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Introduction

In Differential Equations with Linear Algebra, we endeavor to introduce students
to two interesting and important areas of mathematics that enjoy powerful
interconnections and applications. Assuming that students have completed a
semester of multivariable calculus, the text presents an introduction to critical
themes and ideas in linear algebra, and then, in its remaining seven chapters,
investigates differential equations while highlighting the role that linearity plays
in their study. Throughout the text, we strive to reach the following goals:

• To motivate the study of linear algebra and differential equations through
interesting applications in order that students may see how theoretical
results can answer fundamental questions that arise in physical situations.

• To demonstrate the fact that linear algebra and differential equations can
be presented as two parts of a mathematical whole that is coherent and
interconnected. Indeed, we regularly discuss how the structure of solutions
to linear differential equations and systems of equations exemplify
important ideas in linear algebra, and how linear algebra often answers
key questions regarding differential equations.

• To present an exposition that is intended to be read and understood by
students. While certainly every textbook is written with students in mind,
often the rigor and formality of standard mathematical presentation takes
over, and books become difficult to read. We employ an examples-first
philosophy that uses an intuitive approach as a lead-in to more general,
theoretical results.

xi



xii Introduction

• To develop in students a deep understanding of what may be their first
exposure to post-calculus mathematics. In particular, linear algebra is a
fundamental subject that plays a key role in the study of much higher level
mathematics; through its study, as well as our investigations of differential
equations, we aim to provide a foundation for further study in
mathematics for students who are so interested.

Whether designed for mathematics or engineering majors, many universities
offer a hybrid course in linear algebra and differential equations, and this text
is written for precisely such a class. At other institutions, linear algebra and
differential equations are treated in two separate courses; in settings where linear
algebra is a prerequisite to the study of differential equations, this text may also
be used for the differential equations course, with its first chapter on linear
algebra available as a review of previously studied material. More details on the
ways the book can be implemented in these courses follows shortly in the section
How to Use this Text. An overriding theme of the book is that if a differential
equation or system of such equations is linear, then we can usually solve it
exactly.

Linear algebra and systems first

In most other texts that present the subjects of differential equations and linear
algebra, the presentation begins with first-order differential equations, followed
by second- and higher order linear differential equations. Following these topics,
a modest amount of linear algebra is introduced before beginning to consider
systems of linear differential equations. Here, however, we begin on the very
first page of the text with an example that shows the natural way that systems
of linear differential equations arise, and use this example to motivate the
need to study linear algebra. We then embark on a one-chapter introduction
to linear algebra that aims not only to introduce such important concepts
as linear combinations, linear independence, and the eigenvalue problem,
but also to foreshadow the use of such topics in the study of differential
equations.

Following chapter 1, we consider first-order differential equations briefly
in chapter 2, using the study of linear first-order equations to highlight some
of the key ideas already encountered in linear algebra. From there, we quickly
proceed to an in-depth presentation of systems of linear differential equations
in chapter 3. In that setting, we show how the eigenvalues of an n × n matrix A
naturally provide the general solution to systems of linear differential equations
in the form x′ = Ax. Moreover, we include examples that show how any
single higher order linear differential equation may be converted to a system of
equations, thus providing further motivation for why we choose to study systems
first. Through this approach, we again strive to emphasize critical connections
between linear algebra and differential equations and to demonstrate the most
important ideas that arise in the study of each. In the remainder of the text, the
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role of linear algebra is continually emphasized, even in the study of nonlinear
equations and systems.

Features of the text

Instructors and students alike will find several consistent features in the
presentation.

• Each chapter begins with one or two motivating problems that present a
natural situation—often a physical application—in which linear algebra
or differential equations arises. From such problems, we work to develop
related ideas in subsequent sections that enable us to solve the original
problem. In discussing the motivating problems, we also endeavor to use
our intuition to predict the solution(s) we expect to find, and then later
test our results against these predictions.

• In almost every section of the text, we use an examples-first approach.
By this we mean that we introduce a certain type of problem that we are
interested in solving, and then consider a relatively simple one that can be
solved by intuition or ideas studied previously. From the solution of an
elementary example, we then discuss how this approach can be generalized
or modified to solve more complex examples, and then ultimately prove
or state theorems that provide general results that enable the solution of a
wide range of problems. With this philosophy, we strive to demonstrate
how the general theory of mathematics comes from experimenting and
investigating through individual examples followed by looking for overall
trends. Moreover, we often use this approach to foreshadow upcoming
ideas: for example, while studying linear algebra, we look ahead to a
handful of fundamental differential equations. Similarly, early on in
our investigations of the Laplace transform, we regularly attempt to
demonstrate through examples how the transform will be used to solve
initial-value problems.

• While there are many formal theoretical results that hold in both linear
algebra and differential equations, we have endeavored to emphasize
intuition. Specifically, we use the aforementioned examples-first approach
to solve sample problems and then present evidence as to why the details
of the solution process for a small number of examples can be generalized
to an overall structure and theory. This is in contrast to many books that
first present the overall theory, and then demonstrate the theory at work in
a sequence of subsequent examples. In addition, we often eschew formal
proofs, choosing instead to present more heuristic or intuitive arguments
that offer evidence of the truth of important theorems.

• Wherever possible, we use visual reasoning to help explain important
ideas. With over 100 graphics included in the text, we have provided
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figures that help deepen students’ understanding and offer additional
perspective on essential concepts. By thinking graphically, we often find
that an appropriate picture sheds further light on the solution to a
problem and how we should expect it to behave, thus adding to our
intuition and understanding.

• With computer algebra systems (CASs), such as Maple and Mathematica,
approaching their twentieth year of existence, these technologies are an
important part of the landscape of the teaching and learning of
mathematics. Especially in more sophisticated subjects with
computationally complicated problems, these tools are now indispensable.
We have chosen to integrate instructional support for Maple directly
within the text, while offering similar commentary for Mathematica,
MATLAB, and SAGE on our website, www.oup.com/
differentialequations/. For each, students can find directions
for how to effectively use computer algebra systems to generate important
graphs and execute complicated or tedious calculations. Many sections of
the text are followed by a short subsection on “Using Maple to . . ..” Parallel
sections for the other CASs, numbered similarly, can be found on the
website.

• Each chapter ends with a section titled For further study. In this setting,
rather than a full exposition, a sequence of leading questions is presented
to guide students to discover some key ideas in more advanced problems
that arise naturally from the material developed to date. These sections
can be used as a basis for instructor-led in-class discussions or as the
foundation for student projects or other assignments. Interested students
can also pursue these topics on their own.

How to use this text

There are two courses for which this text is well-suited: a hybrid course in linear
algebra and differential equations, or a course in differential equations that
requires linear algebra as a prerequisite. We address each course separately with
some suggestions for instructors.

Linear algebra and differential equations

For a hybrid course in the two subjects, instructors should begin with chapter 1
on linear algebra. There, in addition to an introduction to many essential
ideas in the subject, students will encounter a handful of examples on linear
differential equations that foreshadow part of the role of linear algebra in the
field of differential equations. The goal of the chapter on linear algebra is to
introduce important ideas such as linear combinations, linear independence
and span, matrix algebra, and the eigenvalue problem. At the close of chapter 1

www.oup.com/differentialequations/
www.oup.com/differentialequations/
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we also introduce abstract vector spaces in anticipation of the structural role
that vector spaces play in solving linear systems of differential equations and
higher order linear differential equations. Instructors may choose to move on
from chapter 1 upon completing section 1.10 (the eigenvalue problem), as this
is the last topic that is absolutely essential for the solution of linear systems of
differential equations in chapter 3. Discussion of ideas like basis, dimension,
and vector spaces of functions from the final two sections of chapter 1 can occur
alongside the development of general solutions to systems of linear differential
equations or higher order linear differential equations.

Over the past decade or two, first-order differential equations have become
a standard topic that is normally discussed in calculus courses. As such,
chapter 2 can be treated lightly at the instructor’s discretion. In particular, it
is reasonable to expect that students are familiar with direction fields, separable
differential equations, Euler’s method, and several fundamental applications,
such as Newton’s law of Cooling and the logistic differential equation. It is
less likely that students will have been exposed to integrating factors as a
solution technique for linear first-order equations and the solution methods
for exact equations. In any case, chapter 2 is not one on which to linger.
Instructors can choose to selectively discuss a small number of sections in class,
or assign the pages there as a reading assignment or project for independent
investigation.

Chapter 3 on systems of linear differential equations is the heart of the
text. It can be begun immediately following section 1.10 in chapter 1. Here we
find not only a large number of rich ideas that are important throughout the
study of differential equations, but also evidence of the essential role that linear
algebra plays in the solution of these systems. As is noted on several occasions
in chapter 3, any higher order linear differential equation may be converted to
a system of first-order equations, and thus an understanding of systems enables
one to solve these higher order equations as well. Thus, the material in chapter 4
may be de-emphasized. Instructors may choose to provide a brief overview, in
class, of how the ideas in solving linear systems translate naturally to the higher
order case, or may choose to have students investigate these details on their own
through a sequence of reading and homework assignments or a group project.
Section 4.5 on beats and resonance is one to discuss in class as these phenomena
are fascinating and important and the perspective of higher order equations is a
more natural context in which to consider their solution.

The Laplace transform is a topic that affords discussion of a variety of
important ideas: linear transformations, differentiation and integration, direct
solution of initial-value problems, discontinuous forcing functions, and more.
In addition, it can be viewed as a gateway to more sophisticated mathematical
techniques encountered in more advanced courses in mathematics, physics,
and engineering. Chapter 5 is written with the goal of introducing students
to the Laplace transform from the perspective of how it can be used to solve
initial-value problems. This emphasis is present throughout the chapter, and
culminates in section 5.5.
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Finally, a course in both linear algebra and differential equations should
not be considered complete until there has been at least some discussion
of nonlinearity. Chapter 6 on nonlinear higher order equations and systems
offers an examination of this concept from several perspectives, all of which
are related to our previous work with linear differential equations. Direction
fields, approximation by linear systems, and an introduction to numerical
approximation with Euler’s method are natural topics with which to round out
the course. Due to the time required to introduce the subject of linear algebra
to students, the final two chapters of the text (on numerical methods and series
solutions) are ones we would normally not expect to be considered in a hybrid
course.

Differential equations with a linear algebra prerequisite

For a differential equations course in which students have already taken linear
algebra, chapter 1 may be used as a reference for students, or as a source of review
as needed. The comments for the hybrid course above for chapters 2–5 hold for
a straight differential equations class as well, and we would expect instructors
to use the time not devoted to the study of linear algebra to focus more on
the material on nonlinearity in chapter 6, numerical methods in chapter 7, and
series solutions in chapter 8. The first several sections of chapter 7 may be treated
any time after first-order differential equations have been discussed; only the
final section in that chapter is devoted to systems and higher order equations
where the methods naturally generalize work with first-order equations.

In addition to spending more time on the final three chapters of the text,
instructors of a differential equations-only course can take advantage of the
many additional topics for consideration in the For further study sections that
close each chapter. There is a wide range of subjects from which to choose, both
theoretical and applied, including discrete dynamical systems, how raindrops
fall, matrix exponentials, companion matrices, Laplace transforms of periodic
piecewise continuous forcing functions, and competitive species.

Appendices

Finally, the text closes with five appendices. The first three—on integration
techniques, polynomial zeros, and complex numbers—are intended as a review
of familiar topics from courses as far back in students’ experience as high school
algebra. The instructor can refer to these topics as necessary and encourage
students to read them for review. Appendix D is different in that it aims to
connect some key ideas in linear algebra and differential equations through a
more sophisticated viewpoint: linear transformations of vector spaces. Some
of the material there is appropriate for consideration following chapter 1,
but it is perhaps more suited to discussion after the Laplace transform has
been introduced. Finally, appendix E contains answers to nearly all of the
odd-numbered exercises in the text.
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1
Essentials of linear algebra

1.1 Motivating problems

The subjects of differential equations and linear algebra are particularly
important because each finds a wide range of applications in fundamental
physical problems. We consider two situations that involve systems of equations
to motivate our work in this chapter and much of the remainder of the text.

The pollution of bodies of water is an important issue for humankind.
Environmental scientists are particularly interested in systems of rivers and
lakes where they can study the flow of a given pollutant from one body of water
to another. For example, there is great concern regarding the presence of a
variety of pollutants in the Great Lakes (Lakes Michigan, Superior, Huron, Erie,
and Ontario), including salt due to snow melt from highways. Due to the large
number of possible ways for salt to enter and exit such a system, as well as the
many lakes and rivers involved, this problem is mathematically complicated. But
we may gain a feel for how one might proceed by considering a simple system of
two tanks, say A and B, where there are independent inflows and outflows from
each, as well as two pipes with opposite flows connecting the tanks as pictured
in figure 1.1.

We will let x1 denote the amount of salt (in grams) in A at time t (in
minutes). Since water flows into and out of the tank, and each such flow carries
salt, the amount of salt x1 is changing as a function of time. We know from
calculus that dx1/dt measures the rate of change of salt in the tank with respect
to time, and is measured in grams per minute. In this basic model, we can see
that the rate of change of salt in the tank will be the difference between the net
rate of salt flowing in and the net rate of salt flowing out.

3



4 Essentials of linear algebra

A B

Figure 1.1 Two tanks with inflows, outflows,
and connecting pipes.

As a simplifying assumption, we will suppose that the volume of solution in
each tank remains constant and all inflows and outflows happen at the identical
rate of 5 liters per minute. We will further assume that the tanks are uniformly
mixed so that the salt concentration in each is identical throughout the tank at
a given time t .

Let us now suppose that the volume of tank A is 200 liters; as we just noted,
the pipe flowing into A delivers solution at a rate of 5 liters per minute. Moreover,
suppose that this entering water is contaminated with 4 g of salt per liter. An
analysis of the units on these quantities shows that the rate of inflow of salt
into A is

5 liters

min
· 4 g

liter
= 20

g

min
(1.1.1)

There is one other inflow to consider, that being the pipe from B, which we will
consider momentarily after first examining the behavior of the outflow.

For the solution exiting the drain from A at a rate of 5 liters/min, observe
its concentration is unknown and depends on the amount of salt in the tank at
time t . In particular, since there are x1 g of salt in the tank at time t , and this
is distributed over the volume of 200 liters, we can say (using the simplifying
assumption that the tank’s contents stay uniformly mixed) that the rate of
outflow of salt in each of the exiting pipes is

5 liters

min
· x1 g

200 liters
= x1 g

40min
(1.1.2)

Since there are two such exit flows, this means that the combined rate of outflow
of salt from A is twice this amount, or x1/20 g/min.

Finally, there is one last inflow to consider. Note that solution from B is
entering A at a rate of 5 liters per minute. If we assume that B has a (constant)
volume of 400 liters, this flow has a salt concentration of x2 g/400 liters. Thus
the rate of salt entering A from B is

5 liters

min
· x2 g

400 liters
= x2 g

80 min
(1.1.3)
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Combining the rates of inflow (1.1.1) and (1.1.3) and outflow (1.1.2), where
inflows are considered positive and outflows negative, leads us to the differential
equation

dx1

dt
= 20 + x2

80
− x1

20
(1.1.4)

Since we have two tanks in the system, there is a second differential equation
to consider. Under the assumptions that B has a volume of 400 liters, the pipe
entering B carries a concentration of salt of 7 g/liter, and the net rates of inflow
and outflow match those into A, a similar analysis to the above reveals that

dx2

dt
= 35 + x1

40
− x2

40
(1.1.5)

Together, these two DEs form a system of DEs, given by

dx1

dt
= 20 + x2

80
− x1

20

dx2

dt
= 35 + x1

40
− x2

40

(1.1.6)

Systems of DEs are therefore, seen to play a key role in environmental
processes. Indeed, they find application in studying the vibrations of mechanical
systems, the flow of electricity in circuits, the interactions between predators
and prey, and much more. We will begin our examination of the mathematics
involved with systems of differential equations in chapter 3.

An important question related to the above system of DEs leads us to a
more familiar mathematical situation, one that is the foundation of much of the
subject of linear algebra. For the system of tanks above, we might ask, “under
what circumstances is the amount of salt in the two tanks not changing?” In
such a situation, neither x1 nor x2 varies, so the rate of change of each is zero,
and therefore

dx1

dt
= dx2

dt
= 0

Substituting these values into the system of DEs, we see that this results in the
system of linear equations

0 = 20 + x2

80
− x1

20

0 = 35 + x1

40
− x2

40

(1.1.7)

Multiplying both sides of the first equation by eighty and the second by forty
and rearranging terms, we find an equivalent system to be

4x1 − x2 = 1600

x1 − x2 = −1400

Geometrically, this system of linear equations represents the set of all points
that simultaneously lie on each of the two lines given by the respective equations.
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The solution of such 2×2 systems is typically discussed in introductory algebra
classes where students learn how to solve systems like these with the methods
of substitution and elimination. Doing so here leads to the unique solution
x1 = 1000, x2 = 2400; one interpretation of this ordered pair is that the system
of two tanks has an equilibrium state where, if the two tanks ever reach this
level of salinity, that salinity will then stay constant. With further study of
linear algebra and DEs, we will be able to show that over time, regardless of
how much salt is initially in each tank, the amount of salt in A will approach
1000 g, while that in B will approach 2400 g. We will thus call the equilibrium
point stable.

Electrical circuits are another physical situation where systems of linear
equations naturally arise. Flow of electricity through a collection of wires is
similar to the flow of water through a sequence of pipes: current measures the
flow of electrons (charge carriers) past a given point in the circuit. Typically,
we think about a battery as a source that provides a flow of electricity, wires
as a collection of paths along which the electricity may flow, and resistors
as places in the circuit where electricity is converted to some sort of output
such as heat or light. While we will discuss the principles behind the flow
of electricity in more detail in section 3.8, for now a basic understanding of
Kirchoff’s laws enables us to see an important application of linear systems
of equations.

In a given loop or branch j of a circuit, current is measured in amperes (A)
and is denoted by the symbol Ij . Resistances are measured in ohms (�), and the
energy produced by the battery is measured in volts. As shown in figure 1.2, we
use arrows in the circuit to represent the direction of flow of the current; when

4Ω

2Ω

3Ω

6Ω

+  −

+  −

10V

5V

I1
I1

I2
I2

I3
I3

a b

Figure 1.2 A simple circuit with two loops, two
batteries, and four resistors.
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this flow is away from the positive side of a battery (the circles in the diagram),
then the voltage is taken to be positive. Otherwise, the voltage is negative.

Two fundamental laws govern how the currents in various loops of the
circuit behave. One is Kirchoff’s current law, which is essentially a conservation
law. It states that the sum of all current flowing into a node equals the sum of
the current flowing out. For example, in figure 1.2 at junction a,

I1 + I3 = I2 (1.1.8)

Similarly, at junction b, we must have I2 = I1 + I3. This equation is identical
to (1.1.8) and adds no new information about the currents.

Ohm’s law governs the flow of electricity through resistors, and states that
the voltage drop across a resistor is proportional to the current. That is, V = IR,
where R is a constant that is the amount of resistance, measured in ohms. For
instance, in the circuit given in figure 1.2, the voltage drop through the 3-�
resistor on the bottom right is V = 3�. Kirchoff’s voltage law states that, in any
closed loop, the sum of the voltage drops must be zero. Since the battery that is
present maintains a constant voltage, it follows that in the bottom loop of the
given circuit,

4I1 + 2I2 + 3I1 = 5 (1.1.9)

Similarly, in the upper loop, we have

6I3 + 2I2 = 10 (1.1.10)

Finally, in the outer loop, taking into account the direction of flow of electricity
by regarding opposing flows as having opposing signs, we observe

6I3 − 4I1 − 3I1 = −5 + 10 (1.1.11)

Taking (1.1.8) through (1.1.11), combining like terms, and rearranging each so
that indices are in increasing order, we have the system of linear equations

I1 − I2 + I3 = 0
7I1 + 2I2 = 5

2I2 + 6I3 = 10
−7I1 + 6I3 = 5

(1.1.12)

We will call the system (1.1.12) a 4 × 3 system to represent the fact that it is a
collection of four linear equations in three unknown variables. Its solution—the
set of all possible values of (I1, I2, I3) that make all four equations simultaneously
true—provides the current in each loop of the circuit.

In this first chapter, we will develop our understanding of the more general
situation of systems of linear equations with m linear equations in n unknown
variables. This problem will lead us to consider important ideas from the theory
of matrices that play key roles in a variety of applications ranging from computer
graphics to population dynamics; related ideas will find further applications in
our subsequent study of systems of differential equations.
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1.2 Systems of linear equations

Linear equations are the simplest of all possible equations and are involved
in many applications of mathematics. In addition, linear equations play a
fundamental role in the study of differential equations. As such, the notion
of linearity will be a theme throughout this book. Formally, a linear equation in
variables x1, . . . ,xn is one having the form

a1x1 + a2x2 +·· ·+ anxn = b (1.2.1)

where the coefficients a1, . . . ,an and the value b are real or complex numbers.
For example,

2x1 + 3x2 − 5x3 = 7

is a linear equation, while

x2
1 + sinx2 − x3 lnx1 = 5

is not. Just as the equation 2x1 + 3x2 = 7 describes a line in the x1–x2 plane, the
linear equation 2x1 + 3x2 − 5x3 = 7 determines a plane in three-dimensional
space.

A system of m linear equations in n unknown variables is a collection of m
linear equations in n variables, say x1, . . . ,xn . We often refer to such a system as
an “m × n system of equations.” For example,

x1 + 2x2 + x3 = 1
x1 + x2 + 2x3 = 0

(1.2.2)

is a system of two linear equations in three unknown variables. A solution to the
system is any point (x1,x2,x3) that makes both equations simultaneously true;
the solution set for (1.2.2) is the collection of all such solutions. Geometrically,
each of these two equations describes a plane in three-dimensional space, as
shown in figure 1.3, and hence the solution set consists of all points that lie on
both of the planes. Since the planes are not parallel, we expect this solution set to

2

5

10

2x1

x3

x2

x1+ 2x2+ x3 = 1

x1+ x2+ 2x3 = 0

Figure 1.3 The intersection of the planes x1 + 2x2 +
x3 = 1 and x1 + x2 + 2x3 = 0.
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form a line in R
3. Note that R denotes the set of all real numbers; R

3 represents
familiar three-dimensional Euclidean space, the set of all ordered triples with
real entries.

The solution set for the system (1.2.2) may be determined using elementary
algebraic steps. We say that two systems are equivalent if they share the same
solution set. For example, if we multiply both sides of the first equation by −1
and add this to the second equation, we eliminate x1 in the second equation and
get the equivalent system

x1 + 2x2 + x3 = 1
−x2 + x3 = −1

Next, we multiply both sides of the second equation by −1 to get

x1 + 2x2 + x3 = 1
x2 − x3 = 1

Finally, if we multiply the second equation by −2 and add it to the first equation,
it follows that

x1 + 3x3 = −1
x2 − x3 = 1

(1.2.3)

This shows that any solution (x1,x2,x3) of the original system must satisfy the
(simpler) equivalent system of equations x1 = −1 − 3x3 and x2 = 1 + x3. Said
differently, any point in R

3 of the form (−1−3x3,1+x3,x3), where x3 ∈ R (here
the symbol ‘∈’ means is an element of ), is a solution to the system. Replacing
x3 by the parameter t , we recognize that the solution to the system is the line
parameterized by

(−1 − 3t ,1 + t , t ), t ∈ R (1.2.4)

which is the intersection of the two planes with which we began, as seen in
figure 1.3. Note that this shows there are infinitely many solutions to the given
system of equations; a particular example of such a solution may be found by
selecting any value of t (i.e., any point on the line). We can also check that the
resulting point makes both of the original equations true.

It is not hard to see in the 2 × 2 case that any linear system has either no
solution (the lines are parallel), a unique solution (the lines intersect once), or
infinitely many solutions (the two equations represent the same line). These
three options (no solution, exactly one solution, or infinitely many) turn out to
be the only possible cases for any m × n system of linear equations. A system
with at least one solution is said to be consistent, while a system with no solution
is called inconsistent.

In our work above from (1.2.2) to (1.2.3) in reducing the given system of
equations to a simpler equivalent one, it is evident that the coefficients of the
system played the key role, while the variables x1, x2, and x3 (and the equals sign)
were essentially placeholders. It proves expedient to therefore change notation
and collect all of the coefficients into a rectangular array (called a matrix) and
eliminate the redundancy of repeatedly writing the variables. Let us reconsider
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our above work in this light, where we will now refer to rows in the coefficient
matrix rather than equations in the original system. When we create a right-most
column consisting of the constants from the right-hand side of each equation,
we often say we have an augmented matrix.

From the ‘simplest’ version of the system at (1.2.3), the corresponding
augmented matrix is [

1 0 3 −1
0 1 −1 1

]
The 0’s represent variables that have been eliminated in each equation. From
this, we see that our goal in working with a matrix that represents a system
of equations is essentially to introduce as many zeros as possible through
operations that do not change the solution set of the system. We now repeat the
exact same steps we took with the system above, but translate our operations to
be on the matrix, rather than the equations themselves.

We begin with the augmented matrix[
1 2 1 1
1 1 2 0

]

To introduce a zero in the bottom left corner, we add −1 times the first row to
the second row, to yield a new row 2 and the updated matrix[

1 2 1 1
0 −1 1 −1

]

The ‘0’ in the second entry of the first column shows that we have eliminated
the presence of the x1 variable in the second equation. Next, we can multiply
row 2 by −1 to obtain an updated row 2 and the augmented matrix[

1 2 1 1
0 1 −1 1

]

Finally, if we multiply row 2 by −2 and add this to row 1, we find a new row 1
and the matrix [

1 0 3 −1
0 1 −1 1

]

At this point, we have introduced as many zeros as possible1, and have arrived
at our goal of the simplest possible equivalent system. We can reinterpret the
matrix as a system of equations: the first row implies that x1 + 3x3 = −1, while
the second row implies x2 − x3 = 1. This leads us to find, as we did above,
that any solution (x1,x2,x3) of the original system must be of the form (−1 −
3x3,1 + x3,x3), where x3 ∈ R.

1 Any additional row operations to introduce zeros in the third or fourth columns will replace the
zeros in columns 1 or 2 with nonzero entries.
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We will commonly need to refer to the number of rows and columns in a
matrix. For example, the matrix

[
1 0 3 −1
0 1 −1 1

]

has two rows and four columns; therefore, we say this is a 2 × 4 matrix. In
general, an m × n matrix has m rows and n columns. Observe that if we
have a 2 × 3 system of equations, its corresponding augmented matrix will be
2 × 4.

The above example demonstrates the general fact that there are basic
operations we can perform on an augmented matrix that, at each stage, result
in the matrix representing an equivalent system of equations; that is, these
operations do not change the solution to the system, but rather make the solution
more easily obtained. In particular, we may

1. Replace one row by the sum of itself and a multiple of another row;

2. Interchange any two rows; or

3. Scale a row by multiplying every entry in a given row by a fixed nonzero
constant.

These three types of operations are typically called elementary row operations.
Two matrices are row equivalent if there is a sequence of elementary row
operations that transform one matrix into the other. When matrices are used
to represent systems of linear equations, as was done above, it is always the case
that row-equivalent matrices correspond to equivalent systems.

We desire to use elementary row operations systematically to produce row
equivalent matrices from which we may easily interpret the solution to a system
of equations. For example, the solution to the system represented by

⎡
⎣1 0 0 −5

0 1 0 6
0 0 1 −3

⎤
⎦ (1.2.5)

is easy to obtain (in particular, x1 = −5, x2 = 6, x3 = −3), while the solution for

⎡
⎣ 3 −2 4 −39

−1 2 7 −4
6 9 −3 33

⎤
⎦

is not, even though the two matrices are equivalent. Therefore, we desire each
variable in the system to be represented in its corresponding augmented matrix
as infrequently as possible. Essentially our goal is to get as many columns of the
matrix as possible to have one entry that is 1, while all the rest of the entries in
that column are 0.
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A matrix is said to be in reduced row echelon form (RREF) if and only if
the following characteristics are satisfied:

• All nonzero rows are above any rows with all zeros

• The first nonzero entry (or leading entry) in a given row is 1 and is in a
column to the right of the first nonzero entry in any row above it

• Every other entry in a column with a leading 1 is 0

For example, the matrix in (1.2.5) is in RREF, while the matrix⎡
⎣1 −2 4 −5

0 2 7 6
0 0 −3 −3

⎤
⎦

is not, since two of the rows lack leading 1’s, and columns 2 and 3 lack zeros in
the entries above the lowest nonzero locations.

Each leading 1 in RREF is said to be in a pivot position, the column in which
the 1 lies is termed a pivot column, and the leading 1 itself is called a pivot.
Rows with all zeros do not contain a pivot position. The process by which row
operations are applied to a matrix to convert it to RREF is usually called Gauss–
Jordan elimination. We will also say that we “row-reduced” a given matrix.
While this process can be described in a somewhat cumbersome algorithm, it is
best demonstrated with a few examples. By working through the details of the
following problems (in particular by deciding which elementary row operations
were performed at each stage), the reader will not only learn the basics of row
reduction, but also will see and understand the key possibilities for the solution
set of a system of linear equations.

Example 1.2.1 Solve the system of equations

3x1 + 2x2 − x3 = 8
x1 − 4x2 + 2x3 = −9

−2x1 + x2 + x3 = −1
(1.2.6)

Solution. We begin with the corresponding augmented matrix⎡
⎣ 3 2 −1 8

1 −4 2 −9
−2 1 1 −1

⎤
⎦

and then perform a sequence of row operations. The arrows below denote the
fact that one or more row operations have been performed to produce a row
equivalent matrix. We find that⎡
⎣ 3 2 −1 8

1 −4 2 −9
−2 1 1 −1

⎤
⎦→

⎡
⎣ 1 −4 2 −9

3 2 −1 8
−2 1 1 −1

⎤
⎦→

⎡
⎣1 −4 2 −9

0 14 −7 35
0 −7 5 −19

⎤
⎦→
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Figure 1.4 The intersection of the three
planes given by the linear system (1.2.6).

⎡
⎣1 −4 2 −9

0 1 − 1
2

5
2

0 −7 5 −19

⎤
⎦→

⎡
⎣1 0 0 1

0 1 − 1
2

5
2

0 0 3
2 − 3

2

⎤
⎦→

⎡
⎣1 0 0 1

0 1 − 1
2

5
2

0 0 1 −1

⎤
⎦→

⎡
⎣1 0 0 1

0 1 0 2
0 0 1 −1

⎤
⎦

This shows us that the original 3 × 3 system has a unique solution, and that this
solution is the point (1,2,−1). Geometrically, this demonstrates that the three
planes with equations given by the system (1.2.6) meet in a single point, as we
can see in figure 1.4.

Example 1.2.2 Solve the system of equations

x1 + 2x2 − x3 = 1
x1 + x2 = 2

3x1 + x2 + 2x3 = 8
(1.2.7)

Solution. We consider the corresponding augmented matrix⎡
⎣1 2 −1 1

1 1 0 2
3 1 2 8

⎤
⎦

and again perform a sequence of row operations:⎡
⎣1 2 −1 1

1 1 0 2
3 1 2 8

⎤
⎦→

⎡
⎣1 2 −1 1

0 −1 1 1
0 −5 5 5

⎤
⎦→

⎡
⎣1 2 −1 1

0 1 −1 −1
0 −5 5 5

⎤
⎦→

⎡
⎣1 0 1 3

0 1 −1 −1
0 0 0 0

⎤
⎦

In this case, we see that one row of the matrix has essentially vanished. This
shows that one of the equations in the original system was redundant, and
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did not contribute any restrictions on the system. Moreover, as the matrix is
now in RREF, we can see that the simplest equivalent system is given by the
two equations x1 + x3 = 3 and x2 − x3 = −1. In other words, x1 = 3 − x3 and
x2 = −1 + x3. Since the variable x3 has no restrictions on it, we call x3 a free
variable. This implies that the system under consideration has infinitely many
solutions, each having the form

(3 − t ,−1 + t , t ), where t ∈ R (1.2.8)

In the next section, we will begin to emphasize the role that vectors play in
systems of linear equations. For example, the ordered triple (3 − t ,−1 + t , t )
in (1.2.8) may be viewed as a vector in R

3. In addition, the representation (1.2.8)
of the set of all solutions involving the parameter t is often called the parametric
vector form of the solution. As we saw in the very first system of equations
discussed in this section, example 1.2.2 shows that the three planes given in the
system (1.2.7) meet in a line.

Example 1.2.3 Solve the system of equations

x1 + 2x2 − x3 = 1
x1 + x2 = 2

3x1 + x2 + 2x3 = 7

Solution. Observe that the only difference between this example and the
previous one is that the “8” in the third equation has been replaced with “7.”
We proceed with identical row operations to those above and find that⎡
⎣1 2 −1 1

1 1 0 2
3 1 2 7

⎤
⎦→

⎡
⎣1 2 −1 1

0 −1 1 1
0 −5 5 4

⎤
⎦→

⎡
⎣1 2 −1 1

0 1 −1 −1
0 −5 5 4

⎤
⎦→

⎡
⎣1 0 1 3

0 1 −1 −1
0 0 0 −1

⎤
⎦

In this case, the final row of the reduced matrix corresponds to the equation
0x1 + 0x2 + 0x3 = −1. Since there are no points (x1,x2,x3) that make this
equation true, it follows that there can be no points which simultaneously satisfy
all three equations in the system. Said differently, the three planes given in the
original system of equations do not meet at a single point, nor do they meet in
a line. Therefore, the system has no solution; recall that we call such a system
inconsistent.

Note that the only difference between example 1.2.2 and example 1.2.3 is one
constant in the righthand side in the equation of one of the planes. This changed
the result dramatically, from the case where the system had infinitely many
solutions to one where no solutions were present. This is evident geometrically
if we think about a situation where three planes meet in a line, and then we alter
the equation of one of the planes to shift it to a new plane parallel to its original
location: the three planes will no longer have any points in common.
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Algebraically, we can see what is so special about the one constant we changed
(8 to 7) if we replace this value with an arbitrary constant, say k, and perform
row operations:⎡

⎣1 2 −1 1
1 1 0 2
3 1 2 k

⎤
⎦→

⎡
⎣1 2 −1 1

0 1 −1 −1
0 −5 5 k − 3

⎤
⎦→

⎡
⎣1 0 1 3

0 1 −1 −1
0 0 0 k − 8

⎤
⎦

This shows that for any value of k other than 8, the resulting system of linear
equations will be inconsistent, therefore having no solutions. In the case that
k = 8, we see that a free variable arises and then the system has infinitely many
solutions.

Overall, the question of consistency is an important one for any linear
system of equations. In asking “is this system consistent?” we investigate whether
or not the system has at least one solution. Moreover, we are now in a position
to understand how RREF determines the answer to this question. We note from
considering the RREF of a matrix that there are two overall cases: either the
system contains an equation of the form 0x1 +·· ·+0xn = b, where b is nonzero,
or it has no such equation. In the former case, the system is inconsistent and
has no solution. In the latter case, it will either be that every variable is uniquely
determined, or that there are one or more free variables present, in which case
there are infinitely many solutions to the system. This leads us to state the
following theorem.

Theorem 1.2.1 For any linear system of equations, there are only three possible
cases for the solution set: there are no solutions, there is a unique solution, or
there are infinitely many solutions.

This central fact regarding linear systems will play a key role in our studies.

1.2.1 Row-reduction using Maple

Obviously one of the problems with the process of row reducing a matrix
is the potential for human arithmetic errors. Soon we will learn how to use
computer software to execute all of these computations quickly; first, though,
we can deepen our understanding of how the process works, and simultaneously
eliminate arithmetic mistakes, by using a computer algebra system in a step-by-
step fashion. Our software of choice is Maple. For now, we only assume that the
user is familiar with Maple’s interface, and will introduce relevant commands
with examples as we go.

We will use the LinearAlgebra package in Maple, which is loaded using
the command

> with(LinearAlgebra):

(The symbol ‘>’ is called a Maple prompt; the program makes this available to
the user automatically, and it should not be entered by the user.) To demonstrate
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various commands, we will revisit the system from example 1.2.1. The reader
should explore this code actively by entering and experimenting on his or her
own. Recall that we were interested in row-reducing the augmented matrix⎡

⎣ 3 2 −1 8
1 −4 2 −9

−2 1 1 −1

⎤
⎦

We enter the augmented matrix, say A, column-wise in Maple with the
command

> A := <<3,1,-2>|<2,-4,1>|<-1,2,1>|<8,-9,-1>>;

We first want to swap rows 1 and 2; this is accomplished by entering

> A1 := RowOperation(A,[1,2]);

Note that this stores the result of this row operation in the matrix A1, which is
convenient for use in the next step. After executing the most recent command,
the following matrix will appear on the screen:

A1 :=
⎡
⎣ 1 −4 2 −9

3 2 −1 8
−2 1 1 −1

⎤
⎦

To perform row-replacement, our next step is to add (−3) · R1 to R2 (where
rows 1 and 2 are denoted R1 and R2) to generate a new second row; similarly,
we will add 2 · R1 to R3 for an updated row 3. The commands that accomplish
these steps are

> A2 := RowOperation(A1,[2,1],-3);
> A3 := RowOperation(A2,[3,1],2);

and lead to the following output:

A3 :=
⎡
⎣1 −4 2 −9

0 14 −7 35
0 −7 5 −19

⎤
⎦

Next, we will scale row 2 by a factor of 1/14 using the command

> A4 := RowOperation(A3,2,1/14);

to find that

A4 :=
⎡
⎣1 −4 2 −9

0 1 − 1
2

5
2

0 −7 5 −19

⎤
⎦
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The remainder of the computations in this example involve slightly modified
versions of the three versions of the RowOperation command demonstrated
above, and are left as an exercise for the reader. Recall that the unique solution
to the original system is (1,2,−1).

Maple is certainly capable of performing all of these steps at once. After
completing each step-by-step command above in the row-reduction process,
the result can be checked by executing the command

> ReducedRowEchelonForm(A);

The corresponding output should be⎡
⎣1 0 0 1

0 1 0 2
0 0 1 −1

⎤
⎦

which clearly reveals the unique solution to the system, (1,2,−1).

Exercises 1.2 In exercises 1–4, solve each system of equations or explain why
no solution exists.

1. x1 + 2x2 = 1
x1 + x2 = 0

2. x1 + 2x2 = 1
−2x1 − 4x2 = −2

3. x1 + 2x2 = 1
−2x1 − 4x2 = −3

4. 4x1 − 3x2 = 5
−x1 + 4x2 = 2

In exercises 5–9, for each linear system represented by a given augmented matrix
in RREF, decide whether or not the system is consistent or not. If the system is
consistent, determine its solution set. For systems with infinitely many solutions,
express the solution in parametric vector form.

5.
⎡
⎣1 0 0 4

0 1 0 −2
0 0 1 3

⎤
⎦

6.
⎡
⎣1 0 0 4

0 1 1 −2
0 0 0 3

⎤
⎦

7.
⎡
⎢⎢⎣

1 0 2 −3
0 1 1 −2
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦
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8.
⎡
⎣1 0 0 −3 5

0 0 1 −2 4
0 0 0 0 0

⎤
⎦

9.
⎡
⎢⎢⎣

1 −2 0 4 0 −1
0 0 1 3 0 2
0 0 0 0 1 −5
0 0 0 0 0 0

⎤
⎥⎥⎦

In exercises 10–14, the given augmented matrix represents a system for which
some row operations have been performed to partially row-reduce the matrix.
By deciding which operations must next be executed, finish row-reducing each
matrix. Finally, interpret your results to state the solution set to the system.

10.
⎡
⎣1 3 2 5

0 1 −4 −1
0 0 1 7

⎤
⎦

11.
⎡
⎣1 0 0 4

0 0 0 3
0 1 1 −2

⎤
⎦

12.
⎡
⎢⎢⎣

1 0 2 −3
0 1 1 −2
0 3 3 −6
0 2 2 −1

⎤
⎥⎥⎦

13.
⎡
⎣1 0 5 −1 6

0 0 2 −8 2
0 0 0 0 0

⎤
⎦

14.
⎡
⎢⎢⎣

1 −3 0 5 0 −3
0 0 1 3 0 4
0 0 0 1 2 −9
0 0 0 0 1 4

⎤
⎥⎥⎦

Determine all value(s) of h that make each augmented matrix in exercises 15–18
correspond to a consistent linear system. For such h, describe the solution set
to the system.

15.
[

1 −2 7
−3 6 h

]
16.
[

1 −2 7
−3 h −21

]
17.
[

1 h 3
2 h 6

]
18.
[

1 2 3
−2 h 5

]
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Use a computer algebra system to perform step-by-step row operations to solve
each of the following linear systems in exercises 19–23. If the system is consistent,
determine its solution set. For systems with infinitely many solutions, express
the solution in parametric vector form.

19. x1 − x2 + x3 = 5
2x1 − 4x2 + 3x3 = 0
x1 − 6x2 + 2x3 = 3

20. 4x1 + 2x2 − x3 = −2
x1 − x2 + x3 = 6

−3x1 + x2 − 4x3 = −20

21. 4x1 + 2x2 − x3 = −2
x1 − x2 + x3 = 6

−2x1 − 4x2 + 3x3 = 14

22. 4x1 + 2x2 − x3 = −2
x1 − x2 + x3 = 6

−2x1 − 4x2 + 3x3 = 13

23. 2x2 + 3x3 − 4x4 = 1
2x3 + 3x4 = 4

2x1 + 2x2 − 5x3 + 2x4 = 4
2x1 − 6x3 + 9x4 = 7

In exercises 24–27, determine whether or not the given three lines or planes
meet in a single point. Justify your answer using appropriate row operations.

24. x1 + x2 = 5, 2x1 − 3x2 = −5, −4x1 + 2x2 = −2

25. x1 + x2 = 5, 2x1 − 3x2 = −5, −4x1 + 2x2 = −3

26. x1 + x2 + x3 = 5, 2x1 − 3x2 + x3 = 1, −4x1 + 2x2 + 5x3 = 4

27. x1 + x2 + x3 = 5, 2x1 − 3x2 + x3 = 3, −4x1 + 2x2 + 5x3 = 4

28. Consider a linear system whose corresponding augmented matrix has all
zeros in its final column. Is it ever possible for such a system to be
inconsistent? Why or why not?

29. Is it possible for a 2 × 3 linear system to be inconsistent? Explain.

30. If a 3 × 4 linear system has three pivot columns in its corresponding
augmented matrix, can you determine whether or not the system must be
consistent? Explain.

31. A system of linear equations has a unique solution. What can be
determined about the relationship between the number of pivot columns
in the augmented matrix and the number of variables in the system?
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32. Decide whether each of the following sentences is true or false. In every
case, write one sentence to support your answer.

(a) Two lines must either intersect or be parallel.
(b) A system of three linear equations in three unknown variables can

have exactly three solutions.
(c) If the RREF of a matrix has a row of all zeros, then the corresponding

system must have a free variable present.
(d) If a system has a free variable present, then the system has infinitely

many solutions.
(e) A solution to a 4 × 3 linear system is a list of four numbers

(x1,x2,x3,x4) that simultaneously makes every equation in the system
true.

(f) A matrix with three columns and four rows is 3 × 4.
(g) A consistent system is one with exactly one solution.

33. Suppose that we would like to find a quadratic function
p(t ) = a2t 2 + a1t + a0 that passes through the three points (1,4), (2,7),
and (3,6). How does this problem lead to a system of linear equations?
Find the function p(t ). (Hint: p(1) = 4 implies that 4 = a212 + a11 + a0.)

34. Find a quadratic function p(t ) = a2t 2 + a1t + a0 that passes through the
three points (−1,1), (2,−1), and (5,4). How does this problem involve a
system of linear equations?

35. For the circuit shown at the left in figure 1.5, set up and solve a system of
linear equations whose solution is the respective currents I1, I2, and I3.

36. For the circuit shown at the right in figure 1.5, set up and solve a system of
linear equations whose solution is the respective currents I1, I2, and I3.

+  −

+  −

2Ω

1Ω

4Ω

5Ω

I3

I1

20V

10V

+  −

+  −

3Ω

2Ω

1Ω

6V

8V

I2 I2
I2 I2

I1

I3

I1

I3

I3

I1

Figure 1.5 Circuits for use in exercises 35 and 36.
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1.3 Linear combinations

An important theme in mathematics that is especially present in linear algebra
is the value of considering the same idea from a variety of different perspectives.
Often, we can make statements that on the surface may seem unrelated, when
in fact they ultimately mean the same thing, and one of the statements is most
advantageous for solving a particular problem. Throughout our study of linear
algebra, we will see that the subject offers a wide variety of perspectives and
terminology for addressing the central concept: systems of linear equations. In
this section, we take another look at the concept of consistency, but do so in a
different, geometric light.

Example 1.3.1 Consider the system of equations

x1 − x2 = 1
x1 + x2 = 3
x1 + 2x2 = 4

(1.3.1)

Rewrite the system in vector form and explore how two vectors are being
combined to form a third, particularly in terms of the geometry of R

3. Then
solve the system.

Solution. In multivariable calculus, we learn to think of vectors in R
3 very

much like we think of points. For example, given the point (a,b, c), we may
write v = 〈a,b, c〉 or v = ai + bj + ck to denote the vector v that emanates
from (0,0,0) and ends at (a,b, c). (Here i, j, and k represent the standard unit
coordinate vectors: i is the vector from (0,0,0) to (1,0,0), j to (0,1,0), and k to
(0,0,1).)

In linear algebra, we will prefer to take the perspective of writing such an
ordered triple as a matrix with only one column, also known as a column vector,
in the form

v =
⎡
⎣ a

b
c

⎤
⎦ (1.3.2)

To save space, we will sometimes use the equivalent notation2 v = [a b c]T.
Recall that two vectors are equal if and only if their corresponding entries are
equal, that a vector may be multiplied by a scalar, and that any two vectors of
the same size may be added.

2 The ‘T ’ stands for transpose, and the transpose of a matrix is achieved by turning every column
into a row.
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We can now re-examine the system of equations (1.3.1) in the light of
equality among vectors. In particular, observe that it is equivalent to say⎡

⎣ x1 − x2

x1 + x2

x1 + 2x2

⎤
⎦=

⎡
⎣ 1

3
4

⎤
⎦ (1.3.3)

since two vectors are equal if and only if their corresponding entries are
equal. Recalling further that vectors are added component-wise, we can
rewrite (1.3.3) as ⎡

⎣ x1

x1

x1

⎤
⎦+

⎡
⎣−x2

x2

2x2

⎤
⎦=

⎡
⎣ 1

3
4

⎤
⎦ (1.3.4)

Finally, we observe in (1.3.4) that the first vector on the left-hand side has
a common factor of x1 in each component, and the second vector similarly
contains x2. Since a scalar multiple of a vector is computed component-wise,
here we can rewrite the equation once more, now in the form

x1

⎡
⎣ 1

1
1

⎤
⎦+ x2

⎡
⎣−1

1
2

⎤
⎦=

⎡
⎣ 1

3
4

⎤
⎦ (1.3.5)

Equation (1.3.5) is equivalent to the original system (1.3.1), but is now being
viewed in a very different way. Specifically, this last equation asks if there are
values of x1 and x2 for which

x1v1 + x2v2 = b

where

v1 =
⎡
⎣ 1

1
1

⎤
⎦ , v2 =

⎡
⎣−1

1
2

⎤
⎦ , and b =

⎡
⎣ 1

3
4

⎤
⎦ (1.3.6)

If we plot the vectors v1, v2, and b, an interesting situation comes to light, as
seen in figure 1.6. In particular, it appears as if all three vectors lie in the same
plane. Moreover, if we think about the parallelogram law of vector addition and
stretch the vector v1 by a factor of 2, we see the image in figure 1.7. This shows
geometrically that it appears b = 2v1 +v2; a quick check of the vector arithmetic
confirms that this is in fact the case. In other words, the unique solution to the
system (1.3.1) is x1 = 2 and x2 = 1.

Among the many important ideas in example 1.3.1, perhaps most significant
is the way we were able to re-cast a problem about a system of linear equations
as a question involving vectors. In particular, we saw that it was equivalent to
ask if there exist constants x1 and x2 such that

x1v1 + x2v2 = b (1.3.7)
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Figure 1.6 The vectors v1,v2, and b
from (1.3.6).
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Figure 1.7 The parallelogram formed by
the vectors 2v1 and v2 from (1.3.6).

Note that in (1.3.7), we are only taking scalar multiples of vectors and adding
them—computations that are linear in nature. We thus naturally come to use
the terminology that “x1v1 + x2v2 is a linear combination of the vectors v1 and
v2.” A more general definition now follows, from which we will be able to widen
our perspective on systems of linear equations.

Definition 1.3.1 If v1, . . . ,vk are vectors in R
n (that is, each vi is a vector with

n entries), and x1, . . . ,xk are scalars, then the vector b given by

b = x1v1 +·· ·+ xkvk (1.3.8)

is a linear combination of the vectors v1, . . . ,vk , with weights or coefficients
x1, . . . ,xk .

Note the notational convention we use, as in example 1.3.1: a bold, non-
italicized, lowercase variable, say x, represents a vector, while a non-bold,
italicized, lower-case variable, say c , denotes a scalar. A bold, non-italicized,
uppercase variable, say A, will represent a matrix with at least two columns.
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In light of this new terminology of linear combinations, in example 1.3.1
we saw that the question “is there a solution to the linear system (1.3.1)?” is
equivalent to asking “is the vector b a linear combination of the vectors v1

and v2?”
If we now consider the more general situation of a system of linear

equations, say

a11x1 + a12x2 +·· ·+ a1nxn = b1

a21x1 + a22x2 +·· ·+ a2nxn = b2

...

am1x1 + am2x2 +·· ·+ amnxn = bm

it follows (as in section 1.2) that we can view this system in terms of the
augmented matrix

[a1 a2 · · · an b]

where a1 is the vector in R
m representing the first column of the augmented

matrix, and so on. Now, however, we have the additional perspective, as in
example 1.3.1, that the columns of the augmented matrix A are precisely the
vectors being used to form a linear combination in an attempt to construct b.
That is, the general m × n linear system above asks the question, “is b a linear
combination of a1, . . . ,an?”

We make the connection between linear combinations and augmented
matrices more explicit by defining matrix–vector multiplication in terms of linear
combinations.

Definition 1.3.2 Given an m × n matrix A with columns a1, . . . ,an that are
vectors in R

m , if x is a vector in R
n , then we define the product Ax by the

equation

Ax = [a1 a2 · · · an]

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦= x1a1 + x2a2 +·· ·+ xnan (1.3.9)

That is, the matrix–vector product of A and x is the vector Ax obtained
by taking the linear combination of the column vectors of A according to the
weights prescribed by the entries in x. Certainly we must have the same number
of entries in x as columns in A, or Ax will not be defined. The following example
highlights how to compute and interpret matrix–vector products.

Example 1.3.2 Let a1 = [1 − 4 2]T and a2 = [−3 1 5]T, and let A be the
matrix whose columns are a1 and a2. Compute Ax, where x = [−5 2]T, and
interpret the result in terms of linear combinations.
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Solution. By definition, we have that

Ax =
⎡
⎣ 1 −3

−4 1
2 5

⎤
⎦[−5

2

]
= −5

⎡
⎣ 1

−4
2

⎤
⎦+ 2

⎡
⎣−3

1
5

⎤
⎦=

⎡
⎣−11

22
0

⎤
⎦

The above computations show clearly that the vector Ax = [−11 22 0]T is a
linear combination of a1 and a2.

Following a few more computational examples in homework exercises, the
reader will quickly see how to compute the product Ax whenever it is defined;
usually we skip past the intermediate stage of writing out the explicit linear
combination of the columns and simply write the resulting vector. Matrix–
vector multiplication also has several important general properties, some of
which will be explored in the exercises. For now, we simply list these properties
here for future reference: for any m × n matrix A, vectors x, y ∈ R

n , and c ∈ R,

• A(x + y) = Ax + Ay

• A(cx) = c(Ax)

The first property shows that matrix multiplication distributes over addition;
the second demonstrates that a scalar multiple can be taken either before or after
multiplying the vector x by A. These two properties of matrix multiplication are
often referred to as being properties of linearity—note the use of only scalar
multiplication and vector addition in each, and the linear appearance of each
equation.3 Finally, note that it is also the case that A0n = 0m , where 0n is the
vector in R

n with all entries being zero, and 0m is the corresponding zero vector
in R

m .
There is one more important perspective that this new matrix–vector

product notation permits. Recall that, in example 1.3.1, we learned that the
question “is b a linear combination of a1 and a2?” is equivalent to asking “is
there a solution to the system of linear equations whose augmented matrix has
columns a1, a2, and b?” Now, in light of matrix–vector multiplication, we also
see that the question “is b a linear combination of a1 and a2?” may be rephrased
as asking “does there exist a vector x such that Ax = b?” That is, are there
weights x1 and x2 (the entries in vector x) such that b is a linear combination of
the columns of A?

In particular, we may now adopt the perspective that we desire to solve the
equation Ax = b for the unknown vector x, where A is a matrix whose entries
are known, and b is a vector whose entries are known. This equation is strikingly
similar to the most elementary of equations encountered in algebra, ones such as
2x = 7. Therefore, we see that the linear equation Ax = b, involving matrices and
vectors, is of fundamental importance as it is another way of expressing questions

3 A deeper discussion of the notion of linear transformations can be found in appendix D.
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regarding linear combinations and solutions of systems of linear equations. In
subsequent sections, we will explore this equation from several perspectives.

1.3.1 Markov chains: an application of
matrix–vector multiplication

People are often distributed naturally among various groupings. For example,
much political discussion in the United States is centered on three classifications
of voters: Democrat, Republican, and Independent. A similar situation can be
considered with regard to peoples’ choices for where to live: urban, suburban, or
rural. In each case, the state of the population at a given time is its distribution
among the relevant categories.

Furthermore, in each of these situations, it is natural to assume that if we
consider the state of the system at a given point in time, its state depends on the
system’s state in the preceding year. For example, the percentage of Democrats,
Republicans, and Independents in the year 2020 ought to be connected to the
respective percentages in 2019.

Let us assume that a population of voters (of constant size) is considered in
which every-one must classified as either D, R, or I (Democrat, Republican, or
Independent). Suppose further that a study of voter registrations over many
years reveals the following trends: from one year to the next, 95 percent
of Democrats keep their registration the same. For the remaining 5 percent
who change parties, 2 percent become Republicans and 3 percent become
Independents. Similar data for Republicans and Independents is given in the
following table.

Future party (↓)/current party (→) D(%) R(%) I(%)

Democrat 95 3 7

Republican 2 90 13

Independent 3 7 80

If we let Dn , Rn , and In denote the respective numbers of registered
Democrats, Republicans, and Independents in year n, then the table shows
us how to determine the respective numbers in year n + 1. For example,

Dn+1 = 0.95Dn + 0.03Rn + 0.07In (1.3.10)

since 95 percent of the Democrats in year n stay registered Democrats, and
3 percent of Republicans and 7 percent of Independents change to Democrats.
Similarly, we have

Rn+1 = 0.02Dn + 0.90Rn + 0.13In (1.3.11)

In+1 = 0.03Dn + 0.07Rn + 0.80In (1.3.12)
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If we combine (1.3.10), (1.3.11), and (1.3.12) in a single vector equation, then⎡
⎣Dn+1

Rn+1

In+1

⎤
⎦= Dn

⎡
⎣ 0.95

0.02
0.03

⎤
⎦+ Rn

⎡
⎣ 0.03

0.90
0.07

⎤
⎦+ In

⎡
⎣ 0.07

0.13
0.80

⎤
⎦ (1.3.13)

Here we find that linear combinations of vectors have naturally arisen. Note,
for example, that the vector [0.03 0.90 0.07]T is the Republican vector, and
represents the likelihood that a Republican in a given year will be in one
of the three parties in the following year. More specifically, we observe that
probabilities are involved: a Republican has a 3 percent likelihood of registering
as a Democrat in the following year, a 90 percent likelihood of staying a
Republican, and 7 percent chance of becoming an Independent. The sum of
the entries in each column vector is 1.

If we use the vector x(n) to represent

x(n) =
⎡
⎣Dn

Rn

In

⎤
⎦

and use matrix–vector multiplication to represent the linear combination of
vectors in (1.3.13), then (1.3.13) is equivalently expressed by the equation

x(n+1) = Mx(n) (1.3.14)

where M is the matrix

M =
⎡
⎣ 0.95 0.03 0.07

0.02 0.90 0.13
0.03 0.07 0.80

⎤
⎦

The matrix M is often called a transitionmatrix since it shows how the population
transitions from state n to state n + 1. We observe that in order for such a
matrix to represent the probabilities that groups in a particular set of states will
transition to another set of states, the columns of the matrix M must be non-
negative and add to 1. Such a matrix is called a stochastic matrix or a Markov
matrix. Finally, we call any system such as the one with three classifications of
voters, where the state of the system in a given observation period results from
applying probabilities to a previous state, a Markov chain or Markov process.

We see, for example, that if we had a group of 250000 voters that at year
n = 0 was distributed among Democrats, Republicans, and Independents by
the vector (with entries measured in thousands) x(0) = [120 110 20]T then we
can easily compute the projected distribution of voters in subsequent years. In
particular, (1.3.14) implies

x(1) = Mx(0) =
⎡
⎣118.70

104
27.3

⎤
⎦, x(2) = Mx(1) =

⎡
⎣117.80

99.52
32.68

⎤
⎦, x(3) = Mx(2) =

⎡
⎣117.18

96.18
36.65

⎤
⎦
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Interestingly, if we continue the sequence, we eventually find that there is very
little variation from one vector x(n) to the next. For example,

x(17) =
⎡
⎣ 116.67

85.95
47.42

⎤
⎦≈ x(18) =

⎡
⎣ 116.79

85.76
47.44

⎤
⎦

In fact, as we will learn in our later study of eigenvectors, there exists a vector
x∗ called the steady-state vector for which x∗ = Mx∗. This shows that the system
can reach a state in which it does not change from one year to the next.

Another example is instructive.

Example 1.3.3 Geographers studying a metropolitan area have observed a
trend that while the population of the area stays roughly constant, people within
the city and its suburbs are migrating back and forth. In particular, suppose that
85 percent of people whose homes are in the city keep their residence from one
year to the next; the remainder move to the suburbs. Likewise, while 92 percent
of people whose homes are in suburbs will live there the next year, the other
8 percent will move into the city.

Assuming that in a given year there are 230000 people living in the city and
270000 people in the surrounding suburbs, predict the population distribution
over the next 3 years.

Solution. If we let Cn and Sn denote the populations of the city and suburbs
in year n, the given information tells us that the following relationships hold:

Cn+1 = 0.85Cn + 0.08Sn

Sn+1 = 0.15Cn + 0.92Sn

Using the notation

x(n) =
[

Cn

Sn

]
we can model the changing distribution of the population between the city and
suburbs with the Markov process x(n+1) = Mx(n), where M is the Markov matrix

M =
[

0.85 0.08
0.15 0.92

]

In particular, starting with x(0) = [230 270]T, we see that

x(1) =
[

217.10
282.90

]
, x(2) =

[
207.17
292.83

]
, x(3) =

[
199.52
300.48

]

As with voter distribution, this example is oversimplified. For instance,
we have not taken into account members of the population who move into
or away from the metropolitan area. Nonetheless, the basic ideas of Markov
processes are important in the study of systems whose current state depends on
preceding ones, and we see the key role matrices and matrix multiplication play
in representing them.
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1.3.2 Matrix products using Maple

After becoming comfortable with computing elementary matrix products by
hand, it is useful to see how Maple can assist us with more complicated
computations. Here, we demonstrate the relevant command.

Revisiting example 1.3.2, to compute the product Ax, we first enter A and
x using the familiar commands

> A := <<1, -4, 2>|<-3, 1, 5>>; x := <<-5,2>>;

Next, we use the ‘period’ symbol to inform Maple that we want to multiply.
Entering

> b := A.x;

yields the expected output that

b =
⎡
⎣−11

22
0

⎤
⎦

Note: Maple will obviously only perform the multiplication when it is defined.
If, say, we were to attempt to multiply a 2 × 2 matrix and a 3 × 1 vector, Maple
would report the following:

Error, (in LinearAlgebra:-MatrixVectorMultiply)
vector dimension (3) must be the same as the
matrix column dimension (2).

Exercises 1.3 For exercises 1–4, where a matrix A and vector x are given,
compute the product Ax in every case that it is defined. If the product is
undefined, explain why.

1. A =
[

1 −3 2
−4 1 0

]
, x =

[−1
2

]

2. A =
[

1 −3 2
−4 1 0

]
, x =

⎡
⎣−1

2
4

⎤
⎦

3. A =
⎡
⎣ 5 −2

1 −1
−3 2

⎤
⎦ , x =

[
3

−2

]

4. A = [ −4 2 7
]
, x =

⎡
⎣ 3

5
−1

⎤
⎦
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5. Recall from multivariable calculus that given vectors x,y ∈ R
3, the dot

product of x and y, x · y, is computed by taking

x · y = x1y1 + x2y2 + x3y3

How can matrix–vector multiplication (when defined) be viewed as the
result of computing several appropriate dot products? Explain.

6. For the system of equations given below, determine a vector equation with
an equivalent solution. What is the system asking in regard to linear
combinations of certain vectors?

x1 + 2x2 = 1
x1 + x2 = 0

In addition, determine a matrix A and vector b so that the equation
Ax = b is equivalent to the given system of equations.

7. For the system of differential equations (1.1.6) (also given below) from the
introductory section, how can we rewrite the system in matrix–vector
notation?

dx1

dt
= 20 − x1

20
+ x2

80

dx2

dt
= 35 + x1

40
− x2

40

Hint: recall that if x(t ) is a vector function, we write x′(t ) or dx/dt for the
vector [dx1/dt dx2/dt ]T.

8. Determine if the vector b = [−3 1 5]T is a linear combination of the
vectors a1 = [−1 2 1]T, a2 = [3 1 1]T, and a3 = [1 5 3]T. If so, will more
than one set of weights work?

9. Determine if the vector b = [0 7 4]T is a linear combination of the vectors
a1 = [−1 2 1]T, a2 = [3 1 1]T, and a3 = [1 5 3]T. If so, will more than
one set of weights work?

10. We know from our work in this section that the matrix equation Ax = b
corresponds both to a vector equation and a system of linear equations.
What is the augmented matrix that represents this system of equations?

In exercises 11–15, let A be the stated matrix and b the given vector. Solve
the linear equation Ax = b by converting the equation to a system of linear
equations and row-reducing appropriately. If the system has more than one
solution, express the solution in parametric vector form. Finally, write a sentence
in each case that explains how the vector b is related to linear combinations of
the columns of A.

11. A =
[

4 5 −1
3 1 2

]
, b =

[
13
−4

]
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12. A =
[

2 5
−3 −1

]
, b =

[
5
6

]

13. A =
[

6 2
−3 −1

]
, b =

[
7

−1

]

14. A =
⎡
⎣ 1 −3

−2 1
3 −1

⎤
⎦, b =

⎡
⎣ 5

−5
5

⎤
⎦

15. A =
⎡
⎣ 5 −3 1

−2 1 4
1 0 −2

⎤
⎦, b =

⎡
⎣ 0

22
−11

⎤
⎦

16. Linear equations of the form Ax = 0 are important for a variety of reasons,
some of which we will study in the next section. Explain why the system of
linear equations corresponding to the equation Ax = 0 is always
consistent, regardless of the matrix A.

In exercises 17–21, solve the linear equation Ax = 0 by row-reducing
appropriately. If the system has more than one solution, express the solution in
parametric vector form.

17. A =
[

4 5 −1
3 1 2

]

18. A =
[

2 5
−3 −1

]

19. A =
[

6 2
−3 −1

]

20. A =
⎡
⎣ 1 −3

−2 1
3 −1

⎤
⎦

21. A =
⎡
⎣ 5 −3 1

−2 1 4
1 0 −2

⎤
⎦

22. Let A =
[

3 −4
−6 8

]
and b =

[
b1

b2

]
. Describe the set of all vectors b for

which the equation Ax = b is consistent.

23. Let v1 =
[

3
−6

]
, v2 =

[−4
8

]
, and b =

[
b1

b2

]
. Describe the set of all

vectors b for which b is a linear combination of v1 and v2.
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24. Let A be an m × n matrix, x and y ∈ R
n , and c ∈ R. Show that

(a) A(x + y) = Ax + Ay
(b) A(cx) = c(Ax)

25. Decide whether each of the following sentences is true or false. In every
case, write one sentence to support your answer.

(a) To compute the product Ax, the vector x must have the same number
of entries as the number of rows in A.

(b) A linear combination of three vectors in R
3 produces another vector in

R
3.

(c) If b is a linear combination of v1 and v2, then there exist scalars c1 and
c2 such that c1v1 + c2v2 = b.

(d) If A is a matrix and x and b are vectors such that Ax = b, then x is a
linear combination of the columns of A.

(e) The equation Ax = 0 can be inconsistent.

26. Suppose that for a large population that stays relatively constant, people
are classified as living in urban, suburban, or rural settings. Moreover,
assume that the probabilities of the various possible transitions are given
by the following table:

Future location (↓)/current location (→) U(%) S(%) R(%)

Urban 92 3 2

Suburban 7 96 10

Rural 1 1 88

Given that the population of 250 million is initially distributed in 100
million urban, 100 million suburban, and fifty million rural, predict the
population distribution in each of the following five years.

27. Car-owners can be grouped into classes based on the vehicles they own. A
study of owners of sedans, minivans, and sport utility vehicles shows that
the likelihood that an owner of one of these automobiles will replace it
with another of the same or different type is given by the table

Future vehicle (↓)/ Sedan(%) Minivan(%) SUV(%)
current vehicle (→)

Sedan 91 3 2

Minivan 7 95 8

SUV 2 2 90
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If there are currently 100 000 sedans, 60 000 minivans, and 80 000 SUVs
among the owners being studied, predict the distribution of vehicles
among the population after each owner has replaced her vehicle 3 times.

1.4 The span of a set of vectors

In section 1.3, we saw that the question “is b a linear combination of a1 and
a2?” provides an important new perspective on solutions of linear systems of
equations. It is natural to slightly rephrase this question and ask more generally
“which vectors b may be written as linear combinations of a1 and a2?” We
explore this question further through the following sequence of examples.

Example 1.4.1 Describe the set of all vectors in R
2 that may be written as a

linear combination of the vector a1 = [2 1]T.

Solution. Since we have just one vector a1, any linear combination of a1 has
the form ca1, which of course is a scalar multiple of a1. Geometrically, the
vectors that are linear combinations of a1 are stretches of a1, which lie on the
line through (0,0) in the direction of a1, as shown in figure 1.8.

In this first example, we see a visual way to interpret the question about
linear combinations: essentially we want to know “which vectors can we create
using only linear combinations of a1?” The answer is not surprising: only vectors
that lie on the line through the origin in the direction of a1.

Next, we consider how the situation changes when we consider two parallel
vectors.

4

4

−4

x1

x2

a1

−4

Figure 1.8 The set of all linear combinations of
a1 in example 1.4.1.
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Example 1.4.2 Describe the set of all vectors in R
2 that may be written as a

linear combination of the vectors a1 = [2 1]T and a2 = [−1 − 1
2 ]T.

Solution. Observe first that − 1
2 a1 = a2. Here we are considering the set of all

vectors y of the form

y = c1

[
2
1

]
+ c2

[−1
− 1

2

]

In figure 1.9, we observe that the vectors a1 and a2 point in opposing directions.
When we take a linear combination of these vectors to form y, we are adding
a stretch of c1 units of the first to a stretch of c2 units of the second. Because
the two directions are parallel, this leaves the resulting vector as a stretch of
one of the two original vectors, and therefore on the line through the origin
in their direction. This may also be seen algebraically since − 1

2 a1 = a2 implies

y = c1a1 + c2a2 = c1a1 − 1
2 c2a1 = (c1 − 1

2 c2)a1.

We note particularly that since the two given vectors a1 and a2 are parallel,
any linear combination of them is actually a scalar multiple of a1. Thus, the
resulting set of all linear combinations is identical to what we found with the
single vector given in example 1.4.1.

Finally, we consider the situation where we consider all linear combinations
of two non-parallel vectors.

−4

4

4
x2

x1

a1

a2
−4

Figure 1.9 The set of all linear combinations of
a1 and a2 in example 1.4.2.

Example 1.4.3 Describe the set of all vectors in R
2 that may be written as a

linear combination of the vectors a1 = [2 1]T and a2 = [1 2]T.
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4

4

−4

−4

x2

x1

a1

a2

a1+ a2

−2a1+ 2a2

7/3 a1− 5/3 a2

Figure 1.10 Linear combinations of a1 and a2

from example 1.4.3.

Solution. Algebraically, we are again considering the set of all vectors y such
that y = c1a1 + c2a2. A visual way to think about how the set of all such vectors y
looks is found in the question, “which vectors can we create by taking a stretch
of a1 and adding this to a stretch of a2?”

If we consider a plot of the given two vectors a1 and a2 and think of the
“grid” that is formed by considering all of their stretches and the sums of their
stretches, we have the picture shown in figure 1.10. The fact that a1 and a2 are
not parallel enables us to “get off the line” that each one generates through the
origin. For example, if we simply take the sum of these two vectors and set
y = a1 + a2, by the parallelogram law of vector addition we arrive at the new
vector [3 3]T shown in figure 1.10. Two other linear combinations are shown
as well, and from here it is not hard to visualize the fact that we can create
any vector in the plane using linear combinations of the non-parallel vectors a1

and a2. In other words, the set of all linear combinations of a1 and a2 is R
2.

It is also possible to verify our findings in example 1.4.3 algebraically. We
will explore this further in the exercises and in section 1.5.

Certainly we are not limited to considering linear combinations of only two
vectors. We therefore introduce a more formal perspective and terminology to
describe the phenomena examined in the above examples.

Definition 1.4.1 Given a set of vectors S = {v1, . . . ,vk}, vi ∈ R
m , the span of S,

denoted Span(S) or Span{v1, . . . ,vk}, is the set of all linear combinations of the
vectors v1, . . . ,vk . Equivalently, Span(S) is the set of all vectors y of the form

y = c1v1 +·· ·+ ckvk
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where c1, . . . , ck are scalars. We also say that Span(S) is the subset of R
m spanned

by the vectors v1, . . . ,vk .

For any single nonzero vector v1 ∈ R
m , Span{v1} consists of all vectors that

lie on the line through the origin in R
m in the direction of v1. For two non-

parallel vectors v1,v2 ∈ R
m , Span{v1,v2} is the plane through the origin that

contains both the vectors v1 and v2.
Next, let us recall that our interest in linear combinations was motivated by

a desire to look at systems of linear equations from a new perspective. How is
the concept of span related to linear systems? We begin to answer this question
by considering the special situation where b = 0.

A system of linear equations that can be represented in matrix form by
the equation Ax = 0 is said to be homogeneous; the case when b 
= 0 is termed
nonhomogeneous. We also call the equation Ax = 0 a homogeneous equation.
By the definition of matrix–vector multiplication, it is immediately clear that
A0 = 0 (note that these two zero vectors may be of different sizes), and thus
any homogeneous equation has at least one solution and is guaranteed to be
consistent. We will usually call the solution x = 0 the trivial solution. Under
what circumstances will a homogeneous system have nontrivial solutions? How
is this question related to the span of a set of vectors? The following example
provides insight into these questions.

Example 1.4.4 Solve the homogeneous system of linear equations given by the
equation Ax = 0 where A is the matrix

A =

⎡
⎢⎢⎣

1 1 1 1
2 1 −1 3
1 0 −2 2
8 5 −1 11

⎤
⎥⎥⎦

If more than one solution exists, express the solution in parametric vector form.

Solution. To begin, we augment the matrix A with a column of zeros to
represent the vector 0 in the system given by Ax = 0. We then row-reduce this
augmented matrix to find⎡

⎢⎢⎣
1 1 1 1 0
2 1 −1 3 0
1 0 −2 2 0
8 5 −1 11 0

⎤
⎥⎥⎦→

⎡
⎢⎢⎣

1 0 −2 2 0
0 1 3 −1 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎦

We observe that the system has two free variables, and therefore infinitely many
solutions. In particular, these solutions must satisfy the equations

x1 − 2x3 + 2x4 = 0

x2 + 3x3 − x4 = 0
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where x3 and x4 are free. Equivalently, using these equations and vector addition
and scalar multiplication, it must be the case that any solution x to Ax = 0 has
the form

x =

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

2x3 − 2x4

−3x3 + x4

x3

x4

⎤
⎥⎥⎦= x3

⎡
⎢⎢⎣

2
−3

1
0

⎤
⎥⎥⎦+ x4

⎡
⎢⎢⎣

−2
1
0
1

⎤
⎥⎥⎦ (1.4.1)

where x3, x4 ∈ R. Note particularly that this shows that every solution x to the
original homogeneous equation Ax = 0 can be expressed as a linear combination
of the two vectors on the rightmost side of (1.4.1). Moreover, it is also the case
that every linear combination of these two vectors is a solution to the equation.
In light of the terminology of span, we can say that the set of all solutions to the
homogeneous equation Ax = 0 is Span{v1,v2}, where

v1 =

⎡
⎢⎢⎣

2
−3

1
0

⎤
⎥⎥⎦ , v2 =

⎡
⎢⎢⎣

−2
1
0
1

⎤
⎥⎥⎦

In this section, we have seen that the set of all linear combinations of a
set of vectors can be interpreted geometrically, particularly in the case when
we only have one or two vectors present, by thinking about lines and planes. In
addition, the span of a set of vectors arises naturally in considering homogeneous
equations in which infinitely many solutions are present. In that situation, the
set of all solutions can be expressed as the span of a set of k vectors, where
k is the number of free variables that arise in row-reducing the augmented
matrix.

Exercises 1.4 In exercises 1–6, solve the homogeneous equation Ax = 0,
given the matrix A. If infinitely many solutions exist, express the solution set as
the span of the smallest possible set of vectors.

1. A =
[

1 −3 2
−4 1 0

]

2. A =
⎡
⎣−4 2

1 −3
6 5

⎤
⎦

3. A =
[−5 8

10 −16

]

4. A =
[−4 2

2 −1

]
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5. A =
⎡
⎣ 3 1 −1

1 3 1
−1 1 3

⎤
⎦

6. A =
⎡
⎣ 1 −1 2

4 −2 6
−7 3 −10

⎤
⎦

7. Let A be an m × n matrix where n > m. Is it possible that Ax = 0 has only
the trivial solution? Explain why or why not.

8. Let A be an m × n matrix where n ≤ m. Is it guaranteed that Ax = 0 will
have only the trivial solution? Explain why or why not.

9. Determine if the vector b = [11 − 4]T is in the span of the vectors
a1 = [3 − 2]T and a2 = [−9 6]T. Justify your answer carefully.

10. Determine if the vector b = [−17 31]T is in the span of the vectors
a1 = [1 0]T and a2 = [0 1]T. What do you observe?

11. Determine if the vector b = [9 17 11]T is in the span of the vectors
a1 = [−1 2 1]T,a2 = [3 1 1]T, and a3 = [1 5 3]T. Justify your answer.

12. Explain why the vector b = [3 2]T does not lie in the span of the set S,
where S = {v} and v = [1 1]T.

13. Describe geometrically the set W = Span{v1,v2}, where v1 = [1 1 1]T and
v2 = [−3 0 2]T.

14. Can every vector b ∈ R
3 be found in W = Span{v1,v2}, where

v1 = [1 1 1]T and v2 = [−3 0 2]T? If so, explain why. If not, find a vector
not in W and justify your answer.

15. Show that every point (vector) that lies on the line with equation
2x1 − 3x2 = 0 also lies in the set W = Span{v1}, where v1 = [3 2]T.

16. Show that every point (vector) that lies on the plane with equation
−x + y + z = 0 also lies in the set W = Span{v1,v2}, where
v1 = [1 − 1 2]T and v2 = [2 1 1]T.

17. Decide whether each of the following sentences is true or false. In every
case, write one sentence to support your answer.

(a) The span of a single nonzero vector in R
2 can be thought of as a line

through the origin.
(b) The span of any two nonzero vectors in R

3 can be viewed as a plane
through the origin in R

3.
(c) If Ax = b holds true for a given matrix A and vectors x and b, then x lies

in the span of the columns of A.
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(d) It is possible for a homogeneous equation Ax = 0 to be inconsistent.
(e) The number of free variables present in the solution to Ax = 0 is the

same as the number of pivot columns in the matrix A.

1.5 Systems of linear equations revisited

From our initial work with row-reducing a system of linear equations to our
recent discussions of linear combinations and span, we have seen already that
there are several perspectives from which to view a system of linear equations.
One is purely algebraic: “is there at least one ordered list (x1, . . . ,xn) that makes
every equation in a given system true?” Here we are viewing the system in
the form

a11x1 + a12x2 +·· ·+ a1nxn = b1

a21x1 + a22x2 +·· ·+ a2nxn = b2

... = ...

am1x1 + am2x2 +·· ·+ amnxn = bm

In light of linear combinations, we can rephrase this question geometrically as
“is the vector b a linear combination of the vectors a1, . . . ,an?”, where ai is the
ith column of the coefficient matrix of the system. From this standpoint, asking
if the system has a solution can be thought of in terms of the question, “does
the vector b belong to the span of the columns of A?” Finally, through matrix
multiplication, we can also express this system of equations in its simplest form:
Ax = b. From all of this, we know that the question, “Does Ax = b have at least
one solution?” is one of fundamental importance.

We have also seen that in the special case of the homogeneous equation
Ax = 0, the answer to the above questions is always affirmative, since setting
x = 0 guarantees that we have at least one solution. In what follows, we
further explore the nonhomogeneous case Ax = b, with particular emphasis
on understanding characteristics of the matrix A that enable us to answer the
questions in the preceding paragraph.

We begin by revisiting example 1.4.2 from a more algebraic perspective.

Example 1.5.1 For which vectors b is the equation Ax = b consistent, if A is
the matrix whose columns are the vectors a1 = [2 1]T and a2 = [−1 − 1

2 ]T?

Solution. By the definition of matrix multiplication, this question is equivalent
to asking, “which vectors b are linear combinations of the columns of A?” This
question may be equivalently rephrased as “which vectors b are in the span of
the columns of A?” We have already answered this question from a geometric
perspective in example 1.4.2, where we saw that since a1 and a2 are parallel,
it follows that every vector in R

2 that lies on the line through the origin in
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the direction of a1 can be written as a linear combination of the two vectors.
Nonetheless, it is insightful to explore algebraically why this is the case.

Letting b be the vector whose entries are b1 and b2 and writing the equation
Ax = b in the form of an augmented matrix, we row-reduce and find that[

2 −1 b1

1 − 1
2 b2

]
→
[

1 − 1
2 b2

0 0 b1 − 2b2

]
The second row in the augmented matrix represents the equation

0x1 + 0x2 = b1 − 2b2

Observe that if b1 −2b2 
= 0, this equation cannot possibly be true, and therefore
the system would be inconsistent. Said differently, the only way for Ax = b to
be consistent is for b1 − 2b2 = 0. That is, if b is a vector such that b1 = 2b2, or

b =
[

2b2

b2

]
then Ax = b is consistent. This makes sense geometrically, since the span of the
columns of A is all the stretches of the vector a1 = [2 1]T.

An important lesson to take from example 1.5.1 is that the equation Ax = b
discussed there is not consistent for every choice of b. In fact, the equation is only
consistent for very limited choices of b. For example, if b = [6 3]T, the equation
is consistent, but if b = [6 k]T for any k 
= 3, the equation is inconsistent.
Moreover, we should observe that for the matrix in this example, A does not
have a pivot position in every row. This is what ultimately leads to the algebraic
equation 0x1 + 0x2 = b1 − 2b2, and the potential inconsistency of Ax = b.

At this point in our work, it is important that we begin to generalize our
observations in order to apply them in new, but similar, circumstances. We
again emphasize that it is a noteworthy characteristic of linear algebra that the
discipline often offers great flexibility through the large number of ways to say
the same thing; at times, one way of stating a fact can give more insight than
others, and therefore it is important to be well versed in shifting among multiple
perspectives. The following theorem is of the form “the following statements are
equivalent”; this means that if any one of the statements is true, all the others are
as well. Likewise, if any one statement is false, every statement in the theorem
must be false.

This theorem formalizes our findings in the example above, and, in some
sense, our work in the first several sections of the text.

Theorem 1.5.1 Let A be an m × n matrix and b a vector in R
m so that the

equation Ax = b represents a system of m linear equations in n unknown
variables. The following statements are equivalent:

a. The equation Ax = b is consistent

b. The vector b is a linear combination of the columns of A
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c. The vector b is in the span of the columns of A

d. When the augmented matrix [A b] is row-reduced, there are no rows
where the first n entries are zero and the last entry is nonzero.

The following example demonstrates how we can use theorem 1.5.1 to
answer questions about span and linear combinations.

Example 1.5.2 Does the vector b = [1 − 7 − 14]T belong to the span of the
vectors a1 = [1 3 4]T, a2 = [2 1 − 1]T, and a3 = [0 5 9]T? Does the result
change if we ask the same question about the vector c = [1 − 7 − 13]T?

Solution. By theorem 1.5.1, we know that it is equivalent to ask if the equation
Ax = b is consistent, where b is the given vector and A is the matrix whose
columns are a1, a2, and a3. To answer that question, we consider the augmented
matrix [A | b] and row-reduce:⎡

⎣1 2 0 1
3 1 5 −7
4 −1 9 −14

⎤
⎦→

⎡
⎣1 0 2 −3

0 1 −1 2
0 0 0 0

⎤
⎦

Because this system of equations is consistent, it follows that b is indeed a linear
combination of the columns of A and therefore b lies in the span of a1, a2,
and a3.

If we instead consider the vector c stated in the example and proceed
similarly, row-reduction shows that⎡

⎣1 2 0 1
3 1 5 −7
4 1 9 −13

⎤
⎦→

⎡
⎣1 0 2 0

0 1 −1 0
0 0 0 1

⎤
⎦

which implies that the system is inconsistent and therefore c is not a linear
combination of the columns of A, or equivalently, c does not lie in the span of
a1, a2, and a3.

At this point, it is natural to think the situations in examples 1.5.1 and 1.5.2
are somewhat dissatisfying: sometimes Ax = b is consistent, and sometimes not,
all depending on our choice of b. A natural question to ask is, “are there matrices
A for which Ax = b is consistent for every choice of b?” With that question, we
are certainly interested in the properties of the matrix A that make this situation
occur. We next revisit example 1.4.3 and explore these issues further.

Example 1.5.3 For which vectors b is the equation Ax = b consistent, if A is
the matrix whose columns are the vectors a1 = [2 1]T and a2 = [1 2]T?
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Solution. Proceeding as in the previous example, we row reduce the
augmented matrix form of the equation and find that[

2 1 b1

1 2 b2

]
→
[

1 0 2
3 b1 − 1

3 b2

0 1 − 1
3 b1 + 2

3 b2

]

Algebraically, this shows that regardless of the entries we select for the vector
b, we can always find a solution to the equation Ax = b. In particular, x is
the vector in R

2 whose components are x1 = 2
3 b1 − 1

3 b2 and x2 = − 1
3 b1 + 2

3 b2.
Thus the equation Ax = b is consistent for every b in R

2. Note that this is
not surprising, given our work in example 1.4.3, where we found that from
a geometric perspective, every vector b ∈ R

2 could be written as a linear
combination of a1 and a2. This example simply confirms that finding, but now
from an algebraic point of view.

In terms of a key property of the matrix in example 1.5.3, we see that A has
a pivot position in every row. In particular, there is no row in RREF(A) where
we encounter all zeros, and thus it is impossible to ever encounter an equation
of the form 0 = k, where k 
= 0. This is, therefore, one property of the matrix A
that guarantees consistency for every choice of b.

We generalize our findings in this example in the following theorem, which
is similar to theorem 1.5.1, but now focuses solely the matrix A and no longer
requires a vector b to be initially chosen.

Theorem 1.5.2 Let A be an m × n matrix. The following statements are
equivalent:

a. The equation Ax = b is consistent for every b ∈ R
m

b. Every vector b ∈ R
m is a linear combination of the columns of A

c. The span of the columns of A is R
m

d. A has a pivot position in every row. That is, when the matrix A is
row-reduced, there are no rows of all zeros.

Our next example shows how we can apply theorem 1.5.2 to answer general
questions about the span of a set of vectors and the consistency of related systems
of equations.

Example 1.5.4 Does the vector b = [1 − 7 − 13]T belong to the span of the
vectors a1 = [1 3 4]T, a2 = [2 1 − 1]T, and a3 = [0 5 10]T? Can every vector
in R

3 be found in the span of the vectors a1, a2, and a3?

Solution. Just as in example 1.5.2, we know by theorem 1.5.1 that it is
equivalent to ask if the equation Ax = b is consistent, where b is the given
vector and A is the matrix whose columns are a1, a2, and a3. We thus consider
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the augmented matrix [A | b] and row-reduce:⎡
⎣1 2 0 1

3 1 5 −7
4 −1 10 −13

⎤
⎦→

⎡
⎣1 0 0 −5

0 1 0 3
0 0 1 1

⎤
⎦

Because this system of equations is consistent, it follows that b is indeed a linear
combination of the columns of A and therefore b lies in the span of a1, a2, and
a3. But by theorem 1.5.2 we can now make a much more general observation.
Because we see that the coefficient matrix A has a pivot in every row, it follows
that regardless of which vector b we choose in R

3, we can write that vector
as a linear combination of the columns of A. That is, the vectors a1, a2, and
a3 span all of R

3 and the equation Ax = b will be consistent for every choice
of b.

This example demonstrates that it is in some sense ideal if a matrix A has
a pivot in every row. As we proceed with further study of linear algebra, we
will focus more and more on properties of the coefficient matrix and their
implications for related systems of equations. We conclude this section by
examining a key link between homogeneous and nonhomogeneous equations
in order to foreshadow an essential concept in our pending study of differential
equations.

Example 1.5.5 Solve the nonhomogeneous system of linear equations given
by the equation Ax = b where A and b are

A =

⎡
⎢⎢⎣

1 1 1 1
2 1 −1 3
1 0 −2 2
8 5 −1 11

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

1
−8
−9

−22

⎤
⎥⎥⎦

If more than one solution exists, express the solution in parametric vector form.

Solution. Note that the coefficient matrix A is identical to the one in
example 1.4.4, so that here we are simply considering a related nonhomogeneous
equation. We augment the matrix A with b and then row reduce to find⎡

⎢⎢⎣
1 1 1 1 1
2 1 −1 3 −8
1 0 −2 2 −9
8 5 −1 11 −22

⎤
⎥⎥⎦→

⎡
⎢⎢⎣

1 0 −2 2 −9
0 1 3 −1 10
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎦

As we found with the homogeneous equation, the system is consistent and has
two free variables, and therefore infinitely many solutions. These solutions must
satisfy the equations

x1 = −9 + 2x3 − 2x4

x2 = 10 − 3x3 + x4
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where x3 and x4 are free. Equivalently, it must be the case that any solution x
has the form

x =

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

−9 + 2x3 − 2x4

10 − 3x3 + x4

x3

x4

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

−9
10

0
0

⎤
⎥⎥⎦+ x3

⎡
⎢⎢⎣

2
−3

1
0

⎤
⎥⎥⎦+ x4

⎡
⎢⎢⎣

−2
1
0
1

⎤
⎥⎥⎦

where x3, x4 ∈ R. Observe that if we let xp = [−9 10 0 0]T and let xh be any
vector of the form

xh = t

⎡
⎢⎢⎣

2
−3

1
0

⎤
⎥⎥⎦+ s

⎡
⎢⎢⎣

−2
1
0
1

⎤
⎥⎥⎦

then any solution to the equation Ax = b has the form x = xp + xh . Moreover,
it is now apparent that this vector xh is the same general solution vector that
we found for the corresponding homogeneous equation in example 1.4.4. In
addition, it is straightforward to check that Axp = b. Thus, we see that the general
solution to the nonhomogeneous equation contains the general solution to the
corresponding homogeneous equation.

It appears from example 1.5.5 that if we have a solution, say xp , to
a nonhomogeneous equation Ax = b, we may add any solution xh to the
homogeneous equation Ax = 0 to xp and still have a solution to Ax = b. To see
why any vector of the form xp +xh is a solution to Ax = b, let us assume that xp

is a solution to Ax = b, and xh is a solution to Ax = 0. We claim that x = xp +xh
is also a solution to Ax = b. This holds since

Ax = A(xp + xh)

= Axp + Axh

= b + 0

= b (1.5.1)

Clearly, this shows that the solution to the corresponding homogeneous
equation plays a central role in the solution of nonhomogeneous equations.
One observation we can make is that in the event we can find a single particular
solution xp to the nonhomogeneous equation, if the corresponding homoge-
neous equation has at least one free variable, then we know that there must be
infinitely many solutions to the nonhomogeneous equation as well. We could
even take the perspective that, in order to solve a nonhomogeneous equation, we
simply need to do two things: find one particular solution to Ax = b, and then
combine that particular solution with the general solution to the corresponding
homogeneous equation Ax = 0. While this is not so useful with systems of linear
algebraic equations, it turns out that this approach of solving the homogeneous
equation first is essential in the solution of differential equations.
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The following example shows how the same structure is present in a class
of differential equations that we will discuss in detail in section 2.3.

Example 1.5.6 Consider the differential equations y ′ +3y = 0 and y ′ +3y = 6.
Compare and contrast the solutions to these two equations.

Solution. The first equation, y ′ + 3y = 0, we will call a homogeneous linear
first-order differential equation. Note that it asks a straightforward question:
what function y(t ) is such that the function’s derivative plus 3 times itself is the
zero function? Said differently, we seek a function y such that y ′ = −3y . From
our experience with exponential functions in calculus, we know that if y = e−3t ,
then y ′ = −3e−3t . The same is true for functions like y = 2e−3t and y = −5e−3t ;
indeed, we see that for any constant C , the function y = Ce−3t satisfies the
differential equation. (It also turns out that these are the only functions that
satisfy the differential equation.)

If we next consider the related differential equation y ′ + 3y = 6 – one that
we will call a nonhomogeneous linear first-order differential equation—we see that
there is one obvious solution to the equation. In particular, if we let y(t ) be the
constant function y(t ) = 2, then y ′(t ) = 0 and this function clearly makes the
differential equation true since 3 × 2 = 6.

Now, we should wonder if we have found all of the possible solutions to
y ′ + 3y = 6. The answer is no: as we will see in section 2.3, it turns out that the
general solution y to this differential equation is

y(t ) = 2 + Ce−3t

We can verify that this is the case by direct substitution. Note that y ′ = −3Ce−3t

and therefore

y ′ + 3y = −3Ce−3t + 3(2 + Ce−3t ) = −3Ce−3t + 6 + 3Ce−3t = 6

Observe the structure of this solution function: if we let yp = 2, we have a
particular solution to the nonhomogeneous equation. Further, letting yh =
Ce−3t , this is the general solution to the related homogeneous equation. This
demonstrates that the overall solution to the nonhomogeneous equation is

y = yp + yh = 2 + Ce−3t

Exercises 1.5 For each of the following m × n matrices A in exercises 1–8,
determine whether the equation Ax = b is consistent for every choice of b ∈ R

m .
If not, describe the set of all b ∈ R

m for which the equation is consistent. In each
case, explain your reasoning fully.

1. A =
[

4 −1
1 −4

]

2. A =
[

4 −1
−12 3

]
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3. A =
[

1 0 2
0 1 −3

]

4. A =
⎡
⎣ 2 1

−1 3
4 −2

⎤
⎦

5. A =
⎡
⎣ 1 5 −2

2 −1 7
−3 4 −14

⎤
⎦

6. A =
⎡
⎣ 1 5 −2

2 −1 7
−3 4 −13

⎤
⎦

7. A =

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎦

8. A =
⎡
⎣1 0 0 2

0 1 0 5
0 0 1 −3

⎤
⎦

9. If A is an m ×n matrix and m > n, is it possible for the equation Ax = b to
be consistent for every b ∈ R

m? Explain.

10. If A is an m × n matrix and m ≤ n, is it guaranteed that the equation
Ax = b will be consistent for every b ∈ R

m? Explain.

In each of exercises 11–16, determine whether the given vector b is in the span
of the columns of the given matrix A. If b lies in the span of the columns of A,
determine weights that enable you to explicitly write b as a linear combination
of the columns of A.

11. b =
[

2
5

]
, A =

[
4 −1
1 −4

]

12. b =
[

6
−20

]
, A =

[
4 −1

−12 3

]

13. b =
[

6
−2

]
, A =

[
1 0 2
0 1 −3

]

14. b =
⎡
⎣ 1

−11
14

⎤
⎦, A =

⎡
⎣ 2 1

−1 3
4 −2

⎤
⎦

15. b =
⎡
⎣−4

−2
1

⎤
⎦, A =

⎡
⎣ 1 5 −2

2 −1 7
−3 4 −14

⎤
⎦



Systems of linear equations revisited 47

16. b =
⎡
⎣−4

−2
1

⎤
⎦, A =

⎡
⎣ 1 5 −2

2 −1 7
−3 4 −13

⎤
⎦

For each matrix A given in exercises 17–21, determine the general solution xh
to the homogeneous equation Ax = 0.

17. A =
[

1 −3 2
−4 1 3

]

18. A =
⎡
⎣1 2 0 1

3 1 5 −7
4 −1 10 −13

⎤
⎦

19. A =
[−5 8

10 −16

]

20. A =
⎡
⎣ 3 1 −1

1 3 1
−1 1 3

⎤
⎦

21. A =
⎡
⎣ 1 −1 2

4 −2 6
−7 3 −10

⎤
⎦

In exercises 22–26, solve the nonhomogeneous equation Ax = b, given the
matrix A and vector b. Express your solution x (if one exists) in the form
x = xp + xh , where xp is a particular solution to Ax = b and xh is the solution
to the corresponding homogeneous equation Ax = 0. Compare your results to
exercises 17–21, respectively.

22. A =
[

1 −3 2
−4 1 3

]
, b =

[
5

−9

]

23. A =
⎡
⎣1 2 0 1

3 1 5 −7
4 −1 10 −13

⎤
⎦, b =

⎡
⎣ 1

3
5

⎤
⎦

24. A =
[−5 8

10 −16

]
, b =

[−21
42

]

25. A =
⎡
⎣ 3 1 −1

1 3 1
−1 1 3

⎤
⎦, b =

⎡
⎣ 3

−1
1

⎤
⎦

26. A =
⎡
⎣ 1 −1 2

4 −2 6
−7 3 −10

⎤
⎦, b =

⎡
⎣ 5

16
−27

⎤
⎦
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27. Suppose that A is a 6 × 9 matrix that has a pivot in every row. What can
you say about the consistency of Ax = b for every b ∈ R

6? Why?

28. Suppose that A is a 3 × 4 matrix and that the span of the columns of A is
R

3. What can you say about the consistency of Ax = b for every b ∈ R
3?

Why?

29. If possible, give an example of a 3 × 2 matrix A such that the span of the
columns of A is R

3. If finding such a matrix is impossible, explain why.

30. Suppose that A is a 4 × 3 matrix for which the homogeneous equation
Ax = 0 has only the trivial solution. Will the equation Ax = b be
consistent for every b ∈ R

4? Explain. For the vectors b for which Ax = b is
indeed a consistent equation, how many solution vectors x does each
equation have? Why?

31. Suppose that A is a 3 × 4 matrix for which the homogeneous equation
Ax = 0 has exactly one free variable present. Will the equation Ax = b be
consistent for every b ∈ R

3? Explain. For the vectors b for which Ax = b is
indeed a consistent equation, how many solution vectors x does each
equation have? Why?

32. Suppose that A is a 4 × 5 matrix for which the homogeneous equation
Ax = 0 has exactly two free variables present. Will the equation Ax = b be
consistent for every b ∈ R

4? Explain. For the vectors b for which Ax = b is
indeed a consistent equation, how many solution vectors x does each
equation have? Why?

33. Decide whether each of the following sentences is true or false. In every
case, write one sentence to support your answer.

(a) If Ax = b is consistent for at least one vector b, then A has a pivot in
every row.

(b) If A is a 4 × 3 matrix, then it is possible for the columns of A to span R
4.

(c) If A is a 3 × 3 matrix with exactly two pivot columns, then the columns
of A do not span R

3.
(d) If A is a 3 × 4 matrix, then the columns of A must span R

3.
(e) If y and z are solutions to the equation Ax = 0, then the vector y + z is

also a solution to Ax = 0.
(f) If y and z are solutions to the equation Ax = b, where b 
= 0, then the

vector y + z is also a solution to Ax = b.

34. Solve the linear first-order differential equation y ′ + y = 3 by first finding
all functions yh that satisfy the homogeneous equation y ′ + y = 0 and then
determining a constant function yp that is a solution to y ′ + y = 3. Verify
by direct substitution that y = yh + yp is a solution to the given equation.

35. Solve the linear first-order differential equation y ′ − 5y = 6 by first finding
all functions yh that satisfy the homogeneous equation y ′ − 5y = 0 and
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then determining a constant function yp that is a solution to y ′ − 5y = 6.
Verify by direct substitution that y = yh + yp is a solution to the given
equation.

1.6 Linear independence

In theorem 1.5.2, we found that when solving Ax = b, an ideal situation occurs
when A has a pivot position in every row. Equivalently, this means that the
equation Ax = b is guaranteed to have at least one solution for every vector
b ∈ R

m (when A is m × n), or that every b ∈ R
m can be written as a linear

combination of the columns of A. In other words, regardless of the choice of b,
the equation Ax = b is always consistent. Because the equation is consistent, we
are guaranteed that at least one solution x exists. In what follows, we explore
conditions that imply not only that at least one solution exists, but in fact that
only one solution exists. First, we consider the simpler situation of homogeneous
equations.

In section 1.4, we discovered that the equation Ax = 0 is always consistent.
Because x = 0 always makes this equation true, we know that we at least have
the trivial solution present. It is natural to ask: under what conditions on A
is the trivial solution the only solution to the homogeneous equation Ax = 0?
Geometrically, we are asking whether or not a nontrivial linear combination of
the columns of A can be formed that leads to the zero vector.

We revisit an earlier example to further explore these issues.

Example 1.6.1 Does the equation Ax = 0 have nontrivial solutions if A is the
matrix whose columns are a1 = [2 1]T and a2 = [−1 − 1

2 ]T? Discuss the
geometric implications of your conclusions.

Solution. We first consider the corresponding augmented matrix and row
reduce, finding that [

2 −1 0

1 − 1
2 0

]
→
[

1 − 1
2 0

0 0 0

]

This shows that any vector x = [x1 x2]T that satisfies x1 = 1
2 x2 will be a solution

to Ax = 0. The presence of the free variable x2 implies that there are infinitely
many nontrivial solutions to this equation.

If we interpret the matrix–vector product Ax as the linear combination
Ax = x1a1 + x2a2, then the equation

1

2
x2a1 + x2a2 = 0

implies geometrically that the zero vector (on the right) may be expressed
as a nontrivial linear combination of a1 and a2. For example, a1 + 2a2 = 0.
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Figure 1.11 Linear combinations of a1 and a2

from example 1.6.1.

Indeed, if we consider figure 1.11 this conclusion is evident: if we add one
length of a1 to two lengths of a2, we end up at 0.

Another way to express the equation a1 + 2a2 = 0 is to write a1 = −2a2. In
this setting, we can see that a1 depends on a2, and that the relationship is given
by a linear equation. We hence say that a1 and a2 are linearly dependent vectors.

The situation in example 1.6.1, where the vectors a1 and a2 are parallel is in
contrast to that of example 1.4.3, where we instead considered the non-parallel
vectors a1 = [2 1]T and a2 = [1 2]T; in that setting, if we solve the associated
homogeneous equation Ax = 0, we find that[

2 1 0
1 2 0

]
→
[

1 0 0
0 1 0

]

In this case, the only solution to Ax = 0 is the trivial solution, x = 0. The
geometry of the situation also informs us: if we desire a linear combination of
the vectors a1 and a2 (as shown in figure 1.12) that results in the zero vector, we
see that the only way to accomplish this is to take 0a1 + 0a2. Said differently, if
we take any nontrivial linear combination c1a1 + c2a2, we end up at a location
other than the origin.

When a1 and a2 in example 1.6.1 were parallel, we said that a1 and a2 were
linearly dependent. In the current context, where a1 and a2 are not parallel, it
makes sense to say that a1 and a2 are linearly independent, since neither depends
on the other.

Of course, in linear algebra we often consider sets of more than two vectors.
The next definition formalizes what the terms linearly dependent and linearly
independent mean in a more general context. Observe that the key criterion is
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Figure 1.12 Linear combinations of a1 and a2

from example 1.4.3.

a geometric one: can we form a nontrivial linear combination of vectors that
results in 0?

Definition 1.6.1 Given a set S = {v1, . . . ,vk} where each vector vi ∈ R
m , the

set S is linearly dependent if there exists a nontrivial solution x to the vector
equation

x1v1 + x2v2 +·· ·+ xkvk = 0 (1.6.1)

If (1.6.1) has only the trivial solution, then we say the set S is linearly
independent.

Note that (1.6.1) also takes us back to the fundamental questions about
any linear system of equations: “does at least one solution exist?” (Yes; the zero
vector is always a solution.) And “is that solution unique?” (Maybe; only if
the vectors are linearly independent and the zero vector is the only solution.)
The latter question addresses the fundamental issue of linear independence. We
consider an example to demonstrate how we interpret the language of this most
recent definition as well as how we will generally respond to the question of
whether or not a set of vectors is linearly independent.

Example 1.6.2 Determine whether the set S = {v1,v2,v3} is linearly
independent or linearly dependent if

v1 =
⎡
⎣ 1

1
−1

⎤
⎦ , v2 =

⎡
⎣−1

0
1

⎤
⎦ , v3 =

⎡
⎣ 0

1
1

⎤
⎦
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Solution. By definition, the linear independence of the set S rests on whether
or not nontrivial solutions exist to the vector equation x1v1 + x2v2 + x3v3 = 0.
Letting A = [v1 v2 v3], we know that this question is equivalent to determining
whether or not Ax = 0 has a nontrivial solution. Considering the augmented
matrix [A 0] and row-reducing, we find⎡

⎣ 1 −1 0 0
1 0 1 0

−1 1 1 0

⎤
⎦→

⎡
⎣1 0 0 0

0 1 0 0
0 0 1 0

⎤
⎦ (1.6.2)

It follows that Ax = 0 has only the trivial solution, and therefore the set S is
linearly independent. Geometrically, this means that if we take any nontrivial
combination of v1, v2, and v3, the result is a vector that is not the zero vector.

From example 1.6.2, we see how we will normally test a set of vectors for linear
independence: we take advantage of our understanding of linear combinations
and matrix multiplication and convert the vector equation x1v1 + x2v2 + ·· ·+
xkvk = 0 to the matrix equation Ax = 0, where A is the matrix with columns
v1, . . . ,vk . Row-reducing, we can test whether or not nontrivial solutions exist
to Ax = 0 by examining pivot locations in the matrix A.

Several facts about linear dependence and independence will prove to be
useful in many aspects of our upcoming work. We simply state them here, and
leave their verification to the exercises at the end of this section:

• Any set containing the zero vector is linearly dependent.

• Any set {v1} consisting of a single nonzero vector is linearly independent.

• Any set of two vectors {v1,v2} is linearly independent whenever v1 is not a
scalar multiple of v2.

• The columns of a matrix A are linearly independent if and only if the
equation Ax = 0 has only the trivial solution.

The concepts of linear independence and span both involve linear
combinations of a set of vectors. Furthermore, there are many important and
natural connections between span and linear independence. The next example
extends the previous one and lays the foundation for a discussion of several
general results.

Example 1.6.3 Let the vectors v1, v2, v3, and v4 be given by

v1 =
⎡
⎣ 1

1
−1

⎤
⎦ , v2 =

⎡
⎣−1

0
1

⎤
⎦ , v3 =

⎡
⎣ 0

1
1

⎤
⎦ , v4 =

⎡
⎣ 5

6
−1

⎤
⎦

Let R = {v1,v2}, S = {v1,v2,v3}, and T = {v1,v2,v3,v4}. Which of the sets R,
S, and T are linearly independent? Which of the sets R, S, and T span R

3?
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Solution. We have already seen in example 1.6.2 that the set S is linearly
independent. Moreover, we saw that when we let A = [v1 v2 v3] and row-reduce
the augmented matrix for the equation Ax = 0, it follows that

⎡
⎣ 1 −1 0 0

1 0 1 0
−1 1 1 0

⎤
⎦→

⎡
⎣1 0 0 0

0 1 0 0
0 0 1 0

⎤
⎦

Not only does this show that the vectors in set S are linearly independent (Ax = 0
has only the trivial solution because A has a pivot in every column so there are
no free variables present), but also, by theorem 1.5.2, the vectors in S span R

3

since A has a pivot in every row. Since the vectors in S span R
3, this means that

we can write every vector in R
3 as a linear combination of the three vectors in S.

Moreover, since A has a pivot in every column, it will also follow that every such
linear combination is unique: every vector in R

3 can be written in exactly one
way as a linear combination of v1, v2, and v3.

What happens if we remove v3 from S and instead consider the set R =
{v1,v2}? To answer the question of linear independence, we ask if there is a
nontrivial solution to the vector equation x1v1 + x2v2 = 0. Equivalently, we let
B be the 3 × 2 matrix whose columns are v1 and v2 and solve Bx = 0. Doing so,
we find that ⎡

⎣ 1 −1 0
1 0 0

−1 1 0

⎤
⎦→

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦

so only the trivial solution exists and thus the set R is linearly independent. Note
again that this is due to the fact that B has a pivot in every column. This should
not be surprising, since we removed a vector from the linearly independent set S
to get the set R: if the vectors in S do not depend on one another, neither should
the vectors in R.

On the other hand, we can also say by theorem 1.5.2 that the set R does not
span R

3, since B does not have a pivot position in every row. For example, the
vector b = [0 1 1]T cannot be written as a linear combination of v1 and v2.
This can be seen by row-reducing the augmented matrix that represents Bx = b,
where we find that ⎡

⎣ 1 −1 0
1 0 1

−1 1 1

⎤
⎦→

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

The last equation tells us that 0x1 + 0x2 = 1, which is impossible, and thus b
cannot be written as a linear combination of the vectors in R.

Finally, we consider the set T = {v1,v2,v3,v4}. To test if T is linearly
independent, we let C be the matrix whose columns are v1, v2, v3, and v4,
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and consider the equation Cx = 0, which corresponds to the equation x1v1 +
x2v2 + x3v3 + x4v4 = 0. Row-reducing,⎡

⎣ 1 −1 0 5 0
1 0 1 6 0

−1 1 1 −1 0

⎤
⎦→

⎡
⎣1 0 0 2 0

0 1 0 −3 0
0 0 1 4 0

⎤
⎦

Note that the variable x4 is free, since C does not have a pivot in its fourth
column. This shows that any vector x with entries x1,x2,x3, and x4 such that
x1 = −2x4, x2 = 3x4, and x3 = −4x4 will be a solution to the equation Cx = 0.
For example, taking x4 = 1, it follows that

−2

⎡
⎣ 1

1
−1

⎤
⎦+ 3

⎡
⎣−1

0
1

⎤
⎦− 4

⎡
⎣ 0

1
1

⎤
⎦+ 1

⎡
⎣ 5

6
−1

⎤
⎦=

⎡
⎣ 0

0
0

⎤
⎦

Thus, the set T is linearly dependent. We can also see from our computations
that the set T does indeed span R

3, since the matrix C has a pivot position in
every row. This result should be expected: we have already shown that every
vector in R

3 can be written as a linear combination of the vectors in S, and the
set T contains all three vectors in S.

There are many important generalizations we can make from example 1.6.3.
For instance, from an algebraic perspective we see that we can easily answer
questions about the linear independence and span of the columns of a matrix
simply by considering the location of pivots in the matrix. In particular, the
columns of A are linearly independent if and only if A has a pivot in every
column, while the columns of A span R

m if and only if A has a pivot in every
row. We state these results formally in the two following theorems.

Theorem 1.6.1 Let A be an m × n matrix. The following statements are
equivalent:

a. The columns of A span R
m .

b. A has a pivot position in every row.

c. The equation Ax = b is consistent for every b ∈ R
m .

In the next theorem, note particularly the change in emphasis in state-
ment (b) from rows to columns when considering pivot positions in the matrix.

Theorem 1.6.2 Let A be an m × n matrix. The following statements are
equivalent:

a. The columns of A are linearly independent.

b. A has a pivot position in every column.

c. The equation Ax = 0 has only the trivial solution.
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At this point, it appears ideal if a set is linearly independent or spans R
m .

The best scenario, then, is the case when a set has both of these properties
and forms a linearly independent spanning set. In this case, for the matrix
whose columns are the vectors in the set, we need the matrix to have a
pivot in every column, as well as in every row. As we saw in example 1.6.3
with the set S and the corresponding matrix A, this can only happen when
the number of vectors in the set S matches the number of entries in each
vector. In other words, the corresponding matrix A must be square. Obviously
if a square matrix has a pivot in every row, it must also have a pivot
in every column, and vice versa. We close our current discussion with an
important result that links the concepts of linear independence and span in
the columns of a square matrix; theorem 1.6.3 is a consequence of the two
preceding ones.

Theorem 1.6.3 Let A be an n × n matrix. The following statements are
equivalent:

a. The columns of A are linearly independent.

b. The columns of A span R
n .

c. A has a pivot position in every column.

d. A has a pivot position in every row.

e. For each b ∈ R
n , the equation Ax = b has a unique solution.

Theorem 1.6.3 shows that square matrices play a particularly important role in
linear algebra, an idea that will further demonstrate itself when we study the
notion of the inverse of a matrix in the following section.

We conclude this section with a look ahead to our study of linear differential
equations, in which the concepts of linear independence and span will also find
a prominent role.

Example 1.6.4 Consider the differential equation y ′′ + y = 0. Explain why the
function y = c1 cos t + c2 sin t is a solution to the differential equation.

Solution. In our upcoming study of differential equations, we will call the
equation y ′′ +y = 0 a linear second-order homogeneous equation with constant
coefficients. Equations of this form will be considered in chapter 3 and be the
focus of chapter 4.

For now, we can intuitively understand why y = c1 cos t + c2 sin t is a
solution to the equation. Note that in order to solve the equation y ′′ +y = 0, we
must find all functions y such that y ′′ = −y . From our experience in calculus,
we know that

d

dt
[sin t ] = cos t and

d

dt
[cos t ] = − sin t
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Furthermore, if we consider second derivatives,

d2

dt 2
[sin t ] = d

dt
[cos t ] = − sin t and

d2

dt 2
[cos t ] = d

dt
[− sin t ] = −cos t

Hence, the second derivative of each basic trigonometric function is the opposite
of itself, which makes both y = cos t and y = sin t solutions to the equation
y ′′ + y = 0.

Moreover, it is a straightforward exercise to show (using properties of the
derivative) that any scalar multiple (such as y = 3sin t ) of either function is
also a solution to the differential equation, as is any combination of the form
y = 2cos t + 3sin t . More generally, this makes any function

y = c1 cos t + c2 sin t

a solution to the differential equation.

If we think about our understanding of linear independence for a set of two
vectors, we find an analogy to the two functions cos t and sin t : since these
two functions are not scalar multiples of one another, it makes sense to call
these functions linearly independent. Moreover, from the form of the function
y = c1 cos t +c2 sin t , we are taking linear combinations of the basic trigonometric
functions to form other solutions to the differential equation. We can even go
so far as to say that the solution set to the differential equation is the span of the
two functions cos t and sin t .

In future work, we will see that this broader perspective on linear
independence and span serves us well in solving linear differential equations.
We will gain additional understanding of why the solution set to every second-
order linear homogeneous differential equation with constant coefficients
demonstrates a similar structure in subsequent work.

Exercises 1.6 In each of exercises 1–8, determine whether the given set S is
linearly independent or linearly dependent.

1. S = {v1,v2} where v1 = [3 − 2]T and v2 = [−9 6]T

2. S = {v1,v2} where v1 = [1 0]T and v2 = [0 1]T

3. S = {v1,v2} where v1 = [5 − 2]T and v2 = [5 2]T

4. S = {v1,v2,v3} where v1 = [5 − 2]T, v2 = [5 2]T, and v3 = [11 − 5]T

5. S = {v1,v2,v3} where v1 = [−1 2 1]T,v2 = [3 1 1]T, and v3 = [1 5 3]T

6. S = {v1,v2,v3} where v1 = [−1 2 1]T,v2 = [3 1 1]T, and v3 = [1 5 2]T

7. S = {v1,v2} where v1 = [1 − 2 4 3]T and v2 = [−3 6 − 12 − 9]T

8. S = {v1,v2,v3,v4} where v1 = [−1 2 1]T,v2 = [3 1 1]T,v3 = [1 5 2]T,

and v4 = [1 1 1]T

9. For each of the sets S in exercises 1–8, determine whether or not S
spans R

m , where m is chosen appropriately.
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10. Suppose that S is a set of three vectors in R
5. Is it possible for S to span R

5?
Why or why not?

11. Suppose that S is a set of two vectors in R
3. Is S linearly independent,

linearly dependent, or not necessarily either? Explain your answer.

12. Let S be a set of four vectors in R
3. Is it possible for S to be linearly

independent? Is it possible for S to span R
3? Why or why not?

13. Let S be a set of five vectors in R
4. Must S span R

4? Is it possible for S to be
linearly independent? Explain.

14. If A is an m × n matrix, for what relationship between n and m are the
columns of A guaranteed to not span R

m? For what relationship between
n and m will the columns have to be linearly dependent?

15. Prove that any set that contains the zero vector must be linearly dependent.

16. Explain why any set consisting of a single nonzero vector must be linearly
independent.

17. Show that any set of two vectors, {v1,v2}, is linearly independent if and
only if v1 is not a scalar multiple of v2.

18. Explain why the columns of a matrix A are linearly independent if and
only if the equation Ax = 0 has only the trivial solution.

19. Let v1 = [−1 2 1]T,v2 = [3 1 1]T, and v3 = [5 3 k]T. For what value(s)
of k is {v1,v2,v3} linearly independent? For what value(s) of k is v3 in the
span of {v1,v2}? How are these two questions related?

20. Consider the set S = {v1,v2,v3} where v1 = [1 0 0]T, v2 = [0 1 0]T, and
v3 = [0 0 1]T. Explain why S spans R

3, and also why S is linearly
independent. In addition, determine the weights x1, x2, and x3 that allow
you to write the vector [−27 13 91]T as a (unique) linear combination of
v1,v2,v3. What do you observe?

21. Let A be a 4 × 7 matrix. Suppose that when solving the homogeneous
equation Ax = 0 there are three free variables present. Do the columns of
A span R

4? Explain. Are the columns of A linearly dependent, linearly
independent, or is it impossible to say? Justify your answer.

22. Suppose that A is a 9 × 6 matrix and that A has six pivot columns. Are the
columns of A linearly dependent, linearly independent, or is it impossible
to say? Do the columns of A span R

9, or is it impossible to tell? Justify your
answers.

23. Decide whether each of the following sentences is true or false. In every
case, write one sentence to support your answer.

(a) If the system represented by Ax = 0 has a free variable present, then
the columns of the matrix A are linearly independent vectors.
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(b) If a matrix has more columns than rows, then the columns of the
matrix must be linearly dependent.

(c) If an m × n matrix A has a pivot in every column, then the columns of
A span R

m .
(d) If A is an m × n matrix that is not square, it is possible for its columns

to be both linearly independent and span R
m .

24. Consider the linear second-order homogeneous differential equation
y ′′ + y = 0. Show by direct substitution that y1 = et and y2 = e−t are
solutions to the differential equation. In addition, show by substitution
that any linear combination y = c1et + c2e−t is also a solution.

25. We have seen that the general solution to the linear second-order
differential equation y ′′ + y = 0 is given by

y(t ) = c1 sin(t ) + c2 cos(t )

Suppose we know initial values for y(0) and y ′(0) to be

y(0) = 4 and y ′(0) = −2

What are the values of c1 and c2? How is a system of linear equations
involved?

26. It can be shown that the solution to the linear second-order differential
equation y ′′ − y = 0 is given by

y(t ) = c1et + c2e−t

Suppose we know initial values for y(0) and y ′(0) to be

y(0) = 4 and y ′(0) = −2

What are the values of c1 and c2? How is a system of linear equations
involved?

1.7 Matrix algebra

For a given system of linear equations, we are now interested in solving the
vector equation Ax = b, where A is a known m × n matrix, b ∈ R

m is given,
and we seek x ∈ R

n . It is natural to compare this equation to an elementary
linear equation such as 2x = 7. The key algebraic step in solving 2x = 7 is
to divide both sides of the equation by 2. Said differently, we multiply both
sides by the multiplicative inverse of the number 2. In anticipation of a new
approach to solving the vector equation Ax = b, we carefully state the details
required to solve 2x = 7. In particular, from the equation 2x = 7, it follows that
1
2 (2x) = 1

2 (7), so that ( 1
2 ·2)x = 7

2 . Thus, 1 ·x = 7
2 , so x = 7

2 . From a sophisticated
perspective, to solve the equation 2x = 7, we need to be able to multiply, to have
a multiplicative identity (that is, the number 1), and to be able to compute a
multiplicative inverse (here, the number 1

2 ).



Matrix algebra 59

In this section, we lay the foundation for similar ideas that provide an
alternate way to solve the equation Ax = b: essentially we are interested in
determining whether we can find a matrix B so that when we compute BA the
result is the matrix equivalent of “1”. To do this, we will first have to learn what
it means to multiply two matrices; a simpler (and still important) place to begin
is with the addition of matrices and multiplication of matrices by scalars.

We already know how to add vectors and multiply them by scalars; similar
principles hold for matrices. Two matrices can be added (or subtracted) if and
only if they have an identical number of rows and columns. When addition
(subtraction) is defined, the result is computed component-wise. Furthermore,
the multiple of a matrix by a scalar c ∈ R is attained by multiplying every entry
of the matrix by the same constant c . The following example demonstrates these
basic facts.

Example 1.7.1 Let A and B be the matrices

A =
[

1 3 −4
0 −7 2

]
, B =

[−6 10 −1
3 2 11

]

Compute A + B and −3A.

Solution. Since A and B are both 2 × 3, their sum is defined and is given by

A + B =
[

1 3 −4
0 −7 2

]
+
[−6 10 −1

3 2 11

]
=
[−5 13 −5

3 −5 13

]
The scalar multiple of a matrix is always defined, and −3A is given by

−3A =
[−3 −9 12

0 21 −6

]

Matrix addition, when defined, has all of the expected properties of addition.
In particular, A + B = B + A, so order does not matter, and we say matrix
addition is commutative. Since A + (B + C) = (A + B) + C, the way we group
more than two matrices to add also does not matter and we say matrix addition
is associative. There is even a matrix that acts like the number 0. If Z is a matrix
of the same number of rows and columns as A such that every entry in Z is zero,
then it follows that A + Z = Z + A = A. We call this zero matrix the additive
identity.

The next natural operation to consider, of course, is multiplication. What
does it mean to multiply two matrices? And when does it even make sense
to multiply two matrices? We know for matrix–vector multiplication that the
product Ax computes the vector b that is the unique linear combination of
the columns of A having the entries of the vector x as weights. Moreover, this
product is only defined when the number of entries in x matches the number of
columns of A. If we now consider a matrix B, we can naturally think about the
matrix product AB by considering the columns of B, say b1, . . . ,bk . In particular,
we make the following definition.
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Definition 1.7.1 If A is an m × n matrix, and B is a matrix whose columns
are b1, . . . ,bk such that the matrix–vector product Abj is defined for each
j = 1, . . . ,k, then we define the matrix product AB by

AB = [Ab1 Ab2 · · · Abk ] (1.7.1)

Note particularly that since A has n columns, in order for Abj to be defined
each bj must belong to R

n . This in turn implies that the matrix B must have
dimensions n ×k. Specifically, the number of rows in B must equal the number
of columns in A. We explore matrix multiplication and its properties in the next
example.

Example 1.7.2 Let A and B be the matrices

A =
[

1 3 −4
0 −7 2

]
, B =

[−6 10
3 2

]

Compute the matrix products AB and BA, or explain why they are not defined.

Solution. First we consider AB. To do so, we would have to compute both Ab1

and Ab2, where b1 and b2 are the columns of B. But neither of these products is
defined, since A has three columns and B has just two rows. Thus, AB is not defined.

On the other hand, BA is defined. For instance, we can compute the first
column of BA by taking Ba1, where we see that

Ba1 =
[−6 10

3 2

][
1
0

]
=
[−6

3

]

Similar computations for Ba2 and Ba3 show that

BA =
[−6 −88 44

3 −5 −8

]

There are several important observations to make based on example 1.7.2. One
is that if A is m × n and B is n × k so that the product AB is defined, then the
resulting matrix AB is m × k. This is true since the columns of AB are each of
the form Abj , thus being linear combinations of the columns of A, which have
m entries, so that AB has m rows. Moreover, we have to consider each of the
products Ab1, . . . ,Abk , therefore giving AB k columns.

Furthermore, we clearly see that order matters in matrix multiplication.
Specifically, given matrices A and B for which AB is defined, it is not even
guaranteed that BA is defined, much less that AB = BA. Even when both
products are defined, it is possible (even typical) that AB 
= BA. Formally, we
say that matrix multiplication is not commutative. This fact will be explored
further in the exercises. It is, however, the case that matrix multiplication (for
matrices of the appropriate sizes) is both associative and distributive. That is,
A(BC) = (AB)C and A(B + C) = AB + AC, again provided the sizes of the
matrices make the relevant products and sums defined.
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Now, we should not forget our motivation for considering matrix multi-
plication: we want to develop an alternative approach to solving equations of
the form Ax = b by multiplying A by another matrix B so that the product BA
is the matrix equivalent of the number 1 (while simultaneously multiplying b by
the same matrix B). What is the matrix equivalent of the number 1? We consider
this question and more in the following example.

Example 1.7.3 Consider the matrices

A =
[

5 11
−3 −7

]
and I2 =

[
1 0
0 1

]
Compute AI2 and I2A. What is special about the matrix I2?

Solution. Using the rules for matrix multiplication, we observe that

AI2 =
[

5 11
−3 −7

][
1 0
0 1

]
=
[

5 11
−3 −7

]
= A

and similarly

I2A =
[

1 0
0 1

][
5 11

−3 −7

]
=
[

5 11
−3 −7

]
= A

Thus, we see that multiplying the matrix A by I2 has no effect on the matrix A.

The matrix I2 in example 1.7.3 is important because it has the property
that I2A = A for any matrix A with two rows (not simply the matrix A in
example 1.7.3) and AI2 = A for any A with two columns. We can similarly show
that if I3 is the matrix

I3 =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

then I3A = A for any matrix A with three rows, and AI3 = A for any matrix A
with three columns. Similar results hold for corresponding matrices In of larger
size; each of these matrices acts like the number 1, since multiplying other
matrices by In has no effect on the given matrix.

Matrices which when multiplied by other matrices do not change the other
matrices, are called identity matrices. More formally, the n ×n identity matrix In

is the square matrix whose diagonal entries all equal 1, and whose off-diagonal
entries are all 0. (The diagonal entries in a matrix are those whose row and
column indices are the same.) Often, when the context is clear, we will write
simply I, rather than In . We also note that In is the only matrix that is n ×n and
acts as a multiplicative identity. Finally, it is evident that for any m × n matrix
A, ImA = AIn = A. In the next section, we will explore the notion of the inverse
of a matrix, and there see that identity matrices play a central role.

One final algebraic operation with matrices merits formal introduction
here. Given a matrix A, its transpose, denoted AT, is the matrix whose columns
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are the rows of A. That is, taking the transpose of a matrix replaces its rows with
its columns, and vice versa. For example, if A is the 2 × 3 matrix

A =
[

1 3 −4
0 −7 2

]

then its transpose AT is the 3 × 2 matrix

AT =
⎡
⎣ 1 0

3 −7
−4 2

⎤
⎦

Note that this is the same notation we regularly use to express a column vector in
the form b = [1 2 3]T. In the case that A is a square matrix, taking its transpose
results in swapping entries across its diagonal. For example, if

A =
⎡
⎣ 5 −2 7

0 −3 −1
−4 8 −6

⎤
⎦

then

AT =
⎡
⎣ 5 0 −4

−2 −3 8
7 −1 −6

⎤
⎦

The transpose operator has several nice algebraic properties, some of which will
be explored in the exercises. For example, for matrices for which the appropriate
sums and products are defined,

(A + B)T = AT + BT

and

(AB)T = BTAT

For a square matrix such as

A =
[

3 −1
−1 2

]

it happens that AT = A. Any square matrix A for which AT = A is said to
be symmetric. It turns out that symmetric matrices have several especially nice
properties in the context of more sophisticated concepts that arise later in the
text, and we will revisit them at that time.

1.7.1 Matrix algebra using Maple

While it is important that we first learn to add and multiply matrices by hand
to understand how these processes work, just like with row-reduction it is
reasonable to expect that we will often use available technology to perform
tedious computations like multiplying a 4 × 5 and 5 × 7 matrix. Moreover, in
real-world applications, it is not uncommon to have to deal with matrices that
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have thousands of rows and thousands of columns, or more. Here we introduce
a few Maple commands that are useful in performing some of the algebraic
manipulations we have studied in this section.

Let us consider some of the matrices defined in earlier examples:

A =
[

1 3 −4
0 −7 2

]
, B =

[−6 10
3 2

]
, C =

[−6 10 −1
3 2 11

]
After defining each of these three matrices with the usual commands in Maple,
such as

> A := <<1,0>|<3,-7>|<-4,2>>;

we can execute the sum of A and C and the scalar multiple −3B with the
commands

> A + C;
> -3*B;

for which Maple will report the outputs[−5 13 −5
3 −5 13

]
and

[
18 −30
−9 −6

]
We have previously seen that to compute a matrix–vector product, the period
is used to indicate multiplication, as in > A.x;. The same syntax holds for
matrix multiplication, where defined. For example, if we wish to compute the
product BA, we enter

> B.A;

which yields the output [−6 −88 44
3 −5 −8

]
If we try to have Maple compute an undefined product, such as AB through

the command > A.B;, we get the error message

Error, (in LinearAlgebra:-MatrixMatrixMultiply)
first matrix column dimension (3) <> second matrix
row dimension (2)

In the event that we need to execute computations involving an identity
matrix, rather than tediously enter all the 1’s and 0’s, we can use the built-in
Maple command IdentityMatrix(n);where n is the number of rows and
columns in the matrix. For example, entering

> Id := IdentityMatrix(4);
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results in the output

Id :=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

Note: Id is the name we are using to store this identity matrix. We cannot use
the letter I because I is reserved to represent

√−1 in Maple .
Finally, if we desire to compute the transpose of a matrix A, such as

A =
[

1 3 −4
0 −7 2

]
the relevant command is

> Transpose(A);

which generates the output

AT =
⎡
⎣ 1 0

3 −7
−4 2

⎤
⎦

Exercises 1.7

1. Let A, B, and C be the given matrices. In each of the following problems,
compute (by hand) the prescribed algebraic combination of A, B, and C if
the operation is defined. If the operation is not defined, explain why.

A =
[

3 −5 2
−1 5 −4

]
, B =

⎡
⎣−6 10

2 11
−3 −2

⎤
⎦ , C =

⎡
⎣ 5 3

−1 0
2 −4

⎤
⎦

(a) B + C (b) A + B (c) −2A (d) −3B + 4C (e) AB
(f) BA (g) AA (h) A(B + C) (i) CA (j) C(A + B)
(k) AT + B (l) (B + C)T (m) BTC (n) BCT (o) (AB)T

(p) (BA)T

2. Let A, B, and C be the given matrices. In each of the following problems,
compute (by hand) the prescribed algebraic combination of A, B, and C
whenever the operation is defined. If the operation is not defined, explain
why.

