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In the fi rst edition of Human Genome Epidemiology published in 2004, we  discussed 
how the epidemiologic approach provides an important scientifi c foundation for 
studying the continuum from gene discovery to the development, applications, and 
evaluation of human genome information in improving health and preventing dis-
ease. Since 2004, advances in human genomics have continued to occur at a breath-
taking pace. Although the concept of personalized healthcare and disease prevention 
often promised by enthusiastic scientists and the media is yet to be fulfi lled, we 
are now seeing progress and rapid accumulation of data in many “omics” related 
research fi elds. New methods to measure genome variation on an unprecedented 
large scale have propelled a new generation of genome-wide association studies. 
Evaluation of rare variants and full sequencing at large-scale are rapidly becoming 
a reality. Also, we have seen the emergence of population-based biobanks in many 
countries with the objectives of quantifying longitudinally the joint infl uences of 
genetic and environmental factors on the occurrence of common diseases.

With all these ongoing developments, we have invited many authors who are lead-
ers in the fi eld to produce the second edition of Human Genome Epidemiology. Our 
aim is to inform readers of new developments in the genomics fi eld and how epide-
miologic methods are being used to make sense of this information. We do realize 
that the material presented in this book will be outdated even before it is published. 
However, the methodologic challenges and possible solutions to them will remain 
with us for quite some time. There is very little material remaining from the fi rst 
edition of Human Genome Epidemiology.

This new edition is divided into fi ve parts. In Part I, we revisit the fundamentals 
of human genome epidemiology. We fi rst give an overview of the development and 
progress in applications of genomic technologies with a focus on genomic sequence 
variation (Chapter 2). We then give an overview of the multidisciplinary fi eld of 
public health genomics that includes a fundamental role of epidemiologic methods 
and approaches (Chapter 3). We also present a brief overview of evolving methods 
for tracking and compiling information on genetic factors in disease (Chapter 4).

In Part II, we discuss methodologic developments in collection, analysis, and syn-
thesis of data from human genome epidemiologic studies. We discuss the emergence 
of biobanks around the world (Chapter 5), the evolution of case-control studies 
and cohort studies in the era of GWAS (Chapter 6), and the emerging role of con-
sortia and networks (Chapter 7). Next, we discuss methodologic analytic issues in 
GWAS (Chapter 8) and the analytic challenges of gene-gene and gene-environment 
interaction (Chapter 9). We then address issues of reporting of genetic associations 
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(Chapter 10), evolving methods for integrating the evidence (Chapter 11) as well as 
assessment of cumulative evidence and fi eld synopses (Chapter 12).

In Part III, we provide several case studies that attempt to present an evolving 
knowledge base of the cumulative evidence on genetic variation in a variety of 
human diseases. As the information undoubtedly will change (even before the publi-
cation of the book), we stress here the importance of strong methodologic foundation 
for analysis and synthesis of information from various studies. The diseases shown 
in this section include three cancers: colorectal cancer (Chapter 13), childhood leu-
kemia (Chapter 14), and bladder cancer (Chapter 15). We also present data from 
type 2 diabetes (Chapter 16), osteoporosis (Chapter 17), preterm birth (Chapter 18), 
coronary heart disease (Chapter 19), and schizophrenia (Chapter 20). Collectively, 
these chapters cover an impressive array of common complex human diseases and 
provide an epidemiologic approach to rapidly emerging data on gene-disease and 
gene-environment interactions.

In Part IV, we discuss methodologic issues surrounding specifi c applications of 
human genomic information for medicine and public health. We start in Chapter 21 
with a review of the concept of Mendelian Randomization, an approach that allows 
us to assess the role of environmental factors and other biomarkers in the occur-
rence of human diseases using data on the association of genetic variation and dis-
ease endpoints. In Chapter 22, we discuss how clinical epidemiologic concepts and 
methods can be used to assess whether or not one or more genetic variants (e.g., 
genome profi les) can be used to predict risk for human diseases. Chapter 23 presents 
a major milestone for public health genomics, namely the publication of methods 
of systematic review and assessment of the clinical validity and utility of genomic 
applications in clinical practice. This chapter is a reprint of the published paper from 
the independent multidisciplinary panel, the EGAPP working group, supported by 
CDC and many partners. Chapter 24 briefl y summarizes how reviews of the evi-
dence on validity and utility of genomic information can be done systematically 
and rapidly, even in the face of incomplete information. Chapter 25 focuses on the 
crucial role of the behavioral and social sciences in assessing the impact and value 
of epidemiologic information on gene-disease associations. Chapter 26 addresses 
issues in evaluating developments in newborn screening. Chapter 27 provides an 
epidemiologic framework for the evaluation of pharmacogenomic applications in 
clinical and public health practice. Chapter 28 presents an overview of the relevance 
and impact of epigenomics in clinical practice and disease prevention. Finally, chap-
ter 29 presents an epidemiologic framework for evaluating family health history as a 
tool for disease prevention and health promotion. Even in this genomics era, family 
history remains a strong foundation, not only for identifying single gene disorders, 
but also for stratifying individuals and populations by different levels of disease risk 
and implementing personalized interventions.

Finally, in Part V of the book, we present a few case studies of the application 
of epidemiologic methods of assessment of clinical validity and utility for several 
disease examples. These include two pharmacogenomic testing examples—initial 
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treatment of depression with SSRIs (Chapter 30) and warfarin therapy (Chapter 31). 
We also present information on population screening for hereditary hemochroma-
tosis (Chapter 32), a genetic disorder with incomplete penetrance that has attracted 
some attention over the past decade as a possible example of population screening 
in the genomics era.

The second edition of Human Genome Epidemiology is primarily targeted to 
basic, clinical, and population scientists involved in studying genetic factors in com-
mon diseases. In addition, the book focuses on practical applications of human 
genome variation in clinical practice and disease prevention. We hope that students, 
clinicians, public health professionals, and policy makers will fi nd the book useful 
in learning about evolving epidemiologic methods for approaching the discovery 
and the use of genetic information in medicine and public health in the twenty-fi rst 
century.

Atlanta MJK, SB, MG
Cambridge JH
Ioannina  JI
Ottawa JL
2009
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In 2004, we published the book entitled Human Genome Epidemiology: A Scientifi c 
Foundation for Using Genetic Information to Improve Health and Prevent Disease 
(1). In it, we discussed how the epidemiologic approach provides an important scien-
tifi c foundation for studying the continuum from gene discovery to the development, 
applications, and evaluation of human genome information in improving health 
and preventing disease. We called this continuum human genome epidemiology (or 
HuGE) to denote an evolving fi eld of inquiry that uses epidemiologic applications 
to assess the population impact of human genetic variation on health and disease, 
and how the resulting information can be used to improve population health. We 
discussed and gave examples that illustrated that after the discovery of genetic vari-
ants associated with diseases, additional well-conducted epidemiologic studies are 
needed to characterize the population impact of gene variants on the risk for adverse 
health outcomes and to identify and measure the impact of modifi able risk factors 
that interact with gene variants. Epidemiologic studies are also required for evaluat-
ing clinical validity and utility of new genetic tests, to monitor population use of 
genetic tests and to determine the impact of genetic information on the health and 
well-being of different populations. The results of such studies will help medical 
and public health professionals integrate human genomics into practice.

The Rationale for a Second Edition of 
Human Genome Epidemiology

Since 2004, advances in human genomics have continued to occur at a breathtaking 
pace. Although the concept of personalized healthcare and disease prevention often 
promised by enthusiastic scientists and the media is yet to be fulfi lled, we are now 
seeing rapid progress and accumulation of data in many “omics” related research 
fi elds such as transcriptomics, proteomics, and metabolomics (2). Results of the 
International HapMap project were published in 2005 (3), paving the way to more 
effi cient methods to discover human genetic variations associated with a variety of 
common diseases of public health signifi cance. New methods to measure genome 

1
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variation on an unprecedented large scale (hundreds of thousands of genetic vari-
ants) have propelled a new generation of genome association studies (4). Evaluation 
of rare variants and full sequencing at large-scale are rapidly becoming a reality. 
Also, we have seen the emergence of population-based biobanks in many countries 
with the objectives of quantifying longitudinally the joint infl uences of genetic and 
environmental factors on the occurrence of common diseases (5).

Perhaps the single most important development in human genome epidemio-
logy has been the emergence of genome-wide association studies (GWAS; 6). The 
continuous improvements in genome-wide analysis technologies, coupled with 
drastic reductions in price, have led to widespread applications of these technolo-
gies in large collaborative case-control, cross-sectional, and cohort studies. These 
studies have interrogated agnostically, without a priori hypotheses, variation in the 
whole genome, looking for differences in the distribution of genetic polymorphisms 
between individuals with and without disease. As of August 2009, more than 400 
gene variants have been discovered and replicated as risk  markers (but not necessar-
ily true culprits) for a variety of common diseases of public health signifi cance (7). 
As a result, we are seeing an unprecedented expansion in the number of publications 
of GWAS as well as studies of candidate genes with varying methodological quality. 
While the deposition of GWAS data in potentially accessible databases (8,9) could 
lead to avoidance of selective publication, protection from other biases (e.g., selec-
tion, confounding, misclassifi cation) is still a real concern even with large GWA 
studies that are based on selected or noncomparable samples of cases and controls. 
In addition, new technology such as full genomic sequencing is likely to replace 
the current genome-wide SNP analysis platforms. Furthermore, we are seeing the 
emergence of the novel approaches of system biology, as well as the development of 
biomarkers based on gene expression profi les, epigenetic patterns, proteomic pro-
fi les, and so on. Each new development taxes our ability to make sense of the ever-
increasing amount of data. We must continue to develop, apply, and sharpen our 
epidemiological approaches to study designs, analysis, interpretation, and knowl-
edge synthesis.

From Gene Discovery to Clinical 
and Public Health Applications

The ongoing success of GWAS in uncovering genetic risk markers for many com-
mon diseases has renewed expectations of a new era of health care and public 
health practice (6,10,11). Already, we have a few examples of applications in clini-
cal medicine and population health (see Table 1.1 for emerging examples). By and 
large, emerging applications are relatively rare in spite of the rapid advances in 
gene discovery, and for many of them, their benefi ts and cost-effectiveness are 
not well known. Therefore, there is an urgent need to understand the benefi ts 
and harms and to ensure high-quality implementation of new technologies (12). 
This includes improving the evidence base of outcomes of these technologies; the 
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development of evidence-based guidelines for the use of genomic applications (13); 
the use of policy and legislation to prevent discrimination on the basis of genetic 
information (14); and the effective engagement of providers, researchers, and the 
general public. More recently, “direct to consumer” (DTC) offerings of genome-
wide profi les have been developed and marketed by several companies, with the 
implicit, if not explicit, goal of providing information for improving individual 
health and preventing common diseases (15). The ready availability and complex-
ity of these new DTC tests could strain the ability of consumers and the health 
care delivery system to determine the true value of applying extensive quantities 
of genomic data to health management. Proponents of DTC genome-wide pro-
fi les feel strongly that this approach can empower and educate individuals about 
disease prevention and health promotion. Others are concerned that the use of 
genome-wide profi les is based on an incomplete knowledge about the relation-
ship between genetic variations and human diseases, and the lack of a full under-
standing of the optimal specifi c medical or lifestyle interventions that should be 
offered based on these test results (16). Questions also remain regarding the scope 
of individual genetic tests that should be included in genomic profi les, whether the 
underlying technologies are robust, and where the balance lies between potential 
benefi ts and harms (clinical utility) of these tests to individuals and populations 
(16,17). A 2007 report found several limitations in the existing US-based research 
and healthcare delivery infrastructure to create an evidence base of utilization and 
outcomes of gene-based applications (18). In addition, providers and the public 
have little understanding of genomics and genomics services (10). Overcoming 
these limitations would require coordinating efforts that span multiple disciplines 
of laboratory sciences, medicine and public health, including health services 
research, and outcomes research. The epidemiologic approach is at the intersec-
tion of all these disciplines.

The Emergence of Public Health Genomics

In the face of evolving technologies, we have witnessed in the past few years the 
emergence of “public health genomics,” a multidisciplinary fi eld concerned with 

Table 1.1 Examples of emerging applications of human genome discoveries for 
clinical practice and disease prevention

Type of Application Examples of Proposed Applications

Therapeutic agents Herceptin in treatment of breast cancer

Diagnostic tests BRCA analysis in hereditary breast and ovarian cancer

Pharmacogenomic tests Genetic testing for warfarin treatment

Prognostic tests Tumor gene expression profi les in various cancers

Screening tests Biomarkers for early detection of ovarian cancer

Risk assessment tests Genome profi les in breast and prostate cancer
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the effective and responsible translation of genome-based knowledge and technol-
ogies to improve population health. This fi eld is thriving in many countries and 
uses epidemiologic methods as a foundation for knowledge integration of genetic 
information in medicine and public health (19–21). Public health genomics uses 
 population-based data on genetic variation and gene-environment interactions to 
develop, implement, and evaluate evidence-based tools for improving health and 
preventing disease. Public health genomics also applies systematic, evidence-based 
assessments of genomic applications in health practice and works to ensure the 
delivery of validated, useful genomic tools in practice.

Even with impressive advances in the basic sciences of gene discovery and char-
acterization, reservations have been voiced about the potential benefi ts of medical 
applications of genomics; these reservations are based in part on the complex rela-
tionship between genetic variation and the environment with disease occurrence, as 
refl ected in the modest associations between individual gene variants and disease 
outcomes, and the limited clinical validity and utility of using genetic information 
in the prediction of disease. Moreover, prematurely optimistic claims by researchers, 
the media, test developers, and commercial genomic enterprises may lead to unre-
alistic expectations among consumers and inappropriate use of genetic information. 
Also, an overemphasis on the genetics of human disease may divert attention from 
the importance of environmental exposures, social structure, and lifestyle factors 
(22). In public health practice, skepticism about genomics runs high among some 
practitioners whose traditional domains are the control of infectious diseases, envi-
ronmental exposures, and health promotion for chronic disease prevention. To some, 
genomics research is perceived as a low-yield investment, as well as an opportunity 
cost, undercutting social efforts to address environmental causes of ill health. To 
others, public health applications of genomics are viewed only in terms of popula-
tion screening, remaining limited to newborn screening programs (23). Still others 
reject genomics research as an unwarranted extension of the individual risk para-
digm (24), citing the distinction between prevention in populations and in high-risk 
persons set out by Geoffrey Rose in 1985 (25). However, Rose was careful to present 
these approaches as complementary rather than mutually exclusive (25).

It can be argued that the integration of genomics into healthcare and disease pre-
vention requires a strong medicine–public health partnership (26). Public health and 
health care often operate in different spheres, although medicine is part of the “pub-
lic health system” (27). This “schism” can be overcome in genomics using a popula-
tion approach to a joint translational agenda that includes (a) a focus on prevention, 
a traditional public health concern that is now a promise of genomics in the realm 
of personalized medicine; (b) a population perspective that requires a large amount 
of population level data to validate gene discoveries for clinical and  population-level 
applications, especially given the modest associations between genetic factors 
and disease burden; (c) commitments to evidence-based knowledge synthesis and 
guideline development, especially with thousands of potential genomic applica-
tions emerging into practice; and (d) emphasis on health services research and the 
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 surveillance of population health to evaluate health outcomes, costs, and benefi ts in 
the “real world” (27).

Epidemiology and the Phases of Genomics Translation

As shown in Table 1.2, there are four phases of translation research in genomics, from 
gene discovery to population health impact (28). In addition to  traditional genetic 
epidemiology, which has focused by and large on gene discovery,  epidemiologic 
methods and approaches play a role in all four phases (see Table 1.2). Phase 1 (T1) 
research seeks to move a basic genome-based discovery into a candidate health 
application (e.g., genetic test/intervention). Phase 2 (T2) research assesses the value 
of a genomic application for health practice leading to the development of evidence-
based guidelines. Phase 3 (T3) research attempts to move evidence-based guidelines 
into health practice, through delivery, dissemination, and diffusion research. Phase 4 
(T4) research seeks to evaluate the “real world” health outcomes of a genomic appli-
cation in practice. Because the development of evidence-based guidelines is a mov-
ing target, the types of translation research can overlap and provide feedback loops 
to allow integration of new knowledge. Although it is diffi cult to quantify how much 
of human genomics research is T1, we have estimated that no more than 3% of pub-
lished research focuses on T2 and beyond (28). Indeed,  evidence-based guidelines 

Table 1.2 Human genome epidemiology and the phases of genomics translation: 
examples and application

Phase Notation Types of Research Examples

T1 Discovery to 
candidate health 
application.

Phases 1 and 2 
clinical trials;
observational studies.

What is the magnitude of the 
 association between genetic 
 variants and disease risks?
Is there gene-environment 
interaction?

T2 Health application 
to evidence-based 
practice guidelines.

Phase 3 clinical trials;
observational studies;
evidence synthesis and 
guidelines development.

What are the positive and negative 
predictive values of genetic factors 
in risk assessment?

T3 Practice guidelines 
to health practice.

Dissemination research;
implementation research;
diffusion research;
Phase 4 clinical trials.

What proportion of individuals who 
meet guidelines criteria receive 
 recommended care and what 
are the barriers to implementing 
 practice guidelines?

T4 Practice to popula-
tion health impact.

Outcomes research (includes 
many disciplines);
population monitoring of 
morbidity, mortality, benefi ts 
and risks.

Does implementation of prac-
tice guidelines reduce disease 
 incidence/improve outcomes?

Source: Adapted from Reference 28.
See Reference 28 for defi nition of terms.
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and T3 and T4 research currently are rare (except in  newborn screening, and selected 
testing for genetic disorders such as hereditary breast and ovarian cancer).

The Continued Need for Methodological Standards 
in Human Genome Epidemiology

Thus, the need for making sense of the avalanche of genetic and genomic data is 
more urgent than ever. This urgency is behind the continued growth of the Human 
Genome Epidemiology Network (HuGENet), a global collaboration of individuals 
and organizations who are interested in accelerating the development of the knowl-
edge base on human genetic variation and population health and the use of this 
information in improving health and preventing disease (29). HuGENet has focused 
on developing methods and guidance to integrate and disseminate a global knowl-
edge base on assessing the prevalence of genetic variants in different populations, 
genotype-disease associations, and gene-gene and gene-environment interactions, 
and evaluating genetic tests for screening and prevention. During the past three 
years, HuGENet has made many methodological and substantive contributions to 
the fi eld. HuGENet has developed a Web-based searchable knowledge base (the 
HuGE Navigator) that captures ongoing publications in human genome epidemiol-
ogy (30). The HuGE Navigator is searchable by disease, gene, and disease risk fac-
tors. Furthermore, in collaboration with several journals, HuGENet has sponsored 
the systematic reviews of the evidence on genotype-disease associations, using spe-
cifi c published guidelines and recommendations—the HuGENet handbook (31)—
for carrying out this work, as well as for applying quantitative methods of synthesis. 
Since 2000, HuGENet collaborators have carried out more than 80 reviews on vari-
ous diseases ranging from single gene conditions to common complex diseases. In 
2005, HuGENet formed a network of investigator networks (32), which currently has 
35 consortia, mostly disease-specifi c networks that are represented by hundreds of 
collaborators interested in sharing knowledge, experience, and resources in the con-
duct, analysis, and dissemination of results of human genome epidemiology investi-
gations. In 2006, HuGENet conducted a workshop in collaboration with the global 
movement STROBE (STrengthening the Reporting of OBservational Epidemiology) 
to extend the now well-studied “STROBE reporting checklist” to include genetic 
associations, under the rubric of STREGA (STrengthening the REporting of 
Genetic Associations; 33). In addition, the HuGENet “network of networks” pub-
lished a “road map” for using consortia-driven pooled meta- analyses to accelerate 
the knowledge base on gene-disease associations (34). With the  publication of the 
HuGENet roadmap, the editors of Nature Genetics called for the development and 
online publication of peer reviewed, curated expert knowledge bases called “fi eld 
synopses” that are regularly updated and freely accessible (35). HuGENet imple-
mented the fi eld synopsis concept in a meeting held in 2006 in Venice (36). The 
workshop participants generated interim guidelines for grading the cumulative evi-
dence in genetic associations based on three criteria: (1) the amount of evidence; 
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(2) the extent of replication; and (3) protection from bias. The proposed scheme 
allows for three categories of descending credibility for each of these criteria and 
also for a composite assessment of “strong,” “moderate,” or “weak” credibility (36). 
In 2008, HuGENet collaborators conducted a workshop to discuss insights and 
experiences from several fi eld synopses that represented the fi rst efforts by multiple 
authors at grading the credibility of these associations on a massive scale. HuGENet 
participants emerged with a vision for collaboration that builds a reliable cumulative 
evidence for genetic associations and a transparent, distributed, and authoritative 
knowledge base on genetic variation and human health (37).

The HuGE Roadmap Revisited

With all these ongoing developments, we have invited many authors who are lead-
ers in the fi eld to produce the second edition of Human Genome Epidemiology. Our 
aim is to inform readers of new developments in the genomics fi eld and how epide-
miologic methods are being used to make sense of this information. We do realize 
that the material presented in this book will be outdated even before it is published. 
However, the methodological challenges and possible solutions to them will remain 
with us for quite some time. There is very little material remaining from the fi rst 
edition of Human Genome Epidemiology.

This new edition is divided into fi ve parts. In Part I, we give an overview of the 
development and progress in applications of genomic technologies, with a focus on 
genomic sequence variation (Chapter 2). We then give an overview of the multidis-
ciplinary fi eld of public health genomics that includes a fundamental role of epi-
demiologic methods and approaches (Chapter 3). We also present a brief overview 
of evolving methods for tracking and compiling information on genetic factors in 
disease (Chapter 4).

In Part II, we discuss methodological developments in collection, analysis, and 
synthesis of data from human genome epidemiologic studies. We discuss the emer-
gence of biobanks around the world (Chapter 5), the evolution of case-control studies 
and cohort studies in the era of GWAS (Chapter 6), and the emerging role of  consortia 
and networks (Chapter 7). Next, we discuss methodological analytic issues in GWAS 
(Chapter 8) and the analytic challenges of gene-gene and gene- environment interac-
tion (Chapter 9). We then address issues of reporting of genetic associations (Chapter 
10), evolving methods for integrating the evidence (Chapter 11), and assessment of 
cumulative evidence and fi eld synopses (Chapter 12).

In Part III, we provide several case studies related to various diseases that attempt 
to present an evolving knowledge base of the cumulative evidence on genetic var-
iation in a variety of human diseases. As the information undoubtedly will change 
(even before the publication of the book), we stress here the importance of strong 
methodological foundation for analysis and synthesis of information from various 
studies. The diseases shown in this section include three cancers: colorectal cancer 
(Chapter 13), childhood leukemia (Chapter 14), and bladder cancer (Chapter 15). 
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We also present data from type 2 diabetes (Chapter 16), osteoporosis (Chapter 17), 
preterm birth (Chapter 18), coronary heart disease (Chapter 19), and schizophre-
nia (Chapter 20). Collectively, these chapters cover an impressive array of common 
complex human diseases and provide an epidemiologic approach to rapidly emerg-
ing data on gene-disease and gene-environment interactions.

In Part IV, we discuss methodological issues surrounding specifi c applications of 
human genomic information for medicine and public health. We start in Chapter 21 
with a review of the concept of Mendelian Randomization, an approach that allows 
us to assess the role of environmental factors and other biomarkers in the occurrence 
of human diseases using data on the association of genetic variation and disease end-
points. In Chapter 22, we discuss how clinical epidemiologic concepts and methods 
can be used to assess whether one or more genetic variants (e.g., genome profi les) 
can be used to predict risk for human diseases. Chapter 23 presents a major mile-
stone for public health genomics, namely the publication of methods of systematic 
review and assessment of the clinical validity and utility of genomic applications in 
clinical practice. This chapter is a reprint of the published paper from the independent 
multidisciplinary panel, the EGAPP working group, sponsored by CDC and many 
partners. Chapter 24 briefl y summarizes how reviews of the evidence on validity and 
utility of genomic information can be done systematically and rapidly, even in the face 
of incomplete information. Chapter 25 focuses on the crucial role of the behavioral 
and social sciences in assessing the impact and value of epidemiologic information on 
gene-disease associations. Chapter 26 addresses issues in evaluating developments in 
newborn screening. Chapter 27 provides an epidemiologic framework for the evalua-
tion of pharmacogenomic applications in clinical and public health practice. Chapter 
28 presents an overview of the relevance and impact of epigenomics in clinical  practice 
and disease prevention. Finally, Chapter 29  presents an epidemiologic framework for 
evaluating family health history as a tool for disease prevention and health promotion. 
Even in this genomics era, family history remains a strong foundation, not only for 
identifying single gene disorders, but also for stratifying individuals and populations 
by different levels of disease risk and implementing personalized interventions.

Finally, in Part V of the book, we present a few case studies of the application 
of epidemiologic methods of assessment of clinical validity and utility for several 
disease examples. These include two pharmacogenomic testing examples—initial 
treatment of depression with SSRIs (Chapter 30) and warfarin therapy (Chapter 31). 
We also present information on population screening for hereditary hemochroma-
tosis (Chapter 32), a genetic disorder with incomplete penetrance that has attracted 
some attention over the past decade as a possible example of population screening 
in the genomics era.

The second edition of Human Genome Epidemiology is primarily targeted at 
basic, clinical, and population scientists involved in studying genetic factors in com-
mon diseases. In addition, the book focuses on practical applications of human 
genome variation in clinical practice and disease prevention. We hope that students, 
clinicians, public health professionals, and policy makers will fi nd the book useful 
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in learning about evolving methods for approaching the discovery and the use of 
genetic information in medicine and public health in the twenty-fi rst century.
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Introduction

Armed with a comprehensive draft of the human genome, one of the fi rst  priorities 
was to develop a large-scale map of common genetic variation to investigate the role 
of genetics in human disease (1–3). Using the catalog of annotated common human 
variation, geneticists have begun to capitalize on the recent technical advances to 
investigate thoroughly the complexities of genetic variation and its contribution 
to complex human diseases and traits. Moreover, the age of the genomics revolu-
tion has spawned an opportunity to examine the interplay between environmental/ 
lifestyle factors and genetic variation as well as the genetics of individual responses 
to medical intervention (e.g., pharmacogenomics) (4). A seminal step has been the 
characterization of common haplotypes in three continental populations, known as 
the International HapMap Project (http://www.hapmap.org); it has already reaped 
over 200 novel loci in the genome associated with human diseases/traits, primar-
ily discovered by genome-wide association studies (GWAS) (5–8). Though these 
advances have focused on a component of genomic architecture, namely common 
genetic variants, parallel programs in comprehensive resequence analysis should 
yield a catalog of uncommon variants (1,000 genome project-HapMap3, http://
www.hapmap.org/cgi-perl/gbrowse/hapmap3_B36) that will enable analysis of 
less common variants. In concert with the assessment of germline genetic varia-
tion, genomic characterization is underway using different platforms to integrate 
with gene expression data; these programs include the ENCODE (the ENCyclopedia 
Of DNA Elements) Project, which seeks to defi ne functional elements (http://www.
genome.gov/10005107) (9), and the Cancer Genome Atlas (TCGA), which is inter-
rogating somatic and germline alterations in select  cancers (10). Together, these 
new  developments promise to accelerate the discovery and  characterization of novel 
genomic mechanisms in human diseases and traits.

The age of genomics has ushered in a more ambitious approach toward scien-
tifi c  discovery, “team” science, in which resources and study populations are pooled 
to identify novel genetic markers (Figure 2.1). In this regard, GWAS survey thou-
sands of the most common genetic variants across the genome, single nucleotide 
polymorphisms (SNPs) in an “agnostic manner” (in other words, unfettered by prior 
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hypotheses) and require adequately powered follow-up studies for replication (11). 
It is this latter point that is central to the search for moderate- to high-frequency 
low- penetrance variants associated with human diseases and traits (12). Efforts to 
replicate are necessary to guard against the large number of apparent false positives, 
which can be due to chance or methodological biases in study design and execution 
(11,13,14). The emergence of high fi delity, highly parallel genotyping technologies 
make possible what was unimaginable a few years before. The generation of dense 
data sets with millions of genotypes creates new statistical challenges that are as 
daunting as are the issues of archiving and storage. Careful delineation of responsi-
bilities among a team of  scientists is necessary to ensure quality control and stable 
analytical results.

Until recently, the primary engine for gene discovery was the candidate approach, 
but it had yielded only a modicum of success (15). Usually, due to technical or 

Figure 2.1 Workfl ow of a genotyping study: The panel depicts critical steps in the execution 
of a successful, high-quality, high-throughput genotyping study, starting from the design 
of the study with either a candidate approach or a genome-wide association study (GWAS) 
approach, and followed with an effi cient Laboratory Information Management System 
(LIMS), required to track samples and processes, as well as with quality control capabilities. 
Powerful, specially designed and highly scalable software (PLINK, GLU) is needed for the 
increasingly complex data output analysis. These processes may include principal compo-
nent analysis (PCA), association analysis, and haplotype reconstruction and association.
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budget constraints, a handful of genetic markers, either SNPs, microsatellites, or 
other markers, were chosen within one or several known genes (16). These genes 
were the “best bet,” usually based on prior knowledge drawn from either laboratory 
or published association studies. The markers were chosen because they satisfi ed one 
or more conditions: (a) known or putative function either altering the coding region 
or the regulation of the gene or genomic region, (b) prior functional evidence ema-
nating from the laboratory or a prior association study, or (c) exploration of regions 
fl anking a locus based on patterns of linkage disequilibrium. Other approaches 
included studies of families with high penetrance of certain complex diseases.

Previously, family linkage studies have been utilized to identify rare genetic vari-
ants with high-penetrance susceptibility genes (17,18), but failed to be informative 
on more common genetic variants with low to moderate effect (16). The majority of 
linkage analysis studies also used genetic markers other than SNPs for mapping. In 
their seminal paper, Risch and Merikangas argued, “that the method that has been 
used successfully (linkage analysis) to fi nd major genes has limited power to detect 
genes of modest effect, but that a different approach (association studies) . . . has far 
greater power, even if one needs to test every gene in the genome. Thus, the future 
of the genetics of complex diseases is likely to require large-scale testing by associ-
ation analysis” (19).

Genetic Variation

Single Nucleotide Polymorphisms (SNPs)
The spectrum of human genetic variation is defi ned by both the frequency of poly-
morphisms, which can vary substantially between populations and the size of the 
variants. Interestingly, the difference between any two single human genomes is 
less than 0.5%. The most common sequence variation in the genome is the stable 
substitution of a single base, known as a single nucleotide polymorphism (SNP), 
which, by defi nition, is observed in at least 1% of a population. The minor allele 
frequency (MAF) is the lowest allele frequency observed at a locus in one particu-
lar population; and current estimates are that there are at least 8–10 million SNPs 
with a MAF greater than 1% (20–22), and 5 million SNPs with a MAF greater than 
10% (2,20). As Figure 2.2 shows, there are a greater number of SNPs with lower 
MAFs. Interestingly, the majority of SNPs with a MAF greater than 15–20% are 
common to all human populations (7,23); for instance, nearly 85% of the more than 
1.5 million SNPs are common to European American, Han Chinese, and African 
American populations. A small subset of high-frequency SNPs, less than 10%, 
appears to be private to a single population, again suggesting the common ancestry 
of all (23).

Human genetic variation is greatly infl uenced by geography, with genetic 
 differentiation between populations increasing with geographic distance, and genetic 
diversity decreasing with distance from Africa; populations of African ancestry 
have the greatest diversity, resulting in shorter segments of linkage  disequilibrium 
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(24–28). Alleles under positive selection increase in prevalence in a population and 
leave distinctive “signatures” or patterns of genetic variation in DNA sequence. 
These can be identifi ed by comparison with the background distribution of genetic 
variation, primarily evolved under neutrality (15). In some cases, these “signatures,” 
or differences in allele frequencies between populations, refl ect major regional selec-
tive pressures, such as infectious diseases (e.g., malaria), environmental stresses 
(e.g., temperature), or diet (e.g., milk consumption) (29–31).

In the age of candidate gene studies, SNPs were classifi ed on the basis of a 
 predicted effect in either the coding sequence or perhaps a region that could regulate 
transcription. A SNP situated in a translated genomic region, that is, exon, is known 
as a coding SNP, or cSNP. Furthermore, a subset of cSNPs change the translated 
amino acid sequence and are also known as nonsynonymous cSNPs; most coding 
SNPs do not alter the predicted amino acid and are known as synonymous SNPs. 
So far, a small subset of cSNPs have been conclusively associated with disease 
and even fewer have supporting laboratory evidence to provide plausibility (32,33). 
A proliferation of structural prediction software for proteins can assess the impact 
of amino acid variation in silico to predict conformational protein changes (Protein 
Data Bank, http://www.rcsb.org/pdb; Swiss-Model, http://swissmodel.expasy.org//
SWISS-MODEL.html). New models and algorithms are regularly  proposed that 
claim improved reliability for predicting deleterious changes in protein structure 
(34–36); without corroborative laboratory data, the predictions are merely in  silico 
observations. Overall, between 50,000 and 250,000 SNPs could be functional, 
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namely, nonsynonymous coding variants or regulators of gene expression or splicing 
(32,33). It is possible that some “functional” or causal SNPs contribute to regulatory 
differences in expression or genetic pathways (37–39), but most SNPs appear not to 
be functional and have been maintained on the backbone of an inherited block of 
DNA through generations.

The international public repository for SNPs is dbSNP (http://www.ncbi.nih.gov/
SNP/), currently curating over 8 million human SNPs, nearly half of which have 
been validated with genotyping assay by the SNP Consortium and the International 
HapMap Project. A small percentage has been verifi ed by sequencing (40,41). Roughly 
one-sixth may be not reliable, that is, are actually monoallelic, due to either genotyp-
ing or, more likely, sequencing errors (42,43). In general, the reported SNPs have 
been biased toward high-frequency variants in populations of European ancestry.

Despite their frequency, most SNPs are not inherited independently but in blocks, 
resulting in sets of SNPs transmitted together between generations (21,44,45). These 
blocks are defi ned by linkage disequilibrium (LD), which estimates the correlation 
between SNPs, and are often defi ned in chromosomal segments as haplotypes. The 
concept of LD permits investigators to look at a set of SNPs and determine proxies 
for other, untested SNPs (or tagSNPs) (46,47). This “indirect approach” is predi-
cated on fi nding markers only, relegating the search for causal or functional vari-
ants to later work (Figure 2.3). Several tools have been developed to optimize the 
number of tagSNPs required to represent common haplotypes (Tagger, embedded in 
Haploview software, http://www.broad.mit.edu/mpg/haploview; TagZilla, http:// tag-
zilla.nci.nih.gov) (48). Consequently, the indirect approach of using a limited set of 
tagSNP as a proxy of a LD block has emerged as the preferred approach utilized by 
GWAS to explore across the genome (49).

Figure 2.3 Strategy for SNP Selection: (a) SNP selection through haplotype blocks, based 
on the concept of linkage disequilibrium (LD). “TagSNPs” are proxies for other SNPs, (the 
 so-called indirect approach) (50). (b) Selection of SNPs based on r2, another measure of LD, 
which groups SNPs with high LD into “bins.” TagSNPs are proxies for these loci included 
in each “bin” (51).

Grouping of SNPs into bins based on r2Haplotype blocks: based on D’ values

for linkage disequilibrium (LD)

Bin 1

(a) (b)

Bin 2

Bin 3 (singleton bin)

Bin 4 (singleton bin)
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Currently, the catalog of uncommon variation, namely SNPs with MAF under 
1%, is incomplete. The contribution of uncommon variants promises to unravel 
another portion of the genomic architecture, but it will require extensive rese-
quencing  analyses of large groups of subjects to identify the uncommon variants 
(4,9). These are rare variants, or mutations, with a strong familial component and 
a high penetrance, usually identifi ed by classical Mendelian patterns of inheritance 
of a defi ned phenotype or disease within familial pedigrees. These variants are 
called disease mutations, and are widely cataloged in a public database, the Online 
Mendelian Inheritance in Man, or OMIM (http://www.ncbi.nlm.nih.gov/sites/
entrez?db=OMIM/).

Structural Polymorphisms
Structural variations in the genome may be either cytologically visible or more 
commonly submicroscopic variants that have generated intense interest recently 
(52,53). These can include deletions, insertions, and duplications collectively known 
as copy number variations (CNVs), as well as less frequent inversions and transloca-
tions (54,55) (Figure 2.4). Several of the inversions can be quite large, such as the 
3.5 Mb on chromosome 17 seen in perhaps as much as 20% of the population (56). 
Although structural variants in some genomic regions have no obvious phenotypic 
consequence (57–59), CNVs have been shown to infl uence gene dosage, and there-
fore might cause genetic disease, either alone or in combination with other factors 
(60). Some observations, either by the failure to assemble the draft genome sequence 
or by actual experimentation, estimate that segmental duplicated genomic sequence 
could involve between 5% and 10% of the genome (58,61,62).

Ongoing investigations and results so far suggest that common CNVs are less 
prevalent than previously reported (63). McCarroll et al. have recently shown that 
most common CNVs with high minor allele frequencies may be in linkage dis-
equilbirum with common SNPs (64). Coordinated efforts are underway to estab-
lish a comprehensive catalog of CNVs, such as the Database of Genomic Variants 
(http://projects.tcag.ca/variation/) (53,65), and the Human Structural Variation 
Database (http://humanparalogy.gs.washington.edu/structuralvariation/). The dif-
fi culties in the assembly of genomic regions have underscored the complexity of 
structural variation, which was partly fueled by the recognition of a notable per-
centage of SNPs that failed quality control in the International HapMap project; 
these were later determined to reside in regions now known to be enriched for 
CNVs (3,6,52,62,66).

Recent efforts have begun to establish standards for the identifi cation, valida-
tion, and reporting of CNVs (53). Despite the progress on CNV discovery due to the 
availability of several microarray platforms that can detect quantitative imbalances, 
there are still substantive technical challenges due to the breadth of polymorphic dif-
ferences, for which analyses are particularly unstable. New algorithms have begun 
to emerge that should streamline moderate- to high-throughput, cost-effective meth-
ods to “scan the genome” for inversions or translocations based on stable sequence 
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assemblies (64,67–71). Improved determination of common CNV has been based 
on advances in techniques, such as tiling arrays, (which cover the genome through 
partial overlapping (tile-like) sets of fi xed oligonucleotides), paired-end sequencing 
(sequence analysis of both ends of a larger fragment to improve alignment), and 
dense SNP genotyping platforms.

Short tandem repeats (STRs) represent a class of polymorphism, or microsatellite, 
that occurs when a pattern of two or more nucleotides are repeated in certain areas 
of the genome. STRs have been used for linkage analysis and forensic investigation. 
The patterns can range in length from 2 to 10 bp (usually tetra- or penta-nucleotide 
repeats) and they are typically located in noncoding regions. Four to fi ve repeats are 
also robust, essentially error free and resistant to degradation in nonideal conditions. 
Shorter repeat sequences tend to suffer from artifacts such as stutter and preferen-
tial amplifi cation (72,73). Longer repeat sequences are susceptible to environmental 

Figure 2.4 Challenges and standards in integrating surveys of structural variation: 
Range of genetic variation that have to be taken into account when designing and analyzing 
 genotype studies (53).
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degradation and do not amplify by polymerase chain reaction (PCR) as well as 
shorter sequences. By genotyping enough STR loci and assessing their sequence 
repetitions at a given locus, it is possible to generate a unique genetic profi le of an 
individual. Accordingly, STR genotype analysis has emerged as the industry stan-
dard for forensics (74).

