Playing
For Real

A TEXT ON GAME THEORY

Ken Binmore




Playing for Real



This page intentionally left blank



Playing for Real
A Text on Game Theory

KEN BINMORE

OXFORD

UNIVERSITY PRESS
2007



OXFORD

UNIVERSITY PRESS

Oxford University Press, Inc., publishes works that further
Oxford University’s objective of excellence
in research, scholarship, and education.

Oxford New York
Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi Shanghai Taipei Toronto

With offices in
Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Copyright © 2007 by Oxford University Press, Inc.

Published by Oxford University Press, Inc.
198 Madison Avenue, New York, New York 10016

WWW.oup.com
Oxford is a registered trademark of Oxford University Press

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without the prior permission of Oxford University Press.

Library of Congress Cataloging-in-Publication Data
Binmore, K. G., 1940
Playing for real : a text on game theory / Ken Binmore.
p. cm.
Includes index.

ISBN 978-0-19-530057-4

1. Game theory. 1. Title.

QA269.B475 2005
519.3—dc22 2005053938

135798642

Printed in the United States of America
on acid-free paper


www.oup.com

I dedicate Playing for Real to my wife, Josephine




This page intentionally left blank



Preface

There are at least three questions a game theory book might answer:

What is game theory about?
How do I apply game theory?
Why is game theory right?

Playing for Real tries to answer all three questions. I think it is the only book that
makes a serious attempt to do so without getting heavily mathematical. There are
elementary books that offer students the opportunity to admire some game theory
concepts. There are cookbooks that run through lots of applied models. There are
philosophical works that supposedly address the foundational issues, but none of
these address more than two of the questions.

However, answering questions is only part of what this book is about. Just as
athletes take pleasure in training their bodies, so there is immense satisfaction to be
found in training your mind to think in a way that is simultaneously rational and
creative. With all of its puzzles and paradoxes, game theory provides a magnificent
mental gymnasium for this purpose. I hope that exercising on the equipment will
bring you the same kind of pleasure it has brought me.

Moving on. Playing for Real isn’t my first textbook on game theory. My earlier
book, Fun and Games, was used quite widely for teaching advanced undergraduate
and beginning graduate students. I had originally planned a modestly revised second
edition, in which the rather severe introduction would be replaced with a new
chapter that would ease students into the subject by running through all the angles on
the Prisoners’ Dilemma. The remaining chapters were then simply to be broken
down into more digestible chunks. But the project ran away with me. I made the
improvements I planned to make but somehow ended up with a whole new book.

There are two reasons why. The first is that game theory has moved on since |
wrote Fun and Games. Some of the decisions on what material to include that
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seemed a little daring at the time now look totally uncontroversial. So I have tried
my luck at guessing which way the subject is going to jump again.

The second reason is that I have moved on as well. In particular, I have done a
great deal of consulting work, applying game theory to real-world problems in order
to raise money for my research center. The biggest project was the design of a
telecom auction that raised $35 billion. I always knew that game theory works, but
seeing it triumph on such a scale was beyond all expectation! I have also written a
book applying game theory to philosophical issues, which taught me a great deal
about how and why beginners make mistakes when thinking about strategic issues.
Both kinds of experience have contributed to making Playing for Real a better book
than its predecessor. My flirtation with philosophy even generated a lot of light-
hearted exercises that nevertheless make genuinely serious points.

Material. As a text on game theory for undergraduates with some mathematical
training, Playing for Real improves on Fun and Games in a number of ways. It
continues to be suitable for courses attended by students from a variety of disci-
plines. (Some of my very best undergraduates at the University of Michigan were
from Classics.) It also continues to provide backup sections on the necessary
mathematics, so that students whose skills are rusty can keep up with what’s going
on without too much effort. However, the book as a whole covers fewer basic topics
in a more relaxed and discursive style, with many more examples and economic
applications.

I hope the opening chapter, which uses the Prisoners’ Dilemma to provide an
undemanding overview of what game theory is all about, will prove to be a par-
ticularly attractive feature. Economists will also be pleased to see a whole chapter
devoted to the theory of imperfect competition, where I believe I may even have
made Bertrand-Edgeworth competition accessible to undergraduates. It is a tragedy
that evolutionary game theory had to go, but this important subject has gotten so big
that it deserves a whole book to itself.

Although fewer topics are covered, some topics are covered in much more detail
than in Fun and Games. These include cooperative game theory, Bayesian decision
theory, games of incomplete information, mechanism design, and auction theory,
each of which now has its own chapter. However, the theory of bargaining has
grown more than anything else, partly because I hope to discourage various mis-
understandings of the theory that have become commonplace in applied work, and
partly because I wanted to illustrate its potential use in ethics and moral philosophy.

Teaching. There is enough material in this book for at least two courses in game
theory, even leaving aside the review and other sections that are intended for private
reading. I have tried to make things easy for teachers who want to design a course
based on a selection of topics from the whole book by including marginal notes to
facilitate skipping. For example, the Mad Hatter, who has appeared in the margin,
suggests skipping on to the first chapter, on the grounds that there is too much
philosophy in this preface.

The exercises are similarly labeled with warnings about their content. Nobody
will want to attempt all of the enormous number of exercises, but when I teach, I
insist on students trying a small number of carefully chosen exercises every week.
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Once they get into the habit, students are often surprised to find that solving prob-
lems can be a lot of fun.

By the time the book is published, Jernej Copic will have finished getting his
solutions onto a website. Oxford University Press will provide access details to
recognized teachers.

Thanks. So many people have helped me, with both Fun and Games and Playing for
Real, that I have lost track of them all. I shall therefore mention only the very special
debt of gratitude I owe to my long-time coauthor, Larry Samuelson, for both his
patience and his encouragement. I also want to thank the California Institute of
Technology for giving me the leisure to complete this book as a Gordon Moore
Scholar. I should also acknowledge the Victorian artist John Tenniel, whose mag-
nificent illustrations from Lewis Carroll’s Alice books I have shamelessly stolen and
messed around with.

Apologies. Let me aopolgize in advance for the errors that have doubtless found
their way into Playing for Real. If you find an error, please join the many others who
have helped me by letting me know about it at k.binmore@ucl.ac.uk. I will be
genuinely grateful.

Finally, I need to apologize not only for my mistakes but also for my attempts at
humor. Oscar Wilde reported that a piano in a Western saloon carried a notice
saying, “Please don’t shoot the pianist. He’s doing his best.” The same goes for me,
too. It isn’t easy to write in a light-hearted style when presenting mathematical
material, but I did my best. KEN BINMORE



This page intentionally left blank



O 0 9 N Nk W=

[\ I O T S T e T e e e e e e T
—_— O O 0 N N N kA W N = O

Getting Locked In
Backing Up

Taking Chances
Accounting for Tastes
Planning Ahead
Mixing Things Up
Fighting It Out
Keeping Your Balance
Buying Cheap
Selling Dear
Repeating Yourself
Getting the Message
Keeping Up to Date
Seeking Refinement

Knowing What to Believe

Getting Together
Cutting a Deal
Teaming Up

Just Playing?

Taking Charge
Going, Going, Gone!

Index

39

77
111
143
177
215
253
273
299
319
353
383
407
431
459
493
521
543
567
593

631

Contents



This page intentionally left blank



Playing for Real



This page intentionally left blank



1

Getting
Locked In

1.1 WHAT IS GAME THEORY?

A game is being played whenever people have anything to do with each other.
Romeo and Juliet played a teenage mating game that didn’t work out too well for
either of them. Adolf Hitler and Josef Stalin played a game that killed off a sub-
stantial fraction of the world’s population. Kruschev and Kennedy played a game
during the Cuban missile crisis that might have wiped us out altogether.

Drivers maneuvering in heavy traffic are playing a game with the drivers of the
other cars. Art lovers at an auction are playing a game with the rival bidders for an
old master. A firm and a union negotiating next year’s wage contract are playing a
bargaining game. When the prosecuting and defending attorneys in a murder trial
decide what arguments to put before the jury, they are playing a game. A supermarket
manager deciding today’s price for frozen pizza is playing a game with all the other
storekeepers in the neighborhood with pizza for sale.

If all of these scenarios are games, then game theory obviously has the potential
to be immensely important. But game theorists don’t claim to have answers to all of
the world’s problems because the orthodox game theory to which this book is devoted
is mostly about what happens when people interact in a rational manner. So it can’t
predict the behavior of love-sick teenagers like Romeo or Juliet or madmen like
Hitler or Stalin. However, people don’t always behave irrationally, and so it isn’t
a waste of time to study what happens when we are all wearing our thinking caps.
Most of us at least try to spend our money sensibly—and we don’t do too badly
much of the time; otherwise, economic theory wouldn’t work at all.



Chapter 1. Getting Locked In

Even when people haven’t actively thought things out in advance, it doesn’t
necessarily follow that they are behaving irrationally. Game theory has had some
notable successes in explaining the behavior of insects and plants, neither of which
can be said to think at all. They end up behaving rationally because those insects
and plants whose genes programmed them to behave irrationally are now extinct.
Similarly, companies may not always be run by great intellects, but the market can
sometimes be just as ruthless as Nature in eliminating the unfit from the scene.

1.2 Toy GAMES

Rational interaction within groups of people may be worth studying, but why call it
game theory? Why trivialize the problems that people face by calling them games?
Don’t we devalue our humanity by reducing our struggle for fulfillment to the status
of mere play in a game?

Game theorists answer such questions by standing them on their heads. The more
deeply we feel about issues, the more we need to strive to avoid being misled by
wishful thinking. Game theory makes a virtue out of using the language of parlor
games like chess or poker so that we can discuss the logic of strategic interaction
dispassionately.

Bridge players have admittedly been known to shoot their partners. I have some-
times felt the urge myself. But most of us are able to contemplate the strategic
problems that arise in parlor games without getting emotionally involved. It then
becomes possible to follow the logic wherever it leads, without throwing our hands
up in denial when it takes us somewhere we would rather not go. When game the-
orists use the language of parlor games in analyzing serious social problems, they
aren’t therefore revealing themselves to be heartless disciples of Machiavelli. They
are simply doing their best to separate those features of a problem that admit an
uncontroversial rational analysis from those that don’t.

This introductory chapter goes even farther down this path by confining its at-
tention to foy games. In studying a toy game, we seek to sweep away all the irrel-
evant clutter that typifies real-world problems, so that we can focus our attention
entirely on the basic strategic issues. To distance the problem even further from
the prejudices with which we are all saddled, game theorists usually introduce toy
games with silly stories that would be more at home in Alice in Wonderland than in a
serious work of social science. But although toy games get discussed in a playful
spirit, it would be a bad mistake to dismiss them as too frivolous to be worthy of
serious attention.

Our untutored intuition is notoriously unreliable in strategic situations. If Adam
and Eve are playing a game, then Adam’s choice of strategy will depend on what
strategy he predicts Eve will choose. But she must simultaneously choose a strategy,
using her prediction of Adam’s strategy choice. Given that it is necessarily based on
such circular reasoning, it isn’t surprising that game theory abounds with surprises
and paradoxes. We therefore need to sharpen our wits by trying to understand really
simple problems before attempting to solve their complicated cousins.

Nobody ever solved a genuinely difficult problem without trying out their ideas
on easy problems first. The crucial step in solving a real-life strategic problem nearly
always consists of locating a toy game that lies at its heart. Only when this has been
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solved does it make sense to worry about how its solution needs to be modified to
take account of all the bells and whistles that complicate the real world.

1.3 THE PRrRISONERS’ DILEMMA

The Prisoners’ Dilemma is the most famous of all toy games. People so dislike the
conclusion to which game-theoretic reasoning leads in this game that an enormous
literature has grown up that attempts to prove that game theory is hopelessly wrong.

There are two reasons for beginning Playing for Real with a review of some of
the fallacies invented in this critical literature. The first is to reassure readers that
the simple arguments game theorists offer must be less trivial than they look. If they
were obvious, why would so many clever people have thought it worthwhile to spend
so much time trying to prove them wrong? The second reason is to explain why later
chapters take such pains to lay the foundations of game theory with excruciating
care. We need to be crystal clear about what everything in a game-theoretic model
means—otherwise we too will make the kind of mistakes we will be laughing at in
this chapter.

1.3.1 Chicago Times

The original story for the Prisoners’ Dilemma is set in Chicago. The district attorney
knows that Adam and Eve are gangsters who are guilty of a major crime but is
unable to convict either unless one of them confesses. He orders their arrest and
separately offers each the following deal:

If you confess and your accomplice fails to confess, then you go free. If you
fail to confess but your accomplice confesses, then you will be convicted and
sentenced to the maximum term in jail. If you both confess, then you will
both be convicted, but the maximum sentence will not be imposed. If neither
confesses, you will both be framed on a minor tax evasion charge for which a
conviction is certain.

In such problems, Adam and Eve are the players in a game. In the toy game called
the Prisoners’ Dilemma, each player can choose one of two strategies, called hawk
and dove. The hawkish strategy is to fink on your accomplice by confessing to the
crime. The dovelike strategy is to stick by your accomplice by holding out against a
confession.

Game theorists assess what might happen to a player by assigning payoffs to each
possible outcome of the game. The context in which the Prisoners’ Dilemma is
posed invites us to assume that neither player wants to spend more time in jail than
necessary. We therefore measure how a player feels about each outcome of the game
by counting the number of years in jail he or she will have to serve. These penalties
aren’t given in the statement of the problem, but we can invent some appropriate
numbers.

If Adam holds out and Eve confesses, the strategy pair (dove, hawk) will be
played. Adam is found guilty and receives the maximum penalty of 10 years in jail.
We record this result by making Adam’s payoff for (dove, hawk) equal to —10. If
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dove hawk dove hawk

- [0]
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hawk @ hawk

(a) Adam’s payoff matrix (b) Eve’s payoff matrix

Figure 1.1 Payoff matrices in the Prisoners’ Dilemma. Adam’s best-reply payoffs are circled. Eve’s
best replies are enclosed in a square.

Eve holds out and Adam confesses, (hawk, dove) is played. Adam goes free, and so
his payoff for (hawk, dove) is 0. If Adam and Eve both hold out, the outcome is
(dove, dove). In this case, the district attorney trumps up a tax evasion charge against
both players, and they each go to jail for one year. Adam’s payoff for (dove, dove) is
therefore — 1. If Adam and Eve both confess, the outcome is (hawk, hawk). Each is
found guilty, but since confession is a mitigating circumstance, each receives a
penalty of only 9 years. Adam’s payoff for (hawk, hawk) is therefore —9.

The payoffs chosen for Adam in the Prisoners’ Dilemma are shown as a payoff
matrix in Figure 1.1(a). His strategies are represented by the rows of the matrix.
Eve’s strategies are represented by its columns. Each cell in the matrix represents a
possible outcome of the game. For example, the top-right cell corresponds to the
outcome (dove, hawk), in which Adam plays dove and Eve plays hawk. Adam goes
to jail for 10 years if this outcome occurs, and so —10 is written inside the top-right
cell of his payoff matrix.

Eve’s payoff matrix is shown in Figure 1.1(b). Although the game is symmetric,
her payoff matrix isn’t the same as Adam’s. To get Eve’s matrix, we have to swap
the rows and columns in Adam’s matrix. In mathematical jargon, her matrix is the
transpose of his.

Figure 1.2(a) shows both players’ payoff matrices written together. The result is
called the payoff table for the Prisoners” Dilemma.' Adam’s payoff appears in the
southwest corner of a cell and Eve’s in the northeast corner. For example, —1 is
written in the southwest corner of the top-left cell because this is Adam’s payoff if
both players choose dove. Similarly, —9 is written in the north-east corner of the
bottom-right cell because this is Eve’s payoff if both players choose hawk.

The problem for the players in a game is that they usually don’t know what
strategy their opponent will choose. If they did, they would simply reply by choosing
whichever of their own strategies would then maximize their payoff.

! Although its entries are vectors rather than scalars, such a table is often called the payoff matrix of the
game. Sometimes it is called a bimatrix to indicate that it is really two matrices written together. Most game
theorists write the payoffs on one line, so the entry in the cell (hawk, hawk) would be (—9, —9). Beginners
seem to find my representation less confusing. Thomas Schelling tells me that he has carried out experi-
ments which confirm that payoff tables written in this way reduce the number of mistakes that get made.
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Figure 1.2 The Prisoners’ Dilemma. Adam’s payoffs are in the southwest of each cell. Eve’s are in
the northeast of each cell. Adam’s and Eve’s best-reply payoffs are enclosed in a circle or a square.

For example, if Adam knew that Eve were sure to choose dove in the Prisoners’
Dilemma, then he would only need to look at his payoffs in the first column of his
payoff matrix. These payoffs are —1 and 0. The latter is circled in Figures 1.1(a) and
1.2(a) because it is bigger. The circle therefore indicates that Adam’s best reply to
Eve’s choice of dove is to play hawk. Similarly, if Adam knew that Eve were sure to
choose hawk, then he would only need to look at his payoffs in the second column of
his payoff matrix. These payoffs are —10 and —9. The latter is circled in Figures
1.1(a) and 1.2(a) because it is bigger. Adam’s best reply to Eve’s choice of hawk is
therefore to play hawk.

In most games, Adam’s best reply depends on which strategy he guesses that Eve
will choose. The Prisoners’ Dilemma is special because Adam’s best reply is nec-
essarily the same whatever strategy Eve may choose. He therefore doesn’t need to
know or guess what strategy she will use in order to know what his best reply should
be. He should never play dove because his best reply is always to play hawk, what-
ever Eve may do. Game theorists express this fact by saying that hawk strongly dom-
inates dove in the Prisoners’ Dilemma.

Since Eve is faced by exactly the same dilemma as Adam, her best reply is also
always to play hawk, whatever Adam may do. If both Adam and Eve act to maxi-
mize their payoffs in the Prisoners’ Dilemma, each will therefore play hawk. The
result will therefore be that both confess, and hence each will spend nine years in
jail—whereas they could have gotten away with only one year each in jail if they had
both held out and refused to confess.

People sometimes react to this analysis by complaining that the story of the
district attorney and the gangsters is too complicated to be adequately represented by
a simple payoff table. However, this complaint misses the point. Nobody cares about
the story used to introduce the game. The chief purpose of such stories is to help us
remember the relative sizes of the players’ payoffs. Moreover, the precise value of
the payoffs we write into a table does not usually matter very much. We are inter-
ested in the strategic problem embodied in the payoff table rather than the details of
some silly story. Any payoff table with the same strategic structure as Figure 1.2(a)
would therefore suit us equally well, regardless of the story from which it was
derived.
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Figure 1.2(b) is the general payoff table for a Prisoners’ Dilemma. We need a > b
and ¢ > d to ensure that hawk strongly dominates dove. We need b > ¢ to ensure that
both players would get more if they both played dove instead of both playing hawk.

1.3.2 Paradox of Rationality?

Critics of game theory don’t like our analysis of the Prisoners’ Dilemma because
they see that Adam and Eve would both be better off if they came to an agreement to
play dove. Neither would then confess, and so each would go to jail for only one
year.

Naive critics think that this observation is enough to formulate an unassailable
argument. They say that there are two theories of rational play to be compared. Their
theory recommends that everybody should play dove in the Prisoners’ Dilemma.
Game theory recommends that everybody should play hawk. If Alice and Bob play
according to the naive theory, each will go to jail for only one year. If Adam and Eve
play according to game theory, each will go to jail for nine years. So their theory
outperforms ours.

There is admittedly much to be said for asking people who claim to be clever, “If
you’re so smart, why ain’t you rich?” But when you compare how successful two
people or two theories are, it is necessary to compare how well each performs un-
der the same circumstances. After all, one wouldn’t say that Alice was a faster run-
ner than Adam because she won a race in which she was given a head start. Let us
therefore compare how well Alice and Adam will do when they play under the same
conditions. First imagine what would happen if both were to play against Bob, and
then imagine what would happen if both were to play against Eve.

When they play against Bob, Alice goes to jail for one year, and Adam for no
years. So game theory wins on this comparison. When they play against Eve, Alice
goes to jail for ten years, and Adam for nine years. So game theory wins this on this
comparison as well. Game theory therefore wins all around when like is compared
with like. Only when unlike is compared with unlike does it seem that the critics’
theory wins.

The trap that naive critics fall into is to let their emotions run away with their
reason. They don’t like the conclusion to which one is led by game theory, and so
they propose an alternative theory with nothing more to recommend it than the fact
that it leads to a conclusion that they prefer. Game theorists also wish that rational
play called for the play of dove in the Prisoners’ Dilemma. They too would prefer
not to spend an extra eight years in jail. But wishing doesn’t make it so. As so often
in this vale of tears, what we would like to be true is very different from what actu-
ally is true.

Of course, most critics are less naive. They continue to deny that game theory is
right but recognize that there is a case to be answered by saying that the Prisoners’
Dilemma poses a paradox of rationality that desperately needs to be resolved. They
get all worked up because they somehow convince themselves that the Prisoners’
Dilemma embodies the essence of the problem of human cooperation. If this were
true, the game-theoretic argument, which denies that cooperation is rational in the
Prisoners’ Dilemma, would imply that it is never rational for human beings to co-
operate. This would certainly be dreadful, but it isn’t a conclusion that any game
theorist would endorse.
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Game theorists think it just plain wrong to claim that the Prisoners’ Dilemma
embodies the essence of the problem of human cooperation. On the contrary, it rep-
resents a situation in which the dice are as loaded against the emergence of coop-
eration as they could possibly be. If the great game of life played by the human
species were the Prisoners’ Dilemma, we wouldn’t have evolved as social animals!
We therefore see no more need to solve some invented paradox of rationality than
to explain why strong swimmers drown when thrown in Lake Michigan with their
feet encased in concrete. No paradox of rationality exists. Rational players don’t
cooperate in the Prisoners’ Dilemma because the conditions necessary for rational
cooperation are absent in this game.

1.3.3 The Twins Fallacy

One of the many attempts to resolve the paradox of rationality supposedly posed by
the Prisoners’ Dilemma tries to exploit the symmetry of the game by treating Adam
and Eve as twins. It goes like this:

Two rational people facing the same problem will come to the same con-
clusion. Adam should therefore proceed on the assumption that Eve will
make the same choice as he. They will therefore either both go to jail for nine
years, or they will both go to jail for one year. Since the latter is preferable,
Adam should choose dove. Since Eve is his twin, she will reason in the same
way and choose dove as well.

The argument is attractive because there are situations in which it would be correct.
For example, it would be correct if Eve were Adam’s reflection in a mirror, or if
Adam and Eve were genetically identical twins, and we were talking about what
genetically determined behavior best promotes biological fitness (Section 1.6.2).
However, the reason that the argument would then be correct is that the relevant
game would no longer be the Prisoners’ Dilemma. It would be a game with essen-
tially only one player.

As is commonplace when looking at fallacies of the Prisoners’ Dilemma, we find
that we have been offered a correct analysis of some game that isn’t the Prisoners’
Dilemma. The Prisoners’ Dilemma is a two-player game in which Adam and Eve
choose their strategies independently. Where the twins fallacy goes wrong is in
assuming that Eve will make the same choice in the Prisoners’ Dilemma as Adam,
whatever strategy he chooses. This can’t be right because one of Adam’s two pos-
sible choices is irrational. But Eve is an independent rational agent. She will behave
rationally whatever Adam may do.

Insofar as it applies to the Prisoners’ Dilemma, the twins fallacy is correct only to
the extent that rational reasoning will indeed lead Eve to make the same strategy
choice as Adam if he chooses rationally. Game theorists argue that this choice will
be hawk because hawk strongly dominates dove.

Mbyth of the Wasted Vote. Itis worth taking note of the twins fallacy at election time,
when we are told that “every vote counts.” However, if a wasted vote is one that
doesn’t affect the outcome of the election, then all votes are wasted—unless it turns
out that only one vote separates the winner and the runner-up. If they are separated



10

Chapter 1. Getting Locked In

by two or more votes, then a change of vote by a single voter will make no difference
at all to who is elected. But an election for a seat in a national assembly is almost
never settled by a margin of only one vote. It is therefore almost certain that any
particular vote in such an election will be wasted.

Since this is a view that naive people think might lead to the downfall of de-
mocracy, reasons have to be given as to why it is “incorrect.” We are therefore told
that Adam is wrong to count only the impact that his vote alone will have on the
outcome of the election; he should instead count the total number of votes cast by all
those people who think and feel as he thinks and feels and hence will vote as he
votes. If Adam has ten thousand such soulmates or twins, his vote would then be far
from wasted because the probability that an election will be decided by a margin of
ten thousand votes or less is often very high.

This argument is faulty for the same reason that the twins fallacy fails in the
Prisoners’ Dilemma. There may be large numbers of people who think and feel like
you, but their decisions on whether to go out and vote won’t change if you stay home
and wash your hair.

Critics sometimes accuse game theorists of a lack of public spirit in exposing this
fallacy, but they are wrong to think that democracy would fall apart if people were
encouraged to think about the realities of the election process. Cheering at a football
game is a useful analogy. Only a few cheers would be raised if what people were
trying to do by cheering was to increase the general noise level in the stadium. No
single voice can make an appreciable difference in how much noise is being made
when a large number of people are cheering. But nobody cheers at a football game
because they want to increase the general noise level. They shout words of wisdom
and advice at their team even when they are at home in front of a television set.

Much the same goes for voting. You are kidding yourself if you vote because
your vote may possibly be pivotal. However, it makes perfectly good sense to vote
for the same reason that football fans yell advice at their teams. And, just as it is
more satisfying to shout good advice rather than bad, so many game theorists think
that you get the most out of participating in an election by voting as though you were
going to be the pivotal voter, even though you know the probability of one vote
making a difference is too small to matter (Section 13.2.4). Behaving in this way will
sometimes result in your voting strategically for a minor party. The same pundits
who tell you that every vote counts will also tell you that such a strategic vote is a
wasted vote. But they can’t be allowed to have it both ways!

1.4 PrIvATE PrOVISION OF PuBLIC GOODS

Before looking at more fallacies, it will be useful to tell another story that leads to
the Prisoners’ Dilemma, so that we can get ourselves into an emotionally receptive
state.

Private goods are commodities that people consume themselves. Public goods are
commodities that can’t be provided without everybody being able to consume them.
An army that prevents your country being invaded is an example. Streetlights are
another. So are radio or television broadcasts. No matter who pays, everybody has
access to a public good.
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Our taxes pay for most public goods. Advertisers pay for others. But we are
interested in the public goods that are paid for by voluntary subscription. Light-
houses were originally funded in this way. Charities still are. Universities depend on
endowments from rich benefactors. Public television channels wouldn’t survive
without the contributions made by their viewers. Young men offered their very lives
for what they saw as the public good when volunteering in droves for various armies
at the beginning of the First World War.

Utopians sometimes toy with the idea that all public goods should be funded by
voluntary subscription. Economists then worry about the free rider problem. For
example, if people can choose whether or not to buy a ticket when riding on trains,
will enough people pay to cover the cost of running the system? Utopians shrug off
this problem by arguing that people will see that it makes sense to pay because
otherwise the train service will cease to run.

Free Rider Problem. The Prisoners’ Dilemma can be used to examine the free rider
problem in a very simple case. A public good that is worth $3 each to Adam and Eve
may or may not be provided at a cost of $2 per player. The public good is provided
only if one or both of the players volunteer to contribute to the cost. If both vol-
unteer, both pay their share of the cost. If only one player volunteers, he or she must
pay both shares. Assuming that Adam and Eve care only about how much money
they end up with, how will they play this game?

Figure 1.3(a) shows the payoffs in dollars. To play dove is to make a contribution.
To play hawk is to attempt to free ride by contributing nothing. Thus, if Adam and
Eve both play dove, each will gain 3 — 2 =1 dollar, since they will then share the
cost of providing the public good. If Adam plays dove and Eve plays hawk, the
public good is provided with Adam footing the entire bill. He therefore loses
4 —3 =1 dollar. Eve enjoys the benefit of the public good without contributing to the
cost at all. She therefore gains $3.

Since our public goods game has the structure of Figure 1.2(b), it is a version of
the Prisoners’ Dilemma. As always in the Prisoners’ Dilemma, hawk strongly
dominates dove, and so rational players will choose to free ride. The public good will
therefore not be provided. As a result, both players will lose the extra dollar they
could have made if both had volunteered to contribute.

dove dove
R ® |©®
hawk hawk
® |© K

(a) Prisoners’ Dilemma (b) Prisoners’ Delight

Figure 1.3 The private provision of a public good.
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1.4.1 Are People Selfish?

Critics get hot under the collar about the preceding analysis. They say that game
theorists go wrong in assuming that people care only about money. Real people care
about all kinds of other things. In particular, they care about other people and the com-
munity within which they live. What is more, only the kind of mean-minded, money-
grubbing misfits attracted into the economics profession would imagine otherwise.

But game theory assumes nothing whatever about what people want. It says only
what Adam or Eve should do if they want to maximize their payoffs. It doesn’t
say that a player’s payoff is necessarily the money that finds its way into his or her
pocket. Game theorists understand perfectly well that money isn’t the only thing that
motivates people. We too fall in love, and we vote in elections. We even write books
that will never bring in enough money to cover the cost of writing them.

Suppose, for example, that Adam and Eve are lovers who care so much about
each other that they regard a dollar in the pocket of their lover as being worth twice
as much as a dollar in their own pocket. The payoff table of Figure 1.3(a) then no
longer applies since this was constructed on the assumption that the players care
only about the dollars in their own pockets. However, we can easily adapt the table
to the case in which Adam and Eve are lovers. Simply add twice the opponent’s
payoff to each payoff in the table. We then obtain the payoff table of Figure 1.3(b).
The new game might be called the Prisoners’ Delight because dove now strongly
dominates hawk. The same principle that says that players should free ride in the
Prisoners’ Dilemma therefore demands that Adam and Eve should volunteer to
contribute in the Prisoners’ Delight.

Critics who think that human beings are basically altruistic therefore go astray
when they accuse game theorists of using the wrong analysis of the Prisoners’ Di-
lemma. They ought to be accusing us of having correctly analyzed the wrong game.
In the case of the private provision of public goods, the evidence would seem to
suggest that they would then sometimes be right and sometimes be wrong. This is
fine with game theorists, who have no particular attachment to one game over an-
other. You tell us what you think the right game is, and we’ll do our best to tell you
how it should be played.

Reason Is the Slave of the Passions. This is the famous phrase used by David Hume
when explaining that rationality is about means rather than ends. As he said, there
would be nothing irrational about his preferring the destruction of the entire uni-
verse to scratching his finger.

Game theory operates on the same premise. It is completely neutral about what
motivates people. Just as arithmetic tells you how to add 2 and 3 without asking why
you need to know the answer, so game theory tells you how to get what you want
without asking why you want it. Making moral judgements—either for or against—
is essential in a civilized society, but you have to wear your ethical hat and not your
game theory hat when doing it.

So game theory doesn’t assume that players are necessarily selfish. Even when
Adam and Eve are modeled as money grubbers, who is to say why they want the
money? Perhaps they plan to relieve the hardship of the poor and needy. But it is a
sad fact that most people are willing to contribute only a tiny share of their income to
the private provision of public goods. Numerous experiments confirm that nine out
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of ten laboratory subjects end up free riding once they have played a game like the
Prisoners’ Dilemma with large enough dollar payoffs sufficiently often to get the
hang of it. Even totally inexperienced subjects free ride half the time.

Governments are therefore wise to think more in terms of the Prisoners’ Dilemma
than the Prisoners’ Delight when legislating tax enforcement measures. Nobody
likes this fact about human nature. But we won’t change human nature by calling
economists mean-minded, money-grubbing misfits when they tell us things we wish
weren’t true.

1.4.2 Revealed Preference

The payoffs in a game needn’t correspond to objective yardsticks like money or
years spent in jail. They may also reflect a player’s subjective states of mind.
Chapter 4 is devoted to an account of the modern theory of utility, which justifies the
manner in which economists use numerical payoffs for this purpose. This section
offers a preview of the basic idea behind the theory.

Happiness? In the early nineteenth century, Jeremy Bentham and John Stuart Mill
used the word utility to signify some notional measure of happiness. Perhaps they
thought some kind of metering device might eventually be wired into a brain that
would show how many utils of pleasure or pain a person was experiencing. Critics of
modern utility theory usually imagine that economists still hold fast to some such
primitive belief about the way our minds work, but orthodox economists gave up
trying to be psychologists a long time ago. Far from maintaining that our brains are
little machines for generating utility, the modern theory of utility makes a virtue of
assuming nothing whatever about what causes our behavior.

This doesn’t mean that economists believe that our thought processes have
nothing to do with our behavior. We know perfectly well that human beings are mo-
tivated by all kinds of considerations. Some people are clever, and others are stupid.
Some care only about money. Others just want to stay out of jail. There are even
saintly people who would sell the shirt off their back rather than see a baby cry. We
accept that people are infinitely various, but we succeed in accommodating their
infinite variety within a single theory by denying ourselves the luxury of speculating
about what is going on inside their heads. Instead, we pay attention only to what we
see them doing.

The modern theory of utility therefore abandons any attempt to explain why
Adam or Eve behave as they do. Instead of an explanatory theory, we have to be
content with a descriptive theory, which can do no more than say that Adam or Eve
will be acting inconsistently if they did such-and-such in the past but now plan to
do so-and-so in the future.

Revealed Preference in the Prisoners’ Dilemma. Analyzing the Prisoners’ Di-
lemma in terms of the modern theory of utility will help to clarify how the theory
works. Instead of deriving the payoffs of the game from the assumption that the
players are trying to make money or stay out of jail, the data for our problem
ultimately comes from the behavior of the players.

In game theory, we are usually interested in deducing how rational people will
play games by observing their behavior when making decisions in one-person
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decision problems. In the Prisoners’ Dilemma, we therefore begin by asking what
decision Adam would make if he knew in advance that Eve had chosen dove.

If Adam would choose hawk, we would write a larger payoff in the bottom-left
cell of his payoff matrix than in the top-left cell. These payoffs may be identified
with Adam’s utilities for the outcomes (dove, hawk) and (dove, dove), but notice that
our story makes it nonsense to say that Adam chooses the former because its utility
is greater. The reverse is true. We made the utility of (dove, hawk) greater than the
utility of (dove, dove) because we were told that Adam would choose the former. In
opting for (dove, hawk) when (dove, dove) is available, we say that Adam reveals a
preference for (dove, hawk), which we indicate by assigning it a larger utility than
(dove, dove).

We next ask what decision Adam would make if he knew in advance that Eve had
chosen hawk. If Adam again chooses hawk, we write a larger payoff in the bottom-
right cell of his payoff matrix than in the top-right cell.

On the assumption that we know what choices Adam would make if he knew
what Eve were going to do, we have written payoffs for him in Figure 1.2(b) that
satisfy a > b and ¢ > d. However, the problem in game theory is that Adam usually
doesn’t know what Eve is going to do. To predict what he will do in a game, we need
to assume that he is sufficiently rational that the choices he makes in a game are con-
sistent with the choices he makes when solving simple one-person decision problems.

An example will help us here. Professor Selten is a famous game theorist with an
even more famous umbrella. He always carries it on rainy days, and he always
carries it on sunny days. But will he carry it tomorrow? If his behavior in the future is
consistent with his behavior in the past, then obviously he will. The fact that we
don’t know whether tomorrow will be rainy or sunny is neither here nor there. Our
data says that this information is irrelevant to Professor Selten’s behavior.

To predict Adam’s behavior in the Prisoners’ Dilemma, we need to appeal to this
Umbrella Principle. Our data says that Adam will choose hawk if he learns that Eve
is to play dove and that he will also choose hawk if he learns that she is to play hawk.
He thereby reveals that his choice doesn’t depend on what he knows about Eve’s
choice. If he is consistent, he will therefore play hawk whatever he guesses Eve’s
choice will be. In other words, a consistent player must choose a strongly dominant
strategy.

Criticism. Critics respond in two ways to this line of reasoning. The first objection
denies the premises of the argument. People say that Adam wouldn’t choose hawk if
he knew that Eve were going to choose dove. Perhaps he wouldn’t—but then we
wouldn’t be analyzing the Prisoners’ Dilemma.

The second objection always puzzles me. The Prisoners’ Dilemma is first ex-
plained to the critic using some simple story that deduces the players’ behavior from
the assumption that they are trying to maximize money or to minimize years spent in
jail. This allows the mechanism that deduces their payoffs from their behavior in
one-person decision problems to be short-circuited. When the critic objects that real
people aren’t necessarily selfish, he is introduced to the theory of revealed prefer-
ence and so learns that the logic of the Prisoners’ Dilemma applies to everybody, no
matter how they are motivated.

Sometimes the attempt to communicate breaks down at this point because the
critic can’t grasp the idea of revealed preference. Philosophers find the idea par-
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ticularly troublesome because they have been brought up on a diet of Bentham and
Mill.> But when critics do follow the argument, a common response is to argue that,
if an appeal is to be made to the theory of revealed preference, then nobody need pay
attention because the result has been reduced to a tautology. They thereby contrive
to reject the argument on the grounds that it is too simple to be wrong!

1.5 IMPERFECT COMPETITION

The Mad Hatter who has just appeared in the margin is rushing on to Section 1.6 to
avoid learning what relevance the Prisoners’ Dilemma has for the economics of
imperfect competition. However, he will miss out on a lot if he always skips ap-
plications of game theory to economics.

It shouldn’t be surprising that game theory has found ready application in eco-
nomics. The dismal science is supposedly about the allocation of scarce resources. If
resources are scarce, it is because more people want them than can have them. Such
a scenario creates all the necessary ingredients for a game. Moreover, neoclassical
economists proceed on the assumption that people will act rationally in this game.
Neoclassical economics is therefore essentially a branch of game theory. Econo-
mists who don’t realize this are like M. Jourdain in Moliere’s Le Bourgeois Gentil-
homme, who was astonished to learn that he had been speaking prose all his life
without knowing it.

Although economists have always have been closet game theorists, their progress
was hampered by the fact that they didn’t have access to the tools provided by Von
Neumann and Morgenstern when they invented modern game theory in 1944.”

As a consequence, they could offer only a satisfactory analysis of imperfect com-
petition in the special case of monopoly. A monopoly raises no strategic questions
because it can be modeled as a game with only one player. Only with the advent of
game theory did it become possible to study other kinds of imperfect competition in
a systematic way.

Before looking at how the Prisoners’ Dilemma can be used to illustrate a simple
problem in imperfect competition, it will he helpful to see how a straightforward
monopoly would work under the same circumstances.

1.5.1 Monopoly in Wonderland

The hatters of Wonderland make top hats from cardboard. Since the hatters are
mad,* they give their labor for free, and so the production function therefore only

2They can also point to the existence of a modern school of behavioral economists who have revived
traditional utility theory in seeking to make sense of psychological experiments. However, such behav-
ioralists don’t defend the orthodox analysis of the Prisoners’ Dilemma.

3Von Neumann was one of the truly great mathematicians of the last century. His contributions to
game theory were just a sideline for him. Such a man is surely entitled to call himself whatever he likes,
but, in some parts of the German-speaking world, I have been worked over for according him the
aristocratic von his father purchased from the Hungarian government. So I now write his name as Von
Neumann rather than von Neumann.

“Lewis Carroll’s mad hatter wasn’t angry but crazy. The odd behavior for which Victorian hatters
were famous is now thought to have been caused by their absorbing strychnine through the skin during
the hat-making process.
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recognizes cardboard as an input in the hat-making process. It exhibits decreasing
returns to scale because hatters are wasteful when hurried. The precise production
function to be used is defined by the equation:

a=\r.

This means that r sheets of cardboard will make a = +/r top hats. Only one sheet of
cardboard is therefore needed to make one top hat, but four sheets of cardboard are
needed to make two top hats.

Alice is a monopolist in the hat business. Cardboard can be bought at one dollar a
sheet, and so it costs her one dollar to make one top hat and four dollars to make two
top hats. In general, the cost of making a top hats is given by the cost function

cla) = a*.

If Alice can sell top hats at a price of p dollars each, her profit 7 is the revenue pa she
derives from selling a hats minus the cost c(a) of making them:

n=pa—d.

To know what price maximizes her profit, Alice needs to know the number a of
hats that will be bought at each possible price p. In Wonderland, this information is
given by the demand equation:

pa = 30.

Since Alice is the only maker of hats, she can meet all the demand at any price. If she
makes a hats, she will therefore be able to sell all the hats for p =30/a dollars each.
Writing this value of p into the expression for n, we find that her profit will be

n=30—d’.

This equation illustrates how monopolists make money. They force the price
up by artificially restricting supply. In Wonderland, the effect is extreme. However
many hats she sells, Alice’s revenue is always pa = $30. So she does best to reduce
her cost of a® by making as few hats as possible. She therefore makes just one hat,
which sells for $30. Since one hat costs only $1 to make, her profit is then $29.

1.5.2 Duopoly in Wonderland

A classic monopolist is a price maker, because she has complete control over the
price at which her product is sold. The traders in a perfectly competitive market are
price takers, because they have no control at all over the market price of the goods
they trade. This is usually because all the traders are so small that any action by an
individual has a negligible effect on the market as a whole. Most real markets lie

SLewis Carroll would have delighted in pointing out that Alice could do even better by selling no hats
at an infinite price, but we assume that the demand equation applies only when a is a positive integer.
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Figure 1.4 Some games that can arise from a duopoly.

between these two extremes. The traders have some partial control over the price at
which goods are sold, but their control is limited by competition from their rivals.

A simple example arises when Bob decides to enter the Wonderland hat-making
business as a rival to Alice. The market that then arises is called a duopoly because it
has two competing producers. If Alice produces a hats and Bob produces b hats,
each hat will sell for p =30/(a + b) dollars. If Alice and Bob both care only about
maximizing their own profit, how many top hats should each produce?

To keep things simple, assume that Alice and Bob are each restricted to pro-
ducing either one or two hats. We can then represent their problem as a game in
which each player has two strategies called dove and hawk. The payoff table of the
game is shown in Figure 1.4(a). It is yet another example of the Prisoners’ Dilemma.

In a duopoly, Alice and Bob can jointly make more money by getting together to
restrict supply like a monopolist. If they both play dove and so supply a total of only
two top hats, each will then make a profit of $14.°

However, neither player will then be maximizing his or her own individual profit.
In the Prisoners’ Dilemma, hawk always strongly dominates dove. No matter how
many hats Alice is planning to produce, it is therefore always best for Bob to play
hawk by making two hats on his own. Since the same goes for Alice, both will
therefore play hawk, and the result will be that each obtains a payoff of only $11.

The outcome illustrates why competition is good for consumers. Bringing in Bob
to compete with Alice raises the number of top hats produced from one to four.
Simultaneously, the price of a hat goes down from $30 to $7.50. If game theory’s
critics were right in saying that dove is the rational strategy for Alice and Bob in the
Prisoners’ Dilemma, only two hats would be produced, and they would be sold for
$15 each. It is therefore not always such a bad thing that rationality demands the play
of hawk in the Prisoners’ Dilemma!

1.6 NasH EQUILIBRIUM

Duopolies don’t always give rise to the Prisoners’ Dilemma. Consider, for example,
the effect of decreasing the demand for top hats in Wonderland so that the demand

SThey make the most money by agreeing to supply only one hat and splitting the profit, but our
current model is too crude to take such collusion into account (Section 1.7.1).
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equation becomes p(a + b) = 12. We are then led to the payoff table of Figure 1.4(b).
This is another example of the Prisoners’ Delight, in which dove strongly dominates
hawk. Rational play will therefore result in the players jointly extracting the max-
imum amount of money from the consumers.

The Prisoners’ Dilemma and the Prisoners’ Delight are solved by throwing away
strongly dominated strategies, but we can’t solve all games this way. To see why,
consider the case when Alice’s and Bob’s production costs are both zero, and the
demand equation is p(a + b)*=72. We are then led to the payoff table of Figure
1.4(c). This toy game is called the Stag Hunt Game, after a story told by the phi-
losopher Jean-Jacques Rousseau about how he thought trust works. Like most games,
it has no strongly dominant strategy. Adam should play dove if he thinks that Eve
will play dove. He should play hawk if he thinks that she will play hawk.

What does game theory say about rational play in games with no strongly
dominant strategies? This question takes us right back to the origin of the theory of
imperfect competition in the work of Augustin Cournot. After formulating the duo-
poly model we have been studying, he faced the same question. His answer was that
we must look for strategies that are in equilibrium.

The world wasn’t ready for the idea of an equilibrium when David Hume first
broached the idea in 1739. It still wasn’t ready when Cournot put the idea on a
formal footing in 1838. Only after Von Neumann and Morgenstern’s Games and
Economic Behavior appeared in 1944 did the soil became fertile. John Nash’s 1951
reinvention of a stripped-down version of Cournot’s idea then spread around the
world like wildfire.” Cournot’s contribution is sometimes recognized by calling the
idea a Cournot-Nash equilibrium, but the usual practice is simply to speak of a Nash
equilibrium.

Like many important ideas, it is almost absurdly simple to explain what a Nash
equilibrium is:

A pair of strategies is a Nash equilibrium in a game if and only if each strategy
is a best reply to the other.

We have already seen many Nash equilibria. Whenever both payoffs in a cell of a
payoff table are enclosed in a circle or a square, we are looking at a Nash equilib-
rium.

For example, (hawk, hawk) is always a Nash equilibrium in the Prisoners’ Di-
lemma, including the version of Figure 1.4(a) used to model a simple Cournot
duopoly. Similarly, (dove, dove) is a Nash equilibrium in the Prisoners’ Delight of
Figure 1.4(b). Each of the top-left and the bottom-right cells in the payoff table of
the Stag Hunt Game of Figure 1.4(c) have both their payoffs enclosed in a circle or a
square. Both (dove, dove) and (hawk, hawk) are therefore Nash equilibria in the Stag
Hunt Game.

Why Nash Equilibrium? Why should anyone care about Nash equilibria? There are
at least two reasons. The first is that a game theory book can’t authoritatively point to

“John Nash was awarded the Nobel Prize for game theory in 1994, along with Reinhard Selten and
John Harsanyi. For most of the time between his work on equilibrium theory and the award of the prize,
he was incapacitated by a serious schizophrenic illness.
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a pair of strategies (s, ) as the solution of a game unless it is a Nash equilibrium.
Suppose, for example, that  weren’t a best reply to s. Eve would then reason that if
Adam follows the book’s advice and plays s, then she would do better not to play z.
But a book can’t be authoritative on what is rational if rational people don’t play as it
predicts.

Evolution provides a second reason why we should care about Nash equilibria. If
the payoffs in a game correspond to how fit the players are, then adjustment pro-
cesses that favor the more fit at the expense of the less fit will stop working when we
get to a Nash equilibrium because all the survivors will then be as fit as it is possible
to be in the circumstances.

We therefore don’t need our players to be mathematical whizzes for Nash equi-
libria to be relevant. They often predict the behavior of animals quite well. Nor is the
evolutionary significance of Nash equilibria confined to biology. They have a pre-
dictive role whenever some adjustment process tends to eliminate players who get
low payoffs. For example, stockbrokers who do less well than their competitors go
bust. The rules of thumb that stockbrokers use are therefore subject to the same kind
of evolutionary pressures as the genes of fish or insects. It therefore makes sense to
look at Nash equilibria in the games played by stockbrokers, even though we all
know that some stockbrokers wouldn’t be able to find their way around a goldfish
bowl, let alone a game theory book.

1.6.1 Selfish Genes?

Because evolution stops working when a Nash equilibrium is reached, biologists say
that Nash equilibria are evolutionarily stable.® Each relevant locus on a chromosome
is then occupied by the gene with maximal fitness. Since a gene is just a molecule, it
can’t choose to maximize its fitness, but evolution makes it seem as though it had.
Game theory therefore allows biologists to get at the final outcomes of an evolu-
tionary process without following each twist and turn that the process might take.

The title of Richard Dawkins’s famous Selfish Gene expresses the idea in a
nutshell. His metaphor is vivid but risky. I particularly enjoyed watching an old lady
rebuke him for his effrontery in putting about such evolutionary nonsense, when we
can all see that genes are just molecules and thus can’t have free will.

1.6.2 Blood Is Thicker Than Water

It is a pity that space doesn’t allow a proper discussion of the biological applications
of game theory, but there is time to consider Bill Hamilton’s explanation of why we
should expect animals (and people) to get along better with their relatives than with
strangers.

To a first approximation, the fitness of a gene is the average number of copies of
itself that appear in the next generation. However, a gene in Alice’s body would be
remiss if its fitness calculation neglected the probability that copies of itself are
already present in the bodies of Alice’s relatives. After all, if Alice’s brother carries

8John Maynard Smith defined an evolutionarily stable strategy (ESS) to be a best reply to itself that is
a better reply to any alternative best reply than the alternative best reply is to itself. In my experience,
biologists seldom worry about the small print involving alternative best replies.
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the gene, he will contribute just as many copies of the gene to the next generation on
average as Alice herself.

The degree of relatedness r between Alice and Bob is the probability they share
any particular gene. If Bob is Alice’s full brother, r = % If they are full cousins,
r= % How will r matter if Alice and Bob play a game with each other, like fledg-
lings in a nest?

We only consider the case r=1, so that Alice and Bob are identical twins or
clones. If their strategies in the Prisoners’ Dilemma are determined by the gene
occupying a particular locus, the gene knows that a copy of itself is determining the
strategy of its opponent (Exercise 1.13.26). So only one gene is really playing. In this
one-player game, the optimal choice is dove, and so Alice and Bob cooperate. In
brief, the fallacy of the twins ceases to be a fallacy because Alice and Bob really are
exact duplicates of each other.

If Alice and Bob are less closely related, a modified version of the lovers’ story of
Section 1.4.1 applies. The larger r is, the more likely they are to cooperate (Exercise
1.13.29). Hamilton observes that this must be why sociality has evolved separately
so many times among the Hymenoptera—ants, bees and wasps. Because of their
peculiar sexual arrangements, two sisters in such species have r = _%, rather than
r= % like us.

1.7 COLLECTIVE RATIONALITY?

Von Neumann and Morgenstern’s Games and Economic Behavior distinguishes two
kinds of game theory. So far we have discussed only noncooperative games, in which
the players independently choose their strategies to maximize their own payoffs.

Critics of the game-theoretic analysis of the Prisoners’ Dilemma sometimes ask
why we perversely choose to ignore Von Neumann and Morgenstern’s theory of co-
operative games, in which the players are assumed to negotiate a binding agreement
on what strategies to use before play begins. Such critics are usually sold on the idea
that rationality resides in groups rather than individuals. They therefore think that
rational behavior on the part of an individual player lies merely in agreeing to
whatever is rational for the group of players as a whole. Karl Marx is the most fa-
mous exponent of this error.” The biological version of the mistake is called the
group selection fallacy.

Pareto Efficiency. A standard assumption in cooperative game theory is that a
rational agreement will be Pareto efficient. Pareto efficiency comes in a weak form
and a strong form. The weak form is easiest to defend. It says that an agreement is
Pareto efficient when there is no other feasible agreement that all the players prefer.
The argument for assuming that agreements will be weakly Pareto efficient is that
rational players won’t stop bargaining as long as everybody has something to gain
by continuing to negotiate. However, the only one of the four outcomes in the Pris-
oners’ Dilemma that isn’t Pareto efficient is (hawk, hawk), which is precisely the out-
come that noncooperative game theory says will result from rational play.

“Recall that he treated abstractly conceived coalitions like Capital and Labor as though they had the
single-minded and enduring aims of individual people.
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Philosophers who think that this fact reveals a contradiction between noncoop-
erative and cooperative game theory overlook the importance of the assumption in
cooperative game theory that binding agreements can be made. It isn’t enough that
Adam and Eve have promised to honor an agreement. We have all broken our word
at one time or another because something else seemed more important at the time.
For a truly binding agreement, all the players must know that everybody will have
overpowering reasons to keep their word when the time comes. Game theorists say
that the players then know that they are all committed to honor the agreement.

Making Commitments Stick. In real life, our legal system often provides a workable
way of enforcing commitments. If Adam and Eve each sign a legally binding con-
tract, then they will be effectively committed to the deal if the penalties for breach
of contract outweigh any advantages that either might get from cheating. However,
building such opportunities for making commitments into a model inevitably changes
the game that is being played and hence removes the contradiction that our critics
believe they see.

Suppose, for example, that Adam and Eve have discussed the Prisoners’ Di-
lemma before it is played and agreed that both will play dove. We can then relabel
their two strategies as play-dove-and-keep-your-word and play-hawk-and-break-
your-word. If the agreement is legally binding, then both players will be liable to a
penalty if they break their word. Figure 1.5(a) shows how a penalty of three dollars
for breaching the contract changes the Prisoners’ Dilemma used to model the private
provision of public goods in Figure 1.3(a). The new game is another version of the
Prisoners’ Delight of Figure 1.3(b), in which dove strongly dominates hawk. Keeping
your word therefore becomes the rational strategy, and so each player’s promise to
play dove is effectively a commitment.

Modeling Promises. People who think that game theory is immoral sometimes
downplay the need for external enforcement by arguing that a player’s conscience
serves as an internal policeman. Game theorists have no difficulty in modeling the
fact that most people don’t like breaking promises. But how bad does breaking a
promise make you feel? I wouldn’t feel at all bad about breaking a promise if there

dove hawk dove hawk

0 1 21
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hawk hawk
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(a) Both pay 3 dollars (b) Eve pays 50 cents

Figure 1.5 Breaking your word. The payoff tables are obtained by subtracting a penalty from a player’s
payoff when he or she plays hawk in the game of Figure 1.3(a), which models the private provision
of public goods.
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were no other way to get money to feed my starving child. Some people feel the
same about all promises—otherwise we wouldn’t need to bother with a legal system
at all. We therefore need to face up to the fact that the amount that needs to be
subtracted from my payoff to capture my distress at breaking a promise may be too
small to affect my behavior.

As an example, consider again the Prisoners’ Dilemma of Figure 1.3(a) used to
model the private provision of public goods. If we only subtract fifty cents from
Eve’s payoff when she breaks her promise to play dove but continue to subtract three
dollars from Adam’s payoff when he breaks his promise, then we are led to the game
of Figure 1.5(b). This is the first asymmetric game we have encountered, but we can
still solve it by eliminating strongly dominated strategies. It is rational for Adam to
play dove and Eve to play hawk.

Eve therefore free rides while Adam pays the full cost of providing the public
good. But Adam isn’t the classic sucker who is never to be given an even break. He
predicts that Eve is going to play hawk but plays dove anyway because he values his
peace of mind more than the money he would save by playing hawk. If this weren’t
the case, the theory of revealed preference tells us that three dollars would have been
too large a penalty to write into his payoffs.

1.7.1 Collusion

People often react badly to the suggestion that it may be rational to cheat and lie.
They think that society would collapse if such things were true. Where would we be
if we couldn’t trust our friends and neighbors? But game theorists don’t say that
rational people should never trust each other. They only say that it is irrational to do
something without being able to give a good reason for doing it.

We have good reasons for trusting our friends and neighbors, but we have equally
good reasons for distrusting politicians and used-car salesmen. Whether it is sen-
sible to put our trust in other people depends on the circumstances. For example,
everybody knows not to trust a stranger who approaches you in a dark alley late at
night.

Game theorists argue that it would be unwise for Adam to trust Eve’s word if they
were about to play the Prisoners’ Dilemma. He should get her signature on a legally
binding contract before counting on her cooperation. However, if Eve were Adam’s
wife or sister, they wouldn’t be playing the Prisoners’ Dilemma. The games we play
with those we trust are much more complicated.

An important assumption built into the Prisoners’ Dilemma is that the players
will never interact again. If Adam and Eve believed they might meet in the future to
play again, they would have to take into account the impact that their choice of dove
or hawk in the present might have on the choices their opponent might make in the
future. The Prisoners’ Dilemma is therefore not capable of modeling long-term rela-
tionships in which a player’s reputation for honesty can be very valuable—and easily
lost. As a dealer in curios put it in the New York Times of 29 August 1991 when asked
whether he could rely on the honesty of the owner of the antique store that sold his
goods on commission: “Sure I trust him. You know the ones to trust in this business.
The ones who betray you, bye-bye.”

A duopoly is a good setting within which to consider the problem of trust because
cooperation among duopolists is commonly illegal. We even use a special word to
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register our disapproval. When two duopolists agree to cooperate rather than
compete, we say that they are colluding.

Collusion in a duopoly can’t be sustained legally because neither party is going
to sue the other for failing to honor a contract that it would be illegal to sign. Nor
is it hard to imagine that colluding duopolists will lack moral scruple. After all, it is
hardly compatible with an upright nature to enter into a conspiracy whose aim is to
screw the consumer. Indeed, in real life, colluding executives seem to relish their
shady dealing by choosing to meet in smoke-filled hotel rooms late at night—just
like gangsters in the movies.

If Alice and Bob are to collude successfully, they therefore need to have a good
reason to trust each other, even though each knows that the other is motivated only
by a selfish desire to maximize his or her own profit. A proper explanation of how
cooperation can be sustained in an ongoing relationship without internal or external
enforcement will have to wait until we study the theory of repeated games (Section
11.3.3). However, it is easy to give the flavor of the explanation while correcting yet
another fallacious line of reasoning that has been proposed by philosophers.

The Transparent Disposition Fallacy. The transparent disposition fallacy asks us to
believe two doubtful propositions. The first is that rational people have the will-
power to commit themselves in advance to playing games in a particular way. The
second is that other people can read our body language well enough to know when
we are telling the truth. If we truthfully claim that we have made a commitment, we
will therefore be believed.

If these propositions were correct, our world would certainly be very different!
Rationality would be a defense against drug addiction. Poker would be impossible to
play. Actors would be out of a job. Politicians would be incorruptible. However, the
logic of game theory would still apply.

As an example, consider two possible mental dispositions called CLINT and JOHN.
The former is named after the character played by Clint Eastwood in the spaghetti
westerns. The latter commemorates a hilarious movie I once saw in which John
Wayne played the part of Genghis Khan. To choose the disposition JOHN is to
advertise that you have committed yourself to play hawk in the Prisoners’ Dilemma
no matter what. To choose the disposition CLINT is to advertise that you are com-
mitted to playing dove in the Prisoners’ Dilemma if and only if your opponent is
advertising the same commitment. Otherwise you will play hawk.

If Alice and Bob are allowed to commit themselves transparently to one of these
two dispositions before playing the Prisoners’ Dilemma of Figure 1.4(a), what
should they do? Their problem is a game in which each player has two strategies,
cLINT and JOHN. The outcome of this Film Star Game is (hawk, hawk) unless both
players choose CLINT, in which case it is (dove, dove). The payoff table for their
game is therefore given by Figure 1.6(a).

The Film Star Game has no strongly dominant strategies. It is always a best reply
for Alice to choose CLINT, but CLINT isn’t always her only best reply. If Alice pre-
dicts that Bob will choose JOHN, then she gets the same payoff whether she chooses
CLINT or JOHN. Under such circumstances, we say that CLINT weakly dominates
JOHN.

A rational player must play hawk in the Prisoners’ Dilemma because hawk
strongly dominates dove. We can’t say that rational players must play CLINT in
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Figure 1.6 Cooperation.

the Film Star Game because it is also a Nash equilibrium for both to play
JOHN. However, if Alice or Bob entertains any doubt at all about which strategy
the other will choose, he or she does best to play CLINT because CLINT is sure to
be a best reply, whereas JOHN is only a best reply if the other player also chooses
JOHN.

If Alice and Bob can successfully advertise having made a commitment to play
like cLINT, then both will play dove in the Prisoners’ Dilemma. Advocates of the
transparent disposition fallacy think that this shows that cooperation is rational in the
Prisoners’ Dilemma. It would be nice if they were right in thinking that real-life
games are really all film star games of some kind—especially if one could choose to
be Adam Smith or Charles Darwin rather than John Wayne or Clint Eastwood. But
even then they wouldn’t have shown that it is rational to cooperate in the Prisoners’
Dilemma. Their argument shows only that it is rational to play CLINT in the Film Star
Game.

1.8 REPEATING THE PRISONERS’ DILEMMA

If rational cooperation is impossible in the Prisoners’ Dilemma, how come duo-
polists like Alice and Bob often succeed in colluding in real life? The reason is that
the real world is more complicated than Wonderland. Real duopolists don’t make
their decisions once and for all but compete on a day-by-day basis. The Prisoners’
Dilemma doesn’t capture the essence of such ongoing economic interaction, but we
can create a toy game that does by supposing that Alice and Bob must play the
Prisoners’ Dilemma every day from now until eternity. Their payoffs in this new
game are simply their average daily profits.

When we study repeated games seriously, we will find that Alice and Bob have
huge numbers of strategies, but we will just look at three: DOVE, HAWK, and GRIM.
The first of these is the strategy of always playing dove. The second is the strategy of
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always playing hawk. The third is the strategy of playing dove as long as your
opponent does the same, but switching permanently to hawk the day after your op-
ponent first fails to reciprocate.”