A =
[−5 3

2 4

]
, B =

[
2 11

−3 −2

]
, C =

[
1 0

−5 3

]
(a) B + C (b) A + B (c) −2A (d) −3B + 4C (e) AB
(f) BA (g) AA (h) A(B + C) (i) CA (j) C(A + B)
(k) AT + B (l) (B + C)T (m) BTC (n) BCT (o) (AB)T

(p) (BA)T
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3. Discuss the differences between multiplying two square matrices versus
multiplying non-square matrices. That is, under what circumstances can
two square matrices be multiplied? How does the situation change for
non-square matrices? In addition, if the product AB is defined, is BA?

4. Give an example of 2 × 2 matrices A and B for which AB 
= BA.

5. Give an example of 2 × 2 matrices A and B for which AB = BA.

6. If A is m × n and B is n × k, and neither A nor B is square, can AB ever
equal BA? Explain.

In exercises 7–9, let A be the given matrix. If possible, find a matrix B such that
BA = I2; if B exists, determine whether BA = AB.

7. A =
[

2 0
0 5

]

8. A =
[

2 4
0 5

]

9. A =
[

1 −1
−1 2

]

In exercises 10 and 11, for the given matrix A, answer each of the following
questions:

(a) Are the columns of A linearly independent?

(b) Do the columns of A span R
2?

(c) How many pivot positions does A have?

(d) Solve the equation Ax = 0 by row reducing by hand. Is A row equivalent
to an important matrix?

(e) If possible, determine a 2 × 2 matrix B such that BA = I2.

10. A =
[−1 2

2 −3

]

11. A =
[−1 2

2 −4

]

12. Decide whether each of the following sentences is true or false. In every
case, write one sentence to support your answer.

(a) If A and B are matrices of the same size, then the products AB and BA
are always defined.

(b) If A and B are matrices such that the products AB and BA are both
defined, then AB = BA.

(c) If A and B are matrices such that AB is defined, then (AB)T = ATBT.
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(d) If A and B are matrices such that A + B is defined, then
(A + B)T = AT + BT.

13. Compute the prescribed algebraic computations in exercise 1 using a
computer algebra system.

14. Compute the prescribed algebraic computations in exercise 2 using a
computer algebra system.

1.8 The inverse of a matrix

We have observed repeatedly that linear algebra is a subject centered on one
idea—systems of linear equations—viewed from several different perspectives.
Continuing with this theme, we have recently considered an alternative method
for solving the equation Ax = b by attempting to find a matrix B such that
BA = I, where I is the appropriate identity matrix. If we can in fact find such a
matrix B, it follows that

B(Ax) = Bb (1.8.1)

By the associativity of matrix multiplication and the defining property of B, it
follows that

B(Ax) = (BA)x = Ix = x (1.8.2)

Equations (1.8.1) and (1.8.2) together imply that x = Bb. Thus, the existence of
such a matrix B shows us how we can solve Ax = b by multiplication. It turns out
that from a computational point of view, row-reduction is a superior approach
to solving Ax = b; nonetheless, the perspective that it may be possible to solve
the equation through the use of a multiplicative inverse has many important
theoretical applications. In addition, similar ideas will be encountered in our
study of differential equations.

Our work in section 1.7 showed that if A and B are not square matrices,
it is never the case that AB and BA are equal. Thus it is only possible to find a
matrix B such that AB = BA = I if A is square (though even then it is not always
the case that such a matrix B exists). Moreover, as we know from theorem 1.6.3,
some square matrices have the important property that the equation Ax = b has
a unique solution for every possible choice of b.

For the next few sections, we therefore focus our attention almost exclusively
on square matrices. Here, our emphasis is on the questions “when does a matrix
B exist such that AB = BA = I?” and “when such a matrix B exists, how can we
find it?” The next definition formalizes the notion of the inverse of a matrix.

Definition 1.8.1 If A is an n × n matrix, we say that A is invertible if and only
if there exists an n × n matrix B such that

AB = BA = In (1.8.3)



The inverse of a matrix 67

When A is invertible, we call B the inverse of A and write B = A−1 (read “B is
A-inverse”). If A is not invertible, A is often called a singular matrix, and thus
saying “A is invertible” is equivalent to saying “A is nonsingular.”

It can be shown (see exercise 19) that if A is an invertible n × n matrix,
then its inverse is unique (i.e., a given matrix cannot have two distinct inverses).
In addition, we note from our discussion above in (1.8.1) and (1.8.2) that if
A is invertible, then the equation Ax = b has a solution for every b ∈ R

n . In
particular, that solution is x = A−1b. Moreover, since Ax = b has a solution
for every b ∈ R

n , we know from theorem 1.6.1 that A has a pivot position in
every row. From this, the fact that A is square, and theorem 1.6.3, it follows that
Ax = b has a unique solution for every b ∈ R

n . We state this result formally in
the following theorem.

Theorem 1.8.1 If A is an n × n invertible matrix, then the equation Ax = b
has a unique solution for every b ∈ R

n .

Before beginning to explore how to find the inverse of a matrix, as well as when
the inverse even exists, we consider an example to see how we may check if two
matrices are inverses and how to apply an inverse to solve a related equation.

Example 1.8.1 Let A and B be the matrices

A =
[

4 5
1 2

]
, B =

[
2/3 −5/3

−1/3 4/3

]

Show that A and B are inverses, and then use this fact to solve Ax = b, where
b = [−7 3]T, without using row reduction.

Solution. The reader should verify that the following matrix products indeed
hold:

AB =
[

4 5
1 2

][
2/3 −5/3

−1/3 4/3

]
=
[

1 0
0 1

]
and

BA =
[

2/3 −5/3
−1/3 4/3

][
4 5
1 2

]
=
[

1 0
0 1

]

This shows that indeed B = A−1. Note, equivalently, that A = B−1. Now, we can
easily solve the equation Ax = b where b is the given vector:

x = A−1b =
[

2/3 −5/3
−1/3 4/3

][−7
3

]
=
[−29/3

19/3

]

Of course, what is not clear in example 1.8.1 is how, given the matrix A, one
might determine the entries in the inverse matrix B = A−1. We now explore this
in the 3 × 3 case for a general matrix A, and along the way learn conditions that
guarantee that A−1 exists.
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Given a 3 × 3 matrix A, we seek a matrix B such that AB = I3. Let the
columns of B be b1, b2, and b3, and the columns of I3 be e1, e2, and e3. The
column-wise definition of matrix multiplication then tells us that the following
three vector equations must hold:

Ab1 = e1, Ab2 = e2, and Ab3 = e3 (1.8.4)

For the unique inverse matrix B to exist, it follows that each of these equations
must have a unique solution. Clearly if A has a pivot position in every row (or,
equivalently, the columns of A span R

3), then by theorem 1.6.3 it follows that
we can find unique vectors b1, b2, and b3 that make these three equations hold.
Thus, any one of the conditions in theorem 1.6.3 will guarantee that B = A−1

exists. Moreover, if A−1 exists, we know from theorem 1.8.1 that every condition
in theorem 1.6.3 also holds.

Momentarily, let us assume that A is indeed invertible. If we proceed to find
the matrix B by solving the three equations in (1.8.4), we see that row-reduction
provides an approach for producing all three vectors at once. To find these
vectors one at a time, it would be necessary to row-reduce each of the three
augmented matrices

[A e1], [A e2], and [A e3] (1.8.5)

In each case, the exact same elementary row operations will be applied to A and
thus be applied, respectively, to the vectors e1, e2, and e3. As such, we may do
all of them at once by considering the augmented matrix

[A e1 e2 e3] (1.8.6)

Note particularly that the form of the augmented matrix in (1.8.6) is [A I3]. If
we now row-reduce this matrix, and A has a pivot in every row, it follows that
we will be able to read the coefficients of A−1 from the result. This process is best
illuminated by an example, so we now explore how these computations lead us
to A−1 in a concrete situation.

Example 1.8.2 Find the inverse of the matrix

A =
⎡
⎣ 2 1 −2

1 1 −1
−2 −1 3

⎤
⎦

Solution. Following the discussion above, we augment A with the 3 × 3
identity matrix and row-reduce. It follows that⎡

⎣ 2 1 −2 1 0 0
1 1 −1 0 1 0

−2 −1 3 0 0 1

⎤
⎦→

⎡
⎣1 0 0 2 −1 1

0 1 0 −1 2 0
0 0 1 1 0 1

⎤
⎦

These computations demonstrate two important things. The first is that the
row reduction of A in the first three columns of the augmented matrix shows
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that A has a pivot position in every row, and therefore A is invertible. Moreover,
the row-reduced form of [A I3] tells us that A−1 is the matrix

A−1 =
⎡
⎣ 2 −1 1

−1 2 0
1 0 1

⎤
⎦

Again, we observe from our preceding discussion and example 1.8.2 that we have
found an algorithm for finding the inverse of a square matrix A. We augment A
with the corresponding identity matrix and row-reduce. Provided that A has a
pivot in every row, we find by row-reducing that

[A I] → [I A−1]
That is, row-reduction of an invertible matrix A augmented with the identity
matrix leads us directly to the inverse, A−1.

Next, we examine what happens in the event that a square matrix is not
invertible.

Example 1.8.3 Find the inverse of the matrix

A =
[

2 1
−6 −3

]
provided the inverse exists. If the inverse does not exist, explain why.

Solution. We augment A with the 2 × 2 identity matrix and row-reduce,
finding that [

2 1 1 0
−6 −3 0 1

]
→
[

1 1
2 0 − 1

6

0 0 1 1
3

]

Again, we see at least two key facts from these computations: A does not have
a pivot position in every row, and thus A is not invertible. In particular, recall
that we are solving two vector equations simultaneously in these computations:
Ab1 = e1 and Ab2 = e2. If we consider the first of these and observe the row-
reduction [

2 1 1
−6 −3 0

]
→
[

1 1
2 0

0 0 1

]
we see that this system of equations is inconsistent—the last row of the
augmented matrix is equivalent to the equation 0b11 + 0b12 = 1, where b =
[b11 b12]T. This is yet another way of saying that A does not have an inverse.

The above two examples together show us, in general, how we answer two
questions at once: does the square matrix A have an inverse? And if so, what is
A−1? In a computational sense, we can simply row-reduce A augmented with
the appropriate identity matrix and then observe if A has a pivot position in
every row. If A is row equivalent to the appropriately sized identity matrix, then
A is invertible and A−1 will be revealed through the row-reduction.



70 Essentials of linear algebra

We close this section with a formal statement of a theorem that summarizes
our discussion. Note particularly how this result extends theorem 1.6.3 and
demonstrates the theme of linear algebra: one idea from several perspectives.
We will refer to this result as The Invertible Matrix Theorem.

Theorem 1.8.2 (The Invertible Matrix Theorem) Let A be an n × n matrix.
The following statements are equivalent:

a. A is invertible.

b. The columns of A are linearly independent.

c. The columns of A span R
n .

d. A has a pivot position in every column.

e. A has a pivot position in every row.

f. A is row equivalent to In .

g. For each b ∈ R
n , the equation Ax = b has a unique solution.

In addition to being of great theoretical significance, inverse matrices
find many key applications. We investigate one such use in the following
subsection.

1.8.1 Computer graphics

Linear algebra is the engine that drives computer animations. While animated
movies originally were constructed by artists hand-drawing thousands of similar
sketches that were photographed and played in sequence, today such films
are created entirely with computers. Once a figure has been constructed,
moving the image around the screen is essentially an exercise in matrix
multiplication.

Every pixel in an image on a computer screen can be represented through
coordinates. For an elementary example, consider an animated figure which, at
a given point in time, has its hand located at the point (3,4). To see how a basic
animation can be built, assume further that the figure’s elbow is at the origin
(0,0), and that an animator wishes to make the hand wave back and forth. This
enables us to represent the forearm of the figure with the vector v = [3 4]T.

If we now consider the matrix

R =
[√

3/2 −1/2
1/2

√
3/2

]

and apply the matrix R to the vector v, we see that the product is

Rv =
[√

3/2 −1/2
1/2

√
3/2

][
3
4

]
=
[

3
√

3 − 4/2
3 + 4

√
3/2

]
≈
[

0.598
4.964

]
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5

3

v

Rv

Figure 1.13 The vectors
v = [3 4] and Rv =
[0.598 4.964]T.

Thus, the figure’s hand is now located at the point (0.598,4.964). In fact,
the hand has been rotated 30◦ counterclockwise about the origin, as shown
in figure 1.13.

The matrix R is known as a rotation matrix ; its impact on any vector is to
rotate the vector 30◦ counterclockwise about the origin. One way to see why this
is so is to compute the vectors Re1 and Re2, where e1 and e2 are the columns
of the 2 × 2 identity matrix. Since each of those two vectors is rotated 30◦ when
multiplied by R, the same thing happens to any vector in R

2, because any such
vector may be written as a linear combination of e1 and e2.

Not only do computer animations show one application of matrix–vector
multiplication, but they also demonstrate the need for inverse matrices. For
instance, suppose we knew that the matrix R had been applied to some unknown
vector v and that the result was

Rv =
[

2
5

]

That is, a hand located at some unknown point v was waved and had been moved
to the new point (2,5). An animator might want to wave the hand back so that
it ended up at its original location, which is again represented by the vector v.
To do so, he must answer the question “for which vector v is Rv = [2 5]T?”

We now know that one way to solve for v is to use the inverse of R. The
matrix R is clearly invertible because its columns are linearly independent; we
can compute R−1 in the standard way to find that

R−1 =
[√

3/2 1/2
−1/2

√
3/2

]



72 Essentials of linear algebra

We can solve for v by computing

v = R−1(Rv) = R−1
[

2
5

]

so that

v = R−1
[

2
5

]
=
[√

3/2 1/2
−1/2

√
3/2

][
2
5

]
≈
[

4.232
3.330

]
Of course, in actual animations, we would not wave the hand by a single 30◦
rotation, but rather through a sequence of consecutive small rotations, for
instance, 1-degree rotations. Again, computers enable us to do thousands of
such computations almost instantly and make amazing animations possible.

We consider an additional example to see the role of matrices to store data
as well as matrices and their inverses to transform the data.

Example 1.8.4 Consider the matrix

B =
[

0 1
1 0

]
Let v1 = [2 1]T, v2 = [3 3]T, and v3 = [4 0]T be the vertices of a triangle in
the plane. Compute Bv1, Bv2, and Bv3. Sketch a picture of the new triangle that
has resulted from applying the matrix B to the vertices (2,1), (3,3), and (4,0).
What is the impact of the matrix B on each point? Finally, determine the inverse
of B. What do you observe?

Solution. We observe first that

Bv1 =
[

0 1
1 0

][
2
1

]
=
[

1
2

]
, Bv2 =

[
0 1
1 0

][
3
3

]
=
[

3
3

]
, and

Bv1 =
[

0 1
1 0

][
4
0

]
=
[

0
4

]
From these calculations, we see that multiplying by B moves a given point to a
new point that corresponds to the one found by switching the coordinates of
the given point. Geometrically, the matrix B accomplishes a reflection across
the line y = x in the plane, as we can see in figure 1.14.

Moreover, if we think about how we might undo reflection across the line y = x ,
it is clear that to restore a point to its original location, we need to reflect the
point back across the line. Said differently, the inverse of the matrix B must be
the matrix itself. We can confirm that B−1 = B by computing the product

BB =
[

0 1
1 0

][
0 1
1 0

]
= I

It is noteworthy that the calculations of Bv1, Bv2, and Bv3 can be simplified into
a single matrix product if we let T = [v1 v2 v3]. That is, the matrix T holds the
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5

5

(3,3)

(2,1)

(1,2)

(4,0)

(0,4)

Figure 1.14 The triangle with
vertices v1 = [2 1]T, v2 = [3 3]T,
and v3 = [4 0]T and its image under
multiplication by the matrix B.

coordinates of the three points in the given triangle; the product BT is then the
image of the triangle under multiplication by the matrix B. A more complicated
polygonal figure than a triangle would be stored in a matrix with additional
columns.

Of course, the actual work of computer animations is much more com-
plicated than what we have presented here. Nonetheless, matrix multiplication
is the platform on which the entire enterprise of animated films is built. In
addition to achieving rotations and reflections, matrices can be used to dilate
(or magnify) images, to shear images, and even to translate them (provided that
we are clever about the coordinate system we use to represent points). Finally,
matrices are even essential to the storage of images, as each column of a matrix
can be viewed as a data point in an image. More about the application of matrices
and their inverses to computer graphics can be learned in one of the projects
found at the end of this chapter. In addition, a deeper discussion of the notion
of linear transformations (of which reflection and rotation matrices are a part)
can be found in appendix D.

1.8.2 Matrix inverses using Maple

Certainly we can use Maple’s row-reduction commands to find inverses of
matrices. However, an even simpler command exists that enables us to avoid
having to enter the corresponding identity matrix. Let us consider the two
matrices from examples 1.8.2 and 1.8.3. Let

A =
⎡
⎣ 2 1 −2

1 1 −1
−2 −1 3

⎤
⎦

If we enter the command

> MatrixInverse(A);
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we see the resulting output which is indeed A−1,⎡
⎣ 2 −1 1

−1 2 0
1 0 1

⎤
⎦

For the matrix

A =
[

2 1
−6 −3

]

executing the command > MatrixInverse(A); produces the output

Error, (in LinearAlgebra:-LA Main:-MatrixInverse)
singular matrix

which is Maple’s way of saying “A is not invertible.”

Exercises 1.8 In exercises 1–5, find the inverse of each matrix (doing the
computations by hand), or show that the inverse does not exist.

1.

[
2 1
2 2

]

2.

[
5 0
0 −3

]

3.

[
2 −1

−4 2

]

4.

⎡
⎣1 2 −1

0 1 3
0 0 2

⎤
⎦

5.

⎡
⎣ 1 −2 −1

−1 1 0
1 3 4

⎤
⎦

6. Let A =
[

1 3
1 4

]
and b1 =

[−3
5

]
, b2 =

[
2

−7

]
, b3 =

[
11

4

]
. Find A−1 and

use it to solve the equations Ax = b1, Ax = b2, and Ax = b3. In addition,
show how you can use row reduction to solve all three of these equations
simultaneously.

7. Let A =
[

1 −3
−2 6

]
and b1 =

[
10

−20

]
, b2 =

[−1/2
1

]
, b3 =

[
2
1

]
. Solve the

equations Ax = b1, Ax = b2, and Ax = b3. What do you observe about the
matrix A?

8. Let A =
[

1 −2
1 2

]
and b =

[
3
5

]
. Without doing any computations, explain

why b may be written as a linear combination of the columns of A.
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Then execute computations to find the explicit weights by which b is a
linear combination of the columns of A.

9. Let E be the elementary matrix given by E =
⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦. Note that E is

obtained by interchanging rows 2 and 3 of the 3 × 3 identity matrix.
Choose a 3 × 3 matrix A, and compute EA. What is the effect on A of
multiplication by E?

10. Without doing any row-reduction, determine E−1 where E is the matrix
defined in exercise 9. (Hint: E−1EI = I. Think about the impact that E has
on I, and then what E−1 must accomplish.)

11. Let E be the elementary matrix given by E =
⎡
⎣1 0 0

0 c 0
0 0 1

⎤
⎦. Note that E is

obtained by scaling the second row of the 3 × 3 identity matrix by the
constant c . Choose a 3 × 3 matrix A, and compute EA. What is the effect
on A of multiplication by E?

12. Without doing any row reduction, determine E−1 where E is the matrix
defined in exercise 11. What do you observe?

13. Let E be the elementary matrix given by E =
⎡
⎣1 0 0

0 1 0
a 0 1

⎤
⎦. Note that E is

obtained by applying the row operation of taking a times row 1 of the 3×3
identity matrix and adding it to row 3 to form a new row 3. Choose a 3 × 3
matrix A, and compute EA. What is the effect on A of multiplication by E?

14. Without doing any row reduction, determine E−1 where E is the matrix
defined in exercise 13. (Hint: E−1EI = I. Think about the impact that E
has on I, and then what E−1 must accomplish.)

15. Let A =
[

1/
√

2 −1/
√

2
1/

√
2 1/

√
2

]
. Compute A−1. What do you observe about the

relationship between A and A−1?

16. Let θ be any real number and A =
[

cosθ − sinθ

sinθ cosθ

]
. Compute AT and

ATA. What do you observe about the relationship between A and AT ?

17. Let A and B be invertible n × n matrices with inverses A−1 and B−1,
respectively. Show that AB is also an invertible matrix by finding (AB)−1

in terms of A−1 and B−1.

18. Let A be an invertible matrix. Explain why A−1 is also invertible, and find
(A−1)−1.

19. Show that if A is an invertible n × n matrix, then its inverse is unique.
(Hint: suppose that both B and C are inverses of A. What can you say
about AB and AC?)
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20. For real numbers a and b, the Zero Product Property states that “if
a · b = 0, then a = 0 or b = 0.” Said differently, if a 
= 0 and b 
= 0, then
a · b 
= 0. Let 0 be the 2 × 2 zero matrix (i.e., all entries are zero). Does the
Zero Product Property hold for matrices? That is, can you find two
nonzero matrices A and B such that AB = 0? Can you find such matrices
where none of the entries in A or B are zero? If so, what kind of matrices
are A and B?

21. Does there exist a 2 × 2 matrix A, none of whose entries are zero, such that
A2 = 0?

22. Does there exist a 2 × 2 matrix A other than the identity matrix such that
A2 = I? What is special about such a matrix?

23. Let D be a diagonal matrix, P an invertible matrix, and A = PDP−1. Using
the expression PDP−1 for A, compute and simplify the matrix A2 = A · A.
Do likewise for A3 = A · A · A. What will be the simplified form of An in
terms of P, D, and P−1?

24. Let A be the matrix

[
a b
c d

]
. Find conditions on a, b, c , and d that

guarantee that Ax = 0 has infinitely many solutions. What must therefore
be true about a, b, c , and d in order for A to be invertible?

25. Let A =
[

1/2
√

3/2
−√

3/2 1/2

]
and v1, v2, v3 be the vectors that emanate from

the origin to the vertices of the triangle given by (2,1), (3,3), and (4,0).
Compute the new triangle that results from applying the matrix A to the
given vertices, and sketch a picture of the original triangle and the
resulting image. What is the effect of multiplying by A?

26. Suppose that A in exercise 25 was applied to a different set of three
unknown vectors x1, x2, and x3. The resulting output from these
products is

Ax1 =
[−4

2

]
, Ax2 =

[
0
3

]
, and Ax3 =

[
2
1

]

In other words, the new image after multiplying by A is the triangle whose
vertices are (−4,2), (0,3), and (2,1).
Determine the exact vectors x1, x2, and x3 and sketch the original triangle
that was mapped to the triangle with vertices (−4,2), (0,3), and (2,1).

27. Consider the matrix

B =
[

0 −1
1 0

]

Let v1 = [2 1]T, v2 = [3 3]T, and v3 = [4 0]T. Compute Bv1, Bv2, and
Bv3. Sketch a picture of the new triangle that has resulted from applying
the matrix B to the vertices (1,1), (2,3), and (4,0). What is the geometric
effect of the matrix B on each point?
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28. Determine the inverse of B in exercise 27. What do you observe?

29. An unknown 2 × 2 matrix C is applied to the two vectors v1 = [1 1]T and
v2 = [2 3]T, and the results are Cv1 = [0.1 0.7]T and Cv2 = [−0.1 1.8]T.
Determine the entries in the matrix C.

30. Suppose that a computer graphics programmer decides to use the matrix

A =
[

1/
√

2 1/
√

2
1/

√
2 1/

√
2

]
Why is the programmer’s choice a bad one? What will be the result of
applying this matrix to any collection of points?

31. Suppose that for a large population that stays relatively constant, people
are classified as living in urban, suburban, or rural settings. Moreover,
assume that the probabilities of the various possible transitions are given
by the following table:

Future location (↓)/current location (→) U(%) S(%) R(%)

Urban 92 3 2

Suburban 7 96 10

Rural 3 1 88

Given that the population of 250 million in a certain year is distributed
among 100 million urban, 100 million suburban, and 50 million rural,
determine the population distribution in each of the preceding
two years.

32. Car-owners can be grouped into classes based on the vehicles they own.
A study of owners of sedans, minivans, and sport-utility vehicles shows
that the likelihood that an owner of one of these automobiles will replace
it with another of the same or different type is given by the table

Future vehicle (↓)/

current vehicle (→) Sedan(%) Minivan(%) SUV(%)

Sedan 91 3 2

Minivan 7 95 8

sUV 2 2 90

If there are currently 100 000 sedans, 60 000 minivans, and 80 000 SUVs
among the owners being studied, determine the distribution of vehicles
among the population before each current owner replaced his or her
previous vehicle.
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33. Decide whether each of the following sentences is true or false. In every
case, write one sentence to support your answer.

(a) If A is a matrix with a pivot in every row, then A is invertible.
(b) If A is an invertible matrix, then its columns are linearly independent.
(c) If Ax = b has a unique solution, then A is an invertible matrix.
(d) If A and B are invertible matrices, then (AB)−1 exists and

(AB)−1 = A−1B−1.
(e) If A is a square matrix row equivalent to the identity matrix, then A is

invertible.
(f) If A is a square matrix and Ax = b has a solution for a given vector b,

then Ax = c has a solution for every choice of c.
(g) If R is a matrix that reflects points across a line through the origin,

then R−1 = R.
(h) If A and B are 2 × 2 matrices with all nonzero entries, then AB cannot

equal the 2 × 2 zero matrix.

1.9 The determinant of a matrix

The Invertible Matrix Theorem (theorem 1.8.2) tells us that there are several
different ways to determine whether or not a matrix is invertible, and hence
whether or not an n ×n system of linear equations has a unique solution. There
is at least one more useful way to characterize invertibility, and that is through
the concept of a determinant. As seen in exercise 24 of section 1.8, it may be
shown through row-reduction that the general 2 × 2 matrix[

a b
c d

]

is invertible if and only if ad − bc 
= 0. We call the quantity (ad − bc) the
determinant of the matrix A, and write4 det(A) = ad − bc . Note that this
expression provides a condition on the entries of matrix A that determines
whether or not A is invertible.

We can explore similar ideas for larger matrices. For example, if we take an
arbitrary 3 × 3 matrix

A =
⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

and row-reduce in order to explore conditions under which the matrix has a
pivot position in every row, it turns out to be necessary that the quantity

D = a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31

4 Some authors use the notation |A| instead of det(A).
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is nonzero. Grouping and factoring, we see that D may be rewritten in the form

D = a11(a22a33 −a23a32)−a12(a21a33 −a23a31)+a13(a21a32 −a22a31) (1.9.1)

We again call this quantity D the determinant of the matrix A. In (1.9.1) we
see evidence of the fact that determinants of larger matrices can be defined
recursively in terms of smaller matrices found within the original matrix A. For
example, letting

A11 =
[
a22 a23

a32 a33

]

it follows that det(A11) = a22a33 −a23a32, which is the expression multiplied by
a11 in (1.9.1). More generally, if we let Aij be the submatrix defined by deleting
row i and column j of the original matrix A, then we see from (1.9.1) that

D = a11 det(A11) − a12 det(A12) + a13 det(A13)

The formal definition of the determinant of an n×n matrix is given through
a similar recursive process.

Definition 1.9.1 The determinant of an n × n matrix A with entries aij is
defined to be the number given by

det(A) = a11 det(A11) − a12 det(A12) +·· ·+ (−1)n+1a1n det(A1n) (1.9.2)

where Aij is the matrix found by deleting row i and column j of A.

We next consider an example to see some concrete computations.

Example 1.9.1 Compute the determinant of the matrix

A =
⎡
⎣ 2 −1 1

1 1 2
−3 0 −3

⎤
⎦

In addition, determine if A is invertible.

Solution. By definition,

det

⎡
⎣ 2 −1 1

1 1 2
−3 0 −3

⎤
⎦= 2det

[
1 2
0 −3

]
− (−1)det

[
1 2

−3 −3

]
+ 1det

[
1 1

−3 0

]

= 2(−3 − 0) + 1(−3 − (−6)) + 1(0 − (−3))

= −6 + 3 + 3

= 0
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Next, to determine whether or not A is invertible, we row-reduce A to see if A
has a pivot position in every row. Doing so, we find that⎡

⎣ 2 −1 1
1 1 2

−3 0 −3

⎤
⎦→

⎡
⎣1 0 1

0 1 1
0 0 0

⎤
⎦

Thus, we see that A does not have a pivot in every row, and therefore A is not
invertible.

Of course, we should note that the primary motivation for the concept
of the determinant comes from the question, “is A invertible?” Indeed, one
reason the 3 × 3 matrix in the above example is not invertible is precisely
because its determinant is zero. Later in this section, we will formally establish
the connection between the value of the determinant and the invertibility of a
general n × n matrix.

It is clear at this point that determinants of most n × n matrices with
n ≥ 3 require a substantial number of computations. Certain matrices, however,
have particularly simple determinants to calculate, as the following example
demonstrates.

Example 1.9.2 Compute the determinant of the matrix

A =
⎡
⎣2 −2 7

0 −5 3
0 0 4

⎤
⎦

In addition, determine if A is invertible.

Solution. Again using the definition, we see that

det(A) = 2det

[−5 3
0 4

]
− (−2)det

[
0 3
0 4

]
+ 7det

[
0 −5
0 0

]

= 2(−5 · 4 − 2 · 0) + 2(0 − 0) + 7(0 − 0)

= 2(−5)(4) = −40

Note particularly that the determinant of A is the product of its diagonal entries.
Moreover, A clearly has a pivot position in every row, and so by this fact
(or equivalently by the nonzero determinant of A) we see that A is invertible.

In general, the determinant of any triangular matrix (one where all entries
either below or above the diagonal are zero) is simply the product of its diagonal
entries. There are other interesting properties that the determinant has, several
of which are explored in the next example for the 2 × 2 case.

Example 1.9.3 Let

A =
[
a b
c d

]
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be an arbitrary 2×2 matrix. Explore the effect of elementary row operations on
the determinant of A.

Solution. First, let us consider a row swap, calling A1 the matrix

A1 =
[

c d
a b

]

We observe immediately that det(A) = ad − bc and det(A1) = cb − ad =
−det(A).

We next consider scaling; let A2 be the matrix whose first row is [ka kb], a
scaled version of row 1 in A. We see that det(A2) = kad − kbc = k(ad − bc) =
k · det(A).

Finally, replacing, say, row 2 of A by the sum of k times row 1 with itself,
we arrive at the matrix

A3 =
[

a b
c + ka d + kb

]

Then det(A3) = a(d +kb)−b(c +ka) = ad +kab−bc −kab = ad −bc = det(A).
Thus, we see that for the 2 × 2 case, swapping rows in a matrix changes

only the sign of the determinant, scaling a row by a nonzero constant scales the
determinant by the same constant, and executing a row replacement does not
change the value of the determinant at all. These demonstrate the effect that the
three elementary row operations from the process of row-reduction have on a
2 × 2 matrix A.

Given that the general definition of the determinant is recursive, it should not
be surprising that the properties witnessed in example 1.9.3 can be shown to
hold for n × n matrices. We state this result formally as our next theorem.

Theorem 1.9.1 Let A be an n × n matrix and k a nonzero constant. Then

a. If two rows of A are exchanged to produce matrix B, then
det(B) = −det(A).

b. If one row of A is multiplied by k to produce B, then det(B) = k det(A).

c. If B results from a row replacement in A, then det(B) = det(A).

Theorem 1.9.1 enables us to more clearly see the link between invertibility
and determinants. Through a finite number of row interchanges and row
replacements, any square matrix A may be row-reduced to upper triangular
form U (where we have all subdiagonal zeros, but we do not necessarily scale to
get 1’s on the diagonal). It follows from theorem 1.9.1 that

det(A) = (−1)k det(U),

where k is the number of row interchanges needed. Note that since U is
triangular, its determinant is the product of its diagonal entries, and these entries
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lie in the pivot locations of A. Thus, A has a pivot in every row if and only if this
determinant is nonzero. Specifically, we have shown that A is invertible if and
only if det(A) 
= 0.

To conclude this section, we note that linear algebra has once again afforded
an alternate perspective on the problem of solving an n × n system of linear
equations, and we can now add an additional statement involving determinants
to the Invertible Matrix Theorem.

Theorem 1.9.2 (Invertible Matrix Theorem) Let A be an n × n matrix. The
following statements are equivalent:

a. A is invertible.

b. The columns of A are linearly independent.

c. The columns of A span R
n .

d. A has a pivot position in every column.

e. A has a pivot position in every row.

f. A is row equivalent to In .

g. For each b ∈ R
n , the equation Ax = b has a unique solution.

h. det(A) 
= 0.

1.9.1 Determinants using Maple

Obviously for most square matrices of size greater than 3×3, the computations
necessary to find determinants are tedious and present potential for error.
As with other concepts that require large numbers of arithmetic operations,
Maple offers a single command that enables us to take advantage of the
program’s computational powers. Given a square matrix A of any size, we simply
enter

> Determinant(A);

As we explore properties of determinants in the exercises of this section,
it will prove useful to be able to generate random matrices. Within the
LinearAlgebra package in Maple, one accomplishes this for a 3 × 3 matrix
with the command

> RandomMatrix(3);

For example, if we wanted to consider the determinant of a random matrix A
we could enter the code

> A := RandomMatrix(3);
> det(A);

See exercise 11 for a particular instance where this code will be useful.
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Exercises 1.9 Compute (by hand) the determinant of each of the following
matrices in exercises 1–7, and hence state whether or not the matrix is invertible.

1. A =
[

2 1
2 2

]

2. A =
[

2 4
1 2

]

3. A =
⎡
⎣2 1 −3

2 2 5
2 3 −1

⎤
⎦

4. A =
⎡
⎣2 1 3

2 2 4
2 3 5

⎤
⎦

5. A =

⎡
⎢⎢⎣

−3 1 0 5
0 2 −4 0
0 0 −7 11
0 0 0 6

⎤
⎥⎥⎦

6. A =
⎡
⎣a a d

b b e
c c f

⎤
⎦

7. In , where In is the n × n identity matrix.

8. For which value(s) of h is the matrix

[
1 2

−3 h

]
invertible? Explain your

answer in at least two different ways.

9. For which value(s) of z is the matrix

[
2 − z 1

1 2 − z

]
invertible? Why?

10. For which value(s) of z do nontrivial solutions x to the equation[
2 − z 1

1 2 − z

]
x = 0 exist? For one such value of z , determine a nontrivial

solution x to the equation.

11. In a computer algebra system, devise code that will generate two random
3 × 3 matrices A and B, and that subsequently computes det(A), det(B),
and det(AB). What theorem do you conjecture is true about the
relationship between det(AB) and the individual determinants det(A) and
det(B)?
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12. In a computer algebra system, devise code that will generate a random
3 × 3 matrix A and that subsequently computes its transpose AT, as well as
det(A) and det(AT). What theorem do you conjecture is true about the
relationship between det(A) and det(AT)?

13. Use the formula conjectured in exercise 11 above to show that if A is

invertible, then det(A−1) = 1

det(A)
. (Hint: AA−1 = I.)

14. What can you say about the determinant of any square matrix in which
one of the columns (or rows) is zero? Why?

15. What can you say about the determinant of any square matrix where one
of the columns (or rows) is repeated in the matrix? Why?

16. Suppose that A is a n × n matrix and that Ax = 0 has infinitely many
solutions. What can you say about det(A)? Why?

17. Suppose that A2 is not invertible. Can you determine if A is invertible or
not? Explain.

18. Two matrices A and B are said to be similar if there exists an invertible
matrix P such that A = PBP−1. What can you say about the determinants
of similar matrices?

19. Let A be an arbitrary 2 × 2 matrix of the form[
a b
c d

]

where a 
= 0 and A is assumed to be invertible. Working by hand, row
reduce the augmented matrix [A I2] and hence determine a formula for
A−1 in terms of the entries of A. What role does det(A) play in the formula
for A−1?

20. Decide whether each of the following sentences is true or false. In every
case, write one sentence to support your answer.

(a) Swapping the rows in a square matrix A does not change the value of
det(A).

(b) If A is a square matrix with a pivot in every column, then det(A) = 0.
(c) The determinant of any diagonal matrix is the product of its diagonal

entries.
(d) If A is an n × n matrix and Ax = b has a unique solution for every

b ∈ R
n , then det(A) 
= 0.

1.10 The eigenvalue problem

Another powerful characteristic of linear algebra is the way the subject often
allows us to better understand an infinite collection of objects in terms of the
properties of a small, finite number of elements in the set. For example, if we have
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a set of three linearly independent vectors that spans R
3, then every vector in R

3

may be understood as a unique linear combination of the three special vectors
in the linearly independent spanning set. Thus, in some ways it is sufficient to
understand these three vectors, and to use that knowledge to better understand
the rest of the vectors in R

3. In a similar way, as we will see in this section, for
an n × n matrix A there are up to n important vectors (called eigenvectors) that
enable us to better understand a variety of properties of the matrix.

The process of matrix multiplication enables us to associate a function with
any given matrix A. For example, if A is a 2 × 2 matrix, then we may define a
function T by the formula

T (x) = Ax (1.10.1)

Note that the domain of the function T is R
2, the set of all vectors with two

entries. Moreover, note that every output of the function T is also a vector in
R

2. We therefore use the notation T : R
2 → R

2. This is analogous to familiar
functions like f (x) = x2, where for every real number input we obtain a real
number output (f : R → R); the difference here is that for the function T , for
every vector input we get a vector output. In what follows, we go in search of
special input vectors to the function T for which the corresponding output is
particularly simple to compute. The next example will highlight the properties
of the vector(s) we seek.

Example 1.10.1 Explore the geometric effect of the matrix

A =
[

2 1
1 2

]

on the vectors u = [1 0]T and v = [1 1]T from the perspective of the function
T (x) = Ax.

Solution. We first compute T (u) = Au = [2 1]T. In figure 1.15, we see a plot
of the vector u on the left, and T (u) on the right. This shows that the geometric
effect of T on u is to rotate u and stretch it. For the vector v, we observe
that T (v) = Av = [3 3]T. Graphically, as shown in figure 1.16, it is clear that
T (v) is simply a stretch of v by a factor of 3. Said slightly differently, we might
write that

T (v) = Av =
[

3
3

]
= 3

[
1
1

]
= 3v

This shows that the result of the function T (and hence the matrix A) being
applied to the vector v is particularly simple: v is only stretched by T .

For any n × n matrix A, there is an associated function T : R
n → R

n defined
by T (x) = Ax. This function takes a given vector in R

n and maps it to a
corresponding vector in R

n ; in every case, we may view this output as resulting
from the input vector being stretched and/or rotated. Input vectors that are
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3

−3

3−3

T(u)

T

3

−3

3−3

u

Figure 1.15 The vectors u and T (u) in example 1.10.1.

T

3

−3

3−3

v

3

−3

3−3

T(v)

Figure 1.16 The vectors v and T (v).

only stretched have corresponding outputs that are simplest to determine: the
input vector is simply multiplied by a scalar. To put this another way, for these
stretched-only vectors, multiplying them by A is equivalent to multiplying them
by a constant. Such vectors prove to be important for a host of reasons, and are
called the eigenvectors of a matrix A.

Definition 1.10.1 For a given n × n matrix A, a nonzero vector v is said to be
an eigenvector of A if and only if there exists a scalar λ such that

Av = λv (1.10.2)

The scalar λ is called the eigenvalue corresponding to the eigenvector v.
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In example 1.10.1, we found that the vector v = [1 1]T is an eigenvector
of the given matrix A with corresponding eigenvalue 3 since Av = 3v. What is
not yet clear is how we even begin to find eigenvectors and eigenvalues. We will
soon see that some of the many different perspectives we can take on systems of
linear equations will help us solve this problem.

In general, given an n × n matrix A, we seek eigenvectors v that are, by
definition, nonzero and satisfy the equation Av = λv. In one sense, what makes
this problem challenging is that neither v nor λ is initially known. We thus
explore some different perspectives on the problem to see if we can highlight
the role of either v or λ. Early in this chapter, we spent significant effort
studying homogeneous equations and the circumstances under which they have
nontrivial solutions. Here, the eigenvector problem can be rephrased in a similar
light. Subtracting λv from both sides of (1.10.2), we equivalently seek λ and v
such that

Av −λv = 0 (1.10.3)

Viewing λv as (λI)v, we can factor (1.10.3) and write

(A −λI)v = 0 (1.10.4)

Now the question becomes, “for which values of λ does (1.10.4) have a nontrivial
solution?” At this point, we recall theorem 1.6.2, which tells us that the equation
Bx = 0 has only the trivial solution if and only if the matrix B has a pivot in
every column. To have a nontrivial solution, we therefore want A − λI to not
have a pivot in every column. In (1.10.4), the matrix A −λI is square, so by the
Invertible Matrix Theorem such a nontrivial solution exists if and only if A−λI
is not invertible.

This last observation brings us, finally, to determinants. As we saw in
Section 1.9, a matrix is invertible if and only if its determinant is nonzero.
Therefore, a nontrivial solution to (1.10.4) exists whenever λ is such that
det(A − λI) = 0. In the next example, we explore how this equation enables
us to find the eigenvalues of a matrix A, and hence the eigenvectors as well.

Example 1.10.2 Find the eigenvalues and eigenvectors of the matrix

A =
[

2 1
1 2

]

Solution. As seen in our preceding discussion, by the definition of eigenvalues
and eigenvectors, λ is an eigenvalue of A if and only if the equation (A−λI)v = 0
has a nontrivial solution. Note first that A −λI is the matrix A with the scalar λ

subtracted from each diagonal entry since

A −λI =
[

2 1
1 2

]
−
[
λ 0
0 λ

]
=
[

2 −λ 1
1 2 −λ

]
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We next compute det(A − λI) so that we can see which values of λ make this
determinant zero. In particular, we have

det(A −λI) = det

[
2 −λ 1

1 2 −λ

]

= (2 −λ)2 − 1

= λ2 − 4λ+ 3 (1.10.5)

Thus, in order for det(A − λI) = 0, λ must satisfy the equation λ2 − 4λ +
3 = 0. Factoring, (λ − 3)(λ − 1) = 0, and therefore λ = 3 and λ = 1 are
eigenvalues of A. The value λ = 3 is not surprising, given our earlier discoveries
in example 1.10.1.

Next, we proceed to find the eigenvectors that correspond to each eigenvalue.
Beginning with λ = 3, we seek nonzero vectors v that satisfy Av = 3v, or
equivalently

(A − 3I)v = 0

This problem is a familiar one: solving a homogeneous system of linear equations
for which infinitely many solutions exist. Augmenting A − 3I with a column of
zeros and row-reducing, we find that[−1 1 0

1 −1 0

]
→
[

1 −1 0
0 0 0

]

Note that from the very definition of an eigenvector, by which we seek a
nontrivial solution to (A − λI)v = 0, it must be the case at this point that the
matrix A −λI does not have a pivot in every row. Interpreting the row-reduced
matrix with the free variable v2, we find that the vector v = [v1 v2]T must satisfy
v1 − v2 = 0. Thus, any vector v of the form

v =
[

v2

v2

]
= v2

[
1
1

]

is an eigenvector of A that corresponds to the eigenvalue λ = 3. In particular,
we observe that any scalar multiple of the vector v = [1 1]T is an eigenvector of
A with associated eigenvalue 3. We say that the set of all eigenvectors associated
with eigenvalue 3 is the eigenspace corresponding to λ = 3.

It now only remains to find the eigenvectors associated with λ = 1. We
proceed in the same manner as above, now solving the homogeneous equation
(A − 1I)v = 0. Row-reducing, we find that[

1 1 0
1 1 0

]
→
[

1 1 0
0 0 0

]
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and therefore the eigenvector v must satisfy v1 + v2 = 0 and have the form

v =
[−v2

v2

]
= v2

[−1
1

]

Here, any scalar multiple of v = [−1 1]T is an eigenvector of A corresponding
to λ = 1.

There are several important general observations to be made from exam-
ple 1.10.2. One is that for any 2 × 2 matrix, the matrix will have 0, 1, or
2 real eigenvalues. This comes from the fact that det(A − λI) is a quadratic
function in the variable λ, and therefore can have up to two real zeros. While
it is possible to consider complex eigenvalues, we will wait until these arise
in our study of systems of differential equations to address them in detail. In
addition, we note that there are infinitely many eigenvectors associated with each
eigenvalue. Often we will be interested in finding representative eigenvectors—
ones for which all others with the same eigenvalue are linear combinations.
Finally, it is worthwhile to note that the two representative eigenvectors found
in example 1.10.2, corresponding respectively to the two distinct eigenvalues, are
linearly independent. More on why this is important will be discussed at the end
of this section; for now, we remark that it is possible to show that eigenvectors
corresponding to distinct eigenvalues are always linearly independent. This fact
will be proved in exercise 16.

The observations in the preceding paragraph generalize to the case of
n × n matrices. It may be shown that det(A − λI) is a polynomial of degree n
in λ. This function is usually called the characteristic polynomial ; the equation
det(A − λI) = 0 is typically referred to as the characteristic equation. Because
the characteristic polynomial has degree n, it follows that A has up to n real
eigenvalues5.

Next we consider two additional examples that demonstrate some more of
the possibilities and important ideas that arise in trying to find the eigenvalues
and eigenvectors of a given matrix.

Example 1.10.3 Determine the eigenvalues and eigenvectors of the matrix

R =
[

1/
√

2 −1/
√

2
1/

√
2 1/

√
2

]

In addition, explore the geometric effect of the function T (v) = Rv on vectors
in R

2.

5 See appendix C for a review and discussion of important properties of roots of polynomial
equations.
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Solution. We consider the characteristic equation det(R −λI) = 0 and hence
solve

0 = det

[ 1√
2
−λ − 1√

2
1√
2

1√
2
−λ

]

=
(

1√
2

−λ

)2

+ 1

2

= λ2 −√
2λ+ 1

By the quadratic formula, it follows that

λ =
√

2 ±√
2 − 4

2
=

√
2 ± i

√
2

2

which shows that R does not have any real eigenvalues. If we explore the
geometric effect of T (v) = Rv graphically, we can better understand why
this is the case. Beginning with the vector e1 = [1 0]T and computing
Re1 = [1/

√
2 1/

√
2]T, as seen in figure 1.17, we see that the function T (x) = Rx

rotates the vector e1 counterclockwise by π/4 radians, and (as computing the
length of each vector shows) there is no stretching involved. Similarly, for
the vector e2 = [0 1]T, we can see that Re2 = [−1/

√
2 1/

√
2]T. Just as with the

previous vector e1, we see that the function T (v) = Rv simply rotates the vector
e2 counterclockwise by π/4 radians.

In fact, since every vector in R
2 can be written as a linear combination of

e1 and e2, it follows that the image Rv of any vector v is simply the original
vector rotated counterclockwise π/4 radians. This shows that no vector in R

2

is simply stretched under multiplication by R, and therefore R has no real
eigenvectors.

2

−2

2−2

Re1

2

−2

2−2

e1
T

Figure 1.17 The vectors e1 and T (e1) = Re1.
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Matrices such as R in example 1.10.3 with the property that they rotate every
vector by a fixed angle (with no stretching factor) are usually called rotation
matrices.

Other interesting cases arise in the search for eigenvectors when some of
the eigenvalues are repeated. That is, when a value λ is a multiple root of the
characteristic equation det(A − λI) = 0. We explore this further in the next
example.

Example 1.10.4 Determine all eigenvalues and eigenvectors of the matrix

A =
⎡
⎣5 6 2

0 −1 −8
1 0 −2

⎤
⎦

Solution. As in previous examples, we first compute det(A − λI). Doing so
and simplifying yields

det(A −λI) = −36 + 15λ+ 2λ2 −λ3

Factoring, it follows that

det(A −λI) = −(λ+ 4)(λ− 3)2

Setting the characteristic polynomial equal to zero, it is required that −(λ+ 4)
(λ − 3)2 = 0. This shows that A has two distinct eigenvalues; moreover, just as
with zeros of polynomials, we say that λ = −4 has multiplicity 1, while λ = 3
has multiplicity 2.

We now find the eigenvectors corresponding to each eigenvalue. For λ =
−4, we solve the equation (A + 4I)v = 0, and see by row-reducing that⎡

⎣9 6 2 0
0 3 −8 0
1 0 2 0

⎤
⎦→

⎡
⎣1 0 2 0

0 1 − 8
3 0

0 0 0 0

⎤
⎦

Note that v3 is a free variable, and that the corresponding eigenvector v must
have components which satisfy v1 +2v3 = 0 and v2 − 8

3 v3 = 0, which shows that
v has form

v = v3

⎡
⎢⎣

−2
8
3

1

⎤
⎥⎦

Likewise, for λ = 3, we consider (A − 3I)v = 0, and row-reduce to find that⎡
⎣2 6 2

0 −4 −8
1 0 −5

⎤
⎦→

⎡
⎣1 0 −5

0 1 2
0 0 0

⎤
⎦
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This leads us to see that the corresponding eigenvector has form

v = v3

⎡
⎣ 5

−2
1

⎤
⎦

Therefore, we see that for this matrix A, the matrix has two distinct eigenvalues
(−4 and 3), and each of these eigenvalues has only one associated linearly
independent eigenvector. That is, every eigenvector of A associated with λ = −4
is a scalar multiple of [−2 8

3 1]T while every eigenvector associated with λ = 3

is a scalar multiple of [5 − 2 1]T.

In the three preceding examples, we have seen that an n × n matrix has up to
n real eigenvalues. It turns out that there are also up to n linearly independent
eigenvectors of the matrix. For many reasons, the best possible scenario is
when a matrix has n linearly independent eigenvectors, such as the matrix A
in example 1.10.2. In that 2 × 2 situation, A had two distinct real eigenvalues,
and two corresponding linearly independent eigenvectors. One reason that this
is so useful is that the eigenvectors are not only linearly independent, but also
span R

2. If we call the two eigenvectors found in example 1.10.2 u and v,
corresponding to λ = 3 and μ = 1, respectively, then, since these two vectors
are linearly independent in R

2 and span R
2, we can write every vector in R

2

uniquely as a linear combination of u and v.
In particular, given a vector x, there exist coefficients α and β such that

x = αu +βv

If we are interested in computing Ax, we can do so now solely by knowing
how A acts on the eigenvectors. Specifically, if we apply the linearity of matrix
multiplication and the definition of eigenvectors, we have

Ax = A(αu +βv)

= αAu +βAv

= αλu +βμv

This then reduces matrix multiplication essentially to scalar multiplication.
In conclusion, we have seen in this section that via matrix multiplication,

every matrix can be viewed as a function in the way that, through multiplication,
it stretches and rotates vectors. Those vectors that are only stretched are
called eigenvectors, and the factor by which the matrix stretches them are
called eigenvalues. By knowing the eigenvalues and eigenvectors, we can better
understand how A acts on an arbitrary vector, and, with some more sophisticated
approaches, even further understand key properties of the matrix. Some of these
properties will be studied in detail later in this text when we consider systems of
differential equations.
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1.10.1 Markov chains, eigenvectors, and Google

In a Markov process such as the one discussed in subsection 1.3.1 that represents
the transition of voters from one classification to another, it is natural to wonder
whether or not there is a distribution of voters for which the total number in
each category will remain constant from one year to the next. For example, for
the Markov process represented by

x(n+1) = Mx(n) (1.10.6)

where M is the matrix

M =
⎡
⎣0.95 0.03 0.07

0.02 0.90 0.13
0.03 0.07 0.80

⎤
⎦

we can ask: is there a voter distribution x such that Mx = x? In light of our
most recent work with eigenvalues and eigenvectors, we see that this question
is equivalent to asking if the matrix M has λ = 1 as an eigenvalue with some
corresponding eigenvector that can represent a voter distribution.

If we compute the eigenvalues and eigenvectors of M, we find that the
eigenvalues are λ = 1.000,0.911,0.739. The eigenvector corresponding to λ = 1
is v = [0.770 0.558 0.311]T. Scaling v so that the sum of its entries is 250, we
see that the eigenvector

v = [117.450 85.113 47.437]T

represents the distribution of a population of 250000 people in such a way that
the total number of Democrats, Republicans, and Independents does not change
from one year to the next, under the hypothesis that voters change categories
annually according to the likelihoods expressed in the Markov matrix M. This
eigenvector is sometimes also called a stationary vector.

Remarkably, we can also note that in our earlier computations in
subsection 1.3.1 for this Markov chain, we observed that the sequence of vectors
x(1),x(2), . . . ,x(20), . . . was approaching a single vector. In fact, the limiting value
of this sequence is the eigenvector v = [117.450 85.113 47.437]T. That this
phenomenon occurs is the result of the so-called Power method, a rudimentary
numerical technique for computing an eigenvalue–eigenvector pair of a matrix.
More about this concept can be studied in the project on discrete dynamical
systems found in section 1.13.3.

Example 1.10.5 Find the stationary vector from the matrix in example 1.3.3.

Solution. Under the assumptions stated in example 1.3.3, we saw that the
migration of citizens from urban to suburban areas of a metropolitan area, or
vice versa, were modeled by the Markov process x(n+1) = Mx(n) where M is the
matrix

M =
[

0.85 0.08
0.15 0.92

]
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Solving the equation x = Mx by writing (M − I)x = 0, we see that we need to
find the eigenvector of x that corresponds to λ = 1. Doing so, we find that the
eigenvector is

v =
[

0.4706
0.8824

]
Scaling this vector so that the sum of its entries is one, we see that the population
stabilizes when it is distributed with 34.78 percent in the city and 65.22 percent
in the suburbs, in accordance with the vector [0.3478 0.6522]T.

One of the most stunning applications of eigenvalues and eigenvectors can be
found on the World Wide Web. In particular, the idea of finding a stationary
vector that satisfies Mx = x is at the center of Google’s Page Rank Algorithm
that it uses to index the importance of billions of pages on the Internet. What is
particularly challenging about this problem is the fact that the stochastic matrix
M used by the algorithm is a square matrix that has one column for every page
on the World Wide Web that is indexed by Google! In early 2007, this meant
that M was a matrix with 25 billion columns. Nonetheless, properties of the
matrix M and sophisticated numerical algorithms make it possible for modern
computers to quickly find the stationary vector of M and hence provide the user
with the results we have all grown accustomed to in using Google.6

1.10.2 Using Maple to find eigenvalues and
eigenvectors

Due to its reliance upon determinants and the solution of polynomial
equations, the eigenvalue problem is computationally difficult for any case
larger than 3 × 3. Sophisticated algorithms have been developed to compute
eigenvalues and eigenvectors efficiently and accurately. One of these is the so-
called QR algorithm, which through an iterative technique produces excellent
approximations to eigenvalues and eigenvectors simultaneously.

While Maple implements these algorithms and can find both eigenvalues
and eigenvectors, it is essential that we not only understand what the program
is attempting to compute, but also how to interpret the resulting output.
As always, in what follows we are working within the LinearAlgebra
package.

Given an n × n matrix A, we can compute the eigenvalues of A with the
command

> Eigenvalues(A);

6 A detailed description of how the Page Rank Algorithm works and the role that eigenvectors play
may be read at http://www.ams.org/featurecolumn/archive/pagerank.html.

http://www.ams.org/featurecolumn/archive/pagerank.html
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Doing so for the matrix

A =
[

2 1
1 2

]
from example 1.10.2 yields the Maple output[

3
1

]

Despite the vector format, the program is telling us that the two eigenvalues
of the matrix A are 3 and 1. If we desire the eigenvectors, too, we can use the
command

> Eigenvectors(A);

which leads to the output [
3
1

]
,

[
1 −1
1 1

]
Here, the first vector tells us the eigenvalues of A. The following matrix holds the
corresponding eigenvectors in its columns; the vector [1 1]T is the eigenvector
corresponding to λ = 3 and [−1 1]T corresponds to λ = 1.

Maple is extremely powerful. It is not at all bothered by complex numbers.
So, if we enter a matrix like the one in example 1.10.3 that has no real eigenvalues,
Maple will find complex eigenvalues and eigenvectors. To see how this appears,
we enter the matrix

R =
[

1/
√

2 −1/
√

2
1/

√
2 1/

√
2

]
and execute the command

> Eigenvectors(R);

The resulting output is [ 1
2

√
2 + 1

2 I
√

2

1
2

√
2 − 1

2 I
√

2

]
,

[
I −I
1 1

]

Note that here Maple is using ‘I ’ to denote not the identity matrix, but rather√−1. Just as we saw in example 1.10.3, R does not have any real eigenvalues. We
can use familiar properties of complex numbers (most importantly, I 2 = 1) to
actually check that the equation Ax =λx holds for the listed complex eigenvalues
and complex eigenvectors above. However, at this point in our study, these
complex eigenvectors are of less importance, so we defer further details on them
until later work with systems of differential equations.

One final example is relevant here to see how Maple deals with repeated
eigenvalues and missing eigenvectors. If we enter the 3 × 3 matrix A from
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example 1.10.4 and execute the Eigenvectors command, we receive the
output ⎡

⎣ 3
3

−4

⎤
⎦ ,

⎡
⎢⎣

5 0 −2

−2 0 8
3

1 0 1

⎤
⎥⎦

Here we see that 3 is a repeated eigenvalue of A with multiplicity 2. The
first two columns of the matrix in the output contain the (potentially)
linearly independent eigenvectors which correspond to this eigenvalue. The
second column of all zeros indicates that A has only one linearly independent
eigenvector corresponding to this particular eigenvalue. The third column, of
course, is the eigenvector associated with the eigenvalue λ = −4. The column
of all zeros also demonstrates that R

3 does not have a linearly independent
spanning set that consists of eigenvectors of A.

Exercises 1.10 In exercises 1–8, compute (by hand) the eigenvalues and any
corresponding real eigenvectors of the given matrix A.

1. A =
[

5 1
0 3

]

2. A =
[

3 −1
−1 3

]

3. A =
[

3 4
−5 −5

]

4. A =
[

1 4
1 4

]

5. A =
⎡
⎣2 1 0

0 2 1
0 0 2

⎤
⎦

6. A =
⎡
⎣2 1 0

0 2 0
0 0 2

⎤
⎦

7. A =
⎡
⎣2 0 0

0 2 0
0 0 2

⎤
⎦

8. A =
⎡
⎣−3 2 5

0 6 −2
0 0 5

⎤
⎦
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9. A 2 × 2 matrix A has eigenvalues 5 and −1 and corresponding
eigenvectors u = [0 1]T and v = [1 0]T. Use this information to compute
Ax, where x is the vector x = [−5 4]T.

10. A 2 × 2 matrix A has eigenvalues −3 and −2 and corresponding
eigenvectors u = [−1 1]T and v = [1 1]T. Use this information to
compute Ax, where x is the vector x = [−3 5]T.

11. Consider the matrix

A =
⎡
⎣−2 1 1

1 −2 1
1 1 −2

⎤
⎦

(a) Determine the eigenvalues and eigenvectors of A.
(b) Does R

3 have a linearly independent spanning set that consists of
eigenvectors of A?

12. Consider the matrix

A =
[

3 −1
−1 3

]

(a) Determine the eigenvalues and eigenvectors of A, and show that A has
two linearly independent eigenvectors.

(b) Let P be the matrix whose columns are two linearly independent
eigenvectors of A. Why is P invertible?

(c) Let D be the diagonal matrix whose diagonal entries are the
eigenvalues of A; place the eigenvalues on the diagonal in an order
corresponding to the order of the eigenvectors in the columns of P,
where P is the matrix defined in (b) above. Compute AP and PD.
What do you observe?

(d) Explain why A = PDP−1. Use this factorization to compute A2, A3, and
A10 in terms of P, D, and P−1. In particular, explain how A10 can be
easily computed by using the diagonal matrix D along with P and P−1.

13. Consider the matrix

A =
⎡
⎣ 3 −1 1

−1 3 −1
1 −1 3

⎤
⎦

(a) Determine the eigenvalues and eigenvectors of A, and show that A has
three linearly independent eigenvectors.

(b) Let P be the matrix whose columns are three linearly independent
eigenvectors of A. Why is P invertible?

(c) Let D be the diagonal matrix whose diagonal entries are the
eigenvalues of A; place the eigenvalues on the diagonal in an order
corresponding to the order of the eigenvectors in the columns of P,
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where P is the matrix defined in (b) above. Compute AP and PD.
What do you observe?

(d) Explain why A = PDP−1. Use this factorization to compute A2, A3,
and A10 in terms of P, D, and P−1.

14. Prove that an n ×n matrix A is invertible if and only if A has no eigenvalue
equal to zero.

15. Show that if A, B, and P are square matrices (with P invertible) such that
B = PAP−1, then A and B have the same eigenvalues. (Hint: consider the
characteristic equation for PAP−1.)

16. Prove that if A is a 2 × 2 matrix and v and u are eigenvectors of A
corresponding to distinct eigenvalues λ and μ, then v and u are linearly
independent. (Hint: suppose to the contrary that v and u are linearly
dependent.)

17. For a differentiable function y , denote the derivative of y with respect to x
by D(y). Now consider the function y = e7x , and compute D(y). For what
value of λ is D(y) = λy? Explain how this value behaves like an eigenvalue
of the operator D. What is the corresponding eigenvector? How does the
problem change if we consider y = erx for any other real value of r?

18. For a vector-valued function x(t ), let the derivative of x with respect to t
be denoted by D(x). For the function

x(t ) =
[

e−2t

−3e−2t

]
compute D(x). For what value(s) of λ is D(x) = λx? Explain how it
appears from your work that the operator D has an eigenvalue-eigenvector
pair.

19. Suppose that for a large population that stays relatively constant, people
are classified as living in urban, suburban, or rural settings. Moreover,
assume that the probabilities of the various possible transitions are given
by the following table:

Future location (↓)/current location (→) U(%) S(%) R(%)

Urban 90 3 2

Suburban 7 96 10

Rural 3 1 88

Given that a population of 250 million is present, is there a stationary
vector that reveals a population which does not change from year to year?

20. Car-owners can be grouped into classes based on the vehicles they own.
A study of owners of sedans, minivans, and sport utility vehicles shows
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that the likelihood that an owner of one of these automobiles will replace it
with another of the same or different type is given by the table

Future vehicle (↓)/

current vehicle (→) Sedan(%) Minivan(%) SUV(%)

Sedan 91 3 2

Minivan 7 95 8

SUV 2 2 90

If there are currently 100 000 vehicles in the population under study, is
there a stationary vector that represents a distribution in which the
number of owners of each type of vehicle will not change as they replace
their vehicles?

21. Decide whether each of the following sentences is true or false. In every
case, write one sentence to support your answer.

(a) If x is any vector and λ is a constant such that Ax = λx, then x is an
eigenvector of A.

(b) If Ax = 0 has nontrivial solutions, then λ = 0 is an eigenvalue of A.
(c) Every 3 × 3 matrix has three real eigenvalues.
(d) If A is a 2 × 2 matrix, then A can have up to two real linearly

independent eigenvectors.

1.11 Generalized vectors

Throughout our work with vectors in R
n , we have regularly used several key

algebraic properties they possess. For example, any two vectors u and v can be
added to form a new vector u +v, any single vector can be multiplied by a scalar
to determine a new vector cu, and there is a zero vector 0 with the property
that for any vector v, v + 0 = v. Of course, we use other algebraic properties of
vectors as well, often implicitly.

Other sets of mathematical objects behave in ways that are algebraically
similar to vectors. The purpose of this section is to expand our perspective
on what familiar mathematical entities might also reasonably be called vectors;
much of this expanded perspective is in anticipation of our pending work with
differential equations and their solutions. We motivate our study with several
familiar examples, and then summarize a collection of formal properties that all
these examples share.

Example 1.11.1 Let M2×2 denote the collection of all 2×2 matrices with real
entries. Show that if A and B are any 2 × 2 matrices and c ∈ R, then A + B and
cA are also 2 × 2 matrices. In addition, show that there exists a “zero matrix” Z
such that A + Z = A for every matrix A.
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Solution. Let

A =
[
a11 a12

a21 a22

]
and B =

[
b11 b12

b21 b22

]
By the definition of matrix addition,

A + B =
[
a11 + b11 a12 + b12

a21 + b21 a22 + b22

]

and thus we see that A + B is also a 2 × 2 matrix. Recall that it only makes sense
for matrices of the same size to be added; here we are simply pointing out the
obvious fact that the sum of two matrices of the same size is yet another matrix
of the same size. In the same way,

cA =
[
ca11 ca12

ca21 ca22

]

which shows that not only is the scalar multiple defined, but also that cA is a
2×2 matrix. Finally, if we let Z be the 2×2 matrix all of whose entries are zero,

Z =
[

0 0
0 0

]

then our work with matrix sums shows us immediately that A+Z = A for every
possible 2 × 2 matrix A.

Certainly, we can see that there is nothing particularly special about the 2 × 2
case in this example; the same properties will hold for Mm×n for any positive
integer values of m and n.

Mathematicians often use the language “M2×2 is closed under addition
and scalar multiplication” and “M2×2 contains a zero element” to describe
the observations we made in example 1.11.1. Specifically, to say that a set is
closed under an operation means simply that if we perform the operation on
an appropriate number of elements from the set, the result is another element
in the set. We next consider several more examples of sets that demonstrate the
properties of being closed and having a zero element.

Example 1.11.2 Let P2 denote the set of all polynomials of degree 2 or less.
That is, P2 is the set of all functions of the form

p(x) = a2x2 + a1x + a0

where a0,a1,a2 ∈ R. Show that P2 is closed under addition and scalar
multiplication, and that P2 contains a zero element.

Solution. Before we formally address the stated tasks, let us remind ourselves
how we add polynomial functions. If we are given, say, f (x) = 2x2 −5x +11 and
g (x) = 4x −3, we compute (f + g )(x) = f (x)+ g (x) = 2x2 −5x +11+4x −3.

We can then add like terms to simplify and find that (f + g )(x) = 2x2 − x + 8.
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Similarly, if we wanted to compute (−3f )(x), we have (−3f )(x) = −3f (x) =
−3(2x2 − 5x + 11) = −6x2 + 15x − 33.

We now show that P2 is indeed closed under the operations of addition
and scalar multiplication. Given two arbitrary elements of P2, say f (x) = a2x2 +
a1x + a0 and g (x) = b2x2 + b1x + b0, it follows upon adding and combining
like terms that

(f + g )(x) = (a2 + b2)x2 + (a1 + b1)x + (a0 + b0)

which is obviously a polynomial of degree 2 or lower, and thus f + g is an
element of P2. In the same way, for any real value c ,

(cf )(x) = ca2x2 + ca1x + ca0

which also belongs to P2. Finally, it is evident that if we let z(x) = 0x2 + 0x + 0
(i.e., z(x) is the zero function), then (f + z)(x) = f (x) for any choice of f in P2.

Here, too, we should observe that while these properties hold for P2, there is
nothing special about the 2. In fact, Pn (the set of all polynomials of degree n or
less) has the exact same properties. Even P, the set of all polynomials, behaves
in the same manner.

Example 1.11.3 From calculus, consider the set C[−1,1] of all continuous
functions on the interval [−1,1]. That is,

C[−1,1] = {f | f is continuous on [−1,1]}.
Show that C[−1,1] is closed under addition and scalar multiplication, and also
that C[−1,1] contains a zero element.

Solution. Two standard facts from calculus tell us that the sum of any two
continuous functions is also a continuous function and that a constant multiple
of a continuous function is also a continuous function. Thus C[−1,1] is
closed under addition and scalar multiplication. Furthermore, the zero function
z(x) = 0 is itself continuous, which shows that C[−1,1] indeed has a zero element.

One of the principal reasons that we are shifting our attention from vectors in R
n

to this more generalized concept of vector where the objects under consideration
are often functions is the fact that our focus in subsequent chapters will be solving
differential equations. The solution to a differential equation is a function that
makes the equation true. Moreover, we will also see that for certain important
classes of differential equations, there are multiple solutions to the equation and
that often these solution sets are closed under addition and scalar multiplication
and also contain the zero function.

From each of the above examples, we see that R
n has many important

properties that we can consider in a broader context. We therefore introduce
the notion of a vector space, which is a set of objects that have defined operations
of addition and scalar multiplication that satisfy the list of ten rules below. The
concept of a vector space is a generalization of R

n .
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While many of the rules are technical in nature, the most important ones
to verify turn out to be the three that we have focused on so far: being closed
under addition, closed under scalar multiplication, and having a zero element.
All three sets described in the above examples are vector spaces, as is R

n .

Definition 1.11.1 A vector space is a nonempty set V of objects, on which
operations of addition and scalar multiplication are defined, where the objects
in V (called vectors) adhere to the following ten rules:

1. For every u and v in V , the sum u + v is in V (V is “closed under vector
addition”)

2. For every u and v in V , u + v = v + u (“vector addition is commutative”)

3. For every u,v,w in V , (u + v) + w = v + (u + w) (“vector addition is
associative”)

4. There exists a zero vector 0 in V such that u + 0 = u for every u ∈ V (0 is
called the additive identity of V )

5. For every u ∈ V , there is a vector −u such that u + (−u) = 0 (−u is called
the additive inverse of u)

6. For every u ∈ V and every scalar c , the scalar multiple cu ∈ V (V is
“closed under scalar multiplication”)

7. For every u and v in V and every scalar c , c(u + v) = cu + cv (“scalar
multiplication is distributive over vector addition”)

8. For every u ∈ V and scalars c and d , (c + d)u = cu + du

9. For every u ∈ V and scalars c and d , c(du) = (cd)u

10. For every u ∈ V , 1u = u

Sometimes we can take a sub-collection (i.e., a subset) of the vectors in a
vector space, and that smaller set itself acts like a vector space. For example, the
set of all polynomial functions is a vector space. If we take just the polynomials
of degree 2 or less (as in example 1.11.2 above), that subset is itself a vector
space. This leads us to introduce the notion of a subspace.

Definition 1.11.2 Given a vector space V , let H be a subset of V (i.e.,
every object in H is also in V .) There are then operations of addition and
scalar multiplication on objects in H : specifically, the same addition and scalar
multiplication as on the objects in V . We say H is a subspace of V if and only if
all three of the following conditions hold:

1. H is closed under addition

2. H is closed under scalar multiplication

3. H contains the zero element of V
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We close this section with two important examples of subspaces. The first
is a subspace of R

n associated with a given matrix A. The second is a subspace
of the set of all continuous functions on [−1,1].

Example 1.11.4 Recall the matrix A from example 1.10.4 in section 1.10,

A =
⎡
⎣5 6 2

0 −1 −8
1 0 −2

⎤
⎦

Show that the set of all eigenvectors that correspond to a given eigenvalue of A
forms a subspace of R

3.

Solution. In example 1.10.4, we saw that the eigenvalues of A are λ = −4 (with
multiplicity 1) and λ = 3 (with multiplicity 2). In addition, the corresponding
eigenvectors are v = [−2 8

3 1]T for λ = −4 and v = [5 − 2 1]T for λ = 3. In
particular, recall that every scalar multiple of vλ=−4 is also an eigenvector of A
corresponding to λ = −4. We now show that the set of all these eigenvectors
corresponding to λ = −4 is a subspace of R

3.
Let Eλ=−4 denote the set of all vectors v such that Av = −4v. First, certainly

it is the case that A0 = −40. This shows that the zero element of R
3 is an

element of Eλ=−4. Furthermore, we have already seen that every scalar multiple
of an eigenvector is itself an eigenvector, and thus Eλ=−4 is closed under scalar
multiplication. Finally, suppose we have two vectors x and y such that Ax =−4x
and Ay = −4y. Observe that by properties of linearity,

A(x + y) = Ax + Ay

= −4x − 4y

= −4(x + y)

which shows that (x + y) is also an eigenvector of A corresponding to λ = −4.
Therefore, Eλ=−4 is closed under addition.

This shows that Eλ=−4 is indeed a subspace of R
3. In a similar fashion, Eλ=3

is also a subspace of R
3.

Our observations for the eigenspaces of the 2 × 2 matrix A in example 1.11.4
hold in general for any n ×n matrix A: the set of all eigenvectors corresponding
to a given eigenvalue of A forms a subspace of R

n .

Example 1.11.5 Show that the set of all linear combinations of the sine and
cosine functions is a subspace of the vector space C of all continuous functions.

Solution. We let C denote the vector space of all continuous functions, and
now let H be the subset of C which is defined to be all functions that are linear
combinations of sin t and cos t . That is, a typical element of H is a function f of
the form

f (t ) = c1 sin t + c2 cos t
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where c1 and c2 are any real scalars. We need to show that the set H contains the
zero function from C, that H is closed under scalar multiplication, and that H
is closed under addition.

First, if we choose c1 = c2 = 0, the function z(t ) = 0sin t +0cos t = 0 is the
function that is identically zero, which is the (continuous) zero function from C.
Next, if we take a function from H , say f (t ) = c1 sin t + c2 cos t , and multiply it
by a scalar k, we get

kf (t ) = k(c1 sin t + c2 cos t ) = (kc1) sin t + (kc2)cos t

which is of course another element in H , so H is closed under scalar
multiplication. Finally, if we consider two elements f and g in H , given by
f (t ) = c1 sin t + c2 cos t and g (t ) = d1 sin t + d2 cos t , then it follows that

f (t ) + g (t ) = (c1 sin t + c2 cos t ) + (d1 sin t + d2 cos t )

= (c1 + d1) sin t + (c2 + d2)cos t

so that H is closed under addition, too. Thus, H is a subspace of C.

In fact, it turns out that the subspace considered in example 1.11.5 contains all
of the solutions to a familiar differential equation. We will revisit this issue in
example 1.11.7. It is also instructive to consider an example of a set that is not a
subspace.

Example 1.11.6 Consider the vector space C[−1,1] of all continuous functions
on the interval [−1,1]. Let H be the set of all functions with the property that
f (−1) = f (1) = 2. Determine whether or not H is a subspace of C[−1,1].

Solution. The set H does not satisfy any of the three required properties
of subspaces, so any one of these suffices to show that H is not a subspace. In
particular, the zero function z(t ) = 0 does not have the property that z(−1) = 2,
and thus the zero function from C[−1,1] does not lie in H , so H is not a subspace.

We could also observe that any scalar multiple of a function whose value at
t = −1 and t = 1 is 2 will result in a new function whose value at these points is
not 2; similarly, the sum of two functions whose values at t = −1 and t = 1 are 2
will lead to a new function whose values at these points is 4. These facts together
show that H is not closed under scalar multiplication, nor under addition.

As we have already mentioned, we are considering this generalization of the
term vector to include mathematical objects like functions because this structure
underlies the study of differential equations, and this vector space perspective
will help us to better understand a variety of key ideas when we are solving
important problems later on. To foreshadow these coming ideas, we present
an example of an elementary differential equation that shows how the set
of solutions to the equation is in fact the subspace of continuous functions
considered in example 1.11.5.
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Example 1.11.7 Consider the differential equation

y ′′ + y = 0

Show that y1 = sin t and y2 = cos t are solutions to this differential equation,
and that every function of the form y = c1y1 + c2y2 is a solution as well.

Solution. This example is very similar to example 1.6.4. Because of its
importance, we discuss the current problem in full detail here as well.

For any equation, a solution is an object that makes the equation true. In
the above differential equation, y represents a function. The equation asks “for
which functions y is the sum of y and its second derivative equal to zero?”

Observe first that if we let y1 = sin t , then y ′
1 = cos t , so y ′′

1 = − sin t , and
therefore y ′′

1 + y1 = − sin t + sin t = 0. In other words, y1 is a solution to the
differential equation. Similarly, for y2 = cos t , y ′

2 = − sin t and y ′′
2 = −cos t , so

that y ′′
2 + y2 = −cos t + cos t = 0. Thus, y2 is also a solution to the differential

equation.
Now, consider any function y of the form y = c1y1 +c2y2. That is, let y be any

linear combination of the two solutions we have already found. We then have

y = c1 sin t + c2 cos t

so that, using standard properties of the derivative (properties which are linear
in nature), it follows that

y ′ = c1 cos t − c2 sin t

and

y ′′ = −c1 sin t − c2 cos t

We, therefore see that

y ′′ + y = (−c1 sin t − c2 cos t ) + (c1 sin t + c2 cos t )

= −c1 sin t + c1 sin t − c2 cos t + c2 cos t

= 0

so that y is indeed also a solution of y ′′ + y = 0.

In example 1.11.7, we find a large number of connections to our work in
systems of linear equations and linear algebra: properties of linearity, linear
combinations of vectors, homogeneous equations, infinitely many solutions,
and more. In particular, the set of all solutions to the differential equation in
example 1.11.7 is precisely the subspace of continuous functions examined in
example 1.11.5. Certainly, we will revisit these topics in greater detail as we
progress in our study of differential equations.

Exercises 1.11 In exercises 1–16, determine whether or not the set H is a
subspace of the given vector space V . If H is a subspace, show that it satisfies the
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three required properties stipulated by the definition; if not, show at least one
example of why at least one of the properties does not hold.

1. V = R
2, H =

{[
x
y

]
: x ≥ 0,y ≥ 0

}

2. V = R
2, H =

{[
x
y

]
: x · y ≥ 0

}

3. V = R
3, H =

⎧⎨
⎩t

⎡
⎣ 2

0
−1

⎤
⎦ : t ∈ R

⎫⎬
⎭

4. V = R
3, H =

⎧⎨
⎩t

⎡
⎣ 2

0
−1

⎤
⎦+

⎡
⎣ 1

1
1

⎤
⎦ : t ∈ R

⎫⎬
⎭

5. V = P2, H = {at 2 : a ∈ R
}

6. V = P2, H = {at 2 + 1 : a ∈ R
}

7. V = R
2, H =

{
x : Ax = b where A =

[
2 −1

−6 3

]
and b =

[
5

−15

]}

8. V = R
2, H =

{
x : Ax = b where A =

[
2 −1

−6 3

]
and b =

[
0
0

]}

9. V = M2×2, H = {A ∈ M2×2 : A is invertible}
10. V = M2×2, H = {A ∈ M2×2 : A is not invertible}

11. V = M2×2, H =
{

A ∈ M2×2 : A =
[
a 0
b c

]}

12. V = M2×2, H =
{

A ∈ M2×2 : A =
[
a 1
b c

]}

13. V = C[−1,1], H = {f ∈ C[−1,1] : f (−1) = 0
}

14. V = C[−1,1], H = {f ∈ C[−1,1] : f (−1) = 5
}

15. V = C[−1,1], H = {f ∈ C[−1,1] : f ′ + f = 0
}

16. V = C[−1,1], H = {f ∈ C[−1,1] : f ′ + f = 1
}

17. Recall that for a given eigenvalue λ of a matrix A, the eigenspace associated
to that eigenvalue is the set of all eigenvectors that correspond to λ. For the

matrix A =
[

2 −1
−1 2

]
, describe all of the eigenspaces of A.

18. For the matrix A =
[

2 1
0 2

]
, describe all of the eigenspaces of A.
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19. Explain why for any set of vectors {u,v} in R
n , Span{u,v} is a subspace of

R
n . Similarly, explain why Span {v1, . . . ,vk} is a subspace of R

n for any set
{v1, . . . ,vk}.

20. Let V = R
3 and H =

⎧⎨
⎩
⎡
⎣ 2a + b

a − b
3a + 5b

⎤
⎦ : a,b ∈ R

⎫⎬
⎭. Determine vectors u and

v so that H can be expressed as the set Span{u,v}, and hence explain why
H is a subspace of R

3.

21. Let V = R
3 and H =

⎧⎨
⎩
⎡
⎣ 2a + b

−2
3a + 5b

⎤
⎦ : a,b ∈ R

⎫⎬
⎭. Explain why H is not a

subspace of R
3.

22. Let A be an m × n matrix. The null space of the matrix A, denoted Nul(A)
is the set of all solutions to the equation Ax = 0. Explain why Nul(A) is a
subspace of R

n .

23. Let A be an m × n matrix. The column space of the matrix A, denoted
Col(A) is the set of all linear combinations of the columns of A. Explain
why Col(A) is a subspace of R

m .

In exercises 24–27, use the definitions of the null space Nul(A) and column
space Col(A) of a matrix given in exercises 22 and 23.

24. Let A =
[

2 1 −1
1 3 4

]
. Is the vector v = [−2 1 1]T in Nul(A)? Justify your

answer clearly. In addition, describe all vectors that belong to Nul(A) as
the span of a finite set of vectors.

25. Let A =
⎡
⎣ 1 −2

3 1
−4 0

⎤
⎦. Is the vector v = [−2 1 1]T in Col(A)? Justify your

answer. Is the vector u = [−1 4 − 4]T in Col(A)? In addition, describe all
vectors that belong to Col(A) as the span of a finite set of vectors.

26. Given a matrix A and a vector v, is it easier to determine whether v lies in
Nul(A) or Col(A)? Why?

27. Given a matrix A and a vector v, is it easier to describe Nul(A) or Col(A)
as the span of a finite set of vectors? Why?

28. Consider the differential equation y ′ = 3y . Explain why any function of
the form y = Ce3t is a solution to this equation. Is the set of all these
solutions a subspace of the vector space of continuous functions?

29. Consider the differential equation y ′ = 3y − 3. Explain why any function
of the form y = Ce3t + 1 is a solution to this equation. Is the set of all these
solutions a subspace of the vector space of continuous functions?
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30. Decide whether each of the following sentences is true or false. In every
case, write one sentence to support your answer.

(a) If H is a subspace of a vector space V , then H is itself a vector space.
(b) If H is a subset of a vector space V , then H is a subspace of V .
(c) The set of all linear combinations of any two vectors in R

3 is a
subspace of R

3.
(d) Every nontrivial subspace of a vector space has infinitely many

elements.

1.12 Bases and dimension in vector spaces

In section 1.11, we saw that some common sets we encounter in mathematics are
very similar to R

n . For instance, the set M2×2 of all 2×2 matrices, the set P2 of all
polynomials of degree 2 or less, and the set C[−1,1] of all continuous functions
on [−1,1] are sets that contain a zero element, are closed under addition, and
are closed under scalar multiplication. In addition, because they each satisfy the
other required seven characteristics we noted, these sets are all vector spaces. We
specifically observe that this enables us to take linear combinations of elements
of a vector space, because addition and scalar multiplication are defined and
closed in these collections of objects.

Every vector space has further characteristics that are similar to R
n .

For example, it is natural to discuss now-familiar concepts such as linear
independence and span in the context of the more generalized notion of vector.
As we will see, the definitions of these terms in the setting of vector spaces are
almost identical to those we encountered earlier in R

n . Moreover, just as we can
frequently describe sets in R

n in terms of a small number of special vectors, we
will find that this often occurs in general vector spaces.

We begin by updating two key definitions.

Definition 1.12.1 In a vector space V , given a set S = {v1, . . . ,vk} where each
vector vi ∈ V , the set S is linearly dependent if there exists a nontrivial solution
to the vector equation

x1v1 + x2v2 +·· ·+ xkvk = 0 (1.12.1)

If (1.12.1) has only the trivial solution (x1 = ·· · = xk = 0), then we say the set S
is linearly independent.

The only difference between this definition and definition 1.6.1 that we
encountered in section 1.6 is that R

n has been replaced by V . Just as with
vectors in R

n , it is an equivalent formulation to say that a set S in a vector space
V is linearly independent if and only if no vector in the set may be written as a
linear combination of the other vectors in the set.

We can also define the span of a set of vectors in a vector space V .
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Definition 1.12.2 In a vector space V , given a set of vectors S = {v1, . . . ,vk},
vi ∈ V , the span of S, denoted Span(S) or Span{v1, . . . ,vk}, is the set of all linear
combinations of the vectors v1, . . . ,vk . Equivalently, Span(S) is the set of all
vectors y of the form

y = c1v1 +·· ·+ ckvk ,

where c1, . . . , ck are scalars. We also say that Span(S) is the subset of V spanned
by the vectors v1, . . . ,vk .

In example 1.6.3 in section 1.6, we studied three sets R, S, and T in R
3. R

contained two vectors and was linearly independent but did not span R
3; S

contained three vectors, was linearly independent, and spanned R
3; and T

consisted of four vectors, was linearly dependent, and spanned R
3. In that

setting, we came to see that the set S was in some ways the best of the three:
it had both key properties of being linearly independent and a spanning set. In
other words, the set had enough vectors to span R

3, but not so many vectors as
to generate redundancy by being linearly dependent.

Through the next definition, we will now call such a set a basis, even in the
generalized setting of vector spaces and subspaces.

Definition 1.12.3 Let V be a vector space and H a subspace of V . A set B =
{v1,v2, . . . ,vk} of vectors in H is called a basis of H if and only if B is linearly
independent and Span(B) = H . That is, B is a basis of H if and only if it is a
linearly independent spanning set.

Several examples now follow that use the terminology of linear indepen-
dence, span, and basis in the context of different vector spaces.

Example 1.12.1 In the vector space P of all polynomials, consider the subspace
H = P2 of all polynomials of degree 2 or less. Show that the set B = {1, t , t 2} is
a basis for H . Is the set {1, t , t 2,4 − 3t } also a basis for H ?

Solution. To begin, we observe that every element of H = P2 is a polynomial
function of the form p(t ) = a0 + a1t + a2t 2. In particular, every element of
P2 is a linear combination of the functions 1, t , and t 2, and therefore the set
B = {1, t , t 2} spans H .

In addition, to determine whether the set B is linearly independent, we
consider the equation

c0 + c1t + c2t 2 = 0 (1.12.2)

and ask whether or not this equation has a nontrivial solution. Keeping in
mind that the ‘0’ on the right-hand side represents the zero function in P2, the
function that is everywhere equal to zero, we can see that if at least one of c0,
c1, or c2 is nonzero, we will be guaranteed to have either a nonzero constant
function, a linear function, or a quadratic function, thus making c0 + c1t + c2t 2
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not identically zero. This shows that (1.12.2) has only the trivial solution, and
therefore the set B = {1, t , t 2} is linearly independent. Having shown that B is
a linearly independent spanning set for H = P2, we can conclude that B is a
basis for H .

On the other hand, the set {1, t , t 2,4 − 3t } is not a basis for H since we can
observe that the element 4 − 3t is a linear combination of the elements 1 and t :
4−3t = 4 ·1−3 · t . This shows that the set {1, t , t 2,4−3t } is linearly dependent
and thus cannot be a basis.

Example 1.12.2 Consider the set H of all functions of the form y = c1 sin t +
c2 cos t . In the vector space C of all continuous functions, explain why the set
B = {sin t ,cos t } is a basis for the subspace H .

Solution. First, we recall that H is indeed a subspace of C[−1,1] due to our
work in example 1.11.5.

By the definition of H (the set of all functions of the form y = c1 sin t +
c2 cos t ), we see immediately that B is a spanning set for H . In addition, it is
clear that the functions sin t and cos t are not scalar multiples of one another:
any scalar multiple of sin t is simply a vertical stretch of the function, which
cannot result in cos t . This tells us that the set B = {sin t ,cos t } is also linearly
independent, and therefore is a basis for H .

Example 1.12.3 In R
3, consider the set B = {e1,e2,e3}, where e1 = [1 0 0]T,

e2 = [0 1 0]T, and e3 = [0 0 1]T. Explain why B is a basis for R
3.

Is the set S = {v1,v2,v3}, where v1 = [1 2 − 1]T, v2 = [−1 1 3]T, and
v3 = [0 3 1]T also a basis for R

3?

Solution. First, we observe that while the formal definition of a basis refers
to the basis of a subspace H of a vector space V , since every vector space is a
subspace of itself, it follows that we can also discuss a basis for a vector space.

Considering the set B = {e1,e2,e3}, we observe that the vectors in this set
are the columns of the 3 × 3 identity matrix. By the Invertible Matrix Theorem,
it follows that the set B is linearly independent because I3 has a pivot in every
column. Likewise, the set B spans R

3 since I3 has a pivot in every row. As a
linearly independent spanning set in R

3, B is indeed a basis.
For the set S whose elements are the columns of the matrix

A =
⎡
⎣ 1 −1 0

2 1 3
−1 3 1

⎤
⎦

we again use the Invertible Matrix Theorem to determine whether or not S is a
basis for R

3. Row-reducing A, it is straightforward to see that A is row equivalent
to the identity matrix, and therefore is invertible. In particular, A has a pivot in
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every column and every row, and thus the columns of A are linearly independent
and span R

3. It follows that S is also a basis for R
3.

The basis B = {e1,e2,e3} consisting of the columns of the 3 × 3 identity matrix
is often referred to as the “standard basis of R

3.” In addition, by our work in
example 1.12.3, we can see the role that the Invertible Matrix Theorem plays in
determining whether a set of vectors in R

n is a basis or not. Specifically, since
we know that it is logically equivalent for the columns of a square matrix A to be
linearly independent and to be a spanning set for R

n , it follows that a matrix A
is invertible if and only if its columns form a basis for R

n . We therefore update
the Invertible Matrix Theorem with an additional statement as follows.

Theorem 1.12.1 (Invertible Matrix Theorem) Let A be an n × n matrix. The
following statements are equivalent:

a. A is invertible.

b. The columns of A are linearly independent.

c. The columns of A span R
n .

d. A has a pivot position in every column.

e. A has a pivot position in every row.

f. A is row equivalent to In .

g. For each b ∈ R
n , the equation Ax = b has a unique solution.

h. det(A) 
= 0.

i. The columns of A form a basis for R
n .

Our next example demonstrates how certain families of vectors naturally
form subspaces of R

n and how vector arithmetic can be used to determine a
basis for the subspace they form.

Example 1.12.4 Consider the set W of all vectors of the form

⎡
⎢⎢⎣

3a + b − c
4a − 5b + c
a + 2b − 3c

a − b

⎤
⎥⎥⎦.

Show that W is a subspace of R
4 and determine a basis for this subspace.

Solution. First, we observe that a typical element v of W is a vector of the form

v =

⎡
⎢⎢⎣

3a + b − c
4a − 5b + c
a + 2b − 3c

a − b

⎤
⎥⎥⎦
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Using properties of vector addition and scalar multiplication, we can write

v = a

⎡
⎢⎢⎣

3
4
1
1

⎤
⎥⎥⎦+ b

⎡
⎢⎢⎣

1
−5

2
−1

⎤
⎥⎥⎦+ c

⎡
⎢⎢⎣

−1
1

−3
−1

⎤
⎥⎥⎦

From this, we observe that W may be viewed as the span of the set S =
{w1,w2,w3}, where

w1 =

⎡
⎢⎢⎣

3
4
1
1

⎤
⎥⎥⎦ , w2 =

⎡
⎢⎢⎣

1
−5

2
−1

⎤
⎥⎥⎦ , w3 =

⎡
⎢⎢⎣

−1
1

−3
−1

⎤
⎥⎥⎦

′

As seen in exercise 19 in section 1.11, the span of any set of vectors in R
n

generates a subspace of R
n ; it follows that W is a subspace of R

4. Moreover, we
can observe that S = {w1,w2,w3} is a linearly independent set since⎡

⎢⎢⎣
3 1 −1
4 −5 1
1 2 −3
1 −1 −1

⎤
⎥⎥⎦→

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎦

Since S both spans the subspace W and is linearly independent, it follows that
S is a basis for W .

In example 1.12.4 we used the fact that the span of any set in R
n is a subspace

of R
n . This result extends to general vector spaces and is stated formally in the

following theorem.

Theorem 1.12.2 In any vector space V , the span of any set of vectors forms a
subspace of V .

It is not hard to prove this result. Since the span of a set contains all linear
combinations of the set, it must contain the zero combination and be closed
under both vector addition and scalar multiplication.

One of the reasons that a basis for a subspace is important is that a basis
tells us the minimum number of vectors needed to fully describe every element
of the subspace. More specifically, given a basis B for a subspace W , we know
that we can write every element of W uniquely as a linear combination of the
elements in the basis. Note that a subspace does not have a unique basis; for
example, in example 1.12.3, we saw two different bases for R

3.
Furthermore, in R

3 we have seen that the standard basis (and one example
of another basis) has three elements. By the Invertible Matrix Theorem, it is
clear that every basis of R

3 consists of three vectors since we are required
to have a set that is both linearly independent and spans R

3. Likewise, any
basis of R

n will have n elements. It can be shown that even in vector spaces
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other than R
n , any two bases of a subspace are guaranteed to have the same

number of elements. Therefore, this number of elements in a basis can be used
to identify a fundamental property of any subspace: the minimum number of
elements needed to describe all of the elements in the space. We call this number
the dimension of the subspace.

Definition 1.12.4 Given a subspace W in a vector space V and a basis B for
W , the number of elements in B is the dimension of W . Equivalently, if B has k
elements, we write dim(W ) = k.

Thus we naturally use the language that “R
3 is three-dimensional” and

similarly that “R
n has dimension n.” Similarly, we can say dim(P2) = 3 (see

example 1.12.1), and that the dimension of the vector space of all linear
combinations of the functions sin t and cos t is two (see example 1.12.2).

In closing, it is worth recalling example 1.6.3 in section 1.6, where we
considered three sets R, S, and T in R

3. R contained two vectors and was
linearly independent but did not span R

3; S contained three vectors, was linearly
independent, and spanned R

3; and T consisted of four vectors, was linearly
dependent, and spanned R

3. Since the set S has both key properties of being
linearly independent and a spanning set, we can say that the set S is a basis for
R

3, which further reflects the fact that dim(R3) = 3.

Exercises 1.12 In the vector space V given in each of exercises 1–7, determine
a basis for the subspace H and hence state the dimension of H .

1. V = R
3, H =

⎧⎨
⎩t

⎡
⎣ 2

0
−1

⎤
⎦ : t ∈ R

⎫⎬
⎭

2. V = P2, H = {at 2 : a ∈ R
}

3. V = R
4, H =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

2a + 3b
a − 4b

−3a + 2b
a − b

⎤
⎥⎥⎦ : a,b ∈ R

⎫⎪⎪⎬
⎪⎪⎭

4. V = P (the vector space of all polynomials), H = Pn (the subspace of all
polynomials of degree n or less)

5. V = R
2, H =

{
x : Ax = 0 where A =

[
2 −1

−6 3

]}

6. V = R
4, H =

{
x : Ax = 0 where A =

[
1 −3 2 −1

−2 5 0 4

]}

7. V = M2×2, H =
{

A ∈ M2×2 : A =
[
a 0
b c

]}
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8. Determine whether or not the following set S is a basis for R
3. If not, is

some subset of S a basis for R
3? Explain.

S =
⎧⎨
⎩
⎡
⎣ 1

0
1

⎤
⎦ ,

⎡
⎣ 0

1
1

⎤
⎦ ,

⎡
⎣ 1

1
1

⎤
⎦ ,

⎡
⎣ 2

1
3

⎤
⎦
⎫⎬
⎭

9. Is the set S = {[1 2]T, [2 1]T} a basis for R
2? Justify your answer.

10. Is the set S = {[1 2]T, [−4 − 8]T} a basis for R
2? Justify your answer.

11. Is the set S = {[1 2 1 1]T, [2 1 1 − 1]T, [−1 1 3 1]T, [2 4 5 1]T} a basis for
R

4? Justify your answer.

12. Is the set S = {[1 2 1 1]T, [2 1 1 − 1]T, [−1 1 3 1]T, [2 4 5 0]T} a basis for
R

4? Justify your answer.

13. Can a set with three vectors be a basis for R
4? Why or why not?

14. Can a set with seven vectors be a basis for R
6? Why or why not?

15. Not every vector space has a basis with finitely many elements. If there is
not a finite basis, then we say that the vector space is infinite dimensional.
Explain why the vector space P of all polynomial functions is an infinite
dimensional vector space.

16. Let V be the vector space V = C[−1,1] and H the subset defined by

H = {f ∈ C[−1,1] : f is differentiable
}

Explain why H is an infinite dimensional subspace of V and why we
cannot explicitly write down the elements in a basis for H .

17. Recall from exercises 22 and 23 in section 1.11 that the null space of a
matrix A is the subspace of all solutions to the equation Ax = 0 and that
the column space of A is the space spanned by the columns of A. By
exploring several different examples of matrices A of your choice, discuss
how the dimensions of the null and column spaces are related to the
number of pivot columns in the matrix. In particular, explain what you
can say about the relationship between the sum of the dimensions of the
null and column spaces and the number of columns in the matrix A.

18. Decide whether each of the following sentences is true or false. In every
case, write one sentence to support your answer.

(a) Any set of five vectors is a basis for R
5.

(b) If S is a linearly independent set of six vectors in R
6, then S is a basis

for R
6.

(c) If the determinant of a 3 × 3 matrix A is zero, then the columns of A
form a basis for R

3.
(d) If A is an n × n matrix whose columns span R

n , then the columns of A
form a basis for R

n .
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1.13 For further study

1.13.1 Computer graphics: geometry and linear algebra at
work

In modern computer graphics, images consisting of sets of pixels are moved
around the screen through mathematical computations that rely on linear
algebra. If we focus on two-dimensional objects, there are several basic moves
that we must be able to perform: translation, rotation, reflection, and dilation.
In what follows, we explore the role that linear algebra plays in the geometry of
linear transformations and computer graphics.

(a) In section 1.8.1 we began to develop an understanding of how matrix
multiplication can be used to move a two-dimensional image around the
plane. If you have not already read this section, do so now.

If we take the perspective that a given point in the plane is stored in the
vector v, then for any 2 × 2 matrix A, the matrix A moves the vector via
multiplication to the new location Av. If we have a finite set of points
(which together constitute an image), we can store the points in a matrix
M whose columns represent the individual points), and the new image
which results from multiplication by A is given by AM.

Consider the triangle with vertices (0,0), (3,1), and (2,2), stored in the
matrix

M =
[

0 3 2
0 1 2

]
Choose three different matrices A and compute AM. Then explain why it
is impossible to use multiplication by a 2 × 2 matrix to translate the
triangle so that all three of its vertices appear in new locations.

(b) Due to our discovery in (a) that a simple translation is impossible using
2 × 2 matrices, we introduce the notion of homogeneous coordinates;
instead of representing points in the two-dimensional plane as [x y]T, we
move to a plane in three-dimensional space where the third coordinate is
always 1. That is, instead of [x y]T we use [x y 1]T.

Consider the matrix A given by

A =
⎡
⎣1 0 a

0 1 b
0 0 1

⎤
⎦ (1.13.1)

and the triangle from (a) which can be represented in homogeneous
coordinates by the matrix

M =
⎡
⎣0 3 2

0 1 2
1 1 1

⎤
⎦
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Compute AM. What has happened to each vertex of the triangle
represented by M? Explain in terms of the parameters a and b in A.

(c) Using a = 2 and b = −1 in (1.13.1) along with the triangle M from above,
compute AM in order to determine the translation of the triangle 2 units
in the x-direction and −1 units in the y-direction. Sketch both the original
triangle and its image under this translation.

(d) In order to view some more sophisticated graphics, we use Maple in our
computations that follow. Rather than performing operations on a
triangle, we will use the syntax

> with(plots): with(LinearAlgebra):
> setoptions(scaling=constrained, axes=boxed,

tickmarks=[5,5]):
> X := cos(t)*(1+sin(t))*(1+0.3*cos(8*t))*

(1+0.1*cos(24*t)):
> Y := sin(t)*(1+sin(t))*(1+0.3*cos(8*t))*

(1+0.1*cos(24*t)):
> plot([X,Y,t=0..2*Pi], color=blue,

thickness=3);

which generates a parametric curve whose plot is the leaf shown in
figure 1.18. Input these commands in Maple, as well as the syntax

> leaf := plot([X,Y,t=0..2*Pi], color=grey,
thickness=1):

to store the image of the original leaf in leaf.

1.0

2.0

1.0

0.0

0.0−1.0

Figure 1.18 A Maple leaf.
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Finally, for a given matrix A of the form

A =
⎡
⎣a11 a12 a13

a21 a22 a23

0 0 1

⎤
⎦

and a vector Z = [X Y 1], compute AZ (by hand) to show how AZ
depends on the entries in A.

(e) By our work in (c) and (d), if we now let

A =
⎡
⎣1 0 2

0 1 −1
0 0 1

⎤
⎦

the product AZ should result in translation of the leaf by the vector
[2 − 1]T. To test this, we define the matrix A in Maple by

> A := <<1,0,0>|<0,1,0>|<2,-1,1>>;

and compute the coordinates in the new image by

> Xnew := A[1,1]*X + A[1,2]*Y + A[1,3]*1:
> Ynew := A[2,1]*X + A[2,2]*Y + A[2,3]*1:
> image1 := plot([Xnew,Ynew,t=0..2*Pi],

thickness=3, color=blue):

The last command above plots the resulting image and stores it in
image1. Display both the original leaf and the new image with the
command

> display(leaf, image1);

and show that this results indeed in the translated leaf as shown in
figure 1.19.

(f) In section 1.8.1, we learned that a matrix of the form

R =
[

cosθ − sinθ

sinθ cosθ

]
is known as a rotation matrix and, through multiplication, rotates any
vector by θ radians counterclockwise about the origin. To work with a
rotation matrix in homogeneous coordinates, we update the matrix as
follows:

R =
⎡
⎣cosθ − sinθ 0

sinθ cosθ 0
0 0 1

⎤
⎦

Let us say that we wanted to perform two operations on the leaf. First, we
wish to translate the leaf as above along the vector [2 − 1]T, and then we



118 Essentials of linear algebra

1

3−1

−1

1

Figure 1.19 The original leaf and its transla-
tion by [2 − 1]T.

want to rotate the resulting image π/4 radians clockwise about the origin.
We can accomplish this through two matrices by computing their
product, as the following discussion shows.
From (e), we know that using the matrix

> Translation := <<1,0,0>|<0,1,0>|<2,-1,1>>;

leads to the desired translation. Likewise, the matrix

> Rotation := <<1/sqrt(2),-1/sqrt(2),
0>|<1/sqrt(2),1/sqrt(2),0>|<0,0,1>>;

will produce the sought rotation.
Explain why the matrix

> A := Rotation.Translation;

will produce the combined translation and rotation, and plot the resulting
figure by updating your computations for Xnew and Ynew and using the
syntax

> image2 := plot([Xnew,Ynew,t=0..2*Pi],
thickness=4, color=black):

> display(leaf, image1, image2);

(g) What is the result of applying the matrix

A =
⎡
⎢⎣

1 0 0

0 1
2 0

0 0 1

⎤
⎥⎦
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on the leaf? What kind of geometric transformation is performed by this
matrix? What matrix would keep the height of the leaf constant but stretch
its width by a factor of 2?

(h) It can be shown that to reflect an image across a line through the origin
that forms an angle α with the positive x-axis, the necessary matrix is

A =
⎡
⎣cos2α sin 2α 0

sin 2α −cos2α 0
0 0 1

⎤
⎦

By finding the appropriate value of α, find the matrix that will reflect an
image across the line y = x and compute and plot the image of the original
leaf under this reflection.

(i) Exercises for further practice and investigation:

1. Find the image of the original leaf under rotation about the origin by
2π/3 radians, followed by a reflection across the y-axis.

2. Find the image of the original leaf under rotation about the point
(−3,1) by −π/6 radians. (Hint: To rotate about a point other than the
origin, first translate that point to the origin, then rotate, then translate
back.)

3. Find the image of the original leaf under translation along the vector
[3 2]T, followed by reflection across the line y = x/2.

1.13.2 Bézier curves

In what follows7, we explore the use of a specific type of parametric curves,
called Bézier curves (pronounced “bezzy-eh”), which have a variety of important
applications. These curves were originally developed by two automobile
engineers in France in the 1960s, P. Bézier and P. de Casteljau, who were working
to develop mathematical formulas to graph the smooth, wiggle-free curves that
formed the shape of a car’s body. Today, Bézier curves find their way into our
lives every day: they are used to create the letters that appear in typeset fonts.
The principles that govern these curves involve fundamental mathematics from
linear algebra and calculus.

(a) In calculus, we study parametric curves given in the form
x = f (t ), y = g (t ), where f and g are each functions of the parameter t .
Another way to denote this situation is to write

P(t ) = (f (t ),g (t ))

where t belongs to some interval of real numbers. Note that P(t ) is
essentially a vector; the graph of P(t ) is the parametric curve traced out by

7 The material in this project has been adapted from Steven Janke’s chapter “Designer Curves” in
Applications of Calculus, MAA Notes Number 29, Philip Straffin, Ed.
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the vector over time. It will be most convenient if we simply write this as
P(t ) = (x(t ),y(t )) in what follows. In this problem we begin to consider
some special formulas for x(t ) and y(t ).

To parameterize the line between the points P0(1,3) and P1(3,7), we can
think about wanting to make x go from 1 to 3, and y go from 4 to 7.
Indeed, we want these to occur simultaneously as t goes from 0 to 1.
Consider the parameterization:

x = x(t ) = 1 + t (3 − 1) = t · 3 + (1 − t ) · 1

y = y(t ) = 3 + t (7 − 3) = t · 7 + (1 − t ) · 3

0 ≤ t ≤ 1

Observe that when t = 0, x = 1 and y = 3, and when t = 1, x = 3 and
y = 7.

Show that the curve parameterized by these two equations is indeed the
line segment between P0 and P1. For instance, you might use algebra to
eliminate the variable t , thereby deducing a relationship between x and y .

(b) We can think about the equations for x and y in (a) in a more compact
manner. Consider the following vector notation to replace the previous
equations:

P(t ) =
[

x(t )
y(t )

]
= t

[
3
7

]
+ (1 − t )

[
1
3

]
(1.13.2)

This is sometimes referred to as taking a convex combination of the points
(1,3) and (3,7), because t and 1 + t are both nonnegative and sum to 1.

Using the above style, write the parametric equations for the line segment
that passes between the general points P0(x0,y0) and P1(x1,y1).

(c) An even more concise notation is to simply write P(t ) = (1 − t )P0 + tP1.

We will now use this notation to combine two or more of these
parameterizations for line segments in a way that constructs curves that
can be “controlled” in very interesting ways.

Consider three points, labeled P0, P1, and P2. In the most recent form of
P(t ) given above at (1.13.2), write parameterizations for the two line
segments from P0 to P1 and from P1 to P2, as pictured below. Call the first
parameterization P(1)(t ) and the second parameterization P(2)(t ).

In addition, determine the parameterizations P (1)(t ) and P(2)(t ) for the
specific set of points P0(2,3), P1(4,7), and P2(7,1). Show your work, and
write each out in the expanded form where you have an expression for
x(t ) and another for y(t ).

(d) From the two line-segment parameterizations in (c), we will now create a
new parametric plot by taking similar combinations of P(1)(t ) and P(2)(t ).
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P0

P (1)

P1

P2

P (2)

Figure 1.20 The line seg-
ments from P0 to P1 and
P1 to P2.

Consider the function Q(t ) defined as follows:

Q(t ) = (1 − t ) · P(1)(t ) + t · P(2)(t ) (1.13.3)

First, substitute in (1.13.3) your expressions for P(1)(t ) and P(2)(t ) from
(c) that involve the general points P0, P1, and P2. Simplify the result as
much as possible in order to write the formula for Q in the following form:

Q(t ) = a0(t )P0 + a1(t )P1 + a2(t )P2

where a0(t ), a1(t ), and a2(t ) are polynomial functions of t .

Then, using the specific parameterizations for P(1)(t ) and P(2)(t ) for the
points P0(2,3), P1(4,7), and P2(7,1), determine the parametric equations
for x(t ) and y(t ) that make up the function Q(t ). For each of these three
parameterizations (P(1), P(2), and Q), use Maple to sketch a plot8 and
describe the results in detail. For example, how does Q(t ) look in
comparison to the two line segments? What kind of functions make up the
components x(t ) and y(t ) in Q?

What is true about Q(0) relative to the points P0, P1, and P2? Q(1)? What
direction is a particle moving along Q(t ) headed as t starts out away
from 0? As t gets near to 1?

(e) It turns out that we will have even more freedom and control in drawing
curves if we start with four control points, P0, P1, P2, and P3. The
development here is similar to what was done above, just using a greater
number of points.

First, parameterize the segments from P0 to P1 (with P(1)(t )), P1 to P2

(with P(2)(t )), and from P2 to P3 (with P(3)(t )). The usual formulas apply

8 The Maple syntax to plot a parametric curve (f (t ),g (t )) on the interval [a,b] is
> plot([f(t),g(t),t=a..b]);.
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here; write down the basic form of each P(j)(t ), j = 1,2,3, in terms of the
various points Pi .

Then combine, as in (d) above, the parameterizations for the first two
segments to get a new function Q(1); also combine the parameterizations
for the second two segments to get Q(2). These Q parameterizations are
written as

Q(1)(t ) = (1 − t ) · P(1)(t ) + t · P(2)(t )

Q(2)(t ) = (1 − t ) · P(2)(t ) + t · P(3)(t )

Finally, combine Q(1) and Q(2) to get a new parametric function that we
call B(t ) according to the natural formula

B(t ) = (1 − t ) · Q(1)(t ) + t · Q(2)(t )

By substituting appropriately for Q(1)(t ) and Q(2)(t ) and then replacing
these with the appropriate P (j)(t ) functions, show that

B(t ) = P0(1 − t )3 + 3P1t (1 − t )2 + 3P2t 2(1 − t ) + P3t 3.

B(t ) is called a cubic Bézier curve.

By finding and using appropriate t values, show that the points P0 and P3

both lie on the curve given by B(t ).

(f) Write the formulas for x(t ) and y(t ) that give the parameterizations for
the cubic Bézier curve that has the four control points P0(2,2), P1(5,10),
P2(40,20), and P3(10,5). Use Maple to plot each of the parametric curves
given by P (j)(t ), j = 1 . . .3, Q(1)(t ), Q(2)(t ), and B(t ) in the same window.
Discuss how the various curves combine to form others.

(g) For the general Bézier curve with control points P0(x0,y0), P1(x1,y1),
P2(x2,y2), and P3(x3,y3), derive the equation for the tangent line to the
curve at the point (x0,y0), and prove that the point (x1,y1) lies on this
tangent line. (Hint: to determine the slope of the tangent line, use the
chain rule in the standard way for finding dy/dx for a parametric curve.)

(h) Laser printers and the program Postscript use Bézier curves to construct
the fonts that we use to represent letters. For example, a picture of the
letter g is shown below that reveals the control points and Bézier curves
required to accomplish this.

In Maple, use two or more Bézier curves to sketch a reasonable
representation of the letter S. (You need not try to emulate the thickness of
the ‘g’ that is shown above.)

Then, use an appropriate number of Bézier curves to create an
approximation of the lowercase letter ‘a,’ in the form shown here in
quotes. State the control points required for the various curves.
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Figure 1.21 The letter g.

(i) Discuss the role that vectors and linear combinations play in the
development of Bézier curves.

1.13.3 Discrete dynamical systems

A linear discrete dynamical system is a model that represents changes in a system
from time k to time k + 1 by the rule

x(k+1) = Ax(k)

A discrete dynamical system is similar to a Markov chain, but we no longer
require that the columns of the matrix A sum to 1. A key issue in either scenario
is the long term behavior of the quantity x(k) being modeled. In what follows, we
explore the role of eigenvalues and eigenvectors in determining this long-term
behavior and study an important application of these ideas.

(a) To begin investigating the long-term behavior of the system, we will
assume that A is an n × n matrix with n real linearly independent
eigenvectors v1, . . . ,vn . Furthermore, assume that the corresponding real
eigenvalues of A satisfy the relationship

|λ1| > |λ2| ≥ · · · ≥ |λn|
Consider an initial vector x(0). Explain why there exist constants c1, . . . , cn

such that

x(0) = c1v1 + c2v2 +·· ·+ cnvn

and show that

Ax(0) = c1λ1v1 + c2λ2v2 +·· ·+ cnλnvn
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Furthermore, show that

x(k) = Akx(0) = c1λ
k
1v1 + c2λ

k
2v2 +·· ·+ cnλk

nvn (1.13.4)

(b) In (1.13.4), divide both sides by λk
1. What can you conclude about

(λ2/λ1)k as k → ∞? Why can you make similar conclusions about
(λj/λ1)k for j = 3 . . .n? Hence explain why for large k(

1

λ1

)k

Akx(0) ≈ c1v1

and thus why Akx(0) is an approximate eigenvector of A
corresponding to v1.

(c) In studying a population like spotted owls, mathematical ecologists often
pay close attention to the various numbers of a species at different stages of
life. For example, for spotted owls there are three pronounced groupings:
juveniles (under 1 year), subadults (1 to 2 years old), and adults (2 years
and older). The owls mate during the latter two stages, breed as adults, and
can live for up to 20 years. A critical time in the life cycle and survival of
these owls is when the juvenile leaves the nest to build a home of its own.9

Let the number of spotted owls in year k be represented by the vector

x(k) =
⎡
⎣ jk

sk
ak

⎤
⎦

where jk is the number of juveniles, sk the number of subadults, and ak the
number of adults. Using field data, mathematical ecologists have
determined10 that a particular spotted owl population is modeled by the
discrete dynamical system

x(k+1) =
⎡
⎣ 0 0 0.33

0.18 0 0
0 0.71 0.94

⎤
⎦x(k)

What does this model imply about the percent of juveniles that survive to
become subadults? About the percent of subadults that survive to become
adults? About the percent of adults that survive from one year to the next?
What percent of adults produce juvenile offspring in a given year?

(d) Assume that in a given region, ecologists have measured the present
populations as follows: j0 = 200, s0 = 45, and a0 = 725. Use the model
stated in (c) to determine the population x(k) = [jk sk ak ]T for
k = 1, . . . ,20. Do you think the spotted owl will become extinct? Give a

9 To read more about the issue of spotted owl survival, see the introduction to chapter 5 of
David C. Lay’s Linear Algebra and its Applications.
10 R. H. Lamberson et al., “A Dynamic Analysis of the Viability of the Northern Spotted Owl in a
Fragmented Forest Environment,” Conservation Biology 6 (1992), 505–512.
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convincing argument using not only your computations of the population
vectors but also the results of (b).

(e) Say that r is the fraction of juveniles that survive from one year to the next
(that is, replace 0.18 in the matrix of the model with r) . By experimenting
with different values of r , determine the minimum fraction of juveniles
that must survive from one year to the next in order for the spotted owl
population not to become extinct. How does your answer depend on the
eigenvalues of the matrix?

(f) Let A be the n × n matrix of a discrete dynamical system and assume that
A has n real linearly independent eigenvectors. Let x(0) be an initial vector
and let ρ(A) denote the maximum absolute value of an eigenvalue of A.
Show that the following are true:

(i) If ρ(A) < 1, then limk→∞ Akx(0) = 0.
(ii) If ρ(A) = 1 and λ = 1 is the unique eigenvalue having this maximum

absolute value, then limk→∞ Akx(0) is an eigenvector of A.
(iii) If ρ(A) > 1, then there exist choices of x(0) for which ‖Akx(0)‖ grows

without bound.
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2
First-order differential equations

2.1 Motivating problems

Differential equations arise naturally in many problems encountered when
modeling physical phenomena. To begin our study of this subject, we introduce
two fundamental examples that demonstrate the central role that differential
equations play in our world.

In section 1.1, we discussed how the amount of salt present in a system of
two tanks can be modeled through a system of differential equations. Here, an
even simpler situation is considered: our goal is to predict the amount of salt
present in a city’s water reservoir at time t , given a set of determining conditions.

Suppose that the reservoir is filled to its capacity of 10000 m3, and that
measurements indicate an initial concentration of salt of C0 = 0.02 g/m3. Note
that it follows there are A0 = 200 g of salt initially present. As the city draws
this solution from the reservoir for use, new solution (water with some salt
concentration) from the local treatment facility flows into the reservoir so that
the volume of water present in the tank stays constant. Let us assume that the
concentration of salt in the inflowing solution is 0.01 g/m3, and that the rate
of this inflow is 1000 m3/day. Since the city is also assumed to be drawing
solution at an equal rate from the reservoir, the outflow also occurs at a rate of
1000 m3/day.

We are interested in several key questions. How much salt is in the tank at
time t ? What is the concentration of salt in the water being used by the city at
time t ? What happens to these values over time?

We will let A(t ) denote the amount of salt in the tank at time t . The
instantaneous rate of change dA/dt of A(t ) is given by the difference between

127
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the rate at which salt is entering the tank and the rate at which salt is
leaving. Exploring the given information regarding inflow and outflow, we can
determine these rates precisely.

Since solution is entering the reservoir at 1000 m3/day containing a
concentration of 0.01 g/m3, it follows that salt is entering the tank at a rate of

1000
m3

day
· 0.01

g

m3
= 10

g

day

For salt leaving the reservoir, the situation is slightly more complicated. Since we
do not know the exact amount of salt present in the reservoir at time t , we denote
this by A(t ). Assuming that the solution in the reservoir is uniformly mixed, the
concentration of salt in the outflowing solution is the ratio of the amount A(t )
of salt to the volume of the tank. That is, the outflowing concentration is

A(t )

10000

g

m3

Since this outflow is occurring at a rate of 1000 m3/day, it follows that salt is
leaving the tank at a rate of

1000
m3

day
· A(t )g

10000 m3
= A(t )

10

g

day

It now follows that the instantaneous rate of change dA/dt of salt in the
tank in grams per day is given by the difference of the rate of salt entering and
the rate of salt leaving the tank. Specifically,

dA

dt
= 10 − A(t )

10
(2.1.1)

Note carefully what this last equation is saying: A(t ) is an unknown function,
but we have an equation that relates this unknown function to its derivative.
Such an equation is called a differential equation. The solution to this equation
is a function A(t ) that makes the equation true. If we can solve the equation for
A(t ), we then will be able to predict the amount of salt in the tank at any time t .
Determining such solutions and their long-term behaviors is the main focus of
this chapter.

Another important application of differential equations involves pop-
ulation growth. Consider a population P(t ) of animals. As likelihood of
reproduction depends on the number of animals present, it is natural to assume
that the rate of change of P(t ) is directly proportional to P(t ). Phrased in terms
of the derivative, this assumption means that

dP

dt
= kP(t ) (2.1.2)

where k is some positive constant. Observe that (2.1.2) is a differential equation
involving the function P . It is a standard exercise in calculus to show that
functions of the form

P(t ) = P0ekt

are solutions to (2.1.2).
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Because the function P(t ) = P0ekt exhibits unbounded growth over time, it
turns out that this exponential growth model is not realistic beyond a relatively
short period of time. A related, but more sophisticated, model of population
growth is the logistic differential equation

dP

dt
= kP(t )

(
1 − P(t )

A

)
where the constant k is considered the reproductive rate of the population and
the constant A is the surrounding environment’s carrying capacity. For example,
if a population had a relative growth rate of k = 0.02 and a carrying capacity of
A = 100, the population function would satisfy the differential equation

dP

dt
= 0.02P(t )

(
1 − P(t )

100

)
The logistic model, usually credited to the Dutch mathematician Pierre Verhulst,
accounts not only for reproductive growth, but also for mortality by considering
environmental limitations on maximum population. The logistic equation is
more challenging to solve; we will do so in section 2.7.

In addition to mixing problems and models of population growth, differ-
ential equations enjoy widespread applications in other physical phenomena.
Differential equations are also mathematically interesting in and of themselves,
and in upcoming sections we will study not only their applications, but also their
key properties and characteristics to better understand the subject as a whole.

2.2 Definitions, notation, and terminology

As we have seen with the examples

dA

dt
= 10 − A

10
(2.2.1)

dP

dt
= 0.02P

(
1 − P

100

)
(2.2.2)

y ′′ + y = 0 (2.2.3)

a differential equation is an equation relating an unknown function to one or
more of its derivatives. Usually we will suppress the notation “A(t )” and instead
simply write “A,” as in (2.2.1). We will interchangeably use the notations y ′
and dy/dt to represent the first derivative; similarly, y ′′ = d2y/dt 2. Other books
sometimes employ the notations y ′ = D(y) = ẏ and y ′′ = D2(y) = ÿ .

A solution of a differential equation is a differentiable function that satisfies
the equation on some interval (a,b) of values for the independent variable.
For example, the function y = sin t is a solution to (2.2.3) on (−∞,∞) since
y ′′ = − sin t , and − sin t + sin t = 0 for all values of t .

Given any differential equation, we are interested in determining all of its
solutions. But many, if not most, differential equations are difficult or impossible
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to solve. For example, the equation

y ′′ + ty = t

(which is only a slightly modified version of (2.2.3)) has no solution in terms
of elementary functions.1 In such situations, we may turn to qualitative or
approximation methods that may enable us to analyze how a solution should
behave, while perhaps not being able to determine an explicit formula for the
function.

Equations (2.2.1), (2.2.2), and (2.2.3) are often called ordinary differential
equations, in contrast to partial differential equations such as

∂2u

∂x2
+ ∂2u

∂y2
= 0

where the solution function u(x,y) has two independent variables x and y . Our
focus will be on ordinary differential equations, as partial differential equations
are beyond the scope of this text. The order of a differential equation is the order
of the highest derivative present. For example, (2.2.1) and (2.2.2) are first-order
differential equations since they only involve first derivatives. Equation (2.2.3)
is second-order. For now, we limit our attention to first-order equations; higher
order equations will be discussed in detail in subsequent chapters.

It is important to note that every student of calculus learns to solve a certain
class of differential equations through integration. For example, the problem,
“find a function y whose derivative is tet ” can be restated as a differential
equation. In particular, this problem can be stated as the differential equation

dy

dt
= tet (2.2.4)

Integrating both sides with respect to t and using integration by parts on the
right, it follows that

y(t ) = tet − et + C

is a solution for any choice of the constant C . Here we see an important
fact: differential equations typically have a family of infinitely many solutions.
Determining all possible members of that family, like determining all solutions
to systems of linear equations in linear algebra, will be a central component of
our work.

Calculus students also know that if we are given one more piece of
information about the function y along with (2.2.4), it is possible to uniquely
determine the integration constant, C . For example, had the problem above
read, “find a function y whose derivative is tet such that y(0) = 5,” we could
integrate to find y = tet − et + C , just as we did previously, and then use the
initial condition y(0) = 5 to see that C must satisfy the equation

5 = 0 · e0 − e0 + C

1 This fact is not obvious.
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and thus C = 6. When we are given a differential equation of order n along
with n initial conditions, we say that we are solving an initial-value problem.2

In the given example, y = tet − et + 6 is the solution to the stated initial-value
problem.

Based on the example above and our experience in calculus, it is clear that
integration is an obvious (and often effective) approach to solving differential
equations of the form

dy

dt
= f (t )

where f (t ) is a given function. If we can integrate f symbolically, then the
differential equation is solved. Even if f (t ) cannot by integrated symbolically
with respect to t , we can still use techniques like numerical integration to
successfully attack the problem. The situation grows more complicated when
we want to solve differential equations that also involve the unknown function
y , such as

dy

dt
= tey

In what follows in this chapter, we seek to classify first-order equations into
types that can be solved in a straightforward way by symbolic means (often
involving integration), as well as to develop methods that can be used to generate
approximate solutions in situations where a symbolic solution is either difficult
or impossible to attain. Throughout, the general form of the equations we are
considering will be y ′ = f (t ,y), where the function f (t ,y) represents some
combination of the independent variable t and the unknown function y .

It is also important to note that a wide range of first-order initial-value
problems are guaranteed to have unique solutions. This is stated formally in the
following theorem, whose proof may be found in more advanced texts.

Theorem 2.2.1 Consider the initial-value problem given by y ′ = f (t ,y),
y(t0) = y0. If the function f (t ,y) is continuous on a rectangle that includes
(t0,y0) in its interior and the partial derivative3 fy (t ,y) is continuous on
that same rectangle, then there exists an interval containing t0 on which the
initial-value problem has a unique solution.

Often the dependent variable, or unknown function y , in a differential
equation will model an important quantity in some physical problem: the
amount of salt in a tank at time t , the number of members of a population
at a given time, or the position of a mass attached to a spring. As such, we
will place particular emphasis on the graph of the solution function in order to
better understand what the differential equation is telling us about the physical
situation it models.

2 We often use the abbreviation IVP to stand for the phrase “initial-value problem.”
3 We typically use the notation fy (t ,y) = ∂f /∂y .
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Just as geometry and graphical interpretations shaped our understanding
of linear algebra in chapter 1, these perspectives will prove extremely helpful in
our study of differential equations. We begin our explorations of these graphical
interpretations through the reservoir problem from section 2.1 and the earlier
example y ′ = tet .

So far in our references to derivatives in the reservoir and population
models, we have viewed the derivative as measuring the instantaneous rate of
change of a quantity that is varying. From a more geometric point of view, we
also know that the derivative of a function measures the slope of the tangent
line to the function’s graph at a given point. For example, with the differential
equation

dA

dt
= 10 − A

10
(2.2.5)

we can say that if, at some time t , the amount of salt A is A = 20, then dA/dt =
10−20/10 = 8. Thus, if A(t ) is a solution to the differential equation, it follows
that at any time where A(t ) = 20, A′(t ) = 8. Graphically, this means that at such
a point, the slope of the tangent line to the curve must be 8.

Since we are interested in the function A(t ) over an interval of t -values, we
also expect that A(t ) will take on a wide range of values. As such, it is natural to
compute the slope of the tangent line determined by (2.2.5) for a large number
of different values of A and t . Obviously computers are best suited to such a
task, and, as we will see in the introduction to Maple commands at the end of
this section, Maple and other computer algebra systems provide tools for doing
so. Computing values of dA/dt over a grid of t and A values, we can plot a
small portion of each corresponding tangent line at the point (t ,A), and see the
resulting slope field (or direction field). The slope field for (2.2.5) is shown in
figure 2.1.

50

2010

A(t)

100

200

30 40 50

150

t

Figure 2.1 The slope field for
(2.2.5); the graph of the solution cor-
responding to an initial condition
A(0) = 200 is included.
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Observe that a slope field provides an intuitive way to understand the
information a first-order differential equation possesses: the slope at each point
gives the direction of the solution at that point. Indeed, we use arrows instead
of small lines in order to indicate the flow of the solution as time increases. In
essence, the slope field is a map that the solution must navigate based on the
initial point from which the function starts. For example, if we use the initial
condition A(0) = 200 (as was given in the original example in section 2.1), we
can start a graph at the point (0,200) and follow the map. Doing so yields the
curve shown in figure 2.1.

Note particularly how we can clearly see the slope of the solution curve
fitting with the slopes present in the direction field. Moreover, observe that the
direction field provides an immediate overall sense of how every solution to the
differential equation behaves: for any solution A(t ), A(t ) → 100 as t → ∞. This
makes sense physically, too, since the saltwater solution entering the reservoir
has concentration 0.01 g/m3. Over time, the concentration of solution in the
reservoir should tend to that level, and with 10000 m3 of solution present in the
reservoir, we expect the amount of salt to approach 100 g.

Another example of a differential equation’s slope field provides further
insights. For the differential equation

dy

dt
= tet (2.2.6)

its slope field for the window −2 ≤ t ≤ 1 and −2 ≤ y ≤ 2 is given in figure 2.2.
We noted earlier that the general solution to this equation is y = tet −et +C .

Moreover, given any initial condition, we can determine C . For example, if
y(0) = 1/2, C = 3/2. Likewise, if y(0) = 0, C = 1, and if y(0) = −1, C = 0. If
we plot the corresponding three functions with the slope field, then (as shown
in figure 2.2) the three members of the family of all solutions to the original
differential equation appear as shown.

In integral calculus, students learn about families of antiderivatives4 and
how two members of such a family differ only by a constant. Here, we see this
fact graphically in the slope field of figure 2.2, and can add the perspective that
there exists a family of solutions to a certain differential equation. In upcoming
sections, we will learn new techniques for how to determine solutions analytically
in various circumstances, while not losing sight of the fact that every first-order
differential equation can be interpreted graphically through a direction field.