Genotype Analysis

The standard for genotyping is to interrogate specifi c, unique loci in the genome 
after DNA amplifi cation by PCR. One of the challenges of genotype analysis is 
that each allele in the genome must be assayed individually, unlike surveys of gene 
expression that can use a common signature, such as oligodT, to capture a high per-
centage of messenger RNA at once. An assay must be robust and reproducible in 
exceeding a suffi cient threshold for detection, and even though amplifi cation pro-
tocols are highly faithful, error can be introduced for SNP detection, particularly 
if there are neighboring SNPs that could alter allele-specifi c binding of probes or if 
local genomic sequence is enriched for GC content (Figure 2.5) (75,76). Moreover, 
the presence of genetic redundancy of part of the sequence (CNV) in the segment 
amplifi ed or in neighboring SNPs, can undermine the fi delity of the assay, some-
times providing bias in allele calling (62). As observed in the HapMap project, 
CNVs can have implications for SNP assay design because the current method for 
assaying SNPs is based on amplifi cation of local sequence surrounding the SNP of 
interest (52,66). With this method the presence of redundant sequences is amplifi ed, 
either locally or elsewhere in the genome, and if there are polymorphisms between 
these different segments, the fi delity of the SNP assay is undermined.

Initially, restriction fragment length polymorphism (RFLP) assays were used to 
identify patterns of DNA broken into pieces by restriction enzymes and the size of 
the fragments were used to develop a footprint of the region of interest (77). RFLP 
analysis is laborious and error prone and has been largely abandoned for probe inten-
sity and microchip technologies that can be easily scaled and reliably performed, 
such as differential hybridization, primer extension, ligation reactions, and allele-
specifi c probe cleavage, all of which interrogate one SNP at a time.

The TaqMan® SNP genotyping assay (Applied Biosystems, Foster City, CA) is 
a PCR-based assay designed to interrogate a single SNP, using two locus-specifi c 
PCR primers and two allele-specifi c, labeled probes (78). The assay utilizes the 
inherent 5’ exonuclease property of Taq polymerase. At the 5’ end of each probe is 
an allele-specifi c reporter dye: the probe that hybridizes to one allele has one dye, 
while the other probe has a second, different dye. At the 3’ end of both probes is a 
single universal quencher dye. These quencher dyes prevent the excitation and emis-
sion of the reporter dyes when in close proximity.

During PCR amplifi cation, the two PCR primers anneal to the template DNA, 
and the detection probes anneal specifi cally to a complementary sequence, in the 
template DNA, between the forward and reverse primer sites. During the elongation 
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step of each cycle, the Taq polymerase comes in contact, from the 5’ end, with the 
reporter dye. Using Taq’s exonuclease property, the reporter dye is released from 
the probe, and the fl uorescence is released (i.e., no longer quenched by the quencher 
dye). In addition, the probe itself is also digested by the Taq polymerase. After 50 
cycles of PCR, fl uorescence from reporter dye #1 and/or reporter dye #2 accumu-
lates, and this fl uorescence is detected (post-PCR) on an ABI 7900ht Sequence 
Detection System.

Assays must be designed for unique fl anking sequences and should not overlap 
any adjacent, neighboring SNPs or insertion/deletions. Throughput is moderate but 
can be increased with robotics or miniaturization of TaqMan assays, such as with 
Fluidigm or BioTrove (79,80).

The technical capacity to interrogate sets of SNPs in multiplex has improved 
greatly, mainly in predetermined fi xed sets of SNPs. The capital cost of  developing 
increasing densities of custom SNPs has presented a formidable barrier to 
 follow-up large-scale analysis, necessitating selective attempted replication efforts. 
Technologies have been developed that are based on direct oligonucleotide hybrid-
ization with probe fl uorescence detection, or by single base sequencing method, or 
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chip-based mass spectrometry, that is, based on matrix-assisted laser desorption/ion-
ization time-of-fl ight (MALDI-TOF) (81). MALDI is an ionization technique used 
in mass spectrometry that allows analysis of biomolecules by ionization,  usually 
triggered by a laser beam. A matrix is used to protect the biomolecule from destruc-
tion. The mass spectrometer most used with the MALDI approach is the TOF (time-
of-fl ight) mass spectrometer.

The custom bead-array technology by Illumina® (San Diego, CA) enables cus-
tom detection of more than 1,500 SNPs with excellent performance, and analysis 
of high-quality DNA generated by whole genome amplifi cation assays (82,83). This 
system combines the high multiplexing of the genotype assays and the fl exibility 
of Illumina’s multisample array formats, and gives the opportunity to implement 
 disease-related or pathway-specifi c custom panels.

The Illumina system is an Infi nium® Assay protocol that features single-tube 
preparation of DNA followed by whole-genome amplifi cation prior to genotyp-
ing thousands of unique SNPs. The target is hybridized to the bead-bound 50mer 
oligomer, and then the single-base extension is performed incorporating a labeled 
nucleotide for assay readout. This technology can be used to design custom sets of 
SNPs (between 7,600 and 60,000 bead types) with high effi ciency (84). The suc-
cessive platform designs include the HumanHap300, HumanHap500, and, lately, 
the Infi nium HD (high-density) series with the Human1M-Duo BeadChips™, 
with over 1 million SNPs to be genotyped, primarily chosen as tagSNPs from 
HapMap II (7).

The Affymetrix microchip system uses the assay termed “whole-genome  sampling 
analysis” (WGSA) for highly multiplexed SNP genotyping of complex DNA (85). 
This method amplifi es a subset of the human genome through a  single primer 
amplifi cation reaction using restriction-enzyme-digested, adaptor-ligated human 
genomic DNA. After fragmentation, sequential labeling and hybridization to tar-
gets is required prior to scanning the microchip. The GeneChip® Human Mapping 
500K Array, designed to space SNP markers across the genome, with higher den-
sity across genes, has been improved with the Genome-Wide Human SNP Array 
6.0 that provides a dense set of SNPs (over 900,000 SNPs) and probes that moni-
tor over 5,500 CNVs across the genome. The paucity of restriction enzyme sites in 
some areas of the genome limits the coverage of this platform technology within 
select genomic regions. The main difference between both platforms is coverage: 
the SNPs selected for the Illumina platform are primarily chosen according to the 
aggressive tag strategy, namely as proxy for untested SNPs, while the Affymetrix 
platform provides the coverage with spaced markers.

GWAS Genotyping Issues

In GWAS, the selection of SNPs for the initial scan is determined by the fi xed  content 
microchips, but the follow-up is defi ned by more expensive custom genotyping (86). 
In this regard, scalability presents a daunting challenge for follow-up  studies (87). 
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The technical capacity to generate high-throughput genotypes may require sophis-
ticated robotics for effi cient laboratory fl ow as well as dedicated bioinformatics to 
handle both the size and complexity of the data. So despite the fact that the recent 
availability of new technologies and platforms has decreased the nominal price per 
genotype assayed and accelerated the whole process, all these variables have to be 
taken into consideration for execution of high-quality studies. An important part 
of the optimization process is the Laboratory Information Management System 
(LIMS) and robotic automation that accurately track samples for an effi cient work-
fl ow management. Because of the elevated cost of these platforms, there is little 
fl exibility in choosing individual SNPs to be included within the already designed, 
commercially available whole genome scans.

There are two high-density genotyping platforms that achieve calling capabili-
ties of between 500,000 and 1 million SNPs, as well as probe content to interrogate 
CNVs: Affymetrix (Santa Clara, CA) and Illumina (San Diego, CA). Both platforms 
require between 300 and 700 ng of total high-quality DNA (usually at 50 ng/μl). An 
issue common to both platforms is the diffi culty in assaying SNPs that reside close 
together (within 60 or fewer nucleotides). Denser sets of SNPs on commercial plat-
forms have increased coverage, but not always for all populations.

Coverage, based on the HapMap II set of SNPs with minor allele frequencies 
greater than 5%, is also the main argument used in the scientifi c debate over 
the choice of platforms (7,48). Figure 2.6 illustrates the minimum linkage dis-
equilibrium (LD) for any SNP assay assessed by the coeffi cient of correlation, 
r2 for 2-SNP comparison. r2 is a measure of LD, or how frequently two loci are 
transmitted together during meiosis, across generations. The closer r2 is to 1.0, 
the closer it is to perfect LD; that is, both loci always segregate together. But as 
we learn more about LD, the complexity of LD patterns, and how these patterns 
are covered by SNPs, the common LD threshold of r2 > 0.8 is being modifi ed in 
some instances. Multimarker strategies have been proposed for analyzing more 
complicated loci.

Sequence Analysis

For nearly a quarter of a century, DNA sequence analysis by capillary electro-
phoresis has emerged as the primary technique for large and small-scale projects. 
Dideoxy-sequencing is based on the principle of terminating DNA synthesis, thus, 
generating fragments of varying length that can be assembled in order to read the 
specifi c DNA sequence; it is notable that the basic reaction is predicated on an 
amplifi cation step by PCR and thus has an intrinsic error, albeit small but nonethe-
less predictable (88). The advent of the 96-capillary 3730/3730 xl DNA Analyzer 
(Applied Biosystems, Foster City, CA) was the central catalyst in the generation 
of the fi rst draft sequence of the human genome (89). Effi cient removal of unin-
corporated dye terminators and salts preceded capillary electrophoresis in which 
an electrical fi eld is applied so that the negatively charged DNA fragments move 
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Figure 2.6 Genotyping platforms coverage of HapMap II SNPs: SNP coverage is plot-
ted against linkage disequilibrium measured by the coeffi cient of correlation, r2 for 2-SNP 
comparison. Panels: (a) HapMap CEU population: CEPH (Utah residents with ancestry 
from northern and western Europe USAB); (b) HapMap YRI population: Yoruba in Ibadan, 
Nigeria; (c) HapMap JPT population: Japanese in Tokyo, Japan, and CHB population: Han 
Chinese in Beijing, China.
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through the polymer toward the  positive electrode. Data collection software creates 
a raw data fi le, which needs further analysis with specialized software to trans-
late the collected color-data images into the corresponding nucleotide bases. The 
technology has been widely used in genetics and comparative genomics (90) and 
it will continue to be used until the high-throughput sequencing technologies are 
commercially available.

Next-generation sequencers have been developed to process millions of sequence 
reads in parallel rather than in batches of 96 at a time, setting them apart from 
conventional capillary-based sequencing. Minimal input DNA for production of 
a library still yields read lengths shorter (35–250 bp, depending on the platform) 
than capillary sequencers (650–800 bp). Because of their novelty, sequencing reads 
 accuracy and associated quality have to be validated, but the high number of reads 
provides increased coverage of each base position (9).

The Roche/454 GS-FLX sequencer works on the principle of “ pyrosequencing,” 
which uses the pyrophosphate molecule released on nucleotide incorporation by 
DNA polymerase to fuel a downstream set of reactions that ultimately produces 
light from the cleavage of oxyluciferin by luciferase (91). The DNA strands of the 
library are amplifi ed en masse by emulsion PCR (92) on the surfaces of hundreds 
of thousands of agarose beads. Each agarose bead surface contains up to 1,000,000 
copies of the original annealed DNA fragment to produce a detectable signal 
from the sequencing reaction. Imaging of the light fl ashes from luciferase activity 
records which templates are adding that particular nucleotide, and the light emitted 
is directly proportional to the amount of a particular nucleotide incorporated. The 
current 454 instrument, the GS-FLX, produces an average read length of 250 bp 
per sample (per bead), with a combined throughput of ∼100 Mb of sequence data 
per 7-h run. By contrast, a single ABI 3730 programmed to sequence 24 × 96-well 
plates per day produces ∼440 kb of sequence data in 7 h, with an average read 

length of 650° bp per sample (9).
The Illumina Genome Analyzer is based on the concept of “sequencing by 

 synthesis” (Solexa® Sequencing technology) to produce sequence reads of ∼32–40 
bp from tens of millions of surface-amplifi ed DNA fragments simultaneously. A 
mixture of single-stranded, adaptor oligo-ligated DNA fragments is incubated and 
amplifi ed with four differentially labeled fl uorescent nucleotides. Each base incor-
poration cycle is followed by an imaging step that identifi es it, and by a chemical 
step that removes the fl uorescent group. At the end of the sequencing run (∼4 days), 
the sequence of each cluster is computed and subjected to quality control. A typical 
run yields ∼40–50 million such sequences.

The Applied Biosystems SOLiD™ sequencer uses a unique sequencing pro-
cess  catalyzed by DNA ligase. Each SOLiD (Sequencing by Oligo Ligation and 
Detection) run requires ∼5 days and produces 3–4 Gb of sequence data with an 
 average read length of 25–35 bp. The specifi c process couples oligo adaptor-linked 
DNA  fragments with 1-μm magnetic beads that are decorated with complemen-
tary oligos and amplifi es each bead–DNA complex by emulsion PCR. AB SOLiD 
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sequencing by ligation fi rst anneals a universal sequencing primer, then goes 
through subsequent ligation of the appropriate labeled 8mer, followed by detection 
at each cycle by fl uorescent readout. The unique attribute of this system is that an 
extra quality check of read accuracy is enabled that facilitates the discrimination of 
base calling errors from true polymorphisms or indel events, the so-called 2 base 
encoding (9).

Quality Control in the Laboratory

The success of genetic analysis of germline DNA by genotyping or sequence 
 analysis is based on the effi cient and meticulous handling of the samples from receipt 
through genetic analysis. Close coordination between the laboratory performing the 
extraction and the biorepository storing the DNA samples is optimal and protects 
against handling and biorepository errors, an under-appreciated problem. Standard 
operating procedures (SOPs) are mandatory for all steps and should be reviewed 
regularly for both improvements and quality control purposes. Genomic DNA of 
poor quality reduces completion rates and concordance, suggesting that DNA qual-
ity can alter accuracy of genotyping. In some cases, it can undermine the veracity of 
high-throughput genotyping platforms.

DNA quantifi cation can be performed by spectrophotometric measurement of 
DNA optical density, by PicoGreen (Turner BioSystems, Sunnyvale, CA) analysis, 
NanoDrop™ spectrophotometer (NanoDrop Technologies, Wilmington, DE), or 
by real-time PCR analysis using a standardized TaqMan assay (93). Surprisingly, 
reproducibility in quantifi cation is challenging and for this reason, quantifi cation 
methods should be chosen for specifi c genotype/sequence platforms. Real-time PCR 
can provide a preliminary test for sample quality as it relates to robust analysis in a 
high-throughput laboratory, but performance still needs to be gauged with specifi c 
technologies. Spectrophotometry and the PicoGreen assay measure total DNA pres-
ent, regardless of source or quality, whereas a real-time PCR assay measures the 
total “amplifi able” human DNA. Establishing DNA quantity by real-time PCR is 
critical for DNA from buccal swabs, cytobrush samples, or other nonblood sources, 
particularly as it relates to estimating the amount of competing nonhuman DNA. 
Even small differences between these techniques are important in assessing the 
amounts of single- and double-stranded DNA because accurate quantifi cation is 
critical for optimizing the genotyping results.

In the high-throughput setting, there should be strong consideration for DNA 
 fi ngerprinting of each sample with either a set of SNPs (probably more than 60 
with high MAF SNPs) or a forensic panel of 15 small tandem repeats and amelo-
genin, also known as the AmpFLSTR Identifi ler assay (Applied Biosystems). The 
former can be useful for assessing the sample quality for the specifi c technology 
used for “extreme genotyping,” and is useful for determining contaminated sam-
ples as well as those likely to fail on a chip technology. Moreover, the individual 
profi les can be useful for verifying known duplicates and identifying unexpected 
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duplicates. When the latter are observed, investigation should consider not only 
pre-genotyping  laboratory or informatics errors but also laboratory errors with 
plates or reagents.

For some time, there has been intense interest in using whole-genome amplifi -
cation (WGA) technology to revive molecular epidemiology studies with scant 
amounts of DNA. While the results have been encouraging, varying results refl ect 
differences in fi delity of protocols and reagents. If performed optimally, WGA 
can generate large quantities of DNA for genotype assays, but with the caveat that 
approximately 5% of the genome is not faithfully represented. Regions with high 
GC content and telomeric regions are especially problematic, and data pertaining to 
these regions should be cautiously interpreted. With advances in genomic technolo-
gies that have evolved enough to permit the study of thousands of SNPs simultane-
ously from small quantities of DNA, the temptation to use WGA DNA in GWAS is 
great, but the performance does not reach the high standard observed with native 
DNA. Furthermore, effi ciencies in whole-genome amplifi cation have generated con-
siderable enthusiasm, but have not yet reproducibly amplifi ed the entire genome nor 
recaptured heavily degraded or damaged DNA. Two different approaches have been 
commercially optimized; the multiple displacement amplifi cation approach utilizes 
a high-performance bacteriophage ϕ 29 DNA polymerase with degenerate hexam-
ers or, alternatively, generation of libraries of 200–2,000 base-pair fragments cre-
ated by random chemical cleavage of genomic DNA, followed by ligation of adaptor 
sequences to both ends and PCR amplifi cation. Though there have been efforts to 
amplify a spectrum of DNA sources, including whole blood, dried blood, buccal 
cell swabs, cultured cells, and buffy coat cells, varying degrees of success have been 
reported. Under optimal conditions, the expected yield approaches 10,000-fold in 
genomic DNA overall. Many laboratories have observed that WGA of water control 
specimens generates a small, monoallelic signal, which can be called as a single 
allele (94). This underscores the care that must be given to both the quality control 
analysis and the software programs used for automating calls in high-throughput 
genotype analysis.

The design of all molecular epidemiology studies should include undisclosed 
duplicates taken from the same sample, and if possible replicates of different 
samples taken from the same individual. Duplicate testing is necessary to assess 
the quality of the DNA and the extraction process and its prior storage. For the 
new extreme genotyping technologies, the genotype concordance between dupli-
cates usually exceeds 99.5%. Errors in genotyping, mainly due to loss of one of 
the heterozygous alleles, occur in well below 1% of samples for commercial and 
academic platforms and techniques of highest quality. If standard operating proce-
dures are followed closely, completion rates should be greater than 95% for most 
studies, but may be slightly lower depending on the quality of genomic DNA. 
Completion rates below 90% should raise substantive concern about technical or 
analytical defi ciencies, prompting repeat genotype analysis. In GWAS, because so 
many false positive results are observed, some of which could be due to genotype 
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error, it is recommended that a second technology, such as TaqMan or sequencing, 
be performed to verify the accuracy and establish concordance (11). Though some 
have advocated using the fi tness for Hardy–Weinberg proportion (Hardy–Weinberg 
equilibrium testing, or HWE), errors in HWE testing can catch major genotype 
errors but should probably not be used as a stringent threshold for excluding SNPs 
from analysis.

Bioinformatics

One of the daunting challenges of large-scale genotyping and sequence analysis is 
the bioinformatic workfl ow needed to archive, analyze, and access high-density data 
sets. Accordingly, the effectiveness of laboratory activities is predicated on the fl ow 
of information, from the choice of markers, choice of platforms and processes, and 
laboratory analysis including quality control and assessment through the manage-
ment and presentation of data sets. Highly trained personnel are required to gener-
ate and manage both laboratory and analytical data in a high-throughput processing 
environment. A Laboratory Information Management System (LIMS) is required 
to track samples, assays, reagents, equipment, robotics, and processes through the 
entire workfl ow. The LIMS captures the movement of information, beginning in the 
biorepository of samples, and continuing through the delivery of fi nal genotype or 
CNVs reports, and incorporates the results of experimental data, linked directly to 
in silico information via relational databases. Annotation fi les that include specifi c 
genomic coordinates and genotype assays are closely related to quality control in 
the sense that this information ensures the fi delity and accuracy of analyses; this is 
necessary because of the regular updates to the human genome sequence, HapMap 
and dbSNP databases. Rigorous quality-control and quality-assurance checks of the 
LIMS software by real-time monitoring should be implemented in order to maintain 
assay reproducibility and reliable data fl ow.

Storage of data and access to databases is necessary to enable the effi cient analy-
sis in silico of raw data generated by genotype and sequence platforms. Some have 
begun to advocate use of an Analytical Information Management System (AIMS) to 
receive and process high-density laboratory output. The purpose of the AIMS is to 
assess rigorously the quality of data and fi lter out suboptimal genotype or sequence 
data prior to conducting association or mutation testing. Table 2.1 outlines the major 
steps that should be considered in the “cleaning” of data prior to publication or data 
posting.

Standard operating procedures, defi ned in the laboratory, must be monitored in 
silico to achieve high quality data sets, especially because 106–109 data points can be 
generated per study. With continually increasing numbers of loci explored in newer 
systems, and study design including progressively more individuals in each study, 
data output is only going to increase, presenting by itself a logistical challenge. The 
use of scalable computational systems, with parallel computing and multiprocessor 
capabilities, is not optional any more. The software applications designed for the 
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data analysis have to be fl exible enough to handle such a wide range of information, 
while still working in a multiprocessor environment.

There are two suites of tools that have been developed for archiving and man-
agement of dense data sets, such as those encountered in GWAS, that are  publicly 
available, PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/summary.shtml) 
(95), and Genetic Library Utilities, GLU (http://cgf.nci.nih.gov/glu/docs). PLINK, 
now in version 1.04, is a free, open-source whole-genome association analysis set, 
 developed to conduct basic, large-scale analyses in a computationally effi cient 
 manner. PLINK enables investigators to perform analysis of genotype/phenotype 
data, and there is no support for the steps prior to the fi nal analysis build, namely 
assistance with study design, generating genotype or CNV calls from raw data or 
quality control/quality assessment of genotype data sets. A new suite of tools, GLU 
(Genotype Library and Utilities) v. 1.0, is a Python-based suite created to manage, 
analyze, and report high-throughput SNP genotype data. It is also an open-source 
framework and a software package designed to effectively handle the amount of 
data created in high-density genotype assays. GLU is a powerful suite capable of 
performing quality- control analysis of datasets, identifying both duplicated samples 
and completion  calling by samples or loci. It has a great fl exibility in input format 
acceptance from almost all common formats and standards. Other data manage-
ment features include merging and splitting of data sets, and transformation of any 
accepted fi le formats, including transforming to binary fi les, which do not require 
as much storage space as other fi le types. GLU has fi lter capacity based on powerful 
criteria for inclusion and exclusion as part of the quality-control/quality-assessment 
process. As a part of the workfl ow, GLU could perform call completion and dupli-
cation assessment. On the basis of these results, we may exclude samples/loci and 
build a curated data set (called “Build #”) with only the genotypes to be analyzed. 

Table 2.1 Issues for generation of fi nal, publication-grade build of high-density 
genotype data

Filter out of samples with low completion rate (<90%)

Filter out SNP assays with low call rates (<90%)

Determination of fi tness for Hardy–Weinberg proportion

Determine expected duplicates

Investigate unexpected duplicates

Assess concordance between duplicates

Search for cryptic relatedness between subjects

Assessment of population substructure (after fi ltering fi rst-degree relatives)

 Determine admixture with STRUCTURE analysis

 Estimate population stratifi cation (principal component analysis)

Recluster genotype calls

Validate signifi cant genotype calls with second technology
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The integration of TagZilla in the suite allows linkage disequilibrium estimation 
and a high-performance tagger-like application, as previously mentioned (see http://
tagzilla.nci.nih.gov/).

Conclusion

In the last decade, there has been an unprecedented rate of discovery in human 
genetics, from the draft sequence of a human genome and its annotation to inves-
tigation of the genetic contribution to complex and Mendelian disorders. This has 
been the consequence of major advances in technical and informatics solutions that 
have shifted the paradigm of study toward genome-wide exploration. This paradigm 
shift could not have occurred without the foresight of establishing high- quality 
 epidemiological studies that collected not only biospecimens but also detailed infor-
mation on environmental exposures and lifestyle choices. The pursuit of apply-
ing human genomics to understanding the basis of human diseases and traits will 
advance as more effi cient and effective techniques become available to sequence 
entire genomes, but it will be diffi cult to proceed without improving the measure-
ments needed to assess environmental contributions to human disease.

So far, the technology has permitted the effi cient scanning across the genome with 
common variants, but it is likely that in the future, we will be able to look at uncom-
mon variants in the same manner. Eventually, we expect to conduct full genome 
sequencing, but the challenges will be substantial, both in parsing through the data 
and prioritizing what should be examined for biological relevance. Discovery of 
novel regions associated with disease is expected to continue at a rapid pace, but 
until a spectrum of large-scale screening tools for assessing functional elements in 
the genome is developed, the gap between discovery and understanding the biologi-
cal basis of genetics will widen. In this regard, the interrogation of each region will 
require intense labor, which under present circumstances will be at a far slower pace 
than that of the discovery of novel regions in the genome associated with diseases 
or traits.

Once novel regions have been established, it will be possible to pursue the devel-
opment of new preventive or therapeutic interventions, but again at a pace far slower 
than that of discovery. Similarly, the rush to introduce genetic markers into per-
sonal and public health decisions should be tempered by the commitment to conduct 
adequately powered, well-designed studies to address specifi c questions. Genetic 
testing of mutations or SNPs will require careful consideration of the context in 
which the information will be gathered, protected, and applied to a specifi c deci-
sion. Currently, community education of both the lay public and the genetics com-
munity will inevitably shift the ways in which we gather and apply the information 
now available using one or more of the new genetic platforms. As this occurs, it 
will be possible to comprehensively assess the contribution of different types of 
genetic variation to human disease. The daunting challenge lies in scripting the 
right sequence of studies that will take into account population genetics history, 
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public health implications, and clinical paradigms that are designed to protect the 
confi dentiality of individuals.
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Introduction

The association between public health and genomics is relatively recent,  emerging 
as a consequence of the prominence given to the human genome following the 
elucidation of the genetic code. Nevertheless, public health has for over a century 
shared a common history with human genetics through its links with the eugenics 
movement, and its quest to improve the health of future generations (1). It is likely 
that the original proponents of eugenics had altruistic intentions as they sought to 
apply emerging knowledge of Mendelian genetics to promote the fi tness of popu-
lations; but modern society has now condemned their approaches to this goal as 
ethically repugnant, while modern science has demonstrated critical fl aws in their 
understanding of hereditary (genetic) factors governing complex diseases and traits. 
Yet some continue to make the “complex connections” between public health and 
eugenics when they refer to the prenatal genetic screening programs of today (2).

The ideas behind eugenics were fi rmly based on genetics, the study of inherited 
variation in living organisms. Genomics, by contrast, is a wider term referring to 
the study of the structure and function of the genome and the role it plays in health 
and disease. The term genomics is now usually used in an even broader manner to 
encompass the entirety of genetic, cellular, and molecular biology, and in particular 
the explosion in knowledge and understanding that has resulted from the Human 
Genome Project. It is in this broadest sense, summarized later in the chapter as 
“genome-based knowledge,” (3) that we employ the word genomics.

We refer to public health genomics as an enterprise to emphasize its importance, 
novelty, and diffi culty, and its need for vision, boldness, and energy. It seems appro-
priate to do so because the potential benefi ts of genomic and postgenomic research 
for human health are both vast and desirable. The pace of change, although extremely 
fast when considered in relative terms, is nevertheless perceived by some as slow. 
This may be in part a reaction to the hype surrounding the “genomic revolution”; 
proponents of the Human Genome Project, in their enthusiasm to promote their 
endeavors, were somewhat overoptimistic in their estimation of the likely timescale 
for changes in health care due to emerging genomic understanding. They are not 
altogether to be blamed for this enthusiasm, because as the Human Genome Project 
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has progressed, there has been an increasing realization that the complexity of the 
human body in health and disease, and the role of genetic factors in the regulation of 
these processes, are far greater than were originally imagined. While the prospects 
for genomic medicine are as bright as ever, the “revolution,” as originally predicted 
by Francis Collins, former director of U.S. National Human Genome Research 

Institute (4), seems more likely to be a steady process of incremental change, and 
there are signs that some, at least, are gradually acknowledging this fact (5).

This chapter will consider fi rst the origins and emergence of public health genom-
ics as a subdiscipline of public health, moving on to a consideration of current prac-
tice with some specifi c examples, before fi nally looking at the future prospects for 
the fi eld and its role within medicine and health care in the twenty-fi rst century and 
beyond.

The Origins of Public Health Genomics

Scientifi c understanding of the fundamentals of genetics and molecular biology 
really took off in the latter half of the twentieth century, with a series of key dis-
coveries such as the structure of DNA (6) and the elucidation of the genetic code 
(7). The 1980s and 1990s were a time of major progress for medical genetics, par-
ticularly chromosomal disorders and what are sometimes referred to as “genetic 
diseases”—monogenic, or single-gene, diseases, which typically show set pat-
terns of inheritance and hence expression within affected families. In particu-
lar, it became possible to identify chromosomal regions involved in such diseases 
using family-based linkage studies and, more recently, genetic association studies. 
Though less than 100%, the association between the presence of variants in a given 
gene and the existence of a corresponding monogenic disease is very strong and 
amenable to genetic epidemiological analysis. Using rapidly developing techniques 
to isolate, amplify, and sequence specifi c regions of DNA, researchers were able 
to pinpoint the precise genes associated with major diseases, and to identify the 
mutations within these genes that led to disease. For example, the DMD gene was 
identifi ed as the gene involved in Duchenne muscular dystrophy in 1986 (8), the 
CFTR gene as the gene involved in cystic fi brosis in 1989 (9), and the HTT gene as 
that involved in Huntington disease in 1993 (10). By 2008, the Online Mendelian 
Inheritance in Man (OMIM) database listed over 1,850 different rare, heritable dis-
eases. These insights, combined with novel technologies and the development of 
genetic tests to identify the presence of key mutations, have greatly expanded the 
capacity of clinical geneticists to predict and diagnose monogenic diseases and to 
help affected families.

Understanding of the contribution of genetic factors to disease has grown 
 enormously in the past 20 years, largely as a result of the sequencing of the human 
genome and related studies. The formal inception of the Human Genome Project 
(HGP) was in 1990, when an international consortium of centers in the United States, 
United Kingdom, France, Germany, Japan, and China, led and coordinated by the 
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U.S. National Institutes of Health (NIH) and the Department of Energy (DOE), set 
out to determine the complete sequence of the human genome. A fi rst draft of the 
sequence was published in 2001 (11,12), and the HGP was formally completed in 
2003, with the publication of 99% of the gene-containing regions to an accuracy of 
99.99%; certain sections of the genome proved highly refractory to standard meth-
ods of sequencing (13). The twenty-fi rst century is very much a “postgenomic” era; 
rather than simply putting into practice the fruits of the HGP (although this is cer-
tainly happening) many researchers are setting out to perform extraordinary feats of 
information collection and analysis, in order to make sense of the bewildering com-
plexity that is the functional human genome. New landmark discoveries continue to 
emerge, notably within epigenomics (14), the study of the spatio-temporal regula-
tion of gene expression via mechanisms other than DNA sequence; for example, the 
identifi cation of RNA interference (15). Much remains to be determined. Yet, while 
a comprehensive understanding of the human organism remains a very distant goal 
(if indeed it will ever be entirely possible), the benefi ts to date have already been 
signifi cant, not least in terms of disease genetics.

Unfortunately, the relationship between genetic variant and disease is frequently 
unclear, even for monogenic diseases. Relatively few show complete penetrance; 
penetrance refers to the probability that an individual with a specifi c genotype will 
develop the associated disease, over a defi ned period, that is, a lifetime. For example, 
while the lifetime penetrance of the dominant monogenic disorder Huntington disease 
can be as high as 100% for individuals with trinucleotide repeat expansions of 41 or 
more in the HTT gene (16), the lifetime clinical penetrance of the recessive monogenic 
disorder hereditary hemochromatosis (caused by inherited mutations in the HFE 
gene) is known to be low, with estimates ranging from less than 1% (17) to approach-
ing 30% (18,19). The expressivity of a disease may also vary; that is, the degree and 
manner in which individuals with a given genotype show symptoms of disease. Cystic 
fi brosis is typically completely penetrant in childhood, but the nature and severity of 
disease varies; while most patients show multisymptomatic (multiorgan) forms of dis-
ease, some retain normal pancreatic function, and others show only mild respiratory 
symptoms (20). Nor is the identifi cation of pathogenic mutations necessarily straight-
forward, even where the gene associated with the disease has been identifi ed. In some 
cases, a specifi c mutation or small group of mutations causes a monogenic disease or 
chromosomal disorder, but in others, whole genes must be scanned for thousands of 
potential causative mutations, a phenomenon known as allelic heterogeneity. Clinical 
geneticists and specialist genetic counsellors must take into account all these com-
plexities and more when discussing options and possibilities for genetic testing and 
reproductive strategies for families affected by monogenic diseases.

Determinants of Health

While public health genomics retains signifi cant links to classical medical genetics, 
it is inevitably, as a discipline concerned with population health, intimately linked 
with the genetics of the more common, complex diseases that affect  populations 
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such as depression, cardiovascular disease, type 2 diabetes, cancer, Alzheimer 
disease, and asthma. The pathogenesis of such diseases is infl uenced by multiple 
contributory factors, and causation cannot be attributed primarily to any single 
genetic or environmental determinant, unlike monogenic or infectious diseases. 
In considering disease causation and progression, especially for complex diseases, 
internal or individual factors (genetic and behavioral) must be taken into account 
along with external (environmental, social, or political) factors (Figure 3.1). Early 
public health efforts were focused primarily on interventions against harmful envi-
ronmental infl uences in order to improve the health of the population; for example, 
the provision of sanitation and clean water, unadulterated food, and decent living 
conditions. In the developed world during the latter half of the twentieth century, 
with the decreasing prevalence of infectious disease, emphasis moved toward pre-
vention of the complex chronic diseases, particularly via behavioral interventions, 
such as promoting smoking cessation and weight loss. In the years leading up to the 
twenty-fi rst century there has been increasing recognition that, from a public health 
perspective, understanding both the behavioral and genetic forms of “internal” fac-
tors (Figure 3.1), and the ways in which they interact in the pathogenesis of complex 
diseases, is important for disease prevention.

Knowledge of key gene–environment interactions can ideally permit a combined 
approach to disease prevention. This includes forms of genetic screening to iden-
tify high-risk population subgroups in whom an exaggerated response to a common 
environmental exposure may be predicted (21), with environmental risk assessment 
and interventions to prevent the onset, or minimize the impact, of disease. Currently, 
individuals’ risk of disease is estimated based on a combination of clinical measures 
and environmental exposures, such as age, gender, family history, weight, smoking 
status, and alcohol consumption, with preventative measures directed against those 
at greatest risk of developing disease. Understanding the genetic factors that infl u-
ence diseases may provide additional information that can refi ne and improve risk 

Figure 3.1 Determinants of health: interaction between internal or individual (genetic and 
behavioral) and external (environmental, social, or political) factors. Source: Adapted from 
Genetics, Health Care and Public Policy. Alison Stewart, Philippa Brice, Hilary Burton, 
Paul Pharoah, Simon Sanderson and Ron Zimmern, Cambridge University Press, 2007; 
Figure 1.1, page 3.
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assessment, although the clinical utility of these refi nements in risk estimation has 
yet to be determined.

Of note, the application of genetic knowledge in disease prevention as advocated 
by practitioners of public health genomics is primarily what has been referred 
to as “phenotypic prevention,” that is, medical intervention to avert or delay the 
onset of disease in an at-risk patient (22). It is important to distinguish this from 
the alternative approach of “genotypic prevention,” intervention to modify the 
genotype itself or to prevent the transmission of the genotype to the next genera-
tion, for example, via gene therapy or prenatal genetic diagnosis. Although such 
interventions may be offered to families affected by monogenic diseases via clini-
cal geneticists, they are inappropriate for a population-based approach to  disease 
prevention.

The Genetics of Complex Disease

Following on from work identifying the genes involved in monogenic diseases, 
the “second-wave” of genetic epidemiology proceeding from the HGP is the 
study of the genetics of common complex diseases. As has already been noted, 
the identifi cation of genetic factors involved in the causation of such diseases is 
fraught with diffi culty, since not only do multiple different factors infl uence most 
human diseases, they also interact with each other. However, this has not pre-
vented researchers from attempting it, and in the past 10 years there have been 
numerous reports of signifi cant links between a genetic variant and one form of 
disease or another. Unfortunately, the vast majority of these were not indepen-
dently validated, and meta-analyses of multiple different studies often suggested 
that the true association was insignifi cant or extremely small. At the same time, 
each new publication was portrayed in the media in rather sweeping terms that 
are still employed today, such as discovery of asthma gene offers new hope (23), 
depression gene discovered (24), and “fat” gene found by scientists (25); com-
municating complex science of necessity requires simplistic explanations, and this 
combined with a natural journalistic tendency toward sensationalism meant that 
fi ndings were often hyped.

It gradually became clear to the scientifi c community that searching for genetic 
variants involved in the pathogenesis of complex diseases in the same way that links 
had been made for Mendelian diseases was not effective enough; it proved more dif-
fi cult than searching for a needle in a haystack, and small- to medium-scale genetic 
association studies (however well performed) were simply not highly powered 
enough to deliver the results. The contribution of any one genetic factor to a multi-
genic disease, even one conferring a relatively signifi cant disease risk, is inevitably 
much smaller than a genetic factor that is effectively causative for a monogenic dis-
ease. Efforts therefore turned to the creation of huge disease cohorts large enough 
to yield meaningful and reliable results, such as the Wellcome Trust Case Control 
Consortium (26).
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At the same time, Human Genome Project partners established new initiatives 
to generate data to support these efforts: the single nucleotide polymorphism (SNP) 
and Haplotype Mapping (HapMap) projects (27). These projects set out to create a 
map of common genetic variation in human populations, at the level of SNPs, and 
in particular, to identify and map key “tag” SNPs representative of groups of vari-
ants called haplotypes. The capacity to perform genome-wide scanning of SNPs 
for their possible association with disease has expanded steadily since the inception 
of the HapMap initiative; combined with new super-cohorts, results from the fi rst 
large-scale genome-wide association studies (GWAS) began to emerge in 2006. By 
the end of 2007, more than 50 GWAS had been published in the major journals, 
reporting associations between selected genetic polymorphisms and diseases rang-
ing from breast cancer (28) to Crohn’s disease and type 2 diabetes (26,29,30). The 
results may be relatively modest, typically identifying variants that confer a relative 
risk of less than 2.0 for the disease in question (31), but they are robust. Such results 
represent the fi rst steps in the mammoth task of trying to unravel the complex con-
nections between genetics and disease. National and international collaboration con-
tinues to be the key to results, with new initiatives such as the Genetic Association 
Information Network (GAIN) (32) getting underway.

As human genome epidemiology expands, and understanding of the complex func-
tion of genes (and the environment) in health and disease gradually improves, the 
capacity for improved human health, thanks to novel methods of prevention, diagno-
sis, and treatment, increases (33). Although it is true that a comprehensive understand-
ing remains a very distant prospect, the fi rst examples of “genomic medicine” are 
already moving into clinical practice (34), and the vital bridging role of public health 
genomics in maximizing the potential health benefi ts becomes increasingly apparent.

The Emergence of Public Health Genomics

The specifi c discipline of public health genomics emerged in the 1990s, along with 
the major push to sequence the human genome (see Figure 3.2), as public health 
physicians began to realize the importance of genomics to different aspects of pub-
lic health practice, particularly the potential applications of genetic testing (35). In 
the United States, the report of a Task Force on Genetics and Disease Prevention to 
the Centers for Disease Control and Prevention (CDC) led to the creation of a new 
Offi ce of Genetics and Disease Prevention at CDC in 1997, later renamed the Offi ce 
of Public Health Genomics (36). At around the same time, in the United Kingdom, 
expert advisory groups had similarly begun to recognize the potential new roles for 
genetics within the National Health Service (NHS), beyond the existing special-
ized genetics services. The Public Health Genetics Unit (PHGU) was established 
in Cambridge in 1997 (37), and was later succeeded by an independent charity, the 
Foundation for Genomics and Population Health (PHG Foundation). Over the past 
10 years, public health genomics has gained increasing recognition as a discipline, 
with the establishment of academic centers (such as the Centers of Genomics and 



Figure 3.2 Timeline—the emergence of public health genomics.
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Public Health at the Universities of Washington and Michigan in the United States, 
and the Center for Public Health Genetics at the University of Applied Sciences, 
Bielefeld, Germany) and various governmental and health care bodies in different 
countries (such as the Offi ce of Population Health Genomics in the Department of 
Health of Western Australia).