If our only strategies were DOVE and HAWK, the repeated Prisoners’ Dilemma
would be the same as the one-shot version, but we also have GRIM to worry about.
When GriM plays DOVE or itself, both players use dove every day, and so each gets a
daily payoff of fourteen dollars. Things get complicated only when GRIM plays
HAWK. The first day will then see one player using dove and the other hawk. On all
subsequent days, both players will use hawk because GRIM requires that a failure to
reciprocate its play of dove on the first day be punished forever. If one player uses
GRIM and the other HAWK, each therefore gets an average payoff of 11 because the
payoffs Alice and Bob get on the first day are irrelevant when computing averages
over an infinite period.

Putting these facts together, we are led to the payoff table of Figure 1.6(b), which
is only a tiny part of the true payoff table of the repeated Prisoners’ Dilemma,
because we have considered only three of the vast number of possible strategies. If
we didn’t have GRIM in the table, we would be back with the one-shot Prisoners’
Dilemma. If we didn’t have bovE, we would be back with the Film Star Game. This
perhaps explains why philosophers are so enthusiastic about CLINT. They have seen
Clint Eastwood playing a version of the GRIM strategy in the spaghetti westerns, but
they didn’t notice that he tries to get along with the bad guys before reaching for his
gun and that the bad guys totally fail to read the body language with which he
conveys his talents as a gunslinger.

Two of the cells of the payoff table of Figure 1.6(b) have both their payoffs
enclosed in a circle or a square. These correspond to two Nash equilibria. We are
familiar with the equilibrium in which both players use HAWK. But this is now joined
by a new equilibrium in which Alice and Bob both use GrRiM and hence collude by
playing dove in each repetition of the Prisoners’ Dilemma. They thereby squeeze the
maximum possible amount out of the consumer.

The GrRiM equilibrium shows how collusion can survive in a duopoly. Alice and
Bob need neither a legal system nor a sense of moral obligation to keep them from
cheating if they agree to operate a Nash equilibrium. In the case of the GRIM equi-
librium, a player who cheats on the agreement will simply provoke the other player
into switching to hawk on all subsequent days. Neither player therefore has an in-
centive to cheat.

Sometimes this result is trumpeted as the “solution” to the paradox of rationality
raised by the Prisoners’ Dilemma. It is certainly important for game theory that we
have found a Pareto-efficient Nash equilibrium in the repeated Prisoners’ Dilemma.
We can thereby explain how cooperation can survive in long-term relationships
without the need for external enforcement. But only confusion can result from
confounding the repeated Prisoners’ Dilemma with the Prisoners’ Dilemma itself.
The only Nash equilibrium in the one-shot Prisoners’ Dilemma continues to require
that both players use hawk.

10The GrIM strategy gets its name because it punishes an opponent’s transgression relentlessly. Many
readers will have heard of the strategy TIT-FOR-TAT. Popular writers are mistaken when they assert that
this strategy outperforms all rivals.
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1.9 WHicH EQUILIBRIUM?

We found two Nash equilibria in both the Stag Hunt Game and the simplified
repeated Prisoners’ Dilemma of Figure 1.6. The full repeated Prisoners’ Dilemma
has an infinite number of Nash equilibria. We therefore have to confront what game
theorists call the equilibrium selection problem. Which equilibrium should we
choose?

No attempt will be made to answer this question here, except to say that nothing
says that there must be a “right” equilibrium. After all, nobody thinks there has to be
a “right” solution to a quadratic equation. We choose whichever solution fits the
problem from which the quadratic equation arose. So why should things be different
in game theory?

Advocates of collective rationality don’t like this answer. They say that ratio-
nality demands the choice of a Pareto-efficient equilibrium in those cases where one
exists. But the Stag Hunt Game of Figure 1.4(c) should give them pause. Under the
name of the Security Dilemma, experts in international relations use this game to
draw attention to the limitations of rational diplomacy.

In the Stag Hunt Game, the Nash equilibrium in which both Alice and Bob play
dove is Pareto efficient. But suppose their game theory book says that hawk should
be played. Could rational players persuade each other that the book is recommend-
ing the wrong equilibrium? Alice may say that she thinks the book is wrong, but
would Bob believe her?

Whatever Alice is planning to play, it is in her interests to persuade Bob to play
dove. If she succeeds, she will get 18 rather than 8 when playing dove, and 16 rather
than 9 when playing hawk. Rationality alone therefore doesn’t allow Bob to deduce
anything about her plan of action from what she says because she is going to say the
same thing no matter what her real plan may be! Alice may actually think that Bob is
unlikely to be persuaded to switch from hawk and hence be planning to play hawk
herself, yet still try to persuade him to play dove.

The point of this Machiavellian story is that attributing rationality to the players
isn’t enough to resolve the equilibrium selection problem—even in a case that seems
as transparently straightforward as the Stag Hunt Game. If we see Alice and Bob
playing hawk in the Stag Hunt Game, we may regret their failure to coordinate on
playing dove, but we can’t accuse them of being irrational because neither player can
do any better, given the behavior of their opponent (Section 12.9.1).

1.10 SociAL DILEMMAS

Psychologists refer to multiplayer versions of the Prisoners’ Dilemma as social
dilemmas. You can usually tell that you are in a social dilemma by the fact that your
mother would register her disapproval of any hawkish inclination on your part by
saying, “Suppose everybody behaved like that?”

Immanuel Kant is sometimes said to be the greatest philosopher of all time, but he
too thought that it couldn’t be rational to do something if it would be bad if every-
body did it. As his famous categorical imperative says:

Act only on the maxim that you would will to be a universal law.
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For example, when waiting at an airport carousel for our bags, we would all be better
off if we all stood well back so that we could see our bags coming. The same applies
when people stand up at a football match or when they conduct their business in slow
motion after reaching the head of a long line.

When large numbers of anonymous folk play such social dilemmas, Kant and
your mother are right to predict that things will work out badly if everybody behaves
antisocially. But urging people to behave better in such situations is seldom very
effective. Why should you lose out by paying heed to your mother when everybody
else is ignoring theirs?

1.10.1 Tragedy of the Commons

The kind of everyday social dilemma just described can be irritating, but some social
dilemmas spell life or death for those who are forced to play them. The standard
example is called the Tragedy of the Commons in the political science literature.
If you can follow the calculus needed to explain this game properly, you probably
know enough mathematics to get started on this book. The Mad Hatter in the margin
is there to suggest that readers who find the mathematics challenging would nev-
ertheless be wise not to skip the material.

Ten families herd goats that graze on one square mile of common land. The milk
a goat gives per day depends on how much grass it gets to eat. A goat that grazes on a
fraction a of the available common land produces

b — el=1/10a

buckets of milk a day. This production function has been chosen so that a goat that
grazes on one-tenth of the common land gives one bucket of milk. As the fraction of
land available for it to graze decreases, the goat’s yield progressively declines until a
goat without grass to eat gives no milk at all.

A social planner asked to decide the optimal total number N of goats would first
note that each goat would occupy a fraction a = 1/N of the common land. Total milk
production is then

M = Nb = Ne' ™M1,

which is largest'' when N = 10, making total milk production M = 10 buckets a day.
If all families are to share equally in the milk produced, the planner would therefore
assign the ten families one goat each. Each family would end up with one-tenth of
the total milk production, which is one bucket a day per family.

But suppose the planner’s edicts can’t be enforced. Each family will then make its
own decision on the number g of goats to keep. Its own milk production is

m = gh = ge!~(#+0)/10 — ,=G/104,1-g/10.

x

""To find where y=uxe * is largest, set its derivative to zero. But dy/dx =e™* —xe™ is zero
when x=1. Thus (N/10)e /' is largest when N = 10. The same is therefore true of eNe ™/10 =
Nel—N/lO.
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where G 1is the total number of goats kept by all the other families. Since G stays
constant while our family makes its decision, the solution of its maximization
problem is the same as the planner’s. It will therefore keep ten goats, regardless of
how many goats the other families choose to keep. Since all ten families will do
exactly the same, the result will be that one hundred goats are turned loose on the
common land, which will therefore be grazed into a desert. When N =100, total
milk production is

M = 100e° = 0.012,

which is just about enough to wet the bottom of a bucket.

Figure 1.7 makes the connection with the Prisoners’ Dilemma in a variety of
ways. Figure 1.7(a) substitutes for a player’s payoff matrix. It shows a family’s milk
production as a function of the number g of goats that it keeps and the total number
G of goats kept by all the other families. Figure 1.7(b) shows the same data in the

(a) (b)

Figure 1.7 Milk production in the Tragedy of the Commons. Figure 1.7(c) shows that it is a strongly
dominant strategy to keep ten goats.



1.10 Social Dilemmas

form of a contour map. The graphs of Figure 1.7(c) are slices through the milk-
production surface of Figure 1.7(a), in which g is held constant. One can think of
such slices as representing rows in the payoff matrix. Figure 1.7(d) shows slices
through the milk-production surface in which G is held constant. One can think of
such slices as columns in the payoff matrix.

A strategy for a family in the Tragedy of the Commons is the number g of goats
that it chooses to keep. These strategies are represented as graphs in Figure 1.7(c), or
as points on the horizontal axis in Figure 1.7(d). It is easier to see that the hawkish
strategy of keeping ten goats is strongly dominant in Figure 1.7(c). One only has to
take note of the fact that the graph corresponding to g =10 always lies above each
of the graphs corresponding to other strategies. Whatever the value of G, a family
therefore always gets more milk by keeping ten goats than by keeping any other
number of goats. In particular, the hawkish strategy of keeping ten goats strongly
dominates the dovelike strategy advocated by the planner of keeping only one goat.
Nevertheless, everybody would be far better off if everybody had taken the planner’s
advice.

The Tragedy of the Commons captures the logic of a whole spectrum of envi-
ronmental disasters that we have brought upon ourselves. The Sahara Desert is
relentlessly expanding southward, partly because the pastoral peoples who live on its
borders persistently overgraze its marginal grasslands. But the developed nations
play the Tragedy of the Commons no less determinedly. We jam our roads with cars.
We poison our rivers and pollute the atmosphere. We fell the rainforests. We have
plundered our fishing areas until some fish stocks have reached a level from which
they may never recover.

What is to be done about the Tragedy of the Commons? Nobody likes where the
logic of the game theory argument leads, but it doesn’t help to insist that the logic
must therefore be wrong. One might as well complain that arithmetic must be wrong
because seven loaves and two fishes won’t feed a multitude. Nor does there seem
much point in arguing that we can rely on people caring for each other to get us out
of such messes. If we could, the mess wouldn’t have arisen in the first place.

Game theorists prefer a more positive approach. When they are convinced that
they have gotten the game right but don’t like the answer to which its analysis leads,
they ask whether it may be possible to change the game.

1.10.2 Mechanism Design

The rules of a game are sometimes called a mechanism. Mechanism design is there-
fore the branch of game theory in which one asks whether games can be invented
that rational people will play in socially beneficial ways.

It is realistic to think of changing the game only if a government or some other
powerful planning agency is able to monitor and enforce the new rules, but central
planners are notorious for knowing less about what needs to be done than the people
they order around. In a good design, the planner therefore doesn’t tell everybody
what to do. The decisions are left to the people who have the necessary knowledge
and expertise. The role left for the planner is to guide their decisions in a socially
desirable direction by enforcing a carefully designed system of incentives and
constraints. We can then get the logic of game theory to work for us instead of
against us.
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It will come as no surprise that working out the best system of incentives and
constraints can often be difficult, but we can use the Tragedy of the Commons to get
the general idea. We have seen that a planner who knew as much about keeping
goats as a goat herder would issue each family a license to keep one goat. However,
a real planner would be unlikely to know that ten licenses is the socially optimal
number.

Suppose, for example, that the planner knows only that each goat’s milk pro-
duction function is of the form

b= el ~1/Aa

but that you need to have herded goats all your life to be aware that A =10. The
planner can work out that the socially optimal number of goats is A, but you can’t
issue A licenses if you don’t know what A is. A stupid planner might guess at the
value of A and issue that many licenses, but a clever planner will exploit the goat
herders’ knowledge and experience and let them make the decision on how many
goats to keep themselves.

We know that the goat herders will choose in a disastrous way unless the planner
intervenes somehow. There are various ways the planner might manipulate their
choice. If it is possible for the planner to confiscate the entire milk production and
then divide it equally among the ten families, the outcome is particularly benign
because each family’s aims then become the same. They no longer have an incentive
to put one over on their neighbors by sneaking an extra goat onto the common. Their
common goal is now to maximize the total amount of milk produced.

To be pedantic, each of the ten families forced to play the planner’s confiscation
game will now choose g to maximize

_ (8+ G\ 1_(gr6)a
m— (—10 )e ,

which is largest when g + G = A. If each family makes a best reply to the strategies
chosen by their opponents—so that a Nash equilibrium is played—the total number
g + G of goats that graze the common land will then be socially optimal. However,
the planner will find out that the socially optimal number is ten only after counting
the number of goats that get turned loose on the common after the new rules are
introduced.

1.10.3 Second Best

It shouldn’t be thought that it is always possible for a social planner to find a way to
get to the socially optimal outcome. For example, the mechanism we have just
considered won’t work if the planner can’t monitor how much milk each goat
produces since the goat herders have an incentive to keep back some of the milk for
their own private use.

Economists express the fact that the best workable mechanism may fail to match
up with what an omniscient and omnipotent planner would be able to achieve by
saying that, when the first-best outcome isn’t available, we have to be satisfied with
the second-best outcome.
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People who insist that it must be rational to cooperate in the Prisoners’ Dilemma
also reject second-best outcomes. When they insist on nothing less than the first-
best, economists believe that they are denying the most elementary principle of
decision theory—one must first decide what is feasible before thinking about which
of the feasible alternatives is optimal.

The feasible solutions to a problem are those that will work. For example, fea-
sible solutions to reaching a high shelf would be to stand on a chair or to use a broom
to lengthen your reach. An infeasible solution would be to swallow the contents of
a bottle called Drink-Me in the hope that it will make you grow taller. The optimal
solution to the problem is the feasible alternative that costs you least in time and
trouble. Standing on a chair is therefore probably optimal, even though putting the
chair in the right place and climbing up on it will be a nuisance. However, if you
emulate Alice by trying to find a bottle labeled Drink-Me, you will never reach the
high shelf at all. In rejecting the second-best outcome in favor of an illusory first-best
outcome, you condemn yourself to a third-best or worse outcome.

Planners are particularly likely to make this kind of error when reforming human
organizations. They fail to see that people will change their behavior in response to
the new incentives created by the reform.

The U.S. Congress made precisely such a mistake in 1990 when it passed an act
intended to ensure that Medicare wouldn’t pay substantially more for its drugs than
private health providers. The basic provision of the act said that a drug must be sold
to Medicare at no more than 88% of the average selling price. The problem was
created by an extra provision that said that Medicare must also be offered at least as
good a price as any retailer. This provision would work as its framers intended only
if drug manufacturers could be relied upon to ignore the new incentives created for
them by the act. But why would drug manufacturers ever sell a drug to a retailer at
less than 88% of the current average price if the consequence is that they must then
sell the drug at the same price to a huge customer like Medicare? However, if no
drugs are sold at less than 88% of the current average, then the average price will be
forced up!

Mechanism design corrects this kind of error by using game theory to predict how
people’s behavior will adapt after a reform has been implemented. Only then can we
know what outcomes are genuinely feasible and so make a reasoned choice of what
is optimal.

1.11 RounNbpuUP

Each chapter in this book ends with a summary of the material it covers. Usually, the
vital definitions and results are reviewed to give a sense of what is of primary im-
portance. This introductory chapter is exceptional in that the concepts it introduces
are dealt with again more carefully in later chapters. The lessons that need to be
learned from this chapter are philosophical.

Don’t despise toy games. Even a game as simple as the Prisoners’ Dilemma is the
object of an ongoing controversy. The fact that rational players won’t cooperate in
the Prisoners’ Dilemma isn’t a paradox of rationality. People who think this usually
make the mistake of imagining that the Prisoners’ Dilemma captures the essentials
of what matters about human interaction in general, but the one-shot Prisoners’
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Dilemma is actually a game whose structure is exceptionally hostile to the emer-
gence of cooperation. In games that better capture the circumstances under which
people cooperate in real life, rational players won’t necessarily double-cross each
other. For example, in the game created by repeating the Prisoners’ Dilemma infi-
nitely often, we identified a Nash equilibrium in which the players always cooperate.

When critics offer rival analyses of the Prisoners’ Dilemma, they usually fail to
notice that they are substituting some other game for the Prisoners’ Dilemma. They
often mistakenly believe that game theory requires that people care only about how
much money they have in their own pockets. They seem never to understand that the
payoffs in game theory are derived in principle from the theory of revealed pref-
erence. This assumes nothing whatever about what motivates people but simply asks
that people make decisions consistently. Game theory is neutral on moral and psy-
chological issues.

The basic concept of game theory is called a Nash equilibrium. It arises when all
players choose a strategy that is a best reply to the strategies chosen by the other
players. It is important for two reasons. The first is that a great book of game theory
that listed the “rational solutions” of all games would never list a strategy profile that
isn’t a Nash equilibrium. If it did, at least one player would have an incentive
to deviate from the book’s advice, and so its advice wouldn’t be authoritative.
The second reason is evolutionary. An evolutionary process—economic, social, or
biological—that acts to maximize the fitness of the players will cease to operate
when it reaches a Nash equilibrium. Part of the success of game theory lies in the
possibility of switching back and forth between the two interpretations. In particular,
we can use the language of rational optimization when talking about the end product
of trial-and-error processes of evolutionary adaptation.

Although human interactions that can effectively be modeled using variants of
the Prisoners’ Dilemma are rare, the results can be disastrous when they do arise.
The Tragedy of the Commons is a particularly sad case. In such situations, game
theorists don’t bury their heads in the sand by pretending that some more amenable
game is being played—they ask whether it is actually possible to change the rules to
create a more amenable game.

The science of designing new games that rational people will play in a desirable
way is called mechanism design. Perhaps it will one day become a routine instru-
ment of good government. In the meantime, game theorists advocate its use wher-
ever we understand what is going on well enough to be able to predict how people
will respond to the novel incentives created by a newly designed game.

1.12 FURTHER READING

Thinking Strategically, by Barry Nalebuff and Avinash Dixit: Norton, New York, 1991. This best-
selling book is written for a popular audience. It contains many examples of game theory in
action, both in business and in everyday life.

Playing Fair: Game Theory and the Social Contract 1, by Ken Binmore: MIT Press, Cambridge,
MA, 1995. Chapter 3 discusses many fallacies of the Prisoners’ Dilemma that circulate in the
philosophical literature.

A Beautiful Mind, by Sylvia Nasar: Simon and Schuster, New York, 1998. Few of us will
experience the highs and lows that are described in this biography of John Nash. There is now a
movie with the same title.
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John Von Neumann and Norbert Wiener, by Steve Heine: MIT Press, Cambridge, MA, 1982.
People who knew Von Neumann say he was so clever that it was like talking to someone from
another planet.

Evolution and the Theory of Games, by John Maynard Smith: Cambridge University Press,
Cambridge, UK, 1982. This beautiful book introduced game theory to biology.

Behavioral Game Theory, by Colin Camerer: Princeton University Press, Princeton, NJ, 2003.
Some bits of game theory work well in the laboratory, and some don’t. This book surveys the
evidence and looks at possible psychological explanations of deviations from the theory.

1.13 EXERCISES

1. The simplest strategic story that yields the Prisoners’ Dilemma arises when
Adam and Eve both have access to a pot of money. Both are independently
allowed either to give their opponent $2 from the pot, or to put $1 from the pot
in their own pocket. Write down the payoff table of the game on the assumption
that the players care only about how many dollars they make. Which strategy is
strongly dominant?

2. A feasible outcome is (weakly) Pareto efficient if there is no other feasible
outcome that all the players prefer. Explain why only the outcome (hawk,
hawk) isn’t Pareto efficient in the Prisoners’ Dilemma. What are the Pareto-
efficient outcomes in the Stag Hunt Game?

3. A sealed-bid auction is to be used to sell a collection of ten old coins to the
highest bidder at the price he or she bids. The only bidders are Alice and Bob,
who both value each coin at $10. If both make the same bid, each pays half
their bid for half the coins. Assuming they are restricted to bidding only $97 or
$98, show that they are playing a Prisoners’ Dilemma in which the strongly
dominant strategy is to bid high. Show that the same is true if the only possible
bids are $99.97 and $99.98.

4. Tenants who sweep the hallways in apartment buildings without a janitor
provide a public good. Formulate a version of the Prisoners’ Dilemma based on
this story.

5. The classic toy game called Chicken derives from the James Dean movie Rebel
without a Cause, in which two teenage boys drive cars toward a cliff edge to see
who chickens out first. The same game is played by middle-aged drivers who
approach each other in streets too narrow for them to pass without someone
slowing down.

Explain why the payoff table of Figure 1.8(a) fits both stories. Enclose the
payoffs that correspond to best replies in a circle or a square. Explain why
neither player has a dominant strategy. Why are (slow, speed) and (speed,
slow) Nash equilibria? What are the Pareto-efficient outcomes in this game?

6. A couple on their honeymoon in New York are separated in the crowds without
having agreed on where they should go in the evening. At breakfast, they had
discussed either a visit to the ballet or a boxing match.

Explain why the Battle of the Sexes of Figure 1.8(b) might be used to model
their dilemma.'? Enclose the payoffs that correspond to best replies in a circle

"2The sexist assumption that the row player is the husband is usually made, but my wife and I are at
least one couple that the stereotype doesn’t fit.

33



34

econ

Chapter 1. Getting Locked In

10.

11.

slow speed box ball
2 3 1 0
slow box
2 0 2 0
0 -1 0 2
speed ball
3 -1 0 1
(a) Chicken (b) Battle of the Sexes

Figure 1.8 Two famous toy games.

or a square. Explain why neither player has a dominant strategy. Why are (box,
box) and (ball, ball) Nash equilibria? What are the Pareto-efficient outcomes in
this game?

. The favorite toy game of evolutionary biologists is called the Hawk-Dove

Game. Two birds of the same species are competing for a scarce resource.
Each can behave aggressively or passively. Payoffs are measured in terms of a
bird’s fitness—the extra number of offspring the bird will have on average as a
result of the way the game was played. If one bird is aggressive and the other is
passive, the aggressive bird takes the entire resource. The aggressive bird then
gets a payoff of V>0, and the passive bird gets 0. If both birds are passive, the
resource is shared, and each bird gets a payoff of %V. If both birds are ag-
gressive, there is a fight, and both birds receive a payoff of W.

o<W« %V, show that the Hawk-Dove Game is an example of the Pris-
oners’ Dilemma. If the damage a bird is likely to receive in a fight is suffi-
ciently large, then W < 0. Show that the Hawk-Dove Game then reduces to a
version of the game Chicken, introduced in Exercise 1.13.5.

. Adapt Exercise 1.13.1 to obtain an asymmetric version of the Prisoners’ Di-

lemma. Confirm that hawk is a strongly dominant strategy but that the outcome
(hawk, hawk) is Pareto inefficient.

In Section 1.4.1, the Prisoners’ Dilemma of Figure 1.3(a) was converted to the
Prisoners’ Delight of Figure 1.3(b) by changing the assumption that Adam and
Eve care only about themselves to the assumption that they care twice as much
about their partner as they do about themselves. What happens if Adam and
Eve both care r times as much about their partner as they care about them-
selves? Show that:

a. They are still playing the Prisoners’ Dilemma when 0 < r < %

b. They are playing the Prisoners’ Delight when > 1.

c. They are playing a version of Chicken when % <r<l.

Explain why neither hawk nor dove is strongly dominant when % <r<linthe
previous problem. For what values of r does the game have a weakly dominant
strategy?

Section 1.5.1 describes Alice operating a monopoly in Wonderland. Instead of a
single Alice acting as a price maker, assume that there are fifteen hat manu-
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facturers acting as price takers. Analyze this example of perfect competition,'

and show that each manufacturer makes one hat, which sells for $2. What is

the total profit of the manufacturers? How does this compare with Alice’s
profit?

In Section 1.5.2, the sum of the profits of the duopolists who make one hat each

is $28. A monopolist who made two hats would obtain a profit of only $26.

Trace this apparent anomaly to the fact that the production function has de-

creasing returns to scale.

Discuss monopoly and duopoly in the example of Section 1.5 when the pro-

duction function is a =%, which has increasing returns to scale. Why is it

problematic to attempt an analysis of perfect competition along the lines of

Exercise 1.13.11?

Section 1.5.2 derives the Prisoners’ Dilemma from a problem in which Alice

and Bob compete in a market with demand equation p(a + b) = X. Show that

the Prisoners’ Dilemma arises when X > 18, and the Prisoners’ Delight when

X < 18. What happens when X = 18?

Why can the following situations be thought of as social dilemmas?

a. Everybody talking louder and louder in a restaurant until nobody can hear
what anybody is saying.

b. Watering your garden in a drought.

c. Sneaking excess hand baggage onto a crowded airplane.Think of at least
one more everyday example.

Suppose that the milk production function in the Tragedy of the Commons

takes the form given in Section 1.10.2. Verify that the socially optimal number

of goats is A.

Each of n farmers can costlessly produce as much wheat as he or she chooses.

If the total amount of wheat produced is W, the price at which wheat sells is

determined by the demand equation p = e~ W.

a. Show that the strategy of producing one unit of wheat strongly dominates all
of a profit-maximizing farmer’s other strategies. Verify that the use of this
strategy yields a profit of e™" for a farmer.

b. Explain why the best agreement that treats each farmer equally requires
each to produce only 1/n units of wheat. Verify that a farmer’s profit is then
1 /en. Why would such an agreement need to be binding for it to be honored
by profit-maximizing farmers?

c. Confirm that xe™ is largest when x = 1. Deduce that all the farmers would
make a larger profit if they all honored the agreement rather than each
producing one unit and so flooding the market.

This problem has the same structure as the Tragedy of the Commons of Section

1.10.1, but the consumers are unlikely to regard it as tragic if the farmers are

unable to agree to restrict their production to 1/n units of wheat. What term will

the consumers use to describe the farmers’ agreement if they succeed in making
it stick?

3Maximize a manufacturer’s profit for a given p by differentiating m = pa — a2, keeping p constant.

Total output A at price p is fifteen times the amount each manufacturer produces when maximizing profit
at this price. The demand equation pA =30 then allows the market-clearing price to be determined.
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Political scientists regard the following “wasted vote” problem as a relative of
the Tragedy of the Commons. Of 100 people who live in a village, 51 support
the conservative candidate, and 49 support the liberal candidate. Villagers get
a payoff of +10 if their candidate gets elected and a payoff of —10 if the
opposition candidate gets elected. But voting is a nuisance that results in a unit
being subtracted from the payoff that a voter would otherwise receive. Those
who stay at home and don’t vote evade this cost but are rewarded or punished
just the same as those who shoulder the cost of voting.

a. Why is it not a Nash equilibrium for everybody to vote?

b. Why is it not a Nash equilibrium for nobody to vote?

As a primitive exercise in mechanism design, imagine you are a planner who
would like Adam and Eve to cooperate when playing the Prisoners’ Dilemma.
Since you can change the game by imposing fines on one or both of the play-
ers, it would be easy to achieve your objective if you were fully informed of
everything that matters. You could simply impose a heavy fine on any player
who chooses hawk. Your problem is that you never get to see the payoff table,
and the labeling of the strategies has gotten jumbled up, with the result that
you don’t know whether the cooperative strategy is hawk or dove.

Can you think of a way of creating a game in which it is a Nash equilibrium
for Adam and Eve to cooperate, without the need for you to know which
strategy is which? The fallacy of the twins may provide some inspiration.

As in the previous problem, you are a planner who doesn’t know which strat-
egy is which in the Prisoners’ Dilemma of Figure 1.3(a). You have probably
figured out that you can make it rational for the players to choose the same
strategy by fining them both if they choose different strategies. What will the
payoff table of the resulting game look like to the players if you make the
fine equal to (a) fifty cents; (b) four dollars. In which of the two games is it a
Nash equilibrium to cooperate? Find another Nash equilibrium of this game.
Which equilibrium is better for both players than the other?

Continuing the previous problem, find a fine that makes the new game into a
version of the Stag Hunt Game.

You are a planner in the Tragedy of the Commons who is unable to redistribute
the milk produced and doesn’t know the milk production function. Use the idea
introduced in the preceding problems to find a way that might lead rational
players to use the common land efficiently.

Robert Nozick, a Harvard philosopher, believed that Newcomb’s paradox
shows that maximizing your payoff can be consistent with using a strongly
dominated strategy. If true, this would be a disaster for game theory.'* New-
comb’s paradox involves two boxes that possibly have money inside. Adam is
free to take either the first box or both boxes. If he cares only for money, which
choice should he make? This seems an easy problem. If dove represents taking

'“This exercise draws attention to one of the flaws in Nozick’s analysis without addressing the more

fundamental issues. My book Playing Fair explains why it makes as much sense to pose Newcomb’s
paradox as to ask who shaves the barber who shaves every man in a town who doesn’t shave himself. As
Bertrand Russell observed, we are led to a contradiction both if we assume that he shaves himself and if
we don’t. No such barber therefore exists. Nor can there be an Eve who is sure to predict in advance
choices that Adam freely makes.
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dd dh hd hh

dove

hawk

Figure 1.9 Adam’s payoff matrix in the Newcomb paradox: Does hawk dominate dove?

only the first box and hawk represents taking both boxes, then Adam should
choose hawk because this choice always results in his getting at least as much
money as dove. Nozick says that hawk therefore “dominates” dove.

However, there is a catch. It is certain that there is one dollar bill in the
second box. The first box may contain nothing, or it may contain two dollar
bills. The decision about whether there should be money in the first box is made
by Eve, who knows Adam so well that she is always able to make a perfect
prediction of what he will do. Like Adam, she has two choices, dove and hawk.
Her dovelike choice is to put two dollar bills in the first box. Her hawkish
choice is to put nothing in the first box. Her motivation is to catch Adam out.
She therefore plays dove if and only if she predicts that Adam will choose dove.
She plays hawk if and only if she predicts that Adam will choose hawk.

Adam’s choice of hawk now doesn’t look so good. If he chooses hawk, Eve
predicts his choice and puts nothing in the first box, so that Adam gets only the
single dollar in the second box. If Adam chooses dove, Eve predicts his choice
and puts two dollars in the first box for Adam to pick up. But how can it be right
for Adam to choose dove when this choice is supposedly strongly dominated
by hawk?

Explain the payoffs in Adam’s payoff matrix of Figure 1.9. Notice that Eve
has four strategies: dd, dh, hd, and hh. For example, the strategy hd means that
she plays hawk if Adam plays dove and dove if he plays hawk. We are told that
she will actually choose dh, which means that she plays dove if Adam plays dove
and hawk if he plays hawk. However, for hawk to dominate dove, it must be at
least as good as dove for all of Eve’s strategies. Is this true?

The late David Lewis, a Princeton philosopher, believed that Adam’s payoff
matrix in Newcomb’s paradox should be assumed to be the same as his pay-
off matrix in the Prisoners’ Dilemma of Exercise 1.13.1. Why doesn’t such a
model take account of the fact that Eve always predicts Adam’s choice cor-
rectly, whatever it may be?

Relate the model of Newcomb’s paradox illustrated in Figure 1.9 to the Trans-
parent Disposition fallacy. If Lewis’s model of Newcomb’s paradox from the
previous problem is combined with the assumption that Eve always mirrors his
choice, why are we back with the twins fallacy?

Section 1.6.2 talks about a gene knowing something. How would you explain
what this means to an old lady who objects that this evolutionary talk is
nonsense because genes are just molecules and thus can’t know anything at all?
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27.

28.

29.

30.

Evolutionary games between relatives are considered in Section 1.6.2. Why is
r= % the degree of relationship between full cousins?

Why did the biologist J. B. S. Haldane joke that he would jump in a river at the
risk of his own life to save two brothers or eight cousins?

Alice’s and Bob’s payoffs in an evolutionary game are their biological fit-
nesses. If Alice and Bob were unrelated, the game would be the Prisoners’
Dilemma of Figure 1.3(a). If their degree of relationship is r = %, show that
their payoff table is a version of the Stag Hunt Game."”

Douglas Hofstadter used the column he once wrote for Scientific American to
argue for a version of the twins fallacy (Section 1.3.3). The magazine followed
up by proposing a Million Dollar Game. The rules of the game specify that if n
readers enter the competition, then a prize of 1/n million dollars is awarded to a
randomly chosen entrant.

If entry is costless, what is a strictly dominant strategy for a reader? The
selfless strategy is for a reader not to enter, but why can the categorical im-
perative not recommend this strategy? (Section 1.10) Why will readers all have
to enter with the same positive probability in order to follow the categorical
imperative? What considerations may be relevant in determining what this
probability should be?'®

'>But the evolutionarily stable outcomes aren’t simply the Nash equilibria of this payoff table because

a selfish gene will know that the other player is a copy of itself two-thirds of the time (Section 1.6.2).

'%In the event, many readers entered, but the game was wrecked because the magazine got cold feet and

allowed readers to submit multiple entries. Inevitably, some joker entered a googolplex number of times.
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Backing Up

2.1 WHERE NEXT?

Popular accounts of game theory seldom go beyond the simple payoff tables of the
previous chapter, leaving all kinds of problems hanging in the air. How do the players
of a game figure out what their strategies are? For a game like chess, this is a task of
immense complexity. How do the players know what payoffs they will receive after
each has chosen a strategy? What do the payoffs mean? As our discussion of the
Prisoners’ Dilemma in the previous chapter shows, we need to think of the payoffs as
being measured in utils rather than dollars. But what precisely is a unit of utility?

This chapter is the first of three in which these questions are answered system-
atically. Much of the fascination of game theory lies in learning how to handle the
problems of timing, risk, and information that need to be solved in coming up with
the answers.

The current chapter concentrates on timing. How do we cope with games like
chess, whose outcome is decided only after long sequences of moves? The next chap-
ter concentrates on risk. How do we handle games like poker, in which the outcome is
partly determined by chance? No matter how well you play your cards, you are not
going to win if your opponents keep getting dealt better hands. The subject of in-
formation is too important to be hurried, and so we get by with saying as little as
possible until it can be discussed with the attention it deserves in Chapter 12. The
equally important subject of utility is more urgent, and so we study it in Chapter 4
immediately after discussing risk in Chapter 3. In the meantime, all talk of payoffs is
avoided.
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Some backing up on the previous chapter is therefore necessary. We need to
reformulate ideas introduced in Chapter 1 without making premature appeals to the
theory of utility. The expedient I employ is to express the ideas directly in terms of
the players’ preferences over the outcomes of a game. To simplify this task, it is nec-
essary to restrict attention temporarily to strictly competitive games. These are two-
player games in which Adam’s and Eve’s interests are diametrically opposed. A
major advantage of this restriction is that the principle of backward induction can then
be introduced in a context in which its role in analyzing games is least problematic.

2.2 WIN-OR-LOSE GAMES

The simplest kind of strictly competitive game allows only winning or losing. In
such games, Adam and Eve distinguish only two outcomes, #" and #. The symbol
W denotes a win for Adam and a loss for Eve. Similarly, % denotes a loss for Adam
and a win for Eve. I can remember desperately trying to lose when playing board
games with my young children, but Adam and Eve are assumed to be more sim-
ply motivated. Whenever offered a choice between winning and losing, each player
chooses to win. Economists summarize this behavior by saying that it reveals a
preference for winning over losing.

The assumptions over Adam’s and Eve’s preferences that we are making in win-
or-lose games can be expressed in formal terms by writing:

L <4 W and W <g &L.

To write & <4 W is to say that Adam strictly prefers winning to losing. In oper-
ational terms, he never chooses to lose when it is possible for him to win. Remember
that writing %~ <g £ also means that Eve strictly prefers winning to losing because,
for her, #" counts as a loss and % as a win.

2.2.1 The Inspection Game

The Inspection Game is an example of a win-or-lose game that matters in real life. It
is used here as a vehicle for introducing the basic ideas to be explored in this chapter
in an informal way. The rest of the chapter then ties the ideas down more carefully.

An unscrupulous firm has committed itself to discharging effluent into a river
either today or tomorrow. It knows that the local environmental agency will be aware
that it has made such a decision, but it isn’t too worried because it can be convicted
only if caught red handed by an inspector on the spot. However, the agency’s re-
sources are so overstretched that it can afford to dispatch an inspector on only one of
the two days. The problem for the agency is whether to send its inspector today or
tomorrow.

Matching Pennies is a playground game that poses an identical strategic problem.
Adam covers a penny with his hand. Eve guesses whether he is hiding a head or a
tail. She wins the penny if she guesses right. He wins the penny if she guesses wrong.

The timing structure of the Inspection Game is illustrated in Figure 2.1(a). The
firm’s opening move is represented by the node at the foot of the diagram. The two
lines leading away from the node are labeled ¢ for today and T for tomorrow. They
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(a) Tip-Off Game (b) Inspection Game

Figure 2.1 Inspection Game. Figure 2.1(a) shows what the structure of the game would be if the
agency were sure to be warned in advance of the firm’s decision. In the Inspection Game, there is no
tip-off. It is therefore necessary to introduce an explicit information set, as in Figure 2.1(b).

represent the firm’s two choices of action: to pollute the river today or to pollute it
tomorrow. Either of these decisions leads to a node representing a move for the
environmental agency. In each case, the agency can decide whether to inspect today
or tomorrow. The game ends after each player has moved. Each outcome of the
game is labeled with %" or £ to represent a win or a loss for the firm.

The same figure will do equally well to describe the timing structure of Matching
Pennies. Simply replace the firm and the agency by Adam and Eve. The symbol ¢
will then have to stand for heads, and T for tails.

Something very important is missing from Figure 2.1(a). To represent the
problem faced by the environmental agency properly, we need to indicate what the
agency knows when it makes its decision. Game theorists use information sets for
this purpose.

An appropriate information set for the Inspection Game has been drawn in Figure
2.1(b). This information set includes both of the agency’s decision nodes. Including
both nodes in one information set means that, when the agency makes its decision at
one of these nodes, it doesn’t know which of these two nodes the game has reached.
Thatis to say, when the agency decides whether to inspect today or tomorrow, itdoesn’t
know in advance whether the firm has decided to pollute the river today or tomorrow.

When no information set has been drawn around a particular decision node, the
assumption is that the player deciding at that node will know for sure that the game
has reached that node when making a decision. In this case, one should properly
draw a singleton information set that contains only that node, but life is usually too
short for such niceties. As drawn, Figure 2.1(a) therefore represents the game in
which some whistleblower can be counted on to call the agency before it decides on
which day to inspect, with a reliable tip-off about the day on which the firm is going
to pollute the river.

The equivalent situation in Matching Pennies would occur if Adam failed to hide
his coin successfully, so that Eve could see what it was. Adam would be foolish to be so
careless, but no more foolish than the folks who regularly play poker without ever
learning to hold their cards close to their chests! If such infringements of the infor-
mational rules occur, it is important to recognize that we are not playing Matching
Pennies or poker any more. We are playing some other game, which needs a new
name—Tlike Peeking Pennies or Suckers’ Poker. Our name for the new game created by
changing the rules of the Inspection Game to allow a tip-off is the Tip-Off Game.
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It isn’t hard to figure out what the agency should do in the Tip-Off Game. If the
tip-off is that the firm has played ¢, then the agency should play z. If the tip-off is that
the firm has played 7, then the agency should play 7. Whatever choice the firm
makes, the agency will then win. The winning actions for the agency are indicated in
Figure 2.1(a) by doubling the lines that represent them. Assuming that the firm
knows that the agency will be tipped off, it will predict that the agency will choose
the doubled line at whichever decision node it finds itself. If the firm plays z, it will
therefore anticipate that the agency will also play #, with the result that the firm will
lose. If the firm chooses 7, it will anticipate that the agency will play 7, with the
result that the firm loses again. Either way, the firm loses. Since both of its choices
lead to the same outcome, the firm will be indifferent between them. Both lines at its
decision node have therefore been doubled in Figure 2.1(a).

The process of working backward through a game from the outcomes to the
initial move, doubling the lines representing the best moves at each decision node,
is called backward induction or dynamic programming. We don’t need such heavy
machinery to solve the Tip-Off Game, but games don’t need to get much more com-
plicated before it becomes useful to apply the principle of backward induction sys-
tematically.

However, we can’t solve all games by using backward induction. In particular,
we can’t use it to solve the Inspection Game because the information set in Figure
2.2(b) prevents the agency from knowing which decision node the game has reached
when it makes its decision. When deciding what action to take, it therefore doesn’t
know which of r and T will generate the better outcome.

The information set that distinguishes Figures 2.1(a) and 2.1(b) therefore makes a
big difference. The difference is reflected in the strategies available to the players in
the different games obtained by assuming that there is or is not a tip-off. In both
cases, the firm simply chooses t for today or T for tomorrow. In the Inspection Game,
the agency also has only two strategies, t and T. Its outcome table therefore takes the
simple form shown in Figure 2.2(b).

Drawing an outcome table for the Tip-Off Game isn’t so simple because the
agency’s choice of action will depend on the whistleblower’s information about the
firm’s choice. As a consequence, it is necessary to distinguish four strategies for
the agency: tt, tT, Tt, and TT. The first letter in each pair says what action the agency
plans to take if tipped off that the firm has chosen ¢. The second letter says what
action the agency plans to take if tipped off that the firm has chosen 7. We are then
led to the outcome table of Figure 2.2(a).

# T Tt TT t T
LW |wWw t 5{54—‘14[
Y I
T|W | |W| 7| W%
(a) Tip-off (b) No tip-off

Figure 2.2 Outcome tables for the Tip-Off Game and the Inspection Game. The vertical arrows in
Figure 2.2(b) show the firm’s preferences. The horizontal arrows show the agency’s preferences.
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We have already seen that the solution of the Tip-Off Game is for the agency to
play the strategy ¢T, which calls for the agency to inspect on whatever day the tip-off
says that the firm will pollute the river. It then doesn’t matter what the firm does
because the agency will always win. In the outcome table of Figure 2.2(a), the
column corresponding to the strategy ¢T correspondingly contains only the symbol
Z. In the language of the previous chapter, ¢T is a weakly dominant strategy for the
agency.

However, the agency doesn’t get a tip-off in the Inspection Game. So what does
game theory then recommend? To answer this question, we need to introduce mixed
strategies.

2.2.2 Mixed Strategies

When Sherlock Holmes was puzzling about which station to leave the train when
pursued by the evil Professor Moriarty, they were playing a version of the Inspection
Game. But literature offers a more thoughtful analysis in Edgar Allan Poe’s Pur-
loined Letter. The villain has stolen a letter, and the problem is where to look for it.
Poe identifies the essence of the problem by first analyzing a playground game akin
to Matching Pennies.

Poe imagines a boy who is such a good natural psychologist that he successfully
predicts the thought processes of his opponents most of the time. He knows that a
dull-witted opponent who chose heads last time will have just enough ingenuity to
play fails when the game is played now but that a more subtle opponent will reason
that such a switching strategy will be too easy to predict and so will stay with heads.
A yet more subtle opponent will predict that the boy expects him to play heads for
this reason and hence will play tails. An even more subtle opponent will play heads.
And so on. Poe’s boy is therefore successful because he can extend chains of rea-
soning of the form

She thinks that I think that she thinks that I think. ..

one step further than his opponents.

When games are played in real life, this psychological element is paramount.
Winning big in poker is about little else. For example, the poker column of the In-
dependent newspaper of 20 May 1999 has this to say about whether Furlong should
have called a half-million-dollar raise by Seed in the world poker championship:
“Furlong knew that Seed knew that he was punting on all sorts of hands, and that
Seed was primed to go over the top and blast him out. Seed probably knew that
Furlong knew this. But what he did not know was that Furlong is the sort of man who
virtually never folds an ace, no matter what.”

But how can one rational player outthink another? If Eve is rational, then she
reasons optimally, and so Adam has only to figure out his opponent’s optimal line of
reasoning to know precisely what she will be thinking. If he has trouble in doing so,
he can look the answer up in a game theory book. Psychological questions therefore
have no place in a discussion of the rational play of games. If everybody played
poker rationally, there wouldn’t be a world poker championship because the winners
and losers would be entirely determined by what cards the players were lucky enough
to be dealt.
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After the psychological escape route has been closed, the Inspection Game seems
to leave game theory with a seemingly insoluble problem. If each player can predict
how the other will reason, what prevents their thoughts revolving forever around the
vicious circle shown in Figure 2.2(b)? The vertical arrows show the firm’s prefer-
ences, and the horizontal arrows show the agency’s preferences. None of the four
cells of the outcome table can correspond to a solution of the game because each cell
has an arrow leading away from it.

For example, if a game theory book were to recommend the strategy pair (¢, T) as
the solution of the Inspection Game, the agency wouldn’t follow its recommenda-
tion to play T because it would do better to play ¢ if it thought that the firm were
likely to follow the book’s recommendation by playing ¢. Similarly, (7, T) can’t be
the solution because the firm would not play T if it thought that the agency were
going to play 7. In the language of Section 1.6, none of the four strategy pairs of
Figure 2.2(b) can count as a solution to the Inspection Game because none of them
are a Nash equilibrium. At a Nash equilibrium, each player’s strategy choice must be
a best reply to the strategy choices of the other players.

Does it follow that the Inspection Game has no solution? This wouldn’t be
particularly paradoxical. After all, there is no real number x that solves the quadratic
equation x> + 1 = 0. However just as mathematicians extended the set of real
numbers to the set of complex numbers to ensure that all quadratic equations have
roots, so game theorists extend the set of pure strategies to the set of mixed strategies
to ensure that all finite games have Nash equilibria.

A player uses a mixed strategy when his or her choice of pure strategy is made at
random. For example, Adam might choose heads in Matching Pennies with prob-
ability % and tails with probability % But how can it ever be rational to choose at
random?

In Matching Pennies, the answer is easy. The whole point of the game is to make
your choice unpredictable. But if you want to be unpredictable, you can’t do better
than to delegate your choice to a randomizing device like a roulette wheel or a pack
of cards." Your only problem is to decide the probabilities with which each of your
pure strategies is to be chosen.

In Matching Pennies, every child knows that the answer is to choose heads and
tails with equal probability. Indeed, on the playground, Adam often makes a show
of tossing his coin to make it clear to Eve that heads and tails are equally likely.
Whatever strategy Eve chooses, she will then end up guessing right half the time.
Since all of her strategies produce exactly the same result, they are all best replies to
Adam’s choice of the mixed strategy in which he hides heads and tails with equal
probability. In particular, it is a best reply for Eve to choose the mixed strategy in
which she too guesses heads and tails with equal probability. But then Adam’s
strategy is a best reply to Eve’s strategy for the same reason that her strategy is a best
reply to his. We are therefore looking at a Nash equilibrium of Matching Pennies in
mixed strategies.

The same unremarkable pair of mixed strategies solves the Inspection Game. The
firm tosses a coin to decide whether to pollute the river today or tomorrow. The
agency tosses another coin to decide whether to inspect today or tomorrow. Each

'People are spectacularly bad at coming up with random sequences in their heads. Quite simple
computer programs suffice to detect patterns in the sequences they compose.
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player’s choice guarantees that they can’t do worse than win half the time. Nor can
either player do better, given the mixed strategy choice of the other.

The use of mixed strategies therefore short-circuits the vicious circle that arises
when following up chains of best replies in the Inspection Game. No matter how
clever the players may be at duplicating the reasoning of their opponents, it won’t do
them any good if all they are able to figure out is that their opponent is going to
decide what to do by tossing a coin!

Using mixed strategies is easy in the Inspection Game, but randomizing in an
optimal way usually requires a lot more than just tossing a fair coin. The proba-
bilities that a mixed strategy assigns to each of a player’s pure strategies usually
have to be calculated very carefully. We will therefore leave the subject on a back
burner until Chapter 6, by which time we will have met the techniques necessary to
handle mixed strategies efficiently. In the meantime, we still have a great deal to
learn about games that have Nash equilibria in pure strategies.

2.3 THE RULES OF THE GAME

This section starts to introduce the mathematics used when modeling the rules of a
game. A natural reaction is to ask whether we really need such heavy machinery.
The following cautionary story demonstrates the value of proceeding systematically
when analyzing a new game. The Mad Hatter in the margin invites you to skip
forward to Section 2.3.2 if you don’t need any convincing.

2.3.1 The Surprise Test

In an airwaves auction I helped design, the telecom companies bid all the way up to
a total of $35 billion for the licenses offered. Everybody was surprised at this enor-
mous amount—except for the media experts, who got the figure roughly right in the
end by predicting a bigger number whenever the bidding in the auction falsified their
previous prediction.

Everybody can see the fraud perpetrated by the media experts on the public in this
story, but the fraud isn’t so easily detected when it appears in one of the many ver-
sions of the surprise test paradox, through which most people first learn of backward
induction.

Eve is a teacher who tells her class that they are going to be given a test one day
next week, but the day on which the test is given will come as a surprise. Adam is a
pupil who has read Section 2.2.1 and so knows all about backward induction. He
therefore works backward through the days of the coming school week. If Eve hasn’t
given the test by the time school is over on Thursday, Adam figures that Eve will
then have no choice but to give the test on Friday—this being the last day of the
school week. If the test were given on Friday, Adam would therefore not be sur-
prised. So Adam deduces that Eve can’t plan to give the test on Friday. But this
means that the test must be given on Monday, Tuesday, Wednesday or Thursday.
Having reached this conclusion, Adam now applies the backward induction argu-
ment again to eliminate Thursday as a possible day for the test. Once Thursday has
been eliminated, he is then in a position to eliminate Wednesday. Once he has
eliminated all the days of the school week by this method, he sighs with relief and
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makes no attempt to study over the weekend. But then Eve takes him by surprise by
giving the test first thing on Monday morning!

This isn’t really a paradox because Adam shouldn’t have been so quick to sigh with
relief. If the backward induction argument is correct, then the two statements made by
Eve are inconsistent, and so at least one of them must be wrong. But why should Adam
assume that the wrong statement is that a test will be given and not that the test will
come as a surprise? This observation is usually brushed aside because what people
really want to hear about is whether the backward induction argument is right. But
what they should be asking is whether backward induction has been applied to the
right game.

In the game that people imagine is being analyzed, Eve chooses one of five days
on which to give the test, and Adam predicts which of the five days she will choose.
If his prediction is wrong, then he will be taken by surprise. The solution of this five-
day version of the Inspection Game is that Adam and Eve both choose each day with
equal probability. The result is that Adam is surprised four times out of five. But this
isn’t the conclusion we reached using backward induction! Why not?

The reason is that the surprise test paradox applies backward induction to a game in
which Adam is always allowed to predict that the test will be today, even though he
may have wrongly predicted that it was going to take place yesterday.” In this bizarre
game, Adam’s optimal strategy is therefore to predict Monday on Monday, Tuesday
on Tuesday, Wednesday on Wednesday, Thursday on Thursday, and Friday on Friday.
No wonder Adam is never surprised by having the test occur on a day he didn’t predict!

The surprise test paradox has circulated ever since I can remember. Occasionally
it gets a new airing in newspapers and magazines. It has even been the subject of
learned articles in philosophical journals. The confusion persists because people fail
to ask the right questions. One of the major virtues of adopting a systematic for-
malism in game theory is that asking the correct questions becomes automatic. You
then don’t need to be a genius like Von Neumann to stay on the right track. Von
Neumann’s formalism does the thinking for you.

2.3.2 Perfect Information

The rest of this chapter is confined to games of perfect information without chance
moves. This restriction allows us to delay saying any more about probability until
the next chapter.

In a game of perfect information, the players know everything they might wish to
know about what has happened in the game so far when they make a move. Each infor-
mation set therefore reduces to a singleton containing only one decision node. Asin the
Tip-off Game of Section 2.2.1, we usually therefore don’t bother drawing them at all.

The Tip-off Game is a game of perfect information without chance moves, but the
Inspection Game isn’t. It has no chance moves, but it has an information set con-
taining two decision nodes, and so it is a game of imperfect information. When the

2The first step in the backward induction argument shows that Adam should predict that the test will
take place on Friday, if Friday is reached without the test already having been given. The next step shows
that he should predict that the test will take place on Thursday, if Thursday is reached without the test
having been given. But if his prediction that the test will take place on Thursday proves wrong, we have
already seen that his strategy requires that he now predict that the test will be given on Friday. Exercise
2.12.23 looks at the details of the argument.
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Figure 2.3 A possible play of Kayles with four adjacent skittles. Player I opens the game by taking
the second skittle. Player II responds by taking the third and fourth skittles. Player I then loses, since he is
forced to take the one skittle that remains.

agency decides whether to inspect today or tomorrow, it doesn’t know whether the
firm has committed to polluting the river today or tomorrow.

Chess is the most famous game of perfect information without chance moves.
Backgammon, Monopoly, and Parcheesi are all games of perfect information, but a
chance move takes place whenever the dice are rolled. Poker is a game that has both
chance moves and imperfect information.

Chess is too complicated to use as our standard example of a game of perfect
information without chance moves. So we will use instead a variant of a game that
mathematicians call Kayles.

In our version of Kayles, the players alternate in removing skittles from a row of
skittles that may have some gaps. When it is your turn, you must take either one or two
adjacent skittles. The loser is the player who takes the last skittle. Figure 2.3 shows a
possible play in the case when the game begins with four adjacent skittles.

2.3.3 Game Trees

The rules of a game need to tell us who can do what, and when they can do it. They
must also say who gets how much when the game is over. The structure used to
convey such information in game theory is called a tree.

Combinatorial mathematicians say that a tree is a special case of a graph. Such a
graph is simply a set of nodes (or vertices), some of which are linked by edges. As
illustrated in Figure 2.4(c), a tree is a connected graph with no cycles, in which a
particular node has been singled out to be its root.

I pursue the botanical analogy by saying that the edges are branches of the tree. A
terminal node of a finite tree is reached by starting at the root and moving along
branches until one reaches a node from which no further progress is possible without
retracing one’s steps. Such terminal nodes are sometimes called leaves.

When? The leaves of the tree correspond to the possible outcomes of the game. A
play of a finite game is a connected chain of branches that starts at the root and ends
at a leaf. A tree for a version G of Kayles is shown in Figure 2.5. The play shown in
Figure 2.3 is indicated by thickening appropriate branches. Figure 2.6 shows a
streamlined version of Kayles that suppresses forced moves and makes no reference
to skittles.

What? Nodes in the tree other than leaves are called decision nodes. They represent
the possible moves in the game. The root of the tree represents the first move of the
game. The root of Kayles in Figure 2.6 is labeled a.

The branches leading away from a node represent the choices or actions available
at that move. There are four choices available at the first move in the game G of
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Figure 2.6. These have been labeled /, m, n, and r. For example, n corresponds to the
action in which player I opens the game G by taking one of the middle skittles.

Who? Each decision node is assigned a player’s name or number, so that we know
who makes the choice at that move. In the game tree of Figure 2.6, player I chooses
at the first move. If he chooses action n, then player II makes the next move. She has
three choices labeled L, M, and R. If she chooses action R, then the game ends with a

victory for her.
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Figure 2.5 Kayles. The game shown is a simplification of Kayles in which moves that lead to the

same configuration of skittles are identified.
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Figure 2.6 Streamlined Kayles. The game G shown further simplifies the version of Kayles of Figure 2.5
by omitting forced moves. The doubled lines indicate the result of applying backward induction.

How Much? Each leaf must be labeled with the consequences for each player if the
game ends in the outcome to which it corresponds. The game G is a win-or-lose
game, and so its leaves are labeled with the symbols #" and .&.

2.3.4 Two Examples

Kayles is a modern game invented by combinatorial mathematicians as a showcase
for their talents. However, archeology reveals that games of perfect information are
as old as civilization. Tic-Tac-Toe and Nim are examples of games of perfect
information without chance moves that still get played.

Tic-Tac-Toe. Everybody knows the rules of Tic-Tac-Toe (or Noughts and Crosses).
Its game tree is very large in spite of the simplicity of its rules. Figure 2.7 therefore
shows only part of the tree. The labels ¥/, ¥, and & indicate a win, loss, and a draw
respectively for player L.

Nim. Unlike Tic-Tac-Toe, Nim is a win-or-lose game. It begins with several piles of
matchsticks. Two players alternate in moving. When it is your turn to move, you
must select one of the piles and remove at least one matchstick from that pile. In
contrast to our version of Kayles, the last player to take a matchstick is the winner.

A dull art movie called Last Year in Marienbad consists largely of the characters
playing Nim very badly. Perhaps their ineptitude is intended as a comment on the
human condition. However, the only time I have seen Nim played for money, the
guy in the bar who proposed playing seemed to know the optimal strategy given in
Section 2.6 perfectly well!

2.4 PURE STRATEGIES

We have already had a lot to say about strategies. When studying the Inspection
Game, we even looked at mixed strategies in a game of imperfect information. But
the time has now come to study pure strategies seriously.

A pure strategy for Alice in a game specifies an action at each of the informa-
tion sets at which it would be her duty to make a decision if that information set were
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Figure 2.7 Tic-Tac-Toe. Only part of the tree is drawn. At most of the nodes shown, some of the
choices have been omitted.

actually reached. If all the players in a game select a pure strategy and stick with it, then
their decisions totally determine how a game without chance moves will be played.

In what remains of this chapter, we are considering only games of perfect infor-
mation. In such a game, everybody knows exactly what point the game has reached
whenever they make a decision. It is then relatively easy to draw the extensive form
because we don’t need to bother with information sets at all. But Section 2.2.1 teaches



2.4 Pure Strategies

us that games of imperfect information are easier in at least one respect—they have
fewer pure strategies. This is because there can’t be more information sets than
decision nodes. For example, the firm has two pure strategies in the Inspection Game
of Figure 2.1(b). But when we delete the firm’s information set to obtain the Tip-Off
Game of Figure 2.1(a), the firm’s number of pure strategies increases to four.

To determine a pure strategy in a game of perfect information, we must specify a
plan of action at each and every node at which the player would have to make a
decision if that node were reached. The version of Kayles shown as the game G in
Figure 2.6 will serve as an example.

The nodes at which it would be up to player I to make a decision are labeled a, b,
and c. A pure strategy for player I must therefore specify actions for him at each of
these three nodes. Since there are 4 actions for player I at node a, 2 actions at node b,
and 2 actions at node c, player I has a total of 4 x 2 x 2 = 16 pure strategies. These
16 pure strategies can be labeled:

i, lr, Irl, lrr, mll, mlr, mrl, mrr,

nll, nlr, nri, nrr, rll, rir, rrl, TrT.

For example, the pure strategy labeled mlr means that action m is to be used if node a
is reached, action / is to be used if node b is reached, and action r is to be used if node
c is reached.

If player I uses pure strategy rrr, then it is impossible that nodes b or ¢ will be
reached, whatever player II may do. However, the formal definition of a strategy still
requires the specification of an action at nodes b and ¢, even though the actions
specified at these nodes will never have any affect on how the game gets played.

The nodes at which it would be up to player II to make a decision are labeled d, e,
and f for the game G of Figure 2.6. A pure strategy for player II must therefore
specify actions for player II at each of these three nodes. Since there are 3 available
actions for player II at node d, 2 actions at node e, and 3 actions at node f, player 11
has a total of 3 x 2 x 3 = 18 pure strategies. These 18 pure strategies can be labeled:

LLL, LIM, LLR, LRL, LRM, LRR,
MLL, MLM, MLR, MRL, MRM, MRR,
RLL, RIM, RLR, RRL, RRM, RRR.

The pure strategy labeled MLR means that action M is to be used if node d is reached,
action L is to be used if node e is reached, and action R is to be used if node f is
reached.

The play of Kayles shown in Figure 2.5 begins at the root a of the game G of
Figure 2.6 with player I choosing action n. This leads to node f, at which player II
chooses action R, which brings the game to an end at a leaf labeled with %" to
indicate a win for player I. Such a play of the game will be denoted by the sequence
[1R] of actions that generates it.3

3The square brackets emphasize that a play isn’t the same thing as a strategy.
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Figure 2.8 The strategic form of the game G. Player II can guarantee winning by playing MLR no
matter what pure strategy player I may choose, because every entry in the column corresponding to the
pure strategy MLR is Z.

What are the strategies that result in the play [nR] of G? The pair of strategies
chosen by the players must be of the form (nxy, XYR), where nxy stands for any
strategy for player I in which #n is chosen at node a. There are 4 such strategies,
namely nll, nlr, nrl, and nrr. Similarly, XYR stands for any strategy for player II at
which R is chosen at node f. There are 6 such strategies, namely LLR, LRR, MLR,
MRR, RLR, and RRR. So the total number of strategy pairs that result in the play [nR]
is 4 x 6=24.

