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Preface

I set out to write this book as a modern statement of the ACT-R theory 
and to show how it relates to what we know about the human brain. 
I wanted this to be a succinct and accessible statement that got at the es-
sence of the matter. Early on, struggling with these goals, I was drawn to 
the last lecture of Allen Newell by my memories of a few minutes from 
that lecture that were particularly inspiring for me. I found the recording 
of this lecture and reaffirmed my memories of those minutes. The first 
chapter discusses what Newell said during those few minutes. However, 
I listened to the whole lecture, and I would recommend that everyone 
who aspires to contribute to cognitive science do the same. The spirit of 
that lecture has managed to guide me through this book, and the book 
has become more than just a succinct and accessible recounting of the 
ACT-R theory. Constantly having Newell’s voice in the back of my mind 
has helped me focus, not on ACT-R, but rather on what Newell identified 
as one of the ultimate questions of science. This is the title of the book. 
At times I shift from this central question to the supporting details that 
Newell loved, but I hope the reader will be able to come away from this 
book with the sense that we are beginning to understand how the human 
mind can occur in the physical world.

Many individuals have helped me in various ways in the writing of this 
book. At the highest level, this book ref lects the work of the whole field, 
the countless conversations I have had with many cognitive scientists, and 
the many papers I have read. Much of what the book reports are contri-
butions of members of the ACT-R community. My own research group 
at Carnegie Mellon University has heard me talk about these ideas many 



times and has given me feedback at many levels. In September 2006 
I gave a series of five Heineken Lectures1 in the Netherlands to different 
groups based on the five major chapters of this book. Their feedback was 
valuable and did much to complete my image for the book. My colleague 
Niels Taatgen, in addition to all of his intellectual contributions, contrib-
uted the cover of the book, which was the art piece chosen by Heineken 
Award committee.

The book also ref lects the products of the generous funding of science, 
particularly in the United States. Different aspects of my own research 
described in this book have been funded at different times by DARPA, 
ONR, NASA, NIE, NIMH, and NSF.2 The long-standing and steady sup-
port for the development of ACT-R has come from ONR. Susan Chip-
man, who ran the Cognitive Science program there for many years, has 
done so much to support the establishment of a firm theoretical founda-
tion for our field.

Many people read the complete book and gave me blunt feedback 
on its content: Erik Altmann, Stuart Card, Jonathan Cohen, Stanislas 
Dehaene, Gary Marcus, Alex Petrov, Frank Ritter, and Josh Tenenbaum. 
A number of people have commented on specific chapters: Scott Dou-
glass, Jon Fincham, Wayne Gray, Joshua Gross, Yvonne Kao, Sue Kase, 
Jong Kim, Christian Lebiere, Rick Lewis, Julian Pine, Lynne Reder, Lael 
Schooler, and Andrea Stocco. Catharine Carlin at Oxford University 
Press has been a great editor, dealing with all my concerns about creating 
a contract that would enable maximal dissemination of the ideas, arrang-
ing for many of these reviews, and shepherding the book through the 
publication process. Nicholas Liu, also at Oxford, has also been of great 
help, particularly in the later stages of getting this book out. Last but 
not least, I thank my research associate Jennifer Ferris, who has read the 
book over many times, kept track of figures and permissions, and man-
aged the references and the many other things that are needed in getting 
this book out.

1. I received the first Heineken Award in Cognitive Science in 2006. This was really 
given in recognition of the work done by everyone in the ACT-R community.

2. For those for whom these American acronyms are not just common words: Defense 
Advanced Research Projects Agency, Office of Naval Research, National Aeronautics 
and Space Administration, National Institute of Education, National Institute of Mental 
Health, and National Science Foundation.
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1
Cognitive Architecture

Newell’s Ultimate Scientifi c Question

On December 4, 1991, Allen Newell delivered his last lecture, knowing 
that he was dying. Fortunately, it was recorded.1 I recommend it to any-
one who wants to hear a great scientist explaining the simple but deep 
truths about his life as a scientist. For different people, different gems 
stand out from that talk, but the thing that stuck with me was his state-
ment of the question that drove him. He set the context:

You need to realize, if you haven’t before, that there is this col-
lection of ultimate scientific questions, and if you are lucky to get 
grabbed by one of these, that will just do you for the rest of your 
life. Why does the universe exist? When did it start? What’s the 
nature of life? All of these are questions of a depth about the na-
ture of our universe that they can hold you for an entire life and 
you are just a little ways into them.

Within this context, he announced that he had been so blessed by such a 
scientific question:

The question for me is, how can the human mind occur in the 
physical universe? We now know that the world is governed by 

1. The portion of the lecture in question is available at our website: act-r.psy.cmu.edu. 
The entire lecture is available in video form (Newell, 1993) and at wean1.ulib.org/cgi-bin/
meta-vid.pl?target=Lectures/Distinguished%20Lectures/1991.
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physics. We now understand the way biology nestles comfortably 
within that. The issue is, how will the mind do that as well? The 
answer must have the details. I have got to know how the gears 
clank and how the pistons go and all the rest of that detail. My 
question leads me down to worry about the architecture.

When I heard these remarks from Newell, I heard what drove me 
as a cognitive scientist stated more clearly than I had ever been able to 
articulate it myself. As Newell said, this question can hold you for a life-
time, and you can only progress a little way toward the answer, but it is a 
fabulous journey. While Newell spent much in his lifetime making prog-
ress on the answer, I think he would be surprised by the developments 
since his death. For instance, we are now in a position where biology can 
really begin to inform our understanding of the mind. I can just see that 
enormous smile consuming his face if he had learned about the details of 
these developments. The purpose of this book is to report on some of the 
progress that has come from taking a variety of perspectives, including 
the biological.

Although Newell did not come up with a final answer to his question, 
he was at the center of developing an understanding of what that answer 
would be like: It would be a specification of a cognitive architecture—“how
the gears clank and how the pistons go and all the rest of that detail.” The 
idea of a cognitive architecture did not exist when Newell entered the 
field, but it was well appreciated by the time he died. Because Newell did 
more than anyone else to develop it, it is really his idea. It constitutes a 
great idea of science commensurate to the ultimate question of science 
that it addresses.

The purpose of this chapter is to describe what a cognitive architec-
ture is, how the idea came to be, and what the (failed) alternatives are, 
and to introduce the cognitive architecture around which the discussions 
in chapters 2–6 are organized.

What Is a Cognitive Architecture?

“Cognitive architecture” is a term used with some frequency in modern 
cognitive science—it is one of the official topics in the journal Cognitive
Science—but that does not mean that what it implies is obvious to every-
one. Newell introduced the term “cognitive architecture” into cognitive 
science through an analogy to computer architecture (Bell and Newell, 
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1971), which Fred Brooks (1962) introduced into computer science 
through an analogy to the architecture of buildings.2

When acting in his or her craft, the architect neither builds nor lives 
in the house, but rather is concerned with how the structure (the domain 
of the builder) achieves the function (the domain of the dweller). Archi-
tecture is the art of specifying the structure of the building at a level of 
abstraction sufficient to assure that the builder will achieve the functions 
desired by the user. As indicated by Brooks’s remarks at the beginning of 
his chapter “Architectural Philosophy” in Planning a Computer System,
this seems to be the idea that he had in mind: “Computer architecture, 
like other architecture, is the art of determining the needs of the user of a 
structure and then designing to meet those needs as effectively as possible 
within economic and technological constraints” (p. 5).

In this passage, Brooks is using “architecture” to mean the activity of 
design; when people use “architecture” this is usually what they mean. 
However, computer architecture has come to mean the product of the 
design rather than the activity of design. This was the way Bell and Newell 
used it and, as can be seen in his 1990 definition, this is also the meaning 
Newell used when he referred to the “cognitive architecture”: “The fixed 
(or slowly varying) structure that forms the framework for the immediate 
processes of cognitive performance and learning” (p. 111).3

This conception of cognitive architecture is found in a number of other 
definitions in the field: “The functional architecture includes the basic op-
erations provided by the biological substrate, say, for storing and retrieving 
symbols, comparing them, treating them differently” (Pylyshyn, 1984, p. 30). 
Or my own rather meager definition: “A theory of the basic principles of 
operation built into the cognitive system”4 (Anderson, 1983, p. ix).

2. Brooks managed the development of the IBM 360, which at the time was a revolu-
tion in the computer world. His perspective on computer architecture came from his 
experiences at IBM leading up to and including this development.

3. Elsewhere, reflecting the history that led to this definition, Newell describes cogni-
tive architecture as follows:

What is fixed mechanism (hardware) and what is content (software) at the symbol 
level is described by the description of the system at the register-transfer level. . . . 
To state the matter in general: given a symbol level, the architecture is the descrip-
tion of the system in whatever system-description scheme exists next below the 
symbol level. (Newell, 1990, p. 81)

4. Although my quoted definition predates the Newell definition, I know I got the 
term from discussions with him.
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It is worth reflecting on the relationship between the original sense 
of architecture involving buildings and this sense involving cognition. 
Figure 1.1 illustrates that relationship. Both senses of architecture involve 
relating a structure to a function:

Structure: The building’s structure involves its physical compon-
ents —its posts, fixtures, and so on. None of the above defi-
nitions of cognitive architecture actually mentions its physical 
component—the brain—although Pylyshyn’s hints at it. While it 
would be strange to talk about a building’s architecture at such a 
level of abstraction that one ignores its physical reality—the build-
ing itself —one frequently finds discussions of cognitive architec-
ture that simply do not mention the brain. The definition at the 
end of this section, however, makes explicit reference to the brain.

Function: The function of building architecture is to enable the 
habitation, and the function of cognitive architectures is to en-
able cognition. Both habitation and cognition are behaviors of 
beings, but there is a difference in how they relate to their given 
structures. In the case of a building, its function involves another 
agent: the dweller. In the case of a cognitive architecture (or 
computer architecture), the structure is the agent.5 Thus, there 
is a functional shift from construction being designed to enable 

Figure 1.1. An illustration of the analogy between physical architecture and 
cognitive architecture. (Thanks to Andrea Stocco.)

5. One could get Platonic here and argue that “knowledge” is the agent occupying the 
cognitive architecture; then the analogy to physical architecture would be even closer.
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the activity of another to construction enabling its own activity. 
Except for this shift, however, there is still the same structure–
function relationship: the function of the structure is to enable 
the behavior. In both cases, an important measure of function is 
the success of the resulting behavior—building architecture is 
constrained to achieve successful habitation; cognitive architec-
ture is constrained to achieve successful cognition.6

Before the idea of cognitive architecture emerged, a scientist interested 
in cognition seemed to have two options: Either focus on structure and get 
lost in the endless details of the human brain (a structure of approximately 
100 billion neurons), or focus on function and get lost in the endless details 
of human behavior. To understand the mind, we need an abstraction that 
gets at its essence. The cognitive architecture movement reflects the real-
ization that this abstraction lies in understanding the relationship between 
structure and function rather than focusing on either individually. Of course, 
just stating the category of the answer in this way does not give the answer. 
Moreover, everyone does not agree on which type of abstraction will pro-
vide the best answers. There are major debates in cognitive science about 
what the best abstractions are for specifying a cognitive architecture.

With all this in mind, here is a definition of cognitive architecture for 
the purposes of this book:

A cognitive architecture is a specification of the structure of the 
brain at a level of abstraction that explains how it achieves the 
function of the mind.

Like any definition, this one relates one term, in this case cognitive archi-
tecture, to other terms. I suspect readers are going to wonder more about 
what the term “function of the mind” means in this definition than what 
the term “structure of the brain” means. The goal of a cognitive architec-
ture is to provide the explanatory structure for better understanding both 
of these terms. However, before specifying such an architecture—and as 
some protection against misunderstanding—I note here that the “func-
tion of the mind” can be roughly interpreted as referring to human cogni-
tion in all of its complexity.

6. However, in one case the constraint is created by the marketplace and in the other 
case by evolution. I am aware that this discussion ignores aesthetic issues that influence 
the architecture of buildings.
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Alternatives to Cognitive Architectures

The type of architectural program that I have in mind requires paying 
attention to three things: brain, mind (functional cognition), and the ar-
chitectural abstractions that link them. The history of cognitive science 
since the cognitive revolution has seen a number of approaches that tried 
to get by with less; and so they can be viewed as shortcuts to under-
standing. This chapter examines three of the more prominent instances 
of such shortcuts, discusses what they can accomplish, and notes where 
they fall short of being able to answer Newell’s question. By looking at 
these shortcuts and what their problems are, we can better appreciate 
what the cognitive architecture program contributes when it attends to 
all three components.

Shortcut 1. Classic Information-Processing Psychology: 
Ignore the Brain

The first shortcut is the classic information-processing psychology that 
ignored the brain.7 It was strongly associated with Allen Newell and Her-
bert Simon, and one can argue that Newell never fully appreciated the 
importance of the brain in an architectural specification. In the decades 
immediately after cognitive psychology broke off from behaviorism, many 
argued that a successful cognitive theory should be at a level of abstrac-
tion that ignored the brain. Rather than cite someone else for this bias, 
I will quote myself, although I was just parroting the standard party line:

Why not simply inspect people’s brains and determine what goes 
on there when they are solving mathematics problems? Serious 
technical obstacles must be overcome, however, before the physi-
ological basis of behavior could be studied in this way. But, even 
assuming that these obstacles could be properly handled, the level 
of analysis is simply too detailed to be useful. The brain is com-
posed of more than 10 billion nerve cells.8 Millions are involved 

7. The modifier “classic” is appended because “information processing” is used in many 
different senses in the field, and I do not want this characterization to seem to apply to 
all senses of the term.

8. This number has also experienced some revision.
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in solving a mathematics problem. Suppose we had a listing that 
explained the role of each cell in solving the problem. Since the 
listing would have to describe the behavior of individual cells, it 
would not offer a very satisfactory explanation for how the prob-
lem was solved. A neural explanation is too complex and detailed 
to adequately describe sophisticated human behavior. We need a 
level of analysis that is more abstract. (Anderson, 1980, pp. 10–11)

The problem with this classic information-processing account is that 
it is like a specification of a building’s architecture that ignores what the 
building is made of. Nonetheless, this type of account was very successful 
during the 1960s and 1970s. For example, the Sternberg task, and Saul 
Sternberg’s (1966) model of it, were held up to my generation of gradu-
ate students as the prototype of a successful information-processing ap-
proach. In the prototypical Sternberg paradigm, participants are shown 
a small number of digits, such as “3 9 7,” that they must keep in mind. 
They are then asked to answer—as quickly as they can—whether a par-
ticular probe digit is in this memory set. Sternberg varied the number of 
digits in the memory set and looked at the speed with which participants 
could make this judgment. Figure 1.2a illustrates his results. He found 
a nearly linear relationship between the size of the memory set and the 
judgment time, with each additional item adding 35–40 ms to the time. 
Sternberg also developed a very influential model of how participants 
make these judgments that exemplifies what an abstract information-
processing model is like. Sternberg assumed that when participants saw 
a probe stimulus such as a 9, they went through the series of information-
processing stages that are illustrated in figure 1.2b. The stimulus first has 
to be encoded and then compared to each digit in the memory set. He 
assumed that it took 35–40 ms to complete each of these comparisons. 
Sternberg was able to show that this model accounted for the millisecond 
behavior of participants under a variety of manipulations. Like many of 
those who created the early information-processing theories, Sternberg 
reached for the computer metaphor to help motivate his theory: “When 
the scanner is being operated by the central processor it delivers memory 
representations to the comparator. If and when a match occurs a signal is 
delivered to the match register” (Sternberg, 1966, p. 444).

From its inception, there were expressions of discontent with the clas-
sic information-processing doctrine. With respect to the Sternberg model 
itself, James Anderson wrote a 1973 Psychological Review article protesting 
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that this model was biologically implausible in assuming that compari-
sons could be completed in 35 ms. It became increasingly apparent that 
the computer-inspired model of discrete serial search failed to capture 
many nuances of the data (e.g., Glass, 1984; Van Zandt and Townsend, 
1993). Such criticisms, however, were largely ignored until connectionism 
arose in the 1980s. Connectionism’s proponents added many examples 
bolstering Anderson’s general claim that processing in the brain is very 
different from processing in the typical computer. The connectionists ar-
gued that processing was different in brains and computers because a 
brain consists of millions of units operating in parallel, but slowly, whereas 
the typical computer rapidly executes a sequence of actions, and because 
computers are discrete in their actions whereas neurons in the brain are 
continuous. The early connectionist successes, such as the Rumelhart and 

Figure 1.2. (a) The results from a Sternberg experiment and the predictions 
of the model; (b) Sternberg’s analysis of the sequence of information-
processing stages in his task that generate the predictions in (a). From 
Sternberg (1969). Reprinted by permission of the publisher. Copyright 
by American Scientist.
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McClelland (1986) past-tense model, which is described below, illustrated 
how much insight could be gained from taking brain processing seriously.

The rise of neural imaging in the 1990s has further showed the impor-
tance of understanding the brain as the structure underlying cognition. Ini-
tially, researchers were simply fascinated by their newfound ability to see 
where cognition played out in the brain. More recently, however, brain-
imaging research has strongly influenced theories of cognitive architecture. 
In this book I describe a number of examples of this influence. It has become 
increasingly apparent that cognition is not so abstract that our understanding 
of it can be totally divorced from our understanding of its physical reality.

Shortcut 2. Eliminative Connectionism: Ignore the Mind

As noted above, one reason for dissatisfaction with the information-
processing approach was the rise of connectionism and its success in ac-
counting for human cognition by paying attention to the brain. Eliminative 
connectionism9 is a type of connectionism that holds that all we have to do 
is pay attention to the brain—just describe what is happening in the brain 
at some level of abstraction. This approach ignores mental function as a 
constraint and just provides an abstract characterization of brain structure. 
Of course, that brain structure will generate the behavior of humans, and 
that behavior is functional. However, maybe it is just enough to describe 
the brain and get functional behavior for free from that description.

Eliminative connectionism is like claiming that we can understand a 
house just in terms of boards and bricks without understanding the func-
tion of these parts. Other metaphors reinforce skepticism, for example, 
trying to understand what a computer is doing solely in terms of the 
activity of its circuitry without trying to understand the program that the 
circuitry is implementing, or indeed, trying to understand the other parts 
of the body just in terms of the properties of their cells without trying to 
understand their function. Despite the reasons for skepticism, this is just 
the approach of eliminative connectionism and it has had its successes. Its 
goal is to come up with an abstract description of the computational prop-
erties of the brain—so-called “neurally inspired” computation—and then 

9. This term was introduced by Pinker and Prince (1988) to describe connectionist 
efforts that eliminate symbols as useful explanations of cognitive processes, although here 
I am really using it to refer to efforts that ignore functional organization (how the pieces 
are put together).
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use this description to explain various behavioral phenomena. Eliminative 
connectionism is not concerned with how the system might be organized 
to achieve functional cognition. Rather, it assumes that cognition is what-
ever emerges from the brain’s responses to the tasks it is presented and 
that any functionality comes for free—the house is what results from the 
boards and the carpenters, and if we can live in it, so much the better.

Eliminative connectionism has enjoyed many notable successes over 
the past two decades. The past-tense model of Rumelhart and McClelland 
(1986) is one such success; I describe it here as an exemplary case. Children 
show an interesting history in dealing with irregular past tenses (R. Brown, 
1973). For instance, the past tense of “sing” is “sang.” First, children will use 
the irregular correctly, generating sang; then they will overgeneralize the 
past-tense rule and generate “singed”; finally, they will get it right for good 
and return to “sang.” The existence of this intermediate stage of overgener-
alization has been used to argue for the existence of rules, since it is argued 
that the child could not have learned from direct experience to inflect 
“sing” with “ed.” Rather, children must be overgeneralizing a rule that has 
been learned. Until Rumelhart and McClelland, this was the conventional 
wisdom (e.g., R. Brown, 1973), but it was a bit of a “just so story,” as no one 
produced a running model that worked in this way.10

Rumelhart and McClelland (1986) not only challenged the conventional 
wisdom but also implemented a system that approximated the empirical 
phenomena by simulating a neural network, illustrated in figure 1.3, that 
learned the past tenses of verbs. Their model was trained with a set of 420 
pairs of root verbs with their past tenses. One inputs the root form of a verb 
(e.g., “kick,” “sing”) as an activated set of feature units in the first layer of 
figure 1.3. After passing through a number of layers of association, the past-
tense form (e.g., “kicked,” “sang”) should appear as another activated set of 
feature units. A simple neural learning system was used to learn the map-
ping between the feature representation of the root and the feature rep-
resentation of the past tense. Thus, their model might learn (momentarily, 
incorrectly) that words beginning with “s” are associated with past tense 
endings of “ed,” thus leading to the “singed” overgeneralization (but things 

10. Actually, this statement is a bit ungenerous to me. I produced a simulation model 
that embodied this conventional wisdom in Anderson (1983), but it was in no way put 
into serious correspondence with the data. Although the subsequent past-tense models 
are still deficient in various aspects of their empirical support, they do reflect a more seri-
ous attempt to ground the theories in empirical facts.
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can be much more complex in such neural nets). The model mirrored the 
standard developmental sequence of children: first generating correct irreg-
ulars, then overgeneralizing, and finally getting it right. It went through the 
intermediate stage of generating past-tense forms such as “singed” because 
of generalization from regular past-tense forms. With enough practice, the 
model, in effect, memorized the past-tense forms and was not using gener-
alization. Rumelhart and McClelland (1986) concluded:

We have, we believe, provided a distinct alternative to the view 
that children learn the rules of English past-tense formation in 
any explicit sense. We have shown that a reasonable account of 
the acquisition of past tense can be provided without recourse to 
the notion of a “rule” as anything more than a description of the 
language. We have shown that, for this case, there is no induction 
problem. The child need not figure out what the rules are, nor 
even that there are rules. (p. 267)

Thus, they claim to have achieved the function of a rule without ever 
having to consider rules in their explanation. The argument is that one can 

Figure 1.3. The Rumelhart and McClelland (1986) model for past-tense 
genera tion. The phonological representation of the root is converted into 
a distributed feature representation. This representation is converted into a 
distributed feature representation of the past tense, which is then mapped 
into a phon ological representation of the past tense. From Rumelhart, D. E., 
& McClelland, J. L. In Parallel Distributed Processing: Explorations in the Micro-
structure of Cognition, Volume 2: Psychological and Biological Models. Copyright 
1986 by MIT Press.
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understand function by just studying structure.11 The rule-like function of 
the past tense inflection just emerges from low-level neural computations 
that were not particularly designed to achieve this function. This original 
model is 20 years old and had shortcomings that were largely repaired by 
more adequate models that have been developed since (e.g., Plunkett and 
Juola, 1999; Plunkett and Marchman, 1993). Many of these later models 
are still quite true to the spirit of the original. This is still an area of lively 
debate, and chapter 4 describes our contribution to that debate.

The whole enterprise, however, rests on a sleight of hand. This is not 
often noted, perhaps because many other models in cognitive science de-
pend on this same sleight of hand.12 The sleight of hand becomes appar-
ent if we register what the model is actually doing: mapping activation 
patterns onto activation patterns. It is not in fact engaged in anything re-
sembling human speech production. Viewed in a quite generous light, the 
model is just a system that blurts out past tenses whenever it hears present 
tenses, which is not a common human behavior. That is, the model does 
not explain how, in a functioning system, the activation-input patterns get 
there, or what happens to the output patterns to yield parts of coherent 
speech. The same system could have been tasked with mapping past tenses 
onto present tenses—which might be useful, but for a different function. 
The model seems to work only because we are able to imagine how it 
could serve a useful function in a larger system, or because we hook it 
into a larger system that actually does something useful. In either case, the 
functionality is not achieved by a connectionist system; it is achieved by 
our generous imaginations or by an ancillary system we have provided. So, 
basically in either case, we provide the function for the model, but we are 
not there to provide the function for the child. The child’s mind must put 
together the various pieces required for a functioning cognitive system.

The above criticism is not a criticism of connectionist modeling per se, 
but rather a criticism of modeling efforts that ignore the overall architec-
ture and its function. Connectionism is more prone to this error because 
its more fine-grained focus can lead to myopic approaches. Nonetheless, 

11. “Structure” here refers to more than just the network of connections; it also in-
cludes the neural computations and learning mechanisms that operate on this network.

12. Our own ACT-R model of past tense (Taatgen and Anderson, 2002) is guilty of 
the same sleight of hand. It is possible to build such ACT-R simulations that are not end-
to-end simulations but simply models of a step along the way. However, such fragmentary 
models are becoming less common in the ACT-R community.



Cognitive Architecture 15

there are connectionist efforts that are concerned with full functioning 
systems (Smolensky and Legendre, 2006) and strive to capture more 
of the overall flow of information processing in the brain (O’Reilly and 
Munakata, 2000). Particularly in the Smolensky and Legendre case, this 
reflects a conscious decision not to ignore function.

Shortcut 3. Rational Analysis: Ignore the Architecture

Another shortcut starts from the observation that a constraint on how 
the brain achieves the mind is that both the brain and the mind have to 
survive in the real world: rather than focus on architecture as the key 
abstraction, focus on adaptation to the environment. I called this ap-
proach rational analysis when I tried practicing it (Anderson, 1990), but 
it has been called other things when practiced by such notables as Egon 
Brunwik (1955; “probabilistic functionalism”), James Gibson (1966; “eco-
logical psychology”), David Marr (1982; “computation level”), and Roger 
Shepard (1984, 1987; “evolutionary psychology”). More recent research 
in this spirit includes that of Nick Chater and Mike Oaksford (1999), 
Gerd Gigerenzer and colleagues (1999), and Josh Tenenbaum and Tom 
Griffiths (2001). My application of this approach was basically Bayesian, 
and more recent approaches have become even more Bayesian. Indeed, 
the Bayesian statistical methodology that accompanies much of this re-
search has almost become a new Zeitgeist for understanding human cog-
nition. Briefly, the Bayesian approach claims the following:

1. We have a set of prior constraints about the nature of the world 
we occupy. These priors reflect the statistical regularities in the 
world that we have acquired either through evolution or ex-
perience. For instance, physical objects in the universe tend to 
have certain shapes, reflectance properties, and paths of motion, 
and our visual system has these priors built into it.

2. Given various experiences, one can calculate the conditional 
probability that various states of the world gave rise to them. For 
instance, we can calculate the conditional probability of what 
falls on our retina given different states of affairs in the world.

3. Given the input, one can calculate the posterior probabilities 
from the priors (1) and conditional probabilities (2). For in-
stance, one can calculate what state of affairs in the world most 
likely corresponds to what falls on our retina.
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4. After making this calculation, one engages in Bayesian decision 
making and takes the action that optimizes our expected utili-
ties (or minimizes our expected costs). For instance, we might 
duck if we detect information that is consistent with an object 
coming at our head. Anderson (1990) suggested that at this 
stage, knowledge of the structure of the brain could come into 
play in computing the biological costs of doing something.

The Bayesian argument claims neither that people explicitly know 
the priors or the conditional probabilities nor that they do the math ex-
plicitly. Rather, we don’t have to worry about how people do it; we can 
predict their cognition and behavior just from knowing that they do it 
somehow. Thus, the Bayesian calculus comes to take the place of the 
cognitive architecture.

I regard the work I did with Lael Schooler on memory as one of the suc-
cess stories of this approach (Anderson and Schooler, 1991; Schooler and 
Anderson, 1997). We looked at how various statistics about the appear-
ance of information in the environment predicted whether we would need 
to know the information in the future. Figure 1.4 shows an example related 
to the retention function (how memories are lost with the passage of time). 
Figure 1.4a shows how the probability that I will receive an email message 
from someone on a given day varies as a function of how long it has been 
since I last received an email from that person. For example, if I received an 
email message from someone yesterday, the probability is about 30% that 
I will receive one from that person today. However, if it has been 100 days 
since I received an email message from that person, the probability is only 
about 1% that I will receive one from him or her today. Figure 1.4a shows a 
rapid dropoff, indicating that if I have not heard from someone for a while, 
it becomes very unlikely that I will again. Anderson and Schooler found 
that this same sort of function showed up for repetition of information in 
all sorts of environments. It reflects the demand that the world makes on 
our memory. For instance, when I receive an email message, it is a demand 
on my memory to remember the person who sent it.

If the brain chose which memories to make most available, it would 
make sense to choose the memories that are most likely to be needed. 
Figure 1.4a indicates that time since a memory was last used is an im-
portant determinant of whether the memory will be needed now. An-
derson and Schooler did the Bayesian math to show that this temporal 
determinant implied that retention functions should show the same 
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form as environment functions such as figure 1.4a. And they do, as fig-
ure 1.4b shows in the classic retention function obtained by Ebbinghaus 
(1885/1913). Thus, a memory for something diminishes in proportion 
to how likely people are to need that memory. We showed that this was 
true not only for retention functions but also for practice functions, for 
the interaction between practice and retention, for spacing effects, for as-
sociative priming effects, and so on. Human memory turned out to mirror 
the statistical relationship in the environment in every case. As described 
in chapter 3, we discovered a relationship in human memory between 
retention and priming in the environment that had never been tested. 
Schooler did the experiment, and sure enough, it was true of human 
memory (Schooler and Anderson, 1997). Thus, the argument goes, one 
does not need a description of how memory works, which is what an 
architecture gives; rather, one just needs to focus on how memory solves 
the problems it encounters. Similar analyses have been applied to vision 
(Karklin and Lewicki, 2005), categorization (Anderson, 1991b; Tenen-
baum, 1997; Sanborn et al., 2006), causal inference (Griffiths and Tenen-
baum, 2005), language (Pickering and Crocker, 1996), decision making 
(Bogacz et al., 2006), and reasoning (Oaksford and Chater, 1994).

Figure 1.4. (a) Probability that an email message is sent from a source as a 
function of the number of days since a message was received from that source 
(Anderson and Schooler, 1991); (b) saving in relearning as a function of delay 
(Ebbinghaus, 1885/1913). From Anderson, J. R., & Schooler, L. J. (1991). 
Reprinted by permission of the publisher. Copyright 1991 by Psychological
Science, Blackwell Publishing.
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While I was an advocate of this approach, I started to realize (e.g., An-
derson, 1991a) that it would never answer the question of how the human 
mind can occur in the physical universe. This is because the human mind 
is not just the sum of core competences such as memory, or categoriza-
tion, or reasoning. It is about how all these pieces and other pieces work 
together to produce cognition. All the pieces might be adapted to the 
regularities in the world, but understanding their individual adaptations 
does not address how they are put together.

In many cases, the rational analyses (e.g., vision, memory, categoriza-
tion, causal inference) have characterized features of the environment 
that all primates (and perhaps all mammals) experience.13 Actually, many 
of these adaptive analyses were inspired by research on optimal foraging 
theory (Stephens and Krebs, 1986), which is explicitly pan-species in its 
approach. The universal nature of these features raises the question of 
what enables the human mind in particular.14 Humans share much with 
other creatures (primates in particular), so these analyses have much to 
contribute to understanding humans, but something is missing if we stop 
with them. There is a great cognitive gulf between humans and other 
species, and we need to understand the nature of that gulf. What dis-
tinguishes humans is their ability to bring the pieces together, and this 
unique ability is just what adaptive analyses do not address, and just what 
a cognitive architecture is about. As Newell said, you have to know how 
the gears clank, and how the pistons go, and all the rest of that detail.

ACT-R: A Cognitive Architecture

It was basically a rhetorical ploy to have postponed giving an instance of 
a cognitive architecture until now. Many instances of cognitive architec-
ture exist, including connectionist architectures.15 Newell was very com-
mitted to an architecture called Soar, which has continued to evolve and 
grow since his death (Newell, 1990; for current developments in Soar, 
see sitemaker.umich.edu/soar).

13. Schooler has done unpublished analyses of primate environments.
14. While there have been some interesting analyses of how the statistics of the lan-

guage affect language learning and language use (e. g., Newport and Aslin, 2004), exposing 
a nonhuman primate to these statistics does not result in language processing capability.

15. You can see this by searching Google for “connectionist architecture.”
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A different book could have included a comparison of different cognitive 
architectures, but such comparisons are already abundant in the literature 
(e.g., Pew and Mavor, 1998; Ritter et al., 2003; Taatgen and Anderson, 
in press). The goal of this book is not to split hairs about the differences 
among architectures, but to use one to try to convey what we have learned 
about the human mind. For this purpose, I will use the ACT-R architec-
ture (Anderson, Bothell et al., 2004) because I know it best. However, this 
book is not about ACT-R; rather, I am using ACT-R as a tool to describe 
the mind. Just as the architect’s drawings are tools to connect structure 
and function, the ACT-R models in this book are used as tools to connect 
brain and mind. We may be proud of our ACT-R models and think they 
are better than others in the same way that architects are proud of their 
specifications, but we try not to loose track of the fact that they are just a 
way of describing what is really of interest.

ACT-R has a history (discussed in appendix 1.1) going back 30 
years to the HAM theory and early ACT theories. ACT-R emerged 
in 1993 (Anderson, 1993) when I realized the inadequacy of ratio-
nal analysis, but the R stands for “rational” to reflect the influence 
of rational analysis. Today ACT-R is the product of a community of 
researchers who use it to theorize about cognitive processes. There 
is an ACT-R website (act-r.psy.cmu.edu) that you can visit to read 
about example models or to consult the user manual and tutorial for 
the simulation system, which specify the details of the architecture. 
(A computer simulation of the architecture has been developed that 
allows us to work out precisely what ACT-R models predict about 
human cognition.) Having this documentation on the Web allows this 
book to focus on core ideas about human cognition. The goals of the 
remainder of this chapter are to briefly describe ACT-R as an illustra-
tion of a cognitive architecture, to show how an architecture can be 
connected to the results of brain imaging, and to use ACT-R as a con-
text for discussing contentious issues regarding the status of symbols 
in cognitive science.

ACT-R’s Modular Organization

Figure 1.5 illustrates the ACT-R architecture as it appeared in Anderson 
(2005a). In this architecture, cognition emerges through the interaction 
of a number of independent modules. Anderson (2005a) was concerned 
with how the ACT-R system applies to the learning of a small fragment 
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of algebra. The five modules in figure 1.5 were those used in the model 
I developed of algebra learning:16

1.  A visual module that might hold the representation of an equa-
tion such as “3x – 5 = 7”

2. A problem state module (sometimes called an imaginal mod-
ule) that holds a current mental representation of the problem; 
for example, the student might have converted the original 
equation into a mental image of “3x = 12”

3. A control module (sometimes called a goal module) that keeps 
track of one’s current intentions in solving the problem; for 
example, one might be trying to perform an algebraic transfor-
mation

4. A declarative module that retrieves critical information from 
declarative memory, such as that 7 + 5 = 12

5. A manual module that programs the output, such as “x = 4”

Each of these modules is associated with specific brain regions; ACT-R 
contains elaborate theories about the internal processes of these modules. 

Figure 1.5. The interconnections among modules in ACT-R 5.0. From 
Anderson (2005a). Reprinted by permission of the publisher. Copyright 
2005 by Cognitive Science Society, Inc.

16. Chapter 2 discusses all eight modules that are currently part of ACT-R.
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Later chapters explore the specifics of some of these modules, which must 
communicate among each other, and they do so by placing information in 
small-capacity buffers associated with them. A central procedural system 
(a sixth module) can recognize patterns of information in the buffers and 
respond by sending requests to the modules. These recognize–act tenden-
cies of the central procedural module are characterized by production 
rules. For example, the following is a description of a possible production 
rule in the context of solving algebraic equations such as 3x – 5 = 7:

If the goal is to solve an equation,
  And the equation is of the form “expression – number1
  = number2,”
Then write “expression = number2 + number1,”17

where the first line refers to the goal buffer, the second line to the visual 
buffer, and the third line to a manual action.

Anderson (2005a) describes a detailed model of learning to solve simple 
linear equations (e.g., 3x – 5 = 7) that was used to understand the data from 
an experiment (Qin et al., 2004) involving children 11–14 years of age. They 
were proficient in the middle-school prerequisites for algebra, but they had 
never before solved equations. During the experiment, they practiced solv-
ing such equations for one hour per day for six days. The first day (day 0) 
they were given private tutoring on solving equations; on the remaining five 
days, they practiced solving three classes of equations on a computer:

0-step: e.g., 1x + 0 = 4
1-step: e.g., 3x + 0 = 12, 1x + 8 = 12
2-step: e.g., 7x + 1 = 29

Figure 1.6 shows how the time required by the children to process these 
equations decreased over the course of the experiment.

Figure 1.6 also illustrates the predictions of a model implemented in 
the ACT-R architecture. The model is not programmed to do the task; 
instead, it starts with declarative representations of the instructions that 
the children receive and has general production rules for following any 
set of instructions. It also has a virtue that can be achieved by a system 
built in a full cognitive architecture: It does the entire task, from the ap-
pearance of the equation on the screen to the pressing of the keystroke 

17. This rule is hypothetical, used for illustration; consult Anderson (2005a) for more 
accurate details.
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Figure 1.6. Mean solution times (and predictions of the ACT-R model) for 
three types of equations as a function of delay. Although the data were not 
collected, the predicted times are presented for the practice session of the 
experiment (day 0). From Anderson (2005a). Reprinted by permission of the 
publisher. Copyright 2005 by Cognitive Science Society, Inc.

Figure 1.7 ( facing page). Comparison of the module activity in ACT-R during 
the solution of a two-step equation on day 1 (a) with a two-step equation 
on day 5 (b). In both cases the equation being solved is 7 * x + 3 = 38. From 
Anderson (2005a). Reprinted by permission of the publisher. Copyright 2005 
by Cognitive Science Society, Inc.

(unlike past-tense models, which model a small fraction of the task and 
leave to the imagination how that fraction results in functional behavior). 
We sometimes call this a model of end-to-end behavior.

The model, like the children, took longer with more complex equa-
tions because it had to go through more cognitive steps. More inter-
esting, it improved gradually in task performance at the same rate as 
children: the effect of six days of practice was to make a two-step equa-
tion like a one-step equation in terms of difficulty (as measured by 
solution time) and a one-step equation like a zero-step equation; An-
derson (2005a) describes the detailed processing. The critical factors in 
learning to solve equations are considered in chapter 5. However, for 
current purposes, Figure 1.7 illustrates the detailed processing involved 
in solving the two-step equation 7x + 3 = 38 on the first day (part a) 
and fifth day (part b) of the experiment. In the figure, the passage of 
time moves from top to bottom, and different columns represent the 
points in time at which different modules were active. This can be seen 
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as just a great elaboration of the Sternberg stage model (figure 1.2b) in 
which stages include activities in multiple modules that can be active si-
multaneously. The primary reason the model requires less time on day 5 
than on day 1 is a reduction in the amount of information the declara-
tive module is called upon to retrieve. This becomes clear when one 
compares the amounts of activity in the retrieval columns in figure 1.7 
on Day 1 versus Day 5. As elaborated in chapters 3 and 4, there is less 
retrieval activity on Day 5 both because of the increased speed of in-
dividual retrievals and because retrieval of instructions is replaced by 
production rules specific to algebra.

Brain Imaging Data and the Problem of Identifiability

The complexity of figure 1.7 compared with the simplicity of the be-
havioral data in figure 1.6 reflects a deep problem that has seriously 
hampered efforts to develop cognitive architectures. A very complicated 
set of information-processing steps is required to go from instruction 
on algebra and the presentation of an algebraic equation to the actual 
execution of an answer. No matter how one tries to do it, if the attempt 
is detailed and faithful to the task, the resulting picture is complicated, as 
in figure 1.7. However, although we know the process is complicated, it 
does not necessarily follow that those complicated steps are anything like 
those represented in figure 1.7 in terms of the modules involved or the 
sequences of operations. Working with standard behavioral data, the only 
way cognitive modelers had of determining whether their models were 
correct was to find whether the models matched data such as those in 
figure 1.6. But such data do not justify all of this detail.

In Anderson (1990), I showed that given any set and any amount of 
behavioral data, there would always be multiple different theories of the 
internal process that produce those data. I concluded, “It is just not pos-
sible to use behavioral data to develop a theory of the implementation 
level in the concrete and specific terms to which we have aspired” (p. 
24). This was part of my motivation for developing the rational approach. 
In 1990, a diagram such as figure 1.7 would have been as much fan-
tasy on my part about what was going on as it would have been fact. 
However, I did acknowledge that physiological data would get us out of 
this identifiability dilemma. I claimed that “the right kind of physiologi-
cal data to obtain is that which traces out the states of computation of 
the brain,” because this would provide us with “one-to-one tracing of the 
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implementation level” (p. 25). I noted the progress that the pioneers of 
brain imaging had already made by 1990.

While the field is still not altogether there yet in 2007, it is much 
closer to having what is needed to base a diagram such as figure 1.7 on 
fact rather than fantasy. In my lab, we have been mainly working with 
fMRI (functional magnet resonance imaging) brain imaging data. Chap-
ter 2 includes an up-to-date report of the connections we have made 
between modules of ACT-R and activity in specific brain regions. This 
chapter provides a preview of these ideas, illustrating that it is possible 
to map some of the detail in figure 1.7 onto precise predictions about 
brain regions.

The children whose behavioral data are reported in figure 1.6 were 
scanned on days 1 and 5 in an fMRI scanner. The details of the study 
and derivation of predictions from figure 1.7 are available in Anderson 
(2005a); figure 1.8 summarizes the predictions and results for five brain 
regions. These regions are not cherry-picked for this one study; rather 
they are the same regions examined in study after study because they are 
associated with specific modules in the ACT-R theory.

Predicting the BOLD Response in Different Brain Regions

Figure 1.8a illustrates the simplest case: the manual module. The repre-
sentation of the hand along the motor strip is well known, and there is 
just a single use of this module on each trial to program the response. 
The x-axis presents time from the onset of the trial.18 The data in 
figure 1.8 show the increase from baseline in the BOLD (blood oxy-
gen level–dependent) response in this region. The top graphs show the 
BOLD response for different numbers of operations (averaging over 
days). The three BOLD functions are lagged about 2 s apart, just as the 
actual motor responses are in the three conditions. However, as typical 
of BOLD functions, they slowly rise and fall, reaching a peak 4–5 s after 
the key press. The bottom graphs compare the BOLD response on days 
1 and 5 (averaging over the number of transformations). Basically, the 
response shifts a little forward in time from day 1 to day 5, reflecting 
the speed increase. The predictions are displayed as solid lines in the 
figure and provide a good match to the data. As detailed in chapter 2, 

18. The first 1.2 s involved presentation of a warning signal before the equation was 
presented. The data in figure 1.6 are from the presentation of the equation.





Figure 1.8. Use of module behavior to predict BOLD (blood oxygen level–
dependent) response in various regions: (a) manual module predicts motor 
region; (b) declarative module predicts prefrontal region; (c) control /goal 
module predicts anterior cingulate region; (d) imaginal/problem state module 
predicts parietal region; (e) procedural module (production system) predicts 
caudate region. The top graphs show the effect of number of operations aver-
aging over days, and the bottom graphs show the effect of days averaging over 
operations. The actual data are connected by dashed lines, and the predictions 
are the solid lines. From Anderson (2005a). Reprinted by permission of the 
publisher. Copyright 2005 by Cognitive Science Society, Inc.
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these predictions are generated according to when the module is active. 
Whenever a module is active, it creates extra metabolic demand in its 
associated brain region, which drives a larger BOLD signal. In the case 
of the manual module, the activity and metabolic demand happen at the 
end of the charts in figure 1.7. Figure 1.8a illustrates the ability of this 
methodology to track one component in an overall task.

Unlike the manual module, which is just used at the end of the prob-
lem, the other modules are used sporadically through the solution of the 
problem (see figure 1.7). Because the BOLD response tends to smear 
together closely occurring events, it is not possible in this experiment to 
track the timing of a specific step in these other modules. Nonetheless, we 
can generate and test distinct predictions for these regions.

We have associated a prefrontal region (see figure 1.8b) with retrieval 
from the declarative module. In contrast to the motor region, in this pre-
frontal region there are very different magnitudes of response for differ-
ent numbers of operations, as shown in the top graph. These differences 
are predicted because more transformations mean that more instructions 
and mathematical facts need to be retrieved to solve the equation. A dis-
tinguishing feature of this region is the very weak response it generates 
in the case of 0 steps. According to the model, this case involves some 
brief retrievals of instructions but no retrieval of numerical facts, which 
is why the response is so weak. As noted above, the major reason for the 
speed increase across days is that the number of retrievals decreases and 
the time per retrieval speeds up. Therefore, in the bottom graph in figure 
1.8b the reduction is predicted in the BOLD response in going from day 1 
to day 5.

We have associated a region of the anterior cingulate cortex (see figure 
1.8c) with the control function of the goal module. As in the prefrontal 
region, there is a large effect of the number of operations, as shown in 
the top graph, because the model has to go through more control states 
when there are more transformations. In contrast to the prefrontal region, 
however, in the anterior cingulate cortex there is a robust response even 
in the zero-step case, because it is still necessary to go through the con-
trol states governing the encoding of the equation and the generation of 
the response. The striking feature of the anterior cingulate is that there 
is almost no effect of learning, as shown in the bottom graph. The effect 
of practice is largely to move the model more rapidly through the same 
control-state changes, and so there is little effect of number of days on 
number of control-state changes.



Cognitive Architecture 29

For the sake of brevity, I skip discussion of the other two regions (the 
parietal in figure 1.8d associated with the imaginal module, and the cau-
date in figure 1.8e associated with the procedural module), except to note 
that they display patterns similar to one another but different from that of 
any of the other regions. Details can again be found in Anderson (2005a), 
as well as evidence of just how good the statistical match is between pre-
diction and data. Our ability to obtain and predict four different patterns 
of activation across the same conditions demonstrates that imaging has the 
power to go beyond the latency data displayed in figure 1.6.

The rest of the book is concerned in great detail with the properties of 
these specific regions and their associations with ACT-R modules. I discuss 
the similarities and differences between the ACT-R interpretation of these 
regions and other interpretations in the literature. Unless you are quite 
familiar with this research, the similarities among the theories will seem 
much greater than the differences. There is convergence in the literature 
on the interpretation of the functions of these various brain regions.

Summary

For the purposes of this chapter, consider how the ACT-R architecture 
avoids the pitfalls of the shortcuts reviewed above:

1. Unlike the classic information-processing approach, the ar-
chitecture is directly concerned with data about the brain. Al-
though brain imaging data have played a particularly important 
role in my laboratory, data about the brain have been more gen-
erally influential in the development of ACT-R.

2. Unlike eliminative connectionism, an architectural approach 
also focuses on how a fully functioning system can be achieved. 
Within the ACT-R community, the primary functional concern 
has been with the mathematical-technical competences that de-
fine modern society.19 Chapter 5 elaborates extensively on what 
algebra problem solving reveals as unique in the human mind.

3. Unlike the rational approach and some connectionist 
approaches, ACT-R does not ignore issues about how the 

19. However, the reader should not think this is all that has been worked on. The 
ACT-R website displays the full range of topics on which ACT-R models have been 
developed.
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components of the architecture are integrated. Indeed, ACT-R 
is more a theory about that integration than anything else.

Symbols Versus Connections in a Cognitive Architecture

The Debate

There is a great debate in cognitive science between architectures that are 
called symbolic and those that are called connectionist, and ACT-R has 
been reluctantly placed on one side of this debate. I would rather skip that 
to get on with the story, but the debate is too notorious to just ignore.20

While it is not a commonly held characterization among members of the 
ACT-R community, many members of the larger cognitive science com-
munity tend to regard ACT-R as an instance of a symbolic architecture.21

The connectionist past-tense models described above did not garner so 
much attention simply because they accomplished what had not been 
done before. They were magnets for attention in the cognitive science 
community because of statements their creators made claiming that they 
had done away with symbols. They claimed to have shown fundamental 
inadequacies in “symbolic” architectures such as ACT-R. There has been 
no lack of people willing to join the debate on the symbolic side (e.g., 
Fodor and Pylyshyn, 1988; Pinker and Prince, 1988; Marcus, 2001). It was 
a particular virtue of Newell that he never engaged in this debate, even 
though others had placed him on the symbolic side of the world (and he 
certainly did believe in symbols).

Some fraction of the controversy is really a debate about the language 
used to describe cognition, rather than about scientific claims. This debate 
turns on the word “symbol”—a word that enjoyed a happy existence in 
the English language until the advent of cognitive science. In the good 
old days, symbols were physical objects (usually visual representations, 
e.g., the cross as the symbol for Christianity) that were used to stand for 
or designate something else. There were good symbols and bad symbols 
(in many senses of the words “good” and “bad”), but nobody would have 
thought to debate whether symbols per se were good or bad. Among these 

20. Perhaps this is why I put this off to the last topic in the chapter.
21. I received the Rumelhart prize in 2005 as “the leading proponent of the symbolic 

modeling framework.” While I was very honored by the prize, I have to confess the char-
acterization stuck in my craw.
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symbols were those used by mathematicians and logicians. Among these 
mathematicians and logicians were people such as Church, Turing, Goedel, 
Post, and von Neumann, who noted that computation could be achieved 
by operations on such symbols—hence the idea of symbol manipulation 
emerged. With the appearance of real computers, individuals such as 
McCarthy who were heavily influenced by this logical background created 
symbol manipulation languages such as LISP that formed the backbone of 
early artificial intelligence. By this time, the “symbol” in cognitive science 
retained only a loose connection to its original meaning.

There is a lack of consensus about whether symbols in cognitive sci-
ence maintain the referential feature of original symbols—that is, whether 
they stand for something. Newell and Simon (1976) explicitly state that 
symbols designate other things. Nonetheless, they extend the notion of 
symbols to pointers in data structures, which can have no reference to 
anything outside of the data structure itself. Pointers really derive their 
meaning from the structures and processes in which they participate; 
they do not have external reference. Nonetheless, the idea that symbols 
have reference continues in discussions. For instance, Vera and Simon 
(1993) assert that “we call patterns symbols when they can designate 
or denote” (p. 9). On the other hand, one finds people such as Searle 
(1980) and Lakoff (1988) talking about “meaningless symbol manipu-
lation.” Searle, focusing on their physical appearance, refers to them as 
“meaningless squiggles.” Harnad (1990), in describing what he calls the 
symbol-grounding problem, asks, “How can the meanings of the meaning-
less symbol tokens, manipulated solely on the basis of their (arbitrary) 
shapes, be grounded in anything but other meaningless symbols?”

Given this lack of agreement on what symbols are, it should come 
as no surprise that there is no consensus about what role symbols play 
in an explanation of the mind and how they should be coordinated 
with our knowledge of brain processing. The various positions can be 
classified according to whether they give an explanatory role to symbols 
or connections. These positions are enumerated below with a “+” to indi-
cate an explanatory role and a “–” a nonexplanatory role:

1. +Symbols, –Connections: The classic symbol manipulation position 
holds that the principles by which the mind operates involve transfor-
mations of the structural properties of symbolic representations. This is 
the position that symbols are like the symbols that appear in LISP (which 
are basically pointers and, as noted above, can be almost devoid of any 
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sense of external reference). The claim is that, while the mind is not a 
LISP program, symbols play the same critical role in the explanation of 
mind as they do in a LISP program. There are two subtraditions—the lin-
guistic tradition, represented by linguist Noam Chomsky and by philoso-
pher Jerry Fodor, and the information-processing tradition, represented 
by Newell and Simon. The latter position has threads in common with 
the information-processing shortcut described above and tends to regard 
as unimportant the physical processes that realize these symbols.

