh/pages/
powertab.aspx.

35

36 Part I: Getting a Bird's-Eye View of PowerShell 2

Chapter 3
A Pinch of Shell, a Pound of Power

In This Chapter
Getting your feet wet with Windows PowerShell
Writing your first script

Previewing a complex script that’s as easy as pie

rlroughout my career, 've found that many Windows administrators shy
away from command line interfaces or any kind of scripting. Some reasons
for this that have been mentioned to me are “it can be tedious,” “there’s a
lot you need to remember,” and “it’s easier to make mistakes in a command
line.” I have to admit that these points have some validity, though this topic
is highly debatable. I'm a bit of a 50/50 person myself, switching between

command line and GUI tools, depending on the need.

I'm a firm believer that there’s always more than one way to do things, and

I always like to pick the best tool to get the job done. Some tasks are more
efficient if you use a command shell, whereas others are far more convenient
and less error-prone when you’re using a GUL If you’re lucky, you're one of
those who like to work in command line interfaces (CLI), but if not, don’t let
this bother you. Windows PowerShell is just another tool to help you get
more done in less time.

In this chapter, I let you have a go at trying out a few Windows PowerShell
scripts to see how easy it is even when doing something relatively complex
such as connecting to Active Directory. More importantly, you get to see that
scripts that do complex things can be just as short and simple as those that
do very mundane things.

38 Part I: Getting a Bird's-Eye View of PowerShell 2

Getting a Taste of Windows PowerShell

CMBER

\\s

In keeping with the tradition of understanding any new programming or
scripting language, I want to get started with showing you how to display
something on the screen. More specifically, I want you to make PowerShell
(PSH) write Hello World! on the screen. Lucky for you, it doesn’t take
much effort — all you need to do is run this line:

Write-Output "Hello World!"

If you read through the list of predefined aliases by running the Get-aAlias
command (I cover aliases in Chapter 2), you might notice that the Write-
Output command is aliased as echo for compatibility with the old Windows
command shell, so the preceding command is equivalent to this:

echo "Hello World!"

While displaying Hello World! on the screen seems very trivial, ultimately
displaying anything on the screen is the most fundamental thing you need

to know. After all, no matter how complicated your script is, at some point
you’ll need to display something on the screen to inform the user about
something such as the results of the script or status messages.

Although write-Output is what echo is aliased to, if you want to output to
the screen you can just use Write-Host because it has the added ability to
output the text in a color of your choice.

Input and output are, after all, the two most critical things when it comes
to computers, so now that you know how to display something on the
screen, how can you obtain user input? Well, there’s a lot of different ways
PSH commands can receive input. If it’s a script, you can use command line
parameters. You can pass the output of one command as input for another
command. You can also take input from the command line, as shown here:

Sname = Read-Host "What's your name?"
Write-Host ("Hello " + S$Sname)

In this example, you use the Read-Host command to prompt the user with
the question What's your name? The user must then enter something at the
command line in response to this question and then press Enter. The next line
outputs Hello followed by the text you entered, as shown in Figure 3-1.

Chapter 3: A Pinch of Shell, a Pound of Power

|
Figure 3-1:
A Windows
PowerShell
input/output
example.
|

Tl Windows Powershell .. ‘)& ss0em

Creating Your First Script

\\J

You can create PSH scripts using any text editor, such as Notepad or Graphical
PowerShell. When saving the script, give it a . ps1 file extension so PSH knows
it’s a script and not some random text file. This file extension is used in
Windows PowerShell 1.0 and hasn’t changed in Windows PowerShell 2 since,
for all intents and purposes, PSH 2 can run PSH 1.0 scripts with no changes to
either the code or the file names.

The file extension is the same for both versions of Windows PowerShell. So, if you
need to prevent someone who has only PSH 1.0 from accidentally running
your PSH 2-specific script, just add #REQUIRES Version 2 at the top of the
script, and you're golden!

39

40 Part I: Getting a Bird's-Eye View of PowerShell 2

The script we'’re going to start with is a modification of the DIR command
and is shown in Listing 3-1.

1. It reads some command line parameter which should specify the path to
a folder on your system.

2. It lists the contents of the folder just like DIR, except that you're going to
display a color-coded output using green text for files and yellow text for
directories.

Listing 3-1: Color-Coded Directory Listing

if ($Sargs.count -ne 1) {
Write-Host "Missing Parameter!" -foregroundcolor "Red"
exit

}
SfolderPath = $Sargs[0]
Write-Host ("Directory listing of " + $folderpath)

Process each item in the directory
foreach ($i in get-childitem $folderpath) {
if ($i.mode.substring(0,1) -eq "d") {
Write-Host $i.name -foregroundcolor "Yellow"
} else {
Write-Host $i.name -foregroundcolor "Green"
}
}

To create your first script, follow these steps:

1. Open Notepad or the Graphical PowerShell and enter the code from
Listing 3-1.

MBER
é‘,\“" You can download and use the code listings from the book’s Web site
(www . dummies.com/go/powershell2fd) instead of having to slog
away at typing everything manually.
2. Now save this on your system somewhere as mydir.psl.
MBER
gx& If you're using Notepad, make sure you change the Save As type to All

Files before saving; otherwise, it will automatically append a . txt exten-
sion to your filename.

3. Now in your PSH window, run:
c:\scripts\mydir.psl C:\

This command lists the contents of the root of the C: drive using your
newly created script. You see all your filenames displayed in white text,
whereas all folder names show up in yellow text.

\\J

MBER
Qﬁ'
&

I'm using C: \scripts in this example, but you can change this path to
wherever you saved your script.

If your script is in a path that contains one or more spaces, such as C: \
Documents and Settings\Administrator\Desktop, in order to run it
you have to prefix it with an ampersand and then enclose the it in single
quotes, such as &'C: \Documents and Settings\Administrator\
Desktop\mydir.psl"'.

If you're already in the directory where you saved your script and you try
running it by entering just the script name (such as mydir.psl C:\), PSH
complains saying that it isn’t a recognized Cmdlet (the official term used
when talking about PSH commands), function, program, or script file. This
little complaint is another safety mechanism built into PSH. The current
folder isn’t automatically added to the search path when you’re entering
commands. This setup prevents malicious individuals from placing com-
mands or scripts into your folders with the same name as common com-
mands in hopes that you’ll accidentally run their version instead.

To run a command that’s in the directory you're currently in, you have to
prefix it with . \ (period followed by backslash), like this:

A\mydir.psl C:\

If you didn’t change your execution policy to at least RemoteSigned (see
Chapter 2) to get your profile script working, Windows PowerShell prob-
ably won'’t let you run this script. The command you’ll need to run is Set-
ExecutionPolicy RemoteSigned if you want to allow all local scripts to
execute without requiring a signature.

Breaking Down Your First Script

Are you about ready to have a breakdown? Good, because I certainly am. I'm
going to take a moment now to break down the script from the previous sec-
tion and elaborate on how each of the different parts work. The first part of
the code deals with handling command line arguments:

if (Sargs.count -ne 1) {
Write-Host "Missing Parameter!" -foregroundcolor "Red"
exit

}

$folderPath = $args[0]

Chapter 3: A Pinch of Shell, a Pound of Power

41

52

Part I: Getting a Bird's-Eye View of PowerShell 2

\\3

The first line checks to see whether the number of command line arguments
is not equal to 1 because you need to have the path of the folder speci-

fied as the first argument (otherwise, you can’t do anything). If there isn’t
exactly one argument, PSH outputs the Missing Parameter! message on
the screen in red and then exits. If there is exactly one argument, PSH takes
the argument and stores it in the $folderPath variable. It then displays
Directory listing of followed by the name of the folder as a heading for
the rest of the output:

Process each item in the directory
foreach ($i in get-childitem S$folderpath) {
if ($i.mode.substring(0,1) -eqg "d") {
Write-Host $i.name -foregroundcolor "Yellow"
} else {
Write-Host $i.name -foregroundcolor "Green"
}
}

This section of code is a loop (a repeating section of code), and if you haven’t
done any programming before, it might seem a bit confusing. Don’t worry; it’s
not as bad as it looks. The first line (the line starting with #), is a comment,
which is a line in the script that Windows PowerShell ignores but is useful for
someone reading the code.

If you start a line with the # character, you're telling Windows PowerShell that
this line is a comment that it can ignore. Programmers use comments to
explain what they're doing so it’s easier to understand what’s going on. It’s
always a good idea to leave comments in your script for yourself and for
anyone else who might take a look at the script later. You can also add a #
character at the beginning of a line of code to prevent it from being executed.
This is called commenting out a section of code and it’s something you might
do if you're troubleshooting your script and need to prevent a few lines from
running without having to delete that part of the code first.

The next line, which begins with foreach, establishes the loop. It’s saying
“for each of objects in the parentheses, perform the action that’s defined
within the curly braces.” That stuff in the parentheses is sometimes called
the condition for the loop, and in this case contains all the objects returned
from running Get-ChildItem against the given folder path.

The Get-ChildItem command grabs a list of items in the specified path.

In this case, it’s the path the user of the script provides as a command line
parameter. Every iteration of the loop brings back exactly one item, which it
stores temporarily in the $1i variable. Inside the loop it uses $1i to refer to the
single object returned by this particular iteration of the loop.

Chapter 3: A Pinch of Shell, a Pound of Power 43

Each item in a folder contains a set of properties such as its Name, Length
(size), LastWriteTime, and Mode. Mode refers to the various attributes of
that item, such as directory (d), archive (a), read-only (r), hidden (h), and
system (s). When you retrieve the value of the Mode property, it’s returned
as a sequence of five characters. Each attribute is given its specific spot
within this sequence (darhs), and any attribute that isn’t set is instead
replaced with a dash. For example, a read-only directory would have a Mode
value of d-r--, whereas a file that has the archive, hidden, and system attri-
butes set would return -a-hs.

So now you know that if you query the mode property and the item is a direc-
tory, the first character in this value is d. And that’s exactly what you do in
your first script; you take the first character in the mode property and check
to see if it’s 4. If it is, then the object is a directory, and you use the Write-
Host command to display the name using yellow as the foreground color;
otherwise, the object is just a file and you use green as the foreground color.

I'll leave the discussion about loops at that for now. I go over them in much
greater detail in Chapter 6.

Sneaking a Peek at Complex Scripts

Occasionally I like to read fictional books, but I'm not a very patient man

so sometimes | sneak to the end to find out what’s in store. I don’t see it as

a spoiler — rather, it makes me more curious, and [want to read more and
find out how the story ended up that way. Since the preceding section gives
you a taste of an easy script, | thought it might be worthwhile to see Windows
PowerShell do something a little more exciting, a bit more difficult, and hopefully
a lot more useful. I certainly don’t expect you to easily follow along this example,
but I do hope that just like getting a peek of the end of a novel, you too will get
excited about understanding how all this came to be. Don’t worry; the rest of this
book will cover all the details for you.

This script is going to be a bit more real-world and requires that you

have an Active Directory domain to connect to. I'm also assuming you

have some knowledge about Active Directory and Windows Management
Instrumentation (WMI). This script queries a particular Organizational Unit
(OU) in your Active Directory for a list of computers. It will then use WMI to
query various properties of those computers and output it into table format.
Take a look at the script in Listing 3-2.

44 Part I: Getting a Bird's-Eye View of PowerShell 2

\\J

WING/
§?‘

Listing 3-2: Retrieving Computer Information from
Computers Belonging to an Active Directory OU

Sou = [ADSI]"LDAP://ou=test,dc=testlab,dc=local"
Scomputers = $ou.PSBase.Get_Children()

SarrInfo = @()

foreach($node in S$Scomputers) {

SarrInfo += Get-WmiObject -query "Select °
Name,Manufacturer,Model, °
NumberOfProcessors,
TotalPhysicalMemory

From Win32_ComputerSystem" °
-computername S$node.Name
}
SarrInfo \ format-table Name, Manufacturer, °
Model, NumberOfProcessors, TotalPhysicalMemory

Before I go any further, did you notice something fascinating? Compare this
script with the previous script, which did far less than this one. They’re prac-
tically the same length line-wise. That just shows you how powerful Windows
PowerShell really is. With only a few lines of code, not only am I able to query
objects in Active Directory, but I'm also able to query the object’s properties
through WMI and then output it in a nicely formatted table. I did all this with-
out breaking a sweat or hurting my wrists from too much typing.

As you can see in Figure 3-2, this script lists the name, manufacturer, model,
number of processors, and total amount of physical memory for each com-
puter in the given OU. For now, I'm assuming that every item in the given
OU is a computer. In a real production script, [would put in a lot more error
checking between commands and also create filters for the Active Directory
query because OUs can contain computers and other types of objects such
as users, groups, and contacts.

If you want to see how this script runs on your own system, open your text
editor and type it in (or use the file for this listing on the book’s Web site).
You have to change the LDAP path to and existing OU within your Active
Directory, then save it as complist.psl. Now run this script and watch the
magic happen.

You'll see that some lines end with a backtick () character. This means that
the next line is just a continuation of the current line and not a separate com-
mand. This is useful if you have very long commands that you want to break
up into multiple lines rather than have them keep going on and on to the right.

Don’t confuse the backtick () with the single quote (). The backtick character
is typically found to the left of the number 1 key on U.S. keyboard (usually
above the tab key).

Chapter 3: A Pinch of Shell, a Pound of Power

4 Windows PowerShell V2 P] JES
PS C:scripts> .“complist.psl B

Manuf acturer NumberOf Processors
UMware, Inc. UHvare Uirtual Platform 1873281152
UHuare, Inc. UHuare Uirtual Platform 402875648
UMuare, Inc. UHuare Uirtual Platform 482875648

PS C:\scripts> .

|
Figure 3-2:
Output from
the Active
Directory/
WMI query oot
script.

|

(=

@ 11:03PM

Examining the Nuts and Bolts
of the Complist Script

The script in Listing 3-2 is made up of three parts. The first part connects to
Active Directory and queries a list of computer names in a specific OU. The
next part then queries each computer from that list to retrieve various com-
puter properties using the Win32_ComputerSystem WMI class. Finally, the
last part displays the results neatly on the screen.

Take a look at these two lines of code that make the up the first part:

Sou = [ADSI]"LDAP://ou=test,dc=testlab,dc=local"
Scomputers = $Sou.PSBase.Get_Children/()

The first line is the easiest way to establish a connection to Active Directory
using the Active Directory Services Interface (ADSI). You must provide the
correct path to an existing OU or container, or the script will return an error.
The next step uses the PSBase.Get_Children function to return a collection
(group) of objects that represent each item in the OU and store it in a variable
called $computers.

b5

46 Part I: Getting a Bird's-Eye View of PowerShell 2

Now examine the second part of the script:

SarrInfo = @()
foreach ($Snode in Scomputers) {

SarrInfo += Get-WmiObject -query "Select °
Name, Manufacturer,Model, °
NumberOfProcessors,
TotalPhysicalMemory °

From Win32_ComputerSystem"
-computername Snode.Name

}

The first thing you do is declare an array called SarrInfo. Don’t know what
an array is? That’s okay — for now, think of an array as a sequential group-
ing of items. (I discuss arrays in more detail in Chapter 11.) The second

line starts a foreach loop where you perform one iteration of the loop for
each item that’s stored in the collection referenced to by the Scomputers
variable. During each iteration of the loop, the current item is temporarily
referred to as $node.

You then use Get-WmiObject to query the computer’s Win32_Computer
System name space and then add this to the SarrInfo array using the +=
operator. When this loop is done going through all the items in your OU,
SarrInfo will essentially contain a collection of objects that in turn contain
information regarding the various properties you queried through WML

Now take a look at the third and final part of the script:

SarrInfo \ format-table Name, Manufacturer, °
Model, NumberOfProcessors, TotalPhysicalMemory

In this last part, you feed the contents of the SarrInfo array into the
Format-Table command, where you select which columns you want to
display and in which order. Format-Table is then responsible for rendering
these objects in a pretty table format (refer to Figure 3-2).

See how simple it is to go through all these steps using Windows PowerShell?
If you've ever attempted to do to this in VBScript (or even just read through
a VBScript or Windows shell script code that does something similar), for
example, you’'ll notice how those scripts are longer than what you have in
this powerful yet compact PowerShell script.

One of PowerShell’s biggest appeals is that it can cater to people who want
to automate things without having a strong programming background. If you
have a good programming or scripting background, Windows PowerShell
provides some very advanced features that give you much finer control over
how you can implement your solutions.

Part I

PowerShell's
Basic Structure
and Syntax

The 5th Wave By Rich Tennant
ORICHTENNANT

In this part . . .

ou didn’t learn to ride a bike or drive a car just by

having someone stick you in one and tell you to go.
Hopefully, someone knowledgeable sat down with you
and showed you the basics, such as where the brakes
were and how to use them before you got going. This part
goes over the really core functionality of Windows
PowerShell that really hasn’t changed much since it was
first created. This stuff’s the very foundation for almost
everything in Windows PowerShell, so if you had to pick
one part in this entire book to skip, this one isn’t it.

Chapter 4

Shelling Out Commands
and Scripts

In This Chapter
Understanding Cmdlets

Running your old Windows Shell and Windows Scripting Host scripts in Windows
PowerShell

t’s time for you to come face-to-face with Windows PowerShell commands,

otherwise known as Cmdlets (pronounced command-lets). These com-
mands are built on top of the NET Framework. They are named in a very spe-
cific verb-noun format to make it obvious what action the Cmdlet is designed
to perform, such as Get-ChildItem to retrieve the children of a specific
object or Set-Alias to set an alias.

If you've been a Windows administrator for a while now, you undoubtedly
have a few scripts in your virtual toolbox to make your day-to-day adminis-
trative tasks a bit more automated. Windows PowerShell also allows you to
continue making use of many of these scripts without any modification right
from within the Windows PowerShell environment.

In this chapter, you find out what’s so special about Windows PowerShell
commands that caused Microsoft to conjure up a completely new name for
them. You'll also find out how to read command syntax and how to get help
if you don’t know what a command does. You get to see how you can run
Windows Shell and Windows Scripting Host scripts right from within the PSH
command shell.

Cmdlets: The Little Commands
That Could!

The first time I ever saw the word Cmdlet was back when I started hearing
about Windows PowerShell (when it was still called Monad). I thought that

50 Part Il: PowerShell’s Basic Structure and Syntax

MBER
é\“
&

\\J

it meant something like a pseudo-command. In other words, I thought that
Windows PowerShell was comprised of commands that really weren’t com-
mands but more like little mini-commands — and in fact, in some ways it is.

For all intents and purposes, Cmdlets are nothing more than Windows
PowerShell commands.

Putting Cmdlets under a microscope

If Cmdlets are simply Windows PowerShell commands, it begs the question
“Why give it a completely different name?” Yes, I guess it’s cute to call com-
mands Cmdlets, but there’s more to this than you might think. Cmdlets are
actually a bit different from the traditional concept of commands, in which
people usually think of compiled console-based executable applications.
Instead, Cmdlets are .NET classes usable only within the context of Windows
PowerShell that implement some kind of action.

Unless you know a little bit about object-oriented programming (OOP), you
may not be familiar with what the term class means when I say that Cmdlets
are .NET classes. You can think of a class as being the definition or schema of
an object. It describes what the object looks like and how it behaves. In this
case, Cmdlets are defined within Windows PowerShell as classes that imple-
ment their functionality by using .NET code.

Cmdlets are really .NET classes compiled into Dynamic Link Libraries (DLLs)
that are loaded by Windows PowerShell. They use the same memory space as
the PowerShell process, which is one reason why they are more efficient than
console applications.

A Cmdlet’s action is very specific, usually targeting a particular kind of object.
As aresult, the developers of Windows PowerShell set some guidelines regard-
ing how Cmdlets should be named. To ensure that command names are intui-
tive and descriptive, all Cmdlets are given names in the verb-noun format, in
which the verb describes what the Cmdlet does and the noun describes what it
acts on. Here are some examples of Cmdlets:

V¥ Get-Service
V¥ Set-Date

¥ Remove-Item
V¥ Write-Host

I'm sure that you can guess from their names what the functions of these
Cmdlets are. Get-Service retrieves information about services on the

Chapter 4: Shelling Out Commands and Scripts 5 ’

system. Set-Date lets you set the date on the system (actually, you use it to
set the time as well). Remove-Ttem deletes an item; what it actually deletes
varies depending on the context on which it is used. Write-Host writes
something to the host (screen).

<P Being easy to understand is one of the biggest advantages of this kind of
naming convention. The downside is that commands can get pretty long and
tedious to type, which is why [cover shortcut techniques such as Tab expan-
sion and aliases earlier in this book (Chapter 2, just in case you skipped it).

Checking out existing Cmdlets

You can find well over 200 Cmdlets defined within Windows PowerShell

out of the box. Although the available Cmdlets give you plenty of flexibility
in and of themselves, you can install additional Cmdlets from Microsoft
(and even from other vendors) to provide more application-specific func-
tionality. Microsoft Exchange 2007, for example, comes with the Exchange
Management Shell, which is a set of Cmdlets built on top of Windows Power
Shell to provide enhanced Microsoft Exchange management capabilities.

You can find all the Cmdlets that are at your disposal by running
Get-Command

The default output behavior of this Cmdlet probably doesn’t help you much,
though. The list of Cmdlets is so long that most of them just scroll right past
you, and all you see are the last 40 or so at the end of the list, as shown in
Figure 4-1.

You can use a couple of methods to get around this situation. For starters,
if your window buffer is large enough, you can just scroll up to view all the
commands. Your other alternative is to pass the output of this Cmdlet to
the more command so that you see exactly one screen’s worth of output at
a time; then press the spacebar to go to the next page or press Enter (some-
times referred to as CR, for carriage return) to see one new line at a time. To
pass the output of the Get -Command Cmdlet to the more command, run the
following:

Get-Command | more
W You can pass the output of any Cmdlet to another by using the pipe ()
character — a process that’s called piping the output to another command.
I cover pipes in greater detail in Chapter 7.

52 Part Il: PowerShell’s Basic Structure and Syntax

|
Figure 4-1:
Output of
the Get-
Command
Cmdlet.
|

<MBER

5 Windows PowerShell V2 -1o| x|
Split-Path Split-Path [Pathl <Stringll> [-LiteralPath <Str... “
Start-Joh Start-Job [-ScriptBlock] <ScriptBlock> [-MName <§
Start-Process Start-Pro [-FilePathl <String> [[-ArgumentLi
Start-Service Start-Service [-Namel <Stringll1> [

Start—Sleep Stalt*Sl eep [Seconds] <Int32> [UE osel [-Debu
Stalt Iransaction Start—Tr ction [-Timeout <Int323> Independe |
t—Transcpipt Start_Transeript [[-Pathl (Stllng)] [-Append 1
Stnl) Cummtel Stop—Computer [[-ComputerMame] {Str [
Stop-Joh [[-1d1 <Int32[1>1 [-PassThrul [-Uerbose
Sto —Id1 <Int3201> [-P] [-Fi
—Name1 {Stringll>
rip t [-Uerhosel [—-Debugl T eesineiy
Sl\“l)!lld Service 8 nd-Service [-Namel <String[1> [-PassThrul [
8 ocation T:

TabExDan»lon
hject [-FilePathl <String> [~InputOhject {P...
ConputerSecureChannel [—Repairl [-Server <S.._
Connection [-Destination] (Stringll> IT-Sau
dulcManifest [-Pathl <String> [Ue
th [Pachl <Seringll> [Filter st
Man [[-ConputerName] <String>] [
Trace—Command [-Namel <String[1> [-—Expr
§et-Location U:
ction ansaction [-Uerhose]l [-Debug] [=

E

vent
PS8essionConf iguration

peData
Use-! Tlan*actlnn [-TransactedScript] <{ScriptBlock
Set-Location
Set-Location W

E

S:t*Locatmn R:
Set-Location
Set-Location

You may have seen some of these Cmdlets in previous chapters and prob-
ably can guess what many Cmdlets do just by their names. But how can you
find out more about what these Cmdlets are used for and, even more impor-
tant, how to use them? The definition column to the right of the Cmdlet name
(refer to Figure 4-1) is helpful because it shows some of the syntax, but the
rest is cut off. Enter the Get-Help Cmdlet.

The Get-Help Cmdlet is your best friend, because if you forget everything
you know about every Cmdlet out there, you're safe as long as you remember
how Get-Help works. You run Get-Help against a Cmdlet such as Get-
Alias by running

Get-Help Get-Alias

Replace Get-Alias with the Cmdlet name to display the description of
that Cmdlet. The default output of Get-Help shows you the Cmdlet name,
synopsis (short description), syntax, detailed description, related links, and
remarks. Usually, if you've used this Cmdlet before, this level of information
is all you need to jog your memory on how to use it.

If you're looking at a Cmdlet for the first time, you can use two other varia-
tions of Get-Help to get even more information. Continuing with the Get-
Alias example, you can find more information by running one of these
commands:

Get-Help Get-Alias -detailed
Get-Help Get-Alias -full

Chapter 4: Shelling Out Commands and Scripts

|
Figure 4-2:
Get-Help
output for
the Get-
Service
Cmdlet.
|

Both these variations provide a much higher level of detail regarding

the Cmdlet in question. The -detailed switch provides more informa-

tion, whereas the - full switch provides more technical information. For
many Cmdlets, the output of Get-Help in conjunction with either of these
switches results in the same output. This output not only gives you more
information about the Cmdlet (such as detailed explanations of all the param-
eters it supports), but also gives you many examples to draw from.

Making Cmdlets understand you

When you use Get-Help to view a Cmdlet’s information, you see the syntax
for using that specific Cmdlet. A Cmdlet sometimes takes a different syntax
depending on the context, however, and as a result, the parameters you can
or must specify change too. I find that getting things into my head works best
when I'm actually doing something, so [want you to use the Get-Service
Cmdlet to get familiar with interpreting syntax notation. Enter the following:

Get-Help Get-Service

Running Get-Help on the Get-Service Cmdlet gives you the output shown
in Figure 4-2. Notice that the synopsis tells you that this Cmdlet gets the ser-
vices on a local or remote computer. The detailed description halfway down
the screen expands on this synopsis to let you know that you can also use
this Cmdlet to reference a specific service. From that, you gather that this
Cmdlet is used to retrieve information about Windows services.

&3 Windows PowerShell V2 =101 x|
IPS C:\Windows> Get-Help Get—Service -
INAME

Get-Seruice

SYNOPSIS
Gets the services on a local or remote computer.

SYNTAX
Get-Service [-ComputerName <string[1>1 [-DependentServices] [-Exclude <string[1>1 [-Include <string[1>]1 [-ServicesD
ependedOn] [[-Namel {stringll>] [{CommonParameters>]

Get—Service [-ComputerName <string[1>]1 [-DependentServices] [-Exclude <string[1>] [-Include <string[1>] [-ServicesD
ependedOn] —DisplayName <string[1> [<ConmonParameters>]

Get Sorvice [-ComputorName (string[13] [-DependentServices] [-Excluds <string[1>] [-Includs <string[1>1 [~InputObje
ct <ServiceController[1>] [-ServicesDependedOn] [<CommonParameters>

DETAILED DESCRIPTION
Service cndlet gets objects representing the services on local computer or a remote computer, including run
n)ng i stopped services.

You can direct Get—Service to get only particular services by specifying the service name or display name of the se
ruices, or you can pipe service ohjects to Get—Service.

IRELATED LINKS

Start-Service
St i

New-Seruice
Shou-Service

REMARKS
To see the examples, type: “get—help Get—Service —exanples'.
For more information, type: “get—help Get—Service —detailed”.
For technical information, type: “get-help Get-Service —full®”.

PS C:\Windous> _

53

54 Part Il: PowerShell’s Basic Structure and Syntax

In the traditional Windows command shell, you normally rely on Windows
Resource Kit commands such as SC.EXE to get this kind of information. In
Windows PowerShell, this feature is built right in. You should also note that
the Related Links section in Figure 4-2 lists other Cmdlets that are useful in
this context. Not surprisingly, these are Cmdlets to stop, start, suspend, and
resume services, as well as one to create a new service and to set various
properties of a service. In this one screen, Get-Help gives you a wealth of
information. The next step is actually using this command.

When you look at the Syntax section of the Get-Help output, you notice
three different ways to use Get-Service, indicated by the three different
syntaxes listed. Focus on the first syntax for now:

Get-Service [[-ComputerName] <string[]>] [-DependentServices] [-Include
<string[]>] [-Exclude <string[]>] [-Name <string[]>]
[-ServicesDependedOn] [<CommonParameters>]

The names of the parameters typically start with a hyphen (-) so that

the Cmdlet knows where a particular parameter starts and where it ends.
Parameters in square brackets [] are optional parameters, whereas those in
angle brackets <> are required. Then, of course, you see combinations such
as [<CommonParameters>]. Is this parameter optional or required?

You have to look at which element encloses the other. In this case, the
square brackets come first, which means that the parameter is optional.

The angle brackets inside the square brackets mean that the parameter is
required, but in this case it’s required only in conjunction with certain other
specified parameters. To make matters more confusing, you also see those
square-bracket pairs after the word string[]. String is just a technical word
for text, and the square brackets after string mean that you can enter one
or more strings.

Also, some parameter names are required, whereas others aren’t. Take a look
at the -Name parameters versus the -ComputerName parameter, and notice
the extra set of square brackets enclosing -Name. This extra set of square
brackets means that you have the option to leave off -Name when specifying
service names. This option usually applies only to parameters that come first
in the list. Run these two commands, for example, and notice that they are
equivalent:

Get-Service -Name eventlog, spooler,wuauserv -ComputerName PC1
Get-Service eventlog, spooler,wuauserv -Computername PCl

Because all the service names show up at the beginning of the parameter list,
Windows PowerShell can infer that you mean for that list to apply to

Chapter 4: Shelling Out Commands and Scripts

A\

the -Name parameter. This is why -Name is enclosed in square brackets: to
indicate that you can leave it out, just as I did in the previous example.

Although you can save some time by omitting optional parameter names such
as -Name for the Get-Service Cmdlet, it's good practice to specify them
anyway so that your intentions for those parameters aren’t ambiguous.

One Shell to Rule Them All

Whenever a new product or technology is released, there’s usually a period
in the beginning when the adoption rate of the technology is slow. I usually
attribute this slowness to people who aren’t willing to let go of their old ways
and/or aren’t taking a good-enough look at the new stuff to appreciate what’s
been done. In the case of Windows PowerShell, I think that some users (and
by users, mean Windows administrators) have a notion that using it will
force them to switch back and forth between PSH and the Windows com-
mand prompt to use older scripts or commands.

This is far from the truth. Windows PowerShell is actually smart enough to
let you run all your traditional Windows Shell scripts and batch files, as well
as scripts based on Windows Scripting Host right from within the Windows
PowerShell console. (I cover WSH in more detail later in this chapter.)

Windows Shell scripts

Windows Shell scripts and batch files have existed forever. I'm sure that you
already have a whole slew of them sitting all over your hard drive. People
who are looking at Windows PowerShell for the first time, though, and are
starting to understand Cmdlets and aliases sometimes think that Windows
PowerShell is no longer capable of running Windows Shell scripts.

If you recall, most (if not all) of the built-in commands for the traditional com-
mand prompt are aliased in Windows PowerShell to a Cmdlet, such as DIR
being aliased to Get-ChildItem and Echo being aliased to Write-Output.
If you run DIR /w at the Windows PowerShell prompt, it won’t work because
the /w switch isn’t valid for Get-ChildItem, even though it’s valid for the
real DIR command. Given that information, it’s easy to see why people don’t
think batch files will work in Windows PowerShell: Windows Shell scripts that
rely on these commands won’t work. Or will they?

55

56 Part Il: PowerShell’s Basic Structure and Syntax

|
Figure 4-3:
Output of
test.cmd in
a Windows
command
prompt.
|

Open Notepad, enter the following Windows Shell script, and save it as
test.cmd:

@ECHO OFF

ECHO My 0l1d Windows Shell Script

Set X=0

for /f "tokens=*" %%i in ('DIR /B C:\') do call :output "%%i"
ECHO Script Complete!

goto :EOF

:output

Set name=%1

Set /A X=X+1

echo %X% - %name%
goto :EOF

I don’t know how well versed you are in Windows Shell, but basically, this
script takes a list of file and folder names at the root of C: \ and then dis-
plays it onscreen with a prefix. This prefix is a sequential number starting
from 1 followed by a space, a dash, and then another space. Knowing how
this Windows Shell script works really isn’t important, but I want to show
you how it behaves in the traditional command prompt and in Windows
PowerShell.

Now that you have the test . cmd script saved somewhere (such as C: \
scripts), open a Windows command prompt (cmd. exe) and then execute
this script by running

C:\scripts\test.cmd

Again, change the path to wherever you saved test . cmd, and enclose it in
double quotes if the path contains a space. Figure 4-3 shows the Windows
command-prompt output.

&8 Command Prompt =10 x|

C:\scriptsde:\scripteitest.cmd
v i Shell Script
k)

7698fdBecOc?8Fae5"

Script Complete!

C:\scriptsy.

Chapter 4: Shelling Out Commands and Scripts 5 7

Now open Windows PowerShell, type the same command (C: \scripts\
test.cmd), and press Enter. Take a look at the output in Figure 4-4.

& Windows PowerShell V2 _1olx
P i\scripts\test.cmd -
hell Script -

|
Figure 4-4:
Output of
test.cmd in

a Windows
PowerShell
window.
|

Do you notice any differences (besides the different-color backgrounds)?
Hint: There are none!

Going back to the source code for test.cmd, notice the call to DIR /B C:\
that’s used to return the list of names of files and folders at the root of C: \.
Go back to your Windows command prompt, and run DIR /B C:\. The com-
mand returns the list of file and folder names as expected, right? Now switch
over to your Windows PowerShell window, and run the same command.
Windows PowerShell spits out the following error:

Get-ChildItem : Cannot find path 'C:\B' because it does not exist.
At line:1 char:4
+ DIR <<<< /B C:\

That’s strange! If the command doesn’t run in Windows PowerShell, how is it
that the Windows Shell script works? I'm not going to blurt out the answer.
Instead, [want you to see for yourself. Close out of any Windows command
prompts you have open. Open Windows Task Manager (just right-click the
taskbar and choose Task Manager); then go to the Processes tab and click
Image Name to sort the list of processes alphabetically. Make sure that no
cmd . exe processes are running.

58 Part Il: PowerShell’s Basic Structure and Syntax

Open test.cmd in Notepad again, and replace the ECHO Script
Complete! line with the word PAUSE so that the script looks like this:

@QECHO OFF

ECHO My 0l1d Windows Shell Script

Set X=0

for /f "tokens=*" %%i in ('DIR /B C:\') do call :output "%%i"
PAUSE

goto :EOF

:output

Set name=%1

Set /A X=X+1

echo %X% - %name%
goto :EOF

Save the changes, and rerun test .cmd. This time, the script stops with the
prompt Press any key to continue . . . ,dueto the newly added
PAUSE statement within the Windows Shell script. Don’t do anything inside
the PSH window, and go back to your Task Manager’s Processes tab. Notice
something interesting? Yes, a new cmd. exe process is running, as shown in
Figure 4-5.

Go back to the Windows PowerShell window, and press any key to continue.
Take a look at Task Manager again. The cmd. exe process is gone. Do you
have any idea now what’s going on?

ripts\test.cmd
cript

- Windows Task Manager [o ===
File Options View Help
R e & o [Aephcations | Processes |Serviees | Performance | Nefworking [Users.|
Image Name UserName CPU Memory (... Description
sudiodg. exe LOCAL ... oo 384K Windows ... |
and,exe steguis 00 476K Windows ... i
Csrss.exe SYSTEM 00 776K Client Ser...
_ CSrSS.EXe SYSTEM oo 1,869K ClientSer...
dwm.exe steguis 0o 444K Deskiop ...
. . explorer, exe steguis 01 13,108K Windows ...
Flgure 4-5: Isass.exe SYSTEM 00 1,408K Local Sec..
lsm.exe SYSTEM oo 724K Local Ses...
Cmd . eXe MSASCui.exe steguis oo 3,6490K Windows ...
powershell.exe steguis 00 18,740K Windows ...
process SearchIndexe. SYSTEM 00 7,868K Micosoft
H SErVIcEs.exe SYSTEM oo 1,068K Services...
shown while Tocoe [N | 01 | 4k |k
H SMSS.EXE SYSTEM 00 B0K Windo
running a - d
Windows] e s o a8 s e
Shell script =
. . Processes: 37 CPU Usage: 11% Physical Memory: 40%
in Windows
PowerShell.

Chapter 4: Shelling Out Commands and Scripts 59

Well, it turns out that Windows PowerShell is performing some magic in the
background. It spawns (starts) a new cmd. exe process, which is the old
Windows command prompt, in the background and executes the Windows
Shell script in there. Windows PowerShell acts as a host, redirecting any
input to or output from this hidden command prompt to the Windows
PowerShell display, and what you're left with is the illusion that Windows
PowerShell did all the work for you.