The United Kingdom model for public health genetics was built around the 
Acheson defi nition of public health (38) and was originally defi ned as the application 
of advances in genetics on the art and science of promoting health and preventing 
disease through the organised efforts of society (39). This defi nition was intended to 
encompass “genetics” in the broadest sense, including both classical medical genet-
ics and the new genetics and molecular biology of the genomic era. Disease pre-
vention was similarly taken to include the whole spectrum of prevention, including 
interventions to arrest or delay disease progression and disability. Other proponents 
have similarly referred to public health genetics as the challenge of interpreting the 
medical and public health signifi cance of genetic variation within populations (40) 
and the intersection of genetics, public health, and preventive medicine (41).

In 2005, 18 pioneers of public health genomics in the developed world came 
together to hold an expert workshop in Bellagio, Italy; funded by the Rockefeller 
Foundation, this group sought to agree on a formal defi nition for the discipline and 
take steps toward creating an effective international network of practitioners, to 
share and advance knowledge and practice. The experts in genome-based science, 
epidemiology, and public health, and law and ethics came from Canada, France, 
Germany, the United Kingdom, and the United States; together, they considered 
questions about the key concepts and aims that underlie public health genetics and 
the necessary inputs and outputs to achieve these goals. The fi rst action was to agree 
on the use of “genomics” rather than “genetics,” because it was felt to convey a more 
accurate impression of the breadth of the subject, incorporating not merely inheri-
tance but also genomic knowledge and technologies proceeding beyond the scope of 
the original human genome project. Similarly, “population health” was considered 
to be a more useful term than “public health,” since in some countries the latter has 
a more narrow defi nition that fails to include involvement in health service policy 
development and delivery. Finally, the enterprise of public health genomics was 
defi ned as the responsible and effective translation of genome-based knowledge 
and technologies for the benefi t of population health (3).

This, then, is the overarching goal of public health genomics: the effective trans-
lation of novel biomedical understanding, tools, and techniques, into interventions 
that benefi t human health. Translation is a key tenet, and another, which is inter-
preted in its broadest sense, encompassing not only the common concept of “bench 
to bedside” (primary translational research), but also what has been referred to as the 
second gap in translation, is the identifi cation and evaluation of new and effective 
interventions (for example, novel tools for improved diagnosis, screening, or clinical 
management) and their implementation into clinical practice (42). This “second gap” 
in moving interventions into actual health care delivery, also dubbed “translation 
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Figure 3.3 The Public Health Genomics Enterprise: moving interventions into health care 
delivery (translation to practice). Source: Adapted from Genome-based research and popu-
lation health, 2006. Report of an expert workshop held at the Rockefeller Foundation Study 
and Conference Center, Bellagio, Italy, April 14-20, 2005.
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to practice,” (43) can seem minor relative to the challenges of moving from basic 
research to clinical trials (“translation to humans/patients”); but it is in many ways 
more complex, requiring the integration of multiple different sources and types of 
information to develop effective policies and strategies for improving the health of 
populations (Figure 3.3). Translation research in the context of genomic medicine 
has been further characterized as having four stages, or phases, moving from dis-
covery to candidate health application (T1) and health application to evidence-based 
guidelines (T2), through to practice guidelines to health practice (T3), and practice 
to population health impact (T4) (44). Crucially, it requires more than research—
even research with strictly translational focus—to achieve actual improvements in 
population health, which is why evaluation and development of health services and 
policy development are essential processes (Figure 3.3).

Obviously, since different countries have different health care systems, the exact pro-
cess of policy development and movement into health practice will vary, but the guiding 
principles will be the same. In all cases, given the enormous investment of resources 
in basic and clinical biomedical research, unnecessary delay in the implementation of 
evidence-based strategies and interventions in health care is certainly undesirable, and 
yet the time lag remains. In recent years, proponents of public health genomics have 
played a key role in increasing awareness of this delay, and of strategies to combat it.

Central to the practice of public health genomics is interdisciplinarity, involv-
ing contributions from multiple areas of learning and expertise. From its inception, 
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the fi eld has brought together clinicians and scientists from a range of disciplines 
(notably public health, epidemiology, and the various forms of genetics, genomics, 
and molecular biology) with researchers from the social sciences, humanities, and 
other fi elds including law, philosophy, and ethics. Although linking together such 
disparate areas can be diffi cult, research and perspectives from all are essential, 
thanks to the aim of achieving “responsible” translation of biomedical advances into 
health benefi ts. This single word encompasses the manifold ethical, legal, and social 
implications (ELSI) arising from human genomics, the importance of which has 
been acknowledged from the beginning of the Human Genome Project itself, which 
devoted 3–5% of funding solely to work in this area.

The necessity for expert research and dialog in ELSI has been strengthened by 
public attitudes to genomic research and applications. Not only has the potential 
signifi cance of genetic information been overemphasized, leading to the concept of 
genetic exceptionalism—the belief that genetic information is fundamentally dis-
tinct from any other forms of personal or medical information, and as such deserv-
ing of additional regulation (45)—but there is also a certain level of public distrust 
in the area of genetics and genomics. Some of this may be attributed to the legacy of 
eugenics; in the fi rst half of the twentieth century, proponents of eugenics sought the 
improvement of human health, mental and physical capacity, for the benefi t of popu-
lations. Although altruistic in origin, extreme supporters of the movement sought to 
impose unacceptable solutions, from selective sterilization to murder of those con-
sidered unfi t. The concept that it was possible to distinguish simply between desir-
able and undesirable traits and select for or against them via selective breeding was, 
of course, completely fl awed, since, as we now appreciate, even if it were possible 
to defi ne such traits, they arise from multiple genetic and environmental infl uences 
and are therefore not amenable to manipulation via selective breeding.

Concerns about privacy and safety are important too; in insurance-based health 
care systems such as that of the United States, some fear that genetic information 
could be used as a bar against receiving treatment, if it were to reveal an increased 
risk of a certain disease or group of diseases. Fears of potential “genetic discrim-
ination” also extend to other areas, notably employment. In the United Kingdom, 
research into the genetic modifi cation of crops to increase resistance to disease suf-
fered a public relations disaster in the 1990s, with a strong backlash against any 
form of “tampering with nature” that even now, for some, produces sinister over-
tones to the word “genetic” in almost any context. It is therefore essential that the 
development and implementation of health care tools and approaches should incor-
porate appropriate public and patient engagement and communication efforts. There 
are also issues that relate more specifi cally to population-based research and health 
programs and to genetic testing and screening, such as consent and confi dentiality. 
Medical techniques in assisted reproduction raise moral issues for many, as do cer-
tain forms of research such as the derivation of human stem cells from embryos. 
The development and effective regulation of any such interventions, policies, and 
programs must therefore necessarily take into account expert input from many areas 
beyond that of biomedical science.
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The incorporation of multiple different sources of data and expertise does, how-
ever, pose a signifi cant problem. Public health genomics therefore considers knowl-
edge integration to be the key step in moving from genome-based knowledge and 
technologies into improved health of populations (46). In order to take into account 
all the relevant information, practitioners must analyze, synthesize, and com-
prehend information and knowledge from many different disciplines, in order to 
properly inform the development and evaluation of health care policy and services 
(Figure 3.3). Although self-evident, this requirement for intelligent and well-in-
formed knowledge brokers is contrary to the tradition of increasing specialization in 
both medicine and science; the structures of training are such that most individuals 
focus on an increasingly restricted area of practice and develop expertise primarily 
in this. While these experts are no less valuable today than in the past, there is an 
emerging need for a new generation of practitioners to support the experts; pub-
lic health genomics embraces a groundbreaking attitude in requiring a “specialized 
generalist” approach to achieving its desired goals.

Of course, no single individual can amass suffi cient expertise in enough fi elds to 
function alone; this is one reason why the practice of public health genomics has 
an essential requirement for interdisciplinarity. Suitable knowledge management 
support can facilitate this process and maximize the returns; for example, effi cient 
systems and procedures for the identifi cation and sharing of relevant information 
will aid timely interpretation, analysis, and action. However, since no one organi-
zation can realistically employ all the experts it may ever need to cover the range 
of disciplines a given project in public health genomics might require, the second 
key aspect of knowledge integration comes into play: knowledge brokering. This 
is a process whereby practitioners of public health genomics can identify and bring 
together key individuals or bodies—for example, health service commissioners and 
managers; physicians, clinical geneticists, and other health care professionals; bio-
medical scientists and health economists; patient and other stakeholder groups; and 
experts in law and regulation, ethics, philosophy, and sociology—and facilitate their 
interaction to produce suitable policy or service development. This may require input 
from the knowledge brokers, ranging from simple organization, informed network-
ing, or literature review and synthesis, to commissioning or performing secondary 
research, auditing clinical practice across a whole region or country, or disseminat-
ing fi ndings, recommendations, or guidelines in an appropriate manner. An effec-
tive knowledge brokering organization acts as a catalyst for change, by identifying 
needs, developing and streamlining work that addresses those needs, and moving it 
into health care practice.

There is increasing recognition of the overwhelming requirement for interdisci-
plinary research and communication in order to achieve prompt transfer of inno-
vations into clinical practice (47), and a movement toward creating groups and 
networks that will function in this manner. For example, the Canadian Health 
Services Research Foundation aims to address this gap between research and health 
care management and policy by facilitating knowledge transfer and exchange; new 
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public-private partnerships such as the U.S. Biomarkers Consortium (48), which 
aims to support the development of safe and effective medicines and treatments 
from research right through to evaluation, regulatory approval, and suitable clinical 
practice guidance, are becoming more commonplace. In the same way, the need for 
expert knowledge brokers and intermediaries to “bridge the know-do gap for health 
services” (49) is also being acknowledged.

The Practice of Public Health Genomics

Genomics and Medicine
Genomics has the potential to transform medicine by generating new insights into 
the underlying genetic and biological basis of disease, including the genetic fac-
tors that may cause or signifi cantly predispose individuals to develop specifi c dis-
orders. This new knowledge provides previously unprecedented opportunities to 
prevent, detect, diagnose, and treat disease, and these are beginning to move into 
multiple areas of medicine to differing degrees (although genomic medicine is pres-
ently much more prominent in some services than others), as well as in public health 
practice. For example, the identifi cation of mutations involved in monogenic dis-
ease and the development of specifi c genetic tests has permitted improved diagno-
sis; although there are relatively few therapeutic options for Mendelian diseases, in 
many cases there is scope to reduce or delay the morbidity associated with the con-
dition. Diagnostic testing may be offered in the prenatal period to identify affected 
fetuses, and in some cases there is also an option for preimplantation genetic diag-
nosis (PGD), whereby early embryos generated via in vitro fertilization are screened 
for the presence of the disease-associated mutation, and only unaffected embryos 
are used to establish a pregnancy.

Genetic testing may also provide useful information with respect to potential 
therapeutic options. For example, Long QT Syndrome (LQTS), an inherited form 
of cardiac disease that involves defects in the ion channels of the heart, causes pre-
disposition to arrhythmias and sudden cardiac death, especially in response to cer-
tain physiological triggers such as exercise. Mutations in several different genes can 
cause the syndrome, and knowing which form of LQTS is present can provide vital 
information for clinical management, both for patients and also for asymptomatic 
relatives who are found to possess the mutations. For example, different drugs are 
the therapeutic of choice for different subtypes of the syndrome, and different drugs 
may be contraindicated (50). Similarly, patients with different subtypes of the syn-
drome may be at increased risk of sudden cardiac death from different sorts of trig-
gers that should be avoided; in LQTS1, exercise (especially swimming) involves the 
greatest risk, whereas for LQTS2, being woken by noise (such as an alarm clock) is 
the most common cause of death (51).

Moving beyond monogenic diseases, pharmacogenetic tests provide informa-
tion about genetic factors that can infl uence interindividual variability in drug 
responses, and could potentially be used to direct the use of all sorts of medications 
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for different indications, allowing clinicians to boost effi cacy and reduce adverse 
reactions by selecting the most appropriate type and dose of drug for each indi-
vidual patient. For example, responses to the widely prescribed anticoagulant drug 
warfarin are known to be infl uenced by the CYP2C9 and VKORC1 genotypes, 
and the drug has recently received an updated label from the U.S. Food and Drug 
Administration (FDA) to encourage the use of pharmacogenetic information in 
determining initial dose (52), although the clinical benefi ts of such testing have yet 
to be reliably confi rmed (53).

In oncology, new tests that simultaneously analyze multiple genomic biomark-
ers such as gene expression or proteomic profi les have the potential to offer a more 
precise molecular diagnosis, prognosis, and in some cases also to predict or moni-
tor responses to therapy. Tests that employ breast cancer gene expression profi les 
to predict likely outcome and direct the choice of treatment (with more aggres-
sive therapy being used against tumors with profi les predictive of poor outcome) 
are already in development (54). Some high-profi le new therapies can exploit the 
genetically determined molecular features of tumor cells for selectively targeted 
action. For example, Herceptin (trastuzumab) is used to treat HER2 positive breast 
tumors (55), while Glivec® (imatinib) uses molecular targeting directed against 
unique genetic features of chronic myeloid leukemia and gastrointestinal stromal 
tumor cells (56).

Public Health Genomics

How then do public health practitioners apply understanding of genetics and genom-
ics to promote health and prevent disease in populations? The Bellagio group 
identifi ed four key areas within public health genomics, proceeding from the inter-
disciplinary knowledge base (shown in Figure 3.3): the two broad categories of 
activity are informing public policy and developing and evaluating health services, 
which are critically underpinned by communication and stakeholder engagement 
and education and training (3). It is important to note that the diagram presents a 
conceptual framework for public health genomics, and the four areas of activity are 
not necessarily distinct in everyday practice. As set out in Figure 3.3, health service 
and policy development are the essential drivers for the translation of biomedical sci-
ence and genomics into real changes in health care practice, which in turn will lead 
to genuine improvements in population health. The development of health services 
and health service policy, supported by efforts to ensure that relevant public policy 
and regulation are appropriate, are inherently pluralistic functions, involving many 
groups and activities, which is why the identifi cation and engagement of appropri-
ate stakeholders from the earliest stages is important, and effective communication 
is an ongoing requirement. Similarly, the delivery of changes to practice of neces-
sity requires appropriate education and training. In this section, we focus on some 
selected examples of recent public health genomics work from the key  categories of 
practice.
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Informing Public Policy

It has been suggested that it will soon become critical for all forms of health care 
to employ evidence-based assessment of both new genetic tests and other forms of 
genomic technologies (57), as genomic medicine expands beyond medical genet-
ics and oncology into other specialties. The evaluation and regulation of genetic 
tests have therefore been major themes in public health genomics in the last few 
years, and provide some good examples of recent work in national and international 
policy development. An Organisation for Economic Cooperation and Development 
(OECD) international expert meeting in 2006 developed policy recommenda-
tions on The Evaluation of Clinical Validity and Clinical Utility of Genetic Tests 
(58). These included the need to establish international networks and develop an 
agreed-upon framework for genetic test evaluation, including consensus guidelines 
and quality standards for data and evidence, and suitable incentives and account-
abilities to ensure compliance in different countries. The importance of develop-
ing processes and infrastructure for genetic test evaluation in individual countries 
was also emphasized. EuroGenTest, a European Union-funded network focused on 
all aspects of genetic testing, promotes harmonization of standards and good prac-
tice in member states and beyond, including consideration of quality management, 
information databases, public health, ethics and legal issues, new technologies, and 
education. Examples of recent work include the development of European Society 
of Human Genetics recommendations on Patenting and licensing in genetic testing 
(59) and new Guidelines for Quality Assurance in Molecular Genetic Testing (60).

United Kingdom-based work led by the PHG Foundation in this area includes a 
paper produced for the U.K. Genetic Testing Network, a body established to evalu-
ate the effectiveness of new genetic tests and ensure the equitable provision of high 
standards of genetics services within the National Health Service (NHS), which 
provides a new framework for the evaluation of genetic tests (61) expanded from 
the original ACCE process (62). A later research report examines factors that infl u-
ence how new genetic tests for common disease susceptibility enter routine clini-
cal practice, emphasizing the need for appropriate clinical evaluation (63), while a 
meeting organized jointly with the Royal College of Pathologists produced a set of 
recommendations for the evaluation and regulation of clinical laboratory tests and 
complex biomarkers (64). In the United States, the Secretary’s Advisory Committee 
on Genetics, Health, and Society (SACGHS), a multidisciplinary body that provides 
policy advice relating to genetic technologies for the U.S. Department of Health and 
Human Services, has released a report on the U.S. System of Oversight of Genetic 
Testing (65), which looks at systems to monitor information synthesis and interpre-
tation, to determine standards for analytical and clinical validity and utility, and to 
ensure compliance. The Offi ce of Public Health Genomics at CDC established the 
multidisciplinary Evaluation of Genomic Applications in Practice and Prevention 
(EGAPP) Working Group in 2005 with a specifi c brief to support a coordinated 
process for evaluating “genetic tests and other genomic applications” moving into 
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clinical and public health practice; the group’s fi rst recommendations drew  attention 
to the lack of evidence that the use of CYP450 genotyping can improve clinical out-
comes (66), despite the availability of a microarray-based test for this purpose that 
has received regulatory approval for marketing in both the United States (67) and 
Europe (68).

Another area of major policy development has been in biobanking. Biobanks, 
which are large-scale repositories of samples of blood, tissue, or other biological 
material linked with clinical and lifestyle data, are intended to facilitate population-
level studies of the genetic and environmental determinants of disease, especially 
common forms of disease, with a view to improving prevention, diagnosis, and 
treatment.

Well known examples include the U.K. Biobank, CARTaGENE, Generation 
Scotland, the Western Australian Genome Health Project, the Estonian Genome 
Project, and LifeGene, but there are many others. Biobanks are governed in differ-
ent ways: by specifi c legislation, or via internal systems. For example, the Estonian 
Genomic Database was created by an act of parliament and is governed by specifi c 
legislation, whereas the U.K. Biobank was established independently and has an 
independent Ethics and Governance Council, although it is subject to relevant exist-
ing legislation. Key issues that have arisen in policy development for the regulation 
and governance of biobanking initiatives have been focused mainly around ethical 
and legal issues of consent (69,70), confi dentiality and identifi ability (71), and prop-
erty and benefi t sharing (72); academic publications have reviewed these aspects 
of biobanks (73,74). Issues may vary depending on whether the biobank is a com-
mercial or public body, or a public-private partnership. Public attitudes and opin-
ions about biobanking are of particular signifi cance, since most biobanks depend 
on recruiting volunteers to participate via programs of community engagement. 
Considerable scrutiny has therefore been devoted to this area, and there has been 
debate about public trust in such enterprises (75–79), as well as many programs of 
public engagement. Alternative approaches have been characterized as a “commu-
nication approach” to address public concerns, typifi ed by the Estonian Genome 
Project, or a “partnership approach” to actively involve members of the public in 
decision-making processes (80). The Western Australia Offi ce of Population Health 
Genomics is developing a deliberative engagement approach to biobanks, bringing 
together members of the public to discuss their concerns and priorities.

There are increasing moves toward collaborative genetic epidemiological research, 
in order to accumulate the very large samples needed to generate statistically highly 
powered epidemiological studies; for example, the Public Population Project in 
Genomics (P3G) is an international consortium established in 2007 for the devel-
opment of a multidisciplinary infrastructure for combining and comparing large-
scale population genomic studies (81). Similarly, the recently established European 
Biobank is intended to facilitate collaborative research projects by providing a cen-
tral computerized system to link records on biological samples held in different 
research centers and biobanks across Europe; infrastructure and legal governance 
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systems are scheduled to be in place by 2010. Increasing collaboration means that 
harmonization of national and international legislation, governance, and ethical 
guidelines for biobanks and other large-scale genetic research databases has become 
a signifi cant issue. The P3G initiative has multidisciplinary international working 
groups that provide leadership in key areas, including ethics, public engagement 
and governance. Attempts to draw together international guidelines have already 
been made; in 2002 the Human Genome Organisation (HUGO) Ethics Committee 
released a statement on human genomic databases (82,83), followed in 2003 by a 
World Health Organization (WHO) publication on the benefi ts and impact of genetic 
databases (84), and an International Declaration on Human Genetic Data from 
the United Nations Educational, Scientifi c and Cultural Organization (UNESCO) 
(85,86). A European Commission document reported on human biobanking legisla-
tion in different countries (87), while the Organisation for Economic Co-operation 
and Development (OECD) released Creation and Governance of Human Genetic 
Research Databases in 2006 (88). At the time of writing, a set of Guidelines for 
Human Biobanks and Genetic Research Databases was also in development (89), a 
process which included broad international consultation.

Developing and Evaluating Health Services

As previously mentioned, one of the key strategies in public health genomics is the 
application of genetic understanding and information to prevent disease, in particular 
by using information about genetic risk to allow more accurate risk assessment. For 
example, various genes have been identifi ed that confer susceptibility to breast can-
cer. Rare high-penetrance allelic variants of the BRCA1 (90,91) and BRCA2 (92,93) 
genes cause hereditary breast-ovarian cancer syndrome, and confer a relative risk of 
10–20-fold for breast cancer (94) with a lifetime penetrance of up to 91% (95). Prior 
to the identifi cation of BRCA1/2 and the development of genetic testing for muta-
tions in these genes, risk of breast cancer could only be assessed based on family 
history, age, and other clinical factors, with women at greater risk being eligible for 
increased levels of surveillance (for example, by mammography and/or MRI). Now, 
however, women with a signifi cant family history of breast and related cancers may 
be referred for genetic testing to identify BRCA1/2 mutations. Not only does this 
provide a much more accurate estimate of risk for individuals in whom mutations 
are detected, but it also permits the testing of female relatives to determine whether 
or not they have inherited this genetic predisposition to disease, and hence whether 
or not increased surveillance or prophylactic interventions are warranted. Similarly, 
women in whom BRCA1/2 mutations are identifi ed are also known to be at a substan-
tially increased risk of ovarian cancer (96), and clinical management needs to take 
this into account (97). However, mutations in the BRCA genes are present in only a 
minority of breast cancer cases, and much of the familial risk of the disease has yet 
to be explained. Recently, rare variants of other genes (such as CHEK2, ATM, BRIP1, 
and PALB2) have been found to confer moderate relative risks of 2–3-fold, and some 
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common variants have also been shown to confer very low increases in relative risk, 
in the order of 1.07–1.26-fold (94), for example, the FGFR2, TNRC9, MAP3K1, and 
LSP1 genes (28). Such discoveries have an immediate contribution to current under-
standing of the pathogenesis of breast cancer; in the future, if rapid and cost-effective 
methods of genotyping were to become available, it might eventually become feasible 
to include information on the presence of such variants in the assessment of breast 
cancer risk for individuals. A recent analysis of the prospects for using risk informa-
tion based on more common, lower susceptibility alleles for breast cancer concluded 
that although such risk profi les did not provide enough discrimination to be useful for 
individualized disease prevention, they could potentially inform risk stratifi cation to 
direct population screening measures (98).

Similarly, new forms of genetic screening and testing are also being used in the 
management of other common forms of cancer such as colorectal cancer. As with 
breast cancer, a small proportion of colorectal cancer cases are attributable to rare 
high-penetrance mutations in susceptibility genes; for example, mutations in certain 
mismatch repair genes (notably MLH1, MSH2, MSH6, and PMS2) can cause Lynch 
syndrome/hereditary nonpolyposis colorectal cancer (HNPCC), which accounts for 
2–3% of colorectal cancer cases (99,100). Individuals with Lynch syndrome are at 
an increased risk not only of colorectal tumors, but also of other tumors, including 
ovarian and endothelial cancer in women (101). Referral criteria based on clinical 
and pathological fi ndings combined with family history can identify those patients 
at greatest risk of having Lynch syndrome, who may then be referred for direct 
mutation analysis. As with BRCA1/2 mutation analysis, this is a lengthy and expen-
sive procedure, but a form of molecular screening for tumor-related features such as 
immunohistochemistry (IHC) or microsatellite instability (MSI) testing of tumor 
tissue can further stratify the referred “high risk” population into categories to iden-
tify those in whom full mutation analysis is warranted (101,102), although there is 
debate over the optimal strategy for combining different measures of HNPCC risk 
(103). However, a much larger proportion of colorectal cancer cases (15–30%) are 
estimated to include a genetic component than those accounted for by Lynch syn-
drome and other cancer syndromes (102), and there are also prospects for increasing 
understanding of the genetics of colorectal cancer fi nding application in risk strat-
ifi cation in the future; population screening for multiple common, low-penetrance 
variants associated with increased disease risk could identify individuals with 
above-population risk who could then receive increased levels of surveillance (104).

Newborn screening of infants is one of the most well-established examples of 
public health genomics in practice, and up to 40 million newborns receive such test-
ing each year (105). The aim is to identify specifi c genetic diseases, typically those 
where prompt diagnosis allows effective therapeutic intervention. For example, 
diagnosis of the rare inborn error of metabolism phenylketonuria (PKU) and careful 
control of phenylalanine in the diet during infancy and childhood prevents severe 
mental retardation; screening for PKU was introduced in the 1960s, and screening 
for other conditions have followed. The capacity to identify serious genetic disorders 
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has been signifi cantly boosted in recent years by the advent of new molecular genetic 
tests, coupled with tandem mass spectrometry, which allows high-throughput test-
ing for multiple conditions. In fact, it has made possible the identifi cation of infants 
affected by diseases for which there is no cure, raising ethical debate about whether 
or not it is appropriate to offer screening for conditions in the absence of a highly 
effective intervention (106). Practice varies in different countries; for example, in 
Finland, only congenital hypothyroidism is screened for (105), while the United 
Kingdom newborn screening program tests for phenylketonuria, congenital hypo-
thyroidism, sickle-cell disorders (hemoglobinopathies), and cystic fi brosis, with 
medium-chain acyl-CoA dehydrogenase defi ciency (MCADD) scheduled to join the 
panel of conditions by 2009. The American College of Medical Genetics (ACMG) 
has produced recommendations for the uniform screening of a much larger uni-
form panel of 29 conditions across the United States, including other forms of meta-
bolic disorder (107), while in Germany the Federal Ministry for Health and Social 
Security opted to restrict the screening panel to ten disorders (108).

Rapid developments in forms of genetic testing and treatments for inherited dis-
eases have made it necessary to reassess the structure and delivery of various spe-
cialist health services. In the United Kingdom, the PHG Foundation has completed 
several projects around the evaluation and review of specialist services within the 
National Health Service (NHS). The basic model for the evaluation of health ser-
vices is built around a stakeholder group of relevant medical and scientifi c special-
ists, health service commissioners and service providers, representatives of patients 
and support organizations, and experts in relevant disciplines such as law, ethics, 
health economics, and education. Public health genomics practitioners provide 
expertise in public health and epidemiology, along with wider skills in policy devel-
opment, facilitation, and knowledge brokering, in order to unite and lead the gath-
ered experts in their analysis and interpretation efforts. Typically, it is found that 
genetics services need to work in close cooperation with many different specialities 
to provide optimal care for patients with forms of genetic disorder. A needs assess-
ment and service review focused on inherited forms of metabolic disease, where 
patients need access to a very wide range of biochemical and molecular tests for 
diagnosis and monitoring, as well as access to various forms of specialist support 
services, including dietetics and enzyme replacement therapies (109). The ways in 
which health services would need to adapt in order to take full advantage of emerg-
ing scientifi c knowledge and clinical tools, and policy issues that would be important 
in the development of future services were considered in the production of strategic 
recommendations with respect to service commissioning and provision, and health 
professional training and guidance.

Communication and Stakeholder Engagement

Appropriate engagement with relevant stakeholders is important not only as 
part of specifi c projects, but also much more broadly across the many issues and 
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applications relevant to public health genomics, including primary and secondary 
research efforts. Given the multidisciplinary basis of the fi eld, it may be necessary 
to facilitate dialog between professionals from very disparate backgrounds, along 
with representatives of patients and the wider public. In response to this need, public 
health genomics has traditionally focused very much on network-based working, and 
is supported by an international collaborative network, established by the Bellagio 
group (35). The Genome-based Research and Population Health Network (GRaPH-
Int) was formally launched at the fourth International DNA Sampling Conference 
in Montreal in June 2006; the administrative hub is funded by the Public Health 
Agency of Canada. GRaPH-Int is a network of organizations and individuals who 
share an interest in public health genomics, and seek to transform knowledge and 
technologies into public policies, programs, and services for the benefi t of public 
health. Crucially, the network integrates knowledge arising from a range of differ-
ent disciplines, and hence the appellation Int may be taken to represent not only 
“international” but also “interdisciplinary” and “integrated.” Besides supporting 
dialog between members and developing an integrated knowledge base for public 
health genomics, the network also has more specifi c goals to encourage commu-
nication and stakeholder engagement, promote education and training, and inform 
public policy in relevant areas. The “founder organizations” of GRaPH-Int are the 
U.S. Offi ce of Public Health Genomics at CDC; the U.K. Foundation for Genomics 
and Population Health (PHG Foundation); and HumGen, a Canadian-based inter-
national collaborative database on the legal, ethical, and social aspects of human 
genetics. Other participating organizations include other international networks 
such as the Human Genome Epidemiology Network (HuGENet), the Network of 
Investigator Networks in Human Genome Epidemiology, the Public Population 
Project in Genomics (P3G Consortium), and the Public Health Genomics European 
Network (PHGEN). GRaPH-Int is therefore a “network of networks,” a complicated 
structure but one that is necessary to effectively coordinate input from multiple 
different clinical and academic disciplines, in different organizations throughout 
different countries.

Education and Training

Public health genomics is intimately associated with education and training, largely 
due to a general lack of understanding of genetics among health professionals. In 
addition to a growing need for basic awareness of genetics and disease across health 
services, there is also a requirement for public health professionals in particular to 
understand the implications of genome-based knowledge and technologies for pub-
lic health practice in the twenty-fi rst century, including the importance of genomic 
variation as a determinant of health and the opportunities for application of genetic 
understanding and tools for improved risk estimation. Incorporation of public health 
genomics into mainstream public health training remains poorly advanced. However, 
various efforts have been and will continue to be made to provide opportunities for 



The Public Health Genomics Enterprise 55

specialist training in the discipline, and availability of training is likely to rise in 
the near future, as this is an area of increasing focus. Examples include dedicated 
graduate degree courses available from different centers, such as the Masters and 
PhD programs in Public Health Genetics at the University of Washington Institute 
for Public Health Genetics in the United States, or the new Masters course in Public 
Health Genomics offered by Cranfi eld University in the United Kingdom. Where 
full degree courses are not yet available, some centers may offer short modules spe-
cifi cally on public health genomics within public health training, such as Masters 
Degrees in public health or epidemiology via association with centers of excellence. 
The PHG Foundation in the United Kingdom has provided specialist input to courses 
run by the University of Cambridge and the University of Hong Kong. The German 
Center for Public Health Genetics in Bielefeld has plans to introduce a public health 
genomics module centered on governance and policy, ethics, law, and economics, 
while the Michigan Center for Genomics and Public Health and Michigan Public 
Health Training Center (MPHTC) in the United States offer an Internet-based train-
ing module on genomic awareness (110) suitable for introducing public health pro-
fessionals to the relevance of genomic advances, in addition to a cross-disciplinary 
module on Public Health Genetics for graduate students. International participants 
in both the PHGEN and GraPH-Int networks are working toward increased provi-
sion of relevant education and training.

It is important to note that although formal courses are valuable, public health 
specialists and other interested professionals may move into public health genom-
ics by research and practice in relevant areas. A suitable knowledge base in public 
health genomics can be built effectively by training or experience in different key 
components of the discipline, such as genetic epidemiology, genomic medicine, and 
the ethical, legal, and social aspects of genomics, and these are available from many 
different international centers. Just as the public health community needs to learn 
about genomics in health and the wider issues (including awareness of relevant areas 
of law, the social sciences, and humanities) nonpublic health practitioners (such as 
those with backgrounds in genetics, general medicine, or the social sciences) should 
ideally have some understanding of the principles of public health and epidemi-
ology. For example, in the United Kingdom, Genetics and Health Policy (GHP) 
courses provided by the then Public Health Genetics Unit between 2000 and 2006 
sought to train a core of health service-related professionals (including physicians, 
nurses, genetic counselors, commissioners, managers, and policy makers) in order 
to establish a knowledge base within the National Health Service. Of course, no 
single person can ever become truly expert in all of the subdisciplines that contrib-
ute to public health genomics, but an awareness and appreciation of the key issues 
is essential; combined with appropriate participation in multidisciplinary networks 
to allow access to the relevant expertise as required, this allows a broad range of 
individuals to work effectively within the fi eld.

Educational requirements in developing nations are rather different; the role 
of public health genomics at the present time is crucially focused on provision of 
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training and resources for basic genetics services. For example, the Capability 
 project, a collaborative venture between experts from Europe and centers of excel-
lence in Argentina, Egypt, and South Africa, is attempting to build capacity for the 
transfer of genetic knowledge into primary health care practice and disease pre-
vention (111), and is linked with the international Partnerships for Perinatal Health 
network, which seeks to build global expertise in the prevention of morbidity and 
mortality associated with birth defects and preterm birth. Working with less well-
developed nations and, where possible, offering opportunities for collaboration and 
training is generally considered to be an important component of public health 
genomics; although major fi nancial constraints may prevent the application of the 
most advanced tools and approaches for improved health arising from genomic 
knowledge, there is plenty of scope for the application of basic principles of public 
health and genetics.

The Prospects for Public Health Genomics

As knowledge of human genome epidemiology, human genomics, and related tech-
nologies continues to emerge, what will the role of public health genomics become 
in the future? A longstanding schism between public health and the rest of medicine 
has been noted to exist (46,112); although both seek to improve human health, the 
former is based upon population-level approaches to prevent disease, focused on 
environmental determinants of health, while the latter concentrates on biological 
mechanisms of pathology and prevention and treatment at the individual level. The 
role of genomics, as the effective basis of all molecular medicine, is more obvi-
ously inherent (and has been more readily acknowledged) within medicine than 
public health, where perceptions of the impact and potential of genomics are fre-
quently low. And yet these divisions—of medicine from public health, of genomics 
from population health—inevitably hinder progress toward the shared goal of bet-
ter health. Public health genomics, in recognizing the merits of both genomics and 
evidence-based interventions to improve population health, could act as a bridge to 
join the two.

If the vision of public health genomics—to see genomic medicine embedded 
throughout human health services as the utility of genomic information and advanced 
biomedical techniques and interventions grows—is realized, we expect that the 
term itself will, within a relatively short time, become redundant. In addition, the 
key principles of driving the realization of health benefi ts from new knowledge and 
applications will, we hope, be adopted across the board. Not only are the public and 
health service professionals hungry for these benefi ts, but also a responsive health 
service must combine evidence-based assessment of the merits of each intervention 
with a swift and fl exible response to the results of such assessment, facilitating the 
incorporation into clinical practice, albeit within the inevitable economic restric-
tions. Just as the Bellagio meeting identifi ed the key drivers and outputs of the public 
health genomics enterprise, practitioners are now seeking to set out ways in which 
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both public health and medicine may move toward timely translation from research 
into clinical practice, from traditional to genomic medicine. A proposed framework 
emerging from public health genomics rests on four key areas: an increasing focus on 
disease prevention, a population perspective, commitment to evidence-based knowl-
edge integration, and emphasis on health services research (44).

Certainly, the twenty-fi rst century provides the perfect opportunity for all areas 
of medicine to move forward in partnership toward better health. Of course, some 
fi elds are likely to see the impact of genomics much sooner than others; current 
applications are still largely confi ned to clinical genetics and monogenic diseases, 
with oncology following behind, but broader applications are coming into health 
care practice; novel “omics” such as the use of proteomic, transcriptomic, and 
metabolomic biomarkers are moving toward application in both oncology and infec-
tious disease, while understanding of genomic mechanisms in the development of 
complex diseases such as obesity, diabetes, cardiovascular and respiratory disease is 
driving the development both of new population approaches to prevention and novel 
therapeutic interventions. However, virtually all forms of medicine can benefi t from 
the principles of public health genomics now by embracing both multidisciplinary 
and translational research. In this instance, we refer to translational research in its 
broadest sense, encompassing not only primary but also secondary translation into 
tangible health benefi ts.

Conclusions

The public health genomics enterprise has a clear purpose, one that merits the nec-
essary efforts to direct and uphold the process, and to deliver the desired endpoints. 
The ultimate goals of medicine are the subject of considerable debate, but in recent 
years there has been a shift toward a more comprehensive approach that embraces 
not only the relief of pain, the provision of care, and (where possible) a cure, but also 
the prevention of disease and premature death, the promotion of health, and the pur-
suit of a peaceful death (113). Public health genomics is built around the prevention 
of morbidity and mortality and the promotion of health, and seeks these benefi ts at 
the population level in addition to that of individual patients. This is a paradigm that 
should, we believe, not only unite genomics and epidemiology, medicine and public 
health, but also underpin all health services and biomedical research in the modern 
world.
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Genomics

Twentieth-century developments in biology and statistics established genetics as a 
science and led to the discovery of causal loci for many single-gene disorders. In 
the 1960s, Dr. Victor A. McKusick began compiling a continuously updated cat-
alog of genes and diseases; fi rst published in book form, the catalog went online 
in 1987 as Online Mendelian Inheritance in Man, or OMIM (http://www.ncbi.nlm.
nih.gov/omim/). By the 1990s, OMIM was adding more than 150 disease-related 
genetic variants per year, nearly all of them rare mutations discovered in families 
(1). Since then, the declining costs and increasing effi ciency of new technologies 
(especially automation and microarrays) have prompted an unprecedented outpour-
ing of genomic data that has been compared with a “tsunami” for its potential to 
overwhelm capacity for data management and analysis (2,3).

Bioinformatics

The development of computational technology and methods to organize, archive, 
visualize, and share genomic data gave rise to the fi eld of bioinformatics (4). In 
1988, the National Library of Medicine (a component of the National Institutes of 
Health) created the National Center for Biotechnology Information (NCBI, http://
www.ncbi.nlm.nih.gov/) to provide “an integrated, one-stop, genomic informa-
tion infrastructure for biomedical researchers from around the world.” NCBI has 
become a central repository for genomic sequence data in humans and other species 
and has developed many other public databases, such as dbSNP (http://www.ncbi.
nlm.nih.gov/SNP/, for single nucleotide polymorphisms, or SNPs) and Entrez Gene 
(http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene, for genes) (5,6). Perhaps the 
most prominent and widely used NCBI database is PubMed (http://www.ncbi.nlm.
nih.gov/pubmed/), a continuously updated, public database of more than 18 million 
citations for biomedical literature. Entrez (http://www.ncbi.nlm.nih.gov/Entrez/) is 
the search engine that allows searching across all NCBI databases.

4
Navigating the evolving knowledge of human 
genetic variation in health and disease

Marta Gwinn and Wei Yu
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The international Human Genome Project’s early commitment to data sharing 
helped stimulate the construction of other, online genomic data repositories and 
tools for use by researchers and the public. For example, the UCSC Human Genome 
Browser (http://genome.ucsc.edu/), launched in 2002, created a framework for dis-
playing multiply annotated sequence data at any scale throughout the genome (7). 
The UCSC Genome Browser Database has continued to evolve, adding many web-
based applications for viewing, manipulating, and analyzing the data (8).