Finally, there is an important type of first-order differential equation (DE)
for which solutions can be determined algebraically. A first-order DE is said to
be autonomous if it can be written in the form y ′ = f (y). That is, the independent
variable t is not involved explicitly in f (y). For example, the equation

y ′ = 1 − y2 (2.2.7)

is autonomous.

4 An antiderivative F of a function f is a function that satisfies F ′ = f .
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1.00.5−0.5
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Figure 2.2 The slope field for (2.2.6) along
with three solution functions for the initial
conditions y(0) = 1/2, y(0) = 0, and
y(0) = −1.

In addition, a solution y to a DE is called an equilibrium or constant solution
if the function y is constant. In (2.2.7), both y = 1 and y = −1 are equilibrium
solutions to the DE above. Such a solution is stable if all solutions with initial
conditions y(t0) = y0 with y0 close to the equilibrium solution result in the
overall solution to the IVP tending toward the equilibrium solution. Otherwise,
the equilibrium solution is called unstable.

We close this section with an example regarding an autonomous differential
equation.

Example 2.2.1 Consider the differential equation y ′ = (y2 − 1)(y − 3)2.
Determine all equilibrium solutions to the equation, as well as whether or not
each is stable or unstable. Finally, plot the direction field for the equation and
include plots of the equilibrium solutions.

Solution. To find the equilibrium solutions, we assume that y is a constant
function, and therefore y ′ = 0. Solving the algebraic equation

0 = (y2 − 1)(y − 3)2

we find that y = −1, y = 1, and y = 3 are the equilibrium solutions of the
given DE.

We can decide the stability of each equilibrium solution by studying the
sign of y ′ near the equilibrium value; note that (y − 3)2 is always nonnegative.
To consider the stability of y = −1, observe that when y < −1, y ′ = (y + 1)
(y − 1)(y − 3)2 > 0, since the first two terms are both negative and the third is
positive. When y > −1 (and y < 1), it follows y ′ = (y + 1)(y − 1)(y − 3)2 < 0
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1

Figure 2.3 The slope field for y ′ = (y2 − 1)
(y − 3)2 along with its three equilibrium
solutions.

since the middle term is negative while the other two are positive. Hence, if a
solution starts just below y = −1, that solution will increase toward −1, whereas
if a solution starts just above y = −1, it will decrease to −1. This makes the
equilibrium y = −1 stable.

These observations are easiest to make visually in the direction field. As seen
in figure 2.3, the constant solution y = −1 is stable, since any solution with an
initial condition just above or just below y = −1 will tend to y = −1. However,
the solution at y = 1 is unstable, since any solution with an initial value just
above or just below y = 1 will tend away from 1 (and tend toward y = 3 or
y = −1, respectively). Finally, although solutions just below y = 3 tend to 3,
any solution that begins just above y = 3 will increase away from that constant
solution, and hence y = 3 is also unstable.5

2.2.1 Plotting slope fields using Maple

Just as our work in linear algebra required the use of Maple’s Linear
Algebra package, to take advantage of the software’s support for the study
of differential equations we use the DEtools package, loading it with the
command

> with(DEtools):

5 Some authors call a solution such as y = 3 in this example semi-stable, since there is stability on one
side and instability on the other.
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To plot the direction field associated with a given differential equation, it
is convenient to first define the equation itself in Maple. This is accom-
plished (for the equation from the reservoir problem) through the following
command:

> Eq1 := diff(A(t), t) = 10-1/10*A(t);

Note that the differential equation of interest is now stored in “Eq1”. The slope
field may now be generated by the command

> DEplot(Eq1, A(t), t = 0 .. 50, A(t) = 0 .. 200,
color = grey, arrows=large);

This command produces the slope field of figure 2.1, but without any particular
solution satisfying an initial value included. It is important to note that the range
of t and A(t ) values is extremely important. Without a well-chosen window
selected by the user, the plot Maple generates may not be very insightful.
For example, if the above command were changed so that the range of A(t )
values is 0 .. 10, almost no information can be gained from the slope
field. As such, we will strive to learn to analyze the expected behavior of a
differential equation from its form so that we can choose windows well in
related plots; we may often have to experiment and explore to find graphs that
are useful.

Finally, if we are interested in one or more related initial-value problems,
a variation of the DEplot command enables us to sketch the graph of each
corresponding solution. For example, the command

> DEplot(Eq1, A(t), t = 0 .. 50, A(t) = 0 .. 200,
color = grey, arrows=large, [[0,200]]);

will generate not only the slope field, but also the graph of the solution A(t )
that satisfies A(0) = 200, as shown in figure 2.1. Additional curves for different
initial conditions may be plotted by listing the other conditions to be satisfied:
for example, in the stated command above we could replace [[0,200]] with
[[0,200], [0,100], [0,0]] to include the plots of the three solution
curves that respectively satisfy A(0) = 200, A(0) = 100, and A(0) = 0.

Exercises 2.2

1. Consider the differential equation y ′′ = 4y .

(a) What is the order of this equation?
(b) Show via substitution that the function y = e2t is a solution to this

equation.
(c) Are there any other functions of the form y = ert (r 
= 2) that are also

solutions to the equation? If so, which? Justify your answer.
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2. For a ball thrown straight up from an initial height s(0) = 4 meters at an
initial velocity of s ′(0) = 10 m/s, we know that after being thrown, the only
force acting on the ball is gravity, provided we neglect air resistance.
Knowing that acceleration due to gravity is constant at −9.81 m/s2, it
follows that s ′′(t ) = −9.81. Use the given information to determine s(t ),
the function that tells us the height of the ball at time t . Then determine
the maximum height the ball reaches, as well as the time the ball lands.

3. In the differential equation dA/dt = 10 − A/10 from the reservoir
problem, explain why the function A(t ) = 100 is an equilibrium solution
to the equation. Is it stable or unstable? Why?

4. Consider the logistic differential equation

dP

dt
= 0.02P

(
1 − P

100

)

Use Maple to plot the direction field for this equation. Print the output
and, by hand, sketch the solutions that correspond to the initial conditions
P(0) = 10, P(0) = 75, and P(0) = 125. What is the long-term behavior of
every solution P(t ) for which P(0) > 0? Are there any constant (or
equilibrium) solutions to the equation? Explain what these observations
tell you about the behavior of the population being modeled.

5. For the logistic differential equation

dP

dt
= 0.001P

(
1 − P

25

)

how should the direction field appear? Use the constant/equilibrium
solutions to the equation as well as the long-term behavior of the
population to help you sketch, by hand, the direction field for this DE.

6. By constructing tangent lines over a grid with at least sixteen vertices,
sketch a direction field by hand for each of the following differential
equations.

(a) y ′ = 1 − y

(b) y ′ = 1
2 (t − y)

(c) y ′ = 1
2 (t + y)

(d) y ′ = 1 − t

7. Without using Maple to plot direction fields, match each of the following
differential equations with its corresponding direction field. Write at least
one sentence to explain the reasoning behind each of your choices.

(a)
dy

dt
= y − t (b)

dy

dt
= ty (c)

dy

dt
= y (d)

dy

dt
= t
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−1.0

−1.0

y(t)

t

1.0

1.0

(i)

−1.0

−1.0

y(t)

t

1.0

1.0

(ii)

−1.0

−1.0

y(t)

t

1.0

1.0

(iii)
−1.0

−1.0

y(t)

t

1.0

1.0

(iv)

In exercises 8–15, use integration to find a family of solutions for the given
differential equation.

8. y ′ = t 2 + 2

9. y ′ = t + cos t

10. y ′ = t

t 2 + 1

11. y ′′ = t 2 + 2

12. y ′′′ = 5t

13. y ′ = t sin t

14. y ′ = 1

t 2 + 5t + 6

15. y ′ = te−t 2
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In exercises 16–23, solve each of the following initial-value problems.

16. y ′ = t 2 + 2, y(1) = 4

17. y ′ = t + cos t , y(π/2) = 1

18. y ′ = t

t 2 + 1
, y(0) = 3

19. y ′′ = t 2 + 2, y(1) = 4, y ′(1) = −2

20. y ′′′ = 5t , y(−1) = 3, y ′(−1) = −1, y ′′(−1) = 0

21. y ′ = t sin t , y(0) = 2

22. y ′ = 1

t 2 + 5t + 6
, y(0) = 1

23. y ′ = te−t 2
, y(0) = −1

24. For an nth order IVP of the form y(n) = f (t ), how many initial conditions
are needed in order to uniquely determine the solution y(t )? Explain.

For each of the autonomous differential equations given in exercises 25–29,
algebraically determine all equilibrium solutions to the DE. In addition, plot
an appropriate direction field and use it to classify each equilibrium solution as
stable or unstable.

25. y ′ = 3 − 2y

26. y ′ = −y2 − 5y − 6

27. y ′ = y − y3

28. y ′ = e−y (1 + y2)

29. y ′ = (y − 1)(y − 3)2

2.3 Linear first-order differential equations

Some classes of differential equations can usually be solved by certain standard
techniques. In this section, we consider the class of linear first-order differential
equations and develop an approach for solving any such equation. Since any
first-order DE is an equation that involves the functions y and y ′, it is natural
for us to consider the different ways in which y and y ′ may be combined. For
example, the equations

yy ′ = et (2.3.1)

2ty + y ′ sin t = cos t (2.3.2)

y ′ + siny = 2 (2.3.3)
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are all first-order DEs. Recall that in section 1.12 we discussed linear combina-
tions of generalized vectors. Here we can view y and y ′ as functions that belong
to a vector space, and thus think about whether a certain combination of y and
y ′ is a linear combination or not. We say that any differential equation of the
form

a1(t )y ′ + a0(t )y = b(t ) (2.3.4)

is a linear first-order differential equation, since a linear combination of y and y ′ is
being formed. Any other first-order differential equation is said to be nonlinear.
If we stipulate that a1(t ) 
= 0, we can divide through by a1(t ) and hence write

y ′ + p(t )y = f (t ) (2.3.5)

as the standard form for a linear first-order equation. We call f (t ) the
forcing function. Above, note that (2.3.1) and (2.3.3) are nonlinear equations,
while (2.3.2) is linear.

The simplest linear first-order differential equations are those for which the
forcing function is zero. We naturally call the equation

y ′ + p(t )y = 0 (2.3.6)

a homogeneous linear first-order DE. We consider a particular example that
shows how every such homogeneous DE may be solved.

Example 2.3.1 Solve the differential equation y ′ + (1+3t 2)y = 0. In addition,
solve the initial-value problem that is given by the same DE and the initial
condition y(0) = 4.

Solution. We will use integration to solve for y . Rearranging the given
equation, we observe that y ′ = −(1 + 3t 2)y . Dividing both sides by y , we find
that

y ′

y
= −(1 + 3t 2)

Keeping in mind the fact that y and y ′ are each unknown functions of t , we
integrate both sides of the previous equation with respect to t :∫

y ′

y
dt =

∫
−(1 + 3t 2)dt

We recognize from the chain rule that the left-hand side is lny . Thus, integrating
the polynomial in t on the right yields

lny = −t − t 3 + C

We note that while an arbitrary constant arises on each side of the equation when
integrating, it suffices to simply include one constant on the right. Finally, we
solve for y using properties of the natural logarithm and exponential functions
to find that

y = e−t−t 3+C = eCe−t−t 3
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Since C is a constant, so is eC , and thus we write

y = Ke−t−t 3

Observe that we have found an entire family of functions that solve the original
differential equation: regardless of the constant K , the above function y is a
solution. If we consider the stated initial-value problem and apply the given
initial condition y(0) = 4, we immediately see that K = 4, and the solution to
the initial-value problem is

y = 4e−t−t 3

The solution method in example 2.3.1 can be generalized to apply to any
homogeneous linear first-order DE. Using the notation p(t ) to replace the
function 1+3t 2, which is the coefficient of y , the same steps above may be used
to find the solution to the standard homogeneous linear first-order differential
equation. We state this result in the following theorem.

Theorem 2.3.1 For any homogeneous linear first-order differential equation
of the form

y ′ + p(t )y = 0,

the general solution is y = Ke−P(t ), where P is any antiderivative of p. Moreover,
for the initial condition y(t0) = y0, if p(t ) is continuous on an interval containing
t0, then the solution to the corresponding initial-value problem is unique.

The uniqueness of the solution to the initial-value problem follows from
theorem 2.2.1. But perhaps the most important lesson to learn from this result is
that a homogeneous linear first-order DE can always be solved. This is analogous
to our experience with homogeneous linear systems of algebraic equations in
chapter 1. In particular, note that by taking K = 0, the zero function (y = 0)
is always a solution to y ′ + p(t )y = 0; in addition, the homogeneous linear
first-order DE has infinitely many solutions. This is very similar to how, for a
given matrix A, the homogeneous equation Ax = 0 always has the zero vector
as a solution and, in the case where A is singular, Ax = 0 has infinitely many
solutions.

Having now completely addressed the case of a homogeneous linear first-
order DE, we turn to the nonhomogeneous case. In particular, we are interested
in solving the equation

y ′ + p(t )y = f (t ) (2.3.7)

where f (t ) is not identical to zero. Recalling the product rule from calculus,

d

dt
[v(t ) · y] = v(t )y ′ + v ′(t )y (2.3.8)

we observe that the left-hand side of (2.3.7), y ′ + p(t )y , looks similar to the
right-hand side of (2.3.8). If we multiply both sides of (2.3.7) by an unknown
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function v(t ), we have

v(t )y ′ + v(t )p(t )y = v(t )f (t ) (2.3.9)

Next, we observe that if v(t ) is a function such that v ′(t ) = v(t )p(t ), then it
follows from the product rule that (2.3.9) has the form

d

dt

[
v(t )y

]= v(t )f (t ) (2.3.10)

We assume temporarily that such a function v(t ) exists; we will proceed to
discuss more about v(t ) shortly. Integrating both sides of (2.3.10), we now
see that

v(t )y =
∫

v(t )f (t )dt (2.3.11)

To solve for y , we divide both sides by v(t ), yielding

y(t ) = 1

v(t )

∫
v(t )f (t )dt (2.3.12)

Prior to (2.3.10), we stipulated a condition on v that enabled us to proceed.
In particular, we noted that “if v(t ) is a function such that v ′(t ) = v(t )p(t ),” then
we could find a solution in terms of v . Observe that the differential equation v
satisfies is, in fact, a homogeneous linear first-order equation itself (v ′ −p(t )v =
0), and therefore its solution is

v(t ) = KeP(t ),

where P(t ) = ∫ p(t )dt . Since we only need one such nonzero function v to
proceed, we set K = 1. From this and our conclusion in (2.3.12), we have
determined that

y(t ) = e−P(t )
∫

eP(t )f (t )dt (2.3.13)

where P(t ) = ∫ p(t )dt . The function v(t ) = eP(t ) is usually called an integrating
factor.

We next consider two examples of nonhomogeneous linear first-order
differential equations and apply the method we just derived to solve them.

Example 2.3.2 Solve the differential equation y ′ + 2y = 4.

Solution. In this equation, p(t ) = 2, and therefore P(t ) = 2t . From (2.3.13),
it follows that

y(t ) = e−P(t )
∫

eP(t )f (t )dt

= e−2t
∫

e2t · 4dt

= e−2t (2e2t + C
)

(2.3.14)

= 2 + Ce−2t (2.3.15)
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There are several important observations to make from our work in
example 2.3.2. First, the parentheses at (2.3.14) are essential. Without them,
e−2t is not multiplied by the entire antiderivative, and the function y would no
longer be a solution to the given DE.

A second is that if we had instead solved the corresponding homogeneous
differential equation y ′ + 2y = 0, we would have found the so-called com-
plementary solution yh = Ce−2t . Moreover, by observing that y ′ = 4 − 2y =
2(2 − y), if we consider the function yp = 2, it is apparent that yp is a
solution to the nonhomogeneous equation y ′ + 2y = 4. In addition, if we
omit the constant of integration C in (2.3.14), it follows that the method
derived in (2.3.13) can be viewed as producing a so-called particular solution
yp that is a solution to the given nonhomogeneous linear first-order differential
equation.

Thus we see that the method derived in (2.3.13) and implemented to
find (2.3.15) ultimately expresses the solution to the original nonhomogeneous
linear first-order DE in the form

y = yp + yh

where yp is a particular solution to the nonhomogeneous equation, while yh is
the complementary solution, the solution to the corresponding homogeneous
equation.

This situation reminds us of one way to view the general solution to a system
of linear equations given by Ax = b, where in (1.5.1) in section 1.5 we found
that x = xp + xh . A further discussion of this property of linear first-order DEs
will occur in theorem 2.3.2 to close the current section. Before doing so, we
consider another example.

Example 2.3.3 Solve the nonhomogeneous first-order linear differential
equation

y ′ + y tan t = cos t

In addition, solve the initial-value problem (IVP) that is given by the same DE
and the initial condition y(π/3) = 1.

Solution. We first determine the integrating factor v(t ). Since p(t ) = tan t , it
follows that

P(t ) =
∫

tan t dt = − ln(cos t )

Thus, v(t ) = e− ln(cos t ). Applying the integrating factor and using properties of
exponential and logarithmic functions, we now observe that

y = e ln(cos t )
∫

cos t · e− ln(cos t ) dt

= cos t

∫
cos t

1

cos t
dt
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= cos t

∫
1dt

= cos t (t + C)

Thus, the general solution to the given differential equation is y = t cos t +
C cos t .

To solve the corresponding IVP with the condition that y(π/3) = 1, it follows
that 1 = π/3 · 1/2 + C · 1/2, so that C = 2 −π/3. The solution is

y = t cos t + (2 −π/3)cos t

As in example 2.3.2, we note that the solution y = t cos t + C cos t in
example 2.3.3 is of the form y = yp + yh , where yh = C cos t can easily be
checked to be the solution to the corresponding homogeneous equation.

Two important results can now be stated in general. The first is a
formal statement of our derivation in (2.3.12) that shows how we can use
an integrating factor to solve any nonhomogeneous linear first-order DE. The
second demonstrates that for any of these types of DEs, if yp is a particular
solution to the nonhomogeneous DE and yh is a complementary solution to
the corresponding homogeneous DE, then y = yp + yh is also a solution to the
nonhomogeneous DE.

Theorem 2.3.2 For any nonhomogeneous linear first-order differential
equation of the form

y ′ + p(t )y = f (t ),

the general solution is

y = e−P(t )
∫

eP(t )f (t )dt

where P(t ) = ∫ p(t )dt . Moreover, for the initial condition y(t0) = y0, if p(t )
and f (t ) are continuous on an interval containing t0, then the solution to the
corresponding initial-value problem is unique.

The proof of the first part of theorem 2.3.2 is given above in the discussion
of (2.3.7)–(2.3.12). The uniqueness of the solution to the IVP follows from
theorem 2.2.1.

Finally, we observe that given a nonhomogeneous linear first-order
differential equation y ′ + p(t )y = f (t ) and a particular solution yp (so
y ′

p + p(t )yp = f (t )) and complementary solution yh to the corresponding
homogeneous equation (y ′

h + p(t )yh = 0), it follows that

(yp + yh)′ + p(t )(yp + yh) = y ′
p + y ′

h + p(t )yp + p(t )yh

= (y ′
p + p(t )yp) + (y ′

h + p(t )yh)

= f (t ) + 0

= f (t )
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Therefore, yp + yh is also a solution to the nonhomogeneous DE. Formally,
we have the following result.

Theorem 2.3.3 For any nonhomogeneous linear first-order differential
equation,

y ′ + p(t )y = f (t )

if yp is a particular solution to the nonhomogeneous equation and yh is a solution
to the corresponding homogeneous equation, then y = yp +yh is also a solution
to the nonhomogeneous equation.

Exercises 2.3
In exercises 1–6, classify each equation as linear or nonlinear. Do not attempt
to solve the equations.

1. y ′ + 7y = et

2. cos ty ′ + sin ty = t 2

3. cosy ′ + siny = t 2

4. ty ′ + t 2y = t 3

5. y ′y2 = 3t

6. 1 = y/y ′

In exercises 7–13, solve each of the given homogeneous linear first-order DEs.

7. y ′ + y = 0

8. y ′ + 2y = 0

9. y ′ + ty = 0

10. y ′ + 2

t
y = 0

11. y ′ = −y cot t

12. (1 + t 2)y ′ + 2ty = 0

13. y ′ = − 2

100 − t
y

In exercises 14–20, solve each of the given nonhomogeneous linear first-order
DEs.

14. y ′ + y = 2

15. y ′ + 2y = 2t

16. y ′ + ty = 10t



146 First-order differential equations

17. y ′ + 2

t
y = et

18. y ′ = −(y − 1)cot t

19. (1 + t 2)y ′ + 2ty = 2t

20. y ′ = 0.03 − 2

100 − t
y

In exercises 21–27, solve each of the given initial-value problems.

21. y ′ + y = 2, y(0) = 3

22. y ′ + 2y = 2t , y(1) = 0

23. y ′ + ty = 10t , y(0) = 5

24. y ′ + 2

t
y = et , y(1) = 4, t > 0

25. y ′ = −(y − 1)cot t , y(π/2) = 1, 0 < t < π

26. (1 + t 2)y ′ + 2ty = 2t , y(0) = 1

27. y ′ = 0.03 − 2

100 − t
y , y(0) = 1

In exercises 28–33, plot a slope field in an appropriate window of t and y values
for each of the given DEs. In addition, in the same window, plot the solution
to each given IVP. Compare each graph to the solutions you found in the
corresponding exercises 21–27.

28. y ′ + y = 2, y(0) = 3

29. y ′ + 2y = 2t , y(1) = 0

30. y ′ + ty = 10t , y(0) = 5

31. y ′ + 2

t
y = et , y(1) = 4, t > 0

32. y ′ = −(y − 1)cot t , y(π/2) = 1, 0 < t < π

33. (1 + t 2)y ′ + 2ty = 2t , y(0) = 1

34. With matrix multiplication, we noted that for any matrix A and
appropriately sized vectors x and y, A(x + y) = Ax + Ay. In addition,
for any constant c , A(cx) = cAx. We called these properties “the linearity
of matrix multiplication.” In calculus, we learn that the derivative
operator, D, satisfies similar properties of linearity. In particular, if f and
g are differentiable functions and c is any constant, what can you say
about D(f + g ) and D(cf )? (Recall that D(f ) is alternate notation
for f ′.)
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2.4 Applications of linear first-order differential
equations

A large number of important physical situations can be modeled by linear
first-order differential equations. In this section we introduce several such
applications through examples and explore further scenarios in the exercises.

2.4.1 Mixing problems

Recall that in section 2.1, we encountered a problem where a saltwater solution
was entering and exiting a city’s water reservoir. Specifically, in (2.1.1) we
encountered the DE

dA

dt
= 10 − A(t )

10
This equation, rewritten in the form

A′ + 1

10
A = 10

is a linear first-order DE that we now can easily solve. With p(t ) = 1/10, the
integrating factor is v(t ) = et/10, and therefore

A = e−t/10
∫

et/10 · 10dt (2.4.1)

= e−t/10(100et/10 + C) (2.4.2)

= 100 + Ce−t/10 (2.4.3)

From this result, we can also confirm our previous observation that as t → ∞,
A(t ) → 100, for any solution A(t ) to the differential equation. Moreover, if we
consider the initial condition A(0) = 200 stated along with the original problem
in section 2.1, it follows that

A(t ) = 100 + 100e−t/10

Certainly we can consider a wide range of variations on this mixing
problem by changing concentrations, flow rates, and tank volumes. In every
such scenario, the most important thing to keep in mind is that the rate of
change of salt (or whatever quantity is under consideration) is the difference
between the rate of salt entering and the rate exiting. Furthermore, an analysis
of units is often very helpful. We consider one more example to demonstrate
what can occur when the entering and exiting solutions are flowing at different
rates.

Example 2.4.1 Consider a tank in which 1 g of chlorine is initially present in
100 m3 of a solution of water and chlorine. A chlorine solution concentrated at
0.03 g/m3 flows into the tank at a rate of 1 m3/min, while the uniformly mixed
solution exits the tank at 2 m3/min. At what time is the maximum amount of
chlorine present in the tank, and how much is present?
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Solution. To answer the questions posed, we set up and solve an IVP. We let
A(t ) denote the amount of chlorine in the tank (in grams) at time t (in minutes).
We note from the inflow that the rate at which chlorine is entering the tank is
given by

rate in = 1
m3

min
· 0.03

g

m3
(2.4.4)

For the exiting flow, we must compute the concentration of chlorine present in
the solution leaving the tank. This concentration is given by the ratio of amount
present in grams to the total volume of solution in the tank at time t . In this
problem, note that the volume is changing as a function of time. In particular,
since solution enters at 1 m3/min and exits at 2 m3/min, it follows that the
volume V (t ) of solution present in the tank is decreasing at a rate of 1 m3/min.
With 100 m3 initially present, we observe that V (t ) = 100 − t is the volume of
solution in the tank at time t . Thus, the concentration of chlorine in the solution
exiting the tank at time t is given by

rate out = 2
m3

min
· A(t )

V (t )

g

m3
= 2 · A(t )

100 − t

g

min
(2.4.5)

It follows from (2.4.4) and (2.4.5) that the overall instantaneous rate of change
of chlorine in the tank with respect to time is

dA

dt
= rate in − rate out = 0.03 − 2A

100 − t

Note that we also have the initial condition A(0) = 1. Rearranging the differential
equation, we see that we must solve the nonhomogeneous linear first-order
equation

A′ + 2

100 − t
A = 0.03 (2.4.6)

Applying the approach discussed in section 2.3, followed by the initial condition,
it can be shown that the solution to (2.4.6) is

A(t ) = 3 − 0.03t − 0.0002(100 − t )2

From the quadratic nature of this solution, as well as from the direction field
shown in figure 2.4, we can see that this function has a maximum value. It
is a straightforward exercise to show that this maximum of A(t ) occurs when
t = 25 min and that the maximum is A = 1.125 g.

2.4.2 Exponential growth and decay

A radioactive substance emits particles; in doing so, the substance decreases its
mass. This process is known as radioactive decay. For example, the radioactive
isotope carbon-14 emits particles and loses half its mass over a period of
5730 years. For any such isotope, the instantaneous rate of decay is proportional
to the mass of the substance present at that instant. Thus, assuming an initial
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100
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t

A(t)
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2.0

Figure 2.4 Direction field for
(2.4.6) with solution corresponding
to the initial condition A(0) = 1.

mass M0 is present, it follows that the mass M (t ) of the substance at time t must
satisfy the initial-value problem

M ′ = −kM , M (0) = M0 (2.4.7)

for some positive constant k. Note that the minus sign is present in (2.4.7) since
the mass M (t ) is decreasing. It follows from our work with homogeneous linear
first-order DEs in section 2.3 that the solution to this equation is

M (t ) = M0e−kt (2.4.8)

Similarly, experiments show that a population with zero death rate (e.g., a colony
of bacteria with sufficient food and no predators) grows at a rate proportional
to the size of the population at time t . In particular, if P(t ) is the population
present at time t and P0 is the initial population, then P satisfies the initial-
value problem P ′ = kP , P(0) = P0, for some positive constant k. Here, it
follows that

P(t ) = P0ekt (2.4.9)

Problems involving radioactive decay and exponential population growth
are very similar and should be familiar to students from past courses in calculus
and precalculus. We include one example here for review and several more in
the exercises at the end of the section.

Example 2.4.2 A radioactive isotope initially has 40 g of mass. After 10 days
of radioactive decay, its mass is 39.7 g. What is the isotope’s half-life? At what
time t will 1 g remain?

Solution. Because the isotope decays radioactively, we know that its mass
M (t ) must have the form M (t ) = M0e−kt . To answer the questions posed, we
must first determine the constant k. In the given problem, we know that M0 = 40
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and that M (10) = 39.7. It follows that

39.7 = 40e−10k

Dividing both sides of the equation by 40, taking natural logs, and solving for k,
we find that

k = − 1

10
ln

(
39.7

40

)

To compute the half life, we now solve the equation

M0

2
= M0e−kt

for t . In particular, we have

20 = 40e
1

10 ln
( 39.7

40

)
t

Dividing by 40 and taking natural logs,

ln

(
1

2

)
= 1

10
ln

(
39.7

40

)
t

so

t = ln
( 1

2

)
1

10 ln
( 39.7

40

)
Thus the half-life of the isotope is approximately 921 days.

Finally, to determine when 1 g of the substance will remain, we simply solve
the equation

1 = 40e
1

10 ln
( 39.7

40

)
t

Doing so shows that t ≈ 4900 days.

2.4.3 Newton’s law of Cooling

Suppose that T (t ) is the temperature of a body immersed in a cooler
surrounding medium such as air or water. Sir Isaac Newton postulated (and
experiments confirm) that the body will lose heat at a rate proportional to
the difference between its present temperature and the temperature of its
surroundings. If we assume that the temperature of the surrounding medium is
constant, say Tm , and that the warmer body’s initial temperature is T (0) = T0,
then Newton’s law of Cooling can be expressed through the initial-value problem

T ′ = −k(T − Tm), T (0) = T0 (2.4.10)

Written in the standard form of a nonhomogeneous linear first-order DE, we
find that T satisfies the IVP

T ′ + kT = kTm, T (0) = T0 (2.4.11)
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Solving this problem in the standard way reveals that the temperature of the
cooling body must satisfy

T (t ) = (T0 − Tm)e−kt + Tm (2.4.12)
We consider an example with some particular details given in order to analyze
the behavior of the temperature function.

Example 2.4.3 A can of soda at room temperature 70◦F is placed in a
refrigerator that maintains a constant temperature of 40◦F. After 1 hour in
the refrigerator, the temperature of the soda is 58◦F. At what time will the soda’s
temperature be 41◦F?

Solution. Let T (t ) denote the temperature of the soda at time t in degrees
F; note that T0 = 70. Since the surrounding temperature is 40, T satisfies the
initial-value problem

T ′ = −k(T − 40), T (0) = 70

and therefore by (2.4.12) T has the form

T (t ) = 30e−kt + 40

In particular, note that the temperature is decreasing exponentially as time
increases and tending towards 40◦F, the temperature of the refrigerator, as
t → ∞.

To determine the constant k, we use the additional given information that
T (1) = 58, and therefore

58 = 30e−k + 40

It follows that e−k = 3/5, and thus k = ln(5/3). To now answer the original
question, we solve the equation

41 = 30e− ln(5/3)t + 40

and find that t = ln(30)/ ln(5/3) ≈ 6.658 h.

Exercises 2.4

1. A population of bacteria is growing at a rate proportional to the number of
cells present at time t . If initially 100 million cells are present and after
6 hours 300 million cells are present, what is the doubling time of the
population? At what time will 100 billion cells be present?

2. The half-life of a radioactive element is 2000 years. What percentage of its
original mass is left after 10 000 years? After 11 000 years?

3. The evaporation rate of moisture from a sheet hung on a clothesline is
proportional to the sheet’s moisture content. If one half of the moisture
evaporates in the first 30 min, how long will it take for 95 percent of the
moisture to evaporate?
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4. A population of 200 million people is observed to grow at a rate
proportional to the population present and to be increasing at a rate
of 2 percent per year. How long will it take for the population to triple?

5. In a certain lake, wildlife biologists determine that the walleye population
is growing very slowly. In particular, they conclude that the population
growth is modeled by the differential equation P ′ = 0.002P , where P is
measured in thousands of walleye, and time t is measured in years. The
biologists estimate that the initial population of walleye in the lake is
100 000 fish. To enhance the fishery, the department of conservation
begins planting walleye fingerlings in the lake at a rate of 5000 walleye per
year.

(a) Write an IVP that the population P(t ) of walleye in the lake in year t
will satisfy under the assumption that walleye are being added to the
lake at a rate of 5000 fish per year.

(b) Solve the IVP stated in (a).
(c) In 20 years, how many more walleye will be in the lake than if the

biologists had not planted any fish?

6. Solve the IVP A′ = 0.03 − 2/(100 − t )A, A(0) = 1, in order to verify the
stated solution in example 2.4.1.

7. Brine (saltwater) is entering a 25 m3 tank at flow rate of 0.25 m3/min and
at a concentration of 6 g/m3. The uniformly mixed solution exits the tank
at a rate of 0.25 m3/min. Assume that initially there are 15 m3 of solution
in the tank at a concentration of 3 g/m3.

(a) State an IVP that is satisfied by A(t ), the amount of salt in grams in the
tank at time t .

(b) What will happen to the amount of salt in the tank as t → ∞? Why?
(c) Plot a direction field for the IVP stated in (a), including a plot of the

solution.
(d) At exactly what time will there be 75 g of salt present in the tank?

8. Brine is entering a 25-m3 tank at flow rate of 0.5 m3/min and at a
concentration of 6 g/m3. The uniformly mixed solution exits the tank at a
rate of 0.25 m3/min. Assume that initially there are 5 m3 of solution in the
tank at a concentration of 25 g/m3.

(a) State an IVP that is satisfied by the amount of salt A(t ) in grams in the
tank at time t .

(b) Solve the IVP stated in (a). For what values of t is this problem valid?
Why?

(c) At exactly what time will the least amount of salt be present in the tank?
How much salt will there be at that time?

(d) Plot a direction field for the IVP stated in (a), including a plot of the
solution. Discuss why this direction field and the solution make sense
in the physical context of the problem.
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9. A body of water is polluted with mercury. The lake has a volume of 200
million cubic meters and mercury is present in a concentration of 5 grams
per million cubic meters. Health officials state that any level above 1 g per
million cubic meters is considered unsafe. If water unpolluted by mercury
flows into the lake at a rate of 0.5 million cubic meters per day, and
uniformly mixed lake water flows out of the lake at the same rate, how
long will it take for the lake to reach a mercury concentration that is
considered safe?

10. An average person takes eighteen breaths per minute and each breath
exhales 0.0016 m3 of air that contains 4 percent more carbon dioxide
(CO2) than was inhaled. At the start of a seminar containing 300
participants, the room air contains 0.4 percent CO2. The ventilation
system delivers 10 m3 of fresh air per minute to the room whose volume
is 1500 m3. Find an expression for the concentration level of CO2 in the
room as a function of time; assume that air is leaving the room at the
same rate that it enters.

11. Solve the general Newton’s law of Cooling IVP T ′ = −k(T − Tm),
T (0) = T0 in order to verify the solution stated in (2.4.12).

12. A potato at room temperature of 72◦F is placed in an oven set at 350◦F.
After 30 min, the potato’s temperature is 105◦F. At what time will the
potato reach a temperature of 165◦F?

13. An object at a temperature of 80◦C is placed in a refrigerator maintained
at 5◦C. If the temperature of the object is 75◦C at 20 min after it is placed
in the refrigerator, determine the time (in hours) the object will
reach 10◦C.

14. An object at a temperature of 9◦C is placed in a refrigerator that is initially
at 5◦C. At the same time the object is placed in the refrigerator, the
refrigerator’s thermostat is adjusted in order to raise the temperature
inside from 5◦C to 10◦C; the function that governs the temperature of the

refrigerator is R(t ) = 10

1 + e−0.75t
.

(a) Using the refrigerator’s temperature constant k from exercise 13,
modify Newton’s law of Cooling appropriately to state an IVP whose
solution is the temperature of the object.

(b) Plot a direction field for the IVP from (a) and sketch an approximate
solution to the IVP.

(c) Discuss the qualitative behavior of the solution to the IVP. Estimate the
minimum temperature the object achieves.

15. On a cold, winter evening with an outdoor temperature of 4◦F, a home’s
furnace fails at 10 pm. At the time of the furnace failure, the indoor
temperature was 68◦F. At 2 am, the indoor temperature was 60◦F.
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Assuming the outside temperature remains constant, at what time will the
homeowner have to begin to worry about pipes freezing due to an indoor
temperature below 32◦F?

2.5 Nonlinear first-order differential equations

So far in our work with differential equations, we have seen that linear first-
order differential equations have many interesting properties. One is that any
IVP that corresponds to a linear first-order DE (with reasonably well-behaved
functions p(t ) and f (t )) is guaranteed to have a unique solution. In addition,
through our development of integrating factors, we have a method by which we
can always (at least in theory) determine a solution for the differential equation.

Any differential equation that is not linear is called nonlinear. Thus,
nonlinear differential equations constitute every other type of equation we
can conceive. Unfortunately, nonlinear equations are (in general) far more
difficult to solve than linear ones. We will limit ourselves in this section to
considering a few relatively common special cases of nonlinear first-order
differential equations that can be solved analytically. In section 2.6, we will
consider qualitative and approximation techniques that enable us to gain
valuable information from a nonlinear initial-value problem, even in the event
that we cannot solve it explicitly.

2.5.1 Separable equations

In example 2.3.1 in section 2.3, we solved the differential equation y ′ = −(1 +
t 2)y . While this equation is linear, our method provides insight into how to
approach a class of nonlinear equations whose structure is similar. We begin by
considering a slightly modified example.

Example 2.5.1 Solve the nonlinear first-order differential equation

y ′ = −(1 + t 2)y2 (2.5.1)

Solution. Following our approach in example 2.3.1, we can separate the
variables y and t algebraically to arrive at the equation

y−2 dy

dt
= −1 − 3t 2

Integrating both sides of this equation with respect to t ,∫
(y(t ))−2 dy

dt
dt =

∫
(−1 − 3t 2)dt (2.5.2)

The left-hand side may be simplified to
∫

y−2 dy . Thus, evaluating each integral
in (2.5.2), we find that

−y−1 = −t − t 3 + C (2.5.3)
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We note again that since an arbitrary constant of integration arises on each side,
it suffices to include just one. It is essential here to observe that by successfully
integrating, we have removed the presence of y ′ in the equation, and now have
only an algebraic, rather than differential, equation in t and y . Solving (2.5.3)
algebraically for y , it follows

y = 1

t + 1
3 t 3 − C

The strategy of example 2.5.1 may be applied to any differential equation of
the form y ′ = f (t ,y) where f (t ,y) can be decomposed into a product of two
functions of t and y only. That is, if we can write

f (t ,y) = g (t ) · h(y)

then we are able to separate the variables in the equation, writing all of the
y-terms on one side (multiplied by y ′), and writing all of the t -terms on the
other. Any differential equation of the form y ′ = g (t ) ·h(y) is said to be separable.
We attempt to solve a separable differential equation by separating the variables
and writing

1

h(y)
y ′ = g (t ) (2.5.4)

Writing y ′ in the alternate notation dy/dt , we have

1

h(y)

dy

dt
= g (t ) (2.5.5)

Hence when we integrate both sides of (2.5.5) with respect to t , we find∫
1

h(y)
dy =

∫
g (t )dt

Now, all of this work is only useful if we arrive at integrals we can actually
evaluate. For example, if the left-hand side is

∫
sin

√
y dy , we are really no closer

to solving for y than we were when considering the initial differential equation.
In section 2.6, we will address ways to approximate the solution of such

equations that we seem unable to solve analytically. For now, we consider a few
examples of separable equations that we can solve, with more to follow in the
exercises.

Example 2.5.2 Find a family of solutions to the differential equation

y ′

t
= et+2y

and a solution to the corresponding initial-value problem with the condition
that y(1) = 1.
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Solution. First, we may write et+2y = et e2y . Thus, we have

y ′

t
= et e2y

Separating the variables, it follows that

e−2y dy

dt
= tet

Integrating both sides with respect to t , we may now write∫
e−2y dy =

∫
tet dt

Using integration by parts on the right and evaluating both integrals, we have

−1

2
e−2y = (t − 1)et + C

To now solve algebraically for y , we first multiply both sides by −2. Since C is
an arbitrary constant, −2C is just another constant, one that we will denote by
C1. Hence

e−2y = −2(t − 1)et + C1

Taking logarithms and solving for y , we can conclude that

y = −1

2
ln(−2(t − 1)et + C1)

is the family of functions that provides the general solution to the original DE.
To solve the corresponding IVP with y(1) = 1, we observe that

y(1) = −1

2
ln(−2(1 − 1)et + C1) = −1

2
ln(C1) = 1

so ln(C1) = −2, and therefore C1 = e−2. The solution to the IVP is

y = −1

2
ln(−2(t − 1)e1 + e−2)

Example 2.5.3 Is the following differential equation linear or nonlinear?

ty ′ + y2 = 4

Classify the equation, and solve it to find a general family of solutions.

Solution. We note that the given equation is nonlinear due to the presence of
y2 in the equation; said differently, the left-hand side is not a linear combination
of y and y ′. To separate the variables, we first write

ty ′ = 4 − y2

Dividing both sides by t (4 − y2), it follows that

1

4 − y2

dy

dt
= 1

t
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and therefore ∫
dy

4 − y2
=
∫

dt

t

Evaluating both integrals, noting that the left-hand side requires integration by
partial fractions or a table of integrals, we have

1

4
ln

(
y + 2

y − 2

)
= ln t + C

It only remains to solve for y algebraically. Using rules of logarithms and letting
C = lnK , we can write

ln

(
y + 2

y − 2

)1/4

= ln(Kt )

It now follows that (
y + 2

y − 2

)1/4

= Kt

Raising both sides to the fourth power, multiplying by (y − 2), and solving for
y yields

y = 2
(Kt )4 + 1

(Kt )4 − 1

2.5.2 Exact equations

We will consider one other type of nonlinear differential equation that may be
solved analytically. We explore this through an example. Let us solve the DE

(2 + t 2y)y ′ + ty2 = 0

We first observe that this equation is neither linear nor separable. The
former is clear from the presence of y2 and yy ′; the latter is less obvious, but
nonetheless true since the presence of the term (2 + t 2y) makes it impossible to
separate the variables t and y . We therefore explore another algebraic approach.
Considering the derivative in differential notation, we have

(2 + t 2y)
dy

dt
+ ty2 = 0

and thus we may instead write

(ty2)dt + (2 + t 2y)dy = 0 (2.5.6)

This form may remind us of the total differential dφ of a function φ(t ,y), as
studied in multivariable calculus. Recall that for a differentiable function φ(t ,y),
its total differential dφ is given by

dφ = φt dt +φydy

where φt = ∂φ/∂t and φy = ∂φ/∂y . Note, therefore, from (2.5.6) that if there
exists a function φ such that φt = ty2 and φy = 2 + t 2y , then (2.5.6) is actually
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of the form dφ = 0, from which it follows that φ(t ,y) = K , for some constant
K . Assuming that we can find the function φ(t ,y), we have then transformed
the original differential equation in t and y to an algebraic equation in t and y ,
one that we can hopefully solve for y .

In the current example, let us suppose that such a function φ(t ,y) exists,
and therefore that

∂φ

∂t
= ty2 (2.5.7)

and
∂φ

∂y
= 2 + t 2y (2.5.8)

Integrating both sides of (2.5.7) with respect to t , it follows that

φ(t ,y) = 1

2
t 2y2 + g (y)

The function g (y) arises since the partial derivative with respect to t of any
function of only y is zero. For φ to satisfy the condition in (2.5.8), we see that
we must take the partial derivative with respect to y of our most recent result
and set this equal to 2 + t 2y . Doing so, we find that

∂φ

∂y
= t 2y + g ′(y) = 2 + t 2y

Therefore, g ′(y) = 2, so g (y) = 2y , and we have found that

φ(t ,y) = 1

2
t 2y2 + 2y

Since it is the case that dφ = 0, we know that φ(t ,y) = K , and therefore t and
y are related by the algebraic equation

1

2
t 2y2 + 2y = K

From the quadratic formula, it follows that

y = −2 ±√
4 + 2Kt 2

t 2

and we have solved the original equation. The choice of “+” or “−” in the
solution would depend on the value given in an initial condition.

There are several important lessons to learn from this example. One is some
terminology. If a differential equation can be written in the form

M (t ,y)dt + N (t ,y)dy = 0 (2.5.9)

and there exists a function φ(t ,y) such that φt (t ,y) = M (t ,y) and φy (t ,y) =
N (t ,y), then since the differential equation is of the form dφ(t ,y) = 0, we say
that the equation is exact.

So, certainly a first check of whether an equation might be exact consists
in trying to write it in the form of (2.5.9). Still, there is the issue of whether or
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not φ exists. If φ does exist, and we further assume that M (t ,y) and N (t ,y)
have continuous first-order partial derivatives, then it follows from Clairaut’s
Theorem in multivariable calculus that

My (t ,y) = φty = φyt = Nt (t ,y)

Thus, if (2.5.9) is exact, then it must be the case that My = Nt . Said differently,
if My 
= Nt , then the differential equation is not exact. In fact, it turns out that
if My = Nt , then the equation is guaranteed to be exact, but this result is much
more difficult to prove. As a consequence of this, it suffices for us to check if
My = Nt as a first step; if so, the equation is indeed exact and we then proceed
to try to find the function φ in order to solve the differential equation. If not,
another approach is needed.

An example is instructive.

Example 2.5.4 Solve the differential equation
t

y
y ′ + ln(ty) + 1 = 0

Solution. We begin by observing that this equation is neither linear nor
separable. Thus, writing the derivative in differential notation, we have

t

y

dy

dt
+ ln(ty) + 1 = 0

and then rearranging algebraically,

(ln(ty) + 1)dt + t

y
dy = 0 (2.5.10)

Letting M (t ,y) = ln(ty) + 1 and N (t ,y) = t/y , we observe that

My = 1

ty
t = 1

y
and Nt = 1

y

and therefore, My = Nt . Hence the differential equation is exact and we can
assume that a function φ exists such that φt = M (t ,y) and φy = N (t ,y).

Since the latter equation is more elementary, we consider φy = t/y , and
integrate both sides with respect to y . Doing so, we find that

φ(t ,y) = t lny + h(t ) (2.5.11)

From (2.5.10), φ must also satisfy φt = ln(ty)+1, so we take the partial derivative
of both sides of (2.5.11) with respect to t to find that

φt = lny + h′(t ) = ln(ty) + 1

From this and properties of the logarithm, we observe that

lny + h′(t ) = ln t + lny + 1

and thus h′(t ) = ln t + 1. It follows (integrating by parts and simplifying) that
h(t ) = t ln t . Thus, we have demonstrated that the original equation is indeed
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exact by finding φ(t ,y) = t lny + t ln t = t ln(ty). From here, we now know that
φ(t ,y) = K , and so

t ln(ty) = K

Solving for y , we have that

y = 1

t
eK/t

Exercises 2.5
Classify each of the DEs in exercises 1–14 as linear, nonlinear, separable, or exact.
Note that it is possible for an equation to satisfy more than one classification.

1. y ′ = 10y

2. y ′ = 10y + 10

3. y ′ = 10y2

4. y ′ = 10y2 − 10

5. t 2y ′ + y2 = 1

6. e3t+y dy

dt
= 1

7. tdy − (y − 1)dt = 0

8.
dy

dt
= 5ty − t

4 + t 2

9. y − t
dy

dt
= 6 − 3t 2 dy

dt

10.
dy

dt
= −2ty

t 2 + 1

11. (2 + t 2)y ′ + 2ty = 0

12. 3y2y ′ + t 2 = 0

13. (y + t )y ′ + y = t

14. y ′ sin 2t + 2y cos2t = 0

Solve each of the DEs in exercises 15–28.

15. y ′ = 10y

16. y ′ = 10y + 10

17. y ′ = 10y2

18. y ′ = 10y2 − 10
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19. t 2y ′ + y2 = 1

20. e3t+y dy

dt
= 1

21. tdy − (y − 1)dt = 0

22.
dy

dt
= 5ty − t

4 + t 2

23. y − t
dy

dt
= 6 − 3t 2 dy

dt

24.
dy

dt
= −2ty

t 2 + 1

25. (2 + t 2)y ′ + 2ty = 0

26. 3y2y ′ + t 2 = 0

27. (y + t )y ′ + y = t

28. y ′ sin 2t + 2y cos2t = 0

Solve each of the IVPs stated in exercises 29–42. In addition, use a computer
algebra system to plot an appropriate direction field for each, and sketch your
solution within the plot.

29. y ′ = 10y , y(0) = 3

30. y ′ = 10y + 10, y(0) = 2

31. y ′ = 10y2, y(1) = 4

32. y ′ = 10y2 − 10, y(1) = −1

33. t 2y ′ + y2 = 1, y(2) = 0

34. e3t+y dy

dt
= 1, y(0) = 0

35. tdy − (y − 1)dt = 0, y(1) = 3

36.
dy

dt
= 5ty − t

4 + t 2
, y(1) = 1

37. y − t
dy

dt
= 6 − 3t 2 dy

dt
, y(1) = 5

38.
dy

dt
= −2ty

t 2 + 1
, y(0) = 4

39. (2 + t 2)y ′ + 2ty = 0, y(1) = 1

40. 3y2y ′ + t 2 = 0, y(0) = 1
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41. (y + t )y ′ + y = t , y(0) = 1

42. y ′ sin 2t + 2y cos2t = 0, y(π/4) = 1/2

43. Consider the IVP y ′ = √
y , y(0) = 0. Show that this IVP has more than

one solution. Does this result contradict theorem 2.2.1?

2.6 Euler’s method

While we have learned to solve certain classes of differential equations
explicitly—including linear first-order, separable, and exact equations—we
must also develop the ability to estimate solutions to initial-value problems that
we cannot solve analytically. Direction fields will play a key role in motivating
our work, as we see in the following introductory example.

Consider the initial-value problem

dy

dt
+ y2 = t , y(0) = 1 (2.6.1)

This DE is not linear due to the presence of y2. In addition, since we can
write y ′ = t − y2, we see that the right-hand side may not be expressed as a
product of two functions that each involve just one of the variables t and y .
Thus, the equation is not separable. Finally, writing the equation in the form
dy + (y2 − t )dt = 0, it is straightforward to check that this equation is not
exact.

While it may seem frustrating to not be able to use any of the solution
methods we have discussed so far, it is important to realize that many differential
equations cannot be solved explicitly by analytic techniques. As such, we must
explore how we can use our understanding of derivatives to estimate certain
values of the solution to an IVP.

For the given DE, writing y ′ = t −y2, we can generate the direction field that
is shown in figure 2.5. For the initial condition y(0) = 1, visually estimating how
the solution y(t ) will flow through the direction field, we can roughly estimate
that y(1/2) ≈ 0.75. But if we think about the calculus underpinnings of slope
fields, we can be much more precise in our estimate.

Recall that a direction field for a DE y ′ = f (t ,y) is created by observing that
the slope of the tangent line to the solution curve y(t ) at the point (t0,y0) is
f (t0,y0). In the current example, we know that the solution to the IVP must pass
through the point (t0,y0) = (0,1). At this point, the slope of the tangent line to
the solution curve is m = 0 − 12 = −1; note also that m ≈ �y/�t , where �y is
the exact change in y from t = 0 to t = 1/2, due to the fact that the tangent line
approximates the solution curve for values near the point of tangency. Thus, as
we step from t0 = 0 to t = 1/2, a change of 1/2 in the t -direction will generate
an approximate change �y = �t ·m = 1/2 · (−1) = −1/2 in y . Therefore, from
our original y-value of 1, a change of −1/2 leads us to the approximation that
y(1/2) ≈ 1/2.
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y(t)

1

t

32

−1

1

2

−1

Figure 2.5 The direction field for (2.6.1).

1.50.5

y(t)

1.0

2.01.0

0.5

1.5

t

2.0

Figure 2.6 Taking one step to esti-
mate y(0.5) in (2.6.1).

Graphically, this estimation approach amounts to following the tangent
line to the solution curve for some prescribed change in t . We can see this in
figure 2.6, where it is immediately evident that our estimate is too small. In
calculus, we learn that while the tangent line approximation to a differentiable
function is good near the point of tangency, the approximation gets poorer
and poorer the further we move from the point of tangency. Thus, a natural
approach to the estimation problem at hand is to take a smaller step, then
search the direction field for a new direction to follow, and then take another
small step. In this situation, we are much like a hiker lost in the woods who is
attempting to navigate by compass: just as the hiker is best served by checking a
compass frequently, so are we best served by checking slopes frequently.
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Figure 2.7 Two steps of size 0.25 to
estimate y(0.5) in (2.6.1).

So, rather than stepping the full distance of 1/2 from t = 0 to t = 1/2, let
us first step to t = 1/4, find an estimate to y(1/4), and then proceed from there
to estimate y(1/2). Starting at (0,1), we know that the slope of the tangent line
to the solution curve at this point is m0 = f (0,1) = −1. Stepping �t = 0.25, it
follows that we experience a change in y along the tangent line of �y = m0�t =
−1(0.25) = −0.25. Thus, we have that y(0.25) ≈ y(0) +�y = 1 − 0.25 = 0.75.

Now we repeat this process from the point (0.25,0.75). At this point, the
slope of the tangent line to the solution curve is m1 = f (0.25,0.75) = 0.25 −
(0.75)2 = −0.3125. Taking a step of �t = 0.25, it follows that the change in
y along the tangent line will be �y = m1�t = −0.3125(0.25) = −0.078125.
Thus we have that y(0.5) ≈ 0.75 − 0.078125 = 0.671875. We record our work
graphically in figure 2.7, where our improved approximation is apparent, though
the estimate is still too small.

It is evident from our work in this first example that we can significantly
improve our ability to estimate an initial-value problem’s solution at various
t -values by developing an iterative process that uses reasonably small step sizes.
In particular, we want to imitate the way in which we took two steps, but rather
be able to take n steps using a step-size of �t = h. Throughout, the key idea is
always that we are estimating the solution function by determining its tangent
line at a given point, and then following the tangent line for the determined step
size. We observe that when moving along any line from a given point (told,yold)
to a new point (tnew,ynew), it follows that

ynew = yold +�y

= yold + �y

�t
·�t

= yold + m ·�t (2.6.2)
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Another essential observation to make is that the slope m at each step of our
approximation is given by m = y ′ = f (t ,y) in the differential equation that we
are attempting to solve. In particular, if we have some approximation at time tk
given by yk , the slope of the tangent line to the solution curve at this point is
given by f (tk ,yk). Therefore, using this value for m in (2.6.2) and letting h = �t
be the step size, we now have

ynew = yold + hf (told ,yold) (2.6.3)

Hence, starting from the initial condition (t0,y0), we are able to generate the
sequence of points (t1,y1), . . . ,(tn,yn), where for each n ≥ 0,

tn+1 = tn + h and yn+1 = yn + hf (tn,yn) (2.6.4)

The value yn is an approximation of the exact solution value y(tn) at each step,
so that yn ≈ y(tn) for each n ≥ 1. This method of approximating the solution to
an initial-value problem is known as Euler’s method.

Example 2.6.1 For the initial-value problem

dy

dt
+ y2 = t , y(0) = 1

that we have just considered, apply Euler’s method to estimate the value of
y(1/2) using h = 0.1.

Solution. At the end of this section, the implementation of Euler’s method in
a spreadsheet such as Excel will be discussed. Here, we simply report the results
of such a computer implementation. If we use a step size of h = 0.1, we see that
we will take five steps to move from t0 = 0 to t5 = 0.5, the point at which we
seek to approximate y . Doing so yields the output shown in table 2.1.

With just five steps, we can see in the direction field in figure 2.8, together
with a piecewise linear plot of the approximate solution, that we have an
apparently good estimate in the above table for how the actual solution to
this IVP behaves on this interval.

In the example we have been considering with various step sizes, one
shortcoming is that we do not have a precise sense of how accurate our

Table 2.1
Euler’s method applied to the IVP
y ′ = t − y2, y(0) = 1, using h = 0.1

tn yn

0 1
0.1 0.9
0.2 0.829
0.3 0.7802759
0.4 0.749392852
0.5 0.733233887
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Figure 2.8 Five steps of size h = 0.1
to estimate y(0.5).

approximations are. One way to explore this issue is to apply Euler’s method to
an IVP that we can solve exactly, and then compare our estimates with actual
solution values. We do so in the following example.

Example 2.6.2 Solve the IVP y ′ = y − t , y(0) = 0.5 exactly, and use Euler’s
method with the step sizes h = 0.2 and h = 0.1 to estimate the value of y(1).
Hence analyze the effect that step size has on error in the method.

Solution. We first observe that y ′ = y − t is a linear first-order DE. Applying
our work from section 2.3, we can determine that the solution to this equation
is y = 1+ t +Cet . The initial condition y(0) = 0.5 then implies that C = −1/2,
so that the solution to the IVP is

y(t ) = 1 + t − et

2

If we apply Euler’s method with h = 0.2 and take 5 steps to determine yn

at each, and also evaluate y(tn) at each stage, the resulting output is shown
in table 2.2.

Here, we observe the obvious pattern that the further we step away from
the initial condition, the greater the error we encounter. This is a natural
consequence of the use of linear approximations.

To get a further sense of how the error at a given step depends on step size,
we now apply the same method with h = 0.1. Doing so produces the results in
table 2.3. For ease of display and comparison to the case where h = 0.2, we only
report the results from every other step.

By comparing the approximations in the preceding two tables at the
common values of t = 0.2,0.4,0.8,1 we can see that cutting the step size in
half appears to have reduced the error by a factor of approximately 2.
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Table 2.2
Euler’s method applied to the IVP y ′ = y − t, y(0) = 0.5, using h = 0.2

Euler Est. Solution Error

tn yn y(tn) |y(tn) − yn|

0 0.5 0.5 0
0.2 0.6 0.5892986 0.0107014
0.4 0.68 0.6540877 0.0259123
0.6 0.736 0.6889406 0.0470594
0.8 0.7632 0.6872295 0.0759705
1.0 0.75584 0.6408591 0.1149809

Table 2.3
Euler’s method applied to the IVP y ′ = y − t, y(0) = 0.5, using h = 0.1

Euler Est. Solution Error

tn yn y(tn) |y(tn) − yn|

0 0.5 0.5 0
0.2 0.595 0.5892986 0.0057014
0.4 0.66795 0.6540877 0.0138623
0.6 0.7142195 0.6889406 0.0252789
0.8 0.728205595 0.6872295 0.0409761
1 0.70312877 0.6408591 0.0622697

In fact, there are sophisticated ways by which we can analyze the error of Euler’s
method in general; we explore these and related issues in depth in chapter 7
on numerical methods. And while Euler’s method can give us an intuitive
sense for how a solution is behaving locally, we must note here that its error
grows too fast to make it reliable. More sophisticated algorithms for numerically
estimating solutions to differential equations exist; several of these are developed
in chapter 7.

2.6.1 Implementing Euler’s method in Excel

Any spreadsheet program provides a straightforward way to implement Euler’s
method. In our calculations, we will use Microsoft Excel. Recall that in Euler’s
method, given an initial-value problem y ′ = f (t ,y), y(t0) = y0, we seek
approximations y1,y2, . . . such that yn ≈ y(tn), where tn = t0 + htn for some
chosen step size h. In particular, we use the rule

yn+1 = yn + hf (tn,yn)
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In a given row of the spreadsheet, we will view the data (as labeled in the cells
below) step number n, step size h, t -value tn , approximate current y-value yn ,
slope f (tn,yn), and updated y-value yn+1.

We will demonstrate the development of such an Excel spreadsheet for the
particular example y ′ = t − y2, y(0) = 1 using a step size of h = 0.1. To begin,
we establish names for the various columns, say in cells A1, B1, C1, D1, E1,
and F1, as shown below by entering the text “n”, “h”, etc., in the respective cells
shown below.

A B C D E F

1 n h t n y n f(t n,y n) y n+1

In row 2, we now enter the given data at step zero. In particular, in cell A2 we
enter the step number (“0”), in B2 the chosen step size (“0.1”), in C2 the
starting t -value (“0”), in D2 the starting y-value (“1”), and in E2, we apply the
function f (t ,y) to get the slope at the point at this step. That is, since in this IVP
f (t ,y) = t − y2, we enter in E2 the command “=C2 - D2ˆ2”. We now also
have enough information entered to compute y1 in cell F2. Using the rule from
Euler’s method, we know y1 = y0 + hf (t0,y0). In our spreadsheet, this implies
we must enter “=D2 + B2*E2”. Doing so, the result (y1 = 0.9) appears in cell
F2. Now our spreadsheet should appear as shown.

A B C D E F

1 n h t n y n f(t n,y n) y n+1
2 0 0.1 0 1 −1 0.9

In row 3, we may now build subsequent entries based on existing data. To
increase the step number, in A3 we enter “=A2 + 1”. Since the step-size
stays constant throughout, in B3 we input “=B2”. Because the next t -value
will be the preceding t -value plus the step size (t1 = t0 + h), we enter in
C3 the command “=C2 + B2”. We also have the next y-value, so in D3
we enter “=F2” to have this data available in the given row. The slope at
step 1 is computed according to the same rule (given by f (t ,y)) as it was at
step 0. Hence in cell E3 we simply paste a copy of cell E2, which ensures
that Excel uses the same computations, but updates them for the current
step. Equivalently, we can directly enter in E3 the text “=C3 - D3ˆ2”.
Cell F3 computes the newest y-value: the same rule as in step 0 must be
followed, so we can copy and paste cell F2 into F3, or equivalently enter in
F3 “=D3 + B3*E3”.
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At this stage, we see on the screen the following.

A B C D E F

1 n h t n y n f(t n,y n) y n+1

2 0 0.1 0 1 −1 0.9

3 1 0.1 0.1 0.9 −0.71 0.829

Now we can harness the power of Excel to compute as many subsequent steps as
we like. By using the mouse to highlight row 3 (cells A3 through F3), and then
placing the cursor on the bottom right corner of cell F3, we can then click and
drag downward to fill subsequent rows with similar calculations. For example,
doing so through row 5 (i.e., down to F7) yields the following table.

A B C D E F

1 n h t n y n f(t n,y n) y n+1

2 0 0.1 0 1 -1 0.9

3 1 0.1 0.1 0.9 -0.71 0.829

4 2 0.1 0.2 0.829 -0.487241 0.7802759

5 3 0.1 0.3 0.7802759 -0.30883048 0.749392852

6 4 0.1 0.4 0.749392852 -0.161589647 0.733233887

7 5 0.1 0.5 0.733233887 -0.037631934 0.729470694

Besides the ease of iteration past the first two rows, there are further advantages
Excel offers. One is that changing one appropriately-chosen cell will update all
of our computations. For example, if we are interested in the change induced
by a different step size, say h = 0.05, all we need to do is enter “0.05” in cell
B2, and every other cell will update accordingly. In addition, if we desire to see
the graphical results of our work, we can use Excel’s Chart Wizard.

To plot our approximations, we can simultaneously highlight the t and
y columns in our chart above (cells C2 through C7 and D2 through D7), and
then go to Insert menu and select Chart (alternatively, we may click on the Chart
Wizard icon on the toolbar). In the prompt window that arises, we choose “XY
(Scatter)” and select one of the graph style options at the right by clicking on
the desired one. By clicking “Next” in a few subsequent windows (in which
advanced users can avail themselves of more options), we eventually get to a
final window where our graph appears and the option to “Finish.” Clicking on
“Finish,” the graph will appear in the spreadsheet and may be moved around
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Figure 2.9 An Excel plot of an approximate solution to the IVP y ′ = t −y2, y(0) = 1,
for 0 ≤ t ≤ 0.5.

by clicking and dragging it accordingly. We see the resulting plot displayed as in
figure 2.9.

Exercises 2.6

1. Consider the IVP y ′ = t/y , y(1) = 3 (where we assume that y is always
positive).

(a) Program Excel to use Euler’s method to determine an estimate of the
value of y(3). Do so using a step size of h = 0.2. Show the results in a
table and create an appropriate plot of the approximate solution.

(b) Use an established solution method to determine an algebraic formula
for the unique solution y(t ) for the given IVP. Then determine y(tn)
exactly and use Excel to determine the error in your approximation at
each step n. Finally, compare a plot of y(t ) to your plot of the
approximation above.

(c) Use a computer algebra system appropriately to plot a direction field
for the given differential equation. By hand, sketch a solution that
satisfies the above IVP. Compare your work in (a) and (b) to the
direction field.

2. Consider the IVP y ′ = (1 − t )(1 + y), y(0) = 2.

(a) Program Excel to use Euler’s method to determine an estimate to the
value of y(1.6). Do so using step sizes of h = 0.2 and h = 0.1. Show the
results in a table and create an appropriate plot of the approximate
solution.
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(b) Use an established solution method to determine an algebraic formula
for the unique solution y(t ) for the given IVP. Then determine y(tn)
exactly and use Excel to determine the error in your approximation at
each step n. Finally, compare a plot of y(t ) to your plot of the
approximation above.

(c) Use a computer algebra system appropriately to plot a direction field
for the given differential equation. By hand, sketch a solution that
satisfies the above IVP. Compare your work in (a) and (b) to the
direction field.

3. Consider the IVP y ′ = (t − y)2/4, y(0) = 1/2.

(a) Program Excel to use Euler’s method to determine an estimate to the
value of y(1.5). Do so using step sizes of h = 0.1 and h = 0.05. Show
the results in a table and create an appropriate plot of the approximate
solution.

(b) Explain why you cannot solve the given IVP explicitly.
(c) Use a computer algebra system appropriately to plot a direction field

for the given differential equation. By hand, sketch a solution that
satisfies the above IVP. Compare your work in (a) to the direction field.

4. Consider the IVP y ′ = et − 2

t
y , y(1) = 4, t > 0.

(a) Program Excel to use Euler’s method to determine an estimate to the
value of y(2.2). Do so using step sizes of h = 0.1 and h = 0.05. Show
the results in a table and create an appropriate plot of the approximate
solution.

(b) Use an established solution method to determine an algebraic formula
for the unique solution y(t ) for the given IVP. Then determine y(tn)
exactly and use Excel to determine the error in your approximation at
each step n. Finally, compare a plot of y(t ) to your plot of the
approximation above.

(c) Use a computer algebra system appropriately to plot a direction field
for the given differential equation. By hand, sketch a solution that
satisfies the above IVP. Compare your work in (a) and (b) to the
direction field.

In each of exercises 5–10, find an approximate solution to the stated IVP by
using Euler’s method with h = 0.1 on the interval [0,1]. In addition, find an
exact solution and compare the values and plots of the approximate and exact
solutions.

5. y ′ + 2ty = 0, y(0) = −2

6. y ′ = 2y − 1, y(0) = 2

7. y ′ − y = 0, y(0) = 2
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8. (y ′)2 + 2y = 0, y(0) = 2

9. y ′y2 = 8, y(0) = 1

10. (t + 1)yy ′ = −1 − y2, y(0) = 2

In each of exercises 11–14, find an approximation solution to the stated IVP by
using Euler’s method with h = 0.1 on the interval [0,1]. In addition, explain
why it is not possible to solve the IVP exactly by established methods.

11. (y ′)2 − 2y2 = t , y(0) = 2

12. y ′ − siny = 2et , y(0) = 0

13. y ′ + y3 = t 3, y(0) = 2

14. (t + 1)yy ′ = −1 − y2 − t 2, y(0) = 2

2.7 Applications of nonlinear first-order
differential equations

In this section, we explore two examples of nonlinear differential equations.
It is important to recall that if an equation is nonlinear, it is possible that we
may not be able to solve for the solution function explicitly. Regardless, we can
use direction fields to qualitatively understand the behavior of solution curves;
furthermore, if we are unable to find an exact solution function, we may employ
Euler’s method to generate approximate solutions.

2.7.1 The logistic equation

We have recently learned that if a population is assumed to grow at a constant
relative growth rate (or in a way such that the rate of change of the population
is proportional to the size of the population), then the population function
satisfies the initial-value problem

P ′ = kP, P(0) = P0

This leads to the familiar population model P(t ) = P0ekt , which is also studied
in algebra and calculus courses. While this model is a natural one, it is also
unrealistic: over significant periods of time, the function P will grow to values
that become unreasonable since the function exhibits unbounded growth.

Therefore, we now explore a more plausible population model. Let us
assume we know that a given population P has the tendency over time to
level off at a value A. The value A is often called the carrying capacity of the
population; as the name indicates, it is the maximum population sustainable by
the surrounding environment. It is natural to further assume that if P is close
to, but less than A, then dP/dt will be small and positive, indicating that the
population will be growing slowly. Similarly, if P is close to, but greater than A,
we will want dP/dt to be negative and close to zero, so that the population will
be decreasing slowly.
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At the same time, we want to maintain the natural inherent exponential
characteristic of growth, so when P is relatively small (in comparison to A), we
would like for dP/dt to be approximately kP for some appropriate constant k.
The combination of all these criteria led Dutch mathematician Pierre Verhulst
(1804–1849) to propose the differential equation

dP

dt
= kP

(
1 − P

A

)
(2.7.1)

as a more realistic model of population growth, where k and A are positive
constants. Equation (2.7.1) is known as the logistic differential equation.

That the logistic equation may be solved in general (to determine an explicit
solution P involving k and A) will be shown in the exercises. We consider here
a specific example where k and A are given to provide further insight into the
behavior of solutions to this equation.

Example 2.7.1 A population P(t ) exhibits logistic growth according to the
model

dP

dt
= 0.05P

(
1 − P

75

)
, P(0) = 10

(a) Determine the values of P for which P is an increasing function

(b) Plot the direction field for the differential equation

(c) Determine the value(s) of P for which P is increasing most rapidly

(d) Solve the IVP explicitly for P

Solution.

(a) To determine where P is increasing, we require that dP/dt > 0. If P < 0,
note that (1 − P/75) > 0, which makes dP/dt < 0, so we need P > 0 and
(1 − P/75) > 0 to make dP/dt positive. This occurs on the interval
0 < P < 75, so for these P values, P is an increasing function of t . We note
further that if P > 75 or P < 0, then dP/dt < 0 and P is a decreasing
function. Finally, it is evident that both P = 0 and P = 75 are equilibrium
solutions, which makes sense given the physical interpretation of the
population model.

(b) Using familiar commands in Maple, we can plot the direction field for this
differential equation. Note in advance the behavior we expect from our
work above: two equilibrium solutions at 0 and 75, plus certain increasing
and decreasing behavior. Finally, note that our analysis of the equation
suggests a good range of values to select for P when plotting, say,
P = −10 . . .100. As always, some experimentation with t may be necessary
to get a useful plot. The plot is shown in figure 2.10.



174 First-order differential equations

P(t)

100

t

50

75

75

25

100

5025

Figure 2.10 The slope field for
dP/dt = 0.05P(1 − P/75).

(c) To decide where P is increasing most rapidly, we seek the maximum value
of P ′. Graphically, we can observe in figure 2.10 that this appears to occur
approximately halfway between P = 0 and P = 75. This is reasonable in
light of the physical meaning of the logistic equation, since at this point
the population has accumulated some substantial numbers to increase its
growth rate, while not being close enough to the carrying capacity to have
its growth slowed.

We can determine this point of greatest increase in P analytically as
well. Note that P ′ = 0.05P(1 − P/75) = 0.05P − 0.0006P2, so that P ′ is
determined by a quadratic function of P . We have already observed that
this quadratic function has zeros at the equilibrium solutions (P = 0 and
P = 75), and furthermore, we know that every quadratic function achieves
is extremum (a maximum in this case, since the function
g (P) = 0.05P − 0.0006P2 is concave down) at the midpoint of its zeros.
Hence, P ′ is maximized precisely when P = 75/2.

(d) Our final task is to solve the given initial-value problem explicitly for P .
We first solve the differential equation

dP

dt
= 0.05P (1 − P/75)

for P . Note that this equation is separable and nonlinear. Separating
variables, we first write

dP

P(1 − P/75)
= 0.05dt (2.7.2)

Because the left-hand side is a rational function of P , we may use the
method of partial fractions to integrate the left-hand side of (2.7.2).
Observe that

1

P(1 − P/75)
= 75

P(75 − P)
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Now, letting
75

P(75 − P)
= A

P
+ B

75 − P
it follows that A = 1 and B = 1, so that (2.7.2) may now be written as(

1

P
− 1

P − 75

)
dP = 0.05dt (2.7.3)

Integrating both sides of (2.7.3), we find that P must satisfy the equation

ln |P|− ln |P − 75| = 0.05t + C

Using a standard property of logarithms, the left-hand side may be
expressed as ln |P|/|P − 75|, and hence using the definition of the natural
logarithm, it follows that∣∣∣∣ P

P − 75

∣∣∣∣= e0.05t+C = Ke0.05t

where K = eC . Since K is an arbitrary constant, the sign of K will absorb
the ± that arises from the presence of the absolute value signs, and thus we
may write

P

P − 75
= Ke0.05t

Multiplying both sides by P − 75 and expanding, we see that

P = PKe0.05t − 75Ke0.05t

and gathering all terms involving P on the left,

P(1 − Ke0.05t ) = −75Ke0.05t

Thus, it follows that

P = −75Ke0.05t

1 − Ke0.05t

Multiplying the top and bottom of the right-hand side by −1/(Ke0.05t ), it
follows that

P = 75

1 − Me−0.05t

where M = 1/K . In this final form, it is evident that as t → ∞, P(t ) → 75,
which fits with the given carrying capacity in the original problem. At this
point, we can use the initial condition P(0) = 10 to solve for M ; doing so
results in the equation 10 = 75/(1 − M ), which yields that M = −13/2,
and thus

P = 75

1 + 13
2 e−0.05t

A plot of this function (shown in figure 2.11), along with comparison to
our work throughout this example, demonstrates that our solution is
correct.
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Figure 2.11 The solution P = 75/

(1 + 13
2 e−0.05t ) to the IVP dP/dt =

0.05P(1 − P/75), P(0) = 10.

For the general logistic differential equation

dP

dt
= kP

(
1 − P

A

)

an argument similar to the one we just completed can be used to show that the
solution to this equation is

P(t ) = A

1 + Me−kt
,

where M is a constant that may be determined by an initial condition. This fact
will be shown in exercise 1 for this section.

2.7.2 Torricelli’s law

Suppose that a water tank has a hole in its base with area a, through which water
is flowing. Let h(t ) be the depth of the water and V (t ) be the volume of water
in the tank at time t . At what rates are h(t ) and V (t ) changing?

Evangelista Torricelli (1608–1647) discovered what has come to be known
as Torricelli’s law, which describes the way water in an open tank will flow
through a small hole in the bottom. To develop this law, let us consider6

how water molecules will rearrange themselves as water exits the tank and the
relationship between the potential and kinetic energy of a small mass m of water.
The potential energy lost as a small mass m of water falls from a height h > 0 is
mgh, where g is the gravitational constant; at the same time, the kinetic energy
gained as an equal mass m exits the tank is 1

2 mv2, where v is the velocity at
which the water is flowing. Equating the potential and kinetic energy, we find

6 Our approach follows that of R. D. Driver in “Torricelli’s law: An Ideal Example of an Elementary
ODE,” Amer. Math. Monthly, 105(5) (May 1998), pp. 453–455.
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that mgh = 1
2 mv2, so that

v =√2gh

This model assumes that no friction is present; a slightly more realistic model
takes a fraction of this velocity, depending on the viscosity. For simplicity, we
will consider the ideal case where friction is not considered.

If we now consider the water exiting the tank, it follows that the rate of
change dV /dt of volume in the tank is determined by the product of the area a
of the hole and the exiting water’s velocity v . In other words,

dV

dt
= −av = −a

√
2gh (2.7.4)

At this point, observe that we have related the rate of change of volume to the
height of the water in the tank at time t . Instead, we desire to either relate
dV /dt and V or dh/dt and h. Of course, height and volume are related. If we
assume that A(y) denotes the tank’s cross sectional area at height y , then integral
calculus tells us that the volume of the tank up to height h is given by

V (h) =
∫ h

0
A(y)dy

Furthermore, by the Fundamental Theorem of Calculus, differentiating V (h)
implies dV /dh = A(h), and thus by the chain rule,

dV

dt
= dV

dh

dh

dt
= A(h)

dh

dt

Using this new expression for dV /dt in (2.7.4), it follows that

A(h)
dh

dt
= −a

√
2gh (2.7.5)

which is a differential equation in h. In particular, this nonlinear equation
predicts, given a tank of a particular shape (as determined by A(h)) with a
hole of area a, the behavior of the function h(t ) that describes the height of the
water at time t . We explore this further in the following example.

Example 2.7.2 For a cylindrical tank of height 2 m and radius 0.3 m, filled
to the top with water, how long does it take the tank to drain once a hole of
diameter 4 cm is opened?

Solution. In this situation, the cross sectional area A(h) of the tank at height
h is constant because each is a circle of radius 0.3, so that A(h) = 0.09π . In
addition, the area of the hole in square meters is a = π(0.02)2 = 0.0004π , and
the gravitational constant is g = 9.8 m/s2. Since we have already established that
A(h)dh/dt = −a

√
2gh, we therefore conclude that h satisfies the equation

0.09π
dh

dt
= −0.0004π

√
19.6h



178 First-order differential equations

t

100

2.0

1.0

h(t)

50 150

Figure 2.12 The slope field for dh/

dt = −0.019676
√

h.

Simplifying, it follows that

dh

dt
= −0.019676

√
h

Separating variables, we have

h−1/2dh = −0.019676dt

and upon integrating, it follows that

2h1/2 = −0.019676t + C

Thus,
h(t ) = (C0 − 0.009838t )2

Because h(0) = 2, C0 = √
2. Furthermore, with h(t ) = (

√
2 − 0.009838t )2, we

can see that h(t ) = 0 when t = 143.75 sec, at which time the tank is empty. A
plot of h(t ) confirms precisely the behavior observed in the direction field in
figure 2.12.

Exercises 2.7

1. For a population P(t ) that exhibits logistic growth according to the
general model

dP

dt
= kP

(
1 − P

A

)
, P(0) = P0

(a) Determine the values of P (in terms of A and k) for which P is an
increasing function.

(b) Sketch by hand the direction field for the differential equation, clearly
indicating the role of the constant A in your sketch.

(c) Determine the value(s) of P (in terms of A and k) for which P is
increasing most rapidly, and justify your answer.
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(d) Solve the initial-value problem explicitly for P to show that

P(t ) = A

1 + Me−kt

and determine M in terms of A and P0.

2. The growth of an animal population is governed by the equation

500

P

dP

dt
= 50 − P

where P(t ) is the number of animals in the herd at time t . The initial
population is known to be 125. Determine the solution P(t ), sketch its
graph, and decide whether there will ever be more than 125 or fewer than
50 animals present.

3. Consider the differential equation dP/dt = −0.02P2 + 0.08P .

(a) What are the equilibrium solutions to this equation?
(b) Determine whether each equilibrium solution is stable or unstable.
(c) At what value of P is the function growing most rapidly?
(d) Under the initial condition P(0) = 0.25, determine the time at which

P(t ) = 3.

4. Consider a fish population that grows according to the model

dP

dt
= 0.05P − 0.000005P2

where t is measured in years, and P is measured in thousands.

(a) Determine the population of fish at time t if initially P(0) = 1000.
What is the carrying capacity of the population?

(b) Suppose that the fish population is established as growing according to
the above model in the absence of fish being removed from the lake.
Suppose that harvesting begins at a rate of 20 000 fish per year. How
does the differential equation governing the fish population change?
Explain.

(c) Plot a direction field for the updated differential equation you found in
part (b). Discuss the new equilibrium solutions for the fish population.
Can you solve the IVP with P(0) = 1000?

(d) How would the DE change if wildlife biologists began planting 30 000
fish per year in the lake, and no harvesting occurred?

5. Solve the initial-value problem

dP

dt
= 6 − 7P + P2, P(0) = 2

Sketch your solution curve P(t ) and explain why it makes sense in light of
the equilibrium solutions to the given equation and your understanding of
where dP/dt is positive and negative.
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6. A cruise ship leaves port with 2500 vacationers aboard. At the time the
boat leaves the dock, ten recent visitors of an amusement park are sick
with the flu. Let S(t ) denote the number of people at time t who have had
the flu at some time since leaving port.

(a) Assuming that the rate at which the flu virus spreads is directly
proportional to the product of the number of people who have had the
flu times the number of people not yet infected, write a differential
equation whose solution is the function S(t ). Explain why the
differential equation is a logistic equation.

(b) Solve the differential equation you found in (a). Assume that four days
into the trip, 150 people have been sick with the flu. Clearly show how
all constants are identified, and sketch a graph of your solution curve.

(c) How many people have been sick seven days into the trip? How long
would the boat have to stay at sea for half the vacationers to get ill?

7. A cylindrical tank of height 4 m and radius 1 m is full of water. A small hole
of diameter 1 cm is opened in the bottom of the tank. Use Torricelli’s law
to determine how long it will take for all the water to drain from the tank.

8. A cylindrical tank of height 1.2 m and radius 30 cm is originally full of
water. A small hole is opened in the bottom of the tank, and after 15 min,
the water in the tank has dropped 10 cm. According to Torricelli’s law,
how large is the hole and how long will it take the tank to drain?

9. Consider a tank that is generated by taking the curve x = √
y and

revolving it about the y-axis. Assume that the tank is full of water to a
depth of 1.2 m and that a hole of diameter 1 cm is opened in the bottom.
Use Torricelli’s law to determine how long it will take for all the water to
drain from the tank.

10. Suppose a hemispherical bowl has top radius of 30 cm and at time t = 0 is
full of water. At that moment a circular hole with diameter 1.2 mm is
opened in the bottom of the tank. Use Torricelli’s law to determine how
long it will take for all the water to drain from the tank.

11. For an open cylindrical tank, Torricelli’s law tells us that if a small hole is
opened, the height of the water at time t obeys the IVP

dh

dt
= −k

√
h, h(t0) = h0

where k is a constant that depends on the radius of the tank and the radius
of the hole. In this exercise, we will take k = 1.

(a) Explain why theorem 2.2.1 does not guarantee a unique solution to the
IVP

dh

dt
= −√

h, h(1) = 0

(b) Explain why it is physically impossible to determine the height of the
water at time t < 1 in a tank which satisfies h(1) = 0.
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(c) Show that for any c < 1, the function

h(t ) =
{( 1

2 c − 1
2 t
)2

if t < c

0 if t ≥ c

is a solution to the IVP in (a).
(d) Explain how the result of (c) can be interpreted physically in light of

the time when the tank becomes empty. Compare your findings to
those in (a) and (b).

2.8 For further study

2.8.1 Converting certain second-order DEs to first-order DEs

Linear second-order differential equations such as

y ′′ + p(t )y ′ + q(t )y = f (t ) (2.8.1)

will be the focus of upcoming work in chapters 3 and 4. But there are some
second-order equations we can solve at present. For example, if q(t ) = 0
in (2.8.1), then we can perform a process called reduction of order to convert the
equation to a first-order one.

(a) Consider the second-order equation y ′′ + p(t )y ′ = f (t ). Using the
substitution u = y ′, convert the equation to a new first-order DE involving
the function u.

(b) Use a standard solution technique to state the solution u to the differential
equation in (a) in terms of p(t ) and f (t ). (Your answer will involve
integrals.)

(c) Explain how you would use your result in (b) to find the solution y to the
original DE.

(d) Use reduction of order to solve each of the following second-order IVPs.

(i) y ′′ + 2y ′ = 4, y(0) = 2, y ′(0) = 1

(ii) y ′′ + tan(t )y ′ = t , y(0) = 1, y ′(0) = 0

(iii) y ′′ + 2t
1+t 2 y ′ = t 2, y(0) = 0, y ′(0) = 1

(iv) y ′′ + 1
4−t y ′ = 4 − t , y(0) = 1, y ′(0) = 1

(e) Reduction of order can be performed on certain nonlinear differential
equations as well. For instance, suppose that we have an equation of form

y ′′ = g (y ′)h(t ) (2.8.2)

Show that the substitution u = y ′ converts (2.8.2) to a first-order equation
in u. Explain how you would approach solving the new equation in u.
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(f) Solve each of the following second-order IVPs.

(i) y ′′ = (y ′)2t 2, y(0) = 1, y ′(0) = 0

(ii) y ′′ = t + t (y ′)2

y ′ , y(0) = 2, y ′(0) = 1

(iii) y ′′ = e2t+y ′
, y(0) = 0, y ′(0) = 0

(iv) y ′′ =√y ′, y(0) = 3, y ′(0) = 5

2.8.2 How raindrops fall

The following questions and discussion are based on the article “Falling
Raindrops” by Walter J. Meyer7.

When a raindrop falls, various forces act upon it. We explore several differ-
ent models that show the importance of adjusting assumptions appropriately to
match physical conditions. Let us first assume that the only force acting upon
the raindrop is the acceleration due to gravity. Under this assumption, Galileo
(1564–1642) hypothesized that the falling raindrop would gain an extra 32 ft/s
in velocity for every second for which it falls. In other words, the acceleration of
the raindrop is constant and equal to 32 ft/sec2.

(a) Let y(t ) denote the distance (in feet) traveled by the rain drop after it has
been falling for t seconds. Write an initial-value problem involving y(t )
based on the above assumption. Solve this IVP; be sure to introduce
appropriate initial conditions based on the context of the problem.

(b) Assuming that the raindrop starts from rest at an elevation of 3000 ft, how
long does it take the raindrop to fall to earth? What is the raindrop’s
velocity when it hits the ground? Why is this model unrealistic?

(c) We next must attempt to account for the air resistance the raindrop
encounters through a slightly more sophisticated model. For a raindrop
having diameter d ≤ 0.00025 ft, this model, sometimes known as Stoke’s
law, states that the acceleration of the raindrop due to gravity is opposed
by an acceleration directly proportional to the velocity of the raindrop at
that instant. Suppose that the constant of proportionality is given by c/d2,
where c ≈ 3.29 × 10−6 ft2/s is an experimentally determined constant.
Write a new IVP (again involving y(t ) and its relevant derivatives) for the
raindrop having diameter d . Do not yet attempt to solve this equation.
Leave d as an unknown constant.

(d) Letting v = y ′ and using the fact that the raindrop starts from rest, convert
the IVP in (c) to a first-order IVP involving v . Using d = 0.00012 ft (which
can be considered a drizzle), produce a slope field corresponding to the

7 See Applications of Calculus, MAA Notes Number 29, pp. 101–111.
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differential equation in v . On this slope field, sketch a graphical
approximation of the solution to the stated IVP. Describe the behavior of
the raindrop’s velocity based on the slope field you constructed in the
problem above.

(e) In the model in (d), we will say that the long-term limiting velocity of the
raindrop is its terminal velocity, denoted vterm. Calculate this terminal
velocity by using the IVP to answer the following questions: What is the
initial velocity of the raindrop? What is the equilibrium solution of the
differential equation? What happens to the velocity of the raindrop if it
ever reaches the equilibrium value? Why, in view of the differential
equation, must the velocity of the raindrop increase from its initial value
to the equilibrium value?

(f) Use your result from (e) to determine the terminal velocities for raindrops
having diameters of 0.00009, 0.00012, and 0.00015 ft, respectively. Graph
vterm as a function of d , and comment on the phenomena observed.

(g) Solve the IVP from (d) explicitly for v . Graph your solution, and then use
your solution to calculate vterm as well.

(h) Assuming that a raindrop of diameter 0.00012 ft starts from rest at 3000 ft,
how long does it take the raindrop to fall to the ground? What is its
velocity at the instant it hits the ground? Do your answers surprise you? Is
it raining hard or barely raining when raindrops are this size?

(i) When the diameter of the raindrop becomes too large, the force of air
resistance on the raindrop becomes so appreciable that Stoke’s model loses
accuracy as well. This leads to a third model, known as the velocity-squared
model. This model states that when a raindrop has diameter d ≥ 0.004 ft,
the acceleration due to gravity is opposed by an acceleration directly
proportional to the square of the velocity of the raindrop at that instant.
Here the constant of proportionality is given by k/d , where k ≈ 0.00046.

(j) Repeat questions (c), (d), and (e) for the velocity-squared model.
Compare your findings with those of Stoke’s model. For example, how do
the terminal velocities of small raindrops compare with those of large
raindrops? For which type of raindrop, small or large, does the terminal
velocity increase more rapidly as a function of diameter?

(k) Finally, explicitly solve the IVP arising from the velocity-squared model
for the velocity function v(t ). Graph your solution v(t ) for an appropriate
choice of d and compare the result to the results in (j).

2.8.3 Riccati’s equation

The Ricatti equation

y ′ + p(t )y + q(t )y2 = f (t ) (2.8.3)
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and its study are attributed to the Italian mathematician Jacobo Riccati
(1667–1748). Observe that this nonlinear equation is a modification of the
standard linear first-order equation y ′ + p(t )y = f (t ). Through the following
steps, we will use a change of variables to transform the Riccati equation into a
linear, second-order differential equation.

(a) We consider a change of variables to convert (2.8.3) from being a
differential equation in y to a new equation in v . Let v be a function that
satisfies the relationship

v ′ = q(t )y(t )v(t )

(i) Differentiate v ′ = qyv with respect to t to show that

v ′′ = (qyv)′ = q′yv + qy ′v + qyv ′ (2.8.4)

(ii) Show that q′yv = q′v ′/q.

(b) Multiply both sides of the Riccati equation (2.8.3) by qv and use (i) and
(ii) to show that the left-hand side may be written

vqy ′ + vqpy + vq2y2 = v ′′ +
(

p − q

q′

)
v ′ (2.8.5)

(c) Use your work in (b) to show that the Riccati equation may now be
re-expressed as the second-order equation in v given by

v ′′ +
(

p − q

q′

)
v ′ − vqf = 0 (2.8.6)

(d) Explain how you would solve the Riccati equation in the special case when
f (t ) = 0. Note particularly that to solve (2.8.6) with f (t ) = 0, you must
reduce the order of the equation through an appropriate substitution, say
u = v ′. See section 2.8.1 for further details on this technique. In addition,
note that your goal is to find the solution y to the original equation (2.8.3).
Be sure to explain how the functions v and u are used in this process.

(e) Solve the following differential equations, each of which is a Riccati
equation.

(i) y ′ + 2y + 4y2 = 0
(ii) y ′ + 1

t y + t 2y2 = 0
(iii) y ′ + y tan t + y2 cos t = 0

2.8.4 Bernoulli’s equation

The Bernoulli brothers, James (1654–1705) and John (1667–1748), contributed
to the solution of

y ′ + p(t )y = q(t )yn, n 
= 1 (2.8.7)
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the so-called Bernoulli equation. We will explore the approach credited to John
through the following prompts. Similar to the Riccati equation, the Bernoulli
equation may be transformed into a linear differential equation through a clever
change of variables.

(a) First, multiply (2.8.7) by y−n to obtain

y−ny ′ + p(t )y1−n = q(t ) (2.8.8)

Next, consider the change of variables v = y1−n . Compute v ′ to show that

v ′ = (1 − n)y−ny ′ (2.8.9)

Now use (2.8.8) and (2.8.9) to show that v satisfies the linear first-order
equation

v ′ + (1 − n)p(t )v = (1 − n)q(t ) (2.8.10)

(b) Explain why in the cases when n = 1, n = 2, q(t ) = 0, and p(t ) = 0 the
Bernoulli equation reduces to familiar equations whose solutions are
known.

(c) Solve these differential equations, each of which is a Bernoulli equation.

(i) y ′ + 2y = ty3

(ii) y ′ + 1
t y = 3y3

(iii) y ′ + y cot t = y3 sin t
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3
Linear systems of differential equations

3.1 Motivating problems

In section 1.1, we considered how the amount of salt present in a system of
two tanks can be modeled through a system of differential equations. In that
particular example, we assumed that the volume of solution in each tank (as seen
in figure 3.1) remains constant and all inflows and outflows happen at the
identical rate of 5 liter/min, and further that that the tanks are uniformly mixed
so that the salt concentration in each is identical throughout each tank at a given
time t .

With the additional premises that the volume of solution in tank A is
200 liters and the independent inflow entering A carries water contaminated
with 4g/liter of salt, we can develop a differential equation that models x1(t ),
the amount of salt (in grams) in tank A at time t . Likewise, by presuming that
tank B holds solution of volume 400 liters and the inflow entering B carries
a concentration of salt of 7g/liter, a similar analysis produces a differential
equation whose solution is x2(t ), the amount of salt (in grams) in tank B at
time t . In particular, we found in (1.1.6) that the following system of differential
equations arose:

dx1

dt
= − x1

20
+ x2

80
+ 20

dx2

dt
= x1

40
− x2

40
+ 35

(3.1.1)

With our experience in linear algebra, we can now represent this system in
matrix notation. In particular, if we simultaneously consider the amounts of

187
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A B

Figure 3.1 Two tanks with inflows, outflows,
and connecting pipes.

salt x1(t ) and x2(t ) as entries in the vector function

x(t ) =
[
x1(t )
x2(t )

]

we know that

x′(t ) =
[
dx1/dt
dx2/dt

]
(3.1.2)

Moreover, in (3.1.1) we recognize the familiar form of a matrix product in the
terms involving x1 and x2. Specifically,

−x1/20 + x2/80

x1/40 − x2/40
=
[−1/20 1/80

1/40 −1/40

][
x1

x2

]
(3.1.3)

With the observations from (3.1.2) and (3.1.3) substituted into (3.1.1) and
replacing the quantities 20 and 35 with the appropriate vector, we may now
write the system of differential equations in the form

x′ =
[−1/20 1/80

1/40 −1/40

]
x +
[

20
35

]
(3.1.4)

Letting A be the matrix of coefficients that multiplies the vector x and b the
vector [20 35]T, we can also write the system in (3.1.4) in the simplified form

x′ = Ax + b (3.1.5)

This form reminds us of the familiar nonhomogeneous linear first-order
differential equation with constant coefficients, for instance, an equation such as

y ′ = 2y + 5 (3.1.6)

In this chapter, we will study similarities between (3.1.5) and (3.1.6) with
the specific goal of learning how to completely solve nonhomogeneous
linear systems of differential equations with constant coefficients such as the
system (3.1.4). We will be especially interested in the role that linear algebra
plays in identifying certain characteristics of the coefficient matrix A that enable
us to find all solutions to the system.

Before we proceed to an in-depth study of linear systems of differential equa-
tions, at least one more motivating example is appropriate. A spring-mass system
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−y(t)
y

t
equilibrium

displacement −y(t)

y

t

−y(t)
mass

Figure 3.2 A spring-mass system shown at two different points in time; −y(t ) denotes
the displacement of the mass from equilibrium (where displacements below the t -axis
are considered positive).

is a physical situation that models vibrations; for example, such a system arises
any time a mass attached to a spring is set in motion. We choose to envision this
situation vertically, as seen in figure 3.2, though one can also imagine the mass
resting on a table and moving horizontally.

We consider some of the physics of basic springs and motion under the
influence of gravity in order to develop a differential equation that describes the
spring-mass system. Initially, the mass will stretch the spring from its natural
length. Hooke’s law states that the force necessary to stretch a spring a distance
x from its natural length is given by the equation

F(x) = kx

where k is the spring constant. Assume that the mass stretches the spring a
distance L0. Then from Hooke’s law, when the system is in equilibrium, we see
that the force Fs exerted by the spring must be

Fs = −kL0

Here the minus sign indicates that the force is opposing the natural downward
displacement of the spring. Note particularly that we view the downward
direction as positive. We also know that gravity acts on the mass with force
Fg given by

Fg = mg

If the system is in static equilibrium, we know that the sum of the two forces
is zero. In other words,

Fg + Fs = 0

and therefore

mg = kL0

Once the system is set in motion by some initial force or displacement, we
track the location of the mass at time t with a function y(t ). In particular,
y(t ) represents the displacement of the mass from the equilibrium position at
time t ; note that y = 0 is the equilibrium position of the system. We continue to
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designate the downward direction as positive, so y(t ) > 0 means that the mass
is below the equilibrium position, while y(t ) < 0 means the mass is above the
equilibrium position. We can see the role y(t ) plays in figure 3.2 as it tracks
the displacement of the mass from equilibrium and thus traces out a curve with
respect to time.

We can now use Newton’s second law to obtain a differential equation that
governs the system. The forces that act on the mass are:

• Gravity, with Fg = mg .

• The spring force Fs . Note now that at a given time t the displacement of
the spring from its natural length is L0 + y(t ), so that by Hooke’s law we
have Fs = −k(L0 + y).

• A possible damping force Fd . Motion may be damped due to air resistance,
friction, or some sort of external damping system (usually called a
dashpot). We assume that damping forces are directly proportional to the
velocity of the mass. Under this assumption, it follows that Fd = −cy ′.
Again, the minus sign indicates that this force opposes the motion of the
mass. The positive constant c is called the damping constant.

• Finally, there may be an external driving force present (such as the
periodic force that drives a piston in an engine). We call this a forcing
function F(t ); the role of forcing functions will be considered in detail later
on in this chapter.

Newton’s second law demands that the resultant force (that is, the sum of all
the forces) on the mass must be equal to ma, where a is the body’s acceleration
(which is also y ′′). Summing all the aforementioned forces and equating the
result with ma = my ′′, we find

my ′′ = Fg + Fs + Fd + F(t ) (3.1.7)

Using the formulas we developed earlier and substituting in (3.1.7) yields

my ′′ = mg − k(L0 + y) − cy ′ + F(t ) (3.1.8)

Now recall that mg − kL0 = 0, rearrange (3.1.8), and divide by m. This leads
us to the standard form of the differential equation that governs a spring mass
system,

y ′′ + c

m
y ′ + k

m
y = 1

m
F(t ) (3.1.9)

Note that (3.1.9) is a nonhomogeneous linear second-order differential equation.
To see how such a second-order linear differential equation is linked

to a system of linear differential equations, let’s consider the specific example
where c = 1, m = 1, k = 6, and F(t ) = 0, which results in the equation

y ′′ + y ′ + 6y = 0 (3.1.10)
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If we introduce the functions x1 and x2 through the substitutions y = x1 and
y ′ = x2, then x1(t ) represents the displacement of the mass at time t and x2(t )
is the velocity of the mass at time t .

Observe first that

x ′
1 = x2 (3.1.11)

Moreover, since x ′
2 = y ′′, we can rewrite (3.1.10) as x ′

2 + x2 + 6x1 = 0.
Equivalently,

x ′
2 = −6x1 − x2 (3.1.12)

Thus (3.1.11) and (3.1.12) generate the system of differential equations

x ′
1 = x2

x ′
2 = −6x1 − x2

(3.1.13)

which may also be expressed in matrix form as

x′ =
[

0 1
−6 −1

]
x (3.1.14)

We have therefore shown that the linear second-order differential equa-
tion (3.1.9) that describes a spring-mass system may be converted to the system
of linear first-order equations (3.1.14) through the substitution x1 = y , x2 = y ′.

In fact, any linear higher order differential equation may be converted
through a similar substitution to a system of linear first-order equations.
Therefore, by learning to understand and solve systems of linear equations,
we will be able to determine the behavior of higher order linear equations as
well. It is this fact that motivates us to study systems of linear equations prior to
the study of higher order single equations.

3.2 The eigenvalue problem revisited

As we begin our study of linear systems of first-order differential equations, we
are ultimately interested in two main questions: the first asks, for a linear system
x′ = Ax such as

x′ =
[

2 3
2 1

]
x

how can we explicitly solve the system for x(t )? In addition, what is the long-
term behavior of the solution x(t ) to such a system? How does its graph
appear? We start our investigation by thinking carefully about the meaning
of the matrix equation x′ = Ax and compare our experience with the single
first-order differential equation x ′ = ax . Note that we naturally begin with the
homogeneous system x′ = Ax; later we will consider nonhomogeneous systems
of the form x′ = Ax +b. In every case, we seek a vector function x(t ) that solves
the given system. An elementary example is instructive.
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Example 3.2.1 Solve the linear system x′ = Ax, where

A =
[−3 0

0 −1

]
Explain the role that the eigenvalues and eigenvectors of A play in the general
solution, and graph and discuss the solution curves for different choices of initial
conditions.

Solution. First, we observe that the system[
x ′

1
x ′

2

]
= x′ =

[−3 0
0 −1

]
x =

[−3 0
0 −1

][
x1

x2

]
(3.2.1)

tells us that we seek two functions x1(t ) and x2(t ) such that x ′
1 = −3x1 and

x ′
2 = −x2. Because the matrix of the system is diagonal, the problem is especially

simple. In particular, the system is uncoupled, which means that the differential
equation for x ′

1 does not involve x2 and the equation for x ′
2 does not involve x1.

From our experience with linear first-order equations, we know that the
general solution to x ′

1 = −3x1 is x1(t ) = c1e−3t and that the solution to x ′
2 = −x2

is x2(t ) = c2e−t . Writing the solution to the system as a single vector, we have

x =
[
x1

x2

]
=
[
c1e−3t

c2e−t

]
(3.2.2)

Rewriting x in another form sheds further insight on the key components of this
solution. Writing x as the sum of two vectors, we find

x =
[
c1e−3t

0

]
+
[

0
c2e−t

]
= c1e−3t

[
1
0

]
+ c2e−t

[
0
1

]
(3.2.3)

Here, we can make a key observation about the eigenvalues and eigenvectors of
A: because A is diagonal, its eigenvalues are its diagonal entries, λ1 = −3 and
λ2 = −1. Moreover, its corresponding eigenvectors may be easily confirmed to
be the vectors

v1 =
[

1
0

]
and v2 =

[
0
1

]
Thus, in (3.2.3), we see the interesting fact that the solution has the form x =
c1eλ1t v1 + c2eλ2t v2; the eigenvalues and eigenvectors therefore play a central
role in the system’s behavior.

Finally, we explore the solutions to several related initial-value problems
for select initial conditions. If we have the initial condition x(0) = [4 0]T, we
see in (3.2.3) that c1 = 4 and c2 = 0, so that the solution to the IVP is

x(t ) = 4e−3t
[

1
0

]

Two key observations can be made about this solution curve: one is that its
graph is a straight line, since for every value of t , x is a scalar multiple of the
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vector [1 0]T. Note particularly that the direction of this line is given by the
eigenvector corresponding to λ1 =−3. The other important fact is that e−3t → 0
as t → ∞, and therefore x(t ) → 0, so that the solution approaches the origin as
time increases without bound.

For the initial condition x(0) = [0 5]T, it follows from (3.2.3) that c1 = 0
and c2 = 5, and thus the solution to this IVP is

x(t ) = 5e−t
[

0
1

]

Similar observations about the behavior of this solution may be made to those
noted above for the first chosen initial condition: this solution curve is linear
and approaches the origin as t → ∞.

Finally, if we consider an initial condition that does not correspond to an
eigenvector of the system, such as x(0) = [4 5]T, (3.2.3) tells us that c1 = 4 and
c2 = 5, and thus

x = 4e−3t
[

1
0

]
+ 5e−t

[
0
1

]
This last solution’s graph is not a straight line. As seen in figure 3.3, which shows
the three different solutions based on the differing initial conditions, we see the
consistent behavior that every solution tends to the origin as t → ∞, as well as
that the eigenvectors play a key role in how these graphs appear. We will discuss
this graphical perspective further in sections 3.4 and 3.5.

The long-term behavior of the solutions to the system (3.2.1) in
example 3.2.1 suggests that every solution tends to the zero vector. In fact, the
origin itself is a solution, a so-called constant or equilibrium solution. That is, if

5

5

x1

x2

solution through (4,5)

solution through (4,0)

solution through (0,5)

Figure 3.3 Plots of solutions to three IVPs for
the system in example 3.2.1. Arrows indicate
the direction of flow along the solution curve
as time increases.
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we consider whether there is any constant vector x that is a solution to x′ = Ax,
it follows that x′ = 0, and thus x must satisfy Ax = 0. From our work with
homogeneous linear equations, we know that x = 0 is always a solution to this
equation, and thus the zero vector is a constant solution to every homogeneous
linear system of first-order differential equations. In sections 3.4 and 3.5 we will
investigate the so-called stability of this equilibrium solution.

There is a second perspective from which we can see how eigenvectors
and eigenvalues arise in the solution of linear systems of differential equations.
After constant solutions, the next simplest type of solutions to such a system
are straight-line solutions. In other words, solutions whose graph is a straight
line in space form a particularly important type of solution to a system. In the
preceding example, we saw two such straight-line solutions: each occurred in
the direction of an eigenvector and passed through the origin.

In search of a general straight-line solution to x′ = Ax, we know that any
such solution must have the form x(t ) = f (t )v, where f (t ) is a scalar function
and v is a constant vector. This form guarantees that x(t ) traces out a path that
is a straight line through 0 in the direction of v. In order for x(t ) to satisfy the
system, we observe that since x′(t ) = f ′(t )v, the equation

f ′(t )v = A(f (t )v) (3.2.4)

must hold. Moreover, since f (t ) is a scalar, the linearity of matrix multiplication
allows us to rewrite (3.2.4) as

f ′(t )v = f (t )Av (3.2.5)

Equation (3.2.5) is strongly reminiscent of the equation we use to define
eigenvalues and eigenvectors: Ax = λx. In fact, if f ′(t ) = λf (t ), then (3.2.5)
implies that

λf (t )v = f (t )Av

Further, if f (t ) 
= 0, then λv = Av, and λ and v must be an eigenvalue-
eigenvector pair of A.

It is therefore natural for us to want f to satisfy the single differential
equation f ′(t ) = λf (t ). From our work in chapter 2, we know that f (t ) = Ceλt

is the general solution to this equation. Substituting this form for f in (3.2.5),
we now observe that

λeλt v = eλt Av (3.2.6)

and since eλt is never zero, we can simplify (3.2.6) to

λv = Av (3.2.7)

which is satisfied precisely when v is an eigenvector of A with corresponding
eigenvalue λ.

Our most recent work has demonstrated that if x(t ) is a function of the
form x(t ) = eλt v that is a solution to x′ = Ax, then (λ,v) is an eigenpair of
the coefficient matrix A. In fact, the converse also holds (as will be shown in
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the exercises), so that the following result is true for any n × n system of linear
first-order differential equations.

Theorem 3.2.1 Let A be an n ×n matrix. The vector function x(t ) = eλt v is a
solution to the homogeneous linear system of first-order differential equations
given by x′ = Ax if and only if v is an eigenvector of A with corresponding
eigenvalue λ.

We close this section with one more example to demonstrate theorem 3.2.1
and one of its important consequences.

Example 3.2.2 Consider the system of differential equations given by

x ′
1 = −2x1 − 2x2

x ′
2 = −4x1

Write the system in the form x′ = Ax and show that A has two real eigenvalues
with corresponding linearly independent eigenvectors. Verify by substitution
that for each eigenvalue-eigenvector pair, x(t ) = eλt v is a solution of the system.
In addition, show that any linear combination of such solutions is also a solution
to the system.

Solution. First, we observe that the system can be expressed in the form
x′ = Ax by using the matrix

A =
[−2 −2
−4 0

]

We briefly review the process of determining the eigenvalues and eigenvectors
of a matrix A; in most future occurrences, we will use Maple to determine this
information using the commands introduced in section 1.10.2.

Since the eigenvalues are the roots of the characteristic equation, we solve
det(A −λI) = 0. Doing so,

0 = det(A −λI)

= det

[ −2 −λ −2
−4 −λ

]
= −λ(−2 −λ) − 8

= λ2 + 2λ− 8 = (λ+ 4)(λ− 2)

so the eigenvalues of A are λ = −4 and λ = 2.
To find the eigenvector v that corresponds to λ = −4, we solve the equation

(A − (−4I))v = 0. Row-reducing the appropriate augmented matrix yields[
2 −2 0

−4 4 0

]
→
[

1 −1 0
0 0 0

]
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which shows that a corresponding eigenvector is any scalar multiple of the
vector v1 = [1 1]T. Similar computations show that for λ = 2, a corresponding
eigenvector is v2 = [1 − 2]T.

We now verify directly what theorem 3.2.1 guarantees: that x1(t ) =
e−4t [1 1]T and x2(t ) = e2t [1 − 2]T are solutions to the given system
of equations. Observe first that

x′
1(t ) = −4e−4t

[
1
1

]
(3.2.8)

and that

Ax1(t ) =
[−2 −2
−4 0

]
e−4t

[
1
1

]
= e−4t

[−2 −2
−4 0

][
1
1

]

= e−4t
[−4
−4

]
= −4e−4t

[
1
1

]
(3.2.9)

Equations (3.2.8) and (3.2.9) confirm that indeed x′
1(t ) = Ax1(t ) and

demonstrate the role that eigenvalues and eigenvectors play in the solution.
Similarly, for the function x2(t ),

x′
2(t ) = 2e2t

[
1

−2

]
and

Ax2(t ) =
[−2 −2
−4 0

]
e2t
[

1
−2

]
= e2t

[−2 −2
−4 0

][
1

−2

]

= e2t
[

2
−4

]
= 2e2t

[
1

−2

]
(3.2.10)

This shows that x′
2(t ) = Ax2(t ).

Finally, we are asked to show that any linear combination of x1(t ) and
x2(t ) is also a solution to the differential equation. While we could confirm this
somewhat laboriously through direct computations, it is much easier to work
more generally and consider known properties of differentiation and matrix
multiplication.

In particular, differentiation is a linear operator and we know that if we let
y(t ) = c1x1(t ) + c2x2(t ) it follows that

y′(t ) = (c1x1(t ) + c2x2(t ))′ = c1x′
1(t ) + c2x′

2(t ) (3.2.11)

Similarly, matrix multiplication is a linear process, so

Ay(t ) = A(c1x1(t ) + c2x2(t )) = c1Ax1(t ) + c2Ax2(t ) (3.2.12)

Since we have already established that x′
1(t ) = Ax1(t ) and x′

2(t ) = Ax2(t ), it
follows that

c1x′
1(t ) + c2x′

2(t ) = c1Ax1(t ) + c2Ax2(t )

so by (3.2.11) and (3.2.12) we have shown that y′(t ) = Ay(t ) and thus indeed
every linear combination of x1(t ) and x2(t ) is also a solution to x′ = Ax.
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Example 3.2.2 provides the foundation for much of our study of linear systems
of differential equations. It shows that when we can find real eigenvalues
and eigenvectors, these lead us directly to solutions of the system. In addition,
any linear combination of such solutions is also a solution to the system; we
state this formally in the next theorem.

Theorem 3.2.2 If (λ1,v1),(λ2,v2), . . . ,(λk ,vk) are eigenpairs of an n × n
matrix A and c1, . . . , ck are any scalars, then

x(t ) = c1eλ1t v1 + c2eλ2t v2 +·· ·+ ckeλk t vk

is a solution to x′ = Ax.

In upcoming sections, we will determine whether we have found all of
the solutions to a given system, address some subtle issues that arise when we
cannot find enough real eigenvalues and eigenvectors, and better understand the
graphical and long-term behavior of solutions. The exercises in this section will
help further illuminate the roles of eigenvalues and eigenvectors as well as some
of the issues that arise when there is an insufficient number of real eigenvectors
for a given system’s matrix.

Exercises 3.2
In exercises 1–7, compute by hand the eigenvalues and eigenvectors of the given
matrix.

1. A =
[

1 4
2 3

]

2. A =
[

0 4
1 0

]

3. A =
[

0 3
3 8

]

4. A =
[

2 2
−1 −1

]

5. A =
⎡
⎣2 2 0

1 2 1
1 2 1

⎤
⎦

6. A =
⎡
⎣3 0 1

0 2 0
5 0 −1

⎤
⎦

7. A =
⎡
⎣2 1 0

0 2 1
0 0 2

⎤
⎦
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8. Consider the system of differential equations given by

x ′
1 = −2x1 + 3x2

x ′
2 = x1 − 4x2

(a) Determine a matrix A so that the system may be written in the form
x′ = Ax.

(b) Determine all constant (equilibrium) solutions to x′ = Ax.
(c) Compute the eigenvalues and eigenvectors of A.
(d) Determine all straight-line solutions to x′ = Ax.
(e) Find a more general solution to x′ = Ax by taking all possible linear

combinations of the straight-line solutions from (d).
(f) Solve the initial-value problem x′ = Ax, x(0) = [1 2]T. Discuss the

graphical behavior of this solution.

9. Consider the system of differential equations given by

x ′
1 = −x1 + 2x2

x ′
2 = −7x1 + 8x2

(a) Determine a matrix A so that the system may be written in the form
x′ = Ax.

(b) Determine all constant solutions to x′ = Ax.
(c) Compute the eigenvalues and eigenvectors of A.
(d) Determine all straight-line solutions to x′ = Ax.
(e) Find a more general solution to x′ = Ax by taking all possible linear

combinations of the straight-line solutions from (d).
(f) Solve the initial-value problem x′ = Ax, x(0) = [−2 0]T. Discuss the

graphical behavior of this solution.

10. Consider the system of differential equations given by

x ′
1 = 2x1 + 3x2

x ′
2 = −4x2

(a) Determine a matrix A so that the system may be written in the form
x′ = Ax.

(b) Determine all constant solutions to x′ = Ax.
(c) Compute the eigenvalues and eigenvectors of A.
(d) Determine all straight-line solutions to x′ = Ax.
(e) Find a more general solution to x′ = Ax by taking all possible linear

combinations of the straight-line solutions from (d).
(f) Explain how you could find this same general solution without

determining eigenvalues and eigenvectors. (Hint: focus on x2(t )
first.)

(g) Solve the initial-value problem x′ = Ax, x(0) = [0 1]T. Discuss the
graphical behavior of this solution.
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11. Consider the system of differential equations given by

x ′
1 = −2x1 + x2

x ′
2 = −2x2

(a) Determine a matrix A so that the system may be written in the form
x′ = Ax.

(b) Determine all constant solutions to x′ = Ax.
(c) Compute the eigenvalues and eigenvectors of A.
(d) Determine all straight-line solutions to x′ = Ax.
(e) Find a more general solution to x′ = Ax by taking all possible linear

combinations of your straight-line solutions from (d).
(f) Attempt to solve the initial-value problem x′ = Ax, x(0) = [1 1]T.

What does this tell you about the proposed general solution in (e)?

12. Consider the system of differential equations given by

x ′
1 = 2x1 + 9x2

x ′
2 = −x1 − 2x2

(a) Determine a matrix A so that the system may be written in the form
x′ = Ax.

(b) Determine all constant solutions to x′ = Ax.
(c) Compute the eigenvalues and eigenvectors of A.
(d) Are there any straight-line solutions to x′ = Ax. Why or why not?

13. Consider the system of differential equations given by

x ′
1 = −3x1 + x2

x ′
2 = 3x1 − x2

(a) Determine a matrix A so that the system may be written in the form
x′ = Ax.

(b) Determine all constant solutions to x′ = Ax. Compare and contrast
your findings with preceding exercises.

(c) Compute the eigenvalues and eigenvectors of A.
(d) Determine all straight-line solutions to x′ = Ax. How many such

solutions exist?
(e) Find a more general solution to x′ = Ax by taking all possible linear

combinations of your straight-line solutions from (d).
(f) Solve the initial-value problem x′ = Ax, x(0) = [3 0]T. Discuss the

graphical behavior of this solution.

14. Consider the system of differential equations given by

x ′
1 = 3x1 + x2 + x3

x ′
2 = x1 + 3x2 + x3

x ′
3 = x1 + x2 + 3x3
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(a) Determine a matrix A so that the system may be written in the form
x′ = Ax.

(b) Determine all constant solutions to x′ = Ax.
(c) Compute the eigenvalues and eigenvectors of A.
(d) Determine all straight-line solutions to x′ = Ax.
(e) Find a more general solution to x′ = Ax by taking all possible linear

combinations of your straight-line solutions from (d).
(f) Solve the initial-value problem x′ = Ax, x(0) = [1 1 1]T. Discuss the

graphical behavior of this solution.

15. Consider the system of differential equations given by

x ′
1 = 8x1 − x2 − 11x3

x ′
2 = 18x1 − 3x2 − 19x3

x ′
3 = 2x1 − x2 − 5x3

(a) Determine a matrix A so that the system may be written in the form
x′ = Ax.

(b) Determine all constant solutions to x′ = Ax.
(c) Compute the eigenvalues and eigenvectors of A.
(d) Determine all straight-line solutions to x′ = Ax.
(e) Find a more general solution to x′ = Ax by taking all possible linear

combinations of your straight-line solutions from (d).
(f) Solve the initial-value problem x′ = Ax, x(0) = [1 1 1]T. Discuss the

graphical behavior of this solution.

Recall from section 3.1 that a second-order linear differential equation whose
solution is y(t ) may be converted to a system of first-order linear equations
whose solution is x = [x1 x2]T through the substitution x1 = y , x2 = y ′. See,
for example, the discussion following (3.1.10). In exercises 16–22, convert each
given higher order differential equation to a system of first-order equations
through an appropriate substitution.

16. y ′′ − 4y = 0

17. y ′′ + y ′ − 12y = 0

18. y ′′ + y ′ + y = 0

19. y ′′ − 2y ′ − 8y = et

20. y ′′′ + 3y ′′ + 3y ′ + y = 0

21. y ′′′ − 6y ′ + 5y = 0

22. y(4) + 2y ′′′ − 5y ′′ + y ′ − 9y = 0

In sections 1.1 and 3.1, we showed how two connected tanks containing a solute
lead to a system of linear first-order differential equations. In exercises 23–26,
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set up, but do not solve a system of differential equations or initial-value problem
whose solution would give the amount of salt in each tank at time t . Write each
system in matrix form.

23. A system of two tanks is connected in such a way that each of the tanks has
an independent inflow that delivers salt solution to it, each has an
independent outflow (drain), and each tank is connected to the other with
an outflow and an inflow. The relevant information about each tank is
given in the table below.

Tank A Tank B

Tank volume 100 liters 200 liters

Rate of inflow to the tank 5 liters/min 9 liters/min

Concentration of salt in inflow 7 g/liter 3 g/liter

Rate of drain outflow 4 liters/min 10 liters/min

Rates of outflows to other tank to B: 3 liters/min to A: 2 liters/min

24. Suppose that in exercise 23 all of the given information remains the same
except for the fact that instead of saltwater flowing into each tank, pure
water flows in; that is, the concentration of salt in the entering solution is
0 g/liter for each tank.

25. In a closed system of two tanks (i.e., one for which there are no input flows
and no output flows), the following information is given. Tank A is filled
with 100 liters of solution whose initial concentration is 0.25 g/liter.
Tank B is filled with 50 liters of solution whose initial concentration is
3 g/liter. The two tanks are connected with two pipes having flows in
opposite direction; mixed solution from Tank A flows to Tank B at a rate
of 4 liters/min. Similarly, mixed solution flows from Tank B to Tank A at a
rate of 4 liters/min.

26. In a closed system of three tanks (i.e., one for which there are no input
flows and no output flows), the following information is given.

Tank A Tank B Tank C

Tank Volume 100 liters 150 liters 125 liters

Rates of outflows to B: 3 liters/min to C : 1 liter/min to A: 4 liters/min
to other tanks

Rates of outflows to C : 4 liters/min to A: 3 liters/min to B: 1 liter/min
to other tanks
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Tank A is filled with 100 liters of solution whose initial concentration is
8 g/liter. Tank B is filled with 150 liters of solution whose initial
concentration is 3 g/liter. Tank C is initially filled with 125 liters of pure
water. The three tanks are connected with pipes having flows in opposite
directions; flow rates are given in the table above.

27. Show that if (λ,v) is an eigenpair of the matrix A, then x(t ) = eλt v is a
solution to the homogeneous system of linear differential equations given
by x′ = Ax.

3.3 Homogeneous linear first-order systems

In preceding sections, we have encountered examples of systems of two
(or three) linear differential equations in two (or three) unknown functions.
More generally, a linear system of n differential equations in n unknown functions
(or simply, a linear system) is a collection of differential equations for which we
seek unknown functions x1(t ), . . . ,xn(t ) when given n equations with coefficient
functions aij(t ) and bi(t ) in the form

dx1

dt
= a11(t )x1 + a12(t )x2 +·· ·+ a1n(t )xn + b1(t )

dx2

dt
= a21(t )x1 + a22(t )x2 +·· ·+ a2n(t )xn + b2(t )

...
...

dxn

dt
= an1(t )x1 + an2(t )x2 +·· ·+ ann(t )xn + bn(t )

It will be convenient to write the above system in matrix form. If we let x denote
the vector function whose entries are x(t ) = [xi(t )], A(t ) the n × n matrix of
functions whose entries are A = [aij(t )], and b(t ) the vector of functions whose
entries are b = [bi(t )], then the above system can be rewritten simply as

x′(t ) = A(t )x(t ) + b(t ) (3.3.1)

In much of our work, we will suppress the independent variable t and write
x′ = Ax + b. Moreover, it will most often be the case that, as in examples 3.2.1
and 3.2.2, the matrix A has all constant entries. Indeed, from this point on,
unless otherwise noted, we will assume the matrix A has constant entries.

In the event that b = 0, we say that the linear system is homogeneous. If
b is nonzero, the system is nonhomogeneous. We have already encountered
in theorems 3.2.1 and 3.2.2 the important facts that for any homogeneous
first-order linear system x′ = Ax, every solution of the form x(t ) = eλt v requires
(λ,v) to be an eigenpair of A, and that any linear combination of such solutions
is also a solution to the system.

Just as with individual differential equations, to each system of equations
we can associate an initial-value problem. Using the matrix notation (3.3.1), if
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we assume that we also have the initial condition x(t0) = x0, then we have the
standard initial-value problem

x′(t ) = A(t )x(t ), x(t0) = x0 (3.3.2)

We next consider a theoretical result (whose proof we omit) that will
frame our overall work with systems. The following theorem is analogous to
the earlier result we encountered in theorem 2.2.1 regarding the existence of a
unique solution to the initial-value problem associated with a single first-order
differential equation.

Theorem 3.3.1 In (3.3.2), let the entries of the matrix A(t ) be continuous
functions on a common interval I that contains the value t0. Then there exists a
unique solution x(t ) to (3.3.2) on the interval I .

In particular, we note that in examples where the matrix A has constant
coefficients, the entries are continuous functions, so that the IVP x′ = Ax,
x(0) = x0 is guaranteed to have a unique solution. We now examine this result
more closely through a particular example, revisiting a problem we considered
in the preceding section.

Example 3.3.1 Determine the unique solution to the IVP given by

x′ =
[−2 −2
−4 0

]
x, x(0) =

[−5
3

]
(3.3.3)

Solution. We note, by theorem 3.3.1, that a unique solution exists. Moreover,
from our work in example 3.2.2, every function of the form

x(t ) = c1e−4t
[

1
1

]
+ c2e2t

[
1

−2

]
(3.3.4)

is a solution to the system x′ = Ax. We now explore whether we can find
constants c1 and c2 in order that the function x(t ) will satisfy the given initial
condition in (3.3.3).

The initial condition in (3.3.3) and (3.3.4) together imply[−5
3

]
= x(0) = c1e0

[
1
1

]
+ c2e0

[
1

−2

]
or equivalently

c1

[
1
1

]
+ c2

[
1

−2

]
=
[−5

3

]
(3.3.5)

We note that since the vectors [1 1]T and [1 − 2]T (which are eigenvectors
of A) are linearly independent and span R

2, we are guaranteed a unique
solution to (3.3.5). Row-reducing the system (3.3.5), we find[

1 1 −5
1 −2 3

]
→
[

1 0 − 7
3

0 1 − 8
3

]
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Thus, we have shown

x(t ) = −7

3
e−4t

[
1
1

]
− 8

3
e2t
[

1
−2

]

is the unique solution to the given initial-value problem.

One especially important observation from example 3.3.1 can be made regarding
the point at which we solved for the constants c1 and c2: we were guaranteed
not only that a solution existed, but also that it was unique, due to the fact that
two linearly independent eigenvectors of the 2 × 2 matrix A were present in the
general solution (3.3.4). Indeed, if we imagine wanting to solve any similar IVP
with the freedom to choose any initial vector x(0), it will be necessary that x(0)
can be written as a linear combination of the vectors v1 and v2, whenever the
general solution has form

x(t ) = c1eλ1t v1 + c2eλ2t v2

This situation is indicative of the general fact that for all 2 × 2 linear systems
of DEs, we must have two parts to the general solution, in order to be able
to uniquely determine the constants c1 and c2. Note further that for the
solutions x1(t ) = eλ1t v1 and x2(t ) = eλ2t v2 we encountered above, x1(0) = v1

and x2(0) = v2 are linearly independent and form a basis for R
2. This

linear independence of the constant vectors v1 and v2 turns out to have an
important analog in the linear independence of certain solutions to the system
of differential equations.

More generally, we can consider these same issues for an n×n homogeneous
system. Because theorem 3.3.1 guarantees the existence of a unique solution to
the corresponding IVP for every initial condition x(0) ∈ R

n , when we think
about the structure of the general solution, it is natural to think this solution
will have form

x(t ) = c1x1(t ) + c2x2(t ) +·· ·+ cnxn(t )

where {x1(0),x2(0), . . . ,xn(0)} form a basis for R
n .

These observations, together with our earlier work in theorem 3.2.2 that showed
that every linear combination of solutions to the general homogeneous linear
system of DEs (3.3.1) is also a solution to (3.3.1), help explain why the set of all
solutions to x′ = Ax, where A is a matrix with constant coefficients, is a vector
space of dimension n. We state this formally in the following result.

Theorem 3.3.2 The set of all solution vectors to the homogeneous linear
system x′ = Ax, where A is an n × n matrix with constant coefficients, forms a
vector space of dimension n.

Theorem 3.3.2 shows us that in order to solve an n × n system of
homogeneous first-order DEs, we must find n linearly independent solutions to
the system. Said differently, the general solution to x′ = Ax will have form

x(t ) = c1x1(t ) + c2x2(t ) +·· ·+ cnxn(t ) (3.3.6)
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where x1(t ), . . . ,xn(t ) are linearly independent functions. Thus, our search for
the general solution to the system requires us to find these n linearly independent
functions x1(t ), . . . ,xn(t ). While we need to discuss in more detail what it means
for vector functions (rather than constant vectors) to be linearly independent,
we can first note that we know by theorem 3.2.1 that when (λi,vi) is an eigenpair
of A, the function

xi(t ) = eλi t vi

is a solution to x′ = Ax. This fact, combined with theorem 3.3.2, implies the
result depicted in theorem 3.3.3.

Theorem 3.3.3 If A is an n×n matrix with n linearly independent eigenvectors
v1,v2, . . . ,vn , with corresponding eigenvalues λ1,λ2, . . . ,λn (where the
eigenvalues are not necessarily distinct), then the general solution to x′ = Ax is

x(t ) = c1eλ1t v1 + c2eλ2t v2 +·· ·+ cneλnt vn (3.3.7)

The linear independence of v1, . . . ,vn guarantees that we can solve the IVP
x′ = Ax, x(0) = x0 for every possible choice of x0 ∈ R

n , since we may write

x0 = c1v1 + c2v2 +·· ·+ cnvn

for a unique set of values c1, . . . , cn . This shows that the general solution (3.3.7)
indeed captures all possible solutions to the system.

In our original study of the eigenvalue problem in section 1.10, we
observed (and proved in one of the exercises) that eigenvectors corresponding
to distinct (real1) eigenvalues are linearly independent. This yields an important
consequence of theorem 3.3.3: if A has n distinct real eigenvalues, then A has n
linearly independent (real) eigenvectors. In particular, the following corollary
is true.

Corollary 3.3.4 If A is an n × n matrix with n distinct real eigenvalues
λ1,λ2, . . . ,λn , then the corresponding eigenvectors v1,v2, . . . ,vn are linearly
independent and the general solution to x′ = Ax is

x(t ) = c1eλ1t v1 + c2eλ2t v2 +·· ·+ cneλnt vn (3.3.8)

We now consider a specific example in which we see corollary 3.3.4 at work.