Yes, I know that Windows PowerShell is really faking it and running your
Windows Shell scripts and batch files in a hidden Windows command
prompt, but here’s the cool part: You can still run your Windows Shell scripts
as you always have for years without ever leaving Windows PowerShell. Now
you can just keep working in your PSH console, running your old scripts the
way you always have, and then, when you feel like it, using some Cmdlets for
other things. This practice is a great way to get yourself started using PSH
without feeling by having to switch between different command shells.

Windows Scripting Host

Windows Shell scripts are great because they’re easy to put together, but
you’re limited to the built-in commands and any other command line applica-
tions you can get your hands on. Usually, when you’re creating more power-
ful scripts that do things like manipulate databases or Active Directory, you
use Windows Scripting Host (WSH), because you can use VBScript or JScript
to interact with some of the rich interfaces that WSH exposes.

These scripts are saved in files with names ending in a . vbs extension

for VBScript source files and . js for JScript source files, and are run with
WScript.exe or CScript.exe. Examine this very simple WSH script writ-
ten in VBScript:

WScript.Echo "Starting WSH Test Script..."
For 1 = 1 to 5
WScript.Echo 1
End
WScript.Echo "WSH Test Script Complete!"

Even if you've never written any VBScript before, I'm sure you can guess that
this script displays a count from 1 to 5 onscreen, preceded and followed by
some other miscellaneous text. Type this script in Notepad, save it as C: \
scripts\samplewsh.vbs, and run it in Windows PowerShell by typing C: \
scripts\samplewsh.vbs at the PSH prompt and pressing Enter.

60 Part Il: PowerShell’s Basic Structure and Syntax

N\

The output of this script depends on the default host you've set for WSH.
WSH supports two hosts: WScript.exe and CScript . exe. These two
scripting hosts aren’t too different; the main difference involves the way they
display output. When you use Cscript . exe, it uses a command shell to dis-
play output, just as a regular Windows Shell script does. WScript.exe, on
the other hand, is a graphical host and displays the output in dialog boxes.
Note: WScript opens a dialog box for every WScript . Echo statement in your
script, and you must acknowledge the dialog that pops up by clicking the OK
button before the script continues.

You can change the default host in Windows PowerShell just as you do in a
command prompt. To change the default host to cscript, run CSCRIPT //H:
CSCRIPT. To change it back to wscript, run WSCRIPT //H:WSCRIPT.

This behavior is no different from running WSH scripts from a command
prompt, which is exactly what you want. Running any WSH script causes it
to be executed with either Wscript.exe or Cscript.exe and then runs as it nor-
mally would. Again, this doesn’t change the way you work with WSH scripts,
so you can continue using your old WSH scripts (or any new ones you want
to create) just as you would before. You no longer have an excuse to stay
away from Windows PowerShell.

Chapter 5
When Dollars Turn into Variables

In This Chapter

Saying hello to variables
Understanding data types

Using constant and read-only variables
Finding out about automatic variables
Working with objects through variables

umables are one of the key building blocks of any scripting and program-
ming language. Without them, you wouldn’t be able to store values,
easily manipulate objects, or use Windows PowerShell for anything more
than simple tasks.

For some reason, every time I think of variables, I'm taken back to the dark
days of high school algebra. Don’t get me wrong; I actually ended up doing
quite well in algebra, but in the beginning I had an unusually hard time get-
ting the idea that some letter such as x could represent some seemingly
arbitrary value. Once I finally grasped this enlightening idea, the rest of my
mathematical learning experience was smooth sailing. (Okay, I admit it; cal-
culus did throw me a curve ball, but I got through it!)

Variables in Windows PowerShell are just like variables in other scripting and
programming languages in that they are names of things that represent some
value, just as the almighty x in algebra always represents something else.
Without variables, it would be difficult to make any useful scripts because
you wouldn’t be able to store any state information or preserve any values.
In short, you wouldn’t have any ability to know what happened in any other
part of the script. In this chapter, [discuss what variables are as well as how
they’re represented and used in Windows PowerShell.

62 Part Il: PowerShell’s Basic Structure and Syntax

Discovering Variables:
They Vary Very Much

Variables are names of things that represent some value or object. In
Windows PowerShell, all variable names are prefixed with the dollar sign ($).
The variable names themselves can contain a mix of letters, numbers, and
symbols, including spaces. Although you can get away with using symbols
and spaces in variable names, | recommend against it whenever possible — if
you use symbols and spaces, you have to remember to enclose the variable
name in curly braces. Here are some examples of variables:

V¥ SMyVariable
V¥ SAVariableWithANumber6
v ${A variable with spaces}

v ${A variable with special characters @#%%

The use of curly braces around the variable name gives you the flexibil-

ity to use almost any name you can come up with. Although you may be
tempted to use variable names with spaces to come up with more descrip-
tive variable names, the use of camel case notation, such as what I did with
$MyVariable, can be just as effective without the extra drama.

Camel case notation is the practice of combining words without spaces by
capitalizing the first letter of each word and using lowercase for subsequent
letters in that word, as in ThisIsAnExampleOfCamelCase. This is espe-
cially useful for variable names because it allows you to use very descriptive
names without having to resort to using spaces and still maintains legibility.

If you're familiar with other scripting languages, such as Perl, the syntax of
prefixing variable names with dollar signs is very familiar to you. This is the
easiest and most direct method for defining a variable. You can also explicitly
define a variable using the Set-vVariable Cmdlet to get additional control
over the advanced properties of the variable, such as its scope and descrip-
tion. You can find out more about this Cmdlet by running the following com-
mand at the PowerShell prompt:

Get-Help Set-Variable

Getting to Know Data Types

You can use variables in Windows PowerShell to store practically any kind
of value, whether it’s a number, character, string, or even an object (more

Chapter 5: When Dollars Turn into Variables

MBER
Q&
&

on this in the section “Working with Objects through Variables,” later in this
chapter). These different kinds of values are known as data types. Variables
that can take on any data type are called variants, and most scripting lan-
guages use them because they offer ease of use and overall flexibility.

Windows PowerShell actually contains a potentially infinite number of data
types. Basic data types cover all of what are called primitive values. Primitive
values are values you would typically expect to store as data and are the
fundamental building blocks of the more complex data types. The basic data
types are

v Boolean: True or false condition.
v Byte: An 8-bit unsigned whole number from 0 to 255, such as 32.

v Char: A 16-bit unsigned whole number from 0 to 65,535. For example,
1,026.

v Date: A calendar date, such as January 1, 2009.
v Decimal: A 128-bit decimal value, such as 3.14159265.

v Double: A double-precision 64-bit floating point number. In effect, this is
another kind of decimal value but has a narrower range of values than a
decimal.

v Integer: A 32-bit signed whole number from -2,147,483,648 to
2,147,483,647, such as 152 or -1839.

v Long: A 64-bit signed whole number. This is like an integer but holds
far more values, such as 9,233,372,036,854,775,807.

v Object: Any kind of object. Sound a little vague? Okay, let me discuss
this a little further.

The object data type is a bit misleading because it’s really a way of
referring to practically all the other data types that can exist. This is
where that “potentially infinite number of data types” comes into play.
Anyone can create new data types by defining their structure in the form
of a class. A class is simply a definition of this new data type.

For example, if you want to have some data type that represents an
address, you can create a class called Address with various properties
such as street, city, state, country, zip, and so on. When you actually
create things (well, virtual things in memory) from this class, the thing
created is called an object.

To sum it all up, an object is an instance of a class, just like the number
2,432 can be an instance of an integer.

v Short: A 16-bit unsigned whole number. This is like an integer but
holds far fewer values. It can only hold values from -32,768 to 32,767.

63

64 Part Il: PowerShell’s Basic Structure and Syntax

v Single: A single-precision 32-bit floating point number. This is like a
double but holds far fewer values, such as 20.3654.

v String: A grouping of characters that most people just call text.

Programmers use the word string a lot, but if you don’t have a program-
ming background you might not know what it means in this context. In
programming terminology, it simply means a consecutive grouping of
characters (what the rest of the world simply calls text). I'm fairly cer-
tain there’s some history around why it’s called a string and who came
up with it, but I just like to think it’s because a consecutive grouping of
characters form a string of characters hence the name string to keep it
short. A string can have zero or more characters. A string with no char-
acters is called an empty string or a null string. In general, you define a
string by enclosing it in double quotes, such as "This is a string".

Dealing with data types

Data types can be a double-edged sword. Sometimes knowing or being able
to specify exactly what you intended the variable’s contents to be inter-
preted as can make a whole world of difference when you use them. Likewise,
not knowing what the data types are can lead to some very strange effects.
For example, take this very simple Windows PowerShell code snippet:

Sa 1

Sb 2

Sc = Sa + S$b
write-output Sc

Even if you've never written a single line of code before, you can probably
guess what this script displays. (Here’s a clue . . . the answer is 3!) But what

if 3 isn’t what you intended it to display? Windows PowerShell uses the plus (+)
operator not only to add numbers together, but also to combine strings (in other
words, put two pieces of text together).

In the example, [added two numbers to produce some output. What if I actu-
ally intended to combine the two numbers as two individual characters so
that the output isn’t 3 but rather 12; in other words, the character 1 followed
by the character 2. With the way it’s written in the example, PowerShell tries
to be smart and sees that I'm using the + operator to combine two numbers,
so it logically assumes that I want these values to be added as two numbers.
If you want to combine the previous two as strings, you run the following
code instead:

Sa = "1"
Sb = "2"
Sc = Sa + $b

write-output Sc

Chapter 5: When Dollars Turn into Variables

\\J

\\J

By enclosing the numbers in quotes, you're telling PowerShell that you want
them treated as string literals rather than numbers. String literals is the term
used for a string that’s explicitly defined by enclosing the text in quotation
marks. When you then combine them with the + operator, PowerShell sees
you want to combine two strings, so it concatenates (joins) the two together,
and in this example, the output is 12.

If you combine a number and a string, the number is automatically converted
to a string, and the two are combined. Taking the preceding snippet as an
example, you only really need to put one of the values in quotes, and Windows
PowerShell automatically converts the value of the other one when it tries to
combine the two.

Explicitly defining the data type

The example in the preceding section is one way of explicitly telling Windows
PowerShell the data type of the value for ambiguous data types such as num-
bers. Another way of defining a data type is to actually restrict the type a
variable can store. You can even convert a value to another data type.

Out there in the programming world, the terms data type and type are used
interchangeably. For the this book, I stick with just the term data type. That’s
less confusing for both you and me!

Why in the world would you ever want to limit the type of values that a vari-
able can store or explicitly convert a value to another data type? At first, it
seems like an unnecessary step, especially when PowerShell is more than
capable of figuring out the data type of the value you're assigning to each
variable, but there are quite a few good reasons to do so:

v Surprise! Unexpected values: One of the best reasons for limiting the
data type is to safeguard the variable from inadvertently being assigned
a value of an unexpected data type. In a real-world script that can con-
tain hundreds of lines of code, it’s very easy to accidentally assign a
value to a variable that you didn’t intend to. This usually introduces
bugs that are very difficult to track down (the ones that you smack your-
self on the head for later when you find them!).

v~ Clarity: Defining the data type eliminates ambiguity for the variable so
that PowerShell performs the operation you actually want it to do rather
than what it thinks you wanted it to do.

v Improved performance: Defining the data type can help performance a
little bit by allowing PowerShell to make certain optimizations during its
execution because it doesn’t need to guess what the variable might
contain.

65

66 Part Il: PowerShell’s Basic Structure and Syntax

A\\S

Here’s a simple example. Suppose you want to define a variable called
$IntegerOnly that you want to be able to store integers and only integers.
This is done by declaring the variable as an int data type. The following
code snippet shows how you can accomplish this and also what happens if
you try to assign another data type to this variable:

[int]$IntegerOnly = 100

Ssum = 2 + $IntegerOnly

write-output S$sum

SIntegerOnly = "PowerShell Rules!"
write-output S$SIntegerOnly + " Yes, it does!"

When I declare $IntegerOnly, I prefix it with [int], telling PowerShell that
this variable can store only values of data type int. When I output the value
of $sum, it displays the expected value of 102. [then try to assign the value
"PowerShell Rules!" to $IntegerOnly, and the next output statement
should display “PowerShell Rules! Yes, it does!” If you run this code snippet,
you’ll see that doesn’t quite work. Why not?

Windows PowerShell complains about assigning the string "PowerShell
Rules!" to $IntegerOnly. This is because I used the [int] prefix to
instruct Windows PowerShell to allow only integer data types to be stored
in $SIntegerOnly. Because Windows PowerShell can’t automatically con-
vert a string to an integer, it throws an error that it can’t convert the value
"PowerShell Rules!" to datatype "System.Int32".

There’s a really easy way for you to find out the type of value that a variable con-
tains. You can use the GetType () method on the variable, which returns data
type information about the value stored by it. Going back to my earlier example,
to verify that $IntegerOnly is indeed an integer you can run this line:

SIntegerOnly.GetType () .Name

Windows PowerShell is built on top of the .NET Framework, so it isn’t any sur-
prise that variables in PowerShell are objects just as they are in the .NET
Framework. This means that while they’re used for storing and retrieving
values, they also have their own set of properties and methods. GetType () is
one of them and actually returns an object that contains more than just the
data type name. It also includes the following information: IsPublic,
IsSerial, Name, and BaseType. | use the . Name property of the object in
the preceding code because I'm interested only in the data type name, but you
can simply run GetType () on the variable without specifying a property, and
Windows PowerShell retrieves all the information for you.

Also, as | mention earlier in my discussion about the different data types and
objects, the data types that each variable can represent are endless (essen-
tially, any data type that can be defined in .NET). You can simply put the
data type name in the square brackets, such as [System.Text]. Because

Chapter 5: When Dollars Turn into Variables

it would be insanely tedious to use this full name for the most common data
types, PowerShell defines many data type shortcuts which have much simpler
abbreviated names. Table 5-1, lists some of the more commonly used data
type shortcuts.

Table 5-1 Common Data Type Shortcuts

Data Type Description Full Type Name

Shortcut

[bool] True or False System.Boolean

[bytel 8-bit unsigned character System.Byte

[char] 16-bit unicode character System.Char

[int] 32-bit signed integer System.Integer

[long] 64-bit signed integer System.Long

[decimall 128-bit decimal value System.Decimal

[single] 32-bit floating point value System.Single
(single precision)

[double] 64-bit floating point value System.Double
(double precision)

[string] A string of unicode System.String
characters

[array] An array of values or System.Array
objects

[xml] An XML object System.Xml.

XmlDocument

[wmi] Windows Management System.Management.

Instrumentation object ManagementObject

Casting values

When I say I'm “casting values,” I'm not trying to start new Broadway musi-
cal. Casting refers to the process of changing a variable’s data type from one
value to another. For example, what happens when you try to add an integer
to a double? Going back to the simple plus (+) operator, when you try to
combine two or more data types, Windows PowerShell internally performs a
series of steps for you to make it all work:

1. PowerShell compares the two (or more) data types being combined. If
they match, it simply continues.

67

68 Part Il: PowerShell’s Basic Structure and Syntax

MBER
é&
&

a. If the data types are different, PowerShell attempts to cast (con-
vert) the values to a common data type.

b. PowerShell attempts to look for a data type that can store the
values being converted without losing its original value and tries to
convert the values to this data type.

Because PowerShell does this, you don’t lose any data during the
conversion. For example, when combining an integer and a double,
PowerShell converts the integer to a double because the double is
the larger data type. If PowerShell can’t find a data type that can
accommodate all values being combined, it throws an error.

2. When all the data types are the same, PowerShell combines the values
and returns the resulting value.

The resulting data type is the data type all the values were converted to.

In the previous section, you define a variable using the square brackets to
assign it a specific data type. Well, you can also use the square brackets to
force Windows PowerShell to cast a data type to a different data type. You've
seen how an integer and a string are combined automagically. Naturally, if
you want to combine a double and a string, you can run the following
commands:

SMyString = " Windows PowerShell "
SMyDouble = 2.0

Soutstring = $MyString + S$MyDouble
write-output Soutstring

Not surprisingly, the output of the preceding commands is Windows
PowerShell 2.0.For fun, I'm going to switch the order by which the two
variables are combined by changing the Soutstring line with this
command:

Soutstring = $MyDouble + S$SMyString

When you run this, it gives you an error saying it can’t convert the string to
a data type System.Double. It was just working, so what’s going on here?
Although a double can easily be converted to a string, Windows PowerShell
tries to convert the string to a double because it appears first in the order
of evaluation. It obviously can’t do this because the string doesn’t contain a
valid double value, hence an error is thrown.

You can get around this by explicitly casting the double to a string, so in
effect you're controlling what data type the variables get converted to rather
than relying on Windows PowerShell to get it right:

Soutstring = [string]sMyDouble + SMyString

Chapter 5: When Dollars Turn into Variables

You cast a value by prefixing the variable name or value with [data_type]l.
This is the same syntax for defining a variable of a fixed data type, but in this
context you aren’t redefining the variable but rather temporarily converting
it to a new data type. Note: Windows PowerShell tries its best to make this
happen for you, but some things just won’t work. For example, you can’t

try to cast a string that doesn’t contain purely numerical characters into a
number.

You can also cast a variable using the -as operator:
Soutstring = (SMyDouble -as [string]) + S$SMyString

There are some differences between the two methods, but for the most part
they’re interchangeable. You should use the -as operator because it’s the
preferred method for casting values, but if you want you can shorthand it by
simply prefixing the value or variable with the data type as you did earlier.

Windows PowerShell performs quite a lot of operations when combing values
and more so when you ask it to do data type conversion. It’s all really depen-
dent on the data type of the current value and what you’re converting it to.

If you want to see what happens when you explicitly cast a $MyDouble to a
string before combining with $MyString, you can run this line:

Trace-Command -Name TypeConversion -pshost {[string]S$MyDouble + $MyString}

You can see what the debug information looks like in Figure 5-1. This command
is very useful as you can see in great detail every step Windows PowerShell
takes as it combines the two values. You can enclose any expression you want
in the curly braces to have it debugged. You can also use the Trace-Command
Cmdlet to debug other tasks, not just Type Conversion. Read the Type
Conversion help using the Get-Help Cmdlet to find out more.

You should try to get yourself very well acquainted with data types. You
can probably get away with not knowing all the possible data types, but
you at least should be comfortable working with the most common ones.
Specifically, you should understand what values are valid for each data type
and also how they behave when combined with other variable types. For
example, if you combine an integer with a string, the integer gets converted
into a string, and these two are then joined (concatenated) together as
strings to produce a new string. Not understanding this can lead to bugs in
your scripts that can become very difficult to troubleshoot.

69

70

Part Il: PowerShell’s Basic Structure and Syntax

L
Figure 5-1:
Debugging

Type
Conversion.
L

" Windows PowerShell "

pe t {Istringl$HyDouhle + $MyString)
: n.Object [1 to “System.Object[1"
nable from value to convert’s type
ng" to “Systen.Type”.
pe hefore getting BaseObject: “System.String”.
after getting BaseObhject: "System.String™.

: TypeConue
EBUG: TypeConve o S 3
: TypeConuersi . Orig. ype “Systen.Double".

EBUG: TypeConversi 2 Original type ting BaseOhject: “System.Double.
: TypeConversi : Standard type co n.
EBUG: TypeGonversio enat i Converting num to string.
: TypoConversion Infornation: 0 : The conversion is a standard conversion. No custom type conversion will be

Constant and Read-Only Variables

A\\S

Variables are (by virtue of their name) variable, so having a constant or
read-only variable seems like quite an oxymoron. In most scripting and pro-
gramming languages, these are simply called constants or named constants,
but essentially they’re actually special variables that are marked to hold

a constant value set during their initialization, in effect making them read-
only. Windows PowerShell takes it one step further and makes a distinction
between constant and read-only variables.

There is a distinct difference between a constant variable and a read-only vari-
able even though they’re functionally equivalent. The two are similar in that
constant and read-only variables are both initialized with a value upon decla-
ration and that they maintain that value. The difference is that while you can’t
change a read-only value, you can delete it, whereas constant variables can’t
be change or deleted and exist for the duration of the session (until you close
the PowerShell window).

You must use the Set-Variable Cmdlet in order to set a constant or read-
only variable. You can then use Remove-Variable to delete a read-only

variable. (Remember: You must exit the Windows PowerShell console com-
pletely before a constant variable is released.) The following example shows

Chapter 5: When Dollars Turn into Variables

\\3

how you can define and use constant and read-only variables and also how to
clear a read-only variable:

Set-Variable PI 3.14159265 -option Constant
Set-Variable Author "Steve Seguis" -option ReadOnly
Sradius = 3

Sarea = SPI * Sradius * Sradius

write-output "Area is: " + Sarea

write-output "This book is written by: " + SAuthor
Remove-Variable Author -force

You use the -option switch for the Set-variable Cmdlet to specify if the
variable being defined is constant or read only. The first parameter is the
name of the variable, and the second parameter is the value to assign to it.
Notice how you don’t use the dollar sign character ($) in the variable name.
When using Set-vVariable, you simply specify the variable name without
using the dollar sign.

Dollar signs are only required when defining variables without using the set-
Variable Cmdlet.

After the constant or read-only variable is defined, you can use them as you
would any other variable except you can’t change its value. The last line in
the example shows how you use the Remove-Variable Cmdlet to get rid

of a read-only variable. Remove-Variable is a Cmdlet used to remove any
variable. If you don’t specify the -force parameter, PowerShell won'’t let you
remove a read-only variable and will throw an error if you try.

I prefer using read-only variables rather than constant ones unless it’s a vari-
able I want to ensure remains in effect throughout my entire session. Read-
only variable types are extremely useful in scripts where you want to define
some fixed values (such as the value of Pl or a buffer size) and protect them
against accidental changes during the script’s execution. They’re also highly
efficient because Windows PowerShell knows not only what data type the
value is, but also that it won’t change and can allocate and store it in memory
most efficiently.

Understanding Automatic Variables

You can call a variable almost anything you want. The “almost” part of that
sentence is because some variables are special to Windows PowerShell and
are reserved for its own use. They're called automatic variables because
PowerShell is in charge of managing them for you. Not only are they one less
thing you have to worry about (other than remembering not to try redefin-
ing them yourself), but they're also extremely useful variables that you’ll

/1

72 Part Il: PowerShell’s Basic Structure and Syntax

undoubtedly use time and time again. You can see a list of all the automatic
variables and what they contain in Table 5-2.

<P I didn’t magically know all these variables. I got this information thanks to
Windows PowerShell’s really cool help command. If you want more informa-
tion about automatic variables, you can run the following command and to get
more details about each of these variables:

get-help about_automatic_variables

Table 5-2 Automatic Variables

Variable Name Description

$s Contains the last token in the last line received by
the shell.

$? Contains the state of the last operation. True
when successful, false otherwise.

g Contains the first token in the last line received by
the shell.

$_ Contains the current object in the pipeline object.

SArgs An array of undeclared parameters or values
passed to a function, script, or script block.

$ConsoleFileName Stores the filename of the most recently exported
console file.

$PSCulture Contains the current culture used by the 0S.

SError An array of error objects representing the most
recent errors.

S$ExecutionContext Contains an EngineIntristics objectthat
represents the execution context of the Windows
PowerShell host.

$False This one’s a shocker. It contains the value
FALSE.

$ForEach Contains the enumerator of a foreach-
object loop.

$Home Stores the full path to the user’s home directory.

$Host Current host application for Windows
PowerShell.

$Input Contains the object currently in the pipeline in the

Process block of a function.

Chapter 5: When Dollars Turn into Variables 73

Variable Name Description

$LastExitCode Contains the exit code of the last Windows pro-
gram executed.

$MyInvocation Contains information about the current command.
Useful for dynamically retrieving the filename and
path of the current script.

$NestedPromptLevel Stores the current prompt level for nested
prompts. This is a bit advanced, so you may
want to run the get-help about_auto-
matic_variables command for additional

information.

SNULL Contains NULL or empty value.

$PID Contains the process identifier of the Windows
PowerShell process.

$Profile Stores the full path to the Windows PowerShell
user profile for the default shell.

$PSHome Stores the full path to the installation of Windows
PowerShell.

$PSVersionTable A hash table containing details about the version
and build of the current Windows PowerShell
console.

$pwd Stores the full path to the current directory.

$ShellID Contains the identifier for the current shell.

$True Contains TRUE.

$PSUICulture Stores the name of the Ul culture currently in use.

As you can see, quite a few automatic variables get created and are managed
by Windows PowerShell during its execution. Some of them seem pretty use-
less at first glance. For example, you have the two opposing variables, $True
and $False. You might be wondering why you would need to have these
variables when you can simply use the words True and False for the values
like many other scripting languages. The reasoning is because it’s possible to
mistake the string as False with the value True. I've got you scratching your
head, haven’t I? In short, it’s because the word False can get confused as a
string, and any non-empty string is True.

74 Part Il: PowerShell’s Basic Structure and Syntax

Why would False ever evaluate to True? In scripting languages such as VBScript,
you usually assign True or False values simply by using those words directly.
The danger with the word False is that if it’s somehow misinterpreted as the
string "False" rather than the Boolean meaning of False then it evaluates to
True. This is because any number that is non-zero and any string that is non-
empty is automatically treated as True in a Boolean statement. This is also the
same reason why the automatic variable $SNULL is defined. The string NULL is
supposed to mean nothing (undefined/empty) but it can be misinterpreted as
the string "NULL", which is a non-empty string and would evaluate to True
instead. Yes, it is a bit overkill, but by defining these values as automatic vari-
ables that have permanent and definite meaning, Windows PowerShell can safe-
guard their values so there is no ambiguity in their use.

You can see many of these automatic variables used throughout this book,
and I hope that gives greater meaning to them. If you just take a moment and
go over them, you can see how they can be quite useful. Suppose that, at
some point in the future, a new version of Windows PowerShell is released,
and you write your script to take advantage of those new features and want
to protect it from being executed against unsupported versions. You can
query the values in the $PSVersionTable hash table and get all the infor-
mation you need (from the running Windows PowerShell console all the way
to the build number) and compare it with what you want the environment
you designed the script to run in to be. For example, you can check whether
the version and build number are greater than a certain value.

$Pwd is another great variable to have. If you've ever had to write a Windows
shell script (batch file) to find out the current path that you’re in, you know
how convoluted that process is. Typically, you have to run the DIR com-
mand in a loop, parse out the current directory, and assign it to a variable. In
PowerShell, all you need to do is read the $Pwd variable and you're done! It’s
so easy, it makes me feel guilty using it.

Working with Objects through Variables

Because variables point to objects, you can treat them as the object itself —
which also means you can manipulate and retrieve information from the
referenced objects through the variable name. A simple object to deal with
is a string. A string, which is nothing more than text, has many properties
and methods that are quite interesting. You can retrieve how long the string
is (how many characters it contains). You can find out what character is in
a given position or likewise the position of a certain character within the
string. You can even manipulate the string in different ways, such as return-
ing its value in all upper or all lowercase.

Chapter 5: When Dollars Turn into Variables 75

[have a whole chapter dedicated to strings (see Chapter 9), but [use some
quick examples here to give you a feel for how this manipulation takes place
using variables. Consider the following code snippet:

Sfirstname = "Dan"
Slastname = "Daman"
Sfullname = S$firstname + " " + Slastname

write-output S$fullname

As you can see, there’s nothing special going on here, and the output is
clearly going to be Dan Daman. What if you want to display how many char-
acters are in $fullname and you want to display the value of $fullname

so that all characters are in uppercase? Not a problem; it’s really easy. String
objects conveniently have a property called 1ength that dynamically stores
the length of the string at any given time. String objects also have a method
called ToUpper () that returns the string object all in uppercase letters. With
these two pieces of information, you can then solve this problem by running
the following code:

Sfirstname = "Dan"

Slastname = "Daman"

Sfullname = Sfirstname + " " + Slastname

write-output "Length of full name: " + $fullname.length
write-output "Full name is: " + S$fullname.ToUpper ()

Notice how [use 1ength without the parentheses and I use parentheses for
ToUpper. That’s because properties are generally directly accessible values,
whereas ToUpper is a method that internally converts the text to uppercase
before returning its value. The dot between the variable name and the prop-
erty or method name is commonly referred to as the dot operator. It is used
to tell Windows PowerShell that what comes after the period is a property or
method that belongs to the object directly preceding it.

Objects are instances of classes. You can think of a class as a definition,
schema, or type. It defines what the object will look like. For example, a class
called Dog might be defined as having the properties of color, size, and breed,
and might have methods such as bark, eat, and sleep! Because an object is an
instance of a class, an instance of class Dog might be your neighbor’s dog
Fluffy. (I made this up, so if you're neighbor has a dog named Fluffy it’s a pure
coincidence — I don’t know your neighbor!) In the virtual world, an object is
the instance of a class that you can actually interact with. Object properties
are directly accessible using the object.property_name syntax. Methods
usually involve the class having to do something rather than just get an inter-
nally stored value, so they’re called like functions. The string’s ToUpper
method doesn’t take any parameters which is why it doesn’t have anything in
the parentheses — but some methods do require parameters. For example, if

76 Part Il: PowerShell’s Basic Structure and Syntax

you want to replace part of a string with another string, you use the string’s
replace method:

Sfullname = "Johnny Goodman"
Snewname = $fullname.replace("Good", "Bad")
write-output Snewname

This replaces any occurrence of the word "Good" with "Bad" in the string
stored in the variable $fullname. As a result, the output of this snippet is
"Johnny Badman".

Chapter 6
A Bit of Logic to Save the Day

In This Chapter

Understanding logical operators

Using conditional statements to affect script flow
Creating loops to repeat tasks

Avoiding common loop pitfalls

‘ omputers are simply oversized and overpowered calculators.
Sometimes it’s hard to explain this to the average nontechie, but every-

thing we do on our computers — sending and receiving e-mail, browsing

the Web, watching movies — all comes back to numbers! In fact, everything

comes down to two numbers: 0 and 1 (nothing and something).

Take away all the fancy processor architecture, bus speeds, and cool case
lights on a computer, and you have a machine that’s good at adding ones and
zeroes and also at comparing true and false. Everything else that you see,
hear, and interact with on your computer is some sort of representation of
these fundamental units.

In this chapter, you give your Windows PowerShell scripts a little more intel-
ligence by building on these concepts of true and false to direct the flow of
information through your scripts.

A Logic Primer

Logic is built around the premise of true and false values, which are known as
Boolean values. In general, the digit 1 represents true, and the digit 0 repre-
sents false. Windows PowerShell, however, also has automatic variables that
define the values of true and false — namely, $STRUE and $FALSE.

When working with Boolean values, you can use a set of operations to
combine and compare them. These operations are

v AND: When you compare two values by using the AND operator, the
result is true if, and only if, both values are true.

78 Part ll: PowerShell’s Basic Structure and Syntax

v OR: The OR operator, on the other hand, returns true if either value
is true.

v Exclusive OR (XOR): The Exclusive OR operator returns true if, and
only if, one of the values is true.

v NOT: Finally, the NOT operator negates the value, so not true is obviously
false, and vice versa.

Take a look at Tables 6-1 through 6-4, which illustrate how Boolean values are

evaluated.
Table 6-1 Boolean AND Operator
Value 1 Value 2 Result
True True True
True False False
False True False
False False False
Table 6-2 Boolean OR Operator
Value 1 Value 2 Result
True True True
True False True
False True True
False False False
Table 6-3 Boolean XOR Operator
Value 1 Value 2 Result
True True False
True False True
False True True

False False False

Chapter 6: A Bit of Logic to Save the Day 79

Table 6-4 Boolean NOT Operator
Value Result

True False

False True

Alot of this information may seem to be very basic, but as you start build-
ing complex logic statements to control how your scripts flow, it’s good to
remember how true and false get evaluated when they’re combined, because
often, those evaluations are the places where bugs start to creep in.

This discussion won’t be complete until | show you how all this stuff works in
Windows PowerShell. Take a look at this bit of code:

Sa = 1; $b = 2
(Sa -eq 1) -and (Sb -eqg 2)
($Sa -eqg 1) -or ($b -eqg 2)
(Sa -eqg 1) -xor (Sb -eq 2)
-not (Sa -eq 1)

In this code, -eq means the equal sign and is one of the operators used to
compare two values. If you work out the logic in your head (or simply run
this code in Windows PowerShell), you see that the results of these com-
mands are the values True, True, False, and False.

You can use a semicolon (;) to put multiple commands on the same line, as in
$a = 1; $b =2.This behavior applies to scripts, but you can also use a
semicolon on the command line, so typing something like this at the PSH
prompt on one line and then pressing Enter is perfectly valid:

Scolor = "Blue"; Write-Host ("I like the color" + Scolor)

Table 6-5 shows the different operators you can use in PSH to compare
values.

Table 6-5 Comparison Operators
Operator Description

-1t Less than

-le Less than or equal to

-gt Greater than

(contined)

80 Part ll: PowerShell’s Basic Structure and Syntax

Table 6-5 (continued)

Operator Description

-ge Greater than or equal to

-eq Equal to

-ne Not equal to

-is Returns true if the value is a certain data type

-isnot Returns true if the value is not a certain data
type

-like Like (uses wildcard for pattern matching)

-notlike Not like (uses wildcard for pattern searching)

-match A match using regular expressions

-nomatch Not a match using regular expressions

-contains Used to see whether a collection or group of

items contains a given item

-notcontains Used to see whether a collection or group of
items does not contain a given item

WBER By default, the comparison of values isn’t case sensitive. If you want a case-

& sensitive comparison of two values, you prefix the comparison with c.
Likewise, if you want to explicitly make the comparison case insensitive, prefix
it with i, as in this example:

Sa = "test"

Sb = "Test"

This returns False

Sa —-ceq Sb

This returns True

Sa —ieqg Sb

This behaves the same as -ieq and returns True
$a -eq $b

Branching Using If/Else

The most basic way to control how your script flows is to use i f/else state-
ments. This method is very natural because it’s generally how you make
decisions on a day-to-day basis: If] eat this banana chocolate chip muffin

Chapter 6: A Bit of Logic to Save the Day

\\3

for breakfast, I'll be in a good mood the rest of the day; otherwise (else), my
coworkers will see my dark side. Take a look at this simple if statement, and
try to figure out what it does:

Sa = 6
if ($a -gt 5) {Write-Host "Greater than 5!"}

If you guessed that it writes Greater than 5! on the screen, you guessed
correctly. The if statement evaluates the condition in the parentheses. If the
resulting value is true, whatever is inside the curly braces gets executed.

Any nonzero value also evaluates to true, so sometimes script writers and
programmers use this fact as a shortcut. Look at the following code snippet.
Both if statements are functionally equivalent; the only difference is that the
second version takes advantage of this behavior to simplify the code.

sa =1
if ($a -ne 0) {Write-Host "Non-zero value entered"}
if (Sa) {Write-Host "Non-Zero value entered."}

Using i f by itself is useful if you have a segment of code that you want to
execute only if a certain condition is true — if a file exists or the number of
command line arguments is greater than zero, for example. Sometimes, you
want one segment of code to execute if a condition is true and a different seg-
ment of code to execute if the condition isn’t true. This situation is where the
else statement fits into the picture:

Sname = "Steve"

if ($name -eqg "Steve") {
Write-Host "Hello Steve!"

} else {

Write-Host "Hello Anonymous!"
}

This example outputs Hello Steve! to the screen, because $name equals
Steve. If you change $name to any other value, the script displays Hello
Anonymous ! instead.

A common use for if/else statements is to have your script perform a
sanity check before doing something and then use the else statement to
display an error message. You could have a script check to see whether a file
exists and, if it does, to read the contents and do something fun, or else use
Write-Host or Write-Warning to display a message onscreen to tell the
user that the input file can’t be found.

Now comes a strange-looking statement: elseif. This statement looks like a
hybrid of else and if because it is. Take a look at the two code segments in

81

82 Part Il: PowerShell’s Basic Structure and Syntax

Listing 6-1. One of them uses a combination of nested (one statement inside
another) if/else statements, and the other one uses i f/elseif/else
combinations.

Listing 6-1: Different Approaches for Performing a
Nested Value Comparison

Size comparison version 1.0
$size = "M"
if (Ssize -eq "S") {
Write-Host "Small"
} else {
if (Ssize -eg "M") {
Write-Host "Medium"
} else {
if ($Ssize -eq "L") {
Write-Host "Large"
} else {
if ($size -eq "XL") {
Write-Host "Extra Large"
} else {
Write-Host "Unknown Size"

}

}

Size comparison version 2.0

Ssize = "M"

if ($size -eqg "S") {
Write-Host "Small"

} elseif (Ssize -eqg "M") {
Write-Host "Medium"

} elseif (Ssize -eqg "L") {
Write-Host "Large"

} elseif ($size -eqg "XL") {
Write-Host "Extra Large"

} else {
Write-Host "Unknown Size"

}

You can download and use the code listings from the book’s Web site (www .
dummies.com/go/powershell2fd) instead of having type everything
manually.

MBER
é&
&

The first size-comparison code snippet uses nested if/else statements.
Even when I use indentation to help make code a bit more readable to the

Chapter 6: A Bit of Logic to Save the Day

human eye, the code is still a bit unwieldy, and making a mistake in that sea
of curly braces and parentheses is very easy.