Figure 2.8 shows the strategic form of our variant of Kayles. The representation
of G in Figure 2.6 as a game tree is called its extensive form. For each pair of
strategies, the strategic form indicates what the outcome of the game will be if that
pair of strategies is used. The rows of the matrix represent player I’s pure strategies,
and the columns represent player II’s pure strategies. Thus, the cell in row nll and
column LLR contains the letter . This indicates that player I will lose the game if
he uses pure strategy nll and player II uses pure strategy LLR. This fact was checked
out in the previous paragraph by tracing the play [nR] that results from the use of
strategy pairs of the form (nxy, XYR).

Von Neumann and Morgenstern called the strategic form of a game its normal
form because they thought that the “normal” procedure in analyzing a game should
be to discard its extensive form in favor of its strategic form. However, the sheer size
of the strategic form of Figure 2.8 provides at least one reason why modern game
theorists don’t always take their advice.
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In the strategic form of Figure 2.8, all the entries in the column corresponding to
player II’s pure strategy MLR are ¥. So if player II chooses MLR in our variant of
Kayles, player I is doomed to lose, no matter what strategy he plays.

It turns out that one of the players in a win-or-lose game of perfect information
without chance moves always has a pure strategy that guarantees victory no matter
what the other player may do, but it isn’t by any means obvious that the strategic
form of such a game must have either a column whose entries are all .# or else a row
whose entries are all #/". This fact becomes obvious only when we apply backward
induction to the extensive form of the game.

We used backward induction to solve the Tip-Off Game in Section 2.2.1. It requires
starting from the end of the game and then working backward to its beginning. In this
section, we offer an analysis of our variant of Kayles that shows how the same method
may always be used to show that one or the other of the two players can guarantee
victory in any win-or-lose game of perfect information without chance moves.

2.5.1 Subgames

In a game of perfect information, each node x other than a leaf determines a sub-
game.* The subgame consists of the node x together with all of the game tree that
follows x. Figure 2.9 shows the six subgames of the game G of Figure 2.6. (Notice
that the definition makes G a subgame of itself.)

2.5.2 Values

The value v(H) of a subgame H of G is /" if player I has a strategy for H that wins
the game H for him whatever strategy player II may use. Similarly, the value v(H) of
the subgame H is . if player II has a strategy that wins the game H for her whatever
strategy player I may use.

When we get to Von Neumann’s minimax theorem in Chapter 7, we will learn
how to assign values to any two-player game in which the players have diametrically
opposed preferences. The minimax theorem applies to all such strictly competitive
games, including those with imperfect information and chance moves. But it is very
unusual for a game that isn’t strictly competitive to have a value at all.

2.5.3 Analyzing the Game G

Consider first the one-player subgames G,, G4, and G5 of Figure 2.9. Player II wins
G4 by choosing action L, and so v(G,) = Z. (Recall that an outcome is labeled with
% when player II wins.) Player I wins G4 or Gs by choosing action /, and so
v(Gy) =v(Gs) =W".

Next consider the game G’ shown in Figure 2.10. This game is obtained from G
by replacing the subgames G», G4, and G5 with leaves labeled with their values. If G’
has a value, then G has a value as well, and v(G") = v(G).

“It isn’t true that each node of a game of imperfect information determines a subgame. Each subgame
must have a single node to serve as its root, but we can’t separate one node from its fellows in an
information set for this purpose.
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G

Figure 2.9 The subgames of G.

To prove this in the case when player I is the winner, we need to show that, if
player I has a strategy s’ that always wins in game G’, then he necessarily has a
strategy s that always wins in G. Why is this? Whatever strategy player II uses,
player I's choice of s’ in G’ results in a play of G’ that leads to a leaf x of G’ labeled
with #. Such a leaf x may correspond to a subgame G, of G. If so, then v(G,) = /.
Hence player I has a winning strategy s, in G,. It follows that player I has a winning
strategy s in G, which consists of playing according to s” until one of the subgames
G, is reached and then playing according to s,.

Next consider the game G” shown at the foot of Figure 2.10. This game is
obtained from G’ by replacing the one-player subgames G’ and G’ by leaves labeled
with their values. By the reasoning used before, if G” has a value, then so does G,
and v(G") =v(G).

All of player I’s actions in the one-player game G” lead to a leaf at which he loses.
So the value of G” is . It follows that G also has a value, and

v(G) =v(G) =v(G") = Z.

That is to say, player II has a strategy that wins the game G, no matter what strategy
is used by player L.

2.5.4 Finding a Winning Strategy

One way of finding a winning strategy for player I in G is to read it off from the
strategic form given in Figure 2.8. However, except in very simple cases, this isn’t a
sensible way of locating a winning strategy because the heavy labor involved in
constructing the strategic form makes the method impractical.

A better way of finding a winning strategy is to mimic the method by means of
which it was proved that a winning strategy exists for G. Begin by looking at the
smallest subgames of G (those with no subgames of their own). In each such sub-
game, double the branches that correspond to optimal choices in the subgame. Next
pretend that the undoubled branches in these subgames don’t exist. This creates a
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£ =v(G))

Figure 2.10 Reducing the game G by backward induction.

new game G*. Now repeat the procedure with G* and continue in this way until
there is nothing left to do. At the end of the procedure there will be at least one play
of G whose branches have all been doubled. These are the only plays that can be
followed if it is common knowledge between the players that each will always try to
win under all circumstances.

This procedure has been carried through for the game G in Figure 2.6. Four plays
of the game have all their branches doubled, and each leads to a win for player II,
thus confirming that she has a winning strategy.

A winning pure strategy can be read off directly from the diagram by choosing
one of the doubled branches at each of player II’s decision nodes. In the case of G,
the M branch is doubled at node d, the L branch at node e, and the R branch at node f.
Player II therefore has only one winning pure strategy, namely MLR. If more than
one branch were doubled at some of her decision nodes, player II would have
multiple winning strategies.
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2.6 SOLVING NIM

The procedure just described could also be carried out for Nim. However, as with
Tic-Tac-Toe, it is hard work even to write down its game tree.

In the case of Nim, there is an elegant way of proceeding that avoids the necessity
of constructing a game tree. This is illustrated using the version of Nim given in
Figure 2.11. In this figure, the numbers of matchsticks in each pile have first been
converted into decimal notation and then into binary notation.’

8 4 2 1
eoe 00 1 1
esesecscscs 1 0 1 1
csccee 0110

Figure 2.11 Nim with three piles of matchsticks.

Call a game of Nim balanced if each column of the binary representation has
an even number of 1s and unbalanced otherwise. The example of Figure 2.11 is
unbalanced because the eights column has an odd number of 1s (as do the fours
column and the twos column). It is easy to verify that any admissible move in Nim
converts a balanced game into an unbalanced game.®

The player who moves first in a balanced game can’t win immediately because a
balanced game must have matchsticks in at least two piles. The player moving

unbalanced balanced unbalanced
o o011 ] o o011 I o o011
1011 1T 101 o 101
o110 o110 0 001
balanced unbalanced balanced :
0o 010 o 011 o 011
0o 010 ] 0o 010 1 o 010
0 000 0 00 0 o 00 1

i unkalanced balanced unkalanced
o 001 o 001 I 0000 [
o 010 0 0 01 0001 —Tm
0 00 0 0 00 0 00 00

Figure 2.12 Player I uses a winning strategy in Nim.

SFor example, the number whose decimal representation is 11 is the sum of 1 eight, O fours, 1 two,
and 1 one. So its representation in binary form is 1011.

SAt least one 1 in the binary representation of the pile from which matchticks are taken will necessarily
be changed to a 0. If the column in which this occurs had 2n ones, it will have 2n — 1 ones afterward.
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therefore can’t pick up the last matchstick right away because he or she is allowed to
take matchsticks from only one pile at a time.

One of the players therefore has a winning strategy, which consists of always
converting an unbalanced configuration into a balanced configuration. Using such a
strategy guarantees that my opponent can’t win on the next move. Since this is true
at every stage in the game, my opponent can’t win at all. But someone must pick
up the last matchstick. If it isn’t my opponent, it must be me. So I must be using a
winning strategy.

Since most games of Nim start out unbalanced, it is usually the first player to
move who has a winning strategy. But if the original configuration of matchsticks is
balanced, then the second player has a winning strategy.

Figure 2.12 shows a possible play of the version of Nim given in Figure 2.11.
Player I is using a winning strategy. It is worth noticing that, once player I is faced
with only two piles of matchsticks with equal numbers of matchsticks in each, then
he can win by “strategy stealing.” All he need do is to take as many matchsticks
from one pile as player II just took from the other.

2.7 HEx

The game of Hex was invented by Piet Hein in 1942. The same John Nash who
formulated the idea of a Nash equilibrium came up with an identical set of rules in
1948. Nash is said to have been inspired by the hexagonal tiling in the men’s room of
the Princeton mathematics department, but he thinks this story is apochryphal.

Hex is a game played between Circle and Cross on a board made up of n*
hexagons arranged in a parallelogram, as illustrated in Figure 2.13(a). At the be-
ginning of the game, each player’s territory consists of two opposite sides of the
board. The players take turns in moving, with Circle going first. A move consists of
taking possession of a vacant hexagon on the board by labeling it with your emblem.

The winner is the first to link their two sides of the board with a continuous chain
of hexagons labeled with their emblem. In the game that has just concluded in Figure
2.13(b), Cross was the winner.

Aside from its association with Nash, Hex is interesting for two reasons. The first
point of interest is that Hex is a win-or-lose game, although it seems possible at first
sight that it might end in a draw. Since all win-or-lose games of perfect information
without chance moves have a value, we know that one of the players has a pure
strategy for Hex that guarantees victory whatever the other player may do. It isn’t
known what the winning strategy is when n is reasonably large, but the second
interesting feature of Hex is that we can nevertheless show that the player with the
winning strategy is Circle.

2.7.1 Why Hex Can’t End in a Draw

Think of Circle’s hexagons as water and Cross’s hexagons as land. When all the
hexagons have been labeled, either water will then flow between the two lakes
originally belonging to Circle, or else the channel between them will be dammed.
Circle wins in the first case, and Cross in the second.

This simple argument is intuitively compelling, but it turns out not to be so easy
to back it up with a rigorous proof. So why do mathematicians bother? The answer is
that the history of mathematics is awash with propositions that seemed obviously
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Figure 2.13 Hex.

true but eventually turned out to be false. However, the Mad Hatter in the margin
invites you to skip forward to Section 2.7.2 if you aren’t interested in the following
sketch of David Gale’s proof that Hex can’t end in a draw.

Gale uses an algorithm that requires starting from a point off the corner of the
board, as shown in Figure 2.14(a). You must then trace out a path so that the next
segment of the path always has a circled hexagon on one side and a crossed hexagon
on the other. You could do this by immediately going back the way you just came,
but retracing your steps in this way isn’t allowed.

We need to show that such a path can neither terminate on the board, nor return to
a point it has visited before. Since the Hex board is finite, the path must then ter-
minate at one of the points off the corners of the board other than that from which it
started. It follows, as illustrated in Figure 2.13(b), that one of the two opposite sides
of the board must be linked. So Hex can’t end in a draw.

Figure 2.14(a) shows a path that has reached a point p in the interior of the board.
We need to show that the path can be continued. To reach p, the path must have just

(b)

Figure 2.14 Gale’s algorithm for Hex.
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passed between a crossed hexagon H and a circled hexagon J. Since p is in the
interior of the board, there has to be a third hexagon K for which p is a vertex. If K is
crossed, as in Figure 2.14(a), the path can be continued by passing between J and K.
If K is circled, the path can be continued by passing between H and K.

If p is on the edge of the board, the argument has to be modified slightly, but it
still works. The argument fails only if p is one of the four points off the corners of the
board. So these are the only points where the path can terminate.

Figure 2.14(b) shows a path returning to an interior point g that it has visited before.
To do this, the path violates the rule that it must keep a crossed hexagon on one side
and a circled hexagon on the other. To prove by contradiction that a path can never
loop back on itself without violating this rule, let g be the first point that gets revisited.

For g to be visited at all, the three hexagons L, M, and N with a common vertex at g
can’tall have the same label. Suppose that L is crossed, and the other two hexagons are
circled, as in Figure 2.14(b). The path must then have passed between L and M, and
between L and N on its first visit. Since ¢ is the first revisited point on the path, the path
can’t have gotten back to g via the point r or the point s. It can have gotten back to g
only via r. But M and N are both circled, and so this is impossible. As before, the
argument has to be adapted slightly if g is on the edge of the board, but it still works.

2.7.2 Why Circle Has a Winning Strategy

Nash gave a “strategy-stealing” argument that shows that if Cross has a winning
strategy, then so does Circle. Since it’s impossible for both players to win, it therefore
can’t be true that Cross has a winning strategy. But someone has a winning strategy.
Since it isn’t Cross, it must be Circle.

If Cross has a winning strategy, how would Circle steal it? Nash argued that
Circle could follow the following instructions:

1. At the first move, circle a hexagon at random.

2. At later moves, pretend that the last hexagon you circled is unlabeled. Next
pretend that the remaining circled hexagons are all crossed and the crossed
hexagons are all circled. You have now imagined yourself into a position
to which Cross’s winning strategy applies. Circle the hexagon that Cross
would choose in this position if she were to use her winning strategy. The
only possible snag is that this hexagon may be the hexagon you are only
pretending is unlabeled. If so, then you don’t need to steal Cross’s winning
move for the position because you have already stolen it. Just circle a free
hexagon at random instead.

This strategy wins for Circle because he is simply doing what supposedly guar-
antees Cross a win—but one move earlier. The presence on the board of an extra
hexagon labeled with a Circle may result in his winning sooner than Cross would
have, but we won’t hear him complaining if this should happen!

2.8 CHESS

Computers can beat anybody at checkers, but world-class players can still beat
computers at chess most of the time. However, when computer programs are
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eventually developed that beat even the best human players, it won’t be because
game theorists have worked out the optimal way to play. Chess is so complicated
that its solution will probably never be known for certain—and this is just as well for
people who play for fun. What would be the point of playing at all if you could always
look up the optimal next move in a book?

However, game theory isn’t entirely helpless. Nobody can find Bigfoot or the
Loch Ness Monster because they don’t exist, but this isn’t the reason that game
theorists can’t find the solution to chess. We can at least prove that chess actually
does have a value.

Strictly Competitive Games. The games studied so far in this chapter have nearly
all been win-or-lose games. The exception was Tic-Tac-Toe, which can end in a
draw. Chess also has three possible outcomes: %, &, and . We take player I to be
White and player II to be Black, and so #" denotes a win for White and a loss for
Black.

To write a =; b means that player i likes b at least as much as a. To write a <; b
means that player i strictly prefers b to a. That is to say, he or she never chooses a
when b is on the table. To write a ~; b means that player i is indifferent between a
and b. To say that a <; b is therefore the same as saying that either a <; b or else
a ~; b.

In a strictly competitive game, the players’ aims are diametrically opposed.
Whatever is good for one is bad for the other. In mathematical terms,’ this means
that for each outcome a and b,

a<1b & b=a
Chess is therefore a strictly competitive game, as the players’ preferences are:

L =<9 =<1,
L2 D=y W

The fact that chess has a value will be deduced from a more general theorem that
tidies up the account of backward induction given in Section 2.5. When the theorem
says that player i can force an outcome in a set S, it means that player i has a strategy
that guarantees that the outcome will be in the set S, whatever the other player does.
The notation ~.S is used for the complement of a set $3 In the theorem, ~T
therefore consists of all outcomes of the game that aren’t in the set 7.

"The notation P = Q means that P implies Q, so that the truth of Q can be deduced from the truth of
P. The notation P < Q means that both P = Q and Q = P are true, so that P is true if and only if Q is
true. When people say that “P is a sufficient condition for Q,” they simply mean P = Q. Similarly, “P is
a necessary condition for Q” means that Q = P. To say that “P is a necessary and sufficient condition
for Q” is therefore just a long-winded way of saying P < Q.

8The notation x € S means that x is an element (or a member) of the set S. The notation x ¢ S means
that x isn’t an element of S. The complement ~ S of a set § can therefore be defined symbolically as
~S8 = {x:x ¢ S}. For the definition to be meaningful, it is necessary to know the range of the variable x
in advance. In the text, the range is understood to be the set U of all outcomes under study.



2.8 Chess

THEOREM 2.1 Let T be any set of outcomes in a finite’ two-player game of perfect
information without chance moves. Then, either player I can force an outcome in T,
or player II can force an outcome in ~T.

Proof Forget all about the players’ preferences in the game. We are then free to
relabel all the outcomes in 7 with ¥/, and all the outcomes in ~ T with .#. The the-
orem then reduces to showing that any finite, win-or-lose game has a value. The ar-
gument of Section 2.5.3 can be recycled for this purpose, but since we are now proving
a formal theorem, we ought to be more careful about the mathematical details.

Step 1. The rank of a game is the number of branches in its longest possible play. So
a game of rank 1 consists of just a root and some leaves. If player I chooses at the
root, then he can win immediately if one of the leaves is labeled with #". Otherwise,
all the leaves of a win-or-lose game are labeled with %, and so player II can force a
win without doing anything at all (as in the game G” of Figure 2.10). Either way the
game has value. Since similar reasoning applies if player II chooses at the root, it
follows that any win-or-lose game H of rank 1 has a value v(H) (Section 2.5.2).

Step 2. Now suppose that, for some value of n, all win-or-lose games of rank »n have
a value. We will show that any win-or-lose game H of rank n + 1 must then have a
value as well.

Locate the last decision node x on each play of length n+ 1 in H. Now throw
away anything that follows such a node. The nodes x then become leaves of a new
game H' when we label each x with the value v(H,) of the subgame H, of H rooted at
x. Such subgames are of rank 1 and hence must have a value by Step 1.

The game H' is of rank n, and so it has a value. Suppose it is player I who has a
strategy s that wins H whatever player II may do. The use of 5" then guarantees that
H’ will end at a leaf of H' labeled with #. If this leaf corresponds to a subgame H, of
H, then v(H,) = #", and so player I has a winning strategy s, in H,. So player I can
force a win in H by playing s’ in H' and s, in each subgame H, for which he has a
winning strategy. The same reasoning applies if it is player II who has a winning
strategy in H'. Thus one of the players can force a win in H, and so H has a value.

Step 3. The final step is to apply the Principle of Induction.' Step 1 says that all
win-or-lose games of rank 1 have a value. Step 2 then implies that all win-or-lose
games of rank 2 also have a value. Step 2 can then be applied again to show that all
win-or-lose games of rank 3 have a value. And so on.

All finite win-or-lose games of perfect information without chance moves therefore
have a value, and so the theorem is proved.

2.8.1 Values of Strictly Competitive Games

A Mad Hatter in the margin is usually running away to another section, and be-
ginners would be advised to follow him. Here he isn’t running away, although he

This just means that the game tree has a finite number of nodes.
101f P(n) is a proposition defined for each positive integer 7, and
1. P(1) is true
2. For each n, P(n) = P(n+1) is true then P(n) is true for all values of n.
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Player II can force an outcome in here

up Uy v=uj uj+1 Uy

Player I can force an outcome in here

Figure 2.15 The value v of a strictly competitive game in which u; < juy <1 <--- < uy.

looks as though he would like to. This means that something tougher than usual is
coming up, but that the urge to rush on by should be resisted.

An outcome v is said to be a value of a two-player game G if and only if player I
can force an outcome in the set W, = {u:u > v}, and player II can simultaneously
force an outcome in the set L, = {u:u =, v}.

For example, if White has a strategy that can force a draw or better for him and
Black has a strategy that can force a draw or better for her, then the value of chess is
2. In this case, W, = {2, #"} and L, = {&,Z}. If it turns out that the value of
chessis # ', then W, = {# "} and L, = { ¥, 2, #"}.

Without loss of generality, it will be assumed that player I isn’t indifferent be-
tween any pair of outcomes of G. Thus the outcomes in the set U = {uy,uy, ..., u}
of all possible outcomes of G can be labeled so that

uyp <1 up <1 - <y Ug.

Player II’s preferences then satisfy u; 5 up >» --- > u;. Figure 2.15 illustrates
what it means for such a game to have a value v.

COROLLARY 2.1 Any finite, strictly competitive game of perfect information without
chance moves has a value.

Proof Let W, be the smallest set into which player I can force the outcome.'! If v = u;,
player I can’t force the outcome to be in W, , because this is a smaller set than W,.. So
player I must be able to force an outcome in ~ W, , = L,, by Theorem 2.1.

COROLLARY 2.2 Chess has a value.

Proof Chess is a finite, strictly competitive game of perfect information without
chance moves.

2.8.2 Saddle Points

A strategy pair (s, ¢) is a saddle point of the strategic form of a strictly competitive
game if the outcome that results from the use of (s, f) is no worse for player I than any

""Mathematicians want to be sure that there is at least one set with this property before talking about
the smallest such set. But player I can certainly force the outcome to lie in the set W,,, because this
contains all outcomes of the game.
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outcome in the column corresponding to ¢ and no better for him than any outcome in
the row corresponding to s.

COROLLARY 2.3 The strategic form of a finite, strictly competitive game of perfect
information without chance moves always has a saddle point (s, t).

Proof Let sbe a strategy that guarantees player I an outcome no worse than the value v
of the game. Then each entry in row s of the strategic form must be no worse than v for
player L. Let 7 similarly guarantee player II an outcome no worse than v. Then each
entry in column 7 must be no worse than v for player II. Because the game is strictly
competitive, each entry in column ¢ is therefore no better than v for player I. The actual
outcome that results from the play of (s, r) must therefore be no worse and no better for
player I than v. Since players are assumed not to be indifferent between outcomes in
this section, the result of playing (s, #) must therefore be exactly v.

THEOREM 2.2 If the strategic form of a strictly competitive game G has a saddle
point (s, t) for which the corresponding outcome is v, then the value of G is v.

Proof Since v is the worst outcome in its row for player I, he can force an outcome at
least as good as v by playing s. Since v is the best outcome in its column for player I,
it is the worst in its column for player II, so she can force an outcome at least as good
for her as v by playing .

I find that serious chess players are curiously uninterested in game theory, but when
they can be persuaded to offer an opinion, they always guess that the value of chess is
92, which would mean that both players have strategies that can force a draw or better.

Figure 2.16 is a notional strategic form for chess drawn on the assumption that the
experts are right. In this figure, the strategy s is a pure strategy that forces a draw or
better for player I, and # is a pure strategy that forces a draw or better for player II. By
Corollary 2.3, the pair (s, 7) is then a saddle point of the strategic form of chess.

2.9 RATIONAL PLAY?

What advice should a game theory book give to two people about to play a strictly
competitive game G of perfect information without chance moves?

[ss] @[]~

s @|ow| gl oo Tw

K3

Figure 2.16 A possible strategic form for Chess.
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If the game has value v, the answer may seem easy. Surely both players should
simply choose pure strategies that guarantee each an outcome no worse than v. If
such a pair (s, 7) of pure strategies is used, then the game will end in some outcome
that both players regard as being equivalent to v.'? But things are seldom so easy in
game theory!

2.9.1 Nash Equilibrium

The pair (s, #) certainly meets one of the criteria that must be satisfied if it is to be
proposed by a game theory book for general adoption as the rational solution of a
game. The criterion is that (s, f) should be a Nash equilibrium. This means that each
of the pure strategies in the pair (s, f) must be a best reply to the other (Section 1.6).

In a strictly competitive game, a pair (s, ¢) is a Nash equilibrium if and only if it is
a saddle point of the strategic form of the game. The fact that v is best in its column
makes s a best reply to ¢ for player I. Since the two players have opposing prefer-
ences, the fact that v is worst in its row for player I makes it best in its row for player
II. Thus ¢ is a best reply to s for player II.

For example, in the strategic form of Figure 2.8, all pure strategy pairs in which
player II uses MLR are Nash equilibria. That is to say, every outcome in the ninth
column of the strategic form corresponds to a saddle point.

It would be self-defeating for a game theorist to publish a recommendation for
each player that wasn’t a Nash equilibrium. If the advice were generally adopted,
then it would be common knowledge how the game would be played. However, if
player I knows that player Il is sufficiently rational to carry out the book’s advice by
playing #, then he would be stupid to follow the book’s advice to play s unless s is a
best reply to the strategy ¢ that he knows player II is going to choose. Similarly, if
player II knows that player I is sufficiently rational to carry out the book’s advice by
playing s, then she would be stupid to follow the book’s advice to play s unless s is a
best reply to 7.

Critics sometimes complain that the idea of a Nash equilibrium gets used even
when there isn’t any reason to suppose that the players will behave as though they
were rational. I think that such attempts to apply game theory in situations to which
it isn’t applicable deserve all the criticism they get. In particular, rational players
who know that their opponents are irrational won’t necessarily be content to play so
as to guarantee themselves the value of a strictly competitive game. They will want
to exploit the folly of their opponent in an attempt to get more than its value.

2.9.2 When Are People Rational?

Traditional economics is somewhat shakily founded on the assumption that ratio-
nality commonly reigns in the commercial and business world, but modern econ-
omists are much less ready than their predecessors to assume that economic agents
will always behave rationally.

Perhaps the fact that real people often behave irrationally is just as well for those
games that are played mostly for fun. Watching two people play poker optimally

2We now admit the possibility that players may be indifferent between some outcomes.
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would be about as interesting as watching paint dry—and nobody would play chess
at all if it were known how to play it optimally.

However, if we can’t count on the players in a game behaving rationally, then we
have seen that orthodox game theory won’t help us predict how they will play. So
when is it reasonable to assume that the players in a game will behave as though it
were common knowledge that they are all rational?

Other game theorists are sometimes more optimistic, but my own view is that it is
very risky to use game theory for predictive purposes when none of the following
criteria are satisfied:

e The game is simple.

» The incentives for playing well are adequate.

« The players have played the game many times before,'* and hence have
had much opportunity for trial-and-error learning.

In laboratory experiments with human subjects, Nash equilibrium normally pre-
dicts human behavior quite well when all three criteria are satisfied. The explanation
usually offered is that nothing then obstructs the convergence of trial-and-error
adjustment processes like those mentioned in Section 1.6. After the process has
converged on a Nash equilibrium, the players are seldom able to explain why their
final choice of strategy is optimal, but it is enough that they are behaving as though
they had made a rational choice.

Outside the laboratory, it isn’t so easy to tie down the environment within which a
game is played. However, the second and third criteria are satisfied, for example,
when poker is played by experts at the world poker championships. Moreover, while
poker isn’t as simple as Tic-Tac-Toe or Nim, it is simple when compared to chess.
That is to say, all its many variants, like Texas Hold’em or Seven Card Stud, can be
analyzed successfully in principle. The first criterion is therefore also satisfied
to some degree. So it is reassuring that play at these championships is much closer
to what game theory predicts for rational players than in nickel-and-dime neigh-
borhood games. For example, game theory recommends much bluffing on very bad
hands (Section 15.2). Champions know this, but nickel-and-dime players tend to
bluff only on middle-range hands that might win anyway.

In biological games, neither the first nor the second criterion commonly holds.
Sometimes the advantage that accrues to the fitter of two strategies is so slight as to
be imperceptible when a game is played just once. But the third criterion applies
with a vengeance since evolution may have had millions of years to learn the optimal
strategy by trial and error. Evolutionary biology is therefore an important area of
application for the idea of a Nash equilibrium.

In telecom auctions, licenses to broadcast on specified chunks of the radio
spectrum have sometimes been sold for several billion dollars. In this context, it is
the second criterion that applies with a vengeance, and the third criterion doesn’t
apply at all. However, the telecom companies use the idea of a Nash equilibrium in
deciding how to bid because they don’t expect anyone to bid stupidly when such
large amounts of money are on the table.

13 Against different opponents each time. If you play repeatedly against the same opponent, the
repeated situation must be modeled as a single “supergame.”
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2.9.3 Subgame-Perfect Equilibrium

The strategy pair (mlr, MLR) is a Nash equilibrium in the strategic form of Kyles
given in Figure 2.8, but you won’t come up with this strategy pair by applying
backward induction in the extensive form of the game given in Figure 2.6. The
strategy pairs selected by backward induction are those that correspond to branches
that are doubled in this figure. Backward induction therefore always selects MLR for
player II but leaves player I free to choose between any strategy of the form xil.
However, mlr doesn’t take this form.

Backward induction doesn’t select mir because it requires player I to plan to
make an irrational choice at node c. Choosing r at node c is irrational because player
I can win at node c by playing / rather than losing by playing r. The fact that such an
irrational plan is built into mir doesn’t prevent the strategy being part of a Nash
equilibrium because, if player II uses her Nash equilibrium strategy MLR, then node
¢ won’t be reached. So player I will never actually be called upon to make the
irrational choice that he would make if node ¢ were reached.

The lesson is that Nash equilibria only ensure that players will behave rationally
at nodes on the equilibrium path—the play of the game followed when the players
use their equilibrium strategies. Off the equilibrium path, Nash equilibria allow the
players to plan to behave in all kinds of crazy ways.

For example, if the value of chess is &, then White has a pure strategy s that
guarantees him a draw or better, but he can’t do any better than a draw if Black
uses the pure strategy ¢ that guarantees her a draw or better. However, real people
sometimes make mistakes. What if Black makes a momentary error that results in
a subgame being reached that wouldn’t have been reached if she hadn’t deviated
from #? The use of strategy s still guarantees a draw or better for White because s
guarantees a draw whether Black plays well or badly, but it may be that White can
now do better than forcing a draw. Perhaps he has a winning strategy in the sub-
game H reached as a result of Black’s blunder. Why should he then stick with s? If
another strategy s’ guarantees a victory for White in H, he does better by switching
from s to 5'.

A game theory book would therefore fail in its duty if it were content to rec-
ommend any Nash equilibrium of Chess as its solution. The book should offer more
refined advice. The conservative candidates for such a refinement are the strategy
pairs (s, ) selected by backward induction. Such a strategy pair isn’t only a Nash
equilibrium in the whole game, it also induces Nash equilibrium play in every
subgame H—whether or not H is reached in equilbrium.

Following Reinhard Selten, a pair of strategies with this property is called a
subgame-perfect equilibrium. A Nash equilibrium can fail to be subgame perfect
only if it is certain that some subgame won’t be reached when the equilibrium
strategies are used, but this often happens.

2.9.4 Exploiting Bad Play?

We will use subgame-perfect equilibria a great deal, and so it is important to ask
when it is safe to recommend a subgame-perfect equilibrium as the solution of a
game. Section 2.9.1 reminds us that orthodox game theory assumes that we begin
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Figure 2.17 A Chesslike game.

playing a game with strong evidence that all the players are rational. But what if one
of the players contradicts this evidence by playing badly?

Consider the example of Figure 2.17, which is like chess to the extent that players
I and II move alternately, and the labels %", £, or & refer to a win, draw, or loss for
player I. However, unlike chess, the players are assumed to care about how long the
game lasts. Player I's preferences are given by

Wi =1 Wo =1 =1 Wil =1 Dso =1 L.

Player II is assumed to hold opposing preferences. This makes the game strictly
competitive. The doubled branches in Figure 2.17 show the result of applying
backward induction.

Since only one branch is doubled at each node, there is only one subgame-perfect
equilibrium. This calls on player II to play down at node 50. Is this good advice? The
answer depends on what she knows about player I. The advice is sound if she is so
sure that he is rational that no evidence to the contrary will change her mind. A
rational player I would certainly play down if he found himself at node 51 because
this results in an immediate victory for him. Hence player II had better not let node
51 be reached. She should settle instead for a draw by playing down at node 50.

However, node 50 wouldn’t have been reached if player I hadn’t played across on
twenty-five consecutive occasions when it was rational to play down. This fact isn’t
consistent with player II’s original belief that player I is rational. However, she may
reason that even Nobel prize winners sometimes make mistakes. If so, then she can
attribute player I's behavior in always playing across to twenty-five independent
random errors.

At each move, she can argue, player I intended to play down, but fate intervened
by distracting his attention or jogging his elbow, so that he ended up playing across.
She will assign only a small probability p to his making each such blunder, and so
the probability p*> of his making twenty-five independent mistakes will be almost
infinitesimal.'* But it remains logically coherent for her to put her faith in this
extremely unlikely eventuality, rather than give up believing that her opponent is
highly likely to play rationally in the future.

Of course, in real life, nobody seeking to explain the behavior of an opponent
in chess who has just made twenty-five consecutive bad moves would think it plau-
sible that he really meant to make a good move each time but somehow always con-
trived to moved the wrong piece by mistake. The natural conclusion to draw from

“With less than one chance in ten of making one mistake, there is less than one chance in one billion
billion billion of making twenty-five such mistakes.
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observing bad play is that the opponent is a weak player. The question then arises as
to how to take advantage of his weakness.'”

In the game of Figure 2.17, player I’s weakness seems to be a fixation on always
playing across. If player II thinks this explanation of his behavior is likely on finding
herself at node 50, she may care to chance playing across herself. The risk is that
player I may deviate from his previous pattern of behavior by playing down atnode 51.
If so, then player II has passed up the chance for a draw to no avail. However, if player
I continues to play across at node 51, then she can win at node 52 by playing down.

The moral is that subgame-perfect equilibria are fully defensible only in certain
games. In short games, there won’t be enough time for sufficient evidence to ac-
cumulate to reverse the players’ initial belief that everyone is rational. In games with
enough chance moves and information sets, the leading explanation for play having
reached unanticipated subgames will usually be the vagaries of chance, rather than
stupid play by other players.

However, even in long games of perfect information, subgame-perfect equilib-
ria may still be useful. Section 14.4 explains how such games can be modified by
introducing chance moves and information sets into the rules of the game, so as to
model the systematic irrationalities of their opponents that the players would oth-
erwise use to explain arriving at unanticipated subgames. We thereby construct a
game in which it is sensible to study subgame-perfect equilibria.

When critics attack the idea of a subgame-perfect equilibrium, the appropriate
response for a game theorist is therefore similar to what was said in Section 1.4.1
when responding to the criticism that game theorists assume that people are selfish.
Such critics would usually do better to stop attacking the methodology of game
theory and start criticizing the relevance of the particular game being studied to the
real-world problem that it supposedly models.

2.10 Rounpup

This chapter has looked at strictly competitive games of perfect information with no
chance moves. These games have been studied without appealing to utility theory by
expressing the players’ preferences directly in terms of the possible outcomes of the
game. Chess and Tic-Tac-Toe are examples.

A strictly competitive game has two players whose preferences over the possible
outcomes of the game are diametrically opposed. The simplest kind of strictly
competitive game is a win-or-lose game. In such games, there must be a winner and
a loser, and both players prefer winning to losing. Examples of win-or-lose games
about which we had something to say are Nim and Hex.

To write down the rules of a game in a precise form, it is necessary to begin by
asking the questions who, what, when, and how much? The answers are recorded with
the help of a game tree. Chance moves arise when the answer to the question who is
that the relevant decision is made by rolling dice or using some other randomizing
device. Shuffling and dealing in poker is a good example of chance move.

5Tt may sometimes be risky to do so because your opponent could be a hustler setting you up for a
sting. But no possible advantage can accrue to player I here from playing across twenty-five times in a
row when he can win immediately on each occasion just by playing down.
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Once a game tree has been constructed, further vital questions need to be asked.
We need to be told what the players know and when they know it. Information sets
are used to record the answers. A game tree with its associated information sets is
called the extensive form of a game. It tells us everything available about the rules of
the game.

To include a number of decision nodes in the same information set is to specify
that a player doesn’t know which of the nodes within that information set the game
has reached when he or she decides what action to take next. The game of Matching
Pennies provides an example. When Eve guesses heads or tails, she doesn’t know
whether Adam previously hid a head or a tail. Her two decision nodes therefore
belong in the same information set.

Matching Pennies is an example of a game of imperfect information because it
has an information set that contains more than one decision node. In such games, a
player isn’t informed about some aspects of the past history of the game that might
be useful when making a move. In games of perfect information like chess, all the
past history of the game is always an open book. Every information set is therefore
a singleton, containing exactly one decision node. When a decision node in a game
tree isn’t enclosed in an information set, the implication is that the information set
hasn’t been drawn because it is a singleton. Game trees drawn with no information
sets at all should therefore be assumed to be games of perfect information.

A pure strategy specifies an action at each of a player’s information sets in the
extensive form of a game. Once the players have chosen their pure strategies, the
outcome of a game without chance moves is then completely determined. The stra-
tegic form of a game is a table that records the outcome corresponding to each pos-
sible profile of pure strategies the players might choose. A Nash equilibrium is a
strategy profile in which each player’s choice of strategy is a best reply to the strat-
egies chosen by the other players. In order to qualify as a candidate for the solution
of a game, a strategy profile must be a Nash equilibrium.

In a game of imperfect information like Matching Pennies or the Inspection
Game, it sometimes makes sense to delegate your choice of action to a randomizing
device. A player who does so is said to be using a mixed strategy. A player who
makes a deterministic choice is then said to be using a pure strategy. This chapter
avoids saying much about probability by not allowing chance moves and restricting
attention to games of perfect information for which mixed strategies are not needed.

Strictly competitive games of perfect information can be solved by backward
induction. You take subgames whose solution is known and replace them in the
game tree by new leaves labeled with the solution outcome of the subgame. Starting
with the smallest subgames and reducing larger and larger subgames, you eventually
end up with a game that has only one node, which is labeled with the solution
outcome of the game with which you started.

A subgame-perfect equilibrium is a strategy profile that isn’t only a Nash equi-
librium in the whole game but also calls for a Nash equilibrium to be played in
every subgame—whether or not the subgame is reached when everybody plays their
equilibrium strategies. Not all Nash equilibria are subgame perfect. Nash equilibria
that aren’t subgame perfect involve at least one strategy that calls for suboptimal
play in a subgame that lies off the equilibrium path. The strategy therefore passes the
best-reply test in the game as a whole but fails the best-reply test in some unreached
subgame. Backward induction necessarily generates subgame-perfect equilibria.
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Backward induction is unproblematic in win-or-lose games. The only time it fails
to find a winning strategy for you is when you have no possibility of winning at all
against a rational opponent. In strictly competitive games like chess that have more
than two possible outcomes, backward induction will find the value of the game,
together with a pure strategy whose play guarantees that the outcome will be no
worse for you than the game’s value. The guarantee applies whether or not your op-
ponent plays rationally. If your opponent is rational, then you can get no more than
the value of the game because backward induction will also find a pure strategy that
guarantees an outcome for her that is no worse than the game’s value. You will then
both be playing a subgame-perfect equilibrium that generates the value of the game.

However, opponents are not always rational. Sometimes they can be very stupid
indeed. It is therefore not necessarily a good idea to use your backward induction
strategy because it sacrifices any chance you might have of exploiting any sys-
tematic mistakes you might observe your opponent making. But remember that it is
risky to deviate from the backward induction strategy because the world is full of
hustlers who pretend to be stupid precisely in order to make money off of those who
try to exploit them.

2.11 FURTHER READING

Lectures on Game Theory, by Robert Aumann: Westview Press (Underground Classics in Eco-
nomics), Boulder, CO, 1989. These are the classroom notes of one of the great game theorists.

Winning Ways for your Mathematical Plays, by Elwyn Berlekamp, John Conway, and Richard
Guy: Academic Press, New York, 1982. This is a witty and incredibly inventive book, which is
largely about solving complicated games by backward induction.

Mathematical Diversions and Hexaflexagons, by Martin Gardner: University of Chicago Press,
Chicago, 1966 and 1988. The books gather together many delightful games and brainteasers
from the author’s long-standing column in Scientific American.

The Game of Hex and the Brouwer Fixed-Point Theorem, by David Gale: American Mathematical
Monthly 86 (1979), 818-827. Who would have thought that the fact that Hex can’t end in a
draw is equivalent to the Brouwer fixed-point theorem?

2.12 EXERCISES

1. Figure 2.18 shows the tree of a strictly competitive game G of perfect infor-
mation without chance moves.

. How many pure strategies does each player have?

. List each player’s pure strategies using the notation of Section 2.5.

. What play results from the use of the pure strategy pair (rll, LM)?

. Find all pure strategy pairs that result in the play [rRI].

Write down the strategic form of G.

. Find all the saddle points.

2. Two players alternate in placing dominoes on an m X n chess board so as to
cover two squares exactly. The first to be unable to place a domino is the loser.
Draw the game tree for the case m =2 and n=3.

3. Figure 2.19 is a skeleton for the tree of a game called Blackball. A committee
of three club members (I, II, and III) has to select one from a list of four
candidates (A, B, C, and D) as a new member of the club. Each committee
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Figure 2.18 The game for Exercise 2.12.1.

member is allowed to blackball (veto) one candidate. This right is exercised in
rotation, beginning with player I and ending with player III. Why is Blackball
not a strictly competitive game?

Label each decision node on a copy of Figure 2.19 with the numeral of the
player who decides at that node. The branches representing choices at the node
should be labeled with the candidates who have yet to be blackballed. Each
leaf should be labeled with the letter of the candidate elected to the club if the
game ends there. How many pure strategies does each player have? What
information hasn’t been supplied that is necessary to analyze the game?

Figure 2.19 A skeleton for the tree of Blackball.

. Begin to draw the game tree for chess. Include at least one complete play of the
game in your diagram.

. Two players alternate in choosing either 0 or 1 forever. A play of this infinite
game can therefore be identified with a sequence of Os and 1s. For example, the
play 101000 ... began with player I choosing 1. Then player II chose 0, after
which player I chose 1 again. Thereafter both players always chose 0. A se-
quence of Os and 1s can be interpreted as the binary expansion of a real number
x satisfying 0 < x < 1.'® For a given set of E of real numbers, player I wins if
x € E but loses if x € ~ E. Begin to draw the game tree.

16Eor example, % =.101000. .. because % = l(%)+0(%)2+1(%)3+
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10.

11.

12.

13.

S

Figure 2.20 A city street plan.

Apply backward induction to the game G of Exercise 2.12.1. What is the value
of G? What is the value of the subgame starting at node b? What is the value of
the subgame starting at node ¢? Show that the pure strategy rrr guarantees that
player I gets the value of G or better. Why is this pure strategy not selected by
backward induction?

Apply backward induction to the 2 x 3 version of the domino-placing game of
Exercise 2.12.2. Find the value of the game, and determine a winning strategy
for one of the players.

. Who would win a game of Nim with n > 2 piles of matchsticks of which the

kth pile contains 2~ ' matchsticks?'’ Describe a play of the game in which

n =13, and the winner plays optimally while the loser always takes one match-
stick from a pile with the median number of matchsticks. (The median pile is
the middle-sized pile.) Do the same for 2" — 1 piles, of which the kth pile con-
tains k matchsticks.

Who wins in the domino-placing game of Exercise 2.12.2 when (a) m and n are
even; (b) m is even and 7 is odd; (c) m=n=3?

What are the winning opening moves in 3 x 3, 4 x 4, and 5 x 5 Hex?

If the first player has to link the more distant sides of an n x (n+ 1) Hex board,
show that the second player has a winning strategy.'®

Explain why the strategy-stealing argument of Section 2.7.2 doesn’t imply that
the first player can win after playing anywhere at his first move. Beck’s Hex
is the same as ordinary Hex, except that it begins with a circle in an acute corner
of the board, and Cross moves first. Confirm that Cross has a winning strategy
The game board of Figure 2.20 represents the downtown street plan of a city.
Players I and II represent groups of gangsters. Player I controls the areas to the

Try this with particular values of n to begin with. For example, n=3.
"¥Mathematicians at Princeton apparently used to amuse themselves by inviting visitors to play this

game as Circle with a computer playing Cross. The board was shown on the screen in perspective to
disguise its asymmetry, and so the visitors thought they were playing regular Hex, but to their frustration
and dismay, somehow the computer always won!
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Figure 2.21 The board for Bridgit.

north and south of the city. Player II controls the areas to the east and west. The
nodes in the street plan represent street intersections. The players take turns
labeling nodes that haven’t already been labeled. Player I uses a circle as his
label. Player II uses a cross. A player who manages to label both ends of a
street controls the street. Player I wins if he links the north and south with a
route that he controls. Player II wins if she links the east and west. Why is this
game entirely equivalent to Hex?
The game of Bridgit was invented by David Gale. It is played on a board like
that shown in Figure 2.21. Black tries to link top and bottom by joining
neighboring black nodes horizontally or vertically. White tries to link left and
right by joining neighboring white nodes horizontally or vertically. Neither
player is allowed to cross a linkage made by the other.
a. Find an argument like that used for Hex which shows that the game can’t
end in a draw.
b. Why does it follow that someone can force a win?
c. Why is it the first player who has a winning strategy?
d. What is a winning strategy?
Two players alternately remove nodes from a connected graph 4. Except in the
case of the first move, a player may remove a node only if it is joined by an edge
to the node removed by the previous player. The player left with no legitimate
vertex to remove loses. Explain why the second player has a winning strategy if
there exists a set E of edges with no endpoint in common such that each node is
the endpoint of an edge in the set E. Show that no such set E exists for the graph
of Figure 2.22. Find a winning strategy for the first player.
A strategy-stealing argument shows that if the second player to move in Tic-
Tac-Toe has a winning strategy, then so does the first player. Why does it
follow that the second player can’t have a winning strategy? In Hex, one can
deduce that the first player has a winning strategy, but the second player can
guarantee a draw in Tic-Tac-Toe. How does she guarantee a draw after the first
player occupies the middle square? What is the value of Tic-Tac-Toe?
The value of chess is unknown. It may be ¥, &, or .#. Explain why a simple
strategy-stealing argument can’t be used to eliminate the possibility that the
value of chess is %.
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18.

19.

20.

21.

22.

23.

Figure 2.22 A graph % for Exercise 2.12.15.

Explain why player I has a winning strategy in the number construction game
of Exercise 2.12.5 when E = {x:x> 1 }. What is player I's winning strategy
when E = {x:x>32}? What is player II's winning strategy when E =
{x:x> %}‘7 Explain why player II has a winning strategy when E is the set of
all rational numbers."’ (A rational number is the same thing as a fraction.)
Let (s,1) and (s',7) be two different saddle points for a strictly competitive
game. Prove that (s,#) and (s',7) are also saddle points.

Find all Nash equilibria in the game G of Exercise 2.12.1. Which of these are
subgame perfect?

Find the subgame-perfect equilibria for Blackball of Exercise 2.12.3 in the case
when the players’ preferences satisfyA =) B> C > D;B >, C =, D =, A;
C >3 D >3 A >3 B. Who gets elected to the club if a subgame-perfect equi-
librium is used? Find at least one Nash equilibrium that isn’t subgame perfect.
In the Inspection Game of Section 2.2.1, each player can choose today or to-
morrow on which to act. Write down an outcome table for a five-day version of
the Inspection Game in which each player can act on Monday, Tuesday, Wednes-
day, Thursday, or Friday. If the firm uses the mixed strategy in which each of its
five pure strategies is used with equal probability, then it will win four times out
of five, no matter what strategy the agency chooses. If the agency uses the same
mixed strategy, show that it will win one time out of five, no matter what strategy
the firm may use. Why is this pair of mixed strategies a Nash equilibrium?
Nothing in the surprise test paradox of Section 2.3.1 hinges on the school week
having five days, and so we simplify the story by supposing that only today and
tomorrow are available. As in Section 2.2, foday is denoted by ¢ and tomorrow
by T. Explain why Figure 2.23 models the resulting situation as a game be-
tween Adam and Eve. (Pay close attention to the role of the information sets.)
Solve the game by using backward induction. In doing so, assume that Eve will

One may ask whether this infinite game always has a value whatever the set E may be. The answer

is abstruse. If one assumes a set-theoretic principle called the Axiom of Choice, then there are sets E for
which the game has no value. However, but some mathematicians have proposed replacing the Axiom of
Choice with an axiom that would imply that the game has a value for every set E.
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Adam

Figure 2.23 The two-day surprise test.
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Figure 2.24 Strategic voting.

choose whatever action leaves open the possibility that she might win at her
lower information set.?’

Observe that backward induction selects a pure strategy for Adam in which

he will predict that the test will be tomorrow when tomorrow comes, even
though he might already have wrongly predicted that the test will be today.
Find the strategic form of the game of Figure 2.23. What result is obtained by
deleting weakly dominated strategies?
In 1961, the philosopher Quine pointed out one of the logical tricks of the
surprise test paradox by considering the one-day case. What was the trick he
thereby exposed? Make up a similar paradox in which the evil Dr. X promises
your worst possible outcome unless you act irrationally.

2When doubling branches, remember that Eve has no choice but to select the same action at each de-

cision node in the same information set because she can’t tell the difference between such decision nodes.
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26. The rhyming triplets, Boris, Horace, and Maurice, are the membership com-

mittee of the very exclusive Dead Poets Society. The final item on their agenda
one morning is a proposal that Alice should be admitted as a new member. No
mention is made of another possible candidate called Bob, so an amendment to
the final item is proposed. The amendment says that Alice’s name should be
replaced by Bob’s. The rules for voting in committees call for amendments to
be voted on in the reverse order to which they are proposed. The committee
therefore begins by voting on whether Bob should replace Alice. If Alice wins,
they then vote on whether Alice or Nobody should be made a new member. If
Bob wins, they then vote on whether Bob or Nobody should be made a new
member. Figure 2.24(a) is a diagrammatic representation of the order in which
the voting takes place. Figure 2.24(b) shows how the three committee members
rank the three possible outcomes.

Who will win the vote if everybody just votes according to their rankings?
Why should Horace switch to voting for the candidate he likes least at the first
vote? What happens if everybody votes strategically?



3

Taking
Chances

3.1 CHANCE MOVES

This chapter introduces chance moves into our scheme for writing down the rules of
a game. This is no big deal in itself. We simply invent a mythical player called
Chance, who randomizes among the actions at her decision nodes. The difficulty lies
in modeling the response of rational players to the risks they face in games with
chance moves. This problem is postponed until the next chapter by confining at-
tention to win-or-lose games, in which a rational player simply maximizes the prob-
ability of winning.

3.1.1 Monty Hall Problem

This example derives from an old quiz show run by Monty Hall. His role is taken
over here by the Mad Hatter to remind us that we are only looking at a toy version of
the problem. He asks Alice to choose among three boxes. Two are empty, and the
other contains a prize. Alice doesn’t know which contains the prize, but the Mad
Hatter does.

Alice chooses Box 2. To generate some excitement, the Mad Hatter then opens
one of the other boxes. When this box turns out to be empty, he invites Alice to
change her mind about her choice of box. What should she do?

People usually say it doesn’t matter whether Alice changes her mind. The
probability of getting the prize was one-third when she chose Box 2 because there
was then an equal chance of the prize being in any of the three boxes. After one of
the other boxes is shown to be empty, the probability that Box 2 contains the prize
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Figure 3.1 Which box? Alice chooses Box 2. The Mad Hatter then reveals that Box 3 is empty.
Should Alice now switch to Box I?

goes up to one-half because there is now an equal chance that the prize is in one of
the two unopened boxes. If she switches boxes, her probability of winning will
therefore still be one-half. So why bother changing?

This popular argument is wrong. It would be correct if the Mad Hatter opened
boxes at random and just happened not to open a box containing the prize. But he
deliberately opened an empty box. This strategic behavior conveys information to
Alice. If she makes proper use of the information, she will always switch boxes. To
see why, it is a good idea to represent Alice’s problem of whether to switch boxes as
a game tree with a chance move. In Figure 3.2, she is player I.

The root of the game tree is a chance move, represented by a square rather than a
circle. The three branches leading away from the root represent the three choices
Chance can make. At this opening move, Chance can choose to put the prize in Box 1,
Box 2, or Box 3. Each possibility occurs with probability % If the Mad Hatter didn’t
intervene, Alice’s choice of Box 2 would therefore win the prize with probability %

The Mad Hatter is player II. He isn’t allowed to open Box 2. Nor is he allowed to
open one of the other boxes if it contains the prize. He therefore has room for
maneuver only if the prize is in Box 2.

Alice moves next as player I. She knows which box has been opened but not
which of the remaining boxes contains the prize. Her knowledge at this stage is
represented by two information sets, one in which she knows that Box [ is empty,
and one in which she knows that Box 3 is empty.

The doubled lines in Figure 3.2 show the actions Alice takes at each of her
decision nodes if she always switches boxes. To find her overall probability of
winning with this strategy, return to the original chance move. The play of the game
that starts with Chance putting the prize in Box I ends with the outcome #". So does
the play that starts with Chance putting the prize in Box 3. So the switching strategy
ensures that Alice wins the prize two-thirds of the time. The other third of the time
she loses because both plays that start with Chance putting the prize in Box 2 end
with the outcome .. On the other hand, if she sticks with Box 2, she will win only
one-third of the time.

A cleverer way to see that Alice wins with probability % by switching is to note
that this is the probability that Alice would lose if the Mad Hatter didn’t intervene at
all. It is therefore also the probability she will win if she switches after learning
which of the other boxes is empty. But you don’t need to be clever if you let Von
Neuman’s formalism do most of the thinking for you.
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Hatter

Chance

Figure 3.2 The Monty Hall Game. The chance move is shown as a square. Alice’s switching choice
is denoted by s, and her staying choice by S. Her optimal choice of switching is indicated by doubling
the appropriate branches.

3.2 PROBABILITY
When dice are rolled, statisticians say that the set
Q=1{1,2,3,4,5,6}

of all possible outcomes is a sample space. Decision theorists call Q the world within
which their decision problems arise. The numbers 1, 2, 3,4, 5, or 6 are then said to be
the possible states of the world. The events that can result from rolling the dice are
identified with the subsets of Q. Thus the event that the dice shows an even number
is the set E=1{2,4,6}.

A probability measure is a function defined on the set S of all possible events.'
The number prob(E) is said to be the probability of the event E.

To qualify as a probability measure, the function prob:S — [0, 1] must satisfy
three properties. The first property is that prob () =0. Since () is the set with no
elements, this means that the probability of the impossible event that nothing at all
will happen is zero. The second property is that prob () = 1, which means that the
probability of the certain event that something will happen is 1.

The third property says that the probability that one or the other of two events will
occur is equal to the sum of their separate probabilities—provided that the two
events can’t both occur simultaneously. The set £ N F represents the event that both
events E and F occur at the same time. So EN F = () means that E and F can’t occur
simultaneously, as in Figure 3.3(b). The set E U F represents the event that at least
one of E or F occurs. So the third property can be expressed formally by writing

ENF=0 = prob(EUF) = prob(E)-+prob(F).

A fair die is equally likely to show any of its faces when rolled, and so prob(1) =
prob(2) = - - - = prob(6) = é. The probability of the event E = {2, 4,6} that an even
number will appear is therefore

'A function f: A — B is a rule that assigns a unique b € Bto each a € A. The object b assigned to a
is denoted by f(a). It is said to be the value of the function at the point a. The notation [a, b] represents
the set {x:a < x < b} of real numbers. The function prob: S — [0, 1] therefore assigns a unique real
number x = prob(E) satisfying 0 < x < 1 to each event E € S.
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EAF ENnF=J

EVF EUF
Q Q

Figure 3.3 Venn diagrams of EUF.

prob(E) = prob(2) + prob(4) +prob(6) = L + 1 + 1 =1,

The proper interpretation of probabilities is a subject endlessly debated by phi-
losophers. For the purposes of game theory, it is usually enough to say that a
statement like prob({4}) = % means that there is one chance in six of 4 being rolled.

Gamblers express the fact that prob({4}) = % by saying that the odds are 5: 1
against rolling a 4. If the odds against an event occurring are a: b, then the proba-
bility that the event will occur is b/(a + b).

For each dollar that you bet on a horse at odds of 5: 1 against its winning, you get
back five dollars if the horse wins (plus the dollar you bet). Of course, bookies
wouldn’t cover their costs in the long run if they quoted the frue odds against horses
winning. They therefore shade the odds in their favor. You might find a bookie who
offers odds of 4 : 1 against rolling a 4 with a fair die, but hell will freeze over before

you are offered odds of 6: 1!

3.2.1 Independent Events

If A and B are sets, then A X B is the set of all pairs (a,b) witha € Aand b € B2
Figure 3.4(a) shows the sample space Q> =Q x Q obtained when two independent
rolls of the dice are observed. In this diagram, (6, 1) represents the event that 6 is
rolled with the first dice, and 1 with the second. This isn’t the same event as (1, 6),
which means that 1 is rolled with the first dice, and 6 with the second. The event
E x F has been shaded. It is the event that 3 or more is thrown with the first dice, and
3 or less with the second dice.

There are 36 =6 x 6 possible outcomes in the square representing Q x Q. If the
two dice are rolled independently, each outcome is equally likely. The probability of
each is therefore %. So the probability of E x F must be

prob(ExF) =12 =1.
Notice that prob(E) = % and prob(F) = 3. Thus,

prob(E X F) = prob(E) xprob(F).

’In this context, the notation (a, b) means the pair of real numbers a and b, with a taken first. If the order
of the numbers were irrelevant, one would simply use the notation {a, b} for the set containing a and b.
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Second throw

s ~
1 2 3] 4 5 6 E and F reinterpreted
1 |(LD](1,2)[(1,3)[(1,4)|(1,5)|(1,6)

2 1(2,D)](2,2)](2,3)[(2,4)[(2,5)](2,6)

F

First (3,1)|(3:2)|3,3)[(3.4)|(3.5)|(3.6)

throw

4.)|(4.2)|4.3)|4.4)|4,5)| 4,6
(4,1)((4,2)[(4,3)|(4,4)|(4,5)|(4,6) EAF E

(5,1)](5,2)|(5,3)[(5.4)((5,5)[(5.6)

(6.)/(62)[(63)|(69) (6.5 |(6.6)
oxF QxQ QxQ

(@) (b)

Figure 3.4 The sample space Q x Q for two independent rolls of a die.

This equation holds whenever E and F are independent events. The conclusion is
usually expressed as

prob(E N F) = prob(E) prob(F),

which says that the probability that two independent events will both occur is the
product of their separate probabilities.

Strictly speaking, writing prob (E N F) = prob (E) prob(F) requires reinterpreting
E and F as events in Q x Q as indicated in Figure 3.4(b). In this diagram, E is no
longer the subset of Q that represents the event that the first die will show 3, 4, 5, or
6. It is instead the subset of Q x Q corresponding to the event in which the first dice
shows 3,4, 5, or 6, and the second die shows anything whatever. Similarly F becomes
the subset of Q x Q corresponding to the event that the first die shows anything
whatever, and the second die shows 1, 2, or 3.

3.2.2 Paying Off a Loan Shark

To avoid getting his legs broken, Bob needs to come up with $1,000 tomorrow to
pay off a loan shark. With the $2 remaining in his wallet, he therefore buys two
lottery tickets for $1 each in two independent lotteries. The winner in each lottery
gets a prize of $1,000 (and there are no second prizes). If the probability of winning
in each lottery is ¢ =0.0001, what is the probability that Bob will still be walking
around next week?

Let #") and | be the events that Bob wins or loses the first lottery. Let ¥, and
%, be the events that he wins or loses the second lottery. Then prob(#") =
prob(#7,) = g, and prob(¥) = prob(¥»,) =1 —gq.

We need prob(#"; U #7,). This isn’t prob(# ")+ prob(# ;) because # | and
W, can occur simultaneously. However, none of the events %'\ N # ", W' N %>,
or ¥ N ¥, can occur simultaneously, and so
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prob(# 'y U # ) = prob(W 'y N W )+ prob(W'1 N L) +prob(L N W 5).

Multiplying the probabilities of the independent events on the right, we find that
prob(W , U 2) = ¢*+q(1 — q)+(1 — g)g = 0.00019998. So Bob’s ambulatory
prospects aren’t very good. He has less than two chances in ten thousand of coming
up with the money.

It is often easier in such problems to work out the probability that the event in
question won’t happen. This is the event £ N %, that Bob loses both lotteries. We
then get the same answer more simply as

1 — prob(L; N #5) =1 — (1 — g)*> = 0.00019998.

3.3 CONDITIONAL PROBABILITY

After an investigation into a major plane crash proved inconclusive, the New York
Times carried a sequence of letters about the chances of a meteor strike. The first
argued that the probability of a meteor striking an aircraft may be small, but it isn’t
negligible.® The second made fun of the first, arguing that what matters is the in-
credibly smaller probability that a meteor would strike at the particular time and place
of the crash. The third pointed out that the previous letters should have estimated
conditional probabilities. What really matters is the probability of a meteor strike at
the time and place of the crash—conditional on the crash having taken place without
any other identifiable cause.

After you observe that an event F has happened, your knowledge base changes.
The only states of the world that are now possible lie in the set F. You must therefore
replace Q by F, which is the new world in which your future decision problems will
be set. The new probability prob(E | F') you assign to an event E after learning that F’
has occurred is called the conditional probability of E given F.

For example, we know that prob(4) = % when a fair die is rolled. If we learn that
the outcome was even, this probability must be adjusted. The event F = {2,4, 6} that
the outcome is even contains three equally likely states. The probability of rolling a
4, given that F has occurred, is therefore % Thus,

prob4 |F) = %
The principle on which this calculation is based is embodied in the formula

prob(E | F) = prob(E N F)/prob(F).