Example 3.3.2 Determine the general solution to the homogeneous first-order
system of DEs x′ = Ax and determine the unique solution to the initial-value
problem

x′ = Ax =
⎡
⎣−4 1 −1

−1 −2 5
−3 3 0

⎤
⎦x, x(0) =

⎡
⎣ 1

−2
3

⎤
⎦

1 We are interested in real solutions to the system x′ = Ax; when eigenvalues and eigenvectors are
complex, additional work is needed. See section 3.5.
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Solution. We begin by computing the eigenvalues and eigenvectors of
A. Using the Eigenvectors(A) command in Maple, we find that the
eigenvalues of A are λ1 = −6,λ2 = −3,λ3 = 3, with corresponding eigenvectors

v1 =
⎡
⎣ 1

−1
1

⎤
⎦ ,v2 =

⎡
⎣1

1
0

⎤
⎦ ,v3 =

⎡
⎣0

1
1

⎤
⎦

Since the eigenvalues of A are distinct, we know immediately that the
corresponding eigenvectors are linearly independent, and therefore by
corollary 3.3.4 that the general solution to the given system is

x(t ) = c1e−6t

⎡
⎣ 1

−1
1

⎤
⎦+ c2e−3t

⎡
⎣1

1
0

⎤
⎦+ c3e3t

⎡
⎣0

1
1

⎤
⎦ (3.3.9)

To solve the IVP with

x(0) =
⎡
⎣ 1

−2
3

⎤
⎦

we set t = 0 in (3.3.9) and apply the given condition, which leads to the vector
equation

c1

⎡
⎣ 1

−1
1

⎤
⎦+ c2

⎡
⎣1

1
0

⎤
⎦+ c3

⎡
⎣0

1
1

⎤
⎦=

⎡
⎣ 1

−2
3

⎤
⎦

Writing this equation in augmented matrix form and row-reducing shows that⎡
⎣ 1 1 0 1

−1 1 1 −2
1 0 1 3

⎤
⎦→

⎡
⎣1 0 0 2

0 1 0 −1
0 0 1 1

⎤
⎦

and, therefore, the solution to the IVP is

x(t ) = 2e−6t

⎡
⎣ 1

−1
1

⎤
⎦− e−3t

⎡
⎣1

1
0

⎤
⎦+ e3t

⎡
⎣0

1
1

⎤
⎦

From corollary 3.3.4, we know that if we have an n ×n matrix A with n linearly
independent real eigenvectors, then we can completely solve the system x′ = Ax.
But what if A lacks n real linearly independent eigenvectors? While we will
encounter this situation in more detail in section 3.5, here it is worthwhile to
note that we will still be seeking n linearly independent solutions x1(t ), . . . ,xn(t )
to the general system. For these vector functions, the fundamental meaning of
linear independence remains the same as it does for constant vectors: the set of



Homogeneous linear first-order systems 207

vector functions {x1(t ), . . . ,xn(t )} is linearly independent if and only if the only
values of c1, . . . , cn that make

c1x1(t ) +·· ·+ cnxn(t ) = 0 (3.3.10)

true for all values of t are c1 = ·· · = cn = 0. Testing the linear independence of
vector functions is more involved; to do so, we introduce a new concept and a
corresponding theorem.

Definition 3.3.1 Given vector functions x1(t ), . . . ,xn(t ) where each xi(t ) ∈R
n

for all t , the Wronskian of these functions is

W [x1, . . . ,xn] = det[x1, . . . ,xn] (3.3.11)

That is, the Wronskian of a set of n vector functions, each of which lies in R
n , is

the determinant of the n × n matrix whose columns are x1, . . . ,xn .

The Wronskian enables us to easily test whether or not vector functions
are linearly independent through the following theorem, which will be stated
without proof.

Theorem 3.3.5 Let x1(t ), . . . ,xn(t ) be vector functions continuous on an
interval I , where xi(t ) ∈ R

n for all t ∈ I . If at any point t0 in I , W [x1, . . . ,xn]
(t0) 
= 0, then {x1(t ), . . . ,xn(t )} is linearly independent on I .

We observe that this result appears reasonable since it is analogous to
two statements that appear in the Invertible Matrix theorem: for a set of n
constant vectors in R

n , we know that the set is linearly independent if and only
if the determinant of the matrix whose columns are these vectors is nonzero.
Theorem 3.3.5 is a generalization of this result to the situation where the vectors
are not constant.

An example will now demonstrate the use of the Wronskian in showing a
set of vector functions is linearly independent.

Example 3.3.3 Consider the vector functions x1 = [e−t − e−t e−t ]T, x2 =
[3e2t e2t − 2e2t ]T, and x3 = [e5t e5t e5t ]T. Are x1, x2, and x3 linearly
independent?

Solution. We use the Wronskian of x1, x2, and x3 to determine their linearly
independence. Observe that

W [x1,x2,x3] = det

⎡
⎣ e−t 3e2t e5t

−e−t e2t e5t

e−t −2e2t e5t

⎤
⎦

= e−t (e2t e5t + 2e5t e2t ) − 3e2t (−e−t e5t − e5t e−t )

+ e5t (2e2t e−t − e2t e−t )
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= e−t (3e7t ) − 3e2t (−2e4t ) + e5t (et )

= 10e6t 
= 0

Since W [x1,x2,x3] 
= 0 for at least one t -value (in fact, for all t ), it follows by
theorem 3.3.5 that the functions x1, x2, and x3 are linearly independent.

In conclusion, we now know that when we encounter a homogeneous system of
n linear first-order differential equations in n unknown functions, the set of all
solutions to the system forms an n-dimensional vector space. Hence, we seek n
linearly independent solutions to the system x′ = Ax. Such a set x1, . . . ,xn of n
linearly independent solution vectors to this system is called a fundamental set.
Moreover, given a set of fundamental solutions x1, . . . ,xn to x′ = Ax, on some
interval I , the general solution to the system is

x(t ) = c1x1 +·· ·+ cnxn

We have also seen that if an n × n matrix A has n linearly independent
real eigenvectors, then these eigenvectors and their corresponding eigenvalues
generate a fundamental set for the system x′ = Ax. In subsequent sections we
will find that, even in the case when an insufficient number of real eigenvectors
exists, the eigenvalue problem enables us to build a fundamental set. Moreover,
we will investigate how fundamental solutions allow us to fully understand the
graphical behavior of solutions and the stability of equilibrium solutions to the
system.

Exercises 3.3

1. If x′ = Ax represents the system of differential equations given by a 4 × 4
matrix A with constant entries, how many linearly independent solutions
to the system do we need to find in order to determine the general
solution? What if A is 7 × 7?

2. Consider the second-order differential equation y ′′ + y = 0. Using the
substitutions y = x1 and y ′ = x2, convert the given second-order
differential equation to a system of first-order equations. What is the
dimension of the solution space to the system? What does this tell you
about the dimension of the solution space to the original second-order
equation?

3. Consider the third-order differential equation y ′′′ + 3y ′′ + 3y ′ + y = 0.
Using the substitutions y = x1, y ′ = x2, and y ′′ = x3, convert the given
differential equation to a system of first-order equations. What is the
dimension of the solution space to the system? What does this tell you
about the dimension of the solution space to the original third-order
equation?
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In exercises 4–8, use the Wronskian to determine if the given set of vector
functions is linearly independent.

4. x1(t ) = [e−t − e−t ]T,x2(t ) = [e2t 2e2t ]T

5. x1(t ) = [cos t sin t ]T,x2(t ) = [sin t cos t ]T

6. x1(t ) = [e−t − e−t ]T,x2(t ) = [−3e−t 3e−t ]T

7. x1(t ) = [et − et et ]T,x2(t ) = [e7t 2e7t − 3e7t ]T,x3(t ) =
[4e−4t e−4t − e−4t ]T

8. x1(t ) = [cos t − sin t 0]T,x2(t ) = [sin t cos t 0]T,x3(t ) = [0 0 et ]T

9. Explain why for a set of two vector functions, the Wronskian is unneeded
to check for linear independence. (Hint: what is the simple test for a pair
of constant vectors to be linearly independent?)

10. Let x′ = Ax be given by the matrix

A =
[−2 1

1 −2

]

(a) Compute the eigenvalues and eigenvectors of A. Explain why these
enable you to find the general solution to x′ = Ax.

(b) State the general solution to the system.
(c) Solve the IVP with the initial condition x(0) = [3 2]T.

11. Let x′ = Ax be given by the matrix

A =
[

3 1
0 3

]

(a) Compute the eigenvalues and eigenvectors of A. Explain why you have
found one linearly independent solution to the system, but still need to
determine another.

(b) Verify through direct substitution that x2(t ) = te3t [1 0]T + e3t [0 1]T

is a solution to the given system x′ = Ax.
(c) Show that the solution you found in (a) above and the solution x2(t )

in (b) are linearly independent, and hence state the general solution to
the system.

(d) Solve the IVP with the initial condition x(0) = [3 2]T.

12. Let x′ = Ax be given by the matrix

A =
[

3 0
0 3

]
(a) Compute the eigenvalues and eigenvectors of A. Explain why, despite

the repeated eigenvalue, you have found two linearly independent
solutions to the system.

(b) State the general solution to the system.
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(c) Solve the IVP with the initial condition x(0) = [3 2]T.
(d) Explain how you could solve the original system given in this problem

without using eigenvalues and eigenvectors.

13. Let x′ = Ax be given by the matrix

A =
[

0 −1
1 0

]

(a) Compute the eigenvalues and eigenvectors of A. Explain why the
eigenvalues and eigenvectors do not produce any real linearly
independent solutions to the system.

(b) Verify through direct substitution that x1(t ) = [cos t sin t ]T and
x2(t ) = [− sin t cos t ]T are solutions to the given system x′ = Ax.

(c) Show that the solutions you verified in (b) are linearly independent,
and hence state the general solution to the system.

(d) Solve the IVP with the initial condition x(0) = [3 2]T.

14. Let x′ = Ax be given by the matrix

A =
⎡
⎣5 6 2

0 −1 −8
1 0 −2

⎤
⎦

(a) Compute the eigenvalues and eigenvectors of A. Explain why your
work determines two linearly independent solutions to the system,
but that one additional linearly independent solution remains to be
found.

(b) Verify through direct substitution that
x3(t ) = te3t [5 − 2 1]T + e3t [1 1/2 0]T is a solution to the given
system x′ = Ax.

(c) Show that the set of three solutions from (a) and (b) is linearly
independent, and hence state the general solution to the system.

(d) Solve the IVP with the initial condition x(0) = [3 2 1]T.

15. Consider the second-order differential equation y ′′ + y = 0. Convert
this equation to a system of first-order equations and solve the system.
Use your work to state the general solution y to the original equation.
(Hint: See exercise 13.)

16. Convert the second-order differential equation y ′′ + 3y ′ + 2y = 0 to a
system of first-order equations and solve the system. Use your work to
state the general solution y to the original equation.

17. Convert the third-order differential equation y ′′′ − y ′ = 0 to a system of
first-order equations and solve the system. Use your work to state the
general solution y to the original equation.
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3.4 Systems with all real linearly independent
eigenvectors

In this section, we closely examine the graphical and long-term behavior of
solutions to 2×2 systems in the case where the coefficient matrix A has two real,
linearly independent eigenvectors. We do so through a sequence of examples
that demonstrate a variety of possibilities that naturally lead to discussion of the
stability of equilibrium solutions.

We first review the graphical behavior of vector functions, a subject
normally encountered in multivariable calculus. For the system x′ = Ax in
the case where A is 2 × 2, every solution x(t ) is a vector function whose output
lies in R

2. In particular, the graph of x(t ) is the curve that is traced out by the
vectors x(t ) at various times t . For example, if

x(t ) = e−t
[

1
0

]
+ et

[
0
1

]
=
[
e−t

et

]
(3.4.1)

is a function we have found by solving a system of differential equations, then
evaluating x(t ) at t = −1,0, and 1 yields the vectors

x(−1) ≈
[

2.719
0.368

]
, x(0) =

[
1
1

]
, and x(1) ≈

[
0.368
2.719

]
(3.4.2)

Plotting these vectors helps indicate how x(t ) traces out the parametric curve
given by (x1(t ),x2(t )) = (e−t ,et ), shown at left in figure 3.4.

In addition, it is important to recall the meaning of x′(t ), the derivative of
a vector function. The direction of the vector x′(t ) indicates the instantaneous
direction of motion of a particle traveling along the curve traced out by x(t ),
while the magnitude of x′(t ) determines the instantaneous speed of the particle
at time t . For our purposes, the direction of motion is most important because

4

4−4

−4

(1,1)
(2.719, 0.368)

(0.368, 2.719)

4

4−4

−4

(1,1)
(2.719, 0.368)

(0.368, 2.719)

x1
x1

x2x2

Figure 3.4 At left, the solution curve x(t ) given in (3.4.1). At right, the solution curve
x(t ) given in (3.4.1), along with corresponding scaled derivative vectors at times t = −1,
t = 0, and t = 1.
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this indicates a flow along the solution curve as time increases. Thus, rather
than plotting the vector x′(t ) at various times, we plot scaled versions of it, each
emanating from the tip of x(t ). For example, since

x′(t ) =
[−e−t

et

]
(3.4.3)

it follows that

x′(−1) ≈
[−2.719

0.368

]
, x′(0) =

[−1
1

]
, and x′(1) ≈

[−0.368
2.719

]
(3.4.4)

Plotting scaled versions of each of these vectors emanating from x(−1), x(0),
and x(1), respectively, we see the updated image at the right in figure 3.4.

These plots of the derivative vectors and the flow of the solution curve
remind us of our earlier work with slope fields for single differential equations.
Indeed, since a solution curve such as x(t ) will always be the result of solving
some differential equation x′ = Ax, we realize that we have a formula for x′, just
as we had a formula for y ′ in examples like y ′ = −2y . In the example discussed
above, we can view x(t ) as being the solution to the system x′ = Ax where A is
the matrix

A =
[−1 0

0 1

]
(3.4.5)

so that x′(t ) satisfies the equation[
x ′

1(t )

x ′
2(t )

]
= x′(t ) = Ax(t ) =

[−x1(t )
x2(t )

]
(3.4.6)

In particular, (3.4.6) indicates how, for any point (x1,x2) in the plane, we can
easily compute x′ at that point, and hence know the direction of the flow of
the solution curve that passes through that point. Using a computer to conduct
such computations at points sampled throughout the plane (with each resulting
vector scaled to be of equal length), we get a picture of the so-called direction
field for the system, shown at left in figure 3.5, which is analogous to a direction
field for a single differential equation.

If we now superimpose our plot of the solution curve in figure 3.4 in the
direction field, now shown on the right in figure 3.5, we see clearly the role that
the derivative x′ and the direction field play in determining the graph of the
solution x, as well as the typical behavior of a solution as time increases.

The x1–x2 plane is usually called the phase plane; note that the independent
variable t is implicit in the flow, while the behavior of the curve relative to the
coordinate axes demonstrates the interrelationship between the components
x1(t ) and x2(t ) of the solution x(t ). Sample solution curves, such the one plotted
in figure 3.5, are typically called trajectories. Each distinct trajectory is a solution
to an initial-value problem; the one in figure 3.5 can be viewed as the solution
to x′ = Ax,x(0) = [1 1]T.
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x1

x2
4

4−4

−4

x1

x2

4

−4

−4

4

Figure 3.5 At left, the direction field for the system x′ = Ax given by (3.4.5). At right,
the solution to (3.4.5) that is given by (3.4.1).

We will now explore the direction field, phase plane, and trajectories for
several examples of 2 × 2 systems of linear differential equations for which the
coefficient matrix has two real linearly independent eigenvectors. An important
theme throughout will be the long-range behavior of solutions x(t ) as t → ∞.
In addition, we will study the equilibrium solutions of each system; a solution
x(t ) is an equilibrium or constant solution if and only if x(t ) is constant for all
values of t .

Example 3.4.1 Consider the system of differential equations given by x′ =
Ax where A =

[
3 2
2 3

]
. Compute the eigenvalues and eigenvectors of A and

state the general solution to the system. In addition, determine all equilibrium
solutions of the system. Finally, plot the direction field for the system, sketch
several trajectories, and discuss the long-term behavior of solutions relative to
the equilibrium solution(s).

Solution. The Maple command >Eigenvectors(A) produces the output[
5
1

][
1 −1
1 1

]

so that A has eigenvalues λ1 = 5 and λ2 = 1, with corresponding eigenvectors
v1 = [1 1]T and v2 = [−1 1]T. We therefore know that the general solution to
x′ = Ax is

x(t ) = c1e5t
[

1
1

]
+ c2et

[−1
1

]
To find the equilibrium solution(s), we seek all constant vectors x that satisfy
x′ = Ax. In this situation, since x is constant with respect to t , we know that
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x′ = 0, so therefore we must solve the system of linear equations given by Ax = 0
where

A =
[

3 2
2 3

]

Since det(A) 
= 0, it follows that A is an invertible matrix, so the only solution
to Ax = 0 is x = 0. Thus the system has the origin as its only equilibrium
solution.

At the end of this section, in subsection 3.4.1, we will show how to use
Maple to plot direction fields for systems. In this and subsequent examples,
well simply provide these plots for discussion. In figure 3.6, we see not only the
direction field generated by the system, but also the plots of several trajectories,
which are natural to sketch (even by hand, once the direction field is provided)
by following the map that the direction field provides.

Note particularly the straight-line solutions that follow the eigenvectors
v1 = [1 1]T and v2 = [−1 1]T. Moreover, since both eigenvalues are positive,
the respective scalar functions e5t and et both increase without bound as t →∞.
This explains why the flow along each straight-line solution is away from the
origin. Indeed, every solution besides the zero solution flows away from the
equilibrium solution at the origin.

In chapter 2, we considered single autonomous differential equations such
as y ′ = 2y − 4. When we found equilibrium solutions to such equations, we
also classified their stability based on the behavior exhibited in the direction
field. We do likewise with equilibrium solutions for systems. In example 3.4.1,

4

−4

−4

4

x2

x1

Figure 3.6 The direction field for the system
x′ = Ax of example 3.4.1 along with several
trajectories.
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we found that x = 0 is the only equilibrium solution of the system, and that
every non-constant solution flows away from 0. This shows that 0 is an unstable
equilibrium, and in this case we naturally call 0 a repelling node.

We next explore the behavior of a system where both eigenvalues are
negative.

Example 3.4.2 Consider the system of differential equations given by x′ = Ax

where A =
[−2 2

1 −3

]
. Compute the eigenvalues and eigenvectors of A, and

state the general solution to the system. In addition, determine all equilibrium
solutions to the system. Finally, plot the direction field for the system, sketch
several trajectories, and discuss the long-term behavior of solutions relative to
the equilibrium solution(s).

Solution. Using Maple, we find that A has eigenvalues λ1 = −1 and λ2 = −4,
with corresponding eigenvectors v1 = [2 1]T and v2 = [−1 1]T. The general
solution to x′ = Ax is therefore

x(t ) = c1e−t
[

2
1

]
+ c2e−4t

[−1
1

]

To find the equilibrium solution, we set x′ = 0. Solving the system of linear
equations given by Ax = 0, we see that since A is an invertible matrix, the only
solution to Ax = 0 is x = 0, so the system has the origin as its only equilibrium
solution.

Plotting the direction field and several trajectories, as shown in figure 3.7,
we observe that all solutions flow towards the equilibrium solution at the origin.
This makes sense due to the presence of the scalar functions e−4t and e−t in
the general solution, as each approaches 0 as t → ∞, and thus it follows that
x(t ) → 0 as t → ∞. Moreover, note the two straight-line solutions that show
flow along stretches of the two eigenvectors v1 = [2 1]T and v2 = [−1 1]T.

Because every non-constant solution to the system in example 3.4.2 approaches
the equilibrium solution at 0, we say that the origin is a stable equilibrium.
Moreover, based on the patterns in the flow, we use the terminology that 0 is an
attracting node.

We study the third case for a 2 × 2 linear system of differential equations
with two real, nonzero eigenvalues in the next example: the eigenvalues have
opposing signs.

Example 3.4.3 Let A =
[

3 −2
2 −2

]
and consider the system of differential

equations given by x′ = Ax. Find the general solution of the system, determine all
equilibrium solutions to the system, and plot the direction field for the system.
Include sketches of several trajectories and discuss the long-term behavior of
solutions relative to the equilibrium solution(s).
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x1

x2
4

4−4

−4

Figure 3.7 The direction field for the system
x′ = Ax in example 3.4.2 along with several
trajectories.

Solution. We find that A has eigenvalues λ1 = 2 and λ2 = −1, with
corresponding eigenvectors v1 = [2 1]T and v2 = [1 2]T. It follows that the
general solution to x′ = Ax is

x(t ) = c1e2t
[

2
1

]
+ c2e−t

[
1
2

]

Since A is an invertible matrix, the only solution to Ax = 0 is x = 0, so the origin
is only equilibrium solution of the system.

As figure 3.8 shows, the direction field and various trajectories exhibit a
different type of behavior around the origin. In particular, solutions that do
not lie on either eigenvector appear to initially flow toward the origin, and then
turn away and tend toward the straight-line solution associated with the positive
eigenvalue. More specifically, it appears that solutions that do not pass through
a point on the line in the direction of the eigenvector [1 2]T are eventually
attracted to stretches of the eigenvector [2 1]T. This is reasonable since in the
general solution, e−t will tend to 0 as t → ∞, leaving the function c1e2t [2 1]T

to dominate.

Since some solutions that pass through points near the origin tend away from
the origin as t → ∞, the origin is an unstable equilibrium in example 3.4.3.
Moreover, as the trajectories remind us of the contour plot in multivariable
calculus of a surface whose graph looks like a saddle, we say in this context as
well that the origin is a saddle point.

The preceding examples demonstrate the three possible cases for a 2 × 2
system with real, nonzero eigenvalues: both positive, both negative, or opposites.
Our next example investigates the situation when one eigenvalue is zero.
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Figure 3.8 The direction field for the system
x′ = Ax of example 3.4.3 along with several
trajectories.

Example 3.4.4 For the matrix A =
[−3 1

3 −1

]
and the corresponding system

of differential equations x′ = Ax, find the general solution of the system and
determine all equilibrium solutions. Furthermore, plot the direction field for the
system along with sketches of several trajectories; discuss the long-term behavior
of solutions relative to the equilibrium solution(s).

Solution. We first do the standard computations to find that A has eigenvalues
λ1 = −4 and λ2 = 0, with corresponding eigenvectors v1 = [−1 1]T and
v2 = [1 3]T. Thus, the general solution to x′ = Ax is

x(t ) = c1e−4t
[−1

1

]
+ c2

[
1
3

]
We immediately notice something different about x(t ). In particular, because
the second eigenvalue is 0, the scalar function e0t has no effect on the general
solution. Furthermore, with e−4t the only part of x(t ) that changes with t , we
can see that for any nonzero constant c1 and any c2, the graph of x(t ) is always
a straight line where the direction is given by the eigenvector corresponding to
the nonzero eigenvalue.

In addition, the presence of a zero eigenvalue has a significant impact on
the system’s equilibrium solutions. The fact that the columns of A are scalar
multiples of each other leads us to see immediately that A is not invertible;
this can be equivalently deduced from the fact that A has a zero eigenvalue.
The singularity of A further implies that the homogeneous equation Ax = 0
has infinitely many solutions. In particular, row-reducing the appropriate
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augmented matrix, we find that[−3 1 0
3 −1 0

]
→
[

1 −1/3 0
0 0 0

]

This implies that any constant vector x of the form

x = x1

[
1
3

]

satisfies the equation x′ = Ax, and therefore is an equilibrium solution. Note
especially that x = x1[1 3]T is an eigenvector associated with λ = 0, and thus
every eigenvector associated with the zero eigenvalue is an equilibrium solution
to the system.

The interesting behaviors that we have discussed algebraically are seen
in figure 3.9. Specifically, every non-constant solution is a straight line
solution in the direction of the eigenvector [−1 1]T that is drawn toward an
equilibrium point that lies on the eigenvector [1 3]T corresponding to the zero
eigenvalue.

The flows in figure 3.9, as well as the long-term behavior of the function e−4t in
the general solution x(t ), clearly demonstrate that every equilibrium solution
to the system is stable. Moreover, we say that each such equilibrium point is an
attracting node.

There are two important observations to make in closing. One is that we
still must address the situations where A lacks two real linearly independent
eigenvectors; we will do so in the next section. In addition, examples 3.4.1–3.4.4
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4
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−4

Figure 3.9 The direction field for the system
x′ = Ax of example 3.4.4 along with several
trajectories.
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indicate that plotting a direction field is perhaps best left to a computer; however,
in the case where A has two real, linearly independent eigenvectors, it is a
straightforward exercise use the eigenvectors to plot these straight-line solutions
by hand and to use the signs of the corresponding eigenvalues to understand
the flows along the straight line solutions. Then, it is not difficult to imagine the
overall appearance of the direction field and sketch several probable trajectories
by hand, thus fully understanding the graphical behavior of all solutions to the
system.

3.4.1 Plotting direction fields for systems
using Maple

We again use the DEtools package, and load it with the command

> with(DEtools):

To plot the direction field associated with a given system of differential
equations, we first define the system itself, similar to how we defined a single
differential equation in order to plot its slope field. We do this through the

following command for the system with coefficient matrix A =
[

3 2
2 3

]
from

example 3.4.1.

> sys := diff(x(t),t)= 3*x(t)+2*y(t),
diff(y(t),t)= 2*x(t)+3*y(t);

The system of differential equations of interest is now stored in “sys”. While
we typically use x1(t ) and x2(t ) to represent the component functions in our
discussion of the theory and solution of systems, in working with Maple it is
often simpler to use x(t ) and y(t ). The direction field may now be generated by
the command

> DEplot([sys], [x(t),y(t)], t=-1..1, x=-4..4,
y=-4..4, arrows=large, color=gray);

This command produces the output shown at left in figure 3.10.

From here, it is a straightforward exercise to sketch trajectories by hand. Of
course, Maple has the capacity to include trajectories that pass through any
initial conditions we choose. For example, if we are interested in the various
initial conditions x(0) = (2,2),(0,4),(4,0), and (−1,1), we can modify the
earlier DEplot command to

> DEplot([sys], [x(t),y(t)], t=-1.6..3.6, x=-4..4,
y=-4..4, arrows=large, color=gray, [[x(0)=-2,y(0)=0],
[x(0)=0,y(0)=-2], [x(0)=2,y(0)=0], [x(0)=0,y(0)=2],
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Figure 3.10 At left, the direction field for the system x′ = Ax of example 3.4.1. At right,
the same direction field with several trajectories.

[x(0)=0.1,y(0)=0.1], [x(0)=-0.1,y(0)=-0.1],

[x(0)=0.1,y(0)=-0.1], [x(0)=-0.1,y(0)=0.1]]);

The results of this most recent DEplot command are shown at right
in figure 3.10.

As always, the user can experiment some with the window in which the plot
is displayed: the range of x- and y-values can affect how clearly the direction field
is revealed, and the range of t -values determines how much of each trajectory is
plotted.

Exercises 3.4

1. Consider the system of differential equations x′ = Ax given by

A =
[

2 −1
3 −2

]

(a) Determine the general solution to the system x′ = Ax.
(b) Classify the stability of all equilibrium solutions to the system.
(c) Sketch all straight-line solutions to the system and hence plot several

nonlinear trajectories in the phase plane.

2. Consider the system of differential equations x′ = Ax given by

A =
[

3 1
1 3

]

(a) Determine the general solution to the system x′ = Ax.
(b) Classify the stability of all equilibrium solutions to the system.
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(c) Sketch all straight-line solutions to the system and hence plot several
nonlinear trajectories in the phase plane.

3. Consider the system of differential equations x′ = Ax given by

A =
[−3 2

2 −3

]

(a) Determine the general solution to the system x′ = Ax.
(b) Classify the stability of all equilibrium solutions to the system.
(c) Sketch all straight-line solutions to the system and hence plot several

nonlinear trajectories in the phase plane.

4. Consider the system of differential equations x′ = Ax given by

A =
[−2 0

0 −2

]

(a) Determine the general solution to the system x′ = Ax.
(b) Classify the stability of all equilibrium solutions to the system.
(c) Sketch the straight-line solutions to the system that correspond to the

two linearly independent eigenvectors. Why is every solution to this
system also a straight-line solution?

5. Consider the system of differential equations x′ = Ax given by

A =
[−2 2

1 −1

]

(a) Determine the general solution to the system x′ = Ax.
(b) Classify the stability of all equilibrium solutions to the system.
(c) Why is every non-constant solution to this system also a straight-line

solution? How are these straight-line solutions related to the
eigenvectors of the system?

In exercises 6–9, let x(t ) be the stated general solution to some system x′ = Ax.
State the straight-line solutions to the system, classify the stability of the origin,
and sketch some sample trajectories.

6. x(t ) = c1e−2t

[
1
3

]
+ c2e−5t

[
3
1

]

7. x(t ) = c1e4t

[−1
2

]
+ c2e−3t

[
1
2

]

8. x(t ) = c1e2t

[
2

−1

]
+ c2

[
1
1

]



222 Linear systems of differential equations

9. x(t ) = c1e0.1t

[
1
1

]
+ c2e10t

[−1
1

]

10. For the system x′ = Ax whose general solution is given in exercise 6,
determine a possible matrix A for the system. (Hint: If A is a matrix with
all real linearly independent eigenvectors and those eigenvectors are the
columns of a matrix P, then A satisfies the equation AP = PD, where D is
the diagonal matrix whose entries are the eigenvalues of A in order
corresponding to the eigenvectors in the columns of P.)

11. For the system x′ = Ax whose general solution is given in exercise 7,
determine a possible matrix A for the system.

12. Consider the four systems of equations given by x′ = Ax where A is given
by the matrices I, II, III, and IV below. Match each system with one of the
four direction field plots (a), (b), (c), and (d) given below. Write one
sentence for each to explain the reasoning behind your choice.

I. A =
[

5 3
3 5

]
II. A =

[
2 −4

−1 2

]
III. A =

[
2 7
7 2

]
IV. A =

[
2 3
3 −6

]

x2

x1
4

(a)

(c)

(b)

(d)

4

−4

−4

x2

x1

4

4−4

−4

−4

−4

4

4
x2

x1

x2

x1
−4

−4

4

4
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In exercises 13–17, solve the IVP x′ = Ax with the given matrix A and stated
initial condition.

13. A =
[

2 −1
3 −2

]
, x(0) = [1 2]

14. A =
[

3 1
1 3

]
, x(0) = [−3 1]T

15. A =
[−3 2

2 −3

]
, x(0) = [1 − 2]T

16. A =
[−2 0

0 −2

]
, x(0) = [−2 − 2]T

17. A =
[−2 2

1 −1

]
, x(0) = [1 4]T

In exercises 18–22, use the standard substitution to convert the given second-
order differential equation to a system of two linear first-order equations. Solve
the system to hence determine the solution y to the second-order equation.

18. y ′′ − y ′ − 6y = 0

19. y ′′ − 6y ′ + 5y = 0

20. y ′′ + 4y ′ = 0

21. y ′′ + 3y ′ + 2y = 0

22. y ′′ + y = 0

3.5 When a matrix lacks two real linearly
independent eigenvectors

We have seen repeatedly, both in theory and in specific examples, that when a
2 × 2 matrix A has two real linearly independent eigenvectors, we can determine
the general solution to x′ = Ax and its graphical behavior. In this section,
we address two remaining cases: when A has a repeated eigenvalue and only
one associated real linearly independent eigenvector, and when A has complex
eigenvalues and eigenvectors. In each case, we work through preliminary exam-
ples to discover general patterns and principles, expand these principles with
appropriate theorems, and explore and discuss graphical behavior along the way.

Example 3.5.1 Consider the system of differential equations given by x′ = Ax

where A =
[−2 1

0 −2

]
. Compute the eigenvalues and eigenvectors of A and
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explain why this alone does not lead to the general solution of the system. By
noting that the system is partially coupled, solve the system and determine a
second real, linearly independent solution. Finally, state the general solution.

Solution. By inspection, since A is a triangular matrix, we see that λ = −2
is a repeated eigenvalue of A with multiplicity 2. From this, we deduce that
v1 = [1 0]T is a corresponding eigenvector, and therefore one solution to
x′ = Ax is x1 = c1e−2t [1 0]T. However, A lacks a second linearly independent
eigenvector associated with λ = −2; therefore, we need to find a second real
linearly independent solution to the system in order to determine the general
solution to x′ = Ax. In this example, we are fortunate that the system is only
partially coupled and that therefore we may solve the system directly by using
techniques for single differential equations from chapter 2.

In particular, noting that the second equation in the system is x ′
2 = −2x2,

it follows immediately that the solution to this single differential equation is
x2(t ) = ce−2t . Substituting this result into the equation x ′

1 = −2x1 + x2, it
remains for us to solve the single nonhomogeneous linear first-order differential
equation

x ′
1 = −2x1 + ce−2t

Applying our understanding of such equations from section 2.3, via the
integrating factor v(t ) = e2t we know that

x1(t ) = 1

e2t

∫
e2t · ce−2t dt = e−2t (ct + k)

To summarize, with x1(t ) and x2(t ) as the components of x(t ), we have found
that a solution to the system is

x(t ) =
[
x1(t )
x2(t )

]

=
[
e−2t (ct + k)

ce−2t

]
(3.5.1)

If we factor this expression to write x(t ) as a linear combination of two vectors
in order to more clearly identify the role of the constants in (3.5.1), we see

x(t ) = k

[
e−2t

0

]
+ c

[
te−2t

e−2t

]
(3.5.2)

In this form, two key observations can be made. First, each individual vector
in (3.5.2) may be verified to be a solution to the given system. Moreover, these
two vectors are linearly independent. Hence, (3.5.2) is the general solution to
the given system.

While it is good that we were able to solve the system in example 3.5.1, it is still
unclear how we will proceed in similar circumstances when neither equation in
the system may be solved by techniques for single first-order equations. That is,
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if the equation for x ′
1 involves x2 and the equation for x ′

2 involves x1, but
the system’s matrix has only one linearly independent eigenvector, we cannot
employ the approach used in example 3.5.1. However, the general form of the
solution (3.5.2) can help us guess an appropriate form of the needed second
linearly independent solution in the more general case.

Recall that we know that whenever (λ,v) is a real eigenpair of A, the function
x(t ) = eλt v is a solution to x′ = Ax, and moreover x(t ) is a straight-line solution
to the system. In example 3.5.1, we found that for the given matrix, which had a
repeated eigenvalue and only one associated linearly independent eigenvector,
the scalar function teλt arose in the solution. If we recall that our original work
with eλt v arose from guessing that a function of the form f (t )v was a solution
to x′ = Ax, example 3.5.1 now suggests that in the case where we are missing
an eigenvector, we consider a vector function that somehow involves the scalar
function teλt as a second linearly independent solution to x′ = Ax. A closer look
at (3.5.2) suggests the form of this second solution we seek.

In particular, recalling that the matrix A in example 3.5.1 had v1 = [1 0]T

as the eigenvector corresponding to λ = −2, rewriting (3.5.2) reveals the role v1

plays in the general solution. Specifically,

x(t ) = ke−2t
[

1
0

]
+ cte−2t

[
1
0

]
+ ce−2t

[
0
1

]
(3.5.3)

and since x1(t ) = e−2t [1 0]T is the standard solution that arises through the
eigenpair, we see from (3.5.3) that the second linearly independent solution

x2(t ) = te−2t
[

1
0

]
+ e−2t

[
0
1

]

has the form te−2t v + e−2t u, where u is not an eigenvector of A corresponding
to λ = −2. This suggests a form for the second solution when this case arises in
general.

We now consider this situation for an arbitrary matrix with the appropriate
properties. Let A be a 2×2 matrix with a single real, repeated eigenvalue λ with
only one linearly independent eigenvector v. Note specifically that we know
Av = λv and x1(t ) = eλt v is a solution to x′ = Ax. Now consider a second
function

x2(t ) = teλt v + eλt u (3.5.4)

where u is an unknown constant vector and (λ,v) remains an eigenpair of A.
We seek conditions on u that will make x2(t ) a solution to x′ = Ax; as we
have previously encountered in several instances, direct substitution into the
differential equation reveals the constraints on u.

First, differentiating (3.5.4) gives

x′
2(t ) = (λteλt + eλt )v +λeλt u (3.5.5)

Next, observe that multiplying x2(t ) by A yields

Ax2(t ) = A(teλt v + eλt u) = teλt (Av) + eλt (Au) (3.5.6)
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In order for x2(t ) to be a solution to x′ = Ax, it follows from (3.5.5) and (3.5.6)
that we require the equality

(λteλt + eλt )v +λeλt u = teλt (Av) + eλt (Au) (3.5.7)

to hold. Using the fact that Av = λv and expanding, we find

λteλt v + eλt v +λeλt u = λteλt v + eλt (Au) (3.5.8)

With λteλt v present on both sides of (3.5.8), we can simplify the equality to

eλt v +λeλt u = eλt (Au) (3.5.9)

Since eλt is never zero, we observe from (3.5.9) that u must satisfy the equation

v +λu = Au (3.5.10)

In other words, (A−λI)u = v, where (as we assumed earlier) v is an eigenvector
of A that corresponds to the eigenvalue λ. In particular, note that v satisfies
the equation (A − λI)v = 0. We summarize our work above in the following
theorem.

Theorem 3.5.1 If A is a 2 × 2 matrix with repeated eigenvalue λ and only one
corresponding linearly independent eigenvector v, then the general solution to
x′ = Ax is given by

x(t ) = c1eλt v + c2eλt (tv + u)

where u satisfies the equation (A −λI)u = v.

The vector u is often called a generalized eigenvector of A corresponding to λ.
We now demonstrate the role of theorem 3.5.1 in the following example.

Example 3.5.2 Let A =
[

1 4
−1 5

]
and consider the system of differential

equations given by x′ = Ax. Find the general solution of the system, determine all
equilibrium solutions to the system, and plot the direction field for the system.
Include sketches of several trajectories and discuss the long-term behavior of
solutions relative to the equilibrium solution(s).

Solution. We find that A has a single repeated eigenvalue λ = 3 with just one
corresponding linearly independent eigenvector v = [2 1]T. Thus, one linearly
independent solution to x′ = Ax is x1(t ) = e3t v. Applying theorem 3.5.1, we
determine a second linearly independent solution to the system. Specifically,
we first solve the vector equation (A − 3I)u = v. To do so, we row-reduce the
appropriate augmented matrix and find[−2 4 2

−1 2 1

]
→
[

1 −2 −1
0 0 0

]

It follows that the vector u must have components u1 and u2 that satisfy the
equation u1 = 2u2 − 1, where u2 is a free variable. Since we only need one
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Figure 3.11 The direction field for the system
x′ = Ax of example 3.5.2 along with several
trajectories.

such vector u, we choose u2 = 0 and thus u1 = −1. From theorem 3.5.1, it
now follows that a second linearly independent solution to x′ = Ax is given
by the function x2(t ) = e3t (tv + u). In particular, the general solution to
x′ = A x is

x(t ) = c1e3t
[

2
1

]
+ c2e3t

(
t

[
2
1

]
+
[−1

0

])

We note further that since A is an invertible matrix, the only solution to
Ax = 0 is x = 0, so the origin is the only equilibrium solution of the
system.

As figure 3.11 shows, the direction field and several trajectories exhibit
behavior consistent with the fact that the system has just one straight-
line solution, the one that corresponds to the single linearly independent
eigenvector of A. Note as well that since the system’s only eigenvalue is
positive, every non-constant solution flows away from the origin as t → ∞.

In example 3.4.3, the origin is obviously an unstable equilibrium solution.
Because there is only one linearly independent eigenvector for the system, we
call the origin a degenerate node, and in this case where λ = 3 > 0 and all the
trajectories flow away from the origin, this degenerate node is also called a
repelling node.

We now consider an example that reveals the other possible situation that
can arise when a matrix A lacks two real linearly independent eigenvectors: when
A has no real eigenvalues and no real eigenvectors.
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Example 3.5.3 Consider the system x′ = Ax given by the matrix

A =
[

0 −1
1 0

]

Compute the eigenvalues and eigenvectors of A and explain why this does not
lead directly to the general solution of the system. In addition, plot the direction
field for the system to confirm these observations from a graphical perspective.
Using familiarity with solutions to single differential equations and the form of
the equations for the given system, determine the general solution to the system.

Solution. The eigenvalues of the matrix A are computed using the
characteristic equation

det(A −λI) = det

[−λ −1
1 −λ

]
= λ2 + 1 = 0

We see that λ2 = −1, so that λ = ±i, where i is the complex number2 i = √−1.
To determine the eigenvector associated with λ = i, we solve (A − iI)v = 0.

Row-reducing the appropriate matrix with complex entries just as we would a
matrix with real entries, we observe[−i −1 0

1 −i 0

]
→
[

1 −i 0
−i −1 0

]
→
[

1 −i 0
0 0 0

]

where the first step was achieved by swapping the two rows, while the last step
was achieved by computing the row replacement iR1 +R2 → R2. It follows that
any eigenvector v associated with λ = i must have components v1 and v2 that
satisfy v1 = iv2. Choosing v2 = 1, we see that an eigenvector v corresponding to
λ = i is v = [i 1]T. Similar computations with λ = −i show that a corresponding
eigenvector is v = [−i 1]T. While we might suggest at this point that

x(t ) = eit
[

i
1

]

is a solution to x′ = Ax, such a solution involves the complex number i, and
is not a real solution to the system. A plot of the direction field for the system
reveals further why no real solutions arise directly from the eigenvectors. In
particular, if we examine figure 3.12, the direction field and various trajectories
exhibit behavior consistent with the fact that the system has no straight-line
solutions due to the fact that it has no real eigenpairs: every trajectory appears
to be circular.

In this example, we will suspend our work with eigenvalues and eigenvectors
and see whether we can determine a solution to the system more directly. If we
examine the two equations given in the system x′ = Ax, we observe that we

2 A review of key concepts with complex numbers may be found in appendix B.
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Figure 3.12 The direction field for the system
x′ = Ax of example 3.5.3.

are trying to solve the two equations x ′
1 = −x2 and x ′

2 = x1 simultaneously. In
particular, we seek two functions x1(t ) and x2(t ) such that the derivative of the
first is the opposite of the second and the derivative of the second is the first. This
is a familiar scenario encountered in calculus and we recognize that x1(t ) = cos t
and x2(t ) = sin t form a pair of such functions. Further consideration reveals
that the choices x1(t ) = − sin t and x2(t ) = cos t also satisfy the system.

Our recent observations show that the vector functions

x1(t ) =
[

cos t
sin t

]
and x2(t ) =

[− sin t
cos t

]

each form a real solution to x′ = Ax; moreover, it is clear that x1(t ) and
x2(t ) are not scalar multiples of one another, and thus these are two linearly
independent solutions to the system. Therefore, theorem 3.3.2 implies that the
general solution to the given system is

x(t ) = c1

[
cos t
sin t

]
+ c2

[− sin t
cos t

]
(3.5.11)

The presence of the sine and cosine functions in the entries of x will also lead to
the circular trajectories we expect from the direction field in figure 3.12.

Example 3.5.3 shows several new phenomena. In every preceding example we
have considered for 2 × 2 systems x′ = Ax, eigenpairs have directly provided at
least one real solution to the system. But for the latest system we examined,
the eigenpairs appeared to not produce any solutions to the system at all.
Moreover, for the first time in our work with linear systems, the sine and cosine
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functions arose. An important question to consider at this point is whether the
complex eigenpair

λ = i, v =
[

i
1

]
(3.5.12)

can be linked to the general solution that we found in (3.5.11). It turns out
that the key idea lies in understanding how the exponential function ez behaves
when the input z is a complex number.

The great Swiss mathematician Leonhard Euler (1707–1783) is credited
with discovering Euler’s formula, which states that for any real number t ,

eit = cos t + i sin t (3.5.13)

In exercise 14 in this section, one way to derive Euler’s formula through Taylor
series for the exponential and trigonometric functions is explored. For now, we
will simply accept (3.5.13) and put it to use.

Using the first complex eigenpair found in example 3.5.3, let us consider
the standard form of a potential solution to x′ = Ax, x(t ) = eλt v, using the
eigenpair identified in (3.5.12). Here, since the solution we are considering is in
fact complex, we will use the notation z(t ). Using Euler’s formula and complex
arithmetic, observe that

z(t ) = eit
[

i
1

]

= (cos t + i sin t )

[
i
1

]

=
[
i cos t − sin t
cos t + i sin t

]
(3.5.14)

When working with complex numbers, it is often useful to identify the real and
imaginary parts of the numbers. That is, for a complex number z = a + ib where
a and b are real, we call a the real part of z , and b the imaginary part of z . The
same distinctions hold for vectors with complex entries. Considering (3.5.14),
if we separate this vector into its real and imaginary parts, we may write

z(t ) =
[− sin t

cos t

]
+ i

[
cos t
sin t

]
(3.5.15)

If we now compare the general solution to x′ = Ax that we found in (3.5.11)
to (3.5.15) above, we can make a critical observation. The two linearly
independent solutions to the system seen in (3.5.11) are in fact the real and
complex parts of the vector z(t ) which arose from considering z(t ) = eλt v
where (λ,v) was a complex eigenpair of A. That this fact holds in general is our
next stated theorem.

Theorem 3.5.2 If A is a real 2×2 matrix with a complex eigenvalue λ = a + ib
and corresponding eigenvector v = p + iq, where a, b, p, and q are real, then
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the real and imaginary parts of

z(t ) = e(a+bi)t (p + iq)

are real linearly independent solutions to x′ = Ax.

We proceed to apply this result in another example involving complex
eigenvalues and eigenvectors.

Example 3.5.4 Let A =
[−1 −2

2 −1

]
and consider the system of differential

equations given by x′ = Ax. Find the general solution of the system, determine all
equilibrium solutions to the system, and plot the direction field for the system.
Include sketches of several trajectories and discuss the long-term behavior of
solutions relative to the equilibrium solution(s).

Solution. For matrices with complex eigenvalues, Maple provides an efficient
and valuable approach: the program completes the necessary complex arithmetic
automatically and produces the results we need. Doing so, we find that A has
complex eigenvalues λ = −1 ± 2i with corresponding complex eigenvectors
v = [±i 1]T. We choose one of these complex eigenpairs and consider the
complex function

z(t ) = e(−1+2i)t
[

i
1

]

Observe that e(−1+2i)t = e−t e2ti , so by Euler’s formula

e(−1+2i)t = e−t (cos2t + i sin 2t )

Substituting this fact into z(t ), we observe that

z(t ) = e−t (cos2t + i sin 2t )

[
i
1

]

= e−t
[− sin 2t + i cos2t

cos2t + i sin 2t

]

= e−t
[− sin 2t

cos2t

]
+ ie−t

[
cos2t
sin 2t

]
By theorem 3.5.2, it now follows that the real and imaginary parts of z(t ) form
two real linearly independent solutions to x′ = Ax, and therefore the general
solution to x′ = Ax is

x(t ) = c1e−t
[− sin 2t

cos2t

]
+ c2e−t

[
cos2t
sin 2t

]
(3.5.16)

Since A is an invertible matrix, the origin is the only equilibrium solution
of the system. Finally, as figure 3.13 shows, the direction field and plotted
trajectories exhibit behavior consistent with the fact that the system has no
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x1

4

4−4

−4

Figure 3.13 The direction field for the system
x′ = Ax of example 3.5.4 along with several
trajectories.

real eigenvectors and therefore no straight-line solutions. Moreover, since the
real part of λ=−1+2i is negative, the role of e−t in the general solution (3.5.16)
draws every solution to 0 and thus the origin is a stable equilibrium.

In cases such as the one in example 3.5.4 where there are no straight-line
solutions and every nonconstant solution tends to 0 as t → ∞, we naturally
say that 0 is a spiral sink. Note that this case corresponds to the situation where
the real part of a complex eigenvalue is negative. If the real part a of λ = a +bi is
positive, then we will have eat present in the general solution, and this will drive
every solution away from the origin. We therefore call 0 a spiral source and note
that this equilibrium solution is unstable. Finally, in the event that a = 0 in the
complex eigenvalue λ = a + bi, as it was in example 3.5.3, then all nonconstant
solutions will orbit the origin while neither being drawn toward or repelled from
the equilibrium solution. See, for example, figure 3.12. Such an equilibrium is
called a center and is considered stable.

In our discussions in this section we have addressed the two possible cases
for a 2 × 2 matrix A which lacks two linearly independent eigenvectors. Our
work extends naturally to the case of more general n × n systems where the
n × n matrix A may or may not have n real linearly independent eigenvectors.
Of course, in the case where A has a full set of n real linearly independent
eigenvectors, the eigenpairs allow the general solution to the system to be
determined. In cases where some of the eigenvalues are complex, or repeated
with missing eigenvectors, we can work with each individual eigenvalue to build
real linearly independent solutions in ways similar to our preceding work. Some
examples are explored in the exercises that follow.
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Table 3.1
The stability of the origin as determined by the eigenvalues of a
2 × 2 matrix A

0 < λ1 ≤ λ2 0 is unstable and called a repelling node

λ1 < 0 < λ2 0 is unstable and called a saddle

λ1 ≤ λ2 < 0 0 is stable and called an attracting node

λ = a ± bi and a > 0 0 is unstable and called a spiral source

λ = a ± bi and a = 0 0 is stable and called a center

λ = a ± bi and a < 0 0 is stable and called a spiral sink

We close this section with a summary in table 3.1 of the stability of the
origin as an equilibrium point of x′ = Ax in the cases where both eigenvalues
are nonzero.

Exercises 3.5 For each of exercises 1–7, the general solution x(t ) to a
homogeneous linear 2 × 2 system of differential equations x′ = Ax is given.
For each problem, sketch any straight-line solutions, classify the stability of the
equilibrium solution x = 0, and sketch a few trajectories that are not straight
lines. Do not use a computer.

1. x(t ) = c1e−2t

[−1
2

]
+ c2e−3t

[
1
2

]

2. x(t ) = c1e−2t

[
cos t
sin t

]
+ c2e−2t

[− sin t
cos t

]

3. x(t ) = c1e2t

[−1
1

]
+ c2e−t

[
1
1

]

4. x(t ) = c1e−2t

[−1
1

]
+ c2

[
1
1

]

5. x(t ) = c1

[
2cos t

sin t

]
+ c2

[− sin t
2cos t

]

6. x(t ) = c1et

[
2cos t

sin t

]
+ c2e3t

[− sin t
2cos t

]

7. x(t ) = c1e2t

[
4
1

]
+ c2et

[
1
4

]

For each of exercises 8–13, the characteristic polynomial p(λ) of a matrix A
is given. That is, the zeros of the given polynomial are the eigenvalues of
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the matrix A. For each, classify the stability of the origin as an equilibrium
point of the system given by x′ = Ax.

8. p(λ) = λ2 − 4

9. p(λ) = λ2 + 4

10. p(λ) = λ2 +λ+ 1

11. p(λ) = λ2 − 10λ+ 9

12. p(λ) = λ2 − 2λ+ 5

13. p(λ) = λ2 + 3λ+ 2

14. Recall or look up the formulas for the Taylor series about a = 0 for each of
the functions ex , sinx , and cosx . Assuming that the Taylor series for ex is
valid for complex numbers x , compute eib and compare the result to the
expansions for cosb and i sinb to show that

eib = cosb + i sinb

In addition, show that

ea+ib = ea(cosb + i sinb)

In exercises 15–19, a matrix A is given. For each, consider the system of
differential equations x′ = Ax and respond to (a) - (d).

(a) Determine the general solution to the system x′ = Ax.

(b) Classify the stability of all equilibrium solutions to the system.

(c) How many straight-line solutions does this system of equations have?
Why?

(d) Use a computer algebra system to plot the direction field for this system
and sketch several trajectories by hand.

15. A =
[

0 −2
2 0

]

16. A =
[

2 −3
3 2

]

17. A =
[−2 1

0 −2

]

18. A =
[−4 5
−5 4

]

19. A =
[

7 −1
4 11

]
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In exercises 20–24, solve the IVP given by x′ = Ax and the stated initial condition.

20. A =
[

0 −2
2 0

]
, x(0) = [1 3]T

21. A =
[

2 −3
3 2

]
, x(0) = [−3 1]T

22. A =
[−2 1

0 −2

]
, x(0) = [2 − 2]T

23. A =
[−4 5
−5 4

]
, x(0) = [−2 − 3]T

24. A =
[

7 −1
4 11

]
, x(0) = [0 5]T

25. Consider the system of differential equations x′ = Ax given by

A =
⎡
⎣ 3 1 −1

1 3 1
−1 1 3

⎤
⎦

(a) Determine the general solution to the system x′ = Ax.
(b) Classify the stability of all equilibrium solutions to the system.
(c) How many straight-line solutions does this system of equations have?

Why?

26. Repeat exercise 25 using the matrix

A =
⎡
⎣ 0 3/2 −1/2

−1 −3/2 3/2
−1 1/2 −1/2

⎤
⎦

27. Explain why every 3 × 3 homogeneous linear system of differential
equations of the form x′ = Ax must always have at least one straight-line
solution. Must every 4 × 4 system have at least one straight-line solution?
Explain. What can you say about any n × n homogeneous linear system?

In exercises 28–32, use the standard substitution to convert the given second-
order differential equation to a system of two linear first-order equations. Solve
the system to hence determine the solution y to the second-order equation.

28. y ′′ + y ′ − 6y = 0

29. y ′′ + 2y ′ + 5y = 0

30. y ′′ + 4y = 0

31. y ′′ + 3y ′ − 28y = 0

32. y ′′ + y + 1 = 0
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3.6 Nonhomogeneous systems: undetermined
coefficients

So far in our studies of systems of linear differential equations, we have focused
almost exclusively on the case where the system is homogeneous and can be
represented in the form x′ = Ax. We now begin to investigate nonhomogeneous
systems, which are systems of the form x′ = Ax + b where b 
= 0.

In section 3.1, we encountered a system of two tanks where we were
interested in the amount of salt in each tank at time t . With the amount of
salt in the two tanks represented respectively by x1(t ) and x2(t ), we saw that
these component functions had to satisfy the system of differential equations
given by

x′ =
[−1/20 1/80

1/40 −1/40

][
x1

x2

]
+
[

20
35

]
(3.6.1)

and that this system is naturally represented in the form

x′ = Ax + b (3.6.2)

In our most recent work with the homogeneous equation x′ = Ax, we noted
several times the analogy to solving the single first-order differential equation
x ′ = ax . In particular, we observed the key role that eλt plays in the process of
solving homogeneous systems of equations, much like eat does in the solution
of a single homogeneous linear first-order equation.

We next naturally consider the linear first-order analogy of (3.6.2),
a nonhomogeneous equation such as

y ′ = 2y + 5 (3.6.3)

In section 2.3, we made the observation in theorem 2.3.3 that for any linear
first-order differential equation in the form

y ′ + p(t )y = f (t )

if yp is any solution to the nonhomogeneous equation and yh is a solution to
the corresponding homogeneous equation, then y = yp + yh is a solution to the
nonhomogeneous equation.

In our studies of linear algebra in chapter 1, we made a similar observation
in section 1.5: if we have a solution xp to the nonhomogeneous equation Ax = b,
and we add to xp any solution xh to the homogeneous equation Ax = 0, the result
(x = xp + xh) is also a solution to Ax = b. See (1.5.1) to revisit the details of this
discussion. Note that in this purely linear algebra context, x is a vector whose
entries are constant.

These two preceding observations for linear first-order differential equa-
tions and systems of linear algebraic equations are now applied to the
nonhomogeneous system of linear first-order differential equations, x′ = Ax+b.
We note specifically that in this context, x(t ) is a function of t . Let’s return to
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the known situation of the homogeneous system x′ = Ax and denote its solution
by xh(t ). In addition, suppose we are able to determine a single solution xp(t )
to the nonhomogeneous equation x′ = Ax + b. We claim that the function
x(t ) = xh(t ) + xp(t ) is the general solution of the nonhomogeneous equation.
To see this, we substitute directly into x′ = Ax + b and verify that the equation
is satisfied. By properties of linearity, observe that

x′(t ) = x′
h(t ) + x′

p(t ) (3.6.4)

and furthermore

Ax + b = A(xh + xp) + b = Axh + Axp + b (3.6.5)

By how we defined xh(t ) and xp(t ), we know that x′
h(t ) = Axh(t ) and

x′
p(t ) = Axp(t ) + b, and thus (3.6.5) implies

Ax + b = x′
h(t ) + x′

p(t ) (3.6.6)

From (3.6.4) and (3.6.6), we see that x = xh + xp is indeed a solution to
x′ = Ax+ b. In fact, we have found the general solution to the nonhomogeneous
system, as stated in the following theorem.

Theorem 3.6.1 Let A be an n × n matrix with constant coefficients. If xh is
the general solution to the homogeneous system x′ = Ax and xp is any solution
to the nonhomogeneous system x′ = Ax + b, then x = xh + xp is the general
solution to x′ = Ax + b.

Theorem 3.6.1 provides an approach that will guide us throughout our
efforts to solve nonhomogeneous systems of differential equations. First, we
solve the associated homogeneous system to find xh , a process we are familiar
with. We usually call xh the complementary solution to the equation x′ = Ax +b.
Next, we must find a so-called particular solution xp to the nonhomogeneous
system x′ = Ax +b. Although a more sophisticated approach will be introduced
in the next section, for now we will investigate a few examples in which the
process of finding such a particular solution xp is relatively straightforward.

Example 3.6.1 From the system of two tanks discussed in sections 1.1 and 3.1,
consider the nonhomogeneous system of linear differential equations given by

x′ =
[−1/20 1/80

1/40 −1/40

]
x +
[

20
35

]
(3.6.7)

By solving the associated homogeneous system and determining a particular
solution to the nonhomogeneous system, find the general solution to the given
system. In addition, plot an appropriate direction field and discuss the long-
term behavior of solutions and their meaning in the context of the salt in
each tank. Determine and sketch the solution to the IVP with initial condition
x(0) = [2000 1000]T.
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Solution. We begin by solving x′ = Ax, where

A =
[−1/20 1/80

1/40 −1/40

]
The eigenvalues of A are approximately λ1 = −0.158 and λ2 = −0.592,
with corresponding eigenvectors approximated by v1 = [0.366 1.000]T and
v2 = [−1.366 1.000]T. It follows that the general solution xh is

xh(t ) = c1e−0.158t
[

0.366
1.000

]
+ c2e−0.592t

[−1.366
1.000

]
Next, we must determine a particular solution xp to the nonhomogeneous
equation x′ = Ax + b. In this particular example, b is a constant vector.
Therefore, it is natural to guess that a constant vector xp will satisfy the
nonhomogeneous equation. More than this, we should recall from earlier
discussions of the problem leading to the given system that the vector x
represents the amounts of salt in two connected tanks as streams of inflow
deliver salt, each at a constant rate. Our intuition suggests that over time the
two tanks should approach a stable equilibrium, and hence an equilibrium (and
therefore constant) solution should be present.

Therefore, we assume that xp is a constant vector and observe that this
immediately implies that x′

p = 0. Substituting into x′ = Ax + b, it follows that
xp must satisfy the system of linear equations 0 = Axp +b or Axp =−b. With the
given entries of A and b, this leads us to row reduce the appropriate augmented
matrix and find that[−1/20 1/80 −20

1/40 −1/40 −35

]
→
[

1 0 1000
0 1 2400

]
This shows xp = [1000 2400]T is a particular solution to x′ = Ax +b, and, more
specifically, is an equilibrium solution of the system. Moreover, it now follows
that the general solution to the system is given by

x(t ) = xh(t ) + xp(t ) = c1e−0.158t
[

0.366
1.000

]
+ c2e−0.592t

[−1.366
1.000

]
+
[

1000
2400

]
(3.6.8)

If we add the initial condition that x(0) = [2000 1000]T, we can solve for the
constants c1 and c2, and plot the appropriate corresponding trajectory, as shown
in figure 3.14. In both (3.6.8) and figure 3.14 we can see how the long-term
behavior of every solution tends to the equilibrium solution. Moreover, in the
direction field we can also recognize the straight-line solutions that correspond
to lines in the direction of each eigenvector but that now pass through the
equilibrium solution (1000,2400).

From example 3.6.1, we observe that in cases where we want to solve x′ = Ax +b
and b is itself a constant vector, xp may be determined by assuming that xp is a
constant vector and solving 0 = Axp +b. If xp is not constant, then the situation
is more complicated, as we discover in the following example.
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Figure 3.14 The direction field for the system x′ = Ax + b of example 3.6.1.

Example 3.6.2 Find the general solution of the nonhomogeneous system
given by

x′ =
[

2 −1
3 −2

]
x +
[

cos2t
0

]
(3.6.9)

Solution. Since the eigenvalues of A =
[

2 −1
3 −2

]
are λ1 = −1 and λ2 = 1 with

corresponding eigenvectors v1 = [1 3]T and v2 = [1 1]T, it follows that the
complementary solution to the related homogeneous system is

xh = c1e−t
[

1
3

]
+ c2et

[
1
1

]

To determine the particular solution xp to the given nonhomogeneous
system, we need to find a vector function x(t ) that simultaneously satisfies
the system (3.6.9). Due to the presence of cos2t in the vector b, it is natural
to guess that the components of xp will somehow involve cos2t . In addition,
since x′

p plays a role in the system, we must account for the possibility that the
derivative of cos2t may also arise; moreover, since Ax will also be computed,
linear combinations of vectors that involve the entries in x will be present.
Therefore, we make the reasonable guess that xp has the form

xp =
[
a cos2t + b sin 2t
c cos2t + d sin 2t

]
(3.6.10)

and attempt to determine values for the undetermined coefficients a,b, c, and
d that make xp a solution to the system.

We accomplish this by direct substitution into (3.6.9). First, observe that

x′
p =
[−2a sin 2t + 2b cos2t
−2c sin 2t + 2d cos2t

]
(3.6.11)
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Now substituting (3.6.10) and (3.6.11) into (3.6.9), it follows[−2a sin 2t + 2b cos2t
−2c sin 2t + 2d cos2t

]
=
[

2 −1
3 −2

][
a cos2t + b sin 2t
c cos2t + d sin 2t

]
+
[

cos2t
0

]

If we now expand the matrix product and factor out the terms involving sin 2t
and cos2t on the right side,

−2a sin 2t + 2b cos2t = (2b − d) sin 2t + (2a − c + 1)cos2t (3.6.12)

−2c sin 2t + 2d cos2t = (3b − 2d) sin 2t + (3a − 2c)cos2t (3.6.13)

In (3.6.12), we can equate the coefficients of sin 2t to find that −2a = 2b − d .
Doing likewise for the coefficients of cos2t , 2b = 2a − c + 1. Similarly, (3.6.13)
results in the two equations −2c = 3b − 2d and 2d = 3a − 2c . Reorganizing
these four equations in four unknowns, we see that a,b, c, and d must satisfy
the system

−2a − 2b + d = 0

−2a + 2b + c = 1

−3b − 2c + 2d = 0

−3a + 2c + 2d = 0

Row-reducing,⎡
⎢⎢⎣

−2 −2 0 1 0
−2 2 1 0 1

0 −3 −2 2 0
−3 0 2 2 0

⎤
⎥⎥⎦→

⎡
⎢⎢⎣

1 0 0 0 −2/5
0 1 0 0 2/5
0 0 1 0 −3/5
0 0 0 1 0

⎤
⎥⎥⎦

which shows a = −2/5, b = 2/5, c = −3/5, and d = 0, so a particular solution
to the nonhomogeneous system is

xp =
[− 2

5 cos2t + 2
5 sin 2t

− 3
5 cos2t

]

Finally, it follows that the general solution to the system is

x = xh + xp = c1e−t
[

1
3

]
+ c2et

[
1
1

]
+
[− 2

5 cos2t + 2
5 sin 2t

− 3
5 cos2t

]

One lesson to take from example 3.6.2 is that while the process for trying
to solve a nonhomogeneous system of differential equations is straightforward,
the actual computation of a particular solution xp can be quite cumbersome.
Indeed, even in the case where the vector b is quite simple, as it is in the most
recent example, tedious calculations can arise. Moreover, it is less clear how one
might proceed in the situation where the vector b is particularly complicated.
Specifically, making an appropriate guess for xp may be difficult. We usually



Nonhomogeneous systems: undetermined coefficients 241

call the process of finding xp through a guess involving unknown constants the
method of undetermined coefficients.

To gain a better sense of the guesses that are involved in using undetermined
coefficients, we turn to the following example.

Example 3.6.3 For nonhomogeneous linear systems of the form x′ = Ax + b
where A is a matrix with constant entries, state the natural guess to use for xp

when the vector b is

(a) b =
[

e−t

2e−t

]
(b) b =

[
1
t

]
(c) b =

[
t 2

0

]
(d) b =

[
e−3t

−2

]

Solution.
(a) With b = [e−t 2e−t ]T, it is natural to expect that any particular solution

must involve e−t in its components. Specifically, we make the guess that

xp =
[
Ae−t

Be−t

]

and substitute directly into x′ = Ax + b in order to attempt to find values
of A and B for which xp satisfies the given system.3

(b) Given b = [1 t ]T, we must account for the fact that xp and its derivative
can involve constant and linear functions of t . In particular, we suppose
that

xp =
[

At + B
Ct + D

]

and substitute appropriately in an effort to determine A, B, C , and D.
(c) For b = [t 2 0]T, with one quadratic term present in b, it is necessary to

include quadratic terms in each entry of xp . But since the derivative of xp

will be taken, linear terms must be included as well. Finally, once linear
terms are included, for the same reason we must permit the possibility that
constant terms can be present in xp . Therefore, we guess the form

xp =
[
At 2 + Bt + C
Dt 2 + Et + F

]

(d) With b = [e−3t − 2]T having both an exponential and constant term
present, we account for both of these scalar functions and their derivative
by assuming that

xp =
[

Ae−3t + B
Ce−3t + D

]

3 It is possible that the guess can fail to work, in which case a modified form for xp is required. One
setting where this may occur is when λ = −1 is an eigenvalue of A, whereby a vector involving e−t

already appears in the complementary solution xh . See exercise 8 for further investigation of this
issue.
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The method of undetermined coefficients is not foolproof: it is certainly possible
to guess incorrectly (as noted in the footnote related to part (a) of example 3.6.3).
If our guess is incorrect, an inconsistent linear system of algebraic equations will
arise, which tells us we need to modify our guess. Besides the possibility of
guessing incorrectly, it can also be the case that the computations involved in
determining xp are very cumbersome. In the next section, we consider a different
approach, one that parallels our solution of single linear first-order differential
equations of the form y ′ + p(t )y = f (t ), that provides, at least in theory, an
algorithmic approach to solving any nonhomogeneous system x′ = Ax + b
where the matrix A has real, constant entries.

Finally, we note that the presence of nonconstant entries in the vector b in
a nonhomogeneous system x′ = Ax + b makes it impossible to plot a direction
field for the system. In particular, when we sketch direction fields, we rely on
the fact that regardless of time, t , the direction vector x′ to the solution curve x
is dependent only on the location (x1,x2), and not on t . When b is nonconstant
and a function of t , this is no longer the case and we therefore are left with only
algebraic approaches to the problem. If b is constant, then we can generate the
direction field for the system, such as the one shown in figure 3.14.

Exercises 3.6 In each of exercises 1–4, show by direct substitution that the
given particular solution xp is indeed a solution to the stated nonhomogeneous
system of equations. Hence determine the general solution to the stated system.

1. x′ =
[−1 3

2 −3

]
x +
[

5
−1

]
, xp =

[−4
−3

]

2. x′ =
[

1 −2
−2 1

]
x +
[
e2t

0

]
, xp = e2t

[−1/3
2/3

]

3. x′ =
[

2 1
1 2

]
x +
[

sin t
0

]
, xp = sin t

[−2/5
1/10

]
+ cos t

[−3/10
1/5

]

4. x′ =
[−3 1

1 −1

]
x +
[
e2t + 1

1

]
, xp =

[
1
2

]
+ e2t

[
3/14
1/14

]

5. Consider the system of differential equations

x′ =
[

1 1
4 1

]
x +
[

1
−3

]
(a) Explain why it is reasonable to assume that xp is a constant vector, and

use this assumption to determine a particular solution to the given
nonhomogeneous system.

(b) Determine the complementary solution xh to the associated
homogeneous system, x′ = Ax.

(c) State the general solution to the system.
(d) Is there an equilibrium solution to this system? If so, is it stable?

Explain.



Nonhomogeneous systems: undetermined coefficients 243

6. Consider the system of differential equations

x′ =
[

1 1
4 1

]
x +
[
e4t

0

]
(a) Explain why it is reasonable to assume that xp is a vector of the form

xp =
[
ae4t

be4t

]
Then use this assumption to determine a particular solution to the
given nonhomogeneous system.

(b) Determine the complementary solution xh to the associated
homogeneus system, x′ = Ax.

(c) State the general solution to the system.

7. Consider the system of differential equations

x′ =
[

1 1
4 1

]
x +
[

e−2t + 1
2e−2t + 3

]
(a) Explain why it is reasonable to assume that xp is a vector of the form

xp =
[
ae−2t + b
ce−2t + d

]
Use this assumption to determine a particular solution to the given
nonhomogeneous system.

(b) Determine the complementary solution xh to the associated
homogeneus system, x′ = Ax.

(c) State the general solution to the system.

8. Consider the system of differential equations

x′ =
[

1 1
4 1

]
x +
[
e−t

0

]
(a) Explain why it is reasonable to assume that xp is a vector of the form

xp =
[
ae−t

be−t

]
(b) Show that the form of xp above does not result in a particular solution

to the system.
(c) By assuming that xp is a vector of the form

xp =
[
ae−t + bte−t

ce−t + dte−t

]
determine a particular solution to the given nonhomogeneous system

(d) Determine the complementary solution xh to the associated
homogeneus system, x′ = Ax.

(e) State the general solution to the system.
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For the nonhomogeneous linear systems of differential equations given in
exercises 9–17, (a) determine a particular solution xp by making an appropriate
assumption about the form of xp , (b) determine the complementary solution
xh to x′ = Ax, and (c) hence state the general solution to the system.

9. x′ =
[−4 5

5 −4

]
x +
[

1
−1

]

10. x′ =
[−4 5

5 −4

]
x +
[

3e−2t

−e−2t

]

11. x′ =
[−1 1

0 1

]
x +
[

3e−2t

−4e−2t

]

12. x′ =
[−1 1

0 1

]
x +
[

2
−5

]

13. x′ =
[

0 −1
1 0

]
x +
[

3
−2

]

14. x′ =
[

0 −1
1 0

]
x +
[

et

−2et

]

15. x′ =
[

0 −1
1 0

]
x +
[

3 + et

−2 − 2et

]

16. x′ =
[

2 −1
3 −2

]
x +
[

t − 2
3t − 4

]

17. x′ =
[

2 −1
3 −2

]
x +
[

cos3t
4

]

18. For the system of differential equations given in exercise 10, solve the IVP
with initial condition x(0) = [1 − 2]T.

19. For the system of differential equations given in exercise 11, solve the IVP
with initial condition x(0) = [−3 − 2]T.

20. For the system of differential equations given in exercise 14, solve the IVP
with initial condition x(0) = [0 4]T.

21. For the system of differential equations given in exercise 15, solve the IVP
with initial condition x(0) = [1 − 2]T.

22. Without actually computing xp , choose and justify the form you would
guess for a particular solution to

x′ =
[−4 5

5 −4

]
x + e−2t sin t

[
1

−1

]
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23. Without actually computing xp , choose and justify the form you would
guess for a particular solution to

x′ =
[−4 5

5 −4

]
x +
[

sin 3t
cos2t

]

24. Suppose that x1(t ) and x2(t ) are solutions of

x′ = Ax + f1(t ) and x′ = Ax + f2(t )

respectively. Show that x(t ) = x1(t ) + x2(t ) is a solution of

x′ = Ax + f1(t ) + f2(t )

3.7 Nonhomogeneous systems: variation of parameters

In section 3.6, we discovered that solving the nonhomogeneous linear system
x′ = Ax + b requires us to find one particular solution xp to the nonhomoge-
neous system. We then combine this particular solution with the complementary
solution xh—the general solution to the corresponding homogeneous system
x′ = Ax. While we were able to successfully solve a range of problems, the
method of undetermined coefficients is somewhat dissatisfying: essentially we
made an educated guess as to the form that xp should take, and then substituted
to see if our guess was appropriate and resulted in a particular solution. As was
shown in exercise 8 in section 3.6, there are instances when the obvious guess
fails to work and additional investigation of a possible solution xp is needed.
Moreover, with undetermined coefficients we only considered functions b(t )
that had entries that were polynomial, sinusoidal, or exponential in nature. We
desire a more systematic approach to finding xp ; developing such a method is
the purpose of this section.

In section 2.3, we learned that for any linear first-order differential equation
of the form y ′ + p(t )y = f (t ), the solution y is given by

y = e−P(t )
∫

eP(t )f (t )dt (3.7.1)

where P(t ) = ∫ p(t )dt . We now seek to establish a similar result for the case
of systems of the form x′ = Ax + b, where A is an n × n matrix with constant
entries and b is a vector function of t . Let us first consider the form of the
general solution xh to the corresponding homogeneous system. Recall that x =
c1x1 +·· ·+ cnxn , where {x1, . . . ,xn} is a set of n linearly independent solutions
to x′ = Ax.

Being more explicit about the vectors present, say with entries xij(t ), we can
rewrite x = c1x1 +·· ·+ cnxn as

x = c1

⎡
⎢⎢⎣

x11
x21
...

xn1

⎤
⎥⎥⎦+ c2

⎡
⎢⎢⎣

x12
x22
...

xn2

⎤
⎥⎥⎦+·· ·+ cn

⎡
⎢⎢⎣

x1n
x2n
...

xnn

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

c1x11 + c2x12 +·· ·+ cnx1n
c1x21 + c2x22 +·· ·+ cnx2n

...

c1xn1 + c2xn2 +·· ·+ cnxnn

⎤
⎥⎥⎦
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Now observe that the right side of the above equation—the overall vector
formulation of x—can be expressed as a matrix product. In particular, we write

x = �C (3.7.2)

where C is the vector whose entries are the arbitrary constants c1, . . . , cn that
arise in the formulation of the general solution x, and �(t ) is the matrix whose
columns are the n linearly independent solutions to x′ = Ax. We call �(t ) the
fundamental solution matrix of the system.

At this point, it is essential to make two observations about �(t ). The first
is that �(t ) is nonsingular for every relevant value of t . This holds because the
columns of �(t ) are linearly independent since, by definition, they are linearly
independent solutions of x′ = Ax. Second, we note that �′(t ) = A�(t ). Since
the derivative of �(t ) is taken component-wise, this equation is simply the
matrix way to say that each column of �(t ) satisfies the homogeneous system
of equations x′ = Ax.

Now, recall (3.7.2) where we expressed the complementary solution in
the form xh = �(t )C. As we now seek a particular solution xp to the
nonhomogeneous equation, it is natural to suppose that xp has the form

xp(t ) = �(t )u(t ) (3.7.3)

where u(t ) is a function yet to be determined. We now substitute this guess for
xp into x′ = Ax +b(t ) to see what conditions u must satisfy. For ease of display,
in what follows we suppress the “(t )” notation in each of the functions �, u, u′,
and b. By the product rule,

x′
p = (�u)′ = �u′ +�′u

and so substituting into the system x′ = Ax + b(t ), we have

�u′ +�′u = A�u + b (3.7.4)

Recalling our observation above that �′ = A�, we can substitute in (3.7.4)
to find

�u′ + A�u = A�u + b (3.7.5)

We next subtract A�u from both sides of (3.7.5) to deduce that

�u′ = b (3.7.6)

Since we are interested in determining the unknown function u, and we know
that � is nonsingular, we may now write

u′ = �−1b (3.7.7)

and, therefore, u must have the form

u(t ) =
∫

�−1(t )b(t )dt (3.7.8)
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Finally, recalling the supposition we made in (3.7.3) that xp = �u, (3.7.8) now
implies

xp(t ) = �(t )

∫
�−1(t )b(t )dt (3.7.9)

It is remarkable how this form of xp aligns with our experience with a single linear
first-order differential equation and the form of its solution given by (3.7.1). We
summarize our above work in the following theorem.

Theorem 3.7.1 If A is an n × n matrix with constant entries, �(t ) is
the fundamental solution matrix of the homogeneous system of differential
equations x′ = Ax, and b(t ) is a continuous vector function, then a particular
solution xp to the nonhomogeneous system x′ = Ax + b(t ) is given by

xp(t ) = �(t )

∫
�−1(t )b(t )dt (3.7.10)

The approach to finding a particular solution given in theorem 3.7.1 is often
called variation of parameters. We next consider an example to see theorem 3.7.1
at work.

Example 3.7.1 Find the general solution of the nonhomogeneous system
given by

x′ =
[

2 −1
3 −2

]
x +
[

0
4

]
t

Solution. From our determination of the eigenvalues and eigenvectors of the
same coefficient matrix in example 3.6.2, the complementary solution is

xh = c1e−t
[

1
3

]
+ c2et

[
1
1

]
Therefore, the fundamental matrix is

�(t ) =
[

e−t et

3e−t et

]

According to (3.7.10), we next need to compute �−1. While the inverse of this
matrix of functions may be computed by row-reducing [� | I] in the usual way,
because of the function coefficients in � it is much easier to use a shortcut for
computing the inverse of a 2 × 2 matrix that we established in exercise 19 of
section 1.9. Specifically, if

A =
[
a b
c d

]
is an invertible matrix, then

A−1 = 1

det(A)

[
d −b

−c a

]



248 Linear systems of differential equations

Here, since det(�) = e−t et − 3e−t et = −2, it follows

�−1 = −1

2

[
et −et

−3e−t e−t

]

Thus, by (3.7.10), we now have

xp(t ) = �(t )

∫
�−1(t )b(t )dt

=
[

e−t et

3e−t et

]∫ [− 1
2 et 1

2 et

3
2 e−t − 1

2 e−t

][
0

4t

]
dt

=
[

e−t et

3e−t et

]∫ [
2tet

−2te−t

]
dt

Integrating the vector function component-wise by parts and computing the
subsequent matrix product,

xp(t ) =
[

e−t et

3e−t et

][
2(t − 1)et

2(t + 1)e−t

]

=
[

2(t − 1) + 2(t + 1)
6(t − 1) + 2(t + 1)

]

=
[

4t
8t − 4

]

Therefore, the general solution to the original nonhomogeneous system is

x = xh + xp = c1e−t
[

1
3

]
+ c2et

[
1
1

]
+
[

4t
8t − 4

]

Example 3.7.1 demonstrates that there are three key steps in the solution to
systems of the form x′ = Ax +b(t ). The first is solving the related homogeneous
system x′ = Ax to determine the fundamental solution matrix �(t ). Next, we
have to compute �−1(t ). And finally, we must integrate the vector function
given by �−1(t )b(t ). Since we are seeking just one particular solution xp , there
is no need to include the arbitrary constants that arise in antidifferentiating
�−1(t )b(t ).

We close this section with a second example that shows the computations
involved when more complicated functions are present in b(t ).

Example 3.7.2 Find the general solution of the nonhomogeneous system
given by

x′ =
[

2 −1
3 −2

]
x +
[

1/(et + 1)
1

]
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Solution. We first find xh . By finding the eigenvalues and eigenvectors of the
coefficient matrix A, it is straightforward to show that

xh = c1e−t
[

1
3

]
+ c2et

[
1
1

]

Therefore, the fundamental solution matrix is

�(t ) =
[

e−t et

3e−t et

]

Moreover, we can show that

�−1(t ) = −1

2

[
et −et

−3e−t e−t

]

We are now ready to compute xp and write

xp(t ) = �(t )

∫
�−1(t )b(t )dt

=
[

e−t et

3e−t et

]∫
−1

2

[
et −et

−3e−t e−t

][
1/(et + 1)

1

]
dt

=
[

e−t et

3e−t et

]∫ ⎡⎣ 1
2

e2t

et +1

1
2

2e−t −1
et +1

⎤
⎦ dt

At this point, it is easiest to use a computer algebra system to integrate and
complete our calculation of xp . Doing so, and then finding the required matrix
product, we have

xp(t ) =
[

e−t et

3e−t et

][ 1
2 et − 1

2 ln(et + 1)

−e−t − 3
2 t + 3

2 ln(et + 1)

]

=
[− 1

2 − 1
2 e−t ln(et + 1) − 3

2 tet + 3
2 et ln(et + 1)

1
2 − 3

2 e−t ln(et + 1) − 3
2 tet + 3

2 et ln(et + 1)

]

Hence, the general solution to the given nonhomogeneous system is

x = xh + xp = c1e−t
[

1
3

]
+ c2et

[
1

1

]

+
⎡
⎣− 1

2 − 1
2 e−t ln(et + 1) − 3

2 tet + 3
2 et ln(et + 1)

1
2 − 3

2 e−t ln(et + 1) − 3
2 tet + 3

2 et ln(et + 1)

⎤
⎦
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At each stage in applying variation of parameters it is essential to simplify. In
particular, �−1(t ) should be simplified as much as possible before computing
�−1(t )b(t ), and similarly,

∫
�−1(t )b(t )dt should be simplified as much as

possible before computing �(t )
∫

�−1(t )b(t )dt . One option, of course, is
to use a computer algebra system to avoid the more tedious aspects of the
computations. We offer some suggestions for how to use Maple to assist in the
computations in the following subsection.

3.7.1 Applying variation of parameters using Maple

Here we address how Maple can be used to execute the computations in a
problem such as the one posed in example 3.7.2, where we are interested in
solving the nonhomogeneous linear system of equations given by

x′ =
[

2 −1
3 −2

]
x +
[

1/(et + 1)
1

]
As usual, we load the Linear Algebra package.

> with(LinearAlgebra):

Because we already know how to find the complementary solution, we focus
on determining xp by variation of parameters. First, we use the complementary
solution,

xh = c1e−t
[

1
3

]
+ c2et

[
1
1

]
to define the fundamental matrix �(t ):

> Phi := <<exp(-t),3*exp(-t)>|<exp(t),exp(t)>>;

We next use the MatrixInverse command to find �−1 by entering

> MatrixInverse(Phi);

The resulting output is [− 1
2

1
e−t

1
2

1
e−t

3
2

1
et − 1

2
1
et

]

We can simplify this result using negative exponents; Maple can do so through
the following command, through which we also store �−1 in PhiInv:

> PhiInv := simplify(MatrixInverse(Phi));

Next, in order to compute �−1(t )b(t ), we must enter the function b(t ). We
enter

> b := <<1/(exp(t)+1),1>>;
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and then

> y := simplify(PhiInv.b);

At this point, y is a 2 × 1 array that holds the vector function �−1(t )b(t ).
Specifically, the output for y displayed by Maple is

y :=
⎡
⎣ 1

2
e2t

et +1

− 1
2

e−t (−2+et )
et +1

⎤
⎦

To access the components in y , we reference them with the commands y[1,1]
and y[2,1]. In particular, since we have to integrate �−1(t )b(t ) component-
wise, we enter

> Y := <<int(y[1,1],t), int(y[2,1],t)>>;

This last command produces the output

Y :=
[ 1

2 et − 1
2 ln(et + 1)

− 1
et − 3

2 ln(et ) + 3
2 ln(et + 1)

]

and obviously stores �−1(t )b(t ) in Y . Note that Maple has not made the obvious
simplification ln(et ) = t . Finally, in order to compute �(t )

∫
�−1(t )b(t )dt , we

need to enter Phi.Y. Of course, we again want to simplify, so we use

> simplify(Phi.Y);

which produces the output[− 1
2 − 1

2 e−t ln(et + 1) − 3
2 et ln(et ) + 3

2 et ln(et + 1)

1
2 − 3

2 e−t ln(et + 1) − 3
2 et ln(et ) + 3

2 et ln(et + 1)

]

This last result is the particular solution xp to the original system of
nonhomogeneous equations given in example 3.7.2. Note again that we can
simplify ln(et ) to t in each component.

Exercises 3.7

1. Consider the system of differential equations given by

x′ =
[

3 2
2 3

]
x +
[

5
−1

]

(a) Based on the form of b(t ), make a guess and determine xp by
undetermined coefficients.

(b) Use variation of parameters to determine xp .
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2. Consider the system of differential equations given by

x′ =
[

3 2
2 3

]
x +
[
e2t

0

]

(a) Based on the form of b(t ), make a guess and determine xp by
undetermined coefficients.

(b) Use variation of parameters to determine xp .

3. Consider the system of differential equations given by

x′ =
[

3 2
2 3

]
x +
[

3et

et

]

(a) Based on the form of b(t ), what is the natural guess for xp? Show that
this natural guess fails to work.

(b) Compute the complementary solution xh to the stated system and use
its form to explain why the natural guess in (a) is not a valid one.

(c) Use variation of parameters to determine xp .

4. Consider the system of differential equations given by

x′ =
[

0 2
1 −1

]
x +
[

4sin t
2sin t

]

(a) Based on the form of b(t ), what would be the natural guess to make
for xp? How many undetermined coefficients would need to be
computed?

(b) Use variation of parameters to determine xp .

In each of the exercises 5–12, determine the general solution to the given
system by finding xp using variation of parameters. Note that in each case, �(t )
is given.

5. x′ =
[

1 0
−1 3

]
x +
[

2e−t

1

]
, �(t ) =

[
2et 0
et e3t

]

6. x′ =
[

1 0
−1 3

]
x +
[

e3t

−e3t

]
, �(t ) =

[
2et 0
et e3t

]

7. x′ =
[

1 0
−1 3

]
x +
[

cos2t
2sin 2t

]
, �(t ) =

[
2et 0
et e3t

]

8. x′ =
[

2 1
3 0

]
x +
[

10t
10t

]
, �(t ) =

[
e3t −e−t

e3t 3e−t

]

9. x′ =
[

2 1
3 0

]
x +
[

2e−t

5e−t

]
, �(t ) =

[
e3t −e−t

e3t 3e−t

]

10. x′ =
[

1 1
−1 1

]
x +
[
e2t

0

]
, �(t ) =

[
et cos t et sin t

−et sin t et cos t

]
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11. x′ =
[

1 1
−1 1

]
x +
[

2t + 2
0

]
, �(t ) =

[
et cos t et sin t

−et sin t et cos t

]

12. x′ =
⎡
⎣2 1 0

0 2 0
0 0 1

⎤
⎦x +

⎡
⎣et

1
0

⎤
⎦ , �(t ) =

⎡
⎣e2t te2t 0

0 e2t 0
0 0 e−t

⎤
⎦

3.8 Applications of linear systems

In this section, we consider three fundamental physical problems that may be
modeled and studied using linear systems of differential equations.

3.8.1 Mixing problems

Through our study of the motivating example provided at the start of
chapter 1 and reconsidered at the beginning of the current chapter, we have
seen that mixing problems naturally lead to nonhomogeneous linear systems
of differential equations. Below, we examine a slightly more complicated
example.

Consider a system of three tanks connected in such a way that each of the
tanks has an independent inflow that delivers salt solution to it, each has an
independent outflow (drain), and each tank is connected to the other two with
both outflow and inflow pipes. The relevant information about each tank is
given in table 3.2.

We set up a system of differential equations whose solution represents the
amount of salt in each tank at time t and state the system in matrix form. For
tank A, we denote the amount of salt (in grams) in the tank at time t (in minutes)
by x1(t ). Similarly, we let x2(t ) and x3(t ) represent the amount of salt in tanks B
and C . A careful check of the given data shows that for each tank the total rates

Table 3.2
Saltwater mixing in three tanks A, B, and C

Tank A Tank B Tank C

Tank volume 50 liters 100 liters 200 liters

Rate of inflow to the tank 2 liters/min 4 liters/min 5 liters/min

Concentration of salt in inflow 0.25 g/liter 2 g/liter 0.9 g/liter

Rate of drain outflow 2 liters/min 4 liters/min 5 liters/min

Rates of outflows to other tanks to B: 3 liters/min to C : 1 liter/min to A: 4 liters/min

Rates of outflows to other tanks to C : 4 liters/min to A: 3 liters/min to B: 1 liter/min
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of inflow and outflow of solution balance so that the volume of solution in each
tank is constant.

From the given information on the independent inflow to the tank, we
know that tank A gains salt at a rate of

0.25
g

liter
· 2

liters

min
= 0.5

g

min
(3.8.1)

Furthermore, tank A also gains salt from the two inflows that come from tanks
B and C . For tank B, which contains 100 liters of solution, solution flows to A
at a rate of 3 liters/min with a concentration of x2(t )/100 g/liter, so that salt is
gained by tank A at a rate of

x2

100

g

liter
· 3

liters

min
= 3x2

100

g

min
(3.8.2)

Similarly, the flow from tank C to tank A results in A gaining salt at a rate of

x3

200

g

liter
· 4

liters

min
= x3

50

g

min
(3.8.3)

Tank A is also losing salt through its three outflows: a drain, flow to tank
B, and flow to tank C . Since the concentration of solution in tank A at time
t is x1(t )/50 g/liter, it follows that each outflow carries this concentration of
salt, doing so at respective rates of 2 liters/min, 3 liters/min, and 4 liters/min.
This shows that solution is leaving tank A at a cumulative rate of 9 liters/min,
therefore causing the rate at which salt is lost from tank A to be

x1

50

g

liter
· 9

liters

min
= 9x1

50

g

min
(3.8.4)

Combining the rates of inflow and outflow in (3.8.1), (3.8.2), (3.8.3), and (3.8.4),
it follows that x1(t ) satisfies the differential equation

x ′
1 = 0.5 + 3x2

100
+ 4x3

200
− 9x1

50
(3.8.5)

Similar reasoning shows that x2(t ) and x3(t ) satisfy the differential
equations

x ′
2 = 8 + 3x1

50
+ x3

200
− 8x2

100
(3.8.6)

and

x ′
3 = 4.5 + 4x1

50
+ x2

100
− 10x3

200
(3.8.7)

Rearranging (3.8.5), (3.8.6), and (3.8.7) and writing the system they generate in
matrix form, we see

x′ =
⎡
⎣−9/50 3/100 1/50

3/50 −2/25 1/200
2/25 1/100 −1/20

⎤
⎦x +

⎡
⎣0.5

8
4.5

⎤
⎦ (3.8.8)
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We can easily determine the equilibrium solution to the system by
setting x′ = 0 and row-reducing the resulting linear system of equations.
Doing so results in⎡

⎣−9/50 3/100 1/50 −0.5
3/50 −2/25 1/200 −8
2/25 1/100 −1/20 −4.5

⎤
⎦→

⎡
⎣1 0 0 50

0 1 0 150
0 0 1 200

⎤
⎦

so that x1 = 50, x2 = 150, x3 = 200 is the only equilibrium solution to the
system. In addition, the eigenpairs of the coefficient matrix A are approximately
λ = − 0.030, −0.204,−0.076 and v = [0.203 0.346 1]T, [−2.041 0.949 1]T,

[−0.168 − 1.250 1]T. Since all three eigenvalues are real and negative, we
can conclude that the above equilibrium is a stable attracting node. Moreover,
we can determine the general solution to the system. The eigenvalues and
eigenvectors provide us with xh , the complementary solution, while xp is given
by the equilibrium solution so that

x(t ) = c1e−0.030t

⎡
⎣ 0.203

0.346
1

⎤
⎦+ c2e−0.204t

⎡
⎣−2.041

0.949
1

⎤
⎦

+ c3e−0.076t

⎡
⎣−0.168

−1.250
1

⎤
⎦+

⎡
⎣ 50

150
200

⎤
⎦

We conclude from this example that three connected tanks generate a natural
example of a linear system of nonhomogeneous differential equations. Certainly,
we can envision similar ideas being applied to more complicated scenarios, such
as the spread of a pollutant through a connected chain of rivers and lakes.

3.8.2 Spring-mass systems

In section 3.1, we developed the linear second-order differential equation that
governs the behavior of a spring-mass system and converted the equation to a
system of two first-order equations. In particular, we learned that for a system
with mass m, spring constant k, damping constant c , and driving force F(t ), the
displacement y(t ) of the mass from its equilibrium position satisfies the DE

y ′′ + c

m
y ′ + k

m
y = 1

m
F(t ) (3.8.9)

Moreover, using the substitution x1 = y and x2 = x ′
1 = y ′, it follows that (3.8.9)

can be represented by the system

x ′
1 = x2

x ′
2 = − k

m
x1 − c

m
x2 + 1

m
F(t )

(3.8.10)
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m1 equilibrium

L

k1 k2

m2 equilibrium

Figure 3.15 Two masses m1 and m2 joined
by two springs, at equilibrium.

Next, we consider the more complicated case of a system involving two
masses and two springs, but omit damping and driving forces. In particular,
suppose that a mass m1 is attached to a spring with spring constant k1 and that
from m1 a second spring with constant k2 and mass m2 is attached, as shown
in figure 3.15. While we represent the masses with boxes, for our theoretical
work we assume we are working with point-masses, where all of the mass is
concentrated at a single point. We can envision these points as lying at the
centers of the respective boxes in figure 3.15.

To omit damping, we assume that the surface on which the masses rest is
frictionless. In addition, once the masses are set in motion by some collection
of initial displacements and velocities, we let x1(t ) denote the displacement of
m1 from its equilibrium position and x2(t ) the displacement of m2 from its
equilibrium position and set the system in motion, as shown in figure 3.16.

We seek a system of first-order differential equations that models this
situation. Note that m1 has two springs attached to it, so each spring exerts
forces on m1. One is F1 = −k1x1, which is the force the first spring exerts to
oppose the displacement of the first mass. Next, observe that when the system is
at equilibrium, the distance between the two masses is some constant L. Once
the system is set in motion, the distance between the two masses is L + x2 − x1.
As such, the second spring is being stretched a length of x2 − x1 beyond where
it is when the system is at equilibrium. On mass m1 this exerts a force in the
opposite direction of F1, specifically the force F2 = k2(x2 − x1) on m1. On the
second mass m2 there is only this same force exerted by the second spring, but
in the opposite direction as on m1. In particular, F3 = −k2(x2 − x1) acts on m2.

x1
x2

L

Figure 3.16 Two masses m1 and m2 and two
springs displaced from equilibrium.
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Now, because we have omitted damping and forcing, these are the only
forces acting on m1 and m2. Newton’s second law tells us that the sum of all
forces acting on an object must equal the object’s mass times its acceleration. In
particular, we have

m1x ′′
1 = −k1x1 + k2(x2 − x1)

m2x ′′
2 = −k2(x2 − x1)

Dividing through by m1 and m2, respectively, these observations lead us to the
system of linear second-order differential equations

x ′′
1 = − k1

m1
x1 + k2

m1
(x2 − x1)

x ′′
2 = − k2

m2
(x2 − x1)

(3.8.11)

To study the behavior of this system with the techniques that we have developed,
we must convert each of the second-order equations to a system of two first-
order equations. Before doing so, we introduce specific numerical values for the
masses and spring constants to simplify our work. We let k1 = 2 and k2 = 1, and
m1 = 2 and m2 = 4. This yields the system

x ′′
1 = −x1 + 0.5(x2 − x1)

x ′′
2 = −0.25(x2 − x1)

(3.8.12)

Using the substitutions y1 = x1, y2 = y ′
1 = x ′

1, y3 = x2, y4 = y ′
3 = x ′

2, it follows
that (3.8.12) results in the system of four first-order equations given by

y ′
1 = y2

y ′
2 = −y1 + 0.5(y3 − y1)

y ′
3 = y4

y ′
4 = −0.25(y3 − y1)

(3.8.13)

Letting y be the vector [y1 y2 y3 y4]T, we can write (3.8.13) in matrix form,

y′ =

⎡
⎢⎢⎣

0 1 0 0
−1.5 0 0.5 0

0 0 0 1
0.25 0 −0.25 0

⎤
⎥⎥⎦y (3.8.14)

From this, we can now analyze the overall behavior of the coupled spring-mass
system. In particular, the eigenvalues and eigenvectors of the coefficient matrix
in (3.8.14) will enable us to find the general solution y. Given initial conditions,
we can fully describe the functions yi(t )—particularly y1 and y3, which represent
the respective displacements of the masses in the system—and understand the
behavior of the system over time. This problem and others like it are explored
further in the exercises at the end of this section.
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3.8.3 RLC circuits

The flow of electricity through a circuit, much like the flow of water in a
pipe, naturally involves relationships with rates of change. As such, the study
of electrical current involves differential equations. Here, we explore some
fundamental properties of electricity and how these lead to such equations.

Throughout what follows, we will make use of the analogy that the flow of
charge carriers in an electrical circuit is like the flow of particles in a moving
stream of water. Just as we consider flow of water in a pipe to be the number
of water particles flowing past a given point during a certain time interval, the
current I (t ) in a circuit at time t is proportional to the number of positive
charge carriers that move past any given point per second in the conductor.
Note particularly that current measures a rate of change of charge.

Current is measured in amperes(amp), the base unit through which all other
units will be defined. One ampere corresponds to 6.2420 × 1018 charge carriers
per second moving past a given point. The unit of charge is a coulomb, which is
the amount of charge that flows through a cross section of a wire in one second
when a one amp current is flowing. In other words,

1 amp = 1 coulomb/s

Here, we begin to see how derivatives and integrals are involved in the study
of electricity. The current I (t ) at time t is by definition a rate of change of charge.
Thus, by the Fundamental Theorem of Calculus, the total amount of charge that
flows past a given point on a time interval [t0, t1] is given by∫ t1

t0

I (s)ds (3.8.15)

If we let Q(t ) measure the total accumulated charge at a given point in the circuit
from time t0 up to time t , then we have

Q(t ) = Q(t0) +
∫ t

t0

I (s)ds (3.8.16)

and therefore Q′(t ) = I (t ).
As current flows through a circuit, the charge carriers and elements in the

circuit exchange energy. We, therefore, define a potential function V throughout
a circuit. The energy (per coulomb of charge) that has been exchanged by the
charge carriers as they flow from point a to point b is computed as

Vab = Va − Vb

where Va and Vb are the values of the potential function at points a and b in the
circuit.

The difference Vab is called the voltage drop from a to b and is measured in
joules per coulomb, which are also known as volts. If we again think of the flow
of water through a pipe, the concept of voltage drop is analogous to the change
in water pressure between points a and b. Batteries, for example, maintain a
voltage drop between two terminals; the energy provided by a battery’s internal
chemicals produces a constant amount of energy per coulomb as charge carriers
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move throughout the battery, which raises the function V by the voltage rating
of the battery.

As current flows through a circuit, energy is lost. This makes the potential
V at one end lower than the potential at the other. Over a portion of a circuit,
say from a to b, where a substantial amount of energy is lost, we say that such a
portion is called a resistor. Good examples of resistors are light bulbs and heating
elements, because they show how electrical energy can be converted into light
and heat.

The voltage drop across a resistor and the current flowing through it are
modeled by Ohm’s law, which says that the potential difference Vab between the
endpoints a and b of a resistor is proportional to the current flowing through
the resistor. In other words,

Vab = IR (3.8.17)

where R is a constant called the resistance. The unit of resistance is the ohm,
which is equal to one volt per ampere, or one volt-second per coulomb.

A changing electrical current I (t ) in a segment of a circuit will create a
changing magnetic field that results in a voltage drop between the ends of a
segment. When this effect is large, such as in a coil between points b and c (the
effect can be magnified by different geometrical arrangements of the circuit),
the device that induces the effect is called an inductor. Faraday’s law tells us what
happens with the voltage drops across inductors. In particular, the voltage drop
across an inductor is proportional to the rate of change of the current, or, in
other words

Vbc = L
dI

dt
(3.8.18)

where L is a constant called the inductance. Note specifically that Faraday’s law
regards the rate of change of current. Inductance is measured in henries.

Finally, if a circuit is broken and we include two plates separated by an
insulating material (such as air), and the terminals of the circuit are connected
to a voltage source (such as a battery), then charges will build up on the plates.
In the ongoing analogy to water, this is similar to a tank used to store water to
provide a source of pressure. We call the set of plates a capacitor, and speak of
the total charge Q(t ) on the capacitor.

From (3.8.16), since we know that current I is the rate of change of charge
Q, if we know an initial charge Q(t0), then given a current I (t ) we can find the
charge Q(t ) by the relationship

Q(t ) = Q(t0) +
∫ t

t0

I (s)ds (3.8.19)

Finally, Coulomb’s law states that the voltage drop Vcd across a capacitor between
points c and d is proportional to the charge on the capacitor, or

Vcd = 1

C
Q(t ) = 1

C

(
Q(t0) +

∫ t

t0

I (s)ds

)
(3.8.20)

where C is called the capacitance of the capacitor and is measured in farads.
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All three of the laws (3.8.17), (3.8.18), and (3.8.20) are based on
experimental observations of circuits. Similarly, Kirchoff’s law is a conservation
law that tells us what we can expect for the voltage drops across various parts of
a circuit. Simply stated, Kirchoff’s law says that if we pick a sequence of points
in a closed circuit, then the sum of the voltage drops across these segments is
zero. Specifically, for points a1,a2, . . . ,an ,

Va1a2 + Va2a3 +·· ·+ Van−1an + Vana1 = 0 (3.8.21)

A final necessary law for us to consider is Kirchoff’s current law, which tells
us that at each point of a circuit, the sum of currents flowing into a point
equals the sum of the currents flowing out. For a simple RLC circuit with one
loop, Kirchoff’s current law guarantees that we can use a single function I (t ) to
model the current at any point at a given time t ; for circuits with multiple loops,
multiple functions I (t ) are needed.

Now we are prepared to see how these fundamental laws of electricity lead
to a second-order differential equation, and hence a 2 × 2 system of first-order
DEs. Let us consider an RLC circuit that consists of a resistor, inductor, and
capacitor, along with some energy (voltage) source E(t ), arranged in series, as
shown in figure 3.17. Kirchoff’s law leads us directly to second-order differential
equations that determine the behavior of the current I (t ) in the circuit and the
charge Q(t ) on the capacitor.

By Ohm’s law, we know thatVab = IR. Similarly, Faraday’s law implies that Vbc =
L dI

dt and Coulomb’s law tells us that Vcd = 1
C Q(t ) = 1

C

(
Q(t0) + ∫ t

t0
I (s)ds

)
.

Finally, we know from the voltage source that Vda = −E(t ). Kirchoff’s law now
yields the equation Vab + Vbc + Vcd + Vda = 0, or

RI (t ) + LI ′(t ) + 1

C
Q(t ) = E(t ) (3.8.22)

R

L

C

E(t)

+ −
a

b c

d

I(t)

Figure 3.17 An RLC circuit with resistance
R, inductance L, capacitance C , and energy
source E(t ).
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Recalling that Q′(t ) = I (t ), we may rewrite (3.8.22) in two different ways. If we
differentiate both sides of (3.8.22), and rearrange the terms in decreasing order
of derivatives, it follows immediately that the current I (t ) must satisfy the linear
second-order differential equation

LI ′′(t ) + RI ′(t ) + 1

C
I (t ) = E ′(t ) (3.8.23)

If instead we substitute Q′ for I in (3.8.22), then we see that Q is the solution to
the linear second-order differential equation

LQ′′(t ) + RQ′(t ) + 1

C
Q(t ) = E(t ) (3.8.24)

We can therefore study the behaviors of different RLC circuits based on the given
resistance, inductance, capacitance, and supplied voltage. Moreover, as we well
know, any such linear second-order differential equation may be converted to a
system of first-order equations. For example, letting x1 = I and x2 = I ′, we can
convert (3.8.23) to the system of equations

x ′
1 = x2

x ′
2 = − 1

CL
x1 − R

L
x2 + 1

L
E ′(t )

Example 3.8.1 Determine all solutions I (t ) for an RLC circuit when L = 20 H,
R = 80 �, C = 10−2 F, and the external voltage is given by the function
E(t ) = 50sin 2t .

Solution. From (3.8.23) and the given information, we can immediately
determine the second-order differential equation that I (t ) satisfies. In particular,
since E(t ) = 50sin 2t , we have E ′(t ) = 100cos2t , and using the values for L, C ,
and R, I (t ) is a solution to the equation

20I ′′ + 80I ′ + 100I = 100cos2t (3.8.25)

Using the substitution x1 = I and x2 = I ′ and multiplying both sides of (3.8.25)
by 1/20, the system becomes

x ′
1 = x2

x ′
2 = −5x1 − 4x2 + 5cos2t

From this, we can write the system in matrix form as

x′ =
[

0 1
−5 −4

]
x +
[

0
5cos2t

]
(3.8.26)

For the coefficient matrix A in (3.8.26), we compute the eigenvalues and
eigenvectors in order to find the complementary solution xh of the system.
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Doing so, we find that A has complex eigenvalues and eigenvectors; one
eigenvalue-eigenvector pair is

λ = −2 + i, v =
[−2 − i

5

]

Writing

z(t ) = e(−2+i)t
[−2 − i

5

]

we know from theorem 3.5.2 that the real and imaginary parts of the
vector function z(t ) will form two real linearly independent solutions to the
homogeneous system x′ = Ax. Rewriting z using Euler’s formula,

z(t ) = e−2t (cos t + i sin t )

([−2
5

]
+ i

[−1
0

])

= e−2t
[−2cos t + sin t

5cos t

]
+ ie−2t

[−cos t − 2sin t
5sin t

]

The real and imaginary parts of z are real linearly independent solutions to
x′ = Ax, so we have determined that the complementary solution to the original
system is

xh = c1e−2t
[−2cos t + sin t

5cos t

]
+ c2e−2t

[−cos t − 2sin t
5sin t

]

In theory, we are now ready to apply variation of parameters to find a particular
solution xp . While we could do so here, the computations get remarkably
cumbersome. In the next chapter on higher order differential equations, we
will learn that for certain higher order equations, making a good guess at the
form of a particular solution provides the simplest approach. In fact, we will
even see that keeping certain second-order equations in that form, rather than
converting them to systems of first-order equations, often is the best way to
proceed.

For now, we will guess a form for xp . Since

b(t ) =
[

0
5cos2t

]

we assume that a particular solution xp has form

xp =
[
a cos2t + b sin 2t
c cos2t + d sin 2t

]

From this, it follows

x′
p =
[−2a sin 2t + 2b cos2t
−2c sin 2t + 2d cos2t

]
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Substituting xp and x′
p for x and x′ in (3.8.26), we have[−2a sin 2t + 2b cos2t

−2c sin 2t + 2d cos2t

]
=
[

c cos2t + d sin 2t
−5a cos2t − 5b sin 2t − 4c cos2t − 4d sin 2t

]

+
[

0
5cos2t

]

Equating the coefficients of sin 2t and cos2t in the entries of the vectors in this
most recent vector equation, the following system of four linear equations in a,
b, c , and d arises:

−2a = d

2b = c

−2c = −5b − 4d

2d = −5a − 4c + 5

Rearranging this system to write it in matrix form and row-reducing, we observe⎡
⎢⎢⎣

−2 0 0 −1 0
0 2 −1 0 0
0 5 −2 4 0

−5 0 4 2 5

⎤
⎥⎥⎦→

⎡
⎢⎢⎣

1 0 0 0 1/13
0 1 0 0 8/13
0 0 1 0 16/13
0 0 0 1 −2/13

⎤
⎥⎥⎦

Thus we conclude that a particular solution is

xp =
[

1/13cos2t + 8/13sin 2t

16/13cos2t − 2/13sin 2t

]

In conjunction with our earlier work to find xh , we have determined that
the general solution to the system of first-order differential equations given
by (3.8.25) is

x = c1e−2t
[−2cos t + sin t

5cos t

]
+ c2e−2t

[−cos t − 2sin t
5sin t

]

+
[

1/13cos2t + 8/13sin 2t

16/13cos2t − 2/13sin 2t

]

Recalling that x1 = I is the current in the given RLC circuit, we have
shown that

I (t ) = c1e−2t (−2cos t + sin t )+ c2e−2t (−cos t −2sin t )+ 1

13
cos2t + 8

13
sin 2t

Given initial conditions for I (0) and I ′(0), we can find the values of the constants
c1 and c2. Moreover, we note that as t → ∞, the components of the solution that
include e−2t will die off, leaving us with long-term behavior of I (t ) modeled by
1

13 cos2t + 8
13 sin 2t . We hence call 1

13 cos2t + 8
13 sin 2t the steady-state solution
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of the original equation (3.8.25) and c1e−2t (−2cos t + sin t )+ c2e−2t (−cos t −
2sin t ) the transient solution.

Overall, we have now seen several examples of important phenomena
governed by linear systems of differential equations. Further examples will be
considered in the exercises.

Exercises 3.8

1. In a closed system of two tanks (i.e, one for which there are no input flows
and no output flows), the following information is given. Tank A is filled
with 100 liters of solution whose initial concentration is 0.25 g/liter. Tank
B is filled with 50 liters of solution whose initial concentration is 1 g/liter.
The two tanks are connected with two pipes having flows in opposite
direction; mixed solution from Tank A flows to Tank B at a rate of
4 liters/min. Similarly, mixed solution flows from Tank B to Tank A at a
rate of 4 liters/min.

Set up and solve an initial-value problem whose solution will tell you
the amount of salt in each tank at time t . Discuss the graphical behavior
of the solution x(t ) (whose components are the amount of salt in each
tank at time t ). Is there an equilibrium solution to the system? If so,
what is it?

2. Consider a system of two tanks connected in such a way that each of the
tanks has an independent inflow that delivers salt solution to it, each has
an independent outflow (drain), and each tank is connected to the other
with an outflow and an inflow. The relevant information about each tank
is given in the table below.

Tank A Tank B

Tank volume 100 liters 200 liters

Rate of inflow to the tank 5 liters/min 9 liters/min

Concentration of salt in inflow 7 g/liter 3 g/liter

Rate of drain outflow 4 liters/min 10 liters/min

Rates of outflows to other tank to B: 3 liters/min to A: 2 liters/min

Initially, Tank A has 20 g of salt present in its solution, and Tank B has
75 g of salt present in its solution.

Set up and solve an initial-value problem whose solution will determine
the amount of salt in each tank at time t . Discuss the graphical behavior
of the solution x(t ) (whose components are the amount of salt in each
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tank at time t ). Is there an equilibrium solution to the system? If so,
what is it?

3. Suppose that in exercise 2 all of the given information remains the
same except for the fact that instead of saltwater flowing into each
tank, pure water flows in. How do the results of your work in exercise 2
change?

4. In a closed system of three tanks (that is, one for which there are no input
flows and no output flows), the following information is given.

Tank A Tank B Tank C

Tank volume 100 liters 150 liters 125 liters

Rates of outflows to B: 3 liters/min to C : 1 liters/min to A: 4 liters/min
to other tanks

Rates of outflows to C : 4 liters/min to A: 3 liters/min to B: 1 liter/min
to other tanks

Tank A is filled with 100 liters of solution whose initial concentration is
8 g/liter. Tank B is filled with 150 liters of solution whose initial
concentration is 3 g/liter. Tank C is initially filled with 125 liters of pure
water. The three tanks are connected with pipes having flows in opposite
directions; flow rates are given in the table above.

Set up and solve an initial-value problem whose solution will tell you
the amount of salt in each tank at time t . Discuss the graphical behavior
of the solution x(t ) (whose components are the amount of salt in each
tank at time t ). Is there an equilibrium solution to the system? If so,
what is it?

5. In a system of three tanks of saltwater, the following information is given.

Tank A Tank B Tank C

Tank volume 400 liters 200 liters 300 liters

Rate of inflow 7 liters/min 0 liters/min 0 liters/min
to the tank

Concentration of 10 g/liter n/a n/a
salt in inflow

Rate of drain outflow 0 liters/min 0 liters/min 7 liters/min

Rates of outflows to B: 7 liters/min to C : 7 liters/min to A: 0 liters/min
to other tanks

Rates of outflows to C : 0 liters/min to A: 0 liters/min to B: 0 liters/min
to other tanks
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Each tank is full; tank A contains solution whose initial concentration is
20 g/liter. Tank B contains solution whose initial concentration is
50 g/liter. Tank C contains pure water.

Without setting up a system of differential equations, first use your
intuition to describe what you think will be the behavior of the functions
x1(t ), x2(t ), and x3(t ) that measure the amount of salt in each of the three
respective tanks at time t .

Then, set up and solve an initial-value problem whose solution will tell
you the amount of salt in each tank at time t . Discuss the graphical
behavior of each component of the solution x(t ) and compare it to your
intuitive expectations. Is there an equilibrium solution to the system? If so,
what is it?

6. In a system of three tanks of saltwater interconnected with pipes of inflow
and outflow to and from each, the following information is given.

Tank A Tank B Tank C

Tank volume 400 liters 800 liters 500 liters

Rate of inflow 5 liters/min 10 liters/min 5 liters/min
to the tank

Concentration of 25 g/liter 15 g/liter 40 g/liter
salt in inflow

Rate of drain outflow 4 liters/min 7 liters/min 9 liters/min

Rates of outflows to B: 6 liters/min to C : 5 liters/min to A: 4 liters/min
to other tanks

Rates of outflows to C : 4 liters/min to A: 5 liters/min to B: 1 liter/min
to other tanks

Assume that the system is such that initially there is a concentration
of 10 g/liter of salt in each of the three tanks. Set up and solve an
initial-value problem whose solution will tell you the amount of salt in
each tank at time t . Discuss the graphical behavior of each component of
the solution x(t ). Is there an equilibrium solution to the system? If so,
what is it?

7. Recall that for a spring-mass system of mass m, spring constant k, and
damping constant c , the displacement y(t ) of the mass from equilibrium
is governed by the linear second-order differential equation

y ′′ + c

m
y ′ + k

m
y = 1

m
F(t )

For a mass of 0.5 kg with spring constant k = 2 N/m in an undamped,
unforced system, assume the mass is displaced 0.4 m from equilibrium
and released (i.e., y(0) = 0.4 and y ′(0) = 0).
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(a) State the second-order IVP that models this situation.
(b) Convert the second-order equation to a system of first-order DEs

using the standard substitution: x1 = y , x2 = y ′.
(c) Solve the system in (b), and graph the component function x1(t ).

Discuss the long-term behavior of the spring-mass system.

8. For a mass of 0.5 kg with spring constant k = 2 N/m and damping
constant c = 0.5 N·s/m in an unforced system, assume the mass is
displaced 0.3 m from equilibrium and released.

(a) State the second-order IVP that models this situation.
(b) Convert the second-order equation to a system of first-order DEs

using the standard substitution: x1 = y , x2 = y ′.
(c) Solve the system in (b), and graph the component function x1(t ).

Discuss the long-term behavior of the spring-mass system.

9. For a mass of 0.5 kg with spring constant k = 2 N/m and damping constant
c = 0.5 N·s/min a forced system with forcing function F(t ) = cos2t N,
assume the mass is initially displaced 0.3 m from equilibrium and released.

(a) State the second-order IVP that models this situation.
(b) Convert the second-order equation to a system of first-order DEs

using the standard substitution: x1 = y , x2 = y ′.
(c) Use variation of parameters to solve the system in (b), and graph the

component function x1(t ). Discuss the long-term behavior of the
spring-mass system.

10. In section 3.8.2, we considered a system of two masses attached to two
springs in parallel, where a mass m1 is attached to a spring with spring
constant k1 and from m1 a second spring with constant k2 and mass m2 is
attached. See figure 3.16.

If we assume that the surface on which the masses rest is frictionless and
let let x1(t ) denote the displacement of m1 from its equilibrium position
and x2(t ) the displacement of m2 from its equilibrium position and set the
system in motion, then the system is governed by the system of second
order differential equations

x ′′
1 = − k1

m1
x1 + k2

m1
(x2 − x1)

x ′′
2 = − k2

m2
(x2 − x1)

(a) Suppose that k1 = 2, m1 = 1, k2 = 4 and m2 = 0.5. Using the given
constant values and the substitution y1 = x1, y2 = y ′

1 = x ′
1, y3 = x2,

y4 = y ′
3 = x ′

2, convert the system of two second-order equations to a
system of four first-order equations.

(b) Assume that the masses m1 and m2 are each displaced 1 unit from their
natural equilibrium and released. That is, assume x1(0) = 1, x ′

1(0) = 0,
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x2(0) = 1, and x ′
2(0) = 0. Solve this initial-value problem using the

system in (a) and sketch the plots of y1 and y3 and discuss what they
tell you about the system.

11. Recall that the current I (t ) in an RLC circuit is governed by the linear
second-order differential equation

LI ′′(t ) + RI ′(t ) + 1

C
I (t ) = E ′(t )

where L is the inductance, R the resistance, and C the capacitance of the
circuit.

Suppose we have an RLC circuit for which an inductor of L = 1 henry and
capacitor C = 0.01 farad are present. Assume further that I (0) = 100 and
I ′(0) = 0.

(a) State a second-order IVP whose solution is I (t ), the current at time t .
(b) Convert the IVP in (a) to a system of first-order IVPs using a standard

substitution.
(c) Solve the system in (b) to determine the current I (t ) in the cases where

the resistance is (i) R = 0 �, (ii) R = 16 �, (iii) R = 20 �, and
(iv) R = 25 �, assuming consistent units. Sketch a plot of each solution
I (t ) and discuss the impact that changing R has on the current.

12. Suppose we have an RLC circuit for which an inductor of L = 1 H, resistor
R = 16 �, and capacitor C = 0.01 F are present. Assume further that
I (0) = 100 A and I ′(0) = 0. Finally, suppose that the system is provided a
voltage source of E(t ) = 100sin 10t

(a) State a second-order IVP whose solution is I (t ), the current in the
circuit at time t .

(b) Convert the IVP in (a) to a system of first-order IVPs using a standard
substitution.

(c) Solve the system in (b) to determine the current I (t ) at time t . Sketch a
plot of the solution I (t ) and discuss the impact the forcing function
has on the current.

3.9 For further study

3.9.1 Diagonalizable matrices and coupled systems

We have seen that in the case where a system of linear first-order differential
equations is uncoupled, such as[

x ′
1

x ′
2

]
=
[

3 0
0 −2

][
x1

x2

]
=
[

3x1

−2x2

]

the system is particularly straightforward to solve. In addition, even when the
coefficient matrix A of the system x′ = Ax is not a diagonal matrix, in the
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case where A is n × n and has n real, linearly independent eigenvectors, it is
again a straightforward exercise to determine the general solution to x′ = Ax.
In what follows, we investigate the connections between A having n real linearly
independent eigenvectors and the system being uncoupled.

(a) Solve the uncoupled system of linear first-order equations[
x ′

1
x ′

2

]
=
[

3 0
0 −2

][
x1

x2

]
=
[

3x1

−2x2

]

by directly solving the two individual equations x ′
1 = 3x1 and x ′

2 = −2x2.

(b) For the coefficient matrix

A =
[

3 0
0 −2

]
how are your solutions in (a) to the individual differential equations
related to the eigenvalues and eigenvectors of A?

(c) Determine the eigenvalues and eigenvectors of the matrix A =
[

1 6
5 2

]
and

show that A has two real, linearly independent eigenvectors.

(d) Let D be the diagonal 2 × 2 matrix whose diagonal entries are λ1 and λ2,
the eigenvalues of A from (c), and let P be the 2 × 2 matrix whose columns
are x1 and x2, the eigenvectors of A corresponding to λ1 and λ2. Show that
AP = PD.

(e) More generally, let A be an n × n matrix with n linearly independent real
eigenvectors x1,x2, . . . ,xn that correspond to real eigenvalues
λ1,λ2, . . . ,λn . As in (d), let D be the diagonal matrix whose diagonal
entries are the eigenvalues of A and P be the matrix whose columns are the
corresponding eigenvectors of A. Explain why AP = PD and thus why
A = PDP−1 and D = P−1DP.

A real n × n matrix A with the property that it has n real, linearly
independent eigenvectors is called diagonalizable. When we factor A in the
form A = PDP−1, we say that we have diagonalized the matrix A.

(f) For a 2 × 2 diagonalizable matrix A, consider the system of differential
equations given by x′ = Ax. Let D and P be the matrices defined above in
(d). Note that in this problem A is a arbitrary diagonalizable matrix: we
are not specifying the values of λ1 and λ2, nor the values of the entries in
the corresponding eigenvectors.

(i) Let y = P−1x. Show that x′ = Py′.
(ii) Use the substitution y = P−1x and the fact that A = PDP−1 to show

that the original system x′ = Ax may be equivalently represented by
the system y′ = Dy.

(iii) Explain why the system y′ = Dy is preferable to the system x′ = Ax.
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(g) For the matrix A =
[

1 6
5 2

]
, solve the system x′ = Ax by executing the

following steps.

(i) Diagonalize A by determining matrices D and P such that A = PDP−1.
Recall that D is the diagonal matrix whose diagonal entries are the
eigenvalues of A and P is the matrix whose columns are the
corresponding eigenvectors of A.

(ii) Follow your work in (f) to introduce a substitution that converts the
system x′ = Ax to a new system in the variable y that is uncoupled and
of the form y′ = Dy.

(iii) Solve the uncoupled system in (ii) for y.
(iv) Determine the solution x to the original system by showing that

x = Py and using this substitution appropriately.

(h) Solve the system x′ = Ax given by

A =
[

2 1
1 2

]

using the approach outlined in (g).

(i) Solve the system x′ = Ax given by

A =
⎡
⎣ 3 −1 1

−1 3 −1
1 −1 3

⎤
⎦

using the approach outlined in (g).

(j) Compare your work in (g)–(i) to how you learned to solve the system
x′ = Ax in section 3.3. Is this new approach fundamentally the same or is
it markedly different? Explain.

3.9.2 Matrix exponential

An important result in calculus is that ex can be represented by its Taylor series
expansion

ex = 1 + x + x2

2! + x3

3! + · · ·+ xn

n! + · · · (3.9.1)

and that (3.9.1) holds for every real value of x . In what follows, we explore the
notion of eA, where A is a matrix, through the use of an analogous expansion,
as well as the role of eA in the solution of systems of differential equations of the
form x′ = Ax.

(a) Let A be the diagonal matrix

A =
[

3 0
0 −2

]



For further study 271

Explain why

An =
[

3n 0
0 (−2)n

]

(b) For the matrix A in (a), show that

I+A+ 1

2!A2 +···+ 1

n!An =
[
1+3+ 32

2! +···+ 3n

n! 0

0 1−2+ (−2)2

2! +···+ (−2)n

n!

]

(3.9.2)

Based on the entries in the right-hand matrix of (3.9.2), explain why it is
reasonable to write that

eA = I + A + 1

2!A2 + 1

3!A3 +·· ·+ 1

n!An +·· · (3.9.3)

We use (3.9.3) as the definition of eA for any diagonal matrix A.

(c) Now consider the matrix B =
[

2 −2
−2 −1

]
. Find the eigenvalues and

eigenvectors of B and diagonalize B by writing

B = PDP−1

where D is the diagonal matrix whose diagonal entries are the eigenvalues
of B and P is the matrix whose columns are the corresponding
eigenvectors of B. For more on the notion of a matrix being
‘diagonalizable’, see subsection 3.9.1.

(d) For an arbitrary diagonalizable matrix B for which B = PDP−1 (where D
and P have the meaning ascribed in (c)), show that

Bn = PDnP−1

(e) For an arbitrary diagonalizable matrix B, explain why

I + B + 1

2!B2 + 1

3!B3 +·· ·+ 1

n!Bn +·· · = P

(
I + D + 1

2!D2 + 1

3!D3 +·· ·

+ 1

n!Dn +·· ·
)

P−1

again where D and P have the meaning ascribed in (c). We thus define eB

for any diagonalizable matrix B by the equation

eB = I + B + 1

2!B2 + 1

3!B3 +·· ·+ 1

n!Bn +·· · (3.9.4)

(f) Show that if B is any diagonalizable matrix such that B = PDP−1 (where D
and P have the meaning ascribed in (c)), then

eB = PeDP−1



272 Linear systems of differential equations

(g) Use the result in (f) to compute eB for the specific matrix B given in (c).

(h) Recall that when we solve a single homogeneous linear first-order DE
such as

y ′ = 5y

one way to solve the equation is to guess that the solution is y = ert and
work to determine the value of r that satisfies the DE. Of course we find
that r = 5 and y = Ce5t is the general solution. Indeed, for any constant
a, the solution to y ′ = ay is y = Ceat .

Now let this consider solving the system of differential equations

x′ = Ax =
[

3 0
0 −2

]
(3.9.5)

noting that A is the diagonal matrix from (a) above.

(i) Viewing t as a scalar multiplier of A, update your work from (3.9.3) to
write a series expansion for eAt .

(ii) Noting that eAt is a matrix, explain why it is reasonable to guess that
�(t ) = eAt is a solution matrix for the system x′ = Ax.

(iii) Using your expression from (i) for �(t ) = eAt , compute both � ′(t )
and A�(t ) to verify that the matrix function �(t ) satisfies the
equation � ′(t ) = A�(t ).



4
Higher order differential equations

4.1 Motivating equations

Through our study of linear systems of differential equations, we have already
encountered higher order differential equations that arise naturally in physical
applications. Two particularly important ones are those associated with spring-
mass systems and RLC circuits. Here, we briefly revisit these equations.

In section 3.1, we considered a mass m suspended from a spring with spring
constant k that is subject to damping with proportionality constant c . If F(t ) is
an external forcing function on the system, then the displacement y(t ) of the
mass from equilibrium satisfies

my ′′ + cy ′ + ky = F(t ) (4.1.1)

This is a nonhomogeneous linear second-order differential equation. While we
have already studied this equation by using the substitution x1 = y and x2 = y ′
and considered the resulting linear system of first-order differential equations,
there is further insight to be gained by examining (4.1.1) solely as a second-
order equation. In fact, while it is theoretically possible to solve (4.1.1) using
the corresponding linear system and ideas from chapter 3, doing so in the cases
where F(t ) 
= 0 is often cumbersome; we will see in section 4.4 that this equation
may often be solved in a straightforward manner by leaving it in its original form
as a second-order equation.

In section 3.8, we encountered another important nonhomogeneous linear
second-order differential equation. By viewing the flow of electricity through
a circuit as analogous to the flow of water in a pipe, we came to understand a
differential equation that models the current I (t ). Using results from physics,

273
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including Ohm’s law, Faraday’s law, and Coulomb’s law, we learned that the
current I (t ) must satisfy the linear second-order differential equation

LI ′′ + RI ′ + 1

C
I = E ′(t ) (4.1.2)

where L is the inductance, R is the resistance, C is the capacitance, and E(t )
represents an external voltage source.

We note specifically that the governing differential equations for spring-
mass systems and RLC circuits are both linear nonhomogeneous second-order
differential equations with constant coefficients. These differential equations
therefore merit further study as we endeavor to more fully understand these
physical systems. When the damping constant c = 0 and the resistance R = 0
in (4.1.1) and (4.1.2), these equations are often called harmonic oscillator
equations. When small damping or resistance is present, we refer to them as
damped harmonic oscillators.

4.2 Homogeneous equations: distinct real roots

If we consider our experience with single homogeneous linear first-order
differential equations and systems thereof, we realize that the exponential
function plays a central role in their solution. For example, if we solve the
equation

y ′ − 5y = 0

the solution is y = ce5t . Likewise, if we solve the system given by x′ = Ax, where
A is a matrix with eigenvalues λ = 2 and λ = −3, then the general solution is

x = c1e2t v1 + c2e−3t v2

where v1 and v2 are eigenvectors that correspond to the eigenvalues λ = 2 and
λ = −3.

Given this prominence of the exponential function, it is not surprising
that functions of the form y = ert play a central role in our study of higher
order equations. For example, consider the second-order linear homogeneous
differential equation with constant coefficients given by

y ′′ − y ′ − 6y = 0 (4.2.1)

Even without our experience with first-order equations and systems, it is
reasonable to think that one or more functions of the form y = ert will be
a solution to this equation because of the question the equation begs: “what
function y is such that its second derivative minus its first derivative is equal to
6 times itself?” In essence, we are looking for a function y such that a certain
linear combination of the function, its first derivative, and its second derivative,
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is the zero function. This makes it natural for us to expect that the solution is
such that its derivatives are scalar multiples of itself, hence leading us to consider
y = ert .