2. –Symbols, +Connections: This position is called eliminative connec-
tionism because it seeks to eliminate symbols in the explanation of cogni-
tion. It views symbols much like elements in explicitly stated rules (“If 
the verb ends in d or t, add ed”) and regards such assertions about the 
mind as, at best, good approximate descriptions of brain computations 
and, at worst, misleading. This position is called eliminative connection-
ism because it seeks to eliminate symbols in the explanation of cognition. 
This position sees no explanatory role for symbols, just as the classic posi-
tion sees no explanatory role for the brain.

3. +Symbols, +Connections: Implementational connectionism believes 
that connectionist computations are organized to achieve symbolic re-
sults and that both connectionist and symbolic characterizations play an 
important explanatory role (e.g., Shastri and Ajjanagadde, 1993; Smo-
lensky, 1995). One way or another, this view assumes that connectionist 
computations implement symbolic computations. For instance, in Smo-
lensky and Legendre’s (2006) Integrated Connectionist/Symbolic (ICS) 
architecture, connectionist calculations can serve to enforce a hierarchy 
of symbolic constraints on grammatical selections. For Smolensky and 
Legendre, with their emphasis on linguistic applications, the symbols are 
basically the kinds of terms that appear in classic linguistic models such 
as “verb phrase” or “stressed.”

4. –Symbols, –Connections: Some researchers have rejected both symbols 
and connections as explanations. In their place, other explanatory devices 
are offered, or the possibility of explaining the human mind is simply 
rejected. Historically, functionalism and some varieties of behaviorism, 
such as that of behaviorist B. F. Skinner, have had this characteristic. More 
recently, some versions of adaptive explanations (see above discussion of 
rational analysis) have argued that the explanation resides completely in 
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22. One might also include dynamical systems (e.g., Thelen and Smith, 1994; van 
Gelder, 1998) in this category, as Clark (1997) suggests. However, at least some practi-
tioners of this approach (e.g., Smith and Samuelson, 2003) have argued that their battle 
with the greater common enemy (the classic symbol manipulation approach) means that 
the connectionist and dynamic systems approach are really complementary.

23. An apology is in order for having introduced these terms into the theory, I suppose. 
It happened as Christian Lebiere and I attempted to describe an important distinction in a 
way that we thought would be meaningful to the cognitive science community. We were 
not thinking deeply about what the words meant to us or what they really meant (or did 
not mean) in the cognitive science community.

the environment. Differing slightly in their emphasis, some versions of 
situated cognition (e.g., Lave, 1988; Lave and Wenger, 1991; Greeno et 
al., 1992) have also emphasized that the explanation resides in what is 
outside the human.22

In my opinion, debates among these positions have the character of 
jousting with windmills. Because there is not even agreement about what 
symbols mean, these debates are a waste of time.

The Symbolic–Subsymbolic Distinction

I cannot, however, simply reject all discussion of symbols and use the 
ACT-R architecture, because that architecture makes a distinction be-
tween what it calls “symbolic” and “subsymbolic” levels.23 These terms bear 
only partial relationships to the terms of the debate about symbols versus 
connections. The symbolic level in ACT-R is an abstract characterization 
of how brain structures encode knowledge. The subsymbolic level is an 
abstract characterization of the role of neural computation in making that 
knowledge available. The following discussion of symbols from Newell 
(1990) captures the essence of the symbolic level as we use it in ACT-R 
and sets the context for also understanding ACT-R’s subsymbolic level:

Symbols provide distal access to knowledge-bearing structures 
that are located physically elsewhere within the system. The re-
quirement for distal access is a constraint on computing systems 
that arises from action always being physically local, coupled with 
only a finite amount of knowledge being encodable within a finite 
volume of space, coupled with the human mind’s containing vast 
amounts of knowledge. Hence encoded knowledge must be spread 
out in space, whence it must be continually transported from 
where it is stored to where processing requires it. Symbols are the 
means that accomplish the required distal access. (p. 427)
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24. However, be aware that this ACT-R use of “subsymbolic” to designate the quanti-
ties under the symbols is not the same as the more standard use of “subsymbolic” to refer 
to the connectionist elements, which are at a finer grain size than symbolic units. The 
“sub” in the more common usage can be read as “pieces of symbols,” whereas in our usage 
it is the quantities “under the symbols.”

Newell identifies the critical role of symbols as knowledge access; 
there is neither a mention in this quote of the popular image of symbol 
manipulation with its juggling of symbols, nor is there any commitment 
to whether symbols refer. He notes that most computation is local (true 
of the brain with its hypercolumns and the like), but information must 
be brought from other locations to influence the local processing (again, true 
of the brain with its fiber tracks). Symbols for Newell provide this distal 
access. This is also exactly what they do in ACT-R; one might identify 
them with fiber tracks in the brain.

If symbols provide distal access so that information can be brought from 
one location to another, there is then the question of just what informa-
tion will be brought and how quickly that information will appear. This is 
what the subsymbolic level is about. Symbolic structures have subsymbolic 
quantities associated with them that control how fast the structures are 
processed and which structural units get processed at which choice points.24

This symbolic–subsymbolic relationship reflects a very general theoretical 
approach in science of postulating objects with real-value quantities—hab-
its with strengths in Hull’s theory (e.g., Hull, 1952), units with activations 
and link strengths in connectionism, or electrons with energy levels.

The symbolic–subsymbolic distinction has been developed extensively 
for two modules in ACT-R, the declarative and procedural modules.

The Symbolic–Subsymbolic Distinction 
in the Declarative Module

With respect to the declarative module at the symbolic level, ACT-R 
has networks of knowledge encoded in what we call chunks. Figure 1.9 
illustrates a declarative chunk encoding a fact from the Berry and Broad-
bent (1984) sugar factory task. This structure connects the elements of 
an event in that task: a factory had produced 10,000 tons of sugar in the 
previous month, 800 workers were assigned to the factory in the cur-
rent month, and 7,000 tons of sugar was produced in the current month. 
Figure 1.9 illustrates the connections that provide Newell’s distal access. 
Thus, a query such as, “If the past production was 10,000 tons and I use 
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800 workers, how many tons will I get now?” can make contact with the 
answer of 7,000 tons.

What if multiple chunks were stored with different current output 
associated with 10,000 tons in the past and 800 workers? What if there 
was no chunk with the answer for this exact query? One needs to specify 
the neural processes by which an appropriate chunk is selected as an an-
swer. Chunks have activations at the subsymbolic level. The most active 
chunk will be the one retrieved, and its activation value will determine 
how it is retrieved. The activation values of chunks are determined by 
computations that attempt to abstract the impact of neural Hebbian-like 
learning and spread of activation among neurons.25 Chapter 3 will elabo-
rate on these subsymbolic activations and review some of the successes 
of this mechanism in capturing many aspects of human cognition, in-
cluding performance in the Berry and Broadbent sugar factory task.

The Symbolic–Subsymbolic Distinction 
in the Procedural Module

As noted above, the procedural module consists of production rules.26

Figure 1.10 illustrates a production rule that might apply in solving the 
equation 3 + x = 8. Figure 1.10a is an instantiation of the rule for this 

Figure 1.9. Representation of a declarative chunk 
encoding a fact from the Berry and Broadbent (1984) 
sugar factory task.

25. Hebbian learning is a neural learning by contiguity first described by Hebb (1949) 
and which is related to many current connectionist learning algorithms.

26. While there is a widely felt discontent with “symbols” and their connotations, 
there is an evenly more widely felt discontent with “rules” and their connotations. I have 
encountered it not only from connectionists, but also from many mathematics educa-
tors. I have been advised that ACT-R would have greater appeal if I just did not use the 
phrase “production rule” but instead something like “action selection.” Perhaps such a 
name switch would more accurately reflect what the rules (or the mappings) do, but 
I fear such a name switch now would engender new confusions even greater than the 
ones it might eliminate.
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specific equation. The rule responds to a pattern that appears in a set of 
modules—in this case, to the encoding of the equation in the visual module
and the setting of the control state to solve that equation in the goal 
module. An action is selected that requests the retrieval from declarative 
memory of the difference between 8 and 3 and sets the control state to 
note a subtraction is occurring. As I discuss throughout the book, it is 
generally thought that the basal ganglia play a critical role in achieving 
this pattern recognition, action selection, and action execution.

Figure 1.10b illustrates the general rule that is behind the instance 
in figure 1.10a. The rule is not specific to the numbers 3 and 8. What-
ever number appears in the arg1 slot of the visual buffer is copied to the 
arg2 slot on the declarative retrieval request. Similarly, whatever number 
appears in the value slot of the visual buffer is copied to the arg1 slot 
of the retrieval request. Thus, this production is a pattern that specifies 
how information is to be moved from one location to a distal location. 
This is symbolic exactly in the distal access sense Newell used in the 
quote above.

Figure 1.10. Illustration of a production rule in ACT-R: (a) the buffer contents 
might operate upon in a specific case; (b) the general pattern encoded in the 
rule that would apply to this case.
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There are situations (developed in chapter 4) where multiple produc-
tion rules might apply. In such situations the decisions about which rule 
to apply are determined at the subsymbolic level, where production rules 
have utilities and the production with the highest utility is chosen. The 
utilities of productions are determined by computations that are designed 
to abstract the essential aspects of the neural reinforcement learning that 
determines action selection.

Final Reflections on the Symbolic–Subsymbolic Distinction

While the structures in figures 1.9 and 1.10 are symbolic in the Newell 
sense, it is hard to see how anything in them is symbolic in the sense 
of “meaningless squiggles” or “ungrounded meaningless symbols” or in 
the sense of “denoting something.” Nothing in the production rule in 
figure 1.10 is fundamentally different from the pattern-matching capa-
bilities of standard connectionist networks, and indeed, we created a con-
nectionist implementation of an early version of ACT-R (Lebiere and 
Anderson, 1993). The links in figures 1.9 and 1.10 simply represent the 
kinds of connections seen in any neural model, albeit at a higher level of 
abstraction.

It is true that when one looks at the actual code that specifies a model 
for purposes of simulating it, one will see things that look like the cogni-
tive science stereotype of a symbol as a piece of text. However, this is 
true of computer simulations of any theory. Compare the specification of 
a set of chunks for the ACT-R simulation program in table 1.1 with the 
specification of a connectionist network. There is the tendency to confuse 
the notation of either specification with “symbols.” They are perhaps sym-
bols for the simulation program, but they are not the symbols of the 
ACT-R architecture or the connectionist network.27 The ACT-R specifi-
cation uses the word “workers” and the connectionist specification uses 
the word “digits,” but in both cases these are just mnemonic labels to help 
the person read the code. Neither model’s behavior would change if some 
random sequence of letters were substituted instead. Much of the debate 
about symbols reflects confusion between notation and theory. Of course, 
the graphic representations in figures 1.9 and 1.10 are just notations, too. 

27. Actually, they are largely not manipulated by the simulation program either, but 
are notations about how to compile the simulation into code that “just does it.”
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However, in this book I tend to use such graphic nota tions because they 
tend to better convey the theoretical claims.

The reader may still feel there is some significant difference between 
the ACT-R specification and the connectionist specification in table 1.1. 
There is, and it is a difference in the level of abstraction at which the 
theory is specified. In science, choosing the best level of abstraction for 
developing a theory is a strategic decision. In the case of connectionist 
elements or symbolic structures in ACT-R, the question is which level 
will provide the best bridge between brain and mind and thus answer 
Newell’s question. In both cases, the units are a significant abstraction 
from neurons and real brain processes, but the gap is probably smaller 
from the connectionist units to the brain. Similarly, in both cases the units 
are a significant distance from functions of the mind, but probably the 
gap is smaller in the case of ACT-R units. In both cases, the units are being 
proposed to provide a useful island to support a bridge from brain to 
mind. The same level of description might not be best for all applications. 
Connectionist models have enjoyed their greatest success in describing 
perceptual processing, while ACT-R models have enjoyed their greatest 
success in describing higher level processes such as equation solving.

To return to the title of this chapter and the book, the function of a 
cognitive architecture is to find a specification of the structure of the 

Table 1.1.  Comparison of Specification for ACT-R Chunks and a 
Connectionist Network

Specifying ACT-R Chunks Specifying a Connectionist Network

(add-dm
(Fact1
isa addition-fact
past 10K
workers 800
present 7K)

(Fact2
isa addition-fact
past 9K
workers 900
present 9K)

(Fact3
isa addition-fact
past 8K
workers 1000
present 11K))

set hiddenSize 20
addNet digits.$hiddenSize
addGroup input  20  INPUT
addGroup hidden $hiddenSize
addGroup “hidden 2” $hiddenSize OUT_NOISE 
COSINE_COST
addGroup output  3   OUTPUT
connectGroups input hidden -p RANDOM -s 0.5
connectGroups hidden {“hidden 2”} output
loadExamples digits.ex -s “clean set”
loadExamples digits2.ex -s “noisy set”
setObj learningRate 0.1
setObj input.numColumns 4
viewUnits
autoPlot
graphObject
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brain at a level of abstraction that explains how it achieves the function 
of the mind. I believe ACT-R has found the best level of abstraction for 
understanding those aspects of the human mind that separate it from 
the minds of other species. In the rest of the book, I try to use this 
architecture to develop key insights about the human mind. Chapter 5, 
in particular, addresses the question of how the human mind is unique.

Appendix 1.1: A Short History of ACT-R

Figure 1.11 provides the history of the ideas that are part of the current 
ACT-R. The origins of ACT-R can be traced back to two books published 
in 1973. The first was Human Associative Memory, which I wrote with 
Gordon Bower, describing the HAM theory of memory. HAM was one 
of several then-new efforts to create a rigorous theory of complex human 
cognition by specifying the theory with sufficient precision that it could 
be simulated on a computer. Another aspect of this effort that has carried 

Figure 1.11. An illustration of the source of 
the ideas and practices in current ACT-R.
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over to modern ACT-R is the idea of a symbolic representation for de-
clarative memory. The proposal in HAM was for a specific propositional 
representation that was similar to the proposals of Norman and Rumel-
hart (1975) and Kintsch (1974). Propositional representations did not 
generalize well in many applications, so over time the declarative repre-
sentation has devolved into a more general relational representation.

The second 1973 book was the Carnegie Symposium volume edited 
in 1973 by Bill Chase that contained two landmark papers by Newell. 
The first was his famous “You can’t play 20 questions with nature and 
win” essay, in which he lamented the tendency of cognitive psychology to 
divide the world into little paradigms, each with its own set of questions 
and logic. In his second paper, Newell (1973a) introduced his answer to 
this dilemma by describing his first production system theory of human 
cognition. This single system performed the diverse set of tasks that oc-
cupied cognitive psychology. The idea of a production system provided 
the missing ingredient to convert the inert declarative representation of 
HAM into a functional theory of human cognition.

I combined HAM’s declarative system and Newell’s procedural system 
into the first version of the ACT theory (Anderson, 1976), which went 
beyond either earlier proposal in assuming that there were subsymbolic 
quantities that controlled access to the declarative and procedural ele-
ments. For declarative memory, activation-based quantities were used, in-
spired by the spreading activation model of Collins and Quillian (1972). 
For the procedural system, a strength quantity was used, based on ideas 
in psychology that have their origins in behaviorist theories. Both of these 
concepts evolved as I considered neural realizations of these quantities 
and their role in enabling adaptation to the environment.

In 1983 I published a book describing the ACT* system. In it, the 
subsymbolic computations were changed to be more consistent with the 
emerging ideas of connectionism. The source I most often referenced 
was the McClelland and Rumelhart (1981) interactive activation model. 
There were two other things that ACT* contained that are part of the 
modern ACT-R theory. One was goal-directed processing—a top-down 
control to cognition currently served by ACT-R’s goal module. The other 
was a set of ideas for production learning, among which were procedur-
alization and composition that form the basis for the modern production 
compilation mechanism (see chapter 4).

I had called the 1983 theory ACT* (pronounced “act star”) in a very 
loose analogy to the Kleene star to reflect my belief that it was “the final 
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major reformulation within the ACT framework” (Anderson, 1983, p. 18). 
I said, “My plan for future research is to try to apply this theory wide 
and far, to eventually gather enough evidence to permanently break the 
theory and develop a better one” (p. 19). As it turned out, I spent much 
of the period from 1983 to 1993 engaged in two activities. One of these 
was the development of a version of intelligent tutoring systems called 
cognitive tutors (for a review of those years, see Anderson, Corbett et al., 
1995). This work, while initially motivated to test the ACT* theory and 
successful in many ways, actually ended up having little direct influence 
on the theory. The main outcome for ACT-R of that effort was a better 
technical understanding of how to build production systems. The other 
activity was the already-mentioned work on rational analysis of cognition 
(Anderson, 1990). While it was started with the intention of abandoning 
the architectural approach to human cognition, it actually wound up 
establishing an additional theoretical foundation for the subsymbolic 
level in ACT-R.

ACT-R came into being in 1993 with the publication of a new book that 
was an effort to summarize the theoretical progress made on skill acquisi-
tion in the intervening 10 years (e.g., Singley and Anderson, 1989) and tune 
the subsymbolic level of ACT-R with the insights of the rational analysis 
of cognition. The “R” in ACT-R was to denote the influence of rational 
analysis. Accompanying that book was a computer disk containing the 
first comprehensive implementation of the theory. The fact that we could 
produce this implementation reflected both our growing understanding 
(derived from all the production system implementations we had pro-
duced) and the fact that LISP, the implementation language of these 
theories, had become standardized.

The appearance of generally available, fully functioning code set off a 
series of events that was hardly planned. The catalyst for these events was 
the emergence of a user community. Starting in 1994 on the suggestion 
of Werner Tack and the insistence of Christian Lebiere, we began holding 
summer schools and workshops. The creation of that user community 
resulted in a whole new dynamic to the theory. One dimension of change 
was to the language of the theory. It became a language spoken among all 
members of the community, rather than a language spoken by authors of 
the theory to readers of the theory. Sharing the language among so many 
forced a greater standardization and consistency which in turn made it 
possible for a wide range of researchers to contribute to development of 
the theory.
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The last book in the ACT series, until this one, was published in 1998 
(Anderson and Lebiere). The 1998 book described ACT-R 4.0, which was 
a much more mature system than the 1993 ACT-R 2.0. Past books in the 
series had been planned as writing exercises concurrent with the develop-
ment of the theory and intended to stimulate and discipline that develop-
ment, whereas ACT-R 4.0 was already basically in place when the 1998 
book was being written. It was written to display a number of running 
models built by different researchers, all working in this architecture. By 
this time there were two notable changes in the architecture. First, reflect-
ing the effort of Lebiere and Anderson (1993) to create a connectionist 
simulation of ACT-R, we became aware of the need for a pattern matcher 
that was both more flexible and also more limited in its assumptions about 
the power of the processes that went into matching a single production. 
The resulting pattern matcher implemented in ACT-R 4.0 represented a 
serious claim about what could be recognized in 50 ms of cognition, which 
in turn meant that we could take our production rules more seriously. Sec-
ond, we began producing what I have come to call “end-to-end” simula-
tions that interact with the same (typically computer-based) environment 
that human participants do, and that actually do the task. This prevented 
us from making hidden assumptions about linkage to the external world 
that can protect a theory from disconfirmation.

To enable such end-to-end simulations, we had already begun to create 
perceptual and motor interfaces. As one of these efforts, Mike Byrne had 
implemented many of the perceptual and motor modules from Meyer 
and Kieras’s (1997) EPIC system (see chapter 2 for a discussion of EPIC) 
into a system called ACT-R/PM—the “PM” standing for perceptual-motor. 
It grounded ACT-R in serious models of human perception and action, 
enabling the creation of “embodied” ACT-R models. It became apparent 
that understanding the perceptual-motor aspects of even abstract tasks 
such as algebra was essential. We decided that these perceptual-motor 
aspects should be fully integrated into the theory rather than mere add-
ons. EPIC’s modular organization also strongly influenced our movement 
to a modular structure.

Another development pushing ACT-R to a modular organization was 
our entry into fMRI brain imaging research. Slowly, the mapping between 
brain regions and modules emerged that is shown in this chapter and 
throughout the book. This work has influenced many aspects of ACT-R. 
For instance, as described in Anderson (2005a), it led to the separation of 
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the imaginal and goal modules, which had previously been combined in 
a single goal module.

Another important event since 1998 was the development of a successful 
theory of production compilation (described in detail in chapter 4) with 
Niels Taatgen, which brought ideas from the 1983 ACT* into the mod-
ern ACT-R world. With the theory of production compilation, ACT-R 
now has a theory of procedural learning to match the successful theory 
of declarative learning. We also began developing a theory of how such 
productions could be learned from instruction. Learning from instruction 
plays a significant role in the model in figure 1.7 and is expanded upon in 
chapter 5. An important feature of this is that ACT-R now has a mecha-
nistic explanation of how subjects go from the instruction for a task to 
performance of the task. (Previously, we just programmed in task-specific 
productions.) One of the last remnants of magic had been eliminated 
from the theory.

This history brings us pretty much up-to-date. The current simulation 
version of ACT-R is 6.0, written and maintained by Dan Bothell. In part, 
its creation was motivated by the desire to better represent the modular 
structure in the software and to facilitate the development of new modules. 
That is the history. I speculate on the future of ACT-R in appendix 6.1.
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2
The Modular Organization of the Mind

The human mind is what emerges from the actions of a number of largely 
independent cognitive modules integrated by a central control system. 
Figure 1.5 showed the organization of some of these information-
processing modules. The basic purpose of this chapter is to elaborate on 
this modular organization and the reasons for it. The first section gives a 
brief overview of the functional needs of the human mind and physical 
constraints of the human brain that force a modular solution. The second 
section describes the modular structure in ACT-R and how that relates to 
issues about modularity more generally in cognitive science. The final three 
sections illustrate this modular organization in three empirical studies: a study 
of driving behavior, a study of perfect time sharing, and an fMRI study.

Function and Structure

Humans and other creatures live in a complex world where multiple 
simultaneous demands are placed on them. They have multiple resources 
to meet these demands, but there are also severe limitations on how these 
resources can be deployed. Roughly, these demands and resources can be 
divided into perceptual, motor, and central:

1. Perceptual: We need to be capable of detecting important 
information coming in via multiple sensory media. For instance, 
when driving we need to be able to process a car changing into 
our lane and to respond to a horn warning us of danger.
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2. Motor: We need to be able to take appropriate actions, and 
we often have to perform multiple actions simultaneously, 
such as using our feet to locomote while we use our hands to 
manipulate.

3. Central: Our actions and our thoughts must be coordinated 
to achieve our needs. Many activities are more than just a 
sum of their parts—preparing a successful meal, delivering 
a successful lecture, and so on. Success depends on not only 
what actions are taken, but also on the order in which they 
are performed.

With respect to perceptual and motor abilities, we are not much 
different than other primates, but we are quite different when it comes 
to central control. Our ability to organize novel combinations of behavior 
has given our species its unique ability to acquire high proficiency at 
a wide range of skills for which we were not specifically prepared by 
evolution. Examples of such skills include driving a car in modern society, 
ocean navigating in traditional Polynesian society, doing mathematics 
in our scientific practice, and serving tea in the Japanese ritual. Each of 
these competencies requires that we exercise an internal control over our 
behavior. The ability for such inner control is much more advanced in our 
species, a point considered at length in chapter 5.

Driving a car is probably an example that most readers of this book can 
relate to. Indeed, driving a car while holding a conversation is probably 
the paradigm case of multitasking in the modern world. Consider the 
demands being placed on a driver:

Perceptual: The visual system is being presented with a complex 
array of rapidly changing information that needs to be moni-
tored for important events while still processing the visual cues 
that guide basic driving. The auditory system has to process the 
speech and also respond to critical sounds (e.g., a horn honking) 
from the outside.

Motor: The hands are occupied with steering and shifting; the feet 
with using the accelerator, break, and clutch; the vocal system 
with speech.

Central: Driving requires integrating low-level steering adjust-
ments with high-level decisions such as how fast to progress and 
when to change lanes. In addition, the driver has to worry about 
avoiding traffic tickets and getting off the highway at the right 
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exit. If the driver is engaged in a conversation, this task also has 
to be coordinated with the rest.1

Ignoring the demands of speech, the basic perceptual and motor 
demands of driving are something other primates are capable of. However, 
while chimpanzees might drive vehicles as part of a circus act, we would 
never let them on the road, because they are incapable of the central 
control that real driving requires.

Structural Constraints of the Brain

These functional demands would not be nearly as interesting if there 
were no limitations on the brain’s ability to achieve them. What is really 
interesting is not the mere fact of limitations, but the nature of these 
limitations. The standard contrasts between brain and computer are 
instructive here: the computer is fast and serial, and the brain is slow and 
parallel.2 Feldman and Ballard (1982) proposed a “100-step” constraint 
on action—many things that we do (e.g., decisions made while driving) 
take place in far less than a second, during which our neural system can 
progress through no more than 100 states. In that same time, modern 
computers can execute trillions of instructions. On the other hand, we 
have tens of billions of neurons performing these computations.

There are two basic forms of limitation on parallelism. One is a matter 
of number: while we have perhaps 100 billion neurons, we do not have 
100 trillion. Each neuron comes with a cost in space and metabolic 
support, and evolution has found fit to pack only so many into the 
human brain. Thus, some computations are just not feasible, and it does 
not take long to discover these limitations as a driver of a car. The second 
limitation is one of communication: only so many neurons can be packed 
into any small space, and the farther apart these neurons are, the longer 
it takes them to communicate and the more structure has to be used 
to string the “wires” between the locations. Cherniak (1990) argues that 

1. Modern cars with their radios, cell phones, temperature controls, GPS systems, and 
other devices give us many other things to engage our perceptual, motor, and central 
systems.

2. This contrast can be overstated. Modern computers do many things in parallel and 
strive to achieve capacity increases by parallelism. Similarly, the brain is not above trying 
to achieve speed to increase processing power, as witnessed by the major investment it 
makes in myelination to increase the speed of critical information transfer.
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simple calculations of space imply that most connections must be local. 
Therefore, the brain has opted for the sensible design of placing neurons 
performing related computations close together.

The visual system nicely illustrates the power and limitations of 
neural information processing. A large portion of the primate brain is 
given over to processing the visual array; more than 30 such separate 
regions have been identified (Van Essen and DeYoe, 1995). At any point 
in time, the input is being processed in the brain from our entire visual 
field. However, there is also a strategic allocation of resources by our 
visual system. Our eyes have foveae; the information coming in from 
each fovea gets a disproportionate investment throughout the nervous 
system. We do not give the same investment to achieving high acuity 
throughout the visual field because it would be just too expensive—our 
brains would have to be an order of magnitude larger if they devoted as 
equal processing to all sections of the visual field. Every time we move 
our foveae to a new location, we are choosing to dedicate our most pow-
erful processing resources to what we deem most important. The eyes of 
drivers are normally a dead giveaway as to what they are concerned with 
at any instant. For many purposes, it almost seems that the only thing 
we are aware of is what is close to our foveae. However,we only have to 
have an object fly at us from our periphery (we will duck) to be assured 
that some parts of our nervous system are still processing the rest of the 
visual field.

The visual system also illustrates the push to have related informa-
tion processing close together. While visual information processing is 
occurring in many areas of the brain, each of the 30 or more visual areas 
is specialized to process a different sort of information about the visual 
signal. Some regions do basic extraction of visual information, some 
are involved in object recognition (the ventral stream), and others are 
involved in extracting action affordances (the dorsal stream). Also, many 
of the early visual areas are topographically organized; cells that process 
similar areas of the visual field are placed close together.

The need for local, parallel computing in the brain is the fundamental 
structural fact driving the modular organization of the human mind. 
Essentially, parts of the brain are given over to performing related 
computations so that it is easier for the necessary neurons to interact. 
The extreme of localization is the cortical minicolumn—the parcella-
tion of the brain into small units of about 100 neurons that have a very 
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restricted mission. For instance, cortical columns in the primary visual 
cortex are specialized to process information about one orientation, from 
one location, in one eye.

The need to do as much computing locally as possible is not enough 
by itself to require a modular organization. One could imagine a brain 
organization where function gradually shifted over the brain without 
any discrete clumping into modules. In part, this is the organization of 
the brain. It manifests at a smaller scale in the topological organization 
of columns within areas such as primary visual cortex—nearby columns 
process nearby regions of the visual field. At a larger scale, different 
cortical areas that do similar processing are often adjacent, such as primary 
visual cortex and secondary visual cortex. However, there is also a clear 
clumping of areas in the cortex such that there are discrete changes in 
cytoarchitectural features defining distinct regions that seem to corre-
spond to distinct functions. These regional differences are reinforced by 
the fact that different fiber tracts project to these regions. Maybe the 
emergence of modules in the mind is just a consequence of accidental 
variations in cortical anatomy. However, at the end of this section I note 
Herb Simon’s argument that such hierarchical organizations, including 
those in the brain, are not accidents, but rather are requirements for func-
tioning systems.

This claim that neural computation is localized goes against a long-
standing tradition to regard information about a particular function as 
spread out over the entire brain. Lesion data going back to Lashley (1950) 
have been cited in favor of this conclusion—in one of his studies he found 
that he could remove any part of a rat’s cortex and it could still run a maze 
that it had learned. Lashley concluded that “the memory trace is located 
in all parts of the functional area; that various parts are equipotential for 
its maintenance and activation” (p. 469). Brain imaging data have also 
been cited in favor of this equipotential viewpoint—in performing any 
task, numerous disparate regions of the brain show activity. However, 
interpreting such results as evidence for equipotentiality fails to appre-
ciate the fact that different regions can perform different functions, all 
required for successful execution of the task. For instance, in the model 
for the algebra task (figure 1.7), there were visual, procedural, declara-
tive, goal, imaginal, and manual modules simultaneously active in differ-
ent brain regions. Also, the modern interpretation of Lashley’s results is 
that the rat had multiple representations of the maze (e.g., spatial and 
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motor3) and that damage to any area of the cortex affected only one 
representation.

An excellent example of the complexity of brain representation 
concerns the phenomenon of blindsight (Weiskrantz, 1986). Damage to 
the primary visual cortex leaves patients in a state where they cannot 
identify an object that is presented to them and they claim not to know 
it is there. However, they can still point to the object when asked. Thus, 
damage to a specific area results in a specific deficit, but similar informa-
tion processing is occurring elsewhere and can serve for certain tasks.

Coordination: The Basal Ganglia

While different regions of the brain do their own processing, they have to 
coordinate at least occasionally to achieve a functional system. Consider 
working out a solution to an algebra problem. At the mechanical level, 
the eyes must move appropriately to guide the hand. Memory must be 
interrogated for arithmetic facts relevant to the numbers that are seen in 
the problem. If one tries a particular type of solution rather than another 
(e.g., factoring rather than the quadratic formula), control must be ex-
ercised to keep the actions moving toward that solution rather than the 
other. To achieve this coordination, tracks of brain fibers connect multiple 
cortical regions. Particularly important are paths of communication that 
connect cortical regions via subcortical regions. The connections through 
the basal ganglia have attracted a lot of attention from various researchers 
(see figure 2.1).

The basal ganglia are a connected set of subcortical structures. Most of 
the cortex sends projections to the caudate and putamen, which are col-
lectively referred to as the striatum. Various researchers (e.g., Amos, 2000; 
Frank et al. 2001; Houk and Wise, 1995; Wise et al., 1996) have proposed 
that the striatum performs a pattern-recognition function—essentially rec-
ognizing patterns of activation distributed over the cortex. This portion of 
the basal ganglia projects to a number of small regions known collectively as 
the pallidum.4 The projections to the pallidum are substantially inhibitory, 
and these regions in turn inhibit cells in the thalamus, which project to 

3. See discussion of place and response learning in chapter 4.
4. See areas labeled GPe and GPi in figure 2.1. Loosely, one can also include areas 

labeled SNr and STN in figure 2.1. STN participates in a more complex loop than the 
one described here. Note the great reduction in the number of cells in going from the 
striatum to the pallidum (numbers in figure 2.1).
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Figure 2.1. Schematic diagram of the major structures of the basal ganglia and 
their interconnections. Abbreviations: GP, globus pallidus; GPi, internal segment 
of globus pallidus; GPe, external segment of globus pallidus; EP, entopeduncular 
nucleus; STN, subthalamic nucleus; SNr substantia nigra, pars reticulata. Num-
bers indicate the total number of neurons within each structure. From Wickens, J. 
Basal ganglia: Structure and computations. Network: Computation in Neural 
Systems, 8, R77–R109. Reprinted by permission of the publisher. Copyright 
1997 by Taylor & Francis Ltd., www.tandf.co.uk/journals.

select actions in the frontal cortex. Graybiel and Kimura (1995) have sug-
gested that this arrangement creates a “winner-lose-all” system such that 
active striatal projections strongly inhibit only the pallidum neurons rep-
resenting the selected action, which then no longer inhibit the thalamus 
from producing the action. This is a mechanism by which the winning 
procedure (in ACT-R, a production) is determined. According to Middle-
ton and Strick (2000), at least five nonmotor regions of the frontal cortex 
receive projections from the thalamus and are controlled by this basal 
ganglia loop.5 These regions play a major role in controlling behavior.

There are three key features in this characterization of the basal ganglia
loop:

1. It allows information from disparate regions of the brain to 
converge in making a decision.

2. It requires a great compression of information from what is 
happening in these individual regions because the number of 
receiving neurons is so much smaller.

5. These regions in turn have projections to posterior cortex and can influence pro-
cessing there. There is also evidence of projections directly from the basal ganglia to the 
temporal lobe (Middleton and Strick, 1996).

www.tandf.co.uk/journals
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3. Processing that involves this multisynaptic loop is necessarily 
much slower than processing that can occur in a single brain 
region.

The existence of structures, such as the basal ganglia, that have 
these properties is almost a necessity given the need for coordination 
of information and the limitations on the human nervous system. While 
the basal ganglia have been targeted as a promising site to be performing 
this coordination function, there is no reason to suppose this is the only 
such system. Also, while the basal ganglia are a paradigm case of a brain 
region that coordinates communication among multiple cortical regions, 
one cortical region can communicate directly with another without any 
coordination with other sites. A good example is the frontal eye fields, 
which play an important role in voluntary eye movements. They are a 
portion of the dorsolateral frontal cortex directly connected to posterior 
visual areas.

Summary

To achieve the rapid processing required for functionality of the mind, 
different information-processing functions are computed as much as pos-
sible by different independent modules associated with different brain 
regions. However, the need for coordination requires communication 
among these modules. A particularly prominent sort of coordination is 
where multiple modules communicate with a single coordinating mod-
ule, such as the procedural module associated with the basal ganglia.

While this section is about the brain and how structural and functional 
considerations force it to a modular organization, it is worth stopping 
for a moment to recognize that this is an instance of a much more gen-
eral phenomenon. Simon (1962) noted that nearly all complex systems 
whose design is driven to achieve a function have a hierarchical organiza-
tion of nearly decomposable subsystems. In this he included such artifacts 
as books and computers, biological entities, social organizations, and cog-
nitive activities including problem solving and language. He argues that a 
hierarchical structure facilitates the evolution and reproduction of such 
systems. Specifically, it is possible to tinker with one subsystem without 
disrupting another subsystem. In such hierarchies, the parts (modules) 
tend to occupy a small portion of contiguous space or time. This physical 
compactness promotes high interaction within a unit of the hierarchy, 
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and the distances between the units result in much lower bandwidth 
interactions among the units.

Modular Architecture

ACT-R’s Modules

The overall structure of ACT-R is illustrated in figure 2.2, which is an 
elaboration of figure 1.5 and illustrates the eight modules that are standard 
as part of the ACT-R 6.0 simulation system.6 There are two perceptual 
modules: a visual module and an aural module. There are two response 
modules: a manual module and a vocal module. The other four modules 
are responsible for different aspects of central processing. The imaginal 
module holds a current mental representation of the problem. For instance, 
in the context of solving an equation such as 3x – 7 = 5, it might hold a 
representation of an intermediate equation such as 3x = 12. The declara-
tive module retrieves critical information from memory such as that 7 + 
5 = 12. The goal module keeps track of one’s current intentions in solv-
ing the problem—for instance, one might intend to factor a quadratic 
equation. Finally, the procedural module embodies various rules for 
behavior, such as the rules for solving equations. A later section of this 
chapter reviews the current proposal for associating these modules with 
specific brain regions.

Each of these modules is capable of massively parallel computation to 
achieve its objectives. For instance, the visual module can process the en-
tire visual field, and the declarative module can search through the large 
database of memories. However, when it comes to communication among 
the modules, there are serial bottlenecks. The only way these modules can 
communicate is through buffers associated with each module. Only a little 
information can be put into a buffer associated with the module—a single 
object perceived, a single problem state represented, a single control state 
maintained, a single fact retrieved, or a single program for hand movement. 
Each buffer can hold only a chunk (a structured unit bundling a small 
amount of information; see figure 1.9 for an example of a chunk).

Communication among these modules is achieved via a procedural 
module (associated with the basal ganglia). The procedural module can 

6. There is no implication that these are the only modules of the mind; these are just 
the ones currently implemented in ACT-R.
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respond to information in the buffers of other modules and put infor-
mation into these buffers. The response tendencies of the central pro-
cedural module are represented by production rules such as the one 
illustrated in figure 1.10. A significant architectural constraint in ACT-R 
is that only a single production rule can execute at a time. Moreover, it 
takes 50 ms for a production rule to fire—which I think of as the time 
needed to complete the multisynaptic loop through the basal ganglia. 
Since communication among the modules must progress through the 
procedural module, it becomes the overall central bottleneck in infor-
mation processing.

While we have extended the term “module” to the procedural sys-
tem, it is worth noting that there are ways in which it is not like 
the other modules. In particular, it does not have a buffer associated 
with it in which it can deposit structures. It really is just a system of 
mapping cortical buffers to other cortical buffers and is not really an 
object in itself. Related to this difference is that we have associated 
the procedural module with the basal ganglia, which are not cortical 
structures.

It is interesting to consider what about the architecture in figure 2.2 
might be uniquely human. Elsewhere (Anderson, 2005a) I have argued 
that the goal module has unique properties in the human that enable hu-
mans to achieve a distance from their immediate circumstances that other
primates cannot. This enables human means–ends analysis, as described 

Figure 2.2. The modules implemented in ACT-R 6.0.
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by Newell and Simon (1972), motivating their early general problem 
solver (GPS) theory:

I want to take my son to nursery school. What’s the difference 
between what I have and what I want? One of distance. What 
changes distance? My automobile. My automobile won’t work. 
What is needed to make it work? A new battery. What has new 
batteries? An auto repair shop. I want the repair shop to put in a 
new battery; but the shop doesn’t know I need one. What is the 
difficulty? One of communication. What allows communication? 
A telephone . . . and so on. This kind of analysis—classifying things 
in terms of the functions they serve and oscillating among ends, 
functions required, and means that perform them—forms the 
basic system of GPS. (p. 416)

The key to means–ends problem solving is the ability to disengage from 
what one wants (the end) to focus on something else (the means). 
Papineau (2001) has argued that means–ends analysis is a unique human 
capability. Means–ends reasoning underlies human tool making. Benjamin 
Franklin claimed that tool making was the distinguishing human trait. 
While there have been modest demonstrations of tool making in other 
primates, Franklin was right that this is a capacity qualitatively differ-
ent in the human species. The goal module is what enables this capacity. 
Chapter 5 delves more into what underlies the remarkable cognitive plas-
ticity of the human species.

Before progressing to examples that illustrate the module system, it 
is useful to consider the relationship of this proposal to other ideas in 
cognitive science. The ACT-R architecture can be viewed as a summary 
of an emerging consensus in the field. However, there still are significant 
controversies entangled in the consensus; these tend to obscure that con-
sensus. I consider two issues of controversy that are particularly relevant 
to the module system. One concerns the ideas set forth by the philosopher 
Jerry Fodor (1983) and the lively discussion that has followed. The other 
concerns long-standing and evolving issues in experimental psychology 
regarding capacity limits on cognitive processing.

Fodor Modules

Fodor proposed that a fragment of human cognition was achieved by what 
he called modules. He thought a modular structure best characterized 
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certain input systems such as vision. He listed no less than nine properties 
he associated with input modules, six of which are reviewed below:

1. Domain specificity Fodor argued that a module processes only a 
restricted set of stimuli. This is transparently true for ACT-R’s visual and 
aural modules, but formally it is equally true for all the modules. Just as 
the visual module processes only visual input, the declarative module 
process only memories and the goal module process only control states.

2. Mandatory operation Fodor thought that when certain input arrived, 
the modules had to act, and how they acted could not be modified. Thus, 
we cannot help seeing and hearing the world in a certain way. This is 
equally true of all modules: memory cannot help how it responds to a 
retrieval request, nor can the goal module help how it responds to re-
quest for a control change, nor can the procedural module help how it 
responds to a certain pattern in the buffers of other modules, and so forth. 
All this comes down to saying that these are mechanical systems that 
function according to specific laws (chapters 3 and 4 elaborate on the 
laws describing the declarative and procedural systems). However, as part 
of Fodor’s claim, he held that these modules were not affected by the 
system’s beliefs. Thus, for instance, we see a visual illusion even if we know 
that it is an illusion. The degree to which there is top-down influence on 
perception is hotly debated, and there are many demonstrations of con-
textual effects on perception. However, it should be noted that nothing in 
the ACT-R architecture prohibits such influence. The input to a module 
can include higher level beliefs as well as sensory information.

3. Information encapsulation Fodor emphasized that the information that 
modules process is internal and that they do not need to make requests 
of other systems for information. This is again something largely true 
about ACT-R modules. Almost all information processing occurs within 
individual modules, although modules do offer a narrow band (their buf-
fers) for trading information with other modules. Thus, we have “near-
encapsulation” reflecting the predominance of short- over long-distance 
connections in the brain.

4. Fast operation Fodor argued that, as a consequence of information 
encapsulation, modular processes are the fastest cognitive processes. This 
is again true of ACT-R modules. However, it does take some time for 
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the modules to do their thing, and the overall speed of cognition will be 
determined by these module times (e.g., see figure 2.8).

5. Shallow outputs Fodor described the outputs of modules as “shallow.” 
Here he was very much influenced by his focus on input systems. He viewed 
these systems as just reporting the “facts”—for example, “there is a red 
square” rather than “there is a position on a checkerboard.” While not all of 
the ACT-R modules report simple perceptual results, the restriction of buf-
fer contents to single chunks makes the output of the modules very limited.

6. Fixed neural architecture Fodor argued that dedicated neural struc-
tures are associated with these modules, again an attribute of ACT-R 
modules. This tends to come with strong nativist claims, such as that the 
basic functioning of the architecture is prespecified and not something 
that can be learned. At some level, ACT-R agrees that the functioning 
of a module is not learned, but certainly the contents of modules—such 
as what is in the declarative module—are influenced by experience. The 
principles for encoding and retrieving experiences, not the experiences 
themselves, are prespecified in the declarative module. Given evidence 
about widespread neural plasticity, all modules are similarly capable of 
adjusting their behavior with experience, even if they cannot change 
their basic principles of processing. However, this book considers learning 
processes only in the procedural and declarative modules. Learning in 
other modules, such as perceptual learning in the visual system, tends to be 
a much slower process and has not yet been modeled within ACT-R.7

Each of the claims by Fodor could be questioned, even with respect to 
input modules. However, as they are stated above, they do not seem much 
like the stuff of controversy. They come close to summarizing emerg-
ing consensus. Nonetheless, Fodor’s claims have been associated with 
substantial controversy because of further claims that he and others have 
made about modules. It is worth reviewing three of these extensions:

1. Language Fodor proposed that a dedicated input module processes the 
syntax of language. This proposal, combined with claims about information 

7. However, we have begun some promising interactions with the Leabra research 
group (O’Reilly and Munakata, 2000) to enhance the ACT-R visual module with the 
kinds of slow learning that characterize their visual modules (e.g., Taatgen et al., 2006).
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encapsulation and the innate basis of syntax, has generated considerable 
debate in cognitive science. While there is not a linguistic module among 
the eight modules in figure 2.2, ACT-R is quite agnostic on the issue of 
whether there are special language modules, or what they might do.8 The 
modules in figure 2.2 are by no means a complete account of the human 
mind, and it remains to be determined what is missing.

2. Content-specialized modules Others have proposed modules with 
rather specialized content, such as for primitive numeric judgment 
(Dehaene et al., 1999), recognition of faces (Kanwisher et al., 1997), and 
detection of cheaters in social situations (Cosmides and Tooby, 2000). 
This is sometimes called the “Swiss Army Knife” model of cognition, 
in which there is a blade (module) for every purpose (Duchaine et al., 
2001). Fodor does not particularly endorse these sorts of modules, and 
he is especially dismissive of the proposal for a cheater detection module 
(Fodor, 2000). In any case, ACT-R is agnostic about such proposals, just 
as it is about proposals for language modules.

3. Central cognition Fodor seems to want to restrict such modules to 
input (and perhaps output) systems. He does not think there are central 
modules. For instance, he says there appears to be no brain center that 
performs the logical operation of modus ponens (Fodor, 2000, pp. 60–62). 
Fodor’s claims about central cognition extend beyond just denying that 
there are central modules; he argues that central cognition cannot be 
understood computationally. It is here that ACT-R and Fodor part ways. 
Evidence for central modules and a computational explanation of higher 
level cognition comes from the whole body of work that has been done 
by the ACT-R community.

Consider Fodor’s remark about no central module for modus ponens. 
This reflects his predisposition to see central cognition as logical 
processing. This is not the conception of cognition in ACT-R or, indeed, 
in any of the cognitive science tradition emanating from Newell and 
Simon (1972). In that work they treated reasoning as a special case of 
problem solving and were already beginning to treat problem solving as 

8. I have not always been so agnostic. I argued in Anderson (1983) that language 
processing did not involve special modules and depended instead on modules used in 
general cognitive processes. I was also dismissive of evidence involving localization of 
language.
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handled within a production system. Interestingly, while Fodor is right 
about there being no brain center for modus ponens, the basal ganglia do 
appear to implement something like a production system, and produc-
tion rules provide much of the power of modus ponens.

Fodor’s reason for doubting that cognition can be modeled compu-
tationally comes from his concern with the frame problem. The frame 
problem was started in artificial intelligence as a technical concern with 
how to update knowledge in logical systems (McCarthy and Hayes, 
1969), and workable solutions have been developed. However, philoso-
phers such as Fodor have focused on bigger epistemological issues that 
are only somewhat related. In Fodor’s mind, the real issue is informa-
tion encapsulation, and he argues that the knowledge that humans bring 
to bear on a task cannot be bounded. The most important intellectual 
discoveries require bringing together disparate pieces of knowledge. He 
thinks that this exceeds the capacity of any computational system, but 
he does not really specify any specific case of knowledge integration that 
is beyond a computational system. Fodor talks about analogy generally 
as being beyond the bounds of computational systems, and yet there 
are successful computational models of analogy making (e.g., Gentner 
et al., 2001; Hummel & Holyoak, 2003; Salvucci and Anderson, 2001). 
The last task described in chapter 5 was deliberately selected because it 
required people to put knowledge together in novel ways. I hoped this 
would bring ACT-R face to face with Fodor’s problem. While it did pose 
some challenges to the architecture, it turned out to be quite amenable to 
computational modeling that was faithful to human behavior. Moreover, 
it was quite capable of being modeled within a modular architecture. 
In summary, Fodor’s worries seem not to have been realized in a docu-
mented instance of human cognition.

Modules and Capacity Limits

The basic motivation for a modular structure is to get the best performance 
possible given the limitations of brain processing. Experimental psychol-
ogy has long been concerned with sorting out the behavioral manifesta-
tions of the limitations on human information processing. In experimental 
psychology, this often takes the form of trying to identify which processes 
occur in parallel and which processes occur serially. While it is not logically 
necessary (Townsend and Wenger, 2004), the assumption typically is that 
parallel processes are not capacity limited and serial processes are. This is 
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approximately the way it works out in ACT-R. Because different modules 
can function autonomously and in parallel, they allow the system to process 
multiple things in parallel. Because the computations within a module can 
also progress in parallel, they often can avoid capacity limitations, although 
within a module there is potential for interference among different simul-
taneous processes (chapter 3 discusses interference in memory). The hard-
est limitations occur in the communication between modules. Because so 
little can be placed in a buffer, it is hard to communicate information rap-
idly from one module to another. For instance, the visual system can hold 
up processing as it attends to different objects, one at a time, serially putting 
them in its buffer until the desired object is found.

Another serial limitation arises from the necessity for all modules 
to communicate through the production system. Since the production 
system can execute only a single rule at a time, it becomes the central bot-
tleneck (Pashler, 1998) in the overall processing. Therefore, cognition can 
be slowed when there are simultaneous, different demands for processing 
the information in the buffers of the modules. The idea that such a central 
bottleneck exists reflects another emerging near-consensus in cognitive 
psychology; ACT-R gives an architectural expression to this consensus.9

However, the idea of a central bottleneck in information processing 
does come in for repeated challenges. Curiously, one of the prominent recent 
challenges comes from the Meyer and Kieras (1997) EPIC architecture—
curious, because EPIC is a production-system architecture that has been 
influenced by the ACT architecture and in turn has strongly influenced 
the current ACT-R architecture in its modular design. Indeed, substantial 
aspects of the simulations of the ACT-R perceptual and motor modules 
are taken directly from EPIC. Meyer and Kieras also made clear to us that 
models of human cognition would never be adequate if they continued to 
focus solely on the ethereal intellect and did not acknowledge cognition’s 
perceptual-motor grounding. The limitations of the perceptual-motor com-
ponents have substantial impact on many higher level cognitive processes.

One category of limitation that ACT-R takes from EPIC is that 
each of these peripheral modules suffers its own serial-like bottleneck. 
Different perceptual modules can attend to one thing at a time, and 

9. Interestingly, if we accept that this central bottleneck resides in the loop through 
the basal ganglia, we can even see in figure 2.1 where this bottleneck becomes most 
narrow: the cells that make up the pallidum, which we associate with production rule 
selection, are really quite few.
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motor modules can program one thing at a time. This limitation is real-
ized in ACT-R through the existence of limited-capacity buffers associ-
ated with the modules. These buffers are the means of communication 
among modules. The only thing that the central production system can 
detect is what is put into the buffers. Thus, while the visual system 
may be processing many things at once, the rest of the system can only 
respond to that little bit put into the visual buffer. Similarly, the non-
peripheral modules can only communicate through small buffers: only a 
single thing can be retrieved from memory, a single situation imagined, 
and so on.