3.3.1 Peeking in Poker

While playing poker with Bob, Alice hears a bystander whisper that he has a red
queen in his hand. Would it make any difference to her estimate of the chances of his

3The letter included estimates of the rate at which meteors reach the ground and the proportion of the
Earth’s surface area taken up by aircraft in flight.
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holding a second queen if the bystander had identified the red queen as the queen of
hearts? To answer this question, we need to compare prob (E|F) and prob (E|G),
where E is the event that Bob holds two queens, F is the event that he holds the
queen of hearts, and G is the event that he holds a red queen.

To simplify the problem, suppose that Alice and Bob are playing poker with a six-
card deck, two of which are dealt to each player. The cards that aren’t dealt to Alice
are @ A, QQ, $Q, and & 8. Alice begins by conditioning on this event and deduces
that Bob is equally likely to be holding any of the hands shown in Figure 3.5.

There are six hands in which Bob is holding ©Q. In two of these, Bob is holding two
queens. So prob(E|F) = 1. Similarly, prob(E|G) = 1, because there are two chances in
ten that £ will occur, given that Bob is only known to be holding a red queen.

As in the Monty Hall problem, even mathematically sophisticated people often
get this wrong. They don’t see why it should matter whether the red queen is the
queen of hearts or not. The lesson is that big brains aren’t always an asset. Instead of
thinking clever thoughts, it is sometimes better simply to enumerate all the possi-
bilities. If it is a work of great labor to do so, one can always begin with a toy version
of the problem, as we did here.

3.3.2 Knowledge and Belief

If you are playing a game, your decision-theoretic world is the set of all possible
plays of the game. As the game proceeds, you will usually learn more and more
about which play of the game will actually be realized. Von Neumann ingeniously
modeled this learning process using information sets. On reaching an information set
F, you now know that the realized play of the game must pass through one of the
decision nodes in F.

Game theorists distinguish what you know as a result of reaching an information
set F' from what you believe after reaching F. Your knowledge is determined by the
rules of the game. Your beliefs are determined by your attempts to quantify the
uncertainty created by the gaps in your knowledge.

(a) Alice’s
hand

(b) Bob’s
possible
hands

Figure 3.5 Peeking in Poker.
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Hatter

(b) Chance

Figure 3.6 The Monty Hall Game again. Figure 3.6(a) shows the three equally likely plays of the game
that Alice thinks are possible, if she believes that the Mad Hatter never opens Box 3 when the prize is in Box
2. Figure 3.6(b) shows how the rules of the game would need to be altered if Alice knew this fact.

The Monty Hall Game, which is shown again in Figure 3.6(a), will serve as an
example. Suppose that Alice believes that the Mad Hatter will never open Box 3
when the prize is in Box 2. If she always switches boxes, Alice therefore thinks that
only the plays of the game shown with doubled branches in Figure 3.6(a) are
possible before the game begins. Since each play is equally likely, she starts by
attaching probability prob(/) = % to the event that the realized play will pass through
the left decision node / in her left information set L.

If the Mad Hatter opens Box 3, Alice now knows that one of the two plays of the
game passing through a decision node in her left information set L has occurred. She
therefore replaces the probability prob (I) = % by prob (/IL)=1 because she now
believes that the other play that passes through L is impossible.

Figure 3.6(b) shows a game whose rules say that Alice knows that the Mad Hatter
never chooses Box 3 when the prize is in Box 2. This game obviously won’t do as a
vehicle for analyzing the Monty Hall problem because we wouldn’t need to write a
game down at all if we were so sure beforehand of what Alice believes about the
Mad Hatter that we could reclassify her beliefs as knowledge.

3.3.3 Updating in the Monty Hall Game

If Alice believes that the Mad Hatter never opens Box 3 when the prize is in Box 2,
then she updates her probability of being at / in Figure 3.6(a) to prob (/1L) =1 after
finding herself at the information set L. But what is the value of prob (/| L) if the Mad
Hatter uses a mixed strategy in which he opens Box [ with probability 1 — p and Box
3 with probability p?
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We need to find prob(E|F)=prob(ENF)/prob(F) when E={l} and F=
L={l,r}. Things simplify in this case because {/} is a subset of L, and so ENF=E.
Thus,

_ prob) 5 1
~ prob()4prob(r)  1+lp 14p

prob(l | L)

To see that prob (r) = px _%, we appeal again to the formula prob(EN F)=prob

(E| F)prob(F), but now F'is the event that the prize is in Box 2, and E is the event that
the Mad Hatter opens Box 3.

Notice that it isn’t true that Alice will win with probability % in Figure 3.1 by
switching boxes. This is her probability of winning before the Mad Hatter opens a
box. Without any information about the Mad Hatter’s strategy, all we can say about
her probability of winning after the Mad Hatter opens a box is that it lies somewhere
between % and 1.

3.4 LOTTERIES

I never buy lottery tickets because I prefer to not to gamble when the odds are
heavily stacked against me. But everybody understands how lotteries work. It
therefore makes sense to use the analogy of a lottery when talking about what you
might win or lose as a result of a chance move.

For example, a bookie may offer you odds of 3 : 4 against an even number being
rolled with a fair die. If you take the bet, you win $3 if an even number appears and
lose $4 if an odd number appears. Accepting this bet is equivalent to choosing the
lottery L shown in Figure 3.7(a). The top row shows the possible final outcomes or
prizes, and the bottom row shows the respective probabilities with which each prize
is awarded.

The lottery M of Figure 3.7(b) has three prizes. You have five chances in every
twelve of winning the big prize of $24.

3.4.1 Random Variables

Mathematicians talk about random variables rather than lotteries. I remember being
mystified by random variables when I first studied statistics, but a kindly mathe-
matics professor finally put me straight by explaining that a random variable is
simply a function X : Q — R.*

For example, the lottery of Figure 3.7(a) is equivalent to the random variable
X:Q — R defined by

3,if o=2,4,0or 6

X(w) = .
—4,if w=1,3, or 5.

In this case, the relevant sample space is Q={1,2,3,4,5,6}.

“The set of real numbers is denoted by IR, so X(w) is a real number.
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$3 |—%4 —$4| $24 | $3

1 1 1 5 1

L=[3]2 M=l s3] % |3

(a) (b)
Figure 3.7 Two lotteries.
$3 [—%4 —$4| $24 | $3
T T T 5 T _ —$4 %24 | $3
2 2 4 12 3 a1 9 q3
p l-p

Figure 3.8 The compound lottery pL + (1 — p)M.

If you take the bet represented by the random variable X, your probability of
winning $3 is prob(X = 3) = prob({2,4,6}) = 5. Your probability of losing $4 is
prob(X = —4) = prob({1,3,5}) = 1.

3.4.2 Compound Lotteries

One of the prizes in a raffle at an Irish county fair is sometimes a ticket for the Irish
National Sweepstake. If you buy a raffle ticket, you are then participating in a com-
pound lottery, in which the prizes may themselves be lotteries. It is important to
remember that we always assume that all the lotteries involved in a compound
lottery are independent of each other.

Figure 3.8 illustrates the compound lottery pL + (1 — p)M. The notation means
that you get the lottery L with probability p and the lottery M with probability 1 — p.

A compound lottery can always be reduced to a simple lottery by computing the
total probability with which you get each prize. In the case of Figure 3.8:

g =px5+1—p)xg=1—1ip

@ =1 =p)xH =3 5p;
g3 =px 5 +(1 —p)x3=13+p.

To find g3, begin by noting that the probability of winning the prize L in the com-
pound lottery is p. The probability of winning $3 in the lottery L is % These events are
independent, and so the probability of the event E that they both occur is px %
Similarly, the event F that M is won in the compound lottery and that $3 is won in the
lottery M has probability (1 — p)x % Since E and F can’t both happen, the event
EUF that you win $3 has probability g3 = prob(E)+prob(F) = px 1 +(1 — p)x .

3.5 EXPECTATION

The expectation or expected value €X of a random variable X is defined by

6X = kprob(X = k),
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where the summation extends over all values of k for which prob(X = k) isn’t zero. If
many independent observations of the value of X are taken, the law of large num-
bers” says that the probability that their long-run average will differ significantly
from £X is small.

Your expected dollar winnings in the lottery L of Figure 3.7 are

6L = kprob(X = k)
=3xli(—dxl=—1

If you bet over and over again on the roll of a fair die, winning $3 when the outcome
is even and losing $4 when the outcome is odd, you are therefore likely to lose an
average of about 50¢ per bet in the long run. The expected dollar value of the lottery
M of Figure 3.7 is

EM=(—4)x ;+24 x5 +3 x ;= 10.

If you repeatedly paid $3 for a ticket in this lottery, you would be likely to win an
average of about $7 per trial in the long run.

3.5.1 The Monte Carlo Fallacy

The relation between the expected value of a random variable and its long-run
average is frequently misunderstood. Figure 3.9 illustrates the relationship for the
case of a fair coin. The expected number of heads in a single throw is % If we tossed
the coin independently many times, we would be surprised if we didn’t see heads
appear approximately half the time.

Figure 3.9 shows the 2’ =128 equally likely outcomes that can result when
the coin is tossed seven times. The event F consists of all outcomes in which 2, 3, 4,
or 5 heads are thrown. Since we are concerned with the average number of heads
thrown, observe that F is the event in which this average differs from % by less
than 37—2

There are 112 outcomes in F, and so prob(F) = 112/128 = %, confirming that the
average number of heads approximates its expected value of % with high probability.
Many more throws would be necessary to get a probability of 0.9 that the average is
within 0.1 of % Even more throws would be needed to get a probability of 0.99 that
the average is within 0.01 of %

Gamblers in Monte Carlo or Las Vegas commonly attribute the law of large
numbers to some mystical influence that acts to keep the average close to % When
they notice that a large number of heads have been thrown, they fallaciously reason
that it is more likely that a tail will be thrown next time.

It is easy to pinpoint the mistake in the Monte Carlo fallacy. Suppose that six
heads are thrown with a fair coin. This is the event E in Figure 3.9. What is the
probability that the next coin will be a tail? Since each toss of the coin is independent

SThis is the weak law of large numbers. The strong law says that the limit of the average number of heads
as the total number of observations becomes infinite is equal to the expected value with probability one.
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Figure 3.9 The law of large numbers. A fair coin is tossed seven times. The set F is the event in
which the average number of heads thrown differs from % by less than 312 The set E is the event that
the first six tosses are heads.

of the others, we know in advance that the answer must be %, no matter how many
heads may have already been thrown.

Alternatively, we can use Figure 3.9 to verify that prob(hhhhhht |E) = % It then
becomes obvious that the law of large numbers has nothing to do with the question
because E lies outside the set F, within which the average number of heads is
close to %

3.5.2 Martingales

A martingale was originally the betting system in which you double your stake after
every loss. When a novice who had fallen for his charms entrusted her family dia-
monds to his care, Casanova thought he was going to make himself rich by playing this
system in a Venetian gambling den. Like many others through the centuries, he
underestimated the chances of hitting a long streak of bad luck. If Casanova had been
trained in modern mathematics rather than the amatory arts, he would have known that
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—S$s | $w —$s $w —$s $w
L =pu| pa 1 = pu—1| Pn—1 I = ppt1| Pn+i

Figure 3.10 A betting system. A gambler repeatedly bets $1 on a fair coin until he wins $w or loses
his original stake of $s. If he reaches a stage when his current holdings are $n, then he is facing
the lottery Ly,

no betting system can beat a casino’s odds. Nowadays, we use the word martingale in
a way that illustrates this sad fact.

Suppose, for example, that Bob uses a system when betting repeatedly on the fall
of a fair coin. His wealth then varies over time according to how the coin falls. In
mathematical terms, it is a sequence of random variables. Whatever Bob’s system
may be, this sequence is a martingale in the modern sense because, no matter what
he may have won or lost up to now, his expected loss or gain on the next toss of the
coin is always a big round zero.

When the idle rich return from Las Vegas boasting about paying for their va-
cation by using a clever roulette system, they are just fooling themselves. Even if
roulette were fair, all they would have done is to trade a high probability of winning
a small amount for a low probability of losing a large amount.

To see how this works, we study the most popular betting system of all. You enter
a casino with a stake of $s and plan to bet $1 repeatedly that heads will be thrown
with a fair coin until you have either won $w or lost your stake of $s. What is your
probability of success?

If you currently have $n at some time, you are facing a lottery L,, in which your
probability of eventually being successful and winning $w is p,, and your probability
of eventually failing and losing $s is 1 — p,,. To find p,, first notice that L, is the
compound lottery of Figure 3.10. Because you have half a chance of winning or
losing a dollar at the next toss of the coin,

1 1
Pn = jpnfl + Epn+l~

Solutions to this difference equation have the form p,, =An + B, where A and B are
constants.® To determine A and B, use the fact that you will fail for sure when your
stake is lost and succeed for sure if you hit your target amount. Thus po=0 and
Ps +w= L. It follows that A = 1/(s +w) and B =0. Your probability of success when
your stake is $s is therefore

- N
psis—l—w'

If the stake you are willing to risk is large compared with your target winnings,
you have a high probability of being successful. However, you don’t thereby beat the

SSubstitute p, = An + B into the difference equation and see whether it works. Or try starting with py
and p; and seeing what p,, p3, and so on have to be.
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odds. To see this, it is only necessary to compute your expected winnings when you
start with a stake of $s:

ﬂsz—s( id >+w( > ):0.
s+w s+w

Whatever betting system we used, this result would have been the same. It
follows that casinos wouldn’t make any money on average if their games were fair.
Most of their games are therefore unfair. For example, you get odds of 35 : 1 against
any particular number coming up at roulette, but there are 37 equally likely numbers
(including zero). Blackjack used to be an exception, provided you were willing to
delay playing until most of the cards remaining in the dealing shoe were favorable.
But the management regarded such strategic play as cheating and would throw you
out of the casino or worse if they caught you at it! Nowadays shuffling machines
have put paid to even this small opportunity to beat the dealer.

Like Bob in Section 3.2.2, you sometimes have no alternative but to bet when the
odds are unfair. The law of large numbers is then your enemy. Fooling around with
betting systems does you no good at all. Instead of dividing your stake among dif-
ferent bets, you do best to go for the sudden-death option of betting your entire stake
on a single trial.

3.6 VALUES OF GAMES WITH CHANCE MOVES

Every strictly competitive game of perfect information without chance moves has a
value v (Corollary 2.1). That is, player I has a pure strategy s that guarantees him an
outcome that is at least as good for him as v, while player II has a pure strategy ¢ that
guarantees her an outcome that is at least as good for her as v.

For games with chance moves, neither player will usually be able to guarantee
doing at least as well as some pure outcome v every time that the game is played. If
you are unlucky, you may lose no matter how cleverly you play. Even the best poker
players reckon to lose one session in three.

We therefore have to cease thinking about what can be achieved for certain. A
pure strategy pair only determines a lottery over the pure outcomes. Instead of
asking what pure outcomes can be achieved for certain, we need to ask what lotteries
can be achieved for certain. The value of a strictly competitive game with chance
moves will therefore normally be a lottery.

Matters are simplified in the current chapter by confining our attention to win-or-
lose games. A lottery then takes the form

w| £
p|l-p

p:

A useful trick is to use the boldface notation p for the lottery in which #" occurs with
probability p and ¥ occurs with probability 1 — p. For example, Figure 3.11 il-
lustrates the fact that the compound lottery p q + (1 — p)r is equivalent to the simple
lottery pq+ (1 —p) r.
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W £
pgt+d—pr|ipd—-—qg+{d-pd-7r

Figure 3.11 The identity pq + (1 —p)r =pq+ (1 —p)r.

In win-or-lose games, a rational player will seek to maximize the probability of
winning. Player I's preferences can then be described by saying that he likes the
lottery p at least as much as the lottery q if and only if p > g. The lottery p assigns
player II a probability of 1 — p of winning. She therefore likes the lottery p at least as
much as the lottery q if and only if p < g. A win-or-lose game is therefore nec-
essarily strictly competitive even if it has chance moves. That is to say,

P=iq < pm2q.

The argument of Theorem 2.1 can now be recycled to show that we don’t need
to exclude chance moves when claiming that all win-or-lose games of perfect in-
formation have a value. When we have to write down the value of a subgame H
whose root is a chance move, we first identify all the smaller subgames that Chance
might choose at the root. The value of H is then simply the lottery that yields the
values of these smaller subgames with the probabilities with which Chance chooses
them.

3.6.1 Monty Hall’s Value

The Monty Hall problem provides an example in which it is easy to work out the
value of a win-or-lose game with a chance move.

The Mad Hatter didn’t get equal billing with Alice in Section 3.1.1, but he is a
player, too. In accordance with the instructions from the studio that prevent his
opening Box 2 or a box containing the prize, we assume that his aim is to minimize
Alice’s probability of winning.

We use s to mean that Alice switches from Box 2 and S to mean that she stays
with Box 2. Alice has two information sets in Figure 3.2. At her left information
set she knows that Box 3 is empty. At her right information set, she knows that Box /
is empty. At each information set she must choose between the actions s and S.
(Remember that she can’t choose different actions at different decision nodes in the
same information set because she doesn’t know which decision node in the infor-
mation set has been reached when she chooses an action.)

Alice’s four pure strategies are denoted by ss, sS, Ss, and SS. For example, sS
means that Alice switches to Box I if she is shown that Box 3 is empty and stays with
Box 2 if she is shown that Box I is empty. The Mad Hatter has only two pure
strategies, which we label 1 and 3. Strategy 1 is to open Box ! if the prize is in Box 2.
Strategy 3 is to open Box 3 if the prize is in Box 2. If the prize is in Box I or Box 3, he
isn’t free to choose at all.
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3
Chance ss| 23 | 2/3
(@ sS| 23 | 1/3
Ss| 1/3 | 2/3
SS|1 13 | 1/3

(b)

Figure 3.12 The strategic form of the Monty Hall Game is shown in Figure 3.12(b). Both of the

cells in the top row correspond to saddle points. The value of the game is therefore 2/3. Figure 3.12(a)
is drawn as an aid in calculating the outcome 1/3, which occurs when the strategy pair (sS, 3)

is used.

Figure 3.12(b) shows the strategic form of the Monty Hall Game. The argument
given in Section 3.1.1 shows that the entries in the first and fourth rows of the
outcome table must be the lotteries 2/3 and 1/3 respectively. The same mode of
reasoning also allows us to fill in the other entries in the table. For example, the pure
strategy pair (sS, 3) is indicated in Figure 3.12(a) by doubling appropriate branches.
To see that the outcome that results from the use of this strategy pair is 1/3, one
needs only to follow the play that will result from each of the three choices Chance
can make at the opening move. Two of these lead to % and the other to ¥". When
(sS, 3) is played, Alice therefore wins the prize with probability %

Recall from Section 2.8.2 that a Nash equilibrium of a strictly competitive game
occurs at a saddle point of the outcome table. To find the pure-strategy Nash equilibria
of a strictly competitive game, one therefore looks for the entries in the outcome table
that are best in their column and worst in their row (from player I’s point of view). At
a saddle point in a strictly competitive game, each player will then be making a best
reply to the other.

Figure 3.12(b) shows that the Monty Hall Game has two saddle points, (ss, 1) and
(ss,3). The entry in the outcome table at each saddle point is 2/3, and so this is the
value of the game. If Alice and the Mad Hatter play optimally, Alice therefore wins
the prize with probability %

Alice’s optimal strategy ss requires that she always switch from Box 2 to
whichever box hasn’t been opened. As both his pure strategies are optimal, the Mad
Hatter has a less exacting task. In fact, he needn’t do any thinking at all since all of
his mixed strategies are optimal as well.”

"In Section 3.3.3, we let the Mad Hatter play pure strategy 3 with probability p. This mixed strategy
is optimal for him because he still gets the outcome 2/3 when Alice plays ss.
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3.7 WAITING GAMES

The contestants in bicycle races sometimes behave very strategically. They start by
maneuvering very slowly for position until someone suddenly breaks away in an
attempt to create a decisive advantage. The waiting games of this section have a
similar character. There is a waiting phase, followed by a sudden all-or-nothing
winning bid by one of the players.

3.7.1 Product Races

Two firms sometimes race to be the first to get their product on the market. How long
should a firm develop its product before going for broke and seeing whether its
current product is good enough to grab the market? Races in which two firms try to
be the first to get a new idea into a patentable form have a similar structure.

Here is a toy model of a product race between Alice and Bob. If Alice gets her
product on the market first, it will be successful with probability p;. If so, she will
then have such a hold on the market that Bob’s product won’t be able to get off the
ground at all when marketed later. On the other hand, if Alice’s product fails when
first marketed, nobody will want to buy her later attempts to improve the product.
Bob can therefore take as long as he needs to come up with a product that is sure to
be successful. So Bob wins with probability 1 — p; when Alice gets her product on
the market first.

If Bob gets his product on the market first, he wins with probability p,, and Alice
wins with probability 1 — p,. We don’t need to assume much about what happens if
both players market their products simultaneously, except that one will then win and
the other lose.

probability of probability of

winning if you shooting your

go to the opponent if

market first you fire first
e i I~~~

Alice Tweedledee
Bob
Tweedledum
D
0 . 06—+ e
time dyd), dy ds d,—d, distance
(a) (b)

Figure 3.13 Success probabilities: Figure 3.13(a) shows the probability of a player’s product being
successful if it is first on the market at time ¢. Figure 3.13(b) shows the probability that a player in Duel
will hit the other if he fires first when the players are d apart.
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A player’s probability of winning when first on the market goes up with time. We
require that p; and p, be continuous and strictly increasing functions of time.® As
shown in Figure 3.13(a), we also require that both functions start out at zero and
eventually approach one.

We assume that Alice and Bob have already sunk the costs of developing their
products and that whoever wins the market will be able to exploit it for such a long
time that any losses caused by a delay in winning the market are negligible. Alice
and Bob are then playing a win-or-lose game in which each seeks to maximize the
probability of winning. How should they play?

If the players can monitor each other’s progress, so that we are talking about a
game of perfect information with many chance moves, the solution isn’t hard to find.
Rational play requires that Alice and Bob put their products on the market simul-
taneously as soon as

p1+p2=1.

Several steps are needed to explain why:

Step 1. The solution can’t say that one player should move before the other. Alice
wouldn’t follow any advice to move in advance of Bob, because she can always
risklessly raise her probability of winning by cutting her lead time by a little. So both
players must put their products on the market simultaneously.

Step 2. If Alice and Bob put their products on the market simultaneously when their
probabilities of winning would be p; and p; if they moved first, then Alice will win
with some probability ¢;. We can’t have p;>¢q, since Alice’s probability of winning
by going first would decrease but still be larger than ¢, if she moved a tiny bit sooner
than Bob. Thus p; < g;. Since p, < g, for similar reasons, we have that p; 4+ p, <

qg1t+q=1.

Step 3. We also can’t have 1 — p, > ¢g; because Alice’s probability of winning by
going second would remain 1 — p, if she moved later than Bob. Thus 1 —p, < ¢;.
Similarly, 1 —p; < g», and so 2—p;—p, < q1+¢q>=1. It follows that p;+
p» > L

Step 4. Since p; +p, < 1 and p; +p, > 1, it follows that p; +p,=1.

This argument isn’t a proof because it takes too much for granted. But it is solid
enough to explain what is going on in the more careful arguments possible in
particular cases like the game of Duel, which follows.

3.7.2 Duel

Tweedledum and Tweedledee have agreed to fight a duel. Armed with dueling
pistols loaded with just one bullet, they walk toward each other. The probability of
either hitting the other increases the nearer the two approach. How close should

8A real-valued function f is continuous on an interval if its graph can be drawn without lifting the pen
from the paper. Actually p; and p, can be the realizations of a stochastic process, provided they are
continuous and strictly increasing with probability one. Exercise 3.11.24 looks at a case in which p; and
p> increase in discrete jumps at random times.
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Figure 3.14 Dueling with pistols.

Tweedledum get to Tweedledee before firing? This is literally a question of life and
death because, if he fires and misses, Tweedledee will be able to advance to point-
blank range with fatal consequences for Tweedledum.

One way of modeling the problem is shown in Figure 3.14. The initial distance
between the players is D. Points d, d, ..., d, have then been chosen with 0 =
dy<d; < --- <d, =D to serve as decision nodes in the finite game of Figure
3.15(a). We assume that the distance between each pair of neighboring points is very
small with a view to taking the limit as n — oo at the end of the analysis.

In Figure 3.15(a), Tweedledum is player I and Tweedledee is player II. Thus #~
means that Tweedledum lives and Tweedledee dies. Similarly, ¥ means that
Tweedledee lives and Tweedledum dies.

The square nodes are chance moves. At these nodes, Chance determines whether
a player will hit or miss his opponent after firing his pistol. Figure 3.13(b) shows the
probability p,(d) that player i will hit his target when he fires from distance d. We
assume that p; is continuous and strictly decreasing on [0, D], with p;(0)=1 and
p{D)=0.” Differences in the hitting probabilities between the two players reflect
their differing skills with a dueling pistol.

Solving the game. All finite win-or-lose games of perfect information have a value
v. Since v is a lottery in this case, player I has a strategy s that guarantees his survival
with probability v or more. Player II has a strategy ¢ that guarantees his survival with
probability 1 —v or more. We use backward induction to determine these optimal
strategies.

Step 1. First look at the smallest subgames in Figure 3.15(a). These are all no-player
games rooted at a chance move reached after someone fires his pistol. If player
I survives in such a subgame with probability p, then the value of the subgame is
simply the lottery p. Each subgame may therefore be replaced with a leaf labeled
with the symbol p. This first step in the backward induction process has been carried
through in reduced game of Figure 3.15(b).

The function is decreasing rather than increasing as in Section 3.7.1 because it is now a function of
distance rather than time.
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Hit

Miss

Step 2. If we ignore the subgame rooted at d, where player II’s only choice is to
fire, the smallest subgame in Figure 3.15(b) is rooted at d;. Player I has a choice
between firing and waiting at this node. Firing leads to the lottery p; (dy). Waiting

1 — pa(dp)

Pad>)

1 = py(dy)

dy e
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Ddo

Wait  p1(dy)

1

Hit
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1 —pz(dz) ———9 d2
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I
d| ¢———» py(dy)

be——o p1(b)

1 - py(c)

Fire

Wait

Fire

Wait
I

1=pae)® Fire

Wait
11

1-py(d,—1) ® e

Figure 3.15 Extensive forms for Duel.

leads to the lottery 1 — p,(dg). He therefore fires if

This inequality holds because our assumptions make p(d;) + p.(dp) nearly equal to
2. So player I will fire at node d,. The branch that represents this choice has therefore

pi(d) > 1 = pa(dy),
p1(d1)+pa(dy) > 1.

been doubled in Figure 3.15(b).

Fi

(b)

—o py(d)
re
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Step 3. It is optimal for player II to fire at node d, if

1 — pa(dx) < pi1(dy)
pi1(d1)+p2(da) > 1.

This inequality holds because p(d;)+ ps(d,) is only slightly less than p(d;)
+ po(dy). So player II will fires at node d,. The branch that represents this choice has
therefore been doubled in Figure 3.15(b).

Step 4. All the firing branches get doubled in this way until the first time that
neighboring nodes ¢ and d are reached for which

pi(d)+pa(c) < 1.

This must happen eventually because p;(d,) + p>(d, _ 1) is nearly 0.

Step 5. From now on, only the case when ¢ < d and p;(d) + p»(c) < 1 illustrated in
Figure 3.15(b) will be considered in detail. In this case, the waiting branch at node d
must be doubled because

1 — pa(c) > p1(d),

and so it is optimal for player I to wait at node d.

Step 6. The waiting branch has also been doubled at the smallest node e larger than
d. It is optimal for player II to wait at node e because firing leads to the lottery
1 — py(e), in which he survives with probability p,(e), whereas waiting leads to the
lottery 1 — px(c), in which he survives with probability p,(c). He prefers the latter
because p,(c) > po(e).

Step 7. All the waiting branches get doubled in this way whenever the players are
more than d apart. If they play optimally, both players will therefore plan to wait
until they are distance d apart and to fire thereafter at the earliest opportunity.

Step 8. Since ¢ and d are the first pair of neighboring nodes for which p,(d) +
p2(c) < 1, it must be true that p;(b) + po(c) > 1. But the functions p; and p, are
continuous, and we have assumed that the points b, ¢, and d are all close to each
other. It follows that all three points must also be close to the point ¢ at which

p1(8)+p2(0) = 1.

Conclusion. Backward induction selects a pure strategy for each player that consists
of waiting until the opponent is approximately é away and then planning to fire at
all subsequent opportunities. The value of the game is approximately v, where v =
p1(0) =1 — py(9). If the players use their optimal strategies, Tweedledum will there-
fore survive with probability about v, and Tweedledee will survive with probability
about 1 —v.

The closer together we place the decision nodes, the better the approximations
become in this analysis. In the limiting case as n — oo, we recover the conclusion of
our product race example.
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In the case when p;(d)=1—d/D and p,(d)=1 — (d/D)z, the players should wait
until they are d apart, where

d/D+(d/D)* = 1.

The positive root of this quadratic equation is d/D = %(\/5 — 1). So nothing will
happen until Tweedledum and Tweedledee are about 61% of their original distance
apart, when each will fire simultaneously. Tweedledee will be more likely to survive
because the probability of his hitting Tweedledum at a given distance is always
greater than the probability of Tweedledum hitting him.

3.8 PARCHEESI

When visiting India, I was taken to a palace of the Grand Mogul to see the giant
marble board on which Akbar the Great played Parcheesi using beautiful maidens as
pieces.'? Parcheesi (or Ludo) is still popular, ranking third after Monopoly and
Scrabble on the best-seller list of board games, but the box you buy at the mall
contains no beautiful maidens. All you get is a folding board like that in Figure
3.16(a), sixteen counters, and two dice. The toy version to be studied here is even
less exotic. It is played on the simplified board of Figure 3.16(b) with just two
counters and a fair coin.

Parcheesi is an infinite game in that the rules allow it to continue forever. How-
ever, such an eventuality occurs with zero probability and so is irrelevant to an
analysis of the game.'' In any case, this and other technical issues will be ignored.
We will simply take for granted that our toy version of Parcheesi and all its sub-
games have values and focus on determining what these values are.

3.8.1 Simplified Parcheesi

Simplified Parcheesi is played between White and Black on the board shown in
Figure 3.16(b). The winner is the first to reach the shaded square following the routes
indicated. The players take turns, starting with White. The active player either
moves his or her counter or leaves it where it is.'?

If the counter is moved, it must be moved one square if tails is thrown with a toss
of a fair coin. If heads is thrown, the counter must be moved two squares. The last
rule has an exception: if the winning square can be reached in one move, the winning
move is allowed even when heads has been thrown.

What makes Parcheesi fun to play is the final rule. If a player’s counter lands on
top of the opponent’s counter, then the opponent’s counter is sent back to its starting
place.

Instead of dice, he threw six cowrie shells. If all six shells landed with their open parts upward, one
could move a piece twenty-five squares—hence parcheesi, which is derived from the Hindi word for
twenty-five.

A zero probability event needn’t be impossible. If a fair coin is tossed an infinite number of times,
it is possible that the result might always be tails, but this event has zero probability.

12 both players choose never to move their counters from some point on, the game is a standoff. The
winner is then determined simply by tossing the coin.



Figure 3.16 Boards for Parcheesi.

3.8.2 Possible Positions in Simplified Parcheesi

3.8 Parcheesi

(b)

The eight possible positions that White might face when it is his turn to move are
listed in Figure 3.17. The value corresponding to each position is written beneath it.
Positions 1 and 2 therefore have the lottery 1 written beneath them because White
can win for certain if these positions are reached when it is his turn to move.

The eight positions that Black might face when it is her turn to move are listed in
Figure 3.18. Their values can be determined from Figure 3.17. For example, position

Position 1

Position 2

Position 3

Position 4

O

O

O

O

1

Position 5

1

Position 6

Position 7

b

Position 8

O

O

O

O

M

d

€

f

Figure 3.17 Possible positions when it is White’s turn in simplified Parcheesi.

99



100

Chapter 3. Taking Chances

Position 9 Position 10 Position 11 Position 12

O 1O O
[ J [ J O
[ J [ J

0 0 1—a 1-b

Position 13 Position 14 Position 15 Position 16

O O 1O
O
o O [ J [ J

1-c¢ 1—-d 1—e 1-f

Figure 3.18 Possible positions when it is Black’s turn in simplified Parcheesi.

11 looks the same to Black as position 3 looks to White. Since position 3 has value a,
the value for position 11 must therefore be 1 — a.

The value for simplified Parcheesi is f since the game starts in this position with
White to move. But we can’t work out f by backward induction without also de-
termining the values of a through e along the way.

3.8.3 Solving Simplified Parcheesi

We will again use backward induction to solve the game, but this time we have to
work harder than usual.

Step 1. The subgame rooted at position 3 in Figure 3.19 shows the optimal actions
for White after the coin is tossed. Thus a = 11+ (1 — d), and so

a=3(+35(1—d

1
—d=1. 3.1
a+2 (3.1

Step 2. Position 6 in Figure 3.19 can be treated in the same way. Thus,

31 —d)+3(0)

W=

d
d
a

A

(by equation 3.1)

Step 3. It isn’t immediately obvious whether White should move his counter after
throwing a tail in position 4 of Figure 3.19. If 1 — b < { (and so b > 2), it would be
optimal for White to move. But then
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Figure 3.19 Reaching one Parcheesi position from another.
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b=1()+101-a)
=3(+35(5)

_1
b_12’

which is a contradiction. So it is optimal not to move, and

b 2(1)+2(1—b)
b=

‘»IN

Step 4. We take positions 5 and 7 in Figure 3.19 together. If 1 — e > % (and so
e < %), an examination of position 5 shows that

c=i+id-e
ct+ie=1. 3.2)

Butthen 1 — ¢ = %e < é, and so, from position 7,

e=101—a)+ 101 -b)
—%( )+ 5(5)
e =

3.3)
(by equation 3.2) 3.4

Cc =

OCI\I -lkl'—‘

Equations (3.3) and (3.4) were obtained on the assumption that e < % But it may be
that e > % If so, position 5 tells us that
_1 1
c= 5(1)—1— —(1 —d)
=3,

and so, from position 7,
— 1=t

which contradicts the hypothesis that e > l. Soequations (3.3) and (3.4) doin fact hold.

Step S. If f < 5 1. White would steal Black’s optimal strategy by refusmg to move at
his first turn, Whatever the coin toss showed. It follows that f > 1 »andsol —f < 1.
We can therefore deduce from position 8 that

f=id-d+ia-e
=15H+13)
f=1

Conclusion. White can guarantee winning simplified Parcheesi with a probability of
at least 5 17 . He should always move his counter unless a tail is thrown in positions 4,
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5, or 6. In positions 4 and 5 he shouldn’t move his counter if a tail is thrown. In
position 6, his decision doesn’t matter. Black’s optimal strategy is a mirror image of
White’s. With this strategy, she guarantees winning with a probability of at least %.
The value of the game is the lottery 17/24.

3.9 Rounpur

This chapter is about chance moves, at which a mythical player called Chance makes
choices according to a predetermined probability measure. The Monty Hall problem
shows that paradoxes can easily be avoided by adopting a systematic modeling
methodology.

A probability measure assigns a real number prob(E) between 0 and 1 to each
event E. The probability that one of two events E and F will occur when both can’t
occur simultaneously is prob(E) 4 prob(F). The probability that both of two inde-
pendent events E and F will occur is prob(E) x prob(F). We need conditional prob-
abilities when E and F aren’t independent. A conditional probability prob(E|F)
gives the probability that E will occur, given that F has already occurred.

A random variable can be thought of as a lottery ticket. The prizes in some
lotteries are tickets for other lotteries. Any such compound lottery can be reduced
to a simple lottery using the laws for combining probabilities. When the prizes are
given in numerical terms, one can compute the expected value &L of a lottery L. It is
equal to the sum of the values of each prize weighted by the probability of winning
the prize. If you repeatedly participate in the lottery, your average winnings will be
close to &L with high probability in the long run.

Win-or-lose games are necessarily strictly competitive even if they have chance
moves. The value p of such a game is a lottery in which player I wins with prob-
ability p and player II wins with probability 1 — p.

The classical waiting game is called Duel. Economic games in which the players
race to be the first to patent an idea or to get a product on the market have the same
basic structure. A backward induction analysis shows that both players act when their
probabilities of winning sum to one. The intuition is that you should act immediately
before your opponent unless you are more likely to win by letting him shoot first.

3.10 FURTHER READING

How to Gamble If You Must, by Lester Dubbins and Leonard Savage: McGraw-Hill, New York,
1965. This is a mathematical classic.

Theory of Gambling and Statistical Logic, by Richard Epstein: Academic Press, New York, 1967.
This book is more fun than the book by Dubbins and Savage and fits better into a game theory
context, but it still requires some mathematical sophistication.

Introduction to Probability Theory, by William Feller: Wiley, New York, 1968. The first volume
is a wonderful general introduction to probability theory, but you still need to know some
mathematics.

New Games Treasury, by Merilyn Mohr: Houghton Mifflin, New York, 1997. How to play an
enormous number of games for fun.

Beat the Dealer, by Edward Thorp: Blaisdell, New York, 1962. A statistician explains how he beat
the dealer at blackjack.
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3.11 EXERCISES

. Marilyn Vos Savant used to write a column in Parade magazine based on her

reputation of having the highest IQ ever recorded. Various mathematical gurus
laughed her to scorn when she answered a question about the Monty Hall
problem by saying that switching is always optimal. In reply, she observed that
switching would obviously be right if 98 boxes out of 100 were opened. Why is
the answer obvious in this case?

. Martin Gardner used his column in Scientific American to get in on the Monty

Hall act. He observed that Monty Hall might choose to open a box only when
the contestant would lose by switching. Without getting formal, replace the
game of Section 3.1.1 by another game in which the Mad Hatter has the option
of not opening a box at all. Why is always switching no longer an equilibrium
strategy for Alice?

. Explain why the number of distinct hands in straight poker is

52 521 52 %51 x50 x49 x48
(5 ) S 547! 5x4x3x2x1
(A deck of cards contains 52 cards. A straight poker hand contains 5 cards.
You are therefore asked how many ways there are of selecting 5 cards from 52
cards when the order in which they are selected is irrelevant.)

What is the probability of being dealt a royal flush in straight poker? (A
royal flush consists of the A, K, Q, J, and 10 of the same suit.)

. You are dealt VA K Q 10 and & 2. In draw poker, you get to change some of

your cards after the first round of betting. If you discard the & 2, hoping to
draw the ©J, what is the probability that you will be successful? What is the
probability of drawing a straight?'® (Any J will suffice for this purpose.)

. Bob is prepared to make a bet that Punter’s Folly will win the first race when

the odds are 2:1 against. He is prepared to make a bet that Gambler’s Ruin will
win the second race when the odds are 3:1 against. He isn’t prepared to bet that
both horses will win when the odds for this event offered are 15:1 against. If
the two races are independent, is Bob consistent in his betting behavior?

. Find the expected value in dollars of the compound lottery:

$3 | —$2 —$2 | $12 | $3

1 1 1 1 1
2 2 2 6 3

2
3

L —

7. The game of Figure 3.20 has only chance moves that represent independent

tosses of a fair coin. Express the situation as a simple lottery. How does your

3Drawing to an inside straight is the classic act of folly—but it isn’t foolish if the other players don’t

force you to pay to make the attempt.
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root

Figure 3.20 A game with only chance moves.

representation change when the chance moves are not independent but all refer
to a single toss of the same coin?

. The following table shows the probabilities of the four pairs (a, ¢), (a, d), (b, ¢),
and (b, d):
c d
a| 0.01 | 0.09
b 0 0.9

The random variable x can take either of the values a or b. The random
variable y can take either of the values ¢ or d. Find:

a. prob (x=a)

b. prob (y=c)

c. prob (x=a and y=c)

d. prob (x=a or y=c)

In a faraway land long ago, boys were valued more than girls. So couples kept
having babies until they had a boy. The frequency of boys and girls in the
population as a whole remained equal, but what was the expected frequency of
girls per family?'* (Assume that each sex is equally likely.)

Alice learns that the first card dealt to Bob is a red queen in the problem of
Section 3.3.1. What is her probability that Bob is holding a pair of queens?
How would this probability change if she had seen that his first card was the
queen of hearts?

Alice is dealt # A and <>7 from the deck of Figure 3.4. What is her probability
that Bob has a pair of queens if she learns that he has a red queen in his hand?
How would this probability change if she had learned that the red queen was
the queen of hearts?

4y may help to observe that for 0 < x <1,

00 1 X OO "X dy
X' = / Y'dy = / —— = —In(1—-x).
; n+1 Jo Z

"—0 Jo 1=y
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12.

14.

15.

16.

17.

18.

Bob is the proud father of two children, one of whom is a girl. What is the
probability that the other child is a girl? What would the probability have been
if you knew that his older child were a girl?

. Suppose that Casanova bets one Venetian sequin on the fall of a fair coin and

keeps doubling up his stake until he wins. If he wins for the first time on the nth
toss of the coin, show that he will win precisely one sequin overall. How many
sequins will he need to have started with to carry out this strategy when n =207
As long as Casanova has any money in his pocket, he always bets $1 on the fall
of a fair coin until he runs out of money or succeeds in winning a total of $1.
When he loses, he doubles his previous stake. If he begins with $31 and always
bets on heads to win, explain why he will succeed in his aim with any of the
sequences that begin H, TH, TTH, TTTH, or TTTTH but fail with any sequence
that begins TTTTT. What lottery does he face? Why is its expected dollar value
zero?

The coin tossed in Section 3.5.2 is no longer fair. It lands heads with prob-
ability g, and the odds are now m: 1 against a head. Show that

Pnt1l =4Pnim+1 +(1 - 6])Pn .
If r=(1 — g)/q, deduce that the probability of success is

1—7F
Ps =1 5vw-

Player I can choose [ or r at the first move in a game G. If he chooses [, a

chance move selects L with probability p or R with probability 1 —p. If L is

chosen, the game ends in the outcome #. If R is chosen, a subgame identical in

structure to G is played. If player I chooses r, then a chance move selects L

with probability ¢ or R with probability 1 — g. If L is chosen, the game ends in

the outcome #". If R is chosen, a subgame is played that is identical to G

except that the outcomes ¥~ and ¢ are interchanged together with the roles of

players I and 11

a. Begin the game tree.

b. Why is this an infinite game?

c. With what probability will the game continue forever if player I always
chooses [?

d. If the value of G is v, show that v=¢+ (1 — ¢)(1 —v) and work out the
probability v that player I will win if both players use optimal strategies.

e. What is v when g = §?

Analyze Nim when the players don’t alternate in moving but always toss a fair

coin to decide who moves next.

In the product race of Section 3.7.1, the probability that a player will win if he

or she puts their product on the market after ¢ days is

P(f) — 1 _ 671/100 .

Show that both will market their products after 69.3 days.
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29.
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In the product race of Section 3.7.1, why is there a unique time at which
p1+p>=1? What implicit assumption about the probabilities that Alice and
Bob will win at this time is made in the text in order to ensure the existence of
a solution?

How close to the opponent before firing should one get in Duel when p;(d) =
pa(d) =1~ (dID)*?

The analysis of Duel of Section 3.7.2 looks in detail only at the case when
¢ <d and p,(d) + p,(c) < 1. How do things change if p,(c) + p>(d) < 1? What
happens when ¢ <d and p(d) + p(c)=1?

How does the analysis of Duel change if p;(D)-+p,(D)>1? What if
P1(0) +p2(0) <1? What if p,(d) +pa(d)=1 for all d satisfying %D <d<
p?

%{ow does the analysis of Duel change if extra nodes are introduced between
d; and d; ., all of which are assigned to the player who decides at node
di?

What does optimal play look like in Duel if the player who gets to fire at any
node is decided by a chance move that assigns equal probabilities to both
players?

We return to the product race game of Section 3.7.1 to consider a version in
which the probabilities p; and p, progress in a sequence of discrete jumps
determined by Chance.

At random times, Chance picks either Alice or Bob with equal probability
and increments his or her current value of p; by % until p;=1, p,=1, or a
player has stopped the game by putting their product on the market. Begin to
draw a game tree in which chance moves represent some player getting an
increment. After such a chance move, assume that the player who gets an
increment moves first and the other player moves second. Forget about the
random times at which these chance moves occur. Draw enough of the game
tree to allow a backward induction analysis."> Show that it is always optimal
for either Alice or Bob to go to the market when p; +p,=1.

What is the probability that the simplified Parcheesi of Section 3.8.1 will
continue for five moves or more if both players always move their counters the
maximum number of squares consistent with the rules?

What is the strategy-stealing argument appealed to at Step 5 in Section 3.8.3
during the analysis of simplified Parcheesi? What strategy-stealing argument
shortens the argument at Step 3?

No mention is made in Section 3.8.3 of the possibility that neither player may
choose to move at all on consecutive turns. Why does this possibility not affect
the analysis?

Analyze the simplified Parcheesi game of Section 3.8.1 with the modification
that, when a head is thrown, a player may move 0, 1, or 2 squares at his or her
discretion. Assume that the other rules remain unchanged.

Analyze the simplified Parcheesi game of Section 3.8.1 with the modification
that, when a counter is exactly one square from the winning square, then only

“The whole game tree is large, but you don’t need to draw it all because some subgames are repeated

many times over, and Alice and Bob are in symmetric situations.
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32.

Wheel 1 Wheel 2 Wheel 3

Figure 3.21 Gale’s Roulette wheels.

the throw of a tail permits it to be advanced.'® Assume that the other rules re-

main unchanged.

When a “roulette wheel” from Figure 3.21 is spun, each number on it is

equally likely to result. In Gale’s Roulette, player I begins by choosing a wheel

and spinning it. While player I's wheel is still spinning, player II chooses one
of the remaining wheels and spins it. The player whose wheel stops on the
larger number wins, and the other player loses.

a. If player I chooses wheel 1 and player II chooses wheel 2, the result is a
lottery p. What is the value of p? (Assume that the wheels are independent.)

b. Draw an extensive form for Gale’s Roulette.

c. Reduce the game tree to one without chance moves, as was done for Duel in
Section 3.7.2.

d. Show that the value of the game is 4/9, so that player II wins more often
than player I when both play optimally.

e. A superficial analysis of Gale’s Roulette would suggest that player I should
choose the best wheel. Player II will then have to be content with the
second-best wheel. But this can’t be right because player I would then win
more often than player II. What is the fallacy in the argument?'’

Let Q = {1,2,3,...,9}. If player I chooses wheel 2 in Gale’s Roulette of the

previous exercise, he is selecting a lottery L, with prizes in Q. Express this

lottery as a table of the type given in Figure 3.6. Show that

Let Ly — L, denote the lottery in which the winning prize is w; — w, if the
outcome of lottery L is @w; and the outcome of lottery L, is w,. What is the
probability of the prize —2=4 — 6 in the lottery Ly — L,? Why is it true that
&, — L,) = &L, — &L,? Deduce that

E@L — L) = &L, — L) = &(L, — L) = 0.

'6This modification makes the game more like real Parcheesi. The new version can be solved by the

same method as the original version, but the algebra is a little harder. In particular, positions 1 and 2 of

Figure 3.15 no longer have value 1. If their values are taken to be g and h respectively, you will be able
to show that a contradiction follows unless d < g <h.

""This exercise provides an advance example of an intransitive relation (Section 4.2.2).
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Figure 3.22 Which finesses?

In an alternative version of Gale’s Roulette, each of the three roulette wheels is

labeled with four equally likely numbers. The numbers on the first wheel are 2,

4, 6, and 9; those on the second wheel are 1, 5, 6, and 8; and those on the third

wheel are 3, 4, 5, and 7. If the two wheels chosen by the players stop on the same

number, the wheels are spun again and again until someone is a clear winner.

a. If player I chooses the first wheel and player II chooses the second wheel,
show that the probability p that player I will win satisfies p =1 + & p.

b. What is the probability that player I will win the whole game if both players
choose optimally?

This exercise is for bridge fiends. West is declarer in three no trumps for the deal

of Figure 3.22. To keep things simple, assume that she somehow knows that the

diamond suit is equally split between her opponents. After a spade lead, West
sees that she can win for sure if she can make at least one trick from two finesses
in hearts and diamonds. Experts advise taking both finesses in diamonds.

a. By examining all combinations of cards that North and South might hold,
show that the probability that the first diamond finesse succeeds is % The
probability that either North or South holds < K is % The same goes for { Q.
So why isn’t the answer § =1 x1? Why would the answer be nearly 1 if
there were a hundred cards per suit?

b. Show that West’s probability of winning at least one trick from two dia-
mond finesses is ‘5—‘. Show that West’s probability of winning at least one
trick from one diamond finesse and one heart finesse is %

c. Show that the probability of winning a second diamond finesse after losing
the first is %. Show that the probability of winning a heart finesse after losing
a diamond finesse is %

d. Experts appeal to the preceding fact when justifying their advice to take
both finesses in diamonds, but they usually say that the probability of
winning a second diamond finesse after losing the first is % Why would they
be about right if there were a hundred cards per suit?

e. In actual play, the relevant probability after losing the first diamond finesse
needs to be conditioned on whether the finesse loses to > K or {> Q. Show
that this probability can vary between % and 1, depending on the prob-
abilities with which South plays <> K or <) Q when holding { K Q.

f. In the subgame that follows West’s losing the first diamond finesse, explain
why it is a strongly dominated strategy for West to take the heart finesse.

If all the players in a game become better informed, they may suffer. Confirm

this observation by studying a game in which Adam and Eve each choose dove

or hawk without observing the roll of a fair die. Unless a six is rolled, a player
who chose dove receives a payoff of 1, and a player who chose hawk receives

a payoff of 0. If a six is rolled, the payoffs are determined by the payoff table

for the Prisoners’ Dilemma given in Figure 1.3(a). Show that the players get a
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36.

37.

smaller expected payoff if the roll of the dice becomes common knowledge
before they choose.

Lyle Stuart was a big-time gambler who wrote a book on how to win at baccarat
and craps. For example, always go to Las Vegas by yourself—you aren’t there
for fun and games! This exercise is sacred to the memory of Mannie Kemmel,
who would apparently wait patiently at the dice table until a number didn’t show
up for 40 rolls or so and then begin to bet that number every roll. If it failed to
come up in another 30 rolls, he would increase his bet. We are told that Mannie
rarely failed to walk away with a profit. The story could well be true. If so, does it
imply that Mannie found a way around the martingale theorem? (Section 3.5.2)
Another of Lyle Stuart’s stories concerns a gambler whose son became a
mathematician. When the son explains that there is no way to beat the dealer,
his father asks where he thinks the money came from to pay for his college
education. How should the son reply?



4

3 Accounting
for Tastes

4.1 PAYOFFS

In explaining how risk and time enter into the rules of a game, the previous two
chapters made no appeal to the theory of utility. But the time has now come to provide
a proper account of the way that game theorists use payoffs to model how the players
of a game choose between the alternatives available to them.

Chapter 1 explains why it is important to be careful when introducing payoffs.
Popular accounts of game theory often try to short-circuit the necessary explanations
by simply saying that payoffs are sums of money. This creates no problem if the
players are actually trying to make as much money for themselves on average as
they can. But game theorists don’t restrict themselves to saying what is rational for
money grubbers. Our results apply to all rational players, however they are moti-
vated. It follows that payoffs can’t be measured just in dollars. In the general case,
they are measured in units of utility called utils.

To speak of utility is to raise the ghost of a dead theory. Victorian economists
thought of utility as measuring how much pleasure or pain a person feels. Nobody
doubts that our feelings influence the decisions we make, but the time has long gone
when anybody thought that a simple model of a mental utility generator is capable of
capturing the complex mental process that swings into action when a human being
makes a choice. The modern theory of utility has therefore abandoned the idea that a
util can be interpreted as one unit more or less of pleasure or pain.

One of these days, psychologists will doubtless come up with a workable theory
of what goes on in our brains when we decide something. In the interim, economists
get by with no theory at all of why people choose one thing rather than another. The
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modern theory of utility makes no attempt to explain choice behavior. It assumes
that we already know what people choose in some situations and uses this data to
deduce what they will choose in others—on the assumption that their behavior is
consistent.

In game theory, we take as our data the choices that the players would make when
solving one-person decision problems by themselves and seek to deduce the choices
that they will make when they play games together.

4.2 REVEALED PREFERENCE

Students of economics usually first meet utility theory when modeling the behavior
of consumers. Pandora buys a bundle of goods on each of her weekly visits to the
supermarket. Since her household budget and the supermarket prices vary from week
to week, the bundle she purchases isn’t always the same. However, after observing
her shopping behavior for some time, it becomes possible to make an educated guess
about what she will buy next week, once one knows what the prices will be and how
much she will have to spend.

In making such inferences, two assumptions are implicitly understood. The first is
that Pandora’s choice behavior is stable. We obviously won’t be able to predict what
she will buy next week if something happens today that makes our data irrelevant. If
Pandora loses her heart to a football star, who knows how this might affect her
shopping behavior? Perhaps she will buy no pizza at all and instead fill her basket
with deodorant.

Pandora’s choice behavior must also be consistent. We certainly won’t be able to
predict what she will do next if she just picks items off the shelf at random, whether
or not they are good value, or satisfy her needs. But what are the criteria that
determine whether her behavior is consistent or not? This chapter is largely devoted
to the manner in which this question is answered by modern utility theory.

4.2.1 Money Pumps

The following example illustrates the kind of way in which economists justify the
consistency assumptions they attribute to rational players.

Adam has an apple. Eve offers to exchange his apple for a fig plus a penny. Adam
agrees, and now he has a fig. Eve next offers to exchange his fig for a lemon plus a
penny. Adam agrees, and now he has a lemon. Eve now offers to exchange his lemon
for an apple plus a penny. Adam agrees, and so he ends up with the apple with which
he started—minus three pennies that are now in Eve’s purse.

If Adam’s choice behavior is stable, Eve can now repeat the cycle over and over
again until she has extracted every cent he has. A rational player obviously wouldn’t
fall victim to such a money pump. What do we have to assume about Adam’s choice
behavior to eliminate the possibility that he might?

Economists say that the choices that Adam makes reveal his preferences. If he
trades an apple for a fig plus a penny, he reveals a strict preference for a fig over an
apple. As in Section 2.2, we then write apple < fig. This notation allows us to
summarize his revealed choice behavior as:
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apple < fig < lemon < apple.

It is then evident that Adam fell victim to Eve’s money pump because his revealed
preferences go around in a circle. Eliminating such cycling from a rational player’s
choice behavior is therefore our first priority.

4.2.2 Full and Consistent Preferences

The crudest way to specify the preferences revealed by a player’s choices is to use a
preference relation <. We assume that a rational player will reveal preferences that
satisfy the following criteria:

a=<b or b=<a (totality)
a=b and b=c=a=xXc (transitivity)

for all @, b, and c in the set Q of all possible outcomes.

The transitivity that prevents cycling is the only genuine consistency require-
ment. Totality merely says that the player is always able to express a preference
between any two outcomes.

A preference relation < shouldn’t be confused with the relation < used to indi-
cate which of two numbers is larger. The latter satisfies an extra condition:

a<band b<a & a=0b,

which we certainly don’t want all preference relations to satisfy. Instead of making
this assumption, we define the indifference relation ~ by:

a=<band b<a < a~b.
The strict preference relation < is defined by:

a=band not(a~b) < a=<0>b.

4.3 UtiLiTY FUNCTIONS

In making a rational decision, Pandora faces two tasks. The first is to identify the
feasible set—the subset S of Q consisting of those outcomes that are currently
available. The second task is to find an optimal outcome in S. This is an outcome in §
that she likes at least as much as any other outcome in S.

The problem of finding an optimal o looks easy when stated in this abstract way,
but it can be hard to solve in practice if Qis a complicated set, and so Pandora’s
preference relation < is difficult to describe.

"In mathematics, a relation satisfying totality and transitivity is a pre-ordering. If totality is replaced
by a = a (reflexivity), then < becomes a partial pre-ordering.
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Utility functions are a mathematical device introduced to simplify the optimi-
zation problem. A preference relation <is represented by such a utility function
u:Q — R if and only if

ua) <ub) < a=xb.
Finding an optimal o then reduces to solving the maximization problem:

u(w) = max u(s),
seS

for which many mathematical techniques are available. A maximizing w may not
exist if S is an infinite set, but we won’t need to worry much about such technical
difficulties. Nor is there any need to get hung up about the fact that there may
sometimes be more than one maximizing ®.

4.3.1 Optimizing Consumption

Pandora likes to drink martinis before dinner. It isn’t good for her health, but in spite
of the title of this chapter, there is no accounting for tastes. Philosophers sometimes
say that one consistent set of preferences can be more rational than another, but
Section 1.4.1 explains why economists don’t join them in telling people what they
ought to like. For us, Pandora’s preference relation < is part of what makes her a
person, like the length of her nose or the color of her hair.

Pandora regards gin and vodka as perfect substitutes for making martinis. This
means that she is always willing to exchange one for the other at a fixed rate. In this
example, she is always willing to trade at a rate of three bottles of gin for four bottles of
vodka.

Let Q be the set of all commodity bundles (g, v) consisting of g bottles of gin and v
bottles of vodka. The choices Pandora makes when deciding between bundles
in Q can be expressed in terms of a revealed preference relation <, whose structure
is indicated in Figure 4.1 by drawing its indifference curves, together with little
arrows that show which indifference curves she prefers.”

The simplest utility function U : Q — R that represents Pandora’s preference
relation is given by

U(g,v) =4g+3v.

For example, the fact that she is indifferent between the commodity bundles (3, 0)
and (0, 4) is reflected in the fact that U(3,0) = U(0,4) = 12.

Pandora can buy vodka at $10 a bottle and gin at $15 a bottle. If she has $60 to
spend on feeding her martini habit, how will she split the money between gin and
vodka?

If we ignore the fact that liquor stores usually sell their merchandise only in
whole numbers of bottles, Pandora’s feasible set S consists of all bundles (g, v) with
g > 0 and v > 0 that lie on or below her budget line: 10g+ 15v = 60. We need to

2An indifference set for < consists of all s € Q that satisfy s ~ @ for some given . Such a set is
usually a curve in economics examples.
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optional
bundle
0 3N, 6\ 9+ gin
feasible set 10g + 15v = 60

Figure 4.1 What kind of martini is optimal?

find her optimal bundle in this feasible set. This is a very simple example of a linear
programming problem, in which a linear function must be maximized subject to a set
of linear inequalities (Section 7.6).

Assuming that any money she doesn’t spend is wasted, her optimal bundle
o = (g, v) lies on her budget line. Her utility at this bundle is therefore

Ug.4—%g) =4g+3(4 —%g) = 12+2g,

which is largest when g is biggest. She therefore buys no vodka at all. Since her $60
will buy six bottles of gin, her optimal bundle is & = (6, 0).

Figure 4.1 illustrates the solution. Pandora’s indifference curves correspond to con-
tours of her utility function. Justas the height of a hill is constant along a contour on amap,
so Pandora’s utility is constant along a contour like U = 12. Contours like U = 36
that don’t have a point in common with the feasible set S correspond to unattainable
utility levels. The contour with the highest utility that intersects with Sis U = 24. Its
unique point of intersection with S is w = (6, 0), which is Pandora’s optimal bundle.

4.3.2 Constructing Utility Functions

Pandora’s choice behavior reveals that she has consistent preferences over the six
commodity bundles a, b, c, d, e, and f. Her preferences are

a<b~c<d=<e~f.

Thus, if Pandora’s feasible set is {a, b, ¢}, she won’t choose a, but she might choose
either b or c. If her feasible set is {b, ¢, d}, then only d is optimal.
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X a b c d e f
U | 0 1 1 3 1 1
Vi |—123 | 18 | 18 | 19 |[2,947 | 2,947

Figure 4.2 Constructing utility functions. The method always works for a consistent preference relation
defined over a finite set of outcomes, because there is always another real number between any pair
of real numbers.

It is easy to find a utility function U:{a,b,c,d,e, f} — R that represents Pan-
dora’s preferences. She regards the bundles a and f as the worst and the best
available. We therefore set U(a) = 0 and U(f) = 1. Since she is indifferent between
e and f, we must also set U(e) = 1. Next pick any bundle intermediate between the
worst bundle and the best bundle, and take its utility to be % . In Pandora’s case, b is a
bundle intermediate between a and f, and so we set U(b) = % Since b ~ ¢, we must
also set U(c) = % Only the bundle d remains. This is intermediate between ¢ and e,
and so we set U(d) = % because % is intermediate between U(c) = % and U(e) = 1.

The utilities assigned to bundles in Figure 4.2 are ranked in the same way as the
bundles themselves. In making choices, Pandora therefore behaves as though she
were maximizing the value of U. But she also behaves as though she were maxi-
mizing the value of the alternative utility function V given in Figure 4.2. This ob-
servation signals the fact that there are many ways in which we could have assigned
utilities to the bundles in a manner consistent with Pandora’s preferences. The only
criterion that is relevant when picking one of the infinity of utility functions that
represent a given preference relation is that of mathematical convenience.