The second version uses the elseif statement to compact the code by
creating a sort of conditional if statement that gets evaluated only if the
previous if statement returns false. This method not only saves me a bit of
typing, but also makes understanding this code snippet a whole lot easier.

Using the Switch Statement

Using if/else and if/elseif/else statements works quite well a majority
of the time. When you have a large set of values, however, and want to com-
pare it with another value to determine what code you want to run next, even
the if/elseif/else method is a bit clunky. The answer is the switch state-
ment, as demonstrated in the following code:

Ssize = "M"

switch (Ssize)

{
g {Write-Host "Small"}
"M {Write-Host "Medium"}
"L {Write-Host "Large"}

"XL" {Write-Host "Extra Large"}
default {Write-Host "Unknown Size"}
}

This code snippet is functionally equivalent to the i f/elseif/else version,
but notice how much cleaner it looks. It also makes adding extra choices
much easier; you simply add more values that $size can match and then put
whatever code for that match inside the curly braces. The default state-
ment is optional; it’s the catch-all option if no matches exist for any of the
other defined values.

Doing It Over and Over and
Over Again with Loops

Most of the time, [resort to writing a script whenever I feel it’s not worth-
while to perform a repetitive task manually. Sometimes, writing that script
takes as much time as doing the job manually, but a script offers the benefit
of repeatable results. Also, I can reuse that script as is or use it as a frame-
work for a similar task.

84 Part Il: PowerShell’s Basic Structure and Syntax

WMBER
e&
&

The theme that | see most frequently in scripts is repeating a particular task
over and over on different objects. Your script might go through a list of files
in a given folder and rename the files with a different file extension, for exam-
ple. Another script might query Active Directory for a list of users who have
a particular attribute set and then modify that attribute. I'm sure that you can
come up with many examples of tasks that you’d love to automate.

You automate tasks in Windows PowerShell by using loops. A loop is nothing
more than a code block that can be run repeatedly many times depending
on a certain condition you provide it. You can choose among several kinds
of loops — namely, for, foreach, while, do while, and do until loops.
Although they all do the same thing (repeat a code segment over and over),
they have slightly varying uses that make some loops more ideal than others
in different situations.

Looping with For

You typically use the for loop is when you want to loop through some code
a finite number of times. Yes, you can make the code loop forever, but as a
rule of thumb, if you want to run something a known number of times, the
for loop is the ideal choice. The for loop looks like this:

for ($1i = 1; Si -le 5; S$Si++)
{

Write-Host S$i
}

The corresponding output is the digits 1 through 5 displayed onscreen, one
digit per line. The interesting part is inside the parentheses, because that
part controls the loop. If you examine that part of the code closely, you’ll
notice three distinct parts separated by semicolons.

The code within the curly braces of a loop is called the loop block.

The first part, $i = 1, is the initialization expression, which it sets up the
loop. The expression in the initialization portion gets executed only once: at
the beginning of the loop. In this case, it initializes $i with the value 1.

The next part, $1 -1le 5, establishes the condition that must return true for
the loop to continue and is evaluated for each iteration of the loop. When this
expression returns false, the loop is done. In this case, the code says that as
long as $1i is less than or equal to 5, keep going.

Chapter 6: A Bit of Logic to Save the Day 85

The last part, $i++, is a counting section;, it also is executed once per iteration
of the loop after each loop-block execution is complete. $1++ means to increase
the value of $i by 1.

Although theoretically, you can put whatever you want in any of these three
sections, the way you see it in the example is the typical way you’d use it.

[use the letter i in the example because the variable used in the for loop
statement is called the iterator. This variable gets this name from its job,
which is to iterate through items.

The code inside the curly braces can be anything you want. Many times, you
use the current value of the iterator, for several reasons such as using it as
an index into an array (which I talk about in Chapter 11) or for combining
with other values to generate some output (perhaps by using it in a calcula-
tion).You can refer to it inside the curly braces as you would any other vari-
able. Just remember that the value of the iterator changes during each pass
of the loop, based on the code you have in the counting section.

Using Foreach to loop through collections

The foreach loop is a cousin of the for loop, in that it too executes for a
finite number of times. Unlike the for loop, however, it doesn’t have to be
told how to increment its values. Instead, you give foreach a collection of
objects and the variable name for the iterator, and foreach automatically
loops through each item in the collection one by one. Have a look at this
code snippet:

foreach ($i in Get-Alias)
{

Write-Host $i.name

}

The statement in the parentheses, $i in Get-Alias, is where you define
the iterator, which I call $i in this example. Then you tell the iterator what
collection of items to point to — in this example, the return value of Get -
Alias. Get-Alias returns a collection of AliasInfo objects that defines
all the aliases currently defined in the system. For each iteration of the
foreach loop, $1i refers to one of these objects; then you can reference
whatever you want from these objects within the body of the loop. In this
case, the loop is just displaying the name of the alias.

Using foreach loops is always ideal when you’re going through a collection
of objects, due to the ease of establishing and using the loops.

86 Part ll: PowerShell’s Basic Structure and Syntax

Looping for a While

Sometimes, you want to repeat a process many times and don’t know exactly
how many times it’ll run, but you do know the condition that must exist for
the loop to terminate. This situation is where a while loop comes in handy.
The while loop checks to see whether a particular condition you specify
evaluates to true; then it executes a block of code and continues to repeat
that block of code until the value in the while condition evaluates to false.
Take a look at this code:

SobjRandom = New-Object Random

sval = SobjRandom.Next (1,10)

while ($val -ne 7)

{
Write-Host ("You got a " + Sval + "...")
Sval = $SobjRandom.Next (1,10)

}

Write-Host "Congratulations, you got a 7!"

This code is a pretty good demonstration of a situation for which awhile
loop may be appropriate. This code snippet generates a random number
between 1 and 10 and displays the number it receives until it finally gets a 7.
Because you don’t know how many random numbers might need to be gen-
erated before you get a 7, the while loop allows you to continue searching
until you do.

The first two lines initialize a new Random object and grab the first random
value. The Random object is what allows you to generate random numbers.
You use the Random object’s Next method to specify the lowest and highest
number you want the code to return to generate a random number.

The while loop checks the conditions in the parentheses to determine whether
it should go into the loop. In this example, 'm checking to see whether $val is
not equal to 7. If it isn’t, the code displays the value and then generates a new
random number from 1 to 10. The condition for the while loop is reevaluated,
and the cycle continues. When $val contains the value 7, the code stops loop-
ing and then displays the congratulatory message.

Running a loop at least
once with Do While

A slight variation of the while loop is the do while loop. You can do
exactly the same thing with do while that you can with the while loop, so
why have another version of the same thing? Well, actually, the two loops
have subtle differences. For starters, do while loops evaluate the condition

Chapter 6: A Bit of Logic to Save the Day 8 7

after the code in the loop block has executed. The side effect of this fact is
that the code in your do while loop is guaranteed to run at least once. Take
this code for example:

SobjRandom = New-Object Random
do
{
Sval = SobjRandom.Next (1,10)
Write-Host ("You got a " + Sval + "...")
} while (Sval -ne 7)
Write-Host "Congratulations, you got a 7!"

Notice the subtle differences between this do while version and the while
loop version. Because the code block is guaranteed to execute at least once,
you can change the order of the random-number generation and the output,
and eliminate the need to generate a number before the loop. Although these
variations perform the same task, notice that they’re not functionally equiva-
lent. The do while version actually says You got a 7 . . . beforeit
says Congratulations, you got a 7! ,whereasinthe while version,
the code jumps straight out of the loop.

Taking a look at Do Until

The do until loop is (not surprisingly) very similar to the do while loop.
The two loops are the same in that they evaluation the condition after the
first iteration of the loop block, but they’re different in how the condition
controls the loop. In a do until loop, when the condition in the parenthe-
ses evaluates to true the loop is done, whereas in a do while loop the
condition in the parentheses must evaluate to false to end the loop. Look at
this example:

SobjRandom = New-Object Random
do
{
Sval = SobjRandom.Next (1,10)
Write-Host ("You got a " + Sval + "...")
} until (Sval -eq 7)
Write-Host "Congratulations, you got a 7!"

As you can see, the do until version of the preceding do while code is exactly
the same. The only difference is I changed the condition from $val -ne 7
to $val -eqg 7.To make remembering the differences easy, I just think of
do until as being the negative version of do while. You can use both
methods interchangeably, but pay attention to the condition you write for
the loop.

88 Part ll: PowerShell’s Basic Structure and Syntax

Avoiding loop pitfalls

Loops cause many of the bugs that cause runaway scripts. It’s very easy to
write a loop in which the condition you set to end the loop is a value that’ll
never be attained. Consider this for loop:

for (Si = 1; $i > 0; $i++) {
Write-Host $i
}

Notice anything wrong? This for loop keeps going and going because it ini-
tializes $i to 1 and keeps incrementing this value, but the condition for the
script is that $1 is greater than 0, which is always true.

[have to admit that this example is a bit contrived. Infinite loops occur fre-
quently in variations of the while loop because you usually use a while
loop when you don’t necessarily know how many times the loop block will
need to be executed. Here’s a variation on the random-number check code
that results in an infinite loop:

SobjRandom = New-Object Random

Sval = SobjRandom.Next (1,10)

while (Sval -ne 11)

{
Write-Host ("You got a " + Sval + "...")
Sval = SobjRandom.Next (1,10)

}

Write-Host "Congratulations, you got a 11!"

Again, the code is generating random numbers from 1 through 10, but the
condition I set won’t exit the loop until the value is 11, which is impossible,
so this loop will run forever. This bug is an obvious one, but this kind of stuff
happens if I initially write the script so that I'm looking for 11 and generate
numbers from 1 through 20. The code works, but then I realize that I want

to go only from 1 through 10 and update the random code generation — but
forget to update the loop condition. In very long scripts, this mistake is very
easy to make, especially if you get really lazy and use the search-and-replace
feature in your text editor to make changes.

So whenever you find your scripts going crazy (such as using 100 percent of
CPU), the problem usually is a runaway loop. The first thing you should do is
check the conditions of all your loops; most of the time, you’ll find the culprit
in a loop.

Chapter 7
Working on a Pipeline

In This Chapter

Using pipelines to become more efficient
Piping commands together

Working with data and displaying results

f you take a moment to look around you, I'm sure that you can find a lot

of inefficiencies. I see some of the biggest inefficiencies when I'm dealing
with any kind of government agency. I'm not a political kind of person, but
having worked with various government entities throughout my career, I can
say that the bureaucracy that’s designed to create clear lines of responsibil-
ity and authority also typically creates some very inefficient processes as a
side effect.

Typically, getting anything done involves going to one department, filing some
paperwork, getting something back, and then going to another department and
filling out some more paperwork (usually, with the same information) — and
this process can go on and on. Departments and even agencies rarely share
information. Wouldn't it be nice if you could submit a request somewhere, and
that request would automatically flow through all the relevant departments or
agencies and give you your results at the end? This scenario is a pipe dream
for most of us. Luckily, though, it’s closer to reality in Windows PowerShell.
You don’t have to deal with the same kinds of problems because you can take
advantage of pipelines.

In this chapter, you see how information is passed from one PSH command to
another using pipelines. Unlike pipelines of the past, PSH pipelines are much
more sophisticated and, in my opinion, much more effective. Once you read
this chapter, you’ll see why this new way of passing information between
commands makes so much sense and you’ll never want to do it using any
other method ever again.

90 Part Il: PowerShell’s Basic Structure and Syntax

Using Pipelines to Streamline
Vour Commands

Command line interfaces can suffer the same kinds of inefficiencies that you
see in the real world. If you want to query some information from one com-
puter, that process is straightforward in Windows PowerShell; you just use
Windows Management Instrumentation (WMI) to query that information.
What if you want to query a bunch of computers? Now you somehow have
to provide Windows PowerShell a list of computer names. You may have this
information in a file, or you may have to query Active Directory. Well, query-
ing Active Directory for a list of computers is a completely different com-
mand, so what are you supposed to do? Run the query command, get a list,
and then run a command to query WMI?

The problem can get even more complex as more data sources are required.
The solution is a pipeline.

A pipeline occurs when you take the output of one command and direct it
to the input of another command. When you do, you don’t need to act as
the middleman; rather, you string together the commands you want to work
together to produce a given output. This process is called piping the output
of one command to another.

Pipelines have existed forever. They started showing up in some of the early
Unix shells, and even MS-DOS had support for pipelines. So what’s so great
about Windows PowerShell if this isn’t a new concept? To understand better,
take a look at this regular command line sequence, which you can run in the
traditional Windows command shell:

ipconfig | find "IP Address"

This sequence uses ipconfig to list the IP configurations of all the network
adapters on your system and then pipes that output to the find command,

where it filters the output and displays only the lines that contain the string

"IP Address". The result is a simple command sequence that gives you all
the IP addresses on your system.

The problem with this method (and, frankly, with all the methods that exist
today) is that it relies on manipulating the text output of the preceding com-
mand. If the output of ipconfig changes so that the string "IP Address"
is changed to "IPv4 Address", for example, this command sequence won’t
return any results. If you have a lot of scripts that depend on this output, you
have to go back and fix them all.

Windows PowerShell continues to use the same convention of using the pipe
(|) character to denote piping the output of one command to another, but

Chapter 7: Working on a Pipeline

in the background, the behavior has changed significantly — fortunately, for
the better. The designers of Windows PowerShell realized that relying on
text output is far from being a good idea. A good example of why relying on
text output can cause some complications is if the command output is in a
localized language. If you work in a global IT shop, you have to accommodate
every language variation of this output in each of your scripts.

Windows PowerShell doesn’t pass text between commands; it passes objects.
This arrangement is significant because the receiving command can access
the various attributes of the object directly, rather than trying to parse out
strings to interpret the data. This point may seem to be trivial, but it’s not.
Objects have a specific structure that is well defined and easy to access, so
you never have to worry that the text will change on you.

Stringing Commands Together

If you've piped commands together in MS-DOS or in the Windows command
prompt, or have even gone as far as writing scripts that take advantage of
piping commands together, you’ll need to change the way you think about
pipes when working in PSH.

Here’s a typical command that works fine in the Windows command prompt:
dir c:\windows\system32 | find ".exe"

The command performs a directory listing of ¢ : \windows\system32 and
then pipes the output to the £ind command to filter for lines that contain the
string " . exe". Now try running the same command in Windows PowerShell.
Strangely, it returns an error message, stating that the parameter format isn’t
correct.

If you remember, DIR is just an alias to Get-ChildItem, so you'd probably
try running Get-ChildItem or DIR directly without the pipe to make sure
that it actually returns some information. Just running DIR by itself against
c:\windows\system32 returns a slightly different-looking output from the
regular Windows command prompt, but you do see full filenames. So the
find command should work because it just looks for a particular string in
the given input. What’s going on?

Although Get-ChildItem displays the results in a pretty format onscreen
when you run the command, that format isn’t how the information is trans-
ferred to another command when it’s directed through a pipe. The output
that you see when you run a Cmdlet is just the default representation of the
objects that it returns. To see this concept in action, take a look at these
three commands:

91

92 Part Il: PowerShell’s Basic Structure and Syntax

Get-ChildItem c:\windows\system32 | Format-Table
Get-ChildItem c:\windows\system32 | Format-List
Get-ChildItem c:\windows\system32 | Format-Wide

You see the output of these commands in Figure 7-1, Figure 7-2, and Figure 7-3,
respectively.

A Windows PowerShell V2 —[of x|
[P C:i\scripts> Get—-ChildItem c:i\windous\system32 ! Format-Tahle -

Directory: Microsoft.PouerShell.CoresFileSystem::C:\uindows\systen32
LastUriteTime Length Mame
12,2,2007
12,272
12,2,2007
12272087
12,2,20087
12,2,/20807
17672008
12,2,2887
12,272
12,/9./2007
12272087
12,2,2087
12/9/2i
12,2,2087
— 12722007
12,2,2887
Figure 7-1:
.. g; nacrul’mg
icrosoft
Piping Get- losted
. mui
npp
Chlldltem 12,2,2087 oohe
12,2,2007 Prelnstall
through 12722087 vas
}%/g/gﬁg; %einstallﬂackups
72-208 lestore
Format- 12/2./2007 Setup

12722687 She 11Ext

Tabl 12/2/2087 Sof twareDistribution
aple. 1279./2007 spool

120273

I 12722007

£5Windows PowerShell V2 =10/

Directory: Microsoft.PowerShell.Core\FileSystem::C:i\windows\systemn32

Name 1825

ICreationTine 12,2,2087
LastWriteTime 12,2,2847
LastAccessTine 12-2,2007

Name 1828

ICreationTine 12,2,2087

LastWriteTime 12,2,2847
astAccessTine 12-2,2007

Name 1831

ICreationTine 12,2,2087
LastWriteTime 12,2,26@87
LastAccessTine 12/2/208?7

Name 1833

ICreationTine 12,2,2087

LastWriteTime 12,2,2687
astAccessTine 12/2/2008?7

Name 1837

ICreationTine 12,2,2687
LastWriteTime 12,2,2087
LastAccessTine 12/2/208?7

Name 1041
| WMicreationTine 12/2,2087 —
LastWriteTime 12-2,2087
. astAccessTine 12,2,2007
Figure 7-2: e
Pipi G \iriteT 155 5000
- t34 teTime 2/
Iplng Et LastAccessTine 12,2,2087

Childltem |25

10854
12,2,2087
12-2,2087

thrOUgh o ieacostone © 1573 500

H Name 2052
Format-List. ionTim 1272/2087

iteTi 132,3007
e -t iccosotine : 12722007

Chapter 7: Working on a Pipeline

|
Figure 7-3:
Piping Get-
Childltem
through
Format-
Wide.
|

(ol

i Format—Wide -

E3Windows PowerShell V2
[PS Ci\scripts? Get—ChildItem c:i\windous\system32

Directory: Microsoft.PouwerShell.Core\FileSystem::C:\uwindows\systen32

[18251
(18311
[16371
118421
28521
[3con_dmil
[CatRoot1

18281
[18331

(18411

18541

[3876 1
Lappmgnt 1
[CatRoot21
[config]
[DirectX]
[en-US1
[GroupPolicyl
Licsxml]l
Linetsev]
[Microsoft]
[mui

[Restore]
[She11Ext 1
[spooll
Lubem]

aaaamon .d11
acctres.d1l
acelpdec.ax
aclui.dll

activeds.tlh
actxprxy.d11
ad, 11

exe
alesve.dll
amstrean.d1l
apcups .d11
apphelp.dll
.d11

appmgr .
arp.exe

Get-ChildItem continues to return the same data, but the Format-
Table, Format-List, and Format-wWide Cmdlets are changing the way the
data is displayed. The formatting Cmdlets do this without having to parse
the original output of Get-ChildItem (which happens to be the same as
Format-Table). Instead, it takes the collection of objects returned by Get -
ChildItem and just rearranges them for output in the specified format.

The reason why all this fancy stuff works is that data and the presentation of
data are completely separate concepts in Windows PowerShell. All the actual
objects returned by the different Cmdlets are pure data, and Cmdlets don’t
care how this data is presented to the user.

This situation has two significant side effects:

v~ It allows Cmdlet authors to focus on the functionality of their Cmdlet
and return the data they want without having to worry about who or
what will use the data.

v Because Cmdlets return just data, authors can format the data any way
they want without first manipulating the format defined by the original
Cmdlet author.

All this begs the question “If Cmdlets return just data, why is it that when I
run Cmdlets that return data, the output on the screen still looks pretty?” It’s
a fair question, because the author of the Cmdlet really doesn’t care about
the output format and certainly doesn’t write that code in the Cmdlet to
begin with. The answer is a Cmdlet called Out-Default.

93

94 Part Il: PowerShell’s Basic Structure and Syntax

Out-Default is in charge of figuring out how to render the output of a given
command if no formatter is specified. Every command that you type in the
PowerShell console is automatically piped to Out-Default in the background.
Then the final output is based on the kind of object stream Out-Default
receives. You can think of a stream as being the flow of data.

Every known object has a view that is registered to it and that defines which
formatter to use. When you run a command interactively in the Windows
PowerShell console, Out-Default automatically redirects the output to
Out-Host, which automatically selects the appropriate output formatter for
you (in the case of Get-ChildItem, Format-Table). Then you can easily
see the result you want in a default view. If you want to change the way that
the output is displayed, you can use one of the available formatters or, if
you're bold, create your own scripts or Cmdlets to do this job for you.

Getting the Right Output

Usually, the default output of the Cmdlets is enough to give you the informa-
tion you want. Defaults are designed to cover the general use of a given com-
mand but sometimes give too much or too little information. The solution is
to tailor the output to your needs. Consider the Get-Process Cmdlet. By
default, it displays a nice tabular list of running processes as well as informa-
tion such as the number of handles open, the amount of memory being used,
the amount of CPU time spent on it, and the process ID. All this information is
very good. If you want the output to display only the process ID and process
name in a tabular format, however, you can run

Get-Process | Format-Table -property id,name

Here, you give Format-Table the list of object properties you're interested
in. When Format-Table displays the list of objects returned by Get-
Process, it displays only those properties that you specify. It also respects
the order in which you specify the property names, so if you want to display
the process name before the process ID, you can switch the property names
around like this:

Get-Process | Format-Table -property name,id

Do you want to see something else really cool? Because Cmdlets return
objects (are you sick of me repeating that yet?), you can do other really cool
things to filter the output. If you want to find out which processes have a pro-
cess ID greater than 1000, for example, only want to display only the name

of the process, the amount of CPU time it’s received, and the process ID, you
can do that easily with this pipeline (Figure 7-4 shows the output):

Get-Process \ Where-Object {$_.Id -gt 1000} \ Format-Table -property Name,CPU, Id

Chapter 7: Working on a Pipeline

|
Figure 7-4:
Filtering the
output of the
Get-Process
Cmdlet.
|

\\J

\\J

E¥Windows PowerShell V2 =10| %]
[PS C:\scripts> Get—Process | Where—Object {% .id —gt 1AAA} | Format—Table —property name,CPU,id

1.8125
1.4375

UMwareService 465.515625
0.46875

UMvarellser 2.3125
vuauc 1t 8.89375

PS C:\scripts>

You use the Where-0bject Cmdlet whenever you want to filter the objects
that passed along the pipeline.

The where-0Object Cmdlet takes a script block that defines how the objects
should be filtered. The block is enclosed in curly braces. If you examine the
script block I use to filter for process IDs greater than 1000, you see some-
thing new: the $_ symbol. The $_ symbol is an automatic variable (I talk
about variables in Chapter 5) that refers to the current object in the pipe-
line. In plain English, {$_.id -gt 1000} means that for every object the
Where-Object Cmdlet receives from the pipeline, Where-0Object takes the
Id property of the object and checks to see whether it’s greater than 1000.
Only those objects that meet this criterion get passed along the pipeline to
the next command.

Where-Object is aliased as where, so don’t be surprised if you come across
pipelines that use just the word where to filter objects.

[use Format-Table in the preceding examples, but you can use the
Select-0Object Cmdlet as a more generic method of specifying the object
properties you want to retrieve in a pipeline. Another useful Cmdlet for work-
ing with pipelines is Sort-0bject, which sorts the incoming objects. You
can sort by one or more object properties; Sort-Object first sorts by the
first property you specify, and then by the next property, and so on. You can
also tell it to sort in ascending or descending order.

Here’s a slight variation on the Get-Process example. This time, I'm using
Select-0Object to specify the fields [want and Sort-Object to sort the
objects first by CPU time and then by 14d:

Get-Process | Where-Object {$_.Id -gt 1000} | Select-Object Name,CPU,ID | Sort-
Object CPU,Id

I hope that you already see how powerful the simple change of returning
objects rather than text really is. Doing something like this in Windows shell
scripting or even in Windows Scripting Host (WSH) would take many lines of
code, but here, everything happens on one line.

95

96 Part Il: PowerShell’s Basic Structure and Syntax

Part Il

Complex Data
Description and
Sharing

The_ Sth Wave_ By Rich Tennant

ing| “What Kind Bobby! Wha

Tﬁ? ::Elrﬁgrg of money H We should | do go% Rnow
plugging it did you use? Hsee the canf{about aButhel
backin. right down {[VP500 vending
here. machine?!

In this part . . .

Now that you know the basics, it’s time to shift gears
and start having some real fun. I'm going to build on
some of the concepts I talk about in the previous part, but
now it’s time to bring in slightly more complex concepts.
Chapter 8 addresses working with Windows Management
Instrumentation (WMI) to query information from
Windows. I delve deeper into concepts like manipulating
strings in Chapter 9 and working with numbers in Chapter
10. In Chapter 11 I cover data structures like arrays and
hash tables which will allow you to group data together. |
discuss methods for reading from and writing to plain text
files and even XML or HTML files in Chapter 12. Finally, I
address working with dates in Chapter 13.

Chapter 8

Working with Windows
Management Instrumentation

In This Chapter

Understanding Windows Management Instrumentation
Using Windows PowerShell to talk to WMI
Understanding advanced WMI querying using WQL
Using WMI to its full potential

Making use of WMI security features

Being someone else with Impersonation

Taking a look at the new WMI Cmdlets in PSH 2

've been managing Microsoft Windows-based networks for a fairly long

time now, and I still remember how much manual effort it took to perform
even simple systems management tasks before Windows Management
Instrumentation (WMI) came about. | remember during the year leading
up to Y2K, a company I did some work for had to bring in a small army of
technicians just to visit each and every workstation to find out their BIOS
version in order to determine which ones needed to be flashed to become
Y2K-compliant. If WMI was accessible to me back then the way it is today,
I'm certain I'd still have a lot more hair on my head. Those times have come
and gone, and many of the systems management tools today are built to take
advantage of WMI. PowerShell is no exception!

In this chapter, you run some commands that allow you to interact with
Windows through WML. It’s something that’s very easy to do but packs a big
punch, so once you understand how to talk to Windows through WMI, you’ll
be increasing your effectiveness in controlling Windows exponentially.

1 00 Part Ill: Complex Data Description and Sharing

Getting Familiar with Windows
Management Instrumentation

Windows Management Instrumentation (WMI) provides a standardized
interface for interacting with a Windows-based system regardless of the
underlying hardware manufacturer and specific Windows version. Prior to
WM, different hardware vendors might have provided different Application
Programming Interfaces (APIs) that you could have used to write some code
and get this information yourself, but if you happened to have hardware

from different vendors you were forced to learn different APIs. This disparity
applied not only to hardware, but even to the different version of Windows
operating systems. There just wasn’t one cohesive way to access the informa-
tion you needed quickly.

This lack of a unified approach made automating systems tasks (such as que-
rying installed hardware, software, and other operating system properties)
very time consuming — if not nearly impossible. WMI is the answer to all this
because it provides a set of non-proprietary specifications and standards for
interacting with various components of a system.

WMI is now officially the term used by Microsoft when referring to what was
once called Web-Based Enterprise Management (WBEM) for Windows. WBEM
is a set of standard technologies created and managed by the Distributed
Management Task Force (DMTF). The DMTF is an industry organization that
collaborates with thousands of technology companies worldwide to develop
management standards and integration technology for enterprise and Internet
environments. The DMTF also has a Common Information Model (CIM) that
specifies a common definition of management information relating to systems
and services. WMI is fully compliant with the CIM and WBEM specifications
and continues to maintain that compliance as these standards evolve.

Examining the WMI architecture

WMI isn’t all that complicated, but it does have a few moving parts. At the
bottom of the WMI architecture are the managed objects — the things you
typically interact with, such as physical devices on your systems (your moth-
erboard, memory, cup-holder . .. err ... DVD-ROM drive); your Windows
Registry; and basically anything that can be accessed using the Windows APL

On top of the managed objects layer are a bunch of WMI providers. You
can think of the WMI providers as pieces of bilingual software capable of
speaking WMI and the native language of whatever managed object they’re
designed to manage. This is your middle man, so to speak, in your transac-
tions with the operating system through WMI.

Chapter 8: Working with WMI

\\J

|
Figure 8-1:
The WMI
architecture.
|

The actual thing you interact with is the WMI Management Infrastructure,
which is comprised of two components: CIM Object Manager (CIMOM) and
the CIMOM Repository (see Figure 8-1). The CIMOM Repository contains a
list of objects you can use to interact with the system, whereas CIMOM is
in charge of providing you with a standard method for interacting with the
system. CIMOM is the broker for all your WMI transactions.

WMI is built around classes that create an abstract representation of the man-
aged objects. Instances are the actual objects in memory that you interact
with. For example, you have a Win32_Process class that represents a pro-
cess; each running process is then an instance of the Win32_Process class.

Management Applications
(Programs and Scripts)

WMI Management Infrastructure

CIMOM Repository CIM Object Manager (CIMOM)

WMI Providers

Managed Objects

(Devices, Win32, APIs, SNMP, Registry)

Poking around in WMI namespaces

Each object that WMI exposes is made available through a specific namespace.
You can think of a namespace as a naming convention that uniquely identifies a
class (the definition of an object). Namespaces also help group related classes
together. Most of the core WMI classes you’ll typically work with are stored

101

’ 02 Part lll: Complex Data Description and Sharing

|
Figure 8-2:
You can
view the
WMI name-
spaces
available

on the local
host.
|

in the root\CIMV2 namespace. However, if you have other applications that
define their own WMI classes, they’ll usually define their own namespace. For
example, if you have Microsoft Exchange installed on the system, you’ll have
a WMI namespace called root\MicrosoftExchangeVv2 that you can use to
query various Microsoft Exchange properties. There are similar namespaces
for products like IS (root\MicrosoftIISsv2) and SQL Server (root\
Microsoft\SglServer).

One way to find out what WMI namespaces are defined in your system is to
open the Windows Management Instrumentation MMC snap-in. You can do
this by following these steps:
1. Choose Start->Run.
2. Enter wmimgmt . msc and press OK.
This will open up the WMI MMC snap-in.
3. Right-click WMI Control (Local) and choose Properties.
This brings up the WMI properties dialog box.
4. Click the Security tab.

5. Double-click the Root folder (or click the plus symbol to the left of it)
to see the entire namespace tree (see Figure 8-2).

1 Windows Management Infrastructure (WMI)

‘% File Action View Favorites Window Help =] x|
[e] @ Whil Control {Local) Properties B[%]
& WHI Control (Local) Genersl| Logging | Backup/Restore| Securty | Advanced

Mamespace navigation allows you to set namespace spesilic seouiy.

(3 Reet) semice.

SECURITY
SecuityCenter
SewviceModel
@ ([subscription
w0 WMl

Security
Cancel

Chapter 8: Working witt wmi] ()3

Securing WMI

Because WMI gives you the ability to query and, where applicable, even
make changes to managed objects both locally and remotely, security is a big
concern. Fortunately, WMI namespaces have their own set of Access Control
Lists (ACLs) that define which accounts can perform what kind of action on
classes in that namespace.

You set the security using the same WMI MMC snap-in. You simply need to
select the namespace you want and click the Security button (refer to the
previous section). You usually won'’t be touching these permissions, but
sometimes you might have to in order to get something to work. For example,
some namespaces don’t allow you to interact with them remotely, so you
have to explicitly allow this. You can allow or deny any of the permissions
listed in Table 8-1.

Table 8-1 WMI Permissions

Permission Description

Execute Methods Allows running of methods provided by WMI classes.

Full Write Full permission to read, write, and even delete all WMI
classes and instances.

Partial Write Write access to static WMI objects.

Provider Write Write access to objects provided by providers.

Enable Account Read access to WMI objects.

Remote Enable Remote access to WMI objects.

Read Security Can view WMI permissions but not change them.

Edit Security Can view and modify WMI permissions.

Making Windows PowerShell
Interact with WMI

Working with WMI using Windows PowerShell is as easy as sipping cool lem-
onade on a hot summer’s day. You need to know only one Cmdlet, and that
is Get-WMIObject. In its simplest form, you need to give Get-WMIObject
only the name of a class, and it gladly spits out information about all the

’ 04 Part lll: Complex Data Description and Sharing

instances of that class along with any properties it has. To find out informa-
tion about your BIOS, you can run this line:

Get-WMIObject Win32_BIOS

If you want to know some general information about the computer you're on
(such as the name, manufacturer, and model), run this:

Get-WMIObject Win32_ComputerSystem

These commands query the local host to return this information, as shown in
Figure 8-3.

WMI allows you to get information remotely as well. You can query the
same BIOS information off a computer called REDLINE by using the Get -
WMIObject Cmdlet’s -computername parameter:

MBER
é&
&

Get-WMIObject Win32_BIOS -computername REDLINE

An easy way to see all the classes available to your disposal is by using Get -
WMIObject to list them out for you. Simply enter this:

Get-WMIObject -list

A Windows PowerShell V2 -10] x|
PS C:\temp> Get-WMIOhject Win32_BIOS !

SMBIOSBIOSUersion = 6.08
Manufacturer : Phoenix Technologies LID
: PhoenixBIOS 4.0 Release 6.0
2 UMuare—56 4d a2 ca 4c 63 c5 db-8d 14 c6 3f ec cd ed 17
TID - 6848660

: TESTLAB.LOCAL
Muare. Inc.
Muare Uirtual Platform

LEUT LIENT1
PrinaryOunerNane : SCRIPTHATION INC
TotalPhysicalMenmory : 1873201152

PS C:xtemp)> _
|
Figure 8-3:

| got this
output after
running

Get-
WMIObject
against
common

-
2

WMI =
classes.

Recycle Bin

| (D) (i 1108 P

Chapter 8: Working with WMI

Most of the time, you’ll only be dealing with core WMI classes that directly
interact with various Windows or system components. The names of these
WMI classes all start with win32_, so by taking advantage of pipelines (see
Chapter 7), you can use the following sequence of commands to filter out
only those WMI classes:

Get-WMIObject -list \ where {$_.name.startswith("Win32_")}

Notice how many classes are available for you to interact with. The reality
though is that while there is practically a WMI class to interact with almost
any imaginable part of Windows, you’ll only typically interact with a subset of
these classes on a regular basis. Table 8-2 lists some of the more commonly
used WMI classes.

Table 8-2 Commonly Used WMI Classes
Class What it Represents
Win32_BIOS Various properties related to the
system BIOS
Win32_ComputerSystem Various properties related to a com-
puter running Windows
Win32_Directory A directory/folder in Windows
Win32_Environment System environment variables
Win32_LogicalDisk Storage devices on a system
Win32_NetworkAdapter A network adapter on a system
Win32_NetworkAdapter The configuration of a network
Configuration adapter on a system
Win32_NTLogEvent An event log entry
Win32_OperatingSystem The operating system including things
such as build number and service
pack level
Win32_Printer A printer installed on the system
Win32_PrintJob A print job running on the system
Win32_Process A process running on the system
Win32_ Processor A CPU on the system
Win32_QuickFixEngineering Small patches to the operating system

(continued)

105

’ 06 Part Ill: Complex Data Description and Sharing

\\J

SMBER
S

A\

Table 8-2 (continued)

Class What it Represents
Win32_Registry The Windows registry
Win32_ScheduledJob A task scheduled on the system
Win32_Service A service installed on the system
Win32_Share A shared resource on the system
Win32_TimeZone The time zone for the system

You can find out more about a specific WMI class (such as what it represents
and what properties are available to you) by looking them up on the Microsoft
Developer Network (MSDN). You can find a list of all the WMI classes at http: //
msdn2.microsoft.com/en-us/library/aa394084 (VS.85) .aspx.

The default namespace in Windows is root\CIMV2. In general, you're not
going to want to change this unless you have a very specific reason because
all the WwIN32_ classes fall into this namespace. The Get-WMIObject com-
mands you issued earlier all work because it just so happens that the WMI
classes you queried all belong to root\CIMV2. If you want to query a class
outside of this namespace, you need to explicitly define it using the
-namespace parameter. Here’s an example where you can query the
IISWebService class of root\MicrosoftIISV2 if you have IIS installed:

Get-WMIObject IISWebService -namespace "root\MicrosoftIISV2"

By explicitly specifying the -namespace parameter, you’ll see all the proper-
ties available to you, not just what it returns by default. This means if you
want to find out all the properties available in the Win32_ComputerSystem
class, you can run this line:

Get-WMIObject Win32_ComputerSystem -namespace "root\CIMV2"

Using SOL Syntax in WMI to Get WOL

Structured Query Language (SQL) is a language for interacting with relational
database management systems (RDBMS), such as Microsoft SQL Server.

So what happens when SQL and WMI collide? The product is WMI Query
Language, more commonly known as WQL. The use of SQL-like syntax to
query WMI is very natural because when you think of WMI, you can loosely
translate it into regular database terminologies.

Chapter 8: Working with WMI

A relational database consists of data organized into tables. Each table has a
set of columns (fields) and rows (records). For example, in your SQL database
you can have a table called tb1lUsers that consists of four fields: FirstName,
LastName, Username, and Password. Each row is a record that represents a
different user. Table 8-3 illustrates how this table might look like.