Letting y = ert , we observe that y ′ = rert and y ′′ = r2ert . Substituting these
functions into (4.2.1) requires r to satisfy the equation

r2ert − rert − 6ert = 0 (4.2.2)

Factoring, we can rewrite (4.2.2) as

ert (r2 − r − 6) = 0

and since ert is never zero, it follows that r must be such that r2 − r − 6 =
(r − 3)(r + 2) = 0. From this, r = 3 or r = −2, and therefore y1 = e3t and
y2 = e−2t are both solutions to (4.2.1).

Since y1 = e3t is not a scalar multiple of y2 = e−2t , it follows that y1 and y2 are
linearly independent solutions to (4.2.1). Through our work with homogeneous
linear systems, we are accustomed to taking linear combinations of linearly
independent solutions in order to form a general solution; the same principle
holds here, which we will verify directly. Letting y = c1y1 +c2y2 = c1e3t +c2e−2t ,
it follows that y ′ = 3c1e3t − 2c2e−2t and y ′′ = 9c1e3t + 4c2e−2t . If we now
consider y ′′ − y ′ − 6y , we have

y ′′ − y ′ − 6y = (9c1e3t + 4c2e−2t ) − (3c1e3t − 2c2e−2t ) − 6(c1e3t + c2e−2t )

= (9c1e3t − 3c1e3t − 6c1e3t ) + (4c2e−2t + 2c2e−2t − 6c2e−2t )

= 0

Thus, we have shown that every function of the form y = c1e3t + c2e−2t is a
solution to (4.2.1). This shows that the solution space of (4.2.1) is at least two-
dimensional; might there be any other linearly independent solutions to the
equation? By our earlier work with systems, we know that the solution space of
the equation x′ = Ax, where A is n×n, is n-dimensional. Since the second-order
equation (4.2.1) can be converted to a 2 × 2 system of equations, it follows that
its solution space has dimension exactly 2, and thus

y = c1e3t + c2e−2t (4.2.3)

is the general solution to (4.2.1).
Our work to show that if y1 and y2 are solutions to (4.2.1), then y = c1y1 +

c2y2 is also a solution may be generalized to any homogeneous linear second-
order differential equation. We state this result in the following theorem.

Theorem 4.2.1 If y1 and y2 are solutions to the second-order linear
homogeneous equation

y ′′ + a(t )y ′ + b(t )y = 0

then y = c1y1 + c2y2 is also a solution for any constants c1 and c2.
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The important roles the constants c1 and c2 play are further exemplified by
initial-value problems. For example, if we consider the initial-value problem

y ′′ − y ′ − 6y = 0, y(0) = 2, y ′(0) = 1 (4.2.4)

we can show that this IVP has a unique solution. Using the general solution
y(t ) = c1e3t + c2e−2t , the condition y(0) = 2 implies that

2 = c1 + c2 (4.2.5)

Differentiating the general solution, we find that y ′(t ) = 3c1e3t − 2c2e−2t , and
therefore y ′(0) = 1 implies

1 = 3c1 − 2c2 (4.2.6)

Equations (4.2.5) and (4.2.6) form a linear system of two equations in two
unknowns. Solving this system, c1 = 1 and c2 = 1, so that the function

y(t ) = e3t + e−2t

is the unique solution to (4.2.4).
Our work with the example equation y ′′ − y ′ − 6y = 0 is indicative of

many broader trends in the study of second-order linear differential equations.
Because such equations can be converted to systems, we should not be at all
surprised to learn that a broad class of initial-value problems associated with
second-order equations have unique solutions, nor that the general solution to
a second-order equation belongs to a two-dimensional solution space. We state
two theorems in order to formalize these observations.

Theorem 4.2.2 Consider the second-order initial-value problem given by

y ′′ + p(t )y ′ + q(t )y = f (t ) y(t0) = y0, y ′(t0) = y1 (4.2.7)

where the coefficient functions p(t ) and q(t ) and the forcing function f (t ) are
continuous on an open interval (a,b). Given any t0 in (a,b), (4.2.7) has a unique
solution in (a,b).

While the proof of theorem 4.2.2 is beyond the scope of this book, it is
notable that in the case that p(t ) and q(t ) are constant functions, we can prove
the theorem. Indeed, we will do so by actually constructing the solution in
various cases in this section and those following.

Just as we almost exclusively considered matrices A with constant entries
in our work with systems of linear first-order differential equations of the form
x′ = Ax, in our study of second-order linear differential equations, we will
normally consider the situation where the coefficient functions p(t ) and q(t )
are constant. For this context, we can deduce the following result.

Theorem 4.2.3 The set of all solutions to the second-order homogeneous
linear differential equation y ′′ + a1y ′ + a0y = 0, where a0 and a1 are constants,
is a vector space of dimension 2.
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This result can be viewed as a consequence of theorem 3.3.2 for linear
systems of differential equations with constant coefficients. In particular, given

y ′′ + a1y ′ + a0y = 0 (4.2.8)

if we use the standard substitution x1 = y , x2 = y ′, then it follows that (4.2.8) is
equivalent to the system

x′ = Ax =
[

0 1
−a0 −a1

]
x

which has a two-dimensional solution space.
Thus, in order to solve (4.2.8), we seek two linearly independent solutions

that satisfy the equation. In particular, if we can find two functions y1 = er1t

and y2 = er2t that are both solutions to (4.2.8), where r1 
= r2, then the general
solution must be

y = c1er1t + c2er2t

More specifically, if we recall our earlier approach following (4.2.1) in the first
example in this section, we made the assumption that a solution y has form
y = ert . Doing so and substituting in the general equation y ′′ + a1y ′ + a0y = 0,
we see that r must satisfy

r2ert + a1rert + a0ert = 0 (4.2.9)

Since ert is never zero, it follows that r must be a solution of the characteristic
equation of the second-order homogeneous linear equation (4.2.8), which is

r2 + a1r + a0 = 0 (4.2.10)

If r1 and r2 are the roots of (4.2.10), then it follows that y1 = er1t and y2 = er2t

are both solutions to the original equation (4.2.8). In particular, if r1 
= r2, then
y1 and y2 are linearly independent and we have found the general solution
to (4.2.8), which is

y = c1er1t + c2er2t

We state this result formally in the following theorem.

Theorem 4.2.4 Given the second-order linear differential equation with
constant coefficients

y ′′ + a1y ′ + a0y = 0

if the characteristic equation r2 + a1r + a0 = 0 has two distinct real roots r1

and r2, then the general solution to (4.2.4) is

y = c1er1t + c2er2t

We close this section with an example.
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Figure 4.1 A plot of the solution y(t ) to the
IVP given in (4.2.11).

Example 4.2.1 Solve the second-order initial-value problem given by

y ′′ + 7y ′ + 12y = 0, y(0) = 3, y ′(0) = −1 (4.2.11)

Graph the solution and discuss its long-term behavior.

Solution. We begin by assuming that y = ert . Direct substitution into (4.2.11)
and removing the factor ert results in the characteristic equation

r2 + 7r + 12 = 0

Factoring, we find that (r + 3)(r + 4) = 0, and therefore, r = −3 or r = −4.
Since the two r values are distinct, it follows that y1 = e−3t and y2 = e−4t are
linearly independent solutions to (4.2.11) and the general solution is

y = c1e−3t + c2e−4t (4.2.12)

Applying the given initial conditions, we can solve for c1 and c2. Since y(0) = 3
and y ′(0) = −1, (4.2.12) implies that

3 = c1 + c2

−1 = −3c1 − 4c2

It follows c1 = 11 and c2 = −8, and thus the unique solution to the given
IVP (4.2.11) is y = 11e−3t − 8e−4t . Plotting y(t ) results in the graph shown in
figure 4.1, where we clearly see the given initial behavior at t = 0 (the function
value is 3 and the slope of the tangent line is −1) and that the solution’s long-term
behavior is that y(t ) → 0 as t → ∞.

We can also observe from the negative constants present in the exponents of
the general solution y = c1e−3t + c2e−4t , that every such solution must tend to
zero as t → ∞. We note that y = 0 is the only constant (equilibrium) solution
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to the original equation y ′′ + 7y ′ + 12y = 0, and that because every solution
tends to y = 0, we say y = 0 is a stable equilibrium.

Exercises 4.2 In exercises 1–7, determine the general solution to the given
second-order homogeneous linear DE.

1. y ′′ − y ′ − 12y = 0

2. y ′′ + y ′ − 2y = 0

3. y ′′ − y = 0

4. y ′′ + 3y ′ = 0

5. y ′′ = 0

6. y ′′ + 4y ′ + 3y = 0

7. y ′′ + y ′ − y = 0

In exercises 8–14, solve the stated IVP. In addition, graph your solution and
discuss its long-term behavior. Note that the general solution to each equation
has been found in exercises 1–7.

8. y ′′ − y ′ − 12y = 0, y(0) = −4, y ′(0) = 1

9. y ′′ + y ′ − 2y = 0, y(0) = 2, y ′(0) = 2

10. y ′′ − y = 0, y(0) = 1, y ′(0) = −1

11. y ′′ + 3y ′ = 0, y(0) = 2, y ′(0) = 3

12. y ′′ = 0, y(0) = −3, y ′(0) = 1

13. y ′′ + 4y ′ + 3y = 0, y(0) = −2, y ′(0) = −6

14. y ′′ + y ′ − y = 0, y(0) = 9, y ′(0) = −3

In exercises 15–19, construct a second-order homogeneous linear DE having
the given functions as solutions.

15. y1 = e−2t , y2 = e2t

16. y1 = e5t , y2 = e−3t

17. y1 = e4t , y2 = 1

18. y1 = e2t , y2 = e3t

19. y1 = 1, y2 = t

20. Consider the second-order homogeneous linear equation
y ′′ − 6y ′ + 9y = 0.

(a) Use the substitution y = ert to attempt to find two linearly
independent solutions to the given equation.
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(b) Explain why your work in (a) only results in one linearly independent
solution, y1(t ).

(c) Verify by direct substitution that y2 = te3t is a solution to
y ′′ − 6y ′ + 9y = 0. Explain why this function is linearly independent
from y1 found in (a).

(d) State the general solution to the given equation.

21. Consider the second-order homogeneous linear equation
y ′′ − 2y ′ + 5y = 0.

(a) Use the substitution y = ert to attempt to find two linearly
independent solutions to the given equation.

(b) Explain why your work in (a) does not generate any real solutions to
the given equation.

(c) Verify by direct substitution that y1 = et cos2t and y2 = et sin 2t are
solutions to y ′′ − 2y ′ + 5y = 0. Explain why these functions are linearly
independent.

(d) State the general solution to the given equation.

22. Consider the second-order homogeneous linear equation y ′′ + 4y = 0.

(a) Use the substitution y = ert to attempt to find two linearly
independent solutions to the given equation.

(b) Explain why your work in (a) does not generate any real solutions to
the given equation.

(c) Think about familiar functions that can satisfy the condition that “the
second derivative equals −4 times the function itself.” By making a
natural guess and verifying by direct substitution, find two linearly
independent functions y1 and y2 that satisfy the given differential
equation.

(d) State the general solution to the given equation.

Recall that in a spring-mass system, the displacement y(t ) of the mass from its
natural equilibrium is governed by the equation

y ′′ + c

m
y ′ + k

m
y = 1

m
F(t )

where c is the damping constant, k is the spring constant, m is the mass of the
suspended object, and F is the forcing function.

23. For an unforced system with c = 3, k = 2, and m = 1, determine the
displacement of the mass at time t if the system is set in motion via the
initial conditions y(0) = 2, y ′(0) = 1. Sketch a graph of the solution you
determine and discuss the long-term behavior of the spring-mass system.
Assume consistent units on all constants.

24. For an unforced spring-mass system with k = 9, c = 12, and m = 3,
determine the displacement of the mass from equilibrium at time t if
y(0) = 0 and y ′(0) = −1. Assume consistent units on all constants.
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Recall that in a standard RLC electrical circuit, the current I (t ) satisfies the
equation

LI ′′(t ) + RI ′(t ) + 1

C
I (t ) = E ′(t )

where L is the inductance, R is the resistance, C is the capacitance, and E(t )
represents an external voltage source.

25. For an RLC circuit with no external voltage source, L = 20, R = 80, and
C = 1/60, determine the current at time t given the initial conditions
I (0) = 100, I ′(0) = 25. Graph the solution you determine and discuss
the long-term behavior of the current. Assume consistent units on all
constants.

26. For an RLC circuit with no external voltage source, L = 20, R = 0, and
C = 1/60, determine the current at time t given the initial conditions
I (0) = 100, I ′(0) = 25. Graph the solution you determine and discuss
the long-term behavior of the current. Assume consistent units on all
constants.

4.3 Homogeneous equations: repeated and complex roots

In the preceding section, we observed that any time the characteristic equation
of the second-order equation y ′′ + a1y ′ + a0y has two real, distinct roots, the
general solution of the differential equation is easily determined. However, in
an equation such as

y ′′ − 6y ′ + 9y = 0 (4.3.1)

with characteristic equation r2 − 6r + 9 = 0, the only root of this equation is
r = 3. Although this leads us to the solution y1 = e3t , we do not immediately
see how to find a second linearly independent solution. In a similar way, the
equation

y ′′ − 2y ′ + 5y = 0 (4.3.2)

has characteristic equation is r2 − 2r + 5 = 0 and its roots are

r = 1 ± 2i

In this case, we see that no real solution to (4.3.2) results using our previous
approach, so it remains for us to find two real linearly independent solutions.
Now we will endeavor to understand how to address these two cases: when
roots of the characteristic equation are repeated and when the roots of the
characteristic equation are complex.

4.3.1 Repeated roots

Let us consider the second-order homogeneous linear DE given by

y ′′ + 4y ′ + 4y = 0 (4.3.3)
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Its characteristic equation is r2 + 4r + 4 = (r + 2)2 = 0, so that only the
solution y1 = e−2t results from the guess that y = ert . To find a second linearly
independent solution, it is natural to think that we need to somehow complicate
the function y = e−2t , just as we did in section 3.5 when we encountered the
similar case where the coefficient matrix of a 2 × 2 system of linear first-order
DEs had a repeated eigenvalue.

Thus, we consider a second potential solution

y2 = v(t )e−2t

where v(t ) is a function yet to be determined. By using this function and
substituting into the equation y ′′ + 4y ′ + 4y = 0, we find conditions that v(t )
must satisfy. First, observe by the product rule that

y ′
2 = −2ve−2t + v ′e−2t (4.3.4)

Similarly,

y ′′
2 = 4ve−2t − 4v ′e−2t + v ′′e−2t (4.3.5)

Next, substituting into (4.3.3), we find

0 = y ′′
2 + 4y ′

2 + 4y2

= (4ve−2t − 4v ′e−2t + v ′′e−2t ) + 4(−2ve−2t + v ′e−2t ) + 4(ve−2t )

= v ′′e−2t (4.3.6)

Since e−2t is never zero, it follows that v ′′(t ) must equal zero for all values of t .
This implies that v(t ) can be any linear function. Because all we seek is one
function y2 = v(t )e−2t that is a solution to (4.3.3) and is linearly independent
from y1 = e−2t , it suffices to choose v(t ) = t . Specifically,

y2 = te−2t

is a second linearly independent solution to (4.3.3). The general solution is
therefore

y(t ) = c1e−2t + c2te−2t

The condition we derived at (4.3.6) for v(t ) will hold in any situation where
the characteristic equation of a second-order linear homogeneous DE has a
repeated root. This leads us to state the following theorem.

Theorem 4.3.1 For any second-order linear homogeneous differential
equation of the form

y ′′ + 2ky ′ + k2y = 0

whose characteristic equation has repeated real root r =−k, the general solution
to the differential equation is

y = c1e−kt + c2te−kt
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Before proceeding to the case of complex roots, we consider one example to
demonstrate theorem 4.3.1 at work.

Example 4.3.1 Determine the general solution to the equation

y ′′ − 10y ′ + 25y = 0 (4.3.7)

Solution. The characteristic equation of the given DE is r2 − 10r + 25 =
(r − 5)2 = 0, which has the repeated root r = 5. By theorem 4.3.1, it follows
that the general solution to (4.3.7) is

y = c1e5t + c2te5t

4.3.2 Complex roots

We continue to be guided throughout our work with second-order linear
homogeneous equations by the informed guess that the solution has form
y = ert . When this guess and the corresponding characteristic equation result
in two distinct, real values of r , we have found the general solution to the given
differential equation. Likewise, we have just shown that when the characteristic
equation has only one real root, we can still find the general solution to the DE.
We next explore how, even in the complex case, we can find the general solution
through our original guess, y = ert .

We return to the example

y ′′ − 2y ′ + 5y = 0 (4.3.8)

and recall that the roots of the characteristic equation are r = 1 ± 2i. While this
suggests that z(t ) = e(1+2i)t should be a solution of the differential equation, the
function z(t ) is complex-valued. When we encountered a similar situation in
section 3.5 for a linear system whose coefficient matrix had complex eigenvalues
and complex eigenvectors, we used Euler’s formula to separate such a complex-
valued function into real and imaginary parts in order to find real solutions.
We proceed similarly here. Recall that Euler’s formula states that eiθ = cosθ +
i sinθ , so

e(a+bi)t = eat eibt = eat (cosbt + i sinbt )

For the complex solution z(t ) to (4.3.8), we thus find that

z(t ) = e(1+2i)t

= et (cos2t + i sin 2t )

= et cos2t + iet sin 2t (4.3.9)

In (4.3.9), we see that z(t ) has been written in the form

z(t ) = Re(z) + iIm(z)

where Re(z) and Im(z) are themselves real-valued functions of t . Based on our
experience with systems of differential equations with complex-valued solutions,
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it is natural at this point to hope that both the real and imaginary parts of z(t )
will be linearly independent solutions to (4.3.8).

Indeed, if we let y1 = et cos2t and y2 = et sin 2t , then it can be shown
by direct substitution that both y1 and y2 are solutions to (4.3.8). Because y1

and y2 are not scalar multiples of each other, these two functions are linearly
independent, and therefore, by theorem 4.2.3, it follows that

y(t ) = c1et cos2t + c2et sin 2t

is the general solution to (4.3.8).
The direct substitution that is used to verify that the real and imaginary

parts of z(t ) are solutions to the original equation is somewhat tedious, but
not difficult. In fact, in the more general case where we have complex roots
a ± bi, it can be similarly verified by direct substitution into the corresponding
second-order equation that y1 = eat cosbt and y2 = eat sinbt are each solutions
to the equation. Note that this scenario implies that the characteristic equation
has form C(r) = 0 where

C(r) = [r − (a + bi)][r − (a − bi)]
= r2 − (a + bi)r − (a − bi)r + (a + bi)(a − bi)

= r2 − 2ar + (a2 + b2) (4.3.10)

This shows that, up to a scalar multiple of the equation, complex roots to the
characteristic equation arise from second-order homogeneous linear differential
equations of the form

y ′′ − 2ay ′ + (a2 + b2)y = 0 (4.3.11)

Our work above now enables us to state a formal result on finding real, linearly
independent solutions from complex-valued ones.

Theorem 4.3.2 Let a and b be real constants with b 
= 0. For the second-order
homogeneous linear differential equation

y ′′ − 2ay ′ + (a2 + b2)y = 0

the roots of the corresponding characteristic equation are r = a ± bi and the
general solution to the differential equation is given by

y = c1eat cosbt + c2eat sinbt

Note that it is precisely the presence of complex roots to the characteristic
equation that produces the periodic functions cosbt and sinbt in the solution.
In physical situations such as spring-mass systems and RLC circuits where we
anticipate that solutions will have a sinusoidal component, we can expect that
the characteristic equation will have complex roots.

We conclude this section by applying theorem 4.3.2 in the following
example.
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Example 4.3.2 Solve the initial-value problem given by

y ′′ + 2y ′ + 10y = 0, y(0) = 1, y ′(0) = 1

Plot the solution and discuss its long-term behavior.

Solution. We first find the general solution to the given differential equation.
The corresponding characteristic equation is r2 + 2r + 10 = 0, with roots

r = −1 ± 3i

By theorem 4.3.2 it follows that the general solution is

y = c1e−t cos3t + c2e−t sin 3t

To determine the solution to the stated IVP, first note that y(0) = 1 implies that

1 = c1e0 cos(0) + c2e0 sin(0)

so that c1 = 1. In addition, since

y ′ = −c1e−t cos3t − c2e−t sin 3t − 3c1e−t sin 3t + 3c2e−t cos3t

it follows from the fact that y ′(0) = 1 that

1 = −c1 + 3c2

Since c1 = 1, we find that c2 = 2/3 and hence the solution to the IVP is

y = e−t cos3t + 2

3
e−t sin 3t

Plotting the function y in figure 4.2, we see that the function y(t ) oscillates
due to the presence of the trigonometric functions, while y(t ) → 0 as t → ∞
because of the damping effect of e−t .

In fact, the graphical behavior demonstrated by y(t ) in figure 4.2 is precisely
what we would expect if the given IVP was modeling a spring-mass system where
relatively small damping is present: the mass will oscillate once sent in motion,
but will eventually return to equilibrium.

Exercises 4.3 In exercises 1–9, use the characteristic equation to determine
the general solution to the given second-order linear homogeneous differential
equation.

1. y ′′ − 8y ′ + 16y = 0

2. y ′′ + y ′ + y = 0

3. y ′′ + y ′ + 1
4 y = 0

4. y ′′ − 4y = 0

5. y ′′ + 4y = 0

6. y ′′ − 10y ′ + 50y = 0
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Figure 4.2 A plot of the solution y(t ) to
the IVP given in example 4.3.2.

7. y ′′ − 10y ′ + 25y = 0

8. y ′′ = 0

9. 2y ′′ + 7y ′ + 5y = 0

In exercises 10–18, solve the stated initial-value problem. In addition, graph
your solution and discuss its long-term behavior. Note that the general solution
to each equation has been found in corresponding problems in exercises 1–9.

10. y ′′ − 8y ′ + 16y = 0, y(0) = −4, y ′(0) = 1

11. y ′′ + y ′ + y = 0, y(0) = 2, y ′(0) = 2

12. y ′′ + y ′ + 1
4 y = 0, y(0) = 0, y ′(0) = −1

13. y ′′ − 4y = 0, y(0) = 7, y ′(0) = −5

14. y ′′ + 4y = 0, y(0) = 2, y ′(0) = 3

15. y ′′ − 10y ′ + 50y = 0, y(0) = −3, y ′(0) = 1

16. y ′′ − 10y ′ + 25y = 0, y(0) = −2, y ′(0) = −6

17. y ′′ = 0, y(0) = 0, y ′(0) = 0

18. 2y ′′ + 7y ′ + 5y = 0, y(0) = 9, y ′(0) = −3

19. Consider the second-order linear homogeneous equation
y ′′ − 6y ′ + 9y = 0.

(a) Find the general solution y of the given equation.
(b) Convert the given equation to a system x′ = Ax of two first-order

equations using the substitution x1 = y , x2 = y ′.
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(c) Solve the system x′ = Ax.
(d) Compare your results for y and x1. What do you observe?

20. Consider the second-order linear homogeneous equation
y ′′ + 6y ′ + 10y = 0.

(a) Find the general solution y of the given equation.
(b) Convert the given equation to a system x′ = Ax of two first-order

equations using the substitution x1 = y , x2 = y ′.
(c) Solve the system x′ = Ax.
(d) Compare your results for y and x1. What do you observe?

21. Consider the general second-order linear homogeneous equation with
constant coefficients given by

y ′′ + a1y ′ + a0y = 0

Under what conditions on a1 and a0 does the equation have two real
distinct roots? one real repeated root? two distinct complex roots?

Recall that in a spring-mass system, the displacement y(t ) of the mass from its
natural equilibrium is governed by the equation

y ′′ + c

m
y ′ + k

m
y = 1

m
F(t )

where c is the damping constant, k is the spring constant, m is the mass of the
suspended object, and F(t ) is the forcing function. In the following exercises,
we assume that units on all quantities and constants are consistent.

22. For an unforced spring-mass system with c = 2, k = 1, and m = 1,
determine the displacement of the mass at time t if the system is set in
motion with the initial conditions y(0) = 2, y ′(0) = 1. Sketch the solution
you determine and discuss the behavior of the spring-mass system.

23. For an unforced, undamped spring-mass system with k = 9 and m = 3,
determine the displacement of the mass from equilibrium at time t if
y(0) = 2 and y ′(0) = 1. Sketch the solution you determine and discuss
the behavior of the spring-mass system.

24. For an unforced spring-mass system with c = 1, k = 2, and m = 1,
determine the displacement of the mass at time t if the system is set in
motion with the initial conditions y(0) = 2, y ′(0) = 1. Sketch the solution
you determine and discuss the behavior of the spring-mass system.

Recall that in a standard RLC electrical circuit, the current I (t ) satisfies the
equation

LI ′′(t ) + RI ′(t ) + 1

C
I (t ) = E ′(t )

where L is the inductance, R is the resistance, C is the capacitance, and E(t )
represents an external voltage source. In the following exercises, we assume that
units on all quantities and constants are consistent.
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25. For an RLC circuit with no external voltage source, L = 10, R = 40, and
C = 1/40, determine the current at time t given the initial conditions
I (0) = 100, I ′(0) = 25. Sketch the solution you determine and discuss
the behavior of the current.

26. For an RLC circuit with no external voltage source, L = 10, R = 40, and
C = 1/50, determine the current at time t given the initial conditions
I (0) = 100, I ′(0) = 25. Sketch the solution you determine and discuss
the behavior of the current.

27. For an RLC circuit with no external voltage source, L = 10, R = 0, and
C = 1/90, determine the current at time t given the initial conditions
I (0) = 100, I ′(0) = 25. Sketch the solution you determine and discuss
the behavior of the current.

4.4 Nonhomogeneous equations

As motivated by a spring-mass system with a driving force or an RLC circuit
with an external voltage source, we are now interested in solving second-order
nonhomogeneous linear differential equations of the form

y ′′ + a1y ′ + a0y = f (t ) (4.4.1)

where f (t ) is not zero. We already know a theoretical way to solve such an
equation: through the substitution x1 = y and x2 = y ′, we can convert (4.4.1) to
a system of two first-order equations in the form x′ = Ax + b and solve the two
first-order DEs. While this approach works in theory, the actual execution of
the process can be cumbersome. In fact, it is often much easier to solve (4.4.1)
directly through the approaches we present in this section.

Analogous to several other types of linear algebraic and linear differential
equations, a general principle from our work with nonhomogeneous equations
guides us throughout: we first seek a complementary solution yh(t ) to the
corresponding homogeneous equation

y ′′ + a1y ′ + a0y = 0 (4.4.2)

and then determine a particular solution yp(t ) to the nonhomogeneous
equation (4.4.1). It follows that y = yh + yp will be the general solution to
the nonhomogeneous equation. Indeed, we have the following theorem, a part
of whose formal proof will be addressed in exercise 33 at the end of this section.

Theorem 4.4.1 Given the equation

y ′′ + a1y ′ + a0y = f (t ) (4.4.3)

where a0 and a1 are constants, if yh(t ) is the general solution to the
corresponding homogeneous equation y ′′ + a1y ′ + a0y = 0 and yp(t ) is any
solution to the nonhomogeneous equation (4.4.3) then y = yh +yp is the general
solution to (4.4.3).
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We already understand how to find yh , which depends entirely on the roots
to the characteristic equation r2 + a1r + a0 = 0 as discussed in sections 4.2
and 4.3. It remains, however, to find yp . To do so, we explore two methods: the
guessing technique of undetermined coefficients, and the brute force technique
of variation of parameters. Each of these methods is analogous to those that may
be used to solve nonhomogeneous systems of the form x′ = Ax + b.

4.4.1 Undetermined coefficients

At this point in our discussion, examples are instructive. We consider several
different nonhomogeneous linear second-order DEs to see how making
reasonable guesses for the form of yp(t ) can lead to the general solution in
many elementary cases. Throughout, we use the following idea to guide our
choice of the form of yp(t ): since the first and second derivatives of many
functions are similar to the original function (e.g., derivatives of sine and cosine
functions are cosine and sine functions, derivatives of exponential functions are
exponential functions, derivatives of polynomial functions are polynomials),
and in equations of the form (4.4.3) we take linear combinations of y , y ′, and y ′′
to get f (t ), it is reasonable to guess that the form of yp(t ) will be similar to the
form of f (t ), the forcing function in the nonhomogeneous equation. We first
see this for polynomial functions in the first example.

Example 4.4.1 Determine the general solution to

y ′′ − 3y ′ − 4y = 4t 2 + 2t − 9 (4.4.4)

Solution. For the associated nonhomogeneous equation, y ′′ − 3y ′ − 4y = 0,
by theorem 4.2.4 the complementary solution is yh = c1e−t + c2e4t .

For a particular solution, we naturally guess that yp has the form

yp = at 2 + bt + c (4.4.5)

based on the form of the forcing function. The undetermined coefficients a, b,
and c are found by direct substitution into (4.4.4). Note that y ′

p = 2at + b and
y ′′

p = 2a, so that from (4.4.4) we find

2a − 3(2at + b) − 4(at 2 + bt + c) = 4t 2 + 2t − 9

Rearranging the left-hand side of this equation, it follows

−4at 2 + (−6a − 4b)t + (2a − 3b − 4c) = 4t 2 + 2t − 9 (4.4.6)

Equating like coefficients of the power functions present in (4.4.6), the system
of equations

−4a = 4

−6a − 4b = 2

2a − 3b − 4c = −9
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must hold. We see that a = −1, from which it follows that b = 1 and c = 1 so
that yp = −t 2 + t + 1. Combining this with yh , we have determined that the
general solution to (4.4.4) is

y = c1e−t + c2e4t − t 2 + t + 1

We can imagine that if f (t ) was a polynomial other than 4t 2 +2t −9, we would
have guessed that yp was a general polynomial of the same degree with unknown
coefficients. This approach almost always works; we will discuss some exceptions
that can arise after examples involving non-polynomial forcing functions.

Example 4.4.2 Determine the general solution to

y ′′ − y = 16e3t (4.4.7)

Solution. Just as in example 4.4.1, we first solve the corresponding
homogeneous equation and find yh . Doing so, we observe that for y ′′ − y = 0,
the solution yh is

yh = c1et + c2e−t

For the particular solution, we use the natural guess that yp = Ae3t . From this,
y ′

p = 3Ae3t and y ′′
p = 9Ae3t , so substituting into (4.4.7), we find

9Ae3t − Ae3t = 16e3t

Equating the coefficients of e3t , it follows that 8A = 16, so A = 2 and therefore
yp = 2e3t .

Hence we have found the general solution of (4.4.7) to be

y = yh + yp = c1et + c2e−t + 2e3t

Here, we observe that if f (t ) in (4.4.7) were a different exponential function, say
of the form f (t ) = Bekt , we would again guess that yp = Aekt . This is based on
the fact that our guess for yp incorporates all the possible forms of the derivatives
of f (t ). Just as with polynomial forcing functions, this approach almost always
works. We will consider situations where these natural educated guesses can fail
following one more example.

Example 4.4.3 Determine the general solution to

y ′′ − y ′ − 2y = 10sin t (4.4.8)

Solution. First, we observe that the complementary solution can be shown
to be

yh = c1e2t + c2e−t

To find yp , we guess that

yp = A sin t + B cos t

Note that we must include the cosine function in yp in order to account for the
fact that the cosine function arises in the derivative of f (t ) = 10sin t .
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From our guess for yp , it follows that y ′
p = A cos t − B sin t and y ′′

p =
−A sin t − B cos t . Substituting in (4.4.8), we see that A and B must satisfy
the equation

(−A sin t −B cos t ) − (A cos t −B sin t ) − 2(A sin t +B cos t ) = 10sin t (4.4.9)

Rearranging (4.4.9) in order to compare coefficients of the sine and cosine
functions, we have

(−A + B − 2A) sin t + (−B − A − 2B)cos t = 10sin t

from which it follows that −3A + B = 10 and −A − 3B = 0. Consequently,
A = −3 and B = 1, so that yp = −3sin t + cos t . Therefore we have shown that
the general solution of (4.4.8) is

y = yh + yp = c1e2t + c2e−t − 3sin t + cos t

In the more general setting where we imagine the forcing function f (t ) involving
sinkt or coskt , it will be natural to make the guess that yp = A sinkt + B coskt ,
which again will work in most cases.

We have hinted that while the method of undetermined coefficients
will usually work, it can occasionally fail. What can go wrong? First, if the
forcing function f (t ) is particularly complicated, this can make determining a
reasonable guess for yp challenging. Moreover, even if f (t ) is a relatively simple
function whose derivatives take on unusual forms—for example, f (t ) = ln t ,
where f ′(t ) and f ′′(t ) are not logarithmic—we may find it difficult or impossible
to find a form of yp that works. These two situations will be addressed by the
variation of parameters method that we introduce in the next subsection.

In addition, there is one more case in which undetermined coefficients can
fail, yet the difficulty is straightforward to reconcile. An example is instructive.

Example 4.4.4 Find the general solution to the differential equation

y ′′ − y = 16e−t (4.4.10)

Solution. Note that this differential equation is nearly identical to the one
considered in example 4.4.2, but here the forcing function is f (t ) = 16e−t ,
rather than f (t ) = 16e3t .

As above, it still holds that yh = c1et + c2e−t . In addition, we naturally
guess that yp = Ae−t , from which it follows that y ′

p = −Ae−t and y ′′
p = Ae−t .

Substituting in (4.4.10), we have

Ae−t − Ae−t = 16e−t

But this last equality is clearly impossible, regardless of the value of A, since
0 = 16e−t is never true.

We can determine where the method failed by observing that in this case,
our guess for the particular solution yp was actually part of the complementary
solution. Note that yh = c1et + c2e−t , from which it follows that yp cannot have
the form Ae−t , since this latter function belongs to yh .
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We therefore need a more complicated guess for yp ; a natural one to
attempt is

yp = Ate−t (4.4.11)

where we have introduced the additional multiplier t . From this, y ′
p = −Ate−t +

Ae−t and y ′′
p = Ate−t − Ae−t − Ae−t . Substituting in (4.4.10), it now follows

(Ate−t − 2Ae−t ) − (Ate−t ) = 16e−t

Rearranging and simplifying this last equation in order to compare like
coefficients of e−t and te−t , we see that the terms involving te−t drop out
and we are left with

−2Ae−t = 16e−t

so that A = −8 and yp = −8te−t .
We therefore have shown that the general solution is

y = yh + yp = c1et + c2e−t − 8te−t

The preceding example shows that if the form of the forcing function matches
the form of one or more parts of the complementary solution yh , then we have
to use a different, more complicated guess for yp than the most natural one. One
more example will be helpful before we make some general conclusions.

Example 4.4.5 Find the general solution of

y ′′ − y ′ = 4t (4.4.12)

Solution. From the characteristic equation r2 − r = 0 for the corresponding
homogeneous equation, we quickly deduce that

yh = c1 + c2et

Next, since f (t ) = 4t , we naturally guess that yp is a first order polynomial:
yp = at + b. From this, y ′

p = a and y ′′
p = 0. Substituting in (4.4.12), we find

0 − a = 4t

Clearly, there is no value of a that makes −a = 4t for all values of t , so there can
be no particular solution yp of the form yp = at + b. From another perspective,
we can see why this must be true by observing that the “b” in our guess for yp

is already part of the complementary solution since any constant function is a
solution to y ′′ − y ′ = 0.

Therefore, we revise our guess for yp and assume it has form yp = t (at +b) =
at 2 + bt . Doing so, we now have y ′

p = 2at + b and y ′′
p = 2a, so substituting

in (4.4.12) it follows

2a − (2at + b) = 4t
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Rearranging so that we can equate like coefficients, we have

−2at + (2a − b) = 4t

so −2a = 4 and 2a − b = 0. It follows that a = −2 and b = −4, and thus
yp = −2t 2 − 4t . Therefore, we have found the general solution of (4.4.12) to be

y = c1 + c2et − 2t 2 − 4t

From our work with examples 4.4.1–4.4.5, we observe that the method of
undetermined coefficients breaks down into two fundamental cases

Case 1. No functions in the assumed particular solution yp are also
solutions to the associated homogenous differential equation.

Case 2. A function in the assumed particular solution yp is also a solution
of the associated homogeneous differential equation.

Moreover, we can observe that when the forcing function f (t ) is a sum
of polynomial, exponential, and sine and cosine functions, the linearity of the
differential equation allows us to guess a form for yp that is an appropriate sum
of all the different types of functions represented. The following example shows
some of the variety that arises in choosing the form of yp .

Example 4.4.6 Write an appropriate guess for yp for each of the following
equations. Do not solve for the unknown coefficients.

(a) y ′′ + y = 4e3t + 5t 2

(b) y ′′ − 5y ′ − 6y = 3e−2t + 4cos3t
(c) y ′′ − 2y ′ + 5y = 3tet

(d) y ′′ − 4y ′ − 5y = 3e2t sin t

Solution.

(a) The forcing function f (t ) = 4e3t + 5t 2 combines an exponential function
and a second degree polynomial, so we would guess that
yp = Ae3t + bt 2 + ct + d .

(b) The natural guess is yp = Ae−2t + B cos3t + C sin 3t to account for the
exponential and trigonometric functions present.

(c) f (t ) = 3tet is a product of a linear function and an exponential one. Its
derivatives will be sums of functions of the same form and constant
multiples of exponential functions, so we assume that
yp = Atet + Bet = et (At + B).

(d) We observe that every derivative of f (t ) = 3e2t sin t is the sum of functions
of the form Ae2t cos t + Be2t sin t , so that we would guess that
yp = Ae2t cos t + Be2t sin t .
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Note the general rule we are using in case 1 and example 4.4.6: provided the
terms of f (t ) do not belong to yh , the form of yp is a linear combination of all
linearly independent functions that are generated by repeated differentiation of
the forcing function f (t ).

For dealing with equations that fall into case 2, we make a guess yp that is
a sum of functions similar to those present in f (t ). We then have to tack on
powers of t to modify any parts of yp that already appear in yh . In particular,
we use the rule that if any part of yp contains terms that duplicate terms in yh ,
then we must multiply that part by t n using the smallest possible value of n to
eliminate the duplication.

For example, if we wanted to solve y ′′ + 4y ′ + 4 = 3e−2t , which has
characteristic equation r2 + 4r + 4 = (r + 2)2 = 0, our work in section 4.3
implies that

yh = c1e−2t + c2te−2t

Therefore, for the form of yp , which we initially might assume to be yp = Ae−2t ,
we see that we must in fact introduce a multiplier of t 2 in order to ensure that
yp does not appear in yh . Thus, the appropriate form of yp is yp = At 2e−2t .

A few more examples of the possibilities that arise in case 2 are useful.

Example 4.4.7 Write an appropriate trial solution yp for each of the following
examples. Do not solve for the unknown coefficients.

(a) y ′′ − y = 4et + 5e−t

(b) y ′′ + 4y = 4cos2t
(c) y ′′ − 2y ′ + y = 3tet

Solution.

(a) Observe from the characteristic equation r2 − 1 = 0 that yh = c1et + c2e−t ,
so both parts of the forcing function appear in yh . We therefore assume
that yp = Atet + Bte−t .

(b) The characteristic equation is r2 + 4 = 0 with roots r = ±2i. It follows that
yh = c1 sin 2t + c2 cos2t . Since cos2t appears in the forcing function, and
both sin 2t and cos2t arise in yh , the appropriate guess for yp is
yp = At cos2t + Bt sin 2t .

(c) Note that the characteristic equation is r2 − 2r + 1 = (r − 1)2 = 0 so that
yh = c1et + c2tet . Since tet is included in yh , this implies that we must
choose yp = At 2et .

Obviously the method of undetermined coefficients requires us to be experi-
enced with a wide range of examples and to understand how the derivatives of
the forcing function behave. The exercises at the end of this section will provide
further practice in this regard.
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4.4.2 Variation of parameters

Recall that we are focusing on solving the nonhomogeneous linear second-order
equation

y ′′ + a1y ′ + a0y = f (t )

While the method of undetermined coefficients works well for a reasonable
collection of forcing functions, it has some fairly strict limitations. In particular,
it is unclear whether it is possible to make a reasonable guess for yp in order to
solve an equation such as y ′′ + 4y ′ − 5y = ln t . In fact, we cannot: the derivative
of the logarithm function is not a logarithm, and this is the main issue that
prevents the use of this method.1

Here, we study a method that will enable us, in theory, to solve a much
wider class of nonhomogeneous linear second-order equations; as always, the
approach requires us to find the general solution to the related homogeneous
equation first.

Let us again consider the equation

y ′′ + a1y ′ + a0y = f (t ) (4.4.13)

where a0 and a1 are constant and assume only that f (t ) is continuous. Suppose
we know that y1(t ) and y2(t ) are linearly independent solutions of the associated
homogeneous equation, so the complementary solution is yh = c1y1(t )+c2y2(t ).
In the method of undetermined coefficients, we made a guess of a particular
solution yp to (4.4.13) based on the form of f (t ). In the method of variation of
parameters, we assume instead that the form of yp is a more complicated version
of yh . In particular, we assume that yp has the form

yp = u1(t )y1(t ) + u2(t )y2(t ) (4.4.14)

for unknown functions u1 and u2, where again y1 and y2 are the functions that
arose in solving the related homogeneous equation.

The goal of variation of parameters is to find the functions u1(t ) and u2(t )
such that the function yp = u1y1 +u2y2 is a particular solution to (4.4.13). Let us
explore what conditions u1(t ) and u2(t ) must satisfy. Differentiating yp yields

y ′
p = u1y ′

1 + u′
1y1 + u2y ′

2 + u′
2y2 (4.4.15)

While it seems natural at this point to differentiate again to find y ′′
p and substitute

into the differential equation, this becomes rather complicated.
Above we have seen that the two unknown functions must satisfy one

condition (so far), that being the differential equation itself, as stated in (4.4.13).
Because we have two functions, we have the freedom to set a second condition
as well. In order to make the functions as simple as possible, and to eliminate

1 If we tried the guess yp = A ln t , then y ′
p = A/t , which introduces a function of an entirely new

form. If we tried yp = A ln t + B/t , then the derivative leads us to a function involving 1/t 2, again
of a form not considered.
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the second derivatives of u1 and u2 from arising in y ′′
p , we impose a second

condition given by

u′
1y1 + u′

2y2 = 0 (4.4.16)

Observe now that by substituting the condition (4.4.16) in (4.4.15) we have

y ′
p = u1y ′

1 + u2y ′
2

so that

y ′′
p = u1y ′′

1 + u′
1y ′

1 + u2y ′′
2 + u′

2y ′
2

Substituting the above expressions for y ′′
p and y ′

p in (4.4.13) yields

(u1y ′′
1 + u′

1y ′
1 + u2y ′′

2 + u′
2y ′

2) + a1(u1y ′
1 + u2y ′

2) + a0(u1y1 + u2y2) = f (t )
(4.4.17)

Reorganizing (4.4.17) according to the terms u1, u2, u′
1, and u′

2, we have

u1(y ′′
1 + a1y ′

1 + a0y1) + u2(y ′′
2 + a1y ′

2 + a0y2) + (u′
1y ′

1 + u′
2y ′

2) = f (t ) (4.4.18)

Now, at this point we recall that y1 and y2 are fundamental solutions to
the associated homogeneous equation y ′′ + a1y ′ + a0 = 0, which shows that
in (4.4.18) the coefficients of both u1 and u2 are zero. Therefore, (4.4.18)
reduces to

u′
1y ′

1 + u′
2y ′

2 = f (t ) (4.4.19)

Combining conditions (4.4.16) and (4.4.19) results in the system of linear
equations in u′

1 and u′
2 given by

y1u′
1 + y2u′

2 = 0

y ′
1u′

1 + y ′
2u′

2 = f (t )

To solve for u′
1 and u′

2, we multiply the first equation by y ′
2 and the second

equation by y2, which gives

y ′
2y1u′

1 + y ′
2y2u′

2 = 0

y2y ′
1u′

1 + y2y ′
2u′

2 = y2f
(4.4.20)

Subtracting the second equation from the first in (4.4.20), we have

y ′
2y1u′

1 − y2y ′
1u′

1 = −y2f

and therefore

u′
1 = y2f

y2y ′
1 − y1y ′

2
(4.4.21)

Using similar algebra to solve for u′
2, we may show that

u′
2 = y1f

y1y ′
2 − y2y ′

1
(4.4.22)

Finally, to determine u1 and u2, we integrate to find

u1 =
∫

y2f

y2y ′
1 − y1y ′

2
dt and u2 =

∫
y1f (t )

y1y ′
2 − y2y ′

1
dt (4.4.23)

Once we integrate in (4.4.23) to solve for u1 and u2, we can conclude that
a particular solution yp to the original nonhomogeneous linear second-order
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differential equation is yp = u1y1 + u2y2 where yh = c1y1 + c2y2. Examples will
be helpful to demonstrate the key steps of this method. First, we state the formal
result proved by our discussion above.

Theorem 4.4.2 (Variation of Parameters Method) For the differential
equation y ′′ + a1y ′ + a0y = f (t ), where f is continuous, assume that y1 and y2

are linearly independent solutions of the corresponding homogeneous equation
y ′′ + a1y ′ + a2y = 0. Then, a particular solution to the non-homogeneous
equation is yp = u1y1 + u2y2, where u1 and u2 satisfy

u1 =
∫

y2f

y2y ′
1 − y1y ′

2
dt and u2 =

∫
y1f

y1y ′
2 − y2y ′

1
dt (4.4.24)

Example 4.4.8 Solve the differential equation

y ′′ + y = sec t (4.4.25)

where we assume that −π
2 < t < π

2 .

Solution. We first observe that the corresponding characteristic equation is
r2 + 1 = 0 so that the complementary solution is yh = c1 cos t + c2 sin t . In
particular, y1 = cos t and y2 = sin t .

We now seek two functions u1(t ) and u2(t ) that satisfy the equa-
tions (4.4.24). Since y1 = cos t and y2 = sin t , it follows that y ′

1 = − sin t and
y ′

2 = cos t , and therefore, we have

u1 =
∫

y2f

y2y ′
1 − y1y ′

2
dt =

∫
sin t sec t

− sin2 t − cos2 t
dt

= −
∫

sin t sec t dt = −
∫

sin t

cos t
dt = ln(cos t )

and

u2 =
∫

y1f

y1y ′
2 − y2y ′

1
dt =

∫
cos t sec t

cos2 t + sin2 t
dt

=
∫

1dt = t

Note that we have used the fundamental trigonometric identity sin2 t +cos2 t =
1 as well as other standard trigonometric relationships such as sec t = 1/cos t .
Also, since we are seeking any two functions u1 and u2 that satisfy (4.4.24), it is
not necessary to include the constants that can arise in integrating.

Hence we have found that u1 = ln(cos t ) and u2 = t . This enables us to
conclude that a particular solution to the equation (4.4.25) is

yp = u1y1 + u2y2 = ln(cos t )cos t + t sin t

and, therefore, the general solution is

y = yh + yp = c1 cos t + c2 sin t + ln(cos t )cos t + t sin t
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Example 4.4.9 Solve the equation

y ′′ + 4y ′ + 4y = e−2t ln t (4.4.26)

Solution. To begin, we solve the associated homogeneous equation and get

yh = c1e−2t + c2te−2t

Thus for variation of parameters, we assume that

yp = u1(t )e−2t + u2(t )te−2t

and we seek u1 and u2. Since y1 = e−2t and y2 = te−2t , it follows that y ′
1 =−2e−2t

and y ′
2 = −2te−2t + e−2t , and therefore by (4.4.24)

u1 =
∫

y2f

y2y ′
1 − y1y ′

2
dt =

∫
te−2t (e−2t ln t )

te−2t (−2e−2t ) − e−2t (−2te−2t + e−2t )
dt

=
∫

te−4t ln(t )

e−4t (−2t + 2t − 1)
dt = −

∫
t ln t dt = −1

2
t 2 ln t + 1

4
t 2

and

u2 =
∫

y1f

y1y ′
2 − y2y ′

1
dt =

∫
e−2t (e−2t ln t )

e−4t (−2t + 1 + 2t )
dt

=
∫

ln t dt = t ln t − t

From these expressions for u1 and u2, we can conclude that the overall form of
the solution y to (4.4.26) is

y = yh + yp

= c1e−2t + c2te−2t +
(

−1

2
t 2 ln t + 1

4
t 2
)

e−2t + (t ln t − t )te−2t

= c1e−2t + c2te−2t + 1

4
t 2e−2t (2 ln t − 3)

Exercises 4.4 In exercises 1–10, determine the complementary solution yh
and state the general form of yp that you would guess in applying the method of
undetermined coefficients.

1. y ′′ − y ′ − 12y = 10e5t

2. y ′′ + y ′ − 2y = 4t 2 − 1

3. y ′′ − y = 11et

4. y ′′ + 3y ′ = 3sin 2t

5. y ′′ = t 2 + 3
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6. y ′′ + 4y ′ + 3y = 2t + 4cos t

7. y ′′ + 4y ′ + 4y = t 2

8. y ′′ + 4y = 2sin 2t

9. y ′′ + 4y = 20et cos t

10. y ′′ + y ′ − y = 3

In exercises 11–20, solve the stated IVP using the method of undetermined
coefficients. Note that the complementary solutions yh and appropriate guesses
for yp were found in the corresponding exercises 1–10.

11. y ′′ − y ′ − 12y = 10e5t , y(0) = 2, y ′(0) = −1

12. y ′′ + y ′ − 2y = 4t 2 − 1, y(0) = 1, y ′(0) = 1

13. y ′′ − y = 11et , y(0) = −3, y ′(0) = 2

14. y ′′ + 3y ′ = 3sin 2t , y(0) = 0, y ′(0) = 0

15. y ′′ = t 2 + 3, y(0) = −2, y ′(0) = −2

16. y ′′ + 4y ′ + 3y = 2t + 4cos t , y(0) = 2, y ′(0) = 0

17. y ′′ + 4y ′ + 4y = t 2, y(0) = 5, y ′(0) = 3

18. y ′′ + 4y = 2sin 2t , y(0) = 1, y ′(0) = −1

19. y ′′ + 4y = 20et cos t , y(0) = 0, y ′(0) = −1

20. y ′′ + y ′ − y = 3, y(0) = −1, y ′(0) = −1

In exercises 21–27, find the general solution of the given differential equation
using variation of parameters.

21. y ′′ + y = tan t , −π
2 < t < π

2

22. y ′′ + 5y ′ + 4y = tet

23. y ′′ + 4y ′ + 4y = te−2t

24. y ′′ + y = csc t , 0 < t < π

25. y ′′ − 2y ′ + y = et

t , t > 0

26. y ′′ − 4y ′ + 4y = et

27. y ′′ + y ′ − 6y = 1
et +1 , t > 0

28. For a forced spring-mass system with c = 2, k = 1, m = 1, and
F(t ) = 20cos2t , determine the displacement of the mass at time t if the
system is set in motion by the initial conditions y(0) = 2, y ′(0) = 1. Sketch
the solution and discuss the long-term behavior of yh and yp separately
and how these together influence the long-term behavior of the system.
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29. For a forced undamped spring-mass system with k = 8, m = 2, and
F(t ) = 5cos2.1t , determine the displacement of the mass at time t if the
system is set in motion by the initial conditions y(0) = 2, y ′(0) = 1. Sketch
the solution and discuss the long-term behavior of yh and yp separately
and how these together influence the long-term behavior of the system.

30. For a forced undamped spring-mass system with k = 8, m = 2, and
F(t ) = 5cos2t , determine the displacement of the mass at time t if the
system is set in motion by the initial conditions y(0) = 2, y ′(0) = 1. Sketch
the solution and discuss the long-term behavior of yh and yp separately
and how these together influence the long-term behavior of the system.

31. For an RLC circuit with external voltage source E(t ) = 100sin 20t , L = 10,
R = 40, and C = 1/40, determine the current at time t given the initial
conditions I (0) = 100, I ′(0) = 25. Sketch the solution and discuss the
long-term behavior of the current.

32. For an RLC circuit with external voltage source E(t ) = 50cos40t , L = 10,
R = 40, and C = 1/50, determine the current at time t given the initial
conditions I (0) = 100, I ′(0) = 25. Sketch the solution and discuss the
long-term behavior of the current.

33. Let

y ′′ + a1y ′ + a0y = f (t ) (4.4.27)

be a second-order nonhomogeneous linear differential equation with
constant coefficients. If yh is the general solution to the homogeneous
equation y ′′ + a1y ′ + a0y = 0 and yp is any solution to the
nonhomogeneous equation (4.4.27), show that y = yh + yp is
a solution to (4.4.27).

4.5 Forced motion: beats and resonance

Based on our work with second-order differential equations, we are now able
to completely solve the damped harmonic oscillator equation for a variety of
forcing functions. In particular, we are able to determine the general solution of
the spring-mass system equation

y ′′ + c

m
y ′ + k

m
y = 1

m
F(t ) (4.5.1)

by finding complementary and particular solutions. In this section, we explore
some interesting phenomena related to periodic forcing functions F(t ). Our
work will have important consequences for the study of other applications
modeled by similar differential equations, including RLC circuits.

We begin by considering a sequence of related examples. As always, we
assume that the units on all constants and related quantities are consistent.
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Example 4.5.1 Determine the unique solution to the initial-value problem
given by an undamped spring-mass system with m = 1 and k = 4 where F(t ) =
cos t . Assume that the mass is initially released after being displaced 0.5 from
equilibrium. Plot the solution and discuss its long-term behavior.

Solution. Using the given information in (4.5.1), we see that the system is
modeled by the initial-value problem

y ′′ + 4y = cos t , y(0) = 0.5, y ′(0) = 0 (4.5.2)

Solving the associated homogeneous equation y ′′ + 4y = 0 provides the
complementary solution yh = c1 cos2t + c2 sin 2t . Applying the method of
undetermined coefficients with the assumption that yp has the form

yp = A cos t + B sin t

we find upon substituting in (4.5.2) that A and B must satisfy the equation

(−A cos t − B sin t ) + 4(A cos t + B sin t ) = cos t

Equating coefficients of cos t and sin t , it follows

−A + 4A = 1

−B + 4B = 0

Therefore A = 1/3 and B = 0, so yp = 1
3 cos t is a particular solution to (4.5.2).

The general solution to the differential equation is

y = yh + yp = c1 cos2t + c2 sin 2t + 1

3
cos t

Finally, we use the stated initial conditions y(0) = 1/2 and y ′(0) = 0 to determine
the values of c1 and c2. The first condition implies that 1/2 = c1 + 1/3 and
therefore c1 = 1/6. Similarly, y ′(0) = 0 implies that 0 = 2c2, and thus c2 = 0.
Hence the solution to the IVP is

y = 1

6
cos2t + 1

3
cos t

In figure 4.3 we observe that the mass exhibits somewhat unusual behavior
when negatively displaced due to the impact of the forcing function. With the
undamped system and periodic forcing function, the observed behavior will
repeat indefinitely.

We next explore how slight changes in the forcing function can result in
substantially different behavior for the system.

Example 4.5.2 Determine the unique solution to the initial-value problem
given by an undamped spring-mass system with m = 1 and k = 4 where F(t ) =
cos1.75t . Assume that the mass is initially released after being displaced 0.5
from equilibrium. Plot the solution and discuss its long-term behavior.
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y

Figure 4.3 The solution y to the IVP in example 4.5.1.

Solution. Similar to our work in example 4.5.1, we see that the system is
modeled by the initial-value problem

y ′′ + 4y = cos1.75t , y(0) = 0.5, y ′(0) = 0 (4.5.3)

Because only the forcing function has changed, the complementary solution is
again yh = c1 cos2t + c2 sin 2t . Using the method of undetermined coefficients
with

yp = A cos1.75t + B sin 1.75t

it follows that A and B must satisfy the equation(
−49

16
A cos1.75t − 49

16
B sin 1.75t

)
+ 4(A cos1.75t + B sin 1.75t ) = cos1.75t

Equating like coefficients, we can deduce that A = 16
15 and B = 0 so that

yp = 16

15
cos1.75t

and the general solution is

y = c1 cos2t + c2 sin 2t + 16

15
cos1.75t

Applying the initial condition y(0) = 1/2 shows that c1 = −17/30. In
addition, y ′(0) = 0 implies that c2 = 0. Hence the solution to the initial-value
problem (4.5.3) is

y = −17

30
cos2t + 16

15
cos1.75t

When we plot this solution, as shown in figure 4.4, we observe that while the
solution is again periodic, in this instance there is an interesting pattern in which
the amplitude of oscillation itself rises and falls. Because the system is undamped,
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Figure 4.4 The solution to the IVP in example 4.5.2.

this behavior will repeat indefinitely. More importantly, observe how much the
amplitude has increased in this example with f (t ) = cos1.75t as compared to
what we saw in figure 4.3 with f (t ) = cos t : the amplitude of the solution in
figure 4.4 is roughly 3 times that of the solution in figure 4.3, under identical
other initial conditions.

In the solution

y = −17

30
cos2t + 16

15
cos1.75t

to (4.5.3), we observe that we are adding two cosine functions of different
frequencies to one another. In particular, these two frequencies are quite close to
each other due to the coefficients “2” and “ 7

4 .” This results in the two functions’
amplitudes sometimes reinforcing each other (such as when both amplitudes
are large and positive), while at other times their amplitudes negate each other.
The visual periodic phenomenon seen in figure 4.4 is known as beats. This is
because the overall wave with the large wavelength appears as a beat and can
often be heard when two sound waves have approximately the same frequency,
such as when two instruments are out of tune. We will explore this phenomenon
from a more rigorous, algebraic perspective shortly.

In the following example, we consider the case when the forcing function’s
frequency exactly matches that of the general solution to the corresponding
homogeneous equation. Again, only a slight change to the forcing function will
be made when compared to our work above.

Example 4.5.3 Determine the unique solution to the initial-value problem
given by an undamped spring-mass system with m = 1 and k = 4 where F(t ) =
cos2t . Assume that the mass is initially released after being displaced 0.5 from
equilibrium. Plot the solution and discuss its long-term behavior.
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Solution. As above, we see that the system is modeled by the initial-value
problem

y ′′ + 4y = cos2t , y(0) = 0.5, y ′(0) = 0 (4.5.4)

and the complementary solution is again yh = c1 cos2t + c2 sin 2t . Here, we
observe that the forcing function is one of the linearly independent fundamental
solutions present in yh . Therefore we must make the modified guess that

yp = At cos2t + Bt sin 2t

in our attempt to find a particular solution. With

y ′
p = A cos2t − 2At sin 2t + B sin 2t + 2Bt cos2t

and

y ′′
p = −4A sin 2t − 4At cos2t + 4B cos2t − 4Bt sin 2t

we can substitute into (4.5.4) to see that A and B must satisfy the equation

(−4Asin2t −4At cos2t +4Bcos2t −4Bt sin2t )+4(At cos2t +Bt sin2t )=cos2t

All terms involving t cos2t and t sin 2t drop out, leaving us with

−4A sin 2t + 4B cos2t = cos2t

from which it follows that B = 1/4 and A = 0. Hence yp = 1
4 t sin 2t and thus

y = yh + yp = c1 cos2t + c2 sin 2t + 1

4
t sin 2t

Using the initial conditions y(0) = 0.5, y ′(0) = 0, we can show that c1 = 1/2
and c2 = 0. Therefore, the solution to the IVP is

y = 1

2
cos2t + 1

4
t sin 2t

A plot of this solution is shown in figure 4.5; observe the striking behavior that
the solution not only oscillates periodically, but that its amplitude grows without
bound as t → ∞.

When we encounter the phenomenon in figure 4.5 where the solution to the
harmonic oscillator initial-value problem grows without bound, we say that
resonance occurs. This situation arises whenever the forcing function is a sine or
cosine function whose frequency matches the natural frequency of the associated
undamped homogeneous equation. In this case, the forcing function amplifies
the natural oscillations of the system and causes them to grow without bound.
In actual physical applications, such unbounded resonance is not realistic since
either damping is present to limit the amplitude, the function is no longer a
reasonable model for the phenomenon being modeled, or the structure simply
fails. Large-amplitude oscillations do occur when forcing functions are close to
or at the natural frequency of a structure or device, such as when the frequency
of vortex shedding equals the natural frequency of bridge cables.
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Figure 4.5 The solution to the IVP in
example 4.5.3.

Our work from examples 4.5.1–4.5.3 can be generalized to the situation
where the constants k and m present in (4.5.1) are arbitrary. In particular, for
the undamped, undriven spring-mass system given by

y ′′ + k

m
y = 0 (4.5.5)

the general solution is

yh = c1 cos

√
k

m
t + c2 sin

√
k

m
t (4.5.6)

Since the mass will undergo one complete cycle as t goes from 0 to 2π
√

m/k, the

period of oscillation is 2π
√

m/k. The number of cycles per second, or frequency,

is the reciprocal of the period, or
√

k/m/(2π). The angular frequency ω0, which
is measured in radians per second, is given by

ω0 =
√

k

m
This leads us to write the solution (4.5.6) to the equation (4.5.5) in the form

yh = c1 cosω0t + c2 sinω0t

For the undamped spring-mass system driven by the periodic forcing function
F(t ) = F0 cosωt ,

y ′′ + k

m
y = 1

m
F0 cosωt (4.5.7)

the method of undetermined coefficients can be used to show that

yp = F0

m(ω2
0 −ω2)

cosωt

provided that ω 
= ω0. In this case, the general solution to (4.5.7) is

y = c1 cosω0t + c2 sinω0t + F0

m(ω2
0 −ω2)

cosωt (4.5.8)
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When ω and ω0 are nearly equal, the system demonstrates near resonance as the
phenomenon of beats occurs.

In the case where ω = ω0, the solution (4.5.8) obviously fails to hold; using
work that generalizes example 4.5.3, it can be shown that a particular solution
to (4.5.7) takes the form

yp = F0

2mω0
t sinω0t

which produces the general solution

y = c1 cosω0t + c2 sinω0t + F0

2mω0
t sinω0t (4.5.9)

In the yp term in (4.5.9), we see how the solution grows without bound as
t → ∞.

Having now discussed the phenomena of beats and resonance for undamped
systems, we now briefly consider the situation where damping is present. Above
we have observed that if ω ≈ω0, then beats or resonance can occur. Regardless of
the comparison of the frequencies of the system itself and the forcing function,
a periodic forcing function will lead the system to oscillate indefinitely. The
most important issue to understand is how large those oscillations can grow;
this is especially critical for applications to vibrations and oscillations in physical
structures such as bridges.

Two examples will be discussed to show the impact that different levels of
damping can have on such a system.

Example 4.5.4 Determine the unique solution to the initial-value problem
given by the damped spring-mass system with m = 1, c = 0.1, and k = 4, where
F(t ) = cos2t . Assume that the mass is initially released after being displaced 0.5
from equilibrium. Plot the solution and discuss its long-term behavior.

Solution. The system described above is modeled by the initial-value problem

y ′′ + 0.1y ′ + 4y = cos2t , y(0) = 0.5, y ′(0) = 0 (4.5.10)

The characteristic equation is r2 + 0.1r + 4 = 0, whose roots are approximately

r = − 1

20
± 1.999i

Thus, the complementary solution to (4.5.10) is

yh = e− 1
20 t (c1 cos1.999t + c2 sin 1.999t )

Undetermined coefficients can be used in the usual way with the guess yp =
A cos2t + B sin 2t to find that A = 0 and B = 5 so that yp = 5sin 2t . Thus, the
general solution to the given differential equation is

y = e− 1
20 t (c1 cos1.999t + c2 sin 1.999t ) + 5sin 2t
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Figure 4.6 The solution to the IVP in example 4.5.4.

Applying the initial conditions, we can find the values of c1 and c2 to show that
the solution to the stated IVP is

y = e− 1
20 t
(

1

2
cos1.999t − 4.989sin 1.999t

)
+ 5sin 2t (4.5.11)

In figure 4.6, we see the plot of this solution over the interval [0,30π ] and
we observe that initially the amplitude of oscillations grows, much as it did
in example 4.5.3 where resonance occurred. Here, however, we have a small
amount of damping present in the system. Over time, this limits the amplitude
of oscillations and keeps them from growing without bound, though such large-
amplitude oscillation can result in damage to physical structures.

In the solution (4.5.11) to the IVP (4.5.10), we observe two very different
behaviors in the complementary and particular solutions. Due to the presence
of e−t/20 in yh , we see that as t → ∞, yh(t ) → 0. In contrast, yp = 5sin 2t
will oscillate continuously between −5 and 5. Because this is the behavior the
system will tend to over time, we call yp the steady-state solution. The solution
yh is called the transient solution, and is significant only for relatively small
values of t .

Intuitively, increasing the damping that is present should decrease the
amplitude of oscillations generated by a periodic forcing function. In
example 4.5.4, a forcing function with amplitude 1 generated oscillations in
the system that increased to an amplitude of nearly 5, in part due to the small
damping constant, as well as the frequency of the forcing function which nearly
matched the natural frequency of the system. In our next example, we increase
the amount of damping present to see how this limits the size of the waves
generated in the solution.

Example 4.5.5 Determine the unique solution to the initial-value problem
given by the damped spring-mass system with m = 1, c = 4, and k = 4 where
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Figure 4.7 The solution to the IVP in
example 4.5.5.

F(t ) = cos2t . Assume that the mass is initially released after being displaced 0.5
from equilibrium. Plot the solution and discuss its long-term behavior.

Solution. In this final modification of the spring-mass system we have studied
in examples 4.5.1–4.5.4, here we have only increased the damping constant so
that the system is modeled by the initial-value problem

y ′′ + 4y ′ + 4y = cos2t , y(0) = 0.5, y ′(0) = 0 (4.5.12)

At this point in our work, we can show that yh = c1e−2t + c2te−2t and yp =
1
8 sin 2t . Applying the initial conditions, the solution to the IVP (4.5.12) is

y = 1

2
e−2t + 3

4
te−2t + 1

8
sin 2t

Plotting this solution, as shown in figure 4.7, we observe that the amplitude
decreases almost immediately because the complementary solution yh =
1
2 e−2t + 3

4 te−2t vanishes quickly; moreover, only small steady-state oscillations

persist due to yp = 1
8 sin 2t .

Exercises 4.5 In exercises 1–5, solve the given initial-value problem for y(t )
if y(0) = y ′(0) = 0, given the stated parameters for an undamped spring-mass
system. In addition, determine the maximum displacement of the mass, state if
beats or resonance are present, and sketch the solution.

1. m = 1, k = 25, f (t ) = 0.01cos(5t )

2. m = 2, k = 32, f (t ) = 2cos4t

3. m = 1, k = 36, f (t ) = 2e6t

4. m = 3, k = 150, f (t ) = 0.6cos7t

5. m = 2, k = 100, f (t ) = 4sin 7t
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6. A 2-kg mass is suspended from a spring with k = 32. A force
f (t ) = 0.1sin 4t is applied to the mass. Calculate the time required for
failure to occur if the spring breaks when the amplitude of oscillation
exceeds 0.5. The motion starts at rest and there is no damping present.
Assume consistent units.

7. A 20-N weight is suspended from a frictionless spring with k = 98. A force
of f (t ) = 2cos7t acts on the weight; the motion starts at rest. Does the
system demonstrate resonance, beats, or neither? Explain, including a plot
of the solution, assuming consistent units throughout.

In exercises 8–11, find the current I (t ) for each simple series circuit (with no
resistor) if I (0) = I ′(0) = 0, given the stated parameters for an undamped spring-
mass system. In addition, determine the maximum current, state if beats or
resonance are present, and sketch the solution. Assume consistent units.

8. C = 10−3, L = 0.1, E(t ) = 120cos101t

9. C = 0.02, L = 0.5, E(t ) = 10sin 10t

10. C = 10−4, L = 1.0, E(t ) = 120sin 100t

11. C = 10−3, L = 0.1, E(t ) = 240cos10t

12. A forcing function f (t ) = 50cos4t N is imposed on a spring-mass system
for which m = 2, k = 8 N/m, and c = 2 kg/s. Determine the amplitude of
the steady-state solution.

13. A forcing function f (t ) = 10sin(2t ) N is imposed on a spring-mass system
that starts from rest for which m = 2 kg and k = 8 N/m. Determine the
damping coefficient necessary to limit the amplitude of the resulting
motion to a maximum of 2 m.

14. A series circuit is composed of elements for which R = 60�,
L = 10−4 H, and C = 10−5 F. Find the steady-state current if a
voltage of E(t ) = 120cos120π t is applied.

4.6 Higher order linear differential equations

In the preceding sections of this chapter, we have focused on second-order
linear differential equations. One reason we emphasize second-order equations
is the importance of the (damped) harmonic oscillator equation. Moreover,
second-order equations provide an appropriate setting in which to learn a
variety of key ideas that may be generalized to linear equations of higher order.
In this section, we consider several examples of higher order equations in
order to gain exposure to important extensions of concepts we have already
studied.

We first consider an example to see the natural approach to a third-order
equation.
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Example 4.6.1 Find the general solution to the differential equation

y ′′′ − 2y ′′ − y ′ + 2 = 0 (4.6.1)

Solution. For second-order linear homogeneous equations, we begin with the
guess that y = ert and determine the values of r for which ert is a solution to the
equation. Doing likewise for this third-order equation, we note that y ′ = rert ,
y ′′ = r2ert , and y ′′′ = r3ert . Substituting into (4.6.1), we find

r3ert − 2r2ert − rert + 2ert = 0

Factoring, it follows

ert [r2(r − 2) − 1(r − 2)] = 0

or

ert (r − 2)(r2 − 1) = 0

We therefore see that the r-values for which y = ert is a solution to (4.6.1) are
r = −1,1, and 2.

Using reasoning similar to our work with second-order equations, we now
expect that the solutions y1 = e−t , y2 = et , and y3 = e2t are linearly independent
and that the general solution is the linear combination

y = c1e−t + c2et + c3e2t

Just as with second-order equations, we call the equation (r −2)(r2 −1) = 0
that results from the guess y = ert the characteristic equation. Roots of the
characteristic equation play a central role in determining solutions to higher
order equations. Furthermore, example 4.6.1 hints at the fact that we can
expect several important theoretical results from second-order equations to
hold for equations of order n. We state these results, which are analogous to
theorems 4.2.1, 4.2.2, and 4.2.3, without proof. Observe that we will use the
notation y ′′′ to represent the third derivative of y , but for any derivative of order
higher than 3, we use the notation y(n). For example, y(5) is the fifth derivative
of y .

Theorem 4.6.1 If y1, y2, . . . ,yk are solutions to the nth-order linear
homogeneous equation

y(n) + an−1(t )y(n−1) +·· ·+ a1(t )y ′ + a0(t )y = 0

then y = c1y1 + c2y2 +·· ·+ ckyk is also a solution for any constants c1, . . . , ck .

From theorem 4.6.1, we expect that linear combinations of fundamental
solutions will play a key role in our solution to higher order equations. In
addition, for corresponding initial-value problems, we are again guaranteed the
existence of unique solutions under sufficiently nice conditions.
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Theorem 4.6.2 Consider the nth-order initial-value problem given by

y(n) + an−1(t )y(n−1) +·· ·+ a1(t )y ′ + a0(t )y = f (t )

y(t0) = b0, y ′(t0) = b1, . . . ,y(n−1)(t0) = bn−1

(4.6.2)

where the coefficient functions ai(t ) and the forcing function f (t ) are
continuous on an open interval (a,b). Given any t0 in (a,b), (4.6.2) has a
unique solution in (a,b).

As in our earlier work with second-order linear DEs and systems of linear
first-order DEs, in our current study of higher order differential equations, we
usually consider the situation where the coefficient functions ai(t ) are constant.
In this setting, we can deduce the following result.

Theorem 4.6.3 The set of all solutions to the second-order homogeneous
linear differential equation y(n) + an−1y(n−1) + ·· · + a1y ′ + a0y = 0, where
a0, . . . ,an−1 are constants, is a vector space of dimension n.

From these three results, we see that we can solve any homogeneous linear
differential equation of order n provided that we can find n linearly independent
solutions to the equation. Moreover, given such a general solution, we can
determine the unique solution to any corresponding initial-value problem. With
second-order equations, we normally verified the linear independence of two
solutions by confirming that they were not scalar multiples of one another.
For sets of more than two functions, a more sophisticated tool, the so-called
Wronskian, is necessary to test for linear independence.

Definition 4.6.1 Suppose that y1,y2, . . . ,yn are each (n − 1)-times differen-
tiable functions on an interval [a,b]. The Wronskian W of these functions is
given by

W (t ) = det

⎛
⎜⎜⎜⎜⎝

y1 y2 · · · yn

y ′
1 y ′

2 · · · y ′
n

...
...

...

y(n−1)
1 y(n−1)

2 · · · y(n−1)
n

⎞
⎟⎟⎟⎟⎠

We emphasize that the Wronskian is itself a single scalar function of t . The
most important feature of the Wronskian is that W (t ) is identically zero if and
only if the functions y1, . . . ,yn are linearly dependent. Hence, if W (t ) is not
identically zero, then the functions are linearly independent. We consider an
elementary example to demonstrate the use of the Wronskian.

Example 4.6.2 Use the Wronskian to show that the functions y1 = e−t , y2 = et ,
and y3 = e2t are linearly independent.
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Solution. From the definition, observe that

W (t ) = det

⎛
⎝ e−t et e2t

−e−t et 2e2t

e−t et 4e2t

⎞
⎠

Computing the determinant, we find

W (t ) = e−t (4et e2t − 2e2t et ) − et (−4e−t e2t − 2e2t e−t ) + e2t (−e−t et − et e−t )

= 2e−t e3t + 6et et − 2e2t

= 6e2t

Since W (t ) 
= 0, the functions y1 = e−t , y2 = et , and y3 = e2t are linearly
independent.

Using the Wronskian, it can be shown that if the characteristic equation of a
homogeneous linear differential equation of order n has n distinct, real solutions
r1, . . . , rn , then the corresponding functions y1 = er1t , . . . ,yn = ernt are linearly
independent, and therefore can be used to form the general solution to the
equation. In the cases where roots of the characteristic equation are repeated or
complex, we use ideas similar to those encountered for second-order equations
to find the required n real linearly independent solutions to the given differential
equation. The next example examines this situation in the case of a repeated root.

Example 4.6.3 Determine three linearly independent solutions to the equation

y ′′′ − 3y ′′ + 3y ′ − y = 0 (4.6.3)

and hence state the general solution to the DE.

Solution. The corresponding characteristic equation is

r3 − 3r2 + 3r − 1 = 0

Factoring, it follows that (r − 1)3 = 0, so only one real, repeated root exists:
r = 1. This shows that y1 = et is one solution to (4.6.3). Two more solutions
remain to be found. Based on our experience with second-order equations
and theorem 4.3.1, we naturally expect that y2 = tet and y3 = t 2et will be
solutions to (4.6.3). It is a straightforward exercise to verify that each of these
two functions is a solution to the given equation. Moreover, it may be shown that
the Wronskian of these three functions is nonzero and, therefore, the functions
are linearly independent, so the general solution to (4.6.3) is

y = c1et + c2tet + c3t 2et = (c1 + c2t + c3t 2)et

The following result analogous to theorem 4.3.1 holds for repeated roots of
multiplicity k in higher order equations.
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Theorem 4.6.4 For any nth-order linear homogeneous differential equation
of the form

y(n) + an−1y(n−1) +·· ·+ a1y ′ + a0y = 0

whose characteristic equation has a repeated root r of multiplicity k, the k
linearly independent solutions of the differential equation corresponding to
r are

ert , tert , t 2ert , . . . , t k−1ert

We deal with complex roots of the characteristic equation in exactly the
same manner as in the case of second-order differential equations. In particular,
if r = a + ib is a complex root of the characteristic equation, we consider the
complex-valued function

z(t ) = e(a+ib)t = eat eibt = eat (cosbt + i sinbt )

The real and imaginary parts of the complex solution then form linearly
independent solutions to the differential equation. Our next example illustrates
this in detail.

Example 4.6.4 Determine the general solution to the equation

y(4) − 2y ′′′ + 14y ′′ − 18y ′ + 45y = 0 (4.6.4)

Solution. If we consider the characteristic equation r4 − 2r3 + 14r2 − 18r +
45 = 0 and factor, we find

r4 − 2r3 + 14r2 − 18r + 45 = (r2 + 9)(r2 − 2r + 5) = 0

from which it follows that r = ±3i and r = 1 ± 2i. Thus one complex
solution is

z1(t ) = e3it = cos3t + i sin 3t

so that y1 = cos3t and y2 = sin 3t are solutions to (4.6.4). Similarly, another
complex solution is

z2(t ) = e(1+2i)t = et (cos2t + i sin 2t )

so that y3 = et cos2t and y4 = et sin 2t are also real solutions to (4.6.4). We can
now conclude that the general solution to the given differential equation is

y = c1 cos3t + c2 sin 3t + c3et cos2t + c4et sin 2t

The only remaining case to consider for homogeneous equations is that of
repeated complex roots. In this case, just as with that of repeated real roots, we
multiply the basic solutions that arise by powers of t to build additional linearly
independent solutions. For example, if r = 1 ± 2i is a repeated complex root of
multiplicity two, the corresponding four real solutions would be y1 = et cos2t ,
y2 = et sin 2t , y3 = tet cos2t , and y4 = tet sin 2t .
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We also observe at this point that we can solve corresponding initial-value
problems for any given nth-order homogeneous linear equation. Since the
general solution of an nth-order equation has n unknown constants c1, . . . , cn ,
we will need n initial conditions to uniquely determine their values. The
following example demonstrates the solution of a standard problem.

Example 4.6.5 Find the solution of the initial-value problem

y(4) − y = 0, y(0) = y ′(0) = y ′′(0) = y ′′′(0) = 1 (4.6.5)

Solution. With characteristic equation r4 −1 = 0, it is straightforward to verify
that the roots of this equation are ±1 and ±i so that the general solution to the
DE in (4.6.5) is

y(t ) = c1et + c2e−t + c3 cos t + c4 sin t

The derivatives of y are

y ′(t ) = c1et − c2e−t − c3 sin t + c4 cos t

y ′′(t ) = c1et + c2e−t − c3 cos t − c4 sin t

y ′′′(t ) = c1et − c2e−t + c3 sin t − c4 cos t

Using the stated initial conditions, observe that

y(0) = 1 = c1 + c2 + c3

y ′(0) = 1 = c1 − c2 + c4

y ′′(0) = 1 = c1 + c2 − c3

y ′′′(0) = 1 = c1 − c2 − c4

Row-reducing this system of linear equations shows that the unique solution is
given by c1 = 1, c2 = c3 = c4 = 0, and therefore, the solution to the IVP (4.6.5) is

y(t ) = et

Finally, it remains for us to see how the previous methods of dealing
with nonhomogeneous second-order equations extend to higher order equa-
tions. Just as with second-order equations, we first solve the corresponding
homogeneous equation using the approach discussed above to find the
complementary solution yh . Then, in order to find a particular solution yp to the
nonhomogeneous equation, we can use extensions of the methods discussed in
section 4.4.

For the method of undetermined coefficients, the approach is essentially
identical: based on the form of the forcing function f (t ) and the presence of
fundamental solutions within f , we make a reasonable guess of the form of a
particular solution yp involving unknown coefficients. By substituting into the
given DE, we determine values for these coefficients and hence yp . The general
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solution is then y = yh + yp . Variation of parameters may also be extended:
given yh = c1y1 + c2y2 + ·· · + cnyn , we seek functions u1,u2, . . . ,un such that
yp = u1y1 + u2y2 + ·· · + unyn is a solution to the differential equation. This
method is best understood through the theory developed for nonhomogeneous
systems of first-order equations given in section 3.7 and reminding ourselves
that any nth-order linear equation can be converted into a system of n
first-order equations. While this approach provides a guaranteed particular
solution in theory, the computational details are often very complicated. We
therefore choose to focus on those higher order DEs that may be solved using
undetermined coefficients. An example is instructive.

Example 4.6.6 Determine the general solution to the equation

y(5) − y ′′′ = 3et + t 2 − 4 (4.6.6)

Solution. We first solve the corresponding homogeneous equation, y(5) −
y ′′′ = 0 to determine yh . Since the characteristic equation is r5 − r3 =
r3(r2 − 1) = 0, we see that yh is given by

yh = c1 + c2t + c3t 2 + c4et + c5e−t

For the nonhomogeneous equation (4.6.6), based on the form of the forcing
function f (t ), the natural form to assume for yp is

yp = Aet + B + Ct + Dt 2

However, since each part of our assumed form of yp appears in yh , we therefore
modify our guess by multiplying by appropriate powers of t and assume
instead that

yp = Atet + Bt 3 + Ct 4 + Dt 5

From this, we observe that to substitute yp into (4.6.6) we need to know y ′′′
and y(5). By repeated differentiation,

y ′
p = Atet + Aet + 3Bt 2 + 4Ct 3 + 5Dt 4

y ′′
p = Atet + 2Aet + 6Bt + 12Ct 2 + 20Dt 3

y ′′′
p = Atet + 3Aet + 6B + 24Ct + 60Dt 2

y(4)
p = Atet + 4Aet + 24C + 120Dt

y(5)
p = Atet + 5Aet + 120D

Substituting in (4.6.6), it follows

Atet + 5Aet + 120D − (Atet + 3Aet + 6B + 24Ct + 60Dt 2) = 3et + t 2 − 4

so that

2Aet − 60Dt 2 − 24Ct + 120D − 6B = 3et + t 2 − 4
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Equating like coefficients, we find that A = 3/2, D =−1/60, C = 0, and B = 1/3.
Hence, we have found

yp = 3

2
tet + 1

3
t 3 − 1

60
t 5

Therefore, the general solution to (4.6.6) is

y = yh + yp = c1 + c2t + c3t 2 + c4et + c5e−t + 3

2
tet + 1

3
t 3 − 1

60
t 5

Throughout this section we have seen that the approaches needed to solve nth-
order linear equations are nearly identical to those we use for second-order
equations. The main differences are that the characteristic equation is generally
difficult, if not impossible, to factor, and we have to be especially cognizant of
repeated roots in determining yh and yp .

4.6.1 Solving characteristic equations using Maple

While solving linear differential equations of order n requires nearly identical
methods to DEs of order 2, there is one added challenge from the outset: solving
the characteristic equation. The characteristic equation is a polynomial equation
of degree n; while every such equation of degree 2 can be solved using the
quadratic formula, equations of higher order can be much more difficult, and
(for equations of degree 5 and higher) often impossible, to solve by algebraic
means.

Computer algebra systems like Maple provide useful assistance in this
matter with commands for solving equations exactly and approximately. For
example, say we have the characteristic equation

r4 − r3 − 7r2 + r + 6 = 0

To solve this exactly in Maple, we enter

> solve(rˆ4 - rˆ3 - 7*rˆ2 + r + 6 = 0, r);

Maple produces the output

−1,1,−2,3

showing that these are the four roots of the characteristic equation.
Of course, not all polynomial equations will have all integer solutions, much

less all real solutions. For example, if we consider the equation

r4 + r3 + r2 + r + 1 = 0

and use the solve command, we see that

> solve(rˆ4 + rˆ3 + rˆ2 + r + 1 = 0, r);
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results in the output
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In this case, we might prefer a decimal approximation to the roots rather than
the exactness that Maple provides. One way to achieve this is to use the fsolve
command:

> fsolve(rˆ4 + rˆ3 + rˆ2 + r + 1 = 0, r, complex);

which generates the result

−0.80902 − 0.58779I ,−0.80902 + 0.58779I ,0.30902 − 0.95106I ,
0.30902 + 0.95106I

Note that without the option “complex” in the fsolve command, the
command will not generate any output. This is because the default setting for
fsolve is to numerically approximate all of the real roots of the polynomial
equation and to ignore complex ones. For polynomial equations of degree 5
or more, the fsolve command is the appropriate tool to use to determine
accurate approximations of the equation’s solutions.

Exercises 4.6 In exercises 1–12, use the characteristic equation to determine
the general solution to the given higher order linear homogeneous DE.

1. y ′′′ − 2y ′′ − y ′ + 2y = 0

2. y ′′′ − 2y ′′ − 3y ′ = 0

3. 4y ′′′ − 13y ′ − 6y = 0

4. y(4) − 13y ′′ + 36y = 0

5. y ′′′ + 3y ′′ + 3y ′ + y = 0

6. y(4) − y ′′′ − 7y ′′ + y ′ + 6y = 0

7. y ′′′ − y ′′ + 4y ′ − 4y = 0

8. y(4) − y = 0

9. y(5) − 2y(4) − y ′ + 2y = 0

10. y(6) + 9y(4) + 24y ′′ + 16y = 0

11. y(4) + 4y ′′′ + 6y ′′ + 4y ′ + y = 0

12. y(4) + 3y ′′′ + y ′′ − 5y ′ = 0
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In exercises 13–22, solve the given IVP.

13. y ′′′ − 4y ′ = 0, y(0) = 1, y ′(0) = 0, y ′′(0) = 2

14. y ′′′ − 3y ′′ + 2y ′ = 0, y(0) = 0, y ′(0) = 2, y ′′(0) = 0

15. y ′′′ − 6y ′′ + 11y ′ − 6y = 0, y(0) = 0, y ′(0) = 2, y ′′(0) = 0

16. y(4) − 2y ′′′ − y ′′ + 2y ′ = 0, y(0) = 2, y ′(0) = 0, y ′′(0) = 10, y ′′′(0) = 0

17. y ′′′ + y ′′ + 4y ′ + 4y = 0, y(0) = 0, y ′(0) = 10, y ′′(0) = 0

18. y(4) + 5y ′′ + 4y = 0, y(0) = 4, y ′(0) = 0, y ′′(0) = 10, y ′′′(0) = 0

19. y ′′′ = 0, y(0) = 2, y ′(0) = 0, y ′′(0) = 2

20. y(4) − 16y = 0, y(0) = 4, y ′(0) = 0, y ′′(0) = 0, y ′′′(0) = 0

21. y ′′′ − 3y ′′ + 3y ′ − y = 0, y(0) = 1, y ′(0) = 2, y ′′(0) = 1

22. y(5) + y ′′′ = 0, y(0) = 1, y ′(0) = 0, y ′′(0) = 2, y ′′′(0) = 0, y(4)(0) = 4

In exercises 23–28, construct a homogeneous linear differential equation of the
least possible order that has the given function(s) as solutions.

23. y1 = c , y2 = et

24. y1 = t 2e2t

25. y1 = t , y2 = cos3t , y3 = e−t

26. y1 = te4t sin t

27. y1 = e−t/2 cos t , y2 = sin 5t

28. y1 = sin t , y2(t ) = t sin t

29. Find the general solution to y(4) + 2y ′′ + y = cos t .

30. Find a particular solution to y(4) + 2y ′′ + y = sin t + 2cos t . How is your
answer similar to the result in exercise 29?

In exercises 31–42, use undetermined coefficients to determine the general
solution to the stated nonhomogeneous equation. Note that each of the
corresponding homogeneous equations has been solved in exercises 1–12.

31. y ′′′ − 2y ′′ − y ′ + 2y = 2

32. y ′′′ − 2y ′′ − 3y ′ = 2et

33. 4y ′′′ − 13y ′ − 6y = cos t

34. y(4) − 13y ′′ + 36y = t

35. y ′′′ + 3y ′′ + 3y ′ + y = sin t

36. y(4) − y ′′′ − 7y ′′ + y ′ + 6y = t 2 + 3
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37. y ′′′ − y ′′ + 4y ′ − 4y = e−t

38. y(4) − y = 3t

39. y(5) − 2y(4) − y ′ + 2y = 7

40. y(6) + 9y(4) + 24y ′′ + 16y = t 2

41. y(4) + 4y ′′′ + 6y ′′ + 4y ′ + y = t + cos t

42. y(4) + 3y ′′′ + y ′′ − 5y ′ = 2t − sin t + et

4.7 For further study

4.7.1 Damped motion

Consider the general form of the spring-mass equation

my ′′ + cy ′ + ky = 0 (4.7.1)

where c 
= 0 so that viscous damping is present. In what follows, we explore how
the values of the constants m, c , and k affect the behavior of the solution y . Note
that in this context, m, c , and k are always positive.

(a) Show that the roots of the characteristic polynomial of (4.7.1) are

λ = −c ±√
c2 − 4mk

2m
(b) We examine the three possible cases for the roots of the characteristic

polynomial:

(i) Suppose that c2 − 4km > 0. Explain why
√

c2 − 4mk < c and thus why
both roots of the characteristic equation must be negative. State the
general solution to the equation (4.7.1) in terms of the constants c , m,
and k.

(ii) Suppose that c2 − 4km = 0. Discuss the number of real roots of the
characteristic polynomial and state the general solution to the
equation (4.7.1) in terms of the constants c and m.

(iii) Suppose that c2 − 4km < 0. Explain why both roots of the
characteristic polynomial are complex. Using � = √

4mk − c2/(2m),
state the general solution to the equation (4.7.1) in terms of the
constants c , m, and �.

(c) The respective cases (i), (ii), and (iii) in (b) are typically called
overdamping, critical damping, and underdamping. How is the case of
underdamping significantly different from overdamping and critical
damping? Explain both in terms of the algebraic form of the solution as
well as in terms of the solution’s expected graph.

(d) A 4-kg mass is suspended from a spring with constant k = 25, and a
dashpot with various levels of damping viscosity is present. The mass is
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displaced 0.5 m from its equilibrium and released. Determine the
displacement y(t ) of the mass if

(i) c = 15, (ii) c = 20, (iii) c = 25, and (iv) c = 30

In each case, state whether the system is overdamped, critically damped, or
underdamped, and sketch the solution curve.

(e) The case of underdamping is the most interesting of the three cases, for it is
here that multiple oscillations through equilibrium occur. In (b)(iii), you
should have shown that the general solution may be expressed in the form

y = e− c
2m t (c1 cos�t + c2 sin�t )

Show that y may be alternatively expressed in the form

y = Ae− c
2m t cos(�t − θ) (4.7.2)

where A =
√

c2
1 + c2

2 and tanθ = c1/c2. (Hint: Set A cos(�t − θ) =
c1 cos�t + c2 sin�t and equate like coefficients after using the
trigonometric identity cos(α −β) = cosα cosβ + sinα sinβ.)

(f) In the underdamped case, we are interested in how fast the amplitude of
the oscillations decays to zero. In what follows, we show how the ratio of
consecutive local maxima (or minima) of y(t ) depends only on the
constants c , m, and �.

(i) Using y = Ae− c
2m t cos(�t − θ) from (e), determine y ′ and show that

y ′ = 0 if and only if

tan(�t − θ) = − c

2m�
(4.7.3)

(ii) If the solutions of (4.7.3) are denoted by tn , then show that

tn = θ

�
+ 1

�
arctan

(
− c

2m�

)
+ nπ

�
(4.7.4)

Explain why we expect y(tn) and y(tn+1) to be a local maximum and
minimum (or local minimum and maximum), respectively, of y(t ),
and hence why y(tn) and y(tn+2) will be consecutive maxima or
consecutive minima.

(iii) Let yn = y(tn) and yn+2 = y(tn+2). Using (4.7.2), evaluate y(tn) and
y(tn+2) and verify that

yn

yn+2
= cos(�tn − θ)

cos(�tn+2 − θ)
e− c

2m (tn−tn+2) (4.7.5)

(iv) Show that (4.7.3) implies

(tn − tn+2)� = −2π

and thus
yn

yn+2
= cos(�tn − θ)

cos(�tn+2 − θ)
eπc/m� (4.7.6)
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(v) Show that

�tn − θ = �tn+2 − θ − 2π

so that

cos(�tn − θ) = cos(�tn+2 − θ)

Use this last result to prove that
yn

yn+2
= eπc/m� (4.7.7)

(g) The logarithm of (4.7.7),

D = ln
yn

yn+2
= ln eπc/m� = πc

m�
(4.7.8)

is called the logarithmic decrement. Note that this quantity is independent
of t as well as the initial conditions present in the underdamped case for
the DE (4.7.1), and that the value of the logarithmic decrement tells us
how rapidly consecutive oscillations diminish in the underdamped case.

For each of the following underdamped spring-mass systems, determine
the solution function y(t ) and compute the logarithmic decrement.
Explain how the value of the logarithmic decrement tells you whether
oscillations will die out slowly or rapidly. Using a computer algebra system
to execute the routine calculations is particularly appropriate here. In each
case, assume the mass is displaced 1 m and released.

(i) m = 4, c = 19, k = 25
(ii) m = 4, c = 10, k = 25

(iii) m = 4, c = 1, k = 25
(iv) m = 4, c = 0.1, k = 25

4.7.2 Forced oscillations with damping

Consider the general form of the forced spring-mass equation

my ′′ + cy ′ + ky = f (t ) (4.7.9)

where c > 0 so that viscous damping is present. Again, we remark that in this
context m and k are always positive.

(a) Show that if

� =
√

c2 − 4km

2m

then the complementary solution of (4.7.9) is

yh(t ) = e− c
2m t (c1e�t + c2e−�t ) (4.7.10)

(b) Explain why

lim
t→∞yh(t ) = 0
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Recall that we call yh(t ) the transient solution. What does this tell us about
the role played by the particular solution yp(t ) in the general solution
y = yh + yp as t → ∞?

(c) We now consider the effects of the periodic forcing function
f (t ) = F0 cosωt . With this function, we have seen that resonance is only
possible when no damping is present; here, we wish to explore the impact
of the parameters in f (t ) on the steady-state solution yp to (4.7.9).

(i) Use the method of undetermined coefficients to show that with
f (t ) = F0 cosωt , the particular solution yp to (4.7.9) is

yp = F0(k − mω2)

(k − mω2)2 +ω2c2

(
cosωt + cω

k − mω2
sinωt

)
(4.7.11)

(ii) As in our study of undamped spring-mass systems and resonance,
we let ω0 =√k/m. Show that yp(t ) may be equivalently expressed
in the form

yp = F0

m2(ω2
0 −ω2)2 +ω2c2

cos(ωt − θ) (4.7.12)

Compare the result to (4.7.2).
(iii) Observe that the amplitude of the oscillation of yp in (4.7.12) is

�(ω) = F0

m2(ω2
0 −ω2)2 +ω2c2

(4.7.13)

and that ω0, m, and c are fixed constants determined by the given
spring-mass system. We now examine how the size of these
oscillations depends on ω.

First, compute

d�
dω

Then, set d�/dω = 0 to show that the maximum amplitude occurs
when

ω2 = ω2
0 − c2

2m2
(4.7.14)

(iv) Explain why if c satisfies c2 > 2m2ω2
0, then there is no value of ω that

produces a maximum amplitude of oscillation.

In addition, note that when a maximum amplitude exists (i.e.,
provided c2 < 2m2ω2

0), its value is given by �(ω) where ω

satisfies (4.7.14). Use this condition to compute �(ω) and show that

�max = 2mF0

c
√

4m2ω2
0 − c2

(4.7.15)
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(v) Consider a particular spring-mass system for which m = 1 and k = 4
where we consider various damping constants c . In addition, assume
we apply the forcing function f (t ) = cosωt , so that F0 = 1. Recall that
ω0 =√k/m, so ω0 = 2.
For each of the c-values c = 0.1,1,2,3,4,5,6, plot the function

�(ω) = F0

m2(ω2
0 −ω2)2 +ω2c2

on the interval ω = 0 . . .10. When a maximum oscillation exists, where
does it occur? How is the size of the maximum oscillation correlated
with c and ω? What should we ensure about the relationship between
ω and ω0 if we want to avoid large amplitude oscillations?

(d) Complete the following exercises which examine the magnitude of
oscillations in damped, driven spring-mass systems.

(i) A forcing function f (t ) = 10sin 2t is imposed on a spring-mass system
for which m = 2 kg and k = 8 N/m. Determine the damping constant
necessary to limit the amplitude of the motion to a maximum of 2 m.

(ii) A forcing function f (t ) = 50cosωt is imposed on a spring-mass
system for which m = 4 kg, k = 100 N/m, and c = 2 kg/s. Calculate the
amplitude of the resulting motion for ω = 4, ω = 4.5, ω = 5, and
ω = 6.

(iii) Determine the input frequency ω that gives the maximum amplitude
for the spring-mass system in (ii) above. For this frequency, what is the
maximum amplitude?

4.7.3 The Cauchy–Euler equation

The vast majority of our efforts with higher order DEs have involved
linear equations with constant coefficients. The Cauchy–Euler equation is an
important example of a linear, second-order DE whose coefficients are not
constant. In particular, the Cauchy–Euler equation is a differential equation of
form

t 2y ′′ + pty ′ + qy = 0 (4.7.16)

where p and q are real constants and t > 0.

(a) Explain why it is reasonable to guess that y(t ) = tλ is a solution
to (4.7.16). Show by direct substitution in (4.7.16) that the guess y(t ) = tλ

requires λ to be a solution to the characteristic equation

λ2 + (p − 1)λ+ q = 0 (4.7.17)

(b) In the case where (4.7.17) has two distinct real roots λ1 and λ2, then the
general solution to the Cauchy–Euler equation is

y = c1tλ1 + c2tλ2
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Solve each of the following Cauchy–Euler initial-value problems:

(i) t 2y ′′ − 5ty ′ + 8y = 0, y(1) = 1, y ′(1) = 0
(ii) t 2y ′′ + 9ty ′ + 12y = 0, y(1) = 1, y ′(1) = 0

(c) When (4.7.17) has a repeated real root λ1 = λ2 = λ, then we have
only determined one linearly independent solution (y1 = tλ) of the
Cauchy–Euler equation. Here we determine a second linearly independent
solution.

(i) Assuming that λ is a repeated root of (4.7.17), show that 1 − p = 2λ.
(ii) Letting v(t ) be an unknown function, consider the guess y2 = v · tλ. By

direct substitution in the Cauchy–Euler equation, show that v must
satisfy the equation

tλ[t 2v ′′ + (2λ+ p)tv ′ + (λ2 + (p − 1)λ+ q)v] = 0 (4.7.18)

(iii) Use your work in (i) and (ii), as well as the fact that λ satisfies the
equation

λ2 + (p − 1)λ+ q = 0

to show that y2 = v · tλ is a solution of the Cauchy–Euler equation in
the case of a repeated root provided that

tv ′′ + v ′ = 0 (4.7.19)

(iv) Show that v(t ) = ln t is a solution of (4.7.19) and hence state the
general solution of the Cauchy–Euler equation in the case where the
characteristic equation has a single real repeated root.

(d) Solve each of the following Cauchy–Euler initial-value problems:

(i) t 2y ′′ + 7ty ′ + 9y = 0, y(1) = 1, y ′(1) = 0
(ii) t 2y ′′ − 9ty ′ + 25y = 0, y(1) = 1, y ′(1) = 0

(e) When (4.7.17) has complex roots, say λ1 = a + bi and λ2 = a − bi, then we
proceed with a corresponding complex solution to the Cauchy–Euler
equation and verify that its real and imaginary parts are themselves real,
linearly independent solutions to the equation. In particular, with
λ = a + bi, observe that

z(t ) = tλ = t a+bi = t at bi

By writing

t bi = e ln(t bi ) = ebi ln t

and applying Euler’s formula, show that

z(t ) = t a[cos(b ln t ) + i sin(b ln t )] (4.7.20)

In addition, show by direct substitution that y1(t ) = t a cos(b ln t ) is a
solution to the Cauchy–Euler equation when a + bi is a root of the
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characteristic polynomial. Likewise, show that y2(t ) = t a sin(b ln t ) is a
solution.
Hence, state the general solution to the Cauchy–Euler equation in the case
where the characteristic polynomial has complex roots λ = a ± bi.

(f) Solve each of the following Cauchy–Euler initial-value problems:

(i) t 2y ′′ + 3ty ′ + 5y = 0, y(1) = 1, y ′(1) = 0
(ii) t 2y ′′ − 3ty ′ + 13y = 0, y(1) = 1, y ′(1) = 0

4.7.4 Companion systems and companion matrices

Given a second-order linear differential equation with constant coefficients
such as

y ′′ + by ′ + cy = 0 (4.7.21)

we know that through the substitution x1 = y , x2 = y ′ we can convert (4.7.21)
to the system of first-order equations given by

x ′
1 = x2

x ′
2 = −cx1 − bx2

(4.7.22)

The system (4.7.22) is called the companion system of (4.7.21). In what follows,
we explore the connections between the original equation and its companion
system.

(a) Consider the homogeneous linear second-order DE

y ′′ + 3y ′ + 2y = 0 (4.7.23)

Using the guess y = ert , find the characteristic equation of (4.7.23) and the
values of r that make y = ert a solution of the given DE.

(b) Convert the DE (4.7.23) into a system of first-order equations in the form
x′ = Ax. In addition, determine the eigenvalues of the matrix A.

(c) What do you observe about the roots of the characteristic equation in (a)
and the eigenvalues of the matrix in (b)? Why is this result not surprising?

(d) Find the general solution of the second-order equation (4.7.23) using
standard methods from chapter 4. Find the general solution of the
first-order system you found in (b) using standard methods from
chapter 3. Explain how your two results agree.

(e) Now consider the general equation (4.7.21) where b and c are arbitrary
constants and its corresponding companion system.

(i) Show that the roots of the characteristic equation are

r = −b ±√
b2 − 4c

2
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and that the eigenvalues of the coefficient matrix of the companion
system are

λ = −b ±√
b2 − 4c

2
(ii) Assuming that b2 − 4c > 0 so that the values of r in (i) are real and

distinct, state the general solution of (4.7.21).
(iii) Show that the eigenvectors of the matrix of the companion system that

correspond to λ1 and λ2 are given by

v1 =
[

1
λ1

]
and v1 =

[
1
λ1

]

where λ1 = (−b +√
b2 − 4c)/2 and λ2 = (−b −√

b2 − 4c)/2. State
the general solution to the companion system.

(iv) Compare your result from (ii) to the result for x2 in (iii). Do your
solutions agree?

(f) Our work above shows that for any second-order differential equation,
there exists a companion system of two first-order equations whose vector
solution contains the solution of the second-order equation.
For the third-order equation

y ′′′ + 2y ′′ − y ′ − 2y = 0

find the solution of the system directly by using standard methods from
chapter 4. Then, find the general solution of the first-order companion
system constructed from the substitution x1 = y , x2 = y ′, x3 = y ′′ using
standard methods from chapter 3. Compare your results.

(g) In both the direct solution of higher order linear differential equations and
in the solution of systems of linear first-order equations, the solution
methods require us to find roots of polynomials. Our work above enables
us to see the fact that any polynomial has an associated matrix, a so-called
companion matrix, whose eigenvalues are the same as the zeros of the
polynomial. In general, given a polynomial function

p(t ) = t n + an−1t n−1 + an−2t n−2 +·· ·+ a1t + a0

the companion matrix of p(t ) is given by

C =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

0 0 · · · 0 0 1
−a0 −a1 −a2 · · · −an−2 −an−1

⎤
⎥⎥⎥⎥⎥⎦ (4.7.24)

That is, C is an n × n matrix whose first n − 1 rows are all zero except for
the entry just above the diagonal, whose value is 1. The final row consists
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of the opposites of the coefficients of the constant, linear, etc., terms of the
polynomial p.

It can be proved that, in general, the eigenvalues of C are the same as the
zeros of p(t ). We verify this fact through a few examples.

(i) For the polynomial p(t ) = t 2 + 3t + 2, determine the companion
matrix C. Compute the eigenvalues of C directly and compare the
result to the zeros of p(t ).

(ii) For the polynomial p(t ) = t 3 + 3t 2 + 3t + 1, determine the
companion matrix C. Compute the eigenvalues of C directly and
compare the result to the zeros of p(t ).

(iii) For the polynomial p(t ) = t 4 − 1, determine the companion matrix C.
Compute the eigenvalues of C directly and compare the result to the
zeros of p(t ).

(h) For the nth-order linear homogeneous equation

y(n) + an−1y(n−1) +·· ·a1y ′ + a0y = 0 (4.7.25)

show that the coefficient matrix of the corresponding companion system is
in fact that companion matrix of the characteristic polynomial of (4.7.25).
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5
Laplace transforms

5.1 Motivating problems

In this chapter, we again consider solving nonhomogeneous linear differential
equations such as

y ′′ + a1y ′ + a2y = f (t )

but in contexts where the forcing function is different from those we have
previously encountered. While we have developed the methods of undetermined
coefficients and variation of parameters to approach this problem, there are
several reasons to consider a different means of solution. Perhaps, most
prominent is that in every example to date, we have assumed that the function
f (t ) is continuous. Indeed, it has also typically been the case that f (t ) is a
standard function, one belonging to the library of basic functions like sin 2t and
ln t that we encounter in calculus. In many applications, however, it is possible
for f (t ) to be piecewise defined, discontinuous, or worse. We consider two
examples that demonstrate these possibilities.

Electrical circuits with a voltage source provide a common situation where
the forcing function f (t ) is not continuous. If we flip a switch to turn the voltage
on, then the forcing function is actually a step function that leaps from zero to a
constant value. Recall that the charge Q(t ) in an RLC circuit is modeled by the
second-order equation

LQ′′ + RQ′ + 1

C
Q = E(t ) (5.1.1)

where E(t ) is an external voltage source. Suppose that we are given an RLC
circuit with an initial charge Q(0) and initial current Q′(0), and that the voltage

329
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E(t ) = 1000 is turned on at t = 4. The voltage function E(t ) is, therefore, defined
piecewise by the formula

E(t ) =
{

0, if 0 ≤ t < 4

1000, if t ≥ 4

Let us further assume that L = 20 H, R = 40 �, C = 10−2 F, and that
Q(0) = 25 and Q′(0) = 0. From the given information and (5.1.1), we know
that Q(t ) is modeled by the initial-value problem

20Q′′ + 40Q′ + 100Q = E(t ), Q(0) = 25, Q′(0) = 0 (5.1.2)

We have not yet encountered means to deal with a step function as the forcing
function in an initial-value problem. In section 5.4, we will discuss step functions
in detail, learning how they may be used to turn other functions on and off; in
addition, we will show how the Laplace transform provides an ideal tool for
dealing with piecewise-defined functions in initial-value problems. With these
tools, we will be able to determine the solution Q(t ) for (5.1.2) whose graph
is shown in figure 5.1. Observe that we see the expected damped oscillation in
Q(t ) up until time t = 4 when the forcing function E(t ) is turned on, at which
point we see the solution driven vertically away from zero so that as t increases,
Q(t ) → 10. That Q(t ) approaches 10 should not surprise us since Q(t ) = 10 is
a constant solution to the equation

20Q′′ + 40Q′ + 100Q = 1000

In fact, Q(t ) = 10 is a stable equilibrium solution of the equation.
In addition to functions that get turned on or off at a certain time, another

important forcing function to consider is a so-called impulse function. These
functions are ones where a force is imparted over an extremely short time
interval such as a hammer striking a mass. In section 5.4, we introduce the Dirac
delta function, δ(t ), study its properties, and see how it may be used in settings
such as the following.

Q

10

20

t

4 8

Figure 5.1 The solution Q(t ) to
(5.1.2).
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t
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y
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0.2
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Figure 5.2 The solution curve y(t ) to
(5.1.3).

Suppose that a mass of 1 kg is attached to a spring with constant k = 4 and
the system’s damping constant is c = 2. In addition, assume that the mass is
initially displaced 0.5 m from equilibrium and released. At time t = 4, the mass
is struck with a hammer imparting a unit impulse in the positive direction. The
combination of all of these conditions leads to the initial-value problem

y ′′ + 2y ′ + 4y = δ(t − 4), y(0) = 0.5, y ′(0) = 0 (5.1.3)

where the function δ(t − 4) represents the hammer imparting the unit force of
impulse.

Just as with piecewise-defined functions, we will learn that the Laplace
transform provides an ideal tool for dealing with impulses. Once we develop the
appropriate theory, we will be able to solve initial-value problems such as (5.1.3)
and see that the solution behaves as shown in figure 5.2. In the solution, we see
the noticeable impact of the impulse as the problem appears to restart, almost
as if new initial conditions have been given at time t = 4.

In addition to being able to address discontinuous and impulse forcing
functions, the Laplace transform is a powerful tool because it handles all
allowable forcing functions in the same manner. Moreover, in each case it
proceeds directly to the solution of initial-value problems without first finding
the general solution to the differential equation. These ideas and more will be
studied in subsequent sections.

5.2 Laplace transforms: getting started

The motivating idea behind the Laplace transform is natural: to solve a
differential equation, our desire is to integrate. For the simplest examples, such
as y ′ = y , we know that we can separate variables and integrate in order to
determine y . However, if we approach the problem

y ′ + a0y = f (t ) (5.2.1)
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by attempting to integrate both sides from 0 to s with respect to t in order to
eliminate y ′, doing so leads to the equation∫ s

0
y ′(t )dt + a0

∫ s

0
y(t )dt =

∫ s

0
f (t )dt (5.2.2)

While
∫ s

0 y ′(t )dt = y(s) − y(0) eliminates the derivative y ′ from the equation,
and

∫ s
0 f (t )dt can usually be computed for a given f , in (5.2.2) we are left with

the expression
∫ s

0 y(t )dt , where y is an unknown function. Essentially this step
of integrating has replaced the derivative of the unknown function y with its
integral in the equation we are endeavoring to solve. This leaves us no closer to
finding the solution function y(t ).

Rather than simply trying to integrate, the Laplace transform uses a
modified approach in which every function in (5.2.1) is multiplied by another
function before integrating; this approach will enable us to convert differential
equations in y(t ) and y ′(t ) to algebraic equations in a new unknown function
Y (s) that we can solve for Y (s). This method is similar to the use of integrating
factors when solving linear first-order equations.

Before we formally define the Laplace transform, we discuss a few
preliminary ideas, some of which are familiar concepts from calculus. First,
we assume throughout this chapter that all forcing functions are piecewise
continuous functions defined for t > 0 and that

f (0) = f (0+) = lim
t→0+ f (t ) (5.2.3)

That is, f cannot be discontinuous at the origin itself, though it is allowed to
have finitely many discontinuities for t > 0.

Furthermore, we assume that the forcing function does not grow more
rapidly than an exponential function. Formally, we will assume that f (t ) is of
exponential order, which means that for sufficiently large t ,

|f (t )| ≤ Mebt (5.2.4)

for positive constants M and b. Functions that are piecewise continuous
and meet conditions (5.2.3) and (5.2.4) are called acceptable. For example,
polynomial functions, sinkt , ekt , and sums and products of these functions are
acceptable, as are piecewise-defined functions with finitely many discontinuities
whose pieces consist of these basic functions. In particular, linear combinations
of acceptable functions are acceptable. Functions such as

et 2
, t−1/2, (t − 1)−1

are not acceptable. The first grows too rapidly to be of exponential order,
the second fails to meet the condition (5.2.3) that a limit exists from the
right at the origin, and the third is not piecewise continuous on any interval
containing t = 1.
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In addition, from calculus we recall the following important concepts:

• If y ′ = f (t ) and y(0) = 0, then y = ∫ t
0 f (s)ds.

• The improper integral
∫∞

0 f (t )dt is said to converge whenever

lim
r→∞

∫ r

0
f (t )dt

exists. If this limit fails to exist, we say the improper integral diverges.

• Given a function of two variables K (s, t ), if we integrate this function with
respect to t from t = a to t = b, the result is a function of s. That is,

∫ b

a
K (s, t )dt

is a function of s.

Recall our earlier note regarding the overall approach with Laplace
transforms: in order to solve an initial-value problem, we integrate both sides
of the differential equation after both sides have been multiplied by a more
complicated function. The main idea is that we use the transformation given by

∫ ∞

0
K (s, t )f (t )dt

Knowing the prominent role that the exponential function has played through-
out our work with differential equations to date, it is not surprising that we
choose to use K (s, t ) = e−st . Specifically, we make the following definition.

Definition 5.2.1 Let f (t ) be an acceptable function defined on the interval
[0,∞). The Laplace transform of f (t ), denoted L[f ], is the function defined by

L[f ] =
∫ ∞

0
e−st f (t )dt (5.2.5)

We note that because L[f ] is a function of s, we often write F(s) rather than the
more explicit L[f (t )]. We consider an example to see the Laplace transform at
work.

Example 5.2.1 Compute the Laplace transform of f (t ) = t .

Solution. By definition,

L[t ] =
∫ ∞

0
te−st dt (5.2.6)
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Replacing the improper integral with a limit and integrating by parts, we observe
that

L[t ] = lim
r→∞

∫ r

0
te−st dt

= lim
r→∞

[
−1

s

(
t + 1

s

)
e−st

∣∣∣r
0

]

= lim
r→∞

[
−1

s

(
r + 1

s

)
e−sr + 1

s

(
0 + 1

s

)
e0
]

= lim
r→∞

[
− r

s
e−sr − 1

s2
e−sr + 1

s2

]
(5.2.7)

By L’Hopital’s Rule,1 we know that re−sr → 0 as r → ∞ for each s > 0.
Combined with the fact that e−sr → 0 as r → ∞, it follows from (5.2.7) that

L[t ] = F(s) = 1

s2
(5.2.8)

Soon we will apply the Laplace transform in order to solve initial-value problems.
This process will require us to also use the inverse Laplace transform which asks,
“given a function F(s), what function f (t ) is such that L[f (t )] = F(s)?” For
instance, (5.2.8) tells us we may write

L−1
[

1

s2

]
= t (5.2.9)

Much more on inverse transforms will follow as we progress in our study.
It is not obvious that the Laplace transform of every acceptable function

exists. While we omit the proof, it is possible to prove the following theorem by
showing that not only does f (t ) being acceptable guarantee that L[f (t )] = F(s)
exists, but that F(s) is a function that must tend to 0 as s → ∞.

Theorem 5.2.1 If f (t ) is acceptable, then the Laplace transform F(s) of f (t )
exists. Moreover,

1. sF(s) is bounded as s → ∞, from which it follows that

2. lim
s→∞F(s) = 0.

Although it is not necessary for a function to be acceptable in order to have a
Laplace transform, our focus will be almost exclusively on acceptable functions.
In addition, we note that not all elementary functions can be generated by
taking the Laplace transform of an acceptable function. For instance, F(s) = 1
cannot be the Laplace transform of an acceptable function since both parts of
theorem 5.2.1 are contradicted.

1 lim
r→∞

r

esr
= lim

r→∞
1

sesr
= 0.
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The next three examples further illustrate the definition and notational
conventions we use with Laplace transforms.

Example 5.2.2 Compute the Laplace transform of f (t ) = 1.

Solution. From the definition, we observe that

L[1] =
∫ ∞

0
e−st dt = lim

r→∞−1

s
e−st

∣∣∣r
0
= lim

r→∞

[
−1

s
e−sr + 1

s

]
= 1

s

since e−sr → 0 as r → ∞.

Example 5.2.3 Find the Laplace transform of f (t ) = eat .

Solution. We compute

L[eat ] =
∫ ∞

0
eat e−st dt =

∫ ∞

0
e(a−s)t dt = lim

r→∞

∫ r

0
e(a−s)t dt

= lim
r→∞

1

a − s
e(a−s)t

∣∣∣r
0
= lim

r→∞

[
1

a − s
e(a−s)r − 1

a − s

]
= 1

s − a

provided that s > a, for then e(a−s)r → 0 as r → ∞.

At times, we will need to restrict the values of s in order for the Laplace transform
to exist. Above, we observed that L[eat ]= 1/(s−a), provided that s > a. Usually,
we will suppress the discussion of the restriction on s-values and simply assume
that the domain of the Laplace transform is as large as possible.

Example 5.2.4 Find L[coskt ] and L[sinkt ].

Solution. By definition,

L[coskt ] =
∫ ∞

0
coskte−st dt

Integrating by parts twice or using a table of integrals,

L[coskt ] = lim
r→∞

1

s2 + k2

(
k2 sinkt − s coskt

)
e−st

∣∣∣r
0

= lim
r→∞

[
1

s2 + k2

(
k2 sinkr − s coskr

)
e−sr − 1

s2 + k2
(0 − s)

]

= lim
r→∞

[
e−sr k2 sinkr

s2 + k2
− e−sr s coskr

s2 + k2
+ s

s2 + k2

]
(5.2.10)

Since e−sr → 0 as r → ∞ and | sinkr | and |coskr | are bounded by 1 as r → ∞,
it follows from (5.2.10) that

L[coskt ] = s

s2 + k2
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Similar computations show

L[sinkt ] = k

s2 + k2

Table 5.1
Laplace transforms of some basic functions

f (t) F(s) = L[f (t)] = ∫∞
0 f (t)e−st dt

1 1/s

t 1/s2

t 2 2/s3

eat 1/(s − a)

coskt s/(s2 + k2)

sinkt k/(s2 + k2)

We close this section with table 5.1, which summarizes the Laplace
transforms we have computed so far.

Observe that each line in the table may also be written in inverse form. For
example, L−1[1/(s − a)] = eat . This will be particularly useful in the next
section as we see the first example of how the transform and its inverse can be
used to solve an initial-value problem. In order to apply the Laplace transform
successfully, we need to develop a deeper understanding of its properties
and explore the impact of the transform on a wide range of functions. The
following exercises and our investigations in the next section continue our work
to this end.

Exercises 5.2 In exercises 1–4, explain why the limit of each function g (r) is
0 as r → ∞. In each, assume s > 0.

1. g (r) = re−sr

2. g (r) = r2e−sr

3. g (r) = rne−sr

4. g (r) = e−sr sinkr

In exercises 5–16, use the definition of the Laplace transform to computeL[f (t )].
For each, state the domain of s-values on which L[f (t )] = F(s) is defined.

5. f (t ) = 2t

6. f (t ) = t − 3
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7. f (t ) = 2 − t

8. f (t ) = t 2

9. f (t ) = t 2 − 3

10. f (t ) = (t − 2)2

11. f (t ) = e3t

12. f (t ) = e2t−3

13. f (t ) = e3t+5

14. f (t ) = cos4t

15. f (t ) = teat

16. f (t ) = t sin 2t

From examples 5.2.2 and 5.2.1, we know that

L[1] = 1

s
and L[t ] = 1

s2

Use these facts to compute the Laplace transform of each of the functions
in exercises 17–19 with as little computation as possible. What properties of
integrals and limits are being used?

17. f (t ) = 1 + t

18. f (t ) = 3t − 2

19. f (t ) = c + kt

20. Explain why the Laplace transform is a linear operator on the vector space
of acceptable functions.2 That is, explain why for any real numbers a and b
and any acceptable functions f and g ,

L[af (t ) + bg (t )] = aL[f (t )]+ bL[g (t )]

5.3 General properties of the Laplace transform

In many ways, the Laplace transform resembles the differentiation and
integration operators from calculus. For example, given a function f (t ) =
3t 4 + 5t + 1, taking the derivative results in a new function f ′(t ). Using the
alternate notation D[f ] for the derivative of f with respect to t , we see that

D[3t 4 + 5t + 1] = 12t 3 + 5

2 See appendix D for further discussion on linear transformations of vector spaces.
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In particular, the “D” operator transforms one function into another. Likewise,
if we consider the definite integral of f (t ) = t − 1 from t = 0 to t = x , we
find that ∫ x

0
(t − 1)dt = 1

2
x2 − x

Letting I (f ) = ∫ x
0 f (t )dt , we see that I transforms one function f (t ) into another

function F(x) by the process of integration. In the same way, as we have seen in
examples 5.2.1–5.2.4, the Laplace transform takes an acceptable function f (t )
and transforms it into a new function F(s) by a process slightly more complicated
than standard integration.

From calculus and our preceding work with differential equations, we know
that taking the derivative of a function is a linear process, as is calculating the
definite integral. More specifically, for any constants a and b and functions f (t )
and g (t ) that are differentiable and integrable, we know that

D[af (t ) + bg (t )] = aD[f (t )]+ bD[g (t )]
and ∫ x

0
[af (t ) + bg (t )]dt = a

∫ x

0
f (t )dt + b

∫ x

0
g (t )dt

Similarly, because the Laplace transform’s definition involves limits and
integrals, it has the same properties of linearity as the derivative and integral
operators. In particular, as was shown in exercise 20 of section 5.2, the following
theorem holds.

Theorem 5.3.1 For every pair of scalars a and b and acceptable functions f (t )
and g (t ),

L[af (t ) + bg (t )] = aL[f (t )]+ bL[g (t )] (5.3.1)

Theorem 5.3.1 shows that the Laplace transform, like the differential and
integral operators, is a linear transformation or linear operator. Formally, a linear
transformation is a function T that maps one vector space V to another vector
space W where T satisfies the property that for all constants a and b and all
elements u and v in V , T (au + bv) = aT (u) + bT (v). Appendix D provides
further discussion on linear transformations of vector spaces.

In calculus, following the definitions of the derivative and the definite
integral, we quickly discover more general properties that enable us to compute
derivatives and integrals without using the definition directly. In the same
way, while we have seen a few examples of how to use the definition to
compute the Laplace transform of certain functions f (t ), we can use results
such as theorem 5.3.1 to more easily determine the Laplace transform of more
complicated functions. Two examples follow.

Example 5.3.1 Find the Laplace transform of f (t ) = 7 − 3e2t .
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Solution. We know from examples 5.2.2 and 5.2.3 that L[1] = 1/s and
L[e2t ] = 1/(s − 2). By theorem 5.3.1 it now follows that

L[7 − 3e2t ] = 7L[1]− 3L[e2t ] = 7

s
− 3

s − 2

We note that the individual Laplace transforms are defined on different domains:
7/s is valid for s > 0 while 3/(s − 2) is defined if s > 2. We usually suppress
discussion of this issue and assume that L[f (t )] is defined on the largest interval
possible. In example 5.3.1, this domain is {s|s > 2}.

Example 5.3.2 Find the Laplace transform of coshkt and sinhkt .

Solution. By definition, the hyperbolic cosine function is given by coshkt =
1
2 ekt + 1

2 e−kt . By the linearity of the Laplace transform, it follows that

L[coshkt ] = 1

2
L[ekt ]+ 1

2
L[e−kt ]

= 1

2

(
1

s − k
+ 1

s + k

)
= s

s2 − k2

Similarly,

L[sinhkt ] = L
[

1

2
(ekt − e−kt )

]
= 1

2

(
1

s − k
− 1

s + k

)
= k

s2 − k2

In addition to taking linear combinations of functions, we often want to multiply
a given function by t or some power of t . For example, it is natural to wonder
if we can use our work in preceding examples to compute L[teat ]. If we first
consider the Laplace transforms of the simple power functions 1, t , t 2, and so
on, we find evidence for a conjecture on how we might approach L[teat ]. In
particular, note that

L[1] = 1

s
L[t ] = 1

s2
L[t 2] = 2

s3
(5.3.2)

The last result was shown in exercise 8 of section 5.2. In fact, we could go on to
show that L[t 3] = 6/s4. This sequence of results reminds us of derivatives: in
particular,

d

ds

[
1

s

]
= − 1

s2

d

ds

[
1

s2

]
= − 2

s3

d

ds

[
2

s3

]
= − 6

s4
(5.3.3)

From this sequence of examples, it appears that each time we take a given
function f (t ) = t n and multiply it by t , the impact on its Laplace transform is
that the transform of the new function is the opposite of the derivative of the
transform of the original. Using a result from multivariable calculus known as
Leibniz’s rule, a formal proof of this fact may be established, not only for power



340 Laplace transforms

functions, but also for all functions having Laplace transforms. We defer this
work to exercise 25 and state the following theorem.

Theorem 5.3.2 If L[f (t )] = F(s), then

L[tf (t )] = −F ′(s) = − d

ds
F(s) (5.3.4)

Theorem 5.3.2 enables us to expand on our observations above regarding the
Laplace transforms of the power functions t , t 2, t 3, and so on. In particular,
replacing F(s) with L[t ], we can take the perspective that (5.3.4) implies

L[tf (t )] = − d

ds
L[f (t )] (5.3.5)

This shows that, for example,

L[t 4] = L[t · t 3] = − d

ds
L[t 3] = − d

ds

[
6

s4

]
= 24

s5

In addition, a generalization of this reasoning can be used to show the following
corollary to theorem 5.3.2. See exercise 26.

Corollary 5.3.3 For each positive integer n,

L[t nf (t )] = (−1)nF (n)(s) (5.3.6)

We next consider two examples that show how we can use recent results to
compute the Laplace transform of familiar functions multiplied by t .

Example 5.3.3 Find L[teat ] and L[t 2eat ].

Solution. We know from earlier work that L[eat ] = 1/(s −a). It follows from
theorem 5.3.2 that

L[teat ] = − d

ds
L[eat ] = − d

ds

[
1

s − a

]
= 1

(s − a)2

Similarly,

L[t 2eat ] = − d

ds
L[teat ] = − d

ds

[
1

(s − a)2

]
= 2

(s − a)3

In fact, as we will see in exercise 27, we can show in general that

L[t neat ] = n!
(s − a)n+1

(5.3.7)

Example 5.3.4 Find L[t sinkt ].
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Solution. In example 5.2.4, we showed that

L[sinkt ] = k

s2 + k2

Applying theorem 5.3.2, we know that

L[t sinkt ] = − d

ds

[
k

s2 + k2

]
= 2ks

(s2 + k2)2

As we have noted, we are motivated to develop the Laplace transform by the
need to solve initial-value problems that involve unusual forcing functions. For
example, we will soon work to solve equations of the form

y ′ + a0y = f (t ) (5.3.8)

where f (t ) is a step function or other piecewise defined function. We will use our
understanding of the Laplace transform to solve these equations by taking the
Laplace transform of each side of (5.3.8) to transform the differential equation
(in t ) into an algebraic equation (in s). Our hope is that upon doing so, we can
solve the new algebraic equation in order to ultimately solve the differential one.

To see how this process begins, we take the Laplace transform of both sides
of (5.3.8) and apply the linearity property. Doing so results in the equation

L[y ′]+ a0L[y] = L[f (t )] (5.3.9)

Here, we realize that while we can compute L[f (t )] using the definition or
established results, it is unclear how to work with L[y ′] and L[y]. Ideally, if
we could understand how the Laplace transform L[y ′] of the derivative of an
unknown function is related to the Laplace transform L[y] of the function itself,
that would enable us to work with one unknown quantity. To this end, we return
to the definition and show how L[y ′] depends on L[y].

Let us suppose that y and y ′ are acceptable functions and that y is
continuous. By definition,

L[y ′(t )] =
∫ ∞

0
y ′(t )e−st dt = lim

r→∞

∫ r

0
y ′(t )e−st dt (5.3.10)

To evaluate
∫ r

0 y ′(t )e−st dt , we use integration by parts with u = e−st and dv =
y ′(t )dt . It follows that du = −se−st dt and v = y(t ). Integrating3 (5.3.10),

L[y ′(t )] = lim
r→∞y(t )e−st

∣∣∣r
0
+ s

∫ r

0
y(t )e−st dt

= lim
r→∞y(r)e−sr − y(0) + s

∫ r

0
y(t )e−st dt (5.3.11)

3 The integration by parts formula holds since y is continuous. If y has a jump discontinuity, then
this part of the argument is more complicated.
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Since y is an acceptable function, it is of exponential order and |y(t )| ≤ Mebt for
some positive constants M and b. Assuming that s > b, it follows y(r)e−sr → 0
as r → ∞. In addition, in (5.3.11) we observe

lim
r→∞ s

∫ r

0
y(t )e−st dt = s

∫ ∞

0
y(t )e−st dt = sL[y(t )]

by the definition of the Laplace transform. Hence, (5.3.11) implies

L[y ′(t )] = sL[y(t )]− y(0) (5.3.12)

Our work has proved the following theorem.

Theorem 5.3.4 Suppose y(t ) is continuous and y(t ) and y ′(t ) are acceptable.
Then

L[y ′(t )] = sL[y(t )]− y(0) (5.3.13)

Note particularly the appearance of y(0) in the conclusion of theorem 5.3.4.
This foreshadows how we will use the Laplace transform to solve an initial-
value problem directly without resorting to a general solution of the associated
differential equation. To see further how we will use the Laplace transform, we
consider the following example.