4.3.3 Rational Choice Theory?

Outside economics, the use of utility theory is controversial. In political science, the
debate over “rational choice theory” often gets quite heated.

However, both sides in such debates commonly subscribe to the causal utility fal-
lacy, which says that decision makers choose a over b because the utility of a exceeds
that of . But modern economists don’t argue that a person’s choice of a over b is caused
by the utility of a exceeding that of . On the contrary, it is because the preference
a > b has been revealed that we choose a utility function satisfying u(a) > u(b).

For people to behave as though their aim were to maximize a utility function, it is
only necessary that their choice behavior be consistent. To challenge the theory, you
therefore need to argue that people behave inconsistently, rather than that they don’t
really have utility generators inside their heads. As for the critics who claim that
economists believe that people have little cash registers in their heads that respond
only to dollars, they haven’t bothered to study the theory they are criticizing at all.

4.4 DICING WITH DEATH

The game of Russian Roulette will allow us to review some of the ideas that we met
in Chapters 2 and 3 while focusing our attention on the inadequacy of what has been
said so far about utility functions.
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Boris and Vladimir are officers in the service of the czar who have both fallen in
love with a beautiful Muscovite maiden called Olga. They agree that it doesn’t make
sense for both to press their claims simultaneously but disagree on who should back
down. Eventually they decide to settle the matter with a game of Russian Roulette,
with Boris as player I and Vladimir as player II.

In Russian Roulette, a bullet is loaded at random into one of the chambers of a
six-shooter, as illustrated in Figure 4.3(a). The players then take turns pointing the
revolver at their heads. When it is your turn, you can either pull the trigger or
chicken out. Chickening out and death disqualify you from chasing after Olga any
more. One might think that only crazy people would play such a game, but the
superlatively creative French mathematician Evariste Galois died at the age of twenty
while playing something very similar. Perhaps this is why Russians call the game
French Roulette.

Neither Boris nor Valdimir cares about the welfare of the other, so each player
distinguishes only three outcomes, ¥, &, or ¥/, which we can think of as death,
disgrace, or triumph. Player i’s preferences over these outcomes satisfy

L <D= W

The outcome & corresponds to a player shooting himself. The outcome ¥~ corre-
sponds to his being left to woo Olga undisturbed. The outcome & corresponds to a
player chickening out. He will then be forced to sit alone, morosely drinking vodka
in the officer’s club, while his rival trifles with Olga’s affections.

4.4.1 Version 1 of Russian Roulette

A natural way of drawing the game tree for Russian roulette is shown in Figure 4.4.
The act of loading the single bulllet into the gun is represented by a single chance
move that opens the game. Each of the six chambers of the revolver corresponds to
one of the six choices available to Chance at this node. The chambers are labeled 1
through 6, according to the order in which they will be reached as the trigger is
pulled. Each chamber is equally likely to be chosen, and so the probability that the
bullet is in any particular chamber is %

(a) Russian O
Roulette

(b) Zeckhauser’s Paradox

Figure 4.3 Where are the bullets?
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Figure 4.4 Russian Roulette—version 1.

The branches at decision nodes are labeled A (for across) and D (for down).
Playing down corresponds to chickening out. Playing across corresponds to a player
pulling the trigger.

The nodes at which a player chooses between A or D are labeled with the number
of the chamber that contains the bullet. The information sets in Figure 4.4 indicate
the fact that the players don’t know this information when they decide whether or
not to pull the trigger.

Since all but one of the information sets contain more than one decision node, this
version of Russian Roulette is a game of imperfect information. A pure strategy in a
game of imperfect information specifies an action only at each of a player’s infor-
mation sets—not at each of his decision nodes.

The pure strategy pair (AAA,AAD) is indicated in Figure 4.4 by doubling ap-
propriate branches. All six across branches have therefore been doubled at player I's
first information set. He can’t plan to play differently at different nodes in the same
information set because he won’t be able to distinguish between them when he
makes his decision.

Once Boris and Vladimir have chosen their pure strategies, the course of the
game is entirely determined, except for the initial decision made by Chance. If
Chance puts the bullet in chamber 6, the resulting play of the game starts at the root
and proceeds vertically downward to the first node labeled with a 6, where it is
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Boris’s turn to move. His choice of pure strategy AAA requires that he take action A
at his first move. Accordingly, he pulls the trigger but survives because the bullet
isn’t in chamber 1. We therefore move on to the second node labeled with a 6, where
it is Vladimir’s turn to move. His choice of pure strategy AAD requires that he take
action A at his first move. So he pulls the trigger but survives because the bullet isn’t
in chamber 2.

The play continues horizontally in this way until it reaches the node labeled with
6* at the bottom right of Figure 4.4, where it is Vladimir’s move.

Vladimir now knows that the bullet is in chamber 6, and so he is sure to shoot
himself if he pulls the trigger. Fortunately, his choice of the pure strategy AAD
requires that he chicken out by taking action D at his third move. This action
concludes the play that started with Chance putting the bullet in chamber 6 by taking
it downward to a payoff box in which Boris gets the outcome " and Vladimir gets
the outcome Z.

While following this play, we always knew where the bullet was, but the players
were in suspense until node 6* was reached. For example, Vladimir didn’t know he
was about to pull the trigger on an empty chamber at his second move. We knew the
game had reached node 6, but Vladimir thought that nodes 4 and 5 in his second
information set were just as likely. When he pulled the trigger, he therefore thought
he would shoot himself with probability % since this is the conditional probability of
being at node 4, given that Vladimir’s second information set has been reached.

4.4.2 Version 2 of Russian Roulette

Figure 4.5 shows an alternative game tree for Russian Roulette. No information sets
appear because the new version is a game of perfect information. The price paid for
this simplification is that we have to include six chance moves: one for each chamber
of the six-shooter.

On the other hand, the new game has lots of subgames that we will exploit when
using backward induction to solve the game in Section 4.7. By contrast, version 1 of
Russian roulette has only two subgames: the whole game and the one-player sub-
game rooted at node 6*. No decision node with companions in its information set
can serve as the root of a subgame because we can’t distentangle such a node from
its companions without making nonsense of the informational assumptions of the
game.

The strategy pair (AAA, AAD) has been indicated by doubling branches in Figure
4.5. Its use results in the various leaves being reached with the probabilities written
beneath them. Boris ends up with the outcome ¥ half the time and with % the rest
of the time. If the strategy pair (DDD, AAD) were used instead, Boris would get &
for certain.

If Boris knows or guesses that Vladimir will choose AAD, which of AAA or DDD
is better for him? It is important to recognize that we can’t answer this question
without knowing more about Boris’s preferences.

All we have been told so far is that & <; & <1 ¥, but this information doesn’t
help us decide whether Boris prefers & for certain to the lottery in which he is
equally likely to get %" or .Z. If Boris were young and romantic like Evariste Galois,
he might be willing to risk death rather than abandon his beloved, but disillusioned
old gentlemen like me won’t see the potential reward as being worth much of a risk.
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Figure 4.5 Russian Roulette—version 2.

However, both of us will agree that & is an outcome intermediate between #~
and .%.

4.5 MAKING Risky CHOICES

How do we describe a player’s preferences over lotteries that involve more than two
prizes? A naive approach would be to replace all the prizes in the lotteries by their
worth to the player in money. Wouldn’t a rational person then simply prefer which-
ever of two lotteries has the larger dollar expectation?

The story coming up next explains why such an approach won’t work. Like
Russian Roulette, it is set in the last days of the czars.

4.5.1 The St. Petersburg Paradox

Nicholas Bernouilli proposed the following paradox about a casino in St. Petersburg
that was supposedly willing to run any lottery whatever, provided that the man-
agement could set the price of a ticket to participate.’

In the lottery of Figure 4.6, a fair coin is tossed until it shows heads for the first
time. If the first head appears on the kth trial, you win $2*. How much should you be
willing to pay in order to participate in this lottery?

Since each toss of the coin is independent, the probability of winning $2* is
calculated as shown below for the case k = 4:

prob(TTTH) = prob(T) x prob(T) x prob(T) x prob(H) = (%)4: %.
The expectation in dollars of the St. Petersburg lottery L is therefore

&(L) = 2 prob(H)+4 prob(TH)+ 8 prob(TTH)+ - - -
:2><%+4><%+8><%—|—
=1+14+14+1+---,

*However, the paradox probably got its name for the more prosaic reason that his brother Daniel
published it in the proceedings of the St. Petersburg Academy of 1738.
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which implies that its expected dollar value is “infinite.” Should Olga therefore be
willing to sell off all she owns and borrow as much as she can in order to buy a
lottery ticket? Since the probability is % that she will end up with no more than $8,
she is unlikely to find the odds attractive.

The moral isn’t that the policy of always choosing the lottery with the largest
expectation in dollars is necessarily irrational. The St. Petersburg story merely casts
doubt on the claim that no other policy can be rational.

The same goes for any theory that claims that there is only one rational way to
respond to risk. An adequate theory needs to recognize that the extent to which Olga
is willing to bear risk is as much a part of her preference profile as her relative liking
for the songs that Boris and Vladimir sing when they play their balalaikas late at
night beneath her bedroom window.

4.5.2 Von Neumann and Morgenstern Utility

Rationality doesn’t require that Olga try to maximize her expected dollar value when

choosing between lotteries. However, Von Neumann and Morgenstern gave a list of

consistency postulates about preferences in risky situations that imply that Olga will

behave as though maximizing the expected value of something when acting ratio-

nally. We call this something the Von Neumann and Morgenstern utility of a lottery.
The first postulate repeats the rationality assumption of Chapter 3:

POSTULATE 1 A rational player prefers whichever of two win-or-lose lotteries offers
the larger probability of winning.

Postulate 1 is about win-or-lose lotteries, in which the only prizes are drawn from
the set Q = { %, #"}. A utility function u:Q — IR that represents the preference
W = &% must have a = u(ZL) <u(W') = b.

The set of lotteries with prizes drawn from the set Q will be denoted by lott(Q2).
The win-or-lose lottery p in which Olga wins with probability p therefore belongs to
lott ({#", £}). The expected utility of p is

Sup) =pu(W)+(1 —p)u(¥L) = a+pb—a). “.1

Since b — a > 0, Su(p) is largest when the probability p of winning is largest.

Equation (4.1) tells us that &u is a utility function for Olga’s preferences over
lott(Q) when Q = {#", #}. Postulate 1 therefore implies that Olga necessarily acts
as though maximizing expected utility when making decisions involving only lot-
teries whose prizes are . or #".

prize $2 [ $4| $8 | $16 |...| $2K f
coinsequence | H |TH|TTH | TTTH |...|TT...TH }
o 1 1 1 1 1\k
probability 71 2| 3 % |- (5) ?

Figure 4.6 The St. Petersburg lottery.
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Matters become more complicated when there are prizes intermediate between
W and & . It then ceases to be true that &u is a utility function for Olga’s preferences
over lotteries whenever u is a utility function for her preferences over prizes.
If u:QQ — R is to be a Von Neumann and Morgenstern utility function—so that
&u represents Olga’s preferences over lotteries—we need to select u very care-
fully from the large class of utility functions that represent Olga’s preferences over
prizes.

POSTULATE 2 Each prize @ between the best prize W  and the worst prize &L is
equivalent to some lottery involving only W and & .

The postulate says that, for each prize winQ, there is a probability g for which

W £
weq = 42)
911 —g¢q

The second postulate makes it possible to construct a Von Neumann and Mor-
genstern utility function u : Q — IR. The function u is defined so that the value of
u(W") is the probability g in (4.2). That is to say, g = u(#") is defined to make Olga
indifferent between getting w for certain and getting the lottery that yields #"~ with
probability u(#") and ¥ with probability 1 — u(%").

For example, we might begin an experiment to elicit Olga’s preferences over
risky prospects by asking her whether she will pay $20 for a ticket for the lottery q of
(4.2) in the case when the best possible prize is #~ = $100 and the worst possible
prize is % = $0. If she stops saying no and starts saying yes when ¢ passes through
the value 0.4, then u(20) = 0.4.

As we increase the price $X of a ticket from $0 to $100, u(X) will increase from
u(0) = 0to u(100) = 1. As we will see, the shape of the graph of u will tell us every-
thing we need to know about Olga’s attitude to taking risks.

To confirm that u: Q — R is a Von Neumann and Morgenstern utility function,
we need to verify that &u:lott(Q2) — R is a utility function for Olga’s preferences
over lotteries. Figure 4.7 illustrates the two steps in the argument that justifies this
conclusion. Each step requires a further postulate.

POSTULATE 3 Rational players don’t care if a prize in a lottery is replaced by
another prize that they regard as equivalent to the prize it replaces.*

The prizes available in the arbitrary lottery L of Figure 4.7 are w;, w,, ..., ®,. By
Postulate 2, Olga regards each such prize wy as the equivalent of some win-or-lose
lottery qx. Postulate 3 is then used to justify replacing each prize w; by the corre-
sponding qx. We then need a final assumption to reduce the resulting compound
lottery to a simple lottery.

“Critics often forget that, if one of the prizes is itself a lottery, then it is implicitly assumed that this
lottery is independent of all other lotteries involved. Without such an independence assumption, the
postulate wouldn’t make much sense.
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Figure 4.7 Von Neumann and Morgenstern’s argument.

POSTULATE 4 Rational players care only about the total probability with which they
get each prize in a compound lottery.

The total probability of #" in Figure 4.7 is r = p1q1 +p2g>+ - - - +Pngy. Postulate 4
then says that we can replace the compound lottery by the simple lottery r, thereby
justifying the second of the two steps the figure illustrates.

By Postulate 1, Olga prefers whichever of two lotteries like L in Figure 4.7 has
the larger value of r = piq1+p2gqa+ - -+ +pugn. She therefore acts as though
seeking to maximize

r=piqi+p2q2+ - +Pnqn
= Plu(w1)+P2M(w2)+ to +pnu((0n) .
= &u(L).

Thus &u:lott(Q) — IR is a utility function that represents Olga’s preferences in
lotteries. But this is what it means to say that u:Q — IR is a Von Neumann and
Morgenstern utility function for her preferences over prizes.

4.5.3 Attitudes to Risk

How does Von Neumann and Morgenstern’s theory deal with the St. Petersburg
paradox? Suppose that Olga’s utility for money is given by the Von Neumann and
Morgenstern utility function® u : R, — R defined by

u(x) = /x. 4.3)

SThe set R, = {x:x > 0} consists of all nonnegative real numbers. Note also that:

1. Va' = (@)"? = a"? = (Vay";

2. Vb/b=1/\b;

3. If In < 1, the geometric series 1+ r+r*+...adds up to something finite. Its sum s satisfies
s=14+r+r~7+ ... =14+r(1+r+...)=1+rs. Hence, s=1/(1 —r).
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Her expected utility for the St. Petersburg lottery L of Figure 4.6 is then

Su(L) = Lu@)+ (D7) + AP u@d)+ -
= 4{IV2+APVR+ APV

40 () ()

4
=— ~ 4x242.
V2-1

Olga is indifferent between the lottery L and $X if and only if their utilities are the
same. So $X is the dollar equivalent of the lottery L if and only if

u(X) = Su(L)
AVX ~ 4 %242
X~ (2.42)* =5.86

Thus Olga won’t pay more than $5.86 to participate in the St. Petersburg lottery—
which is a lot less than the infinite amount she would pay if her Von Neumann and
Morgenstern utility function were u(x) =x. We will see that the reason we get such a
different result is that Olga’s new Von Neumann and Morgenstern utility function
makes her risk averse instead of risk neutral.

Paradox of the Infinite? 1Is the St. Petersburg paradox really resolved? If u(x) — oo
as x — o0, we can revive the paradox simply by choosing a different lottery L for
which &u(L) is infinite.®

Mathematicians control such problems of the infinite by imposing extra postu-
lates that ensure that a Von Neumann and Morgenstern utility function is bounded
when the number of prizes is allowed to be infinite. For example, we could insist that
rational players are never caught out by the Box Swapping paradox of Exercise
4.11.27.

However, nothing prevents our working with unbounded utility functions, pro-
vided we do only those things that are sanctioned by Von Neumann and Morgen-
stern’s postulates. In particular, we must stick to lotteries that lie between some
worst outcome ¢ and some best outcome ¥, although there is no harm in allowing
lotteries with an infinite number of prizes when this constraint is observed. We can
even allow % and ¥ themselves to be such infinite lotteries since the Von Neumann
and Morgenstern methodology will necessarily assign them both a finite expected
utility. What this means in practice is that you don’t need to worry that a Von
Neumann and Morgenstern utility function is unbounded if you only plan to consider
lotteries whose expected utility is finite. This is why the standard resolution of the
St. Petersburg paradox with u(x) = 44/ is legitimate.

It doesn’t help to try to make #" and % the limits of infinite lotteries whose
probabilities are progressively shifted outward toward dollar prizes that are

Choose the prizes o, in L so large that u(w,) > 2" (n=1,2,...). Then make the probability with
which w,, is chosen equal to 2™
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increasingly positive or negative. The limiting value of the probability assigned to
any particular prize would then be zero, but %" and ¥ can’t have zero probabilities
assigned to all their prizes.” (Exercise 4.11.28)

4.5.4 Risk Aversion

The dollar expectation of the lottery M in Figure 4.8 is
EM=23x1+1x9=3.

If Olga’s Von Neumann and Morgenstern utility for $x continues to be u(x) = 4+/x,
as in equation (4.3), her expected wutility for M is

SuM) =3u(l)+1u9) =3 x4V/1+1 x4/9 = 6.
It follows that
wéEM) = u(3) = 4V3 ~ 6.93>6 = EuM),

and so Olga would rather not participate in the lottery if she can have its expected
dollar value for certain instead.

If Olga would always sell a ticket for a lottery with money prizes for an amount
equal to its expected dollar value, she is risk averse over money. If she would always
buy a ticket for a lottery for an amount equal to its expected dollar value, then she is
risk loving. If she is always indifferent between buying and selling, she is risk neutral.

The graphs of utility functions that represent risk-averse, risk-neutral and risk-
loving preferences are shown in Figure 4.9. As we saw in Figure 4.8, chords drawn
to the graph of the utility function of a risk-averse person lie on or below the graph.
Mathematicians say that such functions are concave.® A function whose chords lie
on or above its graph is convex. A person with a convex Von Neumann and Mor-
genstern utility function is risk loving.

A function with a straight-line graph is commonly said to be “linear,” but the
proper mathematical term is affine. If Olga has an affine Von Neumann and Mor-
genstern utility function, she is always indifferent between buying or selling a lottery
for an amount equal to its expected value in dollars and so is simultaneously risk
loving and risk averse.

The fallacy that makes the St. Petersburg story seem paradoxical is that rational
people are necessarily risk neutral. If Olga were risk neutral (or risk loving), she

"The only way to escape pesky restrictions is to allow 7% and % to be something like tickets to
heaven or hell, so that all lotteries with an infinite number of prizes can be squeezed between them.
Infinite expected utilities can’t then arise.

8A differentiable function u is concave on an interval / if and only if its derivative ' is decreasing
inside 1. Economists refer to u/(x) as a marginal utility. A risk-averse player therefore has decreasing
marginal utility for money. Each extra dollar is worth less than its predecessor to such a player.

A differentiable function is decreasing on [ if and only if «'(x) < 0 for x inside I. Thus, if u can be
differentiated twice, it is concave on / if and only if «/(x) < 0 for x inside /. A function u is convex on /
if and only if —u is concave on I. Thus a criterion for a function u to be convex on [ is that u’/(x) > 0 for
x inside 1.
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M= ) = 12 === mmmmmmmmm
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Ju(l) + Ju(9) = 69 ---
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Figure 4.8 A lottery whose dollar expectation is $3. Olga prefers to have $¢M = $3 for certain to
participating in the lottery M. The fact that u(6M) > eu(M) is equivalent to Plying above Q in the
figure.

would indeed be prepared to liquidate all her assets to buy a ticket for the St.
Petersburg lottery. But most people are risk averse when faced with similar choices.
As we have seen, if Olga has the square-root utility function of equation (4.3), then
she will pay no more than $5.86 for a ticket.

4.5.5 Taste for Gambling?

The shape of Olga’s Von Neumann and Morgenstern utility function u determines
her attitude toward taking risks. Critics sometimes imagine that this turn of phrase
means that # measures the thrill that Olga derives from the act of gambling. They
then ask why u(a) > u(b) should be thought to have any relevance to how Olga
chooses between a and b in riskless situations.

However, Von Neumann and Morgenstern’s fourth postulate takes for granted
that Olga is entirely neutral about the actual act of gambling. She doesn’t bet
because she enjoys betting—she bets only when she judges that the odds are in her
favor. If she liked or disliked the act of gambling itself, we would have no reason to

Concave = risk-averse Affine = risk-neutral Convex = risk-loving

Figure 4.9 The shape of Olga’s utility function reveals her attitude to risk.
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assume that she is indifferent between a compound lottery and a simple lottery in
which the prizes are available with the same probabilities.

To be rational in the sense of Von Neumann and Morgenstern, one needs to be as
unemotional about gambling as the proverbial Cool Hand Luke. Alice may bet at the
racetrack because she enjoys the excitement of the race. Bob may refuse to bet at all
because he believes gambling is wicked. Neither satisfy the Von Neumann and
Morgenstern postulates because they each like or dislike gambling for its own sake.

4.5.6 Does the End Justify the Means?

In game theory, () can usually be identified with the set of all outcomes of whatever
game is being played. For example, when we used the theory of revealed preference
in Section 1.4.2 to interpret the payoffs in the Prisoners’ Dilemma, the outcomes
were the four cells of the payoff table.

More generally, if Alice is a player in a game, we find her payoffs by asking her
what she would do if she were free to choose between various pairs of lotteries
whose prizes are outcomes in the game. This approach sometimes troubles purists,
who feel that the theory of revealed preference should be applied in game theory
only when all the players are choosing at once. But they then forget that the avowed
purpose of orthodox game theory is to deduce what rational players will do in
multiplayer games from the way they solve decision problems in which they are the
only player.

Since the outcomes of a game can be identified with the terminal nodes (or
leaves) of its extensive form, some philosophical critics complain that game theo-
rists immorally proceed as though the end justifies the means. But this criticism
overlooks the fact that each leaf is determined by the play that leads to it. So Von
Neumann’s formalism doesn’t allow us to distinguish an outcome from the sequence
of events that brought it about. Far from arguing that the end justifies the means,
game theorists therefore take for granted that means and ends are inseparable.

4.6 UTILITY SCALES

For u to be a utility function that represents the preference relation <, we need that
a=b << u(a) < u(b). Butuisnever the only utility function that represents <. There
is always an infinite number of possible utility functions for any consistent prefer-
ence relation.

For example, if we define v and w by v(s) = {(u(s)}> and w(s)=3u(s) + 7, we
obtain two alternative utility functions that represent < because

ua) <ub) < {w@}) <{w®)y < 3u@)+7 < 3ub)+7.

The same freedom of choice isn’t available with a Von Neumann and Morgen-
stern utility function u: Q — IR. It is true that (§u)’ and 3(&u)+7 represent Olga’s
preferences over lotteries just as well as &u. It is also true that u” represents Olga’s
preferences over prizes just as well as u. But you will be very lucky if «” turns out to
be a Von Neumann and Morgenstern utility function. That is to say, it isn’t usually
true that §(u>) represents Olga’s preferences over lotteries.
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On the other hand, for any constants A >0 and B,
&(Au+B) = ASu+B,

and so maximizing &u is the same as maximizing &(Au—+ B). Thus, 3u + 7 is nec-
essarily a Von Neumann and Morgenstern utility function whenever the same is
true of u.

4.6.1 Affine Transformations

If A > 0, the function Au + B is a strictly increasing, affine transformation of u. The
next theorem implies that we get all Von Neumann and Morgenstern utility func-
tions that represent a given preference relation by taking strictly increasing, affine
transformations of one such representation.

THEOREM 4.1 If u;:Q — R and uy : Q — R are alternative Von Neumann and
Morgenstern utility functions for a preference relation < defined on lott (QQ), then we
can find constants A >0 and B such that

uy = Auy+B.

Proof Pick A;>0 and B; to make the Von Neumann and Morgenstern utility
function U;=Au; + B; satisfy U;(¥) =0 and U;(#") = 1. For any prize ® in Q,
there is a probability g for which w ~ q by Postulate 2. Thus,

Ui(w) = ¢Ui(q) = qUi(W")+(1 — Ui(ZL) = q.

Thus Aui(w) + B; = Ui(w) = Us(w) = Arus(w) + B,. The conclusion of the theo-
rem follows on solving this equation for u,(w).

4.6.2 Utils

It follows from Theorem 4.1 that the origin and unit of a Von Neumann and Mor-
genstern utility scale can be chosen in any way you like, but you have then exhausted
your room for maneuvering. Von Neumann and Morgenstern pointed out that things
are much the same when measuring temperature.

The Centigrade or Celsius scale assigns 0°C to the freezing point of water and
100°C to its boiling point (at a stated atmospheric pressure). The Centigrade value for
all other temperatures is fully determined by these choices. The Fahrenheit scale
assigns 32°F to the freezing point of water and 212°F to its boiling point. Once these
choices have been made, the Fahrenheit value for all other temperatures is fully
determined. As with alternative utility scales, the Fahrenheit temperature f is a
strictly increasing affine function of the Centigrade temperature c. (In fact,
f= %c +32).

We can similarly set up an alternative Von Neumann and Morgenstern utility
scale by recalibrating the scale determined by the original Von Neumann and
Morgenstern utility function u: Q — IR as follows. First pick an outcome wq in Q to
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correspond to the origin of the new utility scale. Then pick another outcome ; in Q
with w; < wg to determine the unit of the new scale.

It remains to choose a new von Neumann and Morgenstern utility function
U:Q — R with U(wy) =0 and U(w;)=1. Since U= Au + B by Theorem 4.1, this
step requires only that we choose A and B so that

0 = Au(wy)+B;
1 = Au(wy)+B.

We needn’t worry about what values of A and B solve this pair of linear equations.
All that matters is that they have a solution, and so we can always set up a new Von
Neumann and Morgenstern utility scale with whatever origin and unit we find
convenient.’

Just as the unit on a temperature scale is called a degree, so the unit on a Von
Neumann and Morgenstern utility scale is called a util.

For example, we usually choose the utility scale of a risk-neutral player so that her
preferences over money are represented by the simple utility function u: IR, — IR
defined by u(x) =x. A util on the corresponding utility scale is then the same as a
dollar. But we aren’t able to get away with this simplifying trick when a player is
risk averse because each extra util then corresponds to more dollars than the last, no
matter what origin and unit we choose.

4.6.3 Interpersonal Comparison of Utility

We need to be careful in talking about units of utility called utils because the usage
risks our falling prey to various fallacies, of which the most important is that which
assumes Adam’s utils can automatically be compared with Eve’s.

For example, you would be making an unwarranted assumption if you blithely
rated each of Adam’s utils as being worth exactly the same as each of Eve’s utils,
without knowing anything about how the choice of origin and unit was made on
Adam’s and Eve’s utility scales. You might as well claim that two rooms are equally
warm because the Celsius thermometer in one room is showing the same temper-
ature as the Fahrenheit thermometer in the other.

This observation is sometimes taught to economics students as the dogma that
interpersonal comparisons of utility are intrinsically meaningless. It is true that we
don’t know how Adam’s pleasure or pain can be compared with Eve’s, but the utils
of modern utility theory aren’t units of pleasure and pain. It is also true that Von
Neumann and Morgenstern’s postulates provide no basis for making interpersonal
comparisons of utility. However, as we will see in Chapter 19, nothing prevents our

A property of a function u: Q — IR that is invariant under strictly increasing transformations is said
to be ordinal. That is, for any strictly increasing f: IR — R, the composite function fou:Q — R
defined by f o u(s) =f(u(s)) must retain the same property. A cardinal property is only invariant under
strictly increasing, affine transformations. That is, for any A >0 and any B, the function Au + B must
retain the same property. So the property of defining a temperature scale is cardinal, as is that of being a
Von Neumann and Morgenstern utility function. The property of being any utility function at all is
ordinal.
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making further assumptions that correspond to requiring that the thermometers in
different rooms all employ the same temperature scale when we use them to com-
pare how warm the rooms are.

4.7 DICING WITH DEATH AGAIN

Section 4.4.2 explains that we need information about Boris’s and Vladimir’s atti-
tudes to taking risks to solve the game of Russian Roulette. How do Von Neumann
and Morgenstern utility functions take care of this problem?

The set of outcomes for each player in Russian Roulette is Q = { %, 2, #"}.
Their attitudes to taking risks are built into their Von Neumann and Morgenstern
utility functions: u; : Q@ — R and u; : Q — IR. It is usually convenient to calibrate
the utility scales so that the utility of the worst outcome is zero and the utility of the
best outcome is one. We therefore suppose that

ui(£) =0, u(2) = a, w (W) =1,
w (L) =0, u(2) =0, u (W) = 1.

Recall that #;(2) = g means that player i will swap & for the lottery q in which he
gets & with probability 1 — g and ¥~ with probability g. Players who are more ready
to take a risk therefore have smaller values of u;(2). So if a > b, then Boris is more
cautious then Vladimir.

If you feel that the awfulness of being dead is undervalued by setting the utility of
£ to zero, think again! It wouldn’t make any difference to the analysis if we set the
utility of % equal to —1,000,000 instead. We would merely be recalibrating the
utility scales, as explained in Section 4.6.2. It would be totally unrealistic to take
u; (%) = —oo, even if this were allowed by the Von Neumann and Morgenstern
theory. Such a choice would imply that a player would never dare cross a road—
even if offered a billion dollars to do so."

After Chapter 3, it is child’s play to solve version 2 of Russian Roulette using
backward induction. Figure 4.10 shows the solution for three different pairs of
values of the parameters a and b. The boxes above each node show what the players’
expected payoffs would be if the node were reached. They are filled in from right to
left as the backward induction proceeds.

Begin by filling in the rightmost box that lies above the last decision node in
Figure 4.10(a). The branch labeled D is first doubled because a payoff of 0.55 is
better for player II than 0. Thus, if the last decision node is reached, player II will
play D, and so the outcome will be (1,0.55). This payoff pair is therefore written into
the box above the last decision node. The preceding decision node is a chance move.
If it is reached, player I's expected payoff is 0.5 x 0+ 0.5 x 1 =0.5, and player II’s
expected payoff is 0.5 x 14 0.5 x 0.55=0.775. Rounding to two decimal places,
we therefore write the payoff pair (0.5,0.78) into the box above the penultimate
decision node of the game. At the preceding node, the branch labeled A is now
doubled because a payoff of 0.5 is better for player I than a payoff of 0.25.

'"No matter how much care he took, there would still remain some small but positive probability of
his being run over. The player’s expected utility from taking up the offer would therefore remain —oo.
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Figure 4.10 Backward induction in Russian Roulette. In Figure 4.10(a), a =0.25 and b=0.55,
which makes Boris reckless and Vladimir mildly cautious. In Figure 4.10(b), a =b=0.25, so that
both players are reckless. In Figure 4.10(c), a =b=0.95, so that both players are very cautious.

Continuing in this way, we find that player I will use the pure strategy AAA, and
player II will use the pure strategy DDD. The payoffs they then expect to get appear
in the leftmost box, above the first decision node of Figure 4.10(a).

Conclusions. The players’ attitudes to taking risks make a big difference in the way
the game is played. As Figure 4.11 indicates, cautious players chicken out a lot.
Reckless players keep on pulling the trigger.

Is it better to be reckless or cautious? This is a question the model can’t answer.
Without building in some extra apparatus, it doesn’t make any sense to compare
different players’ utils (Section 4.6.3).

For example, both players get a payoff of about 1 in case 3, while both players get
a payoff of only about % in case 2. But we aren’t entitled to conclude that Boris and
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parameter values player I player II

I reckless, II cautious | a = 0.25 b =0.55 AAA DDD

both reckless | a = 0.25 b=0.25 AAA AAD

both cautious a=0.95 b =10.95 DDD DDD

Figure 4.11 Comparing behavior in the three cases studied.

Vladimir would be better off playing Russian Roulette when they are old. For how
sweet is an old man’s triumph? Not nearly as sweet perhaps as half a chance of
victory may seem to a hot-blooded youth—even if the downside is half a chance of
getting shot.

4.8 WHEN ARE PEOPLE CONSISTENT?

Von Neumann and Morgenstern’s theory of decision making under risk has been
much criticized. Some critics attack their consistency postulates. Others draw at-
tention to the data from psychological laboratories, which show that real people
often behave inconsistently. Both types of critic make free use of examples in which
our gut feelings are at variance with the theory.

4.8.1 Allais’ Paradox

Leonard Savage developed Von Neumann and Morgenstern’s ideas into what is now
called Bayesian decision theory (Chapter 13). When Savage was visiting Paris,
Maurice Allais asked him to compare lotteries like those of Figure 4.12. When
Savage made inconsistent replies, Allais triumphantly deduced that not even Savage
believed his own theory!

Like Savage, most people express the preference J > K because J guarantees $1
million for sure, whereas K carries the risk of getting nothing at all. Again like
Savage, most people express the preference M >~ L. Here the risk of ending up with
nothing at all can’t be avoided. On the contrary, the risk of this final outcome is high
in both cases. But if the probability .89 in L is rounded up to .90 and .11 is rounded
down to .10, then someone who understands what is going on will prefer M to the
new L. If the new L is thought to be essentially the same as the old L, one then has a
reason for preferring M to the old L.

The preferences J > K and M > L violate the Von Neumann and Morgenstern
postulates. Otherwise they could be described with a Von Neumann and Morgen-
stern utility function u:Q — RR. But the following argument shows that this is
impossible.
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Two points on a utility scale can be fixed in an arbitrary manner. In this case, it is
convenient to fix #(0) =0 and u#(5) = 1. What can then be said about Savage’s value
for x=u(1)? Observe that

eu(J) = u(0) x 0.0 + u(1) x 1.0 + u(5) x 0.0 = x

eu(K) = u(0) x .01 4+ u(1) x .89 + u(5) x .10 = .89x + .10
eu(L) = u(0) x .89 + u(1) x .11 + u(5) x 0.0 = .11x
eu(M) = u(0) x .90 + u(1) x 0.0 + u(5) x .10 = .10.

Since J > K, we have that x > .89x + .10, and so x > %. Since L <M, we also have
that .11x < .10, and so x < %. But it can’t be simultaneously true that x < % and
x< %. So the preferences that Savage expressed can’t be described with a Von
Neumann and Morgenstern utility function.

4.8.2 Zeckhauser’s Paradox

I wasn’t caught out by Allais’ Paradox when it was first put to me, but everyone goes
wrong when faced with the following problem, which is particularly apt in a chapter
featuring Russian Roulette.

Some bullets are loaded into a revolver with six chambers, as illustrated in Figure
4.3(b). The cylinder is then spun and the gun pointed at your head. Would you be
prepared to pay more to get one bullet removed when only one bullet was loaded or
when four bullets were loaded? People usually say they would pay more in the first
case because they would then be buying their lives for certain. But the Von Neu-
mann and Morgenstern theory says that you should pay more in the second case,
provided that you prefer life to death and more money to less.

To see why, suppose that you are just willing to pay $X to get one bullet removed
from a gun containing one bullet and $Y to get one bullet removed from a gun con-
taining four bullets. Let % mean death and ¥/~ mean being alive after paying nothing.
Let ¥ mean being alive after paying $X and & mean being alive after paying $Y.

You are indifferent between % and the lottery in which you get ¥ with proba-
bility ¢ and %~ with probability 2. Thus,

w(6) = 2u( L)+ 2 u(n).

$0m | $1m | $5m $0m | $1m | $5m
J= K=
0 1 0 .01 89 10
$0m | $1m | $5m $0m | $1m | $5m
L= M =
.89 | .11 0 9 0 1

Figure 4.12 Lotteries for Allais’s Paradox. The prizes are given in millions of dollars to dramatize
the situation.
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Similarly, you are indifferent between the lottery in which you get ¥ and &, each
with probability 1, and the lottery in which you get % with probability 2 and %~ with
probability . Thus,

L)+ 3w @) = 2u( L)+ Lu(w).

Simplify by taking u(¥) =0 and u(#") = 1. Then u(¥) = % and u(9Y) = % Thus
2 < %, and thus X <Y.

After seeing the calculation, the result begins to seem more plausible. Would I be
willing to pay more to get a bullet removed from a six-shooter containing one bullet
than to get a bullet removed from a six-shooter containing six bullets? Definitely not!
But getting a bullet removed when there are six bullets isn’t so different from getting
a bullet removed when there are five bullets, which isn’t so different from getting a
bullet removed when there are four bullets. How different is the difference between
each of these cases? Appealing to our gut feelings doesn’t get us very far when such
questions are asked. We need to calculate.

4.8.3 Conclusions?

What conclusion should be drawn from such conflicts between our gut feelings and
the Von Neumann and Morgenstern theory? Few people want to admit that their gut
feelings are irrational and should therefore be amended. They prefer to deny that the
Von Neumann and Morgenstern postulates characterize rational behavior. But
consider the following informal experiment.

Would you prefer 96 x 69 dollars or 87 x 78 dollars? Most people say the former.
But 96 x 69 =6,624 and 87 x 78 =6,786. How should we react to this anomaly?
Surely not by altering the laws of arithmetic to make 96 x 69 > 87 x 78! So why
should we contemplate altering the Von Neumann and Morgenstern postulates after
observing experiments that show they don’t correspond with the gut feelings of the
man in the street? But if real people don’t honor the Von Neumann and Morgenstern
assumptions when making risky decisions, how are we to predict their behavior in
games?

The answer is similar to that given when we asked why anyone should care about
Nash equilibria (Section 1.6). Orthodox game theory can’t predict irrational be-
havior. It works only when players act rationally for some reason. For example,
it wouldn’t be very surprising to find a large insurance company systematically
seeking to maximize its long-term average profit. Such companies employ teams of
mathematicians to make sure that everything gets thought out properly. Nor should
we be surprised to find animals that have been shaped by evolution over eons acting
as though they were seeking to maximize their long-term average fitness.

However, what about games played by people like you and me? Although we are
neither genetic robots nor mathematical wizards, we aren’t stupid or incapable of
adjusting our behavior to new circumstances. If the three criteria of Section 2.9.2 are
satisfied, one might therefore hope that our play would evolve toward rationality in
at least some games. However, it is necessary to face up to the fact that the labo-
ratory evidence suggests that trial-and-error learning is especially difficult when the
feedback from our choices is confused by chance moves.
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Fortunately, we don’t just learn by trial and error. We also learn from books. Just
as it is easier to predict how educated kids will do arithmetic, so the spread of game
theory into our universities and business schools will eventually make it easier
to predict how decisions get made in economic life. If Pandora knows that 96 x
69 = 6,624 and 87 x 78 = 6,786, she won’t make the mistake of choosing 96 x 69
dollars over 87 x 78 dollars—unless she sometimes likes to throw her money away.
Once Allais had taught Savage that his choice behavior was inconsistent, Savage
changed his mind about how to choose in Allais’ Paradox. Similarly, I learned from
Zeckhauser that I don’t really want to pay more to get a bullet removed from a gun
with one bullet than from a gun with four bullets.

In brief, economic theory in general and game theory in particular are useful
predictive tools only when the conditions are favorable. Enthusiasts somehow
manage to convince themselves that the theory always applies to everything, but
such enthusiasm succeeds only in providing ammunition for skeptics looking for an
excuse to junk the theory altogether. The unwelcome truth in the case of theories of
human behavior under risk is that they have so far all performed badly in laboratory
experiments. The best that can be said for expected utility theory is that it doesn’t
perform as badly overall as any of the behavioral theories that have been proposed as
alternatives.

4.9 RouNDUP

The modern theory of utility takes choice behavior as basic. From the choices
players make in one set of situations, we deduce the choices they will make in
others, on the assumption that their behavior is stable and consistent. In the absence
of risk, consistency is expressed in terms of the preference relation a player reveals.
Rational preference relations are transitive and total. They need to be transitive to
immunize players against money pumps.

A rational preference relation < can be described using a utility function u. This
means that

ua) <ub) < a=b.

Many utility functions describe the same preference relation.

Modern utility theory is commonly confused with a Victorian theory that sought
to identify a util with a unit of pleasure or pain. Such a theory would explain our
motivations when making choices. But the modern theory eschews all explanatory
pretensions. It is a fallacy to say that Alice is motivated to choose a over b because
u(a) > u(b). We make u(a)> u(b) because we already know that Alice always
chooses a when b is available.

The game of Russian Roulette shows that one usually needs to know the players’
attitudes to taking risks to predict how they will play a game. The St. Petersburg
paradox shows that it isn’t adequate to assume that players will simply maximize
their expected gain in dollars. If they are consistent in the sense of Von Neumann
and Morgenstern, they will maximize the expected value of a Von Neumann and
Morgenstern utility function. The consistency assumptions are four in number:
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—

In win-or-lose problems, players maximize their probability of winning.

2. For each outcome, there is a win-or-lose lottery such that a player is indif-
ferent between the outcome and the lottery.

3. Players who are indifferent between two lotteries are willing to substitute
one for the other when they appear as prizes in a compound lottery.

4. Players honor the laws of probability when evaluating compound lotteries.

Given a lottery with prizes expressed in dollars, risk-averse players prefer to
replace the lottery with its expected value in dollars. Such players have concave Von
Neumann and Morgenstern utility functions. Risk-loving players prefer the lottery to
its expected value in dollars. They have convex Von Neumann and Morgenstern
utility functions. Risk-neutral players are indifferent between the lottery and its
expected value in dollars. Such players behave as though maximizing their expected
dollar gain.

A Von Neumann and Morgenstern utility function is unique up to a strictly
increasing affine transformation. This means that utility scales are related to each
other in the same way as temperature scales. One can choose the zero and the unit
arbitrarily, but then a utility scale is fixed. Because we may be measuring different
people’s utility on different scales, it isn’t meaningful to compare different people’s
utils without adding something to the Von Neumann and Morgenstern theory.

The Von Neumann and Morgenstern theory describes rational behavior under
risk, but the Allais and Zeckhauser paradoxes show that our gut feelings aren’t
always rational. Caution is therefore wise in evaluating economic work that takes for
granted that ordinary people are maximizers of expected utility.

4.10 FURTHER READING

Games and Decisions, by Duncan Luce and Howard Raiffa: Wiley, New York, 1982. This is an
old book, but its treatment of the Von Neumann and Morgenstern theory of risk has never been
surpassed.

Notes on the Theory of Choice, by David Kreps: Westview Underground Classics in Economics,
Boulder, CO, 1988. A great deal is explained without getting tangled up in more mathematics
than necessary.

Analytics of Uncertainty and Information, by Jack Hirshleifer and John Riley: Cambridge
University Press, New York, 1992. This is a book for the working economist that avoids
technicalities when possible.

Games and Economic Behavior, by John Von Neumann and Oskar Morgenstern: Princeton
University Press, Princeton, NJ, 1944. At a time when economists held that cardinal utility
functions were meaningless, Von Neumann spent an afternoon at Morgenstern’s behest
inventing the consistency postulates of Section 4.5.2 that overturned the current orthodoxy.
Their appendix on the subject is still relevant.

4.11 EXERCISES

1. If Pandora is rational, she first determines which alternatives are feasible and
then chooses an optimal alternative from her feasible set. Explain why Pandora
can never be made worse off by adding new alternatives to her feasible set if
this leaves the old alternatives unchanged. The following example of Amartya
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Sen points out the importance of the final proviso. A respectable lady is in-
clined to accept an invitation to tea until she is told that she will also have an
opportunity to snort cocaine. Her feasible set has expanded, but she now
declines the invitation. How has her view of the original alternative chan-
ged?!!

2. Rational players stay on the equilibrium play in a game because of what they
predict would happen if they were to deviate. One might therefore stretch a
point by arguing that the means that prevent a deviation determine the end
reached in equilibrium (Section 4.5.5). Show how one can accommodate a
critic who doesn’t want the end to justify the means (even in this abstruse
sense) by changing the payoffs in the strategic form of the game (Sec-
tion 2.4).

3. Show that one and only one of math

phfl

holds when = is a rational preference relation (Section 4.2.2).
4. Show that any consistent preference relation < is reflexive. That is, for any a,

a=a. math
5. If < is a rational preference relation and ~ is the associated indifference
relation, show that ~ satisfies reflexivity and transitivity. Show that the as- math
sociated strict preference relation < satisfies only transitivity. -
6. If < is a rational preference relation, show that .
math
a<band b<c = a<c. -
7. This exercise describes Condorcet’s Voting Paradox (Sections 18.3.2 and
19.3.1). Horace, Boris, and Maurice vote honestly on who should be admitted
to their club: Alice, Bob, or Nobody.'? Their preferences are
A <1 B<1 N
B <, N <, A
N <3 A <3 B.
Who wins a vote between Alice and Bob? Who wins between Bob and No-
body? Who wins between Nobody and Alice?
If we think of the voting as determining a social preference <, show that this
preference is intransitive, and so democratic societies are collectively irrational
in some situations.
8. Solve Pandora’s optimization problem of Section 4.3.1 in the case when
U:Q — R is defined by econ

(@ Ugv)y=gv (b Ulgv)=g+V.

""One can always eliminate such apparent paradoxes by carefully separating a player’s action, belief,
and consequence spaces when writing a model (Section 13.4).
">The rhyming triplets voted strategically in Exercise 2.12.26.
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9.

10.

11.

12.

13.

14.

15.

Construct two different utility functions that represent the preferences
a~b<c<d<e~f.

Pandora can buy gin and vodka in only one of the four following packages:

A=(1,2), B=(8,4), C=(2,16), or D= (4,8). When purchasing, she always

has precisely $24 to spend. If gin and vodka are both sold at $2 a bottle, she

sometimes buys B and sometimes D. If gin sells for $4 a bottle and vodka for $1

a bottle, then she always buys C. Find a utility function U:{A,B,C,D} — R

that is consistent with this behavior.

Pandora’s preferences satisfy ¥ < & < &, < #". She regards &, and &, as

being equivalent to certain lotteries whose only prizes are ¥ or %. The

appropriate lotteries are given in Figure 4.13. Find a Von Neumann and

Morgenstern utility function that represents these preferences. Use this to

determine Pandora’s preference in the lotteries L and M of Figure 4.13 on the

assumption that she is rational.

Alice’s preferences over money are represented by a Von Neumann and

Morgenstern utility function u: R , — R defined by u(x) =x“. What would be

implied about her preferences if a <0? What if a =0? Explain why Alice is

risk averse if 0 < @ < 1 and risk loving if a > 1.

If a=2, explain why Alice would pay $1 million for the opportunity to
participate in the lottery K of Figure 4.12. What is her dollar equivalent for the
lottery K?

In what sense is each extra dollar worth more to a risk-loving player than the

previous dollar?

Pandora’s Von Neumann and Morgenstern utility function is chosen so that her

utility for dollars satisfies #(0) =0 and u(10) = 1.

a. If Pandora is risk averse, explain why (1) > 0.1 and u(9) > 0.9.

b. In one lottery L, the prizes $0, $1, $9, and $10 are available with respective
probabilities 0.4, 0.3, 0.2, and 0.1. In a second lottery M, the same prizes are
available with respective probabilities 0.5, 0.2, 0.1, and 0.2. Explain why a
risk-averse Pandora would violate the Von Neumann and Morgenstern ra-
tionality assumptions if she expressed the preference L < M.

Bob’s kindly but dissolute uncle offers him a choice for his birthday present.

Two independent lotteries are taking place today and tomorrow. In each lot-

tery, there is a single prize of $1,000. Bob can have either one ticket in both

® | w ® | w
By~ By~
0.6 |04 0208
Ll | By | W LD | By | W
L= M =
25| 25| 25 25 20| .15 | .50 | .15

Figure 4.13 Lotteries for Exercise 4.11.1.
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lotteries or two tickets in one lottery. If he is risk averse, show that he will
prefer the latter option. Although most people are risk averse when it comes to
taking out insurance policies, they nevertheless seem to prefer the former
option. Offer a possible explanation based on Section 4.5.4.

In the previous problem, Bob desperately needs $1,000 to pay off a loan shark.
He therefore regards all amounts in excess of $1,000 as being equivalent. Show
that he will necessarily prefer the second option. Relate the answer to the ad-
vice offered at the end of Section 3.5.2.

If applying backward induction to the version of Russian Roulette shown in
Figure 4.4 yields that player I uses strategy AAD and player II uses strategy
DDD, what can be said about the values of a and b?

Version 1 of Russian Roulette has only one chance move located at the be-
ginning of the game. All games with chance moves can be expressed as an
extensive form with this structure, provided that care is taken in specifying
where the information sets go. Draw an extensive form of Gale’s Roulette of
Exercise 3.11.31 in which Chance moves only once at the beginning of the
game. To simplify the task, assume that the casino has rigged the wheels so
that the numbers on which they stop always sum to 15.

The rules of Gale’s Roulette of Exercise 3.11.29 are changed so that the loser
must pay the winner an amount in dollars equal to the difference in their
scores. If both players are risk neutral over money, explain why they won’t
care which choices they make in the game (Exercise 3.11.32).

In the version of Gale’s Roulette of Exercise 4.11.19, player I’s preferences are
altered so that his utility for money is described by the Von Neumann and
Morgenstern utility function ¢,: IR — IR given by ¢(x) = 3*. Denote the event
that player I chooses wheel i and player II chooses wheel j by (L, L;). List the
six possible events of this type. For each such event, find player I's dollar
expectation and the utility that he assigns to getting a dollar amount equal to
this expectation. Also find player I’s expected utility for each of the six events.
Is player I risk averse? Is player II risk averse if her Von Neumann and
Morgenstern utility function ¢, : R — R is given by ¢(x) =—3""?

A charity is to sponsor a garden party to raise money, but the organizer is
worried about the possibility of rain, which will occur on the day chosen for
the event with probability p. She therefore considers insuring against rain. Her
Von Neumann and Morgenstern utility for money u: R — IR satisfies v/(x) >0
and " (x) < 0 for all x. Why does she like more money rather than less? Why is
she strictly risk averse? Why is the function v’ strictly decreasing?

If it is sunny on the day of the event, the charity will make $y. If it rains, the
charity will make only $z. The insurance company offers full insurance against
the potential loss of $(y — z) from rain at a premium of $M, but the organizer
may decide against full coverage by paying only a fraction f of the full pre-
mium. This means that she pays $Mf before the event, and the insurance
company repays $0 if it is sunny and $(y — z) fif it rains. (Keep things simple by
not making the realistic assumption that fis restricted to the range 0 < f < 1.)
a. What is the insurance company’s dollar expectation if she buys full insur-

ance? Why does it make sense to call the insurance contract fair if

M=p(y—2)?
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25.

b. Why does the organizer choose f to maximize (1 — p)u(y — Mf) +pu(z+
(y — 2f — Mf)? What do you get when this expression is differentiated with
respect to f?

c. Show that the organizer buys full insurance (f=1) if the insurance contract
is fair.

d. Show that the insurance contract is fair if the organizer buys full insur-
ance.

e. If the insurance contract is unfair, with M > p(y — z), show that the organizer
definitely buys less than full insurance (f<1).

f. How would the organizer feel about taking out a fair insurance contract if
she were risk neutral?

Reverse the prizes $0 million and $5 million in the lotteries of Figure 4.12. Are

Savage’s original preferences still inconsistent?

The cylinder of a six-shooter containing fwo bullets is spun, and the barrel is

then pointed at a rich man’s head (Section 4.8.2). He is now offered the op-

portunity of paying money to have the two bullets removed before the trigger is
pulled. It turns out that the payment can be made as high as $10 million before
he becomes indifferent between paying and taking the risk of getting shot.

a. Why would the rich man also be indifferent between having the trigger
pulled when the revolver contains four bullets and paying $10 million to
have one of the bullets removed before the trigger is pulled? (Assume that
he is rational in the sense of Von Neumann and Morgenstern.)

b. Why wouldn’t the rich man be willing to pay as much as $10 million to
have one bullet removed from a revolver containing only one bullet?

A misanthropic billionaire enjoys seeing people make mistakes. Claiming to be

a philanthropist, he shows Pandora two closed boxes containing money.

Pandora is to keep the money in whichever box she chooses to open. The

billionaire explains that, however much she finds in the box she opens, the

probability that the other box will contain twice as much is % Since the boxes
are identical in appearance, Pandora opens one at random. It contains $n.

Being risk neutral, she now calculates the expected dollar value of the other

box as %(%n)—l— %(Zn) = 5n/4. When she laments at having chosen wrongly,

the misanthropic billionaire departs chuckling with glee.

a. Could Pandora have chosen better?

b. What is paradoxical about this story?

c. Did Pandora calculate the expected dollar value of the other box correctly?

d. Suppose that the billionaire actually chose the boxes so that the probabil-
ity of one containing $2* and the other containing $2 "' is p, (k=0,%1,
+2,...). If Pandora knew this and opened a box containing $n = 2K, explain
why her conditional probability that the other box contains $2n would be
Pi!/(Pr+ pix —1). What would be her conditional probability that the other
box contains $1n?

e. Continuing (d), which law of probability would the probabilities p, fail to
satisfy if what the billionaire said to Pandora were correct?

The billionaire of the previous exercise is displeased at being exposed as a liar,

and so he proposes another choice problem for Pandora. He chooses a natural

number k with probability p; >0 (k=1,2,...) and then puts $M; in one box
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and $M, . | in the other. Pandora again selects a box at random. If the bil-
lionaire arranges matters so that M, > M, and

My 1pi+Mi1pi—1 > Mype +Mypi—y (k= 1,2, ...),

explain why Pandora will always regret not having chosen the other box.Verify
that the choices M; = 3% and Pk = (%)k suffice to make the billionaire’s plan
work.

Suppose that Pandora is no longer risk neutral as in the previous exercise.
Instead, M; now represents her Von Neumann and Morgenstern utility for
whatever the billionaire puts in a box. Explain why her expected utility before
she looks in a box is given by

IPIMy A+ 370 5 (et P )M

If this expected utility is finite, show how summing the displayed inequality of
the previous exercise between appropriate limits leads to the conclusion that
My 1 >M, (k=23,...).

Explain why it follows that the billionaire can’t play his trick on Pandora
unless her initial expected utility is infinite. Relate this conclusion to the St.
Petersburg paradox of Section 4.5.1.

Explain why Pandora will be immune to the billionaire’s trick in the Box
Swapping paradox of the previous exercise only if her Von Neumann and
Morgenstern utility for money is bounded. If she is immune, why does it
follow that she can’t always be risk loving when choosing among lotteries
whose prizes are monetary amounts?

Pandora finds herself in Hell, but the Devil offers her a way out. She gets one
chance to participate in a lottery in which the prizes are an eternity in either
Heaven or Hell. If she says yes to the lottery on her nth day in Hell, she gets
Heaven with probability (n — 1)/n and Hell with probability 1/n. The philo-
sophical paradox is that if she always waits one more day to improve her
chances of Heaven, she will spend eternity in Hell anyway.

Explain why the paradox neglects the disutility of spending an extra day in

Hell. Demolish the objection that this disutility must be negligible compared
with an eternity in Hell because eternity consists of an infinite number of days.
The moral is that if it doesn’t matter when you get something, then it doesn’t
matter if you get it.
Pascal’s Wager represents a more serious attempt to use probabilistic argu-
ments in theology than the previous exercise. Pandora can choose to follow the
straight and narrow path of rectitude (good) or she can indulge her passions
(bad). If there is an afterlife, the ultimate reward for living a good life and the
punishment for living a bad life will be infinitely more important than anything
that might happen on this earth. Pascal’s argument is therefore that Pandora
ought to be good, even if she believes that the probability of an afterlife is very
small.

Explain why its use of infinite magnitudes means that Pascal’s Wager can’t
be accommodated within the Von Neumann and Morgenstern theory. Omitting
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the word infinitely from Pascal’s assumptions, formulate a version of the wager
that shows it is rational for Pandora to be good if the probability of an afterlife
isn’t too small.

Of course, Pandora may doubt Pascal’s implicit assumption that only his
religion is viable. Analyze a version of the wager in which two religions offer
diametrically opposed views on what counts as good or bad.



5.1 STRATEGIC FOrMS

A game defined in terms of a tree is said to be given in extensive form. A pure
strategy in the extensive form of a game specifies an action at each of a player’s
information sets. A pure strategy profile specifies a pure strategy for each player. If
the players stick with these pure strategies, the resulting play of the game is entirely
determined in a game without chance moves.

In a game with chance moves, a pure strategy profile determines a lottery over
the possible plays of the game. We assess such lotteries using Von Neumann and
Morgenstern utilities that we call payoffs. Rational players then act as though at-
tempting to maximize their expected payoff in the game.

The strategic form of a game tells us what payoff a player will get for each
strategy profile that might be played. In a two-player game, we usually specify
a strategic form with a table. We have already seen many outcome tables, but we
stopped giving the outcomes in terms of payoffs after Chapter 1. However, now that
we understand what game theorists mean by a payoff, we can can proudly point to
the Prisoners’ Dilemma as the most famous example of the strategic form of a game.

Von Neumann and Morgenstern invented both the extensive and the strategic
form of a game. They called the latter a normal form in the belief that one would
normally use the extensive form only as a transitional stage in constructing the
strategic form. Such an approach amounts to arguing that one can always assume
that the players begin a game by making a firm preplay commitment to a particular
strategy. But things have moved on since the time of Von Neumann and Morgen-
stern. Game theorists learned from Thomas Schelling that one needs to be much
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more careful when modeling credible commitments. When the basics of working
with strategic forms have been nailed down, the chapter looks at some examples in
which credibility and commitment are important.

5.2 PAYOFF FUNCTIONS

If player I chooses pure strategy s and player II chooses pure strategy ¢, then the
course of a two-player game is entirely determined, except for the game’s chance
moves. The pair (s, f) therefore determines a lottery L over the set Q of pure out-
comes of the game. The payoff m;(s, #) that player i gets when the pair (s, ¢) is used is
the expected utility of the lottery L. That is to say,

7;(s, 1) = &u;(L).

If S is the set of all player I's pure strategies and T is the set of all player II's pure
strategies, then 7; : SXT — R is player i’s payoff function.

A profile of payoff functions is an algebraic way of representing the strategic
form or payoff table of a game. If S = {51, 5} and T= {1, 15, 13}, the payoff table has
two rows and three columns. If the payoff functions are given by

(s, ) =i,
ma(si, 1) = (i—2)(j—2),

then the entries in the payoff table are as shown in Figure 5.1. Player I's payoff
m1(s, 1) goes in the southwest corner of the cell in row s and column ¢. Player II’s
payoff m,(s, ) goes in the northeast corner.

A strategic form is sometimes called a bimatrix game because it is determined by
two payoff matrices. In Figure 5.1, player I's payoff matrix is A, and player II's
payoff matrix is B, where

10 -1
A‘{z 4 6]’ B_[o 0 0}

In a game with more than two players, a player’s payoff function can’t be rep-
resented as a two-dimensional array like a matrix. With n players, we need an
n-dimensional array. Figure 5.2(a) shows a three-dimensional payoff array for
player I in a game with two pure strategies for each of three players. We usually
think of such an array as a stack of matrices. The whole strategic form can then be

| %) 13
1 0 -1
1 2 3

2,0, 0 °

S1

Figure 5.1 A bimatrix game.
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left right
1 1
top 1 0
1 1
1 1
1 bottom 1 0
\ 1 / up
! _—1 ! left  right
to
(a) Players I's P ! 0
payoff array 1 0
0 0
bottom 1 0
0 1
(b) down

Figure 5.2 The strategic form of a game with three players. Player I chooses a row. His payoffs are at
the bottom left of each cell. Player II chooses a column. Her payoffs are in the middle of each cell.
Player III chooses a ‘matrix.” His payoffs are in the top right of each cell.

represented as in Figure 5.2(b). Player I chooses the row. Player II chooses the
column. Player III is usually said to choose the “matrix.”"

Payoff matrices appeared for the first time in Section 1.3.1 when the Prisoners’
Dilemma was introduced, so nothing is new here except for the notation. However, it
isn’t always easy to compute a player’s payoff function when a complicated game is
given in extensive form. Some examples may help to show how one goes about this
task.

5.2.1 A Strategic Form for Duel

Recall that Tweedledum is player I and Tweedledee is player II in the game Duel of
Section 3.7.2. The outcome #" is the event that player II gets shot. The outcome ¥
is the event that player I gets shot. The lottery in which #" occurs with probability g
and ¢ with probability 1 — g is denoted by q.

Payoff Functions. Calibrate the players Von Neumann and Morgenstern utility
functions u;:{ %, %"} — R so that u; (L) = up(#") = 0, and u1 (#") = up(&¥) = 1.
We then have &u;(q) = g and &uy(q) = 1 —g¢, which is just a fancy way of saying
that both players want to maximize the probability of surviving. Notice that the
players’ payoffs always sum to one.