Table 8-3 Sample SQL Database Table — thiUsers

FirstName LastName Username Password
Joseph Bradshaw jbradshaw S3kD2#g
Sean Black sblack J4a2D@fg3
Nicole Anderson nanderson p!'nk35T

In SQL, if you want to query the database, you use the SELECT statement. If
you want to query tblUsers for the FirstName and LastName of a user
with a Username of sblack, you run the following query:

SELECT FirstName,LastName FROM tblUsers WHERE Username = 'sblack'

You just give the SELECT statement the fields you're interested in, the table
you want to query, and (optionally) a condition that filters the results. You
can do a whole lot more than this using SQL’s SELECT statement, but [won’t
elaborate on it much more since this isn’t a book about SQL (although, if
you're interested in SQL you can also pick up SQL For Dummies, 6th Edition,
by Allen Taylor).

Okay, so now that you know everything there is to know about SQL (yea right!),
here’s how it is similar to WMI. Remember your good friend, the Win32_
BIOS class? Instead of thinking of it as a class, think of it as a database

table. The win32_BIOS class has a bunch of different properties such as
Manufacturer, Name, SerialNumber, and Version. Think of these proper-
ties as fields in your Win32_BIOS table. Because every computer has only
one BIOS, this table has only one record — but still it has a record.

This striking similarity is exactly why the synergy between SQL and WMl is so
natural. Now to put all this together, if you want to find out the manufacturer
and version of your BIOS, all you need to do is run this command:

Get-WMIObject -query "Select Manufacturer,Version From Win32_BIOS"

That’s it! The cool thing is that you're still using the Get-wMIObject Cmdlet,
which means you can still use all the other parameters such as -computer
to run it against another computer. Note: [didn’t have to add a WHERE clause
in my query, because [wasn'’t filtering for anything specific.

107

1 08 Part Ill: Complex Data Description and Sharing

Harnessing the Power of WMI

If you haven’t been taking advantage of WMI, you’ve really been missing out.
Because practically everything in Windows is represented by a WMI class,

it opens up a whole world of opportunity to automate almost anything you
want in Windows. Now that you've had a look at how querying WMI works
in Window PowerShell, it’s time to look at some real-world scenarios where
WMI becomes really handy.

In this scenario, you get a call from a user stating that one of the applica-
tions she uses doesn’t work. You begin to get other calls about the same
application, so you believe this has to be a server-side issue since their other
network-based applications continue to work fine. You’re not normally the
administrator for this application, but you need to get this resolved quickly.
How can Windows PowerShell and WMI help you?

Normally I do two things in situations like this:

v~ 1 check for any services that are set to automatic startup but are not
currently running — this might point out that a service this application
is dependent on has crashed.

v | check the application’s event log for any errors.

Not-so-coincidentally, I explain how to do those two things in the following
sections.

Querying service status

To find out which services are set to automatic startup and aren’t running,
run the following command pipeline:

Get-WmiObject Win32_Service \ Where-Object {($_.StartMode -eqg "Auto") -and (S$_.
State -ne "Running")} | Select-Object DisplayName,Name,State

This command queries the Win32_Service WMI class for all services on the
system and filters it using the Where-0Object Cmdlet for services that have
the StartMode property equal to Auto and the State property not equal

to Running. Because you're interested only in the name of the service, the
display name, and the state of the service, you then use Select-Object to
select just those properties.

Sometimes this is enough to resolve the problem. If it’'s a Web-based appli-
cation and you see that the World Wide Web Publishing service is stopped,
then most likely you just need to start it back up again to get things running.

Chapter 8: Working with WMI

A\

You can start a service using the Start-Service Cmdlet. The reason I added
the Name property in addition to the DisplayName property when querying
for stopped services is because you need to specify the Name property of the
service when starting it up. So if you had to start up World Wide Web
Publishing Service (W3SVC), you actually have to run this line:

Start-Service W3SVC

Looking for event log entries

The other troubleshooting step you can take is to comb the event logs for
any possible errors. The Win32_NTLogEvent WMI class gives you access to
all the Windows event log entries, so that’s a good place to start. You can use
the following command pipeline to query the application log for all the Error
events:

Get-WmiObject Win32_ NTLogEvent | Where-Object {($_.LogFile -eq "Application")

-and ($_.Type -eq "Error")} \ Select-Object Category,Computer
Name, EventCode, Description, Message, Timeliritten | Sort-Object
TimeWritten

You just use Get-WmiObject to query all the items in Win32_NTLogEvent
and pipe it to the Where-0Object Cmdlet to filter for entries where the
Logfileis equal to Application and the Type is equal to Error. You then
pass these results to Select-Object to specify the fields you're interested
in and then sort the results by the TimeWritten field.

In reality, it might be faster (or even easier) to just use the Event Viewer to
get this information rather than typing out long command sequences just to
get the same information. In a real-world scenario, you really wouldn’t be put-
ting these commands together on the fly to troubleshoot an issue. The best
way to take advantage of WMI is by creating a toolkit of scripts for common
troubleshooting tasks.

An even more ideal situation is for the application expert or administra-

tor to describe a set of troubleshooting steps to follow if there’s a problem
with the application. More likely than not, you can automate many of these
troubleshooting steps that relate directly with the operating system through
Windows PowerShell WMI scripting.

Changing WMI Authentication Levels

In my brief discussion about WMI early in this chapter, I left out a very impor-
tant aspect of WMI — authentication levels. Authentication levels control
when and how authentication is performed when connecting to a WMI

109

’ ’ 0 Part lll: Complex Data Description and Sharing

provider. This is very important because WMI permissions are very distinct,
and in some cases just being an administrator of the computer doesn’t auto-
matically give you access to query a provider.

Microsoft IIS is one of those providers. Due to the added risk associ-

ated with running a Web service, the Microsoft IIS WMI provider (root\
MicrosoftIISv2) requires all data sent between the server and the client
to be authenticated, verified, and encrypted. To find out the major and minor
IIS version numbers of an IIS instance running on a server called web01, you
can run this command sequence:

Get-WMIObject -class iiswebinfo -namespace "root\MicrosoftIISv2" -computer web0l
-authentication 6 | Select-Object MajorIISVersionNumber,MinorIISVe
rsionNumber | Format-List

The key portion of this code snippet is in the Get-WMIObject call. In
particular, you now have to explicitly specify the namespace because
MicrosoftlISv2 doesn’t exist in the default root \CIMV2 namespace. The class
you're interested in is iiswebinfo because this class contains information
related to the IIS version number. If you're running this command on a com-
puter other than the Web server, you have to specify the Web server’s com-
puter name with the -computer switch to run the query.

The most interesting part is the ~authentication parameter. This is new
to Windows PowerShell 2. Without specifying this ~authentication param-
eter with the value of 6, Windows PowerShell (well, actually the underlying
WMI provider) returns an Access Denied error message. The value of 6 sets
the authentication level to PacketPrivacy, which authenticates, verifies,
and encrypts data transferred between client and provider.

As you can see in Table 8-4, you can choose from seven authentication levels.
In Windows PowerShell 1.0, you were limited to only the default settings, so
this a nice new feature in Windows PowerShell 2. Well, actually, it’s beyond
nice. Without this added feature, there would be no way you could use
PowerShell to interact with the Microsoft IIS provider using WMI.

Table 8-4 WMI Authentication Levels
Name Description Authentication
Parameter
Value
Default Authentication uses the default 0
settings.
None There is no authentication being used 1

at all.

Chapter 8: Working with WMI

Name Description Authentication
Parameter
Value

Connect Authentication happens only during 2

the initial connection between client
and provider.

Call Authentication happens at the begin- 3
ning of each call but subsequent data
isn't signed or encrypted.

Packet Authentication happens against all 4
data received from the client but
data packets are still not signed or

encrypted.
Packet All data transfer is authenticated and 5
Integrity verified. All data packets are signed

but not encrypted.
Packet The highest level of authentication: 6
Privacy All data is authenticated, verified, and

encrypted.

Pretending to Be Someone
Else Using Impersonation

When you connect to a WMI instance, you can also tell it how it can use your
credentials in order to perform a certain action. You specify the imperson-
ation level with Get-WmiObject using the -ImpersonationLevel param-
eter. You can choose between five different impersonation level values, as
listed in Table 8-5.

Table 8-5 WMI Impersonation Levels
Name Description ImpersonationLevel
Parameter Value
Default Uses the default value of the 0
remote host.
Anonymous Hides your credentials from the 1
WNMI provider.

(continued)

111

’ ’ 2 Part lll: Complex Data Description and Sharing

Table 8-5 (continued)

Name Description ImpersonationLevel
Parameter Value

Identify Enables WMI objects to query for 2
your credentials. Default for WMI
pre-version 1.5.

Impersonate Enables WMI objects to use your 3
credentials when running, thereby
impersonating you. This level is
the default for WMI version 1.5
and later.

Delegate Lets WMI objects impersonate 4
you and additionally use your cre-
dentials to access other objects
on other systems.

You won’t normally have to specify the impersonation level. However, if you're
connecting to a WMI provider on a different computer, you might have to set the
impersonation level to 3 (Impersonate), especially if you don’t know the WMI
version of the remote host ahead of time. This is because prior to WMI ver-
sion 1.5, the default impersonation level is Ident i fy, which is good enough for
local WMI queries but insufficient for running remote WMI commands.

You can use the Delegate impersonation level only if all the accounts
involved in the WMI query have been given trusted-for-delegation permissions
in Active Directory. This is a safeguard for using Delegate access because
it allows a remote computer to impersonate you on yet another remote com-
puter. Needless to say, with sufficient privileges and malicious code, this can
potentially be very harmful, so be careful when using the Delegate imper-
sonation level.

Using the New WMI Cmdlets

The authentication parameter of the Get-WMIObject Cmdlet isn’t
the only new WMI feature for Windows PowerShell 2. In fact, three new
Cmdlets specifically dealing with WMI are now available to you. These
newbie Cmdlets are Invoke-WMIMethod, Remove-WMIObject, and Set-
WMIInstance, which I describe in the following sections.

Chapter 8: Working wittwmi]] 3

Making things happen
with Invoke-WMIMethod

WMI isn’t all about being able to query properties. You can also use WMI to
take action through different WMI providers by invoking methods defined in
the WMI class. Methods are code blocks that are designed to perform a spe-
cific action. For example, the Win32_Service class has a StartService
and StopService method that you can use to start and stop services. For
example, to stop the World Wide Web Publishing Service (W3 SvC), run this
command:

Invoke-WMIMethod -path "Win32_Service.Name='W3SVC'" -name StopService

You use the -path parameter to specify a specific instance of the Win32_
Service class to run this method on. In this case, you tell it to run against
the Wwin32_Service instance where the Name property is equal to w3 svc.
The -name parameter gives it the name of the method you want to call.

Some methods require arguments to be specified so that it knows what to
do. A good example of this is the Create method for the Win32_Process
class. The Create method is used to create a new process, but to so it needs
the name of the executable that you want it to run. If you want to use WMI to
start Internet Explorer, you can run this command:

Invoke-WMIMethod -class Win32_Process -name Create -argumentlist "C:\Program
Files\Internet Explorer\iexplore.exe"

Notice how you use the ~argumentlist parameter to give the Create
method the argument it needs to perform its task.

WMI classes can define their methods as being instance- or static-based:

v An instance method relies on a specific instance of a class to act upon.
The StopService method of the Win32_Service class is a good
example of an instance method. You can call StopService only
on a specific service instance. Just telling the Win32_Service to
StopService doesn’t work because it doesn’t know which service
you're talking about.

v A static method can be run on a class regardless of instance. The
Create method of the Win32_Process class is a good example of
a static method. You don’t need a specific Win32_Process to call
Create — you're creating a whole new process anyway, which in
general is not dependent on any other process.

1 ’ 4 Part lll: Complex Data Description and Sharing

\NG’
&

Deleting objects using Remove-WmiObject

You can use the Remove-WmiObject to send a WMI object to its virtual
grave. Of course, this works only on objects that you can actually delete —
for instance, you can’t use Remove-WmiObject to make your RAM magically
disappear. You'll typically use this Cmdlet to get rid of objects such as files,
printers, registry keys, and processes.

This Cmdlet has about as many arguments as Get-WmiObject, so it’s quite
flexible. In practice, though, there’s a much easier way to use this Cmdlet.
You simply use Get-WmiObject to get the list of objects you're interested in
and then pipe it into Remove-WmiObject, and voila, they’re done.

Here’s a good little exercise that shows how cool this Cmdlet actually is:

1. Open Notepad on your computer.
2. Run the following code:
Get-WmiObject -query "Select * from Win32_Process where name='notepad.exe'"

If you have Notepad open, it returns all the information you ever want to
know about the notepad. exe process.

3. Now run this code:

Get-WmiObject -query "Select * from Win32_Process where name='notepad.exe'"
| Remove-lmiObject

Notepad is no longer running on your computer, all thanks to Remove-
WmiObject.

Remove-WmiObject is quite powerful, and because it’s designed as a fairly
destructive Cmdlet you should make sure the objects you want to remove are
in fact the ones you really want to get rid of. The best way to do this is by que-
rying for the WMI objects and making sure the right objects are returned
before piping it into Remove-WmiObject.

Setting WMI properties using
Set-Wmilnstance

The Set-WmiInstance Cmdlet is used for setting read-write WMI proper-
ties. Although a vast majority of WMI class properties are read-only, quite
a few aren’t, and this Cmdlet lets you take advantage of those properties.
An example of a class that has a read-write property is the win32_
Environment class. It defines all the environment variables on the system.

Chapter 8: Workingwithwmi] 75

You can see all the environment variables defined on your system by running
this line:

Get-WmiObject Win32_Environment

Each environment variable consists of three properties: Name, Variable
Value, and UserName. The Name and VariableValue properties contain
the names and values of these variables, and the UserName defines the user
where the variable applies to. An entry of <SYSTEM> means it’s a system
variable, but if you see a specific username in there then those represent
user variables.

To create a new system environment variable called Myvariable with a
value of MyValue, you use the Set-WmiInstance Cmdlet like this:

Set-WmiInstance -class Win32_Environment -argument @{Name="MyVariable";VariableV
alue="MyValue";UserName="<SYSTEM>"}

The -argument parameter is where you specify the name/value pairs that
will be created. The argument value is in the format of a hash table. 1 go

over hash tables in greater detail in Chapter 11, but for now suffice it to say
that a hash table is data structure that maps keys to values. In the Set-
WMIInstance command you issue in this section, an example of a key would
be Name, and MyVariable is an example of a value.

1 ’ 6 Part lll: Complex Data Description and Sharing

Chapter 9
Bringing Strings into the Limelight

In This Chapter

Understanding the ins and outs of strings
Manipulating strings

Dealing with string positions

Altering the case of strings

Performing powerful string pattern matches using regular expressions

thher you'’re writing e-mail or browsing the Web, you're constantly
interacting with some form of text. Besides the spoken word, text is

one of the most common ways we communicate with one another. In fact,
I’'m communicating with you right now through text. Even though comput-
ers are really just oversized and overpowered calculators, when it comes to
interaction between humans and computers, text is the natural choice for
communication. I mean, how useful would it be for the computer to display
1101000 1100101 1101100 1101100 1101111 to greet you instead of
writing Hello onscreen?

Interacting with computers by using text is important, which is why display-
ing, reading, and manipulating text are key features of any programming or
scripting language. PowerShell provides all the bells and whistles to make
all this work easy for you. In this chapter, you find out just how surprisingly
capable PSH is at dealing with and manipulating text. Armed with this knowl-
edge, you'll be parsing, filtering, and doing all kinds of fun stuff with text in
no time.

Taking Vour First Look at Strings

The technical name for text is string. Although you normally think of text

as having some meaning, a string is really nothing more than a consecutive
sequence of characters. It doesn’t matter what characters are placed next to
one another; they all form strings. Some examples of strings are

1 ’ 8 Part lll: Complex Data Description and Sharing

This is a string
Ldf3r3j814
@@fdfds338adsvk

f

SDf sdfdki weird string

As you can see, a string can contain any character you want, can be

any length, and can include any white space such as spaces and tabs.
Theoretically, string length is unlimited, but in the real world, the length of a
string is limited to the amount of memory you have.

Differentiating between
empty and null strings

You can have a string that has zero length, which is a string that doesn’t
contain any characters, called an empty string. You can also have a string
with no length. Wait — isn’t a string with zero length the same as one with
no length? Well, not exactly. A null string is a special kind of string that hasn’t
been defined yet, so it doesn’t contain anything and doesn’t have a length. Its
value is the special automatic variable called $null.

If a variable has a data type of string and is defined but initially isn’t given a
value, it contains a null string instead. If empty strings are merely strings that
don’t contain anything, why can’t null strings just initialize to an empty string
so we can do away with the null-string concept altogether? The answer is
that this concept exists so that you can differentiate a string that hasn’t been
initialized yet from a string that is purposely set to have no value.

If the string is part of a command line parameter, for example, you can check
to see whether the value is equal to $null, which means that the user didn’t
provide a value for this parameter. This string is very different from an empty
string, because even though it’s just an empty (blank) string right now, the
user provided a value for it.

Creating literal strings

Strings are everywhere in Windows PowerShell. They exist as properties for
various objects. Also, they can be returned by different object methods. The
most direct way to create a string is to define what’s called a literal string.

\\3

Chapter 9: Bringing Strings into the Limelight ’ ’ 9

You create literal strings by enclosing a sequence of characters in double
quotes. This way, you are literally defining the string. A literal string looks
like this:

"This is the definition of a literal string"
"...and here is another string"
"and a string with some random characters 35vndaa3s$s%@32"

Sometimes, strings are created for you automatically. When you combine a
string with another data type, for example, Windows PowerShell automatically
tries to convert that data type to a string for you.

Simplifying using Here-Strings

When you have to define a string that has line breaks or special characters
such as double quotes, you can do so by joining multiple strings like this:

SregularString = "First line of string n" +
"Second Line'n" +
"Third Line"

Write-Host SregularString

As expected, you get this output:

First line of string
Second Line
Third Line

Although this code works, typing all those plus signs and " n characters to
generate a new line gets tiresome, especially if you're trying to define a string
that is many more lines long. To make your life easier, you can use a Windows
PowerShell feature called Here-Strings. You create a Here-String by
starting it with an at (@) sign followed by a double quotation mark and then
anew line. You end a Here-String by using a double quotation mark fol-
lowed by the @ sign, and this needs to be done on a new line by itself. Windows
PowerShell treats all the text in between those symbols like a literal string.
This means that if you put a new-line character in that space, that new line is
preserved when you use the string. The Here-String version is the exact
equivalent of the preceding string example. See how much simpler it looks:

SmyHereString = @"

First line of string
Second Line

Third Line

"@

Write-Host SmyHereString

1 20 Part lll: Complex Data Description and Sharing

SMBER
S

The best part about Here-Strings is that (because Windows PowerShell
treats everything between the start and end of a Here-String literally) you
can even include quotation marks in a Here-String, and PowerShell won’t
get confused. Here’s an example:

SnoProblemString = @"

This is a Here-String with quotation marks.

I can enter "I am in quotes" here and it will
Display correctly if I output this string.

ll@

Write-Host SnoProblemString

Make use of Here-Strings whenever you find yourself defining a very long
string that includes new-line characters or quotation marks.

Performing String Surgery

You often need to manipulate strings to create new ones, such as splitting
them apart, combining them, or grabbing particular segments of a string.
Luckily, Windows PowerShell can provide a rich set of methods for string
manipulation because it’s built on top of the .NET Framework.

Combining strings

Because you often want to put strings together dynamically (as needed when
the code runs), combining strings is one of the most common string opera-
tions. A typical use is when you want to output some information onscreen
by combining some literal strings with variable values, as in this example:

for ($1i = 0; S$i -1t 5; Si++) {
Write-Host ("The current value is: " + $i)

}

You simply use the plus (+) operator to combine two strings. You can com-
bine more than two strings by using the plus operator between all the strings
you want combined, as shown here:

Sa = "Windows PowerShell " + "For Dummies"
Write-Host Sa
Sb = "Windows " + "PowerShell " + "For " + "Dummies"

Write-Host S$b

Chapter 9: Bringing Strings into the Limelight

MBER
é“'
&

Combining strings with nonstrings

You can combine strings with other data types that aren’t strings, provided
that those data types can be converted either implicitly (automatically by
PSH) or explicitly (by first casting the value as a string). (For more about data
types, see Chapter 5.) When you combine a string with a nonstring value, and
the string shows up first when you're reading the values from left to right,
the nonstring value is implicitly converted to a string and then combined
using the usual method. Does this process sound confusing? It’s easier than it
sounds. Take a look at this code snippet:

SmyString = "You are number "
SmyNum = 1

Write-Host (SmyString + SmyNum)
Write-Host (SmyNum + SmyString)

As expected, the first call to Write-Host displays You are number 1.
Windows PowerShell sees that you're combining a string and a number (in
this case, an integer), so in the background, it first converts the number 1 to
the string 1 and then continues to combine the two strings.

The second call to Write-Host results in an error message saying that

it can’t convert "You are number" to atype "System.Int32". Here,
Windows PowerShell sees that you're combining a string and a number as
well, but because the first value it sees is a number, it tries to convert the
second value to the same data type. Because the string "You are number"
doesn’t represent a number, Windows PowerShell spits out an error.

The solution to the problem of combining a string and any other value, even
though the first value is not a string, is explicitly converting the other value
by casting (changing) it to a string. To do this, you add [string] before
the variable name to tell Windows PowerShell that you want this value to be
treated as a string (which forces the conversion). This modified version of
the second Write-Host statement works the way you want it to:

Write-Host ([string]S$myNum + SmyString)
To force a value that isn’t a string to be treated as a string, prefix it with

[string] to tell Windows PowerShell that you want to cast it into a string
data type.

121

1 22 Part Ill: Complex Data Description and Sharing

Splitting strings

If you can combine strings, you have to have a way to split them apart. You
might have quite a few reasons for wanting to take a string apart. You may
want to take a string that’s delimited by a certain character, such as a line
from a comma-separated value (CSV) file, and get the individual strings that
represent different columns of data. Sometimes, you need to take just a por-
tion of a string, such as the first three characters of a name.

To split strings, you use nothing other than the (drumroll, please) split
method. The split method, in its simplest form, splits a string into an array
of strings by using spaces and tabs as delimiting characters. I discuss arrays
in Chapter 11, but for now, you can consider an array to be a group of similar
items that you can reference with an index. Think of an array as being a line
of schoolchildren, with each child (element) standing behind another. Then
you can refer to a child in that line based on his or her position, such as the
fifth child (counting from the front of the line).

Here’s a code snippet that takes a string with spaces and uses the split
method to break it into multiple strings:

Sstr = "This book is fantabulous!"
Sstr.split()

The output of that command sequence is

This

book

is
fantabulous!

Although that code is pretty cool and a neat trick, it doesn’t seem to be very
useful. To put some meat on the bone, have a look at the next example. You
have an [P address as a string, and you want to split the IP address so you
can find out the value of any of the four octets of that IP address. The split
method comes to the rescue again:

SmyIP = "192.168.10.100"
SipArr = SmyIP.split(".")
Write-Host ("Number of elements in ipArr" + SipArr.length)

Write-Host ("First octet: " + SipArr([0])
Write-Host ("Second octet: " + SipArr[l])
Write-Host ("Third octet: " + SipArr[2])

(]

Write-Host

"Fourth octet: " + SipArr([3])

Notice a few interesting things in this example? Look at the call to the split
method, which takes a string as a parameter that specifies what characters to
use as delimiters. By running SmyIP.split with "." as the parameter, you
instruct the split method to take the string stored in $SmyIP and split it into
substrings, using a period as a delimiter.

An array has a property called 1ength that defines how many items are
stored in it. The example displays the number of elements to show that
after the split method is called, $ipArr indeed has an array for four ele-
ments, just as expected. To grab the individual elements of the array, you
reference it by using the array’s index notation, which is in the format
Sarrayname [index].

Arrays are zero-index based, meaning that the first element is referred
to as Sarrayname[0], so to find out the second element you need to
specify Sarrayname [1]; to find the third element, you use Sarray-
name [2]; and so on. To get to any index you want, you have to specify
Sarrayname [position - 1].

When specifying the delimiter in the sp1it method, you're not limited to
one character. If you use multiple characters as delimiters, you can simply
combine them all and provide a string of all the delimiters. This code snippet
is functionally equivalent to the preceding code snippet, because it treats a
period, a colon, and a semicolon as delimiters in the given string:

SmyWierdIP = "192.168:10;100"
SipArr = SmyWeirdIP.split(".:;")
Write-Host ("Number of elements in ipArr" + S$SipArr.length)

Write-Host ("First octet: " + SipArr([0])
Write-Host ("Second octet: " + SipArr[l])
Write-Host ("Third octet: " + SipArr[2])
Write-Host ("Fourth octet: " + SipArr([3])

Snipping off a piece of a string

Another common string operation is grabbing a particular portion of a string,
called a substring. A substring can be a portion of the beginning or end of

the string, or somewhere in between. If the string is delimited, you can use
the split method for this operation, but in general, if you have a string and
want to grab any given substring from it, you use the substring method.
Have a look at this piece of code:

Sname = "Steve Seguis"

Spartl = Sname.substring (0, 3)

Spart2 = $Sname.substring($name.length-4,4)
Write-Host ($Spartl + Spart2)

Chapter 9: Bringing Strings into the Limelight ’ 23

1 24 Part lll: Complex Data Description and Sharing

\\3

a\\S

W
g‘*‘

NG/

Here, I define my full name as a string. Using the substring method, I tell
Windows PowerShell to return the first three characters of $name and assign
it to $partl. Then I tell it to grab the last four characters of $Sname and
assign it to Spart2. Finally, I combine these two substrings to generate the
output Steguis.

The substring method of a string takes two parameters. The first param-
eter is the offset from the first position (start from the left) of the string to
where you want to start grabbing characters. The number 0 is used to denote
the first character. The second parameter is the 1ength of the substring. It
defines how many consecutive characters you want to retrieve starting from
the offset provided in the first parameter.

Whenever you want to grab a certain number of characters starting from the
beginning of a string, just use $stringvariable.substring (0, Iength),
where Iength is how many characters at the beginning of the string you want
to return.

All strings also have a 1ength parameter that tells you how many characters
are in the string. To get a substring of a given length starting from the end of
a string, you have to perform some math, using the string’s length and the
number of characters you want to determine the starting point that the sub-
string method requires.

Whenever you want to grab something from the end of a string, just use
Sstringvariable.substring($Sstringvariable.length - count,
count), where count is the number of characters you want, starting from the
last character.

As I mention earlier in this section, you're not limited to taking just the first
or last part of a string. You can use the substring method to grab any por-
tion of a string, as in this example:

Stest = "The sky is cloudy!"
Write-Host Stest.substring(4,6)

This code snippet outputs sky is because it takes the substring starting
with offset four (which is really the fifth character in the string) and returns
the next six characters.

When using substrings, it’s very easy to introduce errors into your code, so
you should employ some defensive programming to protect yourself. If you
write a script and assume that a given string variable will always contain a
string that is more than six characters and use the substring command to
return the first four characters, what happens if the script suddenly encoun-
ters a value that has only three characters? The result is an error that causes
the script to quit. To guard against this error, you can wrap the substring
statement in an i f/else clause to make sure that the length of the string is at
least the number of characters you want to extract, as in this example:

Chapter 9: Bringing Strings into the Limelight ’ 25

Sa = "abc"
if ($a.length -ge 4) {

Write-Host ("First four characters are: " + Sa.substring(0,4))
} else {

Write-Host ("String has less than 4 characters: " + $a)

}

Here, you check whether the length of $a is greater than or equal to four. If it
is, you display the first four characters; otherwise, you tell the user that the
string has fewer than four characters and just output the entire string.

Performing string substitutions

There’s a common saying among management staff: “Everyone’s replace-
able!” Although this saying is true, I've always found it to be a bit disturbing.
Unfortunately for poor little strings, the saying is true even for them. You can
replace any part of a string with another string by using the string’s replace
method. Consider this code snippet:

Sstr = "Steve is Evil!"
Snewstr = Sstr.replace("Evil", "Good")
Write-Host Snewstr

This example literally replaces Evil with Good. The replace method takes
two parameters. The first parameter is the string you want to replace in the
string, and the second parameter is the string you want to replace it with. If
the string you want to replace doesn’t exist, nothing is replaced.

Working with String Positions

Sometimes, you need to find the position of a string in another string,

most commonly to calculate the starting position for grabbing a substring.
Suppose that you have an e-mail address as a string. Now you need to extract
the user and domain information based on the e-mail address. You can do
this operation easily in your head, because you know that the username is
whatever comes before the @ sign and the domain name is what comes after
the @ sign. You can perform this operation in Windows PowerShell just as
easily by using something like this code snippet:

Semail = "someone@dummies.com"

Satpos = $Semail.IndexOf ("@")

Suser = Semail.substring(0,Satpos)

Sdomain = $email.substring($atpos+l, $email.length-($Satpos+1))
Write-Host ("Username: " + $user)

Write-Host ("Domain: " + $domain)

1 26 Part lll: Complex Data Description and Sharing

\\3

As you can see in the code snippet, you can find out the position of a string in
another string by using the Index0Of method. You call the Index0f method
on the string you're searching in (which in this case is $Semail), and the
parameter of IndexOf is the string you're looking for. The value this code
returns is the index within the string that contains the first occurrence of the
given search string. If the search string isn’t found, the return value is -1.

This example returns a value of 7, which is stored in $atpos. Notice, how-
ever, that the @ sign is the eighth character in the string. Why does the code
return 7? Remember that when you're referring to string indices, the first
character is always index 0; the second character is index 1; and so on.
Because the @ symbol is the eighth character in the string, the corresponding
index is 8-1, or 7.

Getting the username is very easy, because you just use the template for pull-
ing substrings that start from the beginning of the string. You start by using
the substring method and have it start at the beginning by using 0 as the
first parameter. To get the length of the string, you can just use the value of
Satpos because it already contains the value that’s equal to the length of the
string that comes before it.

You can extract the domain name in a similar fashion, but the process
requires a tiny bit more math. You have to set the starting point of the sub-
string to $atpos+1 because you want to exclude the @ sign from the string
that the code returns. To get the length of this substring, you need to take
the length of the string and subtract the position you start with.

Another really good and common use of the ITndex0Of method to get the string
position is performing comparisons of partial strings. Suppose that you're
writing a script that expects the value of a certain variable to contain a valid
e-mail address. A simple check for this value is to make sure that the string
contains an @ sign. In the real world, of course, this check isn’t enough to vali-
date an e-mail address, but for the purpose of this example, you can create a
simple test to see whether the value might conceivably be an e-mail address.
To make sure that a string contains an @ sign, you can do something like this:

Semail = "my invalid_email_address"
if (Semail.IndexOf ("@") -1t 0) {
Write-Host "Invalid email address!"
} else {
Write-Host "Valid email address!"

}

The IndexOf method always returns a value greater than or equal to 0 if it
finds the given search string in the string where this method is called; oth-
erwise, it returns -1. You can take advantage of this fact by checking to see
whether the return value of IndexOf is less than 0 to determine whether a
match wasn’t found.

Chapter 9: Bringing Strings into the Limelight ’ 2 7

Changing the Case of Strings

Strings come in all shapes and sizes, and sometimes, you want to create
some uniformity in their display. One way to keep string output uniform is
to make sure that all the characters are uppercase or lowercase. This feat is
easy to accomplish; strings have the built-in capability (with the ToUpper
and ToLower methods) to change the case of all their characters. Here’s an
example:

Sstr = "My MiXed CaSE stRInG"
Write-Host S$Sstr.ToUpper ()
Write-Host S$str.ToLower ()

Coding really doesn’t get any easier than that. Although this example is con-
venient, its limitation is that these two methods convert the entire string

to uppercase or lowercase. What if you only want the first character to be
uppercase and force the remaining characters to be lowercase? A good exam-
ple of this scenario is if you're displaying first names and want the characters
to be in that specific format. This task is doable, requiring just a little bit
more effort, as in this example:

Sname = "STEVE"

Sa = Sname.substring(0,1) .ToUpper ()

Sb = Sname.substring(l, $Sname.length-1) .ToLower ()
Write-Host (Sa + S$b)

Here’s where substrings really come in handy. Because the ToUpper and
ToLower methods affect the entire string, you just split the string into sub-
strings, apply the appropriate case-changing methods to the substrings, and
then recombine.

Using Regular Expressions

I've always found the term regular expressions to be a bit funny, because I find
nothing “regular” about them at all. Also, this term begs the question “Are
there irregular expressions?” (There aren’t, by the way).

A regular expression (RegEXx, for short) is nothing more than a string that
describes a search pattern. The best part is that as simple as they sound, reg-
ular expressions really give you a lot of power to define very specific search
patterns. Before you can use regular expression in Windows PowerShell
(which turns out to be very easy), you need to know how to create regular
expressions (which, unfortunately, turns out to be more difficult).

1 28 Part lll: Complex Data Description and Sharing

A\

MBER
@&
&

Again, because Windows PowerShell is built on top of the .NET Framework, it’s
no surprise that when you use regular expressions in Windows PowerShell,
you're actually using the Regex .NET class. This means that if you see any
documentation using regular expressions in .NET, you can use the same infor-
mation and apply it to Windows PowerShell.

The most direct way to use regular expressions is to use the Regex object’s
methods directly. You can see whether a string contains a particular charac-
ter or substring by doing something like this:

[Regex]::IsMatch("This book is really interesting.", "book")

This code snippet just looks to see whether the string "This book is
really interesting" contains the string "book". If so, it returns true;
otherwise, it returns false. In this example, "book" is a very simple regular
expression using what'’s called literal characters (which I get into in the next
section). You can put any kind of regular expression you want in place of
"book" to perform your desired search. Here’s another quick example:

[RegEx] : : IsMatch ("I have 2 siblings.","[0-9]")

The regular expression I'm using here is just a bit more powerful. " [0-9]"
means “match any digit from 0 to 9,” which in this case will match the 2.

Imagine trying to do that with the string’s Index0f method. You'd have to
have ten separate calls for IndexOf to look for each character separately.

The actual regular expressions are the second parameter in the IsMatch
method; the first parameter is simply the string you want to search in. For the
rest of the examples in this chapter, where | use IsMatch to demonstrate how
a particular regular expression works, you need to pay attention only to the
second parameter, because that’s the actual regular expression.

People have written books longer than this one on regular expressions,
which says a lot about how powerful they really are. Luckily for you, I don’t
spend the rest of this book teaching you regular expressions. Instead, [use
the rest of this chapter to show you the most important regular expressions
concepts you need to know.

Creating the simplest RegEx
using literal characters

Probably the most fundamental and natural of all the regular expressions

is a literal character, which is a single character match. If you have a string
such as “Regular expressions are powerful!", and your regular
expression is the character u, the code will find a match based on the first
occurrence of u in that string. You can also combine characters to perform a

Chapter 9: Bringing Strings into the Limelight ’ 29

match. So given the same string as before, if you have the regular expression
“press", the code will match the first occurrence of the string "press",
which in this case is the substring "press" in the word “expressions”:

[Regex] ::IsMatch("Regular expressions are powerful!", "press")

In some ways, this method is very similar to the Index0Of method you use in
the preceding section to find a position of a substring in another string. The
difference is that by default, regular expressions are case sensitive. Searching
for windows in Windows PowersShell won’t return a match because the
code is specifically looking for windows in all lowercase characters.

Although you can use any character you want for your literal character search,
you have to watch out for special characters, which are characters that have
special meaning in regular expressions. These special characters are

v Backslash: \

v Dollar sign: $

v+ Dot: .

v Pipe:

v Question mark: ?

v~ Star: *

v~ Plus sign: +

v Open square bracket: [

» Open parenthesis: (

v Close parenthesis:)

v Caret: ©
If you want to use any of these characters as a literal character, you must
first escape (mark to not treat as special) it by prefixing it with a backslash
(\). In the following example, I'm looking for dummies . com in the given

string. Because dummies . com contains a special character (namely, the dot)
[have to write the expression as "dummies\ .com" instead:

[RegEx]::IsMatch("Visit us at www.dummies.com.", "dummies\.com")
The dot operator is a very powerful character because it matches any single
character except for a new-line character (typically used if the string you're

searching in consists of multiple lines). Take a look at this example:

[RegEx] : :IsMatch("bell", ".ell")

130 Part lll: Complex Data Description and Sharing

WING/
&

This example returns true because the RegEx " .el11" means any character
followed by "el1". As a result, it also matches cell, tell, and well — and
also "4ell" and "#ell". In other words, it matches anything followed by
"ell". The dot is a single-character wildcard.

You really should use the dot as a single-character wild card sparingly. You
have much better ways to describe string patterns, and these methods give
you much more control of which values are actually valid. What [mean by this
is that you should be as specific as possible when describing your pattern.
For instance, if you know it’s going to be a numeric value, then use the pat-
tern [0-9] instead of just using the dot which will match any single character
including non-numeric values.