The Human Genome Organization (HUGO, http://www.hugo-international.org) 
was founded in 1988 to foster coordination among large-scale human genome map-
ping and sequencing projects around the world. The HUGO Gene Nomenclature 
Committee maintains a database of approved, unique gene names and symbols, 
which currently includes more than 28,000 genes (http://www.genenames.org) (9). 
The Human Genome Variation Society (HGVS) has begun a grass-roots effort to 
compile a list of locus-specifi c databases (LSDBs), which are curated collections 
of mutations, often reported with associated phenotypic information (10). Recently, 
NCBI embraced these efforts by allowing users to search, annotate, and submit 
human genome sequence variants to the dbSNP database by using HGVS standard 
nomenclature (http://www.ncbi.nlm.nih.gov/projects/SNP/tranSNP/tranSNP.cgi) (11).

Human Genome Epidemiology

Genomic data are relevant to public health to the extent that they can be translated 
into knowledge useful for prevention, prediction, diagnosis, and treatment of dis-
ease. Human genome epidemiology is the basic science for translating genomic 
research, relating genetic variation with variability in health status among well-
defi ned groups of people. Analyzing these data in terms of measured individual and 
group characteristics is a complex, multidimensional problem.

During the past several years, the Human Genome Epidemiology Network 
(HuGENet™) has laid out a process for knowledge synthesis and evaluation in human 
genome epidemiology. The underlying framework for this process is a “network of 
networks”: a collection of formal and informal collaborations organized according 
to location, funding source, or research interests (12) (see Chapter 7). The HuGENet 
“road map” for knowledge synthesis and evaluation defi nes a cycle that begins with 
reporting of research results and continues through systematic review and synthesis, 
grading of evidence, and feedback to research investigators and sponsors (13).

HuGE Navigator

Since 2001, HuGENet has maintained an online knowledge base in human genome 
epidemiology known as HuGE Navigator (http://www.hugenavigator.net) (14). The 
core data are extracted from PubMed weekly by a combination of automated and 
manual processes. A single curator selects relevant abstracts and indexes them 
by gene, study type (observational, meta-analysis, pooled analysis, clinical trial, 
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genome-wide association), and category (of genotype prevalence, gene–disease 
association, gene–environment interaction, pharmacogenomics, and evaluation of 
genetic tests).

Human genome epidemiology accounts for only a small fraction of the published 
scientifi c literature in human genetics or genomics. Identifying relevant articles is a 
“needle in a haystack” problem that requires maximizing both sensitivity and speci-
fi city. In 2001, about 2,500 (5%) of nearly 50,000 PubMed citations on human genetics 
or genomics were included in the HuGE Navigator database. In 2007, PubMed added 
more than 67,000 new articles on human genetics or genomics and more than 5,000 
(8%) met HuGE Navigator inclusion criteria (Figure 4.1). The rapid growth of this lit-
erature threatened to overwhelm the sole database curator; furthermore, an evaluation 
of sensitivity found that as many as 20% of relevant articles were being missed (15).

In 2006, HuGE Navigator introduced a new search strategy based on data and 
text mining algorithms; this approach reduced by 90% the number of citations 
reviewed by the curator each week, while increasing recall (sensitivity) to 97.5% 
(16). To make the database more accessible and useful to interdisciplinary research-
ers, HuGE Navigator added a user interface and an integrated set of new applica-
tions for exploring genetic associations, candidate gene selection, and investigator 
networks (17). Some of these applications are described in the following text.

HuGE Literature Finder (http://www.hugenavigator.net/HuGENavigator/ 
startPagePubLit.do) is the core application of HuGE Navigator (18). The use of 
nonstandard terminology in published literature is a major obstacle to effi cient 

Figure 4.1 PubMed articles on human genetics and genomics, 1995–2008, ** and  articles 
included in HuGE Navigator, 2001–2008 *.

* database queries August 2009.
** PubMed query: gene OR genetic OR genome OR genomic. 
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searching and synthesis of information in human genome epidemiology. To address 
this problem, HuGE Navigator uses Unifi ed Medical Language System (UMLS, 
http://www.nlm.nih.gov/research/umls/) concept unique identifi ers (CUIs) to index 
PubMed abstracts in the database. Medical subject headings (MeSH) constitute one 
of the controlled vocabularies in UMLS; HuGE Navigator converts MeSH terms 
assigned by PubMed staff to UMLS CUIs. To index genes, HuGE Navigator uses 
HUGO gene symbols as well as Entrez Gene identifi ers and gene aliases to supple-
ment the content-rich UMLS metathesaurus. HuGE Navigator thus allows users to 
perform free-text queries, which enhances search sensitivity and makes more infor-
mation available to the user. A fi ltering feature allows users to stratify query results 
by indexing terms (disease, gene, study type, category), as well as by author, jour-
nal, year, and country of publication. Genome-wide association studies (GWAS) are 
fl agged and linked to the National Human Genome Research Institute’s (NHGRI) 
Catalog of Published Genome-Wide Association Studies (http://www.genome.
gov/26525384).

Phenopedia and Genopedia provide summary views of the HuGE Literature 
database by disease (MeSH term) and gene (HUGO gene symbol). Disease term 
defi nitions and gene-centered data are accessible from either view. Phenopedia 
(http://www.hugenavigator.net/HuGENavigator/startPagePhenoPedia.do) is disease-
centered, displaying a frequency table of association studies, meta-analyses, and 
GWAS by gene. Phenopedia is a springboard for an important goal of the HuGENet 
roadmap: to develop an online encyclopedia containing disease-specifi c summaries 
of existing knowledge about genetic factors (see Chapter 20). Phenopedia also pro-
vides links to Web sites for disease-specifi c research consortia, databases, and other 
resources.

Genopedia (http://www.hugenavigator.net/HuGENavigator/startPagePedia.do) 
is gene-centered, displaying a frequency table of association studies, meta-analyses, 
and GWAS by gene. Genopedia links at the gene level to other databases contain-
ing detailed sequence data, as well as relevant information on molecular pathways, 
genetic variation, and genotype prevalence, genetic associations, gene expression, 
and genetic testing.

HuGE Investigator Browser (http://www.hugenavigator.net/HuGENavigator/
investigatorStartPage.do) creates domain-specifi c investigator networks by auto-
matically parsing author affi liation data in PubMed records (17). This example of 
data mining provides a new way to explore and build investigator networks that are 
crucial to the HuGENet strategy. Nevertheless, it is only a starting point because 
the information available from PubMed is limited to fi rst authors and ambiguity in 
author names and affi liations cannot be completely resolved.

Gene Prospector (http://www.hugenavigator.net/HuGENavigator/geneProspector
StartPage.do) ranks genes in order of available evidence for association with dis-
eases or potential interactions with environmental risk factors. Published GWAS 
fi ndings and meta-analyses are weighted more than individual association studies 
and availability of animal data is used to break ties (19).
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Variant Name Mapper (http://www.hugenavigator.net/HuGENavigator/
startPageMapper.do) is an example of HuGE Navigator applications that assist 
users in conducting analyses, such as systematic reviews of genetic associations 
(20). Variant Name Mapper maps common names for genetic variants to their corre-
sponding rs numbers (assigned by dbSNP). In the absence of a universal nomencla-
ture for genetic variants, rs numbers provide a key for comparison, especially with 
results of commercial chips for GWAS

HuGE Watch (http://www.hugenavigator.net/HuGENavigator/startPageWatch.
do) offers a general overview of publication trends in human genome epidemiology by 
year, by country, and by journal. Even these minimal data can offer useful information 
(21). For example, results of HuGE Watch queries show that although the number of 
published gene–disease association studies more than tripled from 2001 through 2008, 
the number examining gene–environment interactions remained small (Figure 4.2).

HuGE Navigator can be used to generate summary impressions of research activ-
ity in human genome epidemiology, as well as in such specialized subdomains as 
meta-analyses, clinical trials, and evaluations of genetic tests. HuGE Navigator can 
also serve as a starting point for systematic reviews and meta-analyses of gene–
disease associations, providing a quick orientation to the literature captured by 
PubMed. For example, examining frequently studied gene–disease associations can 
suggest which ones lack a recent meta-analysis (22). Although PubMed is the larg-
est single database of biomedical publications, it does not include all journals. As 
outlined in the HuGE Review Handbook (available online at: http://www.genesens.
net/_intranet/doc_nouvelles/HuGE%20Review%20Handbook%20v11.pdf), a com-
prehensive review requires searching other publication databases (such as Science 

Figure 4.2 PubMed articles included in HuGE Navigator, 2001–2008.* gene–disease 
associations and gene–environment interactions.

* database queries August 2009.
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Citation Index, EMBASE, and BIOSIS) and other data sources (23). Inevitably, 
the reviewer must do the work to collect the articles, conduct hand searches, and 
abstract and analyze the data.

Networking Knowledge

Accelerated production of genomic data has prompted the proliferation of databases. 
Since 1996, the Nucleic Acids Research journal has published an annual genomic 
database issue and compiled an online directory (http://www.oxfordjournals.org/
nar/database/a/); in 2008, the cumulative number of databases topped 1,000 for the 
fi rst time (24). Reporting on the “annual stamp collecting edition,” science blog-
ger Duncan Hull (http://www.nodalpoint.org) asked, “As we pass the one thousand 
databases mark . . . I wonder what proportion of these databases will never be used?” 
(25). Simply capturing and storing data online—without the capacity to process 
or analyze it—does little to transform it into useful information. In a special issue 
dedicated to “big data,” Nature magazine editorialized, “Researchers need to adapt 
their institutions and practices in response to torrents of new data—and need to 
complement smart science with smart searching” (26).

Although vastly challenging, assembly of the fi rst human genome sequence was 
essentially a linear puzzle. Through annotation, analysis, and knowledge synthesis, 
the genome sequence is now just one dimension in a complex, multidimensional 
system of relationships at many levels. Understanding these relationships requires 
an interconnected data system, as well as tools for navigation. For example, NCBI’s 
Entrez search engine connects NCBI databases that extend from the level of SNPs 
to phenotypes. The network of links among NCBI databases can be explored visu-
ally online at http://www.ncbi.nlm.nih.gov/Database/datamodel/.

The HuGE Navigator exploits existing knowledge infrastructures, including 
HUGO, UMLS, and especially NCBI databases. The HuGE Literature database is 
compiled from PubMed abstracts; HuGE Navigator’s controlled vocabulary includes 
MeSH terms (as part of UMLS); and HuGE Navigator further mines PubMed 
data for author and journal information. In turn, Entrez Gene links to the HuGE 
Navigator, which also supplies citations for Entrez Gene’s GeneRIFs (References 
Into Function) annotated bibliography (27).

Standardization of gene names and identifi ers is now widely accepted, allow-
ing HuGE Navigator to link to many other gene-centered databases. For epide-
miology and downstream translation, however, disease-centered data are more 
important. Unfortunately, existing disease ontologies are far more intricate and 
less precise than those for genes, and no single, best system prevails. To defi ne 
phenotypes, the HuGE Navigator employs MeSH terms, which are assigned by 
expert coders when publication abstracts are entered in PubMed; however, many 
other controlled vocabularies in the Unifi ed Medical Language System (UMLS) 
have been developed for medical and biomedical research purposes. For example, 
the Systematized Nomenclature of Medicine—Clinical Terms (SNOMED CT, 
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http://www.snomed.org) was designed to capture clinical care and research data; 
its use requires a license, which in the United States is provided by the National 
Library of Medicine (http://www.nlm.nih.gov/research/umls/Snomed/snomed_
main.html). The International Classifi cation of Diseases (ICD, http://www.who.
int/classifi cations/icd/en/index.html) developed by the World Health Organization 
is used worldwide for reporting morbidity and mortality statistics. Each of these 
vocabularies has advantages and disadvantages and the mapping from one to 
another (e.g., via UMLS) is not always straightforward.

Currently, various disease-specifi c summaries of genetic associations can be 
found scattered throughout the published literature and across many domain-spe-
cifi c Web sites, such as the PDQ Cancer Information Summaries: Genetics (http://
www.cancer.gov/cancertopics/pdq/genetics). Two well-recognized, online resources 
for disease-oriented summaries are OMIM and GeneReviews (http://www.geneclin-
ics.org/profi les/all.html); both of these focus largely on uncommon, single-gene 
disorders.

The HuGENet collaboration aspires to develop an updated, online encyclopedia 
containing disease-specifi c summaries of existing knowledge about genetic factors—
including genotype–phenotype associations, gene–gene and gene– environment 
interactions, and available genetic tests. This ambition faces many fundamental 
obstacles that are intrinsic to the way that research in this area is currently funded, 
conducted, published, and evaluated; nevertheless, some possible prototypes exist.

An instructive example is the AlzGene knowledge base (http://www.alzforum.
org/res/com/gen/alzgene/), which is a component of the Alzheimer Research Forum 
Web site (http://www.alzforum.org/). AlzGene was the basis for a comprehensive 
systematic review and meta-analysis of Alzheimer disease genetic association stud-
ies published in 2007 (28). The database is continuously updated with primary 
research data abstracted from articles captured in PubMed. Users can search the 
database by gene and polymorphism, as well as by study, to obtain tables that sum-
marize studied populations and results. An alternative view of the data includes 
allele and genotype frequencies stratifi ed by race and ethnicity, along with meta-
analysis results displayed as a forest plot. Other components of the Alzheimer 
Research Forum Web site include a bibliography, a research news digest, a con-
ference calendar, and information on disease management and drug development. 
Now 10 years old, the Alzheimer Research Forum calls itself a “thriving scientifi c 
web community,” which promises to evolve further via informatics as a resource for 
sharing “richly contextualized information” among researchers, practitioners, and 
affected families (29).

Challenges

Building the knowledge base in human genome epidemiology involves organizing, 
sharing, mining, interpreting, and evaluating the results of genomic research from 
a population perspective. This effort faces many technical, scientifi c, and social 
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challenges, which can be met only by unprecedented levels of interaction across 
multiple levels of the research enterprise and cooperation among individual scien-
tists, research groups, institutions, and agencies.

Controlled vocabularies and ontologies (which specify terms, concepts, and rela-
tionships) have become fundamental devices for organizing and sharing informa-
tion within specifi c domains (30), and are particularly important for human genome 
epidemiology, which is concerned with integrating heterogeneous types of informa-
tion (e.g., on genetic variants, individual traits, population characteristics) and the 
quantitative relationships among them. Naming all the elements in these domains 
and consistently modeling the relationships between them is a challenge of daunt-
ing scale and complexity. Human genome epidemiology should encourage the con-
sistent use of interoperable ontologies for human phenotypes to permit collection, 
sharing, analysis, and synthesis of information by humans and computers (31).

Describing human genetic variation presents technical challenges. The HUGO 
system of unique gene names and symbols has become a widely accepted standard; 
however, development of a nomenclature for genetic variants is still evolving (32). 
Systematic review and synthesis of gene–disease associations require specifi c data at 
the level of genetic variants. As a central repository for SNPs and other genetic vari-
ants, dbSNP assigns each variant a unique accession number (rs number). Consistent 
use of rs numbers in abstracts that report genetic associations would substantially 
enhance capacity for data mining and knowledge synthesis in this fi eld.

During the last decade, the Internet has become the preeminent infrastructure 
for building scientifi c knowledge through dissemination, annotation, and synthesis. 
Technical innovations such as XML (Extensible Markup Language) have enhanced 
the basis for data mining, and open access scientifi c journals have helped create a 
rich substrate (33). Overall, the trend in biomedical research is toward development 
of a “cyberinfrastructure” that integrates databases, network protocols, and com-
putational tools together across research domains (34,35). The Cancer Biomedical 
Informatics Grid (caBIG, https://cabig.nci.nih.gov/) is a well-established model, 
dedicated to managing knowledge and supporting collaboration in cancer research.

Only recently have advances in genotyping technology permitted large-scale 
epidemiologic studies of gene–disease association and gene–environment inter-
action. NHGRI has sponsored a number of such studies through two large initia-
tives, the Genetic Association Information Network (GAIN, http://www.genome.
gov/19518664) and the Genes, Environment, and Health Initiative (GEI, http://www.
genome.gov/19518663). An integral component of these initiatives is an online data 
repository, dbGaP, (the database of Genotypes and Phenotypes, http://www.ncbi.
nlm.nih.gov/sites/entrez?Db=gap), developed in collaboration with NCBI. In addi-
tion, NHGRI maintains a summary online “catalog” of published novel and statisti-
cally signifi cant results of these studies (http://www.genome.gov/26525384), which 
are also indexed by HuGE Navigator. None of these resources, however, can capture 
all of the measured genetic associations (regardless of prior probability, size, or sta-
tistical signifi cance) in a format amenable to knowledge synthesis.
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In principle, online data repositories could be equipped with tools for summary 
analysis and meta-analysis of gene–disease associations. Recently, however, con-
cern that even simple prevalence data for a suffi cient number of SNPs could be 
matched with other genotype data to identify individual persons led several large 
data repositories to modify their public data access policies and to remove summary 
genotype prevalence data from public view (36,37). Together, current developments 
in genomics and informatics technologies are challenging traditional approaches 
to maintaining confi dentiality of research data (38). Reliance on routine electronic 
data safeguards (such as removing personally identifying information) is clearly 
inadequate (39). Because privacy and confi dentiality are socially defi ned concepts, 
their meaning and value must be considered from humanistic as well as scientifi c 
perspectives.

Genetics and epidemiology have grown from “cottage industries” to “big science,” 
built on large-scale research collaborations and consortia (40,41). Although technol-
ogy makes big science possible, it is still a thoroughly human enterprise shaped by 
social priorities, incentives, and expectations. Appropriate policies and norms for 
collecting, curating, publishing, and sharing data will have major implications for 
the developing knowledge base in genomics, including human genome epidemiology 
(42). In the “big data” issue of Nature, a group of authors from diverse fi elds, fi fteen 
different institutions, and four countries wrote of the need to organize research out-
put and recognize the role of knowledge management in the biological sciences:

Biocuration, the activity of organizing, representing and making biological 
information accessible to both humans and computers, has become an essential 
part of biological discovery and biomedical research. But curation increasingly 
lags behind data generation in funding, development and recognition. (43)

They further observed that “As publication has become a mainly digital 
endeavor . . . , publications and biological databases are becoming increasingly simi-
lar” and recommended the use of reporting-structure standards to improve cross-
referencing and indexing, and thus to increase the visibility and value of scientifi c 
research fi ndings. For human genome epidemiology, an initial step in this direc-
tion is an extension of the STrengthening the Reporting of OBservational studies in 
Epidemiology (STROBE) statement to genetic association studies (44) (see Chapter 
10). As an interdisciplinary effort to integrate information from many domains 
across many dimensions, human genome epidemiology can take a leading role in 
coordinated efforts to improve knowledge synthesis.
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Introduction

A biobank may be defi ned as “An organized collection of human biological material 
(e.g., blood, urine, or extracted DNA) and associated information stored for one or 
more research purposes” (1). Many biobanks are “disease specifi c” (2). That is, they 
include samples and data from (usually) a large number of cases of a specifi c disease, 
or pathology specimens of a particular type (e.g., a tumor or a brain bank). Disease-
specifi c biobanks may be combined with appropriate sets of controls (3) to provide a 
foundation for powerful case-control studies (4). Moreover, some case-control stud-
ies can legitimately be viewed as biobanks in their own right (5). Another major 
class of biobanks is designated “population-based.” Recruits into these studies are 
sampled from a defi ned target population with no explicit attempt to over- or under-
sample subjects based on current disease status. Most population-based biobanks 
are cohort studies, although some have a simple cross-sectional design (2,6). Given 
the study design parallels with traditional epidemiology, it is clear that, from the 
perspective of the population science, there is nothing particularly new about the 
modern concept of “biobanking” (2). The only real departures from long-standing 
tradition are the sheer size of the largest initiatives now being proposed, the par-
ticular emphasis that is placed on obtaining biological material, and the greatly 
enhanced biotechnological capability that now exists to store, process, and analyze 
biological samples.

That said, there has been a crucial change in the philosophy of the underlying 
science. Many contemporary biobanks, particularly population-based biobanks, are 
being set up as general purpose research infrastructures with little emphasis being 
placed on testing specifi c scientifi c hypotheses. Rather, they are being designed, as 
far as is practicable, to optimize future scientifi c opportunity and to enable sharing 
of the resource across the biomedical research community as a whole. At the same 
time, by actively harmonizing study design and conduct, it is hoped to facilitate the 
sharing of data and samples between biobanks so as to promote powerful pooled 
analyses and rigorous replication studies. This change in philosophy has important 
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implications for the opportunities and challenges of contemporary biobanking that 
are the focus of this chapter.

Opportunities: The Scientifi c Role of Biobanks

The last decade has seen a fundamental shift in genetic epidemiology, from studies 
of genetic linkage to studies of genetic association (7). This is based on assump-
tions about the validity of the common disease common variant hypothesis (8–12), 
which implies that genetic determinants of common complex diseases will typi-
cally exhibit weak etiological effects (13) and will be identifi ed more powerfully 
using association studies (14). Some association studies are based on family designs 
(15,16) but most involve unrelated individuals (13,16,17) and are either stand-alone 
case-control studies (16–18) or case-control comparisons nested within cohort stud-
ies (19–22). A genetic association study addresses the question: “is genetic variant G 
systematically associated with disease D across a population?” This may be viewed 
as traditional epidemiology applied to genotypes or alleles (7), and so the associa-
tion paradigm supports the integration of environmental and lifestyle determinants 
(as in conventional epidemiology) with genomic determinants to explore direct and 
interactive effects on disease-related traits.

Until recently, this approach was open to serious question (11–13,17,23–32). But, 
a series of recent publications has demonstrated that, not only in theory but also 
in practice, it is possible—given an adequate sample size—to reliably detect and 
replicate genetic associations with complex diseases in general population samples 
(33). For example, this has now been shown in: type 1 diabetes (4,34); type 2 dia-
betes (4,35–38); coronary heart disease (4,39–41); breast cancer (42,43); colorectal 
cancer (44–46); prostate cancer (47,48); age-related macular degeneration (49–51); 
and Crohn’s disease (4,52). These successes are crucial, because the rationality of 
an extensive international investment in biobanks, each enrolling large numbers 
of unrelated individuals, is critically dependent on the assumption that etiological 
effects—both genetic and lifestyle—can be detected by association studies. But if 
these successes do provide a justifi cation for further investment in biobanking, how 
may these biobanks be used, and how, if at all, will their role differ from that of con-
ventional epidemiological studies?

A Foundation for Association Analyses Based 
on Case-control Comparisons
The outcome variable in most association studies in human genomic epidemiology 
is either a binary disease phenotype (disease present [yes/no]) or a quantitative trait 
related directly to the disease of interest, or to a component of a putative causal path-
way leading to that disease. The etiological determinants of primary interest may be 
genetic variants, environmental/lifestyle exposures, or gene–environment or gene–
gene interactions. When the outcome is binary, such an analysis is typically based on 
a case-control comparison (outcome-dependent sampling). Such a comparison may 
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be undertaken in the context either of a stand-alone case-control study or of a nested 
case-control analysis in a cohort. When the outcome is quantitative, direct analysis 
involving that outcome may be based on data from a cross-sectional or a cohort study.

A Foundation for Exposure-based Analyses
Unlike case-control comparisons, exposure-based analyses select subjects from a 
biobank on the basis of exposure. The most important class of exposure-based analy-
ses will probably be “genotype-based studies,” which are poised to become a common 
and important use of biobanks. For example, 100 subjects may be sampled because 
they exhibit a particular genetic variant, while a further 100 may be selected—as 
a comparison group—that do not have that variant. With appropriate consents, the 
selected participants may be invited to attend for follow-up investigation. If they 
agree, potentially intensive bioclinical exploration can be undertaken of intermedi-
ate causal pathways leading to the disease of interest. Here, biobanks with a popula-
tion-based cohort design are ideal. Not only do they include prospectively collected 
lifestyle/environmental information, but unlike disease-specifi c biobanks, the initial 
ascertainment mechanism places no probabilistic constraints on the distribution of 
intermediate phenotypes. Furthermore, when genotyping costs fall and entire cohorts 
can comprehensively be genotyped or sequenced, the vast size of an adequately pow-
ered cohort means that even relatively uncommon genetic variants or environmental 
exposures will be present in suffi cient numbers for meaningful analysis.

Investigation of the Determinants of Disease Progression
Both disease-based and population-based biobanks provide a good framework for 
studying determinants that modulate disease progression. In both settings, subjects 
that have a disease of interest can be followed longitudinally (by face-to-face or 
remote review, or by tracking in electronic health information systems) and pheno-
typic changes can be related to genetic and environmental/lifestyle factors.

A Foundation for Family-based Studies 
Including Linkage Studies
If familial relationships can be defi ned within a biobank, then the potential for 
undertaking family-based studies exists. Assuming appropriate consideration is 
given to relevant ethico-legal issues, this is possible in several situations: (i) if the 
study recruits families rather than individuals (e.g., Generation Scotland) (53); (ii) if 
the data in the study can be record linked to population-based genealogies (e.g., 
deCODE) (40); (iii) if demographic information can be collected enabling rela-
tives to be identifi ed via record linkage (54); and (iv) if extensive genotyping can be 
 undertaken and relatives identifi ed using DNA-based approaches (55,56).

Perhaps the most important form of family-based analysis that might be under-
taken is genetic linkage analysis (57), particularly for disease-related traits that are 
quantitative or are very common binary disease states. But, the potential value of a 
biobank as a foundation for many types of family-based analyses can be enhanced 
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by downstream extension studies: additional members of “informative” families can 
be approached, recruited, and investigated in detail.

A Source of “Common” Controls
The principles underpinning Mendelian Randomization (18,20,58) ensure that envi-
ronmental and lifestyle determinants and genetic variants are unlikely to confound 
a genetic effect of interest and that inferences should not be distorted by reverse cau-
sality. As an additional and important corollary, case-control studies of the direct 
association between a genetic variant and a complex disease are relatively robust to 
the manner in which the controls are selected (18). One set of controls that is rea-
sonably representative of the general population as a whole may therefore be used 
as a common control series and compared to more than one set of cases. This was 
the basis of the successful Wellcome Trust Case Control Consortium (WTCCC) (4) 
project. Here, a national population-based biobank (the 1958 Birth Cohort) (3) pro-
vided a cost-effective way to generate one set of common controls. A large national 
biobank may also be used to generate a common control series for a scientifi cally 
important subpopulation, for example, as a source of common controls for case-
series deriving from a relatively large ethnic-minority subpopulation.

From a scientifi c perspective, the roles of contemporary biobanks are really no dif-
ferent than those of traditional epidemiological studies. The spectrum of uses to which 
biobanks will be put is precisely the same as that of more traditional studies, and the 
design challenges are equivalent. But, this perspective misses the point that it is not the 
science itself that is changing (except in its technological sophistication) but, rather, 
the philosophy of how that science is implemented. Unlike many traditional epidemio-
logical projects, most biobanks are, quite explicitly, infrastructural resources. They 
are not set up to answer specifi c scientifi c questions, but rather to provide powerful 
platforms for biomedical and epidemiological science that will enable future research 
to be undertaken more effectively and at lower cost. Thus, from a strategic perspective, 
most individual biobanks are deliberately designed so as to fulfi l a number of differ-
ent roles, and much of the thinking that goes into study design focuses on two things: 
(i) the management of data and samples is aimed at optimizing future utility in terms 
of a wide range of potential uses, including those that are yet to be invented; (ii) very 
careful account must be taken of the need to collect, process, store, and release data 
and samples in ways that optimize information quality, minimize information loss, 
and promote the prospect for future use by other researchers and of pooling with other 
biobanks. Thus, the difference between biobanks and traditional epidemiological stud-
ies is not so much in their science, but rather in the strategic thinking that must go into 
their conception, design, set up, and use.

Challenges

There is no doubt that biobanks offer many exciting scientifi c opportunities. But 
their design, construction, management, and maintenance all present important 
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scientifi c and ethico-legal challenges. This section explores some of the important 
challenges that must be faced. This is not intended as a comprehensive review of all 
challenges faced by biobanks—that would take a whole book—rather it is aimed at 
addressing some of the most critical challenges that are infl uencing the design and 
set up of biobanks right now.

Scientifi c Challenges
Small effect sizes. Although alternative strategies might have been adopted (23), an 
informal collective decision has been taken to base preliminary exploration of the 
etiological architecture of the complex diseases on the assumption that at least some 
important causal determinants will satisfy the Common Disease Common Variant 
(CDCV) hypothesis (8–12). This is the principal logic underpinning the extensive 
international investment in biobanks enrolling large numbers of unrelated individu-
als. But the decision to invest in this way has “self-fulfi lling” consequences. For 
example, if common complex diseases are caused by a mixture of common vari-
ants with small effects and rare family-specifi c variants with large effects, the cur-
rent generation of biobanks will only identify the former with adequate power. This 
means that, in designing biobanks that recruit unrelated individuals, it is essential 
to ensure that they are capable of detecting the small effect sizes that are plausible 
under the CDCV hypothesis.

But, what is plausible? To date, the majority of associations between chronic dis-
eases and genetic variants that have reliably been identifi ed and replicated are char-
acterized by allelic or genotypic relative risks of 1.5 or less (4,13,34–52). Many fall 
in the range of 1.1–1.3, and although effect sizes may be greater for causal variants 
than for markers in linkage disequilibrium, it would be unwise to assume that the 
gain will be substantial. Furthermore, it is likely that it is the genuinely larger effects 
that have been identifi ed fi rst and that the “average” effect sizes that are currently 
observed are positively biased by the “winners” curse (59,60). In consequence, if 
the aim is to properly explore causal architecture under the CDCV hypothesis, it 
must be accepted (42) that many important effects will probably be more diffi cult 
to detect than those typically found to date and that research infrastructures are 
required that will enable the detection of main effects corresponding to relative 
risks smaller than 1.3.

However, this raises an important question: is there any scientifi c value in iden-
tifying relative risks of such a size? From the perspective of traditional epidemiol-
ogy and public health, this depends on the prevalence and severity of the disease 
and on the prevalence of the at-risk determinant. Even relative risks in the range of 
1.1–1.3 might theoretically generate many thousands of potentially avoidable cases 
of a common disease caused by a common exposure. More often, however, small 
relative risks will be associated with small attributable risks and, despite under-
standable optimism (61), it seems unlikely that they will play a major role in, for 
example, identifying high-risk population subgroups—or high-risk individuals—to 
target prevention or early diagnosis (20). But this misses the central point, which is 
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that the primary aim of contemporary genomic epidemiology is to inform us about 
the causal architecture of the complex diseases. Each additional quantum of knowl-
edge has the potential to provide an important insight that might ultimately have 
a dramatic impact on disease prevention or management. This implies that scien-
tifi c interest may logically focus on any causal association that can convincingly 
be identifi ed and replicated—it need not be “strong” by any statistical criterion. 
We therefore agree (2,20) with Khoury and Gwinn who argue that “each investi-
gation that increases our understanding of gene–environment interaction, etiologi-
cal heterogeneity, pathogenesis, and natural history of common diseases adds to a 
knowledge base for estimating risks and guiding interventions to improve popula-
tion health” (62).

But can small relative risks be interpreted anyway? In 1995, Taubes argued that: 
“[observational epidemiological studies] . . . are so plagued with biases, uncertainties, 
and methodological weaknesses that they may be inherently incapable of accurately 
discerning . . . weak associations” (63). In other words, if entirely realistic levels of 
confounding and reverse causality can generate an artefactual odds ratio of, say, 1.3, 
can any useful conclusion, whatsoever, be drawn from an observed odds ratio of 1.25? 
Fortunately, many of the arguments underlying this bleak, but compelling, assess-
ment are greatly mitigated in human genome epidemiology (18). Randomization 
(segregation and assortment) at gamete formation renders simple phenotype–geno-
type associations robust to lifestyle confounding and to uncertainty in the direction 
of causality (20). In other words, enhanced inferential rigor is a direct, but wholly 
fortuitous, consequence of what is sometimes called Mendelian Randomization 
(20,58,64). Despite important caveats (20,58,65), small effects refl ecting the direct 
impact (main effects) of genetic determinants or the differential impact of genetic 
variants in diverse environmental backgrounds (gene– environment interactions) are 
therefore rendered more meaningful than their counterparts in traditional environ-
mental epidemiology.

Analytic complexity. The fundamental challenges presented by the need to detect 
small effect sizes are further compounded by the complexity of the background 
noise from which they must be discriminated. Analytic complexity arises from 
at least three sources: fi rst, complexity in the underlying biology (e.g., etiological 
heterogeneity and sequential causal pathways with multiple components); second, 
errors in assessment of both outcomes and exposure that are fundamental to even 
the best measurement technology that is available; third, complexity arising from 
decisions about study design and analysis (e.g., complex correlation structures are 
fundamental to both family and longitudinal designs). This subsection will consider 
some of the key issues in more detail.

Many studies test a plethora of hypotheses simultaneously. Methods that a) 
appropriately adjust for this (66–69) make the inferential process more con-
servative and true effects harder to fi nd. The impact can be substantial. For 
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example, a simple Bonferroni correction controlling the genome-wide type 1 
error rate to 5% for a genome-wide association study (GWAS) testing 500,000 
SNPs requires that individual SNPs are tested at p < 10-7 (70). Similarly, for 
testing SNPs in a vague candidate gene where the prior odds against an associ-
ation might often exceed 1,000:1 (68), the approach based on the False Positive 
Report Probability (69) demands the equivalent of testing at approximately 
p < 10−4 to keep the proportion of “signifi cant” fi ndings that are “false posi-
tives” to ≈10%.
The underlying focus of contemporary bioscience is not on investigating the b) 
effect of a single SNP or a single lifestyle determinant, but rather on explor-
ing a “ ‘web of causation’ involving multiple and complex pathways, perhaps 
involving many genes and environmental substrates” (68). Teasing out the 
component associations that together form a causal chain is technically dif-
fi cult (71), and typically of lower power than studying a single association in 
isolation (65).
Complex causal structures are commonly associated with nonindependence of c) 
observational units. Under many designs in genetic epidemiology, a correla-
tion structure is generated that must be addressed appropriately. Such correla-
tion may be informative in its own right (72,73), but it can be diffi cult to deal 
with technically (74,75), and often leads to a loss of statistical power.
Errors in the assessment of either exposures or outcomes can seriously impair d) 
statistical power (33,76) (see below) and can bias parameter estimates (75,77).
Etiological determinants that are unknown, or have not been measured, can also e) 
impact on the identifi cation of an etiological factor of scientifi c interest (33).
Mendelian randomization provides no protection against the confounding/f) 
over-dispersion caused by latent differences in population ancestry between 
populations being compared (78,79).

How big is big? The striking inconsistency (11–13,17,24–32) of genetic association 
studies until very recently (4,13,34–52) can reasonably be blamed on a wide vari-
ety of different scientifi c and technical issues (24,26,28,30,80–85). However, the 
fundamental diffi culty underpinning almost all specifi c explanations has been the 
diffi culty of distinguishing small biological effects from the underlying analytic 
complexity. Even the most cursory review of study design makes it clear that the 
common route to failure has been a consistent, and serious, lack of statistical power 
(24,26,28,30,80–85). However, this presents a major challenge: how large should 
stand-alone and nested case-control studies really be, if they are to power contem-
porary gene discovery? And, crucially, will the current generation of “large” ini-
tiatives (2,4,86) (http://www.p3gobservatory.org; http://www.genome.gov/17516722) 
generate enough power to study the joint effects of genes and environment (87)? 
These challenges are absolutely fundamental. Governments and funding agencies 
worldwide are considering investment in population genomics. Diffi cult strategic 
decisions, with imposing price tags and important opportunity costs, are being 
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taken. Accurate power calculations are therefore needed to determine realistic sam-
ple size requirements.

Conventional power calculations (88) indicate that having 400 cases and 400 con-
trols provides less than 1% power to detect (at p < 0.0001) an odds ratio of 1.4 for 
a binary “at-risk” genotype with a general population frequency of 9.75% (this cor-
responds to the prevalence of an “at-risk” genotype arising from a dominant risk-
determining allele with a minor allele frequency [MAF] of 5%). There is no doubt 
that a study involving several hundred cases and controls demands extensive hard 
work. It is also true that such studies are “large” by historical standards. But the 
reality is that to generate a power of 80%, such a study would actually require 4,000 
cases and 4,000 controls.

But even these fi gures substantially understate the challenge that really faces us. 
Conventional power calculations ignore many important aspects of analytic com-
plexity (see above). For example, in a study of type 2 diabetes diagnosed on the 
basis of “GP diagnosis or HbA1C ≥ 2 SD (standard deviations) above the popu-
lation mean” (89), account should be taken of the sensitivity (89.1%) and specifi c-
ity (97.4%) of the diagnostic test (89). Equally, appropriate consideration should be 
given to the impact of genotyping error, and of unmeasured risk factors causing het-
erogeneity in baseline disease risk. Using an R-based (90) simulation-based power-
calculation engine (ESPRESSO) jointly developed by P3G and UK Biobank (33,91) 
(see http://www.p3gobservatory.org/powercalculator.htm), these complexities can be 
taken into full account. This approach may be used to mimic the conventional power 
calculation undertaken above, by assuming that disease and genotype are assessed 
without error and that there is no heterogeneity in disease risk. This confi rms a 
requirement for ≈4,000 cases and 4,000 controls. But, if the sensitivity and specifi c-
ity of disease assessment is taken into account, if the genotyping error is assumed to 
equate to incomplete linkage disequilibrium with an R2 of 0.8 (92), and if heteroge-
neity in  disease risk is refl ected in an assumed 10-fold ratio in the risk between sub-
jects on high (95%) and low (5%) centiles of population risk, the estimated sample 
size requirement more than doubles to 8,500 cases and 8,500 controls.

It is clear that sample size requirement has many important determinants. The 
ESPRESSO power calculator was therefore used to generate sample size profi les, 
for main effects and for gene–environment interactions, across a range of different 
bioclinical scenarios (Figures 5.1 and 5.2). Two things are clear.

First, the power to detect genetic effects (both main effects and interactions) is 
strongly infl uenced by assessment error (33,76). In reality, genotyping errors are 
consequent upon a mixture of true errors in genotyping, ineffi ciencies in the calling 
algorithm, and incomplete linkage disequilibrium (LD) (4,92). Although they are 
modelled here as if they are caused solely by incomplete LD, this merely provides a 
convenient way to describe the magnitude of the error in a manner that can readily be 
understood. Thus, R2 = 1.0 equates to no genotyping error, and R2 = 0.8 corresponds 
to an error equivalent to the minimum LD between markers on the Affymetrix 500k 
chip and SNPs on HapMap 2 (92). In relation to errors in the assessment of lifestyle 
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determinants, it is assumed that the binary exposure arises from dichotomization 
of an underlying quantitative latent variable measured with the reliability specifi ed. 
For the purposes of illustration, Table 5.1 lists lifestyle measures with reliabilities 
corresponding approximately to those presented in Figure 5.2.