The major point of disagreement with EPIC is whether the central 
production system also has a central bottleneck limitation. ACT-R’s 
production system is limited in that only one production rule can 
fire at a time. In contrast, unbounded, many production rules can fire 
simultaneously in EPIC. Curiously, while the theories differ in terms 
of the number of rules that can fire at once, both theories agree that it 
takes 50 ms for a production rule to fire. Indeed, this seems an emerg-
ing point of consensus among many production-system architectures 
(Anderson, John et al., 1995).

There are functional reasons for limiting production rule firing to 
a single rule at a time. This avoids the problem of multiple rules mak-
ing contradictory demands on the same module. Thus, for instance, 
ACT-R does not have to worry that different production rules will fire 
that ask for contradictory changes to an imagined problem representa-
tion. In EPIC, where such contradictory rules can fire in parallel, explicit 
coordinating production rules are needed to avoid such conflicts or deal 
with them when they arise. While EPIC models come with special hand-
crafted control rules that seem to work, these rules are task specific and 
would need to be learned for each new task. It is unclear what can guide 
the system to form the right control rules; certainly people do not get 
explicit instruction at this level of detail. No learning mechanism has been 
proposed in the EPIC framework. In contrast, as discussed in chapter 4, 
production learning has been a recent success story in ACT-R. Production 
learning in ACT-R involves learning new productions from old; this is 
easier to do if the learning mechanisms do not have to deal with simulta-
neous productions firing.

While such functional issues are critical, most of the attention of 
the field has been on empirical evidence for a central bottleneck. This 
involves dual-task experiments where participants are asked to carry out 



62 How Can the Human Mind Occur in the Physical Universe?

two tasks in parallel. The second example in this chapter involves such 
an experimental task. The first example, which comes next, also involves 
dual tasking, but it is a task where the real emphasis is on functionality 
rather than the experimental details that separate parallel from serial 
production rule firing.

Driving: Modules in Action

Before getting into examples that involve detailed experimental analyses 
of the behavior of specific modules, it is important to start with an 
example that illustrates the functionality of the overall architecture. Driv-
ing is such an example; as noted above, it requires a driver to do many 
things at once. The most critical task is controlling the vehicle—exercis-
ing lateral control (steering) to keep the vehicle correctly in the lane and 
longitudinal control (acceleration and braking) to maintain a safe speed 
and distance from the car ahead. While it is most critical to monitor the 
vehicle immediately in front, a good driver should also monitor for other 
vehicles and objects, such as cars in an adjacent lane. Dario Salvucci (e.g., 
Salvucci, 2005, 2006; Salvucci et al., 2001) has developed a driving model 
in ACT-R that incorporates the two subtasks of control and monitoring:

Control: The basic ideas for the vehicle control in Salvucci’s 
model can be found in many mathematical models of driving 
(e.g., Donges, 1978). The input for control involves keeping 
track of two points—a near point directly in front of the vehicle 
that indicates where one is in the lane, and a far point (e.g., the 
vanishing point of the road, the car ahead, or the tangent point 
of the road). The output is an adjustment to the lateral and 
longitudinal control parameters. The control model runs in a 
tight loop in which each of these points is noted and the control 
parameters of the driving are updated. At a minimum, this loop 
consists of three productions (each 50 ms long)—one produc-
tion to note the near point, one to note the far point, and one to 
update the control parameters. This system requires the visual 
system to update the locations of these points and the motor 
system to translate the control information into motor com-
mands. Once given the control parameters, motor modules can 
make their adjustments autonomously of the central production 
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system, and therefore the loop does not have to wait upon the 
completion of these motor actions. In summary, the control 
model calls upon the visual module, the procedural module, the 
manual module, and an implicit pedal module.

Monitoring: The monitoring model selects which lane to encode and 
whether to encode information in front or behind (in the rear 
mirror). Whenever it identifies a new vehicle, it notes its lane 
and position. This information is held internally and used to help 
guide such decisions as whether to change lanes. The minimum 
loop for this is a production cycle of two rules: one chooses where 
to monitor, and the second determines whether there is an object 
in that position. Thus, the monitoring model calls upon the visual 
module, the procedural module, and the declarative module.

One of Salvucci’s contributions, over and above the driving model 
itself, is the proposal of a scheme for interleaving the two subtasks. After 
each iteration of the control cycle, the model determines how stable the 
driving situation is. If it is not stable, the control cycle repeats; if it is 
stable, the control cycle times out for roughly 500 ms (there is a noisy 
timing process) and monitoring takes over. Salvucci’s model cannot wait 
much longer than 500 ms without suffering serious control problems. 
Such a system naturally devotes more attention to control in difficult 
driving situations (e.g., a lane change) and more attention to monitoring 
in easy situations (staying in a lane on a straight highway).

Salvucci is able to use distribution of eye movements to track this 
shift between the two tasks. His eye movement theory (EMMA [Eye 
Movements and Movements of Attention]; Salvucci, 2001) assumes that 
the eyes follow shifts of attention in order to achieve higher resolution. 
However, eye movements are slow and stochastic and do not provide 
total tracking—for instance, there are no 50 ms saccades from near to far 
point for each control cycle. Still, the overall correspondence between 
eye movements predicted by his driving model and the data is quite 
impressive—figure 2.3 shows the match between human and model pro-
portions of gazes to different parts of the visual array.

The more telling analysis by Salvucci concerned the switch between 
control regions and monitoring regions. For this purpose, forward gazes 
to the same lane were classified as control gazes, and all other gazes 
where classified as monitoring gazes. Figure 2.4 shows the probability 
of switching from monitoring to control (part a) and from control to 
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Figure 2.3. Aggregate portion of gaze time for visual regions in a multilane 
highway experiment. From Salvucci, D. D. (2005). Reprinted by permission of 
the publisher. Copyright 2005 by Cognitive Science Society, Inc.

monitoring (part b) as a function of time performing that activity (moni-
toring or control). As the model predicts, these two distributions are 
quite different. The switching from monitoring shows a peak at about 
0.5 s, while the probability of switch from control is concentrated at 
short intervals. This difference is a consequence of the need to switch 
back to control after half a second. The length of time spent on control 
depends on road conditions and the stability of the vehicle.

One of the interesting features of driving is that we interleave it with 
many activities. When Salvucci’s model turns to such interleaved activi-
ties as tuning a radio or dialing a cell phone, the demands of the secondary 
task largely push out situational monitoring, resulting in an alternation 
between the secondary task and the critical control task that guarantees 
the car stays on the road and avoids accidents. However, the switch of 
control between the two tasks is basically the same, driven by the same 
need to return to control at approximately half-second intervals to main-
tain safe driving. One obtains distributions of fixations between control 
and one of these secondary tasks much like the distribution in figure 2.4 
between control and monitoring.

Figure 2.5 comes from a study of cell phone use. It compares the time 
to key each digit in a 10-digit number when not driving (baseline) versus 
when driving. There are longer breaks before the beginning and before 
each group in the American 3–3–4 grouping of the telephone digits. In 



Figure 2.4. Time before switching for monitoring (a) and control (b). 
From Salvucci, D. D. (2005). Reprinted by permission of the publisher. 
Copyright 2005 by Cognitive Science Society, Inc.
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Figure 2.5. Task-switching points as illustrated by key delay times for human 
drivers (a) and model simulations (b). Errors bars represent standard errors. 
From Salvucci, D. D. (2005). Reprinted by permission of the publisher. 
Copyright 2005 by Cognitive Science Society, Inc.

Salvucci’s model, these are the points where the system is retrieving the 
groups of numbers. Salvucci’s model will switch back to control while these 
retrievals are progressing. The retrievals may complete while the model 
still is in the control subtask, and then the model cannot get back imme-
diately to keying. Thus, the effect of driving is to slow down the keying of 
digits at these points. The times to key the other digits are not affected.
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Figure 2.6. Aggregate effects of dialing on driving as mea sured by lateral devia-
tion and speed deviation. Errors bars represent standard errors. From Salvucci, 
D. D. (2005). Reprinted by permission of the publisher. Copyright 2005 by 
Cognitive Science Society, Inc.

Figure 2.6 shows the effect of dialing a cell phone number on two 
measures of safe driving, lateral deviation and speed deviation. The model 
correctly predicts that dialing a phone number has an effect on lateral 
deviation and that there is not an effect on speed deviation. Apparently, 
only lateral deviation is affected by the relatively minor increase in delay 
in returning to control. The effects are quite modest. While the model 
overpredicts the effect of dialing on lateral deviation, all lateral deviation 
measures in figure 2.6 are well within the safe zone. Examples such as 
that in figure 2.6 illustrate the relatively small cost that can occur when 
we insert a new task into the performance of a skill. This is possible be-
cause of the autonomous processing of the modules—for instance, the 
keying of a chunk from the telephone number can continue while the 
participant has returned to monitoring and control.

In conclusion, Salvucci’s driving model illustrates that real-world in-
terleaving of task demands can be achieved within a modular structure 
such as that in ACT-R. The goal module handles the switches among the 
tasks. Salvucci has been concerned with extending the goal module so 
that it can handle arbitrary combinations of tasks.

The purpose of this driving example was to get the big picture across. 
There are lots of important details to driving, for which the reader is encour-
aged to go to the Salvucci sources. The next example bores down into some 
of the details of how individual steps of cognition interleave in a dual task, 
but in a much simpler task where these details will not be too many.
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Dual Tasking: Modular Parallelism and Seriality

The second example goes to the psychology laboratory to look in more 
detail at the kinds of temporal organization of the modules that underlie 
the driving example. There are two types of parallelism and two types of 
seriality associated with all of the ACT-R modules:

Within-Module Parallelism: Within each module, massively parallel 
computation is happening. For instance, the whole visual field 
is being simultaneously processed; a retrieval request involves a 
simultaneous search through multiple memories; the procedural 
component must simultaneously test all production rules look-
ing for a match; motor programming requires the simultaneous 
execution and monitoring of multiple muscles, and so forth.

Within-Module Seriality: The need for communication and coordi-
nation poses serial bottlenecks within each module. For instance, 
a single visual object is attended, a single memory is retrieved, a 
single production rule is selected to fire, a single molar action is 
chosen to be performed. In the case of perceptual modules (and 
declarative memory is like a perceptual module that perceives 
the past) and the procedural module, all the parallel computa-
tion must settle in a choice.

Between-Module Parallelism: Computation in one module can 
proceed in parallel with computation in another module. Thus, 
there is the potential for the parallel threads. In driving, for 
instance, vision is progressing in parallel with motor, which is 
progressing in parallel with central activities such as retrieval 
of a phone number.

Between-Module Seriality: However, in many cases one module 
must wait on another because it depends on the information 
from that module. Thus, for instance, we cannot dial a phone 
number before we retrieve it.

The ACT-R and EPIC conceptions of this situation are identical except 
for the central bottleneck. Because only one production can fire at a time 
(within-module seriality), communication among other modules can be 
held up (between-module seriality). ACT-R’s position is more uniform 
in that it claims every module has a bottleneck. EPIC, on the other hand, 
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claims no central bottleneck. This has put EPIC in opposition to central 
bottleneck theories such as that of Pashler and has created a fair amount 
of controversy and interest in the literature.

Much of the evidence for a central bottleneck involves studies of 
what is called the psychological refractory period (PRP; for a review, see 
Pashler, 1994), where one is asked to do two tasks. In the typical PRP 
experiment, a first task is presented, and then, after a short delay but usu-
ally before the first task is finished, a second task is presented. The fact 
that the first task is still ongoing produces some delay in the performance 
of the second task. This has been taken as evidence for the existence of 
a central bottleneck. Meyer and Kieras (1997) argued that these effects 
arise because participants are asked to give the output of the two tasks 
in the order they occur and they thus have to put tests in the execution 
of the second task to assure that it comes out second. From this perspec-
tive, a better paradigm would be one where participants are asked to 
perform two simultaneous tasks as fast as they can with no constraint on 
order of response. Usually, the result in such experiments is considerable 
interference between the two tasks, but combinations of tasks can be 
found where, with enough practice, near-perfect time sharing occurs and 
the two tasks are performed together nearly as fast as alone. One such 
example of near-perfect time sharing was demonstrated in a series of ex-
periments that began with Schumacher et al. (2001) and were continued 
by Hazeltine et al. (2002). Meyer et al. (2001) argued that these experi-
ments provide evidence of an EPIC-like theory with unlimited central 
processing rather than an ACT-R-like theory with a central bottleneck.

In the basic experiment used in these studies, participants responded to 
the presentation of a circle and a tone. The circle appeared in one of three 
horizontal locations, and participants made a spatially compatible response 
with their right hand, pressing index, middle, or ring finger to left, middle, 
or right locations. The 150-ms tones were 220 Hz, 880 Hz, or 3,520 Hz, 
and participants responded “one,” “two,” or “three.” In the single-task condi-
tion, participants did just the visual-manual task or just the aural-vocal task. 
In the dual-task condition, both stimuli were presented simultaneously and 
participants were asked to do both tasks simultaneously. Over many days 
of practice, participants come to respond virtually as quickly to each task in 
the dual-task condition as in the single-task conditions. Thus, participants 
were able to perform two tasks at once with virtually no cost.

Anderson, Taatgen, and Byrne (2005) did an extensive analysis of the 
version of this paradigm that was reported by Hazeltine et al. (2002). 
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Figure 2.7 displays the performance of the participants and the perform-
ance of an ACT-R model for the task. The figure shows the time to perform 
the aural-vocal task and the time to perform the visual-manual task, sepa-
rately plots the time to do each task in isolation and in conjunction with 
the other task, and plots data from three points in the task performance: 
the first two sessions, two sessions late in the experiment, and two later 
sessions where some additional transfer tasks were inserted. Even in the 
first two sessions, there is a relatively modest dual cost of about 50 ms, 
but this reduces to about 10 ms by the end of the experiment. The model 
reproduces the overall speed increase and the reduction in the dual-task 
cost from about 50 ms to about 10 ms. Compared to the data, it produces 
a somewhat larger dual cost in the aural-vocal task and a smaller dual-
task cost in the visual-manual task. However, for present purposes, the 
important observation is that the model, despite its serial production-rule 
firing, can produce small dual-task effects that are of the same order of 
magnitude as seen with human participants. Hazeltine et al. (2002) ran 
these same participants through a series of additional experiments and 
eventually got the average dual-cost effect down to 3 ms (by my calcula-
tions from their data). Anderson et al. (2005) ran their model to the limit 
and got its dual cost down to 4 ms.

The details of the model are described in Anderson, Taatgen, and 
Byrne (2005); figure 2.8 illustrates the behavior of the model early in 
the experiment (part a) and late (part b). That figure tracks the activity 
of five modules: the vocal module generating speech, the aural module 
processing sound, the procedural module interpreting production rules, 

Figure 2.7. Learning to time share: (a) experiment 1 from Hazeltine et al. 
(2002); (b) ACT-R simulation.
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the visual module processing vision, and the motor module controlling 
hand movements. In both parts a and b, the visual and aural modules are 
evoked once to encode information and the vocal and manual modules 
are evoked once to generate output. The big difference between early 
and late is the number of rules that have to fire—three productions that 
initiate processing are collapsed into one; five rules that generate the 
finger press and assess the outcome are collapsed into one; two produc-
tions (plus some later assessment rules not shown) are collapsed into a 
single rule that generates the word.10 The learning process that allows 
ACT-R to compress the initial productions into just three are discussed 
in chapter 4.

10. Actually, one production rule needs to be learned for each separate stimulus–
response mapping. This means three visual-manual rules and three aural-vocal rules 
must be learned, but only one of each will apply on a particular trial.

Figure 2.8. ACT-R module activities early in the 
experiment (but not as early as illustrated in figure 2 
of Anderson, Taatgen, and Byrne, 2005) and relatively 
late in the experiment.
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For present purposes, what is of interest is the mixture of parallelism 
and seriality. Let us review the four types of categories described above:

Within-Module Parallelism: Each box in these figures reflects a lot 
of parallel activity happening within the module.

Within-Module Seriality: However, each box reflects the conclusion 
of this parallelism in a single action. The within-module combi-
nation of parallelism and seriality also applies to the procedural 
system: all the productions are tested in parallel, but only one 
gets to fire, creating the central bottleneck in figure 2.8a.

Between-Module Parallelism: Different modules can operate in par-
allel. So, for instance, in figure 2.8b the execution of the finger 
press overlaps at different times with the encoding of the tone, 
the production that selects the word to say, and the generation 
of the word.

Between-Module Seriality: What is determining the ultimate timing 
of the response, particularly in figure 2.8b, is the communica-
tion of information between modules. For instance, the finger 
cannot be pressed until the rule selects which finger to press, 
and this rule cannot fire until the location is encoded.

Figure 2.8 illustrates why near-perfect time sharing does not occur 
initially but is achieved ultimately. Initially, the demand on the central 
production system is high, and firing of productions for one task must 
wait on the firing of productions for the other task. In the illustration in 
figure 2.8, the execution of the aural-vocal task waits on the execution 
of the visual-manual task, but it could have been the other way around. 
After extensive practice, however, there are very few productions, and the 
rules for each task can “fit in” while noncentral aspects of other tasks are 
performed. In figure 2.8b, the rule that chooses the finger can fire dur-
ing the encoding of the sound and the rule that maps the sound onto the 
word can fire while the key is being pressed.

In the example in figure 2.8, it is particularly convenient that it takes 
longer to identify the tone than to identify a location, as this creates a 
gap for the visual-manual production rule to fire. Note in figure 2.7 that 
the aural-vocal task takes substantially longer than the visual-manual 
task. Much of the research in the later Hazeltine et al. (2002) report 
was aimed at eliminating this difference, either by making the visual-
manual task more difficult or by changing the onsets of the two tasks, 
and near-perfect time sharing was still observed. Also, even in the original 
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task, while the aural-vocal task was longer on average, on some trials par-
ticipants did complete it before the visual-manual task. The model pre-
dicts this because of variability in the length of the steps. The length of 
the boxes in figure 2.8 just represents their average length; the variability 
of stages can result in a partial overlap of times when productions could 
fire. This is why the model predicts some small dual-task cost even when 
the model achieves its ultimate compact form in figure 2.8b. This residual 
dual cost reflects the average amount that one production in figure 2.8b 
will delay another.

With highly practiced participants, Hazeltine et al. (2002) never found 
dual costs greater than about 10 ms even when they tried to manipulate 
the length of the visual-manual task or the relative onset of the two tasks. 
Somewhat surprisingly, the model does not predict dual costs greater than 
an average of 10 ms. One would have thought these manipulations would 
have created a greater degree of overlap with the central bottleneck. 
However, the variability in timing that produces some overlap when the 
average times for the stages are completely nonoverlapping in figure 2.8b 
creates nonoverlap when the average times are maximally overlapping. 
Also, the maximum delay that one task can produce in another is the 
50 ms for the one production rule that must fire for that task. Since only 
one task can be delayed on a single trial, the maximum average delay in 
the performance of the two tasks is only 25 ms. Thus, it is not that hard to 
imagine how, with variability in timing and the slack time in figure 2.8b, 
one can get a stubborn small delay (less than 10 ms) that does not seem 
to change much.

Delays can get much more substantial in situations such as that for the 
beginning of the experiment in figure 2.8, where more central processing 
is going on. Byrne and Anderson (2001) studied a number of complex 
tasks (including doing addition and multiplication simultaneously) where 
the time to do two tasks at once was sometimes even greater than the 
sum of the times to do each singly. Such tasks provide strong evidence for 
the ACT-R conception of matters rather than the EPIC conception. Tests 
of a central bottleneck are much more telling when the amount of central 
processing becomes substantial.

However, it would be a mistake to leave this discussion focusing on the 
residual differences between the ACT-R and EPIC conceptions. In fact, 
the views are identical on most scores, and the ACT-R conception has 
been strongly influenced by the EPIC position. Moreover, the EPIC and 
the ACT-R positions at a general level have substantial overlap with many 
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other conceptions in the field, such as that of Pashler (1998) or Card et al. 
(1983). It is also worth noting that while productions can fire in parallel 
in EPIC, in many of the Meyer and Kieras PRP models they enforce seri-
ality on production firing. Thus, there is an increasing consensus on how 
parallel processing and serial processing combine both within modules 
and between modules, even though we are still working out details such 
as the role of a central bottleneck.

Mapping Modules Onto the Brain

Localizing Eight Modules

As discussed above, modular organization is the solution to a set of 
structural and functional constraints. The mind needs to achieve certain 
functions, and the brain must devote local regions to achieving these 
functions. This implies that if these modules reflect the correct division of 
the functions of the mind, it should be possible to find brain regions that 
reflect their activity. Our lab has developed a mapping of the eight mod-
ules in figure 2.2 onto specific brain regions, illustrated in figure 2.9,11

which we have used in an extensive series of fMRI experiments. The eight 
regions can be organized into four peripheral modules and four central 
modules. The four peripheral modules are as follows:

1.  Visual module: While large portions of the brain are devoted 
to processing the visual signal, we have found one region, 
the fusiform gyrus in the temporal lobe, that seems to best 
reflect the focused visual processing of attended information. 
Other research (Grill-Spector et al., 2004; McCandliss et al., 
2003) has shown that this plays a critical role in perceptual 
recognition.

2.  Aural module: This is associated with secondary auditory cor-
tex but not the primary auditory cortex. As in the case of the 

11. The regions appear on the surface in figure 2.9a but are below the actual surface 
of the cortex to varying degrees. Figure 2.9b is a midline illustration of the two struc-
tures buried truly deep in figure 2.9b. The coordinates given for the brain regions in 
this figure are slightly different than those in figure 1.8. This reflects a correction that 
has been made to deal with the fact that our reference brain was acquired very slightly 
misaligned with the central line of the brain (the line between the anterior and posterior 
commissure).



Figure 2.9. An illustration of the locations of the eight regions of interest: (a) regions close to the surface of the cortex; 
(b) regions deeper in the brain. The Tailarach coordinates are given for the right-side regions (left homologue can be 
obtained by switching the sign of the x-coordinate). Most of the regions are cubes 5 voxels long, 5 voxels wide, and 
4 voxels high (a voxel in our research is 3.125 mm long and wide and 3.2 mm high). The exceptions are the proce-
dural (caudate), which is 4 × 4 × 4 voxels, and the goal (anterior cingulate cortex, ACC), which is 5 × 3 × 4 voxels.
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visual module, we are tapping a region that reflects relatively 
advanced processing of the auditory signal rather than early 
processing.

3.  Manual module: This is reflected in the activity of the region 
along the central sulcus that is devoted to representation of 
the hand. This includes parts of both the motor and sensory 
cortex.

4.  Vocal module: Further down the motor strip is a region that 
represents the face and tongue. It also includes parts of both 
the motor and sensory cortex.

The four central regions are widely distributed throughout the brain:

5. Imaginal module: We have associated the imaginal module with 
a posterior region of the parietal cortex. This association is 
roughly consistent with the research of others who have found 
that this area is involved in spatial processing (Dehaene et al., 
2002; Reichle et al., 2000). However, the exact functions of 
different parietal regions remain a matter for study. We have 
found this region to be sensitive to representational changes 
in tasks as varied as equation solving (Anderson, 2005a) and 
the Tower of Hanoi problem (Anderson, Albert, and Fincham, 
2005). Its response seems largely insensitive to the input mo-
dality; it seems to instead reflect the effort made in transform-
ing a mental representation.

6. Declarative module: We have found a region of prefrontal cortex 
to be sensitive to both retrieval and storage operations. Focus 
on this area is again consistent with a great deal of memory re-
search (Buckner et al., 1999; Cabeza et al., 2002; Fletcher and 
Henson, 2001; Lepage et al., 2000; Wagner, Maril et al., 2001; 
Wagner, Paré-Blagoev et al., 2001). However, the exact memory 
function of different prefrontal regions again seems a matter for 
continuing study.

7. Goal module: We have associated the goal module that directs 
the internal course of cognition with a region of the anterior 
cingulate cortex. There is consensus that this region plays a 
major role in control (Botvinick et al., 2001; D’Esposito et al., 
1995; Posner and Dehaene, 1994), but again, there is hardly 
consensus on how to characterize this role and chapter 4 will 
provide some discussion of these contrasting views.
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8. Procedural module: As noted above, there is a general belief that 
the basal ganglia play a role like that of production rules in 
terms of pattern recognition and selection of cognitive actions. 
The region of basal ganglia that we have selected is the head of 
the caudate, although in some studies this region has not been 
particularly responsive.

As the citations above indicate, there is nothing particularly novel 
about the association of these brain regions with these functions. What is 
novel is the association of these regions with parts of an integrated archi-
tecture and their use to trace out the components of that architecture. It 
is important to recognize that we have used the same predefined regions 
across a number of studies, including the ones described in this book. This 
has a number of advantages over using exploratory regions. For instance, 
it avoids the problem of trying to correct for the danger of getting a spu-
rious result in all the tests that go into exploratory studies. Furthermore, 
the estimate of the response produced in these regions is not biased by 
the selection process.

Two points need to be made to qualify any simple conclusion of a one-
to-one mapping of function onto structure. First, as noted above, the 
brain tends to distribute similar but distinguishable processes to different 
regions. For instance, more than 30 regions perform visual processing. 
Again, multiple regions in the frontal and temporal cortices serve memory 
functions. Thus, there is no claim that the one region we have identified is 
the only region associated with a function. Second, there is no necessary 
reason why these brain regions should perform only a single architectural 
function. Nonetheless, in the range of studies that we have used in our 
laboratory, we have been fortunate to be able to associate the activities of 
these regions with just the assigned functions.

The Experiment

Having postulated eight modules and their associated brain regions, it 
would be nice to be able to describe a single study that exercised all of 
these modules. We performed such an fMRI study, the details of which 
are reported in Anderson et al. (2007). The experiment manipulated the 
input module by presenting material either visually or aurally. Similarly, 
it manipulated the output module by having the participants respond 
either vocally or manually.
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A rather peculiar cognitive task was chosen in order to separate 
the behavior of the imaginal module (parietal) from the declarative 
module (prefrontal). Much imaging research finds that these two re-
gions, although widely separated, often give similar responses. This 
happens because memory retrieval and representational changes are 
naturally correlated. In order to make a retrieval request, one needs to 
create a representation to hold the elements of the retrieval request. 
Following that, the consequence of a successful retrieval is often to 
change the underlying representation. Consider the task of solving the 
equation 7x + 3 = 38, described in chapter 1 (regarding figure 1.7). 
Representation of this equation may lead to the request for the dif-
ference between 8 and 3. Successful retrieval of 8 – 3 = 5 enables the 
re-representation of the equation as 7x = 35, which in turn enables an-
other retrieval request to determine the value of 35 divided by 7. Thus, 
retrieval and representation operations tend to occur together, and we 
get similar behavior in prefrontal and parietal regions, as can be seen by 
comparing figures 1.8, b and d. To break this natural correlation, one 
needs an artificial task where successful retrievals will not necessarily 
result in re-representations so that re-presentations can take place with-
out retrieving any information to guide them.

Table 2.1 illustrates how the experiment attempted to manipulate 
retrieval and representation demands orthogonally. In the first phase, 
outside the fMRI scanner, participants memorized information that they 
would use in the second phase of the experiment that took place in the 
scanner. The material to be memorized involved associations between 
two-letter words and two-digit numbers, such as

AT → 23 and BE → 24

In the second phase of the experiment, participants either heard or 
saw permutations of the words “Dick,” “Fred,” and “Tom” paired with vi-
sual presentation of the two-letter words or two-digit numbers. Table 2.1 
illustrates the various conditions of the experiment. Participants were 
told that the two-digit codes that they had learned were instructions for 
transforming the three-word sequences. Thus, 23 meant that the second 
and third words should be switched. Applied to “Tom, Dick, Fred,” it 
would produce “Tom, Fred, Dick.” Some two-digit codes were “no-ops” 
such as 24 because one of the digits is greater than three and thus, in 
this case, does not require a transformation. The difference between 
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no-op digit pairs and ones that require an operation is referred to as the 
transformation factor in table 2.1. Participants can be given either the 
digit pair directly, in which case no retrieval is required, or a word from 
which they have to retrieve the digit pair. The requirement to perform 
this retrieval is referred to as the substitution factor in table 2.1 because 
it required the participant to substitute the digit for the word. The ex-
pectation was that the transformation factor would draw more upon 
the parietal region for manipulating problem representation and that 
the substitution factor would draw more upon the prefrontal region for 
retrieving information.

In addition to the factors represented in table 2.1, participants could 
either hear the words or see them—a manipulation of an input factor. 
Finally, participants could either say the words or key them out (they 
had learned to associate Dick with the index finger, Fred with the middle 
finger, and Tom with the ring finger), a manipulation of an output factor.

Figure 2.10 is an attempt to display the effects of the four factors 
(input modality, output modality, transformation, and substitution) on 
the eight regions associated with the modules. It displays for each of 
the eight regions the F-values that come from a statistical test of the 
significance of each of the four factors—input modality, output modal-
ity, transformation, and substitution. Stars indicate which statistical tests 
are significant. The results are largely as expected: the input modality 
has the strongest effects on perceptual regions, the output modality has 
the strongest effect on motor regions, transformation has the largest 
effect on the parietal region, and substitution has the largest effect on 

Table 2.1.  Illustration of the Four Conditions of the Experiment 
(associations: AT → 23, BE → 24)

No
Transformation

Yes
Transformation

No
Substitution

Stimulus: Tom Dick Fred
Probe: 24
Response: Tom-Dick-Fred

Stimulus: Tom Dick Fred
Probe: 23
Response: Tom-Fred-Dick 

Yes
Substitution

Stimulus: Tom Dick Fred
Probe: BE
Response: Tom-Dick-Fred

Stimulus: Tom Dick Fred
Probe: AT
Response: Tom-Fred-Dick
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the prefrontal region. As expected, both cognitive factors, transforma-
tion and substitution, have affects on the cingulate, but neither the input 
or output modality affects this region. The caudate is a disappointment, 
not responding significantly to any of the factors (it was expected to 
respond like the cingulate and show effects of both the substitution and 
transformation factors). Two of results for the auditory cortex require a 
little comment. Output modality has an effect on this region because 
participants hear themselves giving the response. The effect of transfor-
mation here is not expected and anomalous; the transformation condi-
tion has the weaker response.12

Figure 2.10. A display of the F-values for the main ef-
fects of input modality, output modality, transforma-
tion, and substitution for the eight predefined brain 
regions. Stars indicate significant effects ( p < .05). Re-
printed from Anderson, Qin, Jung, & Carter (2007) 
with permission from Elsevier.

12. Perhaps this effect is just a spurious significant result among all the tests. How-
ever, in a number of studies we have seen a tendency for decreased BOLD (blood oxygen 
level–dependent) response in the auditory region when there is increased cognitive en-
gagement. Perhaps it reflects the fact that subjects are distracted from the rather aversive 
sound of the scanner.
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13. The delay allows the BOLD response from the initial encoding to begin to return 
to baseline.

In summary, the general pattern of results is largely consistent with 
the proposed associations. The failure to get the expected effects in the 
caudate is the most distressing. Across the experiments run in our lab, 
we have only sometimes found the caudate to respond to manipulations 
(e.g., it did in figure 1.8e). This may be related in part to the relatively 
weak magnitude of response in this region.

Predicting the BOLD Response

As illustrated in chapter 1, ACT-R does more than just specify what 
regions will be affected by what factors. It predicts the exact time course 
of the BOLD (blood oxygen level–dependent) response in each of these 
regions. To illustrate these predictions, figure 2.11 shows the detailed 
procedure of the experiment as it was administered in the fMRI scan-
ner. Each trial involved 28.5 s in which there were 19 scans of the brain 
lasting 1.5 s each. Participants either heard or read words at the rate of 
one each half-second. Then they either had a 4-s delay or not. The pur-
pose of the delay was to manipulate the shape of the BOLD response 
for purposes of testing the model.13 Then they saw the digit or word 
command. They were instructed to perform the transformation mentally 
and to press the right thumb key when they were ready to give the an-
swer. The time to press the thumb key is the most important behavioral 
measure, reflecting the time to comprehend the instruction and plan the 
response. When the thumb key was pressed, subjects had to key out their 
letters quickly (if the output modality was manual) or say them quickly 
(if the output modality was vocal). Then they were given feedback in the 
form of the correct sequence, presented at the rate of one word per half-
second. There were large effects of about 1.5 s for either substitution or 
transformation on time for the thumb press. Thus, the cognitive factors 
were having large effects on the task; this helped in separating out rep-
resentation and retrieval effects. Interestingly, neither input nor output 
modality had an effect on time to do the task, despite the large effects 
these factors had on the brain regions associated with the perceptual and 
motor modules.
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Figure 2.11. The 28.5-sec structure of an fMRI trial. ISI, interstimulus interval.

Anderson et al. (2007) report an effort to fit a detailed ACT-R model to 
each of the regions. These fits are reproduced in figure 2.12. The following 
are the key concepts for understanding the predictions of the model:

1. The x-axis gives the time from the beginning of a trial (see 
figure 2.11).

2. The y-axis gives the change in the BOLD signal from baseline 
at the beginning of the trial.

3. When a module is engaged, it will make a metabolic demand.
4. This metabolic demand will show up in the BOLD response 

as an effect smeared over time. The BOLD response reaches a 
peak approximately 4-5 seconds after the demand.

The methodology behind producing such fits is discussed in appendix 
2.1. The discussion here focuses on the three largest effects from figure 
2.10: input modality on the auditory region, output modality on the manual 
region, and substitution on the anterior cingulate. This provides a represen-
tative of an input module, an output module, and a central module.

Figure 2.12b illustrates the time course of the BOLD response in the 
auditory region and the fit of the model. For purposes of this display, it 
plots separately the data for the visual and auditory presentation. To bet-
ter test the time course of the BOLD response, it also plots separately the 
results for the delay and no-delay conditions. The differences among the 
conditions are quite striking. Particularly compelling is the aural delay 
condition where there are separate rises for the initial presentation of 
the words and for the feedback. It might seem odd that the model pre-
dicts the small rises in the visual condition. However, these occur only 



Figure 2.12. Observed (dashed lines connecting points) BOLD responses and predictions (solid lines) for the eight 
predefined regions. The data and predictions are plotted as a function of the mean time of each scan. (a) Effects of 
input modality and delay of the left fusiform gyrus. (b) Effects of input modality and delay on the left and right audi-
tory cortex. (c) Effects of output modality and delay on the left motor area that is associated with the right hand. 
(d) Effects of output modality and delay on the left and right motor areas that are associated with the face and tongue.



Figure 2.12. (continued) (e) Effects of transformation and delay on the left parietal region. (f) Effects of substitution 
and delay on the left prefrontal region. (g) Effects of substitution and delay on the left anterior cingulate. (h) Effects 
of substitution and delay on the right caudate. Reprinted from Anderson, Qin, Jung, & Carter (2007) with permission 
from Elsevier.
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for the participants who are seeing the material but saying the answers. 
The rises reflect their processing of their own speech. Another interesting 
feature of this region is that delay has no effect on area under the curves. 
Essentially, the same amount of auditory processing is being differently 
distributed for the delay and no-delay conditions.

Figure 2.12c shows the data for the region of the motor cortex that cor-
responds to the hand. This figure breaks out the data according to whether 
the response was manual or vocal. Again, the BOLD responses for the 
different conditions are strikingly different. There is some response even in 
the vocal condition. In part this reflects the fact that all participants, includ-
ing those in the vocal condition, issued their timed response as a thumb 
press. However, it also reflects a failure to totally separate the motor region 
devoted to the hand from the nearby region devoted to the face.14 Note 
in this figure that the motor region begins to respond in the delay condition 
before the actual response. This reflects motor rehearsal by the participants 
to bridge the delay. In contrast to the aural region, this area shows greater 
area under the curves in the delay condition, reflecting the rehearsal of the 
responses in the delay period.15

Figure 2.12g shows the data for the anterior cingulate broken down 
according to whether a substitution was required. Whenever there are 
multiple rules that can apply to a situation but only one or a few are ap-
propriate, a special control state needs to be set to select the appropriate 
rule, and the anterior cingulate will show an increased response reflecting 
the setting of this control state. Thus, the model predicts the effect of sub-
stitution because it must set a special control state to wait for the result of 
the retrieval. Also, the BOLD response is greater (measured by area under 
the curve) in the delay condition because a control state must be set to 
bridge that delay. The model also predicts the effect of transformation on 
this region (not shown in figure 2.12g) because a control state must be 
set to bridge the interval while the representation is being transformed. 
While the anterior cingulate responds to these three factors, it does not 
respond to either input or output modality, as figure 2.10 illustrates. As 

14. The face area (figure 2.12d) also shows some response in all conditions, but it 
does respond much more strongly in the vocal condition.

15. This is not the first experiment to find motor rehearsal, but it was a surprise when 
it occurred in the first such study (Anderson, Qin et al., 2004). It led to a change in our 
models to include such motor rehearsal. As such, it is an example of how imaging can 
inform the development of a model.
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emphasized in Anderson et al. (2007), it is a region that responds to the 
abstract information-processing demands of the task.

The general pattern of effects in the experiment (figure 2.10) and the 
ability to explain the exact shape of the BOLD response (figure 2.12)16

provide strong support for an association of these regions with these 
modules. The associations displayed in this experiment have been rep-
licated in many experiments in our lab and are roughly consistent with 
other results in the literature. They give strong reason for believing that 
brain regions can be mapped onto function despite the doubts expressed 
by researchers such as Uttal (2001).

Overall Conclusions

With respect to Allen Newell’s question of how the human mind can 
occur in the physical universe, this chapter offers a general answer and 
some specific details. The general answer is that the mind partitions itself 
into specific information-processing functions, and these functions are 
achieved in relatively localized brain regions where the processing can 
be done effectively. There are paths of connections among these regions 
that assure the coordination of these functions into a coherent sequence 
of activities. The specific answers are the eight modules, their associated 
regions, and their coordination by the central production system.

The general answer of a modular partition seems the only way to 
achieve the multipurpose functionality that humans need to meet the 
demands of their world given the structures of their brains. However, 
the specific answers offered here are far from final. Certainly, these 
eight modules do not exhaust the functions of the mind or the re-
gions of the brain. However, beyond the issue of completeness, one 
can wonder whether the proposed partitioning of function and paths 
of communication are correct. One movement in recent research has 
been to partition the brain and its functions much more finely than 
is done here. Such efforts include the memory functions of the pre-
frontal cortex (e.g., Badre et al., 2005), the control functions of the 

16. It should also be noted that much poorer fits are obtained when one tries to fit 
the wrong module to one of these regions. For measures of goodness of fit, see Anderson 
et al. (2007).
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anterior cingulate (e.g., van Veen and Carter, 2005), and the represen-
tational functions of the parietal cortex (e.g., Dehaene et al., 2002). 
Also as noted, the loop through the basal ganglia does not begin to 
exhaust the paths of communication in the brain. In the hindsight of 
a decade or two, the partitioning offered here in this book might seem 
rather crude. As Newell warned we would be, we are just a little ways 
into an answer. Nonetheless, the structure–function associations pro-
posed in this chapter are sufficiently similar to many other ideas in the 
field that it seems unlikely that further refinements will completely 
overturn these associations.

The successes reviewed in this chapter and elsewhere in the book 
strongly suggest that Fodor was wrong in his pessimism about central 
modules and the impossibility of a computational theory of central cog-
nition. Figure 2.2 illustrates declarative, imaginal, goal, and procedural 
modules that are all central modules. There has been considerable suc-
cess in associating these modules with specific brain areas. They seem 
to meet Fodor’s criteria for being called a module. Moreover, they play 
effective computational roles in models of a wide variety of cognitive 
tasks.

Chapters 3 and 4 look at two of the modules about which the ACT-R 
architecture has the most to say, the declarative and the procedural mod-
ules. Chapter 5 concerns what in this architecture might be uniquely 
human.

Appendix 2.1: Predicting the BOLD Response

Our laboratory has developed a methodology for relating the profile of 
activity in modules like those in figure 2.2 to blood oxygen level–depen-
dent (BOLD) responses from the brain regions that correspond to these 
modules. The fundamental idea is to use a timeline of module activity 
like that in figure 1.7. Anderson et al. (2007) provide specification of 
the timelines behind all the predictions in figure 2.12, but for present 
purposes let us just look at predictions from the timeline for the auditory 
cortex (figure 2.12b) and just for the delay condition with auditory input. 
Figure 2.13a presents this timeline as a demand function for this condi-
tion giving the proportion of time the module is active in each 1.5-s scan. 
There is a peak of 100% activity when the words are presented during 
the second scan. The time at which the feedback is presented varies a bit, 
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and so there is a distribution of times at which module is active later to 
process this feedback.17

The basic theory we have developed of the BOLD response claims 
that the while a module is engaged there is an increased metabolic de-
mand in the corresponding region producing a hemodynamic response. 
We have adopted the standard gamma function that other researchers 
have used for the hemodynamic response (e.g., Boyton et al., 1996; 
M. S. Cohen, 1997; Dale and Buckner, 1997; Glover, 1999). If the mod-
ule is engaged, it will produce a BOLD response t time units later accord-
ing to the function

where m governs the magnitude, s scales the time, and the exponent a
determines the shape of the BOLD response such that with larger a the 
function rises and falls more steeply. Figure 2.13b illustrates the function 
assumed for the auditory region. As is typical of such functions, it shows 
a slow response that peaks about 4–5 s after the actual activity. The peak 
of the function is at a*s. The parameter a is 7 for this function, and s is 
0.63 s; a*s is 4.41 s, which is where the function in figure 2.12b peaks.

The BOLD response accumulates whenever the region is engaged. 
Thus, if D(t) is a demand function giving the probability that the region is 
engaged at time t, then the cumulative BOLD response can be obtained 
by convolving this function with the hemodynamic function

This is the prediction for the BOLD response that we will observe in 
the region associated with that demand function. Figure 2.13c shows the 
predicted BOLD response in this case. The observed response preserves 
some of the structure of the demand function in figure 2.13a, but the 
convolving with the BOLD response blurs some of the temporal struc-
ture and delays the peaks.

In summary, a model for the time course of this task yields demand 
functions D(t) like that in figure 2.13a. By convolving the demand func-
tions with the hemodynamic function, one can obtain predictions for the 

17. See Anderson et al. (2007) for a discussion of the slight negativity at the end.
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BOLD response in the regions associated with the modules. Anderson 
(2005a) can be consulted for ways of assessing the match between the 
predictions and the data. A similar convolution methodology is frequently 
used in analysis programs for fMRI data where one takes the condition 
structure of trials in an experiment and convolves it with a hemodynamic 
response to produce a condition-sensitive pattern of activity. This pattern 
is regressed against brain activity to find which regions are sensitive to 
these conditions (e.g., Friston, 2003). The methodology we used is finer 
grained conceptually (using model behavior within a single trial) and is 
used for confirmatory purposes rather than exploratory purposes.

Figure 2.13. (a) An illustration of the methodology behind the predictions for 
the aural demand function for the auditory-delay condition in figure 2.12b. 
(b) The hemodynamic function assumed. (c) The resulting prediction of the 
BOLD response for the auditory region.
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3
Human Associative Memory

Declarative memory is the module by which we are able to perceive our 
past. Like the visual system, it can be judged as a glass half full or as a glass 
half empty. It can be judged as high capacity: just as the visual system pro-
cesses the rich array in the visual field, so memory maintains and processes 
what seems a vast warehouse of knowledge. It is capable of powerful paral-
lel processing in which a single memory prompt (e.g., What was the name 
of your high school?) can zoom in on the appropriate memory to retrieve. 
On the other hand, we often find that there are more things missing from 
our past than are still contained in that vast warehouse. We find ourselves 
struggling to retrieve a memory that may still be there but somehow is not 
available (e.g., What was the name of that teacher in ninth grade?). Just as 
the visual system chooses to devote most of its resources to a small fraction 
of the visual field around the fovea, so it seems our declarative memory has 
concentrated its resources on a fragment of our past. Much of this chapter 
is about how memory makes that resource allocation. The fundamental 
claim of this chapter is that a declarative memory tries to give us, moment 
by moment, the most appropriate possible window into our past.1

This window into our past gives us our identities. Many thinkers, going 
back as far as John Locke (and apparently St. Augustine before him), have 
argued that memory is critical to our sense of self-identity. How could 

1. The title of this chapter refers to the HAM theory (Anderson and Bower, 1973) 
that attempted to address the memory literature of the early 1970s. HAM was a theory of 
declarative memory and was the starting point in the development of the ACT-R theory 
of declarative memory (see appendix 1.1).
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you have an identity if you could not recall any experiences from your 
past? HM is a famous amnesiac patient who, at the age of 27, lost the abil-
ity to form new memories after an operation in 1953. He has been stud-
ied for decades since. HM has normal memories of his life up to the age of 
16 but suffers retrograde amnesia for the 11 years before the surgery. He 
appears in many ways to be a normal person with a clear self-identity, but 
his identity largely consists of the person he was when he was 16, where 
his memories stopped (although he realizes he is older, and he has learned 
some general facts about the world). He thinks his mother is still alive, 
and he grieves over her death every time he learns about it. In many ways, 
it seems we are what we can remember about our past.

Varieties of Learning

Although HM cannot acquire new conscious memories he is capable of 
showing learning in other ways. He was able to learn how to solve new 
puzzles such as the Tower of Hanoi (Cohen, Eichenbaum et al., 1985)2 and 
to traverse mazes (Milner, 1970), although he will claim not to recognize 
such problems. Somehow, he came to learn about people, including John F. 
Kennedy, Lee Harvey Oswald, and John Glenn, although they all became 
famous after his operation (O’Kane et al., 2004). He is also capable of being 
primed in his recognition of visual patterns (Gabrieli et al., 1990). Such re-
sults make the point that there are multiple kinds of learning. Four different 
kinds of learning can be defined by whether the learning involves declara-
tive memory or procedural memory, and by whether the learning involves 
the creation of new symbolic structures or just subsymbolic tuning of ex-
isting structures. Table 3.1 provides a 2 × 2 classification of these different 
types of learning. While this chapter is concerned only with the declarative 
side of this table, it would be useful to start with an illustration of each kind 
of learning to set a larger context for the discussion in this chapter:

1. Fact learning We can form new memories in declarative memory. 
This is what many people mean when they talk about “memory.” While 

2. The conclusion of this study was that HM was able to learn the recursive strategy in 
the Tower of Hanoi. This conclusion has come in for reexamination (e.g., Xu and Corkin, 
2001). While it seems that amnesiacs can get better at the Tower of Hanoi (perhaps by 
other strategies), the evidence seems pretty conclusive that HM is no longer able to learn 
the recursive strategy for Tower of Hanoi.
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one can extend “memory” to refer to the products of the other sorts of 
learning in table 3.1, this is the only kind of learning that results in new 
conscious memories. Since Tulving (1972), it has been common to dis-
tinguish between episodic memories such as what one ate for dinner last 
night or the paired associate “vanilla-7,” and semantic memories such as 
“Lincoln was president of the United States” or “a canary is an animal.” 
The former can be distinguished from the latter because we can retrieve 
the specific context in which they were learned. However, it is not a 
homogeneous set of things that get sorted into the semantic category by 
this distinction. Items such as the Lincoln fact are probably not really 
any different than the paired-associate fact. The Lincoln fact is just a 
three-term association between Lincoln, president, and the United States, 
while the vanilla-7 “fact” is also a three-term association between vanilla, 
7, and an experimental context. Both were explicitly learned, one in a 
classroom and one in a laboratory. The difference is that the Lincoln fact 
has been encountered in so many contexts that we no longer have access 
to the context in which it was specifically learned. They both belong 
in declarative memory. However, other items, such as the canary fact, 
may not reflect any declarative memory we have ever formed but rather 
perceptual, categorical, and inferential abilities to recognize and reason 
about objects.

2. Strengthening In addition to acquiring new declarative memories, 
one can make them more available by mere exposure. My favorite ex-
ample is the study of insight performed by Kaplan (1989). I recounted 
one of my own experiences in this experiment in my textbook (An-
derson, 2005b, p. 187). Here I tell the story of another member of our 
department at Carnegie Mellon University. We all were given a set of 
riddles and were able to solve some but not others. One of the riddles 
my colleague was stuck on was the following: “What can go up a chim-
ney down but can’t go down a chimney up?” We were then given a 
couple of weeks to try to solve these. During that time, this participant 

Table 3.1. ACT-R’s Taxonomy of Learning

Declarative Procedural

Symbolic Fact learning Skill acquisition

Subsymbolic Strengthening Conditioning
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received a mistaken phone call from a woman3 who asked him to bring 
home the umbrella she had left in his office. After establishing that she 
had the wrong number and they did not know each other, they hung up 
and that was that. Shortly afterward, he went back to the riddle and came 
up with the answer: an umbrella. He was quite unaware of the role of the 
telephone call in his solution. However, the statistics in Kaplan’s thesis, 
based on a number of faculty members and a number of incidents, estab-
lished a causal relationship. None of the faculty members was aware of the 
manipulation; rather, we credited our solutions to our own cleverness.

3. Skill acquisition A different kind of learning involves the acquisition 
of new procedures (production rules in ACT-R). A good example in my 
case is typing. I am a fairly skilled touch typist who can hit the keys with-
out looking (I have to, because the letters on the keys of my keyboard 
have been erased by repeated striking). Consciously, I have no idea where 
the keys are on the keyboard. I do remember reproducing a keyboard as 
an exercise in high school, but I have long since forgotten where the keys 
are. Thus, I have acquired typing procedures that allow me to display this 
knowledge without any conscious access. Indeed, if I try to think of where 
the keys are or what keys I am striking, my typing falls apart. I have to 
take a deep breath, think about the message I want to convey, and get 
going again. This intrusion of conscious access on performance is reported 
by players of many sports (e.g., don’t think about your golf swing). How-
ever, it is not just true for motor skills—try thinking about the syntactic 
rules you are using while speaking.

4. Conditioning With experience, we can come to learn that certain 
actions are more effective in certain situations. Conditioning is gener-
ally regarded as the most ubiquitous version of learning.4 Research on it 
goes all the way back to Pavlov’s conditioning experiments, where dogs 
learned to salivate to a bell that signaled food (for a review, see Anderson, 
2000). Humans are certainly capable of conditioning, and in many cases 
they exhibit conditioning behavior that is indistinguishable from that of 

3. Who was actually an accomplice of Kaplan.
4. I would not want to suggest that everything that is called conditioning involves 

production rules or cognitive procedures in any sense. This is particularly apparent when 
we look at nonmammalian conditioning, as in the sea slug Aplysia.
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other mammals. Indeed, conditioning has been established in many non-
vertebrates. For instance, the Aplysia (a sea slug) can learn to withdraw 
its gill in response to touch if that touch has been associated with shock 
(Carew et al., 1983). Conditioning can be found so widely throughout 
the animal kingdom because it does not require any capacity to form new 
declarative or procedural memories; it requires only that there already be 
a response tendency that can be strengthened. In the case of the Aplysia,
it already has a weak tendency to withdraw its gill in response to touch; 
conditioning just strengthens this tendency. Conditioning can take much 
more refined forms in humans thanks to their acquired skills. For instance, 
Best et al. (1998; see also Reder & Schunn, 1999) showed how such un-
conscious learning helped participants make better choices about where 
to land planes in an air traffic controller task.