Performing more dynamic searches
using character sets

Often, you need to perform a match based on variations of characters. A very
obvious example is looking for a digit from 0 to 9. Conducting a search like
this one without using regular expressions is tedious at best, so being able to
formulate a RegEx to describe this pattern is a godsend for lazy people like
me. Consider this code snippet:

Susername = "testuserl"
[RegEx] : : IsMatch (Susername, "testuser[0-9]")

Here, you have a username variable that contains the value testuserl. If
you want to check for a match of this string, you can just perform a literal
match. But if you want to match any testuser string followed by a number,
you must instead replace the digit at the end with [0-9] instead. This code
matches anything that contains the string testuser followed by a single
digit from 0 through 9. [0-9] is called a character set and is used to define a
list or range of characters that you want to find in a given position.

A character set defines a list or range of characters to match exactly one char-
acter within a given search string.

You aren’t limited to a range of characters such as [0-9] or [a-z]. You can
also define a list of characters you want, as in this example:

Sname = "Anna"
[RegEx] : : IsMatch (Sname, "Ann[ae] ")

Chapter 9: Bringing Strings into the Limelight

Here, | want the name to match either Anna or Anne. I do this by making the
last character a character set of [ae], which means that a match will occur
whenever the string Ann is followed by either a lowercase a or a lowercase e.

If you want to exclude characters from a match, you can negate a character
set by prefixing it with the caret (*) symbol. This example shows how you
can look for a substring that ends in "ood" and starts with any character
except for f or h:

[RegEx] : : IsMatch("food", "[~“fh]ood")

By placing a caret symbol within the character set [~fh], you negate the
statement and change its meaning to match any character except £ or h.
So this example returns a value of false, because "food" starts with the
letter £.

As you might expect, writing regular expressions tends to get a bit tedious.
Some character sets are so common that some shortcuts for using them have
been defined. Table 9-1 lists the most common shortcuts.

Table 9-1 Most Common Shortcuts for Character Sets
Character Description Equivalent Character
Set

\d Any digit from 0-9 [0-9]

\w Any digit, uppercase and lowercase [A-Za-z0-9_]
letter, and underscore

\s White-space characters (space, tab, [\b\t\n\r]
new line, and carriage return)

\D Not a digit [~0-9]

\W Opposite of of \w. Any char- [*"A-Za-z0-9_]

acter that is not any
digit, uppercase and
lowercase letter or
underscore.

\S Negative of \s. Any character [~ \b\t\n\r]
that is not a whitespace
character.

131

132 Part lll: Complex Data Description and Sharing

Using modifiers to define optional
or repeating sequences

The character sets you've looked at so far in this chapter are useful for repre-
senting various character permutations for a given match, but you also need
a way to define repeating characters or even optional characters. Suppose
that you have a script that needs to find a match to the word "favorite".
You can use a literal character match (refer to “Creating the simplest RegEx
using literal characters,” earlier in this chapter), but what if the script also
must work with either the American or British spelling of this word? You
need to do something like this:

[RegEx] : : IsMatch (" favorite", "favou?rite")
[RegEx] : : IsMatch (" favourite", "favou?rite")

Both of these calls return true. The reason is that the character u is fol-
lowed by a question mark (?). The question mark indicates that the preced-
ing character can exist zero times or one time, making it effectively optional.
Technically, the question mark indicates that previous token is optional.
Tokens can be single characters, character sets, or even multiple characters
enclosed in parentheses. In the following example, both statements return
true because the "day" portion of the string "Monday" is enclosed in
parentheses, making the entire substring a token, and followed by a question
mark, which means that "day" is optional:

[RegEx] : : IsMatch ("Monday", "Mon (day) ?")
[RegEx] : : IsMatch ("Mon", "Mon (day) ?")

Repetition is another one of those patterns that you need to be able to
describe. Here’s a scenario in which repetition is useful. You work in an orga-
nization in which all the server names start with the string "SRvV" and are fol-
lowed by some other descriptive name and a number, such as “SRVWEB1” for
your first Web server. You can’t just use character sets, because you don’t
know how many characters may follow the string "SRV". You can create a
regular expression to define this pattern by using this statement:

[RegEx] : : IsMatch ("SRVWEB1", "SRV[A-Z0-9]+")
[RegEx] : :IsMatch ("SRVDC1l", "SRV[A-Z0-9]+")
[RegEx] : : IsMatch("SRVFILEL", "SRV [A-Z0-9]+")

All three of these statements return true. The plus (+) operator is used

to describe a pattern in which the previous token is repeated one or more
times. SRV[A-20-9]+ describes a sequence in which you have a substring
that starts with SRv and is followed by one or more uppercase alphanumeric
characters.

Chapter 9: Bringing Strings into the Limelight ’33

This solution isn’t perfect, though, because SRV [A-7z0-9] + also matches
TESTSRV2323. In other words, the string doesn’t have to start with SRv.
Rather, a substring must contains the sequence SRV followed by any char-
acter one or more times, which can also include just numbers. To refine this
code a little, you can change it to something like this:

[RegEx] : :IsMatch ("SRVFILEl", "SRV[A-Z]+[0-9]")

This example is a little bit better because now you’re saying to match a sub-
string that starts with SRV followed by one or more capital letters and then a
digit from 0—9. This code matches the naming convention better, but it still
has the limitation of not enforcing the convention that the string itself must
start with SrRv. (I address this limitation in the next section, “Using anchors
to maintain position.”)

The plus operator is good at defining repetition, but what if the repetition
is optional? Suppose that you want to perform a name search in which the
string that defines the name starts with Ann but can have zero or more let-
ters after it. The first thing that might come to your mind is

[RegEx] ::IsMatch("Ann", "Ann[a-z]+")

This example works in most cases and matches variations such as Anna,
Anne, and Annie. The problem is that it won’t match the name Ann because
the plus operator requires the token (which in this case is the character set
[a-z]) to exist at least once. How do you solve this problem?

The answer is the star (*) operator, which is similar to the plus operator but
means that the preceding token must match zero or more times. Any time
you see the description “zero or more times,” it should automatically ring the
“It’s optional” bell. So the correct solution to the name-search problem is

[RegEx] : :IsMatch("Ann", "Ann[a-z]*")

This statement returns true because the remaining characters after "aAnn"
are optional.
GMBER .)
The plus (+) operator means that the preceding token is repeated one or
more times, whereas the star (*) operator means that the preceding token is
repeated zero or more times, making it optional.

Another problem with a repeating pattern is you have to be able to set limits.
If you have to define a pattern of characters that fits the format of a U.S. zip
code (which is five digits in sequence), you can do this by using character
sets:

[RegEx] : : IsMatch("90210","[0-9]1[0-9] [0-9] [0-9][0-9]")

134 Part lll: Complex Data Description and Sharing

This example works because you use a sequence of five character sets, each
of which restricts each character to a digit from 0-9. The code is a bit inef-
ficient, however, and — dare I say it? — tedious. The way to correct this is
to define repetition limits using curly braces. You can define a sequence of
exactly five numeric characters like this instead:

[RegEx] : :IsMatch("90210","[0-9]{5}")

The number inside the curly braces indicates exactly how many times the
preceding token must repeat to represent a match. You can also use the
curly braces to define a range of repetition counts. If you want to describe a
string that starts with "USER" and ends in a sequence of two to five upper-
case letters, you can use

[RegEx] : :IsMatch ("USERA", "USER[A-Z] {2,5} ")
[RegEx] : : IsMatch ("USERABC", "USER[A-Z] {2,5}")

Only the second statement returns true because the first statement has only
one character after the string "USER". The first value in the curly braces is
the minimum repeat count, whereas the second value is the maximum repeat
count.

Using anchors to maintain position

The regular expressions you've created so far in this chapter are wonderful,
but something is lacking: defining the position of the search string within the
string being searched. This factor is important, as you see in the server-list
example in the preceding section. To go back to that example briefly, you
know that a server name starts with SRV followed by some characters that
represent its function and then a number, such as SRVWEB1. The best you
can do with what you know so far is

[RegEx] : :IsMatch ("SRVFILEl", "SRV[A-Z]+[0-9]")

The problem, of course, is that this code also matches TESTSRVFILEL,
because a RegEx match looks for only the first occurrence of the given RegEx
pattern in the string. To fix this problem, you have to have a way to indicate
that this match must occur at the beginning of the string. You do this by
using the caret (*) symbol:

[RegEx] : :IsMatch ("SRVFILEl", "*SRV[A-Z]+[0-9]")
[RegEx] : :IsMatch ("TESTSRVFILEL", "~"SRV[A-Z]+[0-9]")

Chapter 9: Bringing Strings into the Limelight ’35

By adding the caret symbol to the beginning of your RegEx, you're saying that
this pattern must occur at the beginning of the string. Now the first statement
continues to return true, but the second statement returns false.

<P The caret symbol has two faces. When you use it at the beginning of a RegEx
as in the preceding example, you're using it as an anchor. When you use it
inside a character set, it acts as a negation operator, excluding the characters
defined in the set.

The opposite of the caret symbol is the dollar sign ($), which is used to per-
form a match at the end of a string, as shown here:

[RegEx] : :IsMatch("SRVFILEL", "SRV[A-Z]+[0-9]1S")
[RegEx] : : IsMatch ("TESTSRVFILEL", "SRV [A-Z]+[0-9]S")
[RegEx] : : IsMatch ("SRVFILELTEST", "SRV [A-Z]+[0-9]$")

By removing the caret symbol and putting a dollar sign at the end of the
RegEx, you're telling it to look for the pattern at the end of the string. The
first two statements return true, but the last statement returns false
because SRVFILEL (which matches the pattern) doesn’t occur at the end of
the string.

Coming up with alternatives

Sometimes, the pattern you're trying to describe by using RegEx has a finite
number of variations. If you want to perform a simple domain-name check
using a RegEx to look for a string that contains any number of alphanumeric
characters followed by a dot and then ending in com, edu, or net, you'd

do this:

[RegEx] : : IsMatch ("dummies.com", " [A-Za-z0-9]+\. (com|edu|net) ")

Examine the RegEx a little closer. The first part is [A-Za-z0-9]+, which
defines a sequence of one or more alphanumeric characters. The next ele-
ment is \ ., which is a literal dot (remember that you have to use the back-
slash to escape the special character). The last part is the most interesting.
You use the pipe (|) symbol to define various alternative matches. Because
you’re restricting this check to domain names that end in . com, . edu, or
.net, this method is the most efficient way to define those variations.

136 Part lll: Complex Data Description and Sharing

WING/

Making use of RegEx in
Windows PowerShell

So far, I've used [RegEx] : : IsMatch to help demonstrate the different regu-
lar expressions because it’s very simple and returns a true/false value

so that you can easily check to see whether an expression matches a given
string. An even easier way exists, however, to perform string comparisons
using regular expressions without having to use [RegEx] : : IsMatch. You
already know that you can perform an exact string match by using the -eq
operator. You can also use -match and -notmatch operators to compare
strings with a regular expression. Here’s how you can use -match to perform
a RegEx match on a given string:

Semail = "somebody@dummies.com"
if (Semail -match "[A-Za-z0-9]+@dummies.com") {
Write-Host "Semail is a dummies.com email address"

}

You can actually find many more uses for regular expressions. You can use
them to replace substrings by using the -replace switch, for example.
Here’s an example in which you want to replace a Web site’s name with the
string "WEBSITE NAME KEPT SECRET"

$str = "Visit us at www.dummies.com"
$newstr = $str -replace "www\.[A-Za-z0-9]+\. (com|edu|net)", "WEBSITE NAME KEPT
SECRET"

Write-Host S$newstr

The first parameter of -replace is the RegEx that describes the pattern
you want to find, and the second parameter is the string you want to replace
it with. Think of this switch as being a very powerful search-and-replace
feature.

Don’t confuse the -replace switch with the string’s replace method, which
performs a literal search and replace. The -replace switch allows you to
define regular expressions to describe the matching text that needs to be
replaced.

Chapter 10
I'll Take Numbers for $100, Please

In This Chapter

Examining numeric data types

Performing calculations

Using the [Math]::round method to round off numbers
Generating random numbers

Changing a number’s data type

Dealing with overflow

‘ omputers big and small have one thing in common: They’re excellent

number crunchers. Next to strings, numbers probably encompass one
the most widely used data types in any programming or scripting language.
It’s highly unlikely that you're going to use Windows PowerShell to perform
massive calculations to conduct weather simulations, but no matter how
hard you try, you just won’t be able to escape the need to deal with numbers.
The need can be something as simple as incrementing a value to control a
for loop or something a bit more complex, such as calculating the probabil-
ity of winning the lottery.

In this chapter, you use Windows PowerShell to perform many common
mathematical operations. Computer are just big calculators after all, so
knowing how to take advantage of PSH to make these calculations for you can
leave your brain cells to do more productive things, like reading the rest of
this book.

Putting Numeric Data Types
under a Microscope

I touch on data types in Chapter 5, but now [want to focus on just the
numeric data types in Windows PowerShell (which, not surprisingly, are the
same as .NET numeric data types). All the numeric data types in Windows
PowerShell can be classified in either of two categories: integral and
nonintegral data types.

138 Part lll: Complex Data Description and Sharing

Having a look at integral data types

Integral data types are whole numbers (numbers that don’t have decimal
values at the end). The only real difference among the four integral data
types is that each one supports a different range of values controlled by the
number of bits that composes it. The four integral data types are

v Byte: A byte (System.Byte in .NET) is an 8-bit unsigned data type that
has a range of values from 0 through 255. This data type is the only
numeric data type that can’t contain negative numbers. One use of this
data type is to represent the octets (another way to say “8-bit values™) of
a typical IP address. Because IP addresses consist of four octets, each
representing an unsigned value from 0 through 255, the byte data type
naturally is the ideal data type to represent these values. (For more info
on bytes, see the sidebar “Knowing your bits and bytes,” later in this
chapter.)

v Short: A short (System.Intl6 in .NET) is a 16-bit signed data type that
has a range of values from -32,768 through 32,767. Short is the smallest
of the signed integral data types. Typically, you use a short only if you
want to store lots of small signed values while minimizing the memory
footprint. In the real world, however, you rarely see the short data type
being used except maybe to hold a short value retrieved from a data
store such as a SQL database.

v~ Integer: An infeger (System.Int32 in .NET) is a 32-bit signed data type
that has a range of values from -2,147,483,648 through 2,147,483,647.
Integer is the basic data type of 32-bit processors because they pro-
cess 32-bit chunks of data at a time, which means that using integer
data types is optimal on these processors and results in the best per-
formance. This data type is also very convenient to use because it can
store a whole number within a range that’s more than 4 billion values
wide. That scenario covers 90 percent of the cases in which you need to
use whole numbers.

Integer is the default data type that Windows PowerShell uses when you
define an integral number, such as 28, without specifying the data type.

v Long: A long (System. Int64 in .NET) is a 64-bit signed data type
that has a range of values from -9,223,327,036,854,775,808 through
9,223,372,036,854,775,807. Obviously, it’s designed to store awfully large
numbers. You're going to need a long if you run out of values in an inte-
ger to represent the value you're trying to store. Realistically, though,
you’ll probably use this data type sparingly because in most cases, the
range is bigger than you’ll need and takes up twice as much memory.
The only upside to a long is that it’s a natural data type for use with
64-bit processors, which calculate 64-bit values faster than other -bit
values. Otherwise, unless you plan to add large values (to calculate the
national debt or count the days until you can afford that red Ferrari),
you probably won’t use this data type much.

Chapter 10: I'll Take Numbers for $100, Please ’3 9

Getting precise using nonintegral
data types

Nonintegral data types are data types that aren’t integral. (Ha! I bet you didn’t
expect that lame definition, did you?) Actually, this definition is mostly true
no matter how blatantly obvious and third-gradeish (is that even a word?)

it looks. Nonintegral data types are simply values that can contain fractional
(decimal) values. You use them when you want to get really precise, as in
storing the value of pi (3.14159265 . . .). The nonintegral data types are:

v Decimal: When you perform calculations involving incredibly large num-
bers that must be super-precise, such as calculating financial data or
measuring distances to satellites in space, the decimal data type is what
you want by your side. A decimal (System.Decimal in .NET) is a 96-bit
signed value that can represent values up to 7.9228x10%. I could write
out the exact value, but I think it’s sufficient to say that it can represent
enormously large numbers and, likewise, ridiculously small fractions of
a value.

v~ Single: A single is a single-precision IEEE 32-bit floating-point value from
-3.402823x10% to —3.402823x10%. It’s also the smallest of the nonintegral
data types, but in most cases, its range of values is wide enough to cover
most instances in which you need to calculate fractional data.

IFEE (pronounced “Eye-triple-E”) originally was an acronym for Institute
of Electrical and Electronics Engineers, a nonprofit organization com-
prised of industry associations that focus on the advancement of tech-
nology. Today, however, IEEE is a word of its own. The scope of IEEE has
grown so much over the past few decades that it’s now much larger than
that covered by its original meaning.

v Double: A double is a double-precision IEEE 64-bit floating-point value
from —1.79769313486231x103% to 1.79769313486232x103%, Because it con-
tains double the number of bits to represent a fractional value, it’s much
more precise than a single (but still not as precise as a decimal). What
does this mean in plain English? If you're representing a value that has
a fractional component and want it to be more precise than a single, but

&QN\BEH the value doesn’t have to be as precise as a decimal, use this data type.
<

Double is the default data type that Windows PowerShell uses for nonin-
tegral data types unless you specify otherwise.

Doing Some Calculations

At some point you’ll use numbers to perform various calculations, no matter
how simple or complex those calculations may be. The four most important
operations are addition, subtraction, division, and multiplication.

14 0 Part lll: Complex Data Description and Sharing

Adding things up

The most commonly used mathematical operation is probably addition. You
add things up all the time, such as the cost of all the items in your shopping
cart or the number of tiles you'll need for that bathroom makeover. You add
two numbers in PowerShell by using the plus (+) operator, as shown here:

Ssum = 2 + 2
Write-Host Ssum

This example contains nothing really earth-shattering. A number plus
another number equals some value. You can add only values that have the
same data type. Luckily for you, Windows PowerShell also converts differ-
ent data types for you automatically so that it can add the values correctly
without requiring you to do any extra work. Adding an integer to a double,
for example, works without any problems because Windows PowerShell
automatically converts the integer to a double, and the resulting data type is
added to the other value to return a double as well:

Ssum = 4 + 9.321
Write-Host S$sum.gettype () .Name
Write-Host Ssum

[output the type of $sum to show that it is indeed a double and that the value
of sum will be 13.321, as expected. Sometimes, you just want to change a
variable by adding a value to it, as in this example:

Schildren = 2

Write-Host ("My friend has " + $children + " children!")

$children = $children + 2

Write-Host ("His wife just had twins so now they have " + S$children)

You change the value of Schildren by adding 2 to it and then reassigning
this value back to itself. Although this code works fine, it’s much better to
take advantage of the += operator. The following code snippet is equivalent
to the preceding one:

Schildren = 2

Write-Host ("My friend has " + $children + " children!")

$children += 2

Write-Host ("His wife just had twins so now they have " + S$children)

Adding a value to itself is as simple as using the variable name += the value
you want to add. This code not only looks cleaner, but also saves you some
typing — which is always a huge plus.

Chapter 10: I'll Take Numbers for $100, Please ’4 1

Within the realm of addition, a common procedure performed on integral
values is incrementing those values. Typically, for example, you increment a
value by 1 when running through loops to keep track of how many times the
loop has run. To increment a value by 1, you could do something like this:

Si 0
$i $i + 1
Write-Host $i

Needless to say, the output is 1 because you start off with $i having the value
0 and then adding 1 to it, effectively incrementing its value. This operation is
so common that you can perform it in an even easier way. You can increment a
value by 1 simply by putting two consecutive plus signs together:

$i =0
Si++
Write-Host S$i

This code snippet is exactly the same as the preceding one, because $i++
by itself is the same thingas $1i = $i + 1.You're a smart person, so you're
probably thinking that you can simplify this code even further by changing it to

$i =0
Write-Host ($Si++)

Oddly enough, the output is 0. What happened? Well, the ++ operator is actu-
ally a two-faced creature (know anyone like that?). It can operate as either a
preincrement or postincrement operator, which means that where you put the
++ determines when the value is incremented. To get a better understanding,
look at this slight variation on the preceding code snippet:

$i =0
Write-Host (Si++)
Write-Host Si

The only thing I do differently here is output the value of $i one more time
at the end. If you run this code, you’ll find that the first call to Wwrite-Host
displays 0, whereas the second call displays 1. The reason? In the first call,
you use the ++ operator after the variable name, signifying a postincrement
BE operation.

Q§a“ R
When you postincrement by placing the ++ operator after the variable name,
the value of the variable is incremented only after the value has been used.

So in the first call to Write-Host, PSH first reads the value of $i (which
is 0), and only after the value is read does it actually increment its value to
1. This explains why the first call displays 0 (that’s the value it read before
incrementing it) and why the second call displays 1 (the value has already
been incremented).

14 2 Part lll: Complex Data Description and Sharing

To get the behavior you really want in the first place, you can use this code
instead to display the value 1 correctly using Write-Host:

si =0
Write-Host (++$1)

When you preincrement by placing the ++ operator before the variable name,
the value of the variable is incremented before the value is used.

Reducing values with subtraction

The opposite of addition is subtraction, and the great thing is that everything
I just showed you about addition applies to subtraction. You only need to
replace the plus sign with the minus (-) sign:

Sdifference = 10 - 5
Write-Host Sdifference

Similarly, you can use the -= operator if you want to decrease a variable by a
certain amount:

ShairOnHead = 10000
Write-Host ("When I was 16 I had " + S$hairOnHead + " strands of hair on my

head.")
ShairOnHead -= 7000
Write-Host ("...now I only have " + ShairOnHead + " :-(")

Just as incrementing is in the realm of addition, decrementing is in the realm
of subtraction. Decrementing is just as useful as incrementing, and you can
find many good reasons for decrementing values, such as going through
array indices in reverse or writing a Windows PowerShell script to count
down the seconds to a space-shuttle launch. You can use the -- operator to
predecrement or postdecrement a value. The same rules apply to predecre-
menting and postdecrementing and to preincrementing and postincrement-
ing, so make sure that you pay attention to where you place the -- operator
in relation to your variables. Here’s an example:

sa = 10
Write-Host (Sa--)
Write-Host Sa
Write-Host (--%Sa)

The resulting output is
10

9
8

Chapter 10: I'll Take Numbers for $100, Please ’43

Expanding through multiplication

When you want to multiply values, you use the star (*) operator, as in this

example:

Sarea = 4 * 7
Write-Host Sarea

You can also use the *= operator when you want to multiply a variable by a
value and then assign the result back to itself, like this:

Sx = 5
Sx *= 10
Write-Host Sx

This code results in an output of 50 on the screen.

Reducing through division

If you can multiply, you also need to be able to divide. You can divide a
number by using the forward slash (/) operator:

SmemoryInMB 4096
SmemoryInGB =

Write-Host S$SmemoryInGB

SmemoryInMB / 1024

Knowing your bits and bytes

A bitis a single value that can have the value 0
or 1.Agroup of 8 bits is called an octet, whereas
a group of 4 bits (half an octet) is called a nibble.
In general, you may think of bytes as having 8
bits as well, but this isn’t always so, because a
byte is actually the smallest number of memory
that a CPU can address. In today’s computing
environment, a byte is almost always 8 bits
wide, so usually you can safely assume that a
byte equals an octet.

Most people refer to a kilobyte (KB) as 1000
bytes, but technically, it's 1024 bytes (2'7).
Likewise, a megabyte (MB) is 1024 KB, a giga-
byte (GB) is 1024 MB, and a terabyte (TB) is 1024
GB. The distinctions are important when you

perform value-conversion calculations among
these different units, because if you use 1000
instead of 1024, the result will be incorrect.

Consider the value 325454832107489 bits.
If you want to convert this value to terabytes,
you first have to divide it by 8 to get bytes, divide
that result by 1024 to get kilobytes, divide that
result by 1024 to get megabytes, divide that
result by 1024 to get gigabytes, and (finally)
divide that result by 1024 to get terabytes. The
final value you getis 36 .99 TB. If you use the
value 1000 instead of 1024, you get 40.68
TB. The difference may seem small at first
glance, but it's actually a difference of around
3700 GB, which is big.

144 Part lll: Complex Data Description and Sharing

\\3

You guessed what’s next. The /= operator can be used to divide a variable by
a value and assign the result back to itself, like this:

Sval = 8
Sval /= 4
Write-Host S$val

That’s not the end of the story, though. Whenever you divide anything,
there’s a high probability that the resulting value will be a fraction. When the
resulting value contains a fraction, the result is automatically converted to a
double, as in this example:

Sval = 15 / 4
Write-Host S$val
Write-Host Sval.GetType () .Name

The output of this example is 3. 75, and the resulting data type is a double
even though you're dividing integers.

Sometimes, you don’t care about the entire result of a division operation —
only about the remainder (otherwise known as the modulus). You do this
using the modulus (%) operator, as shown here:

Sx = 54
Sremainder = $x % 10
Write-Host Sremainder

The output of this command is 4, because 10 can go into 54 only 5 times,
leaving a remainder of 4.

Rounding Off Values

Oftentimes, when you’re multiplying or dividing, you get a result that con-
tains far more decimal places than you really care for. Consider this code
snippet, which calculates the sales tax on an item that costs $49.99, assuming
that the sales tax is 8.375 percent (.08375):

Sprice = 49.99

StaxRate = 0.08375

Stax = Sprice * Staxrate
Write-Host Stax

Although this code produces an accurate result of 4.1866625, what you
really want is to return a value in dollars and cents, so you have to round this
value off to contain only two decimal places. You can do this by using the
[Math] : : round method:

Write-Host [Math]::round(S$tax, 2)

Chapter 10: I'll Take Numbers for $100, Please ’45

Now the code returns the result you want, which is 4.19.

The [Math] : : round method takes two parameters. The first parameter

is the value you want to round off; the second parameter is the number of
decimal places you want to keep. If you want to leave out the last parameter,
it defaults to zero decimal places. So if you want to return the value in whole
numbers, you can run this code instead:

Write-Host [Math]::round(Stax)

Creating Random Numbers

At times, you need to generate a random number (a number that is selected
for no particular reason). The uses can vary from creating a Windows
PowerShell-based number game to generating random filenames. This task
is very simple in Windows PowerShell because all you need to do is create
an instance of the Random object and use its Next method to generate the
value, as in this example:

SobjRandom = New-Object Random
Srnd = SobjRandom.Next (1,1000)

The Random object’s Next method takes two parameters, which represent
the lowest and highest values you want it to return. In this case, $Srnd con-
tains a random value from 1 to 1000.

Converting Numbers

As I say in “Adding things up,” earlier in this chapter, Windows PowerShell
automatically converts numbers to whatever data type is necessary to per-
form the requested operation successfully — usually, by converting to a data
type that can represent both values without losing any precision. You can
force a number to be a different data type, but you have to watch out for data
loss. You convert from one data type to another by casting it into that data
type. (I talk about casting in Chapter 5, if you need a refresher.)

When Windows PowerShell converts to a data type that has more bits (which
means that it can also store a larger range of values), no data loss occurs,
which means that converting from an integer to a long is always successful
and the precision of the value is preserved. If you try to convert a value to a
data type that has a lower range, a few things can happen.

If the value you're trying to convert is too large or too small for that data
type, Windows PowerShell returns an error, as in this example:

146 Part lll: Complex Data Description and Sharing

Sval = 256
Snewval = [byte]s$Sval
Write-Host Snewval

Windows PowerShell automatically treats the value 256 like an integer because
it’s an integral value that doesn’t have the data type explicitly defined. The
next line, which tries to convert this value to a byte, fails because a byte can
contain only values from 0 through 255, and 256 is outside that range.

Converting from a nonintegral data type to an integral data type will succeed
as long as the integral data type has a range that can accommodate the value
of the nonintegral value. This operation results in data loss if the nonintegral
value contains any fractional portion, because Windows PowerShell auto-
matically rounds off the number to make it a whole number. Take a look at
this code snippet:

sval = 365.58
Snewval = [int]S$val
Write-Host Snewval

This code results in the output 366, because for 365.58 (which, by default,
has the data type of double) to be converted to an integer, it first must be
rounded of to the nearest whole number.

Watching Out for Overflow

Overflow is another common problem. Overflow is what happens when per-
forming any of the mathematic operations results in a value beyond the range
supported by that data type. Windows PowerShell solves this problem for
you whenever possible by automatically converting the overflowed value to a
data type that supports the larger value, as in this example:

$x = [byte]255
Sy = [bytel3
Ssum = $x + Sy

Write-Host Ssum
Write-Host S$sum.GetType () .Name

Here, I define two values of the byte data type, add them, and store the result
in $sum. As you recall, a byte can store only values from 0 through 255.
Adding these two variables results in the value 258, which is greater than
the range of values that a byte can hold. Oddly enough, Windows PowerShell
doesn’t complain and displays the value 258 in the first Write-Host state-
ment. What'’s interesting is that in the next Write-Host statement, you’ see
that $sum is no longer a byte data type but has been converted to an integer
data type (Int32). PowerShell does all this work in the background, so you
don’t even have to think about it.

Chapter 11

Grouping Data Using Arrays
and Hash Tables

In This Chapter
Exploring arrays
Making and using arrays
Resizing arrays
Making multidimensional arrays
Examining other uses for arrays

Using hash tables

People naturally try to group similar things, whether those things are
shapes, patterns, objects, or even abstract thoughts. Perhaps grouping
is our way of creating order in a world that naturally wants to fall apart. To
take off my philosopher’s hat for a second, grouping things makes sense for
some very obvious reasons. For one thing, groups allow you to organize a
large number of items in manageable units. An additional benefit is that you
can refer to a group of items by a single name rather than having to know
the name of each individual item. Arrays are one way you can group data ele-
ments in Windows PowerShell, and hash tables provide an efficient way to
store data elements by using name/value pairs.

In this chapter, you use arrays and hash tables to group data elements
together into a manageable structure rather than just having a variable for
each value you want to store. Arrays and hash tables are some of the most
effective and widely-used ways for organizing large groups of related data,
and you’ll see these concepts used repeatedly within this book and in many
of the scripts you’ll find out there.

148 Part lll: Complex Data Description and Sharing

Taking an In-Depth Look at Arrays

Figure 11-1:
An array as
it might look
in memory.
|

MBER
\x&
&

An array is a structure for organizing data sequentially in which each element
is accessed via an index value. In practice, you use arrays whenever you have
several items and want to use a single name to access them. Suppose that
you want to store a list of 100 computer names. Without arrays (or other data
structures), you have to define 100 variables. This process is not only inef-
ficient, but also highly impractical. Suppose that you have 10,000 computer
names instead. Do you want to create and manage 10,000 variables?

Arrays solve this problem. First, you create a block of data containing as
many elements as you want to reference by using just one name; then you
use a combination of the variable name and an index to access each data ele-
ment. To understand this concept better, see Figure 11-1, which shows what
an array might look like in memory. This array contains nine elements, all of
which are random integers. The array is called Array1. The first element of
an array is always index 0. The second element is index 1, the third element
is index 2, and so on.

Array1

35 12 23 61 83 42 86 57 43
0 1 2 3 4 5 6 7 8

In other words, to get to any position you want in the array, you can find the
corresponding index value by subtracting 1 from the position you're inter-
ested in. So if you want to find the fifth element in the array, you reference it
by using the array name and the index value of 4 (5-1).

Creating and Using Arrays

Arrays are very easy to define in Windows PowerShell. If you already know
the values of all the elements you want to include in the array, you can create
the array by using the comma operator. If you want to create an array like the
one depicted in Figure 11-1, earlier in this chapter, do this:

SArrayl = 35,72,23,61,83,42,86,57,43

Chapter 11: Grouping Data Using Arrays and Hash Tables ’ 4 9

\NG/
$

A\

The only tricky thing about using the comma operator is creating an array
with only one element. To do this, you have to put a comma before the value.
Here’s how you’d create an array with only one element (in this example, the
number 12):

$sSingleValArray = ,12

You can also explicitly cast values into an array (see Chapter 5 for more
information on casting) by doing this:

SArrayl = [array] (35,72,23,61,83,42,86,57,43)

Windows PowerShell treats arrays no differently from collections. A collection
in Windows PowerShell is just what the name implies: a collection or grouping
of any number of objects. You create a collection by using the @ () method, so
you can also use this method for creating an array, like this:

SArrayl = @(35,72,23,61,83,42,86,57,43)

You can create an array or collection with no elements by using the @ ()
method by itself with nothing inside the parentheses, as in this example:

SBlankArray = @()

Accessing array elements

You can access any element in the array by using the array’s name followed
by open and close square brackets with the index for the element specified
within the braces. To display the fourth and eighth elements (index 3 and 7,
respectively), you just need to do this:

Write-Host SArrayl[3]
Write-Host SArrayl[7]

You can think of the array name/index format as being a kind of unique vari-
able name. You can use it not only to read data, but to set it as well, as
follows:

SArrayl[5] = 83

You can access the last item of an array by using the index -1, as in
SArrayl[-1].

150 Part lll: Complex Data Description and Sharing

\NG/
$

Looping through arrays

All arrays have a property called 1ength that returns the number of ele-
ments in the array. Using this property, you can easily loop through all the
elements in an array by using a simple for loop, such as this:

Snames = "Steve","Bill","Jeff", "Mark", "Ryan"
for ($i1 = 0; $i -1t Snames.length; $i++) {
Write-Host Snames[$i]

}

It’s important to check that the loop’s iterator ($1i, in this case) is less than
$names . length, because the highest index you can go to is the array’s
length minus 1.

Unlike other programming and scripting languages, Windows PowerShell
doesn’t complain if you specify an index of an array that doesn’t exist. It
simply returns a null value. This situation can be a source of bugs in your
scripts if you don’t pay attention to the indexes you’re using, because the
script will continue without complaining (or at least until you try to use an
empty value for things that expect a value to exist).

Treating arrays like collections has another really interesting side effect.
Sure, you can use the for loop as I just showed you to go through each item
in the array, but because an array is no different from a collection, you can
take advantage of the foreach loop to achieve the same result. The output
of the following foreach loop is exactly the same as the for loop using iter-
ator values (If you aren’t sure what iterators are, you can flip back to Chapter
6 where I cover them in greater detail):

Snames = "Steve","Bill","Jeff", "Mark", "Ryan"
foreach($Sitem in S$names) {
Write-Host S$Sitem

}

The foreach loop way of doings is very useful if you plan to do something
with all the items in the array; it saves you quite a few keystrokes, and

you don’t have to worry about indexes. The first method I showed you,
however — using index values — makes much more sense if you want to
go through the array in a different manner, such as going backward or
processing every other item in the array, as in these examples:

Chapter 11: Grouping Data Using Arrays and Hash Tables ’5 1

Snames = "Steve","Bill","Jeff", "Mark", "Ryan"

Write-Host "Showing every other name..."

for(si = 0; $i -1t Snames.length; $i += 2) {
Write-Host Snames|[$i]

}

Write-Host "Showing the names in reverse order"

for($i = Snames.length - 1; $i -ge 0; S$i--) {
Write-Host Snames[$i]

}

Growing Arrays Dynamically

In traditional programming languages, arrays are allocated as contiguous
spaces in memory because their sizes are fixed based on how many elements
you say they will contain when you create them. This arrangement makes
arrays highly efficient data structures, especially for sequential read opera-
tions. Unfortunately, the downside is that if you want to grow the array so
that it is capable of storing more elements than you created it to store, you
typically have to create a new array and then copy each element of the old
array into the new array, which has more space to grow. Some programming
languages address this limitation by creating ways to grow arrays at will.

Adding more elements to an existing array in Windows PowerShell is so easy;
you won'’t even have to think about it. You use the same += operator that
you use to increment the value of a numerical data type by a certain amount
(refer to Chapter 10). In the following code snippet, first [create an array
with five values and use a for loop to display the values. Next, [use the +=
operator to add another five values to the array. Then [use a for loop again
to display the values one more time, just to show that now the array truly
contains these ten values.

Sarr = 2,3,5,7,11

Write-Host "First time around..."

for ($i = 0; $i -1t Sarr.length; Si++) {
Write-Host Sarr[$i]

}

Sarr += 13,17,19,23,29

Write-Host "Second time around..."

for ($1 = 0; $i -1t Sarr.length; Si++) {
Write-Host Sarr[$i]

}

152 Part lll: Complex Data Description and Sharing

Creating Multidimensional Arrays

Figure 11-2:
A two-
dimensional
array as it
might look in
memory.
|

You can also think of an array as being a single row of data. By creating an
array of arrays, however, you can create multidimensional arrays. A two-
dimensional array, for example, is one array of multiple arrays. You can use
this type of array to represent rows and columns of data, such as represent-
ing data in a table. The easiest way to create a multidimensional array is to
use the comma operator, but you need to enclose each nested array in paren-
theses, as follows:

Sarrayl = (1,2,3),(4,5,6),(7,8,9)

Just so you can visualize this concept a bit better, Figure 11-2 shows what
this multidimensional array might look like. Each of the value sets in paren-
theses represents an array of data. By using commas between these arrays,
you create an array that combines these arrays, so you can think of each
array as a row in a larger grid.