Second, it is clear (33) that sample size requirements are very large. Even in a 
relatively well-powered setting, for example, a main effect refl ecting the impact of a 
genotype assessed without error in a vague candidate gene (taking statistical signifi -
cance at p = 10-4), Figure 5.1 indicates that ≥2,500 cases are needed for 80% power to 
detect an odds ratio of 1.5 under the conditions detailed in the fi gure legend. An odds 
ratio of 1.2 demands more than 10,000 cases and for a GWA study testing at p < 10-7 
the required sample sizes all increase by a further 70%. The study sizes needed for 
gene–environment interactions are yet more demanding (Figure 5.2). Even in the 
absence of measurement error, an interaction odds ratio of 2.0 demands nearly 5,000 
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Figure 5.1 The required number of cases (vertical axis) required in an unmatched case-
control study with four times as many controls as cases to provide 80% power to detect 
(at p < 0.0001) a true odds ratio (horizontal axis) associated with a genetic main effect. 
The genetic variant is a dominantly acting allele with a population prevalence of 5%—this 
 generates a binary “at-risk” genotype with a prevalence of 9.75%. Error in the assessment 
of genotype is assumed to be equivalent to incomplete linkage disequilibrium with R2 = 1.0, 
0.8, or 0.5. There is assumed to be a 10-fold difference in baseline risk of disease between a 
subject on the 5% and 95% centiles of population risk. The disease is assumed to be type 2 
diabetes assessed using a test with 89.1% sensitivity and 97.4% specifi city.
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Figure 5.2 The required number of cases (vertical axis) required in an unmatched 
 case-control study with four times as many controls as cases to provide 80% power to detect 
(at p < 0.0001) a true odds ratio (horizontal axis) associated with a gene–environment 
interaction. The interaction is between a binary “at-risk” genotype with a prevalence of 
9.75% (as Figure 5.1), and a binary environmental determinant with a prevalence of 50%. 
The “at-risk” status of the environmental determinant is assumed to have been generated 
by dichotomization of a latent normally distributed variable measured with the range of 
reliabilities indicated. Error in the assessment of genotype is assumed to be equivalent to 
incomplete linkage disequilibrium with R2 = 0.8. There is assumed to be a 10-fold  difference 
in baseline risk of disease between a subject on the 5% and 95% centiles of population risk. 
The disease is assumed to be type 2 diabetes assessed using a test with 89.1% sensitivity and 
97.4% specifi city.

cases to provide 80% power, and in a more realistic setting—a moderate odds ratio 
(1.67) and an environmental factor measured with reliability 0.7 (93)—the required 
number of cases increases to 20,000. Many entirely realistic  situations can be envis-
aged in which the sample size requirement will be larger still.

However, do these calculations overstate the problem by focusing on genes with 
binary (e.g., dominant) effects, rather than genes with ordered effects across the 
three genotypes generated by two alleles (e.g., a multiplicative model that is additive 
on the scale of log odds) (4)? Empirical evidence (data not shown) indicates that if an 
additive genetic model is valid and is fi tted, sample size requirements typically fall 
between 5% and 50% relative to the binary model. However, the largest reduction 



The Global Emergence of Epidemiological Biobanks 87

in sample size requirement is exhibited by SNPs with common minor alleles, and 
for them, a gain in power is often unimportant. Rather, it is SNPs with rare minor 
alleles that are subject to severe limitations in their statistical power (Figure 5.1), but 
in that setting there are very few subjects that are homozygous for the minor allele, 
and an additive variant therefore acts almost as if it were binary. In the case of a 
MAF of 5%, the sample size requirement for the additive model is  typically 95% of 
that used for the binary model. Furthermore, variants with dominant or recessive 
effects on the risk of disease are not esoteric rarities, and if the additive model is 
invalid, power will actually be lost by assuming it to be true.

In the light of all of these considerations, it would appear that if general purpose 
research platforms (e.g., biobanks) based on unrelated individuals are to be set up, 
they must be capable of supporting analyses as large as the very largest that are cur-
rently going to press (4,34–52). But if this number of cases is to be recruited, from 
where can they be obtained? In particular, if some are to be generated as incident 
cases in cohort studies, how large must such cohorts be, and how long might one 
reasonably have to wait to generate fi ve, ten, or twenty thousand cases? As a rough 
guide (33,91), Table 5.2 presents the estimated times to generate incident cases of 
16 selected chronic diseases in U.K. Biobank: a cohort study recruiting 500,000 
subjects (50% male, aged 40–69 years) from across Great Britain. The estimates 
are based on simulations using national age–sex specifi c rates of death and disease 
 incidence. They are appropriately adjusted for migration, anticipated withdrawal 
from the study, and the fact that healthy cohorts are typically healthier, on average, 
than the general populations from which they are drawn (33,91).

Ethico-legal Challenges
The human genome project and its ethico-legal implications attracted the close 
 attention of policy makers starting in the early 1990s. This has not held true for epide-
miological biobanks. The planning, funding, and public participation in the building 
of such infrastructures constantly face both systemic and policy barriers: systemic, 

Table 5.1 Formal estimates of test–retest reliability for a number of exemplar 
lifestyle/environmental determinants that are widely studied

Reliability of Measurement Lifestyle/Environmental Factor

≥0.95 Body mass index (BMI) calculated from measured height and weight 
in various studies (94)

≈0 9 Measured hip or waist circumference (94,95)

≈0.7 Blood pressure measurement in the Intersalt Study (93)

≈0.5 Many nutritional components in a dietary recall study, mean of four 
24-hour assessments (84)

≈0.3 Many nutritional components in a dietary recall study, a single 
24-hour assessment (84)
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due to their sheer size, cost, and duration; policy, due to confl ation with gene-hunting 
studies and their societal implications (97). Furthermore, once a biobank has success-
fully overcome the systemic and policy barriers (98), it is then faced with a range of 
additional ethico-legal issues associated with the fundamental scientifi c research that 
is its primary aim (99). Key topics covered in this subsection include: public under-
standing of biobanks; rational approaches to ethical review; maintenance of privacy 
and security; effective consent; and international interoperability.

Public understanding. The daily bombardment of scientifi c “breakthroughs,” 
(100) including the “map” of the human genome (101), and now the role of genetic 
and environmental determinants in causing common diseases (4), has left the  public 
both perplexed and sceptical about the arrival of yet another “genomic” enter-
prise. Policy makers and the general public alike fi nd it diffi cult to comprehend 
that a biobank is not a scientifi c “experiment” in itself but is a resource providing 
a platform for future research. In agreeing to participate in a biobank, there are 

Table 5.2 The expected time after the commencement of recruitment by which 
U.K. Biobank will have generated 1,000, 2,500, 5,000, 10,000, and 20,000 cases 
of 16 important complex diseases

 Time to 
Achieve 

1,000 Cases 
(in Years)

Time to 
Achieve 

2,500 Cases
(in Years)

Time to 
Achieve 

5,000 Cases 
(in Years)

Time to 
Achieve 

10,000 Cases 
(in Years)

Time to 
Achieve 

20,000 Cases 
(in Years)

Bladder cancer 11 19 31 — —

Breast cancer (F) 4 6 10 17 40 

Colorectal cancer 5 9 14 22 42 

Prostate cancer (M) 6 9 14 22 41 

Lung cancer 7 12 19 34 —

Non-Hodgkins 
lymphoma

11 22 — — —

Ovarian cancer (F) 12 26 — — —

Stomach cancer 16 29 — — —

Stroke 5 8 12 18 28 

MI and coronary 
death

2 4 5 8 13 

Diabetes mellitus 2 3 4 6 10 

COPD 4 6 8 13 23 

Hip fracture 7 11 15 21 31 

Rheumatoid 
arthritis

7 14 27 — —

Alzheimer disease 7 10 13 18 23 

Parkinson disease 6 10 15 23 37 
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no  personal benefi ts to be anticipated; no drugs, medical devices, or interventions 
will be used (except in an initial cursory clinical assessment); any exciting scientifi c 
 discoveries will typically take decades to emerge; and—bizarrely, from the perspec-
tive of many participants—the scientists would prefer to recruit healthy subjects 
than those with preexisting disease. These characteristics all place the construction 
of such infrastructures outside the traditional perception of biomedical research. 
Fortunately, much has been learned about strategies for public engagement (not just 
“education”) (102), but the resources required are enormous and beyond the budgets 
of many biobanks.

Ethics review. The metaphorical “Thermopylae” of many biomedical research 
 projects is the ethics review. Most contemporary ethics committees have not previ-
ously encountered epidemiological biobanks and have limited experience and under-
standing of many of the relevant issues. Although this creates a perfect opportunity 
for education, it also leads to serious misunderstandings and delays, particularly 
when norms are applied that are simply not suited to the real nature of biobanks. For 
example, to be completely transparent, biobanks must downplay any personal bio-
medical benefi ts while highlighting the potential for unpredictable (exciting) future 
research. But, ethics committees expect to see neutral, “scientifi c” descriptions that 
avoid inducement and speculation. The fundamental problem is that participants in 
the creation of such infrastructure are not really acting as research participants at 
all; or not, at least, in the widely recognized sense. Rather, they are volunteering as 
“global citizens” in offering long-term access to their DNA and personal data with 
no expectation of a personal return. It is true that the preliminary clinical assessment 
is an important drawing card, but this merely highlights the increasing absence of 
a personal, general practitioner in the lives of many citizens; in an ideal world, this 
preliminary clinical assessment would not be seen as a personal benefi t at all. From 
the perspective of an experienced member of a typical ethics committee, these char-
acteristics of a biobank project fall entirely outside the norms of clinical research, 
usually undertaken in sick patients, and often based on clinical trials. It is true that 
an equivalent situation does arise in Phase 1 clinical trials, but precisely because 
this is so, volunteers are usually paid, which is not the case for biobanks. To com-
pound the problem, ethics committees rarely include epidemiologists, population 
geneticists, or anyone else with experience in building sample and data infrastruc-
ture open to third-party researchers.

Privacy and security. There is widespread cynicism about the effi cacy of the secu-
rity of modern biobanks. This arises for several reasons. The fi rst is the recognized 
impossibility of guaranteeing that an individual can never be identifi ed. The very 
provision of a DNA sample defi es an absolute guarantee, even though such identifi -
cation may be exceedingly unlikely. Second, as concerns the notion of  identifi ability, 
personal data legislation only applies when an individual is identifi able. Only 
recently has this been confi rmed to mean that for all practical and reasonable intents 
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and purposes, a person is not to be considered identifi able if coding mechanisms 
have been put in place (103). Third, the sophistication of modern encryption and 
informatics privacy tools are widely misunderstood and underestimated. Fourth, 
the rigor of the formal mechanisms overseeing data and sample access is often not 
recognized. Without necessarily excluding the private sector or eventual commer-
cialization, access to both data and samples is strictly controlled and often involves 
a separate, independent access committee (104). Fifth, the public has become all 
too accustomed to hearing of major data security blunders arising from deliberate 
malpractice or from managerial incompetence. No security system can ever guar-
antee against deliberate criminal intent, but the comprehensive protocols, checks 
and counterchecks applied by a typical biobank should provide reliable protection 
against security lapses (105). The same checks and governance hold for data sharing 
activities. This heightened security serves to balance the broad consent provided for 
future research and international access and ensures that the trust of participants in 
proper stewardship of the samples and data is maintained.

Consent. A fundamental characteristic of—particularly large population-based—
epidemiological biobanks is that they must necessarily seek broad consent to use 
banked data and samples for scientifi c projects that may take place far in the future 
and may entail technology and methods that are yet to be conceived. Furthermore, 
in order for the vast national and international investment in biobanks to optimally 
meet the expectations and needs of the populations that fund them, it is crucial that 
consent covers broad access to third party researchers. This constellation of charac-
teristics distinguishes large-scale epidemiological biobanks from almost all forms 
of traditional biomedical science, including clinical trials, traditional projects in epi-
demiology and genetic epidemiology, and research based on pathology collections 
linked to clinical records (106). When a study has enrolled hundreds of thousands 
of recruits, it is no simple matter (indeed it may be impossible) to reconsent every-
body years later. It is therefore crucial that the consent is correctly phrased the fi rst 
time. Qualitative evidence suggests that consent forms are read and understood by 
participants in ways that may differ very markedly from the understanding of those 
writing them (107)—often less rigidly—and it is crucial that biobanks recognize 
that investment in a well-worded consent form may not only increase recruitment 
rates, but can also enhance future scientifi c opportunity.

International interoperability. The ultimate challenge lies in ensuring that 
 epidemiological biobanks can exchange data and materials across boundaries divid-
ing legal and ethical jurisdictions. This is important not only for technical reasons 
(e.g., increased statistical power and access to a richer array of environmental and 
 cultural exposures, etc.) but also because science of such a fundamental nature 
must be international in its scope, funding, and benefi t to society. It is essential 
that  scientists from around the world, including those from developing countries, 
are able to construct and access biobanking resources, and to validate, compare, 
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replicate, and refi ne data, samples, and analyses that are central to the needs of their 
populations. To that end, it is not only broad consent with a long-term time hori-
zon that is essential, but the need for national and international, public and possibly 
commercial access is paramount as well, and careful thought at the outset needs to 
be put into material and data transfer agreements.

Responding to the challenges

It should be clear that the science of biobanking faces a number of important chal-
lenges. However, two in particular would appear to be fundamental. From the per-
spective of the science, the primary challenge is to increase the quantity, quality, 
and utility of the information that will ultimately be stored as data and samples 
in the biobanks being set up today. On the ethico-legal side, the challenge is to 
ensure that everybody (governments, nongovernmental organizations, policy mak-
ers, funders, researchers, the general public, and study participants) understands 
what modern biobanking is really about, and that legal systems and ethical review 
mechanisms as applied to biobanks are therefore enabling and fi t-for-purpose. 
Regulatory and governance systems must promote good practices—that facilitate 
effective science—without imposing risk or unnecessary cost on willing and con-
senting participants, and must enhance the prospect of legitimate information fl ow 
around the world.

Optimizing Information Content
There is little doubt that many scientifi c questions of fundamental importance will 
only be answerable given access to very large amounts of high-quality data in a for-
mat that promotes integration between biobanks. These considerations are particu-
larly critical if we wish to set up multipurpose research platforms to provide a robust 
infrastructure for future studies of the joint effect of genes and environment.

If we do, then in designing these platforms, a number of key issues must be kept 
in mind. First, sample size calculations must be realistic. If the scientifi c goal is to 
reach the moon, a “moon-rocket” is required, not a commercial airliner—even if the 
latter fl ies perfectly well and is much cheaper. Second, optimal use must be made of 
alternative, and complementary, study designs. Cohort studies, case- control, cross-
sectional, and family-based studies all have appropriate roles and consideration 
must also be given to recruiting subjects in all age groups: at birth, in childhood, in 
middle age, and in the elderly. Furthermore, once a platform has been built, it must 
be used in a manner that maximizes its utility, for example, it should be considered 
as a basis for disease-based sampling (case-control analyses), exposure-based sam-
pling (e.g., genotype-based studies), and intensive laboratory-based studies of causal 
pathways. Third, appropriate emphasis must be placed on the quality of information 
and samples, whether they are collected at recruitment or longitudinally. Data and 
sample handling and storage protocols must also be optimized to ensure fl exibility 
for future technological and scientifi c developments that are as yet unpredictable. 
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Fourth, the capacity to track large numbers of healthy subjects longitudinally must 
be enhanced, ideally using electronic methods, and appropriate investment must be 
made in deep phenotyping of consenting subjects once a disease event has been 
identifi ed. Fifth, the mathematical models used to analyze data in genomic and 
genetic epidemiology must be effi cient as well as valid. When sample sizes are in 
the tens or hundreds of thousands, an analysis that is 90% effi cient may neverthe-
less waste millions of dollars. Investment should therefore be made in developing 
optimized approaches. Furthermore, there must be a willingness to accept that a 
defi nitive analysis may take a week, because the approach that takes 10 minutes is 
only 95% effi cient. Sixth, we must develop standardized procedures for data and 
sample collection, processing, storage, and sharing so that compatible information 
can easily be integrated between biobanks (2,20). Harmonization defi nes a philos-
ophy of standardizing those aspects that can be the same between studies while 
acknowledging that there is strength in diversity and developing sharing mecha-
nisms that also deal optimally with the unavoidable difference between studies (2). 
Harmonization comes in two basic fl avors: retrospective, which aims to optimize 
the mapping of preexisting information from one study onto the equivalent informa-
tion from other studies, and prospective, where questionnaires and standard operat-
ing procedures for emerging studies are rendered as similar as possible ahead of 
time. The two approaches are complementary and both are important. Seventh, we 
must develop tools and information systems enabling researchers to identify where 
data and samples of potential value may be sited and indicating how to obtain per-
mission to access them, and instructions on how to abstract, interpret, and use them 
(http://www.p3gobservatory.org). Finally, we must develop internationally agreed 
quality criteria by which biobanks may be judged in order that we may fl ag those 
data sources that are of high enough quality to make it worthwhile for researchers to 
invest their time in trying to fi nd them.

Optimizing Understanding and Ethico-legal Structures
Biobanking presents individual nations and the global community with new ethi-
co-legal challenges that we must work through together. There is a pressing need 
for effective dialog between governments, nongovernmental organizations, fund-
ing agencies, scientists and technologists, experts in ethico-legal and social issues, 
health interest groups, and the general public. A broad and shared understanding of 
what biobanking is about must be achieved. This provides the best way to ensure 
that it is the issues that really concern participants, scientists, and the general public 
that are given the greatest weight when new biobanks are set up.

Such a dialog will necessarily take time, but it is also critical to recognize that 
things must move forward without unwarranted delay. New biobanks are being 
designed and constructed right now. Every contemporary biobank that is set up 
under an unnecessary ethical or legal constraint that prohibits national or inter-
national sharing is an opportunity lost: for the scientists involved; for the govern-
ments and populations that funded it; and, most importantly, for the participants 
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who agreed to give up time and biosamples on the assumption that they would be 
used in an optimal way to further future developments in bioscience and thereby 
the health of generations to come. Rather, we should, where possible, aim for con-
sent to be as broad as possible, and for access and material transfer agreements to 
be secure but not unnecessarily restrictive. Legalistic or protectionist ethics can-
not and should not prevent or block the opportunity of individuals to participate 
in large-scale population research if they are willing to do so and freely provide 
informed consent. Participants must be afforded appropriate protection against 
unscrupulous activity, but if what is entailed is properly and fully explained and if 
participants are willing to act as “citizens of the world” through their ongoing con-
tribution to a biobank, why should they be prevented from doing so? It is only by 
optimizing the potential for national and international sharing of data and samples 
that we can ensure a maximum return on the altruistic investment made by these 
global citizens.

We must also try to move away from the “safe” thinking that is built into some 
regulatory mechanisms. Some of this thinking echoes earlier times, before the 
information revolution made international data sharing a reality. It refl ects under-
standable, but often inappropriate, concerns that arise from media-based exposure 
to deliberate malpractice or large-scale “informatic” incompetence (105) in other 
walks of life. Some ethico-legal commentators appear to believe that it is their 
primary role, and the role of the “system,” to guard against scientists that wish to 
behave like crooked fi nanciers or incompetent public offi cials. A perhaps more mod-
erate perspective might acknowledge that the natural position of a biobank scientist 
is to act like a medical or a legal practitioner. Many are medical and/or legal profes-
sionals in their own right, and they more than willingly embrace the sanctity of the 
doctor–patient and attorney–client relationship in other settings without the need to 
repeatedly justify this a priori in front of a regulatory committee.

Getting It Together
Substantial work has already been completed, but we are currently taking the fi rst 
few steps of a long journey. The imperative to undertake this route and to travel it 
together has been recognized by a number of major international bodies and organi-
zations. These include, but are not limited to: P3G and PHOEBE (particularly pop-
ulation-based biobanks); ISBER (particularly tissue-based biobanks); HuGENet™ 
(particularly case-control studies); NCI and OECD (particularly developing baseline 
working standards for biobanks); and BBMRI (particularly infrastructural develop-
ment). It is to be hoped that the enabling philosophy and international spirit of col-
laboration that characterized the Human Genome Project (108,109) and the HapMap 
Project (110,111) will be equally effective in ensuring the ultimate success of what 
can reasonably be viewed as a direct descendant of these initiatives. That is, an 
international network of harmonized biobanks that will allow us to explore, under-
stand, and ultimately control how genes and lifestyle/environment act together to 
determine health and disease in human society.
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Introduction

The advent of genome-wide association studies (GWAS) has revolutionized research 
on the genomics of complex diseases and traits (1). In what has been called one of 
the greatest bursts of discovery in the history of medical research (2), this tech-
nique has identifi ed over 400 loci for nearly 100 common diseases and traits in the 
past 4 years (Table 6.1). GWAS use dense maps of single nucleotide polymorphisms 
(SNPs) to capture the vast majority of common variation, that is, variant alleles with 
a frequency of at least 5% in the population. Much of the success of these studies 
has been attributed to their assaying, in thousands of unrelated subjects, hundreds of 
thousands of SNPs selected primarily for their ability to capture common genomic 
variation rather than for their location in known genes or regulatory regions. GWAS 
thus assess genetic variation genome wide in an almost “agnostic” fashion, uncon-
strained by current imperfect understanding of genome structure and function (3). 
The GWA approach is revolutionary because it permits interrogation of the entire 
human genome at hitherto unattainable levels of resolution, unconstrained by prior 
hypotheses regarding genetic associations with disease. It can also be problematic 
because the massive number of statistical tests performed presents an unprecedented 
potential for false positive results, leading to new stringency in acceptable levels of 
statistical signifi cance and requirements for replication of fi ndings (2).

This novel approach has led to one of the major surprises in recent gene 
 discovery—most of the SNPs newly identifi ed as being associated with common dis-
eases and traits are not in genes previously suspected of being related to specifi c 
diseases, and some are in regions containing no known genes at all (1). For example, 
only 33 (9.5%) of the fi rst 348 GWA-identifi ed SNPs are in coding regions or in 5′ or 
3′ untranslated regions of genes, while roughly 45% are intronic and the remain-
ing 45% are not near any known genes (4). New insights into potential pathogenic 
mechanisms and possible preventive or therapeutic strategies provided by these fi nd-
ings have included implication of the infl ammation pathway in age-related macular 
degeneration (5), the bacterial-engulfment and processing pathway in infl ammatory 
bowel disease (6), and the nicotine receptor pathway in lung cancer (7).

6
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(Continued)

Table 6.1 Diseases and traits studied using genome-wide 
association testing assaying 100,000 variants or more, March 
2005–August 2009

Eye diseases

 • Macular degeneration

 • Glaucoma

Cancer

 • Lung cancer

 • Prostate cancer

 • Breast cancer

 • Colorectal cancer

 • Bladder cancer

 • Neuroblastoma

 • Melanoma

 • Basal cell cancer

 • TP53 cancer predilection

 • Acute and chronic lymphocytic leukemia

 • Follicular lymphoma

 • Thyroid cancer

 • Myeloproliferative syndrome

 • Testicular germ cell cancer

 • Glioma

 • Ovarian cancer

 • Pancreatic cancer

Gastrointestinal diseases

 • Cleft palate

 • Infl ammatory bowel disease

 • Celiac disease

 • Hirschsprung disease

 • Gallstones

 • Cirrhosis

 • Drug-induced liver injury

Cardiovascular conditions

 • ECG intervals 

 • Coronary disease

 • Coronary spasm

 • Atrial fi brillation/fl utter 

 • Stroke

 • Intracranial aneurysm 

 • Hypertension

 • Hypertension diuretic response

 • Aortic aneurysm/peripheral arterial disease 



Table 6.1 Continued

 • Lipids/lipoproteins

 • Warfarin dosing

 • Ximelegatran adverse response

Neuropsychiatric conditions

 • Parkinson disease

 • Amyotrophic lateral sclerosis

 • Multiple sclerosis

 • Multiple sclerosis interferon-β response  

 • Progressive supranuclear palsy

 • Tauopathies

 • Alzheimer disease

 • Variant Creutzfeldt–Jakob disease

 • Cognitive ability

 • Memory

 • Hearing, otosclerosis

 • Restless legs syndrome

 • Essential tremor 

 • Nicotine dependence

 • Alcohol dependence

 • Methamphetamine dependence

 • Pain

 • Panic disorder 

 • Neuroticism

 • Schizophrenia

 • Schizophrenia iloperidone response

 • Bipolar disorder

 • Bipolar disorder lithium response

 • Family chaos

 • Narcolepsy

 • ADHD

 • Personality traits

Autoimmune and infectious diseases

 • Rheumatoid arthritis

 • Rheumatoid arthritis anti-TNF response

 • Systemic lupus erythematosus

 • Juvenile idiopathic arthritis

 • Behçet’s disease

 • Osteoarthritis

 • Psoriasis 

 • Kawasaki disease
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 • Sarcoidosis

 • Pulmonary fi brosis

 • Chronic obstructive pulmonary disease/lung function

 • Cystic fi brosis severity

 • Asthma

 • Chronic rhinosinusitis

 • Atopic dermatitis

 • HIV setpoint/progression

 • Chronic hepatitis B

 • Severe malaria

Diabetes, renal disease, and anthropometry

 • Type 1 diabetes 

 • Type 2 diabetes

 • Diabetic nephropathy 

 • End-stage renal disease

 • Kidney stones

 • Obesity, body mass index, waist

 • Insulin resistance, metabolic traits

 • Height

 • Osteoporosis 

 • Menarche

 • Menopause/ovarian failure

 • Male pattern baldness

 • Male infertility

Laboratory/other traits

 • Fetal hemoglobin

 • Platelet mass/volume

 • Transferrin levels

 • C-reactive protein

 • ICAM-1 levels

 • Eosinophil numbers

 • Total IgE levels

 • Urate levels, gout

 • Protein levels

 • Folate pathway, vitamins

 • β-Carotene levels

 • Recombination rate

 • Telomere length

 • Pigmentation
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Another major surprise stemming from these fi ndings has been the predominantly 
modest increases in risk associated with these variants (1). Of the fi rst 200 variants 
related to discrete diseases or dichotomized traits, for example, 50% were associated 
with odds ratios less than 1.3 or less, and only 15% carried odds ratios greater than 
2.0 (4). Despite very large sample sizes and extensive collaborative efforts, often 
involving tens of thousands of patients and hundreds of investigators, GWA fi ndings 
to date have explained only a small portion of the heritability of complex diseases 
such as breast cancer, diabetes, Crohn’s disease, and systemic lupus erythematosus 
(Table 6.2). The failure to fi nd many variants of large effect has been attributed to 
natural selection working to eliminate such variants from the population; tag SNPs 
assayed by current genotyping platforms having varying degrees of linkage disequi-
librium with the true causative variants, leading to underestimation of effect; struc-
tural variants (insertions, deletions, duplications, inversions) or rare variants poorly 
assayed by current methods; and unaccounted-for effects of regulatory, epigenetic, 
or environmental modifi ers of genetic variants.

Environmental modifi ers of the effects of genetic variants, or gene–environment 
interactions, have received increased attention in recent years due to the recogni-
tion that genetic variants alone are unlikely to explain most of the recent increases 
in chronic diseases (12). Such increases are more likely due to environmental and 
behavioral changes interacting with a genetic predisposition, suggesting that failing 
to identify and control environmental modifi ers of disease risk could mask impor-
tant associations with genetic variants or misestimate the magnitude of their effects 
(13). Identifying environmental modifi ers of these variants may also be essential in 
mitigating the risk conferred by these variants. Population-based genetic association 
studies with detailed characterization of environmental exposures are critical and 
underused resources for identifying potential interacting factors (14,15). This chap-
ter explores the substantial and complementary strengths offered by the two main 
approaches to these studies, case-control and cohort designs, in the search for the 
genetic and environmental infl uences on common diseases.

Case-control Studies in the Era of Genome-wide Association

The great majority of GWAS conducted to date have used the case-control design, in 
which allele frequencies in persons with the trait or disease of interest are compared 

Table 6.2 Proportion of familial risk of complex diseases 
explained by genome-wide studies to date

Disease Number of Loci Genetic Risk Explained

Breast cancer (8)  7 5%

Crohn’s disease (9) 32 10% overall variance,
20% of genetic risk

Diabetes (10) 18 6%

Systemic lupus erythematosus (11)  6 15%
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to those in a disease-free comparison group. These studies are often easier and 
cheaper to conduct than prospective cohort studies, in which participants are identi-
fi ed and characterized prior to disease onset and then followed forward in time to 
the occurrence of disease (Figure 6.1). Speed and effi ciency may be maximized if 
suffi cient numbers of cases and controls can be assembled rapidly, as is often the 
case in clinical series of patients presenting for medical care. Cases and controls are 
typically investigated retrospectively for evidence of genetic and other risk factors 
and environmental exposures that existed prior to disease onset, and thus likely con-
tributed to disease development.

Although the case-control design is often selected for its ease and low cost during 
initial efforts to identify risk factors for common diseases, for the study of rare dis-
eases it actually has important advantages over the prospective cohort design. These 
include facilitating the identifi cation and recruitment of study subjects, since the 
design starts with diagnosed cases of disease, often from specialized referral cen-
ters. The prospective cohort design, in contrast, requires the follow-up of large num-
bers of people who will never develop a rare disease to identify the few cases who 
do. Schlesselman provides a salient illustration, estimating that a cohort study of a 
condition occurring at a rate of 8 cases per 1,000 persons would require observation 

Figure 6.1 Assessing associations in case-control and cohort studies. Source: Reprinted 
with permission from (16). Copyright © 2008 Massachusetts Medical Society. All rights 
reserved.
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of 3,889 exposed and 3,889 unexposed subjects to detect a two-fold increase in 
risk (17). A case-control study, in contrast, would require only 188 cases and 188 
controls. If the prevalence of disease were lower, at 2 cases per 1,000, cohorts of 
approximately 15,700 exposed and 15,700 unexposed subjects would be needed to 
detect a two-fold increased risk, but a case-control study would still require only 
188 cases and 188 controls.

The case-control design also permits assessment of multiple exposures in relation 
to disease outcome, provided those exposures can be measured after disease has 
occurred. This may be especially relevant if biological specimens have been col-
lected and stored prior to disease onset, permitting targeted measurement of specifi c 
analytes in cases of interest and suitable controls. It may also permit more detailed 
assessment of a particular exposure (such as occupational or dietary history), col-
lected retrospectively in small, selected numbers of cases and controls.

Despite these advantages, case-control studies are particularly prone to several 
of the sources of bias described in Table 6.3. A key requirement for a bias-free 
case-control study is that cases be representative of all persons who develop the 
disease under study. Because cases are often identifi ed in the clinical setting, typ-
ically through review of medical records, mild cases or those that lead to early 
mortality are likely to be missed, leading to prevalence-incidence or survival bias. 
This is a particular problem if a sizeable subset of cases suffers a rapid and fatal 
course (as in coronary disease or some cancers), so that “etiologic” factors identi-
fi ed among the subset of survivors are actually more related to survival or a benign 
prognosis (18).

Another requirement is that controls be representative of all persons at risk for 
the disease. In this respect, potential threats to the representativeness of cases are 
also important among controls, especially nonresponse bias. Differential response 
rates related to genetic background may arise between cases and controls due to 
differences between these groups in prevalence of a family history of disease. The 
tendency for persons with a positive family history to be more likely to participate 
can be an important type of respondent bias in genetic studies (19). Findings from 
a biased group of cases or controls may not be generalizable to the population 
at large or may be frankly invalid, although these biases can often be identifi ed 
and compensated for, particularly by selecting a control group that is matched 
on many of the potential confounding factors. Matching has its pitfalls, however, 
since once a factor is matched upon, so that it is evenly distributed between cases 
and controls, it can no longer be examined for association with disease. In addi-
tion, the diffi culty in fi nding matching controls rapidly escalates with the number 
of factors matched upon. In general, unless one is certain that a given factor is 
related to disease etiology, it is probably better not to match on it so that it can be 
examined in analysis.

One solution to the lack of a “perfect” control group is to utilize more than one 
type of control group. One group of controls might be selected from the same 
hospital as the cases; another control group might use neighborhood controls, 
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where each control is matched by neighborhood to a case, or family controls, 
who share much of the case’s genetic background but are unaffected by disease. 
Use of multiple control groups is often considered to be methodologically supe-
rior because the biases in one group may be minimized in the other and vice 
versa. Associations can be assessed in the two groups separately: if few differ-
ences are found, one may have greater confi dence in the conclusions drawn. If 
more than one control group is used, one group might be selected to be matched 
and another unmatched.

Use of a common comparison group for multiple groups of disease cases has 
been employed successfully, primarily as a cost-saving measure, in GWAS by 
the Wellcome Trust Case Control Consortium (20). Despite initial skepticism that 
a single control group would permit detection of association signals in multiple 

Table 6.3 Biases in case-control and cohort designs

Type of Bias Description

Biases that relate to subject selection (17,18)

Prevalence–incidence or survival 
bias

Selection of existing cases that are currently available for 
study will miss fatal and short episodes, and might miss 
mild or silent cases.

Nonresponse (or respondent) bias Differential rates of refusal or nonresponse to inquiries 
between cases and disease-free comparison subjects.

Diagnosis (or diagnostic suspicion) 
bias

Knowledge of a subject’s exposure to a putative cause of 
disease can infl uence both the intensity and outcome of the 
diagnostic process.

Referral (or admission-rate) bias Cases who are more likely to receive advanced care or to be 
hospitalized—such as those with greater access to health care 
or with coexisting illnesses—can distort associations with 
other risk factors in clinic-based studies, unless the same 
referral or admission biases are operative in disease-free 
comparison subjects.

Surveillance bias If a condition is mild or likely to escape routine medical 
attention, cases are more likely to be detected in people who 
are under frequent medical surveillance.

Biases that relate to measuring exposures and outcomes (18)

Recall bias Questions about specifi c exposures might be asked more 
frequently of cases, or cases might search their memories 
more intensively for potential causative exposures.

Family information bias The fl ow of family information about exposures or illnesses 
can be stimulated by, or directed to, a new case in its midst.

Exposure suspicion bias Knowledge of a patient’s disease status can infl uence the 
intensity and outcome of the search for exposure to a putative 
cause.

Source: Adapted from Reference 15.
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disparate diseases, nearly all the fi ndings from that study have been replicated in 
studies using more traditional control groups. This suggests that initial identifi cation 
of SNPs associated with disease may be robust to these potential biases, although 
this approach may not provide unbiased measures of association (21). Selection of 
controls is among the most diffi cult, and most heavily criticized, aspect of case-
control studies; indeed, it has been suggested that the ideal control group probably 
does not exist (22).

A third requirement for a bias-free case-control study is that collection of risk 
factor and exposure information should be the same for cases and controls. This 
can be diffi cult to ensure, especially for information collected in the course of clin-
ical care, since invasive diagnostic approaches to rule out disease cannot be justi-
fi ed in healthy controls. Data collection methods should thus be developed that can 
be applied equally to both groups. Even this approach, however, cannot control for 
potential recall bias among the cases, which can substantially infl uence estimation 
of self-reported environmental exposures. This occurs when disease status infl u-
ences the reporting of exposures, for example, when questions about exposure to a 
putative cause may be asked many times of known cases (or they may repeatedly 
search their memories) but only once of those without disease.

The presence of any of these forms of bias can severely affect the validity and 
generalizability of any observational study of disease etiology. Although concerns 
about recall bias tend to be dismissed in genetic studies because determination of 
the key exposure (a genetic variant) does not rely on recall, and the temporal nature 
of the genetic association is also clear, the potential for bias remains in selection 
of cases and controls and in assessment of other exposures that may act to modify 
any genotype-phenotype associations found. Limiting the collection of risk factor 
or biomarker information to the period prior to disease onset, if time of onset can 
be clearly defi ned, will reduce biases in risk factor ascertainment related to clinical 
care or awareness of disease status. Such use of premorbid risk factor information 
will also strengthen inferences regarding the temporal nature of risk relationships, a 
key element in determining causality. Unless extensive records exist prior to disease 
diagnosis, however, many key exposures such as dietary patterns or medication use 
cannot be collected retrospectively and premorbid risk factor information is often 
not available.

Another requirement for a valid case-control study, particularly in the genomic 
era, is that ancestral geographic origins and predominant environmental exposures 
of cases not differ dramatically from those of controls. Fortunately, the collection 
of ancestry informative markers and potential environmental confounders permits 
adjustment for differences in genetic background and environmental exposures, as 
long as there is some commonality between cases and controls. These adjustments 
must be applied carefully, however, to avoid overadjusting for variants or exposures 
that may actually be causal (15).

Finally, case-control studies typically permit investigation of only one primary 
outcome, the condition by which cases are defi ned. Since complex diseases rarely 
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occur in isolation, and often share risk factors, the ability to examine genetic and 
environmental risk factors for a number of conditions once costly genomic assays 
have been performed is a major advantage of cohort studies that measure many out-
comes in the same study subjects. Both study designs, however, often include mea-
sures of continuous traits such as height, lipids, or blood pressure that can then be 
used in secondary or combined analyses with other studies. Particularly successful 
examples of this approach in GWAS include the identifi cation of the FTO variant 
related to obesity in what was initially a diabetes case-control study (23) and of 
20 loci related to height in a combined analysis of cohort and case-control studies 
focused on a variety of diseases (24).

The case-control design also carries more assumptions, as detailed above, than 
the cohort design (Table 6.4). If these are not met, spurious associations and faulty 

Table 6.4 Study designs used in genome-wide association studies

Design Assumptions Advantages Disadvantages

Case-control Cases and controls are 
drawn from the same 
population

Cases are representative of 
all cases of the disease, or 
limitations on diagnostic 
specifi city and representa-
tiveness are clearly specifi ed

Genomic and epidemiologic 
data are collected similarly 
in cases and controls

Differences in allele 
frequencies relate to the out-
come of interest rather than 
differences in background 
population between cases 
and controls

Short time frame

Large numbers of cases 
and controls can be 
assembled

Optimal epidemiologic 
design for studying rare 
diseases

Prone to a number of 
biases, including popula-
tion stratifi cation

Cases are usually preva-
lent cases, may miss fatal 
or short episodes, or mild 
or silent cases

Overestimate relative risk 
for common diseases

Cohort Subjects under study are 
more representative of the 
population from which they 
are drawn

Diseases and traits are 
ascertained similarly in 
persons with and without the 
gene variant

Cases are incident 
(developing during 
observation) and free of 
survival bias

Direct measure of risk

Fewer biases than case-
control studies

Continuum of health-
related measures 
available in population 
samples not selected for 
presence of disease

Large sample size needed 
for genotyping if inci-
dence is low

Expensive and lengthy 
follow-up

Existing consent may 
be insuffi cient for GWA 
genotyping or data 
sharing

Requires variation in trait 
being studied
Poorly suited for studying 
rare diseases

Source: Adapted from Reference 21.
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inferences may result. If well-established principles of epidemiologic design are 
adhered to, however, case-control studies can produce valid results that, especially 
for rare diseases, may not be obtainable in any other way. Unfortunately, genetic 
association studies using case-control methodologies have often not adhered to 
these principles. The often sharply abbreviated descriptions of cases and controls 
and lack of comparison of key characteristics in GWA reports can make evaluation 
of potential biases and replication of fi ndings quite diffi cult (15,25).

Cohort Studies in the Era of Genome-wide Association

Fewer GWAS have utilized the cohort design, for many of the reasons of cost and 
effi ciency noted above, but there are notable exceptions. The National Heart, Lung, 
and Blood Institute (NHLBI) has supported genome-wide genotyping of 500,000 
SNPs in three generations of participants in the landmark Framingham Heart Study, 
and has made these data available through a controlled access process managed by 
the National Institutes of Health (http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap). 
The richness of such a research resource is demonstrated by an earlier scan of 
100,000 SNPs in the fi rst two Framingham generations, which resulted in a burst 
of 17 concurrent publications reporting initial genome-wide associations with a vast 
array of conditions and traits (26). Genome-wide genotyping has also been applied 
to 25,000 women participating in the Women’s Genome Health Study (27), and will 
be added to several other NHLBI cohorts in the near future. Notable GWAS that 
have utilized prospective cohort designs include breast and prostate cancer stud-
ies from the National Cancer Institute’s Cancer Genetic Markers of Susceptibility 
(CGEMS) project (28,29). Additional studies of pancreatic, lung, and bladder cancer 
are also underway in this program.

Cohort studies involve collecting extensive baseline information in a large num-
ber of persons who are then followed to assess the incidence of disease in subgroups 
defi ned by genetic variants. Although cohort studies are typically more expensive 
and take longer to conduct than case-control studies, they often include subjects 
who are more representative of the population from which they are drawn than are 
clinical series. They also typically include a vast array of health-related characteris-
tics and exposures for which genetic associations can be sought.