"When people talk about the payoff matrix of a game without saying whose payoff matrix it is, they
usually mean the payoff table of the game.
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What matters in Duel is how close you get to your opponent before pulling the
trigger. A pure strategy that calls for a player to plan to open fire at node d will be
denoted by d. There are many such strategies that differ in what they specify at later
nodes, but they would be indistinguishable from each other if we included them all
in the strategic form of Duel (Section 2.4).

If player I uses pure strategy d and player II uses pure strategy e, then the outcome
of the game depends on who fires first. If d > e, so that player I fires first, the result is
the lottery py(d). If d < e, so that player II fires first, the result is the lottery 1 — pa(e).
Player I’s payoff function is therefore given by

(. &) — pi(d), if d>e, 5.1)
ne 1—pa(e), if d<e. '

Player II’s payoff function is given by m,(d,e) =1 — m,(d, ).

Payoff Table. To obtain a payoff table with numerical entries, we have to assign
values to the parameters of the game. We begin by setting D=1 and

d, =01k (k=0,1,2...10).
The probabilities p;(d) and p,(d) are taken to be the same as in the final paragraph

of Section 3.7.2. That is to say, py(d) = 1 —d and p»(d) = 1 — d*. The payoffs that go
in row d, and column ds of Figure 5.3 are therefore

dy=09 d7=07 ds=05 dy=03 d;=0.1

[1.00]] [ro00] [Lro00]| [1.00]| [1.00]
le =1.0
0.00 0.00 0.00 0.00 0.00
0.19 [0.80]| [0.80]| [0.80]| [0.80]
dg =0.8
020 020 020 0.0
0.19 0.51 [0.60]| [0.60]| [0.60]
dg = 0.6
040|040
0.19 0.51 0.75 0.40 0.40
d4 =04
0.25 0.60
0.19 0.51 0.75 091 0.20
dz =0.2
025 009  |0.80
0.19 0.51 0.75 0.91
dy = 0.0
025 009 |0.01

Figure 5.3 A strategic form for Duel. The payoff table is strictly a reduced strategic form, as we have
identified all the pure strategies that call on a player to fire at distance d. Note the unique Nash
equilibrium (dg, ds).
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mi(da, ds) = 1—py(ds) = 1 —(1—d?) = d? = (0.5)* = 0.25,
Ty (dr,ds) = 1 —m(d>, ds) = 0.75.

Nash Equilibria. A pair (o,7) of strategies is a Nash equilibrium in a two-player
game if ¢ is a best reply to 7 and 7 is simultaneously a best reply to ¢ (Section 1.6).
This is the same as requiring that the inequalities

mmwzmww} (5.2)

my(0,7) 2 m2(0, 1)

hold for all pure strategies s and 7. The first inequality says that player I can’t
improve on ¢ if player II doesn’t deviate from 7. The second inequality says that
player II can’t improve on 7 if player I doesn’t deviate from .

Circles and squares have been used to show best-reply payoffs in Figure 5.3
(Section 1.3.1). For example, 0.80 is enclosed in a square four times in row dg to
indicate that d;, ds, d3, and d; are all best replies for player II to the choice of dg by
player 1.

The only cell with both payoffs enclosed in a circle or a square lies in row dg and
column ds. So (dg, ds) is the only Nash equilibrium in pure strategies.2

Conclusion. How does this result compare with our previous analysis of Duel?
Section 3.7.2 used backward induction to determine a subgame-perfect equilib-
rium for the game. The method used here is less refined in that it finds all Nash
equilibria in pure strategies. Recall that any subgame-perfect equilibrium is also a
Nash equilibrium, but some Nash equilibria aren’t subgame perfect (Section 2.9.3).
However, we have only one Nash equilibrium in this case, and so it must coincide
with the subgame-perfect equilibrium that an application of backward induction
would uncover.

Section 3.7.2 observes that rational players open fire when they are about distance
o= (\/§ —1)/2 = 0.62 apart, provided the nodes do, d, ..., d, are closely spaced.
In the version of Duel studied here, the distance between nodes is 0.1, so the spacing
isn’t particularly close. Nevertheless, player I opens fire at distance dg = 0.60, which
isn’t too far from o.

5.2.2 A Strategic Form for Russian Roulette

It is necessary to work a little harder to compute the payoff functions in the Russian
Roulette game of Section 4.7.

Figure 5.4(a) repeats version 2 of the extensive form of Russian Roulette from
Section 4.4.2. Figure 5.4(b) is a reduced strategic form in which only four of each
player’s eight pure strategies have been included. Russian Roulette is a waiting
game like Duel. All that really matters is how long a player is prepared to wait before
chickening out. As in Duel, we therefore really need only one pure strategy for each
possible waiting time.

2The pair (de, ds) is a saddle point of player I's payoff matrix, but only in strictly competitive games
like Duel do saddle points always correspond to Nash equilibria (Section 2.8.2).
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(a) Extensive form

DDD ADD AAD AAA
1 1 1 1
DDD
a a a a
ADD | 5 L 1,2 ‘ 1,2 ‘ 1,2 ‘
5 s t3a s t3a 6134
T T I I
AAD | s 2 ! 1,1
6 3 3734 3734
1,5 1,1 1,1 1
aad|s Tl 3TEbp o ateb) p
6 3 2 2
(b) Reduced strategic form
plays [4d] [AaAd] [AadaAd] [AadadaD]
1 0 1 b
ayoffs
pay 0 1 0 1
I 1 501_1 541 _1(5,4,3_1
probabilities 5 §X3555 |6X5X355|6X5X3=3

(c) The lottery corresponding to (44D, ADD)

Figure 5.4 A reduced strategic form for Russian Roulette.

Figure 5.4(c) illustrates a method for finding the entries in the strategic form for
the pure strategy pair (AAD, ADD). When this pure strategy pair is used, the possible
plays of the game that might result depend on the choices made by Chance. Her
choices are denoted by a for across and d for down.

The play [AaAaAd] occurs if Chance plays a at the first and second chance
moves and then d at the third chance move. The probability of this play is
prob(aad) = 2 x 2 x ; = £, which is the probability that the bullet is in the third
chamber of the revolver.
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The expected utility of the lottery resulting from the use of (AAD,ADD) is
obtained by multiplying each of a player’s payoffs by the probability with which it
occurs and then summing the resulting products. Thus,

2

T(AAD, ADD) = 1x § +0x ¢ +1x} +bx 3

m(AAD, ADD) = 0x 1 +1x14+0xL+1x1=
2:

2
37
1 1

3+3b.

5.3 MATRICES AND VECTORS

We don’t need to know much about matrices to study bimatrix games. Even the
material surveyed here is more than is really essential.

5.3.1 Matrices

An m X n matrix is a rectangular array of numbers with m rows and n columns. In the
following examples, A is a 2 X 3 matrix and B is a 3 X 2 matrix:

2 3
[0 eefioo
0 -3

The standard notation sometimes invites confusion between a matrix and a number.
In particular, the zero matrix, whose entries are all zero, is always denoted by 0,
whatever its dimensions may be. You have to deduce from the context whether 0 is
the zero number or a zero matrix. However, it is always important to be quite clear
about what a number is and what a matrix is.

The difference between numbers and matrices is sometimes emphasized by re-
ferring to numbers as scalars. Our scalars are always real numbers, but they are often
complex numbers in other contexts.’

Transposition. To obtain the transpose M7 or M of a matrix M, you swap its rows
and columns. For example,

1

ol BT—P 1 0]

T _
A= , 30 -3

— O W

If Mis a 1 x 1 matrix, then M = M. It is always true that (M ")" = M.

If M is an m X n matrix, then M = M can hold only if m=n, so that M is a
square matrix. A square matrix M for which M = M " is said to be symmetric. Some
examples are

*However, scalars must belong to some algebraic field. It follows that a payoff table isn’t properly a
matrix because a multidimensional vector space isn’t a field.
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12
1:[(1) ﬂ; J=12 1
303

—_ W W

Symmetric Games. A symmetric game is one that looks the same to all the players.
In a two-player game, the rows of player I’s payoff matrix A must therefore be the
same as the columns of player II’s payoff matrix B. Thus B must be the transpose of
A,sothat B=AT (and A = B").

Although the payoff matrices in a symmetric game must be square, they usually
aren’t themselves symmetric. For example, the Prisoners’ Dilemma is a symmetric
game whose payoff matrices aren’t symmetric.

5.3.2 Vectors

An n-dimensional vector is a list of n real numbers x;, x,, ..., x,, that are called its
coordinates. The set of all n-dimensional vectors with real coordinates is denoted by

R"=RxRx---xR.

We are accustomed to writing x = (xy, x5, . .., X,,), but when using matrix algebra, it
should always be assumed that x is an n X 1 matrix called a column vector. The
corresponding n x 1 row vector is then x', so that:

As in Figure 5.5(a), a vector x = (x,x»,) in IR? can be identified with a point in a
plane referred to as Cartesian axes. The zero vector 0 = (0, 0) then lies at the origin
of the pair of axes.

We can also regard x as the displacement that moves everything x; units to the
right and x; units up. As in Figure 5.5(b), the displacement can be represented as an
arrow with its blunt end at the origin and its sharp end at the location x. However,
any arrow with the same length and direction represents exactly the same dis-
placement, and so we are free to put arrows anywhere convenient when drawing
diagrams.

Ordering Vectors. If x; < yi, X < yo,..., X, < y,, then we write x < y. For
example,

3
< |2 (5.3)
-1 0

The set of all x in R? withx < yis shown in Figure 5.6(a). The set of all x in R? with
x > y is shown in Figure 5.6(b). These two sets don’t make up the whole of R?,
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X) @ ----- ox = (x1, x7) X
I
I
i
i X
|
i
.
0=(0,0) 0
(a) Vector as location (b) Vector as displacement

Figure 5.5 Vectors as locations or displacements.

because the relation < is only a partial ordering since it doesn’t satisfy the totality
requirement of Section 4.2.2. For example, neither of the inequalities (1,2) < (2, 1)
or (2,1) > (1,2) is true.

The notation x <y is sometimes used to mean that x; <y, Xo < Vo,. .., X, < Y,
but this book uses the notation x < y for this purpose. We use the notation x <y to
mean that x < y butx # y. We can therefore replace < in (5.3) by < but not by <.

5.4 DOMINATION

Alice doesn’t care whether the companies in which she invests actually make money
or not. She is only interested in whether their shares go up in value. Whether they go
up in value depends on what other people believe about the shares. Investors like
Alice are therefore really investing on the basis of their beliefs about other people’s
beliefs. If Bob plans to exploit investors like Alice, he will need to take account of
his beliefs about what she believes about what other people believe. If we want to

X2 X2

0 X1 0 X1

(a) (b)

Figure 5.6 Ordering vectors in IR,
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exploit Bob, we will need to ask what we believe about what Bob believes about
what Alice believes about what other people believe.

John Maynard Keynes famously used the beauty contests run by newspapers of
his time to illustrate how these chains of beliefs about beliefs get longer and longer
the more one thinks about the problem. The aim in these newspaper contests was to
choose the girl chosen by most other people. Game theorists prefer to illustrate the
problem with a game in which the winners are the players who choose a number that
is closest to two-thirds of the average of all the numbers chosen by the players.

If the players are restricted to whole numbers between 1 and 10 inclusive, only a
foolish player will choose a number above 7 because the average can be at most 10,
and 2 $x10 = 62 You therefore improve your chances of winning by playing 7
1nstead of 8,9, or 10. In the language of Section 1.7.1, strategies 8, 9, and 10 are
weakly dominated by strategy 7.

However, if nobody thinks that anyone is stupid enough to play 8, 9, or 10, then
everybody believes that the average will be at most 7, and 3 x7 = 43. It would
therefore be foolish to play more than 5. But if nobody thinks that anyone is stu-
pid enough to play above 5, then the average will be at most 5, and 2 X5 = 31
It would then be unwise to play more than 3. Continuing in this way, we find that
everybody will choose 1—provided that everybody believes that everybody is clever
enough to work through all the necessary steps.

This method of solving a game is called the successive or iterated deletion of
dominated strategies.

5.4.1 Strong and Weak Domination

We met strongly dominant strategies in Section 1.3.1 when studying the Prisoners’
Dilemma. Weakly dominant strategies appeared in the Film Star Game of Section
1.7.1. We now need to put these ideas on firmer ground.

Player I has two pure strategies in the game of Figure 5.1. Pure strategy s,
strongly dominates pure strategy s;. The former is therefore better than the latter for
player I whatever player II may do. In algebra:

(2 4 6]>[1 2 3].

None of player II's pure strategies in the game of Figure 5.1 are strongly domi-
nated, but pure strategy #; weakly dominates pure strategy #,. The former is therefore
never worse than the latter, and there is at least one strategy that player II could choose
that would make it strictly better. Similarly, #; weakly dominates #3, and #, weakly

dominates #5. In algebra:

1 S 0. 1 S|~ 1. 0 S|~ 1

0 0y’ 0 0}’ 0 (U
If we had included all the pure strategies for Duel in the strategic form of Figure 5.3
(instead of picking one representative pure strategy for each decision node d), then
the payoff table would have had many identical rows and columns. But neither of the

two strategies that correspond to such identical rows or columns is said to weakly
dominate the other.
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Nor is it true that saying that s weakly dominates r excludes the possibility that s
strongly dominates #—any more than saying that Pandora is somewhere in the house
excludes the possibility that she is in the kitchen. Since this small point is a perennial
source of confusion, it is fortunate that everybody understands that to say s domi-
nates t covers both the case in which the domination is strong and the case in which
the domination is weak but not strong.

5.4.2 Deleting Dominated Strategies

A rational player will never use a strongly dominated strategy. Critics who argue to
the contrary for games like the Prisoners’ Dilemma usually don’t understand how a
payoff in a game is defined (Section 1.4.2).

In seeking the Nash equilibria of a game, it therefore makes sense to begin by
deleting all the rows and columns corresponding to strongly dominated strategies.
For example, row s; may be deleted in the game of Figure 5.1. We are then left with
the simple 1 x 3 bimatrix game of Figure 5.7.

In the 1 x 3 bimatrix game of Figure 5.7, none of player II’s pure strategies are
dominated, not even in the weak sense. No further reductions are therefore possible
using domination arguments. The remaining strategy pairs (s, 1), (52, £2), and (s3, 3)
are all Nash equilibria of the game of Figure 5.1, but it certainly isn’t always true that
only Nash equilibria are left after all dominated strategies have been deleted.

Duel. Figure 5.8 demonstrates the use of the same technique with the 6 x 5 bimatrix
game of Figure 5.3. Domination considerations are used to reduce the game to the
single cell (dg, ds) that Section 5.2.1 identified as the unique Nash equilibrium of this
version of Duel. The steps in the reduction are:

Step 1. Delete row d; because it is strongly dominated by row dg.

Step 2. In the 5 x 5 bimatrix game that remains, delete column dy because it is
strongly dominated by column d;.

Step 3. Inthe 5 x 4 bimatrix game that remains, delete row dg because it is strongly
dominated by row dg.

Step 4. In the 4 x 4 bimatrix game that remains, delete column d; because it is
strongly dominated by column ds.

Step 5. In the 4x3 bimatrix game that remains, delete row d because it is strongly
dominated by row dg.

We now have a 3 x 3 bimatrix game with no strongly dominated pure strategies.
To make further progress, strategies that are only weakly dominated must be deleted,
but some caution is necessary when you go down this road.

1 5] 13

52

Figure 5.7 A simplified version of Figure 5.1
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dy dy ds d; di

dio Step 1
dg Step 3
ds Nash
Step 8
dy | Step 2 Step 9 Step 6
Step 4
dy Step 7
dy Step 5

Figure 5.8 Successively deleting dominated strategies in Duel.

It never hurts Pandora to throw away her weakly dominated strategies, but it
doesn’t follow that it is necessarily irrational for her to choose a weakly dominated
strategy. Games often have Nash equilibria that require the play of weakly domi-
nated strategies. Such Nash equilibria are lost if we always delete any dominated
strategy. However, the simplified game that remains after the process of deleting all
dominated strategies is over always retains at least one Nash equilibrium of the
original game.

Step 6. In the 3 x 3 bimatrix game remaining after Step 5, delete column d; because
it is weakly dominated by column d5.

Step 7. In the 3 x 2 bimatrix game that remains, delete row d, because it is strongly
dominated by row dg.

Step 8. In the 2 x 2 bimatrix game that remains, delete column d; because it is
weakly dominated by column ds.

Step 9. In the 2 x 1 bimatrix game that remains, delete row d, because it is strongly
dominated by row dg.

This long sequence of deletions leaves the 1 x 1 bimatrix game consisting of the
single cell of the original game that lies in row dg¢ and column ds. Since the final
game must retain at least one Nash equilibrium of the original game, we have
therefore shown yet again that (dg, ds) is a Nash equilibrium of Duel.

5.4.3 Knowledge and Dominated Strategies

Tweedledum doesn’t need to know anything about Tweedledee to decide that it isn’t
a good idea to use a strongly dominated strategy in Duel. The two brothers famously
have a low opinion of each other, but it is irrational to use a strongly dominated
strategy even if your opponent is a chimpanzee.
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However, to justify deleting column dg at Step 2 in Section 5.4.2, Tweedledee
has to know that Tweedldum is sufficiently rational that he can be relied upon not
to use the strongly dominated strategy d;o. To justify deleting row dg at Step 3,
Tweedledum has to know that Tweedledee will delete column dy at Step 2. Thus
Tweededum has to know that Tweedledee knows that Tweedledum isn’t so irra-
tional as to play a strongly dominated strategy. To justify the deletion of column d;
at Step 4, Tweedledee has to know that Tweedledum knows that Tweedledee knows
that Tweedledum isn’t so irrational as to play a strongly dominated strategy.

To justify an arbitrary number of deletions, we need to assume it to be common
knowledge that no player is sufficiently irrational as to play a strongly dominated
strategy. This isn’t the first time that common knowledge has been mentioned. Nor
will it be the last, but we will do no more at this stage than to note the technical sense
in which game theorists use the term.

Something is common knowledge if everybody knows it; everybody knows that
everybody knows it; everybody knows that everybody knows that everybody knows
it; and so on.

It isn’t always necessary, but game theorists usually take for granted that the rules
of a game and the preferences of the players are common knowledge. In analyz-
ing games, they often also need to assume it to be common knowledge that all the
players subscribe to appropriate rationality principles—although they seldom say
so explicitly. The weakest of all such rationality principles is that which counsels
against the use of strongly dominated strategies.

5.4.4 Backward Induction and Dominated Strategies

Backward induction has been our most powerful technique for solving games up to
now, but it depends heavily on having access to an extensive form. So what happens
when we move on to the strategic form of a game? Must we then throw backward
induction out of the window? The answer is no. We can always mimic the backward
induction process by deleting dominated strategies in the appropriate order.

The Tip-Off Game of Section 2.2.1 provides a simple example. Figure 5.9 repeats
Figures 2.1(a) and 2.2(a), except that payoffs are now assigned to the outcomes. The
firm gets 1 for the outcome #" and O for the outcome #. The agency gets 0 for %~
and 1 for &Z.

To solve the Tip-Off Game by backward induction, begin by doubling the
agency’s action 7 at the decision node in the extensive form reached after the firm
plays T. This procedure is equivalent to deleting the pure strategies # and 7t from
the strategic form because these are all the pure strategies in which the agency
plays ¢ after the firm plays 7. The next step is to double the agency’s action ¢ at the
decision node in the extensive form reached after the firm plays #. This procedure
is equivalent to deleting the pure strategies 7t and 7T from the strategic form
because these are all the pure strategies in which the agency plays T after the firm
plays .

We are then left with a 2 x 1 game that can’t be reduced any further. Both of the
two cells in this reduced game correspond to subgame-perfect equilibria of the
original game because, if the agency plays pure strategy ¢7, then the firm gets a
payoff of 0 whatever it does.

155



156 Chapter 5. Planning Ahead

tt T Tt T

(a) (b)

Figure 5.9 Extensive and strategic forms for the Tip-Off Game. Outcomes are given in terms of
payoffs to the firm and the agency. Doubling the action 7 at the agency’s right node in Figure 5.9(a)
corresponds to deleting the strategies ## and 7t in Figure 5.9(b). Doubling the action ¢ at the agency’s
left node corresponds to deleting the strategies 7t and 77.

5.4.5 Problems with Domination

At one time, game theorists were more enthusiastic about the successive deletion of
dominated strategies. Even today, the method is still sometimes recommended
without reservation for “solving” games in which its use leads to a unique strategy
profile. Such authors treat the fact that it isn’t necessarily irrational to use a weakly
dominated strategy as the minor irritant it would be if all players were forced to use
each of their pure strategies with some tiny minimal probability. However, both
experimental work and evolutionary theory confirm that caution is necessary when
weakly dominated strategies are deleted, lest something that matters is thrown away.
Nobody doubts the value of the technique as a computational device, but it needs to
be used with discretion.

Figure 5.10(a) provides an example of a Nash equilibrium that is eliminated when
weakly dominated strategies are deleted. Usually the equilibria that get eliminated
deserve no better fate because no rational player would ever think of using them, but
one can’t count on this being the case. For example, the Nash equilibrium eliminated
in Figure 5.10(a) is the one in which the players get a payoff of 100 each. Subgame-

f ) h 5]

51 1 0 5 0 100
1 100 0 0

5 100 100 s 0 0
0 100 100 0

(a) (b)

Figure 5.10 Deleting weakly dominated strategies. The Pareto-efficient Nash equilibrium is eliminated
in Figure 5.10(a). The order of deletion matters in Figure 5.10(b).
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perfect equilibria can also get eliminated if one isn’t careful about the order in which
strategies are deleted.”*

It doesn’t matter in which order we delete strongly dominated strategies, but
Figure 5.10(b) shows that the same isn’t true for weakly dominated strategies.
Depending on whether we first eliminate player I’s first pure strategy or player II's
first pure strategy, we are led to different reduced games with different properties.

5.5 CREDIBILITY AND COMMITMENT

So far, we have mostly applied backward induction and the successive deletion of
dominated strategies to strictly competitive games, where their use is relatively
uncontroversial. However, their application becomes debatable when more general
games are considered.

We already met one of the lines of criticism in Section 1.7.1 when considering the
transparent disposition fallacy. We begin by reviewing this fallacy in the context of
the Wonderland hat market of Section 1.5.2.

5.5.1 Follow the Leader

As in Section 1.5.2, Alice and Bob are hat producers. Alice can only produce either
a=4 or a=6 hats. Bob can only produce b=3 or b =4 hats. Both players are
interested only in maximizing their profit in dollars.

We simplify the cost assumptions of Section 1.5.2 by making Alice’s and Bob’s
cost functions linear. Each faces a constant unit cost of $3, so it costs each player 3A
dollars to make 4 hats. The demand equation is also simplified to p + h = 15, where
p is the price at which each hat sells when the total number of hats produced is
h=a+b.

Cournot’s Model. Cournot studied the case in which Alice and Bob are both already
in the market and independently decide how many hats to produce without knowing
the production decision of the other (Section 1.5.2). We then say that they are
playing a simultaneous-move game—although their decisions may not be made at
literally the same moment.

Our experience with the Inspection Game in Section 2.2.1 makes it easy to draw
both extensive and strategic forms for the simultaneous-move game. Figures 5.11(a)
and 5.11(b) are equivalent extensive forms for the game that differ in the player to
whom the root of the game is assigned. It doesn’t matter who nominally moves first
at the root because the second player moves without knowing anything about the
first player’s decision. They therefore might as well be moving simultaneously.

The cell that arises when Alice and Bob each produce four hats has both payoffs
enclosed in a circle or a square in Figure 5.11(c). It follows that the strategy profile
(4,4) is a Nash equilibrium of the game. We could also have found the Nash
equilibrium by successively deleting strongly dominated strategies. (First delete

“To ensure that subgame-perfect equilibria aren’t lost, delete weakly dominated strategies in the
same order as they would be deleted when applying backward induction.
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Figure 5.11 The Cournot model as a simultaneous-move game.

Alice’s second pure strategy because it is strongly dominated by her first pure
strategy. Then delete Bob’s first pure strategy in the reduced game that results
because it is strongly dominated by his second pure strategy.)

Stackelberg’s Model. Von Stackelberg pioneered the study of entry in imperfectly
competitive markets. We can capture his idea by ceasing to assume that Alice and
Bob are already in the market when the game begins.

In the Stackelberg setup, Alice is the leader. Although she begins by entering a
market that hasn’t been previously exploited, she can’t act as a monopolist (as we
implicitly assumed in Section 3.7.1) because she knows that Bob will follow her into
the market to contest her profits.

We assume that the cost functions and the demand equation are unchanged from
the Cournot case. All the numbers needed to analyze Stackelberg’s leader-follower
model are therefore summarized in the payoff table of Figure 5.11(c). Economists
commonly argue that Alice first chooses a row in this table. Bob observes her choice
and then chooses the column that is his best reply.

If Alice produces 4 hats, Bob’s best reply is to produce 4 hats. Alice’s payoff is
then $16. If Alice produces 6 hats, Bob’s best reply is to produce 3 hats. Alice’s
payoff is then $18. She therefore chooses to produce 6 hats, and Bob responds by
producing 3 hats. Economists call the strategy profile (6, 3) a Stackelberg equilib-
rium of the leader-follower model. Notice that the Stackelberg profile (6, 3) is quite
different from the Nash equilibrium (4, 4) of the simultaneous-move game.

Although the analysis is very simple, the standard way that economists talk about
leader-follower models risks creating confusion. The basic problem is that Figure
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Figure 5.12 The Stackelberg model as a leader-follower game.

5.11(c) isn’t the strategic form of the leader-follower game that Alice and Bob are
playing.

Our study of the Tip-Off Game in Section 2.2.1 makes it easy to work out the
correct strategic form from the extensive form of the leader-follower game shown in
Figure 5.12(a). Once we have the strategic form, we can enclose the payoffs that
correspond to best replies in circles or squares. The cells in which both payoffs get
enclosed then correspond to the game’s Nash equilibria in pure strategies. Our
leader-follower game has two Nash equilibria: (6,43) and (4, 44). We therefore have
two candidates for the solution of the game.

Applying backward induction in the extensive form of the leader-follower game,
we find that (6, 43) is the unique subgame-perfect equilibrium. To mimic backward
induction in the strategic form of Figure 5.12(b), first delete the dominated strategies
33, 43, and 44. Then delete the dominated strategy 4 in the reduced game that
results. Along the way, the Nash equilibrium (4, 44) is eliminated, and economists
therefore usually neglect the possibility that it might be used in practice.

The analysis makes it clear that it is a misnomer to call (6,3) a Stackelberg
equilibrium. It isn’t even a strategy profile. It should be written as [6, 3] and iden-
tified as the play that results when the subgame-perfect equilibrium (6,43) is used in
the leader-follower game.

In brief, von Stackelberg adds nothing to the equilibrium ideas that we have been
studying. What he contributes is the idea that it is interesting to study duopoly games
in which one player moves before the other. Rather than talking about Stackelberg
equilibria, we will therefore use Stackelberg’s name to refer to the class of leader-
follower games whose study he initiated.

5.5.2 Incredible Threats

Section 1.7.1 warns against trusting strangers who approach you in dark alleys. In
this section, the stranger is carrying a bomb. He threatens to blow you both up if you
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don’t give him your wallet. The threat is worrying, but your wallet contains $100.
Do you hand it over? If you have reason to believe that the stranger is rational and
wants to live, then his threat is incredible. If you don’t hand over your wallet, he
won’t blow you both to smithereens because he doesn’t want to die.

We can run the same argument through our Stackelberg game when evaluating
the following attempt to legitimize the Nash equilibrium (4, 44) we eliminated when
successively deleting dominated strategies in Figure 5.12(b).

Bob doesn’t like the low payoff of $9 that he gets with the subgame-perfect
equilibrium (6, 43). Before Alice decides how many hats to produce, Bob therefore
threatens that if she produces 6 hats, he will respond by producing 4 hats—even
though he would thereby reduce his profit to $8 by not playing his best reply. If Alice
believes him, she won’t produce 6 hats because her profit will then only be $12.
Instead, she will do the equivalent of handing over her wallet by reducing her pro-
duction to 4 hats. Bob will then reply by producing 4 hats as well. Each will then
make a profit of $16—a loss of $2 for Alice when compared with the subgame-
perfect equilibrium, but a gain of $7 for Bob.

Game theorists argue that Alice shouldn’t believe Bob. His threat is incredible
because, if she did produce 6 hats, he would have a choice between $9 and $8 in
the subgame that follows. If he is someone who always chooses more money rather
than less, then he will necessarily choose $9—whatever he may have told Alice he
would do if she were to ignore his threat. He will therefore play according to the
subgame-perfect equilibrium (6,43) and produce 3 hats. One can respond that Bob
may be the commercial equivalent of a suicide bomber, but he would then be either
irrational or motivated by something other than profit.

The transparent disposition fallacy claims that this defense of subgame-perfect
equilibrium is wrong (Section 1.7.1). It says that Bob should make it clear to Alice
that he is committed to carrying out his threat. But can people really precommit
themselves to actions they won’t want to take if the occasion arises? And even if
they can, how do they convince other people that they have made such a commit-
ment?

Game theorists don’t pretend to know the answers to such psychological ques-
tions. Our attitude has already been outlined in Section 1.4.1. You tell us what you
think the right game is, and we’ll do our best to tell you how it should be played. If
you think that the players can make precommitments, then let us rewrite the rules of
the game to include commitment moves. If you think that the players can read each
other’s body language so well that they will know when a commitment has been
made,’ then we can leave certain information sets out of the new game.

Those who have lost their shirts playing poker or been betrayed by an unfaithful
lover may have reservations about the realism of the game you want analyzed. A
mathematician will have similar reservations if you ask him to work out the orbit of
a planet on the assumption that gravity satisfies an inverse cube law, but he will

>Charles Darwin’s Expression of the Emotions is sometimes cited in support of the contention that
our involuntary facial muscles make it impossible to conceal our emotional state from those who know
what to look for—although he actually held the opposite view, and all but one of the photographs in his
book are of Victorian actors convincingly simulating various emotional states.



5.5 Credibility and Commitment

come up with an answer. It won’t accord with what you see when you look through a
telescope,® and you may try to persuade your tame mathematician to alter the theory
of differential equations because you would prefer an answer that fits the facts better.
But his attitude will be that you should formulate your problem properly, rather than
trying to squeeze out the right answer by trying to persuade him to analyze the wrong
problem wrongly.

Game theorists feel much the same about the way they analyze games. We are
impervious to criticism that depends on the assumption that rational players can
read each other’s minds or convert themselves into irrational robots by exerting enough
willpower. It is fine with us if you want to write transparent commitments into the rules
of a game. We will do our best to solve your game no matter how unrealistic we think
your assumptions are. But you won’t persuade us to mess up the way we analyze games
by pretending that rationality somehow endows people with superhuman powers.

Stackelberg Games with Transparent Commitment. It is easy to modify the
Stackelberg game of Figure 5.12(a) to allow Bob to choose whether or not to make a
precommitment to retaliate by producing 4 hats if Alice produces 6 hats. We only
need to add an extra move at the beginning of the game, as in Figure 5.13(a). If Alice
didn’t know whether Bob had made the commitment when it is her turn to move, it
would be necessary to enclose her two decision nodes in an information set.
Omitting such an information set corresponds to assuming that she can read Bob’s
body language.

A backward induction analysis of our new game produces the unsurprising result
that Bob will commit to his threat, and Alice will submit. Nobody need therefore get
het up about game theory being wedded to mistaken psychological ideas. You write
the psychology that you think appropriate into the rules of a game, and ordinary
game-theoretic reasoning will generate the answers that make sense for your psy-
chological assumptions.

Economic and Legal Commitments. Economists argue that objective enforcement
mechanisms matter more in economic contexts than the subjective commitment
mechanisms we have been considering so far.

We think that people who hand over large sums of money to scam artists without
getting a legal contract in return are stupid. If Bob doesn’t honor a contract he has
signed, then Alice can sue him for noncompliance. When using game theory to study
law, one may wish to model the whole legal process—with appropriate chance
moves to capture the uncertainty involved when legal precedents are scarce—but
when the penalty is large and the probability of the guilty party losing the case is
high, cheating on the deal becomes a strongly dominated strategy for Bob (Section
1.7). In humdrum economic applications, it therefore often makes more sense to
short-circuit the legal hassle by modeling the act of signing a contract as a simple
commitment move.

Even without formal commitment moves, the players in an economic game may
be able achieve the same effect by irretrievably sinking costs. For example, Alice

SWith an inverse cube law instead of Newton’s inverse square law, Cotes showed that the planets
would spiral down into the sun.
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Figure 5.13 Stackelberg games with commitment.

might strategically invest money to improve the production efficiency of her factory.
Such a lowering of her costs effectively commits her to producing more hats when
playing a Stackelberg game with Bob. In cases like the Chain Store Game of Ex-
ercise 5.9.17, Bob may then be deterred from entering the market at all.

A less obvious stratagem is for Bob to increase his costs by firing some of his
skilled workers or wrecking some machinery. This may seem crazy, but consider the
game of Figure 5.13(b), in which Bob has the choice of sticking with a unit cost of $3
or raising his unit cost to $4 %

After Bob raises his costs, the question is no longer whether Alice will believe
Bob’s threat to retaliate by overproducing if she chooses a high production
schedule but whether she will believe his promise to keep his production down if she
does the same. As a backward induction analysis of the game shows, such a promise
is credible if Bob’s unit cost is $4 %, but not if it is $3.

By increasing his unit cost to $4 %, Bob moves play to a subgame whose subgame-
perfect equilibrium yields him a profit of $101, which is better than the $9 that
results when a subgame-perfect equilibrium is played in the subgame in which Bob’s
unit cost is $3. After she learns that Bob has increased his costs, Alice produces only
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4 hats, and Bob then keeps his promise by producing only 3 hats.” Alice also does
better in the subgame in which Bob has higher costs. Her profit is $20 instead of $18.
The victim is the consumer. After Bob raises his costs, 7 hats are produced instead
of 9, and their price rises from $6 to $8.

As we saw in Section 1.5.1, a monopolist makes money by restricting supply to
force up the price. Her problem when competitors appear is that they may not
cooperate in keeping supply low. By raising his costs, Bob convinces Alice that he
won’t simply mop up any demand that she leaves unsatisfied. He too will restrict his
supply. Alice and Bob therefore succeed in jointly screwing their customers without
overtly colluding at all.

5.6 L1VING IN AN IMPERFECT WORLD

Talking about credible threats is just another way of explaining why we focus on the
subgame-perfect equilibria studied in Section 2.9.3.

The Nash equilibrium (4, 44) isn’t a subgame-perfect equilibrium in the Stack-
elberg game of Figure 5.12. It doesn’t induce equilibrium play in the one-player
subgame that would be reached if Alice were to produce six hats. Bob’s strategy of
44 requires that he play 4 in this bad subgame, but his optimal action is 3. Although
the strategy profile (4,44) doesn’t induce a Nash equilibrium in this bad subgame, it
is nevertheless a Nash equilibrium in the whole game because the bad subgame isn’t
reached when (4, 44) is played. Alice produces four hats, which sends play to the
good subgame, where Bob does optimize.

If Alice went to the good subgame because she thinks that Bob wouldn’t opti-
mize in the bad subgame, then she believes something that contradicts our standing
assumption that the players are rational. In other words, she has given credence to an
incredible threat. If the players always reject such incredible threats, then they will
necessarily play a subgame-perfect equilibrium

This defense of subgame-perfect equilibrium depends on everyone’s believing
that all the players will always behave rationally, both now and in the future. We
certainly want the players to start by believing this, but does it make sense for them
to persist in this belief after reaching a subgame that wouldn’t have been reached
without someone who will move in the subgame having played irrationally in the
past? The chesslike game of Section 2.9.4 presses this point by drawing our attention
to subgames that can be reached only if one player systematically makes the same
mistake over and over again. Shouldn’t we then try to exploit the irrationality that
such bad play reveals?

Purists say that we should forget about past irrationalities when analyzing what
will happen in a subgame. Our initial evidence against anyone’s being irrational
should be taken to be so strong that any bad play we observe should be attributed to
some extraneous cause that needn’t be specified. Although this approach is theo-
retically watertight, it limits the arena for practical applications of game theory to
cases like the Stackelberg games of the preceding section, which aren’t long enough
to allow evidence of systematic irrationality to accumulate. If we want to apply

"The smallest unit cost for Bob that makes the argument work is $4. He is then indifferent between
producing 3 or 4 hats after Alice produces 4 hats.
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game theory more widely, we therefore have no choice but to find some way of
dealing with human error.

5.6.1 Bounded Rationality

It has been a long time since Herbert Simon pioneered the investigation of economic
theories of bounded rationality by introducing the notion of satisficing, but advances
in this area remain notoriously elusive.

Satisficing. In satisficing models, the players don’t optimize down to the last penny.
Rather than spending time and energy looking for something better, they declare
themselves satisfied when they come across a strategy that is only approximately
optimal.

We capture the satisficing idea in game theory by introducing a constant & >0
that measures how good an approximation must be before the players are satisfied.
The criterion (5.3) for a Nash equilibrium can then be modified to say that a pair
(0, 7) of strategies is an approximate Nash equilibrium when

for all pure strategies s and t. Moving to a satisficing framework therefore potentially
increases the number of strategy profiles that count as equilibria.

The idea of an approximate equilibria is admittedly crude, but it will serve to
show that the purist attitude to subgame-perfect equilibria sometimes leads to pre-
dictions about how games will be played that aren’t very realistic.

5.6.2 The Holdup Problem

As a small child, I remember wondering why store clerks hand over the merchandise
after being paid. Why don’t they just pocket the money? This is a simple version of
the holdup problem that arises in the theory of incomplete contracts.

For example, Alice is considering investing in Bob’s firm on the condition that he
work harder. But after he has secured her money, what ensures that he will keep his
promise? Exercise 5.9.18 models this situation as a simple leader-follower game,
like those of the previous section. Unless Bob has reason to fear some penalty if he
doesn’t deliver on his end of the deal,® a subgame-perfect analysis shows that Alice
would be unwise to cooperate with Bob at all. The opportunity for the pair to
cooperate in creating an economic surplus will therefore be lost. But if this kind of
holdup argument always works, how did evolution manage to make us into social
animals?

8Sanctions that might apply are the risk of losing his commercial reputation or provoking an action
for breach of contract. But how does Alice convince the world at large that her money was lost through
Bob’s neglect rather than a commercial mishap? Only Bob knows for sure how hard he worked. In the
language of incomplete contract theory, one can write a contract only on the basis of events that can be
publicly verified.
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Biology offers us an exotic example of sex among the hermaphroditic sea bass as
one of many ways the trick might be managed. When sea bass mate, they take turns
in laying their own eggs and fertilizing their partner’s eggs. However, eggs are
expensive to produce, and sperm is cheap. If a sea bass trustingly laid all its eggs at
the outset of a romantic encounter, it could be held up by an exclusively male mutant
that fertilized the eggs and then swam off to fertilize the eggs of other sea bass
without making an equivalent investment in the future of their joint children. When
two sea bass mate, each therefore alternates in laying small batches of eggs for the
other to fertilize, so that neither needs to trust the other very much.

Essentially the same story can be told of two criminals who have agreed to
exchange a quantity of heroin for a sum of money. Adam is to end up with Eve’s
heroin, and Eve with Adam’s money. How is this transition to be engineered if both
are free to walk away at any time, carrying off whatever is currently in their pos-
session? In real life, matters would be complicated by the threat of physical vio-
lence, but we will assume that no sanctions at all for noncompliance are available.

We have seen that there is no point in Adam’s handing over the agreed price and
waiting for the goods. Like sea bass, our criminals have to arrange a flow between
them, so that the money and the drug change hands gradually. Such a transaction can
be modeled using a version of Rosenthal’s Centipede Game.

The Centipede Game. Adam’s and Eve’s payoffs for the commodity bundle (d, k)
consisting of d dollars and & grains of heroin are respectively n;(d, h) =0.01d + h
and mo(d, h) =d + 0.01h. Thus Adam wants to exchange dollars for heroin, and Eve
wants to exchange heroin for dollars. Adam starts with 100 dollars and Eve with 100
grains of heroin. Since neither trusts the other very much, they agree to alternate
in handing over single dollars and single grains of heroin until the transaction is
complete.

The Centipede Game gets its name because the extensive form of Figure 5.14(a)
has a hundred pairs of legs. To play across is to honor the deal. To play down is to
cheat by leaving with what one currently has.

The Centipede Game has only one subgame-perfect equilibrium, which requires
that both players always plan to cheat. No trade then takes place. To see this,
consider what is optimal in the subgame that arises if the rightmost decision node is
reached. Eve must then choose between 100.01 and 100 and thus cheats by choosing
the former. In the subgame that arises if the penultimate decision node is reached,
Adam predicts that Eve will cheat on the next move, and so his choice is between
99.01 and 99. He therefore cheats by choosing the former. Since the same backward
induction argument works at every decision node, the result of a subgame-perfect
analysis is that both players plan always to cheat. They therefore both end up with a
payoff of 1, rather than the payoff of 100 that each would have obtained if both had
honored their agreement.

Figure 5.14(b) shows a reduced strategic form in which the players’ pure strat-
egies specify how many times they plan to honor the deal before cheating. Suc-
cessively deleting weakly dominated strategies in this payoff table mimics the
backward induction process. We begin by deleting Eve’s first column. Then we
delete Adam’s first row from the payoff table that remains. Next we delete Eve’s
second column and then Adam’s second row. This process continues until we are left
only with each player’s last pure strategy, which requires cheating immediately.
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Figure 5.14 The Centipede Game. It is used here to model a trustless exchange of money for heroin
between two criminals. The circled and squared payoffs in Figure 5.14(b) indicate approximate

best replies when 0.01 < ¢ < 0.02. There are many approximate Nash equilibria, including one

in which both players always plan to play across.

The conclusion that rational players will cheat in the Centipede Game reminds
philosophers of the fact that rational players can’t cooperate in the Prisoners’
Dilemma—but there is a big difference. In the Centipede Game, the result isn’t ro-
bust to the introduction of tiny imperfections into our specification of the problem.

The real world is imperfect in many ways. The Centipede Game takes account of
the imperfection that real money isn’t infinitely divisible. But real people are even
more imperfect than real money. In particular, they aren’t infinitely discriminating.
What is one cent more or less to anybody?

Introducing satisficing into the Centipede Game has a dramatic effect when
0.01 <& <0.02. As shown in Figure 5.14(b) by enclosing approximate best replies,
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large numbers of equilibria suddenly appear, including an approximate equilibrium
in which both players honor their deal and hence secure a payoff of 100 each.

The same result is obtained whenever the trading units are smaller than the
threshold that makes a satisficing player sit up and pay attention. However, Adam
and Eve will have chosen their trading units with this fact in mind. If dollars and
grains are too large, they can deal in cents and hundredths of a grain.’

If we want an idealized model from which all imperfections have been eliminated,
we are free to allow both the size ¢ >0 of the trading units and the perception
threshold ¢ > 0O to tend to zero. Cooperation will then survive as an equilibrium in the
limit, provided that we keep J < ¢ as we take the limit. If one wants to insist that the
players always optimize up to the hilt, then ¢ must tend to zero first, in which case only
the cheating equilibrium survives. But this purist approach risks leading us astray
since we end up analyzing a model that ignores the players’ psychological limitations.

5.7 Rounpup

The chapter began by legitimizing the strategic form of a game introduced in
Chapter 1 when studying the Prisoners’ Dilemma. Once the players have chosen
their pure strategies, the course of the game is determined except for the game’s
chance moves. A pure strategy profile therefore assigns an expected Von Neumann
and Morgenstern utility to each player. A payoff function tells us what this expected
utility is for all pure strategy profiles of the game.

A strategic form for a two-player game is determined by two payoff matrices. The
entry in the ith row and jth column of player k’s payoff matrix is given by the value
(i, j) of player k’s payoff function.

A Nash equilibrium (g, 7) is characterized in terms of payoff functions by the
requirement that the inequalities

m1(0,7) 2 mi(s, 7)

m2(0,7) > Ta(0, 1)
hold for all pure strategies s and ¢.
Dominance relations are also easily expressed in terms of payoff functions. For
example, player I’s pure strategy s, is strongly dominated by his pure strategy s, if

m1(s2,1) > (51, 1)

for all player II’s pure strategies t. Player II’s pure strategy f, is weakly dominated
by her pure strategy f; if

m2(s, 1) 2> ma(s, 12)

Perhaps this is one of the reasons that the smallest unit of currency is always small enough that
nobody cares about one unit more or less.
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for each value of player I's pure strategy s, with strict inequality for at least one
value of s.

The successive deletion of strongly dominated strategies is a powerful method
of simplifying games. Its use draws attention to our standing assumption that the
players’ rationality is common knowledge at the outset of the game. The deletion of
weakly dominant strategies is more problematic since the order in which they are
deleted can matter, and Nash equilibria may disappear along the way.

Stackelberg games have the same payoff structure as Cournot games, but one of
the players moves first. The object that economists call a Stackelberg equilibrium is
actually the play that will be followed if the players use a subgame-perfect equi-
librium in a Stackelberg game.

Backward induction and the successive deletion of weakly dominated strategies
fail to be plausible tools of analysis if the players can make credible threats or
promises outside the structure of the game. The answer isn’t to scrap our methods of
analysis but to change the rules of the game so that credible threats or promises are
modeled as formal commitment moves within the game.

Economists are skeptical about the extent to which transparent commitments can be
made by willpower alone, but they recognize that one can often achieve the same effect
by signing a contract or sinking an investment. Cheating on a commitment may then
become too expensive to make it worth bothering to model the possibility in a game.

A major criticism of backward induction is that its validity depends on the players
always believing that their opponents will play rationally in the future, even though
they may have been observed to play irrationally in the past. As with the commit-
ment problem, this difficulty can sometimes be tackled by incorporating any irra-
tional quirks that afflict the players into the rules of the game. As in the case of the
Centipede Game, introducing only a little irrationality can sometimes change the
outcome of a game dramatically.

5.8 FURTHER READING

Game Theory and Economic Modelling, by David Kreps: Oxford University Press, New York,
1990. Listen to what daddy says on economic modeling, and you won’t go far wrong.

Game Theory for the Social Sciences, by Hervé Moulin: New York University Press, New York,
1986. This book contains many thought-provoking examples. It is particularly useful on
dominated strategies.

The Strategy of Conflict, by Thomas Schelling: Harvard University Press, Cambridge, MA, 1960.
This classic makes it clear that the power to make commitments is very valuable but not easy
to acquire.

Passions within Reason, by Bob Frank: Norton, New York, 1988. An economist makes a case for
the transparent disposition fallacy.

5.9 EXERCISES

1. Construct a simplified strategic form for Duel just as in Section 5.2.1 but
taking pi(d)=p.(d)=1 —d*. (This case was studied in Exercise 3.11.20,
but here D =1.) Circle the best payoff for player I in each column. Enclose
the best payoff to player II in each row in a square. Hence locate a Nash
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equilibrium. How close will the players be when someone fires? Who will fire

first?

. Use the method of successively deleting dominated strategies in the simplified
strategic form obtained in the previous exercise. Why is the result a subgame-
perfect equilibrium?

. In this version of the Inspection Game, Jerry can hide in the bedroom, the den,
or the kitchen. Tom can search in one and only one of these locations. If he
searches where Jerry is hiding, he catches Jerry for certain. Otherwise Jerry
escapes.

a. Assign appropriate Von Neumann and Morgenstern utilities to the possible
outcomes.

b. Draw the game tree for the case in which Tom can see where Jerry is hiding
before he starts searching. Find the 3 x 27 bimatrix game that is the cor-
responding strategic form. (Jerry is player I)

c. Draw the game tree for the case in which Jerry can see where Tom is
searching before he hides. Find the 27 x 3 bimatrix game that is the cor-
responding strategic form.

d. Draw two game trees that both correspond to the case in which Tom and
Jerry each make their decisions in ignorance of the other’s choice. Find the
3 x 3 bimatrix game that is the corresponding strategic form.

e. In each case, find all pure strategy pairs that are Nash equilibriuma.

. Write down the transposes of the following matrices:

review
1 0 1
A—{_? i (3)] B=|0 —-1|, c=|-1 2
3 0 4

. Write down the payoff matrices for the two players in the bimatrix games of
Figure 5.15. Which of the four payoff matrices are symmetric? Which of the
two bimatrix games are symmetric?

3 2 1 0
0 2 4 6
u u U, U,
1 1 p
1 FTTTTTN FTSTTTT
(3) s > SN - -~ D 4
Chance d d D
root d d D
D« o2,
2 '\__ . '\__ . 4
b 11 b U 1I U
0 2 4 6
3 2 1 0

Figure 5.15 The extensive form for Exercise 5.9.10.
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6.

10.

11.

12.

13.

For each 1 x 2 vector y, the sets
A={x:x>y} B={x:x>y} C={x:x>y}

represent regions in IR?. Sketch these regions in the case y= (1, 2). For each of
the following 1 x 2 vectors z, decide whether z is a member of A, B, or C:

@z=02,3) ®z=2,2) (©z=(,2) (dz=(2,1)

If the pure strategy pair (dg,ds) were to be defended as the solution of the
bimatrix game of Figure 5.3 on the basis of statements like:

Everybody knows that everybody knows that...everybody knows that
nobody ever uses a weakly dominated strategy,

what is the smallest number of times that the phrase “everybody knows”
would need to appear? Bear in mind that several strategies can often be
eliminated simultaneously during the deletion process.

. Construct a finite game of perfect information in which a subgame-perfect

equilibrium is lost if weakly dominated strategies are deleted from the strategic
form in a suitable order. (Your game tree need not be very complicated.)
In version 2 of Russian roulette as studied in Section 5.2.2, explain why

m(ADD, AAD) =1+ 2a

m(ADD, AAD) =3.

Obtain the 4 x 4 strategic form of the game whose extensive form is given in

Figure 5.15. By deleting dominated strategies, show that (dU,dU) is a Nash

equilibrium. Are there other Nash equilibria?

Colonel Blotto can send each of his five companies to one of ten locations

whose importance is valued at 1, 2, 3, ..., 10, respectively. No more than one

company can be sent to any one location. His opponent, Count Baloney, must

simultaneously do the same with his four companies. A commander who at-

tacks an undefended location captures it. If both commanders attack the same

location, the result is a standoff at that location. A commander’s payoff is the

sum of the values of the locations he captures minus the sum of the values of

the locations captured by the enemy. What would Colonel Blotto do in the

unlikely event that he knew what a dominated strategy was?

How does the analysis of the Stackelberg model of Section 5.5.1 change if Bob

becomes the leader and Alice the follower?

The Cournot and Stackelberg models of Figures 5.11 and 5.12 are changed to

allow transparent precommitment by the players. In both cases, show that:

a. If Alice precommits before Bob, the model reduces to a Stackelberg game
with Alice as the leader.

b. If Bob precommits before Alice, the model reduces to a Stackelberg game
with Bob as the leader.
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4 5] 4 5}

S1 S1

52 52

Figure 5.16 The bimatrix games for Exercise 5.9.12.

c. If both players precommit simultaneously, the model reduces to a Cournot
game.

14. Elaborate the Stackelberg model of Figure 5.12 with Alice as leader so as to

15.

allow Alice and Bob a simultaneous preplay opportunity to make a transparent
precommitment to one of their strategies—if they so choose. Explain why this
change creates a game with the strategic form of Figure 5.17 where [] means
that the player chooses not to make a precommitment. The game has three
Nash equilibria, which correspond respectively to the Cournot case and the
Stackelberg cases with Alice and Bob as leaders. Show that the equilibrium
that survives the successive deletion of weakly dominated strategies corre-
sponds to the case in which Bob is the leader rather than Alice.
Selten’s Chain Store Game is often used to illustrate the logic of entry de-
terrence in imperfectly competitive markets. Alice and Bob are industrialists
who care only about maximizing their expected dollar profit. Alice is an in-
cumbent monopolist, who makes $5 million if left to enjoy her privileged
position undisturbed. Bob is a firm that could enter the industry but earns $1
million if he chooses not to enter. If Bob decides to enter, then Alice can do
one of two things: she can fight by flooding the market with her product so as
to force down the price, or she can acquiesce and split the market with Bob. A
fight is damaging to both players. They then each make only $0 million. If they
split the market, each will make $2 million.
a. Why does the Chain Store Game have the extensive form shown in Fig-
ure 5.18(a)? Show that the only subgame-perfect equilibrium is (in, acquiesce).

3 4 O
15 16 16
4
20 16 16
9 8 9
6
18 12 18
15 16 9
O
20 16 18

Figure 5.17 Transparent precommitment in a Stackleberg game.
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Bob

out

out

Alice ;
1 in
acquiesce
acquiesce fight 2
2 0 fight
2 0 0

(@

Figure 5.18 The Chain Store Game.

b. Why does the Chain Store Game have the strategic form shown in Fig-
ure 5.18(b)? Show that there are two Nash equilibria in pure strategies.
Which of these is lost after the successive deletion of weakly dominated

strategies?

c. Alice will threaten to fight Bob if he disregards her warning to keep out of
the industry. Why will he not find her threat credible? What is the impli-

cation for the two Nash equilibria of the game?

_ 16. How would matters change in the Chain Store Game of the previous exercise if
ECOn the incumbent monopolist could prove to the potential entrant that she had

made an irrevocable commitment to fight if he enters?

a. Write down a new game tree in which play of the Chain Store Game is
preceded by a commitment move at which Alice decides whether or not to

make a commitment to fight if Bob enters.

b. Find a subgame-perfect equilibrium of the new game.
c. Can you think of ways in which Alice could make an irrevocable commitment
to fighting? If so, how would she convince Bob that she was committed?

17. The point of the last item in the previous exercise is that it is very hard in real life
to commit yourself to a plan of action for the future that won’t be in your interests
should the occasion arise to carry it out. Just saying that you are committed won’t
convince anyone who believes that you are rational. However, sometimes it is
possible to find irreversible actions that have the same effect as making a com-
mitment. As in the story that follows, such actions usually need to be costly, so
that the other players can see that you are putting your money where your mouth
is. Suppose that the incumbent monopolist can decide, before anything else
happens, to make an irreversible investment in extra capacity. This will involve a
dead loss of $2 million if she makes no use of the capacity—and the only time
that the extra capacity would get used is if she decides to fight the entrant. Alice
will then make $1 million (inclusive of the cost of the extra capacity) instead of
$0 million, because her extra capacity will make it cheaper for her to flood the

econ

market. Bob’s payoffs remain unchanged.
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19.

20.
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a. Draw a new game tree illustrating the changed situation. This will have five
decision nodes, of which the first represents Alice’s investment decision. If she
invests, the payoffs resulting from later actions in the game will need to be
modified to take into account the costs and benefits of the extra capacity.

b. Determine the unique subgame-perfect equilibrium.

c. Someone who knows no game theory might say that it is necessarily irra-
tional to invest in extra capacity that you don’t believe you will ever use.
Why is this wrong?

In a simple version of the Holdup Problem, Alice has $3 million, which she is

thinking of investing in Bob’s company. If she makes the investment, Bob can

either work or slack. If he slacks, he consumes Alice’s investment, and she gets
nothing. If he works, Alice’s doubles her investment, and Bob nets $2 million.

Explain why Alice won’t make the investment unless there is some way that

she can commit Bob to working.

Reinhard Selten, who invented subgame-perfect equilibria, is far from being

a purist. He proposed the Chain Store paradox to show that it would be a mistake

always to use subgame-perfect equilibria when trying to predict how real players

will perform in a game. In the paradox, Alice is an incumbent monopolist who
owns the only store in 100 hick towns. Bob, Chris, and ninety-eight other players
are potential entrants in the 100 towns. If Bob sets up a rival store in the first town,

Alice must play the Chain Store Game with Bob. If Chris later sets up a rival store

in the second town, Alice must play the Chain Store Game with Chris. And so on.

a. Draw an extensive form for the game in which the only potential entrants
are Bob and Chris. Show that the unique subgame-perfect equilibrium re-
quires that Alice always acquiesce.

b. Why will the conclusion be the same with 100 potential entrants?

c. Why would it make more sense in real life for Alice to fight Bob and Chris
in the game with 100 potential entrants? In what respect does real life fail to
satisfy the assumptions necessary to justify using backward induction in the
Chain Store paradox?

An eccentric philanthropist is prepared to endow a university with up to a
billion dollars. He invites the presidents of Yalebridge and Harford to a hotel
room where he has the billion dollars in a suitcase. He explains to his guests
that he would like the two presidents to play a version of the Centipede Game
in order to decide whose university gets endowed. The first move consists of
an offer of $1 by the philanthropist to player I (Yalebridge), who can accept
or refuse. If he refuses, the philanthropist offers $10 to player II (Harford). If
she refuses, $100 is then offered to player I, and so on. After each refusal, an
amount ten times larger is offered to the other player. If there are nine refusals,
player II will be offered the whole billion dollars. If she refuses, the philan-
thropist takes his money back to the bank.

a. Analyze this game using backward induction and hence find the unique
subgame-perfect equilibrium. What would be the result of successively
deleting weakly dominated strategies in the game?

b. Is it likely that the presidents of Yalebridge and Harford are so sure of each
other’s rationality that one should expect to see the subgame-perfect equi-
librium actually played? What do you predict the president of Yalebridge
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21.

22.

23.

24.

would do when offered $100,000 if both presidents had refused all smaller
offers?

¢. How would you play this game?

In Basu’s Travelers’ Dilemma, an airline loses Adam’s and Eve’s luggage.

Adam and Eve were each carrying home one of a pair of identical jewels. The

airline suspects that Adam and Eve may be tempted to inflate the value of the

jewels when making a claim for compensation. Having read Section 1.10.2 on
mechanism design, the airline tells them that it will pay compensation with-
out any legal hassle, provided that they agree to abide by the following rules.

Each must separately name a whole number of dollars between $1,000 and

$1,000,000 as the value of their lost jewel. The airline will then pay the

minimum of the two claims to each player. If one player claims less than the
other, the player who made the smaller claim will receive a bonus of $2 that is
taken from the player who made the higher claim.

a. Show that a version of the Prisoners’ Dilemma is obtained by allowing only
claims of either $999,999 or $1,000,000.

b. Show that successively deleting weakly dominated strategies in the strategic
form of the full simultaneous-move game leaves a Nash equilibrium in
which both players claim only $1,000.

c. If the players are unwilling pay attention to $1 more or less, show that
there is an approximate Nash equilibrium in which each player claims
$1,000,000.

d. Is the airline’s attempt at mechanism design likely to pay off?

The Prisoners’ Dilemma of Figure 1.3(a) is repeated n times. The payoffs of the

repeated games are the average of the payoffs in the stage games. If n is suffi-

ciently large, show that a pair of GRIM strategies (Section 1.8) is an approximate

Nash equilibrium for the repeated game in which the players cooperate at every

stage. How large does n need to be as a function of ¢? (Section 5.6.1)

Robert Louis Stevenson’s Imp in the Bottle features a fabulous bottle whose

owner will be granted any wish. The snag is that someone who buys the bottle

must then sell it to someone else at a lower price or else suffer all the pains of
hell.

a. Assuming that the smallest possible unit of currency is a cent, propose a
game that represents the sale of the bottle to successive owners. Analyze the
game using backward induction.

b. Would you buy the bottle if it were offered to you for $1,000? If your
answer isn’t consistent with the backward induction analysis, explain your
reasoning.

Is it always a good idea to be better informed? Pandora’s information sets in a
game partition her set of decision nodes. A refinement of this partition is
obtained by breaking down one or more of the sets of which it is formed into
disjoint subsets. If we make Pandora better informed by refining her infor-
mation partition, show that she will then have more strategies. Why will Pan-
dora be no worse off if she is the only player, or if the other players are
unaware of the possibility that she may have become better informed? Why
might Pandora suffer from becoming better informed if the other players learn
that she has become better informed?
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25. Use the Cournot game of Figure 5.11(c) as an example of a situation in which
it isn’t desirable to be better informed (Exercise 5.9.24). If Bob learns Alice’s
strategy before choosing himself, then he will be no better off if she is unaware
of his industrial espionage. However, if Bob’s espionage becomes common
knowledge, the game becomes a leader-follower game in which his equilib-
rium payoff is reduced from 16 to 9.

phfl
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Mixing
Things Up

6.1 MIXED STRATEGIES
To solve a game, we need to close the chains of reasoning that begin:
“Adam thinks that Eve thinks that Adam thinks that Eve thinks...”

After following such a chain for two or three steps, most people begin to mutter
darkly about infinite regressions and vicious circles. Perhaps the most important
achievement of the early game theorists was to recognize that we needn’t get into
this kind of tizzy. Focusing on Nash equilibria cuts through the difficulties. Any
other strategy profile will be destabilized as soon as the players start thinking about
what the other players are thinking.