0 1 2
0 1 2 3
1 4 5 6
2 7 8 9

You still use the square brackets and indexes to access the data, but now
that you have two dimensions, you need to specify two indexes. The first
index selects the array (row) you want, and the second index selects the data
element in that array (column) you want to access.

Chapter 11: Grouping Data Using Arrays and Hash Tables ’53

To see this in practice, suppose that you want to get the third element of the
second array (the number 6 in $array1l). Going back to what I said about
positions and indexes at the beginning of this chapter, you know that these
positions represent index 2 and index 1, respectively. Now, which order do
these values go in when you specify it with the index name? Well, the first
index you need to specify is which array you want to retrieve. In this case,
you want the second array (index 1). Then you want the third element (index
2) of this array, so to read this value, you have to do this:

Write-Host Sarrayl([1l][2]

If you look at Figure 11-2 again, you can see where I got this example from. In
that figure, the number 6 is in row 1, column 2.

Finding Other Uses for Arrays

Probably one of the coolest features of Windows PowerShell is how easy it
makes converting things to arrays. Suppose that you want to have an array
that contains all the currently running processes. You know you can run the
Get-Process Cmdlet to get this kind of information at any time, but you
want to take a point-in-time snapshot of what processes are running (perhaps
to compare with something later). You really have two options:

v Run Get-Process and write the output to a file for later reference

v Create an array; run Get-Process; and then, for each process, store
the values in that array.

This very short script is one way to implement this functionality by using
arrays:

Sprocesses = @()
foreach (Sproc in Get-Process) {
Sprocesses += S$proc
}
Write-Host ("Number of items: " + Sprocesses.length)
for(si = 0; $i -1t Sprocesses.length; S$Si++) {
Write-Host $i.name

}

154 Part lll: Complex Data Description and Sharing

\\J

The script creates a blank array, loops through each item returned by Get-
Process, and keeps adding these Process objects to the array by growing
it dynamically via the += operator. The second half of the script simply dis-
plays the process names from the array on the screen to show that it does
indeed have the correct information.

A script like this one has a few problems however. Although it works, it’s
tedious and not very efficient because you're constantly resizing the array.
The great thing is that Windows PowerShell has an even better way to per-
form this operation for you. As it turns out, when you run a Cmdlet like Get-
Process or even a pipeline of commands, the resulting data is automatically
returned as a collection. Because collections and arrays are interchangeable,
the preceding script can be converted to this one instead:

Sprocesses = Get-Process

Write-Host ("Number of items: " + Sprocesses.length)

for(si = 0; $i -1t Sprocesses.length; S$i++) {
Write-Host $i.name

}

The array resizing and adding of elements is completely unnecessary; all you
need to do is simply assign the result of the Cmdlet to a variable. You’re not
limited to the return value of just one Cmdlet; you can take the result of a
pipeline of Cmdlets, as in this example:

$processNames = Get-Process | Select-Object Name | Sort-Object Name
for($i = 0; $1 -1t SprocessNames.length; S$i++) {

Write-Host S$processNames[$1i]
}

Using for loops to display the contents of everything in an array is the tradi-
tional way of doing things. Windows PowerShell is truly the scripting language
made for lazy people like me, because it lets you achieve the same thing just
by entering the name of the array. In other words, the whole for loop thing
I've been using to display each item in the $processNames array can be
reduced to this:

SprocessNames
Yes, that’s right — just “running” the array name automatically displays its

contents in the same way that you’ve been using the for loop method. Don’t
believe me? Try it out for yourself. Now wipe that grin off your face.

Chapter 11: Grouping Data Using Arrays and Hash Tables

Working with Hash Tables:
The Array’s Useful Cousin

\\3

A hash table is another data structure that allows you to group data under

a common name. Hash tables are similar to arrays in that they too have an
index that’s used to access data elements, but unlike arrays, hash tables
don’t use sequential numbers for these indexes. Instead, hash tables store
data by using name/value pairs. The name is the index you use to get to the
value. The good thing about hash tables is that those names can be anything.
You can create a hash table that uses a user’s logon ID as the name and the
user’s password as the value, for example.

If you're familiar with VBScript, a hash table is similar to a Dictionary
object.

Creating and using hash tables

The most straightforward way to create a hash table in Windows PowerShell
is to use the @{} method. It works almost the same way as the @ () method
that you use to create collections (refer to “Creating and Using Arrays,” ear-
lier in this chapter), except that hash tables require you to explicitly define
the name (index) for each value and that you separate name/value pairs with
semicolons instead of commas. Here’s a hash table that implements a simple
username/password lookup:

Suserpwdhash = @{jimmy = "n3uTROn"; optimus = "Pr!m3"; pinky = "8R@!n"; bob =

"B1L03r"}
Write-Host ("Pinky's password: " + Suserpwdhash["pinky"])
Write-Host ("Jimmy's password: " + Suserpwdhash["jimmy"])

You can create a blank hash table by using @ { } with nothing inside the curly
braces, as follows:

Semptyhash = @{}

You can think of a hash table as being a simple table with two columns and
as may rows as you have items in the hash table. The first column contains
the name, and the second column contains the value. To see the entire con-
tents of the Suserpwdhash hash table, all you need to do is type Suserpwd-
hash and then press Enter to get this output:

155

156 Part lll: Complex Data Description and Sharing

\\J

PS C:\TEMP> Suserpwdhash

Name Value
pinky 8RE@!n
optimus Pr!m3
bob B1L03r
J immy n3uTROn

When you want to retrieve the value of any name, you simply use the same
syntax that you use to get the content of an array item, except with hash
tables, the index is the name portion of the name/value pair, as in this example:

Suserpwdhash ["pinky"]
You can also access the value directly by using the dot operator:
Suserpwdhash.pinky

The names you use in a hash table must be unique because they’re indexes
into the data structure.

When I create the $userpwdhash hash table and initialize it with these four
name/value pairs, [don’t put double quotes around the names. Although |
can do that (and the table would still behave the same way), I've purposely
not done it to demonstrate an assumption that Windows PowerShell makes:

When you specify name/value pairs during the creation of a hash table,
Windows PowerShell always assumes that the names are strings.

This assumption is why the hash-table creation and initialization processes
work just fine even though I left out the double quotes. I explicitly put double
quotes around the values, though, because technically, values can be any-
thing. By using double quotes, I'm explicitly defining the values as strings.

A hash table returns snull whenever you try to retrieve a value for a name
that doesn’t exist. If you want to check whether a given name is already
defined in a hash table, you simply query for the value for that name and see
whether the value equals $null, like this:

if (Suserpwdhash["somebody"] -eq Snull) {
Write-Host ("The name somebody doesn't exist in the hash table!")

}

Chapter 11: Grouping Data Using Arrays and Hash Tables

Hash table internals

Hash tables derive their name from the way
they work and how the data is structured. You
already know that you can present a hash table
visually as a two-column table, but what'’s this
whole hashthing? A hash is essentially a value
derived by putting some piece of data through a
hashing function. A hashing function is a com-
plex mathematical algorithm used to generate
a unique value based on the initial value you
provide. The algorithm is also designed to give
you the same unique hash value whenever you
give it the same input.

Putting these concepts together, a hash table
works by taking the index (name) you provide,
generating a hash from it, and then using it
internally to mark the location of the value for

or update the data, all you need to do is pro-
vide the same index. The hash function auto-
matically generates the same hash value that it
generated the first time you created that entry
and gives you access to that value's location.

Because of all this, hash tables are highly effi-
cient data structures. Retrieving data from a
hash table that contains 100 items is just as fast
as retrieving data from a hash table containing
10 million items, because the hash values gen-
erated from your given index are numeric and
can be used to find an item quickly by means of
very fast numbers-based searching algorithms.
This high efficiency means that hash tables are
often used in database indexes to create fast
lookups, even on very large databases.

157

this given index. Later, when you try to retrieve

Modifying hash tables

Naturally, whenever you have a table structure (such as that of a hash table),
you want to be able to perform two key operations: adding and removing
entries. If you want to add another name/value pair to an existing hash table,
you use the hash table’s add method. The add method takes two parameters,
which are (not surprisingly) the name and value, in that order. So if you want
to add another user/password pair to the suserpwdhash hash table in the
preceding section, you can do something like this:

Suserpwdhash.add ("tony", "S7@rK")
GMBER , . i . i
It’s important to enclose the name in double quotes if the name is a string,
because unlike the initialization routine, the add method doesn’t assume that
the name you provide is a string.

You can remove an entry from the hash table by using the remove method.
The remove method takes just one parameter, which is the name of the entry

you want to remove. Here’s an example:

Suserpwdhash.remove ("pinky")

158 Part lll: Complex Data Description and Sharing

Looping through hash tables

Because the indexes used in hash tables are pretty much anything you can
come up with, you can’t use a simple for loop to go through each item. One
way to get around this limitation is to use your friend the array. You can grab
the names (otherwise known as keys), convert them to an array, and then
loop through the array to retrieve the values. I know that this process sounds
confusing, but here’s a nice little code snippet to show you how easy it is:

Snames = @ (Suserpwdhash.keys)
foreach (Sname in Snames) {
Write-Host (Sname + " = " + Suserpwdhash[$name])

}

See, that wasn’t too hard, was it? You use the @ () method to create a col-
lection of names by giving it the keys property of the hash table. The keys
property contains a list of all the names being used in the hash table. Now
that you have the names in an array, you just use a foreach loop to go
through each item in the collection and do what you want with it. In this case,
I'm using it to display the name/value pairs onscreen in a different format.

Chapter 12
Readin’ and Writin' Files

In This Chapter
Navigate through the file system

Manage your files and folders
Create your own data format using XML
Make your output presentable using HTML

A Ithough it’s great to perform calculations and do all kinds of fun stuff in
the Windows PowerShell console, many times you need to store data
somewhere such as in a file or database. The easiest and most direct place
to store data for long-term use is a file. Windows PowerShell not only makes
reading and writing simple text files easy, but also lets you create even more
complex files, like XML and HTML files.

In this chapter, you exercise your ability to both act as a producer and con-
sumer of files within your file system. Many files are created by people but
even more are automatically created by computers through programs and
scripts, so your ability to read, write, and even manage files within your file
system becomes a necessary skill, just like being able to use a remote is to a
couch potato.

Having Some Fun with the File System

One of the most fundamental skills you need to possess as a Windows
PowerShell user is the ability to manipulate files within the file system. This
manipulation includes creating, deleting, copying, moving, and renaming files
and folders. Sure, you can go back to using Windows Explorer, but have you
ever tried renaming 100 files by using the Windows GUI? Not much fun, was
it? How about deleting files matching a certain pattern? I can think of quite a
few scenarios in which managing the file system through the command line
is far easier than doing it through a graphical user interface (GUI). As you can
probably guess, Windows PowerShell includes many Cmdlets to help you do
all these things.

1 60 Part Ill: Complex Data Description and Sharing

Moving around the file system

There’s a saying that you can’t get anywhere without knowing where you

are right now, and that’s especially true when you’re working in a command
line environment. In the Windows PowerShell console, the most obvious way
to find out which directory you're in is to look at the Windows PowerShell
prompt directly. The current path is displayed there all the time, but if you
want to get this value (perhaps to use it somewhere else in a script), you can
use the Get-Location Cmdlet. This Cmdlet simply returns the full path to
your current location as a string.

Moving around the file system is another important capability because files
are spread throughout it. Being able to go from drive to drive and directory
to directory is critical. You do this by using the Set-Location Cmdlet. You
can go to a different directory, such as C: \Windows\System32, by running
this code:

Set-Location C:\windows

Set-Location is also aliased as CD, which means that you can use the famil-
iar CD (change directory) DOS command. You can just run CD C:\Windows
to achieve the same results Set-Location C:\Windows.

As you see in upcoming chapters, Windows PowerShell uses Set-Location
as the Cmdlet name rather than something like Change-Directory because
Set-Location can also be used to change the current location to nontradi-

tional “drives” that are now available in Windows PowerShell.

Managing directories

Directories (folders) offer a great way to organize your files in manageable
units. To use them effectively, of course, you need to be able to create,
delete, copy, move, and rename them.

Creating directories

When you want to create a directory, you use the MKDIR or MD command. No, [
didn’t make a mistake. Those aren’t aliases to some fancy-looking Cmdlet. It’s a
bit odd to not have a Cmdlet for this task, because there’s a Cmdlet for practi-
cally everything else, but yes, you just use the old MD or MKDIR command. So if
you want to create a temp directory at the root of the C: drive, you run:

MD C:\temp
or

MKDIR C:\temp

Chapter 12: Readin’ and Writin' Files ’ 6 1

Deleting directories

Deleting directories, on the other hand, requires the help of the Remove-
Item Cmdlet (I know — not very consistent). If you want to delete C: \ temp,
you can just run

Remove-Item C:\temp
A\\S
Remove-Item is aliased as RMDIR, so you can run RMDIR C:\temp to
achieve the same effect.

If the directory that you're trying to delete isn’t empty, Windows PowerShell
prompts you to confirm the action. Alternatively, if you're sure that you want
to get rid of that directory (including all subdirectories), you can use the
-Recurse switch:

Remove-Item -Recurse C:\temp

Copying directories

If I say that your next task is making a copy of a folder, I'm sure that you’ll
guess that the Cmdlet is Copy-Item and its alias is COPY. If you did make
those guesses, congratulations; you're correct!

You need to be aware of something interesting about Copy-1Item, though.
Take the simple case in which you want to copy C: \temp to C:\temp2. The
command you run is

Copy-Item C:\temp C:\temp2

Excellent! Now suppose that C: \ temp contains a bunch of files and possibly
even subdirectories, so a recursive listing of the directory looks like this:

: \temp

:\temp\powershell. txt
:\temp\temp2\testscript.psl
:\temp\temp2\testscript2.psl

N0

You want to do exactly what you did earlier: copy the entire directory struc-
ture of C: \temp to C: \temp2. You run the same Copy-Item C:\temp
C:\temp2 command, correct? No! If you run that command, a surprising
thing happens. Yes, you do get a C: \ temp2 directory, but if you look inside
the directory, you see that it’s empty. You may think that there’s a bug in
Windows PowerShell. Well, there isn’t, so don’t bother contacting Microsoft
about it.

Copy-Item literally makes a copy of the particular item you specify. If you
tell it to copy a folder, it creates a copy of that specific folder and nothing
else — not even its contents. You're clever, so you've probably guessed
what the solution is: a ~-Recurse switch in the Copy-Item Cmdlet. With this

1 62 Part lll: Complex Data Description and Sharing

knowledge in hand, you know that the correct way to make an exact copy of
the directory structure is to do something like this:

Copy-Item -Recurse C:\temp C:\temp2

That’s it! Now if you check the contents of C: \temp2, you see that it contains
a copy of all the contents of C: \ temp.

Moving directories

If you decide to reorganize things and have to move directories around, you
use the Move-TItem Cmdlet to get the job done. Here, I'm moving C: \temp to
E:\temp:

Move-Item C:\temp E:\temp
\\J

Yes, you guessed it: Move-Item is aliased as MOVE, so you achieve the same
thing by running MOVE C:\temp E:\temp.

Renaming directories
You can rename directories by using either of two methods:

v Rename-Item: The first method is to use the Rename-Item Cmdlet.
(Give yourself a pat on the back if you guessed the Cmdlet’s name before
seeing it here.) Suppose that you want to rename E: \temp to E: \temp.
bak. You can do that by running

<P Rename-Item E:\temp E:\temp.bak

The Rename-Item Cmdlet is aliased as REN.

v Move-Item: With Rename-Item out of the way, what could the other
method be? Notice the similarities between Move-Item and Rename-
Item. Both Cmdlets take two parameters, one being the old name and
the other being the new name. Not surprisingly, you can effectively
rename a directory by moving it. If you want to rename E: \temp to E: \
temp .bak, you can also do this:

Move-Item E:\temp E:\temp.bak

Manipulating files in the file system

File systems consist of files and directories. You can practically treat files
and directories like the same thing, however, when it comes to manipulat-
ing files within the file system. You use exactly the same Cmdlets to create,
delete, copy, move, and rename files that you use for directories. The same
cast of characters — New-Item, Remove-Item, Copy-Item, Move-Item,
and Rename-Item — is valid for files as well.

Chapter 12: Readin’ and Writin' Files ’ 63

Reading Text Files

You may often need to read some information from a file, usually because
you need to take in data generated by the operating system or other applica-
tions for your own consumption. An example is reading a log file to deter-
mine whether last night’s backups were successful before performing some
action based on the information you gather from that file.

You read text files in Windows PowerShell by using the Get-Content
Cmdlet. In its simplest form, Get-Content takes one parameter, which is
the name of the file you want to read. It automatically opens the file, reads

in each line, and then stores these lines as an object array. Because Get -
Content returns an array, you can store the data it retrieves in a variable, as
in this example:

Sdata = Get-Content C:\Windows\setuplog.txt

Now that you have the contents of the file in a variable (or, more specifi-
cally, in an array), you can treat the data as an array of strings, and all array
functions and techniques apply. You also may want to use text files to store
information to be used as input parameters for a script — the names of com-
puters on which you want to perform some action, for example, or perhaps
a comma-delimited file of user attributes you want to use to update user
account metadata in Active Directory. Suppose that you have a text file that
contains a bunch of computer names, like this:

labdcl
labdc2
filesrvl
printsrvl
mailsrvl

You want to query the computer manufacturer and model for each of these
computers. You can use a combination of techniques that I cover earlier in
this book, such as reading from a text file, looping through an array (Chapter
11), and using Windows Management Instrumentation (WMI) (Chapter 8)

to query remote computers.

Take a look at this script, which does exactly what you want:

Scomputernames = Get-Content c:\temp\computers.txt
foreach ($name in $computernames)
{
Scompinfo = Get-WmiObject -class Win32_ComputerSystem -computername S$name
Write-Host ($compinfo.name + " - " + $compinfo.manufacturer + " - " +
Scompinfo.model)

1 64 Part lll: Complex Data Description and Sharing

\\J

\\3

If you forget how to use Get-WmiObject, you can flip back to Chapter 8 for a
refresher.

The best part is that other than using Get-Content to read the computer
names from the text file, the rest of the script is just a standard way of work-
ing with a collection.

You can also use Get-Content in a pipeline to achieve a similar effect. This
command pipeline performs essentially the same thing:

Get-Content c:\temp\computers.txt \ foreach{Get-WmiObject -class Win32_
ComputerSystem -computername $_ \ select-object name,
manufacturer, model}

You can control how many lines are retrieved, and when you use Get-
Content in a pipeline, you can also control how many lines to send through
at a time. To do this, you use the -totalCount and -readCount switches
for the Get-Content Cmdlet. If you want to read only the first 100 lines of a
file, for example, you run this command:

Get-Content c:\temp\readme.txt -totalCount 100
Similarly, to read two lines at a time, you run this command:

Get-Content C:\temp\computers.txt -readCount 2 \ Write-Host
Get-Content can read the contents of any file, not just text files. It can even
read binary files (although, of course, none of it will make sense unless you
know how to interpret the binary format). You can read file contents by using

the -Encoding switch of Get-Content and specifying whatever data type
you expect the data to be in (such as Byte) to read the raw data as bytes.

Writing Files

You have three ways to write to a file. The first method is probably familiar
to you already: redirecting the output to a file by using the redirection opera-
tor (a fancy name for the greater-than sign). This command sequence lists
the contents of C: \windows\System32 and writes this output to C: \temp\
system32_contents. txt:

Get-ChildItem C:\windows\system32 > C:\temp\system32_contents.txt
The next method uses aCmdlet. The Cmdlet version of the redirection opera-
tor is the out-File Cmdlet. This command sequence is functionality equiva-

lent to the preceding one:

Get-ChildItem C:\windows\system32 \ Out-File C:\temp\system32_contents.txt

Chapter 12: Readin’ and Writin’ Files

On the surface, Out-File may seem to be a redundant addition to Windows
PowerShell, but in fact, it’s capable of doing much more than just simple redi-
rection. With redirection, all you get is the equivalent of a file dump of what
you see onscreen, which is exactly what you get from the default use of out-
File. The difference is that Out-File gives you a few options in addition to
performing a quick dump of what would have been displayed onscreen. You
can take advantage of these options by specifying the appropriate Out-File
Cmdlet switch listed in Table 12-1.

Table 12-1 Out-File Cmdlet Switches

Switch Description Example

-encoding Specifies the character Out-File c:\
encoding used in the file. This test.txt
encoding can be one of the -encoding ASCII
following values: Unicode,

UTF7, UTF8, UTF32, ASCII,
BigEndianUnicode, Default, or
OEM. Unicode is the default
encoding type.

-append Appends to the file rather Out-File c:\
than overwriting its contents. test.txt -append

-width Defines the maximum number Out-File c:\
of characters on each line. test.txt -width
If the line being written con- 150
tains more than this value, it is
simply truncated. By default,
this switch follows the value
used by the current Windows
PowerShell console settings.

-force Tries to overcome any restric- Out-File c:\
tions for writing to the output test.txt -force
file, such as overriding the
read-only attribute of the file.

-noClobber Prevents Out-File from Out-File c:\
trying to write to the output test.txt
file if it already exists. -noclobber

-Confirm Prompts for confirmation Out-File c:\

before continuing with the
command.

test. txt
—-confirm

165

1 66 Part Ill: Complex Data Description and Sharing

SMBER
S

\\J

The final way to write to a file is to use the Set-Content Cmdlet. Because so
many options are already built into Out-File, it may seem a bit strange to
have yet another Cmdlet to write to a file, but some differences exist between
Set-Content and Out-File. The biggest difference is that by default, out-
File formats the data in the same way that it’s displayed onscreen before
writing that data to a file, whereas Set-Content writes the data without any
modifications.

Use Out-File to perform a straightforward file dump of what you would see
onscreen, but use Set-Content to write a file if the data is already formatted
a certain way and you don’t want it going through any kind of conversion.

For completeness, here’s how the preceding output examples look with Set-
Content:

Get-ChildItem C:\windows\system32 | Set-Content C:\temp\system32_contents.txt

If you run Get-Help on Set-Content, you notice that it doesn’t have an
append switch like Out-File that appends to an existing file. That’s because
Set-Content can’t append to a file; you have to use the Add-Content
Cmdlet instead.

Working with XML

Extensible Markup Language (XML) is document format that allows you to
define your own markup within the document. A typical document format
such as a Microsoft Word document or a HTML Web page has a very specific
formatting structure, with specific tags defining how various elements should
be rendered onscreen (such as bold and underlined text). XML is different

in that you can create the format that suits you best; however, you want to
define the data it contains. In general, XML describes and defines data, not
how the data should appear onscreen. XML doesn’t care about how the docu-
ment will eventually look; its only concern is to give meaning to the data that
it contains. Here’s an example of a very simple XML file:

<?xml version="1.0" encoding="IS0-8859-1"?>
<desert name="Sahara">

<animal type="camel">Joe</animal>

<animal type="snake">Mark</animal>

<animal type="elephant">Allan</animal>
</desert>

The first line declares what this file is: an XML Version 1.0 file encoded with
the Latin-1 character set (ISO-8859-1). Note: This first tag is optional, but it’s
always a good idea to start an XML file with this tag so that anyone looking at
it knows that it is in fact an XML file and not some random jumble of text.

Figure 12-1:
Graphical
representa-
tionofa
sample XML
formatasa
hierarchal
tree.

|
|
Figure 12-2:
HTML
element
tagsin

detail.
|

Chapter 12: Readin’ and Writin’ Files

Next comes the root element. You can think of XML elements as having a tree
structure (see Figure 12-1). The root element is the common point that glues
all the other elements together. In this example, I define a root element of a
type that I call desert. This element has one attribute, called name, which
has the value Sahara. The desert root element contains three child ele-
ments (nodes) of a type I call animal. Each animal element has an attribute
called type that defines what kind of animal it is. The text outside the angle
brackets is the data associated with that element. In this case, I'm giving each
of these animal elements a name as its data. Then each element must be
terminated by a closing tag, which is an angle bracket followed by a forward
slash, the element name again, and a closing angle bracket (see Figure 12-2).
desert

Root Element\
name = Sahara
/Child Element

animal animal animal
type = camel type = snake type = elephant
Data = Jack Data = Mark Data = Allan

Data Element

opening elementtag attribute attribute value

<animal type="camel”>Joe</animal>

data closing element tag

Because XML files are really nothing more than flat text files, they offer the

ultimate flexibility and portability when it comes to defining your own data

structures. If you can create an XML file and read an XML file, you can most
certainly talk to any other program that can read and write XML files.

107

1 68 Part Ill: Complex Data Description and Sharing

Reading and writing XML files

One of my favorite things about Windows PowerShell is how reusable
everything is. Reading an XML file in Windows PowerShell, for example, is

no different from reading a regular text file; you just use the Get-Content
Cmdlet. Get-Content by itself returns just the contents of the file, so to tell
Windows PowerShell that you want the file to be treated like an XML file, you
have to cast the variable with the [xm1] tag. This example, which assumes
that the sample XML file in the preceding section was saved as sample.xml,
reads the contents of sample.xml into SmyXMLFile:

[xml] SmyXMLfile = Get-Content C:\temp\sample.xml
I've said that you can think of an XML file as having a tree structure. Well,
now that you have the contents of the XML file stored in the $SmyxXML.file
variable, you can access the different elements of the XML file by using the
dot operator to access each child element in the tree. If you want to retrieve
the desert name, you can run

sSmyXMLfile.desert.name
You can list all the animal elements within desert like this:

SmyXMLfile.desert.animal

The output will be

type #text
camel Joe

snake Mark
elephant Allan

Because the contents of the file are now in memory, you can add more child
nodes, if you want. Suppose that you want to add another animal node in
which the type equals vulture and the data (#text) equals George. You
can do this by running this sequence of commands:

Snewanimal = SmyXMLfile.CreateElement ("animal")
Snewanimal.SetAttribute ("type", "vulture")
Snewanimal .psbase.innertext = "George"

sSmyXMLfile.desert.AppendChild (Snewanimal)

The first line creates a new element using the existing XML object. The ele-
ment is called animal and is stored in the $newanimal variable. Right now
it’s not part of the hierarchy because you're just creating an element that
you’ll insert later. Then you use the SetAttribute method to set the type
attribute to vulture and finally to set the data attribute to George. You set
the text data of an element by assigning the value to the psbase. inner-
text property of the element.

Chapter 12: Readin’ and Writin' Files ’ 69

Now that your new element contains all the attributes and data you want

it to possess, you can insert it into the tree. In this case, because you want
the new element to be at the same level as all the other animal elements,
you call the AppendChild method on the desert element and give it the
newly created animal element as a parameter. Now if you run $SmyXMLfile.
desert.animal, you get this output:

type #text
camel Joe
snake Mark
elephant Allan
vulture George

With the data updated, you may want to go ahead and save the changes. You
save XML data to a file by calling the save method of the XML object. In this
case, if you want to save your changes back to the sample.xml file, you can run

SmyXMLfile.save ("C:\temp\sample.xml")

If you open the sample.xml file in a text editor, it now contains the new
child node you just created and looks like this:

<?xml version="1.0" encoding="IS0-8859-1"7?>
<desert name="Sahara">
<animal type="camel">Joe</animal>
<animal type="snake">Mark</animal>
<animal type="elephant">Allan</animal>
<animal type="vulture">George</animal>
</desert>

Saving objects in XML files

XML is a highly extensible format, and you can use it to save and represent
practically anything you can imagine. Sometimes, for example, you want to
save objects to a file so that you can retrieve them later. Objects can contain
any number of properties and values, and without XML, your only other option
is to store the objects in a binary format. Windows PowerShell gives you the
ability to export and import objects to and from XML files just as easily.

Consider a scenario in which you want to keep a record of running processes.
You know that you can get this information by running Get-Process and
storing it in a variable. The problem is that you want to save this information
to a file so you can analyze it later. One simple way is to run Get-Process
and redirect the information to a simple text file. If you open the simple text
file in Notepad, you see that it’s neatly formatted and easy to read, but you
can’t manipulate it easily in Windows PowerShell without having to perform
some string parsing. This method is the old way of doing things; Windows
PowerShell offers a much better option.

’ 70 Part lll: Complex Data Description and Sharing

Remember that Windows PowerShell is object-oriented. If you save objects
to a file, you want to be able to load the contents of that file later and con-
tinue to treat the objects as objects without having to figure out string pat-
terns and parse the file to re-create the objects. Windows PowerShell solves
this problem by providing two very useful Cmdlets: Export-C1iXML and
Import-CliXML. Export-CliXML exports objects to an XML file, and
Import-ClixML imports XML files into objects.

Going back to the process-tracking problem in the preceding section, you can
persist the process information by running

Get-Process | Export-CliXML C:\temp\process.xml

If you're curious what the processes look like now that they’ve been saved in
an XML file, go ahead and open process.xml in a text editor. You get some-
thing very messy-looking, like this:

<Objs Version="1.1" xmlns="http://schemas.microsoft.com/powershell/2004/04"><0bj
RefId="RefId-0"><TN RefId="RefId-0"><T>System.Diagnostics.
Process</T><T>System.ComponentModel .Component</T><T>System.
MarshalByRefObject</T><T>System.Object</T></TN><ToString>System.
Diagnostics.Process (alg)</ToString><Props><I32
N="BasePriority">8</I32><B N="HasExited">false</
B><S N="Handle">4000</S><I32 N="HandleCount">105</
I32><I32 N="Id">2012</I32><S N="MachineName">.</S><S
N="MainWindowHandle">0</S><S N="MainWindowTitle" /><S
N="MainModule">System.Diagnostics.ProcessModule (alg.exe)</S><S
N="MaxWorkingSet">1413120</S><S N="MinWorkingSet">204800</S><0bj
N="Modules" RefId="RefId-1"><TN RefId="RefId-1"><T>System.Diagnos
tics.ProcessModule (UxTheme.dll)</S>

Okay, you caught me — that’s just a small excerpt of what the file actually
looks like. All the data is spelled out in clear text but of course tagged appro-
priately with XML elements to define what each data element is supposed to
represent. This result is a big difference from the simplistic output you get
from just redirecting the output of Get-Process to a plain-text file.

If you want to recover your data into PowerShell so that you can use it like
any other object, you can run

SProcHistory = Import-CliXML C:\temp\process.xml
You can see the processes you saved by running

SProcHistory

Chapter 12: Readin’ and Writin' Files ’ 7 1

Hmm . . . so what? You could have done that with a regular text file, right?
Well, yes, the default output is the same — but now try to filter the objects so
that only processes where the Handle value is greater than 100. Also, make
sure that the output is sorted by the Handles column. That sorting would
take more than a bit of clever manipulation if all this data were just raw text,
but because you recover the objects themselves, you can run all your stan-
dard Windows PowerShell object manipulation tricks, as in this example:

$ProcHistory | Where-Object {$_.Handles -gt 100} | Sort-Object Handles

Sweet! In one line, you've accomplished what traditional textcentric script
writers would have to write dozens of lines to do.

Working with HTML

When talking about Windows PowerShell, [sometimes feel like I'm selling
knives on one of those infomercials — you know, the ones that keep saying,
“But wait, there’s more!” With Windows PowerShell, there’s always more, and
because you can manipulate regular text files and XML files, why shouldn’t
manipulation work with HTML files? This functionality never fails to bring a
stupid grin to my face, because I don’t know how many times in my career
I've written scripts only to have someone not like the simplistic text output
and demand something a bit fancier, like HTML.

To generate HTML pages from a traditional script, you have to write the
HTML code output from scratch yourself, meaning that you also have to
know how to create HTML files manually. Writing HTML files is a topic
beyond the scope of this book, but it’s the most awesome part about
PowerShell’s ability to generate HTML output: You don’t need to know
about writing HTML files (or at least don’t need to know much). Windows
PowerShell allows you to just do something like this to convert the output of
Get-Process to a simple HTML page:

Get-Process | ConvertTo-HTML | Out-File C:\temp\processes.html
What you end up with is what you see in Figure 12-3.

Is it pretty? No! Will it get you that big raise you’ve been asking for? Highly
doubtful! Was it easy? Yes! It’s hard to really appreciate how big a leap gen-
erating HTML output using PowerShell is compared with, say, Windows Shell
scripting or VBScript unless you've ever tried to code one of these routines
yourself. Even without that appreciation, you have to admit that the ability to
do all this with only one line of code is impressive.

’ 72 Part lll: Complex Data Description and Sharing

Figure 12-3:
Get-Process
output con-
verted to
HTML.
|

/& HTML TABLE - Windows Internet Explorer =(E]%]
+ [@ citempiprocesses html 42 x ol
W | @ HTVL TABLE | f - B & - P v (FTeos v
~
__NounName Name Handles VM WS PM NPM Path Company CPU File}
g —— - 5126002
Process g 105 33017856 3645440 1191036 4648 O VINDOWS'System3l Microsoft (psp_sp2
£ alg exe Corporation SRR
2158)
INCIW WS system32
Pracess csrss 431 28323840 5042176 2620632 6032 1w INDOWSisystem32 350350375
Csrss.exe
i s R 5126002
ProERs ik 132 38707200 3969024 987136 5360 O VINDOWSisystem32 - Microsoft) 595 Goip 0]
ctfmon exe Cﬁmﬂfﬂﬂﬂﬂ "l*'S)
i oy) 5.1.26002
Process dilhost 296 49545216 8867840 3207280 6160 O\ NDOWSisystem32 Microsoft oo (spsp_sp2.
dilhost exe Corporation T1o85
Mictosh 6002900
Process explorer 467 87171072 20590592 12386304 11640 CWINDOWS Explorer EXE - 0 %% 34053125 (xpsp_sp2.
Corporation 1233)
Process Idle 0 0 28672 0 0
" " : 5.1.26002
WID WS isvs 32 M 5 & o
Process inetinfo 170 33098016 6582272 2252800 5840 O INDOWSieystem fiorosoft 5 06875 (xpep._sp2,
inetsrvinetinfo.exe COl’th’ﬂﬂ\Jﬂ -’1’.8)
i c s s
Process lsass 438 42852352 1376256 4132864 10104 & WINDOWSisystem32 - Microsoft o 56004
Isass.exe Corporation
<
My Computer #H10% v
4

Face it, though — the vast majority of people don’t enjoy sitting down looking
at plain text all day long unless they’re ... umm. .. Unix admins. Wouldn't it
be great if you could somehow change the way ConvertTo-HTML works so
that the output can be a bit more dressed up? Of course you can!

You can format HTML in either of two ways. The most straightforward way is
to add formatting tags directly to the document. If you want to display bold
red text, for example, you can have something like this in your HTML file:

My Bold Red Text

That’s a quick and easy way to change the presentation of any particular part
of your HTML document.

Another (and often better) method is to use style tags, which are defined
globally in the document. Instead of setting the formatting of an individual
element, as in the preceding example, you can say something like “all table
headers will have a blue background, and all table cells will have a red
background.”

ConvertTo-HTML has three switches that you can use to customize the way
that the resulting HTML file is rendered, as shown in Table 12-2.

Chapter 12: Readin’ and Writin' Files ’ 73

Table 12-2 ConvertTo-HTML Switches

Switch name Description Example

-title Sets the title of the -title "Process List"
HTML page.

-head Adds whatever you -head "<META
want to the <HEAD> name="Author"
section of the HTML content="Steve Seguis"
page.

-body Adds whatever you -body
want to the <BODY> "<CENTER><H1>PowerShell
section of the HTML FTW!</H1></CENTER>"
page.

Armed with this knowledge, you can create a Windows PowerShell script to
enhance the look and feel of the Get-Process HTML output:

Sformat
Sformat
Sformat
Sformat
Sformat
Sformat

Sbody =

= "<TITLE>My Processes</TITLE>"

+= "<style>"

+= "TABLE{border-width:2px;border-style:solid;background-color:yellow}"
+= "TH{color:blue}"

+= "TD{color:red}"

+= "</style>"

"<CENTER><H1>Process List</H1></CENTER>"

Get-Process \ ConvertTo-HTML -head $format -body $bhody \ Out-File c:\temp\

processes.html

In this example, [use the $format variable to store the text that will be
inserted into the <HEAD> tags of the HTML file. I create a title for the HTML
page and then define a style that sets the TABLE tag to apply a 2-pixel solid
border and a background color of yellow. All table headers (TH) will have
blue text, and all table cells (TD) have red text. I also add a heading, cen-
tered on the page, by adding something to the <BODY> section. The resulting
output is a tad bit prettier (okay, maybe not prettier, but more colorful) than
the first attempt, as you can see in Figure 12-4.