A major advantage of the prospective cohort design is that it permits standard-
ized and detailed collection of premorbid exposure information tailored to meet the 
goals of the study. Assessment of environmental risk factors, and thus of potential 
gene–environment interactions, is typically more extensive and less prone to bias 
in prospective cohort studies than in case-control studies, making the former much 
more suitable for studying environmental infl uences on disease risk. Recall bias in 
particular is avoided by collecting information prior to disease onset.

Another key aspect of the prospective cohort design is that all participants 
are followed in a systematic way so that all cases of disease have an equal likeli-
hood of being detected. This feature is important as it minimizes biases in case 
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identifi cation—particularly prevalence-incidence bias—that are typically encoun-
tered in clinical series. Time of disease onset can also be defi ned more clearly in 
prospective cohort studies than in case-control studies, and multiple disease out-
comes can be studied.

Requirements for a generalizable prospective cohort study are that people 
recruited into the cohort have similar genetic and environmental exposures and 
disease risk to those who are not recruited, and that cohort members who are “lost” 
to follow-up have similar exposures and disease risk to those remaining. A third 
requirement is that likelihood of detection of disease is independent of the expo-
sure of interest and of potential confounding factors such as age, access to medical 
care, and other exposures. This ensures similarity of data collection (and avoid-
ance of bias) between exposed and unexposed persons. Although at present there 
is little concern that a participant’s genetic make-up might directly infl uence the 
intensity or outcome of clinical diagnosis or treatment efforts, this may change as 
fi ndings from GWAS become incorporated into clinical screening and diagnostic 
algorithms.

Ascertainment methods and outcome defi nitions should be the same in all 
cohort members and should not differ in relation to genetic or environmental 
exposures. Changes in exposure history should be assessed by repeated collec-
tion of exposure information and analyzed by appropriate longitudinal statistical 
techniques. Cohort studies that rely on outcomes identifi ed in the course of clini-
cal care are prone to many of the biases discussed above for case-control studies, 
so most prospective cohort studies implement a regular schedule of follow-up 
in which all participants are systematically investigated for occurrence of dis-
ease and changes in exposure. The need for such ongoing follow-up has been one 
of the major criticisms of prospective cohort studies, as it is time intensive and 
costly.

Other important limitations of the prospective cohort design include the large 
sample size needed to produce suffi cient numbers of incident disease cases, and the 
typically long duration needed for these cases to accrue. In addition, the need to 
identify and collect information on risk factors of interest before disease cases have 
accrued adds to complexity and cost, but is often the only way to obtain valid, unbi-
ased exposure information for prediction of disease.

The Problem of False Positive Findings

Analysis of GWA data is relatively straightforward, typically comparing the fre-
quency of each allele or biallelic genotype in persons with and without disease. 
Complexity in analysis emerges due to the multiple testing carried out in GWAS, in 
that these same association tests are repeated for each of the 100,000 to over 1 mil-
lion SNPs assayed. At the usual p < 0.05 level of signifi cance, an association study 
of 1 million SNPs will show 50,000 SNPs to be “associated” with disease, almost 
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all falsely positive and due to chance alone. The most common manner of dealing 
with this problem is to reduce the false positive rate by applying the Bonferroni 
correction, in which the conventional p-value is divided by the number of tests per-
formed (21). A 1 million SNP survey would thus use a threshold of p < 0.05/106, or 
5 × 10-8, to identify associations unlikely to have occurred by chance. This correc-
tion has been criticized as overly conservative because it assumes independent asso-
ciations of each SNP with disease while they are known to be correlated to some 
degree due to linkage disequilibrium (LD), or the tendency of SNPs located near 
each other on a chromosome to be inherited together. Other approaches have been 
proposed, including estimation of the false discovery rate, or proportion of signifi -
cant associations that are actually false positives; false positive report probability, 
or probability that the null hypothesis is true given a statistically signifi cant fi nding; 
and estimation of Bayes factors that incorporate the prior probability of association 
based on characteristics of the disease or the specifi c SNP (21). The Bonferroni cor-
rection has been the most commonly employed correction for multiple comparisons 
in GWA reports to date (1).

The threat of false positives has been widely recognized in the candidate gene 
literature—indeed, it may seem that nearly as much has been written about fail-
ure to replicate candidate gene associations as about the initial associations them-
selves (30). Potential reasons for failure to replicate are legion but include differences 
between study populations in the allele frequency of interest, in genetic background 
or environmental exposures, or in the host of potential biases that can affl ict both 
case-control and cohort studies as described above. Many initial reports, especially 
in small studies prone to sampling bias, may simply have been spurious (i.e., due 
to chance alone). A comprehensive review of 600 candidate genes associated with 
common diseases reported that only six of those studied three or more times had 
been consistently replicated (31); similar comprehensive reviews have produced 
similar outcomes, and have generated a lively debate on what constitutes suffi cient 
evidence for association.

This debate was largely resolved in a consensus development meeting conducted 
by the National Cancer Institute and the National Human Genome Research 
Institute, which produced a series of recommendations on what constitutes repli-
cation in GWAS (25). Key criteria for replication include study of the same or very 
similar phenotype and population, demonstration of a similar magnitude of effect 
and signifi cance, in the same genetic model and same direction, for the same SNP 
and the same allele, as the initial report. Once replication became accepted as 
the sine qua non for reporting genetic associations (32), lack of reproducibility of 
genetic associations dropped sharply. Lack of replication may be varyingly attrib-
uted to differences in ancestral background between cases and controls or differ-
ences in phenotype defi nition, as well as selection biases, genotyping errors, and 
so on. At present, the best way of resolving these inconsistencies appears to be 
additional replication studies with ever larger sample sizes, though this may not 
be feasible for rare conditions or for associations identifi ed in unique populations.
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Many GWAS use multistage designs to reduce the number of false positives while 
minimizing the number of costly genome-wide scans performed and retaining sta-
tistical power. Genome-wide scans are typically performed on an initial group of 
cases and controls and then a smaller number of associated SNPs is replicated in a 
second or third group of cases and controls of varying sizes (Figure 6.2). Some stud-
ies start with small numbers of subjects in the initial scan but carry forward large 
numbers of SNPs to minimize false negatives, while others start with more subjects 
but carry forward a smaller proportion of associated SNPs. Optimal proportions of 
subjects and SNPs in each phase have yet to be determined, but carrying forward 
a small proportion (<5%) of stage 1 SNPs will often mean limiting the associations 
ultimately identifi ed to those of relatively large effect (21).

Importance of Genotyping Quality Control and 
Population Stratifi cation

Genotyping errors, especially if occurring differentially between cases and con-
trols, are an important cause of spurious associations and must be carefully sought 
and corrected. A number of quality control assessments should be applied both 
on a per-sample and a per-SNP basis. Checks on sample identity to avoid sam-
ple  mix-ups should be described, and a minimum rate of successfully genotyped 

Figure 6.2 Replication strategy for a genome-wide analysis study of prostate cancer. 
Source: Reprinted from http://cgems.cancer.gov.
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SNPs per sample (usually 80–90% of SNPs attempted) should be reported. Once 
samples failing these thresholds are removed, individual SNPs across the remain-
ing samples are subjected to further checks or “fi lters” for probable genotyping 
errors, including (i) the proportion of samples for which a SNP can be measured 
(the SNP call rate, typically >95%); (ii) the minor allele frequency (often >1%), 
as rarer SNPs are diffi cult to measure reliably; (iii) severe violations of Hardy-
Weinberg equilibrium (often p < 10-4); (iv) Mendelian inheritance errors in fam-
ily studies; and (v) concordance rates in duplicate samples (typically >99.5%). 
Additional checks on genotyping quality should include careful visual inspection 
of genotype “cluster plots,” or intensity values generated by the genotyping assay 
to ensure that the strongest associations do not merely refl ect genotyping artifact 
(20,25). Genotype assignments of the most strongly associated SNPs should also 
be confi rmed using a different method. Associations with any known “positive 
controls,” such as the repeatedly replicated association of TCF7L2 with type 2 
diabetes (25), should be reported to increase confi dence in the consistency of fi nd-
ings with prior reports.

Assessment of genotyping quality may be particularly important in case-control 
studies where case and control samples are collected or handled differently (33). 
This may be more of a problem with samples from disease cases, which may have 
been collected over an extended period of case accrual or in varied circumstances, 
or which have very small amounts of DNA requiring whole genome amplifi cation 
prior to genotyping. Differences in DNA or genotype quality between cases and 
controls can be often quantifi ed and adjusted for, or assignment of genotypes (“gen-
otype calling”) may need to be performed separately in cases and controls. Such 
differences must be systematically assessed, however, if they are to be identifi ed and 
controlled for, and this step is easily overlooked.

Confounding due to “population stratifi cation” has been cited as a major threat 
to the validity of genetic association studies, but its true importance is a matter of 
debate (34). It arises from variations in allele frequency between population sub-
groups, such as those defi ned by ethnicity or geographic origin, who in turn differ 
in their risk for disease. GWAS may then falsely identify the subgroup- associated 
genes as related to disease. Population stratifi cation should be assessed and reported 
in GWAS, typically by examining the distribution of test statistics generated from 
the thousands of association tests performed (as by, for example, the chi-squared 
test) and assessing their deviation from the distribution expected under the null 
hypothesis of no SNP associated with the trait. Deviations from the null distribu-
tion suggest that either the assumed distribution is incorrect, or that the sample 
contains values arising in some other manner, as by a true association (25). Since 
the underlying assumption in GWAS is that the vast majority of assayed SNPs are 
not associated with the trait, strong deviations from the null may suggest important 
differences in population genetic structure. Several effective statistical methods are 
now available to correct for population stratifi cation and are a standard component 
of rigorous GWA analyses (20).
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Limitations of GWAS

Identifi cation of a robustly replicating SNP-disease association is a crucial fi rst step 
in identifying disease-causing genetic variants and developing suitable treatments, 
but it is only a fi rst step (21). Association studies essentially identify a genomic loca-
tion related to disease but provide little information on gene function, unless one has 
happened to identify a SNP with a predictable effect on gene expression or the tran-
scribed product. Examination of known SNPs in high LD with the associated SNP 
may identify variants with plausible biologic effects, or sequencing of a suitable sur-
rounding interval may be undertaken to identify rarer variants with more obvious 
functional implications. Tissue samples or cell lines can be examined for expression 
of the gene variant. Other functional studies may include genetic manipulations in 
cell or animal models, such as knockouts or knockins (35).

The potential for false positive results, lack of information on gene function, 
insensitivity to rare variants and structural variants, large sample sizes needed, and 
possible biases due to case and control selection and genotyping errors are impor-
tant limitations of GWAS that have been detailed above. The often limited infor-
mation available on environmental exposures and other nongenetic risk factors in 
early GWAS will make it diffi cult to assess gene–environment interactions.

Many of the design and analysis features of GWAS deal with minimizing the 
false positive rates while maintaining power to identify true positive associations. 
These same efforts to reduce false positives, however, may result in overlooking a 
true association, especially if only a small number of SNPs is carried over from 
the initial scan into replication studies. It is important to note that the most robust 
fi ndings, those that “survive” multiple rounds of replication, are often not the most 
statistically signifi cant associations in the initial scan, and may not even be in the 
top few hundred or few thousand associations. For example, the microseminopro-
tein-beta (MSMB) gene variant identifi ed as the strongest association (p < 7 × 10-13) 
with prostate cancer in a combined stage 1 plus stage 2 study of 5,000 cases and 
5,000 controls, was ranked 24,233th of 527,869 SNPs in the stage 1 scan (29). Had 
the investigators not carried forward the top 5% of associated SNPs into their sec-
ond stage, this very plausible candidate gene, which produces a primary constitu-
ent of semen and is a proposed prostate cancer biomarker, would have been missed. 
Another cause of false negative results is the lack of the genetic variant of rel-
evance on the genotyping platform, or lack of variation in that SNP in the popula-
tion under study. As the number of SNPs and diversity of populations represented 
on genotyping platforms increase, this should become less of a problem.

An important question generated by these early GWAS relates to the small pro-
portion of heritability, or familial clustering, explained by the genetic variants 
identifi ed to date, as noted in Table 6.1. Debate continues as to whether the rest 
of the genetic infl uence might reside in a long “tail” of common SNPs with very 
small odds ratios, or in structural variants poorly assayed by current platforms, or 
in rarer variants of larger effect, or in interactions among common variants or with 
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the environment. It is also possible that familial clustering due to genetic factors has 
been overestimated, and that important but overlooked or poorly measured envi-
ronmental infl uences shared among family members may account for more famil-
ial clustering than previously appreciated. This remains to be determined, but it is 
important to keep in mind that even small odds ratios or rare variants can point 
the way toward valuable therapeutic strategies, such as the development of HMG-
CoA reductase inhibitors arising from identifi cation of LDL-receptor mutations in 
 familial hypercholesterolemia (1).

Emerging Role of Population-based Studies 
in the GWA Era

The fl ood of GWA fi ndings from case-control and cohort studies has led to follow-up 
replication, fi ne-mapping, sequencing, and functional studies in experimental sys-
tems to determine the biologic mechanisms of the associations, but much remains 
to be learned from well-characterized human population samples in which poten-
tially causative variants have been, or could be, assayed. Important clues to gene 
function can be identifi ed by examining associations with related or intermediate 
phenotypes such as hormone levels or bone density. More importantly, the poten-
tial population impact of variants of interest may be poorly described by the often 
highly selected or otherwise nonrepresentative group of cases in whom they were 
initially identifi ed. Just as geneticists explore the “genetic architecture” of complex 
traits, defi ning the number and type of alleles associated with a trait and the mecha-
nisms of their effects, so epidemiologists can explore the “epidemiologic architec-
ture” of putative causal variants identifi ed in GWAS—their population prevalence; 
prevalence in race/ethnic subgroups; relative risk of rigorously defi ned, incident dis-
ease; consistency of association across subgroups defi ned by age, sex, race/ethnic-
ity, or exposures; and potential modifi ability of associated risk. Such information is 
critical to determining the health implications of a given variant and the priority it 
should receive for identifying and testing interventions to reduce its associated risk. 
This information may also be quite valuable in exploring gene function, since the 
epidemiologic approach of genetic investigation, starting from observed phenotypic 
characteristics and moving more proximally to gene pathways and sequence vari-
ants, complements well the laboratory approach of moving from DNA sequence to 
function to phenotype.

More importantly, defi ning the risk associated with a specifi c genotype is 
essentially an epidemiologic problem, similar to characterizing any other risk 
factor, and requiring a detailed understanding of bias, confounding, and inter-
action. Such investigations may best be undertaken by experienced epidemiolo-
gists using data from the large-scale, prospective, population-based studies they 
have designed and carried out, because of the complexity of these datasets and 
the potential biases involved in exposure assessment and follow-up. Clinical tri-
als, particularly primary prevention trials, may provide similarly representative 
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and well-characterized population samples, with the added value of randomized 
interventions that may suggest potential avenues for modifying genotype-pheno-
type associations.

Population-based studies thus have a key role to play in the genomic era, in which 
addition of genome-wide genotyping often represents a comparatively small addi-
tional investment to the painstaking identifi cation, recruitment, examination, and 
follow-up efforts already devoted to these cohorts. Case-control and cohort studies 
are both critical to genomic discovery, with case-control studies being especially 
useful for rare diseases and cohort studies for unbiased assessment of nongenetic 
exposures. The need for very large sample sizes to detect genetic variants of small 
effect has promoted formation of large collaborative consortia, often involving 
tens of thousands of samples (8,23,24). Such collaborations also provide intriguing 
opportunities for targeted studies of risk factors (both genetic and environmental) 
of comparatively unusual phenotypes such as sudden coronary death at young age 
or subarachnoid hemorrhage that might not be possible in any single cohort alone. 
Widespread data sharing, as through databases such as the Database of Genotype 
and Phenotype (dbGaP) of the National Center for Biotechnology Information 
(36), will facilitate the availability and responsible use of these valuable research 
resources. The value of population-based studies for fi nding initial associations, 
and for characterizing their importance on a population basis and among key sub-
groups, should not be underestimated. The best is yet to come for these studies as 
they embrace the genomic era.
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Introduction

Large-scale “big science” is advocated as an approach to complex research prob-
lems in many scientifi c areas (1). Epidemiologists have long recognized the value of 
large collaborative studies to address important questions that are beyond the scope 
of a study conducted at a single institution (2). We defi ne networks (or, interchange-
ably, consortia) as groups of scientists from multiple institutions who cooperate in 
research efforts involving, but not limited to, the conduct, analysis, and synthesis of 
information from multiple population studies. Networks, by virtue of their greater 
scope, resources, population size, and opportunities for interdisciplinary collabora-
tion, can address complex scientifi c questions that a single team alone cannot (3).

There is a strong rationale for using networks in human genome epidemiology 
particularly. Genetic epidemiology benefi ts from a large-scale population-based 
approach to identify genes underlying complex common diseases, to assess asso-
ciations between genetic variants and disease susceptibility, and to examine poten-
tial gene–environment interactions (4–6). Because the epidemiologic risk for an 
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individual genetic variant is likely to be small, a large sample size is needed for 
adequate statistical power (7). Power issues are even more pressing for less common 
disease outcomes. Replication in different populations and exposure settings is also 
required to confi rm and validate results. The adoption of common guidelines for 
the conduct, analysis, reporting, and integration of studies across different teams is 
essential for credible replication. Transparency in acknowledging and incorporating 
both “positive” and “negative” results is necessary to direct subsequent research. 
Furthermore, newer and more effi cient genotyping technologies must be integrated 
rapidly into current and planned population studies (8,9). Networks can support 
studies with sample sizes large enough to achieve “defi nitive” results, promote spin-
off research projects, and yield faster “translation” of results into clinical and public 
health applications. Networks can also foster interdisciplinary and international col-
laboration (10). Lastly, networks can assemble databases that are useful for develop-
ing and applying new statistical methods for large data sets (11).

The experience of established networks provides an important knowledge base on 
which to develop recommendations for improving future efforts (12). The Human 
Genome Epidemiology Network (HuGENet) recently launched a global network of 
consortia working on human genome epidemiology (13). This Network of Investigator 
Networks aims to create a resource to share information, to offer methodologic sup-
port, to generate inclusive overviews of studies conducted in specifi c fi elds, and to 
facilitate rapid confi rmation of fi ndings. In October 2005, HuGENet brought together 
representatives from established and emerging networks to share their experiences at 
a workshop in Cambridge, United Kingdom (14). In advance of the meeting, a quali-
tative questionnaire was distributed to workshop participants. The questionnaire elic-
ited information on experiences and practices in building and maintaining consortia. 
This chapter reports on the numerous challenges and their possible solutions as iden-
tifi ed by the workshop participants (summarized in Table 7.1) as well as new oppor-
tunities offered by the network approach to genetic and genomic epidemiology.

Scientifi c Approach

Selection of Scientifi c Questions
To date, most networks have targeted projects originating from preliminary evidence 
of specifi c associations or for the purpose of genetic linkage. In most consortia, proj-
ects are selected through group discussion and informal or semiformal (e.g., voting) 
prioritization of candidate gene targets. Most networks try to focus on the best possi-
ble candidates to generate defi nitive evidence, but, given the large proportion of false 
positives in genetic epidemiology (15), there is considerable uncertainty about the cri-
teria for selecting such targets. Possible criteria include the number and consistency of 
published reports for a specifi c gene, the presence of a high-profi le controversy in the 
literature, strong a priori biologic plausibility, potentially high population-attributable 
risk (e.g., a common polymorphism) supporting linkage evidence from genome-wide 
data, and candidates derived from genome-wide association screens (16,17).
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Table 7.1 Challenges faced by networks of investigators in human genome 
 epidemiology and possible solutions

Major Challenges Possible Solutions

Resources for establishing the 
initial infrastructure, supporting 
consortia implementation, and 
adding new partners

New and more fl exible funding mechanisms: planning 
grants, collaborative research grants
Coordination among national and international funding 
agencies and foundations
Appropriate evaluation criteria for continuation of funding

Coordination: minimize 
administration to maximize 
scientifi c progress and avoid 
confl icts

Clear leadership structure: steering committee and 
working groups
Early development of policies and processes
Cutting-edge communication technology

Selection of target projects Questions that can be uniquely addressed by collaborative 
groups
Preliminary supportive evidence
High-profi le controversial hypothesis
Biologic plausibility
Genomewide evidence

Variable data and biospecimen 
quality from participating teams

Eligibility criteria based on sample size
Sound and appropriate study design
Accurate phenotype outcome and genotype assessments
State-of-the-art biospecimen repositories

Handling of information from 
nonparticipating teams and of 
negative results

Integration of evidence across all teams and networks in 
a fi eld
Comprehensive reporting to maintain transparency
Curated updated encyclopedia of knowledge base

Collection, management, 
and analysis of complex and 
heterogeneous data sets

Central informatics unit or coordinating center
“Think tank” for analytic challenges of retrospective and 
prospective data sets
Centralization of genotyping
Standardization or harmonization of phenotypic and 
genotypic data
Standardization of quality control protocols across 
participating teams

Anticipating future needs Rapid integration of evolving high throughput genomic 
technologies
Consideration of centralized platforms
Maximizing use of bioresources
Public–private partnerships
Development of analytic approaches for large and complex 
data sets

Communication and coordination Web-based communication: web sites and portals
Teleconferences and meeting support

Scientifi c credits and career 
development

Upfront defi nition of publication policies
Mentorship of young investigators
Change in tenure and authorship criteria

(Continued)
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Table 7.1 Continued

Major Challenges Possible Solutions

Access to the scientifi c community 
at large and transparency

Data-sharing plans and policies
Support for release of public data sets
Availability and dissemination of both “positive” and 
“negative” results
Encyclopedia of knowledge

Peer review Review criteria appropriate for interdisciplinary large 
science
Education of peer scientists to consortia issues
Inclusion of interdisciplinary expertise in initial review 
groups

Informed consent Anticipation of data and biospecimen sharing requirements 
and careful phrasing of informed consent
Sensitivity to local and national legislations

Networks are often focused on candidate genes involved in pathogenesis of 
the disease outcome or in biologic pathways involving environmental exposures 
such as metabolism of carcinogens (18). For example, the WECARE consortium 
on genetics of cancer and radiation exposure (19) has addressed individual genes 
that lie within pathways related to double-strand breaks caused by radiation dam-
age. Consortia are increasingly used to replicate fi ndings from hypothesis-free 
genome-wide approaches. For example, consortia are attempting to replicate fi nd-
ings from two-stage genome-wide association studies of Parkinson disease (20) 
and breast cancer (21). With decreasing genotyping cost and the expressed interest 
of funding agencies in genome-wide association studies (22), some consortia are 
coordinating large-scale genotyping and replication of whole genome association 
designs (23).

Prospective and Retrospective Components

Networks use information and biologic specimens from ongoing or established 
cohort and case-control studies with data on phenotypes. Phenotype information 
may have been accumulated either retrospectively or prospectively depending on the 
study design. Participating teams with prospective designs usually continue collect-
ing phenotype information.

Regarding genotyping, several consortia perform meta-analyses of individual-
level data using studies in which all genotyping has already been done and data 
have been published. Some consortia include additional genotyping from teams that 
have not yet done or published such genotyping; for other consortia, prospective 
genotyping represents the majority of the data. Increasingly, prospective genotyp-
ing is coordinated to test novel candidate gene variants or variants identifi ed by 
genome-wide approaches.
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Handling of Information from Nonparticipating Teams

Many networks do not encompass all teams working on the disease or subject mat-
ter of interest. For some common diseases (e.g., breast cancer), there are two or more 
organized multiteam consortia in addition to nonorganized teams (24–26). Some 
consortia attempt analyses that include outside data to examine the robustness of 
their fi ndings. Integration of evidence across networks and across participating and 
nonparticipating teams remains a challenge in developing all-encompassing synop-
ses of the evidence on specifi c gene–disease associations (27).

Launching a Network

Network Characteristics
Consortia in the Network of Investigator Networks comprise between 5 and 521 
teams. Subject numbers range from 3,000 to over half a million. Elements deemed 
essential for launching a network are a strong scientifi c rationale, the agreement 
of all teams to work together and combine data on overarching research questions, 
and the ability to support initial communication, coordination, identifi cation, and 
recruitment of partners. True integration of disciplines can be challenging because 
different disciplines are typically housed in discrete departments and have differ-
ent scientifi c cultures. Interdisciplinary training is important for bridging these 
gaps.

Established networks have coalesced through different processes. Frequently, the 
initiation of a network includes the gathering of information on available resources 
from several groups of investigators actively involved in research in the same fi eld. 
Dissemination of information on integrated research aims, resources, and possible 
contributors ultimately leads to the identifi cation of specifi c projects to be pursued. 
This process creates a forum for scientifi c exchange and more targeted collabora-
tions (28). Networks tend to expand their membership over time and loss of partner 
teams is uncommon (29,30).

Although network membership tends to be inclusive, there is concern that inclu-
sion of fl awed data jeopardizes the validity of the collaborative results. For this 
reason, some consortia have eligibility criteria based on appropriateness of study 
design and phenotypic accuracy.

Organization and Coordinating Centers

Networks use different models of steering and coordination. Working groups 
focused on specifi c topics are common within the largest networks. For example, 
the International Head and Neck Cancer Epidemiology (INHANCE) network (31) 
requires all members to participate in at least one of seven working groups that 
focus on scientifi c issues or projects such as age at cancer onset, nonsmokers and 
nondrinkers, tobacco and alcohol, genetics and DNA repair, human papilloma 
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virus prognosis and survival, and occupational factors. The Genetics of Melanoma 
(GenoMEL) network (32) has a Steering Committee, a Scientifi c Advisory Board, a 
Patient Advocacy Group, and an Ethics Committee as well as several topic-specifi c 
working groups. Some networks have separate statistical, genetic, and clinical coor-
dinating centers, whereas others centralize these functions. A primary coordinator 
or chair and a small steering group are usually essential for the network to operate 
effi ciently. Sometimes it is diffi cult to trace in detail what happens at the local level 
of participating sites. Minimizing and streamlining administration to maximize the 
conduct of science is essential.

Funding

Funding sources include governmental and public health agencies as well as private 
foundations. Funding from for-profi t companies and full partnership with industry-
sponsored teams has been rare, although some consortia have partnered with private 
companies for specifi c projects. For example, the Colon Cancer Family Registry 
worked with specifi c companies to perform a systematic mutational analysis of the 
participants enrolled (33). Funding, especially for infrastructure, is a key limiting 
factor. Diffi culties also exist occasionally for obtaining funding to support activities 
beyond the originally proposed specifi c projects despite demonstrated productivity 
of the network. Some consortia have a single source for primary funding (typically 
National Institutes of Health or European Commission grants), but most networks 
have diverse, sometime project-specifi c, sources of funding. For example, the Birth 
Cohorts Consortium had a total of 64 funders over the past 8 years. In some coun-
tries, participation in a consortium can constitute a strong leverage to obtain national 
funds.

Standardization Within the Network

Data Management
Effi cient and accurate data management is very important because poor-quality data 
from one or more teams may undermine an otherwise excellent collaboration. Data 
typically fl ow to one coordinating center, but some consortia have multiple data 
coordinating centers with complementary functions.

Networks use various data quality assurance practices and checks for logical 
errors and inconsistencies. Networks that have invested heavily in quality assurance 
believe that the effort was worthwhile, because errors may occur even under the best 
circumstances (34). Logical errors (inconsistencies in the contributed data) are usu-
ally easy to identify and readily solved through communication with the team inves-
tigators. Examples include out-of-range values, inversion of coding of phenotypes, 
improper or inconsistent allele calling, and inconsistent cross-coding in databases. 
Logical errors may reveal deeper problems with contributed data. Queries regard-
ing missing data may yield additional information with some additional effort from 
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the team. Some consortia have instituted in-person training for collecting genotype 
and phenotype data in addition to ongoing quality control checks. Some networks 
have developed and published explicit policies of quality assurance for phenotype or 
genotype data (25).

Standardization or Harmonization of Phenotypes and 
Other Measurements

Data standardization is best implemented at the beginning of a de novo collaborative 
study, when tools for data collection and defi nition of data items are developed. Data 
standardization achieves agreement on common data defi nitions to which all data 
layers must conform. Each data item is given a common name, defi nition, and value 
set or format. When standardization is not possible (e.g., different questionnaires or 
criteria have been used historically by different teams), harmonization of data items 
is suggested—and sometimes required by the funding agencies. Data harmonization 
is useful when data sets are already collected from originally independent studies 
focusing on similar questions or fi eld of inquiry. The harmonization process seeks 
to maximize the comparability of data from two or more information systems with 
the goal of reducing data redundancy and inconsistencies as well as improving the 
quality and format of data.

Standardization or harmonization is crucial for a network to perform better than 
single studies, and these processes increase the credibility of the derived evidence. 
Phenotypes and other nongenetic measurements may be diffi cult to standardize 
across teams. For example, Parkinson disease has several sets of accepted diag-
nostic criteria and teams may use different criteria that have high concordance. 
It is often challenging to reassess phenotype using alternative criteria. In some 
diseases, there may be no consensus regarding the most important phenotypes to 
study. For example, 21 pharmacogenetic studies in asthma analyzed 483 different 
end points (35).

Conversely, the assembled data of some networks have been used to defi ne sub-
phenotypes of disease that would not have been evident with lower statistical power 
(36). Networks may help achieve harmonization, even when single-team studies 
have been inconsistent in preferred defi nitions and outcomes. For example, in the 
HIV consortium, access to primary data allowed for harmonized defi nitions of 
seroconverter and seroprevalent subjects and for the outcome (clinical AIDS) (37), 
although these variables had been defi ned inconsistently by the teams. In contrast, 
the InterLymph consortium standardizes the diagnosis of lymphoma subtypes 
through a coordinated review of a subset of slides from each numbered study (38). 
One criterion of the importance and success of a network may be its ability to adopt 
standards for phenotypes and covariates to prevent the use of inconsistent defi ni-
tions in subsequent studies.

In some networks, phenotypes are assessed in prospectively ascertained cases 
or through an extensive reexamination of phenotypes of existing cases. Consortia 
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also use training sessions on phenotyping, photographs (e.g., for moles in melanoma 
family members), and central review to enhance consistency of data.

Standardization of Genotypes

Most networks have not performed central genotyping of all samples, but excep-
tions exist (31,39). Shipping specimens is sometimes challenging in collaborations 
among geographically dispersed teams and regulatory considerations may also pro-
hibit centralized genotyping. For example, some teams are prohibited from shipping 
specimens by their protocol, local legislation, or their funding agency. Several net-
works use a semicentralized approach in which some teams ship their samples to a 
central laboratory, whereas others perform onsite genotyping.

Quality control of genotype results is usually straightforward, but additional 
checks are required in a multiteam collaboration. Some networks use published gen-
otype data without quality checks beyond what each individual team implemented 
in their laboratory (e.g., repeat genotyping of a random sample of specimens). In the 
absence of centralized quality control, consortia must depend on post hoc analyses 
such as deviation from Hardy-Weinberg equilibrium proportions in the controls (40), 
to identify possible genotyping (or other) errors. Large between-study heterogeneity 
in the fi nal analyses may also refl ect measurement errors. However, sizeable errors 
may still be missed with these methods.

Several networks, including the Public Population Project in Genomics (P3G), 
check genotype results through exchange of blinded samples between groups. 
Another approach is to ship samples of known (ideally sequence-verifi ed) genotypes 
to all participating laboratories. Alternatively, a sample of specimens that were gen-
otyped locally may be shipped to a central laboratory for confi rmation. Experience 
suggests that the reliability of each laboratory should not be taken for granted. 
Serious errors have occurred (e.g., inverse reporting of genotype results that pro-
duces an inverse association) that could only be detected by rigorous quality control 
mechanisms. Error rates may be considerable even for single nucleotide polymor-
phisms (SNPs) and can depend on a laboratory’s methodology and expertise. This 
is particularly relevant because most gene–disease associations have modest effect 
sizes that could be obscured by small laboratory errors.

Other Organizational Issues

Communication and Web Site Development
Networks use face-to-face meetings, e-mail, teleconferences, and password-protected 
web sites to communicate with an increasing preference for electronic communica-
tion (for details, see web sites cited in Reference 14). Web sites promote visibility and 
diffuse basic information on the network, activities, and products (e.g., publications). 
Portals provide password-protected access for more sensitive information, which is 
essential to communication within and between teams as well as venues for private 
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scientifi c interaction with fellow members. Some networks have developed princi-
pally as registers of data from multiple groups and their data management is entirely 
web-based, such as the meta-analysis on DNA repair and cancer risk (41).

Publication and Authorship

Explicit review and publication policies are best established early in the life of a 
network to avoid later dissent. For each manuscript, a core writing team is essential 
for developing an initial draft and incorporating comments from coauthors. Most 
consortia use individual-name authorships, which result in a long list of authors. 
The fi rst author is typically the leader of the specifi c project. Some networks use 
tiered authorship (authors and separate lists of additional contributors and sepa-
rate acknowledgments). Group authorship may also be used, but errors in tracking 
publications in PubMed and the Science Citation Index may occur (42). Intellectual 
property rights may also be an issue in consortia. A carefully crafted agreement 
involving all partners should be formulated at the outset.

Authorship position and principal investigator status on funded grants are critical 
for promotion of junior investigators. In the long run, networks will likely produce 
fertile ground for career development by assuring expert interdisciplinary mentor-
ship and providing opportunities for developing productive scientifi c collaborations, 
but in emerging consortia, more senior investigators tend to assume major respon-
sibilities and receive the corresponding authorship credit and grant funding. Some 
consortia have developed explicit policies of ensuring opportunities for young inves-
tigators. Changes in funding mechanisms, tenure criteria, and publication credit are 
needed to support consortia as a tool for both the rapid advancement of scientifi c 
knowledge and the development of new independent investigators (43).

Access to Data and Nonselective Availability of Data

Network-developed data and resources should be accessible to the larger scientifi c 
community and networks should develop data-sharing policies that support this 
requirement. Standardization of data-sharing policies is needed and could be facili-
tated by regulations and policies formulated by funding agencies (44).

It is important that both “positive” and “negative” results be reported to avoid 
publication bias (45). By their very nature, networks may be the last line of defense 
against selective reporting and resulting publication biases and should strive to iden-
tify and include high-quality, but previously unpublished, data.

Peer Review Process

Interdisciplinary science requires interdisciplinary peer review. Education of peer 
scientists and establishment of initial review groups with appropriate interdisci-
plinary expertise are vital to evaluate accurately the merit of consortia proposals. 
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Interdisciplinary research teams take time to assemble and require unique resources 
(46–48). Targeted funding mechanisms may be needed, especially to build infra-
structures for emerging consortia. Criteria for evaluation of productivity by funding 
agencies should take into account the planning and time to establish the necessary 
infrastructure.

Informed Consent

Networks need fl exibility to address emerging scientifi c questions. Informed consent 
should allow data sharing and support broad areas of research conducted by multiple 
investigators at different institutions in different countries. Examples of elements 
to be included in such informed consent have been published and adopted by some 
existing consortia (49). However, the variable requirements of Institutional Review 
Boards at different institutions in considering the incorporation of these elements and 
the great heterogeneity of privacy legislation at the state, national, and international 
level may complicate data and biospecimen sharing in large consortia (50).

Other Challenges and Opportunities

The meeting participants identifi ed a number of additional challenges. For example, 
inclusiveness criteria are challenging and should be balanced against proper qual-
ity assurance. Single teams should be free to pursue their research priorities, and 
their promising results may then be replicated by the consortium at large. All “neg-
ative” results should be fully recorded, preferably in an open access environment, 
to avoid wasted duplication of effort and confusion in the fi eld. Plurality may also 
refl ect the existence of multiple networks in the same fi eld with similar or very 
different designs. Accurate registration of membership may mitigate overlap and 
maximize comparison and replication of results. Upfront study registration has 
been adopted for clinical trials: ClinicalTrials.gov accepts nonrandomized studies 
and already has 4,000 or more in its database. Central tracking of genome-wide 
association studies is being planned by the National Institutes of Health as a means 
to minimize publication and reporting biases, maximize transparency and data 
access rapidly advance research, and maximize funding allocation (22). Rapid and 
continuous integration of cutting-edge genomic and other technologies is a chal-
lenge. This may require the adoption of centralized technology platforms, which 
may be supported by public–private partnerships such as the GAIN initiative (46). 
Long-term planning should take into account the fact that laboratory techniques 
are rapidly becoming cheaper and easier to apply on a large-scale basis. The devel-
opment, maintenance, and standardization across teams of high-quality biologic 
repositories (or “biobanks”) are a further challenge. The ultimate goal is to maxi-
mize bioresources through various valid strategies such as immortalized cell lines, 
whole genome amplifi cation, pooling, tissue microdissection, or multiplex microar-
rays as deemed appropriate.
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Many of the challenges facing networks, if properly addressed, may yield oppor-
tunities, as summarized in Table 7.2.

Conclusions

The HuGENet Network of Investigators Networks seeks to provide an open forum 
for communication and sharing of expertise in statistical and laboratory methods, 
policies, and procedures among consortia. Consortia are encouraged to create a core 
registry that would include basic information on their participating teams and on the 
characteristics of their studies and target populations. This wider knowledge base 
would improve effi ciency in planning further studies and allow for faster replication 
of results needing validation. Another HuGENet Network of Investigator Networks 
effort aims at developing an online encyclopedia of genomic epidemiology, maintain-
ing updated information on results from ongoing studies. Such “synopses” of evidence 
are underway for several diseases, experimenting with various formats that would be 
comprehensive and fl exible enough to cover the needs of a rapidly developing fi eld 
(52–54). Ultimately, if interdisciplinary “large science” human genome epidemiology 
is to succeed, academic institutions, funding agencies, and scientifi c journals must 
incorporate policies, processes, and rewards that support team science while respect-
ing individual creativity. This will require a fundamental change, which is already 
afoot, from a research culture of “rugged individualism” to one of teamwork.
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Addendum

John P. A. Ioannidis and Daniela Seminara

In the 2 years since the Epidemiology article on “The Emergence of Networks in 
Human Genome Epidemiology: Challenges and Opportunities” was published, 
the contribution of consortia and networks to research in human genome epide-
miology has become essential. In particular, the key role of consortia has become 
evident in the confi rmation and validation of primary genome-wide association 
studies (GWAS) of common diseases and in the performance of the interdisci-
plinary research needed to begin translating GWAS results into clinical and pub-
lic health applications (1). A few successful examples of this interactive approach 
are the Welcome Trust Case-Control Consortium, the Cancer Cohorts Consortium 
(CoCo), and the Genetic Association Information Network (GAIN), whose suc-
cessful paradigm has been emulated in many subsequent studies (2–4). With the 
advent of GWAS, it has become obvious that the successful replication of emerg-
ing association signals needs very large sample sizes. Genetic effects for discovered 
common variants have turned up to be even smaller than previously thought and 
power to replicate such associations is very limited, even with very large studies 
(5,6). Few GWAS have hit genome-wide signifi cance in new discovered associa-
tions immediately at the Stage 1 data (7). Consensus recommendations have pointed 
to the need for sizeable replication studies in similar or ethnically and geographi-
cally different populations to confi rm the validity of emerging associations between 
SNPs and disease. Further, a number of weaker associations or associations with 
rarer variants may still lie below the detection threshold of initial studies due to 
simple power considerations (8). This has led to new, larger collaborative efforts, 
where data from many GWAS and/or many replication studies are merged together 
for extensive meta-analyses, as for example in type 2 diabetes (DIAGRAM initia-
tive) and colon cancer (9,10). It is, therefore, fortunate that, for some common dis-
eases, genomic data originated from more than one consortium may be available. 
This shows the popularity of the concept and it may stimulate healthy competition 
and joint scientifi c efforts, whenever appropriate. Given that several consortia may 
develop databases independently, there is a need for some synopsis of the accumu-
lated information, as discussed in Chapter 12. Furthermore, a worldwide collabora-
tive consortia approach will be essential in incorporating the wealth of GWAS data 
into gene–gene and gene–environment interaction studies.
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Availability of data and biospecimens from consortia is also an issue that has 
shown considerable progress in the past 2 years. Several initiatives have been 
launched to improve on current data sharing practices (11,12). At the same time, 
issues of proper credit to the original investigators and protection of confi dentiality 
need to be properly addressed (13).
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Rationale for Genome-wide Association Studies

The recent availability of commercial high-density genotyping technologies, 
 combined with the identifi cation of subsets of single nucleotide polymorphisms 
(SNPs) that are capable of “tagging” most of the common variants in the human 
genome from the HapMap project (1), has now made it feasible to conduct genome-
wide association studies (GWAS), as fi rst proposed about a decade ago by Risch and 
Merikangas (2). Many such studies are now in progress and some have already been 
published. Although there were a few earlier reports (3–5), it was the simultaneous 
publication in 2005 of the discovery of a novel association between the Complement-
Factor H (CFH) gene and age-related macular degeneration through a GWA study 
using a panel of 116,204 SNPs (6), along with two independent confi rmatory stud-
ies (7,8), that generated enormous enthusiasm for the potential of this approach. 
This fi nding has now been replicated over a dozen times. This enthusiasm, along 
with spectacular improvements in genotyping technology, has led to the availability 
of special funding for both methodologic research and genotyping for numerous 
GWAS using existing epidemiologic studies (9). Other reports are starting to appear 
at a rapid pace (10–14). How many of these will be replicated only time will tell, but 
several recent high-profi le papers have included multiple replication studies (15–28). 
Some have not been replicated, however (29); for example, none of the 13 SNP asso-
ciations identifi ed in the Parkinson disease GWA study (10) were confi rmed in a 
large meta-analysis (30,31).