This chapter is about the declarative column in table 3.1 (chapter 4 
is about the procedural column). I review the structural and functional 
constraints that shape the nature of declarative memory, and then ex-
plain how declarative memory works in response to these constraints. 
This chapter ends with a discussion of a set of empirical examples that 
illustrate how declarative memory works.

The Structure and Function of Declarative Memory

Like all aspects of cognitive architecture, declarative memory arises as the 
result of trying to achieve certain functions within the constraints of the 
brain. In the case of declarative memory, the constraint is that memories 
usually have to pass through a set of structures located in the medial 
temporal cortex.

The Medial-Temporal Structures

The hippocampus is a subcortical structure located in the medial tempo-
ral cortex. As figure 3.1 illustrates, it receives input from essentially the 
entire cortex and is connected bidirectionally back to most of the cortex, 
making it ideally situated to store snapshots of the cortex and reinstate 
them as needed. The surgery that resulted in HM’s amnesia involved ex-
tensive removal of these structures to treat severe epilepsy. Other people 
who suffer damage to their hippocampus similarly have serious memory 
loss, Alzheimer’s patients, for instance. Despite the importance of the 
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general region, there is considerable uncertainty about the roles of the 
different parts of this region. For instance, some have argued that recogni-
tion memory is not supported by the hippocampus per se but rather by 
adjacent structures (e.g., Aggleton and Brown, 1999; Eichenbaum et al., 
1994; Vargha-Khadem et al., 1997), while Zola and Squire (2000) argue 
that lesions restricted to the hippocampal region can result in recognition 
memory deficit.5

The general temporal-hippocampal region is a critical bottleneck in 
forming permanent declarative memories. In HM, information is unaf-
fected before that bottleneck: he is capable of keeping track of the im-
mediate facts that he is dealing with and appears relatively normal on first 
encounter. However, they do not get past that bottleneck: if his attention 
turns away from these facts and he comes back later (even a few minutes 
later), he has forgotten them. He can form almost no new declarative 
memories, and moreover, the 11 years of memories before his surgery 
were wiped away by the surgery.

The relevant hippocampal structures are not huge (and perhaps only a 
subset are involved in declarative memory).6 Therefore, one might specu-
late that there is a nontrivial limit on what can be held in declarative 
memory. There have been a number of attempts to estimate the storage 
capacity of declarative memory (e.g., Treves and Rolls, 1994; Moll and 
Miikkulainen, 1997). While these attempts do not exactly agree on how 
the hippocampus works or what the exact limit is, they agree that it is 
limited in its ability to store information.

There are a number of reasons for the limit on the size of human 
declarative memory. One class of factors concerns the physical limits of 

5. Despite all the evidence for the importance of the hippocampal and medial tempo-
ral structures, prefrontal structures are often more sensitive to memory manipulations in 
imaging studies. There were early speculations that the brain imaging was not able to de-
tect hippocampal contributions (Buckner and Koutstaal, 1998; Fletcher et al., 1997), but 
there now have been a number of successful studies (Schacter and Wagner, 1999). Still, it 
appears that prefrontal regions are often more sensitive indicators of memory storage and 
retrieval, and we have focused on a left prefrontal region that seems to be quite sensitive 
(as in figures 1.8b and 2.12f  ). A general view is that prefrontal regions are involved in en-
coding and retrieval (Buckner, 2000) but that they are not the permanent repositories of 
declarative memories. Patients with hippocampal damage will show substantial activation 
in prefrontal areas, just like normal patients when they are trying to memorize material. 
However, this fails to result in permanent memory.

6. And there are suggestions that it increases in size for those who face high memories 
demands, such as taxi drivers who must remember a great many routes (Maguire et al., 
2003).
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size and metabolic costs, analogous to the factors that limit the size of 
memory on your computer. However, another class of factors arises from 
the nature of declarative memory itself. Because of its flexibility, the con-
ditions for retrieving a particular declarative fact are not prespecified. 
The flip side of this is that when we make a query of our memory, the 
number of potentially relevant memories can be nearly unbounded. The 
cost of sorting through these could be considerable, so it makes sense to 
throw away those memories that are unlikely to be needed. Consider how 

Figure 3.1. Bidirectional connections between the hippocampal system and 
other cortical areas. All areas go through the entorhinal cortex, which is an 
interface to the hippocampus. (a) Regions (frontal, temporal, and parietal) 
that connect with the parahippocampal gyrus and the perirhinal cortex, which 
in turn connect with the entorhinal cortex. (b) Areas that have direct connec-
tions with the entorhinal cortex. Reprinted from Neural Models of Plasticity: 
Experimental and Theoretical Approaches, Squire, L. R., Shimamura, A. P., 
& Amaral, D. G., Memory and the Hippocampus, pages 208–239. Copyright 
1989 with permission from Elsevier.
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overwhelmed we would be if we gave a typical query to Google and 
had to actually search through the thousands (or millions) of hits it can 
report. Google in this case is only useful if the first few dozen hits are 
relevant. For all intents and purposes, the millionth hit in this list has 
been forgotten (and my attempts to get Google to list those distant hits 
suggests Google doesn’t have them).

Additional memories can interfere with one another. Catastrophic 
interference was one of the early landmark discoveries in the history of 
connectionism. McCloskey and Cohen (1989; see also Ratcliff, 1990) at-
tempted to train a connectionist network to learn two successive lists of 
paired associates in what is called the A–B, A–C paradigm. In the first list, 
one might learn to respond to a stimulus such as vanilla (the A term) with 
7 (the B term) and in the second list to vanilla (A again—the stimuli are 
the same in the two lists) with 4 (the C term). Humans have difficulty 
with these competing associations, and it takes more trials to learn both 
lists to criterion than if the lists do not share stimuli. The connectionist 
network McCloskey and Cohen were working with had much greater dif-
ficulty than humans, however, and the first list was completely overwrit-
ten by the second list. If these lists are intermixed and slowly learned, 
then conventional connectionist networks can eventually be brought to 
maintain the two sets of associations, but people learn quickly and without 
such intermixing of the two lists. This demonstration became a major ref-
erence point and stimulated a round of thinking about more complex con-
nectionist systems. A class of theories arose (e.g., McClelland et al., 1995; 
Norman and O’Reilly, 2003; O’Reilly and Rudy, 2001) postulating two 
different learning systems. One performed the typical connectionist slow 
learning and had high generalization and interference; the other displayed 
fast learning but showed little generalization and interference. The former 
was associated with the cortex and the latter with the hippocampus and 
related structures.7

The fact that HM and other amnesiacs retain memories from earlier 
in their lives despite loss of the hippocampus region is evidence that 
it is not the only structure supporting declarative memory. According 
to McClelland et al. (1995), the hippocampus is special in that it can 

7. However, this is not the only view. For instance, Gluck and Myers (1997) have 
argued that different hippocampal structures are responsible for both gradual pattern 
extraction and one-shot distinct learning.
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learn quickly and accurately without interference. However, other brain 
structures can slowly acquire such memories through repeated training. 
Memories can slowly be transferred from the hippocampus to neocorti-
cal regions by rehearsal. Every time we recall a memory, this is another 
encoding opportunity for the slow learning mechanisms of the neocortex. 
However, the cortex can also be slowly trained by repeated exposure, 
without going through the hippocampus. Presumably, such direct neo-
cortical learning is how HM was able to learn about people such as John 
F. Kennedy, who became famous after his surgery. Nonetheless, the nearly 
total anterograde amnesia (inability to form new memories) of such pa-
tients indicates that the hippocampus is the main path for acquisition of 
new declarative memories. In addition, their extensive retrograde amnesia 
(loss of memories before the event that produced the amnesia) indicates 
that it plays the primary role in supporting declarative memories for a 
long time after their initial acquisition.

While the hippocampus places serious limits on the capacity of de-
clarative memory, it does not limit all learning, because much of what 
we learn is not stored in the hippocampus. According to the class of con-
nectionist theories just noted, much of our knowledge is stored as general 
patterns rather than as specific facts in the neocortex. Another kind of 
knowledge is procedural knowledge, considered in chapter 4, which is 
associated with another subcortical structure, the basal ganglia.

There has been a debate about the involvement of the hippocampus 
in semantic memory. Vargha-Khadem et al. (1997) reported the cases 
of three children who suffered bilateral hippocampal damage early in 
their childhood and yet attained reasonable levels of language and factual 
knowledge. Despite their poor memory for day-to-day events, they still 
managed to attend mainstream schools. Eichenbaum (1997) suggested 
that this reflected the difference between the hippocampus and the para-
hippocampus,8 which was not damaged in these patients. He suggested 
that the parahippocampus was sufficient for the encoding of semantic 
memories but that the hippocampus was required for the binding of epi-
sodic information. Squire and Zola (1998) argued that the acquisition 
of semantic memory might have been achieved through the residual epi-
sodic memory that these children had (they were not totally unable to 

8. A cortical structure on the input path from many cortical regions to the hippocam-
pus—see parahippocampal gyrus in figure 3.1.
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recall episodic information). They also argued that, since we do not know 
how well these children would have done had they not suffered their 
injuries, it is impossible to judge how normal their semantic memory 
development is. As noted above, the category of semantic memory is a 
mixed bag of things. Certain things attributed to semantic memory (e.g., 
our ability to recognize a bird) may not depend on the hippocampus at 
all. Others (e.g., who is the mayor of New York City) probably do have 
at least some of their origins in episodic memory and would be more dif-
ficult to acquire in the presence of hippocampal damage.

Why Do We Have Declarative Memories?

In principle, the information we have in declarative memory could be 
stored procedurally. Consider the memory that Lincoln was the president 
of the United States. One might imagine a production rule to deliver this 
fact when needed, something like

If the goal is to retrieve a president of the United States,
Then return Lincoln as an answer.

As chapter 4 discusses, this is more efficient than retrieving a declara-
tive memory. Rather than having to go through the steps of searching 
declarative memory, representing the results, and extracting an answer, 
this production rule just produces the answer.

Probably the reader has a sense of unease with the production rule for 
the Lincoln answer. It does not enable us to answer other questions about 
Lincoln’s presidency, such as when he was president, and so provides no 
basis for answering questions such as “When was Lincoln president?” or 
“What was the famous proclamation that Lincoln signed?” However, one 
can propose other rules to retrieve information for these kinds of ques-
tions, as well. In the case of the Lincoln fact and the typical American’s 
knowledge about Lincoln, it perhaps does not stretch credibility com-
pletely beyond belief that all such information could be stored in separate 
rules that produce answers to specific probes. This is basically the idea 
that the behaviorist John B. Watson (1930) had when he claimed memo-
ries were just habits (see box 3.1).

However, this kind of account of memory has fundamental problems, 
despite Watson’s efforts to put a sensible face on this. To illustrate, consider 
the following memory that I once formed from my daily routine (I explain 
in the next subsection more of the context of forming this memory): I went 
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to Starbucks on the way to work and ordered a coffee and summer cob-
bler. I remembered this event 24 hours later after not thinking about it in 
the interim, which confirms that it was a successful example of one-shot 
learning. Consider some of the different memory probes that I might have 
encountered that would have resulted in retrieving this memory:

I get food poisoning and have to identify what I ate.
The doctor asks me how much caffeine I had that day.
I wonder why I am gaining weight.
Someone asks me where I got that terrific cobbler.

BOX 3.1 Memories Are Just Habits
Watson (1930)

What the man on the street ordinarily means by an exhibition of mem-
ory is what occurs in some such situation as this: An old friend comes to 
see him, after many years’ absence. The moment he sees this friend, he 
says: “Upon my life! Addison Sims of Seattle! I haven’t seen you since the 
World’s Fair in Chicago. Do you remember the gay parties we used to 
have in the old Windmere Hotel? Do you remember the Midway? Do 
you remember,” ad infinitum. The psychology of this process is so simple 
that it seems almost an insult to your intelligence to discuss it, and yet a 
good many of the behaviorists’ kindly critics have said that behaviorism 
cannot adequately explain memory. Let us see if this is a fact.

When the man on the street originally made the acquaintance of Mr. 
Sims, he saw him and was told his name at the same time. Possibly he did 
not see him again until a week or two later. He had to be re-introduced. 
Again, when he saw Mr. Sims he heard his name. Then, shortly after-
wards, the two men became friends and saw one another every day and 
became really acquainted—that is, formed verbal and manual habits to-
wards one another and towards the same or similar situations. In other 
words, the man on the street became completely organized to react in 
many habit ways to Mr. Addison Sims. Finally, just the sight of the man, 
even after months of absence, would call out not only the old verbal hab-
its, but many other types of bodily and visceral responses.

. . . .
By “memory,” then, we mean nothing except the fact that when we 

meet a stimulus again after an absence, we do the old habitual thing (say 
the old words and show the old visceral—emotional—behavior) that we 
learned to do when we were in the presence of that stimulus in the first 
place ( pp. 235–237).
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My wife asks me why I took so long to get to work.
I can’t find my wallet and need to remember where I might 

have lost it.

And so on—you get the picture. Each of these probes would require a 
different rule because they represent a different condition under which 
I would need to retrieve the memory. There is no way I could have estab-
lished production rules or habits to reproduce the memory to all of these 
probes. Rather, what I acquired was a memory that was lying in wait, 
ready to jump in should any associated prompt appear. This flexibility 
of access to our own past is a critical feature of our overall intellectual 
flexibility as humans. Essentially, given a wide variety of prompts, we can 
retrieve the memory without having to preprogram ourselves to retrieve 
the memory to any specific prompt. This flexibility of access is why these 
memories are available for declarative report and conscious reflection: 
because we can access the memories for any purpose, we can access them 
for reporting and reflecting. In essence, flexibility of access is what makes 
a memory declarative.

The Triage of Memories

This Starbuck’s memory was part of an exercise that I performed one day 
when I was curious about my memory. I challenged myself to write down 
25 things that I could distinctly remember (they were not just part of my 
daily routine) from the previous day between getting up and arriving at 
work. I wrote down these 25 events and stored them away in a file on 
my computer that I did not go back to for more than a year. With re-
spect to the Starbuck’s memory above, I can report that I had completely 
forgotten it when I found it on this list a year later. The only thing on that 
list that I think I remember is a report on the impact of the Swiftboat ads 
on Kerry’s poll numbers that had been on the morning newscast.9 Looking 
over the 24 other memories I wrote down, I can report that they were all 
forgotten at no loss to me. While those memories were still lying in wait a 
day later on the off chance that they should prove critical, they eventually 
lost their relevance and were lost from my memory—who would want to 
remember that exact Starbuck’s event a year later? Declarative memory, 

9. A significant episode in the 2004 American presidential election.
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faced with limited capacity, is in effect constantly discarding memories 
that have outlived their usefulness.10

As discussed in chapter 1, Lael Schooler and I studied the likelihood 
that a memory would be needed again and treated this as a measure of the 
memory’s usefulness.11 This research served as a guide for the design of the 
subsymbolic level of ACT-R’s declarative memory. As illustrated in figure 
1.4a, if a memory has not been needed for a while, it becomes very unlikely 
that it will be needed in the future. In particular, we showed that there was a 
power-function relationship between how likely a memory would be needed 
on a particular day and how long it had been (t) since it was last used:

Odds needed = At –d

where A is a scaling constant and d is the decay rate. This power relation-
ship implies a linear relationship between the dependent variable (odds 
of use on current day) and the independent variable (time since last use) 
after the measures have been log transformed:

Log(odds) = log(A) – dlog(t)

This function just deals with the time since an item has been last used. 
Anderson and Schooler (1991) found that each time an item appeared, 
it added an increment to the odds that the item would appear again and 
that these increments all decayed away according to a power function. 
Thus, if an item has occurred n times, its odds of appearing again is

Odds = 

where tk is the time since the kth occurrence. This equation turns out to 
predict a wide variety of effects in human memory.12 So, for instance, it 
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10. Actually, as described further below, ACT-R adopts a more continuous solution 
to this, just as the brain must. Memories are not suddenly deleted but rather are gradu-
ally weakened. A weak memory that cannot be retrieved in a neutral context might be 
retrieved if given the appropriate associative prompt. Eventually the memory cannot be 
recalled at all and is effectively deleted.

11. The discussion that follows ignores the inherent importance of the memory, and 
perhaps this is why the Swiftboat memory stuck with me.

12. Its most notable failing is that it does not predict the spacing effect that closely 
presented items are forgotten more rapidly than widely spaced items. Interestingly, this 
function also fails to describe the environment, which also shows a spacing effect (An-
derson and Schooler, 1991). Pavlik and Anderson (2005) followed up a suggestion in 
Anderson and Schooler with a successful model of spacing effects in the environment 
and in memory.
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predicts that both the retention function (memory performance as a func-
tion of delay) and the learning function (memory performance as a function 
of practice) have the shape of power functions.13 It thus seems that memory 
makes information available in proportion to how likely it is to be useful.

Combining Context and Past History

The equations above are examples of how the past history of use of a 
memory predicts the odds that the memory will be needed. However, 
they ignore the context of the current situation. My favorite example 
of this involves the distinction between my wife’s name and my locker 
combination. My wife’s name is probably the declarative memory I most 
often need to recall, while my locker combination is used with relatively 
low frequency. That fact notwithstanding, when I am in the locker room, 
my locker combination is more likely to be needed than my wife’s name. 
It would be nice if my cognitive architecture adjusted the availability of 
my memories as a function of context and made it easier to retrieve my 
locker combination in that context.

Schooler and Anderson (1997) explored how context and past history 
of use combine. Schooler (1993) found that, in some contexts, one word 
strongly predicted the likelihood that another word would occur. For in-
stance, in the period of time he investigated, the word “AIDS” occurred 
in the New York Times headlines on only about 2% of the days. However, 
during that time, if the word “virus” also appeared in the headlines, the 
probability of “AIDS” appearing jumped to 75%. As another example, in 
caregiver speech to children, the word “play” only occurred in about 1% 
of the utterances. However, if the word “game” also occurred in that sen-
tence, the probability jumped to 41%. These examples illustrate the fact 
that the appearance of certain items in the environment make it much 
more likely we will be asked to remember other items.

Schooler was interested in how this factor of environmental context 
interacted with the factor of time since the word last occurred. Figure 3.2 
shows the relationship for the New York Times database and the caregiver 

13. There is considerable discussion in the literature as to whether the memory func-
tions are exactly power functions or whether they correspond better to some other func-
tion (e.g., Delaney et al., 1998; Heathcote et al., 2000; Myung et al., 2000; Rickard, 1997; 
Rubin et al., 1999). The argument Schooler and I developed was not that the memory or 
the environment functions were exactly power functions. Rather, our argument was that 
whatever the environmental function was, it would be mirrored in memory.



Human Associative Memory 105

speech database. Parts (a) and (b) plot odds against delay for cases where 
there is a high associate (odds of “AIDS” given “virus”) and cases where 
there is not a high associate. They show standard negatively accelerated 
retention curves for the high associate case and what appears to be a 
much weaker retention effect for the low associate case. However, parts 
(c) and (d) show what these relationships are like after a log transforma-

Figure 3.2. Environmental recency curves from the analysis of the CHILDES 
(a database of children language) and New York Times databases. The left 
column shows the odds of a word being mentioned in an utterance as a func-
tion of the number of intervening utterances since it was last mentioned and 
whether the utterance included a strong associate (strong context) or did not 
(weak context). The right column shows the odds of a word being included in 
a particular headline as a function of the number of days since the word was 
last included and whether the headline included a strong associate. Reprinted 
from Schooler & Anderson (1997) with permission from Elsevier.
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tion of both axes. This reveals a linear relationship that is a sign of a power 
function. Also, the lines are basically parallel, and the effect of a high as-
sociate is just to raise the intercept of the function.

Schooler explored the issue of whether this relationship was also true 
of human memory. Figure 3.3 illustrates one of his experiments. Partici-
pants saw a series of headlines and had to classify them as international, 
national, or local (this task was just to guarantee their attention). After 
each headline they performed the task of interest: a primed completion 
task in which first a prime word (“treaty” in figure 3.3) would appear 
and then a word fragment that they had to complete with a word from a 
past headline. In the case in figure 3.3, the fragment is “SP – – –,” and it 
should be completed as “Spain.” (During the period of time Schooler 
investigated, there was a statistical association between treaty and Spain 
in New York Times headlines.)

Schooler manipulated both the delay from that past headline and 
whether the prime and the word were associated. Figure 3.4 shows the 
results of one of his experiments in terms of odds that the participant 
could successfully complete the prime, and the mean time to complete 
if successful. Both quantities yielded linear parallel functions on log-log 
scales just like the environmental statistics. This was a particularly signifi-

Figure 3.3. The structure of the experiment in Schooler and Anderson (1997). 
Reprinted from Schooler & Anderson (1997) with permission from Elsevier.
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cant test of the rational analysis of memory because a relationship in the 
environment was used to make a prediction about human memory that 
had not yet been tested in the experimental literature. It indicates once 
again that human memory reflects the statistics of the environment.

In summary, the function of declarative memory is to make knowledge 
available in a form that can be used for a wide variety of purposes. There 
are limits on the amount of information that can be maintained in this 
form and usefully retrieved. Therefore, the declarative system performs 
a triage on the memories, devoting its limited resources to those that are 
most likely to be needed. The next section considers how the declarative 
memory system achieves this triage and how it functions in the overall 
cognitive architecture.

Declarative Memory in a Cognitive Architecture

The human memory system operates in a fully functioning cognitive archi-
tecture that actually does tasks. Many theories of memory treat memory 
as though the end goal of the system were to retrieve memories. However, 
that is rarely the case outside of the memory laboratory. Almost every task 
involves declarative memory, and in almost all of these tasks the declara-

Figure 3.4. Results from Schooler and Anderson (1997): (a) log odds of com-
pleting a word fragment as a function of log retention interval; (b) log latency 
to complete a word fragment as a function of log retention interval.
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tive memory module has to interact in complex ways with other modules. 
Chapter 1 demonstrated this with the algebra model (involving retrieving 
memories of instructions and arithmetic facts) and chapter 2 with the 
driving model (involving retrieval of information about where other cars 
were in various lanes). A serious constraint on the declarative system is that 
it has to function correctly in these tasks as well as match the data from 
“pure memory” experiments. Newell (1992) complained that the current 
theories of memory did not worry about whether the theories would work 
in a full system: “Why don’t psychologists address it or recognize that there 
might be a genuine scientific conundrum here, on which the conclusion 
could be that the existing models are not right . . .” (p. 473).

Figure 2.2 illustrated the modular structure of the mind, in which the 
declarative module essentially allows the system to perceive its past just 
as the visual module allows the system to perceive its current environ-
ment. The system’s past is basically the chunks that existed in the buffers 
associated with the various modules; these chunks represent the only part 
of its information-processing of which it was ever aware. These chunks 
are all deposited in declarative memory (figure 3.1 illustrates the map-
ping of cortical regions to the hippocampus). Of course, just because a 
chunk is deposited in declarative memory does not mean that it will be 
retrieved. This section focuses on the subsymbolic level in the declarative 
system that determines the availability of individual memories.

The Subsymbolic Level: Activations and Associative Strengths

Chunks in declarative memory have activation values that determine the 
speed and success of their retrieval. The activation of a chunk both re-
flects its inherent strength, called base-level activation, and its strengths 
of association to elements in the current context. Formally, this is ex-
pressed by what is called the activation equation:

where Ai is the activation of chunk i; C is the context, which is defined as 
the set of the elements j currently in the buffers; Bi is the base-level activa-
tion of chunk i; Wj is an attentional weighting given to element j in the con-
text; and Sji is the strength of association between element j and chunk i.

This is a standard neural activation equation where the activation of 
some neural element i is determined by its base-level activation and the 
activation it receives from input elements j. Figure 3.5 shows a network 
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interpretation of this equation. It represents the memory for 8 + 4 = 12 
by a central node connected to its elements. That node has some relatively 
stable base-level activation Bi. It also receives activation from the context 
elements j according the strengths of association Sji between these ele-
ments and the memory.14

The Anderson and Schooler (1991) analysis described above explains 
what the memory system accomplishes by performing this neural compu-
tation: it makes most available those memories most likely to be needed. 
The log odds of needing a memory can be considered a sum of a quantity 
that reflected the past history of that memory and context (e.g., figure 3.2, 
c and d). In Bayesian terms, this can be rendered by the following formula:

Log[posterior(i|C)] = log[prior(i)] + 
j C∈
∑ log[likelihood(j|i)],

where posterior(i|C) is the posterior odds that memory i will be needed 
in context C, prior(i) is the prior odds that memory i will be needed 
based on factors such as recency and frequency (in figure 3.2, it reflects 

Figure 3.5. A representation of a chunk with its subsymbolic quantities.

14. Those who work with the ACT-R theory will note that this formulation does not 
include a random noise component or a partial matching component. With respect to the 
random noise component, I have deleted it merely for simplicity of exposition, and its 
influence will be partly reflected in the retrieval probability equation in table 3.2. With 
respect to partial matching, I have come to the conclusion that the current ACT-R simu-
lation errs in treating associative spread and partial matching as independent sources of 
information. When an element just appears in a buffer, it serves as a general bottom-up 
associative prime to memory. When it appears as part of a memory probe, it is a top-down 
constraint on recall, as in the fan experiments to be described. This top-down role should 
supersede the evidence associated with its appearance in a buffer, not be treated as ad-
ditional information. Thus, for purposes of the activation equation, the definition of Sji

depends on whether the j is a bottom-up cue or a top-down constraint. In actual running 
models, this is essentially how it is treated, in that the models typically use either the 
bottom-up information or top-down information and do not try to add them together.
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how long it was since the memory was used), and likelihood(j|i) is the 
likelihood ratio that element j would be part of the context given that i
is needed (in figure 3.2 it reflects the strength of association to the cur-
rent context). The activation equation basically performs this calculation 
where the activation Ai is log[posterior(i|C)], the base-level activation Bi is 
log[prior(i)], and the product WjSji corresponds to log[likelihood( j|i)].

Table 3.2 gives the activation equation and the other basic ACT-R 
equations for the subsymbolic level of declarative memory. The base-
level learning equation specifies how the activation varies with the past 
history of usage of the chunk. It is based directly on the work in Ander-
son and Schooler (1991) studying how the pattern of past occurrences 
of an item predicts the need to retrieve it. In this equation, tk is the time 
since the kth practice of an item. Each presentation has an impact that 
decays as a power function (producing the power law of forgetting), and 
different presentations add up (producing the power law of practice; see 
Anderson et al., 1999). In the ACT-R community, 0.5 has emerged as the 
default value for the decay parameter d over a large range of applications, 
although slightly lower values have appeared in some attempts to model 
very long-term memory (e.g., Pavlik and Anderson, 2005). This base-level 
learning equation has been the most successfully and frequently used part 
of the ACT-R subsymbolic level. Pavlik and Anderson (2005) describe 
how this equation and elaborations on it reflect the changes produced by 
long-term potentiation, which is thought of as the major mechanism of 
learning in the hippocampus.

Table 3.2. ACT-R Equations Involving Activation

Name Equation

Activation equation

Base-level learning equation

Attentional weighting equation

Associative strength equation

Retrieval time equation

Retrieval probability equation
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As for the associative components (the Wj Sji values), the attentional 
weighting equation sets the Wj to W/n, where n is the number of sources 
of activation.15 W is a parameter that is thought to reflect individual dif-
ferences in the ability to make memory retrieval context sensitive (e.g., 
Daily et al., 2001). As specified in the associative strength equation, the Sji

values reflect how much the presence of j makes i more probable. There 
have been a number of ideas about how experience sets these quantities 
(e.g., Anderson and Lebiere, 1998; Anderson, Bothell et al., 2004; Pirolli, 
2005). In ACT-R they are currently set by default to reflect the fan (the 
number of links coming out of each term) of the j, as explained in the 
next section.

Figure 3.6 illustrates the retrieval probability equation (part a) and 
the retrieval time equation (part b) for typical parameters for the ACT-R 

Figure 3.6. (a) The relationship between activation and probability of recall; 
(b) the relationship between activation and latency of recall.

15. The division by n is similar in character to such constraints as setting the sum of 
the attentional weights in the generalized context model (Nosofsky, 1986) to 1.
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theory.16 These behave sensibly, with increasing activation resulting in in-
creased probability of recall and decreased latency. As illustrated in figure 
3.6a, there is a threshold activation, τ, below which memories will not 
be retrieved. Because there is random noise in activation values (related 
to the parameter s), sometimes chunks will fall above the threshold and 
other times they will fall below. Figure 3.6b illustrates the exponential re-
lationship between the activation values and the time it takes to retrieve 
a memory. Appendix 3.1 describes the neural mechanisms that might be 
producing this relationship. Basically, we imagine a parallel process by 
which the various chunks compete according to their activation values, 
and one is selected and put in the declarative buffer.

The equations in table 3.2 provide a formalization of a mechanism that 
produces the relationships that Anderson and Schooler (1991) noted; the 
probability and speed of retrieval vary with the likelihood a memory will 
be needed (e.g., figure 3.4). The next four sections describe examples of 
how these equations play out in various tasks.

A Model for a Fan Experiment: Demonstrating 
the Activation Processes

The first experiment in Pirolli and Anderson (1985) illustrates the con-
tributions of both base-level activations (Bi) and associative strengths (Sji)
to the retrieval process.17 This is one example of the many fan experi-
ments (for a review, see Anderson and Reder, 1999) performed to create 
situations where cues to memory vary in their associative strength (the 
Sji). Participants in the Pirolli and Anderson experiment memorized two 
types of sentences. One type involved eight sentences such as

The lawyer liked the doctor
The soldier kicked the sailor

where each term (“lawyer,” “liked,” “sailor,” etc.) occurred in just a single 
sentence. The other type involved eight sentences such as

16. If the reader interprets activation as something like the rate of firing of neurons, it 
would be puzzling to see negative activation values in figure 3.6. However, these activa-
tion quantities are more abstract. As in appendix 3.1, they might be conceived of as the 
input that drives the actual neural firing rates (in which case negative values just mean 
the firing rate goes below base line).

17. See Anderson, Bothell et al. (2004) for a similar fit to the second experiment in 
this report.
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The fireman hit the barber
The fireman thanked the chef
The banker hit the farmer
The sailor touched the barber

where each term (“fireman,” “hit,” “barber”) occurred in two sentences.18

The first set defined the one-fan condition, and the second the two-fan 
condition. Figure 3.7 illustrates the basic structure being created in mem-
ory. The term “fan” refers to the number of links coming out of each term; 
increasing fan will decrease the strength of association, Sji, between the 
term and the fact. This is because when a term is associated with more 
facts, its appearance becomes a poorer predictor of any particular fact.

After memorizing the material, the participants were asked to recog-
nize sentences they had studied and reject foils that they had not studied 
but were recombinations of the same words (e.g., “The lawyer liked the 

Figure 3.7. A graphical represen-
tation of two sentences in the 
one-fan condition (a) and the 
two-fan condition (b).

18. This is not the complete set of eight: only the first sentence has all of its items 
repeated in four sentences shown; the other sentences would have their items repeated 
in the four sentences not shown.
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sailor” or “The banker hit the chef ”). Interest focused on how quickly 
they could make these judgments, providing a measure of how available 
the individual facts were. Participants practiced recognizing the same set 
of sentences for 25 days. This practice should increase the base-level acti-
vation, Bi, of the particular facts.

The ACT-R theory allows one to determine the activations on each day 
of the experiment for both conditions.19 Figure 3.8 illustrates the growth 
in activation.20 The prediction is for two parallel activation functions that 
increase with practice. The curves in figure 3.8 reflect parameter-free 

Figure 3.8. Activation of the chunks in Pirolli and Anderson (1985) as a func-
tion of fan and practice.

19. According to the associative strength equation (table 3.2), the strength of associa-
tion, Sji, from a term j to a fact i is determined by the ratio of the base probability of the 
fact to the conditional probability of the fact given the term. There were 16 target facts in 
all. In addition, 16 foils were mixed in with each testing of 16 targets, so any fact occurred 
with base probability 1/32. If a concept such as doctor was presented, the conditional 
probability of a fact associated with that concept was 0.50 in the one-fan case (because 
half the time it was a foil) and 0.25 in the two-fan case (two targets and two foils per 
block). Thus, according to the associative strength equation, the strengths of associations 
were ln[(1/2)/(1/32)] = ln(16) for one-fan facts and ln[(1/4)/(1/32)] = ln(8) for the 
two-fan facts. Because each of the sources has the same fan and the attentional weighting 
equation with W = 1 implies a 1/3 weighting for the activations from the subject, verb, 
and object, this means that the total associative activation is either ln(16) or ln(8). The 
base-level learning equation can be shown to imply that the base-level activation, Bi,
increases as a function (1 – d)*ln(days). The typical value of the decay rate d is 0.5. There-
fore, the equations in table 3.2 imply that activation will be 0.5[ln(days)] + ln(16) in the 
one-fan condition and 0.5[ln(days)] + ln(8) in the two-fan condition.

20. Constants can be added to these activation values, but these complications do not 
change the basic predictions to follow. With respect to a different detail, days are repre-
sented as half-days since we are interested in the average (halfway) performance during the 
day. Thus, for day n the value n – 0.5 is used in the calculation of the predicted activation.
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predictions of the theory. Thus, for instance, the theory predicts that the 
average activation in the last five days of the two-fan condition will be 
close to the average activation in days 4–8 of the one-fan condition.

One cannot observe activations, but this experiment collected latencies 
that reflect the activations (figure 3.6b); these latencies are displayed in 
figure 3.9. Indeed, the average latencies are the same (0.76 sec) between 
the last five days of the two-fan condition and days 4–8 of the one-fan con-
dition. This figure also shows the predicted latencies for this experiment. 
Obtaining predictions from the activation functions in figure 3.8 requires 
the estimation of an intercept, to reflect encoding and response times, and 
a latency scale parameter (F in the retrieval time equation). The intercept 
parameter was estimated at 0.55 s and the scale at 8.00 s. Because of the 
nonlinear mapping of activation onto latency (figure 3.6b), practice also 
reduces the absolute size of the fan effect, but the effect remains quite 
significant even after 25 days of practice. The predictions of the absolute 
times depend on the intercept and latency scale parameters, but the theory 
predicts, without parameter estimation, the basic pattern of results in this 
experiment. This means that the correlation between theory and data tests 
the parameter-free predictions of the theory; that correlation is 0.983.

The theory is that the results in figure 3.9 occur because memory is 
responding to two statistical effects in the environment:

1. The more often a memory is retrieved, the more likely it is to 
be retrieved in the future. This produces the practice effect and 
is reflected in the base-level activations of the ACT-R theory.

Figure 3.9. Time to recognize sentences in Pirolli and Anderson (1985) as a 
function of fan and practice. Solid curves reflect predictions of the ACT-R 
model.
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2. The more memories associated with a particular cue, the worse 
a predictor it is of any particular memory. This produces the 
fan effect and is reflected in the strengths of association in the 
ACT-R theory.

If this analysis is correct, these results should not be restricted to ar-
tificial laboratory material such as those in this experiment but should 
pervade all of our memories.

Practice and fan effects do extend to memories created outside of the 
laboratory. Table 3.3 shows examples of material from Peterson and Potts 
(1982). Participants studied one or four facts that they did not previ-
ously know about famous historical figures (but that were true21), such as 
that Julius Caesar was left-handed. They were then tested on memory for 
three kinds of facts illustrated in table 3.3:

Table 3.3. Materials from Peterson and Potts (1982)

Examples of Learned Facts

1 fact studied Julius Caesar was left-handed.

4 facts studied Beethoven never married.

Beethoven suffered from syphilis.

Beethoven was a very poor student.

Beethoven died of pneumonia.

Examples of Test Items

Known Facts
0 facts studied Thomas Edison was an inventor.

1 fact studied Julius Caesar was murdered.

4 facts studied Beethoven was a musician.

Learned Facts

1 fact studied Julius Caesar was left-handed.

4 facts studied Beethoven never married.

False Facts

0 facts studied Thomas Edison was a congressman.

1 fact studied Julius Caesar was a printer.

4 facts studied Beethoven was an exceptional athlete.

21. Or, in the case of the Beethoven syphilis fact, believed to be true at the time.
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1. Known facts that they knew before the experiment
2. Learned facts that they had learned as part of the experiment
3. False facts that they had not learned and that should be recog-

nizable as very unlikely.

Participants had to recognize as true the first two categories of facts and 
reject as false the third category of facts. Participants were tested two 
weeks later about historical figures for whom they had not learned any 
experimental facts, about figures for whom they had learned one fact, 
and about figures for whom they had learned four facts. The speed with 
which they could judge the known facts and the studied facts is shown 
in figure 3.10. This figure shows the results separately for facts that they 
knew before the experiment and facts learned in the experiment. The 
prior facts are recognized much faster, reflecting the greater practice and 
base-level activation of the prior facts. The number of facts that had been 
learned in the experiment affects both new and prior facts, reflecting the 
fan effect on strengths of association.

From the perspective of the task facing declarative memory—making 
most available those facts that are most likely to be useful—these results 
make perfect sense. The already known facts have been used many times 
in the past, and at delay of two weeks they are likely the ones needed, so 

Figure 3.10. Data from Peterson and Potts (1982): time to recognize newly 
learned facts and facts already known as a function of the number of facts 
learned about a person in the experiment.
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the base-level activation works to make them most active. On the other 
hand, the more things one knows about an individual, the less likely any 
one fact will be, so they cannot be all made as active. The activation equa-
tions in table 3.2 capture these relationships.

Fan Effects in the Prefrontal Cortex

As noted in chapters 1 and 2, our laboratory has used a predefined pre-
frontal region to track retrieval from declarative memory. This region is 
close to areas that other researchers have also found strongly implicated 
in memory encoding. For instance, areas close to our prefrontal regions 
were found in a pair of landmark experiments that appeared back to back 
in the same issue of Science magazine: Wagner et al. (1998) investigated 
memory for words, and Brewer et al. (1998) studied memory for pictures. 
In both cases, participants remembered some of the items and forgot oth-
ers. Using fMRI (functional magnet resonance imagery) measures of the 
hemodynamic response, these researchers contrasted the BOLD (blood 
oxygen level–dependent) response at the time of study for those items 
that were subsequently remembered and those that were subsequently 
forgotten. Wagner et al. found that a left prefrontal region was predictive 
of memory for words, whereas Brewer et al. found that a right prefrontal 
region was predictive of memory for pictures. Figure 3.11a shows the re-
sults for words; figure 3.11b, the results for pictures. In both cases, the rise 
in the hemodynamic response is plotted as a function of time from stimu-
lus presentation. In both cases, remembered items produced a greater 
BOLD response in the prefrontal regions, supporting the conclusion that 
the prefrontal region is indeed involved in storing a memory successfully. 
A striking feature of these two studies is that the left and right prefrontal 
regions are almost exact homologues of one another and are within a cen-
timeter of the predefined prefrontal regions used in our laboratory.

As developed in chapters 1 and 2 (especially appendix 2.1), the basic 
assumption underlying our fMRI work is that the longer a module is 
active, the more metabolic energy is spent and the stronger the fMRI 
signal is. Thus, the interpretation of the Wagner et al. and Brewer et al. 
results is that participants remembered more on those trials where they 
worked longer at encoding the memory. While this might be a fairly 
obvious interpretation of the Wagner and Brewer encoding results, when 
it comes to retrieval the consequences of this interpretation might be 
a little surprising. The greater the activation of a memory, the less time 
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it will take to retrieve it. Therefore, the prediction is that greater ac-
tivation will map onto weaker fMRI response, in contrast to the naive 
assumption that more activation would mean a stronger response. This 
naive assumption is based on the idea that greater metabolic expendi-
ture would be required to support the greater activation of the target 
memory. However, even if this were true, the cells corresponding to the 
target memory are only a tiny fraction of the total cells in the region. If 
the BOLD signal reflected summed responding of all cells, there is no 
reason to expect it would be greater just because a few cells are more 
active. What is important is how long that region must work before it 
produces the target memory.

The fan paradigm is an excellent choice to test out this analysis of 
the BOLD response. Since greater fan results in decreased activation, the 

Figure 3.11. The results of two experiments using a subsequent memory 
manipulation: (a) Wagner et al. (1998) show difference between remembered 
and forgotten words in the left prefrontal cortex; (b) Brewer et al. (1998) 
show difference between remembered and forgotten pictures in the right 
prefrontal cortex.
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prediction is that higher fan will result in a stronger fMRI response. Sohn 
et al. (2003, 2005) confirmed this prediction. These researchers used a 
variant of the fan paradigm used by Pirolli and Anderson (1985) that 
involved person-location sentences such as “The lawyer is in the park.” 
They contrasted cases where the fans of the person and location were low 
(resulting in high activation) with cases where the fans were high (result-
ing in low activation).

Figure 3.12 illustrates the relevant module activity in the case of high 
fan versus low fan. That figure indicates that the average response time 
was 1,200 ms in the case of low fan and 1,350 ms in the case of high fan. 
In both cases, the system goes through the following sequence of stages:

1. Encoding the person and location, which involves developing a 
representation in the imaginal module (parietal region)

2. Retrieving the memory trace (prefrontal region)
3. Updating of the representation to note if it matches the trace 

(parietal region)
4. Programming a manual finger press to indicate the decision 

(motor region)

The only thing that differs is the length of the retrieval step. This leads 
to the prediction that the BOLD response should vary with fan in the 
prefrontal region, but not in parietal or motor regions that reflect the 
other modules. This prediction is particularly interesting for the parietal 
region because our parietal region is close to ( but not identical with) 
regions that have been implicated in episodic memory ( Wagner et al., 
2005). Nonetheless, we assume that our region is involved in problem 
representation and will not show fan effects.

Figure 3.12. Activity of the imaginal, declarative, and manual modules during 
the retrieval of low and high fan facts in Sohn et al. (2004).
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Given the verbal nature of the material and the fact that the partici-
pants were responding with their right hands, it made sense to look at 
left regions. Figure 3.13 shows the results obtained in the left parietal, 
prefrontal, and motor regions. The response first rises from baseline in 
the parietal (part a), then in the prefrontal (part b), and finally in the 
motor (part c). This corresponds to the order in which they should be 
active (figure 3.12). As predicted, there is an effect of fan only in the 

Figure 3.13. BOLD response to low- and high-fan facts in left parietal (a), left 
prefrontal (b), and left motor (c) regions.
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prefrontal region. Moreover, the size of the effect is basically what would 
be predicted from the latency analysis in figure 3.12. The retrieval time 
for the high fan items is 350 ms, while it is 200 ms for the low-fan items. 
The ratio of high times to low is 1.75. The area under the high-fan curve 
in figure 3.13b is 0.87%, while it is 0.49% for the low-fan curve. This ratio 
of high to low is 1.78. Our basic theory of the BOLD response implies 
that it should be proportional to the time a module is active.

It is worth emphasizing that the fMRI BOLD signal during retrieval 
gives an inverse measure of memory activation: a greater BOLD response 
reflects an item with lower activation. Basically, when the BOLD signal 
is greater at retrieval, memory has lost the bet that its activation levels 
have placed, and it is having to pay a higher metabolic cost to retrieve an 
unexpected memory.22

Instance-Based Decisions and Actions

The two previous examples are typical laboratory tasks that focus directly 
on memory. While they are the sorts of experiments one wants to perform 
to test specific assumptions of a theory, psychology’s focus on such tasks 
produces a rather distorted picture of what memory is about. Memory is 
involved in almost everything we do, but most of the time we think of our-
selves not as remembering but rather as doing something else. If one goes 
to the ACT-R website (act-r.psy.cmu.edu), one will find that the majority 
of the models are not overtly about memory. Nonetheless, these models 
make use of declarative memory because declarative memory both carries 
the general knowledge required to do a task and also maintains some of 
the information needed locally in the performance of the task.

This section is concerned with a particular kind of situation in which 
memory plays a role both important and easy to understand. When we 
have to make a decision, we often call on our memory for similar situa-
tions in the past. For instance, when I go downtown in Pittsburgh to park 
for a Steelers game, I call on memories about where I have parked for past 
Steelers games or perhaps other events in the area. Upon recalling a par-
ticular situation, I decide if I was happy with the outcome (e.g., whether 
I got caught in a huge line coming out of the garage). If it passes that 

22. Of course, the concepts of “losing the bet” and “unexpected” are relative. Within 
the experiment, the system is probably betting highly on all experimental memories rela-
tive to others and expects that these are the memories that are likely to be needed.
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threshold, I ask whether there is any reason to suppose the same outcome 
won’t hold again. If the remembered action passes muster, I act on it; if it 
does not, I go back and retrieve another memory and see if it is better. If I 
act on a memory, I might use the memory to adjust my behavior a little—
for instance, choosing a different location to park closer to the exit.

Note that I am relying on memories rather than reasoning on the basis 
of general principles. In some cases this is because I have no principles 
to reason from. In other cases, it is just easier to recall and act. In still 
other cases, I trust past experiences more than the principles. A num-
ber of people have noted this instance-based reasoning and raised it to a 
theoretical proposal. Logan (1988) proposed his instance theory of au-
tomatization and argued that learning ubiquitously moved from an algo-
rithmic (principles) process to a simple instance-based process wherein 
people repeated the action they retrieved a memory of. Medin and Schaf-
fer (1978), Nosofsky (1984), and others have proposed that we classify 
objects by retrieving instances they are similar to. Nosofsky and Palmeri 
(1997) elaborated this with their exemplar-based random walk (EBRW) 
model, wherein they proposed that people retrieve a number of instances 
similar to the current example and classify the example according to the 
category most often retrieved. In various guises, instance-based decision 
making has been proposed as prescriptive models—for instance, case-
based decision theory in decision making (Gilboa and Schmeidler, 2000), 
case-based reasoning in artificial intelligence (Reisbeck and Schank, 1989; 
I. Watson, 1997), and instance-based learning (Aha et al., 1991).

Probably the most common type of ACT-R model involves some sort 
of instance-based retrieval. The behavior of these models is strongly col-
ored by the activation processes that determine what will get retrieved. 
The success of these models in such a wide range of domains is one of the 
strongest sorts of evidence for both the general correctness and the gen-
eral functionality of the theory of declarative memory reviewed in this 
chapter. Box 3.2 provides brief descriptions of eight such models: the first 
four are models for the typical psychology laboratory tasks, and the next 
four are models that venture into the real world in various ways.

The models are described in a box to avoid having the text descend 
into too much low-level detail. However, as Newell noted, the answer to 
his question has to have the details. If readers go to the original sources 
for those details, they will find the declarative memory equations play-
ing out over and over again in widely different domains. In each case, 
these equations are basically achieving the goal identified by the rational 
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BOX 3.2 Eight Instances of Instance-Based Models

1. Alpha-arithmetic: Logan (1988) introduced an alpha-arithmetic task to 
illustrate his theory. Participants were presented with such problems as 
C + 3 = ? where the answer is gotten by counting three letters forward 
in the alphabet to F. Initially, participants solved these problems by going 
through the alphabet (Logan’s algorithmic stage), but eventually they 
came to retrieve the answers. Their time to perform the task sped up ac-
cording to a power function. Anderson and Lebiere (1998) showed that 
this task can be easily modeled in ACT-R, and indeed, it has become a 
standard task in the ACT-R tutorial.23

2. Categorization: Anderson and Betz (2001) show that the ACT-R 
implementation of Nosofsky and Palmeri’s EBRW model yields essen-
tially identical predictions about categorization as do the original models. 
This turns out to depend on the base-level learning equation interacting 
correctly with similarity-based retrieval.24 The Anderson and Betz model 
also shows how instance-based classification can coexist with rule-based 
classification (basically like using principles). Which process gets selected 
depends on their relative success.

3. Psychophysical judgments: Petrov and Anderson (2005) showed 
that the ACT-R retrieval model can explain the nature of psychophysi-
cal judgments. It applies most directly to situations where a participant 
might have to assign a numerical value (e.g., “5”) to a stimulus to indicate 
its magnitude. Given a particular physical stimulus to label, such as a line 
length, the model retrieves the numerical value associated with a similar 
line length in a past rating. Either it gives that value or, if the length as-
sociated with the memory is too high or low, it will adjust the value up 
or down. This model matches up well with participants in terms of both 
explaining how well they do and explaining effects that occur in such 
data because of the sequence of stimuli presented. The sequential effects 
depend on the changes in the base-level activations of past memories.

4. Berry and Broadbent sugar factory: Lebiere et al. (1998) present 
an ACT-R instance model of participant performance in the Berry and 

23. Logan’s (1988) model is one where each experience leaves its own trace and these 
traces race against each other for retrieval, whereas in ACT-R multiple encounters with a 
fact such as C + 3 = F are merged into a single trace that gets strengthened. However, the 
timing predictions of the two models match up (see Anderson et al., 1999). Also ACT-R 
predicts the reduction in variance noted by Logan.

24. For purposes of keeping the mathematical development limited, this chapter has 
not gone into effects of similarity in ACT-R, but see Anderson and Lebiere (1998, their 
chapter 3).

continued
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Broadbent (1984) sugar factory task. This is a task where the participant 
tries to control the output of a sugar factory in a month by assigning a 
number of workers to that task. It is one example of many ACT-R models 
that control a dynamic system (e.g., Wallach and Lebiere, 1998; Gonzalez 
et al., 2003; Schoppek, 2002). The sugar factory task has attracted a lot 
of attention because, while it is simple, it has an obscure rule that people 
seem unable to be able to articulate and yet they get increasingly good at 
controlling the factory. Thus, it is a well-known instance of the distinc-
tion between explicit and implicit knowledge. The Lebiere et al. (1998) 
model retrieves similar past instances to the current situation and bases 
its actions on the memories retrieved. It is similar in many ways to the 
Dienes and Fahey (1995) model. In these models, successful behavior is 
possible by storing cases of what works, and the model does not have to 
extract any principles.

5. Rock, paper, scissors: West et al. (2005) describe an ACT-R model for 
rock-paper-scissors. When presented with a decision about what to action 
to choose in the current situation, the model tries to retrieve information 
about what its opponent has done given a similar local history. It then 
chooses the move to beat that prediction. Rock, paper, scissors is a game 
where one can win by taking advantage of sequential regularities in a weak 
opponent but one does not want to become predictable in trying to do so. 
The ACT-R model is able to capture the behavior of strong players. It can 
pick up on statistical regularities because the frequencies of various se-
quences of opponent moves will be reflected in the base-level activations 
of the chunks representing them. Thus, one is most likely to retrieve the 
most probable sequence. On the other hand, because retrieval in ACT-R is 
probabilistic it can largely hide any regularities in its behavior.