Example 5.3.5 Use the Laplace transform to solve the initial-value problem

y ′ + y = e−t , y(0) = 0 (5.3.14)

Solution. We begin by taking the Laplace transform of both sides of (5.3.14)
to achieve

L[y ′]+L[y] = L[e−t ] (5.3.15)

From example 5.2.3, we know that L[e−t ] = 1/(s + 1). Furthermore, we just
established

L[y ′] = sL[y]− y(0) (5.3.16)

Combining (5.3.15), (5.3.16), and the given fact that y(0) = 0, we have

sL[y]+L[y] = 1

s + 1
(5.3.17)

Letting Y (s) = L[y], factoring, and solving for Y (s),

Y (s) = 1

(s + 1)2
(5.3.18)

To solve the initial-value problem, it remains for us to determine the function
y(t ) whose Laplace transform is Y (s) = 1/(s + 1)2. That is, we must find
L−1[Y (s)]=L−1[1/(s+1)2]. In example 5.3.3, we saw that L[teat ]= 1/(s−a)2.
In particular,

L[te−t ] = 1

(s + 1)2
or L−1

[
1

(s + 1)2

]
= te−t
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From (5.3.18), it now follows that

y(t ) = te−t

This is precisely the solution we expect had we applied another method (such
as using an integrating factor) to solve (5.3.14).

Note particularly that our work in (5.3.14)–(5.3.17) converted the given initial-
value problem (5.3.14) involving y ′ to an algebraic equation (5.3.17) involving
L[y] = Y (s). We then had to use the inverse Laplace transform in order to
determine y(t ). This process is typical for how the transform is used to solve
IVPs; at this point, we largely need to gain experience with more complicated
functions and situations in order to solve more advanced problems.

We make note of one more result that relates the Laplace transform of a
higher order derivative to the transform of the original function in order to help
us solve higher order IVPs before proceeding to establish additional results on
products of familiar functions and piecewise-defined functions in order to more
fully understand the workings of the Laplace transform.

Corollary 5.3.5 Suppose y(t ) and y ′(t ) are continuous and y(t ), y ′(t ), and
y ′′(t ) are acceptable. Then

L[y ′′(t )] = s2L[y(t )]− sy(0) − y ′(0) (5.3.19)

The proof of corollary 5.3.5 is straightforward by two applications of
theorem 5.3.4; see exercise 28.

In theorem 5.3.2, we computed the Laplace transform of tf (t ) in terms of
the Laplace transform of f (t ). In addition to multiplying by t (or powers of t ),
another function that arises frequently in the study of differential equations
is eat . Hence we are naturally interested in how L[eat f (t )] is related to
L[f (t )].

Letting f (t ) be an acceptable function and L[f (t )] = F(s), we have by
definition that

F(s) =
∫ ∞

0
f (t )e−st dt (5.3.20)

For the Laplace transform of eat f (t ), we note that eat f (t ) is an acceptable
function and, by definition,

L[eat f (t )] =
∫ ∞

0
eat f (t )e−st dt =

∫ ∞

0
f (t )e−(s−a)t dt (5.3.21)

From the right-hand sides of (5.3.20) and (5.3.21), we observe that the only
difference is that s has been replaced by s−a. In particular, L[eat f (t )]=F(s−a),
where L[f (t )] = F(s). We say that F(s) has been shifted by multiplying f (t ) by
eat and call the theorem we have just proved the first shifting property, which is
stated as follows.
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Theorem 5.3.6 (First Shifting Property). Let f (t ) be acceptable and L[f (t )] =
F(s). For any real value of a,

L[eat f (t )] = F(s − a)

In the next example, we compute three Laplace transforms to show the
straightforward application of theorem 5.3.6.

Example 5.3.6 Find L[eat coskt ], L[eat sinkt ], and L[eat t 2].

Solution. We have already established that

L[coskt ] = s

s2 + k2

so by the first shifting property,

L[eat coskt ] = s − a

(s − a)2 + k2

Similarly, from the fact that

L[sinkt ] = k

s2 + k2

we observe

L[eat sinkt ] = k

(s − a)2 + k2

Finally,

L[t 2] = 2

s3

and theorem 5.3.6 together imply

L[eat t 2] = 2

(s − a)3

A summary of the results we established in this section follows in table 5.2.

Exercises 5.3 In exercises 1–5, use the linearity property and the transforms
derived in the examples to find the Laplace transform of the given function.

1. f (t ) = 3 − et

2. f (t ) = 4cos t + 2sin t

3. f (t ) = 3e2t − 3sin 2t

4. f (t ) = 2 + 5sin 3t

5. f (t ) = 4cos5t − 6e−2t
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Table 5.2
Summary of results on the Laplace Transform from section 5.3

f (t) F(s) = L[f (t)] = ∫∞
0 f (t)e−st dt

af (t ) + bg (t ) aL[f (t )]+ bL[g (t )]
tf (t ) −F ′(s) = − d

ds L[f (t )]
t nf (t ) (−1)nF (n)(s)

f ′(t ) sL[f (t )]− f (0) = sF(s) − f (0)

f ′′(t ) s2L[f (t )]− sf (0) − f ′(0) = s2F(s) − sf (0) − f ′(0)

eat f (t ) F(s − a)

In exercises 6–11, use theorem 5.3.2 or corollary 5.3.3 and the transforms derived
in the examples to find the Laplace transform of the given function.

6. f (t ) = 3te3t

7. f (t ) = t 2e−t

8. f (t ) = 3t cos4t

9. f (t ) = t 3 sin t

10. f (t ) = t 2 cos t

11. f (t ) = 4cos5t − 6e−2t

In exercises 12– 17, use the first shifting property and the transforms derived in
the examples to find the Laplace transform of the given function.

12. f (t ) = 3te3t

13. f (t ) = t 2e−t

14. f (t ) = e−2t cos4t

15. f (t ) = e−t sin 2t

16. f (t ) = e4t sinh 2t

17. f (t ) = cosh 2t sin 3t

In exercises 18–24, use established general properties and the transforms derived
in the examples to find the Laplace transform of the given function.

18. f (t ) = 3te3t − e2t cos t

19. f (t ) = 4t 2e−t + 7e−3t sin t

20. f (t ) = e−2t (t 2 + 4t + 5)
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21. f (t ) = (t 2 − t ) sin t

22. f (t ) = t (cos4t − 2sin 4t )

23. f (t ) = te−t sin 2t

24. f (t ) = t 2e−t sin 2t

25. In multivariable calculus, students may have encountered Leibniz’s rule,
which allows differentiation across the integral sign. In particular, the rule
states that under reasonable hypotheses on a function K (s, t ),

d

ds

∫ t=b

t=a
K (s, t )dt =

∫ t=b

t=a

∂

∂s
[K (s, t )]dt

Use Leibniz’s rule to explain why theorem 5.3.2 is true. In particular, show
that if F(s) = L[f (t )], then −F ′(s) = L[tf (t )]

26. Using the rule established in theorem 5.3.2, show why corollary 5.3.3 is
true. Specifically, show that if n is a positive integer, then

L[t nf (t )] = (−1)nF (n)(s)

(Hint: Apply the theorem to L[t · t n−1f (t )] to show that

L[t nf (t )] = − d

ds
L[t n−1f (t )]

and then repeat this line of reasoning on the expression L[t n−1f (t )].)
27. Use corollary 5.3.3 to show that

L[t neat ] = n!
(s − a)n+1

28. Apply theorem 5.3.4 twice to prove corollary 5.3.5.

29. Express L[f (4)(t )
]

in terms of L[f (t )] and the first three derivatives of
f (t ) at t = 0 by using theorem 5.3.4.

30. We have established that L[eat ] = 1/(s − a) for any real number a.
Assume now that this formula holds for any complex number a = α +βi,
and hence compute the Laplace transform

L[e(α+βi)t ]
Use Euler’s formula and properties of complex numbers to show that

L[eαt (cosβt + i sinβt )] = s −α

(s −α)2 +β2
+ i

β

(s −α)2 +β2

Explain how equating real and imaginary parts produces an alternate
derivation for the Laplace transforms of eαt cosβt and eαt sinβt .
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Figure 5.3 The translated unit step
function u(t − a).

5.4 Piecewise continuous functions

In physical applications, we sometimes encounter step functions that represent
some quantity being turned on or off, such as an electric switch. If a mass
in a spring-mass system is struck with a hammer or a drug is delivered by
muscle injection, impulse functions that involve forces acting over very short
time periods play a key role. To help us address these and related situations, we
study the application of the Laplace transform to two important functions—the
Heaviside function and the Dirac delta function.

5.4.1 The Heaviside function

We define the Heaviside function, or unit step function, denoted u(t ), to be the
function that is 0 for all t < 0 and 1 for all t ≥ 0. That is,

u(t ) =
{

0, if t < 0

1, if t ≥ 0
(5.4.1)

Often, we will make use of a step function that turns on at t = a, rather than
t = 0. Thus we employ the translated unit step function, u(t −a), which by (5.4.1)
is given by

u(t − a) =
{

0, if t < a

1, if t ≥ a
(5.4.2)

A plot of the translated unit step function is given in figure 5.3.

Step functions may be used to turn other functions on or off. For example, if we
consider the function f (t ) = (4− t )u(t −4), we observe that since u(t −4) = 0
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for t < 4 and u(t − 4) = 1 for t ≥ 4, it follows

f (t ) =
{

0, if t < 4

4 − t , if t ≥ 4
(5.4.3)

From this perspective, we see that the function (4− t ) is off until t = 4, at which
time it is turned on.

To see how we can use step functions to turn another function both on and
off at various times, we consider the function g (t ) = u(t −a)−u(t −b), where
a < b. This difference of translated unit step functions turns on for a ≤ t < b
and turns off when t ≥ b. More specifically, for t < a, both u(t −a) and u(t −b)
are zero, so g (t ) = 0. For a ≤ t < b, u(t −a) = 1 and u(t −b) = 0, thus g (t ) = 1.
And finally, once t ≥ b, both u(t − a) = 1 and u(t − b) = 1, so that g (t ) = 0.
This can be written equivalently as

g (t ) =

⎧⎪⎨
⎪⎩

0, if t < a

1, if a ≤ t < b

0, if t ≥ b

(5.4.4)

This property of the function u(t − a) − u(t − b) enables us to write a
single formula for any piecewise-defined function that arises, rather than the
traditional cases format where we stipulate the different formulas on different
intervals, as in (5.4.4). The next example demonstrates the role of u(t − a) −
u(t − b).

Example 5.4.1 Define the following piecewise function using unit step
functions.

f (t ) =

⎧⎪⎨
⎪⎩

t , if 0 ≤ t < 2

2, if 2 ≤ t < 4

0, otherwise

Solution. We use the fact that the function u(t ) −u(t − 2) is 1 in the interval
0 ≤ t < 2 and 0 otherwise, and u(t − 2) − u(t − 4) is 1 on 2 ≤ t < 4 and 0
otherwise. Thus, we turn on t for 0 ≤ t < 2 and turn on 2 for 2 ≤ t < 4 by
writing

f (t ) = t [u(t ) − u(t − 2)]+ 2[u(t − 2) − u(t − 4)]
= tu(t ) + (2 − t )u(t − 2) − 2u(t − 4)

A plot of f (t ) is shown in figure 5.4

At this point, we should again not lose sight of our goal: we are interested in
using Laplace transforms to solve initial-value problems such as

y ′′ + 2y ′ + 5y = u(t − 2), y(0) = 1, y ′(0) = 0

where the forcing function is turned on at time t = 2. Since we will solve such
equations by taking the Laplace transform of both sides, we must understand the
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Figure 5.4 The function f (t ) in
example 5.4.1.

transform of basic step functions. In fact, since step functions will be used to turn
other functions on and off, we are more generally interested in L[u(t −a)f (t )].
We return to the definition to explore this situation further.

Because we will employ a change of variables in our work, we begin by
using z as a different variable of integration than the usual t in the definition.
Specifically, from the definition of the Laplace transform we have

L[u(t − a)f (t )] =
∫ ∞

0
u(z − a)f (z)e−sz dz =

∫ ∞

a
f (z)e−sz dz

The second equality follows from the fact that u(z − a) = 0 for all z < a and
u(z − a) = 1 for all z ≥ a, which allows us to eliminate the presence of the unit
step function.

We now employ the substitution z = t + a and note that t = z − a and
dz = dt . From this and our work above, we see

L[u(t − a)f (t )] =
∫ ∞

a
f (z)e−sz dz

= lim
r→∞

∫ z=r

z=a
f (z)e−sz dz

= lim
r→∞

∫ t=r−a

t=0
f (t + a)e−s(t+a) dt

= lim
r→∞

∫ t=r−a

t=0
f (t + a)e−st e−as dt (5.4.5)

In (5.4.5), since e−as is constant with respect to t , we can remove it from the
integral. Moreover, we can take the limit as r → ∞ and note that (r − a) → ∞
as well. From this, we now have

L[u(t − a)f (t )] = e−as
∫ ∞

0
f (t + a)e−st dt
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On the right, we observe that the Laplace transform of f (t + a) has arisen, and
therefore

L[u(t − a)f (t )] = e−asL[f (t + a)]
We call this result the second shifting property and state it formally in the next
theorem.

Theorem 5.4.1 (Second Shifting Property) If f (t ) has a Laplace transform, then

L[u(t − a)f (t )] = e−asL[f (t + a)] (5.4.6)

When working with inverse transforms, we’ll often use the equivalent formula-
tions of this result that

L[u(t − a)f (t − a)] = e−asL[f (t )] or L−1[e−asF(s)] = u(t − a)f (t − a)
(5.4.7)

which come from replacing t with t − a in the argument of f . To see how the
second shifting property works and gain more experience with the roles played
by unit step functions, we consider several examples.

Example 5.4.2 Determine the Laplace transform of the step function, u(t −3).

Solution. We can view u(t − 3) as the function u(t − 3) · 1. Since we know
that L[1] = 1/s, by the second shifting property it follows that

L[u(t − 3)] = L[u(t − 3) · 1] = e−3sL[1] = e−3s

s

More generally, we can show that for any a ≥ 0,

L[u(t − a)] = e−as

s
(5.4.8)

Example 5.4.3 Determine the Laplace transform of f (t ) = u(t − 3) t 2.

Solution. With f (t ) = t 2, by the second shifting property we have

L[u(t − 3) t 2] = e−3sL[(t + 3)2]
= e−3sL[t 2 + 6t + 9]

= e−3s
(

2

s3
+ 6

s2
+ 9

s

)

Example 5.4.4 Determine the Laplace transform of f (t ) = u(t −a)−u(t −b).
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Solution. Because we know L[u(t − a)] = e−as/s, we can use the linearity of
the Laplace transform to find

L[u(t − a) − u(t − b)] = 1

s
e−as − 1

s
e−bs = 1

s
(e−as − e−bs)

With our understanding of the Laplace transform of step functions and the
second shifting property, we are now prepared to compute transforms of a wide
range of step functions.

Example 5.4.5 Find the Laplace transform of

f (t ) =

⎧⎪⎨
⎪⎩

1, if 0 ≤ t < 1

t , if 1 ≤ t < 2

2, if 2 ≤ t

Solution. We first use step functions to write f (t ) with a single formula. Using
u(t ) − u(t − 1) to turn 1 on and off, and similar ideas for t and 2, we have

f (t ) = 1[u(t ) − u(t − 1)]+ t [u(t − 1) − u(t − 2)]+ 2u(t − 2)

= u(t ) + (t − 1)u(t − 1) + (2 − t )u(t − 2)

Using the linearity of the Laplace transform, the second shifting property, and
familiar transforms,

L[f (t )] = L[u(t )]+L[(t − 1)u(t − 1)]+L[(2 − t )u(t − 2)]

= 1

s
+ e−sL[(t + 1) − 1]+ e−2sL[2 − (t + 2)]

= 1

s
+ e−sL[t ]+ e−2sL[−t ]

= 1

s
+ 1

s2
e−s − 1

s2
e−2s

Example 5.4.6 Find the Laplace transform of f (t ), where f (t ) is the piecewise
linear function shown in the following graph.

Solution. From the graph, we see that f has slope 1 on [0,2) and slope −2 on
[2,3). Therefore, f can be defined piecewise by the rule

f (t ) =

⎧⎪⎨
⎪⎩

t , if 0 ≤ t < 2

6 − 2t , if 2 ≤ t < 3

0, if 3 ≤ t

Using step functions, we can write f according to the formula

f (t ) = t [u(t ) − u(t − 2)]+ (6 − 2t )[u(t − 2) − u(t − 3)]
= tu(t ) + (6 − 3t )u(t − 2) − (6 − 2t )u(t − 3)
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Applying the second shifting property, linearity, and familiar transforms, we
see that

L[f (t )] = L[tu(t )]+L[(6 − 3t )u(t − 2)]−L[(6 − 2t )u(t − 3)]
= L[t ]+ e−2sL[6 − 3(t + 2)]− e−3sL[6 − 2(t + 3)]
= L[t ]+ e−2sL[−3t ]− e−3sL[−2t ]

= 1

s2
− 3

s2
e−2s + 2

s2
e−3s

At this point, we have become familiar with piecewise-defined functions
and how the Laplace transform may be applied to them. In the near future, we
will be solving initial-value problems of the form

y ′ + 2y = 6 · u(t − 4), y(0) = 1

through the use of Laplace transforms. In order to assess our progress to date,
we explore this approach briefly here. Taking the transform of both sides of the
differential equation,

sL[y]− 1 + 2L[y] = 6e−4s

s
Letting Y (s) = L[y] and solving for Y (s), it follows that

Y (s)(s + 2) = 1 + 6e−4s

s
so

Y (s) = 1

s + 2
+ 6e−4s 1

s(s + 2)
(5.4.9)

Here, it remains to determine the function y(t ) whose Laplace transform is
Y (s). That is, we must compute the inverse Laplace transform of the righthand
side of (5.4.9). Doing so involves using the inverse perspective on the second
shifting property, as well as some algebraic work with the quantity 1/s(s + 2).
We will pursue these and related ideas further in subsequent sections.
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Next, however, we turn our attention to the study of impulse functions that
can model phenomena such as the striking of a hammer.

5.4.2 The Dirac delta function

In physical situations where a large force is delivered over a very short time
interval, unit step functions are no longer sufficient to model the forcing
function. For example, if a hammer is used to strike a mass attached to a spring
at a given time, it is not immediately clear how we should represent this forcing
function. To address this situation, physicist Paul Dirac proposed what is today
called the Dirac delta function, denoted δ(t ). We seek to understand this function
by first examining what happens when a force of constant magnitude acts over
a smaller and smaller time interval.

Suppose that a force Fh of constant magnitude acts on an object over the
time interval [a −h,a +h], where a > 0. Assume that the force is zero otherwise.
The impulse (or amount of push) of the force is defined by

I =
∫ a+h

a−h
Fh dt (5.4.10)

If we want this constant force Fh to deliver a one-unit impulse, it follows that

Fh = 1

2h
More specifically, if we wish to view the delivered force Fh as being generated
by a forcing function Fh(t ), we can use the unit step function to express Fh(t )
through the formula

Fh(t ) = 1

2h
[u(t − (a − h)) − u(t − (a + h))] (5.4.11)

A plot of Fh(t ) for several different values of h is shown in figure 5.5; the
vertical lines in each are technically not a part of the graph of Fh(t ), but are

5

t

10

a

h = 0.2

h = 0.1

h = 0.05

Figure 5.5 The forcing function Fh(t )
for h = 0.2, h = 0.1, and h = 0.05.
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included to help contrast the different values of h. Note particularly that Fh(t )
satisfies the property that ∫ ∞

−∞
Fh(t )dt = 1 (5.4.12)

and that as h → 0, the magnitude of the force grows without bound in order to
maintain the same total amount of push being delivered.

For an actual impulse, such as when a hammer strikes a mass, we want
the force to act instantaneously at time t = a, where a > 0. This instantaneous
impulse function is known as the Dirac delta function,4 denoted δ(t − a), and is
determined by letting h → 0 in Fh(t ). In particular, we note two key properties
of δ(t − a):

I. δ(t − a) = lim
h→0

Fh(t ) = lim
h→0

1

2h
[u(t − (a − h)) − u(t − (a + h))]

II.
∫∞
−∞ δ(t − a)dt = 1

Property I is the definition of the Dirac delta function; Property II is a
consequence of (5.4.12) and taking the limit as h → 0.

A good way to think of δ(t − a) is as a function that is zero everywhere
except at a, but infinite right at a. Actually, δ(t − a) is a limit of step functions
that are nonzero over shorter and shorter intervals, but that always enclose an
area of one unit, thus having spikes that grow in magnitude as the interval
width shrinks. In situations such as a mass being struck with a hammer, we
can now use the delta function to model the forcing function. For instance,
if a hammer strikes the mass at t = 3, we can model the forcing function
by f (t ) = δ(t − 3).

In order to solve initial-value problems that involve the delta function, it
will be essential to know the Laplace transform of L[δ(t −a)]. To do so, we first
apply the definition of the transform to the step function Fh(t ). In particular,
by familiar properties of the Laplace transform,

L[Fh(t )] = L
[

1

2h
[u(t − (a − h)) − u(t − (a + h))]

]

= 1

2h
L[u(t − (a − h))]− 1

2h
L[u(t − (a + h))]

= 1

2h

(
1

s
e−(a−h)s − 1

s
e−(a+h)s

)

= e−as

2hs

(
ehs − e−hs

)
(5.4.13)

4 Technically, the Dirac delta function is not a function, because it has the unusual property that it is
zero everywhere but a, and infinite at t = a. Ultimately, the Laplace transform is what enables us to
make sense of this function.
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Since δ(t − a) is defined as the limit of Fh(t ) as h → 0, we naturally define
the Laplace transform of δ(t − a) to be the limit of the Laplace transform of
Fh(t ) as h → 0. In particular, from (5.4.13), some algebraic rearrangement, and
an application of L’Hopital’s Rule, we can state that

lim
h→0

L[Fh(t )] = lim
h→0

e−as

2hs

(
ehs − e−hs

)

= e−as

s
lim
h→0

ehs − e−hs

2h

= e−as

s
lim
h→0

sehs + se−hs

2

= e−as

s
· s = e−as

We therefore define L[δ(t − a)] = e−as . We close this section with an
example that foreshadows the use of the delta function in a spring-mass system
and the role of Laplace transforms in solving the corresponding IVP.

Example 5.4.7 Consider a spring mass system where m = 1, k = 13, and c = 4.
Assume that the mass is initially displaced 1 m and released. Finally, assume that
at t = 3, the mass is struck with a hammer in the positive direction. Set up and
solve an initial-value problem that describes this situation.

Solution. Using the delta function, the given problem is a standard damped
harmonic oscillator equation with an impulse forcing function. In particular,
the displacement y of the mass satisfies the initial-value problem

y ′′ + 4y ′ + 13y = δ(t − 3), y(0) = 1, y ′(0) = 0 (5.4.14)

Before we solve the IVP, we can use our intuition as a guide: we expect the size of
the oscillations of the mass to decrease in magnitude until t = 3, at which time
we expect the problem to restart as the blow from the hammer will increase the
displacement of the mass, from which oscillations should eventually decrease to
zero. We begin to solve (5.4.14) by using the Laplace transform in order to see
how far our method enables us to progress.

Taking the Laplace transform of both sides of (5.4.14),

L[y ′′]+ 4L[y ′]+ 13L[y] = L[δ(t − 3)]
From corollary 5.3.5, it follows that

s2L[y]− sy(0) − y ′(0) + 4sL[y]− 4y(0) + 13L[y] = L[δ(t − 3)]
Using the conditions y(0) = 1 and y ′(0) = 0, as well as the fact that L[δ(t −3)] =
e−3s , we now have

s2L[y]− s + 4sL[y]− 4 + 13L[y] = e−3s
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Figure 5.6 The solution to the IVP
(5.4.14).

Solving for L[y] = Y (s), we see that

Y (s)(s2 + 4s + 13) = s + 4 + e−3s

or

Y (s) = s + 4

s2 + 4s + 13
+ e−3s

s2 + 4s + 13
(5.4.15)

It remains for us to learn how to compute the inverse Laplace transform
of (5.4.15) in order to find the solution y to the IVP. The following sections
are devoted to these ideas. Upon further study, we will be able to show that the
function y(t ) that satisfies (5.4.15) is

y = 1

3
e−2t (3cos3t + 2sin 3t ) + 1

3
u(t − 3)e−2(t−3) sin 3(t − 3)

A plot of this solution is shown in figure 5.6, where y(t ) demonstrates precisely
the type of behavior we expect.

The Laplace transform helps us make sense of the Dirac delta function in several
ways. One is that we can imagine wanting to say that a hammer strikes a mass
with different intensities. If, say, we want to compare the results of the initial-
value problems where a hammer strikes a mass to deliver a given impulse versus
what happens when the hammer strikes the mass three times as hard, this at
first seems to be nonsense: δ(t − 3) and 3δ(t − 3) are both zero everywhere
and infinite at t = 3. But the power of the Laplace transform rescues us again.
Since by linearity, L[3δ(t − 3)] = 3L[δ(t − 3)] = 3e−3s , the transform detects
the difference in the amount of push delivered by the hammer strike, and the
results are shown accordingly in the solution to the initial-value problem. In
addition, since L[δ(t − a)] = e−as , we know that the presence of e−as in Y (s)
will lead to the presence of u(t − a) in y(t ): here we see how the delta function
leads to a restart at t = a as the function u(t − a) turns on at this time in the
function y(t ).
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5.4.3 The Heaviside and Dirac functions in Maple

Both the Heaviside and Dirac functions belong to Maple’s library of basic func-
tions. The syntax for the Heaviside function is simply > Heaviside(t);.
Similarly, the Dirac function is given by > Dirac(t);.

For work with the Heaviside function, we often denote the function by u(t ).
In Maple, this can be accomplished with the command

> u := t -> Heaviside(t);

Then, to enter and plot a piecewise-defined function such as

f (t ) = t (u(t ) − u(t − 2)) + (6 − 2t )(u(t − 2) − u(t − 3))

we may use the syntax

> f := t -> t*(u(t)-u(t-2)) + (6-2*t)*(u(t-2)-u(t-3));
> plot(f(t), t=-1..5, color=black, thickness=2);

to generate the plot shown in figure 5.7.

More on both the Heaviside function and the Dirac function in Maple,
particularly related to their roles in solving initial-value problems with Laplace
transforms, can be found in section 5.6.1.

4

1

2

2

t

y

Figure 5.7 The function f (t ) =
t (u(t ) − u(t − 2)) + (6 − 2t )
(u(t − 2) − u(t − 3)).

Exercises 5.4 In exercises 1–7, sketch a graph of each of the following
functions and write each in terms of unit step functions.

1. f (t ) =

⎧⎪⎨
⎪⎩

0, if 0 ≤ t < 1

1, if 1 ≤ t < 2

0, if 2 ≤ t
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2. f (t ) =
{

1, if 0 ≤ t < 4

2, if 4 ≤ t

3. f (t ) =

⎧⎪⎨
⎪⎩

0, if 0 ≤ t < 1

t , if 1 ≤ t < 2

t 2, if 2 ≤ t

4. f (t ) =
{

t , if 0 ≤ t < 2

0, if 2 ≤ t

5. f (t ) =
{

sin t , if 0 ≤ t < 2π

0, if 2π ≤ t

6. f (t ) =
{

sin t , if 0 ≤ t < 2π

sin 2t , if 2π ≤ t

7. f (t ) =

⎧⎪⎨
⎪⎩

t , if 0 ≤ t < 2

2, if 2 ≤ t < 4

4 − t , if 4 ≤ t

8. Determine the Laplace Transform of the function f (t ) given in

(a) Exercise 1
(b) Exercise 2
(c) Exercise 3
(d) Exercise 4
(e) Exercise 5
(f) Exercise 6
(g) Exercise 7

In exercises 9–11, compute the Laplace transform of f (t ).

9. f (t ) = 2[u(t − 1) − u(t − 3)]+ δ(t − 5)

10. f (t ) = 2sin 5t + δ(t − 3)

11. f (t ) = 2e−3t sin 2t + δ(t − 8)

12. Set up, but do not solve, an initial-value problem that represents a
spring-mass system with m = 4 kg, spring constant k = 10, and damping
constant c = 2, where a unit impulse is delivered by a hammer at t = 6.
Assume the units on all quantities are consistent and that the mass is
initially displaced 0.25 m and released.

13. Set up, but do not solve, an initial-value problem that represents a
spring-mass system with m = 4 kg, spring constant k = 10, and damping
constant c = 2, where a forcing function f (t ) = 3sin 2t is turned on at
t = 4 and an impulse of magnitude 4 is delivered by a hammer at t = 10.
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Assume the units on all quantities are consistent and that the mass is
initially displaced 0.25 m and released.

5.5 Solving IVPs with the Laplace transform

As we have seen in examples 5.3.5 and 5.4.7, in order to solve initial-value
problems using the Laplace transform, the final step in the process is to answer
the question “what function y(t ) has Laplace transform Y (s)?” In this section, we
will further study the inverse Laplace transform, the process that takes the Laplace
transform of an unknown function back to the function itself. Throughout, we
motivate our work through examples of solving initial-value problems to see
some of the typical functions Y (s) that arise in this approach and the steps
necessary to determine y(t ) = L−1[Y (s)].

Example 5.5.1 Use Laplace transforms to solve the initial-value problem

y ′ − 2y = 5, y(0) = 4

Solution. We begin by taking the Laplace transform of both sides of the
differential equation. Using the linearity of the transform,

L[y ′]− 2L[y] = 5L[1]
By theorem 5.3.4 and the familiar transform of the function f (t ) = 1, it
follows that

sL[y]− y(0) − 2L[y] = 5

s

Using the given fact that y(0) = 4 and denoting L[y] = Y (s),

sY (s) − 2Y (s) = 4 + 5

s
(5.5.1)

Note particularly that (5.5.1) is now an algebraic equation in the unknown
function Y (s). Solving for Y (s), we find

Y (s) = 4s + 5

s(s − 2)

At this point, we recall that Y (s) = L[y], where y(t ) is the original unknown
function we seek as the solution to the stated IVP. Solving the IVP has now been
reduced to finding the function y(t ) that has Laplace transform Y (s). That is,
we seek y(t ) = L−1[Y (s)].

With a bit of algebraic rearrangement and insight, we can find the function
y(t ). In particular, using a partial fraction decomposition, we can show that

Y (s) = 4s + 5

s(s − 2)
= −5/2

s
+ 13/2

s − 2
(5.5.2)
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Recalling that L[1] = 1/s and L[e2t ] = 1/(s − 2), (5.5.2) implies

y(t ) = −5

2
+ 13

2
e2t

This is precisely the solution we would find to the IVP were we to use an
integrating factor or separation of variables to solve the differential equation.

Whenever we use the Laplace transform to solve an IVP, we will employ a process
similar to our work in example 5.5.1:

(1) Take the transform of both sides of the stated differential equation to
transform the differential equation in y(t ) into an algebraic equation in
Y (s) = L[y];

(2) Use algebra to solve for Y (s);

(3) Determine which function y(t ) has the Laplace transform Y (s).

As we have noted previously, given a function F(s), a function f (t ) such that
L[f (t )] = F(s) is called the inverse Laplace transform of F . We use the notation
L−1[F(s)] = f (t ). For our purposes, a good way to view the operator L−1 is as
one that reverses the work of the Laplace transform.

A key step in working backward will be to decompose the function F(s)
into more manageable pieces, often through a partial fraction decomposition.
A review of partial fractions can be found in appendix A; partial fractions are
an algebraic technique that proves useful for more than just integration, as we
will see throughout this section. Once the pieces of F(s) are in a recognizable
form, we use standard rules we have developed for Laplace transforms to
compute the inverse transform. For example, after using partial fractions to
decompose Y (s) in example 5.5.1, we showed that since L[e2t ] = 1/(s − 2), it
follows that

L−1
[

1

s − 2

]
= e2t

More generally, we can state that

L−1
[

1

s − a

]
= eat (5.5.3)

Indeed, we realize that we can turn around any known relationship generated by
the Laplace transform in order to make a statement about the inverse transform.
For example, the inverse transform satisfies the linearity property stated in the
following theorem.

Theorem 5.5.1 For every pair of constants a and b,

L−1[aF(s) + bG(s)] = aL−1[F(s)]+ bL−1[G(s)]
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Both shifting properties we have developed are regularly used in their inverse
form. For the first shifting property, given L[f (t )] = F(s), we know that for any
real value of a,

L[eat f (t )] = F(s − a)

Stated differently, this first shifting property implies

L−1[F(s − a)] = eat f (t ) (5.5.4)

Likewise, from the slightly revised version of the second shifting property, we
know that

L[u(t − a)f (t − a)] = e−asL[f (t )] = e−asF(s)

and therefore stated in inverse form,

L−1[e−asF(s)] = u(t − a)f (t − a) (5.5.5)

In our next example, we see how several of these fundamental concepts are
employed in practice, specifically when step functions are involved.

Example 5.5.2 Use Laplace transforms to solve the initial-value problem

y ′ + y = 5u(t − 1), y(0) = 4

Solution. Taking the Laplace transform of both sides of the differential
equation and applying the initial condition,

sL[y]− 4 +L[y] = 5L[u(t − 1)]
Using the established fact that L[u(t − 1)] = e−s/s and letting Y (s) = L(y),

sY (s) − 4 + Y (s) = 5e−s

s

Solving for Y (s),

Y (s) = 4

s + 1
+ 5e−s 1

s(s + 1)
(5.5.6)

At this point, we need to use the inverse transform to solve for y(t ). Finding
L−1[4/(s + 1)] is straightforward: by linearity and the first shifting property,5

L−1
[

4

s + 1

]
= 4e−t (5.5.7)

To deal with the remaining term in (5.5.6), we note that with e−s present we
will need to use the second shifting property (5.5.5) in reverse. For this, it will
be most useful to have the function

F(s) = 1

s(s + 1)

5 We know L−1[1/s] = 1, and thus the first shifting property implies L−1[1/(s + 1)] = e−t · 1
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Figure 5.8 The solution to the IVP
of example 5.5.2.

in a simpler form. Using its partial fraction decomposition, we observe that

F(s) = 1

s
− 1

s + 1

By (5.5.5), it now follows that

L−1
[

5e−s
(

1

s
− 1

s + 1

)]
= 5u(t − 1)

(
1 − e−(t−1)

)
(5.5.8)

Combining our work at (5.5.7) and (5.5.8) to determine y(t ) from (5.5.6), we
have shown that

y(t ) = 4e−t + 5u(t − 1) − 5u(t − 1)e−(t−1)

A plot of this solution curve is shown in figure 5.8, where we see qualitative
behavior consistent with what we would expect from the forcing function in the
IVP. In particular, the forcing function is 5u(t − 1), which makes the forcing
function behave as if the constant function 5 is turned on at t = 1 in the initial-
value problem. For t = 0 to t = 1, we see the standard exponential decay that
we would expect for the homogeneous equation y ′ + y = 0. But at t = 1, the
solution function turns and begins to approach the equilibrium solution y = 5
that we expect in the nonhomogeneous equation y ′ +y = 5. We note specifically
that the Laplace transform has successfully handled all of this at once, including
the role of the initial condition y(0) = 4 and the corner in the solution function
y(t ) at t = 1.

We next solve a second-order initial-value problem that involves the unit step
function. Here, we will see how the higher order of the equation introduces
additional complexity in determining the inverse Laplace transform needed to
solve the IVP.
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Example 5.5.3 Use the Laplace transform to solve the initial-value problem

y ′′ + 2y ′ + 5y = u(t − 2), y(0) = 1, y ′(0) = 0 (5.5.9)

Solution. Taking the Laplace transform of both sides of (5.5.9) and writing
Y (s) = L[y(t )], we observe that

s2Y (s) − sy(0) − y ′(0) + 2(sY (s) − y(0)) + 5Y (s) = e−2s

s
Substituting the given initial conditions and factoring on the left, we have

Y (s)(s2 + 2s + 5) = s + 2 + e−2s

s
Solving for Y (s), we can write

Y (s) = Y1(s) + Y2(s) = s + 2

s2 + 2s + 5
+ e−2s 1

s(s2 + 2s + 5)
(5.5.10)

It remains for us to determine the function y(t ) whose transform is Y (s). By
linearity, it helps for us to break the function Y (s) into the simplest pieces
we can; we begin by determining the inverse transform of Y1(s). Because of
shifting properties of the transform (and because of the fact that we cannot
factor s2 + 2s + 5 in an effort to apply partial fractions), it is useful to complete
the square in expressions such as s2 + 2s + 5. We instead write (s + 1)2 + 4, and
seek to identify other parts of the expression that involve (s +1). Separating the
numerator (s + 2) into (s + 1) + 1, we can express the first term in (5.5.10) as

Y1(s) = s + 2

s2 + 2s + 5
= s + 1

(s + 1)2 + 4
+ 1

(s + 1)2 + 4
(5.5.11)

Recalling that L[cos2t ] = s/(s2 + 4) and L[sin 2t ] = 2/(s2 + 4), we know

L−1[s/(s2 + 4)] = cos2t and L−1[2/(s2 + 4)] = sin 2t

The inverse of the first shifting property, L−1[F(s + 1)] = e−t f (t ), now implies
that

L−1
[

s + 1

(s + 1)2 + 4
+ 1

(s + 1)2 + 4

]
= e−t cos2t + 1

2
e−t sin 2t (5.5.12)

Hence, the first term Y1(s) in (5.5.10) comes from taking the Laplace transform
of the function y1(t ) = e−t cos2t + 1

2 e−t sin 2t .
From (5.5.10), it remains for us to find the function y2(t ) whose Laplace

transform is

Y2(s) = e−2s 1

s(s2 + 2s + 5)

Using a partial fraction decomposition on the rational part of the function,
we have

e−2s 1

s(s2 + 2s + 5)
= 1

5
e−2s

(
1

s
− s + 2

s2 + 2s + 5

)
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Figure 5.9 The solution y(t ) to the IVP
in example 5.5.3.

Observe that we have already determined the inverse transform of the
function (s + 2)/(s2 + 2s + 5) above at (5.5.12). Here, we must deal with
the additional presence of the constant 1/5, the multiplier e−2s , and the basic
function 1/s. Recalling the inverse second shifting property, L−1[e−asF(s)] =
u(t − a)f (t − a), and (5.5.12), we observe that

L−1
[
e−2s

(
1

s
− s + 2

s2 + 2s + 5

)]

= u(t − 2)

[
1 − e−(t−2)(cos2(t − 2) + 1

2
sin 2(t − 2))

]
(5.5.13)

Combining (5.5.10), (5.5.12), and (5.5.13), we have shown that the solution
y(t ) to the initial-value problem is

y(t ) = e−t cos2t + e−t

2
sin 2t + 1

5
u(t − 2)[

1 − e−(t−2) cos2(t − 2) + e−(t−2)

2
sin 2(t − 2)

]

A plot of the function y(t ) is shown in figure 5.9. Here, we see evidence of
the qualitative behavior we expect: until the unit step function turns on, the
homogeneous equation should show damped oscillations so that y(t ) → 0.
But once the step function turns on, the forcing function makes the equation
nonhomogeneous with a constant forcing function, making y = 1/5 the stable
equilibrium solution to which y(t ) tends.

To further explore the ideas that arise in computing inverse transforms, we next
consider a slight modification of the preceding example, but in an applied setting
where a more complicated forcing function is present. In particular, we examine
a spring-mass system in which a periodic forcing function is introduced at t =π .
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Example 5.5.4 Consider a mass of 1 kg attached to a spring with spring
constant k = 13 such that the system has damping constant c = 4. Assume that
the mass is displaced 1 m from equilibrium and released at t = 0; furthermore,
at time t = π the forcing function f (t ) = 2sin 3t is applied. Assuming consistent
units, set up an IVP that models this situation and solve the IVP using Laplace
transforms.

Solution. From our work with spring-mass systems, we know that the
displacement y(t ) of the mass from equilibrium must satisfy the initial-value
problem

y ′′ + 4y ′ + 13y = 2u(t −π) sin 3t , y(0) = 1, y ′(0) = 0

Taking Laplace transforms, it follows that

s2Y (s) − sy(0) − y ′(0) + 4(sY (s) − y(0)) + 13Y (s) = 2L[u(t −π) sin 3t ]
(5.5.14)

We know that L[sin 3t ] = 3/(s2 + 9), and by the second shifting property

L[u(t −π) sin 3t ] = e−π sL[sin 3(t +π)] (5.5.15)

At this point, we observe by basic trigonometry that sin(3t + 3π) =
sin 3t cos3π + cos3t sin 3π = − sin 3t . Hence, from (5.5.15) we have

L[u(t −π) sin 3t ] = e−π sL[− sin 3t ] = −e−π s 3

s2 + 9
Returning to (5.5.14) and using the given initial conditions, it follows that

s2Y (s) − s + 4sY (s) − 4 + 13Y (s) = −2e−π s 3

s2 + 9
Factoring,

Y (s)(s2 + 4s + 13) = s + 4 − 2e−π s 3

s2 + 9
Solving for Y (s),

Y (s) = Y1(s) + Y2(s)

= s + 4

s2 + 4s + 13
− 2e−π s 3

(s2 + 9)(s2 + 4s + 13)
(5.5.16)

It remains to find the inverse transform of Y (s); we do so one piece at a
time using the linearity of the inverse transform. In both Y1(s) and Y2(s),
we will algebraically rearrange the expression in order to help us more easily
determine the inverse Laplace transform, using an approach similar to our work
in example 5.5.3.

Taking the first term in (5.5.16), we observe that since the denominator
does not factor, we need to write it in a more familiar form. Completing the
square and separating the numerator enables us to write

Y1(s) = s + 4

(s + 2)2 + 9
= s + 2

(s + 2)2 + 9
+ 2

(s + 2)2 + 9
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and see the structure of Laplace transforms of basic functions. In particular,
from the first shifting property and the known Laplace transforms of cos3t and
sin 3t , it follows that

L−1[Y1(s)] = L−1
[

s + 2

(s + 2)2 + 9
+ 2

(s + 2)2 + 9

]
= e−2t cos3t + 2

3
e−2t sin 3t

(5.5.17)

Next we find the inverse transform of the term Y2(s) in (5.5.16). That is, we
must determine

L−1[Y2(s)] = L−1
[
−6e−π s 1

(s2 + 9)(s2 + 4s + 13)

]
(5.5.18)

From the presence of e−π s , we know the second shifting property will be
used; in addition, we must algebraically rearrange the remaining part of the
expression in order to find the inverse transform. Computing the partial fraction
decomposition of the rational function in (5.5.18), we equivalently seek

L−1[Y2(s)] = L−1
[

6

40
e−π s

(
s − 1

s2 + 9
− s + 3

s2 + 4s + 13

)]
(5.5.19)

One additional rearrangement will enable us to find the desired inverse
transform. Completing the square in the second fraction and separating the
numerator in each enables us to rewrite (5.5.19) as

L−1[Y2(s)] = 6

40
L−1

[
e−π s

(
s

s2 + 9
− 1

s2 + 9
− s + 2

(s + 2)2 + 9
− 1

(s + 2)2 + 9

)]

Applying the inverse of the second shifting property to each of the terms in
L−1[Y2(s)], it follows that

L−1[Y2(s)] = 6

40
u(t −π)

[
cos3(t −π) − 1

3
sin 3(t −π)

− e−2(t−π) cos3(t −π) − 1

3
e−2(t−π) sin 3(t −π)

]
(5.5.20)

Noting that sin(3t − 3π) = − sin 3t and cos(3t − 3π) = −cos3t , we can
simplify (5.5.20) to

L−1[Y2(s)] = 3

20
u(t −π)

[
−cos3t + 1

3
sin 3t − e−2(t−π)(−cos3t + 1

3
sin 3t )

]

Combining our work with L−1[Y1(s)] and L−1[Y2(s)], we have therefore
shown that y(t ) = L−1[Y (s)] is the function

y(t ) = e−2t (cos3t + 2

3
sin 3t ) + 3

20
u(t −π)[−cos3t

+ 1

3
sin 3t − e−2(t−π)(−cos3t + 1

3
sin 3t )]
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Figure 5.10 The solution to the IVP in
example 5.5.4.

A plot of the function y(t ) is given in figure 5.10, where we see that until
the forcing function activates at t = π , we see the standard damped oscillations
decaying to zero. When the periodic forcing function turns on, the system
demonstrates the repeating oscillations generated by this function.

At this point in our work, we have been exposed to most of the main ideas
necessary for using the Laplace transform to solve initial-value problems. In
addition to knowing the standard properties of the transform and its effects on
basic functions, we must understand how to compute the inverse transform and
the algebraic rearrangements that such inversion entails. Specifically, we have
seen in several examples the need to determine partial fraction decompositions,
complete the square, and separate the numerator in fractions. For example, the
key computations necessary to find the inverse transform of the function

F(s) = 11

s(s2 + 6s + 11)
are to first determine the partial fraction decomposition and write

F(s) = 1

s
− s + 6

s2 + 6s + 11
The first term is straightforward to invert; but the second term requires further
manipulation. Completing the square in the denominator, we see that s2 +
6s + 11 = (s + 3)2 + 2, and therefore it is convenient to write the numerator as
s + 6 = (s + 3) + 3. Doing so,

F(s) = 1

s
− s + 3

(s + 3)2 + 2
− 3

(s + 3)2 + 2
It is at this point, together with the first shifting property, that we can finally
compute L−1[F(s)] and find

f (t ) = L−1[F(s)] = 1 − e−3t cos
√

2t − 3√
2

e−3t sin
√

2t
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Finally, we have also seen that the second shifting property also plays an
important role. In the presence of the unit step function u(t −a), the multiplier
e−as will arise in F(s). In that case, we must invert e−asF(s); doing so, we get
u(t − a)f (t − a), as opposed to simply f (t ).

In light of these overall comments, we see the need to practice the
computation of inverse Laplace transforms so that we can use these concepts in
the solution of initial-value problems. In the next section, we will summarize
key properties of the inverse transform, consider a few additional examples of
more complicated inverse transforms, demonstrate the role technology plays in
computations, and provide exercises for additional practice.

We close the current section with an example involving the Dirac delta
function.

Example 5.5.5 Consider an undamped spring-mass system with spring
constant c = 4. Suppose that the mass is displaced 1 unit from equilibrium
and struck with a force to impart an initial velocity of y ′(0) = 1. In addition, at
times t = 7 and t = 20, a hammer delivers a one-unit impulse to the mass in
the positive direction. Assuming consistent units, set up and solve an IVP that
models this situation.

Solution. We use the Dirac delta function to represent the impulse forces
delivered at times t = 7 and t = 20. Coupled with the standard equation to
represent the spring-mass system, we see that the displacement y(t ) of the mass
at time t satisfies the initial-value problem

y ′′ + 4y = δ(t − 7) + δ(t − 20), y(0) = 1, y ′(0) = 1

To solve the IVP, we begin by taking Laplace transforms and find that

s2Y (s) − sy(0) − y ′(0) + 4Y (s) = L[δ(t − 7)]+L[δ(t − 20)]
Recalling that L[δ(t − a)] = e−as and using the given initial conditions, Y (s)
must satisfy the equation

s2Y (s) − s − 1 + 4Y (s) = e−7s + e−20s

Factoring,

Y (s)(s2 + 4) = s + 1 + e−7s + e−20s

and therefore

Y (s) = s

s2 + 4
+ 1

s2 + 4
+ e−7s 1

s2 + 4
+ e−20s 1

s2 + 4
Using the second shifting property to find the inverse of the last two terms on
the right, we find

y(t ) = L−1[Y (s)]

= cos2t + 1

2
sin 2t + 1

2
u(t − 7)sin 2(t − 7) + 1

2
u(t − 20)sin 2(t − 20)

A plot of the solution function y(t ) is shown in figure 5.11. We know that
because the system is undamped, once it is set in motion it will oscillate at the
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Figure 5.11 The solution to the IVP of
example 5.5.5.

same amplitude indefinitely in the absence of other forces. When the hammer
blows are delivered at t = 7 and t = 20, this will obviously change the amplitude
of oscillation. At first the observed behavior may seem counterintuitive, as the
hammer strikes are diminishing the amount of oscillation. However, if we note
that the impulses are delivered in the positive direction at a time when the
mass is traveling in the negative direction, then, indeed, the resulting solution
accurately models the physical situation.

It is interesting to explore how delivering the impulses at other times impacts
the system. Note that our work with Laplace transforms in example 5.5.5 is
essentially unchanged by the times the impulses occur. In particular, if the
hammer strikes occur at t = a and t = b, then the solution will be

y(t ) = cos2t + 1

2
sin 2t + 1

2
u(t − a) sin 2(t − a) + 1

2
u(t − b) sin 2(t − b)

If we choose a = 9 and b = 18, we see substantially different behavior in the
solution function due to the fact that these impulses occur in the same direction
as the motion at the time they are delivered. A plot of the solution y(t ) in this
case is shown in figure 5.12.

Exercises 5.5 In exercises 1–20, solve the stated initial-value problem using
Laplace transforms. In each case, sketch a plot of your solution.

1. y ′ + 5y = 20, y(0) = 3

2. y ′ + 3y = e2t , y(0) = −2

3. y ′ − 2y = e2t , y(0) = 1

4. y ′ + 4y = sin 3t , y(0) = 5

5. y ′ + y = tet , y(0) = −1
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t

Figure 5.12 The solution to the IVP of
example 5.5.5 where the impulses instead
occur at t = 9 and t = 18.

6. y ′ − 8y = u(t − 1), y(0) = −4

7. y ′ − 8y = u(t − 3) · t , y(0) = −4

8. y ′ − 8y = δ(t − 1), y(0) = −4

9. y ′′ + 9y = 0, y(0) = 0, y ′(0) = 5

10. y ′′ − 9y = 0, y(0) = 2, y ′(0) = 0

11. y ′′ + 9y = 2, y(0) = 0, y ′(0) = 1

12. y ′′ + 9y = 5cos t , y(0) = 0, y ′(0) = 0

13. y ′′ + 9y = 5cos3t , y(0) = 0, y ′(0) = 0

14. y ′′ + 7y ′ + 12y = 0, y(0) = 0, y ′(0) = 3

15. y ′′ + 6y ′ + 9y = 0, y(0) = 2, y ′(0) = 0

16. y ′′ + 2y ′ + y = 3t , y(0) = 0, y ′(0) = 0

17. y ′′ + 2y ′ + 5y = u(t − 4), y(0) = 1, y ′(0) = 0

18. y ′′ − 2y ′ − 3y = u(t − 3), y(0) = 2, y ′(0) = 0

19. y ′′ − 2y ′ − 3y = u(t − 3), y(0) = 2, y ′(0) = 0

20. y ′′ + 2y ′ + 5y = δ(t − 1), y(0) = 0, y ′(0) = 0

For exercises 21–26, solve the stated initial-value problem from exercises 1–20
by standard means developed in preceding chapters (i.e., without using Laplace
transforms).

21. y ′ + 3y = e2t , y(0) = −2

22. y ′ + 4y = sin 3t , y(0) = 5

23. y ′ + y = tet , y(0) = −1
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24. y ′′ + 9y = 2, y(0) = 0, y ′(0) = 1

25. y ′′ + 9y = 5cos3t , y(0) = 0, y ′(0) = 0

26. y ′′ + 2y ′ + y = 3t , y(0) = 0, y ′(0) = 0

In exercises 27–32, use Laplace transforms to determine the displacement y(t )
of the spring-mass system with spring constant k = 72 and mass m = 2 kg for
the given forcing function f (t ). Assume each time the system starts from rest;
solve for y(t ) in the cases where the spring constant c is (a) c = 0, (b) c = 2,
(c) c = 24, and (d) c = 40, assuming consistent units. Sketch a plot of each
solution.

27. f (t ) = 2

28. f (t ) = 10sin 2t

29. f (t ) = 10sin 6t

30. f (t ) = 10[u(t ) − u(t − 4π)]
31. f (t ) = 10e−0.2t

32. f (t ) = 100δ(t )

In exercises 33–38, consider an RLC circuit for which an inductor of L = 1 H
and capacitor C = 0.01 F are present. For each given forcing function f (t ), use
Laplace transforms to determine the charge Q(t ) and current I (t ) in the circuit
at time t if initially Q(0) = 0 and I (0) = 0. Determine the charge and current in
the cases where the resistance is (a) R = 0 �, (b) R = 16 �, (c) R = 20 �, and
(d) R = 25 �, assuming consistent units. Sketch a plot of each solution.

33. f (t ) = 10

34. f (t ) = 10sin 10t

35. f (t ) = 5sin 10t

36. f (t ) = 10[u(t ) − u(t − 2π)]
37. f (t ) = 10δ(t )

38. f (t ) = 20e−t

5.6 More on the inverse Laplace transform

In this section, we provide an overall summary of properties of the inverse
transform and present some further practice with computations. We close with
a discussion of how transforms and inverse transforms may be found using a
computer algebra system.

To begin, table 5.3 provides a list of familiar functions F(s) and their inverse
transforms, as well as several key general properties of the inverse transform.
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Table 5.3
Inverse Laplace transforms of some basic func-
tions and other fundamental properties.

F(s) f (t) = L−1[F(s)]

1/sn t n/n!
1/(s − a) eat

s/(s2 + k2) coskt

k/(s2 + k2) sinkt

s/(s2 − k2) coshkt

k/(s2 − k2) sinhkt

aF(s) + bG(s) af (t ) + bg (t )

F(s − a) eat f (t )

e−as δ(t − a)

e−asF(s) u(t − a)f (t − a)

Most of the lines in the table are derived from taking the inverse perspective
on statements in tables 5.1 and 5.2. While full tables of Laplace transforms
typically number many pages, we present only a small collection for use in
standard problems involving spring-mass systems and RLC circuits, leaving
other examples for exploration in other sources or computer algebra systems.

The next several examples demonstrate standard techniques in the computation
of inverse transforms.

Example 5.6.1 Determine L−1[F(s)] for each of the following functions:

(a) F(s) = e−2s

s(s + 1)2
(b) F(s) = 2

s4 + 4s2
(c) F(s) = 4se−2π s

(s2 + 2s + 5)(s2 + 9)

Solution. (a) Because of the presence of e−2s in F(s), we will use the second
shifting property. But first, we find the partial fraction decomposition

1

s(s + 1)2
= 1

s
− 1

s + 1
− 1

(s + 1)2

and note that

L−1
[

1

s(s + 1)2

]
= L−1

[
1

s
− 1

s + 1
− 1

(s + 1)2

]

= 1 − e−t − te−t
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Now, in order to compute the inverse transform of the given function, we use
the second shifting property to address the presence of e−2s in each term and
thus find that

L−1
[

e−2s

s(s + 1)2

]
= u(t − 2)[1 − e−(t−2) − (t − 2)e−(t−2)]

(b) Partial fractions shows that

F(s) = 2

s4 + 4s2
= 1

2

(
1

s2
− 1

s2 + 4

)

Using the inverses of familiar transforms of f (t ) = t and f (t ) = sin 2t , we see

L−1[F(s)] = 1

2

(
t − 1

2
sin 2t

)

(c) Given the function

F(s) = 4se−2π s

(s2 + 2s + 5)(s2 + 9)

we see that the presence of e−2π s implies the inverse of the second shifting
property will be used. As is now custom, we first use partial fractions to break the
rational part of F(s) into a sum of simpler expressions. Doing so and completing
the square to re-express s2 + 2s + 5,

4s

(s2 +2s+5)(s2 +9)
= 1

13

(
−4s−18

s2 +9
+ 4s−10

s2 +2s+5

)

= 1

13

( −4s

s2 +9
+ 18

s2 +9
+ 4(s+1)

(s+1)2 +4
− 14

(s+1)2 +4

)

Letting G(s) = 4s/(s2 + 2s + 5)(s2 + 9), it now follows from familiar rules with
inverse transforms and the first shifting property that

L−1[G(s)] = − 4

13
cos3t + 18

39
sin 3t + 4

13
e−t cos2t − 7

13
e−t sin 2t

Finally, since F(s) = e−2π sG(s), the second shifting property implies

L−1[F(s)] = u(t − 2π)

(
− 4

13
cos3(t − 2π) + 6

13
sin 3(t − 2π)

)

+ u(t − 2π)

(
4

13
e−t cos2(t − 2π) − 7

13
e−(t−2π) sin 2(t − 2π)

)
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The 2π shift in each of the sine and cosine functions can be removed; for
instance, cos3(t − 2π) = cos3t . Doing so throughout shows that

L−1[F(s)] = u(t − 2π)(
− 4

13
cos3t + 6

13
sin 3t + 4

13
e−(t−2π) cos2t − 7

13
e−(t−2π) sin 2t

)

There are certainly other properties of the inverse Laplace transform that we
could study. For example, theorem 5.3.4 in inverse form allows us to say that if
L−1[F(s)] = f (t ) and f (0) = 0, then

L−1[sF(s)] = f ′(t ) (5.6.1)

While results like this are theoretically interesting and can occasionally enable
us to determine inverse transforms in alternate ways, they are less useful
in pragmatic terms when we think of our overarching goal: using Laplace
transforms to solve initial-value problems.

Indeed, our work throughout this chapter has given us a good overview of
how Laplace transforms work, especially the role they play in solving initial-
value problems. Of course, there are also many forcing functions we have not
discussed for which Laplace transforms may be taken. There are books that
contain lengthy tables of Laplace transforms and inverse transforms that we
could, if necessary, consult. But because of the technology available to us, these
tables have essentially been rendered obsolete. Most computer algebra systems
are fully capable of computing Laplace transforms and their inverses, so we
choose not to study methods for these more difficult calculations. The next
example demonstrates one such function F(s) which is beyond the methods we
have developed but that can easily be handled by a computer algebra system.

Example 5.6.2 Find the inverse Laplace transform of

F(s) = 9

(s2 + 1)2(s2 + 4)2

Solution. The partial fraction decomposition of F(s) is

F(s) = − 2/3

s2 + 1
+ 1

(s2 + 1)2
+ 2/3

s2 + 4
+ 1

(s2 + 4)2
(5.6.2)

Two of the terms in (5.6.2) are straightforward to invert, but the two involving
squares of irreducible quadratic terms are not among familiar functions from
our previous work. In the following subsection, we demonstrate how to use
Maple to compute the inverse transform of such functions. These computations
reveal that

L−1
[

1

(s2 + 1)2

]
= 1

2
sin t − 1

2
t cos t

and

L−1
[

1

(s2 + 4)2

]
= 1

16
sin 2t − 1

8
t cos2t
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From this work and (5.6.2), we find

L−1[F(s)] = −2

3
sin t + 1

2
sin t − 1

2
t cos t + 1

3
sin 2t + 1

16
sin 2t − 1

8
t cos2t

= −1

6
sin t − 1

2
t cos t + 19

48
sin 2t − 1

8
t cos2t

Further discussion of how to use Maple to compute transforms and inverse
transform follows in the next subsection.

5.6.1 Laplace transforms and inverse transforms
using Maple

As we have noted, while we have computed Laplace transforms for a range of
functions, there are many more examples we have not considered. Moreover,
even for familiar functions, certain combinations of them can lead to tedious,
involved calculations. Computer algebra systems such as Maple are fully capable
of computing Laplace transforms of functions, as well as inverse transforms.
Here we demonstrate the syntax required in the solution of the initial-value
problem from example 5.5.4:

y ′′ + 4y ′ + 13y = 2u(t −π) sin 3t , y(0) = 1, y ′(0) = 0 (5.6.3)

To begin, we load the inttrans package in Maple.

> with(inttrans);

If, for example, we desire to use Maple to compute the Laplace transform of
2u(t −π) sin 3t , we use the syntax

> laplace(2*Heaviside(t-Pi)*sin(3*t),t,s);

This command results in the output

−6e−sπ

s2 + 9

which is precisely the transform we expect.
After computing by hand the transform of the left-hand side of (5.6.3) and

solving for Y (s), as shown in detail in example 5.5.4, we have

Y (s) = s + 4

s2 + 4s + 13
− 2e−π s 3

(s2 + 9)(s2 + 4s + 13)

Here, we may use Maple’s invlaplace command to determine L−1[Y (s)].
While we could choose to do so all at once, for simplicity of display we do so in
two steps. First,

> invlaplace((s+4)/(sˆ2 + 4*s + 13),s,t);
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results in the output
1

3
e(−2t )(3cos(3t ) + 2sin(3t )) (5.6.4)

Similarly, for the second term in Y (s), we compute

> invlaplace(2*exp(-Pi*s)*3/((sˆ2 + 9)*(sˆ2 + 4*s
+ 13)),s,t);

Maple produces the output
1

3
Heaviside(t −π)(3cos(3t ) − sin(3t ) − e(−2t+2π)(3cos(3t ) + sin(3t )))

(5.6.5)
which corresponds to our work in example 5.5.4. The sum of the two functions
of t that have resulted from inverse transforms in (5.6.4) and (5.6.5) is precisely
the solution to the IVP.

Note that in computing the inverse transform (5.6.5), Maple has implicitly
executed the partial fraction decomposition of the expression

3

(s2 + 9)(s2 + 4s + 13)
If we wish to find this explicitly, we can use the command

> convert(3/((sˆ2 + 9)*(sˆ2 + 4*s + 13)),
parfrac, s);

which produces the output
1

40

3 − 3s

s2 + 9
+ 1

40

9 + 3s

s2 + 4s + 13
In general, we see that to compute the Laplace transform of f (t ) in Maple

we use the syntax

> laplace(f(t),t,s);

whereas to compute the inverse transform of F(s), we enter

> invlaplace(F(s),s,t);

Exercises 5.6 In exercises 1–9, find the inverse Laplace transform of the given
function F(s) using familiar techniques or a computer algebra system.

1. F(s) = 2s

(s + 3)2

2. F(s) = 4

(s2 − 4)2
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3. F(s) = 1

s2(s − 2)

4. F(s) = 2

(s2 − 1)2(s2 + 1)

5. F(s) = s2 + 1

(s + 1)2(s2 + 4)

6. F(s) = e−s

s2(s − 2)

7. F(s) = e−3s 2

(s2 − 1)2(s2 + 1)

8. F(s) = 5s2 + 20

s(s − 1)(s2 − 5s + 4)

9. F(s) = e−π s 5s2 + 20

s(s − 1)(s2 − 5s + 4)

In exercises 10–22, solve the stated initial-value problem using Laplace
transforms (using a computer algebra system as necessary). Sketch a plot of
each solution.

10. y ′ + y = e−t + te−t , y(0) = 1

11. y ′′ + 4y = sin 2t , y(0) = 0, y ′(0) = 1

12. y ′′ + 4y = sin 2t + δ(t − 6), y(0) = 0, y ′(0) = 1

13. y ′′ + 4y = sin 2t + δ(t − 6) + δ(t − 12), y(0) = 0, y ′(0) = 1

14. y ′′ + 9y = cos3t + t cos3t , y(0) = 0, y ′(0) = 1

15. y ′′ + 2y ′ + 5y = e−t sin 2t , y(0) = 0, y ′(0) = 1

16. y ′′ + 2y ′ + 5y = e−t sin 2t + te−t sin 2t , y(0) = 0, y ′(0) = 1

17. y ′′ + 2y ′ + 5y = e−t sin 2t +u(t −π)te−t sin 2t , y(0) = 0, y ′(0) = 1

18. y ′′ + y ′ − 2y = 4et + 1, y(0) = 1, y ′(0) = 0

19. y ′′ + y ′ − 2y = 4et + 1 + δ(t − 3), y(0) = 1, y ′(0) = 0

20. y ′′ + y ′ − 2y = 4et + u(t − 3), y(0) = 1, y ′(0) = 0

21. y ′′ + 2y ′ + 5y = e−t sin 2t + te−t sin 2t + δ(t − 5), y(0) = 0, y ′(0) = 1

22. y ′′ + 2y ′ + 5y = 13et sin t , y(0) = 0, y ′(0) = 0
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5.7 For further study

5.7.1 Laplace transforms of infinite series

If f (t ) is a function of exponential order that is analytic6 at t = 0 with an infinite
radius of convergence, then f (t ) may be expressed as a power series and also has
a Laplace transform. It therefore follows that if

f (t ) =
∞∑

n=0

ant n

then its transform is

F(s) = L[f (t )] =
∞∑

n=0

anL[t n] =
∞∑

n=0

n!an
1

sn+1
(5.7.1)

We begin by exploring the transforms of some familiar functions through the
use of infinite series.

(a) Recall that f (t ) = et is analytic at t = 0 with series expansion

et =
∞∑

n=0

t n

n! = 1 + t + t 2

2! + t 3

3! + · · · (5.7.2)

By taking the Laplace transform of the series (5.7.2) term-wise,7 show that

L[et ] =
∞∑

n=0

1

sn+1
(5.7.3)

Then, recognize (5.7.3) as a geometric series to show that

L[et ] = 1

s − 1

(b) Similarly, use the fact that f (t ) = sin t has the series expansion

sin t = t − t 3

3! + t 5

5! − · · ·
to show using infinite series that

L[sin t ] = 1

s2 + 1

6 More on power series expansions of functions and the meaning of terms such as “analytic” may be
found in Section 8.2.
7 While the Laplace transform of a finite sum is the sum of the Laplace transforms of the individual
terms, it is not obvious that this property holds for infinite sums. The formal justification that this is
valid in what follows is beyond the scope of this text; the reader may assume that this step is valid,
and proceed as directed.
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In addition, develop the Laplace transform of f (t ) = cos t using the series
expansion cos t = 1 − t 2/2!+ t 4/4!− · · · .

While power series expansions of such familiar functions as et , sin t ,
and cos t are important and offer a different perspective on the development
of the transforms of these functions, power series are even more useful for
working with functions that are more complicated. For example, if we seek the
transform of

f (t ) = e−t − 1

t
(5.7.4)

none of the methods we have previously discussed apply. However, stan-
dard techniques8 with infinite series may be used to address functions
such as (5.7.4).

(c) Use the standard power series expansion for et to show that
f (t ) = (e−t − 1)/t has the series expansion

e−t − 1

t
= −1 + t

2! − t 2

3! + t 3

4! − · · · =
∞∑

n=1

(−1)n

n! t n−1

Then, compute the Laplace transform of the series expression to show that

L
[

e−t − 1

t

]
= −1

s
+ 1

2s2
− 1

3s3
+·· · (5.7.5)

(d) Even though the Laplace transform of an analytic function will result in an
infinite sum involving negative powers of s, sometime we can recognize
the transform as a familiar function. To see this in (5.7.5), use the known
series expansion

ln(1 + x) = x − 1

2
x2 + 1

3
x3 −·· ·

and the substitution x = 1/s to show that

L
[

e−t − 1

t

]
= − ln

(
1 + 1

s

)

(e) From the standard series expansion for the function sin t , determine the
Taylor series of

f (t ) = sin t

t
(5.7.6)

and hence compute the Laplace transform of (5.7.6). Then, use the
expansion

arctanx = x − 1

3
x3 + 1

5
x5 − 1

7
x7 +·· ·

8 A review of the development of power series of functions can be found in section 8.2.
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and an appropriate substitution to show that

L
[

sin t

t

]
= arctan

1

s

(f) Use series techniques to show that

L
[

cos t − 1

t

]
= −1

2
ln

(
1 + 1

s2

)

5.7.2 Laplace transforms of periodic forcing
functions

Nonhomogeneous differential equations often involve periodic forcing func-
tions. In section 4.5, we considered the effects of the forcing function f (t ) =
sinωt in connection with the natural frequency of a system. More generally,
here we examine periodic forcing functions that are piecewise continuous. Such
functions satisfy the relationship that for some value of a,

f (t ) = f (t + a) + f (t + 2a) + f (t + 3a)

+·· · + f (t + na) +·· · (5.7.7)

An example of such a function is shown in figure 5.13. Taking the Laplace
transform of such a function f , we may write the transform as the infinite sum
of integrals

L[f (t )] =
∫ ∞

0
f (t )e−st dt

=
∫ a

0
f (t )e−st dt +

∫ 2a

a
f (t )e−st dt +

∫ 3a

2a
f (t )e−st dt +·· · (5.7.8)

t

f(t)
a

Figure 5.13 A periodic function with
period a that is piecewise continuous.
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(a) Using the change of variables t = τ + a in the second integral, t = τ + 2a
in the third, and so on, show that

L[f (t )] =
∫ a

0
f (t )e−st dt +

∫ a

0
f (τ + a)e−s(τ+a) dτ

+
∫ a

0
f (τ + 2a)e−s(τ+2a) dτ +·· · (5.7.9)

(b) By replacing the integration variable τ with t in (5.7.9), show that

L[f (t )] = [1 + e−as + e−2as +·· · ]
∫ a

0
f (t )e−st dt (5.7.10)

Then, use the fact that the infinite series in (5.7.10) is geometric in order to
conclude

L[f (t )] = 1

1 − e−as

∫ a

0
f (t )e−st dt (5.7.11)

(c) Use (5.7.11) to determine the Laplace transform of the square wave
function shown in figure 5.14. (The vertical lines shown in the graph are
not actually part of the function’s graph; indeed, f is piecewise constant
with value 3 on [0,2) and value −3 on [−2,4), and so on.)
In particular, show that

L[f (t )] = 3

s
· 1 − e−2s

1 + e−2s

where f (t ) is the function pictured in figure 5.14.

−1 1

−3

3

t

y

7

3

5

Figure 5.14 A square wave with amplitude 3
and period 4.
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(d) Consider the periodic function with period 2π given by

f (t ) =
{

sin t , if 0 < t < π

0, if π < t < 2π

This function is called the half-rectified sine wave since it only consists of
the top-half of the standard sine function. Sketch a graph of this function
and show that its Laplace transform is

L[f (t )] = 1 + e−π s

(1 − e−2π s)(s2 + 1)

(e) Let a slightly damped spring-mass system be given with m = 1, c = 0.02,
and k = 25, and be driven by a square-wave periodic forcing function f (t )
with amplitude 5 and period 2π . We will use Laplace transforms to solve
the initial-value problem that governs this system under the assumption
that the system starts from rest.

(i) The stated problem is modeled by the initial-value problem

y ′′ + 0.02y ′ + 25y = f (t ), y(0) = 0, y ′(0) = 0

Take Laplace transforms to show that Y (s) = L[y(t )] must satisfy the
equation

Y (s) = F(s)

s2 + 0.02s + 25
(5.7.12)

where F(s) = L[f (t )].
(ii) While we have learned in (c) how to write the transform of a square

wave function without using infinite series in its expression, it turns
out for this problem that a series expansion is necessary for finding the
inverse transform when solving the IVP. By writing the square wave
function given in this problem in the form

f (t ) = 5u(t ) − 10u(t −π) + 10u(t − 2π) − 10u(t − 3π) +·· ·
show that

F(s) = L[f (t )] = 5

s
[1 − 2e−π s + 2e−2π s − 2e−3π s +·· · ] (5.7.13)

(iii) Explain why
1

s2 + 0.02s + 25
≈ 1

(s + 0.01)2 + 52
(5.7.14)

(iv) Combine (5.7.12), (5.7.13), and (5.7.14) in order to conclude that

y(t ) = L−1[Y (s)]

= L−1
[

5

s[(s + 0.01)2 + 52] [1 − 2e−π s + 2e−2π s −·· · ]
]

(5.7.15)



For further study 383

Explain why we have to find the inverse transform in (5.7.15)
term-by-term.

(v) Compute the inverse transform of the first term

y1(t ) = L−1
[

5

s[(s + 0.01)2 + 52]
]

in (5.7.15) given the partial fraction decomposition

5

s[(s + 0.01)2 + 52] = 0.2

s
− 0.2s + 0.004

(s + 0.01)2 + 52

(Hint: 0.2s + 0.004 = 0.2(s + 0.01) + 0.002)

Conclude that

y1(t ) = 0.2 − e−0.01t (0.2cos5t − 0.0004sin 5t ) (5.7.16)

(vi) Compute the inverse transform of the second term

y2(t ) = L−1
[
−2e−π s 5

s[(s + 0.01)2 + 52]
]

in (5.7.15) using (5.7.16) and the second shifting property.

Using the fact that cos5(t −π) = −cos5t and sin 5(t −π) = − sin 5t ,
conclude that

y2(t ) = −2u(t −π)
{

0.2 + e−0.01(t−π)(0.2cos5t + 0.0004sin 5t )
}

= −2u(t −π){0.2 + e0.01π [0.2 − y0(t )]} (5.7.17)

(vii) Compute the inverse transform of the third term

y3(t ) = L−1
[

2e−2π s 5

s[(s + 0.01)2 + 52]
]

in (5.7.15) using (5.7.16) and the second shifting property.

Using the fact that cos5(t − 2π) = −cos5t and
sin 5(t − 2π) = − sin 5t , conclude that

y3(t ) = 2u(t − 2π)
{

0.2 − e−0.01(t−2π)(0.2cos5t + 0.0004sin 5t )
}

= 2u(t − 2π){0.2 − e0.02π [0.2 − y0(t )]} (5.7.18)

(viii) So far, we have found the formula for y(t ) valid up to t = 3π . In fact,

y(t ) = y1(t ), if 0 < t < π

y(t ) = y1(t ) + y2(t ), if π < t < 2π

y(t ) = y1(t ) + y2(t ) + y3(t ), if 2π < t < 3π
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Using y1(t ) = 0.2 − e0π [0.2 − y1(t )], together with (5.7.17)
and (5.7.18), plus the fact that on 2π < t < 3π we know
u(t −π) = u(t − 2π) = 1, show that on 2π < t < 3π ,

y(t ) = 0.2 −[0.2 − y1(t )]{1 + 2e0.01π + 2e0.02π
}

(ix) Using the patterns established in (5.7.17) and (5.7.18), explain why

y(t ) = y1(t ) + y2(t ) +·· ·+ yn(t )

= (−1)n0.2 −[0.2 − y1(t )]{
1 + 2e0.01π +·· ·+ 2e0.01nπ

}
(5.7.19)

is valid for nπ < t < (n + 1)π for any positive integer n

(x) Letting z(t ) = e−0.01t (cos5t + 0.002sin 5t ) and using the fact that
1 − xn+1/1 − x = 1 + x + x2 +·· ·xn , show that on nπ < t < (n + 1)π ,

y(t ) = (−1)n
(

1

5
− 2

5(1 − e0.01π

)
z(t ) + 2e(n+1)0.01π

5(1 − e0.01π )
z(t ) (5.7.20)

Explain why as t → ∞, it follows that y(t ) → ∞. Using a computer
algebra system, graph the solution function on several consecutive
large intervals of width π , such as [200π,201π ], [201π,202π ], etc.,
and discuss the behavior of the system.

5.7.3 Laplace transforms of systems

Recall that the standard initial-value problem for a system of first-order DEs is
given in matrix form by

x′ = Ax + f (t ), x(0) = b (5.7.21)

In the event that f is a continuous function, the variation of parameters
technique applies. But, if f is a step function or otherwise piecewise defined,
our earlier methods fail, and Laplace transforms may be used. Regardless, the
Laplace transform can be a useful tool for systems for many of the same reasons
it is for single DEs, such as the fact that it treats all linear systems in a uniform
manner and incorporates the initial conditions immediately into the process of
finding the solution.

Since each of the three terms in the equation in (5.7.21) is a vector, Laplace
transforms may be applied component-wise. For example,

L[x′(t )] = L
[

x ′
1(t )

x ′
2(t )

]
=
[L[x ′

1(t )]
L[x ′

2(t )]
]

=
[

sX1(s) − x1(0)
sX2(s) − x2(0)

]
= sX(s) − x(0)
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where we let X(s) denote the Laplace transform of the vector function x(t ).
Letting F(s) be the transform of the vector f (t ), we may deduce from (5.7.21)
and theorem 5.3.4 that

sX(s) − x(0) = AX(s) + F(s) (5.7.22)

(a) Solve (5.7.22) for X(s) to show that

X(s) = Z(s)(F(s) + b) (5.7.23)

where Z(s) = (sI − A)−1 and b = x(0). Explain why we must assume that s
is not an eigenvalue of A when we write X(s) in the form (5.7.23).

(b) Next we solve an example system in step-by-step fashion. Consider the IVP

x′ =
[

1 0
−1 3

]
x +
[

e2t

3

]
, x(0) =

[
1
0

]
(5.7.24)

(i) Compute F(s) and hence show that

F(s) + x(0) =
[ 1

s−2 + 1
3
s

]

(ii) Use the given coefficient matrix A to compute Z(s) = (sI − A)−1 and
conclude9 that

Z(s) = 1

(s − 1)(s − 3)

[
s − 3 0
−1 s − 1

]

(iii) Compute X(s) using (5.7.23) to show that

X(s) = 1

s(s − 2)

[
s
2

]

(iv) Finally, use the inverse Laplace transform component-wise on X(s)
(using standard inverse transform techniques) to find

x(t ) = L−1[X(s)] =
[

e2t

e2t−1

]

(c) Use Laplace transforms and the solution technique outlined in (b) above
to find the solution of each system of IVPs below.

(i) x′ =
[

1 1
−1 1

]
x +
[

cos t
− sin t

]
, x(0) =

[−1
0

]

(ii) x′ =
[

0 2
1 −1

]
x +
[

sin t
sin t

]
, x(0) =

[
1
0

]

9 Recall the shortcut

[
a b
c d

]−1

= 1

ad − bc

[
d −b

−c a

]
.
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(iii) x′ =
[

2 1
3 0

]
x +
[

t
t

]
, x(0) =

[
1
0

]

(iv) x′ =
[

2 1
3 0

]
x +
[

t
t

]
, x(0) =

[
0
0

]

(v) x′ =
⎡
⎣ 2 1 0

0 2 0
0 0 −1

⎤
⎦x +

⎡
⎣ et

1
0

⎤
⎦ , x(0) =

⎡
⎣ 0

0
0

⎤
⎦

(vi) x′ =
⎡
⎣ 2 1 0

0 2 0
0 0 −1

⎤
⎦x +

⎡
⎣ et

1
0

⎤
⎦ , x(0) =

⎡
⎣ 1

0
0

⎤
⎦



6
Nonlinear systems of differential equations

6.1 Motivating problems

In our studies so far, we have seen that a variety of interesting physical situations
can be modeled by linear systems of differential equations. Moreover, nearly all
linear systems may be solved explicitly. But, many important phenomena are
nonlinear in nature; in order to motivate our upcoming work with such systems,
we consider two applications where nonlinear systems of equations arise.

A pendulum is a mesmerizing phenomenon. Whether on a grandfather
clock or in the hand of a hypnotist, there is something fascinating about its
motion. It turns out that a nonlinear second-order differential equation (and
hence a system of nonlinear first-order equations) models its behavior. To
develop this differential equation, let a rigid arm of length L be attached to
a point from which it may swing freely. In this discussion, we will assume for
simplicity that no damping is present. Similarly, to simplify the physics we
assume that the arm itself has negligible mass. Finally, we attach a mass m to the
end of the rigid arm and set the pendulum in motion, as shown in figure 6.1.

We are interested in how the mass travels along a circular arc once the mass
is set in motion. The quantities of interest to us are noted in figure 6.1; the
variable θ represents the angle (in radians) the arm makes with the vertical axis
and s denotes the displacement of the center of the mass along the circular arc.

Because the mass is traveling along a circular arc, it follows that s = Lθ .
Noting that both s and θ are implicit functions of t , we can differentiate with
respect to t and find s ′(t ) = Lθ ′(t ) and s ′′(t ) = Lθ ′′(t ). In particular, the velocity
of the center of the mass along the arc is s ′(t ) and its acceleration is s ′′(t ).

387
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y

x

L

m
s

q

Figure 6.1 A simple pendulum.

y

x

L

m
s

W=mg
mgcosq

mgsinq

q

Figure 6.2 Component of gravity’s force
along the pendulum’s motion.

Since the acceleration a(t ) is given by a(t ) = s ′′(t ), we have

a(t ) = d2s

dt 2
= L

d2θ

dt 2
(6.1.1)

Since we have assumed that there is no damping present, once the mass
is set in motion the only force acting on the pendulum is gravity. Because we
are studying the displacement, velocity, and acceleration of the mass along its
path, we must consider the magnitude of the weight W = mg in the direction
of motion. From figure 6.2, we see that gravity induces a force of magnitude
W sinθ along the circular arc. Note, too, that this force opposes the motion of
the pendulum, assuming s ′(t ) is positive.
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From Newton’s second law, F = ma, it now follows that ma = −mg sinθ ,
or

a(t ) = −g sinθ(t ) (6.1.2)

Using the two equivalent expressions for acceleration in (6.1.1) and (6.1.2), it
follows that

L
d2θ

dt 2
= −g sinθ (6.1.3)

If we assume that an initial displacement angle θ(0) = θ0 and initial angular
velocity θ ′(0) = θ ′

0 are given, then after rearranging (6.1.3) it follows that θ

satisfies the initial-value problem

θ ′′ + g

L
sinθ = 0, θ(0) = θ0, θ ′(0) = θ ′

0 (6.1.4)

Because of the presence of sinθ in this equation, this second-order differential
equation is nonlinear, which means that none of our previous solution methods
apply. If we use the substitution x1 = θ and x2 = θ ′ to recast (6.1.4) as a nonlinear
system of first-order differential equations, then it turns out that the system has
a natural graphical interpretation through its slope field, just as we saw with
linear systems of differential equations. Using this substitution, we observe that
the pendulum is governed by the system

x ′
1 = x2

x ′
2 = − g

L
sinx1

with initial conditions x1(0) = θ0 and x2(0) = θ ′
0. Besides studying the associated

slope field, we will also learn that it is possible to approximate this nonlinear
system at key points with a linear system to better understand its behavior,
particularly at any equilibrium points it may have. In subsequent sections, we
will explore these issues in greater detail and return to this example involving
the pendulum several times, including an investigation of what happens when
friction is present.

In addition to the pendulum, another system of nonlinear differential
equations arises in the study of population dynamics. Let us consider a
population W (t ) of wolves (in hundreds) that prey upon a population M (t )
of moose (in hundreds), where t is time measured in years. A good example of
such a situation, and one that biologists have studied in detail, occurs on Isle
Royale in Lake Superior. On this remote island, wolves are the only predator of
moose and moose are essentially the only prey of wolves.

Suppose that in the absence of moose, the wolves would die off at a rate
proportional to their own number according to a differential equation such as

dW

dt
= −0.75W

In the presence of moose, however, we expect more of the wolves to be able to
survive, and to do so at a rate proportional to the moose–wolf interactions since
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these can result in food for the wolves. The number of moose–wolf interactions
can be modeled by taking the product of M and W ; only some fraction of such
interactions will be beneficial to the wolves. Thus, the wolf population can be
assumed to satisfy a differential equation of the form

dW

dt
= −0.75W + 0.25MW (6.1.5)

Likewise, in the absence of wolves, we would expect the number of moose to
grow unencumbered (at least in the short term). We might, therefore, have a
differential equation like

dM

dt
= 0.5M

But with wolves around, some of the moose will die due to moose–wolf
interactions, hence we assume the moose population satisfies an equation like

dM

dt
= 0.5M − 0.1MW (6.1.6)

Equations (6.1.5) and (6.1.6) lead to the system of nonlinear differential
equations

dW

dt
= −0.75W + 0.25MW

dM

dt
= 0.5M − 0.1MW

Systems of this form (regardless of the values of the constants) are typically
known as predator–prey or Lotka–Volterra equations. Factoring the right-hand
side in each equation above, we see that the wolf and moose populations satisfy

dW

dt
= W (−0.75 + 0.25M )

dM

dt
= M (0.5 − 0.1W )

from which it is evident that the system of differential equations has not
only the obvious equilibrium point at the origin, but also one at (5,3). What
kind of behavior should we expect for the wolf and moose populations for
initial conditions near (5,3)? In particular, is this equilibrium point stable?
Are there ways we can approximate this nonlinear system with a linear one?
These questions and more are the focus of subsequent sections as we investigate
nonlinear systems of DEs. Our in-depth study of linear systems of differential
equations in chapter 3 will prove useful in the study of nonlinear systems: as we
see in section 6.2, we can study the graphical behavior of solutions to nonlinear
systems in the phase plane by plotting a direction field, just as we did with
linear systems. Moreover, in section 6.3 we will study a process by which we
can approximate the nonlinear system at a point by a linear system and use our
understanding of the behavior of linear systems to make predictions about the
nonlinear system.



Graphical behavior of solutions for 2 × 2 nonlinear systems 391

6.2 Graphical behavior of solutions for 2 × 2
nonlinear systems

In our study of single first-order initial-value problems in chapter 2, we learned
that every IVP associated with a linear differential equation with sufficiently
well-behaved coefficient functions has a unique solution; moreover, we can
determine an explicit formula for the solution. As we learned in chapter 3,
essentially the same situation holds for linear systems of differential equations;
those with constant coefficients and their corresponding IVPs can always be
solved. However, in the case when the governing differential equation or system
of equations is nonlinear, we are not guaranteed that solutions to initial-value
problems exist, nor that they are unique when they do exist. In addition, as we
now study nonlinear systems, we will find that even when unique solutions exist,
we are usually unable to determine explicit formulas for them.

We therefore turn again to graphical and numerical investigations of the
qualitative properties of solutions to nonlinear systems in order to understand
their short- and long-term behavior. To begin, let us choose an example through
which we can develop intuition. We consider the system given by

x ′
1 = x2 − x3

1

x ′
2 = x1 − x3

2

(6.2.1)

If we let

x(t ) =
[

x1(t )
x2(t )

]

and F : R
2 → R

2 be the function defined by

F(x) = F(x1,x2) = (x2 − x3
1 ,x1 − x3

2 )

then it follows that we may view (6.2.1) as having the form

x′ = F(x) (6.2.2)

This is analogous to our work with linear systems of differential equations that
may be expressed in the form x′ = Ax, where A is a matrix. In that setting, the
right-hand side of the system is a linear function of x, but in (6.2.2), F(x) is
not linear. Nonetheless, a graphical interpretation of the system remains both
possible and enlightening.

In section 3.4, we discussed the graphical behavior of a vector function.
Here, we simply remind ourselves that for the system x′ = F(x) in (6.2.1), a
solution x(t ) is a vector function whose output lies in R

2 and whose graph is
the curve that is traced out by the vectors x(t ) at various times t . Moreover, the
derivative x′(t ) of x(t ) is itself a vector function that indicates the instantaneous
velocity of a particle traveling along the curve traced out by x(t ). In particular,
scalar multiples of x′(t ) tell us the direction of motion or flow along the solution
curve as time increases.
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We therefore turn again to direction fields to study the flow of the solution
curves through the vector field generated by the system of differential equations.
In particular, (6.2.2) indicates how, for any point (x1,x2) in the plane, we can
easily compute x′ = F(x1,x2) at that point, and hence know the direction of the
flow of the solution curve that passes through that point. Using a computer
algebra system to execute these computations repeatedly at points sampled
throughout the plane, we can view the direction field for the nonlinear system,
which is analogous to the direction field for a linear system. A direction field
for (6.2.1) is shown in figure 6.3.

The x1–x2 plane is again called the phase plane; the independent variable t
remains implicit in the flow, while the behavior of the curve relative to the
coordinate axes demonstrates the interrelationship among the components
x1(t ) and x2(t ) of the solution x(t ). Sample solution curves, such those plotted
in figure 6.4 are typically called trajectories. In section 6.4 we will learn how to
construct trajectories for systems through numerical approximation techniques
such as Euler’s method.

From figures 6.3 and 6.4, it appears that the system (6.2.1) has three
equilibrium solutions. Specifically, the behavior of trajectories suggests the
possibilities of equilibria at (−1,−1), (0,0), and (1,1). We can confirm this
algebraically by setting x′ = 0 and solving the resulting nonlinear system of
equations

0 = x2 − x3
1 (6.2.3)

0 = x1 − x3
2 (6.2.4)

3

−3

−3

3

x1

x2

Figure 6.3 The direction field for the system
x′ = F(x) given in (6.2.1).



Graphical behavior of solutions for 2 × 2 nonlinear systems 393

3

−3

−3

3

x1

x2

Figure 6.4 The direction field for the system
x′ = F(x) given in (6.2.1) with three trajectories.

Equation (6.2.3) implies that x2 = x3
1 . Substituting this result in (6.2.4), it follows

that

0 = x1 − (x3
1 )3

Factoring, we see

0 = x1(1 − x8
1 ) = x1(1 − x4

1 )(1 + x4
1 ) = x1(1 − x2

1 )(1 + x2
1 )(1 + x4

1 )

from which we determine that x1 = 0,1, or −1. Recalling that x2 = x3
1 , the

corresponding x2-values are x2 = 0,1, and −1, and we have found that the
equilibrium points of the system (6.2.1) are indeed (−1,−1), (0,0), and (1,1).

Here, we see another distinction between linear and nonlinear systems of
differential equations. For a linear system x′ = Ax, the search for equilibrium
solutions means we must solve Ax = 0, which we know has either a unique
solution or infinitely many solutions. With nonlinear systems, it is possible
that any number of equilibrium solutions exist (from none to infinitely many).
Moreover, there are no guarantees that we can even expect to analytically solve
the resulting system of nonlinear algebraic equations to find such equilibria.

When we do find equilibrium solutions to a system, it is natural to ask
about their stability. For example, for the equilibrium solution (0,0) to (6.2.1),
we might observe from figure 6.3 that the origin seems to exhibit behavior similar
to a saddle point and therefore may be unstable. To investigate this further, one
option is to see if there is a linear system of differential equations to which we
can compare (6.2.1). For x1 and x2 near zero, observe that both x3

1 and x3
2 are

extremely small, so that in this region close to the origin it is reasonable for us
to say that

x ′
1 = x2 − x3

1 ≈ x2

x ′
2 = x1 − x3

2 ≈ x1
(6.2.5)
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In particular, note that the approximate system is linear, and we can write
x′ = Ax, for x near 0 with

A =
[

0 1
1 0

]
(6.2.6)

The eigenvalues of the matrix A are λ1 = −1 and λ2 = 1 with corresponding
eigenvectors v1 = [−1 1]T and v2 = [1 1]T. Due to the fact that the eigenvalues
are real and of opposing signs, it follows that the origin is indeed a saddle point
for this approximating linear system and is therefore unstable. The phase plane
for the linear system corresponding to (6.2.6) near 0 is displayed in figure 6.5.
This behavior is consistent with that observed near the origin in figure 6.3.
We will call the system x′ = Ax, where A is given by (6.2.6), the linearization
of (6.2.1) near 0. In section 6.3, we will study this approximation to a nonlinear
system of differential equations near any particular point of interest to us.

We close this section with two examples of nonlinear systems in which
we determine all equilibrium solutions and examine the graphical behavior of
solutions near the equilibria.

Example 6.2.1 Consider the system of differential equations given by

x ′
1 = sinx2

x ′
2 = x2 − x2

1

(6.2.7)

Determine all equilibrium solutions of the system, plot the direction field, and
discuss the behavior of solutions near at least two of the equilibrium solutions.

−1 1

1
x2

x1

−1

Figure 6.5 The direction field for the linear
system x′ = Ax given in (6.2.5).
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Solution. To find the equilibrium solutions, we set x ′
1 = x ′

2 = 0 and solve the
system of equations

0 = sinx2 (6.2.8)

0 = x2 − x2
1 (6.2.9)

Equation (6.2.8) implies that x2 must be any integer multiple of π , while (6.2.9)
shows that x1 and x2 must satisfy the relationship x2

1 = x2. This latter equation
implies that x2 must be non-negative, and therefore with x2 = kπ for any non-
negative integer k, it follows that x1 = ±√

kπ and we have equilibrium solutions
of the form (

√
kπ,kπ), (−√

kπ,kπ) for k = 0,1,2, . . ..
An appropriate window in which to plot the direction field for this system

might therefore be [−3,3] × [−1,8], as this will include the five equilibrium
solutions (0,0), (−√

π,π), (
√

π,π), (−√
2π,2π), and (

√
2π,2π). Plotting

the direction field, as shown in figure 6.6, we see that the system appears to
demonstrate familiar behavior around the equilibrium solutions. For example,
at the solutions (

√
π,π) and (−√

2π,2π), each seems to be a saddle point,
based on the behavior of trajectories nearby. In addition, at the equilibrium
points (−√

π,π) and (
√

2π,2π), the system appears to demonstrate spiraling
behavior where the equilibria might act as stable centers or possibly as unstable
spiral sources. Based on the periodicity of the sine function, we can reasonably
expect that we would see similar behavior demonstrated at other equilibrium
points of the form (±√

kπ,kπ), for k = 3,4, . . .. Note further that all equilibria
lie along the parabola x2 = x2

1 , as dictated by (6.2.9). Finally, it is evident that
(0,0) is an unstable equilibrium, though the precise behavior of solutions nearby
is not entirely clear from the plot.

32

7.5

5.0

1

2.5

−1−2−3

x2

x1

Figure 6.6 The direction field for
the system (6.2.7) with equilibrium
points (0,0), (−√

π,π), (
√

π,π),
(−√

2π,2π), and (
√

2π,2π).
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Indeed, it is apparent that we desire more precision, and not just in the vicinity
of (0,0); our study of the linearization of a system of nonlinear differential
equations in the next section will enable a much more rigorous understanding
of a system’s behavior near any equilibrium point.

Example 6.2.2 Consider the system of differential equations given by

x ′
1 = −x1 + x1x2

2

x ′
2 = −2x2 + x2x1

(6.2.10)

Determine all equilibrium solutions of the system, plot the direction field, and
discuss the behavior of solutions near at least two of the equilibrium solutions.

Solution. In the standard way, to find the equilibrium solutions we set x ′
1 =

x ′
2 = 0 and solve the nonlinear system of equations

0 = −x1 + x1x2
2 = x1(−1 + x2

2 ) (6.2.11)

0 = −2x2 + x2x1 = x2(−2 + x1) (6.2.12)

From (6.2.12), we see that either x2 = 0 or x1 = 2. If x2 = 0, substituting this
value for x2 in (6.2.11), it follows that x1 = 0, so one equilibrium solution is
(0,0). If x1 = 2, then (6.2.11) implies that −1 + x2

2 = 0, which in turn shows
that x2 =±1. Thus, two additional equilibrium solutions have been found: (2,1)
and (2,−1).

A reasonable window for plotting the direction field for this system is
[−2,4] × [−3,3], since this will include the three equilibrium solutions we

2

1

−3

3

−1

−2 4

x2

x1

Figure 6.7 The direction field for the sys-
tem (6.2.10) with equilibrium points (0,0),
(2,1), and (2,−1).
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have found at (0,0), (2,1), and (2,−1). As we see in figure 6.7, it appears that
(0,0) is a stable attracting fixed point and that both coordinate axes are straight-
line solutions. This observation is not surprising if we also think about linear
approximations: for x1 and x2 near zero, x1x2

2 and x1x2 will be extremely small,
and thus for such values the nonlinear system (6.2.10) can be approximated by
the linear system

x ′
1 = −x1

x ′
2 = −2x2

(6.2.13)

The linear system (6.2.13) has the obvious solutions x1(t ) = e−t and x2(t ) =
e−2t , which lead to the observed behavior near (0,0) in the nonlinear system.
From figure 6.7, it also appears that the equilibrium points (2,1) and (2,−1)
are saddle points.

From all of our work in this section, we see that equilibrium solutions remain a
vital part of our understanding of any system, whether linear or not. In addition,
the picture painted by the direction field is fundamental to understanding the
behavior of solutions to a nonlinear system. And yet, we are left desiring more
detail than the direction field can provide. In section 6.3 we will develop the
concept of the linearization of a system in order to link our understanding of
linear systems to the behavior of nonlinear systems near equilibrium points.
Furthermore, in section 6.4, we will generalize Euler’s method for single
differential equations in order to apply it to systems to generate approximate
solutions to solutions.

6.2.1 Plotting direction fields of nonlinear systems
using Maple

The Maple syntax used to generate the plots in this section is essentially identical
to that discussed for direction fields for linear systems in section 3.4.1. As always,
we use the DEtools package, and load it with the command

> with(DEtools):

To define the system of differential equations from example 6.2.1 in Maple, we
use the command

> sys := diff(x[1](t),t) = sin(x[2](t)),
diff(x[1](t),t) = x[2](t) - x[1](t)ˆ2;

The system of differential equations of interest is now stored in “sys.” The
direction field may now be generated by the command

> DEplot([sys], [x[1](t),x[2](t)], t=-1..1,
x[1]=-3..3, x[2]=-1..8, arrows=large, color=gray);
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In plots in section 6.2, we have also included the equilibrium points. These
may be generated by the pointplot command, which requires us to load the
plots package. For example, the syntax

> with(plots): pointplot([0,0], [sqrt(Pi),Pi],
[-sqrt(Pi),Pi], [sqrt(2*Pi),2*Pi], [-sqrt(2*Pi),
2*Pi], symbol=circle, symbolsize=7);

will produce a plot of just these five points in the plane. To superimpose these
points on the direction field, we can assign names to each plot and then display
them together. Giving the respective plots the names DF and EQsol, we can
use the display command as follows. Note the use of colons, rather than
semicolons, to suppress output when we assign names to the plots.

> DF := DEplot([sys], [x[1](t),x[2](t)], t=-1..1,
x[1]=-3..3, x[2]=-1..8, arrows=large, color=gray):
> EQsol := pointplot( [0,0], [sqrt(Pi),Pi],
[-sqrt(Pi),Pi], [sqrt(2*Pi),2*Pi], [-sqrt(2*Pi),
2*Pi], symbol=circle, symbolsize=7):
> display(DF, EQsol);

This combination of commands results in the output shown at left in
figure 6.8.

If desired, we can now sketch trajectories by hand. Maple has the capacity to
include such trajectories, given initial conditions. For example, if we are given the
initial conditions x(0) = (2,6) and (−2,6), we can modify the earlier DEplot
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Figure 6.8 At left, the direction field for the system (6.2.7) with equilibrium
points (0,0), (−√

π,π), (
√

π,π), (−√
2π,2π), and (

√
2π,2π). At the

right, the same direction field with trajectories through (2,6) and (−2,6)
is included.
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command to

> DEplot([sys], [x[1](t),x[2](t)], t=-2..2,
x[1]=-3..3, x[2]=-1..8, arrows=medium, color=gray),
[[x[1](0)=2,x[2](0)=6], [x[1](0)=-2,x[2](0)=6]]);

This most recent command, when saved and displayed simultaneously with the
above plot of equilibrium solutions, results in the righthand plot in figure 6.8.

As a reminder, we always expect to experiment some with the window in
which the plot is displayed: the range of x- and y-values certainly affects how
clearly the direction field is revealed, and the range of t -values impacts how
much of each trajectory is plotted. As the most recent section shows, a study of
a system’s equilibrium points is a helpful guide for choosing a window in which
to display a plot.

Exercises 6.2
In exercises 1–7, (a) determine all equilibrium solutions, (b) use Maple to plot
the direction field, and (c) from the direction field, visually estimate whether
equilibrium solutions are stable or unstable and discuss the long-term behavior
of solutions.

1. x ′
1 = x2 − 2x1x2

x ′
2 = 4x1x2 − x1

2. x ′
1 = 4 − x2

2

x ′
2 = 1 − x1 + x2

3. x ′
1 = cosx2

x ′
2 = 1 − sinx1

4. x ′
1 = 2x1 − x2

x ′
2 = −4x1 + 2x2

5. x ′
1 = e−x2

x ′
2 = 1/(1 + x2

1 )

6. x ′
1 = ln(2 + x2)

x ′
2 = x2

1 + x2

7. x ′
1 = x2 − x2

1

x ′
2 = x1 − 8x2

2

8. Recall from section 6.1 that the nonlinear system of differential equations

W ′ = −0.75W + 0.25MW

M ′ = 0.5M − 0.1MW
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models the numbers of wolves and moose (each measured in hundreds) in
a predator–prey situation. Determine all equilibrium solutions to this
system, plot an appropriate direction field in a computer algebra system,
and discuss the apparent long-term behavior of the wolf and moose
populations.

9. Recall that if x1 = θ is the angle that the arm of a pendulum forms with the
positive x-axis (as shown in figure 6.2) and x2 = x ′

1 = θ ′, then x1 and x2

satisfy the nonlinear system of differential equations

x ′
1 = x2

x ′
2 = − g

L
sinx1

Let g = 9.8 m/s2 and assume that the length of the arm is L = 2 m.
Determine all equilibrium solutions to this system, plot an appropriate
direction field in a computer algebra system, and discuss the long-term
behavior of solutions to the system. Be sure to relate your answers directly
to the behavior of the pendulum and corresponding initial conditions.

6.3 Linear approximations of nonlinear systems

In our first look at nonlinear systems in the preceding section, we considered
the system

x ′
1 = x2 − x3

1

x ′
2 = x1 − x3

2

(6.3.1)

and observed informally that near the origin where x ≈ 0, we can drop the x3
1

and x3
2 terms so that (6.3.1) can be approximated by the linear system x′ = Ax

where

A =
[

0 1
1 0

]
(6.3.2)

In this section, we make this notion of linear approximation of nonlinear systems
more precise and use this approach to classify the stability of equilibria of
nonlinear systems.

An important idea in calculus is that all well-behaved functions are locally
linear. That is, they appear linear when viewed up close; the line the function
emulates is the tangent line to the curve at the point on which we focus. In
particular, for a function f (x) that is differentiable at the value x = a, f (x) ≈L(x)
for x near a, where

L(x) = f (a) + f ′(a)(x − a) (6.3.3)

The function L(x) is usually called the tangent line approximation or linearization
of f at x = a.
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We encounter the very same ideas in multivariable calculus. For a
differentiable vector function r : R → R

3 given by

r(t ) =
⎡
⎣ f (t )

g (t )
h(t )

⎤
⎦

for values of t near some fixed value a, the curve in space that r(t ) generates
can be approximated by the tangent line to the curve. In particular, r(t ) ≈ L(t )
where

L(t ) = r(a) + r′(a)(t − a) =
⎡
⎣ f (a) + f ′(a)(t − a)

g (a) + g ′(a)(t − a)
h(a) + h′(a)(t − a)

⎤
⎦ (6.3.4)

for t near a. As in the case of the scalar function f , L is called the tangent line
approximation or linearization of r at t = a.

Similarly for a differentiable real-valued function of several variables F :
R

2 → R given by z = F(x,y), F(x,y) can be approximated by its tangent plane
for (x,y) near some fixed point (a,b). That is, we have the approximation
F(x,y) ≈ L(x,y) where

L(x,y) = f (a,b) + fx(a,b)(x − a) + fy (a,b)(y − b) (6.3.5)

L is called the tangent plane approximation or linearization of f at (a,b).
There is obviously a great deal of similarity in the algebraic forms of the

linear approximations given in (6.3.3), (6.3.4), and (6.3.5). How can we apply
these ideas to systems of nonlinear differential equations? The next example, in
which we reconsider (6.3.1), suggests one approach. Because of the pending use
of partial derivatives, we will temporarily use the notation x =[x1 x2]T =[x y]T.

Example 6.3.1 Consider the system of differential equations

x ′ = f (x,y) = y − x3

y ′ = g (x,y) = x − y3 (6.3.6)

Determine linear approximations to both f (x,y) and g (x,y) at the point (1,1).
Then explain how these linear combinations may be combined to form an
overall linear approximation of (6.3.6) near (1,1).

Solution. In section 6.2, we considered this same system (using x1 and x2 for
the functions, instead of x and y) and learned that the equilibrium solutions
to the system are (−1,−1), (0,0), and (1,1). As noted at the start of this
section, we have already considered a linear approximation of the system
at (0,0). Here, we focus on the behavior of solutions near the equilibrium
solution (1,1).

To first approximate x ′ = f (x,y) = y −x3 near (1,1), we use (6.3.5) to find
the tangent plane approximation. Noting that fx(x,y) = −3x2 and fy (x,y) = 1,
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it follows that fx(1,1) = −3 and fy (1,1) = 1. Moreover, f (1,1) = 0 since
(1,1) is an equilibrium solution of the system. Now, it follows that for (x,y)
near (1,1),

f (x,y) ≈ f (1,1) + fx(1,1)(x − 1) + fy (1,1)(y − 1) = 0 − 3(x − 1) + 1(y − 1)
(6.3.7)

Similar ideas applied to y ′ = g (x,y) = x − y3 show that for (x,y) near (1,1),

g (x,y) ≈ g (1,1) + gx(1,1)(x − 1) + gy (1,1)(y − 1) = 0 + 1(x − 1) − 3(y − 1)
(6.3.8)

If we now consider the overall system (6.3.6), for (x,y) near (1,1) we have the
approximation

x ′ = f (x,y) ≈ −3(x − 1) + 1(y − 1)
y ′ = g (x,y) ≈ 1(x − 1) − 3(y − 1) (6.3.9)

Using the fact that both equations in (6.3.9) are linear and writing this system
in matrix form with x = [x y]T, we have

x′ ≈
[−3 1

1 −3

][
x − 1
y − 1

]
=
[−3 1

1 −3

]
x +
[−3 1

1 −3

][−1
−1

]

=
[−3 1

1 −3

]
x +
[

2
2

]
(6.3.10)

Hence we have approximated the original nonlinear system with a linear one
by writing it in the form x′ ≈ A(x − a) = Ax + b, where b = −Aa, for x
near a.

Because we have found that we may approximate the system (6.3.6) with
the linear system (6.3.10), we can now use our understanding of linear
systems to determine the behavior of the nonlinear system near the chosen
equilibrium point. Specifically, the fact that the eigenvalues of the matrix A
in (6.3.10) are λ = −2 and λ = −4 tells us that the equilibrium solution (1,1)
of (6.3.1) is a stable, attracting node, as we initially conjectured graphically
from figure 6.4.

Moreover, the approach we have taken in example 6.3.1 may certainly be
generalized. Any nonlinear system of two differential equations may be written
in the form

x′ = F(x) (6.3.11)

where F is a function of the form F(x) = F(x,y) = (f (x,y),g (x,y)). Given an
equilibrium solution of (6.3.11) at a = (a,b), notice that F(a) = 0; in particular,
f (a,b) = g (a,b) = 0.
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If, as in example 6.3.1, we approximate f and g near (a,b) with

f (x,y) ≈ f (a,b) + fx(a,b)(x − a) + fy (a,b)(y − b)

= fx(a,b)(x − a) + fy (a,b)(y − b)

g (x,y) ≈ g (a,b) + gx(a,b)(x − a) + gy (a,b)(y − b)

= gx(a,b)(x − a) + gy (a,b)(y − b)

we observe that in matrix form we have

x′ = F(x)

=
[

f (x,y)
g (x,y)

]

≈
[

fx(a,b)(x − a) + fy (a,b)(y − b)
gx(a,b)(x − a) + gy (a,b)(y − b)

]

=
[

fx(a,b) fy (a,b)
gx(a,b) gy (a,b)

][
x − a
y − b

]

In matrix notation, we have written that x′ = F(x) ≈ J(a)(x − a) for x near a,
where a is an equilibrium point of the original system and J(a) is a matrix with
constant entries. The matrix J(a), which is defined by

J(a) =
[

fx(a,b) fy (a,b)
gx(a,b) gy (a,b)

]
(6.3.12)

is known as the Jacobian matrix of the function F evaluated at the point (a,b).
More generally, for any differentiable function F : Rn → R

m given by F(x) =
F(x1, . . . ,xn) = (f1(x1, . . . ,xn), . . . , fm(x1, . . . ,xn)), the Jacobian matrix J(x) is
given by

J(x) =

⎡
⎢⎢⎢⎣

∂f1/∂x1 ∂f1/∂x2 · · · ∂f1/∂xn

∂f2/∂x1 ∂f2/∂x2 · · · ∂f2/∂xn
...

...
...

...

∂fm/∂x1 ∂fm/∂x2 · · · ∂fm/∂xn

⎤
⎥⎥⎥⎦ (6.3.13)

The Jacobian enables us to write the linearization of any differentiable function
F for x near a point a as

F(x) ≈ F(a) + J(a)(x − a) (6.3.14)

which is remarkably similar to the tangent line approximation (6.3.3). Note that
we must evaluate the Jacobian matrix at the point a of interest; moreover, if we
are working with a nonlinear system of differential equations with equilibrium
point a, it follows that F(a) = 0, so that we have

x′ = F(x) ≈ J(a)(x − a) (6.3.15)
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This entire discussion of linearizing nonlinear systems is important for several
reasons. One is that it demonstrates how we can take a problem we do not
fully understand (the nonlinear system) and gain more knowledge of it by
approximating the system near a point of interest with a simpler (linear) system
that we do understand. Moreover, because we have completely classified the
stability of equilibria of linear systems through the eigenvalues of the system’s
matrix, we classify the equilibria of nonlinear systems by doing so for the
corresponding linearization. We will use the same terminology and classification
scheme for equilibria of nonlinear systems that we established for linear ones
in sections 3.4 and 3.5. Two examples now follow to demonstrate these ideas in
greater detail.

Example 6.3.2 Given the system of differential equations

x ′
1 = 9x2 − x2

2

x ′
2 = x1

determine all equilibrium points of the system, evaluate the Jacobian at each
equilibrium point, and find a corresponding linearization of the system in order
to analyze the behavior of trajectories near each equilibrium point and the
stability of equilibria. Finally, plot the direction field of the given system to
confirm the observations made.

Solution. First, we observe that x′ = F(x) for

F(x) = F(x1,x2) = (f (x1,x2),g (x1,x2)) = (9x2 − x2
2 ,x1)

Setting x′ = 0, it follows that x1 = 0 and x2(9 − x2) = 0, so that the equilibrium
points of the system are (0,0) and (0,9).

Taking the appropriate partial derivatives, the Jacobian of F is

J(x) =
[

0 9 − 2x2

1 0

]
Therefore, for values of x1 and x2 near the equilibrium point a = (0,0) = 0, we
have that x′ = F(x) ≈ J(0)(x − 0), or

x′ ≈
[

0 9
1 0

]
x

For this linear system, the eigenvalues of the matrix J(0) are λ= 3 and λ=−3, so
the origin is a saddle point and therefore unstable. Moreover, we expect there to
be two approximately straight-line solutions (along the respective eigenvectors
of J(0)) that pass through the origin, along one of which the solution tends
toward (0,0) while on the other the solution is repelled away from (0,0).

For x1 and x2 near the equilibrium point a = (0,9), we have that x′ = F(x) ≈
J(a)(x − a), or

x′ ≈
[

0 −9
1 0

][
x1 − 0
x2 − 9

]
=
[

0 −9
1 0

]
x +
[

81
0

]
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Figure 6.9 The direction field for
Example 6.3.2.

For this nonhomogeneous linear system, the eigenvalues of the matrix J(0,9)
are λ = 3i and λ = −3i. Because the eigenvalues are purely imaginary, it follows
that the equilibrium point (0,9) is a stable center. Nearby this point, we expect
to see trajectories orbit the point in approximately elliptical loops.

All of our observations are confirmed by the graphical behavior evidenced
in figure 6.9.

Example 6.3.3 For the system of differential equations

x ′
1 = sinx2

x ′
2 = x2 − x2

1

(6.3.16)

determine all equilibrium points of the system, evaluate the Jacobian at each
equilibrium point, and find a corresponding linearization of the system in order
to analyze the behavior of trajectories near each equilibrium point and the
stability of equilibria. Finally, plot the direction field of the given system to
confirm the observations made.

Solution. The given system is the same one that we studied in example 6.2.1
in the preceding section. There we discovered that for any equilibrium solution
x = (x1,x2), x2 must be any integer multiple of π and x2

1 = x2, so that x2 must

be non-negative. Thus, the equilibrium solutions have the form (
√

kπ,kπ),
(−√

kπ,kπ) for k = 0,1,2, . . ..
Letting x′ = F(x) = (sinx2,x2 − x2

1 ), it follows that the Jacobian of F is

J(x) =
[

0 cosx2

−2x1 1

]
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For values of x1 and x2 near the equilibrium point a = (0,0) = 0, we have that
x′ = F(x) ≈ J(0)(x − 0), or

x′ ≈
[

0 1
0 1

]
x

The eigenvalues of the matrix J(0) are λ = 0 and λ = 1, so the origin is unstable,
because the real eigenvalue λ = 1 > 0 will drive solutions away from the origin
as t → ∞. Moreover, because λ = 0 is an eigenvalue of J(0), it also follows that
all solutions near 0 are approximately straight-line solutions.

For x1 and x2 near the equilibrium point a = (
√

π,π), we have that x′ =
F(x) ≈ J(a)(x − a), or

x′ ≈
[

0 −1
−2

√
π 1

][
x1 −√

π

x2 −π

]
=
[

0 −1
−2

√
π 1

]
x +
[

π

π

]

The eigenvalues of the matrix J(
√

π,π) are approximately λ = 2.448 and
λ = −1.448, and so the equilibrium point (

√
π,π) is a saddle point and unstable.

However, if we consider the equilibrium point a = (−√
π,π), we have that

x′ = F(x) ≈ J(a)(x − a), or

x′ ≈
[

0 −1
2
√

π 1

][
x1 +√

π

x2 −π

]
=
[

0 −1
2
√

π 1

]
x +
[

π

π

]

In this case, the eigenvalues of the matrix J(−√
π,π) are approximately

λ = 0.5 ± 1.815i. Because these complex eigenvalues have positive real parts, it
follows that the equilibrium solution (−√

π,π) is a spiral source and is unstable.
If we continue exploring equilibrium points of the form (±√

kπ,kπ), we
can show through the Jacobian that whenever k is odd, the point (

√
kπ,kπ) is a

saddle point and the point (−√
kπ,kπ) is a spiral source. Conversely, whenever

k is even, (
√

kπ,kπ) is a spiral source and the point (−√
kπ,kπ) is a saddle. In

particular, every equilibrium point of the system is unstable.
These observations are all confirmed in the direction field shown in

figure 6.10.

Through linear approximation, the tools we developed for linear systems
enable us to understand and classify the stability of equilibria and behavior of
solutions near equilibrium points for nonlinear systems. In the next section, we
will explore how to actually compute approximate solutions via Euler’s method
for systems.

Exercises 6.3
In exercises 1– 6, find the Jacobian of the given function, F.

1. F(x1,x2) = (x2
1 + x2,x1 − x2

2 )

2. F(x1,x2) = (e2x1x2,cosx1 + sinx2)

3. F(x1,x2) = (x2 − 2x1x2,4x1x2 − x1)
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Figure 6.10 The direction field for
the system (6.3.16) with equilibrium
points (0,0), (−√

π,π), (
√

π,π),
(−√

2π,2π), and (
√

2π,2π).

4. F(x1,x2) = (4 − x2
2 ,1 − x2

1 )

5. F(x1,x2,x3) = (1/(1 + x2
1 + x2

2 + x2
3 ),e−x2

1 −x2
2 −x2

3 ,2x1 − 3x2
2 + x4

3 )

6. F(x1,x2,x3) = (3x1 − x2 + 4x3,x1 + x2 − 2x3,−2x1 + 5x2 − x3)

In exercises 7–10, find the linearization of the given function, F(x1,x2), at the
given point a.

7. F(x1,x2) = (x2
1 + x2,x1 − x2

2 ), a = (1,−1)

8. F(x1,x2) = (x2e2x1,cosx1 + sinx2), a = (π/2,0)

9. F(x1,x2) = (x2 − 2x1x2,4x1x2 − x1), a = (1/2,1/4)

10. F(x1,x2) = (4 − x2
2 ,1 − x2

1 ), a = (−1,2)

In exercises 11–17, find all equilibrium points of the system, determine
the linearization of the given system near each equilibrium point, classify the
stability of each equilibrium point, and compare your work to a plot of the
direction field for the system.1

11. x ′
1 = x2 − 2x1x2

x ′
2 = 4x1x2 − x1

12. x ′
1 = 4 − x2

2

x ′
2 = 1 − x1 + x2

1 Note that in the exercises of section 6.2, equilibrium solutions were found and direction fields were
plotted in exercises 1–7, which correspond to the same systems of differential equations given here.
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13. x ′
1 = cosx2

x ′
2 = 1 − sinx1

14. x ′
1 = 2x1 − x2

x ′
2 = −4x1 + 2x2

15. x ′
1 = e−x2

x ′
2 = 1/(1 + x2

1 )

16. x ′
1 = ln(2 + x2)

x ′
2 = x2

1 + x2

17. x ′
1 = x2 − x2

1

x ′
2 = x1 − 8x2

2

18. Recall from section 6.1 that the nonlinear system of differential equations

W ′ = −0.75W + 0.25MW

M ′ = 0.5M − 0.1MW

models the numbers of wolves and moose (each measured in hundreds) in
a predator-prey situation. Determine the linearization of the system near
the nonzero equilibrium solution, classify the stability of this equilibrium,
and discuss the long-term behavior of the wolf and moose populations.2

19. Recall that if x1 = θ is the angle that the arm of a pendulum forms with the
positive x-axis (as shown in figure 6.2) and x2 = x ′

1 = θ ′, then x1 and x2

satisfy the nonlinear system of differential equations

x ′
1 = x2

x ′
2 = − g

L
sinx1

Let g = 9.8 m/s2 and L = 2 m. Determine the linearization of the system
near the equilibrium solution at zero and at least one other equilibrium
solution, classify the stability of these equilibria, and discuss the long-term
behavior of the pendulum. Be sure to relate your answers directly to the
behavior of the pendulum and corresponding initial conditions.

20. In example 6.2.2, we considered the system of differential equations
given by

x ′
1 = −x1 + x1x2

2

x ′
2 = −2x2 + x2x1

Determine the linearization of the system near each equilibrium solution,
classify the stability of each equilibrium point, and discuss the behavior of
solutions nearby.

2 In the exercises of section 6.2, equilibrium solutions were found and the direction field was plotted
for this system in exercise 8; similarly, see the results of exercise 9 in section 6.2 for use in the problem 19
below.
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6.4 Euler’s method for nonlinear systems

Just as we experienced with single nonlinear initial-value problems such as

y ′ = ye−y + 1, y(0) = 1 (6.4.1)

or

y ′ = t 2 + y2 + 1, y(0) = −1 (6.4.2)

that we could not solve explicitly, in the past two sections we have encountered
systems of nonlinear differential equations for which solutions to corresponding
initial-value problems cannot be determined analytically. We therefore desire
to explore ways to estimate solutions to these problems.

For IVPs such as (6.4.1) and (6.4.2), we know that we may estimate a
solution to the problem through Euler’s method. Recall from Section 2.6 that
for any first-order IVP in the form y ′ = f (t ,y), y(t0) = y0, given a step-size h
we are able to generate the sequence of points (t1,y1), . . . ,(tn,yn) such that

tn+1 = tn + h and yn+1 = yn + hf (tn,yn), for n ≥ 0 (6.4.3)

where yn ≈ y(tn). That is, yn approximates the solution y to the initial-value
problem at the point where t = tn .

To explore how we can extend Euler’s method to systems of differential
equations, let us consider the initial-value problem given by

x ′ = 9y − y2, x(0) = 1

y ′ = x, y(0) = 8
(6.4.4)

Here, we choose to use the notation x = [x y]T rather than [x1 x2]T due to the
fact that we will be using subscripts to label approximations to the component
solutions x(t ) and y(t ). Keeping in mind that x and y are each implicit functions
of t , we can view (6.4.4) as being of the form

x ′ = f (x,y, t ), x(t0) = x0

y ′ = g (x,y, t ), y(t0) = y0
(6.4.5)

To see how to approximate solutions to this system of IVPs, let us reconsider
our earlier studies of single differential equations. In section 2.6, we considered
the equation y ′ = f (t ,y) in a first-order IVP and emphasized the fact that Euler’s
method relies on following the tangent line approximation to y(t ) at each step.
In particular, if we have some approximation yn to the solution y at the t -value
tn , then to move along the tangent line to the next approximation (tn+1,yn+1),
it follows that

yn+1 = yn +�y

= yn + �y

�t
·�t

= yn + m ·�t (6.4.6)

where m is the slope at each step of our approximation given by m = y ′ = f (t ,y)
in the differential equation that we are attempting to solve. Specifically, given
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the approximation yn at time tn , the slope of the tangent line to the solution
curve at this point is f (tn,yn). Therefore, using this value for m in (6.4.6), letting
h = �t be the step size, we have

yn+1 = yn + hf (tn,yn) (6.4.7)

An essentially identical approach will work for the system (6.4.5). In particular,
given the initial condition (x0,y0) and a step-size h, we can generate the
approximate solution (x(t1),y(t1)) ≈ (x1,y1) by taking

x1 = x0 + h · f (t0,x0,y0)
y1 = y0 + h · g (t0,x0,y0)

(6.4.8)

The only difference between this approach and our experience with Euler’s
method for a single equation is that we obviously have to update two
approximations at once, as estimates of both x(tn) and y(tn) are needed to
generate approximations of x(tn+1) and y(tn+1). We generalize our latest
observation in (6.4.8) for a step from the approximation (xn,yn) to the
approximation (xn+1,yn+1) by

xn+1 = xn + h · f (tn,xn,yn)
yn+1 = yn + h · g (tn,xn,yn)

(6.4.9)

At the end of this section, we will discuss the implementation of Euler’s
method for systems in Excel. For now, we simply report the results of such
an implementation here to see the approximations generated. For the original
system we considered above,

x ′ = 9y − y2, x(0) = 1
y ′ = x, y(0) = 8

(6.4.10)

recall that this system was also studied in example 6.3.2 in section 6.3. There
we observed that the equilibrium solution (0,9) is a stable center of the system
and that we expect elliptical orbits nearby. If, for the IVP (6.4.10), we choose a
step-size of h = 0.1 and take enough steps to complete the expected loop in the
orbit, we see the abbreviated data in table 6.1.

In particular, we notice that after taking a sufficient number of steps to
loop back around to near the initial condition (1,8), we have in fact not
returned to this point; in fact, we have missed it appreciably with the two nearest
approximations being (0.527,6.259) and (2.243,6.312).

If we decrease the step size h and take more steps, we can improve the
accuracy of the approximation. Doing so with h = 0.01 results in the values in
table 6.2.

We see that the approximate trajectory has completed one full loop and has
nearly returned to pass through the point (1,8) where the trajectory began. This
behavior is more consistent with what we expected based on the classification
of the equilibrium point (0,9) as a stable center through linearization in the
preceding section.
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Table 6.1
Euler’s method applied to (6.4.10)
with step-size h = 0.1

tn xn yn

0 1 8

0.1 1.8 8.1

0.2 2.529 8.28

0.3 3.12516 8.5329

...
...

...

2 −1.146540202 6.373703158

2.1 0.527383445 6.259049138

2.2 2.242958058 6.311787483

2.3 3.93970067 6.536083289

Table 6.2
Euler’s method applied to (6.4.10)
with step-size h = 0.01

tn xn yn

0 1 8

0.01 1.08 8.01

0.02 1.159299 8.0208

0.03 1.237838674 8.03239299

...
...

...

2.09 0.934286677 7.878994865

2.1 1.022610614 7.888337731

2.11 1.110302289 7.898563837

2.12 1.197299927 7.90966686

In the first example with Euler’s method we just completed, we observe one of
the major weaknesses of the method: when a large number of steps are needed
and some of the changes in x and y are large, a substantial amount of roundoff
error enters the calculations. While more sophisticated numerical methods exist
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(and are studied in chapter 7), for now we limit ourselves to Euler’s method in
order to first get an intuitive feel for the numerical behavior of approximate
solutions. Another example follows.

Example 6.4.1 For the system of initial-value problems given by

x ′ = y − x3, x(0) = 2
y ′ = x − y3, y(0) = −1 (6.4.11)

estimate the solution to the IVP up to t = 5 using h = 0.1 and comment on the
behavior of the trajectory.

Solution. In the given problem, if we take the perspective that x ′ = f (t ,x,y)
and y ′ = g (t ,x,y), then it follows that f (t ,x,y) = y −x3 and g (t ,x,y) = x −y3.
Applying (6.4.9) with h = 0.1, we have

xn+1 = xn + 0.1 · (yn − x3
n)

yn+1 = yn + 0.1 · (xn − y3
n)

Beginning this iteration with x0 = 2 and y0 = −1, we generate the following
table.

tn xn yn

0 2 −1

0.1 1.1 −0.7

0.2 0.8969 −0.5557

0.3 0.769180708 −0.448849846

...
...

...

4.7 0.994536765 0.994533281

4.8 0.995620126 0.995618024

4.9 0.996490144 0.996488877

5 0.997188297 0.997187534

In the table, we see behavior consistent with the fact that the equilibrium point
(1,1) of the system is a stable attracting node. In addition, the numerical data is
in agreement with the graphical behavior we expect based on the direction field
in figure 6.4 where we first considered the given nonlinear system. This behavior
is also seen in the following plot in figure 6.11, which shows the (xn,yn) data
from n = 0, . . . ,50 generated by Excel.
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Figure 6.11 The trajectory for the IVP (6.4.11) generated by Euler’s method
with h = 0.1.

Example 6.4.1 shows that when small changes in t lead to very small changes in
x(t ) and y(t ), such as near a stable, attracting node, Euler’s method produces
reasonable approximations without having to resort to extremely small h-values.
We also see the importance of having a theoretical understanding of the
expected behavior in advance of executing computations in order to check the
reasonableness of our results.

6.4.1 Implementing Euler’s method for
systems in Excel

Just as we did for single initial-value problems in section 2.6.1, we will use Excel
to generate approximate solutions to system IVPs. In this setting, given an initial
value problem

x ′ = f (x,y, t ), x(t0) = x0

y ′ = g (x,y, t ), y(t0) = y0
(6.4.12)

we seek approximations x1,x2, . . . and y1,y2, . . . such that (xn,yn) ≈ (x(tn),
y(tn)), where tn+1 = tn + h for some chosen step-size h. In particular, we
have shown that these approximations are generated using Euler’s method
by the rule

xn+1 = xn + h · f (tn,xn,yn)

yn+1 = yn + h · g (tn,xn,yn)
(6.4.13)

In a spreadsheet, we will view the following data: step number n, stepsize h, tn ,
xn , yn , f (tn,xn,yn), and g (tn,xn,yn), where tn is the value of the independent
variable and (xn,yn) ≈ (x(tn),y(tn)) is an estimate to the solution to the IVP at
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the value tn . This data will appear in a given row where the row contains all these
values for the corresponding n-value. From this, we naturally build subsequent
approximations (xn+1,yn+1) based on the preceding row.

We will demonstrate the development of such an Excel spreadsheet for the
particular example

x ′ = y − x3, x(0) = 2

y ′ = x − y3, y(0) = −1
(6.4.14)

that we investigated in example 6.4.1.
To begin, we establish names for the various columns, say in cells A1 through

G1, and see on our screen in Excel the information below.

A B C D E F G

1 n h t n x n y n f(x n,y n) g(x n,y n)

In most of the examples we consider with Euler’s method, the system will be
autonomous (i.e., t is implicit in the functions f and g ), and therefore we choose
to omit t from the column labels for f (tn,xn,yn) and g (tn,xn,yn).

In the subsequent row 2, we now enter the given data at step zero. In
particular, in cell A2 we enter the step number (“0”), in B2 the chosen stepsize
(“0.1”), in C2 the starting t -value (“0”), in D2 the starting x-value (“2”),
and in E2 the starting y-value (“-1”). Next, in F2, we apply the function
f (t ,x,y) to get the slope at the point at this step. That is, since in this IVP
f (t ,x,y) = y − x3, we enter in F2 the command “= E2 - D2ˆ3”. Similarly,
since g (t ,x,y) = x−y3, inG2we enter “= D2 - E2ˆ3”. Now our spreadsheet
appears as follows.