The concept underlying the use of the GWAS approach is the so-called “common 
disease—common variant” (CDCV) hypothesis, which proposes that most genetic 
variants responsible for common diseases are relatively common, individually con-
ferring modest relative risks (RR). Here, “common” is generally defi ned as hav-
ing minor allele frequency (MAF) greater than 5% in the general population and 
“modest” RRs that are potentially detectable in epidemiologic studies of feasible 
size, perhaps in the range of 1.3−2.5. (With increasing sample sizes, the range of 
detectable RRs has been declining. For example, a recent meta-analysis (32) of three 
two-stage GWAS of type 2 diabetes totaling 10,000 subjects and ten replication 
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samples totaling over 50,000 subjects identifi ed six novel loci with RRs in the range 
of 1.05–1.15. Epidemiologists generally view environmental effects of such small 
size with great skepticism due to the potential for uncontrolled confounding, sub-
ject selection, publication, or other biases; these concerns should also be applica-
ble to genetic associations, although perhaps in different forms such as population 
stratifi cation or differential genotyping error.) It seems unlikely that there are many 
common variants with very large RRs that have not already been discovered. On 
the other hand, while there may be many rare variants with small effects, they are 
essentially undiscoverable by epidemiological means. Rare variants with very large 
RRs, like BRCA1 for breast and ovarian cancer, are more easily detectable through 
family-based linkage analysis (2), since their prevalence in an unselected series of 
cases from the general population would still be small. Estimates of the number 
of common variants in the human genome are approximately 6 million (1), but an 
important message from HapMap is that a much smaller subset of them is suffi cient 
because of the strong linkage disequilibrium (LD) throughout the genome. This tag 
SNP approach (33) is not as effective for identifying associations with rare variants, 
however. Although long haplotypes may effectively tag some of these, the many 
possible long haplotypes in a region has a detrimental effect on power. Nevertheless, 
it is certainly possible that a large share of common disease could be caused by 
multiple rare variants (34–40), a hypothesis for which there is presently no effective 
study design or statistical test.

It is also worth noting that a consequence of the enormous number of tests 
being contemplated is that there is no reason to believe that the true positive asso-
ciations will be anywhere near the top of the list of the most signifi cant ones. To 
illustrate this phenomenon, Zaykin and Zhivotovsky (41) pointed out that the then-
replicated association of myocardial infarction with the lymphotoxin-α gene from 
one of the fi rst GWAS was less signifi cant than over 200 other associations of the 
65,570 tested that were not replicated. (Ironically, subsequent meta-analysis (42) 
failed to confi rm this association, although their methodologic point is still well 
taken.) They showed that in a GWA study of this size, there was only a 14% prob-
ability that a true association of this magnitude would rank in the top 200 associa-
tions and that to raise this probability to even 50% would require examining over 
3,400 of the most signifi cant associations. This happens because the probability 
distribution of true associations, while separated from that of null distributions 
by an amount that depends upon the magnitude of true associations and sample 
size, is essentially swamped within the tail of the null distribution. This goes to 
show that very large sample sizes, meticulous study design and genotyping qual-
ity control, and careful attention to the problem of multiple signifi cance testing is 
essential for success.

There have now been quite a few reviews of the general principles of the design 
and analysis of GWAS (43–53). We focus here on some of the basic issues of multi-
stage sampling design as they have been developed for this purpose, and some of the 
associated analysis issues.
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Basic Principles of Design of Multistage GWAS

Most of the GWAS currently underway or already reported have used some form of 
multistage sampling design (54) because of the considerable savings in genotyping 
costs this approach offers. As the cost of commercial chips falls relative to custom 
genotyping, the merits of this approach will need to be reconsidered (52). The basic 
idea of two-stage sampling for GWAS entails genotyping part of the sample using 
a high-density panel (typically 300,000 to a million SNPs) and then genotyping the 
most promising SNPs on the remainder of the sample. A fi nal analysis combining 
the information from both samples is more powerful than treating the design as a 
hypothesis generation followed by independent replication (55,56) because it exploits 
the additional information about just how signifi cant the fi rst stage associations were, 
not just the fact that they exceeded some threshold. Additional markers fl anking 
some or all hits might also be added to better characterize the full range of genetic 
variation in the region (57,58). Optimization of the design entails choosing the signif-
icance levels and the allocation of samples between the two stages in such a manner 
as to minimize the total cost while attaining the desired genome-wide signifi cance 
level and power (57–65); additional constraints on total available sample size are also 
possible. This optimal design is insensitive to the genetic model (mode of inheri-
tance, relative risk, and allele frequencies) and is determined primarily by the rela-
tive cost per genotype at stages I and II, the total available sample size, and whether 
additional fl anking markers will be tested around those selected from stage I. For 
example, at a cost ratio of about 17.5, with no additional SNPs being tested at stage II, 
the optimal design (Table 8.1) turns out to involve testing 30% of the sample in stage 
I at a  signifi cance level of 0.0037, and a signifi cance level for the joint analysis of 
1.6 × 10−7; in this case, about 87% of the total cost goes to stage I genotyping, but the 
total cost is only 40% that of a comparably powered one-stage design. On the other 
hand, with fi ve additional markers being tested for each hit, the optimal design raises 
the fi rst stage sample size to 49% and reduces signifi cance levels to 0.0005 and 0.5 × 
10−7 respectively, so that 95% of the total cost goes to stage I genotyping.

Several other authors (66–68) have investigated the power of GWAS, either for 
a single stage or the fi rst stage of a multistage scan, and generally concluded that 
sample sizes of 1,000 cases and 1,000 controls or more were suffi cient to detect 
associations in the range of 1.7–2.0, smaller relative risks (e.g., 1.2–1.3) requiring 
much larger sample sizes. Table 8.2 shows such calculations (using the Quanto pro-
gram (69)) for a one-stage scan; for a two-stage design with half the sample applied 
to stage I and half to stage II, the total sample size needed is only about 0.5% larger 
than shown if 1% of markers are carried forward to stage II or 2% larger if 0.2% of 
markers are carried forward (58).

Choice of Platform
A crucial decision to be made is the choice of genotyping platform for stage I. At 
the time of writing this chapter, two companies—Affymetrix and Illumina—offer 



Table 8.1 Illustrative examples of optimal design parameters for two-stage GWAS, genome-wide signifi cance level α = 0.05 (1 × 10−7 
per SNP), power 1 − β = 90%, 500,000 markers tested in stage I, minor allele frequency 20%, and genetic relative risk 1.5

Design Specifications Optimal Design Parameters

Number of 
Stages

Ratio of Costs Per 
Genotype in 
Stages II/I

Number of Additional 
Markers Tested in 

Stage II

Signifi cance Level Per Marker Proportion of Total 
Sample Size Used 

in Stage I

Proportion of Total 
Genotyping Cost 

Needed for Stage I

Total Cost 
(Relative to One-

Stage Design)Stage I Stage II

1 N.R. N.R. 1.0 × 10−7 N.R. 100% 100% 100%

2 5 0 0.0123 1.6 × 10−7 26% 85% 40%

2 17.5 0 0.0037 1.6 × 10−7 30% 87% 43%

2 17.5 5 0.0005 0.5 × 10−7 49% 95% 87%
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platforms ranging from 300,000 to a million SNPs. The panels differ in the way 
SNPs were selected and hence their coverage (r 2) of the remaining common 
HapMap SNPs, as well as in their laboratory performance (call rates, reproducibil-
ity, Mendelian errors, etc.). Because coverage of SNPs is highly variable across the 
genome and the relationship between power and r 2 is nonlinear, the average power 
to detect an association with a random SNP is smaller than the power based on the 
average r 2 (70). One cannot simply add additional sample size to cover regions with 
poor coverage! Thus, what is needed is to average the power for a given noncen-
trality parameter λ at a putative causal locus across the distribution of r 2s. Barrett 
and Cardon (71) have compared several panels that were available in 2006 and con-
cluded that they generally provided similar levels of coverage (See also References 
43,72–80 for further discussion of the distribution of LD across the genome and 
across populations and the coverage of various SNP chip sets).

Several authors have considered the trade-offs between one-stage and two-stage 
designs or among specifi c genotyping platforms (66,71,72,75). Faced with a choice 
between density of SNPs and sample size, it is generally agreed that it is prefer-
able to have the largest possible sample size at the expense of less dense markers, 
depending upon available sample size and budget constraints. A two-stage design 

Table 8.2 Sample size requirements for a one-stage 
GWAS with 500,000 markers for different minor 
allele frequencies (MAF) and relative risks (RR) per 
allele in a multiplicative model. The correspond-
ing population attributable risks (PAR) are given, 
along with the numbers (N) of cases and of controls 
required for genome-wide signifi cance level α = 5% 
and 90% power

MAF RR PAR N

0.05 2.0 4.8% 1420

0.05 2.5 7.0% 483

0.05 3.0 9.1% 483

0.10 1.5 4.8% 2530

0.10 2.0 9.1% 785

0.10 2.5 13.0% 420

0.20 1.3 5.7% 3686

0.20 1.6 10.7% 1094

0.20 2.0 16.7% 482

0.40 1.2 7.4% 5397

0.40 1.4 13.8% 1576

0.40 1.6 19.4% 807
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may, however, allow a higher density of markers to be used in stage I than would be 
affordable in a single-stage design, and hence improve power for regions of low LD. 
The ability to combine different study designs (e.g., population-based and family-
based) may also favor a two-stage design. Other considerations, however, may favor 
a one-stage design, notably if multiple hypotheses are to be tested using these data, 
say multiple phenotypes in a cohort design or various subgroup analyses or inter-
action tests. As costs continue to drop, it is possible that two-stage designs may 
become obsolete. Indeed, in the NHLBI-funded STAMPEED consortium of GWAS 
for cardiovascular, lung, and blood disorders, none of the 13 participating centers is 
using a multistage design.

Prioritization of SNPs for the Next Stage
Another decision entails the selection of SNPs to be carried from stage I to stage 
II or to be reported as “signifi cant” at the end of the study. Most of the literature 
has assumed that p-values for single SNP associations will be used for this pur-
pose, although alternatives including using the population attributable risk (81), the 
False Positive Report Probability (81,82), the Bayes factors or q-values (83), empir-
ical Bayes estimates of effect size (81), or multimarker methods like the local scan 
statistic (84) have been suggested. However, such approaches make no use of any 
external information that might suggest that some associations were more credi-
ble than others a priori. For example, one might wish to give greater credence to 
associations with SNPs located in or near genes or highly conserved regions of the 
genome, coding SNPs, those located under a linkage peak, or those with previously 
reported associations. Often such information is used informally at the conclusion 
of a GWAS in deciding which associations to pursue with further fi ne mapping or 
functional studies. Roeder et al. (85,86) and Whittemore (87) have proposed vari-
ants of the False Discovery Rate framework to allow a specifi c variable to be used 
to up- or down-weight the signifi cance assigned to each association. They showed 
that well-chosen prior information can substantially improve the power for detecting 
true associations, while there was relatively little loss of power if that information 
proved to be uninformative. In a similar manner, Greenwood et al. (88) discussed 
setting different signifi cance thresholds for SNPs on different platforms that are 
being used together in a single study. Each of these approaches allows only a single 
variable to be incorporated, with weights specifi ed in advance. Hierarchical mod-
eling approaches (89,90) allow multiple sources of information to be empirically 
weighted in models for the probability that an association is null and the expectation 
of the magnitude of an association given that it is not null. Simulation studies (90) 
showed that when there was little or no useful prior knowledge, the standard p-value 
ranking performed best, but when at least some of the available covariates were 
strongly predictive (even if one did not know which ones were truly predictive), the 
hierarchical Bayes ranking led to better power.

DNA pooling offers an approach that has the potential to drastically reduce the 
cost of genotyping for a GWA study. While the idea has been around for some 
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time (91–94), the technical challenges in forming comparable pools and quantify-
ing allele frequencies are formidable (95–99). It is only recently that it has proved 
feasible to apply this technique to high-density genotyping arrays (100–106). As 
currently employed, the design generally entails forming multiple small pools of 
cases and controls in stage I and selecting SNPs on the basis of their differences 
in allele frequencies. These are then retested by individual genotyping in stage II, 
possibly on both the original and a second sample. An obvious diffi culty with DNA 
pooling is that it is only good for testing main effects for individual SNPs. There 
will be some loss of information for testing haplotype associations (107) and inter-
actions or subgroups can be tested only if the pools have been formed based on 
these stratifying variables. Much remains to be done to study the best choices of 
design parameters (numbers of pools, sample sizes, criteria for selecting SNPs to 
test by individual genotyping, etc.) (108) and to estimate the statistical power and 
false discovery rate for this approach in practice. However, empirical applications 
have demonstrated that DNA pooling is capable of detecting several associations 
that have been discovered and established by individual genotyping in a GWA study 
context (109). Furthermore, several studies using this approach have reported novel 
associations (13,110,111), although it remains for these associations to be confi rmed 
independently.

Gene–Environment Interactions
The NIH “Genes and Environment Initiative” has focused attention on the use of 
GWAS for identifying genes that modify the effects of environmental agents (112). 
Such studies pose additional methodologic problems, beyond the usual challenges 
in assessing the main effects of genes and environmental factors, such as low power 
(113). However, there is the opportunity to improve power by using a case-only 
design (114) in which G×E interaction is tested by testing for association between 
a gene and environmental factor among cases, under the assumption that this asso-
ciation does not exist in the general population. Such an assumption is not likely to 
hold for all possible SNP×E interactions in a GWA study. Testing this assumption 
fi rst in controls and deciding whether to perform a case-only or conventional case-
control test accordingly can lead to substantial infl ation of type I error rates (115). 
Nevertheless, more appropriate methods for combining the inferences from case-
control and case-only analyses of the same data have been described (116–120). 
For example, Mukherjee and Chatterjee (120) use an empirical Bayes compromise 
between the case-only and case-control estimators, weighted by the estimated prob-
ability of the existence of a G−E association. In the context of a GWA study, various 
multistage designs are possible, such as using a case-only test to screen interaction 
effects and then confi rming that subset by a case-control test in a separate dataset. 
(In a single stage design, this would lead to a biased overall test unless one condi-
tioned the case-control comparison on the case-only one being signifi cant (121).) In 
practice, it is unlikely one would conduct a search for G×E interactions without also 
searching for main effects (thus requiring controls to be genotyped in the fi rst stage 
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anyway), but it would generally be more powerful to select SNPs for the second 
stage based on case-control comparisons of main effects and case-only comparisons 
of interaction effects. Use of hybrid case-only/case-control tests (121) could be even 
more powerful, however. More work along these lines is needed.

Other Design Issues

Family-based versus Population-based Designs
Most GWAS currently underway have adopted a traditional case-control design 
using unrelated individuals, in part because of its greater convenience and in part 
because of its greater power compared with family-based comparisons for genetic 
main effects (122). To further enhance power, some investigators have used cases 
with a positive family history to increase the expected proportion of cases carrying 
disease susceptibility alleles (123,124). While this device does improve power, it 
must be appreciated that it will lead to biased estimates of relative risk, because the 
frequency of the deleterious allele will be infl ated in family history positive cases 
relative to all cases (for whom an unselected control series would have represented 
the appropriate source population). Likewise, it must be appreciated that any GWA 
study aims to be an effi cient means of gene discovery, not estimation of genetic 
relative risks, which will tend to be exaggerated because only the largest observed 
effects are considered (125–127).

Another concern with case-control designs using unrelated controls is the 
potential for bias due to population stratifi cation, leading to both confounding 
and overdispersion of test statistics due to cryptic relatedness. There are now 
available various statistical techniques broadly known as “genomic control” 
(128) (described in the analysis section below) that rely on a large number of 
unlinked markers to adjust for population stratifi cation in the analysis. In a GWA 
study, there are more than enough markers available for use in such methods, and 
the chance that any truly causal association will be overadjusted by also being 
included in the genomic control panel (or by another SNP in that panel in strong 
LD with it) is miniscule.

Of course, family-based association tests (129)—case-sibling, case-parent triads, 
or generalized FBATs—have the attraction of being completely immune to pop-
ulation stratifi cation, although they tend to be less powerful. This has led various 
groups to propose hybrid designs for multistage scans. For example, the NCI Cancer 
Family Registries’ GWAS for breast and colon cancers uses cases with a positive 
family history and unrelated controls (unselected by family history) in the fi rst 
stage for maximum power, and family-based designs in the second stage to elimin-
ate false positives due to population stratifi cation. The fi nal analysis combines the 
information from both stages, taking account of the overlap between the case series 
used in each stage. Entirely family-based two-stage designs have also been pro-
posed (130,131). A particularly clever design uses the same data in both stages, but 
with tests that are statistically independent (129,132,133). In its simplest form, this 
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might involve case-parent triads, where in stage I a test based on between-family 
 comparisons of parental genotypes is performed to identify loci that would have the 
best power for detecting association in stage II using a within-family test of trans-
mission from parents to offspring. The FBAT class has recently been extended to 
handle multiple correlated SNPs (134,135) (as needed in a GWA study using dense 
markers) and copy number variants (136). Use of these methods led to the discovery 
of a plausible candidate gene for asthma (136). These methods are implemented in 
the PBAT software package (http://www.biostat.harvard.edu/~clange/default.htm). 
Of course, there are several disadvantages to family-based studies, including the dif-
fi culty of enrolling families, the extra cost of genotyping parents and/or additional 
offspring, not using between-family information effi ciently, and some proportion of 
families being uninformative.

Populations
Another consideration is the choice of population: continental, isolated, or admixed; 
single or multiple. Isolated populations have the advantage of greater genetic homo-
geneity and, depending upon their age, could have shorter- or longer-range LD than 
continental populations. Recently isolated populations will tend to have broad LD, 
which makes them attractive for regional discovery but of limited utility for fi ne 
mapping of any disease susceptibility alleles that are segregating in that population 
(137,138). Old isolated populations, such as Finland, tend to have short LD and have 
been useful for fi ne mapping. Admixed populations are characterized by a lack of 
recombination between haplotypes coming from the source populations, and thus 
will have distinctive LD patterns with high correlation at long ranges between SNPs 
that are informative of ancestry, but lower correlation for other SNPs. Admixture 
studies (139–142) can be attractive for initial coarse mapping for diseases that show 
very different rates in their source populations, such as for hypertension or prostate 
cancer in African Americans or diabetes in Hispanics. On the other hand, because 
of their complex and generally unknown ancestries, care must be taken to allow for 
hidden population stratifi cation that could generate false positives.

Some studies have exploited multiple ethnic groups, such as the Los Angeles/ 
Hawaii Multi-Ethnic Cohort Study (143), thereby allowing tests of both an overall 
effect of any genetic variant (race adjusted), as well as tests of heterogeneity between 
ethnic groups. Using multiple ethnic groups increases the potential for fi ne map-
ping since LD structure probably differs between ethnic groups, even between those 
with generally high LD, that is, Europeans and Asians (as compared to Africans). 
Evidence for heterogeneity by racial/ethnic group may indicate the need to geno-
type additional markers to probe for a causal variant affecting risk in all groups, 
especially in regions in which some markers are related to risk in one ethnic group 
but other (nearby) markers are related to risk in other groups. It may even be wise 
to explicitly allocate some of the type I error to tests for ethnic heterogeneity in the 
fi rst stage of a GWA study and to increase the marker density around such heteroge-
neous variants in the second stage.
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Control Selection
Case-control studies can be done in the standard fashion, with controls ideally rep-
resenting random samples from the source population of cases, or as nested case-
control or case-cohort studies within existing cohort studies. The latter designs are 
likely to yield more comparable case and control groups, reduce problems with 
recall bias if environmental factors are to be considered, and allow simultaneous 
use of controls for comparison with different case groups. Nevertheless, a number of 
GWAS currently underway have used “convenience” control groups that may not be 
geographically representative of the case groups under study or could differ in other 
ways that could lead to spurious associations, unless appropriate measures are taken 
to match controls from the resource on genetic ancestry (144).

Replication and Follow-up Studies
Failure to replicate has been a recurring problem with candidate gene association 
studies, hence a major concern about the new generation of GWAS (29,145). True 
scientifi c replication must involve something more than a repetition of the study 
on a second random sampling from the same population using the same methods 
(145,146). Indeed, it is well known that simply splitting a sample in half and requir-
ing signifi cance at level α in both halves is less powerful than a single analysis of 
the entire sample at signifi cance level α2 (the two analyses having the same overall 
type I error rate) (55,147). Replication should thus entail some elements of different 
populations being studied by different investigators using different methodologies 
(145). Although this risks failure to replicate in the case of real heterogeneity of 
effects, the potential benefi t in terms of insight into the generality and robustness 
of the association seems worth the price. In this sense, a traditional two-stage GWA 
study cannot be viewed as an internal replication, but simply as a more cost-effi cient 
form of gene discovery. Many granting agencies now expect investigators to discuss 
plans for follow-up investigations of any associations detected and some high- profi le 
journals are requiring replication studies as part of a single report of a genetic asso-
ciation (148,149). These could entail more detailed analyses of the same data, col-
laboration with other investigators to test the associations in different populations, 
bioinformatic characterization of the genomic regions identifi ed, in vitro or in vivo 
functional characterization, and so on.

One question that frequently arises is whether to restrict replication claims to the 
same marker detected in the initial GWA scan (“exact” replication) or to test addi-
tional markers in the region and allow association with any of them (appropriately 
adjusted for multiple comparisons) to be treated as evidence of replication (“local” 
replication). While it seems intuitively appealing to use the replication step as well 
for the purpose of fi ne mapping—that is, to see whether there is another marker in 
the region that shows even stronger evidence for association—Clarke et al. (146) 
have shown theoretically and by simulation that this can be counterproductive, 
since the increased penalty for multiple comparisons can defeat any possible gains 
in power for replication. Nevertheless, the inclusion of additional markers can be 
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advantageous in regions of relatively high LD when the original signal is weak, such 
as in regions where the coverage by the original panel is poor, but then any new 
associations discovered in the “replication” stage would require yet further confi r-
mation. In general, they recommend deferring fi ne mapping to a separate sample 
from that used for replication in order to overcome the “winner’s curse,” the bias 
of exaggerated effect estimates in samples that have demonstrated association. In 
a similar vein, associations fi rst discovered in a GWA study by imputed SNPs (as 
described below) should be confi rmed by direct genotyping, either in the original 
samples, or, better yet, in independent replication samples, before a genuine associa-
tion is claimed.

Analysis Issues

False Discovery Rates and Other Approaches to 
Multiple Comparisons
Clearly, with hundreds of thousands of tests (if not millions), the overriding statisti-
cal issue in any GWA study is the control of the false positive (type I) error rate. The 
traditional way of dealing with this problem is through a control of the “family-wise” 
error rate (FWER), the probability of making at least one false positive claim. By 
setting the threshold for signifi cance extremely high, the FWER can be controlled. 
The simplest such approach is the Bonferroni method of dividing the genome-wide 
signifi cance level α by the number of tests M to be performed to obtain the sig-
nifi cance level for any one of them. But this is overly conservative when applied to 
high-density SNP chips, as there is a substantial correlation between tests due to 
LD, so the “effective number of tests” is substantially smaller than the number of 
SNPs tested. Pe’er et al. (150) have estimated the multiple testing burden from test-
ing all HapMap SNPs (indirectly with haplotype-based tests, as described below) 
to be roughly equivalent to about 1 million independent tests in Caucasian popula-
tions or about 2.2 million in African populations (or for common SNPs, 500,000 in 
Caucasians and Asians and 1 million in Africans). Nevertheless, the concept of an 
“effective number of tests” has been criticized (151) as not refl ecting adequately the 
diversity across loci in the local LD structure. While a permutation test is in prin-
ciple the gold standard, it is computationally demanding on a genome-wide scale. 
Conneely and Boehnke (151) provide a way of estimating the multivariate normal 
tail probabilities that closely approximates the permutation probabilities at a frac-
tion of the computing time. However, their method is limited to a few thousand 
SNPs, and hence is not applicable to a GWA study; Dudbridge and Gusnanto (152) 
provide an alternative approach, still relying on permutation testing, but fi tting the 
simulated distribution of minimum p-values to a beta distribution to obtain a more 
accurate estimate of the “effective number of tests.”

An alternative paradigm has become widely used in the gene expression fi eld, 
where one expects the yield of true positive associations to be quite high; thus, 
one is less concerned about controlling the total number of false positives, but 
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only as a proportion of all reported associations. This idea is captured in the False 
Discovery Rate (FDR) (153,154)—the expectation of the proportion of all reported 
associations that are truly null. Various criteria have been proposed for selecting a 
threshold that controls the FDR, such as a step-up algorithm that begins by select-
ing the most signifi cant association at level α/M, then the next most signifi cant at 
level 2α/M, and continuing in this manner until the fi rst nonsignifi cant association 
is encountered. However, for GWAS, the expected yield of true positives is gener-
ally expected to be very low, in which case, the FDR becomes nearly identical to the 
FWER (155); see references 156–158 for further discussion in the context of GWAS. 
Using the empirical distribution of p-values to estimate the false positive rate is part 
of the q-value method (83,159,160). Trying to combine correction for overdispersion 
of p-values due to other problems such as inadequate control selection or hidden 
population stratifi cation while simultaneously using the distribution of p-values to 
compute the FDR empirically seems challenging, however.

Effi cient Methods of Signifi cance Testing in 
Two-Stage Designs
Two-stage designs pose particular challenges to signifi cance testing in the fi nal anal-
ysis of the combined data. The basic p-value to be computed is the probability that a 
given SNP would have been deemed “promising” at the fi rst stage and that the com-
bined data would show signifi cance at a genome-wide level given that it was selected 
for testing in the second stage, all computed under the null hypothesis that it is not 
in fact associated with disease. The various two-stage design papers discussed ear-
lier have shown how to compute this probability under simplifying assumptions and 
thereby optimize the design, but these approximations are unreliable for analysis of 
real data. Among other assumptions is that of independence across SNPs, which is 
necessary to derive the appropriate cutoff for genome-wide signifi cance. An obvious 
way to avoid having to make such assumptions is some form of a permutation test. 
For a single-stage design, this is straightforward: one could simply hold the geno-
types fi xed (thereby maintaining their LD structure) and randomly permute the phe-
notypes in a standard case-control design (or analogous methods for family-based 
studies). In a two-stage design, this is not so straightforward, however, as one must 
permute the entire analysis; but a random permutation of the stage I data would yield 
a different set of SNPs to be tested in stage II, and these genotypes are not available 
for permuting in stage II! Various approximations to this problem have been pro-
posed which are computationally effi cient and statistically valid (161–164). However, 
methods based on computing an “effective number of tests” for a given platform have 
typically relied on permutation tests applied to data sets (e.g., the HapMap) where 
very large numbers of SNPs are genotyped in relatively small numbers of subjects. 
There is an implicit assumption in these calculations that the null distribution of the 
minimum p-value for a group of tests does not depend very strongly on the number 
of subjects in the analysis but only on the LD pattern between the tests considered. 
This assumption motivates the method of Dudbridge (165), in which part of the stage 
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I data is reserved (when calculating the null distribution of the permutation test) for 
mimicking the effect of having two stages of genotyping.

Haplotype Associations and Tests for Association 
with Untested SNPs
Most single-SNP associations detected in a GWA study are unlikely to be causal 
and more likely to refl ect LD with some other variant in the region (if not a false-
positive). This can be tested either by adding fl anking markers surrounding each 
hit from stage I to search for SNPs that might be more strongly associated with 
the trait or by conducting haplotype-based association tests (166,167). The HapMap 
data now makes it feasible to test the associations not just with the SNPs on the cho-
sen platform, but with most of the roughly 6 million common SNPs in the human 
genome by using multimarker tags (74,168–171). (However, it remains to be seen 
how well such methods work in populations for which HapMap data are not avail-
able.) Several authors (172–180) have described methods for imputing HapMap SNPs 
based on LD patterns, in some cases augmented with haplotype inference, popula-
tion genetics models, or additional resequencing data. For example, Nicolae et al. 
(179) use HapMap data to impute genotype probabilities for untyped SNPs based on 
haplotypes of fl anking SNPs that have been typed; this approach is implemented in 
the TUNA software (180). Marchini et al. (177) use estimates of local recombination 
rates from HapMap and a hidden Markov model to test for association with hypo-
thetical (unknown) variants in the region. Crucial to the validity of these approaches 
is to properly allow for the uncertainty in the imputed genotypes rather than simply 
using the most probable one; Bayesian regression approaches are sometimes used 
for this purpose (178), although use of the expected allele dosage yields a powerful 
score test with the correct type I error (181). (Nevertheless, as noted earlier, the ulti-
mate test of an association with an imputed SNP is confi rmation in an independent 
sample by direct genotyping.) It may also be possible to test for associations with 
rarer polymorphisms by using long-range haplotypes (182). As with tests of ethnic 
heterogeneity and G×E interactions, however, there is an obvious trade-off between 
the multiplicity of tests and the chances that these additional tests will yield discov-
eries not captured by single SNP associations. The optimal balance between the two 
remains a topic for further research.

Allowing for Hidden Population Structure
An early report from the Wellcome Trust Case-Control Consortium (183) highlighted 
the potential overdispersion that can result from population stratifi cation, even in the 
relatively homogeneous population of Great Britain. The original genomic control 
method (128) is based on adjusting the null distribution of test statistics by an over-
dispersion factor that can be estimated from the distribution of a set of null mark-
ers. Structured association (184) instead uses “ancestrally informative” markers to 
infer the ethnic origins of each individual in the study and adjust for these estimated 
ancestries as confounders in the analysis of the SNPs of interest. More recently, 
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methods based on random effects models (185), principal components (186), and 
Bayesian logistic regression (187) have been developed that are both computationally 
effi cient for use on a genome-wide scale and more powerful than either traditional 
genomic control or structured association. At their core, the random effects and prin-
cipal components methods use the genotyped SNPs to empirically estimate the relat-
edness between any two subjects by computing a statistic (the kinship coeffi cient) 
that summarizes how similar two subjects’ SNPs are. The resulting kinship matrix 
is then directly used as a part of the model for the correlations between outcomes in 
the random effects method, or else the leading eigenvectors of the kinship matrix are 
extracted and used as additional fi xed effects in the model for the outcomes in the 
principal components approach. Rakovski and Stram (personal communication) pro-
pose using the entire kinship matrix, rather than the leading principal components 
alone, in a modifi cation of the Cochran-Armitage test for case-control studies; this 
seems to provide correction methods that encompass some of the strengths of both 
the original genomic control method and the principal components method.

Very large studies are capable of detecting very small RRs (recall the earlier dis-
cussion of the 1.05–1.15 RRs for diabetes (32)). However, the magnitude of biases 
due to population stratifi cation or other sources are independent of sample size—
they simply become more signifi cant with larger samples. In principle, the vari-
ous methods of adjustment for population stratifi cation should perform even better 
in larger samples at removing bias, but only if the models are correctly specifi ed. 
Very small risks are still potentially subject to residual confounding, so more and 
more false associations due to residual confounding will attain the signifi cance 
threshold as sample sizes grow, and great caution should be exercised in interpret-
ing very small effect sizes. Of course, the power to detect true associations will also 
grow with sample sizes, but not as fast as the power to detect biased associations 
(Table 8.3), so the false discovery rate increases with sample size, at a rate depend-
ing upon the prevalence and extent of uncontrolled confounding or other biases.

Gene–Gene Interactions
Analyses of G×E interactions are likely to be limited to a modest number of envi-
ronmental factors already established as risk factors for the particular disease under 
study. This is not the case for G×G interactions, for which the purpose of the study 
is, after all, gene discovery. Of course, to the extent that causal genes are already 
known for a disease, one might wish to exclude subjects carrying mutations in these 
genes or to include tests of interaction of these genes with the SNPs in the scan as 
higher priority tests. But how should one go about prioritizing the enormous number 
of possible G×G interactions (125 billion pairwise interactions for a 500,000 SNP 
scan)? Should testing for G×G interactions be attempted at the fi rst stage, or lim-
ited to the subset of SNPs with signifi cant main effects in stage I? Although at fi rst 
blush, it might seem both computationally and statistically effi cient to limit the test-
ing of interactions to those SNPs that showed signifi cant main effects at some level, 
this strategy would fail to fi nd interactions with little or no main effects. In a widely 
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quoted paper, Marchini et al. (188) demonstrated that exhaustive testing of all pos-
sible interactions was computationally feasible and more powerful than limiting the 
search to pairs with signifi cant main effects across a range of interaction models. 
This fi nding was confi rmed for a broader range of models by Evans et al. (189), who 
showed that this strategy was also more powerful than testing interactions of each 
signifi cant SNP with all others. However, Kooperberg et al. (190) proposed an alter-
native two-stage procedure, limiting the testing of interactions to pairs of SNPs that 
show signifi cant main effects and then correcting the p-value only for the number 
of interaction tests actually performed at the second stage; they concluded that their 
two-stage analyses could be considerably more powerful than single-stage scans for 
all possible interactions, because the search is restricted to a more parsimonious set 
of interactions (additive × additive) and because a less conservative adjustment for 
multiple comparisons is used. Newer machine learning and Bayesian search strate-
gies also appear promising (191–193).

Exploring Multigenic Pathways
GWAS are intended primarily as a tool for gene discovery, not for testing a priori 
hypotheses. Nevertheless, given the strong prior belief that most complex diseases 

Table 8.3 Variation in Type I and II error and false discovery rates with 
sample size for various degrees of bias in the distribution of true relative risks*

Number 
of Biased 
Associations

Mean (SD) 
of Biased log 

[log(RRs)]

Sampling 
SD in True 

log(RR)

Type I 
Error

Type II 
Error

False 
Discovery 

Rate

10,000 –3.0 (0.25) 0.4 0.0005 0.674 0.068

0.3 0.0018 0.830 0.173

0.2 0.0109 0.959 0.529

0.1 0.0747 0.998 0.881

10,000 –4.0 (0.25) 0.4 0.0001 0.677 0.010

0.3 0.0001 0.829 0.010

0.2 0.0002 0.956 0.020

0.1 0.0003 0.998 0.215

2,000 –3.0 (0.25) 0.4 0.0001 0.659 0.021

0.3 0.0004 0.827 0.045

0.2 0.0023 0.956 0.191

0.1 0.0148 0.999 0.595

50,000 –4.0 (0.25) 0.4 0.0001 0.678 0.018

0.3 0.0002 0.830 0.023

0.2 0.0006 0.958 0.062

  0.1 0.0138 0.998 0.578

*Based on simulations of 100,000 markers, of which 1,000 are true with a mean log(RR) of –1.6 and SD log(RR) 
of 0.5, SD of biased log(RRs) 0.25, critical value Zα/2 = 4.055.
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result from the interplay of multiple genes and multiple environmental factors acting 
along one or more related pathways, it is natural to ask how one should follow up 
on the collection of main effects and interactions that are found in a GWA study. A 
full treatment of this topic is beyond the scope of this chapter, but it seems obvious 
that biological understanding of potential mechanisms would greatly enhance the 
credibility of any unanticipated discoveries. While there will always be the tempta-
tion to create post hoc interpretations of intriguing fi ndings, this behavior should be 
avoided in favor of hypothesis-driven, yet fl exible, modeling strategies (194–196). 
For example, using the many available ontology databases that annotate genes, 
pathways, protein–protein interactions, and so on, one could build a hierarchical 
modeling strategy that incorporates such knowledge systematically as priors on the 
parameters of an empirical model for the epidemiologic data (105,197,198). While it 
might be possible to incorporate such prior knowledge in the discovery stages of a 
GWA study (90), the computational burden of doing so on a genome-wide scale is 
likely to preclude any thorough pathway-based modeling. It can, however, be done 
as one of the follow-up activities, once the set of plausible candidate associations 
and interactions has been suitably winnowed down.

In some instances, it may also be possible to gain a deeper understanding of the 
underlying biology by investigating multiple related phenotypes, such as asthma, 
lung function and related intermediate immunological phenotypes (199), colorectal 
polyps and cancer (200), or diabetes and related metabolic syndrome traits (28). For 
the latter, three reports (20,201,202) of GWAS have recently demonstrated associa-
tions of the FTO gene with both diabetes and obesity, suggesting a common path-
way. FTO is expressed in the hypothalamus, a key part of the brain that infl uences 
appetite (203). Of course, there is always the risk that correlated phenotypes could 
generate heterogeneity in results if a gene is associated with a different trait than the 
one studied and the correlation between traits differs across populations (204). This 
appears to be the explanation for the heterogeneity of results for FTO and diabetes, 
since the effect of the gene appears to be mediated through obesity (201), and hence 
studies that targeted lean individuals would have little power for detecting an asso-
ciation with diabetes (205).

Other Issues

GWAS for High-Dimensional Phenotypes
If GWAS for a single phenotype weren’t complicated enough, consider the latest 
generation of studies involving investigation of the genetics of gene expression on 
a genome-wide basis (206–211). These typically involve testing the association of 
tens of thousands of gene expression probes on cell lines from the HapMap subjects 
with hundreds of thousands of SNPs—billions (if not trillions) of signifi cance tests 
in total! Clearly some more effi cient methods for mining such extensive matrices of 
associations are needed to look for patterns that might identify cis- or trans-acting 
transcription factors. One such approach is based on Bayesian hierarchical modeling 
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of the means and covariances of expression traits in nuclear family data to test for 
association and linkage respectively, with the models for means and for covariances 
both involving mixtures of null and non-null effects in the rows (expression probes) 
and columns (SNPs) (212). When applied to the Morley et al. (207) data, the method 
identifi ed a single SNP on chromosome 11 that appeared to control many expression 
traits on the same chromosome, suggesting a possible master regulatory region.