6. Backgammon: Sanner et al. (2000) developed a backgammon-playing 
program based on ACT-R memory principles. This program learned from 
the games it played, storing associations between game features, moves, 
and eventual outcomes. It was able to learn to become a respectable 
player in a 1,000 games, which is the typical learning investment of a 
human. It did not achieve the performance level of the best backgammon 
programs such as the world champion TD-Gammon (Tesauro, 1992) but 
that program required hand tuning and millions of training trials.

7. Past tense: Taatgen and Anderson (2002) describe a model of chil-
dren’s learning of past tense. Initially, when faced with the task of gener-
ating the past tense of a verb, it would try to retrieve a previous example 
of a past tense for that verb or another verb. If it retrieved a different verb, 
it would have to adapt the inflection to the current verb. Eventually, the 
model learned the general past-tense rule for English but had to rely on 
memory for the irregular verbs. This model gave a good account of many 
aspects of the learning of English past tense, as described in more detail 
in chapter 4.

continued



126 How Can the Human Mind Occur in the Physical Universe?

8. Sentence interpretation: Budiu and Anderson (2004) produced a model 
that tried to interpret sentences by retrieving a memory of a something 
similar to the current sentence and then adapting it. This allowed the 
model to comprehend such metaphors as “The night sky was filled with 
drops of molten silver” by retrieving the most overall similar memory 
(presumably of a night sky filled with stars) and adapting that. This same 
interpretation process turns out to explain the Moses illusion (Park and 
Reder, 2004; Reder & Kusbit, 1991)—given the question “How many ani-
mals of each kind did Moses take on the ark” many people say 2, not 
noticing that it was Noah, not Moses, who took the animals on the ark. In 
this case they retrieve the similar instance and miss the difference.

Box 3.2 continued

analysis of declarative memory: to make most available that information 
which is most likely to be useful.

The Role of Memory in Heuristic Judgments

All the examples in box 3.2 show the declarative system behaving adap-
tively and successfully by counting on retrieval of past experiences for 
purposes of making successful judgments. However, there is also a coun-
tertradition in psychology that sees reliance on memory for specific ex-
periences as a source of error in judgment. For instance, in their classic 
paper, Kahneman and Tversky (1973) argued that people used availabil-
ity in memory to make judgments and that these judgments are often 
bad. For instance, they asked participants to estimate the proportion of 
English words that begin with the letter k versus words with a k in the 
third position. How might participants perform this task? One obvious 
heuristic is to retrieve instances of words that begin with k or words that 
have k in the third position and to then base one’s judgment on how 
many can be retrieved. The problem is that it is much easier to retrieve 
words that begin with a particular letter than ones having that letter in 
the third position. Thus, participants estimated that more words begin 
with letter k than have k in the third position. In fact, three times as many 
words have k in the third position than begin with k. Generally, partici-
pants overestimated the frequency with which words begin with various 
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letters.25 Based on such results, Kahneman and Tversky argued that reli-
ance on memory tends to lead to errors in judgment.

More recently, Goldstein and Gigerenzer (1999, 2002) have argued 
that availability in memory typically improves the quality of judgments. 
In one study they looked at the ability of students at the University of 
Chicago to judge the relative sizes of various German cities. For instance, 
which city is larger—Bamberg or Heidelberg? Most American students 
know that Heidelberg is a German city, whereas most do not recognize 
Bamberg: one city is available in memory, and the other is not. Goldstein 
and Gigerenzer showed that when faced with such pairs, students almost 
always pick the city they can recognize. One might think this shows an-
other fallacy in memory. However, Goldstein and Gigerenzer show that 
the students are more accurate when they make their judgment for pairs 
of cities like this (where they recognize one and not the other) than when 
they are given two cities they can recognize and must use other bases 
for judgment. Thus, far from a fallacy, this proves to be an effective basis 
for making judgments. Also, American students do better at judging the 
relative size of German cities using this heuristic than either American 
students judging American cities or German students judging German 
cities, where this heuristic cannot be used because almost all the cities 
are recognized.26

Schooler and Hertwig (2005) report a detailed analysis of why this 
works in terms of the ACT-R theory of memory. They used the data col-
lected by Goldstein and Gigerenzer on the frequency with which various 
German cities were mentioned in the Chicago Tribune between Janu-
ary 1, 1985, and July 31, 1997. They exposed an ACT-R model to a his-
tory of mention based on these frequencies, assuming that each mention 
of the city affected the base-level activation of the memory for that city 
according to the base-level learning equation. Figure 3.14 shows the rela-
tionship between the resulting activation levels and the probability that 
the students at the University of Chicago would recognize the cities. It 

25. The generality of this result has been challenged (Sedlmeier et al., 1998).
26. My German informant (Angela Brunstein) tells me that almost all Germans would 

recognize Bamberg and Heidelberg but many would be puzzled by which is larger. In-
terestingly, Google search on English texts reports on 37 million hits on Heidelberg and 
3.5 million on Bamberg. Google search on German texts reports 30 million hits on Heidel-
berg and 12 million on Bamberg—a much closer ratio and many more hits on Bamberg.



128 How Can the Human Mind Occur in the Physical Universe?

also shows the predicted probability of recognition according to the re-
trieval probability equation with the threshold, τ, set to be 1.44 units and 
the activation noise factor, s, set to be 0.73. This recognition behavior 
leads to success in the judgment task because it turns out that the size of 
German cities correlates well (0.82) with their frequency of mention in 
the Chicago Tribune.

In an interesting exploration, they consider what would happen to 
the usefulness of this recognition heuristic if the decay rate parameter (d
in the base-level learning equation in table 3.2) was varied. They show 
that at values around 0.5 (the current default value in ACT-R) the rec-
ognition heuristic performs quite well, getting 61% of the cities correct. 

Figure 3.14. Recognition rate plotted as a function of activation. The points 
indicate the observed recognition rates of the 83 German cities. The S-shaped 
curve relates the activation of a city’s record to its estimated recognition rate. 
For instance, Bremen has an observed recognition rate of 0.45, an activation of 
1.39, and an estimated recognition rate of 0.48. Stuttgart has an observed rec-
ognition rate of 0.64, an activation of 2.89, and an estimated recognition rate 
of 0.88. From Schooler & Hertwig (2005). Copyright American Psychological 
Association. Reprinted with permission.
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The best setting of this parameter is 0.34, which produces 63% correct.27

However, as the decay rate goes to 0 (no forgetting) or to 1 (rapid forget-
ting), the recognition accuracy falls toward chance levels of 0.5. Figure 
3.15 illustrates this for the recognition heuristic and a variant that they 
call the fluency heuristic. At high forgetting rates, most cities could not be 
recognized and there would be no basis for judgment. At low forgetting 
rates, most cities are recognized and there is again no basis for judgment. 
Thus, more knowledge is not always better, reinforcing the general adap-
tiveness of forgetting that Schooler and Anderson argued for.28

Figure 3.15. Proportion of correct inferences made by the recognition and 
fluency heuristics on all comparisons of the 83 largest cities in Germany. The 
amount of forgetting in the system was varied from 0, corresponding to no 
forgetting, to –1, a high forgetting rate. The peaks of each curve are marked 
with dots.

27. Pavlik and Anderson (2005) argue that to model long-term retention it is useful to 
have a decay rate that is lower than the default of 0.5.

28. Lebiere (1998) in his lifetime simulation of cognitive arithmetic did a similar 
parameter analysis and came to similar conclusions.
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Thus, the forgetting process is serving a critical role in making the 
recognition heuristic as accurate as it can be. However, it is not operating 
alone. When people can recognize both of the two cities, they can call on 
other knowledge and improve their performance. This did not help the 
students at the University of Chicago that much because they knew little 
about the relative size of German cities. Nonetheless, such knowledge can 
be helpful in some domains. The recognition heuristic works best when 
it is embedded in a fully functioning architecture that can integrate dif-
ferent sources of knowledge to come to the best possible decision given 
its knowledge.

The Role of Declarative Memory in the Cognitive System: A Reprise

Because of its flexibility, declarative memory is a valuable resource in 
our intellectual arsenal. The last two sections of this chapter discuss how 
memory can be recruited to solve a wide range of problems. However, 
memory plays out in everyday life in other ways, as well. As noted at 
the beginning of this chapter, our declarative memories with their rich 
autobiographical detail are critical to our sense of being distinct individu-
als. Another important use of declarative knowledge in the human case 
involves processing the instructions that we receive from others (as dis-
cussed in chapters 4 and 5). Perhaps the most common use of memory is 
recalling where things are. While occasionally we cannot find our car in 
the parking lot, usually memory works so well for such tasks that we are 
not even aware of how often we are going back to where we last saw or 
put something. Much of the evidence for a connection between memory 
and the hippocampus in lower animals involves spatial memories.

As noted above, Newell (1992) expressed considerable frustration 
with the failure of memory researchers to consider the functionality of 
the memory systems they were proposing. Annoyed with the carping at 
the Soar system, he said

Psychologists and linguistics almost never ask themselves about 
function. In their own work they act as if such questions are ir-
relevant. That would be OK—there needs to be division of labor 
in science—except that they are suspicious of those who do ask 
questions about functions. They call it “AI bias.” To pick an ex-
ample from the reviews, no psychologist has ever asked whether 
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the plethora of STM [short-term memory] models that have been 
generated since the 1960s could actually be functionally adequate 
for a system to be intelligent. It is absolutely not the case that 
because one has, say, the classic data about digit span, Brown-Pe-
terson decay, and so on, plus an STM model of these that explains 
that data, that one can infer that the STM is the model of the 
memory apparatus that humans have. An additional data point to 
be explained by such models is how, with whatever limitation the 
particular STM theory posits, it is possible for the human to func-
tion intelligently. (p. 473)

This chapter has provided something of an answer to Allen Newell’s 
question of how humans can behave intelligently within the limits of 
their memories. Their success depends critically on the fact than human 
memory is embedded in an overall cognitive system, and Newell would 
be pleased with this cognitive architecture aspect of the answer. How-
ever, it is also the case that these limits can enable the human to behave 
more intelligently. Newell might be surprised by that part of the answer.

Appendix 3.1: Analysis of Retrieval Time Process

To repeat the equation from table 3.2, the time to retrieve a chunk is 
related to the activation of the chunk by the retrieval time equation:

Time = Fe –A

The activation A in this equation is the momentary activation of the 
chunk and is subject to random fluctuations. Anderson and Lebiere 
(1998; see their appendix) have already shown how the random variation 
in activation, combined with this latency function, results in a Weibull 
distribution of response times, which has the shape of typical latency 
distributions with the extended tail of long latencies.

In the appendix of that book, we also considered what neural pro-
cesses might lead to such a latency function. The goal of this appendix 
is to update that analysis in light of new information about the neural 
basis of decision making. This information is largely drawn from studies 
of eye movements in simple visual tasks. For instance, a monkey might 
see a visual field of moving dots. Some proportion of the dots is moving 
randomly, but some proportion is moving left or right, and the monkeys 
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have to move their eyes in a direction to indicate the direction of system-
atic movement. Recordings can be obtained from many brain regions that 
are involved in the control of saccadic eye movements—the middle tem-
poral area, the lateral intraparietal area in extrastriate cortex (Roitman 
and Shadlen, 2002), the frontal eye field (Schall, 2001; Thompson et al., 
1997), and the superior colliculus (Basso and Wurtz, 1998). The typical 
result is an initial increase in the activity of cells that code for movement 
in the target direction and in distractor directions. However, the distractor 
activity will lag or decrease, while the target activity reaches a threshold 
rate of firing, at which point the saccadic movement is initiated. These 
cells appear to behave as accumulators for decisions: when they have 
accumulated sufficient evidence (as indicated by their firing rate), they 
drive a response. For more difficult judgments (a harder discrimination of 
direction), the firing rate grows more slowly, as if the evidence is growing 
more slowly, but builds up to the same threshold before the saccade is 
initiated. On trials where an error is made, the buildup to threshold will 
be seen in the cell coding for the saccade in the wrong direction. It is as 
if the wrong cell had won the race to reach the threshold on that trial. 
There have now been a number of attempts to model these data relating 
the neural firing to the distribution of response times (for a review, see 
P. L. Smith and Ratcliff, 2004). The proposal below is particularly influ-
enced by a recent paper by Ratcliff et al. (2007).

One of the reasons why this research is generating excitement is that 
it is seen as illustrating a possible neural basis for decision making in gen-
eral. The task of memory retrieval can be conceived of in these terms. 
The activation of each memory provides evidence that this memory is 
the one to be retrieved, and one can think of its activation as driving some 
evidence accumulator. All the possible memories are competing, similarly 
driving their evidence accumulators. The memory that is retrieved is the 
one whose evidence accumulation passes the threshold first, just like the 
direction of the saccade is determined by which cell’s activity reaches 
the threshold first. Placing the memory into the declarative buffer is a 
discrete action done upon reaching the evidence threshold, just like a sac-
cade is a discrete action taken after the threshold is reached.

Ratcliff et al. (2007) are able to model both the neural firing data 
and the behavioral data, assuming that the growth in each accumula-
tor can be described according to a leaky accumulator model (related 
to the Ornstein-Uhlenbeck model of Busemeyer and Townsend, 1993). 
This model assumes that information accumulates according to a fixed 
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Figure 3.16. A representation of the growth in firing rates for differ-
ent activation levels in the leaky accumulator model.

rate but that there is also a decay process. The model normally includes a 
random component, but this will be ignored here to simplify the exposi-
tion.29 If x reflects the firing rate—or, more abstractly, the evidence for 
retrieving a chunk with activation A—the equation for change in x is

where the activation is exponentiated to keep the values positive, D is 
the decay rate, and h scales time. One can convert this differential equa-
tion into an equation specifying how firing rate changes with time:

Figure 3.16 shows how the firing rate increases with time for different 
activation values, assuming the decay parameter D is 0.25 and the time 
scale h is 1 ms. That figure also illustrates a threshold, E (for evidence), 
of 0.25 and what this implies for the time to reach that threshold. As the 
activation decreases, the time to reach the threshold increases. Increasing 

29. However, the randomness in the evidence accumulation is an essential part of the 
full conception. Its effects are reflected at a more aggregate level in ACT-R in terms of 
the noise components added to the activations.

dx
dt

h e DxA= −( )
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that threshold would increase the time; decreasing it would decrease the 
time.

One can convert the formula above into a formula giving time to 
threshold:

This rather unattractive-looking expression has a simple approximation 
when the quantity with the logarithm is close to 1:

which is the ACT-R latency equation where F = E/h. Figure 3.17 com-
pares the ACT-R latency function against this latency function (not the 
approximation); the correspondence is quite good, particularly below 
the retrieval threshold. In conclusion, the latency function proposed in 
ACT-R fits well with current ideas about the neural basis of decision 
making.

Figure 3.17. A comparison of the latencies produced by 
the leaky accumulator model and the ACT-R latency 
equation.
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4
The Adaptive Control of Thought

Chapter 3 reviews the argument that a flexible declarative memory is 
critical to our ability to adapt to a changing world. However, it is not 
enough to retrieve the relevant knowledge from our declarative ware-
house; we must be able to use it. Using the knowledge to its full potential 
requires complex, deliberative processes in which we make inferences 
and predictions on the basis of that knowledge. For instance, if I have lost 
my wallet and remember that I have been to Starbucks I must elaborate 
on this knowledge to infer where my wallet might be and how to recover 
it. However, this complexity and deliberation can make it fatally flawed 
as a strategy when we have to act rapidly in situations where our cognitive 
resources are being stretched to their limits. Therefore, the development 
of effective cognitive procedures requires a process by which frequently 
useful computations are identified and cached as cognitive reactions that 
can be directly evoked by the situation. These cognitive reflexes need 
to be integrated with the more deliberative processes to yield adaptive 
control of thought.1 The procedural module in figure 2.2 bears the re-
sponsibility of achieving the right balance of action and reflection. It con-

1. The title of this chapter is what the acronym ACT stands for. When I named it (An-
derson, 1976), I was heavily influenced by both Allen Newell’s emphasis on production 
systems as providing a model of control structure for thought and the need for control of 
thought to adapt with experience. At the time, the name seemed too close to “thought 
control” and its negative associations, so I did not reveal the meaning of the acronym until 
Anderson (1983) and have never emphasized that meaning. Perhaps now the theory has 
reached the point where it is beginning to live up to the positive implications of its title.
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tains both the cognitive reactions and the more deliberative procedures. 
In this chapter I explain the procedural module and how it fits into the 
larger system, particularly how it relates to the knowledge in declarative 
memory and the intentional structure in the goal module.

The main portion of this chapter presents a description of the proce-
dural module and evidence for it. However, it is important to recognize 
that this is not an isolated proposal but rather occurs in the context of 
a rich history of behavioral research and theory that extends back a full 
century, and in the context of a rich body of accumulated knowledge 
about the functions of relevant brain regions. The ACT-R proposal is just 
an attempt to summarize the lessons learned from all of these efforts, and 
thus the chapter begins by reviewing the relevant research.

The Relationship Between Thought and Action

The Behaviorist Debate

The last century was characterized by an ongoing and renewing debate 
about how what we know influences what we do. Chapter 3 discusses 
an early realization in the arguments of J. B. Watson (echoing many 
behaviorists of the time) that there was really no such thing as knowing 
separate from doing. As behaviorism advanced in the first half of that cen-
tury, the issue of knowing versus doing became a point of disagreement 
within the behaviorist camp. This issue was enshrined in the debate be-
tween psychologists Clark Hull and Edward Tolman. Hull (e.g., Hull, 
1952) had developed a much-envied mathematical theory that formal-
ized the early arguments of Watson—knowledge was realized as S-R 
“habit strengths,” which were connections between stimuli (the S) and 
responses (the R). His theory allowed an important role for drive and re-
inforcement, but fundamentally when the stimulus conditions were right, 
the response would be made. In Hull’s world, you “just did it.” Tolman, 
however, proposed that we learn two kinds of expectancies (e.g., Tolman, 
1932). One is the S-R-S expectancy that if a certain response (R) is made 
in a certain situation (the first S), another event (the second S) will result. 
For instance, a bar press (R) in a Skinner box (S) will result in food (S). 
The other is the S-S expectancy that one stimulus will follow another. 
For instance, Tolman might argue that Pavlov’s dogs developed the expec-
tancy that food would follow a bell. Tolman proposed that these expec-
tancies are put together to achieve various needs by “inference.” While he 
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spoke the language of behaviorism, his theory was correctly characterized 
as “cognitive.”

There was another important difference between the two theories. 
According to Hull, habits build up their strength as a function of number 
of reinforcements. According to Tolman, reinforcement is not critical and 
the expectancies just reflect the frequency with which these contingen-
cies are experienced in the environment. This reflects an old debate that 
psychologist Edward Thorndike had with himself in trying to sort out the 
law of effect and the law of exercise (Thorndike, 1927, 1932). The law of 
effect said that reinforcement was necessary to strengthen the bonds, and 
the law of exercise said that mere repetition of the behavior was enough. 
Initially, Thorndike thought that both laws were necessary, but in the end 
he decided in favor of the law of effect. However, Thorndike’s decision 
did not end the matter, and the current evidence is that versions of both 
laws are at work—Thorndike had it right in the first place.

One of Tolman’s classic demonstrations involved latent learning. The 
experiment by Tolman and Honzik (1930) involved three groups of rats 
running a maze with 14 choice points. Rats were put in at one end of the 
maze and were retrieved when they got to the other end. All rats ran the 
maze once a day for 17 days. For one group, food was always at the end of 
the maze. For another group, food was never at the end of the maze. For 

Figure 4.1. Average number of incorrect choices 
for three groups of rats that are running a maze. 
From Tolman and Honzik (1930).
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a third group, food was introduced on the 11th day. Figure 4.1 shows the 
performance of the rats in terms of how many wrong choices they made 
before reaching the end of the maze. The group given food on the 11th 
day dramatically improved its scores on the 12th day and even performed 
slightly better than the group that was reinforced all along. According 
to Tolman, the nonreinforced rats were learning all the while. However, 
their learning was latent; only when a goal was introduced was the learn-
ing translated into performance. Thus, for Tolman, reinforcement was not 
necessary for learning but was necessary for performance.

Tolman’s demonstrations did not end the matter (for a review of 
this research, see Kimble, 1961). A reasonable interpretation would be 
that sometimes learning took place in the way Tolman thought it did 
and sometimes as Hull thought it did, but the field was looking for an 
either-or answer. In that debate, Tolman tended to lose, though not really 
on the evidence. Rather, he lost because the theory that Hull proposed 
came closer to a mechanistic theory that explained how behavior came 
out of the organism. Tolman’s theory never had that sort of character, 
although MacCorquodale and Meehl (1953) did try to “formalize” it. The 
attitude toward Tolman’s theory was summarized in the famous criticism 
by Guthrie (1935):

Signs, in Tolman’s theory, occasion in the rat realization, or cog-
nition, or judgment, or hypotheses, or abstraction, but they do 
not occasion action. In his concern with what goes on in the rat’s 
mind, Tolman has neglected to predict what the rat will do. So far 
as the theory is concerned the rat is left buried in thought; if he 
gets to the food-box at the end that is his concern, not the concern 
of the theory. (p. 172)

The AI Legacy: Symbolic Planning Versus Reactive Agents

The solution to Guthrie’s challenge came from the early work in ar-
tificial intelligence starting with Newell and Simon’s general problem 
solver (e.g., Newell and Simon, 1961). They showed how one could 
take such expectancies (in the form of problem-solving operators) and 
reason about them, resulting in goal-directed behavior. Their theory was 
much more mechanistic than any earlier behaviorist theories. Newell 
and Simon produced computer simulation models that actually did the 
tasks. Their work was extended in the early generation of automated 
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planning programs (Fikes and Nilsson, 1971), such as STRIPS (Stanford 
Research Institute Problem Solver). These systems worked from a symbolic
representation of the relevant world and of the effects of different ac-
tions on that world. This was typically represented in some subset of 
formal logic. The actions in a system such as STRIPS are represented 
exactly like Tolman’s S-R-S triples. In the language of planners, the first S 
is the precondition, R is the action, and the second S is the effect or 
postcondition.2 Thus, in informal terms, a typical action might be “If I am 
in room 1, and go through the blue door, then I will be in room 2.” The 
planners were capable of taking knowledge like this and planning paths 
to get from one place to another place—that is, they were quite capable 
of solving Tolman’s maze.

However, this early work in artificial intelligence neither settled the 
matter in favor of Tolman nor brought any end to debate. It was argued 
that classic planning systems would not scale up (Chapman, 1987), 
and reactive architectures began to appear that just did tasks without 
any symbolic representation of knowledge (Agre and Chapman, 1987; 
R. A. Brooks, 1991). These reactive architectures avoided the efficiency 
problems because they did not have to discover a solution from first prin-
ciples, but instead had the solution built in as instinct. The work of R. A. 
Brooks was particularly attractive in that he was able to use his ideas to 
build working robots. He developed a subsumption architecture in which 
more complex behaviors were layered over simpler ones. In some imple-
mentations there were mappings of perceptual states directly onto actions 
that are, in effect, Hull’s S-R bonds. Brooks’s research saw rapid progress 
in the late 1980s but seemed to hit a roadblock in achieving anything like 
human-level intelligence. Among the problems faced by this approach 
was achieving effective learning (Jennings et al., 1998). These kinds of 
architectures are a good way of implementing a policy in a known world, 
not of adapting to new information about the world.

The current emphasis in artificial intelligence seems to be on hy-
brid architectures (e.g., Ferguson, 1992; Firby, 1996; Georgeff and Lan-
sky, 1987) that mix deliberative and reactive components. For instance, 
Georgeff and Lansky’s procedural representation system consists of both 
a set of procedures that can be directly executed and a knowledge base of 
facts about the world that can be used to guide procedure selection. Its 

2. Chapter 5 uses a version of this representation for instructions.
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operation appears to have considerable similarity to ACT-R. In the guise 
of a rat running in Tolman’s maze, such a system could plan a sequence 
of known procedures for traversing parts of the maze to achieve a novel 
path through the maze.

The design lessons from the AI research seem clear: to the degree one 
can anticipate how knowledge will be used, it makes sense to prepackage 
the application of that knowledge in procedures that can be executed 
without planning. To the extent that this cannot be anticipated, one must 
have the knowledge in a more flexible form that enables planning

The Struggle Between Action and Thought 
in the Individual Mind

In parallel with this century-long struggle of perspectives on the role 
of thinking versus acting, cognitive psychology has had a long tradition 
of studying how the struggle between thought and action plays out in 
the individual. The classic paradigm for studying this is the Stroop task 
first described by John Ridley Stroop (1935). The standard version cur-
rently used for this task is illustrated in figure 4.2a. Participants in the 
experiment are shown words in particular print colors. In the congruent 
condition, the print color of the word matches the word; in the conflict 
condition, they mismatch. Participants are asked to either read the word 
or name the print color. A neutral condition is created for word reading 
in which the word is in black ink, and a neutral condition is created for 
color naming when a nonword is presented. Figure 4.2b shows typical 
results (in this case from Dunbar and MacLeod, 1984). Through their 
years of reading, people have acquired a strong reflex to read the word. As 
a consequence, word reading is fast and not much affected by condition. 
On the other hand, if asked to name the ink color, their knowledge of 
what they are supposed to do has to fight with their reflexes. Participants 
take longer in the conflict condition and make more errors, occasionally 
saying the word rather than the color. This conflict basically involves the 
battle between Hull’s S-R bonds (the urge to say the word) and Tolman’s 
goal-directed processing (the requirement to comply with instructions). 
While there is this struggle, it is notable that, in the Stroop task at least, 
the goal usually wins. Someone who cannot do the task with few errors 
may be suffering from damage to the frontal cortex.

However, such conflicts are not immutable. With practice, the inter-
ference in the Stroop task decreases. It is unlikely an experiment will 
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ever be done that provides enough practice in color naming to match an 
adult’s practice at word reading. However, in tasks where the reactive 
behavior is less engrained, it has been shown possible to reverse the direc-
tion of the interference. In one such task, MacLeod and Dunbar (1988) 
had participants learn color names for random shapes. They were shown 
these shapes in different colors and had to either give the color associ-
ated with the shape or say the ink color. The conditions are illustrated in 
figure 4.3a. In this case, the urge to describe the ink color is much stron-
ger and interferes with saying the newly learned associations. However, 
over 20 days this effect reversed. Figure 4.3 shows the progression of 
this change (part b) and the results from an ACT-R model developed by 
Lovett (2005) (part c).

Another variant of the Stroop task presents participants with a display 
of numerals (e.g., five 3s) and pits naming the number of objects against in-
dicating the identity of the numerals. The stronger interference in this case 
involves numeral naming interfering with counting (Windes, 1968). This 
paradigm has been used to compare Stroop interference in humans versus 
rhesus monkeys that had been trained to use the numerals (Washburn, 
1994; see table 4.1). Both groups of participants were shown two arrays 

Figure 4.2. (a) An illustration of the conditions in a typical Stroop task; 
(b) data from Dunbar and MacLeod (1984).
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Figure 4.3. (a) An illustration of the conditions in McLeod and Dunbar 
(1988); (b) data from McLeod and Dunbar (1988); (c, color; s, shape; cong, 
congruent; neut, neutral; conf, conflicting); and (c) data from Lovett’s (2005) 
simulation. c, color; s, shape; cong, congruent; neut, neutral; conf, conflict. 
From Lovett 2005. Reprinted by permission of the publisher. Copyright 2005 
by Cognitive Science Society, Inc.

and were required to indicate which had more numerals independent of 
the identity of the numerals. Compared to a baseline where they had to 
judge which array of letters had more objects, both humans and monkeys 
performed better when the numerals agreed with the difference in cardi-
nality and performed worse when the numerals disagreed. Both popula-
tions showed similar reaction time effects, but the humans made 3% errors 
in the incongruent condition, whereas the monkeys made 27% errors. The 
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level of performance observed of the monkeys was like the level of perfor-
mance observed with patients with damage to their frontal lobes.

On the practice view, one might expect that children would show less 
Stroop interference in naming the color of words than do adults, but in 
fact children (of an age at which they have already learned to read) show 
greater interference. This is attributed to the fact that children in general 
have greater difficulty in controlling their behaviors. One paradigm for 
studying the development of such control is the “Simon says” task. In one 
study, Jones et al. (2003) had children receive instructions from two dolls: 
a bear and an elephant. The instructions were such things as “Elephant 
says touch your nose.” The children were to follow the instructions from 
one doll (the act doll) and ignore the instructions from another (the in-
hibit doll). All children successfully followed the act doll, but many had 
difficulty ignoring the inhibit doll. From 36 to 48 months of age, children 
progressed from 22% success to 91% success in ignoring the inhibit doll. 
A few children used regulatory self-speech to control their behavior, as 
famously proposed by Luria (1961), but they also used strategies such as 
sitting on their hands or distorting their actions (e.g., pointing to their ear 
rather than their nose).

In summary, it seems that both Hull and Tolman were correct—be-
havior is controlled by both reactions and reflections. Through various 
reflective processes, expectancies can be turned into behavior. With ex-
tensive practice (e.g., either a child learning to read or a primate learning 

Table 4.1.  Mean Response Times and Accuracy Levels 
as a Function of Species and Condition

Accuracy 
(%)

Response
Time (ms)

Condition Mean SD Mean SD

Rhesus Monkeys (N = 6)

Congruent numerals 92 3 676 31

Baseline (letters) 86 4 735 49

Incongruent numerals 73 8 829 43

Human Subjects (N = 28)

Congruent numerals 99 1 584 52

Baseline (letters) 99 1 613 59

Incongruent numerals 97 1 661 56
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to use numerals), these reflections can turn into reactions. The ability 
for reflection to dominate reaction is something that appears to increase 
both phylogenetically and developmentally.

Relevant Brain Structures

Three brain systems are particularly relevant to achieving the balance be-
tween reflection and reaction. First, the basal ganglia are responsible for the 
acquisition and application of procedures (Hull’s reactions). Second, the 
hippocampal and prefrontal regions are responsible for the storage and 
retrieval of declarative knowledge (Tolman’s expectancies). This second 
set of structures was the focus of chapter 3, but they also play an impor-
tant role in the service of achieving effective cognitive procedures. Third, 
the anterior cingulate cortex (ACC) exercises cognitive control in the se-
lection of context-appropriate behavior (Newell and Simon’s goals).

The Basal Ganglia

A number of researchers have proposed that the basal ganglia (see 
figure 2.1) perform the function of learning S-R associations and more 
advanced cognitive procedures (for a review, see Packard and Knowlton, 
2002). Lesions to the basal ganglia impair learning in many instrumental-
conditioning experiments. Patients with damage to the basal ganglia 
(from, e.g., Parkinson’s disease and Huntington’s disease) are impaired at 
such tasks as probabilistic classification and sequence learning.

One series of experiments implicating the basal ganglia in learning 
of procedures is described in Hikosaka et al. (1999). They had mon-
keys (and humans in some experiments) learn a sequence of responses 
to stimuli such as those in figure 4.4. The monkeys saw a sequence 
of five 4 × 4 grids in which two cells were lit up. They were to press 
the lit cells but had to select them in the correct order. Monkeys can 
learn such sequential tasks well and appear to show all the properties 
of human learning (Terrace et al., 2003). Given that they cannot be 
instructed in the task, there tends to be a period of getting the learning 
set for acquiring such sequences, but after that the monkeys learn new 
sequences relatively efficiently.

Hikosaka et al. (1999) had the monkeys learn such sets and then prac-
tice them over many months. They found interesting contrasts between 
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their knowledge of such sets early on and later after months of practice. 
Early on, they had no problem when the order of the five sets was 
reversed.3 Also, regardless of whether they had been trained with their 
right or left hand, they had no difficulty in switching to the other hand. 
However, after months of practice they had become much faster but 
could key the set only with one hand and could not reverse the order of 
report. Their behavior gave all the appearance of switching from a flex-
ible declarative representation to a classic S-R representation. Hikosaka 
et al. also reported a series of studies looking at the neural basis for the 
early versus late representations. Early on, the task activated prefron-
tal regions. They particularly focused on activation in supplementary 
motor area (SMA), which is close to the ACC. When they locally and 
reversibly inactivated SMA (by injecting muscimol), the newly learned 
sequences were disrupted but the highly practiced sequences were not. 
They found that the highly practiced sequences tended to produce ac-
tivation in basal ganglia structures such as the striatum.4 When they 
locally and reversibly inactivated these structures, they found that the 
highly practiced sequences were disrupted but not the newly learned 
sequences.

The basal ganglia region seems to display a variant of reinforcement 
learning (Thorndike’s law of effect). Unlike Hebbian learning (Thorn-
dike’s law of exercise) associated with the hippocampus, which requires 
only contiguity, this learning requires feedback on the appropriateness of 

Figure 4.4. Example of material used in Hikosaka et al. (1995) to study serial 
memory in monkeys. Numbers (not shown to monkeys) indicate the order in 
which to press the cells. From Hikosaka, Rand, Miyachi, & Miyashita (1995). 
Used with permission of the publisher. Copyright 1995 by The American 
Physiological Society.

3. In the tasks posed by Hikosaka et al. (1999), the monkeys had to key the two grid 
positions in the same order regardless of whether they were going through the matrices 
in forward or backward order.

4. The amount of learning involved in these tasks is at least an order of magnitude 
greater than the learning experiments we have performed (see figure 4.15) and must 
involve much more fundamental changes in the representation of the knowledge.
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the behavior. The basal ganglia contain spiny neurons that many believe 
are involved in a process that learns to recognize favorable patterns in the 
cerebral cortex (e.g., Houk and Wise, 1995). These spiny neurons receive 
specialized inputs that appear to contain supervisory signals from dopa-
mine neurons in other midbrain regions (Schultz et al., 1993, 1997).5

Recent studies on the role of dopaminergic signals show that they do not 
simply report the occurrence of reinforcement. For example, Ljungberg 
et al. (1992) and Mirenowicz and Schultz (1994) show that the activa-
tion of dopamine neurons depends on the difference between expected 
and actual rewards. Moreover, this response is transferred back in time 
to the reward-predicting contextual patterns recognized by the striatum. 
These properties (responding to unpredicted reward and moving back 
in time) are exactly the properties of the so-called temporal difference 
learning that has become a popular reinforcement-learning algorithm in 
AI (e.g., Kaelbling et al., 1996; Sutton and Barto, 1998).

While most of this research has focused on nonhumans, where care-
ful measurement can be obtained, imaging research indicates that similar 
effects are found with humans. The striatum adjusts its response in accor-
dance with the valence (reward or punishment), magnitude of feedback 
(Breiter et al., 2001; Delgado et al., 2003), and difference from expecta-
tion (McClure et al., 2003; O’Doherty et al., 2003). For example, using 
a gambling paradigm, Delgado et al. (2003) found that the striatum dif-
ferentiated both between the valence (a “win” or “loss” event) and the 
magnitude of reward or punishment (large or small).

The Hippocampus

As discussed in chapter 3, the hippocampus is a repository for declara-
tive knowledge that can be used for multiple purposes. It is where the 
cognitive maps posited by Tolman are stored. It contains the “place cells” 
that fire when the animal is in a particular location in a known environ-
ment (O’Keefe and Nadel, 1978). The hippocampus will increase in size 
in many species as demands are made for increased spatial knowledge 

5. While it is true that dopamine signals project to the cortex more generally, the do-
pamine modulation of the basal ganglia has a faster time constant and is plugged directly 
into the circuits that select actions. Also, the dopamine projections from the substantia 
nigra are controlled by the basal ganglia, so the basal ganglia receive a much more differ-
entiated dopamine signal (Randy O’Reilly, personal communication).
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(Jacobs et al., 1990). The hippocampal region, particularly in humans, 
stores much more than just spatial knowledge. Also, the neural learning 
in the hippocampus seems to be mainly Hebbian, which is a contigu-
ity-based principal corresponding to Thorndike’s law of exercise. This 
contrasts with the reinforcement learning in the basal ganglia correspond-
ing to the law of effect (Atallah et al., 2004).

One line of research illustrating the difference between the hippocam-
pus and basal ganglia involves maze learning in rats (for a review, see Pack-
ard and Knowlton, 2002). This involves a simple plus maze (see figure 4.5) 
that figured prominently in Tolman’s debate with Hull. Rats are trained 
to start from position S1 and go to the food in R1. The question of inter-
est concerns what rats will do when put in S2. Have they learned a place 
and continue to go to R1, or have they learned a right-turning response 
and now go to R2? As Restle (1957) reviewed, the behavioral results on 
this topic were ambiguous and varied from study to study depending on 
such things as the relative saliency of different cues. In a study by Packard 
and McGaugh (1996), after the rats had completed their learning, they 
were given either an injection that impaired their caudate or an injection 
that impaired their hippocampus. The animals with caudate impairment 
displayed place learning and went to R1, while the animals with hip-
pocampal impairment displayed response learning and went to R2. The 
rats appear to have developed both a representation of where the location 

Figure 4.5. Example of a maze used to study 
place versus response learning. From Parle, 
M., Singh, N., & Vasudevan, M. (2005). 
Reprinted by permission of the publisher 
and author. Copyright 2005 by Journal of 
Sports Science and Medicine.
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was in their hippocampus and a right-turning response tendency in their 
basal ganglia, and acted according to whichever was not impaired. In 
another study, Packard (1999) injected a memory-enhancing agent into 
either the caudate or the hippocampus. Rats with the hippocampal injec-
tion displayed a pattern of behavior typical of place learning; rats with a 
caudate injection displayed a pattern typical of response learning.

The Anterior Cingulate Cortex

The ACC plays a critical role in controlling behavior. It has undergone 
evolutionary changes that are found only in humans and the closely re-
lated great apes (Allman et al., 2001). These changes, which include a 
new class of spindle-shaped cells in much stronger concentrations in hu-
mans than in other apes, appear to be related to the ability to achieve 
appropriate behavior in the presence of conflicting stimuli. The amount 
of activation in the ACC appears to be correlated with the performance 
by children in tasks requiring cognitive control (Casey et al., 1997b). De-
velopmentally, there also appears to be a positive correlation between 
performance and sheer volume of the ACC (Casey et al., 1997a).

There are a number of different theories in the literature on the role 
of the ACC. Some have postulated that it is involved in controlling cog-
nition, much as is being proposed here. For instance, Posner and De-
haene (1994) have described the ACC as “involved in the attentional 
recruitment and control of brain areas to perform complex tasks” (p. 76). 
D’Esposito et al. (1995) have identified it with Baddeley’s (1986) central 
executive, and Posner and DiGirolamo (1998) have related it to Nor-
man and Shallice’s (1986) supervisory activating system. However, there 
are other theories of the ACC. One theory relates it to error detection. 
This is supported by the error-related negativity (ERN) in event-related 
potentials that has been observed when errors are made in speeded re-
sponse tasks (e.g., Falkenstein et al., 1995; Gehring et al., 1993). Dehaene 
et al. (1994) were able to localize the ERN as residing within the ACC. 
On the other hand, it responds more strongly in many tasks that do not 
involve errors. Botvinick et al. (2001), Carter et al. (2000), and Yeung et 
al. (2004) have argued that the ACC activity reflects response conflict 
and that error trials are just a special case of this. For instance, the ACC 
responds more strongly on a conflict trial in the Stroop task even though 
the participant does not make an error. More precisely, these researchers 
argue that the ACC is monitoring for conflict among potential responses, 
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and they further argue that other regions of the prefrontal cortex respond 
to the conflict once detected. MacDonald et al. (2000) found that in the 
Stroop task, when participants are warned that it will be a difficult color 
trial, there is greater activation in dorsolateral prefrontal cortex (DLPFC) 
and not in the ACC in preparation for the task. In contrast, when the 
Stroop task is presented, the ACC responds to a difficult color trial. Thus, 
they argue that, unlike in the Posner and Dehaene (1994) proposal, the 
DLPFC6 and not the ACC is responsible for control, with the ACC in-
stead monitoring for conflict, as occurs in the Stroop task. This conflict is 
often interpreted as conflict among competing responses.

ACT-R’s goal-module interpretation of the ACC is relatively close to 
the Posner and Dehaene (1994) proposal. The goal module is maintain-
ing the abstract control states that allow cognition to progress in a correct 
path independent of the external situation. For instance, the goal must be 
set to a special color-naming control state to get correct performance on a 
color-naming trial in a Stroop task. When errors are made and detected, a 
separate control state is set to reflect on the nature of the error. Of course, 
it is possible that the ACC responds both to response conflict and to the 
need to set control states. For instance, Van Veen and Carter (2005) found 
evidence that response conflict was handled by a more anterior and ven-
tral region rather than by a region that responded to what they called se-
mantic conflict. Interestingly, the center of their semantic conflict region 
is quite close to our ACC region (indeed, our region is slightly farther 
posterior than their semantic conflict region).7

A study by Sohn et al. (2004, in press) provides evidence for the 
Posner and Dehaene (and ACT-R) view that the ACC serves a control-
ling function independent of errors or response conflict. They had people 
evaluate logical operators such as and versus nand and or versus nor. So, 
for instance, and(true,true) = true while nand(true,true) = false. As another 
example, or(false,false) = false while nor(false,false) = true. Table 4.2 shows 

6. The prefrontal region we have been using to tap retrieval is only a small fragment 
of the overall human DLPFC, and other regions of DLPFC undoubtedly to play other 
roles, including roles involved in the higher level organization and execution of tasks 
(E. K. Miller and Cohen, 2001). The prefrontal cortex is much expanded in the human; 
chapter 5 includes speculation about one of the other functions it might perform.

7. Another interpretation is that ACC activity is just a reflection of task difficulty as 
indexed by errors or reaction time (Paus et al., 1998). There are variations on this posi-
tion that tend to consider ACC activity artifactual, reflecting such things as sympathetic 
modulation of heart rate (Critchley et al., 2003).
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the full range of problems and how they were presented. The nand and 
nor operators tend to involve inverting the arguments to get the response, 
and they are more difficult behaviorally (Sohn and Carlson, 1998). One 
can think of the nand and nor operators as creating a conflict between the 
responses suggested by the stimuli and the required responses, just as in the 
Stroop task. On the other hand, one can think of these operators as being 
cognitively more complex. If nand is interpreted as not and (a proposal in 
the spirit of Chase and Clark, 1972), then the participant must first evaluate 
and and then reverse the evaluation. The Sohn et al. experiment served to 
distinguish between the conflict and cognitive complexity interpretations of 
the ACC. Participants either were or were not warned ahead of time which 
operator they were going to have to evaluate. In either case they were given 
9 s to prepare before seeing the problem. If they had a warning about an up-
coming negative operator, participants could, among other things, prepare 
to deal with the not portion, perhaps by mentally remapping their fingers.

Table 4.3 gives the latencies for positive and negative logical operators 
with and without warning. With a warning about the upcoming opera-
tor, participants definitely were able to take advantage of the preparation 

Table 4.3.  Latencies for Positive and Negative Logical 
Operators with and without Warning in 
the Sohn et al. Experiment

Positive Negative Negative Cost

Warned 693 ms 763 ms 70 ms
Not Warned 1,306 ms 1,763 ms 457 ms

Table 4.2.  Problems Presented to Participants by 
Sohn et al. (2004, in press)

Positive Negative

And Or Nand Nor

$ (I, I) = I
$ (I, B) = B
$ (B, I) = B
$ (B, B) = B

# (I, I) = I
# (I, B) = I
# (B, I) = I

# (B, B) = B

^ (I, I) = B
^ (I, B) = I
^ (B, I) = I

^ (B, B) = I

% (I, I) = B
% (I, B) = B
 % (B, I) = B
% (B, B) = I

The single symbols stand for the operators ($, and; #, or; ^, nand; %, nor). 
True (I) mapped onto the index finger, and false (B) mapped onto the 
middle finger.
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period to shorten their response times to the problems. Participants were 
also generally slower with negative operators, but with preparation they 
were able to reduce the cost of processing negatives from more than 
400 ms to less than 100 ms. Thus, they were able to take advantage of a 
warning to largely eliminate the extra cost of the negative operators.

Figure 4.6 also shows the timing of the experiment and the response in 
the ACC. In the no-warning condition, the BOLD (blood oxygen level–
dependent) response rises very little during the preparation period, pre-
sumably because participants can do little to prepare for the upcoming 
problem. On these unprepared trials, when the problem was presented, 
there was a greater response in the case of negative operators. This could 
be explained in terms of either response conflict or greater cognitive com-
plexity. The two accounts can be discriminated by the results that occurred 
when participants were warned of the upcoming operator. When they were 
warned, there was a strong response in the preparatory interval that was 
greater in the case of negative operators. This is what would be predicted 
from a complexity perspective, but it would not be predicted by response 
conflict, since the participants did not yet know what their responses would 
be. Moreover, this preparation eliminated any difference between positive 
and negative problems during the response interval when the conflict could 
occur. Their preparation had removed the differential complexity of the 
two types of problems. Note also that all the data are from error-free trials. 
Thus, the difficulty registered in the ACC seems not an issue of responding 
to conflict or error, but rather an issue of dealing with a cognitively more 

Figure 4.6. Effects of a warning on processing of positive and 
negative logical operators. From Sohn et al. (2004, in press).
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complex condition. In the ACT-R interpretation, this extra cost involves 
setting an extra control state to process the implicit not.

The Sohn et al. study illustrates the lesson about the ACC that has 
come from every study we have done in our laboratory: it responds to 
manipulations of task complexity that correspond to the need to make 
extra distinctions in the control of the task. The effects of task complexity 
that we find are far too general and abstract to be just response conf lict. 
However, Jonathan Cohen (personal communication) has stated that the 
conflict interpretation of the ACC is more general than just a matter of 
response conflict and extends to conflicts between things such as goals. 
While the ACC response that we see cannot be a matter of just response 
conflict, it could be interpreted as reflecting conflict between two lines 
of thought. Whenever there are multiple lines of thought to pursue (con-
flict), there is the need to set new control information to guide the path 
forward. It is not clear to me that these are not just two different ways 
of describing the same thing, one within a connectionist architecture 
that emphasizes interactions and the other within an architecture such 
as ACT-R that emphasizes discrete representations. So, as in many cases 
reviewed in this book, at an abstract level there seems to be an emerging 
consensus about the interpretations of brain and function.

Architecture

Production Rules

This chapter reviews both the declarative and procedural systems be-
cause they go hand in hand in most tasks. However, the principal focus in 
this chapter is on the procedural module; this section addresses the pro-
duction system that provides the core of the procedural module and the 
learning processes associated with it. Table 4.4 provides an illustrative set 
of production rules for multicolumn subtraction taken from one of my 
textbooks (Anderson, 2000). Multicolumn subtraction is a task that has 
often been used to illustrate rule-based systems (Burton, 1982; Cooper, 
2002; VanLehn, 1990; Young and O’Shea, 1981) and for which there is a 
striking absence of connectionist models.8 It was one of the early success 
cases for rule-based approaches because it offered insight into what had 

8. However, for interesting starts, see Dallaway (1994) and Noelle and Cottrell (1995).
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been a confusing pattern of errors in children’s subtraction. A version of 
this model has been implemented in ACT-R so that it can be used to il-
lustrate some important architectural features of the procedural system.

Readers may recognize many or all of the rules in table 4.4 as describing 
their own behavior.9 Even though there are only seven rules, it produces 
solutions to all standard subtraction problems. If buggy rules are inserted 
to supplement or replace these rules, one can produce many of the error 
patterns that have been observed in children. However, because the focus 
of this section is on the architectural claims and not on these patterns of 
behavior, let us focus on just one production rule in that table, the rather 
bland rule for column subtraction when borrowing is not required:

If the goal is to process a column,
  And the top digit is not smaller than the bottom digit,
Then write the difference between the digits as the answer

Table 4.4. Productions for Multicolumn Subtraction

Condition Action

If the goal is to solve a subtraction problem Then make the subgoal to process 
the rightmost column

If there is an answer in the current column,
And there is a column to the left 

Then make the subgoal to process 
the column to the left

If the goal is to process a column,
And there is no bottom digit 

Then write the top digit as the 
answer

If the goal is to process a column,
And the top digit is not smaller than the 

bottom digit

Then write the difference between 
the digits as the answer

If the goals is to process a column,
And the top digit is smaller than the 

bottom digit

Then add 10 to the top digit,
And set as a subgoal to borrow from 

the column to the left

If the goal is to borrow from a column,
And the top digit in that column is not zero 

Then decrement the digit by 1

If the goal is to borrow from a column,
And the top digit is zero

Then replace the zero by 9,
And set as a subgoal to borrow from 

the column to the left

From Anderson (2000).

9. There are variants of the subtraction algorithm, but table 4.4 captures the algorithm 
that is typically taught to American students.
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As it turns out, the ACT-R model requires two rules to produce the 
effect of this one rule that appeared in my textbook. The first ACT-R 
production must make a retrieval request for the difference between 
two numbers, and a second production must harvest the subtraction fact 
giving the difference. These two productions are illustrated in figure 4.7. 
The request-difference production (part a) responds to a combination 
of information in the goal and the imaginal buffer. The goal buffer holds 
the information that the intention is to process the column, and the 
imaginal buffer encodes the fact that the top number is greater than or 
equal to the bottom number. The production makes a retrieval request 
for the difference between the two numbers and changes the control 
state of the goal to note that it is subtracting. The harvest-difference 
production (part b) fires when the goal is in this state and when the 
declarative module has returned an answer. It requests that this answer 
be written out and updates the goal to note that it is ready to process 
the next column.

This one example illustrates all of the modules that are critical to the 
execution of cognitive procedures: the goal module holding control states, 

Figure 4.7. Graphical representation of the two ACT-R 
productions underlying subtraction from a column when 
borrowing is not required: (a) request-difference production; 
(b) harvest-difference production.
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the declarative module retrieving critical information, and the procedural 
module executing the steps. In addition, there are connections to the 
outside world (the manual module) and the internal holding of external 
information (the imaginal module). As this example illustrates, produc-
tion rules are just stimulus–response bonds that have “gone over to the 
cognitive side” because control states, mental images, and past memories 
are among the stimuli they respond to. Moreover, on their response side, 
the action repertoire includes changing the state of these internal buffers. 
Besides including mental stimuli and responses, these production rules 
illustrate a number of computational features that had been considered 
problematic in the history of stimulus–response theories:

1. The rules respond to conjunctions of information in that they 
require tests to be satisfied in multiple buffers. For instance, the 
first production fires only when the goal is in a certain state and
the top digit is greater than or equal to the bottom digit. In the 
conditioning literature, it is usually harder to train lower organ-
isms to respond to conjunctive cues than to simple cues, but there 
are ample demonstrations that many species have this capability 
(Kehoe and Gormezano, 1980; Sutherland and Rudy, 1991).

2. The rules respond to relations among elements. For instance, 
this rule will not respond simply when there are two numbers 
in a column, but rather when the top number is greater than or 
equal to the lower number. Again, there has been some contro-
versy about whether lower organisms can respond to relation-
ships among elements, but it seems clear that many species can 
(for a review, see Anderson, 2000).