A B C D E F G

1 n h t n x n y n f(x n,y n) g(x n,y n)

2 0 0.1 0 2 -1 -9 3

In the next row, row 3, we may now build subsequent entries based on
existing data. To increase the step number, in A3 we enter “= A2 + 1”. Since
the step-size stays constant throughout, in B3 we input “= B2”. Since the next
t -value will be the preceding t -value plus the stepsize (t1 = t0 + h), we enter in
C3 the command “= C2 + B2”.

To compute the next x-value in cell D3 from Euler’s method, we know that
x1 = x0 + hf (t0,x0,y0). Hence, in D3 we write “= D2 + B2*F2”. Similarly,
to compute y1 = y0 + hg (t0,x0,y0), in cell E3 we enter “= E2 + B2*G2”.

Finally, we also need values of f (t1,x1,y1) and g (t1,x1,y1) for use in
the following step. This involves simply updating the functions f (t ,x,y) and
g (t ,x,y) at the given t -, x-, and y-values, so we select cell F2, copy it, and paste
it into cell F3. Equivalently, we can directly enter in F3 “= E3 - D3ˆ3”.
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We can similarly copy G2 into G3, or in G3 enter “= D3 - E3ˆ3”. Below is
the current state of our spreadsheet.

A B C D E F G

1 n h t n x n y n f(x n,y n) g(x n,y n)

2 0 0.1 0 2 -1 -9 3

3 1 0.1 0.1 1.1 -0.7 -2.031 1.443

Now we can harness the power of Excel to compute as many subsequent
steps as we like. By using the mouse to highlight row 3, and then placing the
cursor on the bottom right corner of cell E3, we can click and drag downward
to fill subsequent rows with similar calculations. For example, doing so through
row 7 yields the following.

A B C D E F G

1 n h t n x n y n f(x n,y n) g(x n,y n)

2 0 0.1 0 2 -1 -9 3

3 1 0.1 0.1 1.1 -0.7 -2.031 1.443

4 2 0.1 0.2 0.8969 -0.5557 -1.2771929 1.0685015

5 3 0.1 0.3 0.7691807 -0.4488498 -0.9039271 0.8596087

6 4 0.1 0.4 0.6787879 -0.3628889 -0.6756426 0.7265762

7 5 0.1 0.5 0.6112237 -0.2902313 -0.5185811 0.6356711

As we have noted previously, besides the relative simplicity of these
computations, there are further advantages Excel offers. One is that changing
one appropriately chosen cell will update all of our computations. For example,
if we are interested in the change induced by a different step-size, say h = 0.01,
all we need to do is enter “0.01” in cell B2, and every other cell will update
accordingly. In addition, if we desire to see the graphical results of our work, we
can use Excel’s Chart Wizard.

To plot the trajectory generated by our approximations, we can simultane-
ously highlight the x and y columns in our chart above (cells C2 through C7
and D2 through D7), and then go to Insert menu and select Chart (alternatively,
we may click on the Chart Wizard icon on the toolbar). In the prompt window
that arises, we choose “XY (Scatter)” and select one of the graph style options at
the right. By clicking “Next” in a few subsequent windows (in which advanced
users can avail themselves of more options), we eventually get to a final window
where our graph appears and the option to “Finish.” Clicking on “Finish,” the
graph will appear in the spreadsheet and may be moved around by clicking and
dragging it accordingly. We see the resulting plot displayed as in figure 6.12.

Exercises 6.4
In exercises 1–7, use Euler’s method with the stated h-value to estimate the
solution of the given system of IVPs at the given t -value. Compare your work to
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Figure 6.12 An Excel plot of an approximate solution to the IVP (6.4.14).

a plot of the direction field for the system and the classification of any relevant
equilibrium solutions.3

1. x ′ = y − 2xy, x(0) = 0.75
y ′ = 4xy − x, y(0) = 0.5

t = 1, h = 0.1

2. x ′ = 4 − y2, x(0) = −2
y ′ = 1 − x + y, y(0) = −1

t = 1, h = 0.05

3. x ′ = cosy, x(0) = 2
y ′ = 1 − sinx, y(0) = 3

t = 1, h = 0.1

4. x ′ = 2x − y, x(0) = 1
y ′ = −4x + 2y, y(0) = 1

t = 1, h = 0.1

5. x ′ = e−y , x(0) = 0
y ′ = 1/(1 + x2), y(0) = 0

t = 1, h = 0.05

6. x ′ = ln(2 + y), x(0) = −1
y ′ = x2 + y, y(0) = −0.5

t = 1, h = 0.1

7. x ′ = y − x2, x(0) = 1
y ′ = x − 8y2, y(0) = 0.75

t = 1, h = 0.05

3 In the exercises of section 6.2, equilibrium solutions were found and direction fields were plotted in
exercises 1–7, which correspond to the same systems of differential equations given here. Similarly, in
section 6.3, equilibrium solutions were classified through linearization in exercises 11–17, which also
correspond to these systems.
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8. Recall from section 6.1 that the nonlinear system of differential equations

W ′ = −0.75W + 0.25MW

M ′ = 0.5M − 0.1MW

models the numbers of wolves and moose (each measured in hundreds),
in a predator-prey model where time is measured in years. Assume that at
time t = 0 there are 250 moose and 550 wolves. Estimate the numbers of
moose and wolves present at t = 3, 6, and 9 years using a step-size of (a)
h = 0.1, and (b) h = 0.01. Discuss your findings and describe the behavior
of the trajectory.4

6.5 For further study

6.5.1 The damped pendulum

In our development of the pendulum equation, we learned that for a pendulum
with an arm of length L and bob of mass m, the angle θ that the arm forms with
the positive x-axis at time t satisfies the IVP

Lθ ′′ = −g sinθ, θ(0) = θ0, θ ′(0) = θ ′
0 (6.5.1)

provided that we assume no friction is present in the screw from which the
pendulum hangs and there is no air drag on the bob. Here, we investigate the
effects of such resistance on the pendulum’s behavior.

(a) Under the natural assumption that the friction or damping that is present
is directly proportional to the velocity of the bob along the arc of motion,
explain why it follows the pendulum is governed by the IVP

Lθ ′′ = −g sinθ − cθ ′, θ(0) = θ0, θ ′(0) = θ ′
0 (6.5.2)

where c is the damping constant.

(b) Using the standard change of variables, convert the nonlinear
second-order IVP (6.5.2) to a nonlinear system of first-order IVPs. Write
the system in the form x′ = F(x) for an appropriate function F.

(c) Determine all equilibrium solutions of the system in (b). Are the equilibria
different from those of the undamped pendulum?

(d) Let a given pendulum have an arm of length L = 1 m, and recall that
g = 9.8 m/sec2. For each of the c-values c = 0.5, c = 1, c = 2, and c = 5,
plot the direction field for the system in (b) as well as trajectories that
correspond to the stated initial conditions below. For each plot, discuss the

4 In the exercises of section 6.2, equilibrium solutions were found and the direction field was plotted
for this system in exercise 8.
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behavior of the pendulum over time and how damping affects the
observed behavior.

(i) θ(0) = 2, θ ′(0) = 0
(ii) θ(0) = 4, θ ′(0) = 0

(iii) θ(0) = 2, θ ′(0) = 10
(iv) θ(0) = 2, θ ′(0) = −10

In addition, be sure to discuss the physical interpretation of each set of
initial conditions and how these conditions affect the trajectories.

(e) Using c = 1, find the linear approximation of the system in (b) at two
different equilibrium points, one that is stable and another that is
unstable. Discuss the graphical behavior of the two linear systems you find
near the equilibrium points and how this compares to the plot of the
corresponding direction field in (d).

(f) Again using c = 1 and L = 1, apply Euler’s method with h = 0.01
to the system in (b) with the initial conditions θ(0) = 2, θ ′(0) = 10.
Experiment with how many steps are needed in order to have the
approximations approach the stable equilibrium (2π,0), plot the
approximations you compute, and compare the results to the appropriate
direction field in (d).

6.5.2 Competitive species

In our development of the predator–prey equations, we used the fundamental
assumption that the prey population would, in the absence of a predator, grow
according to an exponential model, and similarly that the predator would decay
exponentially if no prey is available. These hypotheses led us to equations of the
form

x ′ = ax − cxy
y ′ = −by + dxy

(6.5.3)

where x is the prey population and y represents the number of predators. Recall
that the terms −cxy and dxy represent a fraction of the number of predator–prey
interactions that are, respectively, harmful or beneficial to the two species.

In what follows, we consider a similar scenario where, instead of one
species preying on the other, two species are competing for resources. In this
setting, species interactions (modeled by “xy”) are harmful to both species. In
addition, rather than assuming exponential growth or decay for the individual
populations, we explore the affects of the assumption that each population on
its own grows logistically.

(a) Assume that in the absence of another species competing for resources, the
population x(t ) grows according to the logistic model

x ′ = ax
(

1 − x

A

)
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where a and A are positive constants (a is the population’s growth
constant and A is its carrying capacity). Similarly, for a second population
y(t ), assume that without another competing species present y(t ) is
governed by the model

y ′ = by
(

1 − y

B

)
where b and B are positive constants.

By viewing a fraction of the interactions xy as harmful, we can subtract
from each of the above differential equations a term proportional to xy –
say αxy from x ′ and βxy from y ′ – to account for this competition. Do so,
and show that the populations x(t ) and y(t ) satisfy the system of
equations given by

x ′ = ax(1 − 1
A x − α

a y)

y ′ = by(1 − 1
B y − β

b x)
(6.5.4)

(b) Throughout the remaining questions, we assume that x and y represent
populations measured in thousands. We explore the impact of different
constants in the equations, as well as various initial conditions. In (6.5.4),
let a = 0.5, b = 0.25, A = 5, B = 2, α = 0.04, and β = 0.02. Find all
equilibrium points of the system. (Hint: there are more than two
equilibria.)

(c) At each of the equilibrium points determined in (b), compute the
linearization of the system (6.5.4), and hence determine the stability of the
equilibrium point.

(d) In an appropriate window, plot the direction field for the system (6.5.4)
and discuss how the direction field supports your conclusions regarding
the stability of various equilibrium points in (c). Discuss the long-term
behavior of the two populations for several different initial conditions.

(e) With the initial conditions x(0) = 2, y(0) = 2, use Euler’s method for
systems to estimate the values of the populations at a range of time values.
Use a step size of h = 0.1 and compare your results to the plot in (d).

(f) In (6.5.4), use the parameter values given in (b), except change the carrying
capacity of the second population to B = 15. Respond to prompts (b), (c),
(d), and (e) for this scenario and compare and contrast the updated system
with the first one considered. In the new situation, which population will
dominate in the long run? Why do you think this is the case?

(g) In (6.5.4), let a = 0.5, b = 0.25, A = 5, and B = 2, but now adjust the
parameters α and β to reflect greater competition for resources by setting
α = 0.4, and β = 0.2. Respond to prompts (b), (c), (d), and (e) for this
scenario and compare and contrast the updated system with the first one
considered. In the new situation, which population is more likely to
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dominate in the long run? For which initial conditions is the weaker
population able to survive?

(h) Suppose there are three different species x , y , and z , all competing for
resources. Under the assumption that population interactions xy and xz
are harmful to x , and so on, what system of differential equations models
the behavior of the three species?



7
Numerical methods for differential equations

7.1 Motivating problems

In previous chapters, we have learned to solve a wide range of differential
equations. Primarily, our focus has been on linear differential equations: first-
order linear equations, higher order linear equations with constant coefficients,
and systems of linear equations with constant coefficients. Indeed, we have
learned through a variety of techniques that under the proviso that a differential
equation or system is linear, we can almost always find a solution.

The situation is much more complicated for nonlinear equations. For
example, while we can use an integrating factor to solve the linear first-order
differential equation y ′ + y = t , if we replace y by y2, the differential equation

y ′ + y2 = t (7.1.1)

is no longer linear. In addition, (7.1.1) is not separable, nor is it exact.
With none of our established analytical methods available, it appears that we
cannot solve this differential equation. If faced with the related initial-value
problem

y ′ + y2 = t , y(0) = 1 (7.1.2)

we know that we can visually approximate a solution by plotting the direction
field that corresponds to the differential equation. Moreover, we learned in
section 2.6 that we can generate a sequence of estimates of the values of the
solution y(t ) at discrete t -values separated by a step-size h according to the rule

tn+1 = tn + h and yn+1 = yn + hf (tn,yn), for n ≥ 0 (7.1.3)

421
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The algorithm that generates this sequence of approximations is called Euler’s
method.

We encounter the same difficulties with higher order differential equations.
While we can solve almost any higher order linear equation with constant
coefficients, such as

y ′′ + a1y ′ + a0y = f (t )

nonlinear equations are much more difficult. For instance, as discussed in
section 6.1, a simple pendulum may be modeled by the nonlinear second-order
initial-value problem

θ ′′ + g

L
sinθ = 0, θ(0) = θ0, θ ′(0) = θ1 (7.1.4)

where θ(t ) is the angle the arm of the pendulum forms with a vertical axis at
time t . In chapter 6, we introduced several different approaches to approximate
the solution to (7.1.4); each was based on converting the second-order equation
to a system of first-order equations and approximating the solution to the
resulting system.

Finally, nonlinear systems of differential equations are important in their
own right. A prominent example is the predator–prey equations, discussed in
detail in section 6.1, where two populations M (t ) and W (t ) (in hundreds)
are modeled by the following system of nonlinear first-order initial-value
problems:

W ′ = W (−0.75 + 0.25M ), W (0) = 3
M ′ = M (0.5 − 0.1W ), M (0) = 7

(7.1.5)

As with the pendulum, the nonlinearity of these equations makes determining an
analytical solution (i.e., formulas for W (t ) and M (t )) impossible, and therefore
we must instead be content to find approximate solutions. In section 6.4, we
introduced an extension of Euler’s method that can be used to produce some
basic approximations to the solution of a system of nonlinear initial-value
problems such as (7.1.5).

But through a variety of examples considered in sections 2.6 and 6.4, we
have seen that Euler’s method has a big downside: each step produces significant
error, and each step compounds the error from the preceding step. To get
an accurate approximation using Euler’s method, a very small step-size h is
usually needed. With modern computing power so readily available, we might be
tempted to simply take very small h-values in this approach and be content to do
thousands of computations to get estimates of solutions. But taking smaller and
smaller values of h proves to be an unsatisfactory approach for many reasons,
perhaps most significantly because of the fact that as numbers get extremely
small, computers have great difficulty distinguishing them from zero and major
round-off errors can result.

Instead, we will seek to develop approaches in the spirit of Euler’s method,
but more sophisticated in that they naturally reduce the error that comes from
using a step of h =�t . Our goal is to develop numerical methods for initial-value
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problems (for first-order, higher order, and systems) that, given a step-size h,
produce an accurate approximate solution to the initial-value problem. We
desire that the methods give reasonably good approximations for small (but
not too small) values of h, while at the same time not requiring too many
calculations. In the upcoming sections, we will discuss problems of the nature
of (7.1.2), (7.1.4), (7.1.5), and more, and develop and apply algorithms that
produce acceptable approximations to solutions.

7.2 Beyond Euler’s method

To approach an initial-value problem that we cannot solve by standard
techniques, such as separation of variables or integrating factors, we have learned
that one option is to use Euler’s method. Given the IVP

y ′ = f (t ,y), y(t0) = y0

this algorithm generates a sequence of points (t1,y1), (t2,y2), . . ., (tn,yn)
according to the rule

yn+1 = yn + hf (tn,yn) for n ≥ 0 (7.2.1)

where tn+1 = tn + h. Each yn is an approximation to the value of the actual
solution y at the value tn . That is, y(tn) ≈ yn .

Euler’s method is developed by using the standard tangent line approxi-
mation in calculus. While this is instructive and intuitive, the method is the
least accurate of many other available methods. In this section, we begin to
develop algorithms beyond Euler’s method in an effort to increase the accuracy
of our approximations while actually decreasing the number of computations
we execute.

Before we develop new approaches, we first revisit some important concepts
from numerical integration in calculus. These ideas not only remind us of key
issues in approximation techniques, but also inform our efforts to approximate
solutions to initial-value problems. Given a continuous function f (t ) on an

interval [t0, t0 + h], there are several basic approximations to
∫ t0+h

t0
f (t )dt .

Specifically,∫ t0+h
t0

f (t )dt ≈ h · f (t0) (left endpoint rule)∫ t0+h
t0

f (t )dt ≈ h · f (t0 + h) (right endpoint rule)∫ t0+h
t0

f (t )dt ≈ h · f (t0)+f (t0+h)
2 (trapezoid rule)∫ t0+h

t0
f (t )dt ≈ h · f

(
t0 + h

2

)
(midpoint rule)

It is a standard exercise in calculus to show that the left and right endpoint rules
are the least accurate approximations of the four, while the midpoint rule is the
best. While one can make sophisticated arguments using Taylor series to justify
claims about the size of the error in such an approximation, visual arguments are
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just as convincing: sampling f at the midpoint of the interval usually balances
the behavior of the function and leads to the best approximation of the integral
of the four options above.

There is a direct link between the numerical approximation of definite
integrals and numerical methods to estimate solutions to initial-value problems
such as Euler’s method. Given the IVP

y ′(t ) = f (t ,y), y(t0) = y0

if we integrate both sides of the differential equation with respect to t from t = t0

to t = t0 + h for some h > 0, then∫ t0+h

t0

y ′(t )dt =
∫ t0+h

t0

f (t ,y(t ))dt (7.2.2)

Integrating the left side of (7.2.2), we have

y(t0 + h) − y(t0) =
∫ t0+h

t0

f (t ,y(t ))dt

or equivalently

y(t0 + h) = y(t0) +
∫ t0+h

t0

f (t ,y(t ))dt (7.2.3)

Estimating the integral in (7.2.3) with the left endpoint rule,

y(t0 + h) ≈ y(t0) + hf (t0,y(t0)) (7.2.4)

Using the initial condition y(t0) = y0, it follows that

y(t0 + h) ≈ y0 + hf (t0,y0) (7.2.5)

which is precisely the first step in Euler’s method. That is, we have shown
in our efforts to step from t = t0 to t = t0 + h along the solution y(t ) that this
process can be equivalently achieved by estimating the value of a definite integral.
Moreover, Euler’s method can be viewed as arising naturally from estimating
the required definite integral through a left endpoint rule.

As such, it is not surprising that Euler’s method is not an accurate approach,
for neither is the left endpoint rule for approximating integrals. The availability
of the trapezoid and midpoint rules as better approximations leads us to consider
two improvements upon Euler’s method.

7.2.1 Heun’s method

To improve on Euler’s method, we return to (7.2.3), and instead estimate
the definite integral on the right-hand side with the trapezoid rule. Doing so,
we find

y(t0 + h) ≈ y(t0) + h · f (t0,y(t0)) + f (t0 + h,y(t0 + h))

2
(7.2.6)
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The difficulty in (7.2.6) is that the last term in the approximation on the right-
hand side involves y(t0 +h), the very quantity we are trying to estimate. One way
to view what is occurring in this approach is that we are trying to use not only the
slope at (t0,y0), computed as f (t0,y0), but also the slope at (t0 + h,y(t0 + h)).
While we do not know y(t0 +h) exactly, we can estimate this value using Euler’s
method. In particular, if we use the fact that y(t0) = y0 and employ the Euler
approximation y(t0 + h) ≈ y0 + hf (t0,y0), then from (7.2.6) we find that

y(t0 + h) ≈ y0 + h · f (t0,y0) + f (t0 + h,y0 + hf (t0,y0))

2
(7.2.7)

Generalizing (7.2.7) to the situation where we are moving from the known
approximation y(tn) ≈ yn at point (tn,yn) to a new approximation (tn+1,yn+1)
with tn+1 = tn + h, we have developed Heun’s method given by

yn+1 = yn + h · f (tn,yn) + f (tn+1,yn + hf (tn,yn))

2
(7.2.8)

Because this algorithm is more complicated than Euler’s method, some
additional notation can assist us in its implementation. We first let

an = f (tn,yn) (7.2.9)

which is the slope of the solution curve at (tn,yn) given by the IVP. We observe
that the expression an arises twice in (7.2.8), and that we also have to compute
f (tn+1,yn + han). We therefore let

bn = f (tn+1,yn + han) (7.2.10)

It follows that Heun’s method is then executed by computing

yn+1 = yn + h · an + bn

2
(7.2.11)

In this light, we see that Heun’s method uses the average of two slopes (the
slope at (tn,yn) and the approximate slope at (tn+1,yn+1)) in order to predict
the next value of the solution y(t ). We consider an example to demonstrate
how Heun’s method is implemented and to contrast its results with those from
Euler’s method.

Example 7.2.1 Execute ten steps of Heun’s method with h = 0.1 to find an
approximate solution of the initial-value problem

y ′ = 2t (2 − y), y(0) = 1

Compare the results to Euler’s method as well as the exact solution of the IVP.

Solution. Note first that the given differential equation is both linear and

separable. The exact solution of the IVP is y(t ) = 2 − e−t 2
.
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To apply Heun’s method, we must compute an , bn , and yn at each step.
To begin, a0 = f (t0,y0). From the stated IVP, f (t ,y) = 2t (2 − y) and (t0,y0) =
(0,1). Thus,

a0 = 2 · 0 · (2 − 1) = 0

In addition, b0 = f (t1,y0 + ha0), so

b0 = 2 · 0.1 · (2 − (1 + 0.1 · 0)) = 0.2

With both a0 and b0 calculated, we can now determine y1 to be

y1 = y0 + h

2
(a0 + b0) = 1 + 0.1

2
(0 + 0.2) = 1.01

Repeating these same steps to determine y2, we find that

a1 = f (t1,y1) = f (0.1,1.01) = 2 · 0.1 · (2 − 1.01) = 0.198

and

b1 = f (t2,y1 + ha1) = f (0.2,1.01 + 0.1 · 0.198)

= 2 · 0.2 · (2 − 1.0298) = 0.38808

so that

y2 = y1 + 0.1

2
(a1 + b1) = 1.01 + 0.05(0.198 + 0.38808) = 1.039304

Implementing the remaining computations in a program such as Excel, it follows
that we can generate the values shown in table 7.1. Included in the table are the
approximations generated by Euler’s method, as well as the errors resulting from
both methods which are computed by comparison to the exact solution of the
IVP. For simplicity, we report the results from every other step in each algorithm.

Table 7.1
Euler’s method and Heun’s method applied to the IVP y ′ = 2t(2 − y), y(0) = 1,
using h = 0.1

Euler Heun Solution Euler error Heun error

tn yn yn y(tn) |y(tn) − yn| |y(tn) − yn|

0 1 1 1 0 0

0.2 1.02 1.039304 1.039210561 0.019989439 0.000093439

0.4 1.115648 1.147959794 1.147856211 0.038539949 0.000103583

0.6 1.267756544 1.302226785 1.302323674 0.053302085 0.000096889

0.8 1.445838152 1.472149858 1.472707576 0.061796472 0.000557718

1 1.618293319 1.630946606 1.632120559 0.062514097 0.001173953
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Obviously, Heun’s method is a major improvement over Euler’s method. In fact,
given that we use the Euler approximation at each step to help forecast the next
slope encountered, it is somewhat remarkable how accurate Heun’s method
is. It can be shown rigorously that the error in Heun’s method is a significant
improvement over Euler’s method by relating the error in the approximation
to the step-size h; it turns out1 that the error in Euler’s method is proportional
to h2, while the error in Heun’s method is proportional to h3. Finally, we might
observe that it appears unusual that the error in Heun’s method actually drops
from t4 = 0.4 to t6 = 0.6, and that the growth in the error slows in Euler’s
method at the same stage. This is due to the fact that the solution function

y(t ) = 2−e−t 2
is an increasing function whose concavity changes (from concave

up to concave down) at the point t = 1/2; the change in concavity allows
the linear approximations to temporarily catch up, instead of having the error
continue to increase at an increasing rate.

We have seen that Heun’s method is developed using an application of the
trapezoid rule in numerical integration. We consider another similar method
(based on the midpoint rule) before introducing more sophisticated techniques
in section 7.3.

7.2.2 Modified Euler’s method

The midpoint rule is normally more accurate than the trapezoid rule.2 Given
our experience with Heun’s method and its connection to the trapezoid rule, it
makes sense to see if we can develop a related method that uses the perspective
of the midpoint rule.

Recalling (7.2.3),

y(t0 + h) = y(t0) +
∫ t0+h

t0

f (t ,y(t ))dt

if we use the midpoint rule to estimate the integral, then we have to evaluate the
integrand at the midpoint t0 + h/2 of the interval [t0, t0 + h]. Doing so,

y(t0 + h) ≈ y(t0) + hf

(
t0 + h

2
,y

(
t0 + h

2

))
(7.2.12)

As with Heun’s method, in the context of trying to solve the IVP y ′ = f (t ,y),
y(t0) = y0, only y(t0) is known. Thus, we do not know—and therefore have to
estimate—the value of y(t0 +h/2) in (7.2.12). We again employ Euler’s method
and write

y

(
t0 + h

2

)
≈ y(t0) + h

2
f [t0,y(t0)] (7.2.13)

1 A more formal analysis of errors that shows the dependence on powers of h is discussed in
section 7.3.
2 On an interval where f (x) has consistent concavity, the midpoint rule is approximately twice as
accurate as the trapezoid rule.
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Substituting (7.2.13) in (7.2.12) and replacing y(t0) with y0,

y(t0 + h) ≈ y0 + hf

[
t0 + h

2
,y0 + h

2
f (t0,y0)

]
(7.2.14)

Generalizing (7.2.14) to the situation where we are moving from a known
approximation y(tn) ≈ yn at point (tn,yn) to the next approximation at
(tn+1,yn+1), we have developed the Modified Euler method given by

yn+1 = yn + hf

[
tn + h

2
,yn + h

2
f (tn,yn)

]
(7.2.15)

As with Heun’s method, some additional notation assists us in tracking our
computations. Let an = f (tn,yn) and

cn = yn + h

2
an

so that

yn+1 = yn + hf

(
tn + h

2
, cn

)
(7.2.16)

We consider an example in order to see the implementation of the Modified
Euler method and to compare its results to those of Heun’s method. We again
employ an IVP that we can solve exactly in order to compare the errors of the
two methods.

Example 7.2.2 Consider the initial-value problem y ′ = e2t −y , y(0) = 1. Apply
the Modified Euler method to estimate the value of y(1) using h = 0.1 and
compare the results with Heun’s method and the exact solution.

Solution. Since y ′ = e2t −y is a linear first-order differential equation, we can
find the general solution y(t ) = Ce−t + 1

3 e2t , and hence the exact solution to
the IVP is

y(t ) = 2

3
e−t + 1

3
e2t

To begin the Modified Euler method, we know from the given IVP that f (t ,y) =
e2t − y and that (t0,y0) = (0,1). Thus, a0 = f (t0,y0) = e2·0 − 1 = 0. Next,
we observe that c0 = y0 + h

2 a0 = 1 + 0.05 · 0 = 1. To compute y1, by (7.2.16)
we have

y1 = y0 + hf

(
t0 + h

2
, c0

)
= 1 + 0.1 · (exp2(0 + 0.05) − 1)

= 1 + 0.1 · 0.105170918 = 1.010517092

Continuing to the next step, a1 = f (t1,y1) = exp(2 · 0.1) − 1.010517092 =
0.210885666. Next,

c1 = y1 + h

2
a1 = 1 + 0.05 · 0.210885666 = 1.021061375
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Table 7.2
Heun’s method and Modified Euler’s method (ME) applied to the IVP y ′ = e2t −y ,
y(0) = 1 with h = 0.1

Heun ME Solution Heun error ME error

tn yn yn y(tn) |y(tn) − yn| |y(tn) − yn|

0 1 1 1 0 0

0.2 1.044572834 1.043396835 1.043095401 0.001477433 0.000301434

0.4 1.192009094 1.189291538 1.188727007 0.003282087 0.000564531

0.6 1.478251184 1.473408204 1.472580065 0.005671119 0.000828139

0.8 1.959569856 1.951698881 1.950563451 0.009006405 0.00113543

1 2.722082435 2.70981115 2.70827166 0.013810775 0.001539489

Finally,

y2 =y1 +hf

(
t1 + h

2
,c1

)
=1.010517092+0.1·(exp2(0.1+0.05)−1.021061375)

=1.010517092+0.1·0.328797432=1.043396835

Executing eight more steps using a computer, we find the results in table 7.2.
We also show the results from Heun’s method in order to make a comparison
between the two approaches we have developed beyond Euler’s method, again
reporting the results from every other step.

From the table, we see that the Modified Euler method is an improvement
over Heun’s method. This is not too surprising since the former stems from
the midpoint rule for integration, while the latter from the trapezoid rule. In
addition, if we plot the exact solution function, we see that the solution is always
increasing and concave up over the interval of interest; in the presence of such
consistent concavity in the solution function, the midpoint rule will generate
noticeably more accurate approximations than will the trapezoid rule.

Obviously Heun’s method and the Modified Euler method are substantial
improvements over the standard Euler’s method. Not only are their errors much
smaller, but the errors grow less quickly. To better understand why this is so,
observe that Euler’s method relies solely on presently available data in generating
its estimates. That is, the method takes an approach that relies on just one data
point in order to proceed to the next approximation. Our two newest methods
instead look into the future: rather than using the current point and the slope
at that location, they use the current point and an estimate of the slope at a
point that is ahead of our current location. We create these estimates using only
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the currently available data, but the approaches lead to a substantial increase
in accuracy that makes us hopeful for significant improvements through other
predictive approximation techniques that we are yet to investigate.

Exercises 7.2 In exercises 1–10, use (a) Euler’s method, (b) Heun’s method,
and (c) the Modified Euler method to estimate y(1) using h = 0.1, and compare
the approximations generated by the three methods. In exercises 1–6, compare
the approximations with the exact solution.

1. y ′ + 2ty = 0, y(0) = −2

2. y ′ = 2y − 1, y(0) = 2

3. y ′ − y = 0, y(0) = 2

4. (y ′)2 − 2y = 0, y(0) = 2

5. y ′ − y2 = 1, y(0) = 0

6. tyy ′ = −1 − y2, y(0) = 2

7. y ′ + ty = t 2, y(0) = 1

8. y ′ + y2 = t , y(0) = 1

9. y ′ + siny = 2e−t , y(0) = 0

10. y ′ = 2et/2 sin
√

y , y(0) = 0

7.3 Higher order methods

In calculus, we learn that if F(x) is a function with n+1 derivatives in an interval
surrounding a value x = a, then F has a Taylor polynomial expansion that obeys
the relationship

F(x)=F(a)+F ′(a)(x −a)+ F ′′(a)

2! (x −a)2 +···+ F (n)(a)

n!
+ F (n+1)(ζx)

(n+1)! (x −a)n+1 (7.3.1)

which is valid for x-values in an interval surrounding a and ζx is a number within
that interval that depends on x . If we think of our interest in the solution y(t ) of
an initial-value problem, assuming that y is sufficiently differentiable, the Taylor
series expansion of y provides insight into errors that arise in approximation
schemes. In (7.3.1), if we replace F by y , a by t0, and x by t0 + h, noting that
x − a = h, it follows that

y(t0 + h) = y(t0) + hy ′(t0) + h2

2! y ′′(t0) +·· ·+ hn

n! y(n)(t0) + O(hn+1) (7.3.2)

where by “O(hn+1)” we mean “of order hn+1 or “proportional to hn+1.”
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From (7.3.2), we can discern the so-called truncation error of certain
methods. For example, if we use the approximation

y(t0 + h) ≈ y(t0) + hy ′(t0) (7.3.3)

which corresponds to Euler’s method,3 we see that the truncation error is
proportional to h2 from the equation y(t0 + h) = y(t0) + hy ′(t0) + O(h2). We
therefore say that Euler’s method is first-order, in reference to the highest power
of h present in (7.3.3).

Since we use a small step-size h, it is evident that higher order methods
are superior: in the error due to truncation, higher powers of h will approach
zero faster. In what follows, we will investigate second-, third-, and fourth-
order approaches. The first two arise through using the Taylor series expansion
directly, and are therefore called Taylor methods.

7.3.1 Taylor methods

To employ a second-order Taylor method, from (7.3.2) we must be able to
compute

y(t0 + h) ≈ y(t0) + hy ′(t0) + h2

2
y ′′(t0) (7.3.4)

In a standard initial-value problem, we are given y ′ = f (t ,y) (plus an initial
condition), so we can compute y ′′ from the form of the differential equation. In
particular, since

y ′(t ) = f (t ,y(t ))
the chain rule for functions of two variables,4 implies that

y ′′(t ) = d

dt

[
f (t ,y(t ))

]
= ft (t ,y)

d

dt
[t ]+ fy (t ,y)

d

dt
[y]

= ft (t ,y) + fy (t ,y)y ′

= ft (t ,y) + fy (t ,y)f (t ,y) (7.3.5)

Combining (7.3.5) with (7.3.4), we have developed the second-order Taylor
method given by

y(t0 + h) ≈ y(t0) + hf (t0,y0) + h2

2
[ft (t0,y0) + fy (t0,y0)f (t0,y0)] (7.3.6)

Generalizing (7.3.6) to the step from yn to yn+1, we find that

yn+1 = yn + hf (tn,yn) + h2

2
[ft (tn,yn) + fy (tn,yn)f (tn,yn)] (7.3.7)

3 Observe that we are writing y ′(t0), which is given by f (t0,y0) in Euler’s method.
4 We are using the rule that if f (x,y) is a differentiable function of x and y , and x and y are each
differentiable functions of t , then d/dt [f (x,y)] = fx (x,y)dx/dt + fy (x,y)dy/dt .
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where yn ≈ y(tn). We consider an example to demonstrate the implementation
of this method and compare it to results previously considered.

Example 7.3.1 Execute ten steps of the second-order Taylor series method
with h = 0.1 to find an approximate solution of the initial-value problem

y ′ = e2t − y, y(0) = 1

Compare the results to those of Heun’s method and to the exact solution.

Solution. This is the same IVP that we considered in example 7.2.2 with
Heun’s method and the Modified Euler method. To employ (7.3.7), we first must
compute ft (t ,y) and fy (t ,y). Since f (t ,y) = e2t −y , we know that ft (t ,y) = 2e2t

and fy (t ,y) = −1. In addition, to simplify the implementation of the method,
we use notation similar to Heun’s method. We let an = f (tn,yn), rn = ft (tn,yn),
and sn = fy (tn,yn), so that

yn+1 = yn + han + h2

2
[rn + snan]

Beginning with t0 = 0 and y0 = 1, observe that

a0 = f (0,1) = e2·0 − 1 = 0

r0 = ft (0,1) = 2e2·0 = 2

s0 = fy (0,1) = −1

We then have

y1 = y0 + ha0 + h2

2
[r0 + s0a0]

= 1 + 0.1 · 0 + 0.12

2
[2 − 1 · 0]

= 1.01

Similarly, we can compute

a1 = f (0.1,1.01) = e2·0.1 − 1.01 = 0.211402758

r1 = ft (0.1,1.01) = 2e2·0.1 = 2.442805516

s1 = fy (0.1,1.01) = −1

and thus

y2 = y1 + ha1 + h2

2
[r1 + s1a1]

= 1.01 + 0.1 · 0.211402758 + 0.12

2
[2.442805516 − 1 · 0.211402758]

= 1.04229729

Continuing these computations through ten steps, we find the results noted in
table 7.3, which are listed for every other step. Note, too, that we have included
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Table 7.3
Taylor’s method and Heun’s method applied to the IVP y ′ = 2t(2−y), y(0) = 1
using h = 0.1

Taylor Heun Solution Taylor error Heun error

tn yn yn y(tn) |y(tn) − yn| |y(tn) − yn|

0 1 1 1 0 0

0.2 1.04229729 1.044572834 1.043095401 0.000798112 0.001477433

0.4 1.186750654 1.192009094 1.188727007 0.001976353 0.003282087

0.6 1.468880073 1.478251184 1.472580065 0.003699992 0.005671119

0.8 1.944339609 1.959569856 1.950563451 0.006223842 0.009006405

1 2.698337638 2.722082435 2.70827166 0.009934023 0.013810775

the results of Heun’s method from its application to the same IVP with the same
step-size h = 0.1.

From table 7.3, we can see that the errors in Heun’s method and the second-
order Taylor method are roughly proportionate and seem to grow at the same
rate. This suggests that Heun’s method may also be a second-order method—an
assertion that may be proved by studying related higher order methods. In
particular, Heun’s method can be viewed as one of a collection of algorithms
known as Runge–Kutta methods, which we will consider after some additional
work with Taylor methods.

Having shown that we can use the Taylor series (7.3.2) to motivate the
development of the second-order method (7.3.7), it is natural to wonder if we
could extend this work further to a third-order method. This is desirable since
if the error in our method is proportionate to h4, then the method will be more
accurate without having to use smaller values of h.

It is indeed possible to develop a third-order method, provided that the
function f (t ,y) from the given IVP is sufficiently differentiable. In particular,
in order to write

y(t0 + h) ≈ y(t0) + hy ′(t0) + h2

2
y ′′(t0) + h3

3! y ′′′(t0) (7.3.8)

we must compute the third derivative of y . From our earlier work (7.3.5), we
know that

y ′′ = ft (t ,y) + fy (t ,y)f (t ,y) (7.3.9)
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Applying the chain rule to the first term in (7.3.9), along with the fact that
y ′ = f (t ,y),

d

dt

[
ft (t ,y)

] = ftt (t ,y)
d

dt
[t ]+ fty (t ,y)

d

dt
[y]

= ftt (t ,y) + fty (t ,y)f (t ,y) (7.3.10)

where the final step follows from using y ′ = f (t ,y). Using both the product rule
and the chain rule on the second term in (7.3.9) and suppressing the “(t ,y)”
argument of each function present,

d

dt

[
fy f
] = fy

d

dt

[
f
]+ d

dt

[
fy
]
f

= fy (ft + fy f ) + (fyt + fyy f )f

= fy ft + f 2
y f + fyt f + fyy f 2 (7.3.11)

Combining (7.3.10) and (7.3.11) and using the fact that fty = fyt , we have shown
that

y ′′′ = ftt + fty f + fy ft + f 2
y f + fyt f + fyy f 2

= ftt + 2fty f + fy ft + f 2
y f + fyy f 2 (7.3.12)

From (7.3.12), we understand why we normally do not use third-order Taylor
methods in practice: the computations are extremely cumbersome. Were we to
attempt to write

y(t0 + h) ≈ y(t0) + hy ′(t0) + h2

2
y ′′(t0) + h3

3! y ′′′(t0)

in terms of the function f from the given IVP, we would have to compute

y(t0 + h) ≈ y0 + hf + h2

2
(ft + fy f ) + h3

3! (ftt + 2fty f + fy ft + f 2
y f + fyy f 2)

where each appearance of the function f or one of its partial derivatives is also
being evaluated at the point (t0,y0). This combination of the determination
of a large number of functions and the evaluation of each at every stage of an
algorithm makes Taylor methods of orders higher than two unreasonable to
use. Hence, we next introduce one of the most popular and effective numerical
methods for the solution of IVPs (known as Runge–Kutta methods) that enable
us to achieve higher order approximations without the difficulty of computing
multiple partial derivatives and evaluating these functions repeatedly.

7.3.2 Runge–Kutta methods

Where higher order Taylor methods require finding partial derivatives of
y ′ = f (t ,y) and evaluating these derivatives at each stage of the algorithm,
Runge–Kutta methods seek to avoid using partial derivatives altogether, while
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still achieving the desired higher order accuracy. Instead, in Runge–Kutta
methods the function f is evaluated at a greater number of points, essentially
seeking to compute the slope at the current and future points in an effort to
make as accurate a prediction as possible.

Formally, Runge–Kutta methods can be viewed as a generalization of Heun’s
method. Recall that in Heun’s method we write

yn+1 = yn + h

2
(an + bn)

where

an = f (tn,yn) and bn = f (tn+1,yn + han)
Rather than prescribing that we compute or estimate slopes at the points
(tn,yn) and (tn+1,yn+1) and simply average them, a two-stage Runge–Kutta
method takes an arbitrary combination of the function values f (tn,yn) and
f (tn +αh,yn +βhf (tn,yn)). Specifically, we set

yn+1 = yn + c1hf (tn,yn) + c2hf (tn +αh,yn +βhf (tn,yn)) (7.3.13)

and then determine conditions on c1, c2, α, and β that guarantee the
approximation generated by (7.3.13) is second-order through a comparison to
the Taylor expansion of y(tn +h). It can be shown that among the infinitely many
possible valid choices for c1, c2, α, and β, taking α = β = 1 and c1 = c2 = 1/2
results in Heun’s method, which justifies the fact that Heun’s method is
second-order.

Heun’s method is an example of a two-stage Runge–Kutta method; two-
stage refers to the fact that slopes are evaluated or estimated at two points. It
is possible to achieve even higher order Runge–Kutta methods by generalizing
the idea in (7.3.13). In particular, we can take arbitrary combinations of the
values (or estimated values) of f (t ,y) at points in the interval tn ≤ t ≤ tn+1

and select the weights so that the approximation agrees with the Taylor series
expansion for y(tn + h) up to, and including, the term involving h4, h5, or
whatever accuracy we desire. The details of the rigorous development of such
methods are complicated and unenlightening. But, a more intuitive approach
can help us gain a better sense of why the Runge–Kutta method works so well
and where the formulas used in the algorithm come from.

If we recall our development of Heun’s method and the Modified Euler
method, each was linked to the idea of numerically approximating a definite
integral. Specifically, Heun’s method is analogous to the trapezoid rule, and the
Modified Euler method corresponds to the midpoint rule. The trapezoid rule
and midpoint rule both give the exact value of the definite integral of any linear
function; in addition, when a function has consistent concavity over an interval,
the midpoint rule is roughly twice as accurate as the trapezoid rule and the errors
in the midpoint and trapezoid rules have opposite signs. As such, it makes sense
to take a weighted average of the two rules in an effort to cancel out the error of
each. Computing the weighted average

2 · MID + TRAP

3
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results in a new method known as Simpson’s rule that is a remarkably accurate
approximation of the definite integral. In fact, it can be shown that Simpson’s
rule is exact for every cubic polynomial.

This same increase in accuracy can be accomplished through similar ideas
in the numerical approximation of solutions to initial-value problems. Recalling
our work with Heun’s method (H) and the Modified Euler method (ME),

H: yn+1 = yn + f (tn,yn) + f (tn+1,yn + hf (tn,yn))

2
(7.3.14)

ME: yn+1 = yn + hf

(
tn + h

2
,yn + h

2
· f (tn,yn)

)
(7.3.15)

we note that each uses a different expression for �y , the approximate change in
y(t ) in moving from tn to tn+1. If we let

�yH = h

2
[f (tn,yn) + f (tn+1,yn + hf (tn,yn))]

and

�yME = hf

(
tn + h

2
,yn + h

2
· f (tn,yn)

)
then the analogy to Simpson’s Rule for approximating the solution y to the IVP
y ′ = f (t ,y), y(t0) = y0 is given by

yn+1 = yn + 2�yME +�yH

3
(7.3.16)

Using (7.3.14) and (7.3.15) and letting an = f (tn,yn), we have the approximation
rule given by yn+1 = yn +�yS where

�yS = 2

3
hf

(
tn + h

2
,yn + h

2
an

)
+ 1

3
· h

2
[an + f (tn+1,yn + han)]

= h

6

[
an + 4f

(
tn + h

2
,yn + h

2
an

)
+ f (tn+1,yn + han)

]
(7.3.17)

If we slightly modify this expression for �yS in recognition of the fact that as
we proceed across the interval we have more and more information available
(and hence a better approximation of the slope to use), the fourth-order Runge–
Kutta rule emerges. In particular, rather than rely on the value an at every stage
in (7.3.17), we recognize that we are attempting to compute approximate slopes
at not just the left endpoint, but also at the midpoint and right endpoint. It makes
sense that we should use these approximations as they become available to us;
for instance, when we compute the approximate slope at the right endpoint,
we ought to use the approximate slope at the midpoint to do so. Furthermore,
given that the midpoint slope is weighted at 4 and the others at 1 in the average
given by (7.3.17), it is reasonable to invest additional effort ensuring that the
midpoint slope is as accurate as possible.
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As in Heun’s method, the computations are easier to understand, track, and
implement if we introduce some additional notation. In particular, letting

an = f (tn,yn) slope at left endpoint

bn = f (tn + 1
2 h,yn + 1

2 han) slope at midpoint

cn = f (tn + 1
2 h,yn + 1

2 hbn) updated slope at midpoint

dn = f (tn + h,yn + hcn) slope at right endpoint

(7.3.18)

we can replace the expression 4f (tn +h/2,yn +h/2an) in (7.3.17) with the more
accurate estimate 2bn +2cn , and replace f (tn+1,yn +han) with f (tn+1,yn +hcn);
each of these updates takes advantage of the most recent calculation of the
approximate slope at points nearby. We thus arrive at the fourth-order Runge–
Kutta method by setting yn+1 = yn +�y to find

yn+1 = yn + h

6
(an + 2bn + 2cn + dn) (7.3.19)

where an , bn , cn , and dn are defined as at (7.3.18).
Again, through a lengthy development involving complicated calculations,

it can be established rigorously that (7.3.19) is a fourth-order approximation
technique: the resulting truncation error in the approximation is proportional
to h5. The next example demonstrates the remarkable accuracy of the Runge–
Kutta method.

Example 7.3.2 Execute ten steps of the fourth-order Runge–Kutta method
with h = 0.1 to find an approximate solution of the initial-value problem

y ′ = e2t − y, y(0) = 1

Compare the results to those of the second-order Taylor method.

Solution. This is the same IVP as we considered in example 7.3.1. Recall that
the exact solution to the problem is y(t ) = 2/3e−t + 1/3e2t .

To implement the Runge–Kutta method, we use f (t ,y) = e2t − y and
compute an , bn , cn , and dn as given by (7.3.18). Using the initial condition
(t0,y0) = (0,1), we compute

a0 = f (t0,y0) = f (0,1) = e2·0 − 1 = 0

b0 = f

(
t0 + h

2
,y0 + ha0

2

)
= f (0.05,1 + 0.05 · 0) = f (0.05,1)

= e2·0.05 − 1 = 0.105170918

c0 = f

(
t0 + h

2
,y0 + hb0

2

)
= f (0.05,1 + 0.05 · 0.105170918)

= f (0.05,1.005258546) = e2·0.05 − 1.005258546 = 0.099912372

d0 = f (t1,y0 + hc0) = f (0.1,1 + 0.1 · 0.099912372) = f (0.1,1.009991237)

= e2·0.1 − 1.009991237 = 0.211411521
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Table 7.4
Fourth-order Runge–Kutta method and second-order Taylor’s method
applied to the IVP y ′ = 2t(2 − y), y(0) = 1 using h = 0.1

Runge–Kutta (RK) Solution RK error Taylor error

tn yn y(tn) |y(tn) − yn| |y(tn) − yn|

0 1 1 0 0

0.2 1.043096313 1.043095401 0.000000912 0.000798112

0.4 1.188729047 1.188727007 0.000002040 0.001976353

0.6 1.472583611 1.472580065 0.000003546 0.003699992

0.8 1.950569107 1.950563451 0.000005656 0.006223842

1 2.708280362 2.70827166 0.000008701 0.009934023

and therefore

y1 = y0 + h

6
(a0 + 2b0 + 2c0 + d0)

= 1 + 0.1

6
(0 + 0.210341836 + 0.199824744 + 0.211411521)

= 1.010359635

Implementing these same calculations for subsequent steps, we can generate the
output displayed in table 7.4, where again we report the results from every other
step. The error from Taylor’s method is being reported from table 7.3.

In table 7.4 we can see the exceptional accuracy of the fourth-order Runge–Kutta
method. In one sense, this is not surprising. Being a fourth-order method, we
expect the error in the first step to be proportional to h5 = (0.1)5 = 0.00001,
which is in contrast to the second-order Taylor’s method with error proportional
to h3 = 0.001. In each method, the errors are in fact much smaller; one reason
why this is so can be understood by thinking about the coefficient 1/5! = 1/120
that arises in the Taylor expansion of y(t0 + h) and multiplies h5.

What can be considered surprising about the Runge–Kutta method is
that it generates such significant accuracy through a relatively limited number
of computations and by only evaluating the function f (t ,y) from the IVP
at a select number of points, without the need to compute higher order
derivatives. Fundamentally, the method takes four actual or approximate slopes
and computes a weighted average of them in order to predict the next value
of the solution function y(t ). This fourth-order Runge–Kutta method is so
accurate that it is used as the standard plotting tool in Maple when using
the DEplot command. In addition, if we command Maple to produce a



Methods for systems and higher order equations 439

numerical estimate to the solution of a stated IVP, the standard option in the
dsolve command is a slightly more sophisticated algorithm known as the
Runge–Kutta–Fehlberg method.

Exercises 7.3 In exercises 1–10, use (a) the second-order Taylor’s method
and (b) the fourth-order Runge–Kutta method to estimate y(1) using h = 0.1,
and compare the approximations generated by the methods. In exercises 1–6,
compare the approximations with the exact solution. Each IVP in exercises 1–10
is identical to those in exercises 1–10 in section 7.2.

1. y ′ + 2ty = 0, y(0) = −2

2. y ′ = 2y − 1, y(0) = 2

3. y ′ − y = 0, y(0) = 2

4. (y ′)2 − 2y = 0, y(0) = 2

5. y ′ − y2 = 1, y(0) = 0

6. tyy ′ = −1 − y2, y(0) = 2

7. y ′ + ty = t 2, y(0) = 1

8. y ′ + y2 = t , y(0) = 1

9. y ′ + siny = 2e−t , y(0) = 0

10. y ′ = 2et/2 sin
√

y , y(0) = 0

7.4 Methods for systems and higher order
equations

In section 6.4, we introduced an extension of Euler’s method for estimating the
solution to nonlinear IVPs such as

x ′ = 9y − y2, x(0) = 1
y ′ = x, y(0) = 8

(7.4.1)

We again choose to use the notation x = [x y]T rather than [x1 x2]T because
we will be using subscripts to label approximations to the component solutions
x(t ) and y(t ): for instance, x1 ≈ x(t1), where t1 = t0 +h. Recalling that x and y
are each implicit functions of t , we can view (7.4.1) in the form

x ′ = f (x,y, t ), x(t0) = x0

y ′ = g (x,y, t ), y(t0) = y0
(7.4.2)

For a single initial-value problem y ′ = f (t ,y), y(0) = y0, we have developed a
variety of methods for estimating the solution, including Euler’s method, Heun’s
method, and Runge–Kutta, in order of increasing accuracy. We will generalize
each of these methods to the situation for systems, leaving it as an exercise for
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the reader to consider other alternatives, such as the Modified Euler method.
Throughout, we keep in mind that for a single IVP, every method has the form

yn+1 = yn +�y

where �y is an estimate that is obtained by taking the step-size h times some
approximation of the slope of the solution y at or near (tn,yn).

Because Euler’s method is the simplest, we begin there.

7.4.1 Euler’s method for systems

Recall that for a single IVP y ′ = f (t ,y), y(0) = y0, Euler’s method is given by
the algorithm

yn+1 = yn + hf (tn,yn) (7.4.3)

where tn+1 = tn + h, given a step-size h. As was shown in section 6.4, to
implement Euler’s method for a system of two IVPs in the form (7.4.2), for
the step from the approximation (xn,yn) to the approximation (xn+1,yn+1), we
compute

xn+1 = xn + h · f (tn,xn,yn)
yn+1 = yn + h · g (tn,xn,yn)

(7.4.4)

Viewed from a vector perspective, if we let

x =
[

x
y

]
and F(t ,x) =

[
f (t ,x,y)
g (t ,x,y)

]

it follows that Euler’s method for systems is given by the rule

x(n+1) = x(n) + hF(tn,x(n)) (7.4.5)

We use the superscript x(n) ≈ x(tn) to denote the approximation since subscripts
on vectors often indicate particular entries in the vector.

In section 6.4, we saw evidence that Euler’s method is not very effective
because of the errors that arise. To demonstrate this further, we consider an
example involving a linear system whose solution we know exactly.

Example 7.4.1 Use Euler’s method with h = 0.1 to estimate the solution x(1)
to the initial-value problem

x′ =
[−1 2
−2 −1

]
x, x(0) =

[
2
0

]

Compare the results to the exact solution.

Solution. Using established methods from chapter 3, it is straightforward to
show that the solution to the given IVP is

x(t ) = 2e−t
[

cos2t
sin 2t

]
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To estimate this solution via Euler’s method, we first observe that

x′ = F(t ,x) =
[−1 2
−2 −1

][
x
y

]
=
[−x + 2y

−2x − y

]

To compute x(1) ≈ x(t1), we use (7.4.5) and write

x(1) = x(0) + hF(0,x(0)) =
[

2
0

]
+ 0.1

[−1 2
−2 −1

][
2
0

]

=
[

2
0

]
+ 0.1

[−2
−4

]
=
[

1.8
−0.4

]

Continuing Euler’s method in this manner for the subsequent nine steps with
h = 0.1 to estimate x(1), we find the results shown in table 7.5, where the values
from every other step are reported.

The final column in table 7.5 merits some discussion. Since our exact solution
is a vector function and the approximate solutions are also vectors, the error
at each stage is given by the vector e(n) = |x(tn) − x(n)|, where | · | denotes
the absolute value function. The size of a vector can be measured by a single
number, its length (or magnitude or norm), which is computed by taking the
square root of the sum of the squares of its entries. For a vector x ∈ R

3, its length

is ‖x‖ =
√

(x2
1 + x2

2 + x2
3 ), where x1,x2, and x3 are the entries in x. The entries in

Table 7.5
Euler’s method applied to the IVP in example 7.4.1 using h = 0.1

Euler’s method Exact solution Euler error

tn x(n) x(tn) ‖x(tn) −x(n)‖

0

[
2
0

] [
2
0

]
0.000000000

0.2

[
1.54

−0.72

] [
1.508201923

−0.637657545

]
0.088268894

0.4

[
0.9266

−1.1088

] [
0.934032947

−0.961716336

]
0.147271358

0.6

[
0.314314

−1.187352

] [
0.397732304

−1.023027791

]
0.184285265

0.8

[−0.18542494
−1.02741408

] [−0.026240382
−0.898274743

]
0.204979735

1

[−0.512646273
−0.724355863

] [−0.306183731
−0.669023658

]
0.213748529
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the final column in table 7.5 are computed by taking the length of the vector e(n)

which is the difference between the exact solution and the approximate solution
at step n. For example, the error that is present at the second step is

e(1) =
∥∥∥∥
[

1.54
−0.72

]
−
[

1.5082
−0.6376

]∥∥∥∥=
∥∥∥∥
[

0.03180
−0.08234

]∥∥∥∥
=
√

(0.03180)2 + (−0.08234)2 = 0.08827

which is the second entry in the third column of table 7.5.
Clearly, the errors in Euler’s method are significant. From our earlier work

with Heun’s method and the Runge–Kutta method, we expect that we can
attain much better approximations by using analogous approaches for systems.
We consider Heun’s method next.

7.4.2 Heun’s method for systems

From our most recent work, we know that if we view a system of IVPs from the
perspective of vector functions, we are trying to estimate the solution to

x′ = F(t ,x), x(t0) = x0

and that from this point of view, the vector version of Euler’s method is

x(n+1) = x(n) + hF(tn,x(n))

Recalling that Heun’s method for a single differential equation is given by the
rule

yn+1 = yn + h

2
(an + bn) (7.4.6)

where an = f (tn,yn) and bn = f (tn+1,yn +han), we realize that the vector analog
of (7.4.6) is

x(n+1) = x(n) + h

2
(a(n) + b(n)) (7.4.7)

where a(n) and b(n) are given by

a(n) = F(tn,x(n)) and b(n) = F(tn+1,x(n) + ha(n)) (7.4.8)

In order to compare and contrast the vector version of Heun’s method
with Euler’s method, we consider the following example which builds upon
example 7.4.1.

Example 7.4.2 Use Heun’s method with h = 0.1 to estimate the solution x(1)
to the initial-value problem

x′ =
[−1 2
−2 −1

]
x, x(0) =

[
2
0

]

Compare the results to the exact solution and to those from Euler’s method in
example 7.4.1.
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Solution. We are considering the IVP

x′ = F(t ,x) =
[−1 2
−2 −1

][
x
y

]
=
[−x + 2y

−2x − y

]
, x(0) =

[
x0

y0

]
=
[

2
0

]

To compute x(1) ≈ x(0.1) by Heun’s method, we first compute

a(1) = F(t0,x(0)) =
[ −1 2

−2 −1

]
x(0)

=
[ −1 2

−2 −1

][
2
0

]
=
[−2

−4

]

Next, to determine b(1) we write

b(1) = F(t0,x(0) + ha(0)) =
[ −1 2

−2 −1

]
(x(0) + ha(0))

=
[ −1 2

−2 −1

][
2 + 0.1 · (−2)
0 + 0.1 · (−4)

]
=
[−2.6

−3.2

]

Finally, we determine x(1) = x(0) + h/2(a(1) + b(1)) to find

x(1) =
[

2
0

]
+ 0.05

([−2
−4

]
+
[−2.6

−3.2

])
=
[

1.77
−0.36

]

Updating our work and computing the subsequent approximations results in
the values for x(2), . . . ,x(10) shown in table 7.6, where we also display the errors
computed in table 7.5 for Euler’s method applied to the same IVP.

It is apparent from table 7.6 that just as Heun’s method for a single IVP is a
substantial improvement over Euler’s method, it is also better for systems. At
the same time, knowing that even higher order methods such as Runge–Kutta
are available, we aspire to develop even more accurate methods for systems by
converting the Runge–Kutta method for a single DE to one for systems.

7.4.3 Runge–Kutta method for systems

Recall that for the single first-order IVP y ′ = f (t ,y), y(t0) = y0, the fourth-order
Runge–Kutta method is given by

yn+1 = yn + h

6
(an + 2bn + 2cn + dn) (7.4.9)

where

an = f (tn,yn)

bn = f
(
tn + 1

2 h,yn + 1
2 han

)
cn = f

(
tn + 1

2 h,yn + 1
2 hbn

)
dn = f (tn + h,yn + hcn)

(7.4.10)
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Table 7.6
Heun’s method applied to the IVP in example 7.4.2 using h = 0.1

Heun Solution Heun error Euler error

tn x(n) x(tn) ‖x(tn) −x(n)‖ ‖x(tn) −x(n)‖

0

[
2
0

] [
2
0

]
0 0

0.2

[
1.50165
−0.6372

] [
1.508201923

−0.637657545

]
0.006567879 0.088268894

0.4

[
0.924464441
−0.95685138

] [
0.934032947

−0.961716336

]
0.010734249 0.147271358

0.6

[
0.389258164

−1.012962308

] [
0.397732304

−1.023027791

]
0.013157697 0.184285265

0.8

[ −0.03046503
−0.884575076

] [−0.026240382
−0.898274743

]
0.014336266 0.204979735

1

[−0.304699526
−0.654454923

] [−0.306183731
−0.669023658

]
0.014644143 0.213748529

Just as with Euler’s method and Heun’s method, we can develop the vector
analog of the Runge–Kutta method. We do so by letting

x(n+1) = x(n) + h

6

(
a(n) + 2b(n) + 2c(n) + d(n)

)
(7.4.11)

where

a(n) = F
(
tn,x(n)

)
b(n) = F

(
tn + 1

2 h,x(n) + 1
2 ha(n)

)
c(n) = F

(
tn + 1

2 h,x(n) + 1
2 hb(n)

)
d(n) = F

(
tn + h,x(n) + hc(n)

)
(7.4.12)

The computations for the Runge–Kutta method for systems can be implemented
in a way very similar to those for Heun’s method. Doing so and applying the
Runge–Kutta method to the IVP stated in examples 7.4.1 and 7.4.2 results in
the values shown in table 7.7; we also display the error from Heun’s method by
way of contrast.

As with single IVPs, the results of the Runge–Kutta method for systems
are impressive. This is again due to the fact that the Runge–Kutta method is
fourth-order, while Heun’s method is only second-order.

We close this section by recalling the important link between higher order
differential equations and systems of first-order equations.



Methods for systems and higher order equations 445

Table 7.7
Runge–Kutta method applied to the IVP in example 7.4.2 using h = 0.1

RK Solution RK error Heun error

tn x(n) x(tn) ‖x(tn) −x(n)‖ ‖x(tn) −x(n)‖

0

[
2
0

] [
2
0

]
0 0

0.2

[
1.508211151

−0.637671316

] [
1.508201923

−0.637657545

]
0.00001658 0.006567879

0.4

[
0.934038085
−0.96174299

] [
0.934032947

−0.961716336

]
0.00002714 0.010734249

0.6

[
0.397725368

−1.023060398

] [
0.397732304

−1.023027791

]
0.00003334 0.013157697

0.8

[−0.026261217
−0.89830458

] [−0.026240382
−0.898274743

]
0.00003639 0.014336266

1

[−0.306215262
−0.66904348

] [−0.306183731
−0.669023658

]
0.00003724 0.014644143

7.4.4 Methods for higher order IVPs

We have repeatedly used the fact that any linear nth-order differential equation
can be converted to a system of linear first-order equations. For example, given
a second-order equation such as y ′′ + 2y ′ − 3y = sin t , we know that with the
substitution x1 = y , x2 = y ′, it follows that x = [x1 x2]T is a solution to the
system of differential equations

x ′
1 = x2

x ′
2 = 3x1 − 2x2 + sin t

Given our current interest in approximating solutions to initial-value problems,
we are particularly focused on nonlinear equations, including

θ ′′ + g

L
sinθ = 0, θ(0) = a, θ ′(0) = b

which governs the motion of a simple undamped pendulum, as developed in
section 6.1. In this setting, we are unable to determine an exact solution, and
thus wish to generate an approximate one. More generally, we want to be able
to develop an approximate solution to any nonlinear IVP. In the second-order
case, we can view this problem as having the form

y ′′ = f (t ,y,y ′), y(0) = a, y ′(0) = b (7.4.13)
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We introduce the substitution z = y ′, then z ′ = y ′′ = f (t ,y,y ′) = f (t ,y,z), so
that (7.4.13) may be rewritten as the system of IVPs

y ′ = z, y(0) = a
z ′ = f (t ,y,z), z(0) = b

(7.4.14)

Letting x = [y z]T and F(t ,x) = [z f (t ,y,z)]T, we may rewrite (7.4.14) in the
form

x′ = F(t ,x), x(0) =
[

a
b

]
which is precisely the form we considered for Euler’s method, Heun’s method,
and the Runge–Kutta method for systems. That is, once we have converted a
higher order IVP to a system of first-order IVPs, we may choose from any of
our existing approximation methods for systems of DEs. We demonstrate this
for a particular example using Heun’s method.

Example 7.4.3 Use Heun’s method to estimate the solution y(t ) from t = 0
to t = 1 to the second-order IVP

y ′′ + 0.1y ′ + 4siny = 0, y(0) = 1, y ′(0) = 0

with step-size h = 0.1.

Solution. We begin by letting z = y ′, so that z ′ = y ′′ = −4siny − 0.1y ′ =
−4siny − 0.1z . Writing x = [y z]T, it follows that

x′ =
[

z
−4siny − 0.1z

]
= F(t ,x)

Recalling Heun’s method, we must compute

x(n+1) = x(n) + h

2
(a(n) + b(n))

where

a(n) = F(tn,x(n)) and b(n) = F(tn+1,x(n) + ha(n))
With the initial condition x(0) = [1 0], we first find that

a(0) =
[

0
−4sin(1) − 0.1 · 0

]
=
[

0
−3.366

]
from which it follows that

b(0) = F(0.1,x(0) + ha(0)) =
[−0.3366

−3.332

]
Therefore, x(1) is given by

x(1) = x(0) + h

2
(a(0) + b(0))

=
[

1
0

]
+ 0.1

2

([
0

−3.366

]
+
[−0.3366

−3.332

])

=
[

0.98317
−0.33490

]
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Table 7.8
Heun’s method applied to the second-order IVP in example 7.4.3 using h = 0.1

n x(n) a(n) b(n) x(n+1)

0

[
1
0

] [
0

−3.365883939

] [−0.336588394
−3.3322251

] [
0.98317058

−0.334905452

]

2

[
0.933202302

−0.659006349

] [−0.659006349
−3.148220455

] [−0.973828394
−2.952961961

] [
0.851560565
−0.96406547

]

4

[
0.740589862

−1.240510452

] [−1.240510452
−2.574842511

] [−1.497994703
−2.163059344

] [
0.603664604

−1.477405545

]

6

[
0.445309489

−1.663161107

] [−1.663161107
−1.556632719

] [−1.818824379
−0.919669919

] [
0.271210214

−1.786976239

]

8

[
0.088048126

−1.840715689

] [−1.840715689
−0.167666053

] [−1.857482294
0.569252015

] [−0.096861773
−1.820636391

]

10

[−0.276080886
−1.728307853

] [−1.728307853
1.263178986

] [−1.601989955
1.896140173

] [−0.442595776
−1.570341895

]

Executing similar computations for the remaining nine steps to approximate
x(1), we find the results shown in table 7.8.

From the results of table 7.8, we see that

x(1) ≈ x(10) =
[−0.276080886

−1.728307853

]

Recalling that x(t ) = [y(t ) z(t )]T and that our ultimate goal is to estimate the
solution y(t ) to the stated IVP, it follows that y(1) ≈ −0.2761.

The approach in example 7.4.3 can be implemented for higher order initial-
value problems through a substitution to convert a given higher order equation
to a system of first-order ones. More accurate results may be obtained
through applying the fourth-order Runge–Kutta method for systems. We note
particularly that not only can we estimate solutions to nonlinear equations,
but even those with non-constant coefficients. For example, solutions to
IVPs like

y ′′ + ty = 10sin 2t , y(0) = y ′(0) = 0

can now be approximated.

Exercises 7.4 In exercises 1–6, (a) use Euler’s method for systems with h = 0.1
to estimate the solution x(1) to the initial-value problem, (b) use Heun’s method
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for systems with h = 0.1 to estimate the solution x(1) to the initial-value
problem, and (c) if possible, compare the results to the exact solution.

1. x′ =
[

0 −1
1 0

]
x, x(0) =

[
1
1

]

2. x′ =
[ −1 3

3 1

]
x, x(0) =

[
1
1

]

3. x′ =
[ −1 2

2 −4

]
x, x(0) =

[
1
1

]

4. x′ =
[

t −1
1 0

]
x, x(0) =

[
1
0

]

5. x′ =
[

0 −1
1 0

]
x +
[

1
t

]
, x(0) =

[
1
0

]

6. x′ =
[

1 −1
t 0

]
x +
[

1
1

]
, x(0) =

[
0
0

]

In exercises 7–13, (a) use Heun’s method and (b) use the Runge–Kutta method
to estimate the solution of the system of IVPs at the given t -value using the
stated h-value.

7. x ′ = y − 2xy, x(0) = 0.75
y ′ = 4xy − x, y(0) = 0.5

t = 1, h = 0.1

8. x ′ = 4 − y2, x(0) = −2
y ′ = 1 − x + y, y(0) = −1

t = 3, h = 0.05

9. x ′ = cosy, x(0) = 2
y ′ = 1 − sinx, y(0) = 3

t = 1.5, h = 0.1

10. x ′ = 2x − y, x(0) = 1
y ′ = −4x + 2y, y(0) = 1

t = 1.5, h = 0.1

11. x ′ = e−y , x(0) = 0
y ′ = 1/(1 + x2), y(0) = 0

t = 2, h = 0.05

12. x ′ = ln(2 + y), x(0) = −1
y ′ = x2 + y, y(0) = −0.5

t = 2, h = 0.1

13. x ′ = y − x2, x(0) = 1
y ′ = x − 8y2, y(0) = 0.75

t = 1, h = 0.05

14. Recall from section 6.1 that the nonlinear system of differential equations

W ′ = −0.75W + 0.25MW

M ′ = 0.5M − 0.1MW
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models the numbers of wolves and moose (each measured in hundreds) in
a predator–prey model, where time is measured in years. Assume that at
time t = 0 there are 250 moose and 550 wolves present. Estimate the
numbers of moose and wolves present at t = 3, 6, and 9 years using a
step-size of (a) h = 0.1, and (b) h = 0.05 with both Euler’s method and
Heun’s method.

In exercises 15–18, (a) convert the given second-order IVP to a system of first-
order IVPs, (b) use Euler’s method for systems with h = 0.1 to estimate the
solution y(1) to the initial-value problem, (c) use Heun’s method for systems
with h = 0.1 to estimate the solution y(1) to the initial-value problem, and (d) if
possible, compare the results to the exact solution.

15. y ′′ + 16y = 2t + 1, y(0) = y ′(0) = 0

16. y ′′ + 16y = 2sin 2t , y(0) = y ′(0) = 0

17. y ′′ + 16y2 = 2sin 2t , y(0) = y ′(0) = 0

18. y ′′ + 0.2(y ′)2 + 2y2 = 4e−t sin t , y(0) = y ′(0) = 0

7.5 For further study

7.5.1 Predator–prey equations

Recall that a predator–prey scenario is modeled by the equations

x ′ = 0.6x − 0.3xy x(0) = 2
y ′ = −0.9x + 0.6xy y(0) = 3

(7.5.1)

(a) Determine the nontrivial equilibrium solution of (7.5.1) and use a
computer algebra system to plot the direction field of the system in a
suitable window containing the equilibrium solution and the given initial
condition.

(b) Use a computer to implement Heun’s method to estimate the solution
(x(t ),y(t )) of (7.5.1) on the interval 0 ≤ t ≤ 20 using h = 0.1.

(c) Use your data from (b) to generate two plots: one a parametric plot of the
approximate curve (x(t ),y(t )) and the other a simultaneous plot of the
separate functions x(t ) and y(t ) on the same coordinate axes. Discuss the
behavior of the populations x(t ) and y(t ) over time.

(d) Modify your calculations in (b) appropriately to investigate the impact of
changing the parameter ‘0.3’ in the first equation to each of the values 0.1,
0.2, 0.4, 0.5, and 0.9. In each case, generate the same plots as instructed in
(c). What impact does this have on the behavior of the populations?

(e) Modify your calculations in (b) in order to consider the following different
initial conditions: x(0) = 1.7, y(0) = 1.8; x(0) = 2.5, y(0) = 3.6; x(0) = 5,
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y(0) = 1. In each case, generate the same plots as instructed in (c). What
impact do the initial conditions have on the behavior of the populations?

7.5.2 Competitive species

In section 6.5.2, we developed the model

x ′ = ax
(
1 − 1

A x − α
a y
)

y ′ = by
(

1 − 1
B y − β

b x
) (7.5.2)

where a, A, and α are positive constants (a is the population x(t )’s growth
constant, A its carrying capacity, and α a parameter that reflects the competition
for resources from population y(t )). The constants b, B, and β play the same
roles for the second population.

(a) In (7.5.2), let a = 0.5, b = 0.25, A = 5, B = 2, α = 0.04, and β = 0.02.
Find all equilibrium points of the system and plot a direction field in a
computer algebra system of this system that contains all the equilibrium
solutions.

(b) Apply Heun’s method to estimate the solution (x(t ),y(t )) of (7.5.2) on
the interval 0 ≤ t ≤ 20 using h = 0.1. Plot the trajectory of the
approximate solution.

(c) Leaving all other parameters the same, change the value of B to B = 8.
Repeat questions (a) and (b) and discuss the differences between the
results for the two B-values.

(d) Repeat question (c) with B = 15.

(e) What is the largest value of B for which the two populations can coexist
with a stable equilibrium in which each population tends to a nonzero
value as t → ∞? What value(s) of B ensure that population y(t ) will
dominate as t → ∞ and force x(t ) → 0?

(f) For each of the three values of B above, experiment with the impact of the
following different sets of initial conditions: x(0) = 1, y(0) = 1; x(0) = 5,
y(0) = 1; x(0) = 1, y(0) = 5; x(0) = 5, y(0) = 5. How do the different
initial conditions impact the behaviors of the two populations?

7.5.3 The damped pendulum

In section 6.5.1, it was shown that for a pendulum with an arm of length L, bob
of mass m, and damping constant c , the angle θ that the arm forms with the
vertical axis at time t satisfies the IVP

Lθ ′′ = −g sinθ − cθ ′, θ(0) = θ0, θ ′(0) = θ ′
0 (7.5.3)
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(a) Using the change of variables x = θ , y = x ′, show that the nonlinear
second-order IVP (6.5.2) is equivalent to the system

x ′ = y

y ′ = − g

L
sinx − c

L
y

(7.5.4)

(b) Apply Heun’s method to estimate the solution (x(t ),y(t )) of (7.5.4) with
g = 9.8, L = 1, and c = 1 with initial conditions x(0) = 2, y(0) = 2 on the
interval 0 ≤ t ≤ 10 using h = 0.1. Plot the trajectory of the approximate
solution.

(c) Repeat question (b) using c = 0.1 and c = 5. Discuss the differences in the
results.

(d) Investigate the effects of changing the initial conditions to the following:
x(0) = 2, y(0) = 5; x(0) = 2, y(0) = 15; x(0) = 2, y(0) = −5. Do so for
each of the three c-values noted above and discuss the differences among
the results and the physical interpretation that explains how the pendulum
is behaving.
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8
Series solutions for differential equations

8.1 Motivating problems

In more sophisticated courses in mathematical physics or special functions, a
different type of linear differential equation frequently arises from those we
have studied to date. From several perspectives, we have thoroughly analyzed
the behavior of linear differential equations with constant coefficients of the
form

y ′′ + a1y ′ + a0y = f (t )

But there are other important and well-known equations with non-constant
coefficients. We list some of these here in anticipation of more in-depth study
in subsequent sections.

Airy’s equation is a linear second-order equation that arises in physics in the
study of light refraction. While it can be stated in a slightly more general form,
a good example to begin with is

y ′′ + ty = 0 (8.1.1)

The explicit presence of the coefficient “t” in (8.1.1) makes this equation
substantially different from those (such as y ′′ + y = 0) we have already solved.

If we recall the initial approach to solving y ′′ + y = 0, we can gain intuition
for how to proceed with (8.1.1). We know that guessing y = ert in y ′′ + y = 0
leads to the characteristic equation r2 + 1 = 0, so that y = eit or y = e−it . We
then know from Euler’s formula that both y = sin t and y = cos t arise as linearly
independent solutions to y ′′+y = 0. One key characteristic the exponential, sine,
and cosine functions have in common is that they can be expressed as infinite
power series; indeed, this fact was used to justify the validity of Euler’s formula.

453
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In particular, we can write

et = 1 + t + t 2

2! + t 3

3! + · · ·+ t n

n! + · · · (8.1.2)

sin t = t − t 3

3! + t 5

5! − · · ·+ (−1)n+1 t 2n+1

(2n + 1)! + · · · (8.1.3)

cos t = 1 − t 2

2! + t 4

4! − · · ·+ (−1)n t 2n

(2n)! + · · · (8.1.4)

Each of these expressions for et , sin t , and cos t is of the form
∑∞

n=0 ant n and is
valid for every real number t .

In the upcoming chapter, rather than making guesses of the form y = ert ,
we instead assume much more generally that y is a nice enough function to have
a power series expansion of the form y =∑∞

n=0 ant n , and then substitute this
form of the potential solution function y into the differential equation in order
to deduce the coefficients an .

Other well-known differential equations that we will consider include the
Hermite equation

y ′′ − 2ty ′ + 2qy = 0 (8.1.5)
where q is a constant, the Laguerre equation

ty ′′ + (1 − t )y ′ + qy = 0 (8.1.6)

(again where q is constant), and the Bessel equation

t 2y ′′ + ty ′ + (t 2 − n2)y = 0 (8.1.7)

where n is a constant.
Again, in each of (8.1.5), (8.1.6), and (8.1.7), it is the presence of non-

constant coefficient(s) involving t that makes us seek new ways to find solutions.
Finally, recalling an elementary differential equation from calculus further
motivates the importance of infinite series representations of functions. Among
the simplest of all first-order differential equations are those of the form
y ′ = f (t ); these can be solved (in theory) by integrating. But if we consider
an example such as

y ′ = e−t 2

we are immediately stuck since the function e−t 2
lacks an elementary anti-

derivative.
If we use (8.1.2) and replace t with −t 2, then we can write

y ′ = e−t 2 = 1 − t 2 + t 4

2! − t 6

3! + · · ·+ (−1)n+1 t 2n

n! + · · ·
Integrating, it follows that

y = C + t − t 3

3
+ t 5

5 · 2! − t 7

7 · 3! + · · ·+ (−1)n+1 t 2n+1

(2n + 1) · n! + · · ·
Hence we are able to determine the general solution function y , although we
must be content to leave y in its series representation. Discovering solutions in
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this power series form will be typical of the results we obtain in our work in this
chapter.

8.2 A review of Taylor and power series

From calculus, we know that if a function has a derivative at a given point t = a,
then the function is approximately linear near t = a. Indeed, the existence of
the first derivative ensures that the function is smooth: the function must be
continuous at a and it’s graph cannot have a corner there. Of course, if having
one derivative is a good thing, having several derivatives is even better. The
best possible scenario of all is that the function is infinitely differentiable at
t = a. That is, f (k)(a) exists for every k = 0,1,2, . . .. A function that is infinitely
differentiable at t = a and at all points in some small open interval containing a
is said to be analytic1 at t = a. If a function fails to be analytic at a given point,
we say that f is singular at that point. For example, the rational function

f (t ) = t

(t 2 + 9)(t − 4)

is singular at t = 4 and t = ±3i since it is undefined at these values (as are each
of its derivatives). At every other value of t , f (t ) is analytic.

Much of the theory of analytic functions is a natural extension of the ideas
of Taylor polynomials and Taylor series from calculus. Here our intention is
not to develop a complete theory of analytic functions, but rather to remind the
reader of important results on Taylor series and extend this perspective slightly
in order to suit our purposes. Most results will be stated without proof.

To begin, we assume that f is an analytic function at a = 0 and recall that
the polynomial functions

P0(t ) = f (0)

P1(t ) = f (0) + f ′(0)t

P2(t ) = f (0) + f ′(0)t + f ′′(0)

2! t 2

...

Pk(t ) = f (0) + f ′(0)t + f ′′(0)

2! t 2 +·· ·+ f (k)(0)

k! t k (8.2.1)

are called the Taylor polynomials of f at a = 0 and form the sequence of partial
sums of the infinite series

P(t ) = f (0) + f ′(0)t + f ′′(0)

2! t 2 +·· ·+ f (k)(0)

k! t k +·· · (8.2.2)

1 Usually when analytic functions are discussed, we allow the function to have complex inputs and
consider a disk of a given radius around a complex point. For our purposes, a discussion restricted to
real values is sufficient.
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In particular, the function Pk(t ) in (8.2.1) is the kth Taylor polynomial of f at
a = 0, and the infinite series (8.2.2) is called the Taylor series of f centered at
a = 0; the series converges in (8.2.2) if and only if the sequence of partial sums
converges. That is, P(t ) is defined if and only if

lim
k→∞

Pk(t )

exists. If this limit fails to exist, we say that the Taylor series diverges at this point.
What is perhaps most remarkable is the fact that wherever the series (8.2.2)
converges, it does so to the value of the given analytic function f ; moreover,
the Taylor series converges in an interval centered at t = 0 that extends to the
nearest singular point. Formally, we have the following theorem.

Theorem 8.2.1 Suppose that f (t ) is an analytic function at 0 and R is the
distance from 0 to the nearest singular point of f (t ). Then the Taylor series of
f (t ) centered at t = 0 converges to f (t ) in the interval |t | < R and diverges in
the interval |t | > R.

The number R is called the radius of convergence of the Taylor series. We note,
too, that it is possible for singular points to be complex, so R is not necessarily
the distance from 0 to the nearest real singular point. We also observe specifically
that for any t such that |t | < R, we know

f (t ) = f (0) + f ′(0)t + f ′′(0)

2! t 2 +·· ·+ f (k)(0)

k! t k +·· ·
We consider an example to see many of these ideas at work.

Example 8.2.1 Find the Taylor series of f (t ) = ln(1+ t ) centered at t = 0 and
determine the radius of convergence of the series.

Solution. We begin by taking the first several derivatives of f and evaluating
them at 0:

f (t ) = ln(1 + t ) f (0) = ln(1) = 0

f ′(t ) = (1 + t )−1 f ′(0) = 1

f ′′(t ) = (−1)(1 + t )−2 f ′′(0) = −1

f ′′′(t ) = (−2)(−1)(1 + t )−3 f ′′′(0) = 2!
f (4)(t ) = (−3)(−2)(−1)(1 + t )−4 f (4)(0) = −3!

From these calculations, we see that the fourth Taylor polynomial is

P4(t ) = 0 + 1t − 1

2! t 2 + 2!
3! t 3 − 3!

4! t 4

= t − 1

2
t 2 + 1

3
t 3 − 1

4
t 4
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The established pattern implies that the Taylor series of f (t ) = ln(1 + t ) is

P(t ) = t − 1

2
t 2 + 1

3
t 3 − 1

4
t 4 +·· · =

∞∑
n=1

(−1)n+1 1

n
tn

From calculus, the standard way to test a power series for convergence is to use
the Ratio Test. Doing so here with an = (−1)n+1(1/n)t n , we observe that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= lim
n→∞

∣∣∣∣ (−1)n+2(1/n + 1) t n+1

(−1)n+1(1/n) t n

∣∣∣∣
= lim

n→∞

∣∣∣∣−1 · n

n + 1
· t
∣∣∣∣

= |t |
The Ratio Test states that a given series converges if limn→∞ |an+1/an| < 1.
Thus, if |t | < 1, it follows that

ln(1 + t ) = t − 1

2
t 2 + 1

3
t 3 − 1

4
t 4 +·· · =

∞∑
n=1

(−1)n+1 1

n
tn (8.2.3)

converges.

The result of example 8.2.1 makes further sense in light of theorem 8.2.1 since
we know that f (t ) = ln(1+ t ) has a singularity at t = −1. If we substitute t = −1
in (8.2.3), the opposite of the harmonic series arises (−1− 1

2 − 1
3 − 1

4 −·· · ), which
diverges. However, it can be shown by the alternating series test that (8.2.3)
does converge when t = 1; indeed, for any power series that converges for
|t | < R, it is possible for the series to converge at both t = ±R, neither, or just
one of the points. While this is an interesting mathematical topic in its own
right, it is largely irrelevant in our discussion of series solutions to differential
equations.

We next state several prominent Taylor series expansions along with their
respective radii of convergence and leave the development and testing of these
series for convergence to the exercises at the end of this section.

et = 1 + t + t 2

2! + t 3

3! + · · ·+ t n

n! + · · · R = ∞

sin t = t − t 3

3! + t 5

5! − · · ·+ (−1)n+1 t 2n+1

(2n + 1)! + · · · R = ∞

cos t = 1 − t 2

2! + t 4

4! − · · ·+ (−1)n t 2n

(2n)! + · · · R = ∞

1

1 − t
= 1 + t + t 2 + t 3 +·· ·+ t n +·· · R = 1

(8.2.4)
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From these fundamental Taylor series, the series expansions of other related
functions may often be easily found. The following example demonstrates one
way in which this may be accomplished.

Example 8.2.2 Find the Taylor series expansion of

f (t ) = t

1 + 4t 2

as well as its radius of convergence.

Solution. If we first omit the t in the numerator of f (t ), we can use the final
result from (8.2.4) and substitute −4t 2 for t , writing

1

1 − (−4t 2)
= 1 + (−4t 2) + (−4t 2)2 + (−4t 2)3 +·· ·+ (−4t 2)n +·· ·

= 1 − 4t 2 + 16t 4 − 64t 6 +·· ·+ (−4)nt 2n +·· · (8.2.5)

To get the Taylor series of f (t ), we now multiply both sides of (8.2.5) by t ,
and have

f (t ) = t

1 + 4t 2
= t − 4t 3 + 16t 5 + 64t 7 +·· ·+ (−4)nt 2n+1 +·· · (8.2.6)

Since the original series from (8.2.4) converges for |t | < 1 and we replaced t
with −4t 2, it follows that (8.2.5) converges for | − 4t 2| < 1, or in other words
for |t | < 1/2. Multiplying (8.2.5) by t has no effect on the radius of convergence
of the series, and therefore (8.2.6) converges for |t | < 1/2. Note further that the
denominator 1+4t 2 of f (t ) is zero at t = ±i/2; each of these complex numbers
lies a distance of 1/2 unit away from the origin and is a singular point of f . This
observation is additional evidence that R = 1/2 is the radius of convergence of
the series expansion of f (t ).

Similar reasoning may be used to find expansions for such functions as e−t 2
,

t sin 4t , and (cos t − 1)/t 2. In each case, the approach of example 8.2.2 is
far simpler than using the definition of Taylor series directly and computing
derivatives of the given function.

One reason why the development of Taylor series for functions similar
to those in (8.2.4) is so straightforward is the fact that Taylor series are
unique. Said differently, if we can find a power series expression for a given
function, it must be the Taylor series. This is stated formally in the following
theorem.

Theorem 8.2.2 The series
∑∞

k=0 bkt k converges in the interval |t | < R to the
function f (t ) if and only if f (t ) is analytic for all t such that |t | < R and

bk = 1

k! f
(k)(0)
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An immediate consequence of theorem 8.2.2 is that if
∑∞

k=0 bkt k = 0 for |t | < R,
then bk = 0 for all t in the interval. We will use this result frequently when
we solve differential equations by equating like coefficients of two equal power
series.

If we cannot use substitution to find a Taylor series expansion (as we did in
example 8.2.2), it may be possible to use differentiation or integration to do so.
The following example introduces this approach.

Example 8.2.3 Find the Taylor series expansion and radius of convergence of
f (t ) = arctan t .

Solution. If we were to attempt to find the series via the definition by taking
derivatives, we would find that the process becomes laborious after computing
f ′(t ) = 1/(1+ t 2), since differentiating will involve both the chain and quotient
rules. Instead, we observe that

f ′(t ) = 1

1 + t 2

itself has a series expansion that is not difficult to find. Similar to our work in
example 8.2.2, we use the final result in (8.2.4) and substitute −t 2 for t to write

f ′(t ) = 1

1 − (−t 2)
= 1 + (−t 2) + (−t 2)2 + (−t 2)3 +·· ·+ (−t 2)n +·· ·

= 1 − t 2 + t 4 − t 6 +·· ·+ (−1)nt 2n +·· · (8.2.7)

Because we now have a series expansion for f ′(t ), it is natural to integrate both
sides of (8.2.7) to find the series for f (t ). Doing so, we see that

f (t ) = arctan t = C + t − 1

3
t 3 + 1

5
t 5 − 1

7
t 7 +·· ·+ (−1)n

2n + 1
t 2n+1 · · · (8.2.8)

It is a straightforward exercise to use the Ratio Test to show that (8.2.8)
converges for all t such that |t | < 1. Moreover, since arctan(0) = 0, it follows
that C = 0.

While intuition guides our work in example 8.2.3, and we certainly know that
we can integrate any finite polynomial, the one step that is perhaps questionable
is when we say we will integrate both sides of (8.2.7) to find the series for f (t ).
That this step is legitimate (and that it preserves the radius of convergence) is
the conclusion of our next formal result, the Taylor series Differentiation and
Integration Theorem.

Theorem 8.2.3 If f (t ) has the Taylor series expansion

f (t ) =
∞∑

k=0

bkt k , |t | < R
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then its antiderivative F(t ) = ∫ t
0 f (x)dx and its derivative f ′(t ) have the

respective Taylor series expansions

F(t ) =
∞∑

k=0

bk

∫ t

0
xk dx =

∞∑
k=0

bk

k + 1
t k+1, |t | < R (8.2.9)

f ′(t ) =
∞∑

k=0

bk
d

dt
[t k ]dx =

∞∑
k=1

kbkt k−1, |t | < R (8.2.10)

That is, theorem 8.2.3 states that any power series may be differentiated
or integrated term-wise and that doing so does not change the radius of
convergence of the power series. This fact makes more reasonable our plan
to solve differential equations by letting y be an unknown power series, taking
its appropriate derivative(s), and substituting into the differential equation to
determine the coefficients in the series.

Finally, it is not always possible to determine an explicit expression for
the nth coefficient of the Taylor series expansion of a function in terms of n.
In this situation, we must be content with knowing the values of the first few
coefficients. For this type of computation, we sometimes abbreviate the tail end
of a power series by writing

O(t n) = cnt n + cn+1t n+1 +·· · (8.2.11)

where we read the notation O(t n) as “order of t n”. For instance, we could write

et = 1 + t + t 2

2
+ O(t 3)

The next example emphasizes the fact that we cannot always explicitly determine
a formula for the general nth term in the Taylor expansion of a function.

Example 8.2.4 Find the first four terms of the Taylor series expansion about
t = 0 of the function

f (t ) = t

et + 1

Solution. Because f is the quotient of two functions that are analytic
everywhere and the denominator is never zero, it follows that f is analytic
everywhere. In particular, f is analytic at a = 0 and, therefore, has a Taylor
series expansion there of the form

t

et + 1
= b0 + b1t + b2t 2 + b3t 3 +·· · (8.2.12)

We know from the standard expansion of et that

et + 1 = 2 + t + t 2

2! + t 3

3! + · · ·
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Multiplying both sides of (8.2.12) by this expression for et + 1, we obtain the
identity

t =
(

2 + t + t 2

2! + t 3

3! + · · ·
)(

b0 + b1t + b2t 2 + b3t 3 +·· ·)
Distributing to multiply these two series, we find that

t = 2b0 + (2b1 + b0)t +
(

2b2 + b1 + b0

2

)
t 2 +

(
2b3 + b2 + b1

2
+ b0

6

)
t 3 +·· ·

In order for this identity to hold, the uniqueness of Taylor series expansions
established in theorem 8.2.2 implies that all of the coefficients of powers of t on
the left must equal the corresponding coefficients of powers of t on the right. In
particular, it must be the case that

0 = 2b0

1 = 2b1 + b0

0 = 2b2 + b1 + 1

2
b0

0 = 2b3 + b2 + 1

2
b1 + 1

6
b0

From this sequence of equalities, it follows that b0 = 0, b1 = 1/2, b2 = −1/4,
and b3 = 0, so that

f (t ) = t

et + 1
= 1

2
t − 1

4
t 2 + 0t 3 +·· ·

Exercises 8.2
In exercises 1–4, determine the radius of convergence of the stated power series.

1.
∞∑

n=1

t n

n

2.
∞∑

n=1

2nt n

n!

3.
∞∑

n=1

n2(t − 2)n

5n

4.
∞∑

n=1

(n!)2(t + 3)n

(2n)!
In exercises 5–17, find the first four nonzero coefficients of the Taylor series
expansion for each function f (t ) about a = 0. In addition, state the radius of
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convergence of the series expansion. Wherever possible, use known expansions
and the techniques of examples 8.2.2, 8.2.3, and 8.2.4.

5. f (t ) = √
t + 1

6. f (t ) = t 3 + 5t 2 − 3t + 8

7. f (t ) = 1

1 + t 4

8. f (t ) = e−t 2

9. f (t ) = e2t − 1

2t

10. f (t ) = sin t

t

11. f (t ) = t 3 sin t 2

12. f (t ) = cos t 3

13. f (t ) = cos t sin t

14. f (t ) = cos2(t )

15. f (t ) = e−t sin t

16. f (t ) = et

1 + t

17. f (t ) = arctan t 2

In exercises 18–24, find the first four nonzero coefficients of the Taylor series
expansion for each integral by first finding the expansion of the integrand and
then integrating term by term.2

18.

∫ t

0

1

1 + s4
ds

19.

∫ t

0
e−s2

ds

20.

∫ t

0

e2s − 1

2s
ds

21.

∫ t

0

sin s

s
ds

22.

∫ t

0
s3 sin s2 ds

2 Your work in exercises 5–17 will be helpful.
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23.

∫ t

0
cos s3 ds

24.

∫ t

0
arctan s2 ds

8.3 Power series solutions of linear equations

In this section, we begin solving linear differential equations by assuming that
the solution function may be expressed as a power series. To motivate our work,
we revisit a familiar first-order equation (which we can solve easily by other
means) to explore how series can be used in this way.

Example 8.3.1 By assuming that y has a power series expansion of the form
y(t ) = a0 + a1t + a2t 2 + a3t 3 + ·· · , determine the solution to the initial-value
problem

y ′ = y, y(0) = 1

Solution. Writing y(t ) = a0 + a1t + a2t 2 + a3t 3 +·· · , we know

y ′(t ) = a1 + 2a2t + 3a3t 2 + 4a4t 3 +·· ·
Equating y and y ′, we observe that

a0 + a1t + a2t 2 + a3t 3 +·· · = a1 + 2a2t + 3a3t 2 + 4a4t 3 +·· · (8.3.1)

Because of the uniqueness of Taylor series expansions (theorem 8.2.2), we may
equate like coefficients of powers of t in (8.3.1), from which we deduce that the
following recurrence relation among the coefficients ai must hold:

a0 = a1

a1 = 2a2

a2 = 3a3

...

an = (n + 1)an+1

Provided that we know a0, we can find all of the remaining values of ai . Clearly,
a0 = y(0), so using the initial condition y(0) = 1,

a0 = 1, a1 = 1, a2 = 1

2
, a3 = 1

3
a2 = 1

3 · 2
, . . .

From this sequence of coefficients and the general recurrence relation an+1 =
1

n+1 an , we observe that an = 1
n! , and therefore

y(t ) = 1 + t + 1

2! t
2 + 1

3! t
3 +·· ·+ 1

n! t
n +·· ·

which we recognize as the familiar power series expansion of y(t ) = et , the
solution to the IVP y ′ = y , y(0) = 1.
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Obviously there is no need to use power series to solve the IVP given in
example 8.3.1, as it is a standard linear first-order equation. However, given our
desire to solve higher order equations that are linear, but for which we currently
lack a method for obtaining an analytic solution, this example is important since
we hope to generalize from the simpler first-order constant coefficient case to
the more difficult second-order non-constant coefficient one. For example, a
linear second-order differential equation such as

y ′′ − 2ty ′ + y = 0 (8.3.2)

in which the coefficients of y , y ′, and y ′′ are not all constant is not among the
collection of equations whose solutions we can currently determine. Equations
such as (8.3.2) belong to a family of equations of the general form

y ′′ + p(t )y ′ + q(t )y = f (t ) (8.3.3)

that we now aspire to solve.
Before we solve equations of form (8.3.3), we consider one more familiar

example that introduces other critical ideas that arise when solving linear
second-order equations through power series expansions. Because we already
know the solution to the equation we consider, we will be able to check our
work appropriately and better see the role that series expansions play.

Example 8.3.2 Solve the initial-value problem

y ′′ + y = 0, y(0) = 1, y ′(0) = 1

by assuming that y has a power series expansion y(t ) = a0 +a1t +a2t 2 +a3t 3 +
a4t 4 +·· · .

Solution. Since y = a0 + a1t + a2t 2 + a3t 3 + a4t 4 +·· · , it follows that

y ′ = a1 + 2a2t + 3a3t 2 + 4a4t 3 +·· · and

y ′′ = 2a2 + 3 · 2a3t + 4 · 3a4t 2 + 5 · 4a5t 3 +·· ·
Substituting for y and y ′′ in the given equation y ′′ + y = 0, we have

(a0 +a1t +a2t 2 +a3t 3 +a4t 4 +···)+(2a2 +6a3t +12a4t 2 +20a5t 3 +···)=0

Gathering terms with like coefficients,

(a0 + 2a2) + (a1 + 6a3)t + (a2 + 12a4)t 2 + (a3 + 20a5)t 3 +·· · = 0 (8.3.4)

Setting each coefficient of powers of t in (8.3.4) equal to zero implies that the
following sequence of equalities holds:

a0 = −2a2 a1 = −6a3

a2 = −12a4 a3 = −20a5

a4 = −30a6 a5 = −42a7

...
...

a2n = −(2n + 2)(2n + 1)a2n+2 a2n+1 = −(2n + 3)(2n + 2)a2n+3
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We group these equations into the two columns shown for the natural reason
that the coefficients with even indices depend recursively on one another, as do
the coefficients with odd indices. Furthermore, we see that if we can identify
both a0 and a1 (which we can through the two stated initial conditions), then
we can determine all of the remaining coefficients.

Specifically, since y(0) = 1 and a0 = y(0), it follows that a0 = 1. Similarly,
with the given condition y ′(0) = 1 and the fact that a1 = y ′(0), we know a1 = 1.
Thus, from the sequence of equalities with even indices above,

a0 =1, a2 = −1

2
, a4 = − 1

4 · 3
a2 = 1

4 · 3 · 2
= 1

4! ,

and a6 = − 1

30
a4 = − 1

6 · 5 · 4! = − 1

6!
From this and the stated recurrence relation for a2n and a2n+2, we observe that

a2n = (−1)n 1

(2n)! , n = 0,1,2, . . . . (8.3.5)

The formula (8.3.5) implies that the portion of the series expansion for y in
which all of the powers of t are even will be

y1 = 1 − 1

2! t
2 + 1

4! t
4 − 1

6! t
6 +·· · (8.3.6)

which we recognize as the familiar series expansion for cos t .
Returning to the recurrence relation involving the coefficients with odd

indices, nearly identical work to that with the even coefficients shows that

a1 = 1, a3 = − 1

3! , a5 = − 1

5 · 4
a3 = 1

5! , and a7 = − 1

42
a4 = − 1

7!
These observations imply that the part of the expansion of y involving odd
coefficients has form

y2 = t − 1

3! t
3 + 1

5! t
5 − 1

7! t
7 +·· · (8.3.7)

which is sin t .
Hence our work with series expansions at (8.3.6) and (8.3.7) has shown that

y = 1 + t − 1

2! t
2 − 1

3! t
3 + 1

4! t
4 + 1

5! t
5 − 1

6! t
6 − 1

7! t
7 +·· ·

= 1 − 1

2! t
2 + 1

4! t
4 − 1

6! t
6 +·· ·+ t − 1

3! t
3 + 1

5! t
5 − 1

7! t
7 +·· ·

= cos t + sin t (8.3.8)

Again, it is no surprise that y = cos t +sin t is the solution to the IVP y ′′+y =
0, y(0) = 1, y ′(0) = 1. We know from our work in several different contexts that
the general solution to this differential equation is y = c1 cos t + c2 sin t , and can
easily see that the given two initial conditions lead to c1 = c2 = 1. Even without
the initial conditions, we could have determined from our work in example 8.3.2
that y = a0 cos t + a1 sin t . Regardless, there is a great deal we can learn about



466 Series solutions for differential equations

series solutions to differential equations by thinking carefully about our work
in this familiar example.

First, we saw that in order to get the recurrence relations started, we needed
to know the values of a0 and a1. This reinforces the fact that the solution
space to the second-order equation is two dimensional, and suggests that the
power series expansion has the property that it detects the need for two linearly
independent solutions. Next, we observe from our work in example 8.3.2 that
two different unlinked series solutions arose in the solution; these turned out to
be the expansions for the cosine and sine functions, respectively, each of which
has an infinite radius of convergence. This led to the overall solution series being
convergent for every value of t . Finally, we note that normally we will need to
be content with expressions that state the first few nonzero terms of a power
series expansion, as we cannot expect in general to be able to recognize familiar
power series expansions within solutions, as we did at (8.3.8).

In general, we will be interested in linear differential equations of the form

y ′′ + p(t )y ′ + q(t )y = 0 (8.3.9)

If p(t ) and q(t ) are both analytic functions at t = a (that is, both have a Taylor
expansion at a), then we call t = a an ordinary point of the DE (8.3.9). Otherwise,
t = a is a singular point of (8.3.9). The following theorem tells us that if t = 0 is
an ordinary point of (8.3.9), then there exist two linearly independent solutions
to the DE that may be represented by Taylor series centered at t = 0.

Theorem 8.3.1 If t = 0 is an ordinary point of (8.3.9), then there exist two
linearly independent solutions

y1(t ) =
∞∑

n=0

ant n and y2(t ) =
∞∑

n=0

bnt n (8.3.10)

Both series converge in a disk |t | < R, where R is at least as large as the distance
from the origin to the nearest singular point of the functions p(t ) and q(t ).

In example 8.3.2, the coefficient functions of y ′ and y in the DE were
simply the constant functions 0 and 1, which are each analytic everywhere.
Theorem 8.3.1 implies that the two series expansions we found (which were
those of the cosine and sine functions) must therefore converge everywhere.
We see from this result that anytime the coefficient functions p(t ) and q(t )
are constant, the solution functions that arise must converge everywhere. This
is not surprising, given our experience that in the case of linear differential
equations with constant coefficients, solutions essentially consist of the functions
ekt , sinkt , and coskt . More generally, we can now state that if p(t ) and q(t )
are polynomial functions, which are also analytic everywhere, then the series
in (8.3.10) must both converge everywhere.

We now consider an example involving a differential equation that we are
unable to solve by other means in order to gain more understanding of the role
played by infinite series in its solution.
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Example 8.3.3 Consider the linear second-order differential equation

y ′′ − 2ty ′ + y = 0 (8.3.11)

Determine two linearly independent series solutions to this equation. Then,
solve the initial-value problem given by this DE along with the initial conditions
y(0) = 2, y ′(0) = −1.

Solution. We begin by assuming that y = a0 + a1t + a2t 2 + a3t 3 + ·· · . From
this, it follows

y ′ = a1 + 2a2t + 3a3t 2 + 4a4t 3 +·· · =
∞∑

n=1

nant n−1

−2ty ′ = −2at − 4a2t 2 − 6a3t 3 − 8a4t 3 +·· · = −
∞∑

n=1

2nant n

y ′′ = 2a2 + 6a3t + 12a4t 2 + 20a5t 3 +·· · =
∞∑

n=2

n(n − 1)ant n−2

In many instances, it will be most convenient to work with power series
represented in the shorthand sigma (�) notation, which is how we will proceed
from here. Substituting in (8.3.11) with the series expressions for y ′′, −2ty ′, and
y , we find

∞∑
n=2

n(n − 1)ant n−2 −
∞∑

n=1

2nant n +
∞∑

n=0

ant n = 0 (8.3.12)

In order to equate the coefficients of like powers of t , it is helpful to write each
series in (8.3.12) using the same indices for the sum. Replacing n with n + 2
allows us to write

∞∑
n=2

n(n − 1)ant n−2 =
∞∑

n=0

(n + 2)(n + 1)an+2t n

In addition, observe that
∞∑

n=1

2nant n =
∞∑

n=0

2nant n

because the term −2nan vanishes when n = 0. Therefore we can revise (8.3.12)
to have the form

∞∑
n=0

(n + 2)(n + 1)an+2t n +
∞∑

n=0

−2nant n +
∞∑

n=0

ant n = 0 (8.3.13)

Now that each series is indexed from n = 0 with corresponding powers of t , we
can combine the three sums into one and write

∞∑
n=0

[(n + 2)(n + 1)an+2 − 2nan + an]t n = 0 (8.3.14)
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Because (8.3.14) implies that every coefficient of the series must be zero, we see
that the constants an must satisfy the recurrence relation

(n + 2)(n + 1)an+2 − 2nan + an = 0

or equivalently

an+2 = 2n − 1

(n + 2)(n + 1)
an, n = 0,1,2, . . . . (8.3.15)

Here it is essential to observe that since the subscripts differ by two in (8.3.15),
we can obtain two distinct series solutions to the original equation (8.3.11), one
involving all of the even terms and the other all of the odd ones. In particular,
considering n = 0,2,4, . . ., we have from (8.3.15) that

a2 = −1

2
a0, a4 = 3

3 · 4
a2 = −1 · 3

2 · 3 · 4
a0, and a6 = 7

6 · 5
a4 = −1 · 3 · 7

2 · 3 · 4 · 5 · 6
a0

More generally, the pattern

a2n = −1 · 3 · 7 · · ·(4n − 5)

(2n)!
holds and therefore

y1(t ) = a0 − 1

2
a0t 2 − 1

8
a0t 4 − 7

240
a0t 6 +·· ·

= a0 − a0

∞∑
n=1

1 · 3 · 7 · · ·(4n − 5)

(2n)! t 2n (8.3.16)

Similarly, if we examine the odd terms for n = 1,3,5, . . . in (8.3.15), we see

a3 = 1

2 · 3
a1, a5 = 5

4 · 5
a3 = 1 · 5

2 · 3 · 4 · 5
a1, and a7 = 9

6 · 7
a5 = 1 · 5 · 9

2 · 3 · 4 · 5 · 6 · 7
a1

Thus, we find

a2n+1 = 1 · 5 · 9 · · ·(4n − 3)

(2n + 1)! a1

and therefore

y2(t ) = a1t + 1

6
a1t 3 + 1

24
a1t 5 +·· ·

= a1t + a1

∞∑
n=1

1 · 5 · 9 · · ·(4n − 3)

(2n + 1)! t 2n+1 (8.3.17)

Because y1 only involves even powers of t and y2 only involves odd powers
of t , it is obvious that y1 and y2 must be linearly independent functions: it is
impossible for one to be a scalar multiple of the other. Hence we have found the
two basic solutions to the given DE and the general solution is

y = a0y1 +a1y2

= a0

(
1−

∞∑
n=1

1·3·7···(4n−5)

(2n)! t 2n

)
+a1

(
t +

∞∑
n=1

1 ·5 ·9···(4n−3)

(2n+1)! t 2n+1

)



Power series solutions of linear equations 469

Moreover, since p(t ) = −2t and q(t ) = 1 are analytic everywhere, it follows
from theorem 8.3.1 that both y1 and y2 converge for all values of t , as must the
general solution (8.3.18).

Finally, if we desire to solve the initial-value problem with y(0) = 2 and
y ′(0) = −1, we need only observe from our beginning assumption regarding
the series expansion of y that y(0) = a0 = 2 and y ′(0) = a1 = −1. Therefore, the
solution to the IVP is

y = 2

(
1 −

∞∑
n=1

1 · 3 · 7 · · ·(4n − 5)

(2n)! t 2n

)
−
(

t +
∞∑

n=1

1 · 5 · 9 · · ·(4n − 3)

(2n + 1)! t 2n+1

)

In the recurrence relation that arises from assuming that y = a0 + a1t+
a2t 2 +·· · , it is not always obvious that two linear solutions to the original linear
second-order equation arise. Often, we must content ourselves with finding
the first several terms of the overall general solution and rely on theorem 8.3.1
to tell us that both have been found. We close this section with an example
that demonstrates this fact through connections to earlier material we have
studied.

Example 8.3.4 Use infinite series to determine the solution to the initial-value
problem

y ′′ − 2y ′ − 3y = 0, y(0) = 4, y ′(0) = 0 (8.3.18)

Compare your result to the known solution to this IVP which can be found
without using series.

Solution. Considering the series expansions for y , y ′, and y ′′, we observe that

y = a0 + a1t + a2t 2 + a3t 3 +·· ·+ ant n +·· ·
y ′ = a1 + 2a2t + 3a3t 2 + 4a4t 3 +·· ·+ (n + 1)an+1t n +·· ·
y ′′ = 2a2 + 6a3t + 12a4t 2 + 20a5t 3 +·· ·+ (n + 2)(n + 1)an+2t n +·· ·

From the differential equation y ′′ − 2y ′ − 3y = 0, we know that y ′′ = 2y ′ + 3y .
Equating like coefficients from the expressions for y ′′ and 2y ′ + 3y , we find the
recurrence relation

2a2 = 2a1 + 3a0

6a3 = 4a2 + 3a1

12a4 = 6a3 + 3a2

20a5 = 8a4 + 3a3

...
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More generally, we can state that for any n ≥ 2,

an = (2n − 2)an−1 + 3an−2

n(n − 1)

Using the given initial conditions, we find that a0 = y(0) = 4 and a1 = y ′(0) = 0,
and subsequently that

a2 = 2a1 + 3a0

2
= 0 + 12

2
= 6

a3 = 4a2 + 3a1

6
= 24 + 0

6
= 4

a4 = 6a3 + 3a2

12
= 24 + 18

12
= 7

2
and therefore the solution to the IVP is

y = 4 + 6t 2 + 4t 3 + 7

2
t 4 +·· ·

We can confirm that this is in fact the correct solution by solving the IVP
through another approach and considering power series expansions of the basic
solution functions. In particular, since the characteristic equation of (8.3.18)
is r2 − 2r − 3 = 0 with roots r = 3 and r = −1, the general solution of
the DE is

y = c1e3t + c2e−t

It is a standard exercise to show that the values of the constants that satisfy the
initial conditions are c1 = 1 and c2 = 3, so that

y = e3t + 3e−t

If we now employ the standard power series expansion for et to write series
expansions for the two solutions present in y , and then combine like terms, we
observe that

y =e3t +3e−t

=
(

1+3t + 9t 2

2! + 27t 3

3! + 81t 4

4! +···
)

+
(

3−3t + 3t 2

2! − 3t 3

3! + 3t 4

4! −···
)

=4+ 12t 2

2! + 24t 3

3! + 84t 4

4! +···

=4+6t 2 +4t 3 + 7

2
t 4 +···

which is precisely the power series expansion of the solution we found at the
outset.
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Example 8.3.4 demonstrates that although the series form of the solution can
hide some of the inherent structure in the solution, this approach is nonetheless
straightforward to apply and will effectively lead us to the power series expansion
of the solution to a stated IVP.

Exercises 8.3
In exercises 1–13, find the first four terms in the Taylor series representation of
the general solution to the stated DE.

1. y ′′ + ty ′ = 0

2. y ′′ + 4y ′ = 0

3. y ′′ + 4y = 0

4. y ′′ + ty = 0

5. y ′′ + 6y ′ + 5y = 0

6. y ′′ + y ′ + 4y = 0

7. y ′′ − y ′ − 6y = 0

8. y ′′ + t 2y = 0

9. (1 − t )y ′′ + y = 0

10. (t 2 − 1)y ′′ − 4y = 0

11. y ′′ + 3ty ′ + 3y = 0

12. (t 2 + 1)y ′′ − 2y = 0

13. (1 − t 2)y ′′ − 12ty ′ − 18y = 0

In exercises 14–17, find the first four nonzero coefficients of the Taylor series
expansion for the solution to the stated IVP.

14. (4 − t 2)y ′′ + 2y = 0, y(0) = 0, y ′(0) = 1

15. y ′′ + (1 − t )y = 0, y(0) = 1, y ′(0) = 0

16. y ′′ − t 2y ′ + y sin t = 0, y(0) = 0, y ′(0) = 1

17. y ′ + y sin t = 0, y(0) = 1, y ′(0) = 0

8.4 Legendre’s equation

A differential equation that arises naturally in physics, particularly when using
spherical coordinates, is the Legendre equation,

(1 − t 2)y ′′ − 2ty ′ +λ(λ+ 1)y = 0 (8.4.1)

The parameter λ is often a positive integer, though it is allowed to be any real,
non-negative constant. If we divide both sides of (8.4.1) by 1 − t 2 to write the
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equation in standard form y ′′ + p(t )y ′ + q(t )y = 0, we have

y ′′ − 2t

1 − t 2
y ′ + λ(λ+ 1)

1 − t 2
y = 0 (8.4.2)

With

p(t ) = − 2t

1 − t 2
and q(t ) = λ(λ+ 1)

1 − t 2

it follows that the origin is an ordinary point of Legendre’s equation and the
nearest singularities lie at t = ±1. We therefore expect that we can find Taylor
series expansions about t = 0 for each of the two linearly independent solutions
of (8.4.1), and the radius of convergence of each such series will be at least 1.

To solve the Legendre equation, we assume that

y(t ) =
∞∑

n=0

ant n

and consider the three terms present in the DE: (1− t 2)y ′′, −2ty ′, and λ(λ+ 1)y .
Letting α = λ(λ + 1) and writing each of these expressions in their series
expansion, we have

(1−t 2)y ′′ =(1−t 2)
∞∑

n=2

n(n−1)ant n−2 =
∞∑

n=2

n(n−1)ant n−2 −
∞∑

n=2

n(n−1)ant n

=
∞∑

n=0

(n+2)(n+1)an+2 t n −
∞∑

n=0

n(n−1)ant n (8.4.3)

−2ty ′ =−2t
∞∑

n=1

nant n−1 =
∞∑

n=1

−2nant n =
∞∑

n=0

−2nant n (8.4.4)

αy =
∞∑

n=0

αant n (8.4.5)

To achieve the final expression for (1 − t 2)y ′′ in (8.4.3), we re-indexed the first
sum by letting n be replaced by n + 2 and lowering the index, and re-indexed
the second sum by noting that when n = 0 and n = 1, the coefficient n(n − 1)
vanishes, so starting at n = 0 is the same as starting at n = 2. Likewise, for the
expression for −2ty ′, the term nant n is zero when n = 0, so we can start the sum
at n = 0 instead of n = 1 in (8.4.4). Thus, all three series are written in terms of
powers of t n starting at n = 0.

Next, to satisfy Legendre’s equation (8.4.1), we take the series expressions
in (8.4.3), (8.4.4), and (8.4.5) and set their collective sum to zero. Doing so,

0 = (1 − t 2)y ′′ − 2ty ′ +αy

=
∞∑

n=0

(n + 2)(n + 1)an+2 t n −
∞∑

n=0

n(n − 1)ant n +
∞∑

n=0

−2nant n +
∞∑

n=0

αant n
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=
∞∑

n=0

[(n + 2)(n + 1)an+2 − (n(n − 1) + 2n −α)an] t n

=
∞∑

n=0

[
(n + 2)(n + 1)an+2 − (n2 + n −α)an

]
t n (8.4.6)

We thus observe (8.4.6) implies the recurrence relation

(n + 2)(n + 1)an+2 − (n2 + n −α)an = 0 (8.4.7)

Recalling that α = λ(λ+ 1) = λ2 +λ, we may write

n2 + n −α = n2 + n −λ2 −λ = (n −λ)(n +λ+ 1) (8.4.8)

Hence, (8.4.7) and (8.4.8) together show

an+2 = (n −λ)(n +λ+ 1)

(n + 2)(n + 1)
an (8.4.9)

As we have seen in certain other DEs, the recurrence relation (8.4.9) makes all
of the even coefficients in the expansion for y depend on a0, and all of the odd
coefficients depend on a1. Assuming that a0 = 1 and computing the first few
even coefficients, we find that

a0 = 1, a2 = (−λ)(λ+ 1)

2 · 1
a0, a4 = (2 −λ)(3 +λ)

4 · 3
a2

so that one solution to the Legendre equation is

y1(t ) = 1 − 1

2!λ(λ+ 1)t 2 + 1

4!λ(λ+ 1)(λ− 2)(λ+ 3)t 4 +·· · (8.4.10)

Similar computations for the odd coefficients with a1 = 1 results in the function

y2(t ) = t − 1

3! (λ−1)(λ+2)t 3 + 1

5! (λ−1)(λ−3)(λ+2)(λ+4)t 5 +·· · (8.4.11)

The solutions y1 and y2 are clearly linearly independent and therefore form a
basis for the set of all solutions to the Legendre equation. Note particularly that
each depends directly on the parameter λ, as the Legendre equation is actually a
family of equations where each equation depends on λ. In our development of y1

and y2, note that we assumed a0 = 1 and a1 = 1, which is equivalent to assuming
that y(0) = 1 and y ′(0) = 1. The general solution of the Legendre equation is
y = a0y1 + a1y2, where y1 and y2 are given by 8.4.10 and 8.4.11, respectively.

The case when λ is a non-negative integer is particularly interesting. From the
recurrence relation (8.4.9), whenever λ = n, it follows that an+2 = 0 and hence
an+4,an+6, . . . are all zero. Since this causes the series expansion of y1 or y2

to terminate, one of the resulting solutions to the differential equation is a
polynomial. In particular, if λ is an even integer, say λ = 2m, then y1(t ) is a
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polynomial of degree 2m. For example,

λ = 0 : y1(t ) = 1

λ = 2 : y1(t ) = 1 − 3t 2

λ = 4 : y1(t ) = 1 − 10t 2 + 35

3
t 4

Similarly, in the case where λ = 2m + 1 is an odd integer, y2(t ) is a polynomial
of degree 2m + 1. The first few examples for small values of λ are

λ = 1 : y2(t ) = t

λ = 3 : y2(t ) = t − 5

3
t 3

λ = 5 : y2(t ) = t − 14

3
t 3 + 21

5
t 5

These polynomials demonstrate that when λ is non-negative integer, at least one
basic solution of the Legendre equation is a polynomial function. Moreover,
since the Legendre equation is linear, any scalar multiple of a solution is also a
solution, so we can scale these polynomials however we like. Doing so to make
the polynomial’s value 1 when t = 1 results in the family of polynomials

P0(t ) = 1

P1(t ) = t

P2(t ) = 3

2
t 2 − 1

2

P3(t ) = 5

2
t 3 − 3

2

P4(t ) = 35

8
t 4 − 30

8
t 2 + 3

8

P5(t ) = 63

8
t 5 − 70

8
t 3 + 15

8
The polynomials Pn(t ), which can also be described through a recurrence
relation linking Pn+2 to Pn+1 and Pn , are known as the Legendre polynomials
and form a well-known class of so-called orthogonal polynomials. The Legendre
polynomials have many interesting properties, including the fact that each
has n real, distinct roots that lie in the interval (−1,1) and demonstrate an
oscillatory behavior similar to the graph of P11(t ) shown in figure 8.1. The
study of orthogonal polynomials has important ramifications in many areas of
mathematics and physics, but lies beyond the scope of this text.

Regardless of whether λ is a non-negative integer or not, the two infinite
series expansions for y1 and y2 in (8.4.10) and (8.4.11) are the two linearly
independent solutions of the Legendre equation. In the case where λ is a non-
negative integer, we have shown that one of these two infinite series terminates
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t

1

1

−1

−1

Figure 8.1 The degree 11 Legendre polyno-
mial, P11(t ).

to form a polynomial, one of the Legendre polynomials. The other solution
turns out to have recognizable structure as well.

For instance, when λ = 0, we know that one solution to the Legendre
equation comes from y1(t ) = 1 = P0(t ). Setting λ = 0 in y2(t ), it
follows

y2(t ) = t − −1 · 2

3! t 3 + −1 · (−3) · 2 · 4

5! t 5 +·· ·

= t + 1

3
t 3 + 1

5
t 5 +·· · (8.4.12)

It can be shown from this expansion that

y2(t ) = 1

2
ln

(
1 + t

1 − t

)
Thus, when λ = 0, a second linearly independent solution is given by Q0(t ) =
1
2 ln
(

1+t
1−t

)
and we write y = c1P0 + c2Q0. More generally, it can be shown that

for any non-negative integer λ = n, a related expression involving Q0 exists
for the second linearly independent solution Qn that is not a polynomial. In
particular, these functions are known as Legendre functions of the second kind ;
the first several of these functions are given by

Q0(t ) = 1

2
ln

1 + t

1 − t

Q1(t ) = P1(t )Q0(t ) − 1

Q2(t ) = P2(t )Q0(t ) − 3

2
t
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Q3(t ) = P3(t )Q0(t ) − 5

2
t 2 + 2

3

Q4(t ) = P3(t )Q0(t ) − 35

8
t 3 + 55

24

Note that the presence of Q0(t ) in each solution highlights the fact that
singularities are present in the Legendre equation at t = ±1. The functions
P1(t ), P2(t ), . . . are the previously noted Legendre polynomials. Further, the
general solution of the Legendre equation with λ = n ≥ 0 is therefore

y(t ) = c1Pn(t ) + c2Qn(t ) (8.4.13)

We close this section with an example.

Example 8.4.1 Find the solution of the initial-value problem

(1 − t 2)y ′′ − 2ty ′ + 12y = 0, y(0) = 1, y ′(0) = 1

Solution. First, observe that the given DE is Legendre’s equation with λ = 3,
since 3(3 + 1) = 12. From our earlier work in this section, we know that the
general solution is

y(t ) = c1P3(t ) + c2Q3(t )

= c1P3(t ) + c2

(
P3(t )Q0(t ) − 5

2
t 2 + 2

3

)

= P3(t )(c1 + c2Q0(t )) + c2

(
−5

2
t 2 + 2

3

)

=
(

5

2
t 3 − 3

2
t

)(
c1 + c2

2
ln

1 − t

1 + t

)
+ c2

(
−5

2
t 2 + 2

3

)
(8.4.14)

Applying the initial conditions y(0) = 1 and y ′(0) = 1 to 8.4.14, we can
show that c1 = −2/3 and c2 = 3/2, and thus

y =
(

5

2
t 3 − 3

2
t

)(
−2

3
+ 3

4
ln

1 − t

1 + t

)
− 15

4
t 2 + 1

is the solution to the given IVP.

Exercises 8.4

1. Verify by direct substitution that the Legendre equation is satisfied by the
polynomials P2(t ) and P3(t ) when λ = 2 and λ = 3, respectively.

2. Verify by direct substitution that Q0(t ) = 1
2 ln(1 + t )/(1 − t ) is a solution

of Legendre’s equation with λ = 0.
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3. Determine the Taylor series expansion about a = 0 of
f (t ) = 1

2 ln(1 + t )/(1 − t ) and confirm that this matches (8.4.12).

4. Determine expressions for P6(t ) and P7(t ).

In exercises 5–7, find the general solution of the stated differential equation in
terms of Pn(t ) and Qn(t ). (Hint : Use the method of undetermined coefficients
in the standard way to find a particular solution of each equation.)

5. (1 − t 2)y ′′ − 2ty ′ + 6y = 6

6. (1 − t 2)y ′′ − 2ty ′ + 20y = 36t

7. (1 − t 2)y ′′ − 2ty ′ + 30y = 12t 2

In exercises 8–17, find the first four nonzero coefficients of the Taylor series
expansion (about t = 0) for the solution to the stated IVP.

8. (1 − t 2)y ′′ − 2ty ′ + 2y = 0, y(0) = 1, y ′(0) = 0

9. (1 − t 2)y ′′ − 2ty ′ + 3y = 0, y(0) = 1, y ′(0) = 0

10. (1 − t 2)y ′′ − 2ty ′ + 20y = 18t , y(0) = 0, y ′(0) = 1

11. 9(1 − t 2)y ′′ − 18ty ′ + 4y = 0, y(0) = 0, y ′(0) = 1

12. (1 − t 2)y ′′ − 2ty ′ + 20y = 0, y(0) = 1, y ′(0) = 1

13. (1 − t 2)y ′′ − 2ty ′ + 20y = 14t 2, y(0) = 3, y ′(0) = 1

8.5 Three important examples

In this penultimate section on series solutions to differential equations, we
consider and discuss three examples that arise in applied physics.

8.5.1 The Hermite equation

The Hermite equation is the linear second-order differential equation given by

y ′′ − 2ty ′ + 2qu = 0 (8.5.1)

where q is a real constant. Using the Taylor series expansions for y , y ′, and y ′′
in the usual way with y = a0 + a1t + a2t 2 +·· · , it can be shown that

∞∑
n=0

[(n + 2)(n + 1)an+2 − 2(n − q)an]t n = 0 (8.5.2)

from which follows the recurrence relation

an+2 = 2(n − q)

(n + 1)(n + 2)
an, n = 0,1,2, . . . . (8.5.3)

As we have seen in previous examples, the even-subscripted coefficients
depend on y(0) = a0, and the odd-subscripted coefficients involve y ′(0) = a1.
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To calculate the first few nonzero terms in the expansions for the solution y1(t )
involving even powers of t , we observe that

a2 = 2(0 − q)

1 · 2
a0 = −2

q

2!a0

a4 = 2(2 − q)

3 · 4
a2 = −22 q(2 − q)

4! a0

a6 = 2(4 − q)

5 · 6
a2 = −23 q(2 − q)(4 − q)

6! a0

More generally, it follows that

a2k = −2k q(2 − q) · · ·(2k − 2 − q)

(2k)! a0 (8.5.4)

If we elect to use the initial conditions y(0) = 1 and y ′(0) = 0, this implies that
a0 = 1 and a1 = 0; the latter condition and the recurrence relation (8.5.3) imply
that all odd-subscripted coefficients are zero, and hence one solution to the
Hermite differential equation is

y1(t ) = a0 + a1t + a2t 2 +·· ·

= 1 − 2q

2! t 2 − 22q(2 − q)

4! t 4 −·· ·

= 1 −
∞∑

n=1

2n q(2 − q) · · ·(2n − 2 − q)

(2n)! t 2n (8.5.5)

Using similar reasoning with odd-subscripted coefficients, (8.5.3) implies

a3 = 2(1 − q)

2 · 3
a1

a5 = 2(3 − q)

4 · 5
a3 = 22 (1 − q)(3 − q)

5! a1

a7 = 2(5 − q)

6 · 7
a5 = 23 (1 − q)(3 − q)(5 − q)

7! a1

From this, we can deduce that the general odd coefficient is given by

a2k+1 = 2k (1 − q)(3 − q) · · ·(2k − 1 − q)

(2k + 1)! a1 (8.5.6)

Using the initial conditions y(0) = 0 = a0 and y ′(0) = 1 = a1, a second solution
to the Hermite equation is

y2(t ) = t +
∞∑

n=1

2n (1 − q)(3 − q) · · ·(2n − 1 − q)

(2n + 1)! t 2n+1 (8.5.7)
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Since y1(t ) and y2(t ) are linearly independent, the general solution to the
Hermite equation is

y = c1y1 + c2y2

= c1

(
1 −

∞∑
n=1

2n q(2 − q) · · ·(2n − 2 − q)

(2n)! t 2n

)

+ c2

(
t +

∞∑
n=1

2n (1 − q)(3 − q) · · ·(2n − 1 − q)

(2n + 1)! t 2n+1

)
(8.5.8)

Just as we experienced with Legendre’s equation, there are values for the constant
q in the Hermite equation that lead to polynomial solutions. In particular, the
presence of the factor (2n − 2 − q) in y1(t ) implies that whenever q is an even,
non-negative integer, then y1(t ) is a polynomial. Specifically, from (8.5.5), when
q = 0, q = 2, and q = 4, it follows that

q = 0 : y1(t ) = 1

q = 2 : y1(t ) = 1 − 2t 2 (8.5.9)

q = 4 : y1(t ) = 1 − 4t 2 + 4

3
t 4

Similarly, for q = 1, q = 3, and q = 5, the function y2(t ) that is a solution to the
Hermite equation is found to be

q = 1 : y2(t ) = t

q = 3 : y2(t ) = t − 2

3
t 3 (8.5.10)

q = 5 : y2(t ) = t − 4

3
t 3 + 4

15
t 5

The polynomial solutions to Hermite’s equation given in (8.5.9) and (8.5.10)
are usually called the Hermite polynomials Hn(t ) when scaled such that the
coefficient of the highest power of t is 2n . The first four Hermite polynomials are

H0(t ) = 1

H1(t ) = 2t

H2(t ) = 4t 2 − 2

H3(t ) = 8t 3 − 12t

The Hermite polynomials are another example of a family of orthogonal
polynomials; Hermite polynomials are orthogonal on (−∞,∞) with respect

to the weighting function w(t ) = e−t 2
. Like Legendre polynomials, they have

a wide range of interesting properties and the possibilities they present for
further study go well beyond the scope of this text. A plot of H11(t ) is shown
in figure 8.2. The Hermite polynomials have large oscillations; the degree 11
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2−2

106

t

−106

Figure 8.2 The degree 11 Hermite
polynomial, H11(t ), plotted on the
interval [−3,3].

polynomial has two more zeros, located at approximately ±3.7, which are not
shown in figure 8.2.

8.5.2 The Laguerre equation

The Laguerre equation is given by

ty ′′ + (1 − t )y ′ + qy = 0 (8.5.11)

where q is, once again, a real constant. If we divide through by t , Laguerre’s
equation is equivalently expressed as

y ′′ + 1 − t

t
y ′ + q

t
y = 0

Since the coefficient functions p(t ) of y ′ and q(t ) of y are each undefined at
t = 0, the Laguerre equation has a singular point at the origin. Nonetheless,
it turns out that we can find a series expansion for a solution at the
origin.