But what happens when there are no pure equilibria? We answered this question
when studying Matching Pennies (Section 2.2.2). Adam makes himself unpredict-
able by using a mixed strategy, in which he randomizes between heads and tails,
choosing each with equal probability. If Eve does the same, the players will be using
a Nash equilibrium. Both players then win half the time, which is the best they can
do, given the strategy choice of the other.

This chapter introduces the apparatus needed to study mixed strategies in a sys-
tematic way. But first we need to look at some less trivial examples than Matching
Pennies to make it clear that the effort is worthwhile.
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6.1.1 A Sealed-Bid Auction

Pandora is committed to selling her house to the highest bidder in a conventional
sealed-bid auction. It is common knowledge that there are two risk-neutral bidders,
Alice and Bob, who both value the house at $1 million. What bids will they seal in
their envelopes?

Unless they collude, Alice and Bob are screwed. Counting bids in fractions of a
million dollars, they must both bid 1 in equilibrium. If Alice gets the house as a
result of winning the resulting coin toss, she then pays Pandora $1 million and makes
a profit of zero. But it can’t be in equilibrium for Alice to bid x < 1 because Bob
would then bid some fractionally larger y.

Things change if we model the costs of entering the auction. Such costs include
having the house surveyed or arranging the necessary financing. Pandora may even
charge a fee to enter her auction. It matters whether Alice and Bob know whether the
other has entered the auction when they seal a bid into their envelopes. We assume
that they don’t.

If Alice and Bob both enter for sure, then they must both bid 1 for the same reason
as before. But the winner will now make an overall loss of ¢ and thus would have
done better not to to enter at all. On the other hand, if Alice stays out of the auction
for sure, then Bob’s best reply is to enter with a bid of 0 (negative bids aren’t
allowed). But if Alice uses this strategy, then Bob’s best reply is to enter as well with
a bid of fractionally more than 0.

All the pure strategy possibilities are therefore ruled out as possible Nash equi-
libria in the game between Alice and Bob. But there is a Nash equilibrium in which
both players use the same mixed strategy. In this equilibrium, Alice and Bob keep
each other guessing about whether they are going to enter. Each player stays out of
the auction with probability p.

If her randomizing device tells Alice to enter the auction, what should she bid? A
bid of more than 1 — ¢ always makes a loss whatever happens, and so she would
have done better to stay out in the first place. A bid of exactly 1 — ¢ is no good either
because her payoff will then be 0, but she can get more by bidding 0 and picking up a
profit on those occasions when Bob doesn’t enter. Nor can a bid of x < 1 — ¢ be right.
If it were, Bob could do even better by bidding a fractionally larger y. So Alice and
Bob have more mixing to do.

Consider what happens if Bob stays out with probability p = ¢ and then chooses a
bid y < 1 —c so that

cXx

prob@gx):m.

What is Alice’s best reply? If she enters and bids x < 1 — ¢, she expects
—c+p(l —x)+(1 —p)(1 —x) prob (y <x) =—c+c(l —x) +cx=0.

It follows that Alice gets a payoff of O whether she stays out or enters with a bid of
x < 1 —c. These pure strategies are all best replies to Bob’s mixed strategy because
her other pure strategies always make a loss.

If Alice makes 0 with all her best replies, then she will also make 0 if she chooses
randomly among them. Any mixed strategy that assigns a positive probability only
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to these best replies is therefore also a best reply. In particular, if Alice plays the
same mixed strategy as Bob, she will be making a best reply to his choice of strategy.
But since Bob is in exactly the same position as Alice, he will simultaneously be
making a best reply to her choice of strategy. We have therefore found a Nash
equilibrium in mixed strategies for the game.

Alice and Bob therefore have to work a lot harder when there are entry costs, but
their fatei- is the same. Pandora gets all the available surplus, and they are left with
nothing.

Computing Mixed-Strategy Equilibria. How did we know what mixed strategy to
assign to Bob in the preceding example? The answer is the key to working out
mixed-strategy equilibria in general.

We are looking for a symmetric mixed-strategy equilibrium in which Alice and
Bob randomize between staying out and bidding anything between 0 and 1 — ¢. To
find the probability p with which Bob stays out and the probability Q(x) that he bids
below x after entering, we use the fact that the unknowns need to be chosen to make
Alice indifferent between staying out and entering with any bid x < 1 —c.

Since Alice gets nothing if she stays out, her indifference is expressed by the
equation

0= —c+p(l—x)+(1—p)Ox)(1 —x). 6.1)

But Q(0) = 0,% and so p = c. Replacing p by ¢ in (6.1), we then have an equation that
can be solved for Q(x).

Why must Alice be indifferent between staying out and entering with any bid
x < 1 —c¢? The reason is simple. If she prefers one of her pure strategies to another,
it can’t be optimal for her to mix between them. Rather then playing each of two
pure strategies some of the time, she would do better to play her preferred pure
strategy all of the time.

6.2 REACTION CURVES

It is often useful to think about Nash equilibria in terms of what economists call
reaction curves. In this section, we first illustrate their use with pure strategies and
then with mixed strategies.

6.2.1 Reaction Curves with Pure Strategies

Whenever we circled some of player I's payoffs in the strategic form of a game to
indicate his best replies, we were constructing his reaction curve in pure strategies.
Player II’s reaction curve was indicated by enclosing her best reply payoffs in

"More twists on this problem appear in Exercises 6.9.4 through 6.9.7.

2We have assumed throughout that Bob’s probability distribution assigns zero probability to any
particular bid y. If it didn’t, we would say that the distribution has an atom at y. A symmetric equilibrium
can’t admit an atom at y < 1 in our game because the other player would do better to shift the atom to
some fractionally larger bid z than keep it at y. In particular, there is no atom at y =0, and so Q(0) =0.
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Figure 6.1 Reaction curves.

squares. Since a Nash equilibrium occurs when a cell has both payoffs circled or
squared, it follows that the pure Nash equilibria of a two-player game occur where
the players’ pure reaction curves cross. In Section 6.2.2, we will extend this ob-
servation to mixed strategies.

Figure 6.1(a) shows a game we came across in Exercise 5.9.14 whose pure
reaction curves are more complicated than usual.

The reaction curves shown separately in Figures 6.1(b) and 6.1(c) are more
properly called best-reply correspondences. If we restrict ourselves to pure strate-
gies, player I has the best-reply correspondence R, : T— S, and player II has the best
reply correspondence R,:S — T defined by’

Ri(t)) = {51,583}, Ry(s1) = {tr, 13},
Ri(ty) = {s1,83},  Ra(s2) = {t1,13},
Ri(13) = {52,583}, Ry(s3) = {1}

For example, R (t;) = {s1, s3} is the set of best replies by player I to the choice of #;
by player II. Similarly, R,(s;) = {t,} is the set of best replies by player II to the
choice of s3 by player 1.*

A pair (s, t) of strategies is a Nash equilibrium if and only if s is in the set R,(¢) of
all best replies to ¢, and 7 is in the set R,(s) of all best replies to s. But to say that
s € Ri(f) and t € R,(s) just means that (s, 7) is one of the places where the reaction
curves cross. The game of Figure 6.1(a) therefore has precisely three Nash equilibria
in pure strategies because its pure reaction curves cross precisely three times.

6.2.2 Reaction Curves with Mixed Strategies

Figure 6.2(a) shows a strategic form of the Inspection Game of Section 2.2, in which
payoffs have been assigned to the outcomes. The reaction curves in pure strategies

3We don’t call R, a function because R(s) isn’t an element of T but a subset of T.
“Although we mostly ignore such mathematical niceties, the singleton set {#,} isn’t the same thing as
its single element #,.
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Figure 6.2 Reaction curves with mixed strategies. It is unfortunate that the two reaction curves look
like a swastika, but there isn’t much that can be done about it.

don’t cross at all. Since the game is identical to Matching Pennies, it is no surprise
that it has only mixed Nash equilibria. To study these, we look at the game’s reaction
curves in mixed strategies, which are fortunately easy to draw in the 2 x 2 case.

A mixed strategy for player I is a vector (1 — p, p), in which 1 — p is the proba-
bility with which he plays s, and p is the probability with which he plays s,. Each of
his mixed strategies therefore corresponds to a real number p in the interval [0, 1].
Each mixed strategy for player II similarly corresponds to a real number ¢ in the
interval [0, 1]. A pair of mixed strategies therefore corresponds to a point (p, ¢) in the
square of Figure 6.2(b).

We need to find player I’s best replies to player II’s choice of the mixed strategy
corresponding to g. There is always at least one best reply in pure strategies, and so
we look first at his expected payoff E;(q) when he uses his ith pure strategy:

Ei(@9) =01 —-g)+g=q,
Exg)=(0—-¢g)+0g=1-gq.

Player I’s first pure strategy is therefore better if g > % His second pure strategy is
better if ¢ < 1.

What if ¢ = %? Both of player I’s pure strategies are then best replies, and so any
mixture of them is also a best reply. We met the general principle in Section 6.1.1:

A mixed strategy is a best reply to something if and only if each of the
pure strategies to which it assigns positive probability is also a best reply
to the same thing. A player who optimizes by using a mixed strategy will
therefore necessarily be indifferent between all the pure strategies to which
the mixed strategy assigns positive probability.

181



182

Chapter 6. Mixing Things Up

If there were another strategy ¢ that was definitely a better reply than s, nobody
would ever want to make a reply that used s with positive probability. Whenever you
were called upon to play s, you would do better to play ¢ instead.

In summary, player I's best reply when g < % is his second pure strategy, which
corresponds to p = 1. His best reply when g > % is his first pure strategy, which
corresponds to p =0. Any mixed strategy is a best reply when g = % So his best-
reply correspondence R; : [0, 1] — [0, 1] is given by

{1}, ifo<g<i,
Ri(g) = ¢ [0,1], if g =1,
{0}, if 1<qg<1.

The reaction curve representing this correspondence is shown with small circles in
Figure 6.2(b). For example, player I's best replies to g = i are the values of p at
which the horizontal line g = i cuts player I’s reaction curve. Only p =0 has this
property, and so p =0 is the only best reply to g = }1.

Player II's reaction curve is shown with small squares in Figure 6.2(b). For
example, player II’s best replies to p = % are the values of g at which the vertical line
p= % cuts player II’s reaction curve. Only g = 1 has this property, and so g = 1 is the
only best reply to p = %.

To verify that Player II’s reaction curve is correctly drawn, we first look at her
expected payoff F;(p) when she uses her ith pure strategy and player I uses the mixed
strategy corresponding to p:

Fi(p)=0-p)+0p=1-p,
Fy(p) =0(1 —p)+p =p.

Player II’s second pure strategy is therefore best when p > % Her first pure strategy
is best when p < % Ifp= %, any of her mixed strategies is a best reply. So her best-
reply correspondence R, : [0, 1] — [0, 1] is given by

{0}, ifo<g<i,
Ro(p) = ¢ [0,1], if p=3,
{1}, if % <p<l
Figure 6.2(b) shows that the two reaction curves cross only at (p,q) = (%,% ,
so this is the only Nash equilibrium of the game. As we saw in Section 2.2.1,
each player then keeps the other guessing by acting today or tomorrow with equal
probability.

6.2.3 Hawk or Dove?

The Hawk-Dove Game of Figure 6.3(a) will give us a chance to practice our skills at
computing Nash equilibria in mixed strategies.

Two birds of the same species are competing for a scarce resource whose pos-
session will add V > 0 to the evolutionary fitness of its owner. The birds play a
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Figure 6.3 Hawk-Dove Games.

simultaneous-move game in which each player can adopt a hawkish or a dovelike
strategy. If both behave like doves, they split the resource equally. If one behaves
like a dove and the other like a hawk, the hawk wins the resource. If both behave like
hawks, there is a fight. Each bird is equally likely to win the fight and hence gain the
resource, but a fight is a costly enterprise because of the risk of injury. The evolu-
tionary fitness of a bird that has to fight is therefore W = %V — C, where C > 0 is the
cost of fighting.

Recall that Chicken is a toy game played by drivers who approach each other in
streets that are too narrow for them to pass without someone slowing down. As
explained in Exercise 1.13.7, the Hawk-Dove Game reduces to the Prisoners’ Di-
lemma when W >0 and to Chicken when W < 0. The versions of the Prisoners’
Dilemma and Chicken that appear in Figures 6.3(b) and 6.3(c) are obtained by taking
V=4 and W=1 or W= —1. Pure reaction curves for the games are shown with
circles and squares.

It is nothing new that (hawk, hawk) is a Nash equilibrium for the Prisoners’
Dilemma. Chicken has two Nash equilibria in pure strategies: (hawk, dove) and
(dove, hawk), but perhaps further Nash equilibria will emerge when mixed strate-
gies are considered. In fact, since games typically have an odd number of Nash
equilibria, we ought to look especially closely at the mixed strategies for Chicken.
No further Nash equilibria will be found for the Prisoners’ Dilemma because dove is
strongly dominated by hawk, and hence no rational player will ever choose to play
dove with positive probability.

Figure 6.4 shows reaction curves for the Prisoners’ Dilemma and Chicken when
we allow mixed strategies. In the Prisoners’ Dilemma, the reaction curves cross only
where (p,q) = (1,1), which confirms that the unique Nash equilibrium is for both
players to play hawk. In Chicken, the reaction curves cross in three places: where
®.9) =(0,1),(p,q) = (1,0), and (p,g) = (3,%). The first and second of these al-
ternatives are the pure equilibria that we know about already. The third alternative is
a mixed-strategy Nash equilibrium in which both players use dove with probability %
and hawk with probability %

Player I's reaction curve for Chicken is vertical when player II uses § = % Player
I’s reaction curve is horizontal when player I uses p = % The players are therefore
indifferent between all the pure strategies that they should play with positive
probability when using the mixed equilibrium.

To find the mixed Nash equilibrium in Chicken without drawing the reaction
curves, look for the p that makes player I indifferent between dove and hawk and the
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q that makes player II indifferent between dove and hawk. These requirements
generate the equations:

2(1=p)+0p =401 —p)+(— Dp,
2(1 =¢)+0g =41 — g +(— g,
which have the unique solution p = g = %.
Polymorphic Equilibria. Chicken has two Nash equilibria in pure strategies, so why
should we care about its mixed equilibrium? Biologists care because it is the only
symmetric equilibrium of the game.

The pure equilibrium (dove, hawk) isn’t symmetric because the row player
doesn’t use the same strategy as the column player. But how would animals know
who is choosing a row and who is choosing a column? Sometimes Nature supplies
the means—as when player I is already occupying a territory and player II is an
intruder making a takeover bid. But only symmetric equilibria are relevant when
Nature simply matches up pairs of animals at random because symmetric equilibria
are the only equilibria that can be played without anyone needing to know who is
player I and who is player II.

Animals can’t roll dice or shuffle cards, so how can they use mixed strategies?
The answer is that no animal has to randomize at all for a mixed strategy to be
biologically meaningful.

Suppose that two genotypes are present in a population of animals, one of which
plays dove and the other hawk. If there are twice as many hawks as doves, then a
randomly chosen opponent will play dove with probability 1 53 and hawk with prob-
ability 2 5- Such an opponent is indistinguishable from a player who uses the mixed
strategy (% , 3) Any strategy in Chicken is optimal against this mixed strategy, and
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Figure 6.4 Reaction curves for the Prisoners’ Dilemma and Chicken.
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hence there is no evolutionary pressure against either dove or hawk. Our mixture of
genotypes can therefore survive.

In a biological context, it is sometimes a good idea to focus on the big game being
played by the whole population of animals. This game has as many players as there
are animals. Each player chooses either hawk or dove. A chance move then selects
two of the players at random to play Chicken. Players who aren’t selected get
nothing.

Our analysis shows that the population game has a Nash equilibrium in pure
strategies. Any strategy profile in which % of the players choose dove and the other%
choose hawk suffices for this purpose. Such equilibria are common in nature. Bi-
ologists call them polymorphic equilibria because two or more types of behavior
coexist together. Each such polymorphic equilibrium of the population game cor-
responds to a symmetric mixed equilibrium of Chicken.

6.3 INTERPRETING MIXED STRATEGIES

Mixed strategies were introduced in Section 2.2.2 as a way of making yourself
unpredictable when playing an opponent who is good at detecting patterns in your
behavior. Critics respond that someone who makes serious decisions at random must
be crazy. In war, for example, a good commander must keep the enemy guessing, but
if things work out badly and a court martial ensues, an officer who wants to stay
out of a mental hospital would be wise to deny having based his decision of whether
or not to attack on the toss of a coin.

However, although people are commonly opposed to deciding important matters
by rolling dice, they don’t slavishly follow some fixed rule that would make their be-
havior in a game easy to predict. As argued in Section 1.6, evolutionary forces—
both social and biological—would tend to eliminate such stupid behavior. The result
is that people end up playing mixed equilibria without being aware that they are
doing so. This can happen because it doesn’t matter whether you really choose at
random, provided your choice is unpredictable.

Suppose, for example, that we deny Eve access to a randomizing device when
she plays Matching Pennies with Adam. Is she now doomed to lose? Not if she
knows her Shakespeare well! She can then make each choice of head or tail con-
tingent on whether there is an odd or even number of speeches in the successive
scenes of Titus Andronicus. Of course, Adam might in principle guess that this is
what she is doing—but how likely is this? He would have to know her initial state
of mind with a quite absurd precision in order to settle on such a hypothesis. Indeed,
I don’t know myself why I chose Titus Andronicus from all Shakespeare’s plays
to make this point. Why not Love’s Labour’s Lost or The Taming of the Shrew?
To outguess me in such a matter, Adam would need to know my own mind better
than I know it myself.

With this story, a mixed equilibrium need involve no explicit randomization at
all. Chance chooses from many different types of people when selecting player 1.
Some types use Titus Andronicus when deciding between heads or tails. Less lit-
erary folk may prefer the incidence of muggings in Milwaukee last September or the
number of raindrops they can see on the windowpane.
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Whatever their reasons, some fraction of the population from which player I is
chosen will play heads, and the rest will play rails. If the fractions are equal in
both this population and the population from which player II is drawn, then we are
looking at a polymorphic equilibrium in a population game whose players are
everybody that Chance might call upon to play Matching Pennies. Although all per-
sons in both populations may make up their minds about whether to choose heads or
tails in an entirely deterministic manner, it will seem to anyone watching Matching
Pennies being played that a mixed equilibrium is in use.

Game theorists say that the mixed equilibrium of Matching Pennies has been
purified when it is interpreted in terms of a polymorphic equilibrium in pure strat-
egies of a larger population game (Section 15.6). The strategies in the mixed equi-
librium then cease to say what a rational player will do when playing Matching
Pennies. They now tell us only what the players believe about the distribution of
types in the two populations. A purified equilibrium is therefore an equilibrium in
beliefs rather than an equilibrium in actions.

6.4 PAYOFFS AND MIXED STRATEGIES
So far, we have managed to get by without much mathematics in this chapter, but we

need to be more systematic if the use of mixed strategies is to find a regular place in
our toolkit.

6.4.1 Matrix Algebra

Matrices were introduced in Section 5.3 when studying strategic forms. We now
need to learn how they are added and multiplied.

Matrix Addition. To add two matrices with the same dimensions, just add the
corresponding entries. With the examples A and B of Section 5.3.1:

A+BT—{3O 1%{21 0}_{51 1]_
1 0 =2 30 -3] |4 0 -5/

2 3 0 0 2 3
B+0= |1 O(+]0 O=]1 0
0 -3 0 0 0 -3

We made sense of the expression B + 0 by interpreting O as the 3 x 2 zero matrix, but
it is never meaningful to try to add matrices that don’t have the same dimensions.
For example, it doesn’t make any sense to write

2 3
A+B:ﬁ 8 _HJF 10
0 -3

Scalar Multiplication. To multiply a matrix by a scalar, just multiply each matrix
entry by the scalar. For example,
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[3 0 1} (9 0 3]
3A=3 =
1 0 —

2 13 0 —6
2 3 3 1 -1 2
B-A" =11 Ol+=1D|0 0] = 1 0
0 -3 1 -2 -1 -1

Matrix Multiplication. In order for the matrix product CD to make sense, it is
essential that C have the same number of columns as D has rows. If Cis an m x n
matrix and D is an n X p matrix, then CD is an m X p matrix.

In the examples we are using, A is a 2 X 3 matrix and B is a 3 X 2 matrix, and so
AB is a2 x 2 matrix and BA is a 3 X 3 matrix. To find the entry of AB that lies in its
second row and first column of AB, we first identify the second row of A and the first
column of B, as shown in Figure 6.5. The answer 2 is then obtained by summing the
products of corresponding entries in this row and column to obtain

I1x24+1x0-2x0=2.
Four such calculations need to be made for the matrix AB and nine for the matrix BA:

9 0 -4
6 6}; BA = 30 1
-3 0

AB:[z 9

Some care is needed when multiplying matrices. It isn’t even guaranteed that the
product of two matrices is a meaningful object. For example, one can’t multiply a
2 x 3 matrix by another 2 x 3 matrix, and so it doesn’t make sense to write ABT.
Even when all the matrix products involved are meaningful, only some of the usual
laws of multiplication are valid. It is always true that (LM)N = L(MN) when all the
products are meaningful, but you will be lucky if LM = ML, even when both sides
make sense. The two matrices AB and BA don’t even have the same dimensions.

Vector Arithmetic. Vectors can be represented as matrices, and so we can add them
together and multiply them by scalars.

In particular, if o and f are scalars, we can talk about a linear combination
ox 4 fy of two vectors x and y that have the same dimension. For example, if x and y
are vectors in IR?, then

ax+ By = olxy, x2)+ (1, y2) = (axi + By, oxz + fy2).
[301} 2| 3 :[66}
1 0 2 1l 0 9
0/-3

second row of A second row and
first column of B first column of AB

Figure 6.5 Matrix products. The entry in the ith row and jth column of AB is found by summing the
products of the corresponding entries in the ith row of A and the jth column of B.
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Xy + ¥ ox
Y2
x
X
0
(a) Vector addition (b) Scalar multiplication

Figure 6.6 Vector addition and scalar multiplication.

Note that x + y can be interpreted as the displacement that results from first using
the displacement x and then using the displacement y. Figure 6.6(a) illustrates the
idea. It also makes it obvious why the rule for adding two vectors is called the
parallelogram law.

Orthogonal Vectors. We can’t simply multiply two n-dimensional column vectors x
and y because the product of two n X 1 matrices is meaningful only when n=1.
However, it makes sense to multiply the 1 x n matrix x” by the n x 1 matrix y to
obtain the 1 x 1 matrix x"y. This scalar is given by

x'y=[x; x o x] | F XXyt XY
Yn

Mathematicians say that x"y is the inner product or the scalar product of the
vectors x and y.’

The geometric interpretation of inner products is important. A necessary and
sufficient condition for two vectors x and y to be orthogonal (or perpendicular, or at
right angles) is that their inner product x "y is zero.

T 2

Iell* = xTx = +25 4 - 47
The case n =2 is illustrated in Figure 6.7(a). Pythagoras’s theorem then tells us that
||x|| is simply the length of the arrow that represents x when this is thought of as a
displacement.

5The notation (x,y) = x'y is frequently used in spite of the risk of confusion with other uses of (x, y).
Sometimes x 'y is written as x - y and called a dot product.
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X2

=

X1
(a) (b)

Figure 6.7 Pythagoras’s theorem.

We can now apply Pythagoras’s theorem to the right-angled triangle of Figure
6.7(b) to verify that the inner product of the orthogonal vectors x and y is zero:

2 2 2
[l = YII7 = llxl” + [l

=y x=—y=x'x+y'y
x'x— yTx — xTeryTy = xTeryTy

x'y=0.

Note that y'x = x"y because both sides of the equation are equal to x;y; +
X2Ys 4 - - - + X,y,. More elegantly, we can use the fact that (CD)" = D' CT always
holds when the product CD makes sense. Moreover, y' x is a scalar and thus equal to
its own transpose. Thus, y'x =(y'x)  =x'(y )" =x"y.

6.4.2 The Algebra of Mixed Strategies

In algebraic terms, a mixed strategy for player I in an m X n bimatrix game is an
m x 1 column vector p with nonnegative coordinates that sum to one. The coordinate
p; is to be understood as the probability with which player I's pure strategy s; is
used. Similarly, a mixed strategy for player II is an n x 1 column vector g. The
coordinate gy is the probability with which player II’s pure strategy #, is used. The set
of all player I's mixed strategies will be denoted by P, and the set of all player II’s
mixed strategies by Q.

Consider the 2 x 3 bimatrix game of Figure 6.8(a). The 2 X 1 column vector
p= (%, % )" is an example of a mixed strategy for Adam in this game. To implement
this choice of mixed strategy, Adam might draw a card from a well-shuffled deck of
cards and use his second pure strategy s, if he draws a heart and his first pure strategy
s; otherwise. An example of a mixed strategy for Eve is the 3 x 1 column vector
q= (%,%,O)T. She may implement this mixed strategy by tossing a fair coin and
using her first pure strategy ¢, if heads appears and her second pure strategy 1, if tails
appears.
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51 S1

S2 52

(a) (b)

Figure 6.8 Domination by a mixed strategy.

Domination and Mixed Strategies. As an example of the use of mixed strategies, we
now look at a game that has a pure strategy that is dominated by a mixed strategy but
not by any pure strategy.

None of Eve’s pure strategies dominates any other in the bimatrix game of Figure
6.8(a). However, Eve’s pure strategy ¢, is strongly dominated by her mixed strategy
q= (%,0, %), which attaches probability % to t; and probability % to t5. To see this
requires some calculation.

If Eve uses ¢ and Adam uses s;, each of the outcomes (s;,#;) and (sy,#3) will
occur with probability % Thus Eve’s expected payoff is 0x % +9x % = 4%. Since
4% >4, Eve does better with g than with #, when Adam uses s;. Eve also does
better with g than with #, when Adam uses his other pure strategy s, because
7% % +0x % = 3% > 3. Thus q is better for Eve than 7, whatever Adam does. This
means that g strongly dominates #,.

The game that is left after column 7, has been eliminated is shown in Figure 6.8(b).
In this reduced game, s, strongly dominates s;. After row s; has been deleted, ¢,
strongly dominates f3. The method of successive deletion of dominated strategies
therefore leads to the pure strategy pair (s5, #1). Since only strongly dominated strat-
egies were deleted along the way, (s,, ;) is the unique Nash equilibrium of the game.

6.4.3 Payoff Functions for Mixed Strategies

When working with mixed strategies, we need to replace the payoff function
7; : S X T — R introduced in Section 5.2 by a more complicated payoff function:
IT; : Px Q — R.Justas m(s, 1) is player i ’s expected payoff when player I uses pure
strategy s and player II uses pure strategy ¢, so I1,(p, q) is player i’s expected payoff
when player I uses mixed strategy p and player II uses mixed strategy g.

The first step toward finding a formula for I1(p, q) is to note that we are usually
interested in the case in which Adam and Eve choose their strategies independently.
So any random devices the players use to implement their mixed strategies must be
statistically independent in the sense of Section 3.2.1.

If Adam’s mixed strategy is the m x 1 column vector p, his second pure strategy
s, gets played with probability p,. If Eve’s mixed strategy is the n x 1 column vector
q, her first pure strategy t; gets played with probability ¢g,. The pure strategy pair
(52, t1) will therefore get played with probability p, X ¢q;.

For example, if p = (%,%)T and ¢ = (2, O,%)T in the game of Figure 6.8(a), the
probability that (s, ;) gets played is p.q; = % X % = g. Adam’s payoff when this
happens is m;(s;, 1) =4, and Eve’s payoff is my(s,, 1) =7.
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We can work out the probability of each of Adam’s and Eve’s payoffs in the same
way, and so it is easy to write down a formula for their expected payoffs when using
mixed strategies in terms of the entries in their payoff matrices:

i(p.q) =p'Ag; I (p.q) =p'Bg.

When p = (1,2)" and ¢ = (2,0,1)" in the bimatrix game of Figure 6.8(a), the

expected payoffs to Adam and Eve are

.
1 90 3
i(p.q9) =p'Aq = [} %][ } 0| =4
4 7 3 L
L 3
- 5"
0 4 9 3
L(p.q) = p'Bg = [} %]{ } 0| =121
7 30 L
L 3

These formulas are correct because each payoff m;(s;, #;) gets multiplied by the right
probability, namely p; g;. For example, when p'Bg is expanded, my(sy, 1) =7 gets
multiplied by prg; = 3.

6.4.4 Representing Pure Strategies

It is often necessary to talk about pure strategies while using the notation introduced
for mixed strategies. For this purpose, we need the column vectors e; that have a one
in their ith row and zeros elsewhere. The column vector e with a one in every row is
also sometimes helpful.

As with the zero vector, the dimensions assigned to e; or e depend on the context.
When they stand for 3 x 1 vectors:

1 0 0
e1=|0; e=|1]; ea=]|0[; e=
0 1

If the m X n matrix A is Adam’s payoff matrix in a game, then the m x 1 column
vector e; represents the mixed strategy in which he plays his ith pure strategy with
probability one. Playing e; is therefore the same as playing your ith pure strategy.
Similarly, the n x 1 column vector e; represents Eve’s jth pure strategy.

If Adam and Eve choose ¢; and ¢;, Eve’s payoff is the entry b; in the ith row and
Jjth column of her payoff matrix B. In the example of Section 6.4.3,

1

0 4 9
i(ez,e1) = e, Aey = [0 1]{7 3 0] 0| =7.
0

The ith entry in the vector p'A is p' Ae;, which is Adam’s payoff when he uses
the mixed strategy p and Eve uses her ith pure strategy. So p ' A lists the payoffs that
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Adam can get when Eve replies to his choice of p with a pure strategy. Similarly, Ag
lists the payoffs that Adam can get by playing a pure strategy when Eve uses the
mixed strategy g. The vectors Bg and p' B have similar interpretations in terms of
Eve’s payoffs.

For example, we can express the fact that Adam can’t get less than o when he
plays p by writing

prA> e’ (6.2)

This inequality implies that p"Ag > o for all mixed strategies g because e' g =
q1+q2+ -+ +q, = 1. Similarly, Eve always gets the same payoff of 5 by playing
g when

Bg = fe (6.3)

because then we have that p"Bg = fp e = f for all mixed strategies p.

6.4.5 O’Neill’s Card Game

Barry O’Neill used this game in some experimental work because it is the simplest
asymmetric, win-or-lose game without dominated strategies.

Alice and Bob each have the A, K, Q, and J from one of the suits in a deck of
playing cards. They simultaneously show a card. Alice wins if both show an ace or if
there is a mismatch of picture cards. Bob wins if both show the same picture card or
if one shows an ace and the other doesn’t. If we assign each player a payoff of 1
when they win and 0 when they lose, the players’ payoff matrices are:

—_——O O
—_— = = O
—_—0 O =

I 1
1 0
0 1
0 0

S = = O

0
1
0
1

S oo~

We seek an equilibrium (p, g) in which Alice’s and Bob’s mixed strategies p and
g assign a positive probability to each of their pure strategies. Both players will then
be indifferent between all their pure strategies.

We know from Section 6.4.4 that Aq lists the payoffs that Alice gets from playing
each of her pure strategies when Bob plays g. When each of these payoffs is the
same, there is an o for which

Aq = ae.

With the equation e'g = 1 (which says that the coordinates of ¢ sum to one), we
then have five linear equations for the five unknowns ¢, ¢, ¢3, 4, and a.

The crudest way of solving these equations is to use a computer to calculate the
inverse matrix A", Then,
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W= = = O
—

= = = O
= = = O
153
B R B =

The coordinates of ¢ sum to one, and so o0 = % It follows that Bob’s mixed strategy
in the equilibrium is
q=( )"

k)

Wi
=

1
75

W=

However, nobody ever inverts a matrix if they can help it. In this case, it is a lot
easier to notice that ¢,, g3, and g4 appear in a symmetric way, so there must be a
solution with ¢, = g3 = ¢q4. The vector equation Ag = ae then reduces to the equa-
tions g; =« and 2¢g, = o, which solve themselves.

We leave it as an exercise to check that Bob is similarly indifferent between all
his pure strategies when Alice plays the mixed strategy

)"

[11\S)
=

1
75

w|—

p =

b}

6.5 CONVEXITY

To see how mixed strategies can be handled using geometric methods, we need to
resume the study of vectors that began in Section 6.4.1.

6.5.1 Convex Combinations

The linear combination w = ax + ffy of x and y becomes an affine combination when
o+ f=1. Thus

w=y+av
ax + (1 — a)y

Rt w=y +§}/
7 i =3Xx+3y
O‘V./ I vV=x-—y 3
\\ //
\ e
\ //
o v=h—y
\\ y
\
\ convex
Y\ .7 combinations
\ e
\ L of x and y

Figure 6.9 Affine and convex combinations.
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w=ox+(l—a)y=y+ax—y)

is an affine combination of x and y. Figure 6.9(a) shows that the set of all affine
combinations of x and y is the straight line through the points located at x and y. This
is the same as the straight line through y in the direction of the vector v=x —y.

A convex combination of x and y is a linear combination w = ox 4+ fiy in which
o+ pf=1andalso o > 0and > 0. Figure 6.9(b) shows that the set of all convex
combinations of x and y is the straight-line segment joining x and y.

If the length of the vector v =x — y in Figure 6.9(b) is ||v|| = d, then the length of
the vector %v is %d. It follows that

lies at the point on the line segment joining x and y whose distances from x and y are
% and %d respectively. It therefore lies one-third of the way down the line segment
from x.

If we think of the line segment as a weightless piece of rigid wire with a mass % at
x and a mass % at y, then the point w lies at its center of gravity. As shown in Figure
6.10(a), the wire will balance if supported at w.

In the general case, the linear combination

W = 01 X1+ 00Xy + « -+ +0pXk

is an affine combination of xi, x,, ..., X When oy + o + - - - + 0. = 1. It is a convex
combination when we also have iy > 0,00 > 0,..., o, > 0. In the latter case, w lies
at the center of gravity of a system with masses «; located at the points x;, as shown in
Figure 6.10(b).

Commodity Bundles. Economists use vectors to describe commodity bundles (Sec-

tion 4.3.1). If (1, 3) is the bundle in which Pandora gets 1 bottle of gin and 3 bottles
of vodka and (5, 3) is the bundle in which she gets 5 bottles of gin and 3 bottles of

vodka, then the convex combination
.
X1

: e
_2 1
E w=3x+t3y @
X (A Ty apxy + Xy + asxy + agxg
O
point of
balance X3
(a) (b)

Figure 6.10 Centers of gravity. The center of a gravity of a system is the point where it would
balance if supported there.
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@ ‘5'3/
(a) Convex (b) Nonconvex

Figure 6.11 Convex and nonconvex sets.

21,3)+165.3) =23

is the physical mixture of the two bundles obtained by taking % of each commodity
from the first bundle and % of each commodity from the second.

6.5.2 Convex Sets

A set Cis convex if it contains the line segment joining x and y whenever it contains
x and y. Figure 6.11 shows some examples of sets that are convex and sets that
aren’t.

If x and y lie in a convex set C, then so does any convex combination ox + fy of x
and y. In fact, a convex set contains all of the convex combinations of any number of
its elements.

The convex hull conv(S) of a set S is the set of all convex combinations of points
in S. It is therefore the smallest convex set containing S. Some examples are shown
in Figure 6.12.

6.5.3 Representing Mixed Strategies Geometrically

In an m X n bimatrix game, take m points sy, 55, . . . 5, in some convenient space to
represent Alice’s m pure strategies. The set P of Alice’s mixed strategies can then be
identified with the convex hull of sy, 55, ...5,,.

In a space of dimension m — 1 or more, we will be unlucky if we have made s,
S5, .. .5, affinely dependent.® If not, each point p in the convex hull of the points
representing Alice’s pure strategies can be expressed in just one way as a convex
combination p =pis| + pasz + . . . DS Of 81, S2, . . . 5, We then regard the point p as
representing the mixed strategy (pi, pa, - - - » Pm)-

When m =2, the convex hull P of Alice’s two pure strategies is the line segment
joining s; and s,, as shown in Figure 6.13(a). If © represents the mixed strategy

This means that one of the points can be expressed as an affine combination of the others. Three
points in IR? are affinely dependent if they all lie on the same straight line. Four points in R? are affinely
dependent if they all lie in the same plane.
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Conv (T})

Conv (S})
¢ Conv (S,)

Conv (T3)

(@) (b)

Figure 6.12 Convex hulls. Figure 6.12(a) shows the convex hulls of the sets Sy = {(1,0),(0,3), (2, 1),
(2,2), (4,1)} and S>={(4,5),(6,1)}. Figure 6.12(b) shows the convex hulls of the sets 7} and T, of
Figure 6.11(b).

(71, my), recall that the distance from = to s, is simply 7; of the whole distance from
s to $5.

Figure 6.13(b) illustrates the case when m = 3. The convex hull of Alice’s three
pure strategies is then a triangle. When making an orthogonal journey from the line
p3=0 to the line p3 =1, one encounters the line p; =5 after traveling n3 of the
distance.” When m =4, Figure 6.13(c) shows that the convex hull of Alice’s four
pure strategies is a tetrahedron. Because three-dimensional diagrams are a pain, one
often unfolds such tetrahedrons and lays them flat on the page, as in Figure 6.13(d).

We choose the points that represent Alice’s pure strategies in any way that is
convenient. An unimaginative choice in the case m = 3 begins by labeling the three
axes of R? as py, p,, and ps. Alice’s three pure strategies s, 5», and s3 then corre-
spond to the points (1, 0, 0), (0, 1, 0), and (0, O, 1) (Section 6.4.4). As shown in
Figure 6.13(e), their convex hull P lies in the plane p, 4+ p,+p3=1. With this
special representation, we get the barycentric coordinates of a point 7 in P for free
since these are the same as the Cartesian coordinates of 7. But who wants to fuss with
a three-dimensional diagram when one can do the same job with a two-dimensional
diagram? Instead of drawing Figure 6.13(e), we therefore usually throw away every-
thing but the triangle P and lay this flat on the page, as in Figure 6.13(b).

What happens when we want to represent both players’ mixed strategies si-
multaneously? We did this for a 2 x 2 bimatrix game in Figure 6.2. Player I's set P
of mixed strategies is represented by the line segment joining (0, 0) and (1, 0) in IR,
Player II'’s set Q of mixed strategies is represented by the line segment joining (0, 0)
and (0, 1). The set of all pairs of mixed strategies can then be represented by the
square P x Q, illustrated in Figure 6.14(a).

"Mathematicians say that (py, po, p3) are the barycentric coordinates of the point it represents in the
triangle. Three coordinates are then used to locate a point in a two-dimensional space, but remember that
pri+patps=1.
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Figure 6.13 Spaces of mixed strategies. A contour labeled p; =7; in Figure 6.13(b) consists of all points
P =Pp1S1 + P25z + p3s3 with p;=mn; and p; + p, +p3 = 1. These contours are straight lines (Exercise
6.9.25). The faces of the tetrahedron of Figure 6.13(c) that meet at the vertex s4 have been peeled away
and the whole laid flat on the page to produce Figure 6.13(d). The point s, therefore appears three
different times in the latter figure. One can similarly think of Figure 6.13(b) as the triangle P of
Figure 6.13(e) laid flat on the page.

In the case of a 2 x 3 bimatrix game, player I’s set P of mixed strategies can be
represented by a straight-line segment. Player II’s set Q of mixed strategies can be
represented by a triangle. Figure 6.14(b) shows that the set P x Q of all pairs of
mixed strategies is then a prism.

6.5.4 Concave, Convex, and Affine Functions

When we first met concave functions in Section 4.5.3 while studying risk aversion,
we noted that chords to their graphs lie on or below the graph. We could equally well
have said that the set of points on or below the graph of a concave function is
convex.

This geometry translates into an algebraic criterion for a function f : C — R to
be concave on a convex set C. The criterion is that, for each x and y in C,
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Figure 6.14 Representing mixed-strategy profiles.

fox+py) = af () + Bf () (6.4)

whenever ¢+ =1, > 0,and f > 0.

The concave function u : R — IR defined by u(x) = 4+/x that we last saw
when trying to resolve the St. Petersburg paradox will serve as an example (Section
4.5.3). In Figure 4.7, the chord joining the points (1, x(1)) and (9, #(9)) lies on or
below the graph of the function. Points on this chord are convex combinations of

(1, u(1))=(1,9) and (9,u(9)) =(9,12). The point Q of Figure 4.7 is the convex
combination

1L (D)) +3(9,u9) = 3, u(l)+ 3u(9)).
Since Q lies below the point P on the graph,
u(3) = u(% ><1—|—% X 9) > %u(l)—i— %u(9),

which is a particular case of the inequality (6.4).
The criterion for a convex function is that, for each x and y in C,

fx+By) < af )+ Bf (),

whenever oo+ =1, > 0,and f > 0. This criterion is equivalent to saying that the
set of points on or above the graph of the function is convex.
For an affine function, we need that, for each x and y in C,

fax+By) = af )+ (),

whenever o+ =1, > 0, and f > 0.8

8If C = R", we don’t need to require that &« > 0 and > 0. Without the requirement that o+ f =1,
the condition flox + fy) = af(x) + ff(y) characterizes a linear function.
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Affine functions are therefore characterized by the fact that they preserve convex
combinations. If w is a convex combination of x and y, this means that f{iw) is the
same convex combination of f(x) and f(y). That is to say, w=oax+ fy=f (w)=

o flx) + Bf(y).

6.6 PAYOFF REGIONS

A payoff region is the set of all payoff profiles that can occur in a game under various
hypotheses about what the players are allowed to do. Figure 6.15 shows versions
of Chicken and the Battle of the Sexes from Exercises 1.13.5 and 1.13.6 that will
provide instructive examples.

6.6.1 Preplay Randomization

The players of a game will frequently find it to their advantage to get together before
playing the game to consider whether they might advantageously coordinate their
strategy choices. Whole books are devoted to various conventions that bridge players
agree to use in such preplay discussions. Our concern here is with how preplay
randomizing might arise.

Cooperative Payoff Regions. While at breakfast in their honeymoon suite, Adam
and Eve realize that they might get separated later in the day. Adam suggests that
they should then meet at this evening’s big boxing match. Eve suggests meeting
instead at a performance of Swan Lake. Rather than spoil their honeymoon with an
argument, they settle the issue by tossing a coin. What is this agreement worth to
each player?

In terms of the Battle of Sexes, the agreement is to play each of (box, box)
and (ball, ball) with probability % Adam gets a payoff of 2 when the coin lands
heads and a payoff of 1 when it lands rails. His expected payoff is therefore
1 % = % X2+ % x 1. Eve gets a payoff of 1 when the coin lands heads and a payoff of

slow speed box ball
2 3 1 0
slow box
2 0 2 0
0 -1 0 2
speed ball
3 -1 0 1
(a) Chicken (b) Battle of the Sexes

Figure 6.15 Two toy games. Chicken is a game played by two drivers who approach each other on a
street that is too narrow for them to pass without someone slowing down. The Battle of the Sexes is
a coordination game played by two separated honeymooners trying to get back together.
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2 when it lands tails. Her expected payoff is therefore 1§ =3 x 141 x 2. It follows
that the payoff pair that corresponds to their agreement is the convex combination

b =1en+1a,2)

of the payoff pair (2, 1) they get when the coin lands heads and the payoff pair (1, 2)
they get when it lands tails.

Adam and Eve could also have used other random devices to generate other
compromises between the pure outcomes of the Battle of the Sexes. Each such
randomization generates a convex combination of the payoff pairs in the game’s
payoff table. The set of all such convex combinations is the cooperative payoff
region C of the game.

Since the set C is just the convex hull of the payoff pairs in a game’s payoff table,
it is easy to draw. Figure 6.16 shows the cooperative payoff regions for both the
Battle of the Sexes and the version of Chicken given in Figure 6.15(a).

Noncooperative Payoff Regions. When Adam and Eve toss a coin to decide whether
to meet at the boxing match or the ballet, they aren’t choosing their strategies
independently. Far from implementing their mixed strategies using independent
random devices as assumed in Section 6.4.3, they cooperate in using the same
random device.

When finding the noncooperative payoff region N of a game, we rule out all such
cooperative activity and allow Adam and Eve to use only independent mixed
strategies. Thus N is the set of all payoff pairs

(,y) = (p'Aq,p"Bg),

when p and g vary over all mixed strategies in P and Q respectively.

1,2)
(0,3)
2,2)
21
(3,0)
L/‘ (0, 0)
(=L -1
(a) Chicken (b) Battle of the Sexes

Figure 6.16 Cooperative payoff regions.
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(1,2)

2.1

(3,0 (0, 0)

(=1, -1
(a) Chicken (b) Battle of the Sexes

Figure 6.17 Noncooperative payoff regions.

It is instructive to build up the set N one strategy at a time. A mixed strategy
(1 —p,p)" for Adam in the Battle of the Sexes traces a line segment in payoff space.
To find the line segment when p = %, begin by locating its endpoints. They occur
where Eve uses one of her two pure strategies.

If Eve plays her first pure strategy, Adam’s use of p = % generates the payoff pair
2(2,1)+ 1(0,0), which is located one-third of the way down the line segment joining
(2,1) and (0,0). If Eve plays her second pure strategy, Adam’s use of p = % gen-
erates the payoff pair % (0,0)+ % (1,2), which is located one-third of the way down the
line segment joining (0, 0) and (1, 2). Mark these two points on the diagram, and then
join them with a line segment. This line segment is the set of all payoff pairs that are
possible when Adam uses the mixed strategy corresponding to p = %

Figure 6.17(b) shows the line segments that correspond to all of Adam’s and
Eve’s mixed strategies when p or ¢ is a multiple of é. Enough of these line seg-
ments are drawn to make it clear that N is very far from convex. The curved part
of its boundary is actually a parabola, which is tangent to the straight parts of the
boundary.”

The payoff pair that results from the play of the mixed strategy profile (p, g) is
the point at which the line segments corresponding to p and g cross. (Where both
line segments are the same, the payoff pair lies at the point of tangency with the
bounding parabola.)

The Nash equilibria of the game can be located by looking hard at the diagram.
Two pure equilibria occur where (p,g) =(0,0) and (p,q)=(1,1). A mixed equi-
librium occurs where (p,q) = (% ,%). The line segment that corresponds to Adam’s
playing p :% is horizontal, and so Eve gets the same payoff whatever she does.
Similarly, the line segment that corresponds to Eve’s playing g = % is vertical, and
so Adam gets the same payoff whatever he does.

The parabola is the envelope of all the line segments that correspond to either Adam’s or Eve’s
mixed strategies. This means that it touches each of these segments.
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Figure 6.17 shows the noncooperative payoff regions for both the Battle of the
Sexes and the version of Chicken given in Figure 6.15(a). The latter is much simpler
to draw.

6.6.2 Self-Policing Agreements

Honeymooners are unlikely to cheat on any agreement they make on how to play the
Battle of the Sexes. But what if we replace Adam and Eve by two suspicious
strangers, Alice and Bob?

Cheap Talk. The only viable agreements between players who don’t trust each other
are those in which they agree to coordinate on an equilibrium (Section 1.7.1).
Neither player then has an incentive to cheat. One might therefore think that Alice
and Bob must agree on one of the three Nash equilibria of the Battle of the Sexes, but
the fact that Alice and Bob are able to talk to each other before playing the Battle of
the Sexes changes their game.

The messages that Alice and Bob exchange during a preplay negotiation are
called cheap talk because it doesn’t cost Alice or Bob anything to lie. Cheap talk can
nevertheless be useful. For example, it allows Alice and Bob to toss a coin together.
They can then emulate Adam and Eve by agreeing to play (box, box) if the coin lands
heads and (ball, ball) if it lands tails. Neither has an incentive to cheat on the deal
after the coin has fallen because the agreement always specifies that a Nash equi-
librium be played.

We can model the situation by creating a new game G that begins with a chance
move. Each choice that Chance can make leads to a subgame of G that is a copy of
the Battle of the Sexes. A subgame-perfect equilibrium of G requires that a Nash
equilibrium be played in each of these subgames—but it needn’t be the same Nash
equilibrium in every subgame.

We have looked at a case in which Alice and Bob use the Nash equilibrium
(box, box) in some subgames and the Nash equilibrium (ball, ball) in others. When the
subgames in which each of these equilibria are to be played are reached with prob-
ability 4, Alice and Bob achieve the payoff pair (14,11) in the game as a whole. But
the Battle of the Sexes has three Nash equilibria. Alice and Bob could agree to play
any of these three equilibria in subgames reached with any probabilities they like.

So Alice and Bob don’t need to trust each other to achieve any payoff pair in the
convex hull of the payoff pairs (2, 1), (1,2), and (%,%), which are the payoff pairs
corresponding to the three Nash equilibria of the Battle of the Sexes. All they need to
do to achieve any payoff pair in this set is to make their choice of a Nash equilib-
rium in the Battle of the Sexes contingent on a suitable random event that they can
observe together.

Figure 6.18 shows the convex hull H of the set of Nash equilibria of both the
Battle of the Sexes and the version of Chicken given in Figure 6.15(a). The latter is
more interesting because Alice and Bob would like to agree on the payoff pair (2, 2),
but it isn’t in the set H. Is there anything that Alice and Bob can do about this?

Correlated Equilibria. When Alice and Bob don’t trust each other, the first-best
payoff pair (2,2) is beyond their reach in Chicken. But the payoff pair (15,11) isn’t
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(1,2)
(0,3)
H
21
(Z 2
33
L (.00 (0,0)
=L -1
(a) Chicken (b) Battle of the Sexes

Figure 6.18 The convex hull H of the Nash equilibrium outcomes for Chicken and the Battle of the
Sexes. By using a jointly observed random device to coordinate their choice of a Nash equilibrium, Alice
and Bob can achieve any payoff pair in H without needing to trust each other. In Chicken, the
players would like to agree on (2,2), but it isn’t in the set H.

their second-best alternative. With the help of a reliable referee, they have an
incentive-compatible means of achieving the pair (1 % .1 %).

The referee is needed to operate the opening chance move in a game G that Alice
and Bob agree to play in a preplay cheap-talk session. Each choice made by Chance
at the opening move of G leads to a copy of Chicken. Since Alice and Bob only
care about whether the outcome of the chance move requires them to play slow or
speed, we need only distinguish the four events: e = (slow, slow), f= (slow, speed),
g = (speed, slow), and h = (speed, speed).

The chance move wouldn’t help matters if Alice and Bob were to see its outcome,
but the referee is instructed to tell Alice and Bob only what they need to know:
namely, the strategy that Chance has chosen for them to play in Chicken. As shown
in Figure 6.19(b), Alice therefore knows only that either the event A in which she is
told to play slow has occurred or else the event B in which she is told to play speed.
Bob knows only that either the event C in which he is told to play slow has occurred
or else the event D in which he is told to play speed.

Why should Alice and Bob do what the referee tells them? Their agreement to do
so was just cheap talk. Nobody expects them to honor the deal if they can get a
higher payoff by doing something else. For the deal to stick, it must therefore always
require behavior that is compatible with their incentives.

For Alice and Bob to have an incentive-compatible deal, the probabilities with
which Chance chooses the four events e, f, g, and & need to be determined very
carefully (Exercise 6.9.30). We will check only that it is enough to make

prob (e) = prob (f) = prob (g) = 1,
prob(h) =0
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Figure 6.19 Correlated equilibrium outcomes in Chicken.

in Figure 6.19(b). The conditional probabilities introduced in Section 3.3 will be
important for the proof. For example, Bob’s probability for A after learning that C
has occurred is

prob(ANC)  prob(e) 3

b(A|C) = = = =z.
prob (4] ) prob (C) prob (e)+prob(g) 1+1 2

For this choice of probabilities to yield an incentive-compatible agreement, we
need that neither Alice nor Bob can ever gain anything by cheating on the agree-
ment. We verify this only for Bob since Alice is in an entirely symmetric situation.
Two steps are necessary. We must confirm that Bob will honor the deal both when
told to play slow and when told to play speed.

Step 1. If the referee tells Bob to play slow, he calculates

prob (Alice hears slow | Bob hears slow) = T :L 1= %
373
1
prob (Alice hears speed | Bob hears slow) = 1 i =3
373

His expected payoff from honoring his agreement to play slow when told to do so is
therefore % X2+ % x 0 = 1. His expected payoff from cheating on the agreement and
playing speed when told to play slow is % x 3+ % x (= 1) = 1. He therefore loses

nothing by honoring the deal when told to play slow.

Step 2. If the referee tells Bob to play speed, he calculates

‘LAI'—

prob (Alice hears slow | Bob hears speed) = 0 =1,

W=
o +

=0.

prob (Alice hears speed | Bob hears speed) =

W=
+
e



6.6 Payoff Regions
It is again optimal for him to honor the deal by playing speed because
I x34+0x(—1)=3>2=1x2+0x0.

What payoff does Bob get in the self-policing agreement we have found? Re-
turning to Chicken’s payoff table, we find that Bob’s expected payoff is

2 x prob (e)+0 x prob (f)+3 X prob (g) = 2 x %—l—Ox %—1—3 X %: 1%.

Since Alice’s expected payoff is the same, we have shown how the players can
achieve the payoff pair (1 % 1 %).

The set P of all payoff pairs that can be achieved with a self-policing agreement is
shown in Figure 6.19(a). The fact that this set is larger than the set H of Figure
6.18(a) was discovered by Robert Aumann. He refers to the Nash equilibrium of the
game G as a correlated equilibrium of Chicken.

Mental Poker. A problem in implementing correlated equilibria is that it may not be
easy to find an incorruptible referee. Philosophers complain about the cynicism they
think such remarks imply, but we must remember that Alice and Bob might
represent the two firms of Section 1.7.1 seeking to collude on an illegal price-fixing
deal.

The referee needs a lily-white reputation because Alice and Bob both have an
incentive to tempt him from the straight and narrow path. He is supposed to conceal
each player’s strategy from the other, but if Bob bribes him to reveal Alice’s strategy
without her anticipating that this might happen, Bob will be able to play a best reply
and so make an expected payoff of 2 =3 x  +0 x 1.

Is there some way that Alice and Bob can dispense with a human referee? The
wonders of modern technology make it possible to answer yes to this question, but
one has to suspend disbelief when listening to the reason because the same tech-
nology makes it possible to play poker over the telephone. How can this be possible?
Surely the players would always report that they just happened to have been dealt a
royal flush!

As an example, consider the case of Adam and Eve playing the Battle of the
Sexes. They would like to toss a coin to decide whether to meet at the boxing match
or the ballet, but they can communicate only by telephone. Eve tosses a coin and
reports that it has fallen fails, and so they should meet at the ballet, but Adam is
distrustful. Eve therefore asks him whether he will agree to meet at the boxing match
if he can solve a mathematical problem she will give him and at the ballet otherwise.
Since he is the world’s greatest mathematician, he agrees. Eve then uses her com-
puter to multiply the big prime numbers

a = 56123699566021020558766279166381074847903158831451;
b = 576541653905419988012369900315883145000658098016489.

The number ¢ = a x b has ninety-nine digits. The problem Eve gives Adam is to say
whether the remainder left after dividing the largest of ¢’s prime factors by four is
odd or not.
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Adam can use all the computer wizardry he likes, but he will still be unable to
factor Eve’s number because the necessary computation will take longer than his
lifetime. He can therefore do no better than guess at the answer. She then tells him
whether he is right or wrong. If he doesn’t believe her, she sends him her two prime
numbers so that he can verify her claim for himself.

This solution to the coordination problem uses the trick on which modern
cryptography is based. Eve’s problem has a one-way trapdoor. It is computationally
feasible to check that her two numbers are prime and to compute their product, but it
isn’t computationally feasible to reverse the process.

6.7 RouNDUP

When mixed equilibria are used, a player is indifferent between each pure strategy
that is assigned positive probability. This observation often provides the answer to
computing mixed equilibria. It can be successful even in complicated cases like the
sealed-bid auction of Section 6.1.1.

A reaction curve plots a player’s best reply to each of the opponent’s strategies.
Nash equilibria occur where the reaction curves cross, as each player is then making
a best reply to the other.

The Hawk-Dove Game is a toy game used by biologists. Its mixed equilibrium is of
interest when regarded as representing a polymorphic equilibrium of a large popu-
lation game. In such a game, each member of the population chooses a pure strategy,
and a chance move then selects a pair from the population to play the Hawk-Dove
Game.

If Bob is chosen at random from a population in which a fraction 1 —p have
chosen pure strategy s and a fraction p have chosen #, then Alice might as well be
playing an opponent using the mixed strategy in which s and ¢ are chosen with prob-
abilities p and 1 — p. A mixed equilibrium can therefore always be interpreted as a
polymorphic equilibrium of a large population game. Purifying a mixed equilibrium
consists of proposing a population game within which such an interpretation makes
sense.

In mathematical terms, a mixed strategy for player I in an m X n bimatrix game is
an m x 1 column vector p with nonnegative coordinates that sum to one. A mixed
strategy for player Il is an n x 1 column vector g. The players’ payoff functions are
given by

(p,q) = p'Aq,
(p,q) =p'Bg,

where A and B are player I's and player II's m x n payoff matrices.

The vector ¢; has 1 as its ith entry and Os elsewhere. It stands for the mixed
strategy in which players use their ith pure strategy for certain. The vector whose
entries are all 1 is denoted by e. One can express the fact that the probabilities
listed in the mixed strategy p sum to one by writing p"e = 1. The vector Aq lists the
payoffs that player I will get from playing each of his pure strategies when player 11
uses the mixed strategy ¢. Similarly, p " A lists the payoffs that player I can get when
player II responds to his choice of the mixed strategy p by playing a pure strategy.
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Preplay randomization may consist of more than the players independently
rolling dice or spinning roulette wheels. The set of payoff profiles achievable when
the players can condition their choice of strategy on any jointly observed random
event is called the cooperative payoff region. The set of payoff profiles achievable
without the opportunity to condition on a jointly observed random event is called the
noncooperative payoff region.

When the players lack the apparatus to make binding preplay agreements, any-
thing they say to each other before the game is just cheap talk. Such talk may be
cheap, but it can nevertheless be valuable when it allows the players to coordinate on
a self-policing agreement that may involve the use of a carefully chosen random
event that is at least partially observed by all the players.

The set of payoff profiles that become available when both players fully observe
the random event is the convex hull of the game’s equilibrium outcomes. Tossing a
coin to decide who gets the more favorable equilibrium in the Battle of the Sexes
is the simplest example. A larger set sometimes becomes available when a referee
can be found who doles out information in a carefully restricted way. The behavior
induced in a game when this trick is used is called a correlated equilibrium.

6.8 FURTHER READING

Tracking the Automatic Ant, by David Gale: Springer, New York, 1998. Along with many math-
ematical puzzles and games, this book discusses the mechanics of playing mental poker.

6.9 EXERCISES

1. Suppose that player I has a 4 x 3 payoff matrix. What vector represents the
mixed strategy in which he never uses his second pure strategy and uses each
of his other pure strategies with equal probabilities? What random device could
player I use to implement this mixed strategy?

2. The n players in the Good Samaritan Game all want an injured man to be
helped. They each get a payoff of 1 if someone helps him and a payoff of 0 if
nobody helps him. The snag is that anyone who offers help must subtract ¢
from their payoff (0 <c < 1).

If n =1, the injured man will be helped for sure. If the players walk past the
injured man one by one, he will also be helped for sure (by the last player to go
by). But if n > 2 and offers of help are made simultaneously, each player will
hope that someone else will do the helping. In a symmetric Nash equilibrium,
show that each player will refuse to help with probability ¢/~ P —1 as
n — c0. Show that the probability the man is helped at all is 1 — ¢ =V, which
decreases to 1 — ¢ as n — c0.Where would you rather find yourself in need of
help: a big city or a small village?

3. In national lotteries, the jackpot is usually shared equally among all the holders
of the winning combination of numbers. If you buy a ticket, you therefore want
to avoid popular combinations. In Canada, where a punter chooses six different
numbers between 1 and 49, the frequency with which each number was chosen
in previous lotteries is published. The least chosen numbers in decreasing order
of popularity are often 45, 20, 41, 48, 39, and 40. People who notice this fact
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10.

11.

therefore sometimes choose the combination (45,20,41,48,39,40), which
paradoxically makes it one of the most popular combinations!

In a simple model of a national lottery, there are only three equally likely
combinations, a, b, and c. Six punters each choose one of these combinations in
the hope of winning a share of the jackpot. Two punters are known always to
choose a, and one is known always to choose b. The other three punters act like
players in a game and therefore don’t automatically choose c. Instead, they seek
to maximize their expected winnings, taking the behavior of the first three
punters as given.

It is easy to find a pure Nash equilibrium of the game played by the three
strategic punters. One punter chooses b, and the others choose c¢. But how do the
players know which of the three should choose b?