3. As a more general description encompassing both 1 and 2 
above, one can say production rules respond to patterns of ele-
ments. For instance, the first production in figure 4.7 is not 
specific to a particular pair of numbers. Rather, it will take 
whatever numbers appear in the column and use them to make 
a request of memory.

Production Compilation

Where did productions like those in figure 4.7 come from? Figure 4.8 
illustrates the general analysis of the origin of production rules in ACT-R. 
The basic idea is that the system comes to some new situation for which 
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it does not already have rules. This requires retrieval of declarative infor-
mation and deliberation about what has been retrieved. Figure 4.8 illus-
trates various ways this might happen:

1. As discussed in chapter 3 (e.g., see the list of eight instance-
based models in box 3.2), prior experiences can be retrieved 
and used in an instance-based process.

2. It is possible to reason from principles. For instance, young chil-
dren will use counting to determine the sum of addition prob-
lems like 4 + 3, by counting three numbers beyond 4.

3. As discussed extensively in chapter 5, explicit instructions can 
be retrieved and followed.

In each case, declarative information is retrieved and interpreted by 
some general production rules. In any of these cases, the interpretative 
process can be compiled into new production rules, as described in this 
subsection.

In the case of the example in figure 4.7, the productions probably orig-
inated from explicit instruction. In particular, children are explicitly told 
that if the top number is bigger than the bottom number, they should 
subtract the bottom from the top. Processing this instruction does not 
directly result in the production rules in figure 4.7, but rather in some 
sort of declarative knowledge such as “If the bottom number is not larger 

Figure 4.8. An illustration of the history by which new production rules are 
entered into the system.
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than the top number, then subtract it from the top number.” Initially, the 
child must retrieve this declarative knowledge and interpret it. The steps 
involved in doing this might be roughly as follows:

1. The child is looking at the column and tries to remember what 
to do next.

2. The child retrieves “If the bottom number is not larger than the 
top number, then subtract it from the top number.”

3. The child determines that this instruction applies in the current 
situation and decides to retrieve a subtraction fact.

Eventually, these three steps get collapsed into a production rule such as 
the one in figure 4.7a. This collapsing can be achieved by a variation of 
the oldest idea in learning theory: learning by contiguity. Guthrie (1935) 
stated, in stimulus–response terms, the basic idea of learning by contigu-
ity: “A combination of stimuli which has accompanied a movement will 
on its recurrence tend to be followed by that movement” (p. 26).

In the case of figure 4.7a, the “combination of stimuli” is the goal of 
processing a column and the state of the column, while the “movement” 
is the retrieval request for the difference between the two numbers. It is 
not trivial to get Guthrie’s verbal statement to actually work, because the 
learning must uncover the relationship between stimulus and response. 
In the case of figure 4.7, that relationship is the copying of the numbers 
from the column to the retrieval request. However, it is by no means an 
unsolvable problem, and a number of well-defined solutions have ap-
peared, including a process called chunking in Soar (Laird et al., 1986) 
and a related process called production compilation in ACT-R (Taatgen 
and Anderson, 2002; Anderson, Bothell et al., 2004).

Production compilation collapses two productions that follow each 
other into a single production. Appendix 4.1 provides some discussion of 
the technical issues in achieving this. One class of issues concerns what 
to do for different buffer combinations between the two productions. 
The most interesting case involves the situation where the first production 
makes a retrieval request for some declarative information, that infor-
mation is retrieved, and the next production harvests that retrieval and 
acts upon it. The compiled production eliminates that retrieval step and 
builds a production specific to the information retrieved. This is the pro-
cess by which the system moves from deliberation to action. Each time a 
new production of this kind is created, another little piece of deliberation 
is dropped out in the interest of efficient execution.
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Figure 4.9 illustrates the possible origins of the production rule in fig-
ure 4.7a. There are three steps corresponding to the three steps outlined 
above for the child:

1. The production “retrieve-operator” responds to the fact that 
the goal is to process the column and that the top number is 
greater. It requests retrieval of an instruction relevant to this 
situation. Note that this production is not specific to a situa-
tion where the top number is greater than or equal to the bot-
tom. Rather, the production takes whatever relation is in the 
imaginal buffer (in this case it is “top >= bottom”) and requests 
an instruction relevant to that relation. Thus, this is a general 
rule for finding relevant instructions.

2. The declarative chunk “Op11-1” is retrieved. This is a declara-
tive structure that encodes an instruction in operator form. 
The nature of this operator representation is discussed in 
more detail in chapter 5, but basically it contains an action 

Figure 4.9. The process of compiling the production rule in figure 4.7: the 
production (a) retrieves the declarative representation of the operation (b). 
This operator is interpreted by the rule (c). This sequence is then collapsed 
into the rule (d).
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appropriate to the situation. In the case of this operator for 
the situation, top >= bottom, that action is to subtract the top 
from the bottom.

3. The production “perform-subtraction” responds to the appear-
ance of the operator and makes a request of the declarative 
module for the appropriate subtraction fact. It also changes the 
state of the goal to the post state in declarative operator, which 
in this case is “subtracting.” This production is general to any 
request for subtraction and is not specific to instruction in the 
context of multicolumn subtraction.

Production compilation collapses such sequences (a production firing, 
a retrieval, and another production firing) into a single production, in 
this case the request-difference production rule in figure 4.9d. This rule 
is still general in the sense that it will apply to any pair of numbers in the 
column that satisfy the greater-than-or-equal relation, but it is much less 
general than the original pair of productions that gave rise to it. Produc-
tion compilation can be seen as implementing Guthrie’s basic idea of cre-
ating a link that goes from the initiating condition directly to the action.

The example in figure 4.9 reflects a single step of learning. One can 
imagine further collapsing of production rules. For example, the two rules 
in figure 4.7 would be collapsed if the first rule request-difference fired, 
a specific fact such as 7 – 2 = 5 was retrieved, and then harvest-difference 
fired. The rule that would result would be very specific: it would directly 
write out 5 when 7 and 2 were in the column without retrieving the in-
termediate arithmetic fact. This would be a further step in the direction 
of becoming a system that simply responds without thinking. However, 
as discussed in the next section, it requires multiple repetitions for any 
production to acquire enough strength to apply. This very specific rule is 
unlikely to receive enough practice to become a part of the child’s reper-
toire, but it would if the child saw enough problems involving 7 and 2.

Utility Learning

Guthrie argued that such new rules would be learned in a single trial. 
However, the evidence is that they are learned much more slowly. This 
is in keeping with the general view that procedural memories are gradu-
ally acquired. In ACT-R models, these rules are gradually strengthened 
until they start to be used. The need to build up strength is what slows 
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down the development of the very specific rules mentioned in the previ-
ous section: being so specific, they do not have many opportunities to be 
strengthened.

In the literature on reinforcement learning, the strengthlike quantity 
that determines what rules fire is often referred to as utility, since it is a 
measure of the value of the rule. When an organism finds itself in a situ-
ation where multiple rules apply, it chooses the rule with highest utility. 
There is some noise in these utility measures, and as a consequence it 
can vary from moment to moment which rule will be chosen. There is 
an approximate formula for the probability that one rule will be selected 
among a set of competing rules as a function of its utility relative to the 
utility of the other rules. If Ui denotes the utility of production i and Uj

denotes the expected utility of the all applicable productions j (including 
i), then the probability that production i will be selected is given by the 
conflict-resolution equation10:

 (1)

In this equation, s is a parameter that reflects the noise in the utilities 
and is conventionally set in ACT-R to 1. This choice rule goes back to 
Luce (1959), serves as the selection mechanism in Boltzmann machines 
(simulated annealing stochastic recurrent neural network; Ackley et al., 
1985; Hinton and Sejnowsky, 1986—where s is temperature), and has a 
wide variety of other applications in cognitive models, particularly those 
of a connectionist persuasion.

The utilities of productions are set according to the rewards they re-
ceive. They are updated according to a simple integrator model (e.g., see 
Bush and Mosteller, 1955).11 If Ui(n – 1) is the utility of a rule i after its 
n – 1st application, and Ri(n) is the reward the rule receives for its nth
application, then its utility Ui(n) after its nth application will be given by 
the difference learning equation:

 (2)

10. But it needs to be stressed that this formula is an approximate closed-form de-
scription of what happens on average. On any trial, noise is added to each utility and the 
rule with the highest utility is chosen.

11. This is a considerable simplification of the prior utility learning mechanism in 
ACT-R and better matches the general conception of neural learning in the basal ganglia.
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where α is the learning rate and is typically set around 0.2. This is also 
basically the Rescorla-Wagner learning rule (Rescorla and Wagner, 1972) 
or the delta rule (developed for neural networks by Widrow and Hoff, 
1960) and matches the evidence about dopamine signals in the basal gan-
glia. According to this equation, the utility of a rule will be gradually 
adjusted until it matches the average reward that the rule receives.

There are a couple of interesting issues about the reward itself. Re-
wards occur at various times not exactly associated with any production 
rule. For instance, when a monkey presses a button and receives a squirt 
of juice a second later, what productions get associated with this reward, 
and just how much reward do they receive? In ACT-R, all the productions 
that fired going back to the last significant event are rewarded, but they 
are given different rewards.12 The reward for a production rule is the ex-
ternal reward received minus the time from the rule to the reward.13 This 
serves to give less reward to more distant rules. This is like the temporal 
discounting in reinforcement learning but proves to be more robust.14

Another issue concerns what to do when a new rule is compiled. 
When a new production rule is first created, it has an initial utility of 0. 
Therefore, it is very unlikely to fire, because rules with higher utility exist 
(including the parent rule that gave rise to it in the first place). However, 
it can be recreated, and each time it is recreated its utility is increased 
according to the difference learning equation (equation 2). The reward 
attributed to the rule is the current utility of the first parent rule. For in-
stance, in the case of figure 4.9, each time request-difference is created, it 
would receive the same reward as its parent, retrieve-instruction.

12. In ACT-R models, it is necessary to insert event markers so that this mechanism 
knows how far to go back in time in making reward. This is like using eligibility traces in 
reinforcement learning (see Sutton and Barto, 1990).

13. This promotes a utility scale in which rewards are to be expressed in time units—
e.g., how much time is a monkey willing to spend to get a squirt of juice?

14. We have developed an application of a pure temporal difference learning to 
ACT-R (Fu and Anderson, 2006), but it has a limitation. This occurs when a critical 
choice between a correct rule and an incorrect (or lower utility) rule occurs early and is 
followed by common rules before the reward is received (which depends on that critical 
rule). There is no way in the simple reinforcement algorithm to propagate credit back to 
the correct rule and not the incorrect rule at the critical choice point. A discussion of this 
limitation is available in Anderson (2006), where I also describe the relationship between 
this utility calculation and the PG-C calculation that had been part of earlier ACT-R 
systems. As discussed there, the current ACT-R utility mechanism is just a simpler ver-
sion that extends better to continuously varying rewards and has a clearer mapping to 
reinforcement learning.
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To illustrate how these utility calculations work, consider how the fol-
lowing four rules might fare:

Retrieve-Instruction (Reward 10)
If the goal is to process a column,
Then retrieve an instruction for that kind of column.

Request-Difference-Subtract (Reward 14)
If the goal is to process a column,
  And the top digit is not smaller than the bottom digit,
Then subtract the bottom from the top

Request-Difference-Borrow (Reward 14)
If the goal is to process a column,
  And the top digit is smaller than the bottom digit,
Then borrow and subtract bottom from top.

Request-Difference-Wrong (Reward 14 or 0)
If the goal is to process a column,
Then subtract the smaller from the larger.

The first rule retrieves instructions appropriate for processing a column. 
The second15 and third rules reflect alternatives that might be compiled 
from using correct instructions. The second and third rules have higher 
rewards because they produce the result (a correct answer in the column) 
without the effort of having to retrieve the original instructions and in-
terpret them. The last rule represents the most common bug in children’s 
subtraction. It has been argued that this bug originates essentially from 
incorrect self-instruction (J. S. Brown and VanLehn, 1980; VanLehn, 
1990). It sometimes works, in which case it will be every bit as rewarding 
as the correct rule. When it leads to a wrong result, there is no reward. 
The exact magnitudes of reward assigned to these rules are hypothetical 
and are purely for illustration purposes.

We ran ACT-R with standard parameter settings through 100 subtrac-
tion experiences. The first rule, retrieve-instruction, started with its util-
ity already at 10, and the other rules began with a utility of 0. Initially, 
the model will exclusively use the retrieve-instruction rule and apply the 
instruction. The correct and incorrect instructions were equally available, 

15. Note that request-difference-subtract is basically request-difference in figure 4.7a.
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making the model just as likely to compile the correct rule (request-
difference-subtract or request-difference-borrow) as the incorrect interpre-
tation (request-difference-wrong) each time retrieve-instruction applies.

Figure 4.10a shows the average utility over the 100 trials. The rule that 
retrieves instruction holds steady at 10 while the other three grow, ini-
tially collecting the utility of retrieve-instruction as their reward. Request-
difference-wrong grows fastest because it applies in all situations, whereas 
the correct rules divide up the problems. Request-difference-borrow 
grows slowest because it applies in fewer cases than request-difference-
subtract. Eventually the utilities of the learned rules reach a range (about 
eight) where they are sometimes selected rather than the instruction rule. 
This leads to a growth in actual experience, and the wrong rule suffers 
a slight depression in utility while the other two rules move past the in-
struction rule to their eventual steady-state utilities of 14. Figure 4.10b 

Figure 4.10. (a) The growth in the utilities of the four production 
rules with experience; (b) the change in the probabilities of select-
ing each rule.



164 How Can the Human Mind Occur in the Physical Universe?

shows the probability that a rule will be selected when applicable (the 
instruction rule and wrong rule are always applicable; the other two are 
mutually exclusive).16

It is worth emphasizing some features of this treatment of utility:

1. Gradual introduction of a rule: Initially, when a new rule is created, it 
has 0 utility, and it will not be tried. Rather, the system will continue to 
use the parent rule that gave rise to it. However, every time it is recre-
ated, its utility will be increased until it is occasionally tried rather than 
its parent. Gradually, its utility will increase until it reaches a point where 
it can replace its parent if it is a superior rule.

2. Ordering of rules by utility: When different rules lead to different out-
comes, the system will learn to choose the rule with the highest outcome. 
For instance, in figure 4.10, faced with a choice between correct rules that 
always resulted in reward and a buggy rule that only sometimes resulted 
in reward, it came to choose the correct rules consistently.

3. Sensitivity to solution time: Faced with two rules that produce the same 
result but one faster than another, it will come to prefer the faster because 
the utility of a rule is defined as the difference between the reinforcement 
and the delay. This is the basis for the preference for request-difference-
subtract or request-difference-borrow over retrieve-instruction.

4. Sensitivity to change: The system is not locked into one way of evalu-
ating rules. Should the payoff for rules change, it can adjust. This does not 
seem to happen in a domain such as subtraction where the correct actions 
never change, but the next section considers a situation where people do 
adapt to changing probabilities of the success of an action.

Evidence

This final section reviews three lines of research that provide more spe-
cific evidence relevant to the mechanisms of procedural memory, going 
beyond the evidence already offered for the general view of cognitive 

16. In figure 4.10, the probabilities in (b) can be calculated from the utilities in (a) 
using the conflict-resolution equation (equation 1) with a value of 1 for s.
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procedures. It first examines a line of research that supports the utility 
computations just described; second, a series of fMRI (functional mag-
net resonance imagery) studies that support the mapping of the critical 
modules (declarative, procedural, and goal) onto brain regions; and third, 
a model of the acquisition of English past tense that shows how these 
pieces come together in a rather substantial learning effort.

Probability Learning

Back in the relatively early days of mathematical psychology, Friedman 
et al. (1964) completed an experiment on probability learning that is a 
marvel in detail of reporting. This task, a perfect case for illustrating utility 
learning, is an experimental version of guessing whether a possibly biased 
coin will come up heads or tails. Participants were to guess which of the 
two outcome lights (left or right) would come on. Task instructions en-
couraged participants to try to guess the correct outcome for each trial. 
The study changed the probability of the light on the right for each 48-trial 
block in the experiment. Specifically, for the odd-numbered blocks 1–17, 
the probability of the light on the right was 0.5. For the even-numbered 
blocks 2–16, the probability took on the values from 0.1 to 0.9 in one of 10 
semirandom orders. In the first block, the two lights were therefore equally 

Figure 4.11. Results of Friedman et al. (1964): 
number of selections of the right button during vari-
ous 12 trials of the experiment as affected by the 
probability of success of the button in odd blocks of 
the experiment.
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likely. Starting from the second block and in each of the subsequent even-
numbered blocks, one of the lights was more likely to be correct.

Friedman et al. (1964) report the exact sequence of trials participants 
saw in each of the even-numbered blocks. There were 48 trials in each 
block, and Friedman et al. reported the mean choice proportions of the 
light on the right in every 12-trial subblock. While they used 10 different 
orders, they kept track of the even-block that preceded each 0.5 odd block, 
and they classified the performance in each 0.5 block accordingly, so one 
can track the effect of prior experience on these 0.5 blocks. Figure 4.11 
shows the correspondence between the data and what the model did using 
utility learning. The data reported are the numbers of choices of the light 
on the right out of 12 opportunities. The data are presented as if the even 
blocks systematically began with a 0.1 probability of the light on the right 
and incremented to 0.9. None of the 10 sequences used by Friedman et al. 
did this, but figure 4.11 sews the data back together as if this were the case. 
The 0.5 block after each even block is based on the average numbers for 
the 0.5 block that followed the even block with that probability.

The model assumed that the critical choice was between two rules for 
choosing the light.17 The only parameter estimated in fitting the 68 data 
points in the figure was the reward for correctly guessing which was set 
at 2.0 units. The fit is quite remarkable. For instance, notice in the 0.8 
block the model correctly predicts that the number of choices of the light 
on the right reaches a maximum in the second subblock and drops off a 
little. This is because the actual sequences used (there were two) for the 
0.8 blocks had, by chance, a larger number of right choices correct in the 
first half of the block.

Friedman et al. (1964) also report a wide variety of statistics on se-
quential effects. For this purpose, they ran six 48-trial blocks after the set 
represented in figure 4.11 to get data on sequential changes when the 
overall probability was stable. The probability of the light on the right 
was 0.8 throughout these six blocks of trials. During these six blocks, they 
looked at how a run of lights all on one side affected the probability of 

17. An actual ACT-R model that does the task is available as a solution to unit 6 in the 
ACT-R tutorial (available as part of the ACT-R download of ACT-R 6 at the main web site, 
act-r.psy.cmu.edu). That model is not presented in the exact sequence participants saw and 
has reward set to a value to give best fit to the subset of the data in that exercise. A LISP 
simulation of the full system reproducing all data (given the actual sequences), titled “Fried-
man model,” is available under the book title from the Models link at the ACT-R website.
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guessing the next light would be on the right. This is plotted in figure 4.12, 
where a negative number reflects a run of lefts, and a positive number, a 
run of rights. The data are plotted for all cases where the total number 
of observations is greater than 100. There are many more cases of runs of 
rights than runs of lefts, so the plot is from –3 (three lefts in a row) to 18 
(18 rights in a row). The behavior of the model is also given in the figure. 
Again, the correspondence is compelling. The figure shows that, unlike 
in some probability learning experiments, participants in this experiment 
were not displaying the gambler’s fallacy and guessing the opposite after 
a long run. Friedman et al. took some effort to avoid this and so obtained a 
relatively pure test of utility learning without the complications of higher 
order hypothesis testing.

Figure 4.13 displays other measures of sequential statistics. Figure 4.13a 
displays the proportions of 32 trial types as a function of their choice and 
the feedback on the prior two trials. The correspondence is again good. 
Figure 4.13b collapses the data over the prior choices of the participant 
and just plots proportion of choices of the light on the right as a func-
tion of the prior two outcomes. When the first outcome was left and the 
second was right, participants were more likely to choose right than when 
this was reversed. Thus, participants are most strongly influenced by the 
most recent event. This recency effect is part of the nature of the utility 
updating: the most recent event has the strongest effect.

Figure 4.12. Results of Friedman et al. (1964): 
probability of selecting the right button as 
a function of the number of previous trials 
that the right button was successful. Nega-
tive numbers denote a string of trials during 
which the left button was successful.
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The match between model and data in figures 4.11–4.13 is a testi-
mony to (1) the success of Friedman et al. in getting a data set that would 
cleanly assess the issues of reinforcement learning (discouraging such 
things as hypothesis generation that can lead to the gambler’s fallacy) and 
(2) the ability of the simple utility learning equations to capture how util-
ity is tracked. These equations are not really unique to ACT-R; they are at 
most slight variants and elaborations of equations that go back more than 
50 years, that have played a major role in accounting for conditioning, 
that have come to play a major role in machine learning, and for which 

Figure 4.13. (a) The choice a participant makes on the current trial, C0, as a 
function of their choice and the feedback on the prior trial (C–1 and F–1) and 
the trial one prior to that (C–2 and F–2). The points on the x-axis reflect the 
32 combinations of C–2F–2C–1F–1C0. For instance, LRRRL stands for the event 
where participants chose left two trials back and got right as feedback, chose 
right one trial back and got right as feedback, and now chose left. (b) The 
data in (a) collapsed and redisplayed to show the effect of the previous two 
outcomes.
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there is neural evidence in the dopamine response. They are achieving the 
status of an established fact.18

fMRI Studies of Skill Acquisition

Production compilation collapses pairs of rules into one and frequently 
eliminates the need to retrieve declarative knowledge about the situation, 
achieving greater efficiency by eliminating unnecessary reflection. The gen-
eral result is more rapid execution. The process of production compilation 
process is quite complex. Simply observing a speed increase does not 
seem to provide much evidence for production compilation. Many things 
could produce increased speed. This is a domain where the case has been 
substantially strengthened by brain imaging research.

This greater efficiency produced by production compilation should 
mean less metabolic cost and hence lower response in studies that track 
brain activity through fMRI measures. However, production compilation 
leads to more articulate predictions than simply a reduced fMRI BOLD 
response. Certain regions reflecting certain components should decrease 
in their activation, while other regions should remain constant. For in-
stance, as a skill develops, fewer production rules need to be fired and 
less information is retrieved from declarative memory. Therefore, there 
should be less activation in the prefrontal regions involved in retrieval and 
the basal ganglia regions associated with productions. On the other hand, 
production compilation does not change the motor demands and often 
does not reduce the number of control states involved in performing a 
task. Therefore, there should not be decreases in motor region or ACC.

This prediction is different from the expectation that one frequently 
finds in the literature that there will be some shift in regions that are 
involved in the performance of a skill (for statements of this conventional 
view, see Anderson, 2005b). For instance, it has been suggested that with 
increased skill there will be a decrease in the involvement of more “cog-
nitive” prefrontal regions and an increase in the involvement of more 
“stimulus–response” posterior regions. This view might predict decreases 
in the prefrontal and ACC regions and increases in the motor, sensory, 
and basal ganglia regions.

18. This is not to say that there will not be adjustments to their exact form or how 
they play out in an overall cognitive architecture.
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Some evidence has been produced for the claim that there is a shift 
in activation, but much of it is subject to a serious artifact. In a paradigm 
where the participants are allowed to proceed at their own pace, learning 
can result in more production firing and perceptual and motor actions 
per unit time. However, when one controls the number of problems per 
unit time (as in a slow-paced event-related imaging procedure), there is 
often no evidence for increased motor or basal ganglia involvement.

Figure 4.14 illustrates changes in brain activation that I used in my 2005 
textbook (data from Qin et al., 2003). It illustrates the regions that showed 
significant activation on the first versus the fifth day of practice in that 
experiment. Figure 4.14 clearly invites the inference that there are fewer 
active regions with practice, in line with the expectations of production 
compilation. However, figures such as this, which one often finds in the 
brain imaging literature, are potentially deceptive. What figure 4.14 illus-
trates are regions that show statistically significant effects of the task struc-
ture. Statistical significance is a measure of the size of an effect relative to 
the noise in the data. A region can switch from being significant to not (or 
vice versa) because of either a change in the magnitude of the effect or a 
change in the magnitude of the noise. Thus, the data may just be noisier on 
day 5, perhaps because participants are becoming bored and disengaged. 
Equally, experiments that show new significant regions on day 5 may sim-
ply reflect decreased noise (and decreased noise with practice seems a par-
ticularly likely possibility). One needs to look at the relative magnitude of 
the signal in the regions. Moreover, one needs to look at regions that are 
selected not because they reach some arbitrary threshold of statistical sig-
nificance but because they have known functional significance.

Figure 4.14. Regions activated in the symbol manipulation task of Qin et al. 
(2003): (a) early: day 1 of practice; (b) late: day 5 of practice. Note that these 
are “transparent brains” and that the activation is not just on the surface but also 
below the surface.
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Production compilation predicts which regions should show reduced 
activations and which should not. Because there are fewer retrievals and 
production rule firings, there should be reduced activation in the prefron-
tal region (declarative module) and the caudate (procedural module). On 
the other hand, since compilation tends not to change the control structure 
of the task, there should not be reduced activation in the ACC, and since 
the manual requirements remain constant, there should not be reduced 
activation in the motor region. Our laboratory has completed four experi-
ments that looked at changes in activation after many days of practice:

1. Dual task This study is reported in Anderson and Anderson (in prepa-
ration). It involved a follow-up on the studies of Schumacher et al. (2001) 
and Hazeltine et al. (2002) (see figure 2.7). We contrasted performance 
on the second day of study, when participants were paying a substantial 
dual-task penalty, and on the fifth day, when it was largely eliminated.

2. Fincham task This is reported in Fincham and Anderson (2006). It is 
an imaging follow-up to research by Anderson and Fincham (1994) and 
Anderson et al. (1997). The task involved learning examples of the timing 
of pairs of sports events and then determining the timing of new events 
by analogy. There is a dramatic speed increase over the course of days of 
practice, with participants often improving by a factor of 2. Participants 
were imaged on the first and fourth days of practice.

3. Algebra This is the study described in figures 1.6–1.8. The original ex-
periment was reported by Qin et al. (2004); a more detailed model is de-
scribed in Anderson (2005). The experiment followed children learning to 
solve equations over five days and imaged them on the first and fifth days.

4. Symbolic This was an experiment similar in design to the algebra 
system, but using an artificial algebra with adults. The artificial algebra 
was first developed by Blessing and Anderson (1996). The original imag-
ing experiment was reported by Qin et al. (2003). It again involved five 
days of training, with the participants imaged on the first and fifth day. 
A model for this task is reported by Anderson (2007) using the same 
parameters that were used in Anderson (2005).

In each of these experiments, we collected data on five of our pre-
defined regions: the ACC associated with the goal module, the parietal 
cortex associated with the imaginal module, the prefrontal cortex asso-
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ciated with the declarative module, the caudate associated with the pro-
cedural module, and a region of the motor cortex associated with the 
manual module.19 The results in terms of average increase in the BOLD 
response on a trial are reported in figure 4.15 for the four experiments 
and the five regions, with the significant effects starred. While no two 
experiments agree entirely on which regions are significant, the overall 
trends are pretty consistent and are what would be predicted from the 
analysis of production compilation:

1. Anterior cingulate This region shows a variety of effects but no con-
sistent pattern: the dual-task experiment shows a significant reduction 
with practice, the Fincham task shows a significant increase with prac-
tice, and the other two experiments show no significant effects. An anal-
ysis of the overall effect across the four experiments is not even close to 
significant.20 While this region does not show a consistent response to 
practice, it consistently increases with increases in task complexity (e.g., 
figures 1.8c, 2.12g, and 4.6). As argued in Anderson (2005a), practice 
does not have an effect because production compilation does not usu-
ally change the control demands of the task. Rather, it merely enables 
participants to move more rapidly through the control states. On the 
other hand, the number of control states will increase with cognitive 
complexity.

2. Posterior parietal In contrast to the other regions, there are no strong 
predictions for this region. The models for the algebra experiment and 
the symbolic algebra experiment predict skipping of intermediate rep-
resentations. As illustrated in figure 1.7 for the algebra task, the effect of 
production compilation can be to skip over intermediate steps of prob-
lem representation. There is no such expectation for the dual-task and 
Fincham experiments. The results in figure 4.15b show decreases in all 
experiments and significant effects in the dual-task and algebra experi-
ments. The overall effect (just a test of reliability of the eight numbers 
displayed in figure 4.15b) is marginally significant.

19. While all four experiments used visual processing, the third and fourth experi-
ments did not scan as low as the fusiform gyrus region that we use to monitor the visual 
module.

20. This is a test of reliability of the eight numbers displayed in the figure. The results 
of such a meta-analysis are reported for each part a–e in figure 4.15.
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Figure 4.15. Results of four experiments looking at effects of practice in 
terms of average BOLD response of five brain regions: (a) ACC; (b) posterior 
parietal; (c) prefrontal cortex; (d) caudate; (e) motor region. Stars indicate ef-
fects that are significant (p < .05). The overall level of significance across the 
four experiments is given in the title associated with each figure.

3. Prefrontal cortex The strongest expectation for a decrease involves 
the prefrontal cortex because the essence of production compilation is 
the dropout of retrieval of declarative information for deliberation. There 
were significant decreases in the prefrontal cortex associated with prac-
tice in all four of the studies, and the effect across the four experiments 
is also significant.
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4. Caudate Two of the experiments showed a significant decrease, and 
the effects in the other two experiments are in the predicted direction. 
A reduction is predicted in the caudate because compilation eliminates 
production firing. Often we have not gotten significant effects in the cau-
date (e.g., see figure 2.10), in part because its response is weak. The overall 
effect in the caudate across the four experiments is marginally significant.21

5. Motor region While the motor region responds strongly in all experi-
ments, in no experiment does it show an effect of practice even approach-
ing statistical significance. Twice there are weak increases, and twice there 
are weak decreases. Each of these experiments had the characteristic that 
the number of manual actions per unit time did not change, so practice 
effects were not subject to the confound mentioned above.

In summary, these experiments display the textured effects predicted 
by production compilation. Unlike the common expectation, there is 
not a decrease in all prefrontal regions: while the region associated with 
retrieval shows a consistent and strong decrease, the ACC is relatively 
unchanged. Again in contrast to the common expectation, there is no 
increase in motor activation or caudate activation. The caudate appears to 
decrease as expected, and the motor region is basically unchanged.

Language Learning: Past Tense

The two previous examples are typical of attempts to capture learning 
in the laboratory—all the experiments involved less than 10 hours of 
learning. On the other hand, much of the significant learning humans do 
involves hundreds—sometimes thousands—of hours of learning. Perhaps 
the most ambitious learning enterprise in the human case is language ac-
quisition, which takes tens of thousands of hours. It is just not feasible to 
examine in detail the complexity of learning that takes place over such a 
time scale. Researchers have attempted to come to grips with such large-
scale learning in a number of ways. One common method has been to 
look at the learning of one small component of the overall competence. 
The classic example is the attempt to understand the acquisition of the 
past-tense inflection in English.

21. A potential problem with the caudate is that it should be always active to the extent 
the participants are thinking about something during the rest intervals, and what we are 
really looking at is evidence for an increase in its rate of involvement over this base rate.
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While there is a clear set of inflectional rules for the English past 
tense (talk–talked, hunt–hunted, etc.), there are a great many exceptions 
(go–went, sing–sang, etc.). The acquisition of the past tense has been 
characterized as displaying U-shaped learning, in which three stages of 
learning are distinguished. In the first stage, when the child starts using 
past tenses, irregular verbs are used correctly. In the second stage, the 
child develops a sense for the regularity in regular past tenses. Now the 
child will continue to use regular verbs correctly, but will sometimes con-
struct past tenses of irregular verbs in a regular way (e.g., go-goed as op-
posed to go-went). In the third stage, this overregularization diminishes 
until performance is without errors. Since performance on irregular verbs 
is worst in the second stage, the performance curve has a U-shape, hence 
the name of the phenomenon.

The appearance of overregularization errors in children’s past tense 
had been originally taken as evidence that children were acquiring ab-
stract rules (e.g., R. Brown, 1973). However, as reviewed in chapter 1, Ru-
melhart and McClelland (1986) showed that it was possible to produce 
a connectionist model that made overgeneralizations without building 
any rules into the model. Moreover, this model was able to produce the 
U-shaped learning curve. As noted in chapter 1, rather than just verbally
describing how such a U-shaped learning function might happen, they 
produced a running computer simulation that actually generated the 
U-shaped function. This attracted a great many critiques, and while the 
fundamental demonstration of generalization without rules stands, the origi-
nal model is acknowledged by all to be seriously flawed as a model of the 
process of past-tense generation by children. Many more recent and more 
adequate connectionist models (some reviewed in Elman et al., 1996) 
have been implemented; many of these have tried to use the backpropa-
gation learning algorithm.

Despite the appearance of more adequate connectionist models, there 
remain reservations about these models. One class of issues relates to 
linguistic details; another class of issues concerns whether solutions to 
the learning problem have been in some way engineered into the way the 
problem is presented to the learning system (for both classes of issues, 
see, e.g., Marcus, 1995, 2001; Pinker and Prince, 1988; Pinker and Ull-
man, 2002). As an instance of the second class, it argued that the success 
of these models depends on training input that does not seem faithful 
to what a child receives. The original Rumelhart and McClelland model 
had artificially produced the onset of the U-shaped curve by switching 
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from a training set of 10 items to 420 items. Later models (e.g., Plunkett 
and Juola, 1999) do not use such abrupt transitions but still change the 
relative frequency of the words over the training cycle. Other models 
distort the frequency of words in other ways, such as presenting verbs 
in proportion to the square root of their frequency in natural language 
(O’Reilly and Munakata, 2000) rather than their actual frequency. An-
other problem is that the connectionist models tend to use learning rules 
that require feedback on what the correct answer is. However, children 
often do not get feedback on their generations and do not seem to use 
it when they receive it (Pinker, 1984). While children do hear the forms 
that adults use, they are not told when the forms they use are incorrect.

The Taatgen and Anderson (2002) past-tense model avoids these 
problems and is a good illustration of how procedural learning works in 
ACT-R. The model simply learns from hearing adult past-tense generation
and generating its own past tenses. It encounters verbs in proportion to 
their true rate of occurrence in the environment and requires no feed-
back on errors. This model was the first large-scale demonstration that 
this conception of procedural learning in ACT-R would really work. Since 
that time, there have been a number of additional demonstrations, par-
ticularly with respect to learning from instruction (e.g., Anderson, Bothell 
et al., 2004; Taatgen, 2005). Chapter 5 on algebra learning describes ex-
amples of learning from instructions.

Figure 4.16 illustrates the four ways that the model posits children can 
generate past tenses:

Figure 4.16. Illustration of the four ways the Taatgen and 
Anderson (2002) model could respond to the goal of gener-
ating a past tense.
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1. They can just do nothing and use the present tense. For almost 
all words in English, this is the wrong thing, and the child risks 
a failure in communication and the loss of the reward associ-
ated with communication. Because it can lead to failures in 
communication, this is a low-utility option. Nonetheless, it 
probably happens with considerable frequency when the chil-
dren are beginning their generation attempts because they do 
not have the basis for doing anything else. However, it is not 
detected in the records of their speech, and the child is typi-
cally just given credit with generating present tense verbs.

2. The child can attempt the instance-based strategies discussed 
in chapter 3 and try to retrieve a declarative instance of a 
past tense. Initially, such instances will come from memory of 
adults’ (presumably correct) generations. Thus, this strategy 
will provide the initial correct instances of past-tense use, in-
cluding irregular inflections. For a memory of a past tense to 
be retrieved, its declarative representation must be sufficiently 
active. Thus, this is a strategy most likely to work for words oc-
curring with high frequency.

3. The child may not be able to retrieve a past tense of that partic-
ular verb (in this example, sing) but rather retrieves a past tense 
of some other verb such as “kicked” or “rang.” Then, as discussed 
under instance-based strategies in chapter 3, the child can try 
to adapt this form to the current situation, presumably by some 
analogy process. The simplest analogy (and the only one mod-
eled in Taatgen and Anderson) is when the example retrieved 
involves adding an inflection such as “ed.”22 While this process 
might result in a successful past-tense generation, it is rather 
laborious and not a good method in general for rapid speech. 
Because it takes a long time, it is a low-utility method that will 
tend not to be used if there are alternatives.

4. Production compilation can apply to either methods 2 and 3 to 
produce productions that just “do it.” Applied to method 2, it 
would skip retrieval of the verb, and the new rule would only 
reflect a modest increment in utility. In contrast, applied to the 

22. But this was extended to handle other inflections in a later model (Taatgen and 
Dijkstra, 2003).
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analogy method 3, it would produce a rule that simply adds the 
“ed” suffix and result in a major gain in efficiency and hence 
utility. This general past-tense rule can compete quite success-
fully with the other alternatives, and when its utility has grown 
enough, it will produce overgeneralizations. This example of 
production compilation is interesting because what it produces 
is still a quite general rule, despite the fact that compilation 
moves procedures to more specific forms.

In the limit production compilation produces a dual-route model 
in which past tense can be produced by retrieving special case rules or 
by using general rules.23 The special-case rules for irregulars come to be 
preferred over the general rules and result in the gradual elimination of 
overgeneralizations. These rules have higher utility than the general rule 
because irregulars are phonologically simpler (Burzio, 1999) than the 
regularizations and so cost less to produce.

Figure 4.17 displays the performance of the model for regulars and irreg-
ulars. Overgeneralization for the irregulars is defined as number of correct 
irregulars divided by the sum of correct irregulars and overgeneralizations, 

Figure 4.17. Performance of the Taatgen and Anderson (2002) model. Re-
printed from Cognition, volume 86, Taatgen, N.A. & Anderosn, J. R., Why do 
children learn to say “Broke”? A model of learning the past tense without feed-
back, pages 123–155. Copyright 2002. With permission from Elsevier.

23. All of the approaches in figure 4.16 are implemented by production rules, evi-
dence that the “rules” of the architecture are different than the “rules” that are part of the 
connections-versus-rules debate—to return to a theme of chapter 1.



The Adaptive Control of Thought 179

which is the standard measure in the literature.24 While the onset of over-
generalization is not all-or-none in either the model or the data, it is a 
relatively rapid transition in both model and data and corresponds to the 
first turn in the U-shaped function. Note that by this measure the over-
regularization is never more than 20% in the model. In fact, children do 
not seem to generate more than a minority of overgeneralizations.

The regular mark rate in figure 4.17 is defined as the number of 
correct inflections of regulars over the sum of correct inflections and 
failures to inflect. This is a statistic that is not reported in the literature, 
since it is nearly impossible to diagnose failures to inflect in children’s 
speech because one does not really know if the child intended the past 
tense. Interestingly, the rate of overgeneralization only becomes rela-
tively high when the model has reached the point of inflecting most 
verbs.

Note that the Taatgen model, unlike many other past-tense models, 
does not make artificial assumptions about frequency of exposure but 
instead learns given a presentation schedule of words (both from the 
environment and its own generations) like that actually encountered by 
children. Its ability to reproduce the relatively rapid onset of overgen-
eralization and slow extinction depends critically on both its symbolic 
and subsymbolic learning mechanisms. Symbolically, it is learning general 
production rules and declarative representations of exceptions. Subsym-
bolically, it is learning the utilities of these production rules and the acti-
vation strengths of the declarative chunks.

Beyond just reproducing the U-shaped function, the model explains 
why exceptions should be high-frequency words. There are two aspects 
to this explanation. First, only high-frequency words develop enough 
base-level activation to be retrieved. Indeed, the model predicts how fre-
quent a word has to be in order to maintain an exception. Less obviously, 
the model explains why so many high-frequency words end up as excep-
tions. This is because the greater phonological efficiency of the irregular 
form promotes its adoption according to the utility calculations. Indeed, 
in another model that basically invented its own past-tense grammar 
without input from the environment, Taatgen showed that the model 
would develop one or more past-tense rules for low-frequency words but 
tend to adopt more efficient irregular forms for high-frequency words. In 

24. This is really a measure of non-overgeneralization.
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the model’s economy, the greater phonological efficiency of the irregular 
form justifies its maintenance as a special case.

Note also that the model receives no feedback on the past tenses it 
generates, unlike most models, but in apparent correspondence with the 
facts about child language learning. However, it receives input from the 
environment in the form of the past tenses it hears, and this input in-
fluences the base-level activations of the past-tense forms in declarative 
memory. The model also uses its own past-tense generations as input to 
declarative memory and can learn its own errors (a phenomenon also 
noted in the memory for arithmetic facts; Siegler, 1988). The amount of 
overgeneralization displayed by the model is sensitive to the ratio of input 
it receives from the environment to its own past-tense generations.

I close this chapter with the Taatgen past-tense model because I con-
tinue to find it a compelling demonstration of how the ACT-R learning 
mechanisms work to produce a complex phenomenon. The model works 
without the artificial support that other past-tense models have had and 
behaves in a way that corresponds to the facts of the matter. Its sole fault 
is that it does not progress beyond the past tense to deal with full language 
generation. As noted in chapter 1, all of these past-tense models have set 
up rather convenient and artificial boundaries for their demonstrations. 
This is a strategy for dealing with the complexity of language learning, 
but eventually the field needs to go beyond such artificially constrained 
demonstrations.

Language in general nicely illustrates the issue of deliberation versus 
action that opened this chapter. Language is immensely complex and 
often requires careful deliberation, a fact that I am only too aware of as 
I try to craft this book. On the other hand, we have to speak and under-
stand in real time, and there just is not the time to deliberate much over 
every word. In my own attempts at acquiring another language, I started 
out with much deliberation and little success in real-time processing. I got 
to the point where I was just starting to act without thinking and had 
some success, and then unfortunately gave up the effort to acquire the 
language before any permanent skill could set in. Perhaps I was taking 
too “cognitive” an approach to language learning, something I might have 
been spared when I learned my first language as a child. Perhaps, there 
is something special about language. Whether language really follows 
the course of other skills or it has the advantage of a special “language 
acquisition device” or other language module remains an issue that this 
book simply is not going to address.
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Conclusions

As I noted at the beginning of this chapter, the issues presented here can 
be traced back to the debate between Hull and Tolman about the roles of 
thought versus action in behavior. Although cognitive science continues 
to recognize the centrality of these issues, it has advanced beyond this 
debate on many fronts. The field is no longer trying to settle an either-
or issue, and the view I presented here emphasizes the importance of 
both reaction and reflection. There is now a much richer empirical base, 
including neuroscience evidence, to guide the theories. Perhaps most im-
portant, there now are running computational models that realize these 
ideas in much more mechanistic terms than Hull or Tolman ever imag-
ined possible.

Learning can be conceptualized as a process of moving from thought-
ful reflection (hippocampus, prefrontal cortex) to automatic reaction 
(basal ganglia). The module responsible for learning of this kind is the 
procedural module (or production system). I offer the procedural mod-
ule as an explanation for behavior that embraces both Hull’s reactions 
and Tolman’s reflections and provides a mechanism for the postulated 
learning link between them. Through production compilation, thought-
ful behaviors become automatized; through utility learning, behavior 
is modified to become adaptive. When combined with the declarative 
memory module discussed in chapter 3, the production system provides 
a mechanism by which knowledge is used to make behavior more flexible 
and efficient.25

Appendix 4.1: Notes on Production Compilation

A more complete, technical, and syntactic discussion of production com-
pilation is available at the ACT-R 6 website (act-r.psy.cmu.edu/actr6/
compilation.doc), but this appendix attempts to address the issues. There 
are two basic types of issues with combining a pair of production rules 
into a new compiled rule. The first addresses when different combinations 
of buffer and module actions in the two productions can be combined 

25. I thank Jared Danker for help in fashioning this conclusion.
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and how to combine them. The second issue concerns how to express the 
pattern in the resulting production rule. These two issues are addressed 
in the next two sections.

Combinations of Modules and Buffers

Different types of modules have different characteristics, with different 
consequences for production compilation. In the case of the motor mod-
ules (manual and vocal), it is not possible to compile two productions 
that both make motor requests of the same module because the two 
actions cannot be simultaneously performed by one module. Likewise, 
in the case of perceptual modules (visual and aural), it is also not pos-
sible for one module to make two attentional requests. Moreover, it is 
not possible to compile pairs of productions where one makes a request 
for a shift of attention and the second tests the contents of the buffer 
produced by that attentional shift. The reason is that one cannot know 
in advance what the result will be. These motor and perceptual restric-
tions place hard limits on how much information processing can be com-
piled into a single rule. One might imagine that learning processes exist 
that enable these boundaries to be bridged. So, for instance, one might 
combine individual motor actions into a larger macro action. Or, if a 
shift of perceptual attention always produced the same result, one might 
predict the result and skip the shift of attention. However, ACT-R does 
not yet have such motor or perceptual learning mechanisms. It is pos-
sible to imagine enhancing the modules in ACT-R to incorporate these 
elements, but until they are in place, the motor and perceptual actions 
will continue to place strict boundaries on how much can be compiled 
into a single rule.

As noted throughout the book, the declarative module can be seen 
as a special case of a perceptual module in which one perceives one’s 
past. Analogous to making a request for an attentional shift, a production 
rule can request a retrieval, and a subsequent production can harvest the 
results of that retrieval in the declarative buffer. The difference is that be-
cause ACT-R’s memory system is monotonic (memories are not deleted), 
a memory retrieved in response to a retrieval request remains something 
that can be retrieved if the request is repeated. In contrast, one cannot 
expect to see the same thing every time an attentional request is made 
of the visual module. This means that, in the case of declarative memory, 
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one can safely drop out the request to memory and just build into the 
production the results of the retrieval.

The imaginal and goal modules behave differently than motor, percep-
tual, or declarative modules. The outcome of requests to these modules 
can be entirely predicted from the form of the requests. Basically, they 
are internal scratch pads on which notes can be written to oneself about 
the control state or problem state. This means they can be freely com-
bined. If the first production involves a test C1 of the contents of one of 
these buffers and an action A1 on the buffer, while the other production 
involves C2 and A2, the resulting production can be given the condition 
C1 + (C2 – A1) and the action A2 + (A1 – A2) for this buffer, where C2 – A1

denotes all the conditions in C2 that were not created by A1 and so existed 
before the first production, A1 – A2 denotes all the actions in A1 that were 
not overwritten by A2 and so remained after the second production, and 
the + denotes the union of the two condition or action parts. Note that 
this implies a limit to the complexity of the productions that can be cre-
ated by compilation. The conditions and actions can have, at most, one 
mention of each module, so no matter how many productions are eventu-
ally collapsed into a single production, there is a hard bound on the size of 
condition and actions. In actual practice, the combined rules often show 
no growth in size, as is true of the example in figure 4.9.

Creating the Eventual Production Patterns

Careful inspection of figure 4.9 will reveal some of the tricky issues in-
volved in deciding the pattern of the resulting production. The resulting 
rule retains the abstract pattern of the original in mapping the contents of 
the top and bottom slots of the imaginal buffer into the retrieval request. 
However, the relation slot is no longer left as part of an abstract pattern 
but rather is now specific to the >= relation. This is because the instruc-
tion retrieved and compiled out was specific to that relationship. There 
are other tricky issues when the same slot is mentioned in both produc-
tions and one must track the dependency relationships.

In understanding how the new pattern is calculated, it is easier to con-
sider first a situation without an intermediate retrieval that is being com-
piled out. Figure 4.18 illustrates such a case, representing abstractly two 
productions, production1 (condition1 → action1) and production2 (condi-
tion2 → action2), that are being compiled into production3 (condition3
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→ action3). Figure 4.18 represents the conditions and actions abstractly 
as single buffers with 10 slots, but these slots could be distributed across 
multiple buffers. This illustrates the various cases that production compi-
lation has to deal with:26

1. A network of mappings across the two productions The first production 
checks that the content of slots 0 and 2 are the same and maps this con-
tent to slot 3. The second production maps the content of slot 3 to slot 1. 
The resulting compiled production checks that the content of slots 0 and 
2 are the same and maps this content to slots 1 and 3.

2. Values appearing in the condition or action The second production 
checks that the content of slot 1 is a, and the first production sets the 
value of slot 6 to c. The resulting compiled production does both.

3. A network of mappings intersecting a value The second production 
checks that the content of slots 4 and 5 are the same and maps this to 

Figure 4.18. An illustration of how the patterns in production1 and 
production2 are compiled to produce the pattern in production3.

26. There is a way of treating all of these cases in a uniform formal framework as 
discussed in the technical documents associated with production compilation.This frame-
work is similar to unification in first-order logic (see Russell and Norvig, 2002) and is the 
actual basis of the algorithm in the simulation. However, the more discursive description 
given here better describes what is happening at a qualitative level.
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slot 7. However, the first production tested that the value of slot 4 was b.
Therefore, the resulting production tests that the values of slots 4 and 5 
are b and sets the value of slot 7 to b.

4. Later mappings overwriting earlier mappings The first production maps 
the content of slot 8 onto slots 7 and 9. However, the second production 
maps the content of slot 5 onto 7 and overwrites the earlier mapping of 
slot 8 onto 7. Also, the second production maps the content of slot 7 onto 
8, which combined with the first production just gets the content from 
slot 8 back to slot 8; therefore this mapping is ignored. All that is left is a 
mapping of the content of slot 8 onto slot 9.

Figure 4.19 illustrates what happens when retrievals are involved. Be-
tween production1 and production2 in figure 4.19 is the chunk that was 
retrieved in response to the first production and used by the second. Slots 
3–6 in the productions are used to represent contents of the declarative 
buffer. The condition of production1 contains a test of a prior retrieval—
specifically, whether slot 4 of the retrieved chunk has b as its content. The 
action of the first production makes a new retrieval request, for a chunk 
with the same value in slot 3 that was in slot 2 and δ in its slot 6. As illus-
trated, the chunk that is retrieved is the one with values α, β, χ, and δ in 
its four slots. The second production harvests this chunk in its condition 
and maps the value from slot 4 of the retrieved chunk onto slot 3 and 

Figure 4.19. An illustration of how production1, a retrieved chunk, and pro-
duction2 are compiled to produce the pattern in production3.
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the value of slot 5 onto slot 7. Just to complete the picture, the action 
of this production makes another retrieval request. The resulting produc-
tion is specialized to the content of the chunk whose retrieval is being 
skipped. Because the first production mapped slots 0 and 2 onto slot 3 of 
the retrieval request and the value of the retrieved chunk in slot 3 was α,
the resulting production has α in its condition slots 0 and 2. Because the 
second production mapped slot 4 of the retrieved chunk onto slot 3 and 
slot 5 of the retrieved chunk onto slot 7, the resulting production has β
in slot 3 and χ in slot 7. Note that the resulting production is not entirely 
specific. It retains an abstract pattern where slot 8 is mapped onto slots 
6 and 9. It also still processes the prior chunk that was retrieved and 
makes a retrieval request for a new chunk: it tests that slot 4 of the prior 
retrieved chunk is b and makes a request for retrieval of a chunk whose 
slot 3 is β and whose slot 6 is the same as the content of slot 8.