174

Part lll: Complex Data Description and Sharing

Figure 12-4:
A colorful
version of

the Get-
Process
HTML
output.
|

MBER
é&
&

@ My Processes - Windows Internet Explorer
+ [@ citempiprocesses html 42 x ol
W | @ My Processes | M- B # - [Pege v (hTools v
~
.
Process List
__ NounName Name Handles VM WS PM NPA Path Company CPU File?
Proce alg 05 33017856 3645440 1191936 de4g O N NDOWSSystemd2 - Microsel ;55005
alg.exe Corporation
Process esrss 385 27420064 40R90E 2617344 543 10O WINDOWSisystenss 356453125
Process ctimon 123 33670336 3969024 995328 spop S D DOWSisen - Mictosalt) gqg75
ctimon.exe CC‘QJD]’N‘JC\])
: o CWINDOWS'system32 Microsoft I
Process dihost 296 B0 BIRGT N e ficcosalt o 7812
diihost exe Corporation
Process explorer 103 88182784 21196800 12836864 12080 CAWINDOWS Explorer EXE USr0soft 39 4705
Corporation
Process Tdle 0 0 28672 0 0
. o imn P i o~ C:Program Files Internet Microsoft -
explore 363 86245376 21946368 14311424 10680 - oo TES SIS 5921873
Brocess fAnics & 8 f it = Explorer IEXPLORE EXE Corporation
< >
Done 4 My Computer H100% -

You may be wondering why I explicitly defined "<TITLE>My Processes</
TITLE>" in the head when I could just as easily have used the -title
switch. Unfortunately, that’s not how things work. Yes, the -title switch
sets the contents of the <TITLE> tags when it’s used, but if you also have
-head defined, anything that you specify for ~-head overwrites everything in
the <HEAD> tag.

Whenever you use -head to manipulate the resulting HTML document by
using ConvertTo-HTML, you need to define the <TITLE> tags explicitly to set
the title of the page because the -title parameter is ignored.

It doesn’t seem like much right now, but ConvertTo-HTML opens a world
of potential for you as a script writer, because it lets you create output files
that have a much richer look and feel than just plain text. Also, because the
files are formatted in HTML, you can post them quickly on an intranet page
to share with your colleagues. Imagine having a Web page where people can
find up-to-date HTML pages containing the latest information about your
servers retrieved through Window PowerShell. The possibilities are endless.

Chapter 13
Going On a Date with PowerShell

In This Chapter
Getting a date

Performing date calculations
Working with time zones

thher you'’re scheduling an automated task, generating time stamp-
based log file names, or trying to deal with date-related problems

such as the infamous Y2K bug or the change in daylight saving time, dates
are an important part of many computing tasks. Windows PowerShell builds
on top of the rich Date and Time support provided by the .NET Framework
and adds a few features such as the capability to use Unix-style formatters to
modify how the dates are presented.

In this chapter, you define dates and times and use them in different sce-
narios such as calculating elapsed time or figuring out daylight savings time.
You might not use dates and times as much as you use other data types, but
they’re very important because they’re very relevant to our day-to-day life.
Even if you don’t need it just now, make a note of this chapter because soon
enough you're bound to need it, even if it’s something as simple as trying to
display the current date and time to screen.

Going On Your First Date

To work with dates and times in Windows PowerShell, you use the Get-Date
Cmdlet. It’s the Swiss Army Knife of Windows PowerShell dates and times;
you use it to find out the current date and time as well as to create date
objects to define any arbitrary date. To find out the current date and time,
you run Get-Date by itself without any parameters, like this:

Get-Date

1 76 Part lll: Complex Data Description and Sharing

MBER
@“'
&

When you run this Cmdlet by itself, it returns the current date and time and
displays it in a string format, as in this example:

Tuesday, March 18, 2008 10:14:42 PM

You can change how the date and time are displayed by using the -display-
hint, -format, and -uFormat switches. You use the -displayhint switch
when you want to obtain just the date or time portions of a given date and
time, as follows:

Get-Date -displayhint date
Get-Date -displayhint time

Getting the date and time
in a specific format

The -format and -uFormat switches let you format the date and time in
a very specific way. Although these switches are similar in functionality,
the difference is that - format uses .NET-based format specifiers, whereas
-uFormat uses Unix-style formatters.

One common use for dates is to generate unique filenames. Suppose you want
to generate a string that represents the current date in the format YYYYMMDD,
where YYYY is the four-digit year, MM is the two-digit month, and DD is the
two-digit date. This is how you do it using both format methods:

Get-Date -format yyyyMMdd
Get-Date —-uFormat %Y%m%d

Both methods yield the same result, which is something like this:

20080318

Which one you choose boils down to convenience. Windows PowerShell
attempts to appeal to both existing Windows administrators and other
administrators who have a Unix background and seek to apply much of their
existing scripting knowledge to Windows. If you’re already familiar with Unix-
style date modifiers, simply using ~-uFormat to take advantage of that skill
set may make sense; otherwise, I feel that the .NET format is more consistent
with its definition (which makes me more inclined to use it). No one expects
you to know all the possible date modifiers, so I put together Table 13-1 to
list the most common ones.

Modifiers are case-sensitive. If you're not getting the output you want, double-
check to make sure that you used the right case when specifying your modifier.

Chapter 13: Going On a Date with PowerShell 7 77

Table 13-1 Get-Date Format Modifiers

.NET (-format) Unix (-uFormat) Description

d, %d %e Day of the month (1,2...31). Not zero
padded.

Dd %d Day of the month (01, 02. .. 310). Zero
padded.

DAd %a Abbreviated day of the week (Mon,
Tue... Sun).

Dddd %A Full name of the day of the week

(Monday, Tuesday . .. Sunday).

%h %1 Hour of the day based on 12-hour clock
without leading zeros (1,2. .. 12).

Hh %I Hour of the day based on 12-hour clock
with leading zeros (01,02. .. 12).

H, %H %k Hour of the day based on 24-hour clock
without leading zeros (0, 1, 2. .. 23).

HH %H Hour of the day based on 24-hour clock
with leading zeros (00, 01,02. .. 23).

$m <none> Minute without leading zeros (0, 1,
2...59).

Mm &M Minute with leading zeros (00, 01,
02...59).

M, %M <none> Numeric month without leading zeros
(1,2...12).

MM %m Numeric month with leading zeros (01,
02...12).

MMM %b Abbreviated month name (Jan, Feb . ..
Dec).

MMMM %B Full name of the month (January,
February ... December).

s, %s <none> Seconds without leading zeros (0, 1,
2...59).

Ss %S Seconds with leading zeros (00, 01,
02...59).

Tt $p AM/PM in capital letters.

Yy Sy Two-digit year (98,99, 00. .. 10).

Four-digit year (1998, 1999, 2000, 2010).

o
o]

Yyyy

1 78 Part lll: Complex Data Description and Sharing

A\

MBER
e&
&

Many more modifiers are available, of course. All the .NET date and time
format modifiers are based on the System.Globalization.DateTime
FormatInfo class. You can find more information about this class on the
MSDN Web site (http://msdn2.microsoft.com/en-us/library/
system.globalization.datetimeformatinfo.aspx). To find more
Unix-format modifiers, you can take a look at the Get-Date detailed help text
(Get-Help Get-Date -detailed). A notes section at the end of that help
text lists all the Unix date and time modifiers.

Creating your own dates

Get-Date always returns the current date and time by default. Many times,
though, you need to define a date or time other than “right now.” Get-Date
gives you several ways to accomplish this task. The most straightforward
of all these methods is to define the date literally in string format, as in this
example:

smydate = Get-Date "03/29/2008"

Notice that I define the date only. That’s fine! If you leave out any portion of

a date or time, Windows PowerShell fills in the rest for you. If you leave out a
time, Windows PowerShell uses midnight (12:00:00AM) as the time. Similarly, if
you define just the time, Windows PowerShell uses the current date as the date.

The other way to define your own dates is to use the date and time switches
of the Get-Date Cmdlet. You can define a very exact date and time down to
the second by doing something like this:

Get-Date -year 2008 -month 3 -day 29 -hour 14 -minute 23 -second 15
All these switches are optional, and if you omit any one of them, Windows
PowerShell assumes certain default values. When exact values aren’t speci-
fied, the year, month, and day default to the current year, month, and day,

and the hour, minute, and second default to 0.

The hour is based on a 24-hour clock, so 1pmis 13, 2pmis 14, and so on.

Chapter 13: Going On a Date with PowerShell ’ 79

Using Date Math (It’s Not
Just for Nerds)

Although being able to find out the current date and time or to define dates
and times in general is useful, more often than not, the reason you need to
do these things is to calculate duration or elapsed time. Calculating the time
difference between two dates gets complicated, because sometimes the cal-
culation isn’t as trivial as just subtracting one number from another. Do you
know how many days elapsed between February 3, 1983, and July 14, 2008,
for example? This operation isn’t exactly something that you can easily do in
your head.

Calculating time differences

You can calculate the difference between two dates very easily in Windows
PowerShell. All you need to do is subtract the two dates. Going back to the
problem I presented in the preceding section, you can perform the date cal-
culation by defining the two dates and subtracting one from the other to get
your answer:

Sdatel Get-Date -year 1983 -month 2 -day 3
Sdate2 Get-Date -year 2008 -month 7 -day 14
Sdiff = Sdate2 - Sdatel

Now you have some value in $diff that represents the difference between
the two dates, but exactly what is this value? When you subtract two
DateTime objects, what you end up with is a Timespan object. If you output
the value of $diff, you see these values:

Days 9293

Hours 0

Minutes 0

Seconds 14

Milliseconds 808

Ticks 8029152148086132
TotalDays 9293.00017139599
TotalHours 223032.004113504
TotalMinutes 233253.972977117
TotalSeconds 802915214.808613

TotalMilliseconds

802915214808.613

1 80 Part Ill: Complex Data Description and Sharing

The best part of the Timespan object is that it already contains the value
of the time span in different units that you may care about. If you want to
know the number of days, you can just read the Days parameter by running
this code:

Sdiff.Days

If you want to know the number of milliseconds, you read the value of the
Milliseconds parameter. Hmm . .. wait. If you look at the values in the
$diff variable, something doesn’t seem quite right. Surely, more than 808
milliseconds elapsed between 1983 and 2008.

The days, hours, minutes, seconds, and milliseconds are actually part of
one value. In other words, Windows PowerShell (well, actually, the .NET
Framework) determined that 9,293 days, 0 hours, 0 minutes, 14 seconds,
and 808 milliseconds elapsed between those two dates. If you want to
know just the total number of days, hours, minutes, seconds, or millisec-
onds, use TotalDays, TotalHours, TotalMinutes, TotalSeconds, or
TotalMilliseconds instead.

Then there’s that other strange value. What are ticks, and why are there so
many of them? No, this value isn’t the number of tiny bloodsucking insects
that existed between those dates. A tick is equal to 100 nanoseconds and

is the smallest unit of time defined in the .NET Framework. The term isn’t
used often to describe time, but if you have to come up with time differences
with a granularity smaller than a millisecond, you have to use the tick count
instead.

Looking into the future

Sometimes, you need to find what the date or time will be based on a known
date and a given period. This scenario is actually fairly common. Suppose
that you're creating a scheduler that runs a task every 15 days for a period
of 60 days. To figure out when these tasks will run, first you have to have a
reference date (in this case, the first time when the task is scheduled to run);
then you add 15 days to that date to get a new date. Do this a total of four
times, and you've got all the future dates when this task will run. In Windows
PowerShell, this function is implemented as follows:

SstartDate = Get-Date "8/13/2008 11:00pm"

Write-Host ("Task runs on: ")

Write-Host SstartDate

for(si = 15; $i -le 60; $i += 15) {
Write-Host SstartDate.AddDays ($1i)

}

Chapter 13: Going On a Date with PowerShell ’8 1

\\J

The first thing that the script does is establish a start date and time. Then it
uses a for loop to generate all other times when the task will run. The most
important part of this code is the date object’s AddDays method, which
adds whatever number of days you specify to the date object and returns a
date object representing the new date after all those days have elapsed.

You’re not limited to adding just days. Variations of the Add method that
allow you to add practically any date or time value you want. The plain Add
method, which takes a Timespan object as a parameter and adds whatever
duration you want, is specified in the timespan object. All the other Add
methods have very intuitive names:

v Add (adds a Timespan value)
v AddDays
v AddHours
v AddMilliseconds
V¥ AddMinutes
v AddMonths
¥ AddSeconds
v AddTicks
V¥ AddYears
You're not limited to getting future dates. You can give the different Add meth-

ods a negative value so that PowerShell will calculate dates in the reverse
direction. If you want to know what date it was 8,723 hours ago, you can run

Snow = Get-Date
Snow.AddHours (-8723)

Checking whether it's daylight saving time

Daylight saving time (DST) is a really practical concept, when you think
about it, because it lets humans make better use of the available sunlight.
Although the simple action of moving the clock forward or backward is
relatively simple (even though trying to get up on time when you have to
move forward an hour isn’t), it introduces another layer of complexity to the
already-complex concept of date math. When the United States decided to
extend its daylight saving time period, it created yet another scramble to cor-
rect computer code that rely on dates akin to Y2K but with less media hype.
Some applications have the DST logic built in; others rely on various pro-
gramming libraries or the operating system itself to provide this information.

1 82 Part lll: Complex Data Description and Sharing

Well, having gone through that process once, I highly recommend that you
don’t try to get smart and implement DST code yourself. Take advantage of
the built-in DST calculator in Windows PowerShell, which can perform all

the math for you. In fact, all the date math I discuss earlier in this chapter

is already DST-aware. If any new changes have to be made in the DST logic,
you’ll have to update Windows PowerShell only once; then all your other pro-
grams will be aware of the new dates.

One other piece of information you may want to know is whether a date
occurs during DST. Windows PowerShell has that task covered as well. You
can use the IsDaylightSavingTime method of the date object, which
returns true if that date occurs during DST. This code snippet results in the
output false followed by true:

sdatel Get-Date "1/3/2008"
Sdate?2 Get-Date "4/23/2008"
Sdatel.IsDaylightSavingTime
Sdate2.IsDaylightSavingTime

Dealing with Time Zones

If DST and leap years aren’t enough, add time zones to the mix, and you've got
yourself a really exciting date. Unless you work for a global company or design
your Windows PowerShell scripts to connect to various resources in different
time zones, you probably aren’t too concerned about time zones. After all, if
you care about dates and times only in the context of the current time zone,
the standard date class already gives you this information for free.

Suppose that you have a script that’s designed to run on several computers,
and one computer may be in a different time zone from the others. You want
to make sure that the date and time aren’t based on local times but on the
date and time at your headquarters in New York. Unfortunately, the date
class can’t help you with this operation. Instead, you must use the Timezone
class to access this kind of information.

Standardizing with Coordinated
Universal Time

The best way to deal with times and time zones is to base local times on a
standard clock known as Coordinated Universal Time (UTC), which used to
be called Greenwich Mean Time (GMT). This standard clock is based on the
concept of time’s being defined in relation to the local time at the Greenwich,
England (prime meridian, 0 degrees longitude). As you move west from this
location, the local time shifts by a negative amount; moving east shifts time
by a positive value.

Chapter 13: Going On a Date with PowerShell

New York, for example, is =5 hours from UTC, which means that whatever
time it is in Greenwich, England, the local time in New York is Greenwich
time minus 5 hours. Tokyo, on the other hand, is +12 hours from UTC, which
means that it’s ahead of Greenwich time by 12 hours. These offsets are fixed,
determined by the longitude of a location in relation to the prime meridian.
As you and | know, however, time isn’t fixed because you also have to factor
in things like DST. Because different countries define the beginning and end
of DST differently (if at all), DST acts as an adjustment factor when you're
trying to work out the time differences between two geographic locations.

To see how this process works, consider New York, which is UTC -5:00, and
Stockholm, Sweden, which is UTC +1:00. The time difference between New
York and Stockholm is 6 hours — most of the time. Because New York starts
DST earlier than Stockholm does and ends it later, for several weeks of the
year, New York is on DST but Stockholm isn’t. During these weeks, the time
difference isn’t 6 hours but 5 hours, because New York time jumps ahead

by 1 hour before Stockholm does.

If you can determine the UTC offsets of any two locations and also determine
whether those locations are observing DST, you can compare the two times
by following these steps:

1. Get the UTC offset of the first location (-5 for New York, for example).

2. Add to the offset a DST adjustment factor (+1 if it’s DST in this location
and 0 otherwise).

3. Get the UTC offset of the second location (+1 for Stockholm, for example).

4. Add to this offset a DST adjustment factor (+1 if it’s DST in this location
and 0 otherwise).

5. Subtract the value you got in Step 2 from the value you got in Step 4.

What you end up with is the true time difference between the two
locations.

Using the TimeZone class

The TimeZone class gives you access to the world of using time zones in
Windows PowerShell. This class has plenty of very useful methods that, when
used in conjunction with date objects, can give you all that you need to calcu-
late time-zone differences. You can find out what time zone you’re in by using
this code snippet:

Stz = [timezone]::CurrentTimeZone

183

1 84 Part lll: Complex Data Description and Sharing

The $tz variable now contains a t imezone object that reflects the current
time zone. You can see the name of this timezone object by running

Stz .StandardName
Stz.DaylightName

Notice that a timezone object has two names: one for use during standard
time (Eastern Standard Time, for example) and one for DST (Eastern Daylight
Time, for example). The display names are fine, but what you're really inter-
ested in is the UTC offset, because it’s a numerical value that you can use to
compare time zones. This is how you get the current UTC offset:

Stz = [timezone]::CurrentTimeZone
sd = Get-Date
Stz.GetUTCOffset ($d) .Hours

If you're in New York when you run this command sequence, you’ get the
value -5 because New York is in the UTC -5:00 time zone. If the current date
or the date you give to the GetUTCOf fset method occurs during DST, this
code returns -4 instead. But wait — aren’t UTC values constant? Yes, they
are on paper, but what’s happening is that Windows PowerShell (actually,
.NET) is saving you some legwork. Rather than forcing you to calculate UTC
offset and factoring in DST, it does all the work for you.

When you get the UTC offset of a time zone by using the GetUTCOffset
method, this value already includes the DST adjustment factor, so it changes
dynamically based on whether the time zone is observing DST.

Unfortunately, Windows PowerShell isn’t capable yet of determining the time-
zone information in a time zone other than its own. As a result, you have to
use some other method to determine the UTC offset of the other location
(such as looking it up online). When you have the two values, you can calcu-
late the time difference between them.

Part IV

Controlling Where
and How You

Operate
PowerShell

The 5th Wave By Rich Tennant

“You kowhow ats love to plagw’oh Jo ings?
Well, Mittens would rather write them.”

In this part . . .

t’s now time to start really harnessing the power of

Windows PowerShell 2. This part covers some really
cool new features in Windows PowerShell. Chapter 15
gives you the ability to run commands on a remote com-
puter and even run multiple commands or scripts simulta-
neously in the background. I like to call these features
force multipliers because they really let you do more
things simultaneously, which means getting things done
faster with very little additional effort. If you like utilizing
your computer to free up more of your time, you'll love
these features. I show you how to make your scripts work
within an international setting in Chapter 16. Trying to
debug a script is usually a real pain, but Chapter 17 makes
finding and squashing those bugs much easier.

Chapter 14

Using Functions to
Divide and Conquer

In This Chapter

Modularizing code using functions

Controlling visibility using scopes

Making functions globally available

Creating your own command using Advanced Functions

t’s very rare for any of us to do something only once, especially when

it has anything to do with computers. When writing your Windows
PowerShell scripts, you’ll eventually find that you repeat code over and over.
Although that’s good exercise for your fingers, it really is counterproductive.
Modularizing your code into functions not only saves you tons of time, but
also makes your code more robust by making sure that tried-and-tested code
is reused so that you don’t have to rewrite everything from scratch every
time and possibly introduce unnecessary errors.

In this chapter, you harness the real power of scripting by creating reusable
code blocks called functions (and their slightly upgraded version, Advanced
Functions). Functions allow you to accomplish a lot without writing lots

of repetitive code, and often functions makes troubleshooting or making
changes to existing scripts a lot easier. So if you're looking for ways to save
you more time in the future, keep reading!

Reusing Code Using Functions

Imagine a simple task such as displaying the words I want a nice juicy steak
right now on the screen. You already know that you use Write-Host to dis-
play text. If your task is to display that text 100 times in a row, you also know
that you can put the text in a loop. This method works great when you need
to repeat something many times in sequence, but it doesn’t work so well

if you need to repeat a section of code more than once but not necessarily
repeat it immediately.

1 88 Part IV: Controlling Where and How You Operate PowerShell

\\J

When you want to have a piece of code that you'll reuse again and again, it
often makes sense to put that code in a function. A function is like a black box
with inputs and outputs. When you write a function, you generally design it in
such a way that the user of the function doesn’t need to know how it works.
You just define what the inputs should be and what the function does, along
with any values it might return.

Consider the remote control for your TV set. When you press the On button,
you usually don’t want to know the intricate details of how the infrared signal
is sent to the TV, how the TV then activates a relay to power on its circuitry,
and so on. You just want the TV to turn on. In effect, the On button is like a
function. You press the button, and it does some magic and performs some
action — in this case, turning on the TV.

Creating your first function

Functions consist of four parts: the function’s name, input parameters, body,
and return values. Only the function name and its body are required. Here’s
a function called MyUselessFunction that does nothing useful (actually, it
does nothing at all):

function MyUselessFunction{
#Here's the body that contains nothing if you want.
}

When entering commands in the command line that span multiple lines,
Windows PowerShell goes into a multiline prompt with each subsequent line
preceded by >>. You can keep entering commands as you would in a script,
and when you’re ready to run the multiline command, just press Enter one
more time.

You create a function by using the function keyword followed by the name
of the function. The stuff between the curly braces is the body of the func-
tion, which defines what the function does. The body can contain whatever
you want, even if it’s nothing like the example in MyUselessFunction.

A useless function is about as helpful as being stuck in a desert with

nothing but a million dollars. Sure, it’s great to see, but it won’t help you
survive. Here’s a more useful function that uses Windows Management
Instrumentation (WMI) to query for, and then display, the computer’s operat-
ing system details:

function GetOSInfo({
Sosinfo = Get-WmiObject Win32_OperatingSystem
Write-Host ($osinfo.caption + " " + Sosinfo.version + " Service Pack
" + $osinfo.ServicepackMajorVersion + "." + $osinfo.
ServicePackMinorVersion)

Chapter 14: Using Functions to Divide and Conquer ’89

If you enter this code in the Windows PowerShell command line or put it
inside a Windows PowerShell script by itself, you’ll find that it doesn’t do
anything or display anything at all. This is okay, because all you’ve done is
define the function. Defining this function simply tells Windows PowerShell
about the function you want to create and what it’s supposed to do. When
you actually want to use the function, you just need to run

GetOSInfo

On a typical Windows Vista computer running Service Pack 1, this function
displays

Microsoftr Windows VistaT Ultimate 6.0.6001 Service Pack 1.0

Note: The extra r and T after Microsoft and Vista are for the copyright
and trademark symbols, respectively, which can’t be displayed properly in a
command shell.

QQ,N\BEH Before you can use a function in Windows PowerShell, you must define it. If
& you want to define a function in a script, the definition (code) for the function
must come before you use it the first time. This rule is especially important
to keep in mind if you have some experience with VBScript, because unlike
Windows PowerShell, VBScript allows you to define functions anywhere you
want within the script.

Defining parameters

Most of the time, you create functions after you realize that you keep repeat-
ing a section of code with the only difference being some changes in a few
variables. In the case of querying for operating system information, you may
want to query different computers at different times. You can change the
GetOSInfo function to accept a parameter that represents the name of the
computer you want to query, as in this example:

function GetOSInfo ($computername) {
Sosinfo = Get-WmiObject Win32_OperatingSystem -computer $computername
Write-Host ($osinfo.caption + " " + $osinfo.version + " Service Pack
" + Sosinfo.ServicepackMajorVersion + "." + $osinfo.
ServicePackMinorVersion)

}

If you want to query the operating system name and version of another com-
puter on your network (such asmail01), you can run

GetOSInfo maillOl

1 90 Part IV: Controlling Where and How You Operate PowerShell

A\

Unlike other programming or scripting languages, Windows PowerShell
requires you to put a space before each parameter when you pass parameters
to a function. You don’t enclose the parameter in parentheses, as in
GetOsInfo(mail0l). If your function takes more than one parameter, you
separate the values with spaces, as in Myfunction paraml param2
param3.

The new GetOSInfo function just has a few changes. The most obvious one
is in the main function definition:

function GetOSInfo (Scomputername)

This code tells Windows PowerShell that the Get0SInfo function takes one
parameter and that within the function, the value will be referred to as $com-
putername. Now that Get0OSInfo has the name of the computer you want
to query, the other change in the function makes use of this newly defined
parameter:

Sosinfo = Get-WmiObject Win32_OperatingSystem -computer $computername

[added the -computer $computername parameter to Get-WmiObject and
successfully converted this function to support querying other computers.

Defining more than one parameter

You can define more than one parameter, if you want. You just need to sepa-
rate the parameters with commas, like this:

function FullName ($Sfirstname, S$lastname) {
Write-Host ($Sfirstname + " " + Slastname)

}

You can also define your parameters in a different way. Instead of putting the
parameter list between the function name and the first curly brace, you can
define the parameter list inside the body of the function, like this:

function FullName{
param(Sfirstname, S$lastname)
Write-Host ($Sfirstname + " " + $lastname)

}

So far, I've been using variable names in the parameter list. Windows
PowerShell treats these variables as variants (variables that don’t have a data
type) so you can give them any values you want. This arrangement is useful
but can cause bugs in your code if you suddenly get some data type that

you didn’t expect. The best solution is to define the type for each input
parameter explicitly by prefixing each parameter name with the data type
enclosed in square brackets. This version of the Ful1Name function makes
sure that both parameters given to it are of the type string (or at least can
be converted to string) before the function proceeds:

Chapter 14: Using Functions to Divide and Conquer

function FullName{
param([stringl$firstname, [string]S$Slastname)
Write-Host (Sfirstname + " " + S$lastname)

Working with default parameters

The modifications I made in the Get0SInfo function in the “Defining
Parameters” section, earlier in this chapter, allow users of the function to
specify the computer name of whatever host they want to get the OS informa-
tion from. The annoying thing about these modifications is that now, if I just
want to query my own OS information, I either have to give the function my
computer name explicitly or put in a dot (.), which in WMI means the local
host. The good news is that you can define default values for each parameter
so that if a value isn’t specified, the default value is assigned automatically.
Here’s how GetOSInfo looks with a default value defined (making sure that a
string is provided, of course):

function GetOSInfo([string]Scomputername = "."){
Sosinfo = Get-WmiObject Win32_OperatingSystem -computer S$computername
Write-Host ($osinfo.caption + " " + S$osinfo.version + " Service Pack
" + Sosinfo.ServicepackMajorVersion + "." + $Sosinfo.
ServicePackMinorVersion)

}
The key is the change in the main function definition:
function GetOSInfo([string]$Scomputername = ".")

In addition to making sure that $computername is a string, PSH assigns the
value “.” to this variable. This value is used only if you run Get0SInfo with-
out any parameters; otherwise, if you give the function a computer name,
that value takes precedence and is assigned to Scomputername in lieu of the

default value.

Returning values

So far, all the function examples in this chapter simply display some informa-
tion onscreen. Most of the time, however, this result isn’t what you want.
Instead, you want to call a function with some parameters and get back a
value that you’ll either use or manipulate within your script.

You can return a value from a function by using the return keyword fol-
lowed by the value you want to return. Here’s a modified version of the
FullName function that returns the full name string rather than just display-
ing it onscreen:

191

1 92 Part IV: Controlling Where and How You Operate PowerShell

a\\J

function FullName ([string]$firstname, [string]$lastname) {
return ($firstname + " " + $lastname)

}

Interestingly enough, if you call the Ful1lName function by itself with the
appropriate parameters, it still behaves the way it did before, displaying the
full name onscreen. In other words, running

FullName "Steve" "Seguis"
results in this output:
Steve Seguis

You get this output because by default, when Windows PowerShell gets a
value back from a function that you don’t use by assigning it to some vari-
able, that return value is simply displayed onscreen. It’s really only a coinci-
dence that the behavior of this new version of the Ful1lName function is the
same as that of the old one. The big difference is that now you can store the
result in a variable for use later, as in this example:

Sname = FullName "Steve" "Seguis"
Write-Host "I can do something now...then display"
Write-Host Sname

This code outputs

I can do something now...then display
Steve Seguis

This version is different from the old version, which would have displayed
the name immediately before continuing to the next line of code.

Sometimes, the value you want to return is a collection of values rather than
a simple single value. If the value generated inside your function is already

a collection, you can simply return that collection. Here’s a simple function
that does a directory listing of everything in the Windows directory and
returns that result because the return value of Get-Childltem in this case is
already a collection:

function DirWin({
return Get-ChildItem $env:windir

}

It’s best to use environment variables when getting things like the path to
the Windows directory, because you can’t always assume that the result is
going to be C: \Windows. To get any environment variable’s value, just use
Senv:<environment variable name>

Chapter 14: Using Functions to Divide and Conquer ’ 93

If you're retrieving multiple values from within your function, and you want
to return a collection of values, one easy way is to use the Write-Output
method. Contrary to what you might think, Write-Output doesn’t display
the value onscreen when it’s used within a function. Instead, it adds the item
to an unnamed collection that is returned by the function when it completes.
This new function uses Write-Output to create, and eventually return, a
collection from the function that contains just the names of files and folders
directly below the Windows folder:

function DirWinNames {
Sdir = Get-ChildItem Senv:windir
foreach($item in S$dir) {
Write-Output S$item.name
}
}

You can use the result of this function just as you would use any collection,
such as looping through it with a foreach loop, like this:

Scontents = DirWinNames
foreach($Sitem in Scontents) {
Write-Host S$Sitem

}

Using Scope

WING/
&

Scope is a concept that often confuses new programmers because it’s not
entirely intuitive and sometimes is difficult to explain. For this reason, scope
issues are among the top sources of bugs in scripts and are often frustrating
to track down. Make sure that you pay attention to this section and reread it if
things aren’t clear the first time around.

Understanding scope rules

Scope defines the boundaries that control the visibility of variables from a
given context. From the perspective of a function, Windows PowerShell has
three scopes:
v Global scope: Visible throughout the entire shell
v Script scope: Visible only from within the script during its execution
v Private scope: Visible only from within the function
What exactly do [mean by visible? To get a better understanding of how

scope works, take a look at Figure 14-1. Only the variables that are defined,
either in your current scope or its parent (container), are visible to you.

194 Partwv: controlling Where and How You Operate PowerShell

Parents can’t see the variables in any of their children. In other words, if
you're in the Private scope, you can see and access the variables that exist
in Script scope and Global scope, in addition to anything you define in the
Private scope. If you're in the Script scope, however, you can see variables in
the Global scope but not in the Private scope.

Script Scope

$ss1 = "Script Variable"

Figure 14-1:
The scope
diagram.
|

Have a look at the following script, which implements what Figure 14-1 shows.
First, assume that $gs1 = "Global Variable" has been defined at the
Windows PowerShell prompt, which immediately puts it into Global scope:

testscript.psl
assumes $gsl = "Global Variable" has been defined in the Windows PowerShell

console.

function MyPrivFunction {
Write-Host "Inside Function..."
$psl = "Private Variable"
Write-Host S$psl
Write-Host S$ssl
Write-Host S$gsl
Write-Host "Function Done..."

}

Write-Host "Inside Script..."
$ssl = "Script Variable"
Write-Host $ssl

Write-Host S$psl

Write-Host S$gsl

MyPrivFunction

Write-Host "Script Done..."

Chapter 14: Using Functions to Divide and Conquer ’ 95

Running this script results in the following output:

Inside Script...
Script Variable...

Global Variable...
Inside Function...
Private Variable. ..
Script Variable...
Global Variable. ..
Function Done. ..
Script Done...

As you can see, variables defined both within the script and globally are all
accessible from within the MyPrivFunction function, and global variables
are also accessible from within the script. Notice, though, that a line is miss-
ing between Script Variable... and Global Variable... inthe
output. This missing line is caused by the Write-Host $psl line within the
script. Scope rules prevent Private scope access from within Script scope, so
in the main body of the script, you can’t access variables within a function.

Some really technical facts explain this situation, but you can come up with
the reason just by thinking. The script can’t access variables in a function
because those variables don’t really exist until the function is called, and
they exist only while the function is running. When the function is done, vari-
ables defined within the function are no longer needed and cease to exist.

The same holds true for variables defined in a script. Those variables don’t
exist until the script is running, so you shouldn’t be able to access a variable
in the Script scope from the Global scope.

Watching out for name overlap

The interesting aspect of scope is that it allows you to use the same vari-
able name more than once, provided that the variable names are in different
scopes. Consider this code snippet:

function scopetest({
Smyvar = "Jeremy"
Write-Host Smyvar
}

Smyvar = "Royski"
Write-Host Smyvar
scopetest

1 96 Part IV: Controlling Where and How You Operate PowerShell

This code generates the following output:

Royski
Jeremy

Even though [used $myvar twice, there’s no problem because of scope.
Within the scopetest function, $Smyvar contains the string "Jeremy", but
outside the function, $Smyvar contains the string "Royski ". The variables
have the same names, but internally, they’re completely separate variables.

This behavior often leads to some confusion and in some cases to bugs.
Here’s some code that attempts to change the value of the variable $name
from within a function:

function changename
Sname = "Bradley"

}

Sname = "Jason"

Write-Host $name

changename

Write-Host S$Sname

Because functions can see variables in their parent scope (Script scope), you
may think that simply assigning a new value to $name will change its value,
but if you run this code snippet, you’ll find that the output is "Jason" both
times. Why hasn’t the name changed? The reason is that although you can
read the value of a variable in a parent’s scope, you can’t assign a value just
by using the variable’s name. In this case, instead of assigning the string
"Bradley" to $name, the function simply creates a new Private scope vari-
able called $name and gives it a value of "Bradley". Nothing is ever touched
at the parent scope.

This mistake is a very common one; even experienced programmers and
script writers sometimes make this mistake. If this code snippet were part
of some much larger piece of code, it might be almost impossible to find and
would result in some very unexpected behavior of the code. If you really
want to change the value of a variable outside the current scope, you have
to use a slightly different syntax. Here’s a modified version of the preceding
code snippet that changes the value of $name correctly at the script level:

function changename
Sscript:name = "Bradley"

}

Sname = "Jason"

Write-Host $name

changename

Write-Host S$name

Chapter 14: Using Functions to Divide and Conquer

\\J

MBER
é&
&

Now the output is

Jason
Bradley

To change the value defined in the Script scope from a Private scope, use the
format $script:<variable_name>=<new_value>. To change the value
defined in the Global scope from either the Script or Private scope, use the
format $global:<variable_name>=<new_value>.

Defining functions in Global scope

The best thing about functions is that they really help you modularize your
code and allow you to reuse frequently used code. One way is to copy and
paste the function code between scripts, but if you think you’ll use the
function often, it makes much more sense to define the function at Global
scope level. Doing so makes the function available not only in the Windows
PowerShell console, but also to any script you run from the console.

You have three options for defining a function at Global scope level:

v Manually: You type the function definition manually in the Windows
PowerShell console.

v~ Profile script: You can put the code for your function in your profile
script so that every time you open a new shell, the function will be
defined automatically.

+* Dot-sourcing: You put the code for the function in a script and dot-
source it.

In dot-sourcing, you simply put the code in a script file such as C: \scripts\
myfunctions.psl. Thenyourun . c:\scripts\myfunctions.psl, and
the script runs in Global scope, which means that any variable or function you
define in it will persist for the duration of the console.

Creating Your Own Cmdlets —
Advanced Functions!

Cmdlets are typically written in the C# programming language but can also
be written in VB.NET. Don’t worry — I'm not going to ask that you become
skilled in either of these programming languages. One of the coolest new fea-
tures to be introduced with Windows PowerShell 2 is Advanced Functions.

197

1 98 Part IV: Controlling Where and How You Operate PowerShell

Advanced Functions provide a way for you to write functions that behave

like Cmdlets in the form of PowerShell scripts rather than the compiled C#

or VB.NET methods. What this really means for you is that if you can write a
Windows PowerShell script, you can most certainly write your own Advanced
Functions. This feature has great possibilities because it allows you to create
a library of Cmdlets that you can use yourself and also give to other people.

Understanding the structure of
Advanced Functions

Advanced Functions have a very specific structure, one that’s similar to the
structure required by regular Cmdlets created in C# or VB.NET, because just
like Cmdlets, Advanced Functions must define their behavior in a predict-
able format so that they can work seamlessly together. Look at the advanced
function in Listing 14-1. It doesn’t do much, but it demonstrates how the
Advanced Functions concept works.