A symmetric Nash equilibrium exists in which each strategic punter uses the
same mixed strategy, choosing a, b, and ¢ with probabilities 0, p, and 1 — p. In
this equilibrium, each strategic punter will be indifferent between b and c,
provided that the other wise punters stick to their equilibrium strategies. Show
that 3p”> +8p —2=0, and hence p is approximately 0.23. Confirm that each
strategic punter strictly prefers choosing b or ¢ to a if the other strategic punters
stick to their equilibrium strategies.

. Sketch the pure-strategy reaction curves for the sealed-bid auction game with

entry costs given in Section 6.1.1 and so show that they don’t cross. (Assume
bids are always made in whole numbers of dollars.) Why does it follow that
there is no Nash equilibrium in pure strategies?

. In the sealed-bid auction game with entry costs given in Section 6.1.1, explain

why entering and bidding more than 1 — ¢ is a strongly dominated strategy.

In the sealed-bid auction game with entry costs given in Section 6.1.1, explain
why it can’t be in equilibrium for a player to make any particular bid with pos-
itive probability after entering the auction.

The rules of the sealed-bid auction game with entry costs given in Section 6.1.1
are changed so that Alice and Bob now know whether the other has entered the
auction before sealing a bid in their envelopes. Analyze the game that results.

. Show that the reaction curves in a bimatrix game remain unchanged if a

constant is added to each of player I's payoffs in some column. Show that the
same is true if a constant is added to each of player II's payoffs in some row.

. Draw mixed-strategy reaction curves for the versions of the Battle of the Sexes

and Chicken given in Figure 6.15. Hence find all Nash equilibria of both games.
The version of Chicken given in Figure 6.3(c) has a mixed equilibrium in
which each player uses hawk with probability % This mixed equilibrium can be
interpreted in terms of the polymorphic equilibria of a population game. If the
population is of finite size N, why will it only be an approximate equilibrium
for one-third of the population to play dove and the other two-thirds to play
hawk? How many of these approximate equilibria exist when N =67?

Given

1 0 1
A:{% i (3)] B=|0 -1|, C=]|-1 2
3 0 4
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6.9 Exercises

decide which of the following expressions are meaningful. Where they are
meaningful, find the matrix they represent.

(a)A+B (b) B+C (c)A+B
(d) 3A (e) 3B —2C HH)A—-—B+0OT

Answer the following questions for the matrices

2
01 12
ool el il

a. Why is AB meaningful but not BA? Calculate AB.

b. Why are both BC and CB meaningful? Is it true that BC = CB?
c. Work out (AB)C and A(BC), and show that these are equal.

d. Verify that (BC)" = C"B".

Show that the system of “linear equations”

2)61 — Xy = 4
X1 — 2)62 =3
can be expressed in the form Ax = b, with

12 —1 X |4
O R (1 R 1)

Given the 2 x 1 column vectors

A=

S R~ O

find

(@x+y (b)3y () =2z (d)—z (e) 2x+y

Illustrate each result geometrically.

If x and y are n x 1 column vectors, explain why x'y and xy' are always both
defined, but x"y # xy" unless n=1. Why is it true that x"y = y"x for all n?
Given the 3 x 1 column vectors

3 -3 1
x=1|21, y= 1, z=1| -1},
1 -2 -2

find
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17.

18.

19.

20.

21.

22.

@x'x Wx'y ©x'z @y'z @ Ix] ) Ix—yl

Verify that x"(3y+2z) = 3x"y+2x"z

Use the results of Exercise 6.9.16 to determine each of the following:
a. the distance from O to x

b. the distance from x to y

c. which two of the vectors x, y, and z are orthogonal

In four different games, Player II has the following payoff matrices:

12 13
IV P
2 4 6 3 32 1
C=16 2 4 3|; D=2 3 1
4.6 2 3 2 2 3

In which of the games does player II have a pure strategy that is strongly
dominated by a mixed strategy but not by any pure strategy? What is the
dominated pure strategy? What is the dominating mixed strategy?

Write down a vector inequality that says that Eve can’t get a payoff of more
than f by playing the mixed strategy g. Write down a vector equation that says
that Adam’s choice of the mixed strategy p makes Eve indifferent between all
her pure strategies.

Find a mixed strategy p for Alice in O’Neill’s Card Game that makes Bob
indifferent between all his pure strategies.

Player I has payoff matrix A in a finite, two-player game. Explain why his
mixed strategy p is a best reply to some mixed strategy for player II if and only
if

3qeQVpeP (p'Ag > p'Ag),

where P is player I’s set of mixed strategies and Q is player II's set of mixed
strategies.'® Explain why p is strongly dominated (possibly by a mixed strat-
egy) if and only if

IpePVgeQ (p'Ag>pAg).

Deduce that p is not strongly dominated if and only if
VpeP 3geQ (p'Aqg <p'Aqg).

Explain why the vector w = (3 —2a, 2, 1 4+ 2) is the location of a point on the
straight line through the points x=(1,2,3) and y =(3,2, 1). For what value of

1The notation “3g € @ means, “there exists a ¢ in the set Q such that.” The notation “Vp € P”

means “for any p in the set P.” Why is it true that “not (IpVgq...)” is equivalent to “Vp3I g (not...)”?



23.

24.

25.

26.

27.

28.

29.

30.

6.9 Exercises

o does the vector w lie halfway between x and y? For what value of « does the
vector w lie at the center of gravity of a mass of % at x and a mass of % at y?
Draw a diagram that shows the vectors (1, 1), (4,2), (2,4), and (3,3) in R
Indicate the convex hull H of the set consisting of these four vectors. Why is
(3,3) a convex combination of (4,2) and (2,4)? Indicate in your diagram the
vectors 2(1,1)+ 1(4,2) and 1(1,1)+ 1(4,2)+ 1(3,3).

Sketch the following sets in IR?. Which are convex? What are their convex
hulls?

(@ {x:x3+x3=4} b) {x:x3+x3<4)
©) {x:x =4} @ {x:x=4o0rx, =4}

Let x, y, and z be three points in R%. Let u=ax+ by (a+b=1) be an affine
combination of x and y. Geometrically, u lies on the straight line through x and
y. Why is v=(1 — y)u + yz located 7 of the distance along the line that joins u
to z? Using the proportional division theorem of Euclidean geometry or other-
wise, deduce that the locus of the point w=ox+ iy +yz when y=mn3 and
o+ f+y=1is a straight line. (See Figure 6.13(b).)

Using Figure 6.14(b) as a guide, represent the set P x Q of all pairs of mixed
strategies for the 2 x 3 bimatrix game of Figure 6.20 as a prism. Sketch player
I’s reaction curve as a three-dimensional graph within P x Q. Do the same for
player II’s reaction curve. Where do the reaction curves cross? What is the
unique Nash equilibrium? Who gets how much when this is played?

Verify that the function f : R? — IR? defined by (yy, y») =f(x1, x») if and only if

yi=x1+2x+1
y2 = 2x1+x2+2

is affine. Indicate the points f(1, 1), f(2,4), and f(4,2) on a diagram.

Draw the cooperative and noncooperative payoff regions for the Australian
Battle of the Sexes of Figure 6.21(a). Locate the Nash equilibrium outcomes on
the latter diagram, and draw their convex hull.

Draw the cooperative and noncooperative payoff regions for the game of
Figure 6.21(b). Locate the Nash equilibrium outcomes on the latter diagram,
and draw their convex hull.

Verify that the set of all correlated equilibrium outcomes in the version of
Chicken given in Figure 6.15(a) are as shown in Figure 6.19(a).

6 6 9

Figure 6.20 The game for Exercise 6.9.26.
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31.

32.
33.

34.

box ball left right left right
-1 0 2 5
box up up % %
-2 0 4 2
0 -2 4 3
ball down down % 0
0 -1 5 1
(a) () (©)

Figure 6.21 Tables for Exercise 6.9.28, 6.9.29, and 6.9.31.

Show that there is a correlated equilibrium for the game of Figure 6.21(b) in
which the referee observes a chance move that selects one of the cells of the
payoff table with the probabilities shown in Figure 6.21(c). He tells Adam to
play the row and Eve to play the column in which the cell occurs. Your task is
to verify that it is then optimal for Adam and Eve to follow their instructions.
Confirm that the payoff pair that Adam and Eve get by playing the correlated
equilibrium lies in the convex hull of the set of all the game’s Nash equilibrium
outcomes (Exercise 6.9.29).

Find all correlated equilibrium outcomes for the game of Figure 6.21(b).

If Adam and Eve play a particular Nash equilibrium in a game, then each
pure strategy pair (s, f) will be played with some probability p(s, ). If a referee
always tells Adam and Eve to play s and ¢ with probability p(s, ), why is the
result necessarily a correlated equilibrium? If the referee begins by choosing
the Nash equilibrium at random from those available, why does the result
remain a correlated equilibrium? Why does the set of correlated equilibrium
outcomes of a game contain the convex hull of its Nash equilibrium outcomes?
Show that the game of Figure 6.22(a) has a unique Nash equilibrium in which
Alice plays down with probability % and Bob plays right with probability %
Each outcome is then played with the probabilities given in Figure 6.22(b).
Show that there are no correlated equilibria for the game other than that in
which the referee acts according to the probabilities of Figure 6.22(b).

left right left right
1 5
up up 1—15 12—5
5 1
4 3
4 8
down down s 13
3 2
(a) (b)

Figure 6.22 Tables for Exercise 6.9.33.
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40.

6.9 Exercises

Alice and Bob participate in an all-pay, sealed-bid auction in which the winner
receives a dollar bill and the loser receives nothing—but borh players must pay
what they bid (Section 21.2). If only positive bids in whole numbers of cents
are allowed, find a mixed equilibrium in which every bid of less than a dollar is
made with positive probability. The players are risk neutral, and both receive
nothing if there is a tie.
Philosophers sometimes mention correlated equilibria when trying to argue
that it is rational to cooperate in the Prisoners’ Dilemma. Explain why a cor-
related equilibrium can never require a player to use a strongly dominated
strategy.
Other things being equal, a rational person can never be made worse off by
becoming better informed. In particular, a rational player can’t be harmed in a
game by learning something—provided that the other players’ information
remains unchanged. But it isn’t true that everybody will necessarily be better
off if everybody learns some new piece of information. Use the correlated
equilibrium calculated in Section 6.6.2 to explain why both Adam and Eve will
suffer if they both learn everything that the referee knows. What will happen if
Adam learns what the referee knows but Eve learns only that Adam has learned
this information?
Exercise 1.13.30 asks what the categorical imperative requires in the case of
Scientific American’s Million Dollar Game. Assume that the readers are all risk
neutral.
a. If the readers can coordinate their choices, why might they randomly select
exactly one of their number to enter?
b. If they must randomize independently, what is the probability that n readers
will enter, if each enters with probability p? What is the expected payoff to
a reader?
c. Estimate the optimal value of p. What is the probability that no prize is then
awarded at all?
d. Why does neither interpretation of the categorical imperative generate a
Nash equilibrium?
In a simple version of the Ellsberg Paradox, a ball is chosen at random from one
of two urns that contain only red or blue balls (Section 13.6.2). Adam wins if he
guesses the color of the chosen ball correctly. Urn A is transparent, and Adam
can see that it contains an equal number of red and blue balls, Urn B is opaque,
and so Adam can’t see what mix of balls it contains. Laboratory studies show
that most people in Adam’s situation prefer that the ball be chosen from Urn A.
If faced with Urn B, Adam can always toss a fair coin to decide which color
to guess. Given this option, is it possible that a rational agent would be willing
to pay some money to have Urn B replaced by Urn A?
The laboratory evidence in the previous exercise is sometimes explained by
saying that Adam may feel that using Urn B confronts him with a version
of Newcomb’s Paradox with the experimenter in the role of Eve (Exercise
1.13.23). She would then be able to predict his choice before he makes it and
so have arranged the mix of balls in Urn B to his disadvantage.
The situation can be modeled as the game Peeking Pennies. This game is
the same as Matching Pennies, except that Eve receives a signal after Adam’s
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choice, which says “Adam chose heads” or “Adam chose tails.” It is common
knowedge that the message is correct with probability # when Adam chooses
heads and with probability # when he chooses fails. If h >t and h+1¢> 1, show
that there is a Nash equilibrium in which Eve always chooses tails when she
hears the message “Adam chose tails,” but the players otherwise mix their
strategies. Confirm that Adam’s probability of winning in this equilibrium is
less than his probability % of winning in regular Matching Pennies.

a. Why is Peeking Pennies relevant to the Ellsberg Paradox?

b. What happens when we erode Eve’s predictive power by allowing /4 and ¢ to
approach 1?

c. What happens if we try to instantiate the Newcomb’s Paradox of the phil-
osophical literature by taking 7 =¢=1? Why is it impossible to construct a
game that incorporates the standard philosophical assumption that Eve can
accurately predict Adam’s choice before he has made it, without dispensing
with the standard assumption in game theory that players are free to make
any choice they like from their strategy sets?



7.1 StrRICTLY COMPETITIVE GAMES

This chapter returns to the special case of strictly competitive games, in which two
players have diametrically opposed preferences. The good news is that we can push
the study of such zero-sum games quite a long way forward. The bad news is that we
make more fuss than usual over the necessary mathematics. Some readers may
therefore prefer just to skim the chapter.

Von Neumann and Morgenstern devoted the first half of Games and Economic
Behavior to zero-sum games because they are simpler than other games. For the
same reason, popular accounts of game theory sometimes fail to mention other kinds
of games at all. As a consequence, critics often reject game theory altogether on the
grounds that “life isn’t a zero-sum game.”

It is true that life isn’t usually a zero-sum game, but anyone who thinks that they
are going to solve the Game of Life without first learning to solve simpler games
isn’t being very realistic. Nor does the rarity of zero-sum games diminish their
importance when they do occur. The game played between a pilot and the program-
mer of an air-to-air missile is one of many possible military applications. But since
critics regard such military examples as proof that game theorists are a bunch of Dr.
Strangeloves, I have hidden further mention of missiles at the end of the chapter.

7.1.1 Shadow Prices

At what price should Alice sell her little firm to Mad Hatter Enterprises? Alice’s
plant is worthless, but she owns an m x 1 vector b of raw materials for which Mad
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Hatter Enterprises is the only possible purchaser. However, Alice can also process
the raw materials and sell the finished products.

To produce the n x 1 vector x of processed goods, Alice requires the m x 1 vector
of raw materials given by

7= Ax,

where A is her m X n input-output matrix. The processed goods can be sold at fixed
prices given by the n x 1 vector c. Alice’s revenue from such a sale is the inner
product ¢"x = c1x1 +cpxp+ - - +CpX.

Mad Hatter Enterprises can quote any m x 1 vector y of prices for the raw ma-
terials. Once x and y have been determined, the value of Alice’s firm is

L(x,y) = ¢ x+y"(b—Ax).

Alice wants to choose x > 0 to maximize L(x,y). Mad Hatter Enterprises wants to
choose y > 0 to minimize L(x, y). Valuing Alice’s firm therefore reduces to solving
a strictly competitive game.

The vector of prices y assigned to Alice’s stock of raw materials by the solution to
the game will be chosen at the lowest level consistent with her being able to process
the stock into finished goods that sell at price c. Economists say that the coordinates
of y are then the shadow prices for her stock. They help a manager make decisions
by telling her how much the intermediary goods produced during a manufacturing
process are worth.

7.2 ZERO-SUM GAMES

A zero-sum game is a game in which the payoffs always sum to zero. For two
players, we need that

u(w)+ux(w) =0,

for each w in the set Q of pure outcomes, where u;: Q — IR and u; : Q — R are
the players’ Von Neumann and Morgenstern utility functions.

THEOREM 7.1 A two-player game has a zero-sum representation if and only if it is
strictly competitive.

Proof A two-player game is strictly competitive when the players have dia-
metrically opposed preferences over all pairs of outcomes of the game. Thus,
L=< M <= L >, M forall lotteries L. and M whose prizes are the pure outcomes
of a strictly competitive game. It follows that

(L) <1 6uM) & Lo M,

and so —u; is a Von Neumann and Morgenstern utility function that represents
player II’s preference relation <,. Theorem 4.1 then tells us that u, =Au; + B for



7.2 Zero-Sum Games

some constants A > 0 and B. To make the game zero sum, we choose A =—1 and
B=0.

To prove that a two-player, zero-sum game G is strictly competitive is even
easier. If u, = —u,, then

LM & Su() < Sui(M)
< —du (L) > —Eu (M)
< Sup(L) > SuyM) < L=, M.

Interpersonal Comparison? Itis sometimes wrongly thought that studying zero-sum
games commits us to making interpersonal comparisons of utility (Section 4.6.3).
But the fact that a gain of one util by one player is balanced by a loss of one util by the
other doesn’t at all imply that the players feel victory or defeat equally keenly.

We chose A =—1 and B =0 in the proof of Theorem 7.1, but we could equally
well have taken A= —2 and B=3 or A= —1 and B = 1. The latter choice yields a
constant-sum representation of our game.

For example, Duel and Russian Roulette are strictly competitive games that were
presented in previous chapters as unit-sum games. To convert them into entirely
equivalent zero-sum games, just pick a player and subtract one from all of his payoffs.

Attitudes to Risk? Sometimes the attitudes that players have to taking risks are
overlooked when modeling situations as zero-sum games. For example, games like
poker and backgammon are thought to be automatically zero sum because any sum
of money won by one player is lost by the others. But this isn’t enough to ensure that
backgammon or poker are zero-sum games. They certainly won’t be if all the players
are strictly risk averse.'

When games like poker or backgammon are analyzed as zero-sum games, it
is implicitly understood that the players are risk neutral, so that a player’s Von
Neumann and Morgenstern utility function u : IR — R for money can be chosen to
satisfy

u(x) = x.

We know from studying the St. Petersburg paradox that risk neutrality is unlikely to
be a good assumption about people’s preferences in general. But assuming risk
neutrality may not be too bad an approximation when, as in neighborhood poker
games, the sums of money that change hands are small.

7.2.1 Matrix Games

The bimatrix game of Figure 7.1(a) is the strategic form of a zero-sum game because
the payoffs in each cell sum to zero. The payoff matrices A and B therefore satisfy

"In a zero-sum game, u; = —u, and so one player’s utility function is strictly concave if and only if
the other’s is strictly convex. This was one reason for restricting our attention in earlier chapters to win-
or-lose games. Only when consideration is restricted to lotteries with just two possible prizes can one
deduce from the fact that players have opposing preferences over prizes that they necessarily have
opposing preferences over lotteries.
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4 15) i3 f 5] I3

e 0 si| 2 5 0
2 5 0

5 -3 -1 -2 5 3 : )
3 1 2

—4| -3 -6

53 53 4 3 6
4 3 6

(a) (b) The matrix M

Figure 7.1 A zero-sum strategic form.

A+ B=0. Since B= —A, it is redundant to write down player II’s payoffs. Instead,
the strategic form of a zero-sum game is usually represented by player I's payoff
matrix alone, as in Figure 7.1(b). One must remember that such a matrix records
only player I's payoffs. It is easy to forget that player II seeks to minimize these
payoffs.

7.3 MINIMAX AND MAXIMIN

Von Neumann’s minimax theorem of 1928 is the key to solving zero-sum games.
This section prepares the ground by looking at the case of pure strategies.

7.3.1 Computing Minimax and Maximin Values

Player I's set S of pure strategies in the game of Figure 7.1(a) corresponds to the
rows in the payoff matrix M of Figure 7.1(b). Player II's set T of pure strategies
corresponds to the columns of M. We denote the entry in row s and column ¢ of the
matrix M by n(s,t) (rather than (s, f) as in Section 5.2).

The largest entries in each column of M are 4, 5, and 6. As usual, these entries are
circled in Figure 7.2(a). The smallest entries in each row are 0, 1, and 3. These are
enclosed in a square in Figure 7.2(b). For example,

max nn(s,r3) =6 and minn(s;,t) = 0.
ses teT

The minimax value 7z and the maximin value m of the matrix M are given by

teT | se

m= min{ma§< (s, t)} = min {3, 6, 4} =4,

m= max{minn(s, t)} = max {0,0,2} = 3.

seS |teT

These quantities are shown with both a circle and a square in Figure 7.2.
The next theorem explains why the minimax value m of a matrix M is written
with an overline and the maximin value m with an underline.
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131 15) 13 51 15} 3
Silo2 ® 0 Silo2 5 [0]
S2003 1 2 s20 3 2
53 3 ® 53| 4 6

(a) m=4 (b) m=3

Figure 7.2 Minimax and maximin values for the matrix M.

THEOREM 7.2 m > m.

Proof For any particular t € T, n(s,t) > min, ¢ 7 (s, ¢). It follows that

max 7t(s, 1) > max min 7(s, 1) = m.
ses seSteT

Now apply this inequality with the particular value of ¢ € T that minimizes the left-
hand side to obtain m > m.

7.3.2 Saddle Points

We have seen that the maximin value of a matrix can be strictly smaller than its
minimax value, but the interesting case arises when the two values are equal since
we shall see that the matrix then has a saddle point.

A pair (o, 1) is a saddle point for the matrix N of Figure 7.3 when n(o, 7) is largest
in its column and smallest in its row (Section 2.8.2). Since the entry in row s, and
column #, of Figure 7.4(a) gets both a circle and a square, it follows that (s,, #,) is a
saddle point of N.

| 5] I3 f %) I3

St 1 51 8

2 5 2) 4 52 5 2) 4

s31 @D 0 0 s3| 7 0] | [0]
(@ n=2 (byn=2

Figure 7.3 Minimax and maximin values for the matrix N.
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2 b f3 1 t f
51 St 2 | @ | [
50 5 4 20 3 2

s30 @ | [0] | [0] 31 @ | Bl | ®

(a) Saddle point (b) No saddle point

Figure 7.4 Finding saddle points.

The height of the obelisk in row s, and column #; of Figure 7.5(a) is 8 because
n(s, 13) = 8 in the matrix N of Figure 7.3(a). The picture is meant to explain why the
pair (s,, 1) is called a saddle point of N, although the saddle drawn would admittedly
not be very comfortable to sit on.

Figure 7.5(b) looks more like a real saddle. It shows a saddle point (o, 7) for a
continuous function 7 : S X T — IR when S and T are closed intervals of real
numbers. For (o, 7) to be a saddle point, we need that, for all s in S and all 7 in 7,

n(o,1t) > n(o, T) > 7(s, 7). (7.1
Our use of circles and squares probably makes it obvious why matrices have
saddle points if and only if their maximin and minimax values are equal, but the next

theorem provides a formal proof.

THEOREM 7.3 A necessary and sufficient condition that (o,7) be a saddle point is
that ¢ and t are given by

Figure 7.5 Saddle points.
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min 72(¢, t) = max min 7(s, 1) = m, (7.2)
teT seSteT
max 7(s, T) = min max n(s, t) = m, (7.3)
seS teT ses

and m = m. When (0,7) is a saddle point, m = n(c,t) = m.

Proof A proof that something is necessary and sufficient is usually split into two
halves. The first step proves necessity, and the second sufficiency.

Step 1. If (o, 7) is a saddle point, then 7(o,f) > 7n(o,7) > n(s,7) for all sin S and ¢
in T. Thus min, ¢ 7 n(o, t) > 7(0, T) > maX,¢ s (s, ), and so

m = max min 7(c, t) > min 7(o,t) > max 7(s, ) > minmax n(s, 7) = 7.
ceSteT teT seS teT ses

But Theorem 7.2 says that m < m, and so all the > signs in the preceding expression
may be replaced by = signs.

Step 2. Next suppose that m = m. It must then be shown that a saddle point (o, 7)
exists. Choose ¢ and 7 to satisfy (7.2) and (7.3). Then, given any s in S and ¢ in T,

n(o,t) > min7(o,t) = m = m = max n(s, t) > 7(s, 7).
teT seS

Taking s =0 and ¢ =1 in this inequality shows that m = n(o, ) = m. The require-
ment for (g, 1) to be a saddle point is therefore satisfied.

7.3.3 Dicing with Death Again

We located a Nash equilibrium for the game of Duel in Section 5.2.1 by identifying a
saddle point of Tweeddledum’s payoff matrix. We now offer an alternative analysis
of the game that uses minimax and maximin values.

We have previously admitted only a finite number of values of d at which a player
might open fire in the game of Duel, but each player will now be allowed to choose
any d in the closed interval [0, D]. The 6 x 5 table of Figure 5.3 is therefore replaced
by an infinite table, but we will take it for granted that a saddle point continues to exist.

Theorem 7.3 then tells us that, in a Nash equilibrium, Tweedledum will fire his
pistol at distance ¢ from Tweedledee, where 0 is the value of d at which the maxi-
mum is attained in

m= II1§1X inf 7(d, e). (7.4)

The fact that we have an infinite number of values of d to consider creates two
small technical problems. The first is the need to write “inf ” instead of “min” in the
formula for m because n(d, ¢) needn’t have a smallest value.? The other small

2For example, the open interval (2, 3) has no minimum element. Everything in the set (2, 3) is larger
than 1, so 1 is a lower bound for the set (2, 3). Its largest lower bound is 2, but 2 isn’t the minimum element
of the set (2, 3) because 2 isn’t even an element of (2, 3). Mathematicians say that the largest lower bound of
a set is its infimum. The infimum of a set is the same as its minimum when the latter exists. The smallest
upper bound of a set is its supremum. The supremum of a set is equal to its maximum when the latter exists.
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y
y=pi(d)
Ty =1-pe
P1(d) § 1 — py(d) s
qd) ¢
q(d) ¢
1 =pyd)¢
infn(d, e)=1-pyd) P inf 7(d, ¢) = pi(d)
e e
0 q D ¢ 0 d D ¢
(a) The graph of y = w(d, e) for (b) The graph of y = m(d, e) for
a fixed d when p(d) > 1—p,(d). a fixed d when p(d) < 1—p,(d).

Figure 7.6 Plotting payoffs in Duel.

problem concerns what happens if both players fire at precisely the same instant. We
assume that a chance move then selects one of the players to get his shot in just
before the other, so that Tweedledum survives with some probability g(d) between
pi(d) and 1 — py(d).

Figure 7.6 shows how to use the formula for n(d, ¢) given in equation (5.1) to
determine m(d) = inf, n(d, e) for differing values of d. (We can’t write m(d) =
min, (d, e¢) because of the discontinuity in n(d,e) at e=d. So we write
m(d) = inf, n(d, e) instead, accepting that we can do no better than get arbitrarily
close to m(d) by taking values of e sufficiently near to d.)

We now plot the graph of y =m(d) in Figure 7.7. The maximum we require for
equation (7.4) occurs at the point d =9, where

pi(d)+pa(d) =1,

which is reassuringly the same conclusion that we reached in Section 3.7.2 using an
entirely different method.

Tweedledee also fires his pistol at distance o because swapping p;(d) and p,(d)
over in the preceding analysis leaves the final result unchanged. Since they fire si-
multaneously at time J, the probability that Tweedledum will survive is then g(d) =
P1(8) =1 —p1(0).

This analysis of Duel focuses on the fact that it is a Nash equilibrium for both
players to fire their pistols when they are distance ¢ apart. But more is always true in
the special case of a strictly competitive game. A Nash equilibrium then corresponds
to a saddle point (o, 7) of player I's payoff matrix. Theorem 2.2 then tells us that the
game has a value. Whatever player II may be planning to do, player I can ensure
a payoff of at least n(ag, 1) for himself by playing 0. Whatever player I may be
planning to do, player II can ensure that player I gets a payoff of no more than (g, 7)
by playing .

In particular, no matter when the other player may be planning to fire, player i can
guarantee surviving in Duel with probability at least p;(d) by firing when the players
are distance J apart.
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y
S =nd) ey =1=py(d)
y=m(d)
i a
0 / 5 D

m;X m(d) = p1(8) = 1 — py(3)

Figure 7.7 The maximin value in Duel.

7.4 SAFETY FIRST

The payoff p;(9) is Tweedledum’s security level in Duel. If Tweedledum plays his
security strategy of firing when the players are o apart, nothing Tweedledee can do
will reduce Tweedledum’s probability of survival below p;(9d).

The next item on the agenda is to extend the idea of a security level to more
general games. This will usually involve the use of mixed strategies. People some-
times ask how it can possibly be safe to randomize your choice of strategy, but we
already know that Adam’s security strategy in Matching Pennies is to play heads and
tails with equal probability (Section 2.2.2). Any other behavior would risk a neg-
ative average loss.

7.4.1 Security Levels

Adam’s security level in a game is the largest expected payoff he can guarantee, no
matter what the other players do. To compute his security level, Adam therefore has
to carry out a worst-case analysis, in which he proceeds on the assumption the other
players will predict his strategy choice and then act to minimize his payoff. A
strategy that guarantees Adam his security level under this paranoid hypothesis is
called a security strategy.

Adam is player I and Eve is player II in the bimatrix game of Figure 7.8(a).
Adam’s payoff matrix in this game is the matrix of Figure 7.3. To work through a
worst-case scenario, Adam reasons as follows.

If Eve guesses that Adam will choose s, she can hold his payoff down to 1 by
choosing t; or f,. If she guesses that he will choose s,, then she can hold his payoff
down to 2 by choosing #,. If she guesses that he will choose s3, then she can hold
his payoff down to 0 by choosing f, or #3. A worst-case analysis therefore places
Adam’s payoff in the set {1,2,0} of payoffs enclosed in squares in the diagram of
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4 5] 3 | 15) 3
5 2 3 4 5 1 5 7
8 2 5 0
5 5 B 1 3 5 1 2 0
5 4 3 1 2
0 2 6 8 4 0
53 53
7 [o] |[o] 4 3 6
(a) (b)

Figure 7.8 Two bimatrix games.

Figure 7.8(a). Since the best payoff in this set is the circled payoff of 2, Adam can
guarantee a payoff of at least 2 by using pure strategy s,.

This reasoning mimics the circling and squaring of payoffs in the matrix of
Figure 7.3(b) we used to show that m = 2. The same reasoning shows that Adam can
always guarantee a payoff at least as good as the maximin value m of his payoff
matrix. When does this imply that m is his security level?

THEOREM 7.4 If player I's payoff matrix has a saddle point (¢, 1), then his security
level is m = wy(0, ©) = m, and 7 is one of his security strategies.

Proof The worst-case scenario we use when computing player I’s security level is
equivalent to treating the situation as a strictly competitive game. Player I retains his
payoff matrix A in this game, but player II is assigned the payoff matrix —A. The
proof of the theorem then reduces to observing that (o, 7) is a solution of this new
game (Theorem 2.2). O

Since Adam’s payoff matrix N in the game of Figure 7.8(a) has a saddle point,
Theorem 7.4 says that his security level is n = 2 and that s, is a security strategy.
Since Adam’s payoff matrix M in the game of Figure 7.8(b) doesn’t have a saddle
point, Theorem 7.4 doesn’t say that his security level is m = 3. As we show next, his
security level is actually 3 %

7.4.2 Securing Payoffs with Mixed Strategies

We show that Adam can guarantee a payoff of at least 3% in the bimatrix game of

Figure 7.8(b) by playing his mixed strategy p = (%, 0, %). We then show that Eve
can ensure that he gets no more than 3 % by playing her mixed strategy g = (%, % 0).
It follows that 3% must be Adam’s security level.

Adam Plays Safe. Adam will never use his pure strategy s, because it is strongly
dominated by s3. Our first step is therefore to delete row s,, leaving Adam with the
payoff matrix shown in Figure 7.9(a).
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f 5] 13

S1 2 5 0 y

y=M(r,s)

53| 4 3 6
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! x = Ex(r) / Y =Fyr,s)
< 7' £ i s=0
x= 1:51(r) 1 i , Ve
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Figure 7.9 Computing mixed security strategies.

We next work out the expected payoff x = E(r) that Adam will get if Eve uses
her pure strategy 7, and he uses the mixed strategy (1 — r, r) in the reduced game. We
have that

E\(r)y=2(1—-r)+4r =242r;
Ex(r)=5(1-r)+3r=5-2r;
E;(r) =0(1 —r)+6r = 6r.

The lines x = E(r), x = E»(r), and x = E5(r) are graphed in Figure 7.9(b).

Adam’s paranoic assumption in computing his security level is that Eve will
predict his choice of mixed strategy and then choose her strategy so as to assign him
whichever of E|(r), E5(r), or E5(r) is smallest.> Adam therefore anticipates an ex-
pected payoff of

m(r) = min{E;(r), E>(r), E3(r)}.

The graph of x =m(r) is shown with a bold line in Figure 7.9(b). For example, when
r=rg, m(r) = E5(r). When r=ry, m(r) = E(r).

3An even worse scenario would be if Eve were able to predict how a tossed coin will land, or what
card will be drawn from a shuffled deck. But an analysis that attributed such superhuman powers to Eve
wouldn’t be very interesting. Alert readers will want to know why Eve neglects her mixed strategies. The
reason is that, for each r, she can always minimize Adam’s payoff by using one of her pure strategies.
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Adam must choose r to make the best of this worst-case scenario. His payoff with
the optimal choice of r is

v = max m(r) = max mkin E(r).
r r

Figure 7.9(b) reveals that the value of r satisfying 0 < r < 1 at which m(r) is largest
occurs where the lines x=E(r) and x=E,(r) cross. Since the solution to the
equation

242r=5-2r
isr= %, Adam can secure an expected payoff of at least
v=m(3)=E(3)=2+2x3=31
by using the mixed strategy p = (i, 0, %) in the original game of Figure 7.8(b).

Eve Plays to Injure Adam. The next step is to show that Eve can be sure of holding
Adam’s payoff down to 3% if she gives up trying to maximize her own payoff and
tries to minimize his payoff instead. We therefore treat Eve as player II in the zero-
sum game with the payoff matrix of Figure 7.8(a). Recall that the payoffs in this
matrix are losses to Eve.

We first work out Eve’s expected loss y = F(r, s) if Adam plays his pure strategy
si and Eve uses the mixed strategy g = (1 —r—s,r,5). We have that

Fi(r,s) = 2(1—r—s)+5r+0s = 2+3r—2s;
FZ(I”,S) - 4(1—V—S)+3r—|—6s =4 —r+2s.

The two planes y = F(r,s) and y = F,(r, s) are graphed in Figure 7.9(0).4

As in the case of Adam, we look at what happens when Eve adopts the paranoic
assumption that Adam will predict her choice of mixed strategy and then choose his
strategy so as to assign her whichever of F(r, s) or F,(r, s) represents the larger loss
to her. Eve therefore anticipates an expected loss of

M(r, s) = max{F(r, s), F2(r, s)}.

The graph of y=M(r, s) is shaded in Figure 7.9(c).
Eve now chooses r and s to make the best of this worst-case scenario. Her loss with
the optimal choices of r and s is

v = min M(r, s) = min mkax Fi(r, s).

(r, 5) r s

“In Figure 7.9(b), we considered only values of r satisfying 0 < r < 1. Here we consider only pairs
(r,s) for which r > 0, s > 0, and r+s < 1. Such pairs lie in the triangle bounded by the lines r =0,
s=0,and r+s=1.
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Figure 7.9(c) reveals that the pair (r, s) at which M(r, s) is smallest occurs where the
planes y = F(r,s) and y = F(r, s) intersect. We therefore examine those pairs (r, s)
for which F(r, s) = F»(r, s). This equation reduces to

243r—2s =4—r+2s
2r—2s = 1.

Which of the pairs (r, s) lying on this line make M(r, s) smallest?
There are two candidates. The first is the point (% ,0) at which the line 2r —2s =1
meets s = 0. The second is the point (3, 1) at which 2r —2s =1 meets r+s=1.
Since M(3,0) = F(3,0) =34, and M(3, ;) = Fi(3, ;) = 33, the pair (r, s) that
minimizes M(r, s) is (,0). The minimum value is v = 33.

Minimax Equals Maximin? We have just looked at a case of a two-person zero-sum
game in which

v=v=235.

=

Can it always be true that the maximin and minimax values of a matrix game are the
same when we allow mixed strategies?

If the answer to this question is yes, then we can generalize all the conclusions
about strictly competitive games of perfect information derived from the existence
of saddle points in such games. All our theoretical problems with two-person zero-
sum games of imperfect information will then evaporate.

The famous mathematician Emile Borel studied mixed strategies in gambling
games some years ahead of Von Neumann. Borel asked himself whether it could
always be true that v = v but guessed the answer was probably no. Fortunately, Von
Neumann knew nothing of Borel’s earlier work when he later proved that the answer
is yes. Otherwise he mightn’t have made the attempt!

However, before we can tackle Von Neumann’s minimax theorem, we need to
restate the results of Section 7.3.1 to allow for mixed strategies.

7.4.3 Minimax and Maximin with Mixed Strategies

Player I's payoff function IT: P x O — IR is given by

H(p.q) = p'Aq,

where A is his payoff matrix (Section 6.4.3). The minimax value v and the maximin vy
value of his payoff function are defined by

v = max minIl(p, g) = min [1(p, q), (7.5)
peP qeQ q€Q

v = min max II(p, ¢) = maxII(p, g), (7.6)
qeQ peP peEP
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where p is the mixed strategy p in P for which min, ¢ ¢ I(p, q) is largest, and g is the
mixed strategy ¢ in Q for which max, ¢ p I1(p, g) is smallest.”

A saddle point for the payoff function IT is a pair (p, g) of mixed strategies such
that, for all p in P and all ¢ in Q,

I(p, 9) > I(p,q) > T(p, @).

If one thinks of Il(p, g) as being the entry in row p and column g of a generalized
“matrix,” then the following theorems are natural. Their proofs can be copied from
those of Theorems 7.2, 7.3, and 7.4.

THEOREM 7.5 v <V.

THEOREM 7.6 A necessary and sufficient condition that (p, q) be a saddle point is
that p and q are given by (7.5) and (7.6) and v = v. When (p, q) is a saddle point,
v=I(p,g) =".

THEOREM 7.7 If player I's payoff function 11 has a saddle point (p, q), then his
security level is v = Il(p, q) =V, and p is one of his security strategies.

7.4.4 Minimax Theorem

The following proof of Von Neumann’s minimax theorem is loosely based on an
inductive argument of Guillermo Owen. His proof doesn’t appeal to any deep the-
orems, but it does require some heavy algebra. In the argument given below, the
algebra will still trouble beginners, but it has been reduced to some playing around
with maxima and minima. However, simplifying the algebra in this way makes it
necessary to sketch an argument that uses transfinite numbers.

Everyone is familiar with the finite ordinals O, 1,2,..., which we use for
counting finite sets. They need to be supplemented with the transfinite ordinals when
counting infinite sets. When we have used up all the ordinals we have constructed so
far, we invent a new ordinal to count the next member of a well-ordered set.® For
example, if we run out of finite ordinals when counting an infinite set, we count its
next element with the first transfinite ordinal, which mathematicians denote by w.
However, all that matters for the proof is that for any set there is an ordinal too large
to be reached by counting its elements.

THEOREM 7.8 (Von Neumann) For any finite game,
v=".

Proof We will show that the assumption vy < v implies a contradiction. The minimax
theorem then follows from the fact that v < v (Theorem 7.5).

5The v and 7 defined here are the same as in Section 7.4.2 because the maximum on the right of 7.5
and the minimum on the right of 7.6 are attained at pure strategies.

®Every nonempty subset of a well-ordered set has a minimum element. The Well-Ordering Principle
says that every set can be well ordered.
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The proof requires the construction of a zero-sum game for each ordinal o that has
convex and nonempty strategy sets P, and Q,, but the same payoff function as the
original game. The first of these games is identical with our original game, so that
Py x Qp=P x Q. Later games get progressively smaller, in the sense that o < f§
implies PgxQp C PyxQ,, where it is important for the inclusion to be strict.

The reason that this construction leads to the desired contradiction is that P, X Q,
must be empty if y is a sufficiently large ordinal because one cannot count more
points of P x Q than it contains.

The idea of the construction is to replace P, X O, by Pg x Qg so that

S 17

We first explain how this is done for the case « =0 and f=1.

Step 1. Ifv > I1(p, ¢) and I1(p, g) > v, then v > v. It follows that our assumption that
v < v implies that either v < I1(p, g) or I1(p, q) <v. The former inequality will be
assumed to hold. If the latter inequality holds, a parallel argument is necessary in
which it is P that shrinks rather than Q, as assumed below.

Step 2. Take Q, to be the nonempty, convex set of all g in Q for which
P, q) <v+e, (7.8)

where 0 < e <Il(p,q)—v. Then Q is strictly smaller than Q because it doesn’t
contain q. Let P, =P.

Step 3. With p; and g; defined in the obvious way, consider the convex combi-
nations p = ap+ fp; and ¢ = ag+ fg;. Observe that

v = min max I[1(p, q) < maxI1(p, ¢)
qeQpeP peEP

= max {al1(p.9)+B11(p. 1)}
< amax I(p,q)+ f max I1(p, 41)
peEP pEP
= o+ fi7]. (7.9)
Step 4. An inequality for v requires more effort. Note to begin with that
min [1(p, ¢) > « min [1(p, ¢)+ f min [1(py, g)
g€ Qi g€ g€ 01
> o min I1(p, ¢)+ f min I1(p;, q)
qeQ g€
= av+py,. (7.10)

inf TI(p, ¢) >« inf TI(, q)+fB inf TI(p;,
ot ® @ ot ® 9 ﬂqng @1, 9

>o(v+e)+ fc. (7.11)
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To derive the last line, note that, if I1(p, g) < v+¢, then g lies in the set Q; by (7.8).
The constant c is simply an abbreviation for inf, ¢ o, [1(p1, q).

Step 5. We want (7.10) to be smaller than (7.11). To arrange this, « = 1 —f and f§
have to be carefully chosen. By taking f§ to be very small, (7.10) can be made as
close to v as we choose. Similarly (7.11) can be made as close to v+ ¢ as we choose.
Thus, if f§ is chosen to be sufficiently small, then (7.10) is less than (7.11). However,
it is important that f isn’t actually equal to zero.

Step 6. An inequality for v is now possible:

v =ma xmlnH(p, q) > mmH(p 7))
pe

= min{ mln I1(p, q), Hlf H(P ‘I)}

> min {oter,BKp“(EJrﬁ)JrﬁC}
ot f,. (7.12)

Step 7. The desired inequality (7.7) now follows from (7.12) and (7.9).

Step 8. It remains to explain how we carry through the construction to ordinals
other than f§ = 1. There is no difficulty when f§ has an immediate predecessor o, but
what happens when f is an ordinal like @, which doesn’t? In this case, we simply
take Py to be the intersection of all P, with o < 8 and Qy to be the intersection of all
Q. with o < f5.

Step 9. The continuity of the payoff function then ensures that (7.7) holds whenever
o < f. The fact that each P, and Q,, is nonempty, convex, and compact ensures that
the same is true of Pg and Q. It is also true that the inclusion Pg X Qg C P, X Q, is
strict when o < f3.

This concludes the construction. The proof of the minimax theorem follows.

7.4.5 Security and Equilibrium

The minimax theorem tells us that Adam’s security level in any game is the maximin
value v of his payoff function. He can guarantee at least v by playing the security
strategy p of (7.5). Eve can hold him to v = v by playing the security strategy g of
(7.6).

In any game, Adam must receive at least his security level v at a Nash equilib-
rium. Otherwise he wouldn’t be making a best reply since he could always get more
by switching to one of his security strategies. However, the example of the Battle of
the Sexes shows the players needn’t get more than their security levels. Nor need
their equilibrium strategies be secure.

Recall that mixed strategies in the Battle of the Sexes were represented as line
segments in Figure 6.17(b). As explained in Section 6.6.1, the line segment corre-
sponding to p = 3 is horizontal. The line segment corresponding to g = % 2 s vertical.
Eve therefore always gets the same payoff when Adam plays p = ;, and Adam
always gets the same payoff when Eve plays g = % It follows that the pair (p, g) is a
mixed Nash equilibrium.
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Similar reasoning can locate Adam’s and Eve’s security strategies in this special
case. The line segment / corresponding to p :% is vertical. Whatever Eve does,
Adam therefore gets the same payoff when he plays p = % All the other line seg-
ments corresponding to Adam’s mixed strategies cross / and hence contain points
that lie to the left of /. The worst possible outcome for Adam when one of these other
mixed strategies is used is therefore worse for Adam than the worst possible out-
come when he plays p = % Thus, his security strategy in the Battle of the Sexes is
p= % Similarly, Eve’s security strategy is § = %, which corresponds to a horizontal
line segment in Figure 6.17(b).

The Nash equilibrium (p, g) = (%, %) and the profile (p,q) = (_%, %) of security
strategies correspond to the same pair of line segments in Figure 6.17(b). The
players therefore receive the same payoff of % at each profile. It follows that Adam
and Eve both get their security levels of % at the mixed Nash equilibrium, although
neither equilibrium strategy is secure.

7.5 SOLVING ZERO-SUM GAMES

It is usually irrational for Adam to proceed on the paranoic assumption that Eve is
intent on doing him harm. If Eve is rational, she will seek to maximize her own
payoff rather than minimizing his. But paranoia is entirely rational in zero-sum
games because Eve’s interests are then diametrically opposed to Adam’s. Maxi-
mizing her payoff is then the same as minimizing his payoff.

7.5.1 Values of Two-Player, Zero-Sum Games

In Section 2.8.1, the value v of a strictly competitive game was defined to be an
outcome with the property that player I has a strategy o that forces a result that is at
least as good for him as v, while player II simultaneously has a strategy 7 that forces
a result that is at least as good for her as v. Things are no different here, except that
we now take the value v of a two-player, zero-sum game to be a payoff to player I,
rather than an outcome.

THEOREM 7.9 Any finite two-player, zero-sum game has a value v =y =v. To
ensure that he gets an expected payoff of at least v, player I can use any of his
security strategies p. To ensure that player I gets no more than v, player Il can use
any of her security strategies q.

Proof The minimax theorem implies that player I's payoff function always has a
saddle point (p, g). Theorem 7.7 then applies.

Theorem 7.9 focuses on the value v of a two-person, zero-sum game from the
point of view of player I. However, everything is the same for player II, except that
her security level is —v. In formal terms,

in{—I(p, q)} = — max I(p,
max min { —Il(p, ¢)} = max {— maxII(p. 9)}

= — i H s = —y = — .
{minmaxTi(p, @)} = ~v = —v
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So player II can ensure a payoff of at least —v for herself by using any of her security
strategies g. To ensure that player II gets no more than —v, player I can use any of his
security strategies g.

7.5.2 Equilibria in Two-Player, Zero-Sum Games

It is only necessary to quote the relevant theorem and to give some examples.

THEOREM 7.10 In a finite two-player, zero-sum game, p is a Security strategy for
player I and q is a security strategy for player Il if and only if (p,q) is a Nash
equilibrium.

Proof The two conditions are equivalent to the existence of a saddle point.

Rock-Scissors-Paper Every child knows this game. Adam and Eve simultaneously
make a hand signal that represents one of their three pure strategies: rock, scissors,
paper. The winner is determined by the rules:

rock  blunts scissors
scissors ~ cut paper
paper  wraps  rock.

If both players make the same signal, the result is a draw. We assume that both
players regard a draw as being equivalent to the lottery in which they win or lose
with equal probability, so that the game is zero sum. Adam’s payoff matrix can then
be taken to be

0 1-1
A=|-1 0 1
1-1 0

The rows and the columns of the payoff matrix A all contain the same numbers
shuffled into different orders. It follows that, if Adam and Eve play each of their pure
strategies with the same probability, then their opponent will get the same payoff
from each pure strategy. It is therefore a Nash equilibrium for both players to use the
mixed strategy (%, % %)T. Theorem 7.10 then tells us that the same mixed strategy is
a security strategy for each player.

We can confirm that (1,1, 1)7 is a security strategy for both players by ob-
serving that they get a payoff of zero from its use, whatever strategy the opponent
plays. The value of the game is therefore zero—as it must be for all symmetric, two-
player, zero-sum games.

O’Neill’s Card Game. Section 6.4.5 shows that (p,q) is a Nash equilibrium for
O’Neill’s Card Game whenp =p = (%, % % %)T. Theorem 7.10 implies that p and
p are therefore security strategies for this strictly competitive game. Unlike the case
of Rock-Scissors-Paper, player I enjoys an advantage in O’Neill’s game because its

value is positive. In fact,

v=p'Ag=1.
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7.5.3 Equivalent and Interchangeable Equilibria

When a game has multiple Nash equilibria, which should count as its solution? Von
Neumann and Morgenstern evaded this equilibrium selection problem by focusing
on two-player, zero-sum games, in which Theorem 7.10 shows that all pairs of Nash
equilibria are interchangeable and equivalent.

Two equilibria (p, ¢) and (p/, ¢) are interchangeable if (p, ¢') and (p/, q) are
also Nash equilibria. The equilibria are equivalent if T1;(p, q) = I11(p, ¢') and
I,(p, ) = I,(p’, ¢). Since both players then get the same payoff at each equi-
librium, neither will then care which gets selected.

If the Nash equilibria of a game are equivalent and interchangeable, then the
selection problem disappears. Even if Von Neumann had written a book rec-
ommending the equilibrium (p, g), and Morgenstern had written a rival book rec-
ommending (p’, ¢), their failure to agree wouldn’t trouble the players at all. If
Adam follows Von Neumann, he will play p. If Eve follows Morgenstern, she will
play ¢'. The result will be the Nash equilibrium ( p, ¢’), which assigns both players
exactly the payoff they were anticipating. -

7.5.4 When to Play Maximin

Some authors say that it is prudent to use maximin strategies in all risky situations,
but such folks are irrational in their extreme caution.

As in the case of the Battle of the Sexes, if both players use their security strat-
egies in a general game, then neither is likely to be making a best reply to the
strategy choice made by the other (Section 7.4.5). Nor is there any reason why
rational players should settle for as little as their security levels in most games. For
example, both the pure Nash equilibria in the Battle of the Sexes yield much higher
payoffs than the players’ security levels.

Theorem 7.10 is therefore definitely only a theorem about two-player, zero-sum
games, but even when playing in a two-player, zero-sum game, you would be ill
advised to use a maximin strategy when you have good reason to suppose that your
opponent will play poorly. Playing your security strategy will certainly guarantee
you your security level however the opponent plays, but you ought to be aiming for
more than your security level against a bad player. You should be probing the
opponent’s play for systematic weaknesses and deviating from your security strat-
egy in order to exploit these weaknesses. You will be taking a risk in doing so, but it
is irrational to be unwilling to take a calculated risk when the odds are sufficiently in
your favor.

But what if you are playing a good player in a zero-sum game? Evidence gathered
by observing strategic situations in professional sport is surprisingly supportive of
Von Neumann’s theory. The data on how penalty kicks are taken in soccer fit the
theory that players mix according to the maximin criterion especially well.

7.6 LINEAR PROGRAMMING

Mathematical programming consists of finding the maximum or minimum of an
objective function f{x) subject to a set of constraints on the values that x is allowed to
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take. Linear programming is the special case in which the objective function and the
functions used to specify the constraints are all linear.

This section shows the relevance of zero-sum games to the duality theorem of
linear programming. We look only at a special case of a result that is considerably
more general.

7.6.1 Duality

In Section 6.4.4, we learned that Adam can secure a payoff of o by playing a mixed
strategy p that satisfies the inequality p'A > ae'. (Recall that e denotes a vector
whose entries are all one.)

The problem of finding Adam’s security level therefore reduces to locating a
vector p that maximizes o subject to the constraints listed on the left below. (The
constraints p'e = 1 and p” > 0 just say that the entries of p must be probabilities.)
Eve’s security level similarly reduces to locating a vector ¢ that maximizes f§ subject
to the constraints listed on the right:

p'A>oae’  Bg> fe
ple=1 elg=
q

1
p' >0

Y
o

In the case of a zero-sum game, Eve’s payoff matrix is B=—A. If we are to
express everything in terms of Adam’s payoffs as usual, we must also write y = — f5.
Eve then seeks to minimize y rather than maximize f. Its minimum value is the
negative of Eve’s security level, which is equal to Adam’s security level by von
Neumann’s minimax theorem.

We therefore have two problems with the same solution. The maximum value of
o subject to the constraints on the left below is the same as the minimum value of y
subject to the constraints on the right:

prA > e’ Ag < ye

ple=1 elg=1

p' >0 qg>0

Rewriting our two problems, we obtain a version of the duality theorem of linear
programming. Take p =«y in Adam’s problem, so that « ! = ¢'y. Assuming that
o > 0, Adam therefore wants to minimize eTy. His problem therefore reduces to that
shown on the right below. Writing ¢ =y x similarly reduces Eve’s problem to that
shown on the left.

maximize minimize
elx yle
subject to  subject to
Ax < e yTA > el

x>0 y>0
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maximize minimize
cTx yTb
subject to subject to
Ax < b yT4 > 7
x =2 0 y =2 0
(a) Primal program (b) Dual program

Figure 7.10 A primal linear programming problem and its dual. If one of the programs is feasible,
then both optima exist and are equal.

These two linear programs are said to be dual to each other. This implies, in par-
ticular, that they both have the same solution. A more general formulation of a
primal program and its dual is given in Figure 7.10.

The duality theorem of linear programming takes as its hypothesis that one of the
two programs is feasible. This means that there is at least one vector that satisfies its
constraints. The conclusion is then that both programs have a solution and that the
maximum in the primal problem is equal to the minimum in the dual problem.

7.6.2 Shadow Prices Again
The Lagrangian of the primal problem of Figure 7.10(a) is defined as

L(x,y) = c'x —&—yT (b—Ax).

Recall that this is the payoff function of the game played between Alice and Mad
Hatter Enterprises in Section 7.1.1. The duality theorem tells us that L(x,y) has a
saddle point (¥, y), where x and y solve the primal and dual problems of Figure 7.10
respectively.

To see this, observe that Mad Hatter Enterprises can make L(x, y) as small as it likes
if the vector b — Ax has anegative coordinate. Alice will therefore ensure thatAx < b.
The best that Mad Hatter enterprises can then do in minimizing L(x, y) is to choose y
so that y™ (b —Ax) = 0. Alice then faces the primal problem of Figure 7.10(a). Thus

. T~
{ana)é }mzll(l) L(x,y)=c X.
Since L(x,y) = y b+ (c" —y"A)x, we can now repeat the argument with the roles of
the players reversed. Alice can make L(x, y) as big as she likes if the vector ¢” —yTA
has a positive coordinate. Mad Hatter Enterprises will therefore ensure that
yTA > ¢T. The best that Alice can then do in maximizing L(x, y) is to choose x so that
(c" —yTA)x = 0. Mad Hatter Enterprises then faces the dual problem of Figure
7.10(b). Thus

i L(x,y) =3 'b.
)1}121% max (x,y) =y
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However, the duality theorem says that ¢"X = 7' b, and so (%, y) is a saddle point of
L(x,y) by Theorem 7.3.

We learn that Alice can compute the shadow prices of her stock by solving the
dual problem of Figure 7.10(b). She should also note that

¥ (b—A%) =0,

which says that Mad Hatter Enterprises will assign a zero price to goods in stock
that Alice doesn’t use up in producing %. The value of her stock is therefore ¢ ' =
y'b=yTAx

7.7 SEPARATING HYPERPLANES

The theorem of the separating hyperplane has important applications. It is used, for
example, in proving the existence of clearing prices in general equilibrium models
of the economy. The use to which the theorem of the separating hyperplane is put in
this section reflects the fact that most proofs of the minimax theorem depend on it.

7.7.1 Hyperplanes

Hyperplanes sound like something out of Star Trek, but they aren’t exciting enough
to get into a television script. A hyperplane with normal n # 0 is simply the set of all
x that satisfy the equation

n'x=c. (7.13)

A hyperplane is therefore defined by one linear equation. If we are working in the
space IR", it follows that a hyperplane has dimension n — 1. For example, a hyper-
plane is a line in R? and an ordinary plane in IR?.

Consider the plane in IR? that passes through the point ¢ = (3, 2, 1) and is
orthogonal to the vector n = (3, 1, DT. Figure 7.11(a) shows that the point x lies in
the plane if and only if the vector x — & is orthogonal to the vector n. But two vectors
are orthogonal if and only if their inner product is zero (Section 6.4.2). The equation
of the plane is therefore n' (x— &) = 0, which we can express in the form (7.13) by
taking ¢ = n' ¢ = 12. To get a less abstract formulation, simply expand the inner
product in (7.13) to obtain

3x14+x+x3 = 12.

The line in IR? that passes through the point ¢ = (2, 1)" and is orthogonal to the
vector n = (3, 4)" is a hyperplane in IR?. Figure 7.11(b) shows why the equation of
the line is n'(x—¢&) =0, which we can express in the form (7.13) by taking
¢ =n'"¢ = 10. Expanding the inner product in (7.13) yields the standard linear
equation

3x1+4x, = 10.
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Figure 7.11 Hyperplanes.

Any vector that is orthogonal to a hyperplane will serve as a normal to the
hyperplane. We can therefore always adjust the length of a normal to something
convenient by multiplying by a suitable scalar. For example, if we want a normal to
the line 3x; + 4x, = 10 of unit length, we can simply divide through by 5 to obtain
the new normal n = (%, %)T.

7.7.2 Separation

Euclid’s geometry is commonly thought to be the ultimate in deductive reasoning,
but David Hilbert pointed out that some of Euclid’s proofs depend on ideas that his
axioms neglect. Separation is one of these ideas.

A hyperplane n"x = ¢ splits R" into two half spaces. Any line joining two points
in different half spaces necessarily passes through the hyperplane.

The half space “above” the hyperplane is the set of all x for which n'x > c. This
is the half space into which the vector n points. The half space “below” the hyper-
plane is the set of all x for which n'x <c. To say that the set G lies above the
hyperplane therefore means that n' g > ¢ for each g in G. To say that the set H lies
below the hyperplane means that n" 4 < ¢ for each % in H.

Two sets G and H are separated by a hyperplane if one lies above the hyperplane
and the other lies below. Figure 7.12(a) shows two convex sets G and H in IR? sep-
arated by the hyperplane n'x = ¢, which is just a line in this case. Figure 7.12(b)
shows a degenerate case, in which the set H consists of a single boundary point & of G.

A useful version of the theorem of the separating hyperplane is quoted below.
Notice that it allows G and H to have boundary points in common.

THEOREM 7.11 (Theorem of the Separating Hyperplane) Let G and H be convex sets
in R". Suppose that H has interior points but that none of these lie in G. Then there
exists a hyperplane n' x = c that separates G and H.

7.7.3 Separation and Saddle Points

Consider a two-person, zero-sum game with matrix A. The minimax theorem says
that we can always find mixed strategies p and g for the two players that satisfy
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Figure 7.12 Separating hyperplanes.

p'Aq > p'Ag > p'Ag. Rewriting this saddle point condition in terms of the value
v = p' Ag of the game yields the inequalities

plAG>v>plAG. (7.14)

The theorem of the separating hyperplane allows a geometric interpretation. We
construct two convex sets G and H that are separated by a hyperplane p'x = v,
whose normal is player I’s security strategy p. Player II’s security strategy g can be
found using the fact that the point Ag lies in the set GN H.

We illustrate the construction using the matrix of Figure 7.9(a):

250
A—L 3 6} (7.15)

We already know that the value of the game with matrix A is v = 3%, which is
secured by the mixed strategies p = (%, %)T and g = (%, %, 0)" (Section 7.4.2).
We take the set G in the theorem of the separating hyperplane to be the convex
hull of the columns of the matrix A. In Figure 7.13(a), G is a triangle with vertices
2,9",(5,3)", and (0,6)".
The points g in G are convex combinations of the columns of A. It follows that
G = {Aq: q € Q} because, for each g in G, there is a ¢ in Q such that

s=olirels] ol

_[ZSO}qlA
a3 6| T
q3

The set H of Figure 7.13(b) is defined by

H={h:h<ve},
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Figure 7.13 A geometric representation of security strategies.

where v =3 % is the value of the game. Note that’ / lies in H if and only if, for all p
in P,

p h<v. (7.16)

The hyperplane p ' x = v separates G and H. It is immediate that H lies below the
hyperplane because we can take p = p in (7.16). To see that G lies above the
hyperplane, we need the left half of (7.14). This says that ' Ag > v for all g in Q. On
writing g = Agq, it follows that, for all g in G,

plg>v.

The right half of (7.14) has not yet been used. This says that p"A g < v for all p in
P. Thus, A g, which we already know to lie in G, must also lie in H by (7.16). That is,
the set G N H of all points common to G and H contains A g. Although G and H are
separated by the hyperplane p'x = v, they therefore still have the point A g in
common, as illustrated in Figure 7.13(c). B

Ifh < ve,thenp h <vpTe=v.If pTh <v, for all p in P, we can show that i < ve by taking p =
for each i.
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Figure 7.14 Choosing the number v.

7.7.4 Solving Games Using Separation

We have seen how the minimax theorem can be interpreted geometrically. We now
use the geometry to solve some two-player, zero-sum games. The method works for
any payoff matrix with only two rows.

Example 1. Nobody would choose to analyze a two-person, zero-sum game by the
method of Section 7.4.