In all cases, production compilation produces a rule that maps the 
states of the buffers at the beginning of production1 onto the state of the 
buffers at the end of production2. If one were going to produce a rule that 
simply reproduced the mapping in a specific case, this would be a rule 
that tested for a set of specific elements in slots and put a set of specific 
elements in other slots. However, a general rule is produced that maps 
certain slots onto others. It may be the case that the reason it takes mul-
tiple trials for this rule to be learned is that this generalization is actually 
built up over multiple different instances.
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5
What Does It Take to Be Human?
Lessons From High School Algebra

Allen Newell did not promise us rapid progress with respect to our 
query into the human mind. He said it was a question of such depth 
that it could hold us for an entire lifetime and we would be just a 
little ways into it. Reflecting on chapters 1–4, I have to conclude that 
his admonition to have modest expectations was good advice. With 
a few exceptions, the architectural features described in these chap-
ters are not uniquely human. Rather than addressing the question of 
how the human mind can exist in the physical universe, the preceding 
chapters have largely addressed the question of how the primate mind 
can exist in the physical universe. All the brain regions associated with 
the eight modules in figure 2.2 have somewhat close homologues in 
the primate brain that perform similar functions. This invites the in-
ference that primates have the competences reflected by these eight 
modules. In this book I emphasize the extreme plasticity of intellectual 
function that separates humans from all other creatures. Something is 
missing (a magical ninth module?) from the account so far of human 
intellectual function.

Some of the tasks described in chapters 1–4 are uniquely human. 
These include algebra, which is the focus of discussion here. However, 
the preceding chapters did not focus on what in the architecture enables 
only humans to perform such tasks. This chapter focuses on algebra and 
asks why it is something that almost all humans can acquire and no other 
creature can.
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Algebra as the Drosophila for the Study of Human Cognition

The strategy in this chapter is to look in more detail at the acquisition of a 
competence that distinguishes humans from other creatures. Language is 
probably what most cognitive scientists would suggest as the distinguishing 
feature to investigate, but high school algebra1 is a more strategic choice. 
In the case of language, it is often argued that evolutionary adaptations 
occurred to enable human linguistic proficiency. Algebraic proficiency was 
not anticipated in human evolutionary history. It is a recent human arti-
fact2 and illustrates the intellectual plasticity that has led to the fantastic 
growth of human culture and technology. So, if the goal is to understand 
how humans can acquire almost arbitrary intellectual competences, alge-
bra is a purer choice.

Algebra is also a better choice methodologically for research. There are 
fairly crisp formal characterizations of what the target competence is. All 
competences are acquired against the background of prior knowledge. In 
the case of algebra, that prior knowledge can be restricted almost entirely 
to the middle-school mathematics that a child has mastered earlier in 
school, and there are fairly crisp characterizations of that. A suitably 
prepared student can master algebra in less than 200 hours3—about two 
orders of magnitude less learning time than goes into language—which 

1. Algebra varies in exact content and when it is taught across countries and even 
within the United States. While there is nothing critical about this exact choice, this 
chapter focuses on what is referred to as Algebra 1, which is traditionally taught in the 
ninth grade in United States—although students often take that course in an earlier or 
later grade.

2. Traces of algebra can be found in “word problems” solved by early Babylonian, Chi-
nese, and Egyptian mathematicians. Algebra similar to the modern form first appeared in 
the writings of the Greek mathematician Diophantus of Alexandria in the third century 
A.D. The Persian mathematician Al-Khwarizmi in the ninth century wrote al-Kitab al-
muhtasar fi hisab al-jabr wa’l-muqabala (“Compendium on calculation by completion and 
balancing”). This book, which was the first systematic treatise on the solution of linear and 
quadratic equations, gave us the name algebra (derived from “al-jabr,” meaning comple-
tion). Some time later during the twelfth century, Al-Khwarizmi’s works were translated 
into Latin and became available to Europeans. Interestingly, Al-Khwarizmi’s algebra and 
the early European algebra (but not the algebra of Diophantus) were all verbal. The alge-
braic notation we now know was developed by Renaissance scholars. For more informa-
tion, see Press (2006), or visit www.geocities.com/mathfair2002/school/alg/alg0.htm.

3. If we were to focus just on linear and quadratic equations (the algebra set forth 
by Al-Khwarizmi but set in modern notation by the Renaissance scholars), we would be 
looking at something that can be mastered in about 50 hours.

www.geocities.com/mathfair2002/school/alg/alg0.htm
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means it is easier to encompass the total domain. Finally, the learners (near 
adolescents) are of an age where they make cooperative participants.

It is critical for the goals of this chapter that algebra be something 
that all and only humans can master. Presumably, there is little doubt 
that only humans can master algebra, but there might be some question 
about whether most humans can master algebra. For instance, American 
education has a tradition of streaming a significant fraction (sometimes 
more than 50%) of high school students into courses that do not involve 
much or any algebra. One of the justifications for this is the belief that 
these students are just not capable of learning algebra. However, there is 
now increased demand that all children be taught algebra. Bob Moses, 
the 1960s civil rights leader, has declared access to algebra to be the new 
civil right:

The Algebra Project seeks to impact the struggle for citizenship 
and equality by assisting students in inner city and rural areas 
to achieve mathematics literacy. Higher order thinking and 
problem solving skills are necessary for entry into the economic 
mainstream. Without these skills, children will be tracked into an 
economic underclass. (thealgebraproject.org)

Studies have found that having an algebra course is the best predic-
tor of future earnings (Bednarz et al., 1996; Pelavin and Kane, 1990). 
This has spawned an “algebra for all” movement in American educa-
tion, and many educational systems in America are now mandating 
that all of their children will learn algebra.4 This raising of standards 
has been associated with considerable success, and children who were 
thought incapable of learning algebra can succeed (Porter, 1998). As 
further evidence that algebra is a competence that nearly all humans 
can acquire, it should be noted that some non-American societies 
achieve nearly universal competence in algebra.5 This is not to say that 
the learning of algebra is not without difficulty; perhaps the research 

4. Please note I am just reporting the “facts” about the current situation in America 
with respect to algebra. My opinions about them would be much more complex. The 
only opinion of relevance to this chapter is that almost every human can (“can” does not 
imply “should”) learn algebra.

5. My non-American students and postdoctoral students often express extreme puz-
zlement about why this is an issue in America.
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described in this chapter will someday have some positive impact on 
algebra education.

I have chosen to focus on algebra partly because I am looking where 
the light shines most brightly for me. In the 1980s and 1990s I was 
involved in the development of intelligent tutoring systems for a number 
of domains, but most focused on algebra (e.g., Anderson, Corbett et al., 
1995; Koedinger et al., 1997). The work on algebra has subsequently ad-
vanced to become a modestly successful commercial product claimed to 
be used by 300,000 students (carnegielearning.com/; see also Koedinger 
and Corbett, 2006; S. Ritter et al., in press). Those tutors were based on 
the ACT theory of the time (Anderson, 1983, 1993). In particular, ACT 
models in these systems simulated how students solved the problems 
(correctly and incorrectly); these simulations were used to interpret 
student behavior and select instructional strategies. The relative success 
and robustness of these tutors are evidence for the basic correctness of 
the overall modeling approach.6

Despite the success of these tutors, there has not been a rigorous 
theoretical analysis of how algebra is learned and why these tutors 
would lead to more success. These systems have performance models 
embedded in them for displaying mathematical competence, not learn-
ing models of how the competence is acquired. If one were to look 
inside these competence models, one would find rules such as those in 
table 5.1. While these are not exactly production rules in the modern 
ACT-R sense, they nonetheless could be re-represented as ACT-R pro-
duction rules. I believe that there is nothing uniquely human in these 
kinds of rules. What is uniquely human is how these kinds of rules are 
acquired.

Mathematical Competence From a Comparative Perspective

In order to identify what makes algebra unique to humans, we need 
to identify those mathematical abilities that humans share with other 
primates, so as to not confuse these with what is special about algebra. 

6. However, there is a lot more to achieving success than just this, as is discussed in 
Koedinger and Corbett (2006) and S. Ritter et al. (in press). A critical reader of these 
sources might also find reasons to suspect that the success is qualified.
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Below is a partial list of mathematical competences that other primates 
appear to have:

1. Both human infants and primates appear to have an ability 
to represent exact magnitudes up to 3 or 4 without training 
(Brannon and Terrace, 2002; Hauser and Carey, 2003; Hauser 
et al., 2002).

2. Both human infants and primates (and indeed, many other spe-
cies) appear to have an analogical numerical system that can 
represent larger quantities at least approximately. Again, this is 

Table 5.1. Example Production Rules

Production Rules in English Example of Its Application

1. Correct production possibly acquired 
implicitly
IF the goal is to find the value of 

quantity Q
AND Q divided by Num1 is Num2,
THEN find Q by multiplying Num1 

and Num2.

To solve “You have some money that 
you divide evenly among 8 people and 
each gets 40,” find the original amount of 
money by multiplying 8 and 40.

2. Correct production that does heuristic 
planning
IF the goal is to prove two triangles 

congruent
AND the triangles share a side, 
THEN check for other corresponding 

sides or angles that may be 
congruent.

Try to prove triangles ABC and DBC are 
congruent by checking whether any of 
the corresponding angles, such as BCA
and BCD, or any of the corresponding 
sides, such as AB and DB, are congruent.

3.  Correct production for a nontraditional 
strategy
IF the goal is to solve an equation in x,
THEN graph the left and right sides 

of the equation and find the 
intersection point(s).

Solve equation sin x = x2 by graphing 
both sin x and x2 and finding where the 
lines cross.

4.  Correct but overly specific production
IF “ax + bx” appears in an expression 

AND c = a + b,
THEN replace it with “cx.”

Works for “2x + 3x” but not for “x + 3x.”

5. Incorrect, overly general production
IF “Num1 + Num2” appears in an 

expression, 
THEN replace it with the sum.

Leads to order of operations error: 
“x * 3 + 4” is rewritten as “x * 7”

From Koedinger and Corbett (2006).
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not something that seems to require training (for reviews, see 
Brannon, 2005; Hauser and Spelke, 2004).

3. Both humans and other primates are capable of spontaneously 
tracking the addition and subtraction of at least small numbers, 
and perhaps also larger numbers (Beran and Beran, 2004; Flom-
baum et al., 2005). Again, this is not something that seems to 
require training.

4. Both humans and other primates can be trained to compare 
quantities (e.g., two dots vs. four) or to order them in increasing 
sequence. They also appear to show comparable behavioral ef-
fects such as a distance effect where judgments are faster the 
farther apart the two digits are (Brannon, 2005).

5. Both humans and other primates can be trained to assigned 
symbols to different quantities. It does appear, however, that 
it is much more difficult to train nonhuman primates (Hauser 
and Spelke, 2004). Once trained, they tend to treat these 
symbols much the same as humans do. For instance, symbol-
based Stroop numeric interference in monkeys is discussed 
in chap ter 4. Primates are capable of counting in this system, 
as preschool children are; that is, they can point to the sym-
bols in the order of their magnitude. Boysen and Bernston 
(1989) were able to get their chimpanzee Sheba to correctly 
perform addition of small quantities as indicated by symbols 
(1 + 3, 2 + 2).

The study by Nieder et al. (2002) is particularly compelling in its 
evidence that nonhuman primates represent specific quantities such as 
3 and 4. They trained monkeys to match samples on the basis of nu-
merosity. The procedure, illustrated in figure 5.1a, was one in which the 
monkeys saw a number of items, a delay passed, and then the monkeys 
had to indicate whether a test stimulus had the same number of items. 
The researchers found about one-third of the neurons in the prefrontal 
cortex responded preferentially to different numbers during encoding 
and delay. Figure 5.1b displays responses of neurons that preferentially 
responded to numbers from 1 to 5. These neurons responded maximally 
when the number presented matched their preference, and their response 
rate dropped off monotonically as the number differed.

As an approximate statement, it may be said that the mathematical 
abilities of higher apes with extensive training like Sheba’s appear to 
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match those of children before they enter school. This leaves them 
far short of algebraic competence. Before they get to algebra, children 
will have mastered addition and multiplication tables for single digits, 
algorithms for multicolumn subtraction, addition, and multiplication 
(and perhaps still the division algorithm, but that is fading from popu-
larity in education), and fractional arithmetic in both rational and deci-
mal notation. These competences could have been chosen as a target for 
study rather than algebra. Algebra has the advantage of being so far from 
primate mathematics that there can be no doubt that it is a uniquely 
human competence. The age of the population makes experimentation 

Figure 5.1. (a) An illustration of the procedure in Nieder et al. (2002). 
(b) Normalized responses averaged for neurons displaying peak responses 
for different preferred numbers. Figure a reprinted with permission from 
Nieder, A. Freedman, D. J., & Miller, E. K. (2002). Representation of the 
quantity of visual items in the primate prefrontal cortex, Science, 297,
1708–1711. Copyright 2002 AAAS.
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relatively easy. It is also a skill that relies less on the mastery of the 
addition and multiplication tables. Indeed, some mathematics educators 
advocate teaching algebra with calculators, thus completely eliminating 
the need for such massive memorization. In selecting a competence that 
is uniquely human, it is just as well to find one that does not depend on 
superior memorization skills.

Learning a Socially Transmitted Competence

This chapter focuses on learning by following verbal directions and, to a 
lesser extent, by following worked-out examples. However, a third way 
to learn is by discovery and invention. Cultural artifacts such as algebra 
came into being because of such a process. Some constructivist mathe-
matics educators advocate having children learn in the same manner (e.g., 
Cobb et al., 1992). In the extreme, it is a very inefficient way to learn 
algebra or any other cultural artifact—we do not expect the next genera-
tion to learn to drive by discovery. However, when one looks in detail at 
what happens in the process of learning from instruction and example, 
one frequently finds many minidiscoveries being made as students try to 
make sense of the instruction they are receiving and their experience in 
applying that instruction.7 Learning by discovery probably plays a more 
important role as a normal part of learning through social transmission 
(i.e., taking directions and following examples) than it does as a solo 
means of learning.

The distinction between learning from verbal directions and worked-
out examples is somewhat artificial, and most learning situations involve 
some mix of the two. Verbal direction is restricted to linguistically enabled 
individuals, which would seem to restrict it to humans.8 However, supe-
rior human learning cannot be explained simply by the human ability to 
process verbal directions. Many experiments have found that people learn 
as well or better from worked-out examples than from verbal directions 
(e.g., Cheng et al., 1986; Fong et al., 1986; Reed and Bolstad, 1991). 

7. Indeed, many parents report observing beginning drivers having numerous near-
accidents that serve as discovery experiences for learning to drive.

8. There is little evidence of learning by instruction even in language-trained apes, but 
the claim has been made that these language-trained animals are able to show examples of 
learning that non-language-trained animals are not (Oden et al., 2001; Premack, 1976)
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When one tries to model learning from verbal directions (as described 
later in this chapter), it becomes apparent why this might be so. Here are 
two of the more problematic aspects of verbal instructions:

1. Verbal directions require understanding referring expressions 
such as “the innermost operation,” whose reference is far from 
obvious to the novice learner. It can be easier to understand if 
the example just operates on the (9/3) in [3 + (9/3)] * x.

2. Instruction typically describes tasks that involve multiple steps. 
Therefore, understanding the instruction also requires appro-
priately anticipating the intermediate state produced by a step 
so that one can appreciate the situation where the next step of 
instruction applies. The intermediate states are clearer if one is 
taken through a worked-out example.

On the other hand, worked-out examples have their own problems, 
as again becomes apparent when one tries to model learning from such 
examples. One big problem is inferring the appropriate generalization 
from an example. One is expected to apply what one sees (e.g., replac-
ing x+ 3 = 8 by x + 3 – 3 = 8 – 3) to other situations, but what are those 
situations, and exactly what is it that one is supposed to apply? The 
weakness of either mode by itself is probably why mathematics texts and 
mathematics teachers almost always choose to intermix the two modes 
of instruction.

Learning by Imitation

Because learning from a worked-out example does not require language, 
it is possible to compare different species as to their ability to succeed 
from such purely example-based instruction. There has been consider-
able comparative work on a similar (but ultimately different) issue, which 
is the ability of different species to learn by imitation. As R. Byrne and 
Russon (1998) comment, there has been a remarkable rehabilitation in 
the status of imitation in psychology. As they write:

True intelligence, it used to be thought, is indicated by insight. The 
“cheap trick” of imitating allowed nonhuman species to simulate 
intellectual capacities they did not have. . . . Imitation’s recent 
promotion to the status of an intellectual asset in cognitive sci-
ence has been accompanied by a wealth of evidence that many 
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nonhuman species are unable to learn by imitating the actions 
they see others perform, whereas even newborn humans are now 
reported to show imitation. (p. 667)

Many things that might appear to be imitation in nonhumans have 
been attributed to other, “lesser” factors. Consider a situation where one 
chimp observes another breaking coconuts with rocks and comes to 
do the same. To the naive observer, this would seem an obvious case of 
imitation, but it is not so obvious to the comparative psychologist. Before 
it will be declared true imitation, one has to rule out other explanations. 
For instance, maybe the observation has just increased the salience of rocks 
for the pseudo-imitator and this now becomes something it plays with, 
thus discovering the relationship. Or perhaps the observation has just 
instilled in the pseudo-imitator the goal of eating coconuts. Or perhaps 
it has increased the tendency to swing rocks but with no attachment to 
the goal of getting coconuts. The quest for “pure imitation” has led, in my 
opinion, to a rather dumbed-down version of imitation that requires ver-
batim repetition of the actions without any inventive recombination.

This can be illustrated in the distinction noted by Whiten et al. (1996) 
in the solution of two versions of what they called the artificial fruit task. 
They compared the performance of young children and chimpanzees on 
this task. The two versions of the apparatus are illustrated in figure 5.2, a 
and b. The Plexiglas container had to be opened to get at the food contained 
in it. In the case in figure 5.2a, two different techniques were demonstrated 
for removing the plastic rods. The poke technique involved pushing a rod 
out with the right index finger. The twist technique involved grasping the 
rod and pulling it out with a twisting motion. Different techniques were 
demonstrated to the participants, who then had their opportunity to open 
the container. Independent observers who did not know which technique 
had been used rated the solutions as pokes or twists. These ratings are 
presented in figure 5.2c. Both chimpanzees and children showed a strong 
tendency to imitate the action displayed to them. This is considered a para-
digm that displays successful imitation by nonhuman primates.

Figure 5.2b illustrates a container that has a different locking device 
and can again be opened in one of two ways: the handle could either be 
pulled straight up out of the barrel that contained it or turned in a clock-
wise direction so that the lip swung away from the lid. Again, one of these 
two techniques was demonstrated for the participant; the rated solutions 
are given in figure 5.2d. The children continue to imitate, whereas the 
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Figure 5.2. (a) Plexiglas container that can be opened 
by a poke versus a twist. (b) Plexiglas container that 
can be opened by a pull versus a turn.

chimpanzees show a strong tendency to pull independent of what had 
been demonstrated. This is a frequent result—young children prove to 
be very faithful imitators, while other primates are not. Some (Toma-
sello and Call, 1997) have argued that this reflects a fundamental species 
difference. However, in the context of the experiment of Whiten et al. 
(1996), the interesting question is why there is imitation on one task and 
not on the other. It seems that chimpanzees can imitate but will adopt 
their own choice of a method when that method is obvious (and pulling 
is apparently an obvious method). However, young children often display 
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pull (d). From Whiten, Custance, Gomez, Texidor, & Bard (1996). Copyright 
American Psychological Association, and reprinted with permission.
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an almost slavish attention to detail in their efforts to reproduce what was 
seen. Children appear to imitate verbatim less as they get older. Tomasello 
(2000) argues that young children may gain by their slavish imitation be-
cause the behavior they are observing may have critical details that they do 
not yet appreciate but will learn if they try exact copies of the behavior.

Learning Algebra From Examples Is Not Learning by Imitation

In any case, whether by the dumbed-down comparative definition or 
by more liberal definitions, imitation is inadequate to explain how hu-
mans learn from worked-out examples in algebra. Consider the following 
example of a relatively simple derivation:

x – 3 = 8
x – 3 + 3 = 8 + 3
x = 8 + 3
x = 11

Certainly, a child learning from this example needs to learn something 
more than how to solve just this specific problem. Suppose the child is 
given the problem x– 7 = 9. The current verbatim repetition definition of 
imitation in the comparative literature would require that the child repro-
duce the next line as x– 3 + 3 = 8 + 3, which would be bizarre. Children are 
quite capable of appreciating that the 3 in the example maps onto 7 in 
the current problem and the 8 maps onto the 9. Basically, the child must 
engage in analogy to extract anything useful out of this example. Most chil-
dren, at the age they learn algebra, have no difficulty seeing this analogy.

And the analogy goes beyond simple mapping of elements. Consider 
what 11 in the example must be mapped to in the solution x– 7 = 9. This 
requires seeing the relationship that 11 is the sum of 8 and 3. And rela-
tional inferences can get harder. Consider a child using this example to 
solve x+ 7 = 9. In this case, the child must recognize that 3 is added in the 
example to undo the subtraction, whereas the current problem requires 
subtracting to undo the addition. This is much more than mere imitation.9

9. Try solving the following analogy: “If g = 7∆r becomes g49r = ∆, what does 3∆a = b
become?” I won’t give you the “correct answer”; compare your solution with that of a 
partner solving it independently. You will probably discover that a consensus tends to 
exist in your species.
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Of course, typical instruction does not depend entirely on the child’s 
ability to identify the relations; it includes verbal directions pointing to 
the correct generalizations. But whether by direct example or by verbal 
direction, successful learning of algebra depends on formulating and using 
relatively complex generalizations. It is this capacity that is key to human 
learning and that seems missing from other species.10 While children are 
capable of this by the age they come to algebra, they do not necessarily 
have this capacity at earlier ages. For instance, Loewenstein and Gentner 
(2005) document the development of preschool children at interpreting 
examples and in their ability to use linguistic descriptions accompanying 
the examples to help interpret these examples.

Interpreting Algebra Through the ACT-R Lens

In the remainder of this chapter, I review three efforts modeling algebra 
learning in ACT-R. The goal is to use the models for these algebra tasks 
to answer the question of what it is about human cognition that enables 
us to master algebra. While making no claim to having identified all that 
is unique about human cognition, in this chapter I identify three fea-
tures. The first, the potential for abstract control of cognition, is a feature 
that has been part of ACT-R from its inception. The second, the capacity 
for advanced pattern matching, required a fundamental extension to the 
ACT-R architecture that is described below. The third, the metacogni-
tive ability to reason about mental cognitive states, is a capacity that the 
expanded architecture allows, but one that has not received much atten-
tion within the ACT-R community. Each of the following three sections 
describes a modeling study that provides an opportunity to consider in 
detail one of these three features.

A Laboratory Study of Algebra Learning: Abstract Control

The first task is the Qin et al. (2004) experiment described in chapter 1. 
Data from this experiment have already been presented (figures 1.6, 1.8, 

10. Chimpanzees have shown some ability to solve analogies (e.g., Oden et al., 2001), 
but not at a level sufficient to learn algebra. Their subject, Sarah, was achieving about 50% 
success on basic analogies, which is better than chance in this context but is nonetheless 
much less than can be accomplished by children ready for algebra.
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and 4.15). The model for this task highlights the first feature that con-
tributes to human success in algebra: the use of abstract control states. 
After describing the model, I discuss the importance of these abstract 
control states.

To review, the participants were children 11–14 years of age who had 
mastered middle-school math but who had not yet begun to solve equa-
tions. They were given an hour-long introduction to solving such equa-
tions as 7x + 3 = 38 and then were given five days of practice at solving 
the equations. Figure 1.6 shows the behavioral speed-up over the five 
days; figures 1.8 and 4.15 show the results from fMRI imaging on days 1 
and 5. Generally, participants get faster at performing this task. The cog-
nitive regions show effects of problem complexity and tend to respond 
less with practice. A notable exception for the purposes of this section is 
the anterior cingulate cortex (ACC), which does show a robust effect of 
problem complexity but no effect of practice. This region is related to the 
goal module that maintains abstract control. The need for abstract control 
does not change over the course of the experiment.

The instruction-following model starts from an internal declarative 
representation of the instructions given to the children in this task. 
Table 5.2 shows the English rendition of the instructions that were pub-
lished with the description of the model in Anderson (2005a). While 
the simulation starts from Englishlike instructions, the actual model did 
not parse these instructions. Rather, a LISP program converted these in-
structions into declarative chunks, and the model took over from there. 
This LISP program protected the model from having to produce the 
full flexibility that is required to use real instructions. The model in the 
next section actually dealt with the parsing and the extra demands that 
this creates.

Once the instructions are represented in declarative memory, ACT-R 
has interpretative productions for converting these instructions into be-
havior. The instruction is decomposed into actions that the participant 
already knows how to do: reading a number expression, performing an 
addition, keying a number, and so on. The instructions specify how to step 
through such known actions. The next section elaborates upon the nature 
of these instruction-following productions. This section focuses only on 
the overall flow of control among these productions.

Figure 1.7 contrasts the model’s performance during a typical trial 
at the beginning of the day 1 (part a) with the performance during a 
typical trial at the end of day 5 (part b). That figure illustrates when the 
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Table 5.2.  English Rendition of Instructions Given to ACT-R Model for 
Equation Solving

Task Conditional Execution

1. To solve an equation, 
encode it and

a.  If the right side is a number, then 
imagine that number as the result and 
focus on the left side and unwind it.

b.  If the left side is a number, then imagine 
that number as the result and focus on 
the right side and unwind it.

2. To unwind an expression a.  If the expression is the variable, then the 
result is the answer.

b.  If a number is on the right, unwind-right.
c. If a number is on the left, unwind-left.

3. To unwind-right, encode the 
expression (of the form 
“subexpression operator 
number”) and

a.  If the operator is + or – and the number 
is 0, then focus on the subexpression and 
unwind it.

b.  Otherwise, invert the operator, imagine it 
as the operator in the result, imagine the 
number as the second argument in the 
result, evaluate the result, and then focus 
on the sub expression and unwind it.

4.  To unwind-left, encode the 
expression (of the form “number 
operator subexpression”) and

a.  If the operator is * and number 1, 
then focus on the subexpression and 
unwind it.

b.  Otherwise, check that the operator is 
symmetric, invert the operator, imagine it 
as the operator in the result, imagine the 
number as the second argument in the 
result, evaluate the result, and then focus 
on the subexpression and unwind it.

various modules were active during the solution of the equation and 
what they were doing. Processing of the instructions engages a pattern 
of activity involving the declarative module, the procedural module, and 
some more peripheral modules: basically, an instruction is retrieved, a 
production fires that interprets it, and it calls for activity by a mod-
ule such as the manual module. A major dimension of learning in this 
task, and in all such models, is the dropout of instruction interpretation 
with practice. As can be seen by comparing figures 1.7a and 1.7b, fewer 
instructional steps are retrieved on day 5. This is due to production 
compilation that collapses these retrieve-instruction-and-interpret cy-
cles into single production rules. As discussed in chapter 4, production 
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compilation is a slow process, but eventually it can collapse multiple 
steps into a single rule.

Comparison With Primate Sequential Symbolic Behavior

It took well under an hour to instruct students on the equation-solving 
involved in this experiment. Corresponding to this, the amount of knowl-
edge that the model must encode to perform the task is really rather little. 
The knowledge can be compactly communicated and represented be-
cause it just involves a few abstract bits of information such as perform-
ing the inverse arithmetic operation. To make such abstract bits work 
it is necessary for the model and the children to carry forward mental 
lines of computation that retrieve critical information from declarative 
memory and rerepresent the problem. The abstract control states enabled 
by the goal module are critical to the ability to carry forward these lines 
of thought without any external support. To bring out an essential func-
tion of these abstract control states, this subsection will compare a slight 
caricature of the model for this task with a slight caricature of a model for 
a similar task that nonhuman primates can do.

Solving these equations involves representing the sequential structure 
of the symbols and rearranging them. Primates are quite good at a number 
of tasks that require sequential processing. Consider the example of serial 
behavior that has been observed in the rhesus macaque. In the experiment 
reported by Terrace et al. (2003), monkeys learned four seven-item lists of 
pictures. On any particular trial, the monkeys were shown one set of seven 
pictures randomly arrayed on the screen, and they had to select them in the 
correct order. They were able to reproduce the seven items perfectly more 
than 65% of the time—a level of performance that is not much worse than 
humans would show in similar circumstances. Terrace et al. offer a number 
of varieties of evidence to argue that the monkeys are operating from a 
declarative representation of the list order and not some type of procedural 
representation. For instance, monkeys can correctly order two items from 
different lists that they have never seen paired before. These serial tasks 
are interesting because they bear certain superficial similarities to algebra 
symbol manipulation. In algebra symbol manipulation, a child is shown one 
array of symbols (the equation) and must produce another array of symbols 
(a rearranged equation—in the task described in this section, the response 
is reduced to a single key press, but it is typically more complex, as in the 
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task described in the next section). Similarly, the monkey is shown one 
array of symbols and must produce a sequence of symbols or actions.

While the performance of monkeys in these serial tasks is in many ways 
remarkable, there are significant differences between transforming alge-
braic equations and manipulating serial lists. One major difference is in 
the generativeness of the child’s algebraic capacity. The child is capable of 
responding to an arbitrary number of new expressions. Successfully solving 
equations requires being able to do more than generate a different behavior 
in the presence of a different equation. There is the requirement that the be-
havior result in the solution of the equation; this is like the well-formedness 
constraint of linguistic behavior. One particularly noteworthy aspect of the 
equation solving studied in this experiment is that the children had to do 
all the manipulation in their head—they only gave the final answer. This 
was not a particularly burdensome requirement for them; indeed, children 
often resent having to write out intermediate results. However, it does high-
light the contribution of their mental structures to equation solving.

While the differences between children’s algebraic symbol manipula-
tion and monkeys’ serial reproduction may seem obvious, the challenge 
is to identify what in the architecture is associated with this difference. 
ACT-R models for serial reproduction tasks such as those performed by 
Terrace et al.’s monkeys require visual, manual, and declarative buffers 
that work in ways formally similar to the models for the algebraic tasks. 
These, then, cannot be the source of the differences.

To facilitate a contrast between the sequential behavior in equation 
solving and the sequential behavior in the monkey task, figure 5.3 pro-
vides a simplified rendition of figure 1.7. It is basically the end state that 
production compilation would reach if given enough time. As in figure 1.7, 
the equation being solved is 7 * x+ 3 = 38. The simplified mental image of 
the equation just holds the intermediate result, but it is the critical piece 
of information in that it is what is not supported by external information. 
For instance, at one point the image in figure 5.3 holds an internal repre-
sentation of 35 that is intermediate between the original equation and the 
final answer of 5. Being able to hold onto such an internal representation, 
detached from either stimulus or action, is critical to the model’s alge-
braic competence. It is tempting to point to the parietal cortex as what is 
human-unique in this algebra problem solving, since the parietal cortex is 
postulated to correspond to the imaginal module. The region of parietal 
cortex that corresponds to the imaginal module may not have an exact 
homologue in the monkey brain (Zilles and Palomero-Gallagher, 2001).
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Figure 5.3. A representation of the basic buffer operations 
required to implement the unwind strategy in ACT-R to 
solve the equation 7 * x + 3 = 38.

While human ability to hold such intermediate results may have some 
special properties, it is not totally discontinuous from the ability of the 
monkey. This becomes apparent when one tries to develop an ACT-R 
model for the monkey task of ordering two items from two lists. Terrace 
et al. have shown a generative capacity to the monkey’s serial knowledge 
in that it can take a pair of elements from different lists that it has not 
seen together, and correctly order them with high accuracy. Figure 5.4 is 
a similar flow-chart for a model for this ordering task. The model assumes 
that the monkey retrieves the location of each item in the pair, creates an 
image that synthesizes the two locations, and then picks the item that is 
first in this image. While the imaginal module in this example may not 
have all of the flexibility of human imagery in equation manipulation, 
it does synthesize two objects in order to make an appropriate decision. 
A comparison of figures 5.3 and 5.4 indicates that the two tasks do not dif-
fer in their capacity demands on the imaginal representation. Both require 
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a relatively small amount to be held in the imaginal buffer. In fact, the 
algebra task really requires holding just one number at any time, whereas 
two items have to be synthesized in the image for the serial task.

Comparing figures 5.3 and 5.4, however, does reveal a striking difference. 
The model in figure 5.4 does not require any state tests against the goal 
buffer. Perhaps humans in doing the task use such control tests, but they are 
not necessary to accomplish the task. Control elements in the goal generally 
serve to disambiguate which production to fire when the states of all the 
other buffers are the same. However, it turns out that each production that 
fires in figure 5.4 is uniquely determined by the states of the other buffers. 
The conditions for each production are reviewed in table 5.3. Note that 
there is a distinct state of the buffers that uniquely selects each production.

In contrast, because of the iterative nature of the algebra algorithm, it 
is not possible to find unique states of the nongoal modules for each pro-
duction in the model. The model is faced with multiple situations where 
it has focused on an element in the equation, has retrieved an arithmetic 
fact, and has an image of an intermediate result. Without the help of the 
control element in the goal, the model would not know whether it is time 
to retrieve another arithmetic fact or perform another transformation 
of the equation. Therefore, it would sometimes skip retrievals or trans-

Figure 5.4. A representation of the basic buffer operations required to imple-
ment the serial ordering task. P1 and P2 are the pictures.
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Table 5.3.  Buffer Conditions for the Firing of Each of the Productions in 
Figure 5.4

Production Buffer Condition

1. Look-left The presentation of the stimulus (not shown) is the condition for 
this production that requests the encoding of the first element.

2. Retrieve-Left The appearance of the left element in the visual buffer is the 
condition for this production that requests both the encoding of 
the second element and the retrieval of the position of the left 
element in its list. 

3. Encode-Left The appearance of positional information in the retrieval 
buffer and an empty imaginal buffer are the conditions for this 
production that positions the left element in the image and 
requests retrieval of the right element.

4. Encode-Right The appearance of positional information in the retrieval buffer 
and an incomplete image are the conditions for this production 
that similarly places the right element in the image.

5. Right-First The appearance of information in the imaginal buffer in which 
the right element is first is the condition for this production that 
selects the right element with a manual press.

6. Left-Second The manual selection of that element and an imaginal buffer 
in which the left element is second are the conditions for this 
production that selects the left element with a manual press.

formations and would repeat them at other times. In the current model, 
repeats are innocuous, but skips mean that it fails to solve the problem. For 
instance, in a model that does not use the control information, faced with 
the equation 3x+ 9 = 15, it can respond 6 because it omitted retrieving 
6/3 = 2 or because it omitted to use the fact when retrieved.11

Throughout this book, the goal buffer that holds control elements is 
associated with the ACC. The ACC is particularly active in studies where 
participants have to direct their behavior in a way that violates typical re-
sponse tendencies. The ACC has undergone major evolutionary changes 

11. These problems can be avoided if one puts control information into the image, but 
then this loses the separation of control state and problem state. One might try to take 
advantage of the fact that the declarative buffer empties on retrieval in ACT-R 6.0, and 
one can do a test for whether the buffer is empty. However, this is somewhat technical 
(not something that is easy to learn). It also only deals with this situation and is not a 
solution to the problem of having to take different actions in states where all buffers but 
the goal buffer are identical. However, I should note that questions of when abstract con-
trol elements are needed in human models have become an issue of some interest in the 
ACT-R community (e.g., Taatgen, 2005), and within my own research group it has become 
something of a challenge to see how much algebra can be done without control elements.
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that are found only in humans and the closely related great apes (Allman 
et al., 2001). These changes, which include a new class of spindle-shaped 
cells in strongest concentration in the human ACC, appear to be related to 
the ability to achieve appropriate behavior in the presence of conflicting 
stimuli. While these cells appear in the higher apes, they are much more 
frequent in the human ACC.12

So, where does this leave the question of what enables the human-
unique aspects of algebra-problem solving? A critical mental ability is the 
capacity to maintain abstract control states that allow the human to take 
different courses of action when all the other buffers are in identical states. 
While there is no justification for saying that this capacity is totally lacking 
in nonhuman primates, it does seem vastly improved in humans, at least 
by the age when they begin to learn algebra. Two other capacities that are 
critical to the learning of algebra are considered in the next two sections.

Learning to Solve Linear Equations: Dynamic Pattern Matching

Modeling a Full Course of Learning

The second study was considerably more ambitious: we taught students
to solve the full range of linear equations that appear in the classic 
Algebra 1 textbook by Foerster (1990). This is still only a fragment of a 
full algebra course; the critical material spans 15 sections in the first four 
chapters of the Foerster text, and students solved all the “odd” problems 
in the Foerster text. Table 5.4 gives the 15 sections and shows examples 
of the problems that students solved. We looked at two populations: 10 
children just starting algebra working with the standard linear form, and 
15 adults (Carnegie Mellon University undergraduates) working with a 
novel data-flow isomorph to algebra that we developed (see figure 5.5).13

12. These neurons also are found in the frontal insular (FI) cortex, again only in higher 
apes. K. K. Watson et al. (2006) note that these neurons have structural properties that 
suggest they “provide a rapid relay to other parts of the brain of a simple signal derived 
from information processed within FI and ACC” (p. 1112). Reflecting the wide range of 
opinions about the function of the ACC, Allman et al. (2005) suggest that these neurons 
are especially involved in making social judgments.

13. This section describes unpublished work with Shawn Betts. While the data shown 
in figure 5.7 were generated with earlier versions of the tutor and model, we have made 
a version, titled “Linear Equations,” available at the ACT-R website. This version has 
the advantage over the earlier versions of allowing one to use both the linear tutor and 
the data-flow tutor and allowing instructions or examples.



Table 5.4. The Algebra Sections From Foerster (1990) and Overall Performance Measuresa

Children (Standard) Adults (Data Flow)

Section
Number of 
Problems Representative Problem

Time per 
Problem (s)

Mean Errors 
per Problem

Time per 
Problem (s)

Mean Errors 
per Problem

1.1 16 (16 – (3 * 2)) – 4 43.9 0.38 25.4 0.18
1.2 16 (x – 31) * 4 if x = 80 36.0 0.44 17.2 0.11

1.7 25 x + 5 = 4 34.9 0.64 28.7 0.27

2.1 17 35 + –11 15.2 0.15

2.3 19 (((45 – 7) – 58) + 11) – 21 38.0 0.58

2.4 13 (–3 * –5) * –7 19.8 0.24

2.5 28 (5 – –3)/(3 – –3) 25.9 0.28

2.6 20 (–18 – (3 * x)) + 7 35.9 0.75 32.9 0.20

2.7 20 13 – (4 * x) = 25 53.3 1.38 32.7 0.40

3.1 6 (2 * ((3 * x) + 8)) + 40 83.9 0.45

3.2 9 8 – (5 * (4 – (6 * x))) 67.6 0.36

3.4 23 (8 * ((2 * x) + 3)) – (4 * ((3 * x) + 6)) 97.5 0.95

4.1 11 ((9 * x) – 14) – (5 * x) = –10 59.7 0.43

4.2 21 (2 * (( 3 * x) – 7)) + (4 * x) = 26 82.9 0.64

4.3 18 ((6 * x) + 7) – ( 2 * x) = (3 + (2 * x)) – 9 92.5 0.62

aThe times are calculated by summing median times per problem across students. If the errors on a problem are greater than 3, this measure is truncated to 3 (a bound introduced 
in Anderson et al., 1989). Both of these statistics are used in the hope of eliminating the undue influence of outliers.



210 How Can the Human Mind Occur in the Physical Universe?

The children and the adults did somewhat different sections. Because 
we could not count on the children knowing the arithmetic for nega-
tive numbers, we included four sections from Foerster that reviewed this 
material for them. In two sessions, the children got to section 2.7. In con-
trast, adults were able to get to section 4.3 in two sessions.

We created an interface in which either students or the model could 
interact with the same instruction and solve problems in identical ways. 
This meant that it was possible to put solutions of students and the 
model in close correspondence. Figure 5.6 illustrates that interface: part 
a is the linear form that was used with the children; part b is the data-
flow form used with adults. In both cases it is the same equation being 
solved: 13 – 4x = 25. The two parts of the figure capture the state of 
the screen at the same point in the middle of problem solving. While 
normally no instruction is given at points like this, the figures display 
the instruction that a student might get if he or she requested a hint. 
The reader can confirm that the hint constitutes rather minimal instruc-
tion. The beginning of the section contains some general instruction for 
that section. The interface uses a combination of mouse selections and 
typed entries that enable the student to perform these transformations 
relatively efficiently.

For purposes of illustration, table 5.5 gives the general instruction 
at the beginning of section 1.7, the first section on solving such simple 
one-transformation equations as x+ 3 = 8. The section begins with the in-
troduction to equations. Then in the interface the student walks through 

4 *

13

25

Figure 5.5. The data-flow isomorph of 13 – (4 * x) = 25. In this representation, 
some number enters the top box, and that number flows down to the sec-
ond box, where it is multiplied by 4; that result flows down to the third box, 
where it is subtracted from 13, and that result flows down to the bottom box, 
where it is displayed as 25. To solve this, the student would try to determine 
what number had entered the top box.



Figure 5.6. Tutor interface: (a) the linear condition for use with children; 
(b) the data-flow condition for use with adults solving the problem that 
started out as figure 5.5.



212 How Can the Human Mind Occur in the Physical Universe?

Table 5.5. Instructions for Transforming an Equation

Step Task

Introduction An equation is a sentence that says an expression with x is 
equal to a number. To solve an equation, find the value of 
x that would make this true. To do this, the equation must be 
transformed so that x is alone on one side of the equal sign and 
a number is on the other side. You can do this by unwinding the 
operations on the side of the equation that contains x.

Step 1 Find a equal sign with just a number on one side;
then click the equal sign;
then click the operator that is nearest the equal sign.

Step 2 Click the button labeled “unwind.”

Step 3 Click the box that is green.

Step 4 Key the number isolated by the equal sign;
then key the new operator, which is the inverse of the operator;
then enter the number associated with the operator.

the mechanics of the four steps involved in transforming an equation 
such as x+ 3 = 8 into x= 8 – 3. Table 5.5 gives the instruction accompany-
ing each step. The first step indicates what part of the equation is being 
transformed, the second selects the unwind operation, the third selects a 
box for entering the new value, and the fourth specifies the value to be 
entered.

Unlike the previous model, this model started with the verbal direc-
tions on the screen and parsed these into an internal declarative represen-
tation of the instructions that it then used. The parsing rules were rather 
ad hoc, and I would not want to claim much psychological plausibility for 
them. However, the requirement that the internal declarative representa-
tion of the instructions be derived from general verbal directions made 
it impossible to craft the internal declarative representation for the task. 
This exposed a limitation in the ACT-R architecture that is discussed 
below.

Before discussing this modeling issue in detail, I first review the overall 
performance of the participants and the ability of the model to reproduce 
at least one aspect of that performance. As shown in table 5.4, children 
made more errors than did the adults, and they took much longer on 
common sections because they had to retry their solutions until they 
got the right answer. An inspection of the children’s solutions and verbal 
protocols did not reveal any deep misunderstandings; they were just more 
prone to slips and less able to determine where their slips had occurred. 
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Figure 5.7. A comparison of the performance of the model with that of chil-
dren learning the linear form of algebra and adults learning the data-flow form.

The number of errors and times both tended to increase for later sections. 
This is not surprising, since the problems were more complex in later 
sections and so required more steps of transformation.

Figure 5.7 looks at a measure that normalizes for problem com-
plexity. This is the time to perform a single step of transformation 
of the equation. The number of keystrokes and mouse clicks was the 
same in this interface, independent of problem complexity. This is un-
like paper and pencil solution, where more complex equations require 
more transcription of notation. The number of keystrokes and mouse 
clicks is also the same for the regular algebra and the data-flow iso-
morph. Figure 5.7 shows the performance of the adults over the 11 
sections of the curriculum and the performance of the children on the 
five sections they had in common with the adults. The x-axis is the 181 
problems that make up the 11 sections, and the y-axis is the measure 
that normalizes for problem complexity. The measure given is the me-
dian time per transformation. There are long times at the beginning of 
each section that speed up to near-asymptotic times by the last three 
sections. The children and adults show nearly identical times per cycle 
despite the fact that they were working with two different systems. 
The model predicts this because it responds to the abstract structure of 
the problems that is common for the linear representation and the data-
flow representation.

As shown in figure 5.7, the model does a pretty good job of match-
ing up with participant performance. The behavior of the model as dis-
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played in this graph is largely a result of the subsymbolic processes that 
were the topic of chapters 3 and 4. On the declarative side, there is the 
issue of retrieving the instructions. After first reading the instructions, 
the declarative representations will be weak. Therefore, the time to recall 
the instructional steps will be slow, and there will be many failures of 
recall. The failures of recall are particularly costly in time because the 
model will have to request help and spend time reading that help. Thus, 
the parameters controlling base-level learning are largely responsible for 
the rapid initial learning. The model will reach an asymptotic speed when 
it has compiled and is using the most compact production rules possible. 
The rate of this learning is determined by the learning rate parameter for 
production utility. The parameters controlling both the base-level learning 
and the production utility learning were set at the values described in the 
preceding chapters and are the default values for the model.14

While this match between model and data is reassuring, the more im-
portant outcome was that the model could learn from this instruction at 
all. This required a significant extension to the pattern-matching capabili-
ties of the ACT-R architecture. While these extensions contributed to a 
number of aspects of the behavior of the model, they made their largest 
contribution to interpreting the instructions. As noted above, the instruc-
tions are no longer hand crafted but instead arise from parsing produc-
tions operating on the English sentences. This new feature that we had to 
add is called “dynamic pattern matching” and is discussed in the following 
section. Appendix 5.1 gives a more thorough exposition of the approach 
to instruction interpretation.

Dynamic Pattern Matching

Dynamic pattern matching can be illustrated in the processing of the one 
phrase in step 4 in table 5.5 (“Key the number isolated by the equal sign”) 

14. Recently, we have completed an imaging study of students learning from this cur-
riculum. We found effects of complexity and learning remarkably similar to the pattern 
displayed in figure 1.8 for the simpler fragment of algebra (the experiment described im-
mediately above). The one surprise came from the fusiform region that we associate with 
the visual module (we scanned low enough in the brain to pick up this area, whereas we 
had not in the earlier study). There were practice-based reductions of activation in the left 
fusiform gyrus, which is a region associated with reading of detailed material. Mathemat-
ics educators (e.g., Kirshner and Awtry, 2004) have speculated that part of developing 
mastery in algebra involves effectively learning to see new patterns in algebraic expres-
sions, and this result seems to support them.
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in the context of solving x – 5 = 3. The parsing of the instruction breaks 
this down into two commands:15

1. Find the number isolated by the equal sign.
2. Key the number.

The critical feature in this instruction is the appearance of the referring 
expression “the number.” Command 1 results in this expression referring 
to the number 3 while command 2 uses this expression to designate the 
3. Instructional language is replete with situations where a referring term 
acquires a reference and this reference is used one or more times down-
stream. This same basic capacity is required in a learning-from-example 
model that was also developed for this task. So, for instance, if one wants 
to use a solution for x – 8 = 4 as a model for solving x – 5 = 3, one has to 
create a role for the 4 in the example that will map to the 3 in the prob-
lem in the same way that “the number” in the instruction is designating 
3 in the problem. Dynamic pattern matching is a mechanism recently 
added to ACT-R to support these sorts of mappings. Without it, there is 
no tractable way to maintain the correspondence between the terms (cre-
ated either in understanding the example or in understanding the verbal 
directions) and their references in the problem.

Figure 5.8 illustrates two of the productions that fired in processing 
this instruction: part a illustrates the instantiation of the first rule, and 
part b the abstract form of this rule used in the key step of interpreting 
the first command. Figure 5.8, c and d, similarly illustrates a rule used in 
the interpretation of the second command.

In the case of figure 5.8a, one rule has already applied in response to 
the first command and requested visual attention go to the region right 
of the equal sign. This has resulted in the encoding of the number 3 in 
the visual buffer. The production in figure 5.8a processes the result of this 
attentional move. The production copies the 3 in the visual buffer to the 
number slot of the goal buffer, where it can be found for later use, such 
as in the interpretation of the second command.16 This rule might look 
innocent in its instantiated form, but when we look at its abstract form in 

15. We could have given the instruction in this two-phrase form, but it seemed more 
natural to merge them into a combined sentence. Nothing in the discussion to follow 
depends on this choice of sentence structure.

16. It is not clear whether the goal module should be used to hold such temporary 
references or whether a separate module ought to be used for this purpose.
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figure 5.8b, we see something old and something new. The old is what we 
call static pattern matching; the new is dynamic pattern matching:

• Static pattern matching: The rule is not specific to number 3 
but is capable of applying to any number. Therefore, figure 
5.8b shows that the content of the visual buffer is moved to 
the goal buffer. This is the kind of pattern used in productions 
throughout the book, starting with figure 1.10b.

• Dynamic pattern matching: The slot into which the number is 
copied is determined from the role slot of the goal, which had 
been set to number as part of the instruction interpretation. 
Thus, the location in the goal to which the number is copied is 

Figure 5.8. (a) The instantiated form of one of the production that interprets 
“Find the number isolated by the equal sign” applied to x– 5 = 3; (b) the ab-
stract pattern behind (a); (c) the instantiated form of a production that inter-
prets “key the number”; (d) the abstract pattern behind (c).
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dynamically set in response to this instruction. This is a more 
powerful kind of pattern matching because the positional 
slots involved in the production can change depending on the 
situation—in this case, depending on the instruction.

Figure 5.8c illustrates the rule used in interpreting the second com-
mand, “Key the number.” That production responds to retrieval of the 
command, which is to key the number; determines that the number is 
3; and requests the execution of a motor program to key 3 (which, given 
that ACT-R models a skilled typist, will result in a finger movement to the 
appropriate key). As figure 5.8d illustrates, this production again mixes 
dynamic pattern matching with static pattern matching. The dynamic 
pattern matching in this case involves having the value in the object slot 
of the declarative buffer tell the system where to look in the goal buffer. 
In the case of figure 5.8c, that location is the number slot, but in other 
cases it will be other locations.

Dynamic pattern matching is interesting because, in contrast to static 
pattern matching, it cannot be implemented by simple neural pathways. 
In the case of static pattern matching, one can interpret the connections 
as pathways between fixed neural regions. In contrast, with dynamic pat-
terns the regions from or to which the information is being moved are 
being determined dynamically.

One might wonder if this functionality could not be achieved without 
dynamic pattern matching. For instance, dynamic pattern matching was 
not part of the instruction interpretation model for the earlier laboratory 
experiment described (figure 1.7) or other instructional models we have 
developed (e.g., Anderson, Bothell et al., 2004; Anderson, Taatgen, and 
Byrne, 2005; Taatgen, 2005). It was not needed because we did not work 
from actual instruction but instead shaped by hand the internal represen-
tations of the instructions so that they could work with fixed slots. Such 
ad hoc rendering of the instructions does not generalize when one has 
to process arbitrary verbal instructions rather than preencoded internal 
instructions. It also does not extend to general models that learn from 
examples. Of course, ACT-R is Turing equivalent even without dynamic 
pattern matching, and it is possible to program in solutions, but these 
solutions would take too long and would be too error prone. For instance, 
one might imagine a system that committed facts such as “number is 3” to 
declarative memory and had general interpretive machinery for retrieving 
and using these facts. However, this would spread out over potentially 
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many production cycles what can be done in a single cycle, and it would 
be quite prone to errors of declarative memory.