Listing 14-1: Color-Coded Output Using Advanced Functions

#REQUIRES -Version 2.0
function Write-Yellow
{

<#
.Synopsis
Writes some text in yellow foreground color
.Description
This function displays the text you provide to
The screen using a yellow foreground color.
.Parameter out
String to display
.Example
PS> Write-Yellow "Show this in yellow!"
.Link
about_functions
about_functions_advanced
about_functions_advanced_methods
about_functions_advanced parameters
.Notes
Author: Steve Seguis
#>
[CmdletBinding ()]
Param
(
[Parameter (mandatory=Strue,ValueFromPipeline=Strue)]
[Alias("out")]
[String] $OutString

Chapter 14: Using Functions to Divide and Conquer

Listing 14-1: Color-Coded Output Using Advanced Functions

Begin
{

Write-Host "Hello, Write-Yellow starting up!"
}

Process

{
Write-Host $SOutString -foregroundcolor "Yellow"
}

End
{
Write-Host "Bye bye!"
}
}

You should always start a script with #REQUIRES -Version 2.0 at the
top, because this script doesn’t work with version 1 of Windows PowerShell.
The script defines a function called Write-Yellow in the typical verb—noun
format, such as Get-Help. The first section, starting with <# and ending in
#>, is a feature called AutoHelp. If you run Get-Help against this script, the
AutoHelp feature displays the contents between those two delimiters in the
window, which makes creating help for your scripts much easier.

Defining attributes

What differentiates a regular function from an advanced function is the use
of the next piece, called the CmdletBinding attribute. You can define up to
four distinct attributes for the CmdletBinding attribute:

V¥ SupportsShouldProcess: When you specify the
SupportsShouldProcess attribute, it enables the ~-confirm and
-whatif parameters of the Cmdlet, which prompts the user before the
script makes any changes to the system.

v DefaultParameterSet: You use the Defaul tParameterSet attri-
bute to define which parameter set the function should use if that set
can’t be determined automatically. This attribute is typically used if the
function supports multiple syntaxes and the parameters aren’t unique.

199

200 Part IV: Controlling Where and How You Operate PowerShell

Vv ConfirmImpact: The ConfirmImpact attribute is used to determine
when the action of the Cmdlet should be confirmed by a call to the
ShouldProcess method. This setting is used in combination with
the SupportsShouldProcess attribute and runs ShouldProcess
only if this value is equal to or greater than the value of the shell’s
$ConfirmPreference variable.

v snapin: The last attribute you can define is snapin. Here, you define
the name of the snap-in used to register the Cmdlet. Snap-ins provide
a way for the custom Cmdlets to be loaded into a Windows PowerShell
instance.

You can use a DefaultParameterSet called MyValues, for example, by
defining it as follows:

[CmdletBinding (DefaultParameterSet="'MyValues"')]

You use commas to separate the property name and values, if you have more
than one, like this:

[CmdletBinding (SupportsShouldProcess=$true, ConfirmImpact= "Medium")]

In practice, though, 99 percent of the time you're going to use this attribute with
no parameters, as [show you in the Write-Yellow example in Listing 14-1:

[CmdletBinding ()]

Defining parameters

Next, you must define the parameters that the function will accept. When you
define a parameter, you can set several attributes for each parameter (see

Table 14-1).

Table 14-1 Parameter Metadata Attributes

Property Name Syntax Purpose

Mandatory [Parameter Avalue is required for
(mandatory=S$true)] this parameter.

Position [Parameter The position of this
(Position=<Int32>] parameter on the com-

mand line.
Alias [Alias (<String[]>)] Another name that can

be used to refer to this
parameter.

Chapter 14: Using Functions to Divide and Conquer 20 1

Property Name Syntax Purpose
Parameter [Parameter (Parameter The name of the param-
SetName SetName=<String>)] eter set this belongs

to. Use this attribute
when you have multiple
parameters with the
same name to accom-
modate different syn-
taxes for the Cmdlet,
depending on use.

ValueFrom [Parameter (ValueFrom This Cmdlet can accept
Pipeline Pipeline=$true)] input from a pipeline.
ValueFrom [Parameter (ValueFrom This parameter can
Pipeline PipeLineByProperty acceptinput from a
ByProperty Name=S$true)] property of a pipeline
Name object. You use this

attribute if you want to
map the input property
of the pipeline to a
property of the Cmdlet
with the same name. If
the input has a "name"
property, for example,
and this Cmdlet also has
a "name" parameter,
these two values will be

paired.
ValueFrom [Parameter (ValueFrom This parameter accepts
Remaining RemainingArguments= any arguments that are
Arguments S$true)] not mapped to other

parameters. Use this
attribute if you want

to take in an unknown
number of values from
the command line and
store it as a list of items,
such as a list of com-
puter names.

HelpMessage [Parameter (Help The text to display as
Message=<String>)] help for this parameter.

(continued)

202 Part IV: Controlling Where and How You Operate PowerShell

Table 14-1 (continued)

Property Name

Syntax

Purpose

AllowNull

[AllowNull ()]

This property can be
null (have no value). You
can use this attribute if
you have a mandatory
parameter in which null
is a valid value.

AllowEmpty
String

[AllowEmpty
String ()]

This property can have
an empty string (blank
text) assigned to it even
though it's mandatory.

AllowEmpty
Collection

[AllowEmpty
Collection()]

This property can have
an empty collection even
though it's mandatory.

Validate
Count

[ValidateCount (
<Int32>,<Int32>)]

This property validates
the minimum and
maximum number of
arguments supported
by this parameter. The
first number defines
the minimum, and the
second number defines
the maximum.

Validate
Length

[ValidateLength (
<Int32>,<Int32>)]

This property validates
the minimum and
maximum length of the
parameter value.

Validate
Pattern

[ValidatePattern
(<String>)]

This property compares
the parameter value

to the string pattern.
You can use a regular
expression to define the
pattern that this property
value must match. A
regular expressionis a
sequence of characters
describing a pattern,
suchas "[0-9]"to
mean any digit from 0
through 9.

Chapter 14: Using Functions to Divide and Conquer 203

Property Name Syntax Purpose

Validate [ValidateRange This property validates

Range (<Int32>,<Int32>)] the minimum and
maximum values of the
parameter.

Validate [ValidateScript This property specifies

Script (<ScriptBlock>)] a script that'll be used to

validate the parameter.
Use this attribute to
perform more complex
validation of the param-

eter value.
Validate [ValidateSet This property defines a
Set (<String[]>] set of values that's valid
for this parameter.
Validate [Validate This parameter can't be
NotNull NotNull ()] null.
ValidateNot [Validate This parameter can't be
NullOrEmpty NotNullOr null, an empty string, or
Empty ()] an empty array.

The table can be a bit confusing, but in practice, it’s very straightforward.
Suppose that you define a mandatory string parameter called ServerName
that you also want to reference as "SRVNAME" or "SRV" and that has a mini-
mum length of 3 characters and a maximum of 15:

Param

(

Parameter (mandatory=Strue)]
Alias ("SRVNAME", "SRV")]
ValidateLength (3,15)]
String] $ServerName

—_— .

)

All you need to do is enter each parameter property you want to define on
a separate line, along with any necessary values, such as the minimum and
maximum values in the case of ValidateLength. The exception is that
some attributes (such as those specifying whether a parameter is manda-
tory) have to be specified with the Parameter function. You see which
parameters need additional attributes if you look at the examples in Table
14-1. If you want to define more than one kind of attribute, you separate the
attributes with a comma, like this:

[Parameter (mandatory=Strue,position=0)]

204 Part IV: Controlling Where and How You Operate PowerShell

Using methods

Each function can also define three methods (a collection of code that per-
forms some function based on a given set of input) to define what it actually
does. These methods are

v Begin{}: The Begin{} method is run once for each instance of this
Advanced Function. It’s typically used to facilitate initialization routines.

v Process{}: The Process{} method is called for each input of the
Advanced Function. If the Advanced Function receives 100 lines of input
(such as the output of a previous command in a pipeline), it is called 100
times (once for each line). This method is usually defined for Advanced
Functions when you expect to receive input from a pipeline and need
to define how to handle each of the inputs it receives. I talk more about
pipelines in Chapter 7.

v End{}: The End{} method is called once, when the Advanced Function
terminates. You use this method to define any postprocessing tasks you
want the Advanced Function to do before quitting.

If you have some knowledge of object-oriented programming, you can loosely
think of Begin{} and End{} as being the constructor and destructor of a
class, respectively. The Process{} method is a single function that does the
actual work on the data flowing into it.

I put some code in the Begin{} and End{} methods in Listing 14-1 only to
demonstrate how they work. If you don’t want to do anything specific when a
Advanced Function starts or terminates, you can omit these methods.

Running Advanced Functions

Now that you have an advanced function to play with, follow these additional
steps to start using it:

1. Save the Wirite-Yellow Advanced Funtion code in a file called
myscriptcmdlet.psl.

2. Open Windows PowerShell, and run . C:\scripts\myscriptcmd-
let.psl.

This code assumes that you saved the script in a scripts directory

at the root of the C: drive. Replace C:\scripts with the path to your
script. Note that [use a dot followed by a space and then the path to the
script.

3. Test the script by typing Write-Yellow -OutString "Does this
work?" at the PSH prompt and pressing Enter.

Chapter 14: Using Functions to Divide and Conquer 205

Running the Write-Yellow command in Step 3 generates the following
output:

Hello, Write-Yellow starting up!
Does this work?
Bye bye!

It works wonderfully. The code within the Begin{} method gets called first,
followed by the code within the Process{} method, which displays the
value you provided on the command line. The command finishes by execut-
ing the code in the End{} method.

<P You may be wondering about that strange Step 2, in which you have to use
a dot followed by a space and then the script name. This process is called
dot-sourcing the script; it makes any variable, function, or whatever else you
define in your script globally available for that session.

If you don’t dot-source a script that defines a Cmdlet and simply run the
script as is, when you try to run your newly created Cmdlet, you’ll get an
error message saying that it’s not a recognized command. This error occurs
because the Cmdlet is defined only while the script is running. As soon as the
script ends, that Cmdlet definition is removed. Dot-sourcing it tells Windows
PowerShell that you want to make the Cmdlet available even after the script
finishes executing.

"\? Another way to make your advanced functions available is to put this code in

your profile, because your profile script is automatically dot-sourced when

you open a Windows PowerShell instance!

Because you defined an alias for the OutString parameter, you can also use
the following command to display "Does this work?" onscreen:

Write-Yellow -out "Does this work?"

One of the most interesting parameter properties you set in Listing 14-1

for the OutString parameter is ValueFromPipeline. This property changes
the behavior of the Write-Yellow Cmdlet a little bit by automatically taking the
input and assigning it to the Out String parameter. The side effect of this prop-
erty is that you can actually run Write-Yellow without having to specify the
parameter name explicitly, as in this example:

Write-Yellow "Does this work?"

This feature really shines in a pipeline when it receives input from another
command. Consider this command sequence:

Get-ChildItem C:\ | Write-Yellow

206 Part IV: Controlling Where and How You Operate PowerShell

Figure 14-2:
The result

of piping the
outputofGet-
Childltem to
the Write-
Yellow
advanced
function.
|

The first command, Get-ChildItem, lists the contents of the given path,
which in this case is the root of the C: \ drive. Then this result is piped to
Write-Yellow via the pipe character (|). This command sequence gener-
ates the output in Figure 14-2.

&5 Windows PowerShell V2 i [[
[PS C:nscripts? Get—ChildItem G:\ | Write-Yellow n
Hello, Urite-Yellow starting up! =

698f dBecBc98F aes

Progran Files

lautoexec . hat
BOOTSECT . BAX
config.

ye bye!
PS C:\scripts) -

This example really demonstrates how the three advanced function methods
come into play. Because Write-Yellow appears only once on the command
line, the code has only one instance of the Write-Yellow Cmdlet, and the
Begin{} method is called once as usual. For each item returned by Get-
ChildItem C:\,the Process{} method is called. Because the code uses

the valueFromPipeline property, each object returned by Get-ChildItem
gets assigned to the OutString parameter, and for each object, the function
displays this value to the console in yellow. When Write-Yellow finishes pro-
cessing all the objects from Get-ChildItem, it runs the End{} method.

Out of curiosity, you can try piping the output of Write-Yellow to another
instance of Write-Yellow, as follows:

Get-ChildItem C:\ | Write-Yellow | Write-Yellow

The output of this command sequence and the previous sequence where the
output of Get-ChildItem was being passed to only one instance of Write-
Yellow is that there is an additional "Hello, Write-Yellow start-
ing up!" line at the beginning of the output and an additional "Bye bye!"
line at the end of the output. This occurs because two instances of Write-
Yellow appear on the line, and the Begin{} and End{} methods get called
once for each instance.

Chapter 14: Using Functions to Divide and Conquer 20 7

Finding uses for Advanced Functions

As a script writer, you’ll find that advanced functions are excellent ways to
create reusable commands for yourself and even for other people. You can
create a whole library of script Cmdlets and distribute them throughout
your organization to build on custom business processes. You can create
an advanced function to provision user accounts, for example, and call it
Create-MyCompanyUser.

Another good use of advanced functions is creating a wrapper around an
existing Cmdlet. The Write-Yellow advanced function is an example of cre-
ating a wrapper around what is essentially Write-Host to perform a special-
ized out routine. If you write a Write-HostError Advanced Function that
takes some text and displays it onscreen in red, it’ll be far easier to use that
Advanced Function than using Write-Host with the -foregroundcolor
parameter over and over again.

208 Part IV: Controlling Where and How You Operate PowerShell

Chapter 15

PowerShell Ninjas: Running Jobs
Remotely or in the Background

In This Chapter
Multitasking with background jobs

Managing background jobs

Administering commands remotely

M ost of what I've done (and continue to do on a daily basis) is geared
to system automation. Whether you’re managing tens of thousands of

computers or managing a few of servers, one thing remains the same:

To be efficient, you need to be able to manage all those systems easily from
a central management point. Sure, you have plenty of ways to manage sys-
tems remotely, such as by using Windows Management Instrumentation
(WMI), but sometimes even that method has drawbacks, such as reduced
performance.

Now you can use Windows PowerShell 2 to run Cmdlets remotely. Another
new feature you can take advantage of in Windows PowerShell 2 is the ability
to run background jobs, which means that you can run Cmdlets and other
things in the background while you do something else.

In this chapter, you explore one of the most compelling reasons for using
Windows PowerShell 2, which is to run commands in the background as well
as running commands on remote computers that are also running Windows
PowerShell 2. This gives you the ability to run more things in parallel and
take full advantage of all the PowerShell commands on remote computers
just as if you were physically there.

2 7 0 Part IV: Controlling Where and How You Operate PowerShell

Using Background Jobs

MBER
\x&
&

If you open Windows Task Manager, you’ll see a bunch of running processes,
most of which are processes that you don’t use interactively and are running

in the background (ideally, doing something useful). The traditional Windows
command shell lets you run one command at a time unless, of course, the com-
mands are piped together. Still, you're limited to running one series of com-
mands at a time. One way around this limitation is to start a new command shell
that in turn runs other commands. Although this method works, you really have
little control after you get the process started. It’s not easy to find out the status
of the process after it gets going — which may be important if you need to make
sure that the process has finished before moving on to something else.

You must be an administrator on the computer to take advantage of back-
ground jobs.

Enabling WinRM

You have to enable Windows Remote Shell (WinRM) before you can use any
of the background job Cmdlets. As the name implies, WinRM is designed to
allow commands to be run remotely on other computers as long as they have
WinRM installed — even if you just want to create background jobs on the
same computer where you're running the script because it uses the same
WinRM features to create and run the jobs. Here’s the easiest way to set up
WinRM:

1. Install WinRM 2, if it isn’t already installed.

Currently available at https: //connect .microsoft.com/WSMAN/
Downloads.

2. At a command or PowerShell prompt, run winrm quickconfig.

3. When prompted, press Y to make the configuration changes
automatically.

When the configuration changes are made, the WinRM service starts.

Starting a new job

You create background jobs by using the Start-Job Cmdlet. Minimally, the
only thing you need to do is give Start-Job the command you want it to
run. This command can be as simple as getting a directory listing of every-
thing at the root of the C: drive, like this:

Start-Job -scriptblock {"Get-ChildItem C:\"}

__ Chapter 15: PowerShell Ninjas: Running Jobs Remotely or in the Background 2 ’ 1

This code automatically starts the command sequence you specify in the
background, and you immediately return to the Windows PowerShell prompt.
You may notice, however, that in and of itself, running this command doesn’t
seem to do anything other than return some information about the job:

Id Name State HasMoreData Location Command

1 Jobl Running True localhost Get-
ChildItem C:\

You can see what each of the job properties is for in Table 15-1.

Table 15-1 Job Object Properties

Property Description

ID Displays a unique number assigned to the job while it's
running.

Name Shows the name you give the job, using the -name
switch; otherwise, it'll contain a generic name such as
Jobl.

State Shows the current state of the job.

HasMoreData Lets you know whether you can retrieve more data
from this job. (I talk about retrieving jobs in the next
section.)

Location Indicates where this job is running. If you're creating a

job to run on the machine you're working on, this prop-
erty will be Localhost; otherwise, it'll be the name
of the computer on which the job is running.

Command Specifies the command that this job is running.

\3 . .
P Start-Job returns a reference to the job so you can use this reference to

access it later. You can save this reference in a variable, if you want, to make
referring to that particular job easy, as in this example:

S$myjob = Start-Job -scriptblock {"Get-ChildItem C:\"}

Getting results

If jobs that you create run in the background, how do you get the data
returned by them? Here’s probably one of the coolest features of Windows
PowerShell background jobs: As the jobs run, any data they return is stored
for you until you're ready for it. To retrieve the data from a job, you use the
Receive-Job Cmdlet. Because it’s possible to have many jobs running at

2 ’ 2 Part IV: Controlling Where and How You Operate PowerShell

<MBER

\\J

the same time, you need to give PowerShell the job object from which you
want it to retrieve the data. If you save the return value of Start-Jobin a
variable, you can use that variable to feed into Receive-Job because it acts
as a reference to that job object, as in this example:

Receive-Job -job Smyjob

Many times, you submit a job and don’t keep track of the job object directly;
instead, you store it in a variable. Don’t worry — you can still get the data
from the job as long as you have some other information that uniquely identi-
fies the job you're interested in. One method is to run Get-Job to get a list
of all the jobs on the system and then use the ID to let Receive-Job know
which job you want to get data from. This example is how you get the result
from the job with the ID value of 3:

Receive-Job -ID 3
You use Get-Job to see a list of all the jobs on the system.

If you look closely at the output of Get-Job, you'll notice a column called
HasMoreData. This value stays true for as long as you can retrieve data
from that particular job. When you run Receive-Job, it sets this property
to false if the job is already complete and no more data is left to retrieve. If
the job takes a long time to run (maybe you’re doing a directory listing, using
Get-ChildItem for your entire C: drive and all its subdirectories), and you
run Receive-Job before the job finishes, the code returns the data it has
for now, but HasMoreData continues to be true. If you run Receive-Job
again, it gives you the rest of the data that’s available until no more data is
left to return.

The default behavior of Receive-Job seems reasonable. After all, after you
get the data from the job, you probably don’t care about the data anymore.
Suppose, though, that the job is running Get-ChildItem against your
entire C: drive and that the job takes 15 minutes to complete. At around the
8-minute mark, you want to use Receive-Job to take a peek at its progress,
but you don’t want to process the results just yet. The problem is that if you
run Receive-Job before the job ends, you have to retrieve all the currently
available data, which is subsequently cleared from the job. This means that
if you run Receive-Job after it finally completes, you're getting only part of
the results — the part that you didn’t read the first time. To get around this
limitation, run Receive-Job with the -keep parameter like so:

Receive-Job -ID 5 -keep

Running Receive-Job with the -keep parameter allows you to get all the
currently available data from the job but doesn’t clear the data. Subsequent
calls to Receive-Job for the same job return all the data, not just the ones
you haven’t already read.

__ Chapter 15: PowerShell Ninjas: Running Jobs Remotely or in the Background 2 ’3

A\\S

Waiting for a job

Background jobs are extremely useful because they allow you to run things in
parallel by executing commands in the background, freeing your console for
other things. If you write a script that takes advantage of background jobs,
you’ll undoubtedly find a scenario in which one of these jobs must complete
before you can move on. With these jobs running in the background indepen-
dently, what can you do? The easiest method is to wait for the job to finish
before proceeding by using the Wait-Job Cmdlet like this:

Smyjob = Start-Job -scriptblock {"Get-Service"}
#Do a bunch of stuff here...then...

Write-Host "Waiting for job to finish..."
Wait-Job S$myjob

Write-Host "Finally done..."

Receive-Job Smyjob

Granted, this example is a bit contrived, because Get-Service returns
fairly quickly and I could’ve just waited for it to finish, but you can see how it
works. You start a job that may take some time, and go off and do a few other
things. Then, when you need the data, you can use Wait-Job to make sure
that the job has completed before moving on.

Any kind of waiting process is basically a blocking process; the code is
blocked from continuing until it reaches whatever condition you set for the
waiting. The problem with this method is that the code could wait forever if
something’s wrong with the background job, causing it to hang. You can get
around this problem by imposing a timeout on Wait-Job. A timeout is an
ultimatum that says, “If you don’t get done within this given time, I'm leav-
ing without you.” Here’s how you can wait for a task for 60 seconds before
moving on:

Wait-Job Smyjob -timeout 60

The -timeout parameter is useful for averting an infinite wait condition.
You have to be aware, however, that when the timeout has been reached, the
code will just continue to the next statement without displaying any error
messages. Whenever you use the -t imeout parameter, you want to follow
up with a check to see whether the job actually completed, as this code
snippet does:

Wait-Job S$Smyjob -timeout 60

if (Smyjob.JobStateInfo.State -ne "Completed") {
Write-Host "Job timed out!"

} else {
Sdata = Receive-Job S$myjob

}

2 ’ 4 Part IV: Controlling Where and How You Operate PowerShell

Terminating a job

When a job completes, running Get-Job lists that job with a state of
Completed and the HasMoreData property set to true. Interestingly
enough, when you run Receive-Job on a completed job and retrieve all the
available data, the job is still listed when you run Get-Job. The purpose of
this list is to let you see what jobs have run on the computer. The obvious
problem, of course, is that after you've created more than a few jobs, the list
can get out of hand.

The solution is to delete the job when you’re done using it. Most likely, you’ll
delete it after Receive-Job runs because the job won’t have any more

data to provide anyway. To accomplish this task, you use the Remove-Job
Cmdlet. You identify the job you want to remove by providing a reference to
that job object or by specifying some unique identifier, such as its session ID,
as in this example:

Remove-Job Smyjob
Remove-Job -ID 3

Bringing a job to a grinding halt

If you can start jobs, logically, you have to have a way to stop jobs. One of
the most common occasions for stopping jobs is when you start a job that
takes a very long time to finish and then decide that you don’t want to run
it anymore. Stopping a job is as easy as running the Stop-Job Cmdlet and
giving it a reference to the job that you want to stop or the session ID (don’t
you just love how predictable Windows PowerShell is?), as in this example:

Stop-Job $myjob
Stop-Job -ID 3

Another reason for stopping a job is to respond to a timed-out Wait-Job
command. Suppose that you're running a job that you expect to complete

in less than a minute, but just to give it enough breathing room, you set its
timeout to 3 minutes. If the job still times out after 3 minutes, it’s safe to
assume that something went wrong. You can go on doing something else and
leave the job as it is so you can see what happened, but if you don’t really
care whether the process occasionally times out, deleting it is the way to go.
Here’s how you do it:

Wait-Job S$myjob -timeout 180

if (Smyjob.JobStateInfo.State -ne "Completed") {
#something went wrong, stop this job.
Stop-Job $myjob

__ Chapter 15: PowerShell Ninjas: Running Jobs Remotely or in the Background

A\

Combining Wait-Job with Stop-Job is one way to make sure that a job isn’t
allowed to run more than a given amount of time. If you start a job that copies
data from one computer to another, for example, and you want to make sure
that it either finishes within the next two hours or stops immediately, first you
create the job; then you immediately run Wait-Job and have it wait with a
timeout of two hours. If the job isn’t done within two hours, the timeout will
cause PowerShell to go to the next statement in the script, which can be
Stop-Job to stop the job from running immediately.

Running Commands Remotely

One of the things [love most about working in a networked environment is
that there’s very little you can’t do right from your fingertips. You can access
files, muck around with the registry, and do all kinds of fun stuff without leav-
ing the comfort of your chair. With the power of Windows PowerShell at the
ready, you can take advantage of the same powerful commands but run it
against different computers.

Many of the built-in Cmdlets support a -computername parameter, which
you can use to give the name of the remote computer on which you want to
run the command. Most commands let you access common services such as
querying WMI and getting process and service information. The great part
is that for these commands, you don’t even need Windows PowerShell to be
installed on the remote host to get the data you're requesting. PowerShell
simply relies on well-known Application Programming Interfaces (APIs) that
are built into Windows.

Using Windows PowerShell everywhere

As great as all that is, sometimes (or, depending on what kind of work you
do, all the time), you want to interact with a remote host by using Windows
PowerShell Cmdlets as well as other Windows PowerShell features (such as
variables), just as you do your own computer. You want to be able to enter
command scripts or run Windows PowerShell scripts just as though you were
physically on that computer.

You could cheat by using a remote-control program like Remote Desktop,
connecting to the computer remotely, opening Windows PowerShell, and
doing what you need to do. That method might work fine for connecting to

a server, because Windows gives you your own environment to play in. If
you try to use this method to manage workstations, however, your users will
have to wait until you're done because you're taking over their desktops.
This method may work well when you’re troubleshooting something, but if
you just want to make some changes or get some information remotely with-
out interrupting users, remote control just isn’t going to cut it.

215

2 7 6 Part IV: Controlling Where and How You Operate PowerShell

\\J

What you really need is a remote shell — something that you can connect to
from within Windows PowerShell and use to enter commands just as though
that command shell were running on the remote host. This feature was lack-
ing in Windows PowerShell 1 but is an integral part of Windows PowerShell 2.

Getting what you need for
remote commands

Built-in Cmdlets like Get-Service just use the Windows API to retrieve data
from remote hosts but for you to run commands remotely both the computer
you are on and the computer you want to run commands on must have three
essential components:

v Microsoft NET Framework 2.0
v Windows PowerShell 2
v WinRM 2.0 service

You need to have Windows PowerShell installed on both computers to get
remote commands to work.

WinRM is a Simple Object Access Protocol (SOAP)-based implementation
of the WS-Management Protocol, which is an open specification designed
to allow hardware and software from different vendors to interact. In the
Windows operating systems, WinRM is implemented as a layer on top of
WMI — another feature that allows cross-vendor interoperability.

Speaking PowerShell with
a different computer

You can launch an interactive Windows PowerShell session that connects
you with a remote computer and run commands on that computer just as
though you were physically there by using the Enter-pPSSession Cmdlet.
You connect to the computer by giving Enter-PSSession the name of the
computer to connect to, like this:

Enter-PSSession computerl

Windows Vista and Windows Server 2008 both require you to run the
Windows PowerShell window as an administrator before running this com-
mand. Otherwise, the command will fail, even if you're logged in with adminis-
trative credentials.

__ Chapter 15: PowerShell Ninjas: Running Jobs Remotely or in the Background 2 ’ 7

Running a remote PowerShell session assumes, of course, that the remote
computer (computerl) meets the requirements for running remote com-
mands. You don’t need to explicitly provide the credentials for logging into
the remote computer because by default, PowerShell will automatically try
to connect with the credentials you used to log in, so as long as you run
this command with credentials that include administrative privileges on the
remote computer, you’'ll be authenticated and logged in automatically.

By default, if you don’t specify an authentication method or credential,
PowerShell will try to use your Kerberos ticket to connect to the remote host.

If you want to connect by using alternative credentials, Enter-PSSessions
has a -Credential parameter in which you can provide the username you
want to use to log in, as in this example:

Enter-PSSession computerl -Credential mydomain\admin

No parameter for providing the password exists; instead, you must key in the
password when prompted.

If you connect successfully, the only difference you’ll see at the Windows
PowerShell prompt is that the usual PS <current_path> prompt is pre-
fixed by the remote computer name in square brackets, like this:

[computerl]: PS C:\Windows\System32>

This prompt makes it very easy to see computer you're connected to and
also serves as a reminder than any command you give at the Windows
PowerShell prompt will be executed on the remote computer, not on
your own.

When you’re done doing whatever you need to do, you can get out of that
computer and back to your own by issuing the Exit-PSSession Cmdlet (no
parameter required).

Invoking commands remotely

Many times, you just want a quick session and don’t need to open a whole
interactive remote session with a computer; you want to issue your com-
mand and get out. Sure, you can accomplish this task by using Enter-
PSSessions and Exit-PSSession, but those Cmdlets add two steps to the
process. The quickest and most direct way to run a remote command is to
use the Invoke-Command Cmdlet.

2 ’ 8 Part IV: Controlling Where and How You Operate PowerShell

\\s

Just like Enter-PSSession, Invoke-Command takes the name of the com-
puter you want to connect to. but it also has a bunch of other options. The
most important of these options is the -ScriptBlock parameter, which you
use to tell Invoke-Command which command or set of commands you want
to run on the remote host. Here’s how you would run Get-Date remotely on
the computer called CORPDC1:

Invoke-Command -computername CORPDC1 -ScriptBlock {Get-Date}

Although I use a simple Cmdlet in the example, the script block can effec-
tively contain any code that can be encapsulated within the curly braces — a
whole sequence of commands or even the code for a small script.

You can run the same script block on more than one computer by giving
Invoke-Command all the computer names at the same time. You do this by
specifying the computers after the -computername parameter as a comma-
separated list or as a collection of names. One way to get a collection of names
is by running the Get-Content Cmdlet on a text file containing a list of com-
puter names. Here’s an example of both methods.

Invoke-Command -computername CORPDCI1,CORPDC2 -scriptblock {Get-Date}
Invoke-Command -computername (Get-Content computers.txt) -scriptblock {Get-Date}

Creating a persistent connection

The method in the preceding section for using Invoke-Command is perfect
for simple commands or command sequences in which you don’t need to
worry about maintaining state. If you just want to run Get-Date to get the
current date and time on a remote computer, for example, using Get-Date
in the script block is all you need to do. After the data is returned and dis-
played, you don’t care about it anymore.

What happens, however, if you want to save the information retrieved in the
script block for later use on the remote host? With the method I've shown
you so far, this task isn’t possible, because the next call to Invoke-Command
has no information about the script block that you issued before. The solu-
tion is to have something that you can use to keep track of various connec-
tions and variables you define. This something is called a session.

A session is an object used to maintain a persistent connection between the
local computer and one or more remote hosts. It allows state information such
as variables and functions to be shared between the computers.

__ Chapter 15: PowerShell Ninjas: Running Jobs Remotely or in the Background 2 ’ 9

You create a session by using the New-PSSession Cmdlet and giving it the
name of the computer with which you want to associate the session. New-
PSSession returns an object that represents this session, so it makes sense
to store this object in a variable ($s) so that you can use it for subsequent
calls for Invoke-Command, like this:

Ss = New-PSSession -computername CORPDC1

Normally, Invoke-Command sets up a temporary session, runs the script
block, and then tears down the session so that all the variables and other
pieces of information are removed from memory. New-PSSession estab-
lishes that connection, but rather than tearing it down, the Cmdlet keeps it
going. Because you have an established connection with the remote host,
you can maintain information between multiple calls to Invoke-Command as
in this contrived example:

Invoke-Command -session $s -scriptblock {Sstart = Get-Date}
Invoke-Command -session $s -scriptblock {(Get-Date) - $start}

You may notice a couple of things in this example, starting with the use of the
-session parameter. You provide Invoke-Command the session object that
you created by using the New-PSSession Cmdlet. Because the session is an
object that represents the connection between the local computer and other
computers, you no longer have to give Invoke-Command the name of the
computer you want it to connect to; that name is defined implicitly based on
the computers participating in the session. The other noteworthy thing you
may notice is that variables you use within the script block maintain their
value even after Invoke-Command is done.

Because the session stays connected in the background, you want to make
sure that you close the connection when you’re done with the session. You
can close it easily by using the Remove-PSSession Cmdlet like this:

Remove-PSSession $s
C\BER . . , .
Run Remove-PSSession on any session you create when you're done using
it to close the connection with the other computers and to free the memory
consumed by maintaining the session’s state.

Running remote background jobs

You can run a background job remotely by connecting to the computer with
Enter-PSSession and then running the background job as you normally
would with Start-Job. Because you're in a remote session, the background
job will run on the remote computer you’re connected to. This method gener-
ally is useful if you want to run background jobs on the remote computer on
an ad-hoc basis.

220 Part IV: Controlling Where and How You Operate PowerShell

A\

Another way is to use the Invoke-Command Cmdlet to run Start-Job
remotely. Invoke-Command establishes the connection with the remote
host. Thereafter, anything that you tell the Cmdlet to run in the script block
(such as start-Job) runs on the remote machine. In practice, the code
looks like this:

Smysession = New-PSSession -computername Computerl

Invoke-Command -session S$mysession -scriptblock {$myjob = Start-Job -scriptblock
{Get-Service}}

Invoke-Command -session $mysession -scriptblock {Receive-Job $myjob}

Invoke-Command -session $mysession -scriptblock {Remove-Job $myjob}

Remove-PSSession -$mysession

In both scenarios I describe above in the Invoking Command Remotely

and the Running remote background jobs sections, the jobs are executed
remotely, and so are the results. In some cases, you want to run back-
ground jobs remotely on a few computers but collect all those results on the
machine you’re running the command from, thereby centralizing the data.
Windows PowerShell 2 solves this problem by adding the -asjob switch to
Cmdlets that support this feature. The -asjob switch runs that command
on the specified computer, but the job object itself is stored on the local
computer. This arrangement means that although the job itself runs on the
remote computer, you can check the status of the job as well as run any of
the *-Job Cmdlets on this job object on the local computer as you would
any background job you create.

Here’s how you can run Get-ChildItem C:\ ontwo computers as separate
background jobs and manage these jobs locally:

Invoke-Command -ComputerName Computerl, Computer2 -scriptblock {Get-ChildItem
C:\} -asjob

Now if you run Get-Job on your computer, you see two jobs running, just as
would if you started two jobs locally by using the Start-Job Cmdlet. The
difference is that the Location field displays the names of the computers on
which these jobs are actually running, rather than just 1ocalhost. Then you
can use the job ID or name to wait for the job, receive the data from the job,
or even remove the job, just as you would with any background job.

Another really useful Cmdlet that supports the -asjob switch is Get-
WMIObject. You can run Get-WMIObject on a bunch of computers by
using the -ComputerName switch and then add the -asjob switch to create
job objects automatically for each of these background jobs, which you can
manage by using *-Job Cmdlets.

__ Chapter 15: PowerShell Ninjas: Running Jobs Remotely or in the Background

SMBER
S

MBER
\x&
&

Understanding policies, profiles,
and precedence

Now that you have a method for using Windows PowerShell locally on your
computer as well as remotely, you have to worry about the issue of policies
and profiles. The remote execution policy on your computer may be com-
pletely different from that of the other computer, for example. Also, because
Windows PowerShell profiles are defined and loaded on a per-machine basis,
how does Windows PowerShell behave when you're connecting to other
computers remotely? Will the remote computer be able to run the aliases and
other functions defined in your profile on the local computer?

The rule is actually very simple: When you’re running commands locally, all
local policies and profiles are in effect, but when you run commands remotely
(whether you use Invoke-Command or Enter-PSSession), the remote com-
puter’s policies and profiles take precedence.

This rule may sound trivial, but if you have a complex set of aliases and other
useful functions defined in your profile, none of these features will be avail-
able to you when you run Windows PowerShell commands remotely unless
you copy your profile to the remote computer ahead of time.

Similarly, pay attention to remote execution policies. Commands that run
perfectly fine on your computer may not run correctly on the remote host if
it has stricter execution policies than your own computer does.

Although you have the convenience of running commands remotely in addi-
tion to taking advantage of sessions to keep information persistent, you
mustn’t forget that you're running these commands as though you're on that
remote host. If you're referencing files or third-party Cmdlets, they must exist
on the remote host for the command to work. This rule is easy to forget when
you're trying to debug a remote command that isn’t working the way it should.

221

222 Part IV: Controlling Where and How You Operate PowerShell

Chapter 16

Making Your Script Speak
Different Languages

In This Chapter

Understanding the purpose of internationalizing scripts

Incorporating translated text into your scripts

Sharing your scripts all over the world

SMBER
S

f anything is undeniable, it’s the fact that globalization is here to stay.

Companies are becoming more global, and with the Internet being so prev-
alent in almost every part of the world, there’s not a single place that you or
your technology can’t touch. This isn’t some kind of political statement or
shocking revelation: The truth is that if you work for any large organization,
you’re bound to be global now or are in the process of becoming globally
present. Even if you don’t work for a multinational company, you may have a
great idea for a really useful Windows PowerShell script but need to collabo-
rate with other script writers in other countries to make your script work in
different languages. Internationalizing your scripts is the process of making
them accessible to users who speak different languages.

In this chapter, you utilize techniques for making your scripts more acces-
sible to users who communicate in a different language. While being able to
internationalize your scripts is important if you work in a global company
that speaks many languages, it’s also very useful when you want to share
your scripts with other Windows PowerShell users that use a language other
than your own to communicate.

When