Letting y = a0 +a1t +a2t 2 +·· · and substituting for y , y ′, and y ′′ in (8.5.11)
it can be shown that the coefficients an must satisfy

∞∑
n=1

[
(n + 1)2an+1 + (q − n)an

]
t n = 0 (8.5.12)

It follows from (8.5.12) that

(n + 1)2an+1 + (q − n)an = 0

and therefore

an+1 = − q − n

(n + 1)2
an (8.5.13)
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Note that this recurrence relation relies only on the value of a0, and therefore
only leads to one solution to the Laguerre equation.3 Applying (8.5.13), we see

a1 = − q

12
a0

a2 = −q − 1

22
a1 = 1

(1 · 2)2
(q − 1)qa0

a3 = −q − 2

32
a2 = − 1

(1 · 2 · 3)2
(q − 2)(q − 1)qa0

More generally,

an = −q − n − 1

n2
an−1 = (−1)n (q − n + 1) · · ·(q − 1)q

n!2 a0

Taking a0 = 1, we have found that one solution to the Laguerre equation is

y1(t ) = 1 +
∞∑

n=1

(−1)n (q − n + 1) · · ·(q − 1)q

n!2 t n (8.5.14)

When q is a non-negative integer, we see from (8.5.14) that y1(t ) is a
polynomial of degree q. Recalling the binomial coefficient

(q
n

)
given by(

q

n

)
= q!

n!(q − n)! = q(q − 1) · · ·(q − n + 1)

n! (8.5.15)

we are able to find a relatively simple expression for these polynomial solutions.
The Laguerre polynomial of degree q is given by

Lq(t ) = 1 +
q∑

n=1

(−1)n

n!
(

q

n

)
t n (8.5.16)

and these functions turn out to be the only solutions (up to scalar multiples) of
the Laguerre equation that are analytic at t = 0. The Laguerre polynomials are
yet another family of orthogonal polynomials. The first few of these polynomials
are given below, followed by a graph of L11(t ) in figure 8.3.

L1(t ) = 1 − t

L2(t ) = 1 − 2t + 1

2
t 2

L3(t ) = 1 − 3

2
t + 3

2
t 2 − 1

6
t 3

L4(t ) = 1 − 4t + 3t 2 − 2

3
t 3 + 1

24
t 4

3 A second solution can be found by more sophisticated techniques that lie beyond the scope of this
book.
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Figure 8.3 The degree 11 Laguerre poly-
nomial L11(t ) plotted on the interval
[0,10].

8.5.3 The Bessel equation

The Bessel equation

t 2y ′′ + ty ′ + (t 2 −λ2)y = 0 (8.5.17)

is a very important DE in mathematical physics. The properties of its
solutions have been well studied; the equation often appears in the process of
solving certain partial differential equations that appear when using cylindrical
coordinates.

The parameter λ in (8.5.17) is a real constant. Like the Laguerre equation,
the Bessel equation has a singular point at t = 0, so we cannot expect to find
solutions to the equation with Taylor series centered at a = 0. Nonetheless, as
we will show shortly, a solution analytic at t = 0 exists when λ is a non-negative
integer. While a second linearly independent solution to the Bessel equation can
be found, the techniques required are beyond the scope of this text.

Here we only explore the series solutions that do exist for the Bessel
equation. Let λ = m be a non-negative integer and assume that y1(t ) =
a0 + a1t + a2t 2 +·· · . Substituting directly in (8.5.17) leads to

−m2a0 + (1 − m2)a1t +
∞∑

k=2

[(k2 − m2)ak + ak−2]t k = 0 (8.5.18)

Since each coefficient of powers of t in (8.5.18) must be zero, it follows that
m2a0 = 0, (1 − m2)a1 = 0, and

(k2 − m2)ak + ak−2 = 0, k ≥ 2 (8.5.19)

If k < m, then it follows ak = 0 for each such k by the three preceding
equalities. When k = m, the coefficient k2 −m2 of ak vanishes and thus (8.5.19)
becomes the identity, rendering the value of am arbitrary. Note further that
am+1 = am+3 = ·· · = 0 is another consequence of (8.5.19). Thus, am can be any
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constant, and subsequent terms must satisfy the recurrence

ak+2 =− 1

(k+2)2 −m2
ak =− 1

(k+2−m)(k+2+m)
, k =m,m+2,m+4,...

(8.5.20)
Hence, given a positive integer λ = m and a value for am , we can determine
all of the coefficients of the Taylor expansion of an analytic solution to the
Bessel equation. In particular, these coefficients am+2j for j ≥ 0 must satisfy
the recurrence relation (8.5.20), from which using am = 1 we find the closed
formula

am+2j = 2−2j (−1)j

j!(m + 1)(m + 2) · · ·(m + j)
(8.5.21)

Hence, one solution of Bessel’s equation (again, when λ = m is a positive
integer) is

y1(t ) =
∞∑

j=0

2−2j (−1)j

j!(m + 1)(m + 2) · · ·(m + j)
tm+2j (8.5.22)

The Bessel function of the first kind of order n (it is standard to use n rather than
m for the order of the Bessel function) is the scalar multiple of y1(t ) given by

Jn(t ) = 2−n

n! y1(t ) =
∞∑

j=0

2−2j−n (−1)j

j!(n + j)! t
n+2j (8.5.23)

For example, the first two Bessel functions are

J0(t ) =
∞∑

j=0

2−2j (−1)j

j!j! t 2j (8.5.24)

and

J1(t ) =
∞∑

j=0

2−2j−1 (−1)j

j!(j + 1)! t
2j+1 (8.5.25)

The graph of J0(t ) in figure 8.4 shows that the Bessel function exhibits damped
oscillation.

In this section, through the Hermite, Laguerre, and Bessel equations, we have
encountered examples not only of three important DEs, but also of the various
types of important functions that arise as solutions to these equations. Hermite
polynomials, Laguerre polynomials, and Bessel functions are often studied
in courses on special functions and demonstrate a wide range of interesting
properties that mathematicians, engineers, and physicists have studied.

Exercises 8.5

1. Determine the degree 4 and 5 Hermite polynomials, H4(t ) and H5(t ).
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Figure 8.4 The Bessel function of the
first kind, J0(t ).

In exercises 2–4, find the first three nonzero terms in the Taylor series
representation of the general solution to the given Hermite equation.

2. y ′′ − 2ty ′ + 6y = 0

3. y ′′ − 2ty ′ + 10y = 0

4. y ′′ − 2ty ′ + 4y = 0

In exercises 5–7, find the first three nonzero terms in the Taylor series
representation of the general solution to the given IVP.

5. y ′′ − 2ty ′ + 6y = 0, y(0) = 2, y ′(0) = 10

6. y ′′ − 2ty ′ + 10y = 0, y(0) = 1, y ′(0) = 0

7. y ′′ − 2ty ′ + 4y = 8t , y(0) = 1, y ′(0) = 0

8. Determine the degree 5 and 6 Laguerre polynomials, L5(t ) and L6(t ).

Given that a general solution of Laguerre’s equation is c1Lq(t ) + c2u2(t ), where
u2(t ) is singular at the origin, in exercises 9–11, determine the solution to the
given IVP.

9. ty ′′ + (1 − t )y ′ + 3y = 0, y(0) = finite, y(1) = 1

10. ty ′′ + (1 − t )y ′ + 4y = 0, y(0) = finite, y(2) = 2

11. ty ′′ + (1 − t )y ′ + 4y = 3t , y(0) = finite, y(1) = 4

12. Determine the first five nonzero terms in the series expansion of
J2(t ) about t = 0. In addition, state the form of J2(t ) in sigma
notation.

It can be shown that a second linearly independent solution to the Bessel
equation when λ = n (called the Bessel function of the second kind of
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order n is given by

Yn(t ) = 2

π
Jn(t )

(
ln

t

2
+ γ

)
+ R(t ) + u(t )

where R(t ) is a rational function, γ ≈ 0.577215665 is Euler’s constant, and u(t )
is a power series convergent for all t . Note that Yn(t ) is singular at the origin. In
exercises 13–15, determine the general solution to the given equation.

13. t 2y ′′ + ty ′ + (t 2 − 4)y = 0

14. t 2y ′′ + ty ′ + (t 2 − 9)y = 0

15. t 2y ′′ + ty ′ + (t 2 − 16)y = 0

In exercises 16–18, determine the solution to the given IVP.

16. t 2y ′′ + ty ′ + (t 2 − 4)y = 0, y(0) = finite, y(1) = 1

17. t 2y ′′ + ty ′ + (t 2 − 9)y = 0, y(0) = finite, y(1) = −3

18. t 2y ′′ + ty ′ + (t 2 − 16)y = 0, y(0) = finite, y(1) = 2

8.6 The Method of Frobenius

Some second-order linear DEs that appear in physical applications do not have
two linearly independent analytic solutions about t = 0. Perhaps the most
important and well-studied example is the Bessel equation (8.5.17). A somewhat
simpler example is

t 2y ′′ + 3

2
ty ′ − 1

2
y (8.6.1)

which is a Cauchy–Euler equation (on which more information can be found
in section 4.7.3). It is a straightforward exercise to show that for all t > 0,
y1(t ) = t−1 and y2(t ) = √

t are linearly independent solutions of (8.6.1). Note
that neither y1 nor y2 has a derivative at the origin, and therefore neither is
analytic at t = 0; thus, each lacks a Taylor series expansion at the origin.

F. Georg Frobenius (1847–1917) showed that a certain class of linear
second-order DEs with a singular point at the origin can be represented in
series form by a slight generalization of a Taylor series. In particular, he showed
that these series solutions have the form

y = t r
∞∑

k=0

bkt k =
∞∑

k=0

bkt k+r (8.6.2)

where r is a real number and
∑∞

k=0 bkt k converges in some open interval
containing the origin. The series (8.6.2) is called a Frobenius series, and the
following method we will discuss for obtaining r and the coefficients bk is
known as the Method of Frobenius.
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The Cauchy–Euler equation and the Bessel equation both belong to this
class of equations that can be solved by the Method of Frobenius. In what
follows, we focus particularly on equations of the form

t 2y ′′ + tp(t )y ′ + q(t )y = 0 (8.6.3)

where p(t ) and q(t ) are low-degree polynomials. Note that p and q are analytic
at the origin, and therefore each has a convergent Taylor series there. Any linear
second-order DE with this property is said to have a regular singular point at
the origin. The Method of Frobenius applies to all such equations. Finally,
observe that if p(t ) and q(t ) are constant polynomials, then (8.6.3) reduces to a
Cauchy–Euler equation.

To begin, we suppose that there is a solution of (8.6.3) that has a series
expansion of the form

y =
∞∑

k=0

bkt k+r (8.6.4)

where b0 
= 0 and
∑∞

k=0 bkt k converges in 0 < |t | < R. From this, it follows that

y ′ =
∞∑

k=0

(k + r)bkt k+r−1 (8.6.5)

and

y ′′ =
∞∑

k=0

(k + r)(k + r − 1)bkt k+r−2 (8.6.6)

Furthermore, we suppose that p(t ) and q(t ) have the expansions

p(t ) = p0 + p1t + p2t +·· ·+ pn
n +·· ·

q(t ) = q0 + q1t + q2t +·· ·+ qn
n +·· ·

Substituting these expressions for y , y ′, y ′′, p, and q in (8.6.3) and gathering like
terms, we find that

0 = t 2y ′′ + tp(t )y ′ + q(t )y

=
∞∑

k=0

(k + r)(k + r − 1)bkt k+r + (p0 + p1t + p2t +·· ·+ pn
n +·· · )

×
∞∑

k=0

(k + r)bkt k+r + (q0 + q1t + q2t +·· ·+ qn
n +·· · )

∞∑
k=0

bkt k+r

= (r(r − 1) + p0r + q0)b0 + c1t + c2t 2 +·· · (8.6.7)

where the general term cn depends on n and all earlier coefficients for each n ≥ 1.
A general formula for cn turns out to be complicated and not particularly useful
for the examples we wish to study, so we choose not to derive such a formula.
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The most important conclusion to draw from (8.6.7) comes from the fact
that each coefficient of the general power series expansion must be zero, so that
since b0 
= 0,

r(r − 1) + p0r + q0 = 0 (8.6.8)

Equation (8.6.8) is called the indicial equation for the Method of Frobenius.
Note that this equation is quadratic in r ; its two roots are the values of r that
are used in (8.6.2). At this point, it is useful for us to turn our attention to two
specific example of the Method of Frobenius at work.

Example 8.6.1 Find a Frobenius series solution for the Bessel–Clifford
equation

t 2y ′′ + (1 − a)ty ′ + ty = 0 (8.6.9)
where a is a constant.

Solution. With a being a constant, we have p(t ) = 1 − a, so in the series
expansion for p, p0 = 1 − a. Moreover, q(t ) = t , so q0 = 0. Thus, for the given
DE the indicial equation is

r(r − 1) + (1 − a)r = 0

Rearranging, we see that r(r − 1 + 1 − a) = r(r − a) = 0, and thus the roots of
the indicial equation are r = 0 and r = a.

In the case that r = 0, the Method of Frobenius is providing an analytic
solution to (8.6.9) of the form

y1 =
∞∑

k=0

bkt k

Dividing both sides of (8.6.9) by t and substituting this expression for y using
the standard series methods we have already discussed, it follows that

∞∑
k=0

[(k + 1)(k + 1 − a)bk+1 + bk ]t k

from which we obtain the recurrence relation

bk+1 = −1

(k + 1)(k + 1 − a)
bk (8.6.10)

It follows from (8.6.10) that the closed form expression for bk is

bk = (−1)k

k!(1 − a)(2 − a) · · ·(k − a)
b0, k ≥ 1

so we find that

y1(t ) = b0

(
1 +

∞∑
k=1

(−1)k

k!(1 − a)(2 − a) · · ·(k − a)
t k

)
(8.6.11)

which is valid for all t provided that a 
= 1,2, . . .. Note that from this recurrence
relation, every bn is a function of b0, and thus there cannot be two linearly
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independent solutions to the Bessel–Clifford equation that are analytic at 0.
Indeed, every solution linearly independent of y1(t ) must be singular at 0. And
while the equation has a singular point at the origin, there is an analytic solution
there for every a except when a is a positive integer. We now turn to the other
root of the indicial equation in search of a second solution to the Bessel–Clifford
equation.

Using r = a, we have

ty(t ) =
∞∑

k=0

bkt k+a+1

(1 − a)ty ′(t ) =
∞∑

k=0

(1 − a)(k + a)bkt k+a

t 2y ′′(t ) =
∞∑

k=0

(k + a)(k + a − 1)bkt k+a

Adding these equations forms the left side of the differential equation we aspire
to solve; doing so and simplifying, we find that

0 = t 2y ′′(t ) + (1 − a)ty ′(t ) + ty(t ) =
∞∑

k=0

k(k + a)bkt k+a +
∞∑

k=0

bkt k+a+1

Since the first term in the first sum is zero, if we adjust the index of the summation
in the second sum and combine, we have

∞∑
k=1

[k(k + a)bk + bk−1]t k+a = 0

from which it follows that

k(k + a)bk + bk−1 = 0, k ≥ 1

This standard recurrence relation can be solved to write every bk in terms of b0.
Indeed, we see

bk = (−1)k

k!(1 + a)(2 + a) · · ·(k + a)
b0, k ≥ 1

so that the Frobenius series representation of the solution is

y2(t ) = b0t a

(
1 +

∞∑
k=1

(−1)k

k!(1 + a)(2 + a) · · ·(k + a)
t k

)
(8.6.12)

We close this example with a few important observations. First, if a = 0, then the
Frobenius solution y2(t ) is identical to the earlier obtained y1(t ). Moreover, if a
is a non-negative integer, then the Method of Frobenius produces a Taylor series
expansion that is analytic at t = 0. Thus, the cases for a valid analytic solution
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excluded by our approach in finding y1(t ) are here reconciled. Finally, if a is not
an integer, then y2(t ) is singular at t = 0 and, together with the analytic y1(t )
given by (8.6.11), we have found a linearly independent set of solutions for the
Bessel–Clifford equation valid for t > 0.

To complete this section, we consider a second example.

Example 8.6.2 Find a Frobenius series solution of Bessel’s equation,

t 2y ′′ + ty ′ + (t 2 −λ2)y = 0 (8.6.13)

Solution. In section 8.5.3, we derived a solution to (8.6.13) in the case where
λ is an integer. Thus, in what follows we assume that λ > 0 is not an integer.

Since p(t ) = 1 and q(t ) = −λ2 + t 2, we have p0 = 1 and q0 = −λ2, which
tells us that the indicial equation is

r(r − 1) + r −λ2 = r2 −λ2 = 0

Thus, r = ±λ. Choosing r = λ and using (8.6.4), (8.6.5), and (8.6.6), we find
that the three relevant series for the differential equation (8.6.13) are

(t 2 −λ2)y(t ) =
∞∑

k=0

bkt k+λ+2 −
∞∑

k=0

bkt k+λ+2

ty ′(t ) =
∞∑

k=0

(k +λ)bkt k+λ

t 2y ′′(t ) =
∞∑

k=0

(k +λ)(k +λ− 1)bkt k+λ

From the form of Bessel’s equation, the sum of these three expressions vanishes;
adding and simplifying, we observe that

∞∑
k=0

k(k + 2λ)bkt k+λ −
∞∑

k=0

bkt k+λ+2 = 0

To combine the sums, we step up the index in the second summation by 2
and find

(1 + 2λ)b1t 1+λ −
∞∑

k=2

[k(k + 2λ)bk + bk−2]t k+λ = 0

So, (1 + 2λ)b1 = 0, and

k(k + 2λ)bk + bk−2 = 0, k ≥ 2 (8.6.14)

One solution to this recurrence relation is obtained by setting b0 = 1 and b1 = 0.
Then, since we are assuming that λ is not an integer and b1 = 0, (8.6.14) implies
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that all odd-subscripted coefficients are zero and that

bk = −1

k(2λ+ k)
bk−2, k = 2,4, . . .

Therefore, it follows that in closed form we have

b2k = (−1)k2−2k

k!(1 +λ)(2 +λ) · · ·(k +λ)

and thus a Frobenius solution to the Bessel equation is

y(t ) = tλ +
∞∑

k=1

(−1)k2−2k

k!(1 +λ)(2 +λ) · · ·(k +λ)
t 2k+λ

Note that since λ > 0, the ratio test can be applied to show that this series
converges for all values of t .

A more detailed study of the Method of Frobenius is beyond the scope of this
text. (For further discussion, see Potter and Goldberg, Mathematical Methods,
second edition, Great Lakes Press 1995.)

Exercises 8.6
In exercises 1–10, find the indicial equation and use the root that either is not
an integer or that is the larger integer to find the first three nonzero coefficients
in a Frobenius series solution to the given DE.

1. 2t 2y ′′ − ty ′ + (1 + t )y = 0

2. 2ty ′′ + y ′ + ty = 0

3. ty ′′ + (t − 2)y ′ + y = 0

4. 2ty ′′ + (1 + 4t )y ′ + y = 0

5. t 2y ′′ − t (t + 5)y ′ + (t + 5)y = 0

6. 2t 2y ′′ − ty ′ + (t − 5)y = 0

7. 4t 2y ′′ + 6ty ′ + (t − 2)y = 0

8. 2ty ′′ + (1 − t )y ′ − y = 0

9. t 2y ′′ + ty ′ + (t − 3)y = 0

10. 3t 2y ′′ − ty ′ − 4y = 0

11. Find the indicial equation for the Cauchy–Euler equation

t 2y ′′ + pty ′ + qy = 0

12. Show that the roots of the indicial equation are equal for the Laguerre
equation

ty ′′ + (1 − t )y ′ + qu = 0
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8.7 For further study

8.7.1 Taylor series for first-order differential
equations

Let y(t ) =∑∞
n=0 ant n be the Taylor series of a solution of

ty ′ +λy = f (t ) (8.7.1)

where λ is constant and f (t ) =∑∞
n=0 fnt n .

(a) Show that

y(t ) =
∞∑

n=0

fn
n +λ

t n

(b) In terms of the infinite series derived in (a), what is the general solution
to (8.7.1)?

(c) Using series expansions appropriately and your work in (a), determine the
general solution to each of the following DEs.

(i) ty ′ + 2y = et

(ii) ty ′ + 3y = sin t
(iii) ty ′ + 4y = arctan t

(d) Show that
∞∑

n=0

fn
n +λ

t n = t−λ
∞∑

n=0

fn
n +λ

t n+λ = t−λ

∫ t

0

∞∑
n=0

fnxn+λ−1 dx

= t−λ

∫ t

0
xλ−1

∞∑
n=0

fnxn dx = t−λ

∫ t

0
xλ−1f (x)dx

(e) Substitute directly in (8.7.1) to show that

y(t ) = t−λ

∫ t

0
xλ−1f (x)dx

is indeed a solution.

(f) Solve (8.7.1) by use of an integrating factor (see section 2.3) and compare
your result to y(t ) as given in (e).

8.7.2 The Gamma function

The Gamma function �(x), like Bessel functions and families of orthogonal
polynomials, is a special function that plays an important role in many areas of
mathematics. The Gamma function is defined by

�(s + 1) =
∫ ∞

0
e−t t s dt , s > −1 (8.7.2)
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(a) Show that �(1) = 1.

(b) Use integration by parts to show that �(s + 1) = s�(s).

(c) Show that if s is a positive integer, then �(s) = s!.
(d) Let r > 0 be given and recall that L[t r ] = ∫∞

0 e−st t r dt . Hence show that

L[t r−1] = �(r)

sr

(e) Show that

�

(
1

2

)
= 2

∫ ∞

−∞
e−x2

dx = √
π

(f) Use (b) to show that

hn �(h + x/h)

�(x/h)
= x(x + h)(x + 2h) · · ·(x + (n − 1)h)

Hence, show that

1 · 3 · 5 · · ·(2n − 1) = 2n �(n + 1/2)

�(1/2)
= 2n

√
π

�(n + 1/2)

(g) Finally, explain why 1 · 3 · 5 · · ·(2n − 1) = (2n)!/(2nn!) and therefore show

�

(
n + 1

2

)
= (2n)!

2nn!
√

π



A
Review of integration techniques

Several standard solution techniques for differential equations require us to
integrate functions. Here we briefly review some fundamentals from calculus.

u-substitution

For integrals of the form ∫
f (g (t ))g ′(t )dt

we can evaluate the integral by undoing the chain rule through a change of
variables. Letting u = g (t ), it follows du = g ′(t )dt , and thus∫

f (g (t ))g ′(t )dt =
∫

f (u)du

If we can evaluate the new, simpler integral in u, all that remains is to substitute
back to the variable t . For instance, to evaluate∫

t sin t 2 dt

we let u = t 2 and du = 2t dt . We note that t dt = 1
2 du. Thus, substituting for t 2

and t dt , we find that the given integral is equivalently∫
1

2
sinu du

Evaluating the integral in u and substituting back to t ,∫
t sin t 2 dt =

∫
1

2
sinu du = −1

2
cosu + C = −1

2
cos t 2 + C

493



494 Appendix A: Review of integration techniques

Overall, u-substitution is particularly relevant for working with composite
functions. In attempting to use u-substitution, we should search the integrand
for an inside function, and then hope that its derivative (up to a constant
multiple) is present outside the composite function.

Examples for further practice:

1.

∫
te−t 2

dt

2.

∫
t 21(4t 22 − 13)20 dt

3.

∫
6e1/t · t−2 dt

4.

∫
sin t

1 + cos2 t
dt

5.

∫
(sin t )3 dt Hint: sin2 t = 1 − cos2 t .

Integration by parts

As u-substitution is used to undo the chain rule, integration by parts undoes
the product rule. It is particularly applicable to integrals that involve products
of basic functions such as

∫
tet dt .

Recall that the product rule states

d

dt
[u(t )v(t )] = u(t )v ′(t ) + v(t )u′(t ) (A.1)

Integrating both sides of (A.1), it follows that

u(t )v(t ) =
∫

u(t )v ′(t )dt +
∫

v(t )u′(t )dt (A.2)

Solving for
∫

u(t )v ′(t )dt , we have∫
u(t )v ′(t )dt = u(t )v(t ) −

∫
v(t )u′(t )dt (A.3)

Writing dv = v ′(t )dt and du = u′(t )du and suppressing the presence of t , we
see in (A.3) the standard statement of the integration by parts rule:∫

udv = uv −
∫

v du (A.4)

For example, let’s evaluate
∫

tet dt . Letting u = t and dv = et dt , we observe that
du = dt and v = et . Thus, integrating by parts,∫

tet dt = tet −
∫

et dt = tet − et + C
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A good way to think of integration by parts is to view it as integrating the
product u dv by trading u for its derivative and trading dv for its antiderivative.
In particular, once we have decided to use integration by parts, we must make
appropriate choices for u and dv . One guideline is that dv should be fairly easy
to antidifferentiate; another is that the derivative of u should not be significantly
more complicated than u itself. Overall, we generally want the integral of v du to
be somehow simpler (or at least not more complicated) than the integral of u dv .

Examples for further practice:

1.

∫
t 4 ln t dt

2.

∫
5t sin t dt

3.

∫
3te2t dt

4.

∫
t
√

7t + 5dt

5.

∫
ln t dt Hint: Try dv = 1.

6.

∫
t 2et dt

7.

∫
et cos t dt

Partial fractions

A remarkable fact is that any rational function (that is, any quotient of two
polynomials) may be integrated. The standard method for approaching an
integration problem of the form ∫

p(t )

q(t )
dt

is the technique known as partial fractions. It is necessary to assume (or apply
long division so) that the degree of p is less than the degree of q. While partial
fractions is an important technique for integration, it is also a useful tool in its
own right. For example, we frequently use it when working with the Laplace
transform; see sections 5.5 and 5.6.

The method is best understood through a sequence of examples.

Example A.1 Evaluate the integral∫
t

t 2 + 5t + 6
dt (A.5)
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Solution. Factoring the integrand, we can write

t

t 2 + 5t + 6
= t

(t + 2)(t + 3)
(A.6)

If we view the righthand side as the result of adding two simpler fractions, we can
make the reasonable assumption that two fractions of the form A/(t + 2) and
B/(t + 3) had to be combined by getting a common denominator to form (A.6).
Thus we assume

t

(t + 2)(t + 3)
= A

t + 2
+ B

t + 3
(A.7)

and seek values of A and B which make this relationship hold for all values of t .
Multiplying both sides of (A.7) by (t + 2)(t + 3), we find

t = A(t + 3) + B(t + 2) (A.8)

Since (A.8) must be valid for every value of t , we can choose t -values that
make it especially easy to identify A and B. Choosing t = −2, we see that
−2 = A(−2 + 1) = A. Choosing t = −3, it follows −3 = B(−3 + 2), so B = 3.
Thus, we have determined

t

(t + 2)(t + 3)
= − 2

t + 2
+ 3

t + 3
(A.9)

Having completed the partial fraction decomposition, we can now integrate. In
particular, ∫

t

t 2 + 5t + 6
dt = − 2

t + 2
+ 3

t + 3

= −2 ln(t + 2) + 3 ln(t + 3) + C

The approach of example A.1 works any time the denominator q(t ) can
be written as a product of distinct linear terms. That is, if q(t ) = (t − r1)
(t − r2) · · ·(t − rn), then we can write

p(t )

q(t )
= A1

t − r1
+ A2

t − r2
+·· ·+ An

t − rn

and use algebra similar to our work above to determine A1, . . . ,An .

Example A.2 Evaluate the integral∫
t 2 − 4

t 3 + t 2
dt

Solution. Factoring the denominator of the integrand, we have

t 2 − 4

t 3 + t 2
= t 2 − 4

t 2(t + 1)
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If we think of the possible simpler fractions from which the given one can arise,
we see that it is possible for terms of the form

A

t
,

B

t 2
, and

C

t + 1

to be present. In particular, we must include A/t since this denominator is
included in the necessary B/t 2. Thus we write

t 2 − 4

t 2(t + 1)
= A

t
+ B

t 2
+ C

t + 1
(A.10)

Multiplying both sides of (A.10) by the least common denominator t 2(t + 1),
we find

t 2 − 4 = At (t + 1) + B(t + 1) + Ct 2

Setting t = 0 implies −4 = B; using t = −1 shows −3 = C . To find A, we
may use any other value of t , along with the established values of B and C .
With t = 1,

−3 = A(1)(2) + (−4)(2) + (−3)12

and therefore A = 4. We now apply the partial fractions decomposition and
integrate: ∫

t 2 − 4

t 3 + t 2
dt =

(∫
4

t
− 4

t 2
− 3

t + 1

)
dt

= 4 ln t + 4t−1 − 3 ln(t + 1) + C

In any rational function where the denominator contains a repeated factor, we
use a similar form of partial fraction decomposition. For instance,

t 3 − 2t + 1

(t + 4)3(t − 2)2(t − 5)
= A

t + 4
+ B

(t + 4)2
+ C

(t + 4)3
+ D

t − 2
+ E

(t − 2)2
+ F

t − 5

so that each repeated factor is represented once for each possible order up to the
highest power.

Example A.3 Evaluate the integral∫
t − 5

t 3 + t
dt

Solution. When we factor the integrand, we observe that a quadratic term is
present that cannot be factored further. In particular,

t − 5

t 3 + t
= t 2 − 4

t (t 2 + 1)
In this case, we assume that the right hand fraction may be decomposed into
the sum

t − 5

t (t 2 + 1)
= A

t
+ Bt + C

t 2 + 1
(A.11)
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The linear term Bt + C in the numerator of the last fraction is necessary; if we
used only C as the numerator of the second fraction, a contradiction may arise
in attempting to find A and C . Multiplying both sides of (A.11) by t (t 2 + 1),

t − 5 = A(t 2 + 1) + t (Bt + C) (A.12)

Besides t = 0, there are no obvious real values of t that enable us to easily
deduce the values of A, B, and C . Choosing any three distinct values of t
will lead to a system of three linear equations in A, B, and C which may be
solved. Alternatively, we can expand and equate like coefficients in (A.12).
Specifically, since

t − 5 = At 2 + A + Bt 2 + Ct

equating constant terms implies A = −5, equating linear terms shows C = 1,
and the quadratic terms require that A +B = 0, thus B = 5. We have now found
the partial fraction decomposition and are ready to integrate. Doing so,∫

t − 5

t (t 2 + 1)
dt =

∫ (
−5

t
+ 5t + 1

t 2 + 1

)
dt

=
∫ (

−5

t
+ 5t

t 2 + 1
+ 1

t 2 + 1

)
dt (A.13)

= −5 ln t + 5

2
ln(t 2 + 1) + arctan t + C

Note that from the first step to (A.13) we performed the key algebraic
separation

5t + 1

t 2 + 1
= 5t

t 2 + 1
+ 1

t 2 + 1

so that we could integrate the first term by u-substitution (u = t 2 + 1) and
recognize the integral of the second as the familiar arctangent function.

When a rational function’s denominator is factored, any time a term of the form
s2 + a2 arises, we must include a linear term in the numerator of the proposed
partial fraction decomposition. For instance, if we were decomposing

t

(s2 + 9)(s2 + 25)

the appropriate form to assume for the sum of simpler fractions would be

t

(s2 + 9)(s2 + 25)
= At + B

s2 + 9
+ Ct + D

s2 + 25

The observations we have made for the cases of distinct linear terms, repeated
linear terms, and irreducible quadratic terms may be combined, as need, in any
problem where a partial fraction decomposition is sought.
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Examples for further practice:

1.

∫
t 2 + 1

(t − 2)(t − 1)(t + 3)
dt

2.

∫
t 3 + t + 1

t 4 − 1
dt

3.

∫
t 2 − t − 1

t 3 − 6t 2 + 11t − 6
dt

4.

∫
t 2 − t − 1

(t − 3)3
dt

5.

∫
t + 2

t 4 + 4t 2
dt

6.

∫
et

e2t − et − 6
dt

Tables and computer algebra systems

In addition to the methods of u-substitution, integration by parts, and partial
fractions, there are other standard integration techniques that enable us to
deduce a wide range of results. Students normally learn a handful of integration
techniques in calculus; it is also the case that entire books exist that are filled
with tables of integrals and almost every calculus book includes at least a short
table of integrals, typically a few pages long.

It is common for integral tables to include results such as∫
sinmt sinnt dt = 1

2(n − m)
sin(n − m)t − 1

2(n + m)
sin(n + m)t , m 
= ±n

Given an integral that aligns with this form, say∫
sin 5t sin 3t dt

it is a straightforward exercise to identify m and n and thus evaluate the
integral.

In other cases, the identification of the appropriate rule in a table is
more subtle and involved. In table A.1, we see that for the given collection of
examples, even a slight change in the integrand leads to a major difference in the
result.

In addition, we note that it takes some care in order to correctly identify
which line in an integral table to use in certain examples. For instance, if we
wish to evaluate the integral ∫

dt

5t
√

4t 2 + 9
(A.14)
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Table A.1
Integrals involving u2 ± a2

Function Antiderivative

∫
du

a2 + u2

1

a
arctan

u

a∫
du√

u2 ± a2
ln |u +

√
u2 ± a2|

∫ √
u2 ± a2 du

u

2

√
u2 ± a2 ± a2

2
ln |u +

√
u2 ± a2|

∫
u2du√
u2 ± a2

u

2

√
u2 ± a2 ∓ a2

2
ln |u +

√
u2 ± a2|

∫
du

u
√

u2 + a2
− 1

a
ln

∣∣∣∣∣a +√
u2 + a2

u

∣∣∣∣∣
∫

du

u
√

u2 − a2

1

a
sec−1 u

a

it appears that (A.14) most resembles (5) in table A.1. To use this statement
in the table, it is necessary that we execute a u-substitution. We see that letting
u = 2t implies u2 = 4t 2, t =u/2, and dt = du/2. Replacing the three appearances
of t in (A.14), we have∫

dt

5t
√

4t 2 + 9
=
∫ 1

2 du
5
2 u

√
u2 + 9

= 1

5

∫
du

u
√

u2 + 9

Applying (5) in table A.1 to our most recent result (with a = 3) and then
substituting back to t , we find

∫
dt

5t
√

4t 2 + 9
= 1

5

(
−1

3
ln

∣∣∣∣∣3 +√
u2 + 9

u

∣∣∣∣∣
)

+ C

= − 1

15
ln

∣∣∣∣∣3 +√
4t 2 + 9

2t

∣∣∣∣∣+ C

An available option in the consideration of any integral is the use of a computer
algebra system. In Maple, the syntax > int(f(t), t); results in the
program attempting to evaluate the integral. For example,

>int(exp(sqrt(t))/sqrt(t), t);
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produces the output

2e
√

t

which shows that ∫
e
√

t

√
t

dt = 2e
√

t + C

There are integrals that Maple evaluates but that produce unusual output,
such as

> int(exp(tˆ2), t);

which results in
1

2

√
πerf (t )

The function erf is the so-called error function which arises frequently in
probability and statistics and is itself defined by a definite integral. The notation

erf (t ) is used since e−t 2
lacks an elementary antiderivative.

Other integrals, some of which may be evaluated with human intervention,
Maple is unable to execute. For instance, the integral∫

(1 + t )et
√

1 + (tet )2 dt (A.15)

cannot be evaluated by Maple (when entered and executed, the program
simply returns the integral unevaluated). However, if we recognize that the
u-substitution u = tet leads to (A.15) being equivalently expressed as the
integral ∫ √

1 + u2 du

then we observe that this integral in u may be easily evaluated by Maple or found
in any standard table.

Overall, the reader is advised to be well versed in the standard integration
methods, to practice them as needed, and to realize that even with lengthy tables
and the availability of computer algebra systems, evaluating integrals if often
both a challenging and involved task.
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B
Complex numbers

Complex numbers arise naturally in the solution of quadratic (and other
polynomial) equations. For example, the equation

t 2 + 1 = 0

has no real number solutions. But, if we want any quadratic equation to have two
solutions, it is natural to say that t 2 = −1 and therefore t = ±√−1. We denote√−1 by the symbol “i”, and thus say that t = ±i are solutions to t 2 + 1 = 0.

Similarly, if we have the equation t 2 +2t +5 = 0 and we apply the quadratic
formula, it follows

t = −2 ±√
22 − 4 · 1 · 5

2
= −2 ±√−16

2

Using i = √−1, we have

t = −2 ± 4i

2
= −1 ± 2i

In general, a complex number z is any number of the form

z = a + bi

where a and b are both real numbers and i satisfies i2 = −1. Complex
numbers are naturally represented as points in the so-called complex plane,
which corresponds to R

2; the set of all complex numbers is denoted by C.
In particular, given any complex number z = a + bi we can associate z with
the point (a,b), as shown in figure B.1, where we see the particular example
z = 3 + 2i.

In the complex plane, the horizontal axis is known as the real axis, denoted
Re, and the vertical axis is the imaginary axis, labelled Im. For the complex

503
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2

1

321

3+2i = (3,2)

Re

Im

θ

|z|

Figure B.1 The complex number z = 3 + 2i.

number z = a + bi, the real part of z is a, and we write Re(z) = a, while the
imaginary part of z is b, denoted Im(z) = b.

This geometric interpretation of complex numbers leads to other natural
concepts. The modulus |z | of z = 3 + 2i is defined to be the length of the line
segment from the origin to the point (3,2), or |z | = √

32 + 22 = √
13. Similarly,

to each complex number we associate an angle θ , as shown in figure B.1, which
is known as the argument of z . For z = 3 + 2i, θ = arctan 2/3. In general, for
z = a + bi, |z | = √

a2 + b2 and θ = arctanb/a. The modulus and argument
essentially give us the polar representation of z , while a and b provide its
rectangular coordinates.

Just like with real numbers, we can add, subtract, multiply, and divide
complex numbers. For example, if w = 2 + i and z = 3 + 2i, then

w + z = (2 + i) + (3 + 2i) = 5 + 3i

Complex addition, much like vector addition, is performed component-wise.
Subtraction is executed in the same manner. For multiplication, the distributive
law enables us to compute products of complex numbers. Specifically,

w · z = (2 + i)(3 + 2i) = 6 + 4i + 3i + 2i2 = 6 + 7i − 2 = 4 + 7i

To divide, we use the complex conjugate of the denominator to convert the
division problem to one of multiplication. The complex conjugate of z = a +bi
is z = a − bi. For instance,

w

z
= 2 + i

3 + 2i
= 2 + i

3 + 2i
· 3 − 2i

3 − 2i

= 6 + 3i − 2i − 2i2

9 − 4i2
= 4 + i

5

= 4

5
+ 1

5
i

Using basic trigonometry and Euler’s formula1, we can gain a particu-
larly nice geometric perspective on the multiplication of complex numbers.

1 Euler’s formula, eiθ = cosθ + i sinθ , is introduced in section 3.5.
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θ

|z|

|z| cos θ

|z| sin θ

(|z| cos θ, |z| sin θ)Im

Re

Figure B.2 The complex number z = |z |cosθ +
i|z | sinθ .

Given a complex number z with modulus |z | and argument θ , we may write z
in its rectangular form as

z = |z |cosθ + i|z | sinθ

as demonstrated in figure B.2. From Euler’s formula, we see that it is equivalent
to write z in the form

z = |z |cosθ + i|z | sinθ

= |z |(cosθ + i sinθ)

= |z |eiθ

Note particularly that the complex number eiθ = cosθ + i sinθ has modulus 1;
that is, eiθ lies on the unit circle in the complex plane.

Given another complex number w with modulus |w| and argument α, we
may write w = |w|eiα , from which the product w · z is

w · z = (|w|eiα) · (|z |eiθ ) = |w||z |ei(α+θ) (B.1)

The expression (B.1) for w · z shows that when two complex numbers are
multiplied, the modulus of the product is the product of the two numbers’
moduli, while the argument of the product is the sum of the arguments of the
two numbers. This is shown geometrically in figure B.3.

Finally, it is important to note that because the complex numbers have so
much in common with the real numbers, it makes sense to work with them
in functions, too. For instance, we can consider a function such as

P(z) = z6 − 3z5 + (5 − 2i)z3 + iz2 − 21z + 3 − 5i.

P is a function for which we can input any complex number z ; the output
will also be a complex number P(z). For our work with solving differential
equations, it will sometimes be the case that we can find a complex solution
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θα

α+θ
|z|

|w|
w

z

wz

|w||z|

Im

Re

Figure B.3 The product of
complex numbers w = |w|eiα

and z = |z |eiθ .

to a real differential equation, and that certain parts of the complex function
(in fact, its real and imaginary parts) will themselves be real solutions to the
differential equation. Our exposure to complex functions will be largely limited
to doing some algebraic work with them; when studied in depth these functions
lead to a rich area of mathematics known as complex analysis, where one can
discover how calculus can be extended from working with real functions to
complex ones.

Examples for further practice:

1. For each complex number, identify its real and imaginary parts,
determine its complex conjugate, and write the number in the form
z = |z |eiθ .

(a) z = 3 − 2i
(b)z = −4 + 9i
(c) z = 5
(d)z = 4i

2. Evaluate the stated sum, difference, product, or quotient, and write the
result in the form z = a + bi.

(a) (1 − 3i) + (4 + 7i)
(b) (2 − 5i) − (10 − i)
(c) (1 − 2i)i
(d) (5 − 2i)(i − 3)
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(e) (1 + i)(1 − i)

(f)
1

1 − i

(g)
3 − i

2 + 3i

3. For any complex numbers z and w , show that

(a) z + w = z + w and zw = zw
(b) zz = |z |2 ≥ 0
(c) Re(z + w) = Rez + Rew
(d) Re(zw) = Rez Rew − Imz Imw
(e) Im(zw) = Imz Rew + Rez Imw

4. Using the fact that eiθ = cosθ + i sinθ , determine the real and imaginary
parts of

(a) eiπ

(b) eiπ/6

(c) e2−3i
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C
Roots of polynomials

Polynomials are the most basic functions in all of mathematics. A real polynomial
of degree n is a function p(t ) of the form

p(t ) = ant n + an−1t n−1 +·· ·+ a1t + a0 (C.1)

where a0, . . . ,an are real numbers. A number r is a root or zero of a polynomial
p if and only if p(r) = 0. In addition, we note that r is a root of p if and only
if (t − r) is a factor of p(t ), which means that we can express p(t ) in the form
p(t ) = (t − r)q(t ), where q is a polynomial of degree one less than p.

The roots of polynomials find important applications in many settings; in
our study of differential equations and linear algebra, we must find polynomial
zeros when solving the eigenvalue problem, as well as when determining
fundamental solutions to higher order linear differential equations and linear
systems of DEs. Here we briefly review some of the most important facts about
the zeros of polynomial functions.

From quadratic polynomials of the form p(t ) = at 2 +bt + c , we know that
there are three possibilities for the zeros: p may have two distinct real zeros,
one repeated real zero, or no real zeros. This can be observed in a variety of
ways, but a graphical perspective is compelling: if a quadratic function p opens
upward (that is, its coefficient a > 0), then the function either its vertex lies
above the t -axis, on the t -axis, or below the t -axis, thus leading to the three
noted possibilities, as shown in figure C.1.

We can see the three cases from an algebraic perspective as well. From the
quadratic formula, we know the zeros are given by

t = −b ±√
b2 − 4ac

2a
(C.2)
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t

y

t

y

t

y

Figure C.1 Three concave up quadratic functions whose vertices lie,
respectively, below, on, and above the t -axis.

y

t

y

t

y

t

y

t

Figure C.2 Four cubic polynomials that demonstrate possible arrangements of the
zeros of cubic functions.

Thus, if b2 − 4ac > 0, it follows that p(t ) has two distinct real roots. In the
case that b2 − 4ac = 0, p(t ) has one repeated real root; here we say that p(t )
has a root of multiplicity 2. Finally, if b2 − 4ac < 0, then although the term√

b2 − 4ac permits no real solutions, if we use complex numbers and write√
b2 − 4ac = i

√
4ac − b2, we find that p(t ) has two distinct complex roots.

Note from (C.2) that these two complex roots are complex conjugates of one
another; more on complex numbers can be found in appendix B.

The factored form of quadratic polynomials is also important. If p(t ) has
two real roots, say t = −1 and t = 1, then p(t ) can be written in the form
p(t ) = a(t +1)(t −1), where p(t ) is the product of two real linear terms. If p(t )
has a repeated root, say t = 1, then we have p(t ) = a(t − 1)2. Finally, if p(t ) has
complex roots, then p(t ) cannot be factored into a product of real linear terms.
For example, p(t ) = t 2 +1 is a quadratic function with roots t = ±i; we say that
the quadratic term t 2 + 1 is irreducible.

For polynomials of degree greater than 2, many similar properties hold.
For example, for polynomials of degree 3, we can see graphically several
possibilities in figure C.2. In particular, a cubic polynomial can have a single
real, repeated root of multiplicity 3, such as the function p(t ) = (t − 1)3 shown
at left in figure C.2. Alternatively, it is possible for the function to have algebraic
form p(t ) = (t − 1)2(t + 1), which leads to two real roots, one of which has
multiplicity 2, which corresponds to the left center function in figure C.2.
Likewise, a cubic function such as p(t ) = t (t − 1)(t + 1) can have three distinct
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real zeros—see the right center graph in the figure—or have only a single real
root (which leaves the remaining two roots to be complex) as shown in the
right-most graph in figure C.2.

Because a cubic function will have one end tend to +∞ and the other
to −∞, this guarantees that every cubic function will have at least one real
zero. It follows that we can write p in the form p(t ) = (t − r)q(t ) where q is
quadratic, and from this we can deduce the four possible cases for the zeros
of p discussed in the preceding paragraph. In fact, there even exists a cubic
formula analogous to the quadratic formula that explicitly provides the zeros of
p(t ) = at 3 + bt 2 + ct + d in terms of formulas involving the coefficients a, b,
c , and d . This formula is sufficiently complicated that we choose not to state
it here.

The patterns we have observed for quadratic and cubic polynomials can
be proved to hold for real polynomials of any degree. In particular, we have
seen so far that for any degree-2 polynomial, the function has two zeros
provided we allow them to be complex and count them according to their
multiplicity. Similarly, for any degree-3 polynomial, the function has exactly
three zeros under the same proviso. The Fundamental Theorem of Algebra,
first proved by Carl Friedrich Gauss in 1799, beautifully summarizes the
situation.

Theorem C.1 (The Fundamental Theorem of Algebra). If p(t ) is a real
polynomial of degree n, then p(t ) has exactly n zeros provided we include
complex zeros and count all zeros according to their multiplicity.

Theorem C.1 can be proved using methods of complex analysis. Its
main purpose for our work is that we are always guaranteed that n roots
of a polynomial of degree n exist. Through the methods established in
chapters 3 and 4 for dealing with complex and repeated roots of characteristic
equations, the Fundamental Theorem of Algebra ultimately enables us to find
all solutions to any homogeneous linear higher order DE or system of linear
first-order DEs.

We also note that it is possible to use standard ideas in complex analysis to
show that if r is a complex root of a real polynomial p, then its complex conjugate
r is also a root of p. This guarantees that for real polynomials, complex roots
will always appear in conjugate pairs, just as we saw for the case of quadratic
functions.

While the Fundamental Theorem of Algebra guarantees the existence of
n zeros to a polynomial of degree n, it unfortunately does not provide an
algorithm for finding them. In fact, though formulas exist for quadratic and
cubic equations, as well as the degree four case, mathematicians have shown
that there exists no general formula to provide the roots of a polynomial of
degree 5 or greater. For higher degree polynomial equations, this leads us to
resort to numerical methods or computer algebra systems; see section 4.6.1 for
more on how to use Maple to compute the roots of polynomial functions.
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Examples for further practice:

1. For each of the following polynomial functions, state the degree,
determine all of the zeros, and state the multiplicity of each zero.

(a) p(t ) = t (t + 2)(t + 5)2(t − 3)(t −π)(t 2 + 1)
(b) p(t ) = t 4 − 1
(c) p(t ) = t 4 + 1
(d) p(t ) = (t 2 + 1)3(t − 3)5(t 2 − t − 12)
(e) p(t ) = t 5 + 6t 3 + 9t

2. Determine a formula for a real polynomial function of the least possible
degree that satisfies the given criteria. State the degree of the function you
find. If no such function is possible, explain why.

(a) distinct zeros at t = −3,−1,2 and a zero of multiplicity 3 at t = 0
(b) complex zeros t = ±3i, each of multiplicity 2, and a single real zero of

multiplicity 1 at t = 4
(c) a zero of multiplicity 2 at t = −1, a zero of multiplicity 3 at t = 2, and

a zero of multiplicity 4 at t = 5
(d) a polynomial of even degree with exactly one real zero of multiplicity 1

at t = 0



D
Linear transformations

The notion of function is central to mathematics. Given any two collections of
objects A and B, a function f : A → B is a rule that associates each element of A
with one and only one element of B. Sometimes, we use the terms mapping or
transformation in place of the word function. Among all functions, certain types
stand out for their important properties and/or simplicity. In what follows, we
focus on the property of linearity.

In many different areas of our study of linear algebra and differential
equations, we find that linear combinations of objects play a key role. Similarly,
we encounter important functions that transform a certain group of objects
into another collection. The combination of these ideas makes us naturally
interested in transformations that preserve linear combinations. Let us consider
three familiar examples.

(1) For any m ×n matrix A, any vectors x and y in R
n , and any real number c ,

A(x + y) = Ax + Ay and A(cx) = cAx

(2) From calculus, if we let D denote the differential operator, then for any
differentiable functions f and g and any real number c , we know by the
sum and constant multiple rules that

D(f + g ) = D(f ) + D(g ) and D(cf ) = cD(f )

(3) In our studies of the Laplace transform L in chapter 5, we found that the
transform satisfies the property that for any acceptable functions f and g
and any real constant c ,

L[f (t ) + g (t )] = L[f (t )]+L[g (t )] and L[cf (t )] = cL[f (t )]
Matrix–vector multiplication, differentiation, and the Laplace transform are all
examples of transformations: they take a given input (a vector or a function)
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and transform that input to a (unique) output, a new vector or function.
Moreover, each satisfies the property that the transformation preserves sums
and scalar multiples: the transformation applied to a sum is the same as the
sum of the results of the transformation applied to the individual objects, and
the transformation applied to a scalar multiple of an input is identical to the
same scalar multiple of the output that results from the transformation applied
to the original object. Viewing these inputs as belonging to a vector space1,
we arrive at the following formal definition.

Definition D.1 Let U and V be vector spaces. A transformation T : U → V
is a linear transformation provided that for any vectors u and v in U and any
scalar c , T satisfies the properties T (u +v) = T (u)+T (v) and T (cu) = cT (u).

Two consequences of the definition are immediate: T (0) = 0 and T (au+ bv)
= aT (u) + bT (v) for all scalars a, b and vectors u, v. Note that in the equation
T (0) = 0, the zero vector on the left is from U while the one on the right is from
V , and thus these may not be the same zero vectors.

Linear transformations play a key structural role in linear algebra and in
the theory of linear DEs. We first turn to a discussion of the matrix of a linear
transformation of finite dimensional vector spaces.

Matrix transformations

In section 1.3, we first saw that Property (1) above holds for matrix–vector
multiplication. That is, given an m ×n matrix A, for any two vectors x and y in
R

n and any constant c ,

A(x + y) = Ax + Ay and A(cx) = cx

Thus, if we define the transformation T : R
n → R

m by the rule T (x) = Ax,
then it follows immediately that T (x + y) = T (x) + T (y) and T (cx) = cT (x),
which means that T is a linear transformation. Said differently, the natural
multiplication function associated with a given matrix A always generates a linear
transformation. We usually call A the matrix of the transformation T . Consider
the following particular example.

Example D.1 Let A =
[

3 −2 5
−1 0 −7

]
, and let T (x) = Ax. Determine T (e1),

T (e2), and T (e3) where {e1,e2,e3} is the standard basis of R
3, and then use

properties of linearity to determine T (z) when z = [−5 2 − 6]T.

Solution. First, we observe that

T (e1) = Ae1 =
[

3 −2 5
−1 0 −7

]⎡⎣ 1
0
0

⎤
⎦=

[
3

−1

]
(D.1)

1 This appendix assumes that the reader is familiar with basic concepts in sections 1.11 and 1.12.
If the Laplace transform has not yet been studied, references to it may simply be skipped.
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Similarly,

T (e2) =
[−2

0

]
and T (e3) =

[
5

−7

]
(D.2)

Next, to compute T (z), we observe that

z =
⎡
⎣−5

2
−6

⎤
⎦= −5

⎡
⎣ 1

0
0

⎤
⎦+ 2

⎡
⎣ 0

1
0

⎤
⎦− 6

⎡
⎣ 0

0
1

⎤
⎦= −5e1 + 2e2 − 6e3

and thus by the linearity of T and (D.1) and (D.2), we have

T (z) = T (−5e1 + 2e2 − 6e3)

= −5T (e1) + 2T (e2) − 6T (e3)

= −5

[
3

−1

]
+ 2

[−2
0

]
− 6

[
5

−7

]

=
[−49

47

]

There are at least two important observations to make from example D.1. The
first is that, due to linearity, we can find the result of applying T to any vector
if we first know the results of applying T to the basis vectors in the domain
of T . Since any vector in the domain can be uniquely expressed as a linear
combination of basis elements and T preserves linear combinations, we can
easily apply T to the linear combination that generates the vector of our choice.
This holds not just for the transformation in the example, but indeed for any
linear transformation on a vector space.

Furthermore, (D.1) and (D.2) indicate that there is a key relationship
between the values of the transformation applied to the domain’s basis vectors
and the matrix of the transformation. Specifically, T (e1) is the first column of
A, and T (e2) and T (e3) are the second and third columns of A. That this result
holds in general is the following theorem.

Theorem D.1 If T : R
n → R

m is a linear transformation, then T (x) = Ax
where A is the m × n matrix

A = [T (e1) T (e2) · · · T (en)]
and ej is the jth standard basis vector of R

n . Moreover, the matrix A is unique.

Example D.2 Let T : R
2 → R

3 be a linear transformation such that

T (e1) =
⎡
⎣−2

3
9

⎤
⎦ and T (e2) =

⎡
⎣ 4

−2
0

⎤
⎦

Determine the matrix A of the transformation T and use A to compute T (z)
where z = [−3 − 2]T.



516 Appendix D: Linear transformations

Solution. By theorem D.1, it follows that

T (x) = Ax =
⎡
⎣−2 4

3 −2
9 0

⎤
⎦x

Thus, we can compute T (z) as

T (z) = Az =
⎡
⎣−2 4

3 −2
9 0

⎤
⎦[−3

−2

]
=
⎡
⎣ −2

−5
−27

⎤
⎦

Linear differential equations

In chapter 4, we solve higher order linear differential equations with constant
coefficients of the form

y(n) + an−1y(n−1) +·· ·+ a1y ′ + a0y = f (t ) (D.3)

In this setting, we can take a sophisticated perspective through linearity to see
how solving an equation such as

y ′′ + 2y ′ + 3y = 0

is very similar to solving the homogeneous linear system of algebraic equations
given by Ax = 0 where A is an m × n matrix.

Recall that the derivative operator, D, is linear. The same is true of the
second derivative operator, D2, since

D2(f + g ) = (f + g )′′ = f ′′ + g ′′ = D2(f ) + D2(g )

and D2(cf ) = (cf )′′ = cf ′′ = cD2(f ). This alternate notation for derivatives
permits a new perspective on DEs. Consider that y ′′ + 2y ′ + 3y = 0 can now be
expressed as

D2(y) + 2D(y) + 3y = 0 (D.4)

In this setting, we observe that the left side of (D.4) appears as if a function
or process is being applied to the input y . If we let L be the transformation
defined by

L(y) = D2(y) + 2D(y) + 3y

then we see that (D.4) can be written equivalently as the equation

L(y) = 0

Moreover, this new transformation L is linear. Observe that

L(f + g ) = D2(f + g ) + 2D(f + g ) + 3(f + g )

= D2(f ) + D2(g ) + 2D(f ) + 2D(g ) + 3f + 3g

= D2(f ) + 2D(f ) + 3f + D2(g ) + 2D(g ) + 3g

= L(f ) + L(g )
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Similarly, it is straightforward to show that for any constant c , L(cf ) = D2(cf )+
2D(cf )+3(cf ) = cD2(f )+2cD(f )+3cf = cL(f ). Hence, we see that solving the
second-order equation (D.4) is equivalent to solving the linear homogeneous
equation L(y) = 0, where L is the linear transformation just discussed. More
generally, solving equations of the form (D.3) is equivalent to solving the linear
equation

L(y) = f

where L is the linear transformation defined by L(y) = Dn(y)+an−1Dn−1(y)+
·· · + a1D(y) + a0y . While this perspective does not contribute substantially
to our methods for solving such equations, it does further emphasize why
these equations are classified as linear and why the characteristic polynomial
rn + an−1rn−1 +·· ·a1r + a0 arises so naturally.

Furthermore, the linearity of differential equations of form (D.3) together
with the fact that the Laplace transform is a linear operator is part of what
enables the Laplace transform to be such an effective tool. For example,
to solve

y ′′ + 2y ′ + 3y = δ(t − 3)

we take the Laplace transform of both sides of the equation to find

L[y ′′ + 2y ′ + 3y] = L[δ(t − 3)]
and thus by linearity

L[y ′′]+ 2L[y ′]+ 3L[y] = L[δ(t − 3)]
From there, properties of the transform discussed in sections 5.3 and 5.4 enable
us to proceed to where we only need to use the inverse Laplace transform to
solve the equation, which brings us to yet another class of important linear
transformations.

Invertible transformations

A function or transformation T : U → V is invertible provided that there exists
a function T−1 : V → U that satisfies the properties that

T−1[T (u)] = u for all u ∈ U and T [T−1(v)] = v for all v ∈ V

Equivalently, in order for T to be invertible, there must exist a function T−1

that when composed with T results in the appropriate identity mapping: T−1 ◦
T = IU and T ◦ T−1 = IV , where IU (u) = u for every u ∈ U . Loosely, the
transformation T is invertible whenever there exists a function T−1 that reverses
the work of T .

Any time a matrix A is invertible, the resulting matrix transformation
T (x) = Ax is an invertible transformation. Consider the following example.
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Example D.3 Let A =
[

3 2
−2 −1

]
and let T (x) = Ax. Show that T is an

invertible transformation and determine a formula for T−1.

Solution. We first observe that since det(A) = 1 
= 0, the matrix A is invertible.
In addition, we can compute A−1 according to the standard algorithm, finding
via row-reduction that[

3 2 1 0
−2 −1 0 1

]
→
[

1 0 −1 −2
0 1 2 3

]

Thus, the inverse of A is

A−1 =
[−1 −2

2 3

]
Letting T−1(x) = A−1x, it follows that T−1(T (x)) = A−1(Ax) = Ix = x and
T (T−1(x)) = A(A−1x) = Ix = x, which demonstrates that T is invertible and
its inverse is given by the formula

T−1(x) =
[−1 −2

2 3

]
x

Invertible matrix transformations find many important applications,
including a prominent role in computer graphics. When matrix transformations
are used to move a graphical image in a particular way, the inverse transforma-
tion is needed to move the object back. More on such transformations can
be studied in section 1.8.1 and in the project found at the end of chapter 1
in 1.13.1.

In the study of differential equations, two other invertible linear transfor-
mations are important. One is found in the integral operator

S(f (x)) =
∫ x

0
f (t )dt

which is closely linked to the differential operator, D(f (x)) = f ′(x). Specifically,
since a typical differential equation involves an unknown function and one or
more of its derivatives, a natural approach is to attempt to integrate. In fact, for
first-order equations that are separable, integration is the standard approach;
with some care, integration also works well for linear first-order equations as
well as exact equations. In these approaches, as well as in others used to solve
differential equations, we use the fact that integration essentially reverses the
process of differentiation. Here, we take care to be more precise about this fact.

Let U be the vector space of all continuously differentiable functions f such
that f (0) = 0, and V the vector space of all continuous functions.2 Then, we see

2 The choices of U and V can be made considerably broader; doing so involves some subtleties from
real analysis that are beyond the scope of this course. See, for instance, Real Analysis, by Bruckner,
Bruckner, and Thomson, 1996, for a discussion on which functions have the property that they are
differentiable and their derivative is integrable, as well as which functions are integrable.
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that D : U → V and S : V → U . Furthermore, for any f in U ,

S(D(f )) = S(f ′) =
∫ x

0
f ′(t )dt = f (x) − f (0) = f (x)

since f (0) = 0, and for any function g in V ,

D(S(g )) = D

(∫ x

0
g (t )dt

)
= g (x)

by the Fundamental Theorem of Calculus. In each case, S(D(f )) = f and
D(S(g )) = g for all relevant functions. This shows that D and S are each
invertible transformations, and moreover that they are each other’s respective
inverses. Moreover, as we have noted on several occasions and is studied in
calculus, both D and S are linear transformations.

Finally, the Laplace transform is a key example of an invertible linear
transformation, and its invertibility ultimately is what makes it such a useful
tool in the solution of linear differential equations. To emphasize several of
the important properties, we consider an example of a fundamental initial-
value problem and discuss the role of the Laplace transform in its solution.
Specifically, we examine the role of the Laplace transform in the solution of
the IVP

y ′′ + 3y ′ + 2y = 0, y(0) = 1, y ′(0) = −1

First, recall that L is a linear transformation on the vector space of acceptable
functions and that L transforms a given acceptable function y(t ) to a new
function Y (s). If we now apply the transform to both sides of the differential
equation, the linearity of L implies that

L[y ′′]+ 3L[y ′]+ 2L[y] = 0 (D.5)

From properties of L developed in chapter 5, we know that L[y ′′] = s2L[y] −
sy(0) − y ′(0) and L[y ′] = sL[y]− y(0). Therefore, (D.5) can be updated to the
equation

s2L[y]+ s − 1 + 3(sL[y]− 1) + 2L[y] = 0 (D.6)

Observe that (D.6) is now an algebraic (rather than differential) equation in
Y (s) = L[y(t )]. Moreover, whereas before the equation we were trying to solve
was a differential equation with three unknowns (y , y ′, and y ′′), now there is
only one unknown, L[y], in (D.6). Solving for L[y], we find

L[y](s2 + 3s + 2) = 4 − s

and therefore

L[y] = 4 − s

s2 + 2s + 3
(D.7)

At this point, the natural remaining step to solve for y becomes evident. Since
L is an invertible transformation, L−1[L[y]] = y , and thus we want to take the
inverse Laplace transform of both sides of (D.7). One key computation must
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be performed first, as it turns out that a different algebraic form of the right-
hand side is useful. A partial fraction decomposition of (4 − s)/(s2 + 2s + 3)
reveals that (D.7) can be equivalently expressed as

L[y] = 5

s + 1
− 6

s + 2
(D.8)

Now we are ready to use the inverse Laplace transform; it, like the transform
itself, is linear, and thus we find that

L−1[L[y]] = L−1
[

5

s + 1
− 6

s + 2

]
(D.9)

and therefore

y = 5L−1
[

1

s + 1

]
− 6L−1

[
1

s + 2

]
(D.10)

A standard fact about the Laplace transform is that for any real number a,
L[eat ] = 1/(s − a). From this, (D.10) implies that

y = 5e−t − 6e−2t

which is the solution to the original initial-value problem.
As we have noted throughout our discussion, the Laplace transform’s

linearity and invertibility play essential roles in the application of this tool
to initial-value problems. These fundamental ideas demonstrate the valuable
nature of the properties of linearity and invertibility, not just with the Laplace
transform, but indeed in any setting.

Examples for further practice:

1. For the given linear transformation T from R
n to R

m , find the matrix
of the transformation T , and hence compute T (z), where z is the given
vector

(a) T : R
2 → R

3 with the property that T (e1) = [1 − 3 4]T and
T (e2) = [−2 1 0]T; z = [3 − 2].

(b) T : R
3 → R

2 with the property that T (e1) = [−2 − 1]T,
T (e2) = [5 1]T, and T (e3) = [3 4]T; z = [6 − 1 3].

(c) T : R
2 → R

2 with the property that T (e1) = [7 5]T and
T (e2) = [−11 3]T; z = [3 − 2].

2. Let T : P2 → R
3 be a linear mapping such that

T (t 2) =
⎡
⎣ 1

0
−1

⎤
⎦ , T (t ) =

⎡
⎣ 0

−2
1

⎤
⎦ , and T (1) =

⎡
⎣−3

4
0

⎤
⎦

Determine T (3t 2 − 4t + 7). (Recall that the standard basis of P2 is
{1, t , t 2}.)
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3. For each given linear transformation T below, find the matrix A of the
transformation.

(a) T (x,y) = (2x + y,−3x + 2y)
(b) T (x,y,z) = (x + y − z,−x + 2y + 3z)
(c) T (x,y) = (−x + 4y,x − 2y,3x + 7y)

4. Let D denote the differential operator and D2 the second derivative. Use
this notation to recast the following differential equations as equations
involving linear transformations, as shown in (D.4).

(a) y ′′ − 6y ′ + 5y = 0
(b) y ′′ + 4y = 0
(c) y ′ + 5y = 10

5. Again, let D denote the differential operator. Let L(y) = D2(y)+
5D(y) + 4y . Show that L is a linear operator. In addition, find all
polynomial solutions to the equation L(y) = 2t + 3.

6. For each linear transformation T given below, determine whether or not
the transformation is invertible and, if so, find a formula for its inverse.

(a) T (x,y) = (2x + y,−3x + 2y)
(b) T (x,y) = (2x + y,−4x − 2y)

(c) T : R
2 → R

2 with the property that T (e1) = [7 5]T and
T (e2) = [−11 3]T

(d) T : R
2 → R

2 with the property that T (e1) = [7 − 5]T and
T (e2) = [−14 10]T

(e) T is the mapping that takes each point (x,y) in the plane and reflects
the point in the line y = x .

(f) T is the mapping that rotates each point (x,y) in the plane by 90◦
counterclockwise about the origin.
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E
Solutions to selected exercises

Section 1.2

1. The unique solution to the system is (−1,1).

3. The system has no solution.

5. The system is consistent with unique solution (4,−2,3).

7. The system is consistent with infinitely many solutions given parametrically
by (−3 − 2t ,−2 − t , t ), t ∈ R.

9. The system is consistent with infinitely many solutions given parametrically
by (−1 + 2t − 4s, t ,2 − 3s, s,−5), t , s ∈ R.

11. No solution exists.

13. There are infinitely many solutions given parametrically by (1 − 19t , s,1 +
4t , t ), s, t ∈ R.

15. The system is consistent if h = −21 and inconsistent otherwise.

17. The system is consistent for all values of h; if h 
= 0, the solution is unique.

19. The system is consistent with unique solution (53/3,−8/3,−46/3).

21. The system is consistent with infinitely many solutions given parametrically
by (5/3 − 1/6t ,−13/3 + 5/6t , t ), t ∈ R.

23. The system is consistent with infinitely many solutions given parametrically
by (19/2 − 9t ,−5/2 + 17/4t , 2 − 3/2t , t ), t ∈ R.

25. No.

27. Yes. (2,1,2).

29. Yes. Consider the system x1 + x2 + x3 = 0, x1 + x2 + x3 = 1.
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31. The number of pivot columns must equal the number of variables, so that
no free variables are present.

33. 4 = a212 + a11 + a0, 7 = a222 + a12 + a0, 6 = a232 + a13 + a0, so a0 = −3,
a1 = 9, and a2 = −2.

35. I1 = 10/41, I2 = 80/41, and I3 = 70/41.

Section 1.3

1. The product is not defined.

3. Ax = [19 5 − 13]T.

5. To get each entry in Ax, we take the dot product of the corresponding row
in A with the column vector x.

7.

[
x ′

1
x ′

2

]
=
[−1/20 1/80

1/40 −1/40

][
x1

x2

]
+
[

2250
3750

]
.

9. Yes, b is a linear combination of the vectors a1,a2,a3; infinitely many weights

work. For example, x1 = 3, x2 = 1, x3 = 0.

11. The system has infinitely many solutions, so b is a linear combination of the
columns of A, and can be written as such a linear combination with infinitely
many different possible weights (x1,x2,x3). Each pair of weights is of the form
(−3 − t ,5 + t , t ).

13. The system has no solution, so b is not a linear combination of the columns
of A.

15. A =
⎡
⎣ 5 −3 1

−2 1 4
1 0 −2

⎤
⎦, b =

⎡
⎣ 0

22
−11

⎤
⎦

17. The system has infinitely many solutions of the form (−t , t , t ).

19. The system has infinitely many solutions of the form (−t/3, t ).

21. The system has the unique solution x1 = x2 = x3 = 0.

23. All vectors b = [b1 b2]T whose entries satisfy b1 = b2/2.

25. (a) F; (b) T; (c) T; (d) F; (e) F.

27. x(1) = [94.40 70.40 75.20]T, x(2) = [89.52 79.50 70.98]T, x(3) =
[85.27 87.47 67.26]T.

Section 1.4

1. Infinitely many solutions, each of the form (2t/11,8t/11, t ). Thus the

solution set is the span of the vector [2/11,8/11,1]T.

3. The span of the vector [8/5,1]T.
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5. Ax = 0 has only the trivial solution.

7. Because A has more columns than rows, A cannot have a pivot in every
column. Therefore, free variables must be present when [A | 0] is row-reduced
and nontrivial solutions exist.

9. b is not in the span of the given vectors.

11. Yes, using the weights x1 = −2, x2 = 1, x3 = 4.

13. W is a plane through the origin in R
3 that contains the given vectors v1

and v2.

15. If (x1,x2) satisfies 2x1 − 3x2 = 0, then x1 = 3x2/2, so that the vector x =
[x1 x2]T is a scalar multiple of the vector [3 2]T. Hence, each point on the line

lies in Span{[3 2]T}.
17. (a) T; (b) F; (c) F; (d) F; (e) F.

Section 1.5

1. Ax = b is consistent for every b ∈ R
2 since A has a pivot in both rows.

3. Ax = b is consistent for every b ∈ R
2 since A has a pivot in both rows.

5. Ax = b is consistent for every b ∈ R
3 since A has a pivot in all three rows.

7. Ax = b is not consistent for every b ∈ R
4 since A does not have a pivot in

row 4.

9. No. Because A has more rows than columns, it is impossible for A to have a
pivot in every row.

11. b is a linear combination of the columns of A with weights 1/5, −6/5.

13. b is a linear combination of the columns of A; infinitely many different
weights are possible: one triple of such weights for the respective columns is
(6,−2,0).

15. b is a linear combination of the columns of A with weights x1 = −35/11,
x2 = 1/11, x3 = 7/11.

17. x = x3[1 1 1]T.

19. x = x2[8/5 1]T.

21. x = x3[−1 1 1]T.

23. x = xp + xh = [−1 1 1 0]T + x4[5 − 3 − 1 1]T].
25. x = xp + xh = [2 − 3/2 3/2]T]+ [0 0 0]T.

27. Ax = b is always consistent.

29. Impossible. A can’t have a pivot in all three rows.

31. Ax = b will always be consistent. Since the described system has one free
variable present, there is one non-pivot column in A. Since A has four columns,
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A must have three pivot columnns and thus three pivot rows. Because of the
free variable, every equation Ax = b will have infinitely many solutions.

33. (a) F; (b) F; (c) T; (d) F; (e) T; (f ) F.

35. y = yh + yp = Ce5t − 6/5.

Section 1.6

1. S is linearly dependent.

3. S is linearly independent.

5. S is linearly dependent.

7. S is linearly dependent.

9. (1) no; (2) yes; (3) yes; (4) yes; (5) no; (6) yes; (7) no; (8) yes.

11. Not necessarily either.

13. S may or may not span R
4. S cannot be linearly independent.

15. Given any nonzero vector v, the zero vector may be written 0 = 0v.

19. {v1,v2,v3} linearly independent for all real numbers k except k = 17/7. If
k = 17/7, v3 in the span of {v1,v2}.
21. The columns of A are linearly dependent; the columns of A span R

4. Both
hold because there are four pivot columns in this 4 × 7 matrix.

23. (a) F; (b) T; (c) F; (d) F.

25. c1 = −2 and c2 = 4.

Section 1.7

1. (a) B+C =
⎡
⎣−1 13

1 11
−1 −6

⎤
⎦; (b) A+B is undefined; (c) −2A =

[−6 10 −4
2 −10 8

]
;

(d) −3B+4C =
⎡
⎣ 38 −18

−10 −33

17 −10

⎤
⎦; (e) AB =

[−34 −29
28 53

]
; (f ) BA =

⎡
⎣−28 80 −52

−5 45 −40

−7 5 2

⎤
⎦;

(g) AA is undefined; (h) A(B + C) =
[−10 −28

10 66

]
; (i) CA =

⎡
⎣ 12 −10 −2

−3 5 −2
10 −30 20

⎤
⎦;

(j) C(A + B) is undefined; (k) AT + B =
⎡
⎣−3 9

−3 16
−1 −6

⎤
⎦; (l) (B + C)T =

[−1 1 −1
13 11 −6

]
; (m) BTC =

[−38 −6
35 38

]
; (n) BCT =

⎡
⎣ 0 6 −52

43 −2 −40
−21 3 2

⎤
⎦;
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(o) (AB)T =
[−34 28

−29 53

]
; (p) (BA)T =

⎡
⎣−28 −5 −7

80 45 5
−52 −40 2

⎤
⎦.

3. Two square matrices of the same size can always be multiplied, and in either
order. Non-square matrices can only be multiplied in both orders (AB and BA)
when one is m × n and the other is n × m. Note that when A and B are not
square, AB never equals BA.

5. A =
[

1 −2
2 1

]
, B =

[−3 −4
4 −3

]
.

7. B =
[

1/2 0
0 1/5

]
. Note that BA = AB.

9. B =
[

2 1
1 1

]
. Note that BA = AB.

11. (a) No; (b) No; (c) 1; (d) No familiar one; (e) No such matrix exists.

13. See 1.) above.

Section 1.8

1. A−1 =
[

1 − 1
2−1 1

]
.

3. A−1 does not exist.

5. A−1 does not exist.

7. Ax = b1 and Ax = b2 each have infinitely many solutions, while Ax = b3

has no solution. We see that A is not invertible.

9. Multiplying A by E on the left switches rows 2 and 3 in A.

11. Multiplying A by E on the left switches multiplies row 2 by c .

13. Multiplying A by E on the left switches replaces row 3 with row 3 plus a
times row 1.

15. A−1 = AT.

17. (AB)−1 = B−1A−1.

19. Suppose that both B and C are inverses of A. Then AB = I = AC. Since A is
invertible, we can multiply on the left by A−1, from which it follows that B = C.

21. Yes: A =
[

1 1
−1 −1

]
.

23. An = PDnP−1.

25. Every point is rotated 60◦ counterclockwise.

27. Every point is rotated 90◦ counterclockwise.
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29. C =
[

2/5 −3/10
3/10 2/5

]
.

31. Apply the inverse of the Markov matrix to the current population.

33. (a) F; (b) T; (c) F; (d) F; (e) T; (f) F; (g) T; (h) F.

Section 1.9

1. det(A) = 2 
= 0 so A is invertible.

3. det(A) = −28 
= 0 so A is invertible.

5. det(A) = 252 
= 0 so A is invertible.

7. det(In) = 1; clearly In is invertible.

9. The matrix is invertible for all real numbers z except z = 1,3.

11. det(AB) = det(A) · det(B).

13. Since AA−1 = I, we have det(AA−1) = det(I). Now use the property of
determinants from Exercise 11 and solve for det(A).

15. det(A) = 0 since the columns are a linearly dependent set; equivalently,
det(AT) = 0 since the rows of A are a linearly dependent set.

17. If A2 is not invertible, then A is not invertible, since det(A2) = det(AA) =
det(A)det(A), so det(A) = 0 if and only if det(A2) = 0.

19. A−1 = 1
det(A)

[
d −b

−c a

]
.

Section 1.10

1. λ = 5,3 with corresponding eigenvectors [1 0]T, [1 − 2]T.

3. A does not have any real eigenvalues or eigenvectors. Its eigenvalues are
λ = −1 ± 2i.

5. λ = 2 with corresponding eigenvector [1 0 0]T.

7. λ = 2 with corresponding linearly independent eigenvectors [1 0 0]T,

[0 1 0]T; λ = 0 with corresponding eigenvector [0 0 1]T.

9. Ax = [5 20]T.

11. (a) λ = −3,−3,0 with corresponding eigenvectors [−1 1 0]T, [−1 0 1]T,
[1 1 1]T; (b) Yes.

13. (a) λ = 5,2,2 with corresponding eigenvectors [1 − 1 1]T, [1 1 0]T ,

[−1 0 1]T; (b) The columns of P are linearly independent; use the Invertible

Matrix Theorem; (c) AP = PD; (d) A10 = PD10P−1.

15. Hint: det(B−λI) = det(PAP−1 −λI) = det(PAP−1 −λPIP−1) = det(P(A−
λI)P−1) = det(P)det(A −λI)det(P−1).
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17. D(erx) = r · erx , so taking the derivative only stretches erx by a factor of r .
Thus, erx is like an eigenvector with eigenvalue r .

19. Yes; v ≈ [192.41 139.43 77.71]T (in millions).

21. (a) F; (b) T; (c) F; (d) T.

Section 1.11

1. H is not a subspace. Consider multiplying [1 1]T by a negative scalar.

3. H is a subspace.

5. H is a subspace.

7. H is not a subspace, since the zero vector does not belong to H .

9. H is not a subspace; the zero matrix is not invertible.

11. H is a subspace.

13. H is a subspace.

15. H is a subspace.

17. For λ = 1, the corresponding eigenspace is the set of all scalar multiples of
the eigenvector [1 1]T. For λ = 3, the corresponding eigenspace is the set of all
scalar multiples of the eigenvector [1 − 1]T.

19. Because the span of a set is the set of all linear combinations of a given
collection of vectors, we can always make the zero combination to get the zero
vector. In addition, because any linear combination is allowed, the span of a set
of vectors must be closed under scalar multiplication and closed under addition.

21. H is not a subspace of R
3 because no values of a and b can be chosen to

form the zero vector in H .

23. Col(A) is the set of all linear combinations of the columns of A, which is
equivalently the span of the columns of A. By exercise 19, it follows that Col(A)
is a subspace.

25. v = [−2 1 1]T is not in Col(A); u = [−1 4 − 4]T is in Col(A); Col(A) is

the span of {[1 3 − 4]T, [−2 1 0]T}
27. Col(A), because it is simply the span of the columns of the given matrix.

29. Verify by direct substitution that y = Ce3t + 1 is a solution to the equation.
This set of all such solutions is not a subspace because the zero function is not a
solution to the DE.

Section 1.12

1. A basis for H is {[2 0 − 1]T} and therefore H is one-dimensional.

3. A basis for H is H ={[2 1 −3 1]T, [3 −4 2 −1]T}, so H is two-dimensional.
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5. A basis for H is H = {[1/2 1]T}; H is one-dimensional.

7. A basis for H is

{[
1 0
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
, so H is three dimensional.

9. Yes, since S is a linearly independent spanning set in R
2.

11. No, since S is not linearly independent.

13. No, a set with fewer than 4 vectors cannot span R
4.

15. The vector space P of all polynomial functions is an infinite dimen-
sional vector space because its basis has to include every power function:
1, t , t 2, t 3, . . . , t 100, . . . , t 100000, . . .. Therefore, the basis cannot have a finite
number of elements.

17. dim(Nul(A)) + dim(Col(A)) = n since the dimension of the column space
of A is the number of pivot columns of A and the dimension of the null space
of A is the number of non-pivot columns of A.

Section 2.2

1. (a) 2; (c) y = e−2t .

3. A(t ) = 100 is an equilibrium solution because it is a constant function
that makes the DE true; this solution is a stable equilibrium, as seen from the
direction field.

5. The direction field should show an unstable equilibrium at P = 0 and a
stable equilibrium at P = 25 all solutions with initial values greater than 0
tending toward P = 25 as t → ∞.

7. (a) i; (b) iii; (c) ii; (d) iv.

9. y = t 2/2 + sin t + C .

11. y = t 4/12 + t 2 + C1t + C2.

13. y = sin t − t cos t + C .

15. y = − 1
2 e−t 2 + C .

17. y = t 2/2 + sin t −π2/8.

19. y ′ = t 4/12 + t 2 − 13
3 t + 29

4 .

21. y = sin t − t cos t + 2.

23. y = − 1
2 e−t 2 − 1

2 .

25. y = 3/2 is a stable equilibrium.

27. y = 1 and y = −1 are stable equilibria; y = 0 is unstable.

29. y = 1 and y = 3 are unstable equilibria.
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Section 2.3

1. linear.

3. nonlinear.

5. nonlinear.

7. y ′ = Ce−t .

9. y = Ce−t 2/2.

11. y = C csc t .

13. y = C(100 − t )2.

15. y = −1/2 + t + Ce−2t .

17. y = 2t−2et − 2t−1et + et + Ct−2.

19. y = (t 2 + C)/(t 2 + 1).

21. y = 2 + e−t .

23. y = 10 − 5e−t 2/2.

25. y = 1.

27. y = 3 − 0.03t − 0.002(100 − t )2.

29. y = −1/2 + t − 1/2e−2t−2.

31. y = 2t−2et − 2t−1et + et + (4 − e)t−2.

33. D(f + g ) = D(f ) + D(g ) and D(cf ) = cD(f ).

Section 2.4

1. 37.73 h.

3. 129.66 min.

5. (a) P ′ = 0.002P + 5, P(0) = 100; (b) P(t ) = 2600e0.002t − 2500; (c) about
102 thousand walleye more.

7. (a) A′ = 1.5 − A/60, A(0) = 45; (b) A(t ) → 90 as t → ∞; (d) 65.92 min.

9. 643.76 days.

11. Use an integrating factor to show that T = (T0 − Tm)e−kt + Tm .

13. 13.08 h.

15. 24.76 h.

Section 2.5

1. linear, separable.

3. nonlinear, separable.

5. nonlinear, separable.
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7. linear, separable.

9. linear, separable.

11. linear, separable, exact.

13. exact.

15. y = Ce10t .

17. y = −1/(10t + C).

19. y = (1 + Ce2/t )/(1 − Ce2/t ).

21. y = 1 + Ct .

23. y = −6 + Ct/3t − 1.

25. y = C/(2 + t 2).

27. y = −t ± (2t 2 + C)1/2.

29. y = 3e10t .

31. y = −4/(40t − 41).

33. y = (1 − e2/t−1)/(1 + e2/t−1).

35. y = 1 + 2t .

37. y = (−6 + 16t )/(3t − 1).

39. y = 3/(2 + t 2).

41. y = −t + (2t 2 + 1)1/2.

43. Consider y = 0 and y = t 2/4. This result does not violate the noted theorem
since f (t ,y) = (y)1/2 does not have a continuous partial derivative with respect
to y in a rectangle containing (0,0).

Section 2.6

1. (a) y(3) ≈ y10 = 4.08956; (b) y(t ) = √
8 + t 2.

3. (a) With h = 0.1, y(1.5) ≈ y15 = 1.56309; with h = 0.05, y(1.5) ≈ y30 =
1.57217.

5. (a) y(1) ≈ y10 = −0.76341; (b) y(t ) = −2e−t 2
.

7. y(1) ≈ y10 = 5.18748; (b) y = 2et .

9. y(1) ≈ y10 = 3.06501; (b) y(t ) = 3
√

24t + 1.

11. y(1) ≈ y10 = 7.56597.

13. y(1) ≈ y10 = 0.77258.

Section 2.7

1. (a) P is increases for 0 < P < A; (c) P increases most rapidly at the instant
P = A/2; (d) M = (A − P0)/P0.
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3. (a) P = 0 and P = 4; (b) P = 0 is unstable, P = 4 is stable; (c) P = 2;
(d) t = 47.58.

5. P(t ) = (6e5t + 4)/(e5t + 4), which makes sense since this is an increasing
function that tends to 6 as t → ∞; the equilibrium solutions of the DE are P = 1
(unstable) and P = 6 (stable).

7. t ≈ 9030.5 s.

9. t ≈ 2849 s.

11. (a) Because f (t ,h) = −√
h does not have a continuous partial derivative

with respect to h on a rectangle containing the point (1,0); (b) because we have
no idea what time the tank actually emptied; (d) the solution in (c) shows that
for any time c < 1, there is a valid solution function which represents the tank
emptying at time c . This demonstrates both the nonuniqueness of the solution
and the fact that the problem is ill-posed since we do not know the time the tank
actually emptied.

Section 3.2

1. λ = −1,5 with corresponding eigenvectors [−2 1]T, [1 1]T.

3. λ = −1,9 with corresponding eigenvectors [−3 1]T, [1 3]T.

5. λ = 1,4,0 with corresponding eigenvectors [−2 1 1]T, [1 1 1]T, [1 −1 1]T.

7. λ = 2,2,2 with corresponding eigenvector [1 0 0]T.

9. (a) A =
[−1 2

−7 8

]
; (b) x = 0 is the only constant solution; (c) λ = 1,6 with

corresponding eigenvectors v = [1 1]T, [2 7]T; (d) x1(t ) = et [1 1]T and x2(t ) =
e6t [2 7]T; (e) x = c1et [1 1]T + c2e6t [2 7]T; (f) x = − 14

5 et [1 1]T + 2
5 e6t [2 7]T; this

vector function has its length grow without bound as t → ∞.

11. (a) A =
[−2 1

0 −2

]
; (b) x = 0 is the only constant solution; (c) λ =

−2,−2 with corresponding eigenvector v = [1 0]T; (d) x1(t ) = e−2t [1 0]T;
(e) x = c1e−2t [1 0]T; (f) There is no value of c1 for which the solution in (e)
satisfies this IVP. This tells us we must not have found the correct general
solution in (e).

13. (a) A =
[−3 1

3 −1

]
; (b) Any vector of form x = x2[1 3]T is a constant solution

to the given system, so there are infinitely many such solutions; (c) λ= 0,−4 with
corresponding eigenvectors [1 3]T, [−1 1]T; (e) every solution is a straight line

solution of form c1[1 3]T + c2e−4t [−1 1]T; (f) x(t ) = 3
4 [1 3]T − 9

4 e−4t [−1 1]T,

which tends to the vector [1 3]T as t → ∞.
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15. (a) A =
⎡
⎣ 8 −1 −11

18 −3 −19
2 −1 −5

⎤
⎦; (b) x = 0 is the only constant solution; (c) λ =

−4,−2,6 with corresponding eigenvectors v = [1 1 1]T, [1 − 1 1]T, [2 1 0]T;

(d) x1(t ) = e−4t [1 1 1]T, x2(t ) = e−2t [1 − 1 1]T, and x3(t ) = e6t [2 1 0]T;
(e) x = c1x1 + c2x2 + c3x3; (f) x = 1e−4t [1 1 1]T, which is a straight-line solution

that approaches zero along the line through (1,1,1).

17. x′ = Ax where A =
[

0 1
12 −1

]
.

19. x′ = Ax + b(t ) where A =
[

0 1
8 2

]
and b(t ) = [0 et ]T.

21. x′ = Ax where A =
⎡
⎣ 0 1 0

0 0 1
−5 6 0

⎤
⎦.

23. x ′
1 = − 7

100 x1 + 2
200 x2 + 35, x ′

2 = 3
100 x1 − 12

200 x2 + 27.

25. x′ =
[−0.04 0.08

0.04 −0.08

]
x, x(0) =

[
25

150

]
.

27. Use direct substitution with x′(t ) = λeλt v and Ax = A(eλt v) = eλt Av, along

with the fact that λv = Av.

Section 3.3

1. 4; 7.

3. 3; the given linear third-order homogeneous equation should also have a
three-dimensional solution space.

5. x1(t ) and x2(t ) are linearly independent.

7. x1(t ), x2(t ), and x3(t ) are linearly independent.

9. For two vectors, it’s equivalent to ask if they are scalar multiples of each
other.

11. (a) A has the repeated eigenvalue λ = 3 with a single corresponding linearly
independent eigenvector v = [1 0]T; (c) x(t ) = c1e3t [1 0]T + c2(te3t [1 0]T +
e3t [0 1]T; (d) x(t ) = 3e3t [1 0]T + 2(te3t [1 0]T + e3t [0 1]T.

13. (a) A has complex eigenvalues λ = ±i with corresponding complex
eigenvectors; (c) x(t ) = c1[cos t sin t ]T + c2[− sin t cos t ]T; (d) x(t ) =
3[cos t sin t ]T + 2[− sin t cos t ]T.

15. y = c1 cos t + c2 sin t .

17. y = c1 + c2et + c3e−t .
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Section 3.4

1. (a) x(t ) = c1et [1 1]T + c2e−t [1/3 1]T]T; (b) The origin is a saddle point and
therefore unstable.

3. (a) x(t ) = c1e−5t [−1 1]T +c2e−t [1 1]T]T; (b) The origin is a stable attracting
node.

5. (a) x(t ) = c1[1 1]T + c2e−3t [−2 1]T]T; (b) Every point of form k[1 1]T

is an equilibrium solution of the system. Each is stable. (c) Every nonconstant
solution is a straight line because only one of the terms in x(t ) has an exponential
function present. That term results in a straight-line solution; the added constant
only shifts the line.

7. x1(t ) = e4t [−1 2]T and x2(t ) = e−3t [1 2]T are straight-line solutions; the
origin is an unstable saddle point.

9. x1(t ) = e0.1t [1 1]T and x2(t ) = e10t [−1 1]T are straight line solutions; the
origin is an unstable repelling node.

11. A =
[

1/2 −7/4
−7 1/2

]
.

13. x(t ) = et /2[1 1]T + 3e−t /2[1/3 1]T.

15. x(t ) = −3e−5t /2[−1 1]T − e−t /2[1 1]T.

17. x(t ) = 3[1 1]T + e−3t [−2 1]T.

19. y = c1e−t + c2e−5t .

21. y ′ = c1e−t + c2e−2t .

Section 3.5

1. The origin is a stable attracting node.

3. The origin is an unstable saddle point.

5. The origin is a stable center.

7. The origin is an unstable repelling node.

9. The origin is a stable center.

11. The origin is an unstable repelling node.

13. The origin is a stable attracting node.

15. (a) x(t ) = c1[cos2t sin 2t ]T + c2[− sin 2t cos2t ]T; (b) the origin is a stable
center; (c) none.

17. (a) x(t ) = c1[e−2t 0]T + c2[te−2t e−2t ]T; (b) the origin is a stable attracting
node; (c) one, along the line through (0,0) in the direction of [1 0]T.

19. (a) x(t ) = c1e9t [2 1]T + c2e−2t (t [2 1]T + [−1 0]T; (b) the origin is an
unstable repelling node; (c) one, along the line through (0,0) in the direction of
[2 1]T.



536 Appendix E: Solutions to selected exercises

21. x(t ) = −e2t [sin 3t − cos3t ]T − 3e2t [cos3t sin 3t ]T.

23. x(t ) = −7/3[sin 3t 3
5 cos3t + 4

5 sin 3t ]T − 2[cos3t − 3
5 sin 3t + 4

5 cos3t ]T.

25. (a) x(t ) = c1e4t [−1 0 1]T + c2e4t [1 1 0]T + c3et [1 − 1 1]T; (b) the
origin is an unstable repelling node; (c) there are three straight line solutions, as
demonstrated in (a).

27. The characteristic polynomial for a 3 × 3 matrix is a cubic polynomial, and
thus must have at least one real zero. This forces the matrix A to have at least
one real eigenvalue, and with it, at least one corresponding real eigenvector, thus
generating at least one straight-line solution. A 4 × 4 matrix may possibly have
all complex eigenvalues, and thus the system may have no straight line solution.
In general, any time n is odd, an n × n homogeneous system is guaranteed at
least one straight-line solution.

29. y = c1e−t sin 2t + c2e−t cos2t .

31. y = c1e−7t + c2e4t .

Section 3.6

1. x = c1e(−2+√
7)t [3/(

√
7 − 1) 1]T + c2e(−2−√

7)t [3/(−√
7 − 1) 1]T+

[−4 − 3]T.

3. x = c1e3t [1 1]T + c2et [−1 1]T + sin t [−2/5 1/10]T + cos t [−3/10 1/5]T.

5. (a) Because the forcing function b(t ) is constant, vxp = [4/3 − 7/3]T;
(b) xh = c1e−t [−1/2 1]T + c2e3t [1/2 1]T; (d) vxp = [4/3 − 7/3]T is constant
and thus an equilibrium solution. Since the eigenvalues have opposing signs,
this equilibrium point is an unstable saddle.

7. (a) xp = [−2/3 − 1/5e−2t − 1/3 − 2/5e−2t ]T; (b) xh = c1e3t [1/2 1]T +
c2e−t [−1/2 1]T.

9. x = c1et [1 1]T + c2e−9t [−1 1]T + [1/9 − 1/9]T. 11. x = c1e−t [1 0]T +
c2et [1/2 1]T +[−13/2e−2t 4/3e−2t ]T.

13. x = c1[cos t sin t ]T + c2[− sin t cos t ]T +[2 3]T.

15. x = c1[cos t sin t ]T + c2[− sin t cos t ]T +[2 + 3et /2 3 − et /2]T.

17. x = c1et [1 1]T + c2e−t [1/3 1]T + [4 + 3/10sin 3t − 1/5cos3t 8 − 3/

10cos3t ]T.

19. x = −5/2e−t [1 0]T + 11/18et [1/2 1]T +[−13/2e−2t 4/3e−2t ]T.

21. x = −1[cos t sin t ]T − 5[− sin t cos t ]T + [2 + 3et /2 3 − et /2]T. 23. xp =
[a sin 3t + b cos3t + c sin 2t + d cos2t e sin 3t + f cos3t + g sin 2t + h cos2t ]T.

Section 3.7

1. xp = −17/5 13/5]T.
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3. (a) xp = [Aet Bet ]T; (b) xh = c1et [−1 1]T + c2e5t [1 1]T, which includes
the natural guess for xp , so that guess for a particular solution will fail to work;
(c) xp = [tet − (t + 1)et ]T.

5. xp = [−e−t − 1
4 e−t − 1

3 ]T.

7. xp = [− 1
5 cos2t + 2

5 sin 2t − 19
65 cos2t − 22

65 sin 2t ]T.

9. xp = [−11/12e−t − 3/4te−t 9/4te−t ]T.

11. xp = [−t − 1 − t − 2]T.

Section 3.8

1. The IVP is x′ = Ax where A =
[−4/100 4/50

4/100 −4/50

]
and x(0) =

[
25
50

]
. The

solution to the IVP is x(t ) =
[

50
25

]
+ e−3/25t

[−25
25

]
, which is a straight-line

solution that tends to the stable equilibrium (50,25) as t → ∞.

3. The matrix A in the system x′ = Ax + b stays the same as in #2, but the
system is now homogeneous of the form x′ = Ax. As t → ∞, x(t ) → 0, which
is consistent with the fact that the amount of salt in each tank will go to zero as
time progresses.

5. The IVP is x′ = Ax + b where A =
⎡
⎣−7/400 0 0

7/400 −7/200 0
0 7/200 −7/300

⎤
⎦ and b =

⎡
⎣ 70

0
0

⎤
⎦, x(0) =

⎡
⎣ 8000

10000
0

⎤
⎦. The general solution to the system is

x(t ) = c1e−7/300t

⎡
⎣ 0

0
1

⎤
⎦+ c2e−7/200t

⎡
⎣ 0

−1/3
1

⎤
⎦+ c3e−7/400t

⎡
⎣ 1/6

1/6
1

⎤
⎦+

⎡
⎣ 4000

2000
3000

⎤
⎦

from which we can see that our intuition is confirmed: with just one inflow
putting brine at 10 g/liter into the system, eventually the concentration should
stabilize throughout at a concentration of 10 percent by volume. The constants
c1 and c2 can be determined by applying the initial conditions; c1 = −15000,
c2 = −12000, c3 = 24000.

7. (a) y ′′+4y = 0, y(0) = 0.4 and y ′(0) = 0; (b) x′ =
[

0 1
−4 0

]
x, x(0) =[0.4 0]T;

(c) x(t ) = [ 2
5 cos(2t ) − 4

5 sin(2t )]T, so y = x1 = 2
5 cos(2t ).

9. (a) y ′′ + y ′ + 4y = cos(2t ), y(0) = 0.3 and y ′(0) = 0; (b) x′ =
[

0 1
−4 1

]
x,

x(0) = [0.3 0]T; (c) x(t ) = e−1/2t [−0.0775sin(1.936t ) + 0.3cos(1.936t ) −
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0.620sin(1.936t )]T, so y = x1 = e−1/2t [−0.0775sin(1.936t ) + 0.3cos(1.936t ).
Thus the solution function oscillates and decays to zero as t → ∞.

11. (a) I ′′ + RI ′ + 100I = 0, I (0) = 100, I ′(0) = 0; (b) x′ =
[

0 1
−100 −R

]
x,

x(0) = [100 0]T; (c) (i) I = x1 = 100cos10t , (ii) I = x1 = e−8t ((400/3sin 6t +
100cos6t ), (iii) I = x1 = e−10t (100 + 1000t ), (iv) I = x1 = 400/3e−5t −
100/3e−20t .

Section 4.2

1. y = c1e4t + c2e−3t .

3. y = c1et + c2e−t .

5. y = c1 + c2t .

7. y = c1e
−1+√

5
2 t + c2e

−1−√
5

2 t .

9. y = 2et .

11. y = 2/3 + 1/3e−3t .

13. y = −6e−t + 4e−3t .

15. y ′′ − 4y = 0.

17. y ′′ − 4y ′ = 0.

19. y ′′ = 0.

21. (b) the roots of the characteristic equation are the complex numbers r =
1 ± 2i; (c) the two functions are linearly independent because neither is a scalar
multiple of the other; (d) y = c1et cos2t + c2et sin 2t .

23. y = 5e−t − 3e−2t .

25. y = 325/2e−t − 125/2e−3t .

Section 4.3

1. y = c1e4t + c2te4t .

3. y = c1e−t/2 + c2te−t/2.

5. y = c1 cos2t + c2 cos2t .

7. y = c1e5t + c2te5t .

9. y = c1e−5t/2 + c2e−t .

11. y = √
3e−t/2 sin

√
3t/2 + e−t/2 cos

√
3t/2.

13. y ′ = 19/4e−2t + 9/4e2t.

15. y = 16/5e5t sin 5t − 3e5t cos5t .
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17. y = 0.

19. (a) y = c1e3t + c2te3t ; (d) x1 = y .

21. The equation will have two real distinct roots when a2
1 − 4a0 > 0, one

real repeated root when a2
1 − 4a0 = 0, and two distinct complex roots when

a2
1 − 4a0 < 0.

23. y = √
3/3sin

√
3t + 2cos

√
3t .

25. I = 100e−2t + 225te−2t .

27. I = 25/3sin 3t + 100cos3t .

Section 4.4

1. y = c1e4t + c2e−3t + 5/4e5t .

3. y = c1e−t + c2et + 11/2tet .

5. y = c1 + c2t + 1/12t 4 + 3/2t 2.

7. y = c1e−2t + c2te−2t + 3/8 − 1/2t + 1/4t 2.

9. y = c1 sin 2t + c2 cos2t + 2et (sin t + 2cos t ).

11. y = −5/7e4t + 41/28e−3t + 5/4e5t .

13. y = 1/4e−t − 13/4et + 11/2tet .

15. y = −2 − 2t + 1/12t 4 + 3/2t 2.

17. y = 37/8e−2t + 51/4te−2t + 3/8 − 1/2t + 1/4t 2.

19. y = −7/2sin 2t − 4cos2t + 2et (sin t + 2cos t ).

21. y = c1 sin t + c2 cos t − cos t · ln 1+sin t
cos t .

23. y = c1e−2t + c2te−2t + 1/6t 3e−2t .

25. y = c1et + c2tet + tet (−1 + ln t ).

27. y = c1e2t + c2e−3t − 1/10e−3t (e3t − 2e4t + 2 ln(et + 1)e5t − 2te5t + e2t −
2et + 2 ln(et + 1)).

29. y = 1/2sin 2t + 582/41cos2t − 500/41cos 21
10 t ; yh and yp are each equi-

oscillatory functions whose frequencies are nearly equal. When added together,
they sometimes cancel each other out, leading to widely varying behavior in the
amplitude of y .

31. y = 106.28e−0.000625t − 5.79e−3.999t − 0.481cos20t + 0.096sin 20t .

Section 4.5

1. y = 1/1000t sin 5t ; there is no maximum displacement of the mass as
oscillations are unbounded due to resonance.
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3. y = −1/72sin 6t − 1/72cos6t + 1/72e6t ; the displacement is unbounded,
but resonance is not present.

5. y = −1.98sin 7.07t + 2sin 7t ; beats is present. The maximum displacement
is approximately 3.98.

7. Beats are present; y = cos6.93t − cos7t .

9. I = 10t sin 10t ; resonance is present.

11. I = −80/33cos100t + 80/33cos10t ; neither beats nor resonance is
present.

13. c ≈ 2.5.

Section 4.6

1. y = c1et + c2e−t + c3e3t .

3. y = c−1/2t
e + c2e−3/2t + c3e2t .

5. y = c1e−t + c2te−t + c3t 2e−t .

7. y = c1et + c2 cos2t + c3 sin 2t .

9. y = c1et + c2e2t + c3e−t + c4 sin t + c5 cos t .

11. y = c1e−t + c2te−t + c3t 2e−t ++c4t 3e−t .

13. y = 1/2 + 1/4e−2t + 1/4e2t .

15. y = −3e3t + 8e2t − 5et .

17. y = 5sin 2t .

19. y = t 2 + 2.

21. y = et + tet − t 2et .

23. y ′′ − y ′ = 0.

25. y(5) + y(4) + 9y ′′′ + 9y ′′ = 0.

27. y(4) + y ′′′ + 105/4y ′′ + 25y ′ + 125/4y = 0.

29. y = c1 cos t + c2 sin t + c3t cos t + c4t sin t + 7/32 − 1/8t 2 cos t .

31. y = c1et + c2e−t + c3e3t + 1.

33. y = c−1/2t
e + c2e−3/2t + c3e2t − 6/325cos t − 17/325sin t .

35. y = c1e−t + c1te−t + c1t 2e−t − 1/4cos t − 1/4sin t .

37. y = c1et + c2 cos2t + c3 sin 2t − 1/10e−t .

39. y = c1et + c2e2t + c3e−t + c4 sin t + c5 cos t + 7/2.

41. y = c1e−t + c2te−t + c3t 2e−t + c4t 3e−t − 4 + t − 1/4cos t .
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Section 5.2

1. limr→∞ re−sr = limr→∞ r
e−sr = limr→∞ 1

−se−rs = 0, where the second
equality holds by an application of L’Hopital’s Rule.

3. Consider applying L’Hopital’s Rule n times to limr→∞ rn

e−sr .

5. F(s) = 2
s2 .

7. F(s) = 2
s − 1

s2 .

9. F(s) = 2
s3 − 3

s

11. F(s) = 1
s−3 .

13. F(s) = e5

s−3 .

15. F(s) = 1
(s−a)2 .

17. F(s) = 1
s + 1

s2 .

19. F(s) = c
s + k

s2 .

Section 5.3

1. F(s) = 3/s − 1/(s − 1).

3. F(s) = (3/(s − 2)) − (6/(s2 + 4)).

5. F(s) = (4s/(s2 + 25)) + (6/(s + 2)).

7. F(s) = 2/(s + 1)3.

9. F(s) = (24s(s2 − 1))/(s2 + 1)4.

11. F(s) = (20/(s2 + 25)) − (6/(s + 2)).

13. F(s) = 2/(s + 1)3.

15. F(s) = 2/((s + 1)2 + 4).

17. f (t ) = cosh(2t ) sin(3t ) = 1
2 (et +e−t ) sin(3t ) so F(s) = 1

2 (3/((s − 1)2 + 9))+
(3/((s + 1)2 + 9)).

19. F(s) = (8/(s + 1)3) + (7/((s + 3)1 + 1)).

21. F(s) = ((6s2 − 3)/((s2 + 1)3)) − (2s/(s2 + 1)2).

23. F(s) = 2(s + 1)/((s + 1)2 + 1)2.

29. L[f (4)(t )
]= s4L[f (t )]− s3f (0) − s2f ′(0) − sf ′′(0) − f ′′(0).

Section 5.4

1. f (t ) = u(t − 1) − u(t − 2).
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3. f (t ) = t · [u(t − 1) − u(t − 2)]+ t 2 · u(t − 2).

5. f (t ) = sin(t ) · [u(t ) − u(t − 2π)].
7. f (t ) = t · [u(t ) − u(t − 2)]+ 2 · [u(t − 2) − u(t − 4)]+ (4 − t ) · u(t − 4).

9. F(s) = 2e−s

s − e−3s s
+ e−5s .

11. F(s) = 2 2
(s+3)2+4

+ e−8s .

13. y ′′ + 1
2 y ′ + 5

2 y = 3
4 sin(2t ) · u(t − 4) + 1

4δ(t − 10), y(0) = 0.25, y ′(0) = 0.

Section 5.5

1. y = 4 − e−5t .

3. y = 4 − e−5t .

5. y = ( 1
4 (−1 + 2t )e2t − 3

4 )e−t .

7. y = u(t − 3)
(− 1

64 − 1
8 t + 25

64 e8(t−3)
)− 4e8t .

9. y = 5
3 sin(3t ).

11. y = 1
3 sin(3t ) − 2

9 cos(3t ) + 2
9 .

13. y = 5
6 t sin(3t ).

15. y = 2e−3t + 6te−3t .

17. y = 1
2 e−t sin(2t ) + e−t cos(2t ) − 1

5 u(t − 4)
(−1 + ( 1

2 sin 2(t − 4)+
cos2(t − 4))e−(t−4)

)
.

19. y = 3/2e−t + 1/2e3∗t + 1/12u(t − 3)(−4 + 3e−(t−3) + e3(t−3).

21. y = (1/5)e2t − 11/5e−3t .

23. y = 1/4(−1 + 2t )et − 3/4e−t .

25. y(t ) = 5/6t sin 3t .

27. (a) y(t ) = 1/36 − 1/36cos(6t ); (b) y(t ) = −1/5148e−t/2 sin(1/2
√

143t )√
143 − 1/36e−t/2 cos(1/2

√
143t ) + 1/36; (c) y(t ) = −1/36e−6t − 1/6te−6t +

1/36; (d) y(t ) = −1/32e−2t + 1/288e−18t + 1/36.

29. (a) y = 5/72sin 6t − 5/12t cos6t ; (b) y = 5
√

143/858e−t/2 sin
√

143t/2 +
5/6e−t/2 cos

√
143t/2 − 5/6cos6t ; (c) y = 5/72e−6t + 5/12te−6t − 5/72cos6t ;

(d) y = 3/64e−2t − 1/192e−18t − 1/24cos6t .

Section 5.6

1. f (t ) = (2 − 6t )e−3t .

3. f (t ) = −1/4 − t/2 + 1/4e2t .

5. f (t ) = 6/25cos2t + 9/50sin 2t + 2/25(5t − 3)e−t .
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7. f (t ) = 1/2u(t − 1)(sin(t − 1) − 2sinh(t − 1) + (t − 1)cosh(t − 1)).

9. f (t ) = 5/9u(t −π)(−9 + 5e4(t−π) − et−π (−4 + 15(t −π))).

11. y = 5/8sin 2t − 1/4t cos2t .

13. y = 3/4sin 2t − 1/2t cos2t + 1/2u(t − 6)sin 2(t − 6) + u(t − 12)
sin 2(t − 12).

15. y = 5/8e−t sin 2t − 1/4te−t cos2t .

17. y = 1/2e−t sin 2t +1/8e−t (−2t cos2t +sin 2t +(t +π)u(t −π)(1/2sin 2t +
(π − t )cos2t )).

19. y(t ) = 17/18e−2t + 4/3tet + 5/9et − 1/2 − 1/3u(t − 3)e−2(t−3) + 1/3u
(t − 3)et−3.

21. y(t ) = 1/2e−t sin 2t + 1/16e−t (t + 2)(−2t cos2t + sin 2t ) + 1/2u
(t − 5)e−t+5 sin 2(t − 5).

Section 6.2

1. (0,0), (1/2,1/4).

3. (kπ/2, jπ/2), where k = ±1,±5,±9, . . . and j = ±1,±3,±5, . . ..

5. The system has no equilibrium solutions.

7. (0,0), (1/2,1/4), (−1/2,1/4).

9. (±2kπ,0), where k = 0,1,2, . . .. At even multiples of π , the system
demonstrates stable equilibria with stable centers nearby; at odd multiples of
π , the system shows unstable equilibria, which correspond to the pendulum
starting in a vertical position.

Section 6.3

1. J (x1,x2) =
[

2x1 1
1 −2x2

]
. 3. J (x1,x2) =

[ −2x2 1 − 2x1

4x2 − 1 4x1

]
.

5. J (x1,x2,x3) =⎡
⎣−2x1(1 + x2

1 + x2
2 + x2

3 )−2 −2x2(1 + x2
1 + x2

2 + x2
3 )−2 −2x1(1 + x2

1 + x2
2 + x2

3 )−2

−2x1e−x2
1 −x2

2 −x2
3 −2x2e−x2

1 −x2
2 −x2

3 −2x3e−x2
1 −x2

2 −x2
3

2 −6x2 4x3
3

⎤
⎦.

7. F(x1,x2) ≈
[

2 1
1 2

][
x1 − 1
x2 + 1

]
.

9. F(x1,x2) ≈
[−1/2 0

0 2

][
x1 − 1/2
x2 − 1/4

]
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11. (a) Equilibrium solutions: (0,0),(1/2,1/4); (b) near (0,0),

[
x ′

1
x ′

2

]
≈[

0 1
−1 0

][
x1

x2

]
; near (1/2,1/4), see exercise 9; (c) the purely imaginary

eigenvalues of the Jacobian matrix show that (0,0) is stable since nearby
trajectories are approximately elliptical.

13. (a) Equilibrium solutions: (kπ/2, jπ/2), where k = ±1,±5,±9, . . . and

j = ±1,±3,±5, . . .; (b) near (π/2),(π/2),

[
x ′

1
x ′

2

]
≈
[

0 −1
0 0

][
x1 −π/2
x2 −π/2

]
;

(c) the repeated zero eigenvalue of the Jacobian matrix does not reveal useful
information; a plot of the direction field nearby shows that (π/2,π/2) appears
to be unstable.

15. There are no equilibrium points for this system.

17. (a) Equilibrium solutions: (0,0), (1/2,1/4), (−1/2,1/4); (b) for example,

near (0,0),

[
x ′

1
x ′

2

]
≈
[

0 1
1 0

][
x1

x2

]
; (c) the two real eigenvalues of the Jacobian

matrix of opposing signs show that (0,0) is unstable since the nearby behavior
is approximately that of a saddle point.

19. Near (0,0),

[
x ′

1
x ′

2

]
≈
[

0 1
−4.9 0

][
x1

x2

]
; the two purely imaginary eigenvalues

of the Jacobian matrix show that (0,0) is a stable center, which confirms what
we expect for the pendulum. If the initial displacement and angular velocity are
small, we expect the pendulum to oscillate indefinitely near its equilibrium.

Section 6.4

1. x(1) ≈ x10 = 0.51614,y(1) ≈ y10 = 2.64423.

3. x(1) ≈ x10 = 1.00781,y(1) ≈ y10 = 3.04026.

5. x(1) ≈ x20 = 0.66581,y(1) ≈ y20 = 0.86534.

7. x(1) ≈ x20 = 0.687028,y(1) ≈ y20 = 0.302645.

Section 7.2

1. (a) y10 = −0.763413361; (b) y10 = −0.738106789; (c) y10 = −0.734305821;
the exact solution at t = 1 is y(1) = −2e−1 = −0.735758882.

3. (a) y10 = 5.18748492; (b) y10 = 5.428161693; (c) y10 = 5.428161693; the
exact solution at t = 1 is y(1) = 2e = 5.436563657.
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5. (a) y10 = 1.396393786; (b) y10 = 1.553789505; (c) y10 = 1.543274653; the
exact solution at t = 1 is y(1) = tan 1 = 1.557407725.

7. (a) y10 = 0.875101928; (b) y10 = 0.877113041; (c) y10 = 0.877113041.

9. (a) y10 = 0.827421159; (b) y10 = 0.805202364; (c) y10 = 0.804960517.

Section 7.3

1. (a) y10 = −0.730521596; (b) y10 = −0.735762133; the exact solution at t = 1
is y(1) = −2e−1 = −0.735758882.

3. (a) y10 = 5.428161693; (b) y10 = 5.436559488; the exact solution at t = 1 is
y(1) = 2e = 5.436563657.

5. (a) y10 = 1.53289173; (b) y10 = 1.557406443; the exact solution at t = 1 is
y(1) = tan 1 = 1.557407725.

7. (a) y10 = 0.879321827; (b) y10 = 0.881752898.

9. (a) y10 = 0.759536196; (b) y10 = 0.763163853.

Section 7.4

1. (a) x(10) =
[−0.31171756

1.45329846

]
; (b) x(10) =

[−0.303502219
1.381443614

]
; (c) x(1) =[

0.3011686789
1.381773291

]
.

3. (a) x(10) =
[

1.199804688
0.600390625

]
; (b) x(10) =

[
1.198181011
0.603637979

]
; (c) x(1) =[

1.198652411
0.6026951788

]
.

5. (a) x(10) =
[

1.33580647
1.74092711

]
; (b) x(10) =

[
1.244809581
1.721363223

]
; (c) x(1) =[

1.223244276
1.760866373

]
.

7. (a) x(10) =
[

0.516373457
3.169684507

]
; (b) x(10) =

[
0.534445981
3.490162952

]
.

9. (a) x(10) =
[

1.007884422
3.043412617

]
; (b) x(10) =

[
1.007920502
3.042623241

]
.

11. (a) x(40) =
[

0.96546577
1.459385106

]
; (b) x(10) =

[
0.965243106
1.459786552

]
.
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13. (a) x(10) =
[

0.694555012
0.305303136

]
; (b) x(10) =

[
0.694412729

0.3051542

]
.

15. (a) x ′
1 = x2, x ′

2 = −16x1 + 2t + 1; (b) x(10)
1 = 0.331345434; (c) x(10)

1 =
0.240361385; (d) x1(1) = y(1) = 0.252002804.

17. (a) x ′
1 = x2, x ′

2 = −16x2
1 + 2sin 2t ; (b) x(10)

1 = 0.392559752; (c) x(10)
1 =

0.418137228.

Section 8.2

1. R = 1.

3. R = 5.

5. f (t ) ≈ 1 + t/2 − t 2/8 + t 3/16; R = 1.

7. f (t ) ≈ 1 − t 4 + t 8 − t 12; R = 1.

9. f (t ) ≈ 1 + t + 2t 2/3 + t 3/3; R = ∞.

11. f (t ) ≈ t 5 − t 9/6 + t 13/120 − t 17/5040; R = ∞.

13. f (t ) ≈ t − 2t 3/3 + 2t 5/15 − 4t 7/315; R = ∞.

15. f (t ) ≈ t − t 2 + t 3/3 − t 5/30; R = ∞.

17. f (t ) ≈ t 2 − t 6/3 + t 10/5 − t 14/7; R = 1.

19. t − t 3/3 + t 5/10 − t 7/42.

21. t − t 3/18 + t 5/600 − t 7/35280.

23. t − t 7/14 + t 13/312 − t 19/13680.

Section 8.3

1. a0 + a1
√

2t/
√

π − a1
√

2t 3/(6
√

π) + a2
√

2t 5/(40
√

π).

3. a1 + 2a0t − 2a1t 2 − 4/3a0t 3.

5. (a0 + a1) + (−a1 − 5a0)t + (a1/2 + 25a0/2)t 2 + (−a1/6 − 125a0/6)t 3.

7. (a0 + a1) + (−2a1 + 3a0)t + (2a1 + 9/2a0)t 2 + (−4a1/3 + 9a0/2)t 3.

9. a0 + a1t − 1
2 a0t 2 − 1

6 (a0 + a1)t 3.

11. a0 + a1t − 1
2 a0t 2 − 2

3 a1t 3.

13. a0 + a1t − 3
2 a0t 2 + 3

2 a1t 3.

15. 1 − 1
2 t 2 − 1

6 t 3 + 1
24 t 4.

17. 1 − 1
2 t 2 + 1

6 t 4 − 31
720 t 6.
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Section 8.4

3. Hint: write ln 1+t
1−t = ln(1 + t ) − ln(1 − t ) and use the fact that ln(1 + t ) =

t − t 2/2 + t 3/3 − t 4/4 +·· · .

5. Using λ = 2 and the particular solution yp = 1, y = c1P2(t )+ c2Q2(t )+yp =
c1( 3

2 t 2 − 1
2 ) + c2(( 3

2 t 2 − 1
2 ) 1

2 ln 1−t
1+t − 3

2 t ) + 1.

7. Using λ = 5 and the particular solution yp = t 2

2 − 1
30 , y = c1P5(t )+

c2Q5(t ) + yp.

9. With λ = −1+√
13

2 , y = 1 − 1
2!λ(λ+ 1)t 2 + 1

4!λ(λ+ 1)(λ− 2)(λ+ 3)t 4 +·· · .

11. With λ = 1/3, y = t − 1
3! (λ − 1)(λ + 2)t 3 + 1

5! (λ − 1)(λ − 3)(λ + 2)
(λ+ 4)t 5 +·· · .

13. Hint: use λ = 4 and the particular solution yp = t 2 − 1
10 to write the general

solution y = c1P4(t ) + c2Q4(t ) + yp; find c1 and c2.

Section 8.5

1. H4(t ) = 16t 4 − 48t 2 + 12 and H5(t ) = 32t 5 − 160t 3 + 120t .

3. Using q = 5, y = c1 + c2t + 15c2t 2 +·· · .

5. Using q = 3, y = 2 + 10t + 6t 2 +·· · .

7. Using q = 2 and yp = 4t , y = 4t + 1 − 4(t − t 3/3 + 8t 5/5!+ · · · ).

9. Since y(0) is finite, c2 = 0. With q = 3, y = c1L3, and the other initial
condition implies y = 6

5 L3(t ).

11. y = − 78
15 L4(t ) + t − 1

4 .

13. y = c1J2(t ) + c2Y2(t ).

15. y = c1J4(t ) + c2Y4(t ).

17. y = c1J3(t ), where c1 = −3/J3(1).

Section 8.6

1. Using r = 1/2, y = t 1/2(1 − t + t 2/6 +·· · ).

3. Hint: multiply the DE by t on both sides and let p(t ) = t − 2, q(t ) = t .
Using r = 3, y = t 3(1 − t + t 2/2 − t 3/6 +·· · ).

5. Using r = 5, y = t 5(1 + 4t/5 + 5t 2/12 +·· · ).

7. Using r = 1/2, y = t 1/2(1 − t/10 + t 2/28 +·· · ).

9. Using r = √
3, y = t

√
3(1 − t/(1 + 2

√
3) + t 2/(4(1 + 2

√
3)(1 +√

3) +·· · ).

11. r(r − 1) + pr + q = 0.
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A
Acceptable functions, 332
Additive identity, 59
Airy’s equation, 453
Amps, 258
Analytic function, 455
Angular frequency, 305
Antiderivatives, 133
Argument, 504
Array, 9
Associative, 59
Attracting node, 215
Augmented matrix, 10
Autonomous, 133

B
Bernoulli equation, 184
Bessel

equation, 454, 482
function of the first kind, 483
function of the second kind, 484

Bessel-Clifford equation, 489
Bezier curves, 119

C
Capacitor, 259
Carrying capacity, 129, 172

Cauchy-Euler equation, 323, 486
Center, 232
Characteristic equation, 89, 277, 310, 323
Characteristic polynomial, 89
Closed set, 100
Coefficients, 23
Coefficient matrix, 10
Column space, 107
Column vector, 21
Commutative, 59
Companion system, 325
Competitive species, 418
Complementary solution, 143, 237,

288, 314
Complex conjugate, 504
Complex numbers, 230, 503
Complex plane, 503
Complex roots, 283
Computer graphics, 70
Concentration, 4
Consistent system, 9
Constant solution, 213
Convex combination, 120
Coulomb’s law, 259
Coupled system, 286
Critical damping, 319
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Current, 258
Cubic Bezier curve, 122

D
Damped pendulum, 417
Damping constant, 190
Degenerate node, 227
Dependent variable, 131
Determinant, 78, 79
Differential equation, 5, 129

solution to, 129
order of, 130
ordinary, 130
partial, 130
separable, 154

Dimension, 113
Dirac delta function, 353
Direction field, 132, 212, 392

map, 214
Discrete dynamical system, 123
Distinct real roots, 274
Dot product, 30

E
Eigenspace, 88
Eigenvalues, 86, 191
Eigenvectors, 85, 194
Electrical circuits, 258, 329
Elementary matrix, 75
Element of a set, 9
Equilibrium, 6
Equilibrium solution, 134, 193, 213, 395
Equivalent systems, 9
Error function, 501
Euler’s method, 162

for nonlinear systems, 409
for systems, 440
modified, 427
using Excel, 413

Euler’s formula, 230, 283
Exact first-order DE, 157
Excel spreadsheet, 168

using Euler’s method, 413
Exponential growth, 148
Exponential order, 332

F
Faraday’s law, 259
Farads, 259

Family of solutions, 133
First-order methods, 431
First shifting property, 343
Flow, 212, 391
Forcing function, 140, 190
Free variable, 14
Frequency, 305
Frobenius’ method, 485
Fundamental solution matrix, 246
Fundamental Theorem of

Calculus, 177

G
Gamma function, 491
Gauss-Jordan elimination, 12
Generalized eigenvector, 226
Generalized vectors, 99
Google’s Page Rank Algorithm, 94

H
Half-wave rectified, 383
Heaviside function, 347
Hermite equation, 454, 474
Hermite polynomials, 479
Heun’s method, 424

for systems, 442
Homogeneous, 36

system, 202
Homogeneous equation, 45

first order, 140
second order, 274

I
Identity matrix, 61
Imaginary part, 230, 504
Impulse function, 330, 353
Inconsistent system, 9, 14
Indicial equation, 487
Inductance, 259
Inductor, 259
Infinite dimensional, 114
Infinitely differentiable, 455
Initial condition, 130, 203
Initial-value problem, 131, 202

Euler’s method, 165
Laplace transforms, 359

Integral table, 500
Integrating factor, 142
Integration by parts, 494
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Inverse Laplace transform, 334, 359
table of, 372

Inverse of a matrix, 67
Invertible matrix, 66, 82
Invertible Matrix Theorem, 70, 82, 111
Invertible transformation, 517
Irreducible term, 510

J
Jacobian matrix, 403

K
Kirchoff ’s laws, 7, 260

L
Laguerre equation, 454, 480
Laguerre polynomials, 481
Laplace transform, 333

general properties, 337
initial-value problems, 359
linear operator, 338
of systems, 384
table of, 336, 345

Leading entry, 12
Legendre’s equation, 471
Legendre

functions of the second kind, 475
polynomials, 474

Leibniz’s rule, 346
L’Hopital’s rule, 355
Linear approximation, 400
Linear combination, 23
Linear differential equations

first order, 140
second order, 190

Linear equations, 8
Linear independence, 49
Linearity, 8

properties of, 24
Linearization, 394, 400
Linear operator, 338
Linear system, 202
Linear transformation, 25, 511, 514
Linearly dependent vectors, 50,
Linearly dependent set, 108
Linearly independent set, 51, 56
Logarithmic decrement, 321
Logistic differential equation, 129, 172
Lotka-Volterra equations, 390

M
Maple, 15, 132

characteristic equation, 316
determinants, 82
direction fields, 219, 397
Laplace transforms, 375
linear algebra, 15
matrix algebra, 62
error function, 501
matrix inverse, 73
matrix products, 29
variation of parameters, 250

Markov chains, 26, 93
Markov matrix, 27
Markov process, 27
Matrix, 9

augmented, 10
coefficient, 10
Dirac delta, 357
exponential, 270
Heaviside, 357
inverse, 67
invertible, 82
operations, 11
product, 60
transpose, 61

Matrix of transformation, 514
Matrix-vector multiplication, 24
Matrix-vector product, 24
Method of Frobenius, 485
Midpoint rule, 423
Mixing problems, 253
Modulus, 504
Modified Euler’s method, 427
Multiplicity, 510

N
Near resonance, 306
Newton’s law of cooling, 150
Nonhomogeneous, 36, 45

first-order linear DE, 144
second-order linear DE, 190, 288
system, 202

Nonhomogeneous systems,
202, 236

Nonlinear differential equations
first order, 140, 154, 157

Nonsingular matrix, 67
Null space, 107
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Numerical methods, 421
competitive species, 450
damped pendulum, 450
predator prey, 449

O
Ohm’s law, 259
Order, 130
Ordered triple, 21
Ordinary differential equation, 130
Ordinary point, 466
Orthogonal polynomials, 474
Overdamping, 319

P
Parametric vector solutions, 14
Partial differential equation, 130
Partial fractions, 495
Particular solution, 143, 237, 288, 314
Pendulum, 387

damped, 417
Phase plane, 392
Piecewise continuous functions, 347
Pivot column, 12
Pivot position, 12
Polynomials, 509
Potential function, 258
Power method, 93
Power series, 455

solutions, 463
Predator-prey equations, 390
Product of matrices, 60
Properties of linearity, 24

Q
Quadratic formula, 509

R
Racitti equation, 183
Radioactive decay, 148
Radius of convergence, 456
Ratio test, 457
Real part, 230, 504
Recurrence relation, 463
Reduction of order, 181
Regular singular point, 486
Repeated roots, 281
Repelling node, 215, 227
Representative eigenvalues, 89

Resistance, 259
Resonance, 304
Rotation matrix, 71, 91
Row equivalent, 11
Row operations, 11
Row-reduced matrix, 12
RREF, 12
Runge-Kutta methods, 434

for systems, 443
fourth-order, 437
two-stage, 435

Runge-Kutta-Fehlberg method, 439

S
Saddle point, 216
Second-order DE, 191
Second-order methods, 431
Second shifting property, 350
Separable first-order DE, 154
Sequence of partial sums, 455
Set of real numbers �, 9
Shifting property, 343
Simpson’s rule, 436
Singular function, 455
Singular matrix, 67
Singular point, 466
Sink, 232
Slope field, 132
Solution, 8, 105
Solution set, 8
Span, 36, 109
Spiral sink, 232
Spiral source, 232
Spring constant, 189
Spring-mass system, 189, 255
Stability, 194
Stable equilibrium, 6, 215
Stable solution, 133
Stationary vector, 93
Steady-state solution, 264, 307
Steady-state vector, 28
Step functions, 347
Stochastic matrix, 79
Straight-line solutions, 194
Subset, 36, 109
Subspace, 102
Symmetric matrix, 27, 62
System of equations, 3

linear equations, 5, 8, 187
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T
Tangent line approximation, 400
Tangent plane approximation, 401
Taylor methods, 431
Taylor polynomial, 456
Taylor series, 456
Terminal velocity, 183
Torricelli’s law, 176
Trajectories, 212, 392
Transformation, 513

linear, 514
Transient solution, 264, 307, 322
Transition matrix, 27
Translated step function, 247
Transpose, 21, 61
Trapezoid rule, 423
Truncation error, 431

U
Uncoupled system, 192, 286
Underdamping, 319

Undetermined coefficients, 236, 241, 289
Unique inverse, 68
Unit step function, 347
Unit vector, 21
Unstable solution, 134
u-substitution, 494

V
Variation of parameters, 247, 295
Vectors, 102
Vector space, 101
Vector-matrix multiplication, 24
Voltage drop, 258
Volts, 258

W
Wronskian, 207, 311
Weights, 23

Z
Zero-product property, 76
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