Dynamic pattern matching is one step in the direction of giving the 
ACT-R pattern matching the much greater power of the Soar Rete pattern 
matcher (Forgy, 1982). The Rete matcher can engage in search to match a 
pattern; potentially this search can explode into an NP (nondeterministic 
polynomial time) complete problem (Doorenbos, 1995). Dynamic pat-
tern matching does not involve any search, and more generally, the ACT-R 
pattern matcher never engages in search. Interestingly, within the Soar 
community, patterns that involve search are disapproved of (John Laird, 
personal communication). That is, in the Soar world, the pattern match-
ing in figure 5.8 is not viewed as problematical, but the more powerful 
patterns that require search are discouraged. Thus, a consensus seems to 
be emerging about how much information can be brought together in the 
pattern matching that involves one 50-ms cycle of cognition.

Possible Neural Implementation of Dynamic Pattern Matching

While dynamic pattern matching requires more of the brain than does 
static pattern matching, it is by no means beyond the scope of ideas put 
forth for neural information processing. For instance, there are proposals 
for tensor product representation (Smolensky, 1990) and temporal syn-
chrony (Shastri and Ajjanagadde, 1993). As discussed in these references, 
dynamic pattern matching moves us in the direction of the full power 
of variables and all the controversy associated with that in cognitive 
science.17 However, dynamic pattern matching is still a very contained 
sense of variable use compared to what is possible.

With respect to the brain realization of dynamic pattern matching, 
I am attracted to an idea suggested by Randy O’Reilly based on O’Reilly 
and Frank (2006; see their figure 12). His suggestion concerns how to 
deal with the fact that in dynamic pattern matching, one does not know 
ahead of time which brain region will be needed as the source or destina-
tion of the information. O’Reilly suggests mapping information between 
all potential regions and then dynamically gating the paths between the 
regions. Figure 5.9 provides an expanded version of the productions in 
figure 5.8 that illustrate this. There are two regions in the goal buffer, 

17. Dynamic pattern matching gives the ACT-R system some of the power associated 
with higher order logic.
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slot1 and slot2, which can be dynamically allocated to two different roles. 
In the context of step 4 in table 5.5, slot1 might be serving the number 
role and slot2 might be the operator role. However, in other contexts, 
they might be serving other roles. In Figure 5.9a the contents of the visual 
buffer are sent to both slots in the goal. The big addition to these figures 
is a mapping structure that maps between roles and slots (at the bottom 
of figure 5.9a). This stores that in the current context, slot1 is number 
and slot2 is operator. The contents of the role slot in the goal are tested 
against the two slots of the mapping structure. Whichever matches then 
opens the gate to the corresponding slot in the goal buffer and allows the 
content from the visual buffer to enter that slot. Similarly, in figure 5.9b, 
both slots from the goal have their contents mapped to the object slot of 
the manual buffer, and the mapping structure will determine which one 
to enable according to which of its slots matches the object slot in the 
declarative buffer. The use of these gating operations and an intermedi-
ate mapping structure can enable dynamic pattern matching with fixed 
neural pathways. O’Reilly and Frank suggest that this capacity for gating 

Figure 5.9. (a) An expanded form of the production in figure 5.8b to include 
a mapping structure that gates the values from the visual buffer; (b) an ex-
panded form of the production in figure 5.8d to include a mapping structure 
that gates the values from the goal buffer.
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involves prefrontal structures.18 Given the greatly expanded prefrontal 
cortex of humans, this might explain human ability to make flexible use 
of instructions and examples.

Concluding Observations About Dynamic Pattern Matching

While dynamic pattern matching enables the instructions to be pro cessed
efficiently, eventually production compilation eliminates the need for 
dynamic pattern matching. Consider the production in figure 5.10 that 
results from a compilation of the two productions in figure 5.8. This rule 
has only a static pattern that copies the number from the visual buf-
fer to the manual buffer. These are the kinds of production rules that 
one can imagine any primate having, and it could be trained through 
operant measures to hit the appropriate key in response to a visual stimu-
lus (which is what that production reflects). Indeed, any of the produc-
tions ultimately learned by the model for this task could be trained to 
a monkey through operant techniques. However, this would be a very 
slow way to learn compared to human ability to follow directions or to 
interpret examples.

In summary, to follow instructions (verbal directions and examples), 
humans need general rules that are able to process the relational structure 
that appears in these instructions. Architecturally, this requires a capac-
ity to match more general patterns than other primates can. Specifically, 
the human architecture can process rules in which the specific pattern 
matched changes with the context. While this section has discussed dy-
namic pattern matching with respect to the processing of verbal direc-
tions, this same capacity is essential to modeling the analogical processing 
of examples. As discussed in the introduction to this chapter, the ability 
to process complex relational structures seems to be exactly what is miss-
ing in nonhuman primates and what is essential to the learning of algebra. 
Therefore, dynamic pattern matching joins the ability to exercise abstract 
cognitive control as another architectural feature distinguishing humans 
from other primates. The model would not have been able to display 
successful learning in this task without it, let alone match up with the 
performance data in figure 5.7 as well as it did.

18. This also seems related to Ericsson and Kintsch’s (1995) proposal for a long-term 
working memory, something that has the efficiency of working memory but the capacity 
of long-term memory.
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Mastery of an Algebraic Concept: Does Metacognition Require 
Special Architectural Features?

Solving linear equations has a particularly algorithmic quality. One might 
wonder whether learning the more conceptual aspects of mathematics 
would pose additional architectural demands. In this section I describe 
unpublished work with Jennifer Ferris of one exploratory study that looks 
at the learning of a more conceptual aspect of algebra.19 In dealing with 
this problem, we were struck by the fact that metacognitive activities 
were playing a major role in the learning of the students. One might won-
der whether dealing with metacognition would require new architectural 
features of ACT-R. For instance, the Soar architecture is often advertised 
as being especially designed for dealing with metacognition. It turns out 
that we found nothing in the metacognitive activities that required archi-
tectural additions to ACT-R. However, our ability to model metacogni-
tion did require the two architectural features we have already identified: 
abstract control and dynamic pattern matching. While hardly definitive, 
this study invites the inference that metacognition is not an architectur-
ally distinguished activity.

Pyramid Problems

This investigation into the strengths and weaknesses of ACT-R took place 
in an algebra domain we invented called pyramid problems. Table 5.6 gives 

Figure 5.10. The production that results from the compilation of the two pro-
ductions in figure 5.8, b and d.

19. We have made the model, titled “pyramid model,” available at the ACT-R website 
(act-r.psy.cmu.edu) under the models link and the title of this book. This also contains a 
Soar model developed with John Laird and a comparison of the two models.
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Table 5.6. Pyramids: Bases and Heights

Instruction

There is a notation for writing repeated addition where each term added is one less 
than the previous. For instance:
 5 + 4 + 3 is written as 5 $ 2
 Since 5 + 4 + 3 = 12, we would evaluate 5 $ 2 as 12 and write 5 $ 2 = 12
The parts of 5 $ 2 are given names:
 5 is the base and reflects the number you start with
 2 is the height and reflects the number of items you add to the base
 5 $ 2 is called a pyramid

Problems
Evaluate the following:
  1. 5 $ 3
  2. 10 $ 4
  3. 8 $ 1
  4. 3 $ 4
  5. 5 $ 7
  6. 0 $ 4
  7. 13 $ 0
  8. 1000 $ 2000

Write pyramid expressions to describe the following:
  9. 6 + 5 + 4 + 3
 10. 9 + 8 + 7
 11. 1 + 0 + (–1) + (–2)
 12. x + (x – 1) + (x – 2) + (x – 3) + (x – 4)
 13. 20 + (20 – 1) + . . . + (20 – 11)
 14. 15 + (15 – 1) + . . . + (15 – x)
 15. z + (z – 1) + . . . + (z – y)

Find the height x for the following pyramid expressions:
 16. 6 $ x = 15
 17. 10 $ x = 55
 18. 912 $ x = 912
 19. 3 $ x = –9
 20. 100 $ x = –101

Find the base x for the following pyramid expressions:
 21. x $ 2 = 15
 22. x $ 1 = 15
 23. x $ 4 = 35
 24. x $ 6 = 35
 25. x $ 6 = 0
 26. x $ 6 = –7

the complete text of the instruction and the problems that participants 
receive. To get a sense of what participants in this experiment experi-
enced, you might try to read these instructions and solve the problems 
before reading on. As you do so, ask yourself whether your cognition 
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stretches beyond what has been discussed so far. As noted in chapter 2, 
one reason for studying these problems was to create a situation that 
required knowledge to be brought together in novel ways. Recall that this 
is the intellectual activity that philosopher Jerry Fodor sees as beyond 
computational modeling.

A few comments are needed on the choice of domain, instruction, 
and problems. These pyramid problems were created on analogy to the 
instruction on powers and exponents in the classic algebra text of Foer-
ster (1990, section 1.3). We did not want to use exponents because it 
is hard to control prior knowledge on this topic, and we also wanted to 
experiment with college students who would already know about expo-
nentials. The text of the examples and instructions in table 5.6 is based 
on what appears in Foerster. However, the Foerster text contained a lot of 
additional instructional material that we eliminated because we judged 
it as not productive. Like the problems in the original text, the problems 
we used are a mixed bag in both difficulty and content. Problem 8, which 
will be the principal topic of discussion in this section, was inspired by 
the 11000 problem that appears in the Foerster text. As in the Foerster text, 
the initial problems are all evaluation problems; later problems require 
using the knowledge in different ways. The expression-writing problems 
13–15 with ellipsis notation were inspired by analogous problems in Foer-
ster. Foerster also has problems that give the base and require finding the 
exponent (analogous to problems 16–20). No problems in Foerster give 
the exponent and require finding the base (which would be analogous to 
problems 21–26), but we could not resist including them at the end, and 
they proved informative.

The instruction in table 5.6 is quite minimal and involves only defini-
tions of terms, a simple statement of how to evaluate pyramid expressions, 
and one example. We gave this instruction to six Carnegie Mellon Univer-
sity undergraduates and to six high school students who were receiving 
As in introductory algebra. One thing that is remarkable is that all these 
students were able to solve these problems with relatively little difficulty, 
little guidance, and extremely few errors. Both the college students and 
the high school students averaged only about one error on the 26 prob-
lems. In a reduced study in one of my Carnegie Mellon classes, I gave six 
students only the verbal directions below with no worked-out example:

N $ M is a pyramid expression for designating repeated addition 
where each term in the sum is one less than the previous.
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N, the base, is first term in the sum.
M, the height, is number of terms you add to the base.

and I gave six students only one worked-out example with no verbal 
directions:

7 $ 3 = 7 + 6 + 5 + 4

with arrows that connected the 7 on the left to the first term on the right 
and 3 on the left to the number of terms added. Both groups were then 
asked to solve the two evaluation problems:

10 $ 2
3 $ 4

Five students out of the six in both groups were able to successfully solve 
the problems given just one or the other source of information. So, suit-
ably prepared students are capable of mastering this material with even 
less instruction than is in table 5.6.

Table 5.7 summarizes the performance of the original set of 12 stu-
dents on the problems. There were no significant differences between 
college students and high school students, so we combined these. Because 
of a problem with the recording device, the data of one juvenile were lost 
for the last seven problems. Table 5.7 gives the number of participants 
who required experimenter help on each problem, the number who in-
correctly solved the problem, and the median time that students spent 
on each problem, the minimum time of any student, and the maximum 
time. The table also gives the times for an “old” ACT-R model and a “new” 
ACT-R model. The “old” model is the same one used in the first study 
described in this chapter. That model solved simple linear equations, 
but since it worked from instructions, it could be tasked to solve other 
problems such as these pyramid problems. This model did not actually 
process verbal instructions but instead was given handcrafted declarative 
information. The “new” model is an extension of the model used for the 
second study in this chapter. It started from the written instructions that 
it parsed and then used (which requires dynamic pattern matching). The 
instructions provided to the model were easier to parse than what is in 
table 5.6 and were somewhat more explicit:

To evaluate a pyramid,
 first set the term to the base;
 then set the sum to the base;



Table 5.7. Performance of the Original Set of 12 Students on the Problems in Table 5.6

    Time (s) ACT-R Model

Problem N Assisted Errors Median Minimum Maximum New Old

 1. 5 $ 3 12 4 0 16 5 135 18 21
 2. 10 $ 4 12 0 1 30 20 52 21 27
 3. 8 $ 1 12 0 1 7 1 26 9 10
 4. 3 $ 4 12 0 1 25 10 34 21 27
 5. 5 $ 7 12 0 0 29 9 43 33 44
 6. 0 $ 4 12 0 1 16 6 43 21 27
 7. 13 $ 0 12 0 0 5 2 8 5 4
 8. 1000 $ 2000 12 3 2 72 7 176 Long 73
 9. 6 + 5 + 4 12 0 0 7 1 10 6 5
10. 9 + 8 + 7 12 0 0 5 2 9 5 5
11. 1 + 0 – 1 – 2 12 0 0 6 2 10 6 5
12. x . . . x – 4 12 1 0 6 2 13 7 5
13. 20 . . . 20 – 11 12 0 0 15 8 49 XXX 11
14. 15 . . . 15 – x 12 0 0 11 3 54 XXX 11
15. z . . . z – y 12 0 0 7 3 10 XXX 11
16. 6 $ x = 15 12 0 0 28 7 133 XXX 17
17. 10 $ x = 55 12 0 1 71 23 103 XXX 57
18. 912 $ x = 912 12 0 0 6 2 7 XXX 5
19. 3 $ x = –9 12 0 1 49 6 126 XXX 51
20. 100 $ x = –101 11 5 1 127 23 166 XXX 101
21. x $ 2 = 15 11 3 1 32 14 149 XXX 28
22. x $ 1 = 15 11 0 0 15 3 98 XXX 12
23. x $ 4 = 35 11 0 0 48 26 153 XXX 39
24. x $ 6 = 35 11 0 0 59 13 94 XXX 51
25. x $ 6 = 0 11 0 0 32 6 120 XXX 51
26. x $ 6 = –7 11 0 1 57 13 195 XXX 51
       Correlation 0.929 0.957

 Deviation 6.15 7.28
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 then repeat as many times as the height:
  first decrement the term,
  and then add the term to the sum;
 when done with the repetition, write the sum.
To write a pyramid,
 first write the base;
 then write $;
 and then write the height.

As can be determined from table 5.7, the new ACT-R model was much 
more successful than the old model. However, this success had relatively 
little to do with processing written instructions. Rather, it turned on giv-
ing the new model a set of metacognitive abilities. Elsewhere (Anderson 
and Ferris, in press), we describe a number of details about these abilities, 
but here I focus on just a couple.

The 1000 $ 2000 Problem

This section focuses on how the model solved the 1000 $ 2000 problem 
as it exemplifies the fundamental challenges to the architecture. Mod-
eling the solution of this problem made heavy use of the architectural 
support for abstract control of cognition and advanced pattern matching, 
both of which have already been discussed. These architectural features 
proved important in a number of places, but here I focus on two episodes 
in the solution of the 1000 $ 2000 problem that involved metacognitive 
capabilities. One capability is to reflect on ongoing cognition, and the 
other is to maintain multiple cognitive states.

Before discussing the architectural challenges and how they were met, 
it would be a good idea to note some facts about the context of this 
problem and its solution. After the first problem, no students suffered 
any real difficulties with problems 2–7 (table 5.6), and all solved these by 
the process of iterative addition.20 Thus, students had been succeeding by 
using iterative addition immediately for each of the previous problems, 

20. Although there are closed-form formulas for the sum. Indeed, pyramid problems 
are a generalization of triangular numbers, about which there is a famous story. It is 
reported that Carl Friedrich Gauss discovered the formula in response to a busywork as-
signment by his elementary school teacher. None of our students came up spontaneously 
with such closed-form formulas. Nonetheless, our college students were able to when 
tasked (after the problems in table 5.6) with doing so.
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and one might have expected an Einstellung effect (Luchins, 1942) such 
that students would have started trying to solve 1000 $ 2000 this way. 
However, no student did so—all showed near-immediate recognition of 
a difficulty. Some registered this difficulty with silence, but from some 
we got such comments as:

(3:14)21 ah 1000 out 2000 places
(3:17) hum
(3:19) there is probably an easier way to write this out, huh?

or

(7:00) okay, it’s just that one problem on 8, I don’t know what the 
hell that adds up to
(7:06) I’m not going to spend my time crunching numbers

These cases are typical in that students gave evidence within a few sec-
onds of reading the problem that they recognized the difficulty. After rec-
ognizing that they had a problem, students averaged about half of their 
time in unproductive attempts before they tried a method that worked. 
(An unproductive path tried by many was to find an analogy to what they 
knew about factorial.) Five students reasoned about simpler problems 
such as 2 $ 4. Others reasoned more abstractly:

(5:05) we’d go all the way to 0
(5:06) <um-hum>
(5:06) and then we’d go all the way to negative 1000
(5:09) so those cancel out and = 0, right?

A number of students confirmed the answer (0) by a second method 
before giving it as their final answer. The new model tried factorial, then 
abstract reasoning, and finally confirmed the answer of 0 by solving 2 $ 4. 
This corresponded to the protocol of one student.

Interrupting Normal Processing

The first metacognitive challenge raised by this problem is recognizing 
the difficulty and then interrupting the normal processing. Detecting a 
problem in normal cognitive processing might seem to require a second 

21. These numbers are the time in minutes and seconds from when the student started 
solving the problems.
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mind to be minding what the first mind is doing. However, it falls 
naturally out of the existing control structure in ACT-R. Figure 5.11 
illustrates the processing in the model during the critical point in time, 
approximately between 1.5 and 3.0 s into the solving of the problem. In 
the first 1.5 s, the model had already encoded the base, and it begins the 
next 1.5 s doing normal processing: initializing the sum and the term to 
this base. Then at 2.0 s it starts to interpret the next step of instruction 
directing it to test whether the count is the height. It has not yet encoded 
the height, so the next 0.5 s is spent encoding the height as 2000. It is 
at this point that a rule Too-Much? fires. This rule simply notes that 
the height controls the number of iterations and that it is very large. In 
some situations, doing something many times is acceptable (e.g., count-
ing out cards from a deck), but sometimes it is not. Therefore, this rule 
requests some further information about exactly what the iteration is. It 

Figure 5.11. A representation of the module 
activity during the critical period of time 
when cognition is redirected in solving the 
1000 $ 2000 problem. Time goes down the 
figure. Represented in the various columns 
are the activities of some of the modules.
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sets the control state to “reflecting” to prevent the normal operators from 
applying at least for a moment. The fact is retrieved that the height is 
the number of additions. The system regards any task requiring so many 
additions as unacceptable and sets about looking for some way to deal 
with this situation. As a first (and unproductive) step along a long path 
to solution, it tries to retrieve something similar to the current concept 
and retrieves factorial. Note that as soon as it sets the control element 
from following to reflecting, it is prevented from continuing along its 
normal course of processing. This illustrates the potential of these ab-
stract control elements to “apply the brakes” to the normal information 
processing.

The critical event in this episode is that the model is able to divert its 
course of processing in response to the appearance of 2000 in the prob-
lem. There is nothing special in the ability to change behavior in response 
to an unexpected stimulus. Any primate might change its behavior in re-
sponse to the appearance of a dangerous predator. However, there is some-
thing quite different between reacting to a cheetah as a dangerous animal 
and reacting to 2000 as a dangerous iterative bound. In one case we are 
responding to an external stimulus; in the other case we are responding 
to an external stimulus in conjunction with an internal intention. Note 
that it is not simply the number 2000 that is causing the problems: these 
subjects would have had no difficulty evaluating 2000 $ 1. It is the 2000 
as an iterative bound that is the problem. This requires that we represent 
states of intention (the intention to perform 2,000 additions) in the same 
terms that we represent external stimuli. This is the abstract control that 
is achieved by the goal module.

Figure 5.12 illustrates the production Too-Much? that achieves this 
diversion of processing. We can see that it involves the two features em-
phasized in this chapter. First, illustrating the abstract control, this pro-
duction is responding to an iterative bound in the goal and sets the goal 

Figure 5.12. An illustration of the production Too-Much? that applies in 
figure 5.11.
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to reflecting. Second, it involves an instance of dynamic pattern match-
ing: it takes the identity of the iterative bound (height in location arg2) 
and looks in that location to find the value of the iterative bound. If that 
bound is greater than 10, then the production fires.22 This production 
nicely illustrates how the architectural features of abstract control and 
dynamic pattern matching enable a metacognitive activity.

Maintaining Multiple States of Mind

Another architectural challenge raised by this problem is maintain-
ing multiple states of mind. Figure 5.13 illustrates some of the state 
information that the model has near the end of solving this problem. 
At the point it has determined that 2 $ 4 is 0. The figure represents three 
substates:

1. The top goal is waiting on the check with the simple problem. 
It is holding a pointer to an image of the hypothesized answer: 
1000 $ 2000 = 0.

2. It has already processed the subgoal of abstract addition and has 
an image of that result.

3. It is currently focused on the goal of solving 2 $ 4 = 0 and 
has finally reached a point where it is ready to check with the 
parent.

Each state in figure 5.13 is illustrated with its last control element 
(checking simple, return result, checking parent). The structures in figure 
5.13 are maintained in declarative memory, and successful performance 
at this point depends on being able to retrieve the parent goal to perform 
the check.23 It is critical that the system can maintain more than one 
internal state so that it can compare results and keep straight different 
internal control states. Essentially, the capacity to represent the structure 
in figure 5.13 depends on the fact that chunks can contain pointers to 
other chunks. This allows hierarchical structures and other more complex 
structures to be represented.

22. Setting 10 as the threshold is clearly ad hoc, but it reflects the idea that we have 
learned to be suspicious of being asked to do something more than some threshold value. 
One could imagine this rule being acquired and the value being set through a sequence 
of such learning experiences.

23. Memory for the state of the abstract addition is really no longer necessary at this 
point.
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Comparison with Soar

In January 2006, I created with John Laird a Soar model that solved 
these pyramid problems in parallel with developing the ACT-R model 
just described. The two systems solved the problems in basically the 
same way. This was an interesting exercise because the Soar architec-
ture is more explicitly designed to support metacognition. Seeing how 
to develop a model for this task in Soar helped guide the ACT-R model 
and vice versa. At each step, Soar has the capacity to deliberate on what 
to do next, whereas ACT-R just fires the next production—Rick Lewis, 
who has worked with both ACT-R and Soar, has characterized Soar as 
the “worried thinker” and ACT-R as the “mellow doer.” Soar has spe-
cial architectural support for impasses where it can step aside from the 
current processing and reflect on that processing, while ACT-R has no 
such architectural support. Nonetheless, the architectural mechanisms in 
ACT-R were sufficient to support metacognition that produced equiva-
lent behavior. Figures 5.11 and 5.13 illustrate how: a production could 
respond to the current state and redirect cognition in figure 5.11, and the 
architectural primitive in ACT-R for storing buffer contents gave it the 
information it needed in figure 5.13 to relate different states of mind.

While metacognition does not seem to require any additional ar-
chitectural primitives, the ACT-R model of it in this task does depend 
on the two architectural features of abstract control through the goal 
module and dynamic pattern matching in the procedural module. To the 

Figure 5.13. A representation of the structure in-
terconnecting three goal chunks towards the end 
of the solution of the 1000 $ 2000 problem.



232 How Can the Human Mind Occur in the Physical Universe?

extent that these architectural features are unique to humans, these sorts 
of metacognitive capabilities may well be unique to humans.

Final Refl ections

Marcus (2001)24 identifies three features that he defines as constituting 
the “symbol manipulation hypothesis”:

1. The mind represents abstract relationships between variables.
2. The mind has a system of recursively structured representations.
3. The mind distinguishes between mental representations of 

individuals and mental representations of kinds.

While not claiming that connectionist models are incapable of these 
attributes, he does claim that a class of connectionist models, which he 
calls “multilayer perceptrons,” are incapable of displaying these features.

It is interesting to consider how the first two items on Marcus’s list re-
late to the two architectural features highlighted in this chapter. Marcus’s 
features are really representational claims, while the concern in this 
chapter has been with process capacities of the architecture. However, 
representational and process claims are not really independent (Ander-
son, 1978). Marcus considers only the second of his features, recursively 
structured representations, to reflect a uniquely human feature. When 
Marcus writes of variables as a pan-species capability, the kind of tasks he 
is referring to, such as match-to-sample tasks, require only static pattern 
matching where an item is moved from one buffer (perhaps visual) to 
another (perhaps motor). Dynamic pattern matching and recursive rep-
resentations are connected. Dynamic pattern matching is only useful in 
a system that has powerful, interlinked representations. Processing recur-
sive representations can be much easier with dynamic pattern matching.

The human brain is expanded over that of other primates, and it is 
not just a matter of more brain. There are new prefrontal and parietal 
regions, and in the case of some regions such as the ACC, there are new 
kinds of cells. While brain lateralization is also a common feature of 

24. Marcus gave his 2001 book the interesting title The Algebraic Mind. However, he 
is using “algebra” to refer to the abstract computations of the mind and not high school 
algebra, which is in comparison a rather mundane course of study.
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Figure 5.14. Declarative representation of the 
two operators created from the parsing of “Key 
the number isolated by the equal sign.”

many species, its connection with language seems unique (Halpern et al., 
2005), and Marcus’s second feature is strongly motivated by consider-
ations of language processing. So, it seems pretty clear that there have 
been some changes to the structure of the human brain that enable the 
unique functions of human cognition. As Newell prophesized, we are 
only a little ways into understanding how to characterize this connection 
at the architectural level.

Appendix 5.1: Some Details of Instruction Processing

Figure 5.14 illustrates the two declarative structures that are created by 
the parsing of the instruction “Key the number isolated by the equal sign” 
in step 4 of table 5.5. These two structures encode the two commands 
that this instruction is parsed into:

(a)

(b)
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1. Find the number isolated by the equal sign.
2. Key the number.

These are encoded according to an operator structure that we have 
been evolving for representing instruction.25 Each operator consists of 
a number of slots. The six slots in these examples can be broken down 
into three types:

1. Pre and post slots point to representations of the state of the 
problem before and after the operator applies. These states can 
be references to either external states of the world or internal 
states. So, for instance, Op17-11 (figure 5.14a) has as its pre 
state the external appearance of an empty entry box in which 
to type, and it has internal “State9” as its post state, while 
Op17-12 (figure 5.14b) has State9 as its pre state and an entry 
box with one item as its post state. State9 is an internal state 
that bridges between the perceptual act in command (a) and 
the motor action in command (b) that changes the external 
state. Referring as much as possible to external states enables 
flexible performance. This allows the system to recognize when 
things have gone awry, replan in the middle, and reason back 
from desired states. However, there are those occasions where 
the external environment does not signal where one is and 
abstract control states such as State9 are required.

2. A type slot indicates the general class of which the operator is 
an instance. Different classes require different principles for 
interpretation. Op17-11 is a “find” operator that requires a pro-
duction to request a shift of attention to the desired object and 
another production (generic-encode illustrated in figure 5.8, 
a and b) to harvest the result of that shift of perceptual atten-
tion. Op17-12 is an “acting” operator that requires a production 
(generic-act in figure 5.8, c and d) to perform a manual action 
on some object.

25. Niels Taatgen has been developing this representation, and I suspect it will continue 
to be fine-tuned after the publication of the book. These ideas are also discussed in unit 7 
on the online ACT-R tutorial (part of the ACT-R 6.0 download available from the ACT-R 
6 link at the ACT-R website: act-r.psy.cmu.edu).
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3. Relation, arg1, and arg2 slots specify the actual behavior to be 
performed. Op17-11 specifies finding a number isolated by an 
equal sign, and Op17-12 specifies keying that number.

Notice that these operators assume abilities that are part of the student’s 
existing repertoire. Op17-11 assumes the student has the ability to find 
a number isolated by a symbol such as “=” (obviously not a perceptual 
primitive). Presumably, for students this represents a product of their 
previous mathematics experience; Foerster definitely just assumes this 
ability without any instruction. Similarly, Op17-12 assumes the ability 
to key a number into the interface; modern-day students definitely have 
this ability.

This operator representation gives the system a robustness such that 
it can pick up after errors. Sometimes students will mistype something 
or the interface might act strangely and get them into an unexpected 
state. If this happens in the model, it can look at the screen and deter-
mine what state it is in and start back down the correct path. Thus, unlike 
some models, it does not get stuck when something unexpected happens, 
as long as that unexpected event still leaves it processing the same basic 
algebra interface that the instructions refer to.

Because the model has to process instructions crafted without con-
sideration of the internals of the system, it has to process referring terms 
such as “number” that can bridge multiple operators. This creates the 
representational challenge that requires dynamic pattern matching. In 
our earlier projects, where we could craft the declarative representation 
of the instruction to fit assumptions about internal processing, this was 
not required. I have not discussed the parsing productions here because 
they are ad hoc and apply to only a restricted language subset. Nonethe-
less, the discipline of having to parse from natural language exposed this 
weakness of our earlier approach.
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6
How Can the Human Mind Occur?

The title of this book can create the wrong expectations. One might 
interpret the title as posing a near-paradox, as in “How can God allow so 
much suffering?” Or one might expect a full answer, as in “How can birds 
sit on power lines without being electrocuted?” Perhaps the most mis-
leading expectation created by the title of this book is that it will address 
the mind–body problem. Curiously, it was only relatively late in the writ-
ing this book that I realized that its title was creating this expectation. To 
understand how I could exhibit such a blind spot, you need to understand 
the mindset with which I come at this problem, a mindset inherited from 
Allen Newell. The best way to explain that is to quote some more from 
Newell’s last lecture, where he enumerates the things that his ultimate 
scientific question does not include:

It is also not the issue of the mind–body problem. That’s the 
philosopher’s question. Now they may have the same answer. 
It may be that the answer to my question and the answer to their 
question is the same. But it turns out, of course, that my question 
is a simple scientific question. It may be an ultimate one and hard 
to get at, but it is a scientific question. And the mind-body is 
not. It is a philosophical question. And, in fact, if the mind-body 
question were cast as a scientific question, all of philosophers 
would do different things than they now do about it. They would 
go out in the laboratory, for instance. (Newell, 1993)

So we have been pursuing a scientific question, and one about which 
we should have modest expectations for our progress at answering. This 
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final chapter is the place to summarize what progress we have made in 
answering that question.

The Answer So Far

Each of the preceding chapters offers a piece of the answer:

1. The answer takes the form of a cognitive architecture—that is, 
the specification of the structure of the brain at a level of ab-
straction that explains how it achieves the function of the mind.

2. For reasons of efficiency of neural computation, the human 
cognitive architecture takes the form of a set of largely inde-
pendent modules (e.g., figure 2.2) associated with different 
brain regions.

3. Human identity is achieved through a declarative memory 
module that, moment by moment, attempts to give each person 
the most appropriate possible window into his or her past.

4. The various modules are coordinated by a central production 
system that strives to develop a set of productions that will give 
the most adaptive response to any state of the modules.

5. The human mind evolved out of the primate mind by achieving 
the ability to exercise abstract control over cognition and the 
ability to process complex relational patterns.

The summary above is just a bunch of one-liners; as Newell said, the true 
answer must have the details—“how the gears clank and how the pistons 
go.” These chapters and the many publications from the ACT-R commu-
nity have laid out some of those details. They have shown how the mod-
ules can interact to achieve adaptive cognition and behavior in tasks as 
varied as driving a car and solving an equation. They elaborated, at consid-
erable length, how the declarative and procedural modules work and how 
they acquire new knowledge. They provided evidence for the association 
of these modules with various brain regions and even speculated a bit 
about how they might be implemented in the brain. In this book, I have 
also discussed what computational features distinguish the human cogni-
tive architecture from the cognitive architectures of other primates.

There is an unfortunate tendency to view the progress summarized 
in this book as a growth in the success of ACT-R rather than a growth 
in knowledge about the human mind. Herbert Simon in his last years 
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complained about what he saw as the brand-naming of theories.1 In the 
abstract for a talk he gave on February 24, 1998, Simon wrote:

We typically (and properly) implement our research with large 
complex systems that employ a collection of interacting mecha-
nisms to achieve their results. Hence, we often think of advances 
in terms of the names of such programs: e.g., LT, GPS, EPAM, 
PRODIGY, Soar, BACON, ACT-R—just to mention a few of local 
origin. However, it can be argued that the real “action” lies largely 
in the mechanisms embedded in these programs, and in issues 
about how such mechanisms can be combined effectively. The 
“brand names” tend to make difficult the analysis and comparison 
of these mechanisms or the exchange of knowledge between 
research groups. One can argue that it has caused and causes 
an enormous amount of duplication of effort. Physicists did 
not divide quantum mechanics into the Heisenberg Brand, the 
Schrodinger Brand, and the Dirac brand.

One of the goals in writing this book was to show that these accom-
plishments are not just successes of ACT-R, but also growth in general 
scientific knowledge. Sometimes when I present these ideas, I get the 
comment, “but we already knew that,” as in “we already knew the ante-
rior cingulate was involved in control,” or “those ideas about utility learn-
ing are commonplace in the reinforcement learning community.” To such 
comments, I respond, “That’s terrific.” This means that ACT-R is showing 
how what we already know is starting to add to an understanding of the 
human mind. If the term “ACT-R” were to disappear and we came to 
celebrate a scientific understanding of the human mind, we would all be 
well served. However, to return to Newell’s admonition, whether or not 
the term ACT-R survives, we are still only a little ways into understanding 
the answer to the question he posed.

The Newell Criteria

Anderson and Lebiere (2003) introduced the Newell test as a way of both 
identifying progress toward a satisfactory knowledge of the human mind 

1. There is a certain irony here, given that it was Simon and Newell who introduced 
the first brand names into psychology (the names of their early computer simulations).
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and seeing where more work was needed. It consists of 12 criteria based 
on two lists published by Newell (1980, 1990). In line with Simon’s ad-
monition, it is worth reviewing what this book has had to say about these 
criteria in a way that is not specific to ACT-R:

1. Behave as an (almost) arbitrary function of the environment:
Anderson and Lebiere (2003) operationalized the first cri-
terion as being able to behave with great flexibility. As chap-
ter 5 emphasizes, this requires an ability to dynamically 
match patterns and guide our cognition independent of our 
environment. It is these abilities that have enabled the human 
mind to acquire nearly arbitrary competences that were not 
anticipated in its evolutionary history.

2. Operate in real time: It is not enough for a theory of cognition 
to explain the great flexibility of human cognition. It must 
also explain how humans can do their thinking in what 
Newell referred to as “real time,” which means human time. 
As emphasized in chapter 2, human cognitive architecture has 
been strongly constrained by the need to achieve real-time 
behavior within the constraints of neural tissue.

3. Exhibit rational, that is, effective adaptive behavior: Humans 
do not just perform marvelous intellectual functions. The 
computations they perform serve their needs. How the 
subsymbolic level of computation is adaptively tuned to the 
environment was particularly stressed in chapters 3 and 4. 
How humans can reflect on the adaptiveness of the actions 
they are planning and exercise suitable control is discussed in 
chapter 5.

4. Use vast amounts of knowledge about the environment: One key 
to human adaptivity is the vast amount of knowledge that can 
be called upon. The subsymbolic computations described in 
this book are supposed to help the human system manage large 
databases. Nonetheless, I do not think ACT-R or any other 
system has yet given us a real understanding of how humans 
manage their large databases of knowledge.

5. Behave robustly in the face of error, the unexpected, and the un-
known: Living in the real world is not like solving a puzzle such 
as the Tower of Hanoi. The world can change in unexpected 
ways. Even human efforts to control the world by acting upon 
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it can have unexpected effects. People make mistakes and have 
to recover. The ability to deal with a dynamic and unpredictable 
environment is a precondition to survival for all organisms. Given 
the complexity of the environments that humans have created 
for themselves, the need to be constantly sensitive to their world 
(e.g., a car moving into one’s lane) is one of the major cogni-
tive stressors that they face. In this book, I have emphasized the 
basal ganglia as a system that brings the perceptual modules and 
central modules together to select appropriate action.

6. Integrate diverse knowledge: Anderson and Lebiere (2003) in-
terpreted this criterion as the ability to bring together distal 
knowledge to come up with novel conclusions. This is what 
philosopher Jerry Fodor thinks is beyond computational mod-
els (see chapter 2). The exploration of pyramid problems in 
chapter 5 is an exercise intended to stress this ability. We not 
only developed an ACT-R model capable of doing this but 
also developed a Soar model. This issue just may not be the 
problematical one that Fodor thought it was.

7. Use (natural) language: This is a topic that this book has 
neglected, much as Newell neglected the topic. However, it has 
not been ignored by the ACT-R community (or the cognitive 
science community as a whole).2 One big issue in the field 
remains the degree to which there is special neural support 
for language processing (the same issue raised by Fodor’s 
proposal for a language module). Looking at many cognitive 
science efforts from a considerable distance, they seem to 
involve general-purpose processing mechanisms operating 
on language-specific representations. These general-purpose 
mechanisms are often what I would characterize as subsym-
bolic, such as ACT-R’s activation calculus. It seems that

2. Given that the book has so ignored this topic, I feel obliged to point out some of the 
work done by others in the ACT-R community. For instance, Lewis and Vasishth (2005) 
have produced a detailed theory of real-time parsing, and R. L. Lewis (personal commu-
nication) has ideas about how this could be scaled up to full natural language. Another 
application to language processing is Jerry T. Ball’s Double-R theory (see doublertheory.
com/index.html). Emond (2006) has made the WORDNET database (Fellbaum, 1998; 
G. A. Miller, 1998) available for ACT-R use. There is now available a representation of sim-
ilarities between words for ACT-R use (Royer et al., 2005) that has been abstracted using 
a technique similar to LSA (latent semantic analysis; Landauer and Dumais, 1997).
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something like the symbolic–subsymbolic distinction is playing 
out in this domain where the symbolic is language specific but 
the subsymbolic is not.

8. Exhibit self-awareness and a sense of self: Newell connected this 
eighth criterion most with the concept of consciousness. I have 
ignored this even more than language in this book, but I will 
end with some brave remarks on this topic.

9. Learning from environment: One striking feature of the brain 
is that almost all of its tissue is capable of changing with 
experience. This book has been about understanding the 
learning changes associated with declarative and procedural 
memory. These two combine to produce complex learning, 
as discussed in chapter 5. While these learning processes are 
important, there are also important perceptual and motor learn-
ing processes. These are the kinds of learning that have tended 
to be more successfully modeled with connectionist-like com-
putations rather than at the higher level allowed in ACT-R. It 
is an interesting question whether there are useful higher level 
characterizations of perceptual and motor learning.

10. Acquire capabilities through development: Another goal is to 
characterize the kind of changes that occur through develop-
ment. While there are lots of learning models in different 
architectures that address specific events in development, 
such as acquisition of the past tense, we lack a real grip on the 
changes that occur with development. Like the issue of vast 
amounts of knowledge, the challenge is finding a way to deal 
with the scale of the phenomena.

11. Arise through evolution: If the scale of development remains 
overwhelming, the scale of evolution is even more so, com-
pounded by the real lack of hard data (whereas there is no 
lack of potential hard data in the case of development). 
While evolution still seems a pipe dream for computational 
models, it is possible to begin to produce useful compara-
tive computational models. A little of that was displayed in 
chapter 5.

12. Be realizable within the brain: Clearly the dimension of greatest 
growth in recent cognitive science has been our understanding 
of the neural basis of cognition. It is also the greatest dimension 
of growth within ACT-R, even since we introduced the Newell 
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test in 2003. The book has summarized a small fraction of this 
knowledge and how it has influenced modern ACT-R . Perhaps 
the biggest contribution of our own laboratory to this topic is 
showing how to relate detailed cognitive models to detailed 
brain imaging data. This methodology is not at all tied to the 
ACT-R theory; it can be used in general to test any explicit 
theory of cognition.

The Question of Consciousness

In venturing into the question of consciousness, I might be seen as not 
following Newell’s practice of leaving the philosophers’ domain to the 
philosophers, but Newell’s eighth criterion is concerned with at least as-
pects of consciousness. Other psychologists have not left the topic alone, 
either, and they have found ways to study it in the laboratory. It is also the 
case that, along with emotion, it is the favorite filler for X in the question 
“How does ACT-R deal with X?” that I am asked when I describe ACT-R 
to general psychology audiences.

Consciousness refers to our sense of awareness of our own cogni-
tive workings. It was introduced into Western thought in this sense by 
Descartes; previously, the Latin term conscientia was used to refer to 
knowledge we possessed, possibly shared with others and with God. The 
pre-Descartes sense of consciousness might more fit the contents of de-
clarative memory in ACT-R. It is interesting to wonder whether, if not for 
Descartes, there would be any question about whether ACT-R could deal 
with consciousness.

I have always felt ill at ease in addressing the topic of consciousness, 
and Christian Lebiere and I would not have addressed it in 2003 if it were 
not on Newell’s list. Even Newell felt compelled to remark that “it is not 
evident what functional role self-awareness plays in the total scheme of 
mind” (Newell, 1990, p. 20). In 2003, we noted that in ACT-R conscious-
ness has an obvious mapping to the buffers that are associated with the 
modules. The contents of consciousness are the contents of these buffers, 
and conscious activity corresponds to the manipulation of the contents 
of these buffers by production rules. The information in the buffers is the 
information that is made available for general processing and is stored in 
declarative memory. ACT-R models can generate introspective reports 
by describing the contents of these buffers. In 2003 we did not think this 
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was much of an answer and gave ACT-R low marks on this dimension. 
I have subsequently come to the conclusion that this is indeed what con-
sciousness is and that running ACT-R models are conscious. They may 
not be conscious in the same sense as humans, but this is probably be-
cause ACT-R gives a rather incomplete picture of the buffers that are 
available in the human system. Moreover, typical ACT-R models tend 
to give a rather incomplete picture of the operations on the buffers that 
ACT-R does have. Still, identifying ACT-R buffers with consciousness is 
a significant conclusion because consciousness is very much caught up in 
the popular conception of the mind.

This is not a particularly novel interpretation of consciousness; it is 
basically the ACT-R realization of the global workspace theory of con-
sciousness (Baars, 1988; Dehaene et al., 1998; Dehaene and Naccache, 
2001).3 Some of ACT-R’s buffers, such as the visual and aural buffers, 
hold information about the external world; others, such as the goal and 
imaginal buffers, hold information about internal states. From the point of 
view of ACT-R, our knowledge of the external world is not fundamentally 
different than our knowledge of our internal workings. This denies that 
the mind knows itself in any way other than it knows the external world. 
It also denies any special status for introspective reports, since our internal 
perceptions could be subject to illusions just as our external perceptions 
are. This is a viewpoint with a long tradition in psychology; it conflicts 
with an even longer tradition in philosophy. As far as ACT-R is concerned, 
Descartes might as well have said, “I perceive, therefore I am.”

Many will find the identification of consciousness with the contents 
of the buffers in ACT-R to be problematic. By this definition, it might 
seem that any computational system that put some information out in 
globally accessible registers would be conscious. Moreover, if one looks 

3. According to Dehaene and Changeux (2004):

We postulate the existence of a distinct set of cortical “workspace” neurons char-
acterized by their ability to send and receive projections to many distant areas 
through long-range excitatory axons. These neurons therefore no longer obey a 
principle of local, encapsulated connectivity, but rather break the modularity of 
the cortex by allowing many different processors to exchange information in a 
global and flexible manner. Information, which is encoded in workspace neurons, 
can be quickly made available to many brain systems, in particular the motor and 
speech-production processors for overt behavioral report. We hypothesize that the 
entry of inputs into this global workspace constitutes the neural basis of access to 
consciousness. (p. 1147)



How Can the Human Mind Occur? 245

at the information that flits in and out of the ACT-R buffers, one would 
wonder whether much of it deserves to be put in correspondence with 
the contents of consciousness. The goal buffer in the ACT-R model for 
equation solving (figure 5.3) switches back and forth every second or 
less between the control states for unwinding and retrieving. No student 
in that experiment reported this experience. After (or during) solving 
7x + 3 = 38, a student might report remembering the arithmetic facts 
8 – 3 = 5, 35/7 = 5, and maybe a little more. However, no student would 
report anything like the detail in figure 5.3, which is already an abstrac-
tion from the more detailed model in figure 1.7. However, just because 
something is in a buffer does not mean it will be reported. It only means 
that it could be reported if a reporting procedure were executed that 
looked for information in that buffer and knew how to translate the con-
tents of that buffer into a linguistic description. ACT-R is not like just any 
machine that makes information available in globally accessible buffers 
because of what is placed in those buffers. These are products of power-
ful modules that have been shaped by evolution to produce functionally 
adaptive results that can work with each other.

Probably more bothersome than the claim that everything in the buffers 
is part of consciousness is the claim that there is nothing more to con-
sciousness. Here ACT-R is following Dennett’s (1991) lead. He refers to 
belief that there is something more to consciousness as the idea of a “Car-
tesian theater” where things must appear for presentation to the mind. 
He argues instead that the contents of consciousness are, indeed, often 
fleeting and, at best, momentarily noted. He compares this to the multiple 
drafts that a paper goes through, only a few of which are ever archived 
and recorded. More recently, he has come to also use the metaphor of 
fame (Dennett, 1993) and argues that all these drafts (contents of buffers 
in ACT-R) compete for fame and only a few ever get noticed—but they 
were all there at one time.

There are a host of philosophical objections to this view involving 
things such as the possibility of zombies (Kirk, 1974), qualia (Block, 
1978), and a Chinese room (Searle, 1980). Here I am willing follow 
Newell’s admonition and leave the philosopher’s domain to the phi-
losopher. However, I will note that Dennett (1991) discusses these vari-
ous objections, and I find his dismissal of these objections persuasive. 
He argues that we have been so ingrained to think in terms of some-
thing like a Cartesian theater that we find it hard to think in terms of 
something like this buffer theory (much as our naive physics makes it 
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hard for us to think about things in terms of modern physics).4 But if 
we can just suspend our disbelief and carry through the interpretation, 
it does account for all the facts and avoids the contradictions of the 
prescientific views. I do not want to imply that Dennett has silenced 
all critics—there have been recent counterarguments. Chalmers (1997) 
claims that the perspective being espoused here has just ignored the 
hard problem of consciousness, which he defines as answering why our 
cognitive processes are accompanied by any phenomenal experience at 
all. However, our phenomenal conscious experience is just the exercise 
of our ability to access and reflect on the contents of our buffers. Most 
information-processing models in ACT-R are fixated on doing a single 
task and do not reflect generally on the contents of the buffers, but this 
is just an incompleteness of the models. The last model in chapter 5 
for the pyramid task (see figure 5.11) showed how such reflection can 
be essential to success in tasks. Perhaps this model’s use of reflection 
points to an answer to Newell’s puzzlement about the functionality of 
consciousness.

If we resist the temptation to believe in a hard problem of conscious-
ness, we can appreciate how consciousness is the solution to the funda-
mental problem of achieving the mind in the brain. As noted in chapter 2, 
efficiency considerations drive the brain to try to achieve as much of its 
computation as possible locally in nearly encapsulated modules. How-
ever, the functionality of the mind demands communication among 
these modules, and to do this, some information must be made globally 
available. The purpose of the buffers in ACT-R is to create this global 
access. The contents of these buffers will create an information trail that 
can be reported and reflected upon. As in the last example in chapter 
5, adaptive cognition sometimes requires reflection on this information 
trail. Thus, consciousness is the manifestation of the solution to the need 
for global coordination among modules. It is a trademark consequence of 
the architecture in figure 2.2. That being said, chapters 1–5 develop this 
architecture with only oblique references to consciousness. This is be-
cause the information processing associated with consciousness is already 
described by other terms of the theory. It still is not clear to me how 
invoking the concept of consciousness adds to the understanding of the 

4. It is interesting to speculate on whether this is built into us by our internal experi-
ences, in the same way naive physics reflects our external experiences, or whether this is 
something we have acquired as part of our post-Descartes enculturation.
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human mind, but taking a coherent reading of the term consciousness, 
I am willing to declare ACT-R conscious.

Appendix 6.1 The Future of ACT-R

Upon rereading appendix 1.1 on the history of ACT-R, I was struck by 
two observations. The first is that I have had a very poor history of pre-
dicting where ACT might go next. Therefore, I am wise to make this 
appendix short to minimize the embarrassments of my mispredictions. 
The second observation is that the evolution of the ACT theory has really 
been driven by external inputs (the right branches in figure 1.11). Some 
of these were from outside our laboratory, and some were essentially par-
allel activities within my laboratory at Carnegie Mellon University.

What are the current parallel research threads that might drive the 
future development of ACT-R? Within my own laboratory, the parallel 
strands of research have already been reflected in this book—the fMRI 
research mapping of ACT-R modules onto the brain and the work on 
algebra to identify what enables us to master new competences. Both are 
active strands of research pursuing interesting questions, but I am not sure 
that either is going to bring new, profound changes to the architecture.

However, ACT-R is no longer an activity localized at Carnegie Mellon, 
and one can look to things happening within the larger ACT-R commu-
nity. There are substantial efforts afoot to develop new modules within 
ACT-R or to improve existing ones. These include efforts to develop 
modules for spatial processing and navigation, multimodal integration 
of episodic memories, more effective motor modules, language process-
ing components, and temporal (timing) modules. These efforts are on-
going, and the reader is directed to the ACT-R website for information 
(act-r.psy.cmu.edu). These efforts can be seen as incremental, but they 
can also result in changes that would be judged as fundamental. For in-
stance, the emergence of ideas about how to process time in ACT-R has 
led to novel ideas about the basic control of cognition (e.g., Salvucci et al., 
2006). Basically, as Newell suspected, efforts to improve the functionality 
of an architecture can have profound effects on that architecture.

New structural efforts are complementing these functional efforts. 
In collaboration with the Leabra group (Attallah et al., 2004; O’Reilly, 
2006), we have been trying to find mappings between the Leabra ar-
chitecture and the ACT-R architecture. This is possible because of deep 
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compatibilities between the ways these two systems view the role of the 
basal ganglia in implementing procedural competence and the hippocam-
pus in implementing declarative knowledge. There is also a more gen-
eral agreement in their conceptions of the role of different parietal and 
prefrontal regions. We hope these efforts will deepen our understanding 
of the mapping of ACT-R onto brain structures and the computational 
underpinnings of ACT-R modules. Our previous explorations in ACT-
RN (Lebiere and Anderson, 1993) had such a stimulating impact on the-
ory development. If consideration of the more abstract ACT-R level of 
description leads to a better Leabra system, so much the better. It would 
be even better if both systems could simply be absorbed into that brand-
free understanding of the human mind that Herbert Simon wanted in 
the end.
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