Genotyping Error
The infl ated type I error rate that can result from genotyping errors in linkage and 
association studies has been recognized for some time and various methods of cor-
rection have been developed (see Reference 213 for a review). Clayton et al. (183) 
were perhaps the fi rst to demonstrate the potential impact of genotyping error in 
GWAS in the context of a large study of type 1 diabetes. They showed how differ-
ences in sample handling for cases and controls could produce differential genotype 
misclassifi cation, leading to seriously biased tests, and proposed an algorithm for 
scoring genotype calls separately in cases and controls (and stratifi ed by center). A 
subsequent paper (214) showed that a refi nement of their algorithm using “fuzzy” 
calls, rather than treating uncertain genotypes as missing data, substantially reduced 
the overdispersion of the test statistics.

A common practice is to test for Hardy-Weinberg equilibrium among controls 
and exclude from a scan any SNPs that are out of balance as an indicator of poten-
tial genotyping error. This practice has been widely recommended by various 
authorities and journals (e.g., References 145,148,215,216 and many others, and also 
see Reference 217 for a review). Nevertheless, this can be counterproductive and 
lead to infl ated type I error rates (217). Unless genotyping error is differential, the 
Cochran-Armitage test for trend in proportions will retain the correct test size under 
misclassifi cation, although the simple chi-square test for allelic association is to be 
avoided.

Software and Bioinformatics Challenges
In addition to the theoretical issues discussed above, one must consider the practical 
challenges in managing the enormous amount of data generated by a GWA study 
and the need for meticulous inspection of the raw data at every stage of the process 
for possible artifacts (183,214,218). Some software tailor-made for this purpose is 
starting to emerge (180,219–221) (http://biosun1.harvard.edu/~fbat/fbat.htm). The 
ENDGAME Consortium’s web site (http://hgmacpro.uchicago.edu/pmwiki/pmwiki.
php?n=Main.SoftwareInteroperabilityFileFormatAmpDataStandards) includes links 
to other relevant software and bioinformatics resources.

Data Sharing and Protection of Confi dentiality
Many granting agencies—and notably in the United States, the National Institutes 
of Health—have adopted broad data sharing policies aimed at making the source 
data for publicly funded studies available to the broader research community while 
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protecting participants’ confi dentiality and the original investigators’ intellectual 
property rights (222). Needless to say, these laudable and widely accepted goals can 
confl ict with each other, particularly for GWAS (223). For example, genotypes on 
a genome-wide scale are suffi cient to uniquely identify any individual whose DNA 
may already be available in another biobank or database, such as a forensic or health 
insurance databank. The informed consents obtained at the time subjects originally 
agreed to participate in a study may not have anticipated future requirements for data 
sharing. In response to a recent request for public comment on the proposed data 
sharing policies, various organizations (224) have provided thoughtful discussions of 
these issues and the policies are continuing to evolve, seeking a reasonable balance.

Priorities for Allocating Limited Research Funds
By any standard, GWAS are expensive, so granting agencies obviously have an 
interest in funding only the most promising proposals (47,52). The NIH Center for 
Inherited Diseases Research, which provides genotyping services for NIH-funded 
studies, has enumerated a number of criteria for access (http://www.cidr.jhmi.edu/
app_access_gwa.html), including

Signifi cance and complexity of the trait and the need for a high-throughput  ●

whole genome association study
Quality and completeness of phenotyping and exposure measures ●

Strength of the evidence for a genetic component for the trait and the antici- ●

pated size of a detectable genetic effect
Appropriateness of the study design and population for the specifi c trait map- ●

ping project
Power of the sample set to detect a genetic effect ●

Plans for data management and data analysis ●

Plans for follow-up studies to identify the genetic variant(s) ●

Clearly only time will tell whether the yield of novel and replicated fi ndings from 
the public and private sectors’ investment in GWAS was worth the cost, but early 
reports from the fi rst generation of such studies are encouraging. As costs for this 
new technology continue to fall, it is reasonable to expect that the bang for the buck 
will continue to improve, unless, after the low-hanging fruit is harvested, a point 
of diminishing returns is reached. Indeed, the possibility that the two-stage design 
is already obsolete in light of falling chip costs is already being discussed. Newer 
chips are being designed to offer better coverage of copy number variants (225–229), 
a potentially major source of genomic variation that has only recently been investi-
gated in terms of associations with disease (136,230–232). Even newer technologies, 
such as genome-wide sequencing, proteomic, metabolomic, methylomic, and other 
-omic technologies, are expected to soon become available at a reasonable cost and 
yield further insights. The “Thousand Dollar Genome” (http://grants.nih.gov/grants/
guide/rfa-fi les/RFA-HG-04-003.html) is anticipated to be a reality before long and 
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will doubtless make it possible to test such hypotheses as the multiple rare variants 
discussed earlier, which is beyond the reach of the current tag-SNP-based GWAS 
approach, with its focus on common variants.
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Introduction

Advances in the catalogs of common variation in the human genome over the past 
5 years, combined with new high-throughput genotyping technologies, have dra-
matically improved our ability to test for associations between common genetic 
variation and disease risk. Genome-wide association studies (GWAS) have led to the 
identifi cation of over 140 new genetic associations for over 40 diseases and pheno-
types in the past 3 years alone. This burst of discovery shows no sign of abating as 
GWAS are conducted for additional phenotypes, and samples sizes are increased for 
most of the phenotypes already studied (1,2).

However, the majority of GWAS to date have tested for association between 
genetic markers and traits one marker at a time, averaging over variation at other 
loci and variation in environmental exposures. As a result, these studies may have 
failed to detect loci that only infl uence disease in the presence of a particular genetic 
or environmental exposure. Moreover, average measures of the effect of a functional 
polymorphism may obscure differences across strata defi ned by genetic and environ-
mental factors that have important biologic, clinical, or public health implications.

“Gene–environment interaction” is widely accepted to be ubiquitous in the devel-
opment of most complex human traits including diseases, in the broad sense that 
both “nature” and “nurture” contribute to the development of these traits. Similarly, 
the genetic infl uence on most common phenotypes and diseases is usually thought 
to result from the combined action of alleles in multiple genes (“gene–gene inter-
action”). In this chapter we discuss the study of gene–environment and gene–gene 
interactions in genetic epidemiology. We start with a review of the defi nition of 
statistical gene–environment interaction, which is what is typically measured and 
reported in genetic association studies, and contrast this with specifi c theoretical 
and general intuitive models for biologic interaction. We then describe how these 
concepts can be extended to the study of gene–gene interactions and review avail-
able study designs, with particular emphasis on estimating joint gene–environment 
and gene–gene effects.

9
The challenge of assessing complex gene–
environment and gene–gene interactions

Peter Kraft and David J. Hunter
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Gene–Environment Interaction

Statistical Interaction
The most commonly used statistical defi nition of gene–environment interaction 
refers to departures from additivity of genetic and environmental effects on a partic-
ular outcome scale (3). For simple dichotomous genotypes (e.g., carrier G = 1 versus 
noncarrier G = 0) and exposures (exposed E = 1 versus unexposed E = 0), the pat-
tern of mean trait values across the four gene–environment strata can be written as:

 f E Y G E G E G EG E GE| , ,[ ]( ) = + + + ×� � � �  (9.1)

where E[Y|G,E] denotes mean trait value conditional on G and E and f(⋅) is a link 
function that defi nes the outcome scale. For example, if Y is a binary outcome (1 if 
diseased, 0 if not) and f(⋅) is the identity f(x) = x, then Equation 9.1 models the prob-
ability of disease risk in terms of G and E on the absolute scale; if f(⋅) is the logit 
function f(x) = log(x/(1 − x)), then Equation 9.1 models the probability of disease on 
the log odds scale. For a particular link f(⋅), G and E are said to interact statistically 
if βGE ≠ 0 (i.e., if f(E[Y|G = 1,E = 1]) is not simply the sum of the genetic effect βG 
and the environmental effect βE).

This dependence on the link function f(⋅) complicates the interpretation of formal 
statistical tests for “gene–environment interaction” (i.e., tests of the null hypoth-
esis βGE = 0), since different trait scales can lead to different conclusions about the 
presence or absence of a nonadditive interaction. For example, Figure 9.1 shows the 
same pattern of gene–environment effects on disease risk on two different scales: 
the absolute scale (left panel) and the log odds scale (right panel). In this case, there 
is no departure from additivity on the absolute risk scale, while there is a departure 
on the log odds scale. A converse example, with no departure from additivity on the 
log odds scale but a departure on the absolute scale, is easily constructed.

To make matters more confusing, departures from additivity on the absolute scale 
are often colloquially referred to as “additive interactions,” and departures from addi-
tivity on the log odds or log risk scale as “multiplicative interactions.” (Moreover, 
we note that the concept of “additive gene–environment (or gene–gene) interactions” 
is distinct from but related to the concept of an “additive genetic model.” The latter 
refers to the coding of the genotype variable G in Equation 9.1: typically, when G is 
coded as the number of a particular allele carried (e.g., 0, 1, or 2 copies of the minor 
allele), the model is called additive. So as with gene–environment interactions, addi-
tivity depends on the outcome scale. In fact, different genetic models—that is, dif-
ferent codings for G—correspond to different statistical models for how alleles at 
the same locus interact. Gene–gene and gene–environment interactions refer to how 
alleles at different loci interact, or how alleles interact with exposure.)

Interaction patterns such as those presented in Figure 9.1 are sometimes called 
“removable” interactions, because a monotonic transformation of the outcome 
scale results in an additive model in G and E. There are other, “nonremovable” 
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interactions that are not scale dependent, such as the “crossover” interaction illus-
trated in Figure 9.2c, or “pure interactions” where, for example, the risk genotype 
has no effect in unexposed individuals, but does have an effect among the exposed 
(Figure 9.2b). While one can test for a crossover effect explicitly (4), such interac-
tions are quite rare in human epidemiology (5). There is no statistical test specifi c to 
pure interactions.

Biologic Interaction
On top of the confusion generated by different outcome scales potentially leading to 
different conclusions regarding statistical interaction, there is a disconnect between the 
statistical defi nition of interaction and notions of biologic interaction (3). Often, “bio-
logic interaction” is not precisely defi ned but is based on the idea that the gene product 
and the exposure (or some downstream product of the exposure) physically interact. 
For example, carriers of the CCR5-delta32 mutation have lower risk of HIV infection, 
because the mutation changes the form of the CCR5 coreceptor, making it diffi cult 
for HIV to enter immune cells (6). It has also been hypothesized that carriers of the 
slow acetylator allele of the NAT2 gene are less able to detoxify carcinogenic aromatic 
amines in tobacco smoke, leading to a “gene–smoking interaction” (7). However, it 
is very diffi cult to make inference about the underlying disease mechanism from the 
observed pattern of responses across genetic and environmental exposures, because 
the observed pattern will be consistent with many qualitatively different mechanisms 
(3,8). Strong assumptions are needed to interpret the absence or presence of statistical 
interaction on a particular scale as absence or presence of a biologic interaction in a 
specifi c biologic model (e.g., the “two hit” model for carcinogenesis).

Alternative defi nitions of “biologic interaction” are based on specifi c mathemat-
ical models for causality, such as the suffi cient component cause or counterfactual 

Figure 9.1 Gene–environment interaction model. The same gene–environment interac-
tion model for a binary genotype and continuous environmental exposure on two different 
scales: (a) absolute risk, and (b) log odds of risk. Solid and dashed lines denote two distinct 
genotypes.
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frameworks (3). Loosely, these approaches look for individuals whose response 
under different, counterfactual conditions (e.g., if they were born with genotype 
G = 0 instead of G = 1, holding all else constant) depends on both their genetic 
and environmental exposures. For example, the existence of individuals who would 
only become diseased if they were both carriers and exposed implies the presence 
of gene–environment interaction in this framework. For binary disease and binary 
genetic and environmental exposures, departures from additivity on the absolute 
scale imply the presence of interaction in the counterfactual sense just described 
(although additivity does not generally imply the absence of interactions) (3,9,10). 
However, the qualitative implications of detecting interactions in this sense are not 
clear, other than stating that for some people, both genetic and environmental risk 
factors play a role in disease development—something widely assumed a priori (in 
fact by defi nition) for complex diseases.

Allowing for Gene–Environment Interaction Without 
Testing for Specifi c Forms of Interaction
Regardless of the presence of statistical interaction or diffi culties inferring biologic 
mechanism from epidemiologic data, it will often be useful to calculate and present 
stratum-specifi c trait summaries: for example, for continuous traits, mean values 
of the trait for each category of gene–environment cross-classifi cation. For binary 
traits, absolute incidence rates (if available) or relative measures such as relative 

Figure 9.2 Three qualitative patterns of gene–environment interaction. The y-axis rep-
resents a trait value (e.g., mean height, disease prevalence, expected survival); the x-axis 
represents two environmental conditions; the black bars denote noncarriers and the gray 
bars represent carriers. (a) gives an example of a removable interaction. (b) and (c) are non-
removable interactions (“pure” and “crossover” interactions, respectively).

T
ra

it
 v

al
u

e

Environmental conditions
Black = noncarriers
Gray = carriers

Unexposed Exposed Unexposed Exposed Unexposed Exposed

(a) Removable interaction (b) Nonremovable pure
      interaction

(c) Nonremovable
     crossover interaction



Assessing Complex Gene–Environment and Gene–Gene Interactions 169

risks or odds ratios can be displayed. This presentation has the advantage of being 
“closest to the data” while allowing the reader to observe the joint action of geno-
type and environment (11). In the case of binary phenotypes and binary environ-
mental and genetic exposures all the relevant data can be displayed in a 2×4 table. 
This presentation may be particularly helpful in evaluating the public health benefi ts 
of different screening or intervention programs (e.g., conducting genetic testing only 
among the exposed; only intervening to remove exposure among carriers; or a gen-
eral program to remove exposure regardless of genotype) (3,12).

A similar approach that leverages potential gene–environment interaction with-
out being tied to a particular scale (or drawing inference about gene–environment 
interaction per se) has been proposed in the context of testing large numbers of 
genetic variants for association with a trait (e.g., a GWAS) (13). Rather than testing 
each variant for association marginally (i.e., ignoring data on environmental expo-
sures), or testing for gene–environment interaction on some scale (i.e., testing the 
null hypothesis that βGE = 0), this approach tests the joint null of no main genetic 
effect or gene environment interaction (βG = βGE = 0). This test has been shown to be 
more powerful than either the marginal test or the standard test for “multiplicative 
interaction” (i.e., departure from additivity on the log odds scale) in a wide range of 
situations, such as when the risk variant has a modest effect among unexposed and a 
larger effect among exposed (13).

Analytic Issues
The scale used to defi ne gene–environment interactions is often chosen for con-
venience, for example, the logistic model is typically used to analyze case-control 
data, making the log odds scale a natural choice. Departures from additivity on the 
log odds scale for two binary factors (carriers versus noncarriers, exposed versus 
nonexposed) are easily tested in logistic regression by including the product of the 
genetic and environmental exposure variables in the odds model: the statistical sig-
nifi cance of this “interaction term” can be assessed using standard Wald, score, or 
likelihood ratio tests. We note that departures from additivity on the absolute scale 
can also be tested using case-control data using the interaction contrast ratio (3), 
although this approach may be particularly sensitive to the rare disease assumption 
(required so that odds ratios approximate relative risks) (14).

For more fi nely cross-classifi ed data (multiple exposure categories, multial-
lelic markers such as haplotypes of linked SNPs or multiple genes), it is usually 
impractical to fi t such saturated models, as many strata will have few observations, 
leading to highly variable (or inestimable) stratum-specifi c parameter estimates 
(11,15). Thus, some form of statistical modeling is necessary. For example, hier-
archical modeling could be employed, treating the “fi rst-level” stratum-specifi c 
parameters as random variables and then regressing these on “second-stage” vari-
ables (e.g., groupings of genes based on function or decompositions of environ-
mental exposures into their biologically active components) (16,17). Additional 
levels of external knowledge (e.g., biochemical characteristics or predictions of 
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the functional impact of specifi c types of gene variants) can be included in the 
“ second-stage” model; these improve model fi t if the details are accurate and rel-
evant, but may harm model fi t if they are not. Alternatively, a large number of 
potential working models based on simple “main effects plus cross-product inter-
action” parameterizations can be explored and summarized using Bayesian model-
selection and model-averaging techniques (18).

The principal objective of both these approaches is to reduce overfi tting while 
producing parsimonious and useful summaries of the data. Another approach (“tox-
icokinetic modeling”) builds very detailed models for the joint action of genes and 
environmental exposures (e.g., by incorporating information on substrate-specifi c 
kinetics for different enzyme isoforms derived from in vitro experiments) (19).

Diffi culties
In practice, the utility of gene–environment interaction analyses may be limited in 
observational studies by several factors. First, there are limits on what we can mea-
sure. Setting aside exposure measurement error and the fact that we often do not 
genotype the causal variant directly (20), what we observe are patterns of distribu-
tion of the gene, environmental exposure, and trait at the population level. As we dis-
cussed above, this is very different from the concept of biologic gene– environment 
interaction, where, for example, gene product and (some metabolite of) the exposure 
physically interact in some biochemical reaction.

Observational studies are also limited by our inability to assign subjects ran-
domly to extreme exposures that rarely occur naturally (or not at all), and our inabil-
ity to study subjects with genetic variants that do not occur naturally (because they 
have been fi xed by selective pressure). In an article in the early 1970s, before the 
advent of dense marker maps and cheap genotyping, Richard Lewontin presented 
a number of plausible gene–environment interaction patterns (Figure 9.3) and dis-
cussed how they made it diffi cult to apportion the causes of a trait to either genes 
or the environment (21). His examples remain instructive now that it is possible to 
measure germline variants of interest directly. For example, if environmental expo-
sure is limited to “typical” ranges as in Figure 9.3a or 9.3b, then there will either 
be no genetic main effect or gene–environment interaction, or these will be quite 
diffi cult to detect. If only the high extremes (>95th percentile, say) of the exposure 
are sampled, then for the pattern described in Figure 9.3a, there will be genetic and 
environmental main effects but no (or a very small) gene–environment interaction 
effect. On the other hand, if low and high extremes (<5th and >95th percentile) are 
sampled, then there will be a strong, nonremovable gene–environment interaction. 
The fact that we may not sample “interesting” environmental or genetic variation 
has implications for study design, and also for the replication of observed gene–
environment interactions: if the range of exposures in the replication study does 
not overlap the range in the original study, it will be hard to interpret the pres-
ence or absence of a gene–environment interaction as either successful or failed 
replication.
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When the goal of the study is to screen a number of polymorphisms for those 
that are associated with a trait, the relative power of the marginal genetic and 
gene– environment interaction analyses will depend on the true pattern of joint 
gene– environment effects (13). For many patterns, the marginal test will have 
greater power than the gene–environment interaction test, even when there is a 
gene–environment interaction. Finally, large sample sizes (with accurate, prefera-
bly  prospectively collected environmental exposure measures) are needed to detect 
modest gene–environment interaction effects. This presents a serious practical chal-
lenge; gene–environment interactions are harder to demonstrate in the observational 
world of human epidemiology than in the experimental setting of the agricultural 
research station.

Despite these challenges, consideration of gene–environment interactions can 
be useful in the design, analysis, and interpretation of genetic association studies. 
In situations where a particular polymorphism with known functional effects is 
 studied—for example, polymorphisms in drug metabolizing genes like CYP2C9 or 
carcinogen metabolism genes like NAT27—investigators may hypothesize a priori 
that the polymorphism has a stronger effect on (or only infl uences) the studied trait 
in the presence of a certain exposure. Hence, depending on the goal of the study, 
investigators may wish to oversample (or even exclusively sample) subjects who 
have been exposed (4), or analyze genetic effects stratifi ed by exposure. Even when 
there are no specifi c hypotheses about specifi c polymorphisms based on known 
 function—as in candidate gene studies using “tagging SNPs” or genome-wide asso-
ciation studies—allowing for gene–environment interaction may boost power to 
detect polymorphisms associated with the trait (13). Often, simply describing the 
pattern of disease risks or trait averages across levels of genotype and environmental 

Figure 9.3 An illustration of two patterns of gene–environment interaction. The form (or 
presence) of gene–environment interaction depends on the range of observed environmental 
exposures. The y-axis represents mean trait value for subjects with two genotypes (solid and 
dashed lines) at different exposure levels. The gray line shows the distribution (probability 
density) of the environmental exposure.
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exposure can be very useful, regardless of testing specifi c hypotheses pertaining to 
statistical gene–environment interaction, since such information may have impor-
tant clinical or public health implications.

Mendelian Randomization

If the primary scientifi c question is not “how do this gene and this environmental 
exposure jointly affect trait distribution?” but simply “does this environmental expo-
sure affect trait distribution?” then it may occasionally suffi ce to test the marginal 
association between gene and disease—even if the principal focus is on the environ-
mental factor. This is the concept behind “Mendelian randomization,” illustrated in 
Figure 9.4a (22–24). If an environmental exposure infl uences risk of disease through 
an intermediate phenotype that is also infl uenced by variation in a known gene, then 
the association between the exposure and disease can be tested by examining the 
association between the gene variant and the disease. This approach—a form of 
instrumental variable analysis (25) that was fi rst proposed to test whether the rela-
tionship between serum cholesterol and cancer is causal by studying variants in the 
apolipoprotein A (APOE) gene that alter serum cholesterol levels (26,27)—has sev-
eral potential advantages. Accurate measurements of the environmental exposure 
may be unavailable or prohibitively expensive, and genotypes are not susceptible to 
recall bias and other forms of confounding that may give rise to biased exposure–
disease associations, particularly in retrospective case-control studies. However, 
other sources of bias are possible in genetic association studies that might give rise 
to spurious genotype–phenotype associations (e.g., confounding by ethnicity or 
“population stratifi cation”) (23,28,29). Furthermore, the genetic variant may infl u-
ence more than one intermediate phenotype, so the association between variation in 
the gene and disease may not be due to the same intermediate phenotype affected 
by the environmental exposure, as illustrated in Figure 9.4b; thus, an association 
between the genetic variant and the trait may not guarantee a causal role for the 
exposure. Perhaps the major limitation of the concept of Mendelian randomization 
is that most environmental exposures of interest do not have an intermediate pheno-
type that is also known to be substantially infl uenced by a specifi c genotype; thus 
the number of instances in which this strategy can be employed is limited.

Figure 9.4 A cartoon depiction of “Mendelian randomization” after Thomas and Conti (23).
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Gene–Gene Interaction

Background
Similar to the broad agreement that both “nature” and “nurture” infl uence most 
phenotypes and diseases, risk of most common diseases is thought to be infl uenced 
by variants in multiple genes, and sometimes multiple variants in each gene. Just as 
with gene–environment interaction, there is some confusion surrounding the term 
“gene–gene interaction” and the nearly synonymous term “epistasis”: sometimes 
they are used in the sense of biologic interaction (e.g., the gene products physically 
interact), and sometimes they are used to refer to departures from an additive statis-
tical model. Cordell (30) provides an excellent overview of how the term “epistasis” 
is used in different contexts. (“Epistasis” roughly translates as “resting upon” and 
refers to the dependency of one gene on the action of another “modifi er” gene.)

Studies of model organisms and animal husbandry give many examples of 
epistastic interactions (31). For example, in 1905, Bateson et al. (32) proposed that 
rooster comb shape was a Mendelian trait governed by two loci, such that the effect 
of the fi rst locus depended on the genotype at the second (Table 9.1). If the genotype 
at locus B is BB or Bb, then the a allele at locus A is recessive to the A allele and 
determines whether the comb shape is “walnut” or “pea.” If the genotype at locus B 
is bb, however, the a allele determines whether comb shape is “rose” or “single.”

We make two points here that may limit the relevance of this example (and many 
others from studies involving crosses of inbred strains of experimental plants or ani-
mals we could have cited) to the study of gene–gene interactions in complex human 

Table 9.1 Examples of a single trait determined by the interaction of two 
unlinked loci: rooster comb shape and (hypothetical) risk for complex disease

Genotype Frequency in Randomly Mating Population Rooster Comb Shape Disease Risk

AABB qA
2 qB

2 Walnut ρ

AABb qA
2 2 qB (1 − qB) Walnut ρ

AAbb qA
2 (1 − qB)2 Rose ρ RR1

AaBB 2 qA (1 − qA) qB
2 Walnut ρ

AaBb 4 qA (1 − qA) qB (1 − qB) Walnut ρ

Aabb 2 qA (1 − qA) (1 − qB)2 Rose ρ RR1

aaBB (1 − qA)2 qB
2 Pea ρ RR2

aaBb (1 − qA)2 2 qB (1 − qB) Pea ρ RR2

Aabb (1 − qA)2 (1 − qB)2 Single ρ RR3

qA and qB are population allele frequencies of locus A and B respectively. ρ is baseline disease risk; the RRi are 
relative risks, relative to baseline category of A-B-genotypes. Rooster comb is but one example of a two-locus interac-
tion that interestingly has the same segregation ratios as two independently segregating recessive traits in the F2 gen-
eration from a AABB×aabb cross (9:3:3:1). In the comb example, the a allele is recessive to A regardless of genotype 
at locus B (and similarly for the b allele). Other interaction models deviate from the classical segregation ratios (31). 
For example, coat color in Labrador retrievers exhibits “recessive epistasis”—the F2 generation has on average 9/16 
dogs with black coats, 4/16 with yellow, and 3/16 with brown (33).
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traits. First, although more than one locus is involved, comb shape in roosters as 
described by Bateson et al. is a Mendelian trait with complete penetrance: genotype 
aabb always produces single comb shape, AABB always produces walnut, and so 
on. For complex human traits, the relationship between genotype and phenotype is, 
by defi nition, not so simple. If instead of comb shape, Table 9.1 described four cate-
gories of diabetes risk, we would not expect differences across strata to be strikingly 
large. (Based on effect sizes of replicated risk loci (34,35) the relative risk compar-
ing the highest risk category to the lowest risk category would arguably be less than 
fi ve.) This would make it diffi cult to identify the underlying pattern of risk in studies 
of modest sample size.

Second, although comb shape is determined by the interaction of loci A and B, 
this does not necessarily mean that locus A (or locus B) has no detectable marginal 
association with comb shape. For example, the probability that a rooster with aa 
genotype has single comb shape is qB

2, while for Aa or AA genotypes the probabil-
ity is 0. Similarly, for the hypothetical diabetes risk model, the incidence of diabetes 
for subjects with aa genotype is ρ (qB

2 RR3 + (1 − qB
2) RR2), while for those with 

Aa or AA genotypes it is ρ (qB
2 RR1 + (1 − qB

2)). Depending on the allele frequen-
cies at locus B (and the relative risks RR1, RR2, and RR3) there may be a detectable 
marginal association between locus A and diabetes risk. Thus, if we simply wished 
to know whether locus A or locus B is somehow associated with disease risk, it may 
suffi ce to test for marginal association with each locus separately. It is possible that 
the joint effects at the loci may “cancel out” so that there is no marginal effect at 
either locus—as would be the case if qA = qB = 0.5, RR1 = RR2 = 0.5, and RR3 = 4. 
However, as with “crossover” gene–environment interactions, replicated examples 
of such canceling epistatic interactions are rare, and there is little evidence for such 
interactions from segregation studies or multilocus association studies (36–38).

Analytic Issues
Analogous to the discussion of gene–environment interactions above, the joint 
distribution of two dichotomized genotypes (i.e., carriers of variant A, carriers of 
variant B) can be displayed in a simple cross-classifi ed table. However, once more 
than two or three gene variants are involved, some form of statistical modeling will 
almost certainly be necessary. A major difference in the study of gene–gene inter-
actions is that the high-throughput genotyping technologies that have been such a 
boon to gene discovery efforts give rise to a vast number of potential two-way inter-
actions, to say nothing of the number of three-way and higher-order interactions. At 
least in the two-way case for quantitative traits, however, simulation studies have 
shown that the problem is computationally tractable. An exhaustive search over 
all possible two-way interactions may have more power to detect certain types of 
gene–gene interaction than initially screening for marginal effects (39). The relative 
power of the two approaches depends on the genetic architecture of disease (allele 
frequencies, multilocus genotype relative risks). As sketched above, even for some 
joint genotype effects that we would consider “interactions” (i.e., departures from 
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additivity on some scale) the marginal approach can be more powerful to detect one 
or the other locus than the joint test incorporating interaction. (A nice feature of the 
exhaustive two-locus scan proposed by Marchini et al. (39,40) and the analogous 
“joint” gene–environment test proposed by Kraft et al. (13) is that they incorporate 
possible gene–gene or gene–environment interactions, but are not tests of interac-
tion per se. Thus they are scale-free and retain good power to detect associations 
between genetic loci and a trait, regardless of the form of the “interaction.”)

In the context of a GWA study, an exhaustive search of higher than second-order 
interactions remains impractical, both due to computational limitations and the mul-
tiple testing burden. However, it may be possible to examine higher-order interac-
tions in more focused, hypothesis-driven analyses that concentrate on a (relatively) 
small number of genes with a common function or on a particular metabolic path-
way. Again, we caution that biologic interaction (e.g., in the sense that the product 
of gene A catalyzes the reaction transforming the products of genes B and C into 
metabolite D) does not imply the presence of statistical interaction on a particular 
scale or vice versa (31,41). For example, biomathematical modeling suggests that the 
folate metabolism pathway is quite robust to changes in the effi cacy of multiple gene 
products along the pathway (42,43).

There are three general approaches to “pathway analysis,” which we defi ne as 
jointly testing whether a group of markers is associated with a trait. The fi rst does 
not consider statistical interactions per se. Instead, it aggregates evidence for mar-
ginal association across multiple markers in the pathway, looking for an excess of 
modestly signifi cant loci beyond what we would expect by chance. Examples of 
this approach include the Rank Truncated Product Method (44) or the Admixture 
Maximum Likelihood Method (45). This approach leverages the possibility that 
there are many genes that affect a trait, each with a subtle impact—so that although 
no individual marker achieves strong statistical signifi cance, many tested loci may 
show suggestive evidence for association.

The second approach is similar to the fi rst, in that it provides a test of the global 
null hypothesis that none of the tested markers is associated with the studied trait, 
but this approach allows for statistical interactions among the loci. For example, if 
the number of tested loci is small, this approach might entail a simple likelihood 
ratio test, comparing a model with additive main effects for each SNP plus all pair-
wise (product) interaction terms to a null model containing none of these genetic 
variables. (In fact, in the case of two loci, this is a variant of the approach proposed 
by Marchini et al.) (39) However, for more than a few loci, the large number of 
parameters in this model makes it impractical. More sophisticated approaches, such 
as U-statistics (46), Tukey’s one-degree-of-freedom interaction test (47), or kernel 
machines (48) avoid this problem by effectively constraining the model mapping 
multilocus genotypes to mean trait (or risk) values, while still allowing for depar-
tures from a purely additive model across loci.

An important advantage of both these methods is that they involve only a single 
test for the entire pathway, eliminating the multiple-testing problem. A potential 
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disadvantage of these techniques is that they do not identify the particular markers 
that are associated with the trait; they simply tell us that some (unspecifi ed) variants 
in the “pathway” are associated with the disease, somehow. Alternatively, a “path-
way” approach may increase power and interpretation of genetic association stud-
ies by narrowing the scope of exhaustive scans for pairwise gene–gene interaction. 
We note that network modeling strategies that combine information from multiple 
sources—for example, gene expression profi les and protein–protein interactions—
may be particularly useful, as they may provide information about genetic cross talk 
and coregulation not contained in hand-annotated gene lists based on putative func-
tion (49). Similar techniques applied to mice resulted in the identifi cation of gene 
networks that are perturbed by obesity susceptibility loci, potentially narrowing the 
space in which to search for gene–gene interactions (50).

Finally, data mining techniques—such as stepwise regression, Classifi cation 
and Regression Trees (CART), Multivariate Adaptive Regression Splines (MARS) 
(51), neural networks, logic regression (52), Multifactor Dimensionality Reduction 
(MDR) (53), “focused interaction testing” (54), random forests (55), and so on-
can be used to build explicit, typically highly nonlinear models linking genotype 
to phenotype. The potential advantage of these methods is that, because of their 
fl exibility, they may be more powerful to detect nonadditive genotype–phenotype 
associations, and may better capture the true (statistical) relationship between gen-
otype and phenotype. There are also important disadvantages to these methods, 
however:

Many of these methods replace the strong assumption of additive effects across  ●

loci (on some scale) with other, equally strong assumptions of nonadditivity. 
CART, for example, can easily capture “pure” interactions but cannot easily 
capture additive effects. On the other hand, some of the more fl exible methods 
(e.g., Random Forests) are “black boxes”—the fi nal model is quite complicated 
and diffi cult to describe.
Many of these methods are computationally intensive, so that analysis of  ●

more than a few hundred (or even a few dozen) markers becomes practically 
impossible.
Evaluating statistical signifi cance of the fi nal model can be quite tricky, and it  ●

is easy to generate wildly exaggerated, highly statistically signifi cant p-values if 
one is not careful. For example, testing the signifi cance of the fi nal model from 
a stepwise regression procedure in the same data set used to generate the model 
will lead to (drastic) underestimates of the corresponding p-value. Typically, 
some form of permutation procedure is used to ensure valid test size. (This only 
increases computational complexity.)
Similarly, estimates of predictive accuracy (concordance between the predicted  ●

and actual trait values) will be overestimated if the fi nal model is evaluated in 
the same data set used to construct it (the “training” data set) (56). Accuracy 
should ideally be estimated in an independent “test” data set, or, failing that, 



Assessing Complex Gene–Environment and Gene–Gene Interactions 177

using a procedure that approximates performance in a test data set, such as 
cross-validation (57,58).
Although simulations have shown that these data mining tools can detect mul- ●

tilocus models underlying Mendelian traits (with complete penetrance and/or 
no phenocopies, as in the rooster comb example), it is not clear that they are 
as effective in detecting models that involve subtle differences in risk across 
genotypes.

There is a large and expanding body of literature on these methods for the analy-
sis of genetic data. The book on statistical learning methods by Hastie, Tibshirani, 
and Friedman (58) provides a good introduction to general principles of data min-
ing approaches—for example, the important distinction between training-set and 
test-set error—as well as particular analytic methods such as MARS and neural 
networks.

At the end of the day, the relative effectiveness of these different approaches to 
“pathway analysis” will depend on the genetic architecture of the studied trait—
which we do not know a priori. While it may be true that the simplest answer to a 
problem is always wrong (59), this does not mean that simple, abstracted approaches 
cannot provide important, novel insights (60). It seems appropriate to “let 100 fl ow-
ers bloom” and analyze multilocus genetic data using diverse approaches, each of 
which is sensitive to a different range of alternative hypotheses. But this ecumeni-
cal approach still requires discipline, lest too many weeds overwhelm the fl owers. 
Initial results from multilocus analyses should be reported modestly and tentatively, 
both in terms of their empirical support—they will require replication in indepen-
dent studies—and in terms of their qualitative, biologic interpretation (61,62).

Study Designs for Gene–Environment and Gene–Gene 
Interactions

Until recently, many genetic association studies have collected limited (if any) infor-
mation on lifestyle and environmental exposures. Similarly, traditional epidemio-
logic studies have collected detailed information on exposure but have mostly not 
collected blood samples or other sources of DNA that would allow joint study of 
genes and environment. With a greater recent focus on multifactoral and common 
complex diseases, there is increased awareness of the need to collect high-quality 
information on both genes and environmental exposures in a population-based con-
text (63).

In Table 9.2, the three main genetic association designs are summarized— 
family-based, retrospective case-control, and prospective cohort—in terms of char-
acteristics relevant to the study of gene–environment interaction. These include 
susceptibility to population stratifi cation bias, recall bias, survivor bias, the avail-
ability of prospectively collected plasma phenotypes (or other relevant biomarkers), 
and sample size. We briefl y summarize these designs and their characteristics here; 
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more detailed comparisons can be found in other references (64–66). We also touch 
on a fourth, nontraditional design that can be used to study gene–environment or 
gene–gene interaction: the case-only design.

Family-Based Designs
Family-based association designs test the association between gene variants and traits 
by comparing cases to observed related controls or “pseudocontrols” generated from 
parental genotype data (67–70). By conditioning on shared genetic descent, these 
designs are protected against population stratifi cation bias (if appropriately analyzed). 
In some situations, family-based tests of gene–environment interaction may be more 
powerful than tests in population-based studies (71). However, it may be more dif-
fi cult to collect both genetic and environmental information on parents (especially 
for late-onset diseases where the parents may be deceased by the age at which their 
offspring develop disease) or fi nd appropriate sibling controls (68,69). Family-based 
tests generally have less power for genetic main effects than an equivalent popula-
tion-based case-control study with the same number of genotyped subjects.

Because information on environmental exposures (when collected at all) and 
geno types is usually collected retrospectively, family-based studies share the prob-
lems of recall bias and survivor bias with retrospective case-control studies.

Table 9.2 Select characteristics of well-established designs for gene– 
environment interaction

Characteristic

Study Design

Family-Based Case-Control Cohort

Potential for 
population 
stratifi cation 
bias

Nil if appropriately 
analyzed

Varies; minimizable 
via good design, 
genomic control or 
principal components 
analysis

Varies but generally less than 
retrospective case-control 
study; minimizable via good 
design, genomic control or 
principal components analysis

Potential for 
recall bias

Moderate to high Moderate to high Nil

Potential for 
survivor bias

Moderate to high Moderate to high Nil if DNA samples obtained at 
baseline and disease ascertain-
ment is complete; moderate if 
DNA is not obtained at baseline 
and  participation in DNA 
 collection low

Ability to use 
plasma pheno-
types in cases

No No Yes

Required 
sample sizes 
achievable?

Common disease: yes 
Rare disease: yes

Common disease: yes
Rare disease: yes

Common disease: yes with 
adequate follow-up
Rare disease: no, unless 
multiple studies are pooled
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Case-Control Designs
In retrospective case-control studies, data on environmental exposures and DNA 
samples, and other biologic samples for biomarker studies, are obtained after diag-
nosis of disease in the cases. Selection bias may occur if the controls do not represent 
the source population that gave rise to the cases. Survival bias occurs if the case sub-
jects who are interviewed and genotyped differ systematically from those who can-
not be interviewed or genotyped (e.g., case subjects with a particularly lethal genetic 
form of the disease may die before they can be identifi ed and enrolled in the study). 
Population stratifi cation bias can arise if the allele frequencies of the variants being 
tested vary by ethnicity, and the ethnicity of the controls is substantially different 
from that of the cases. In most studies, substantial bias due to population stratifi ca-
tion can be avoided by following basic principles of good study design and matching 
on self-reported ethnicity (29,72,73). This may not suffi ce for recently admixed popu-
lations, such as African or Hispanic Americans, however (28,74). “Genomic control” 
methods that test and adjust for population stratifi cation are available, although they 
require subjects to be genotyped on a second panel of putatively anonymous mark-
ers (75–77)—preferably “ancestry informative markers,” markers that are known to 
have different allele frequency in the ancestral populations, for example, Spanish, 
Native Americans, and Africans for Hispanic Americans (78). If large-scale geno-
typing data are available (as in a GWAS), then the leading principal components of 
genetic variation typically capture population structure and can be used as covari-
ates in regression analyses or as stratifying variables (79,80).

The major problem in case-control studies with respect to gene–environment 
interactions is likely to be misclassifi cation of information on environmental expo-
sures. “Recall bias” arises if cases report their prediagnosis exposure histories 
differently after their diagnosis relative to what they would have reported prior to 
diagnosis. Although this differential misclassifi cation may not actually bias the esti-
mates of certain gene–environment interaction parameters (81), it will certainly bias 
the main effect estimates of environmental factors and reduce the power to detect 
interactions (82–84).

Finally, if biomarkers are measured in samples collected after disease diagnosis, 
it is diffi cult to assess the association of such biomarkers (which might in principle 
represent better measurements of long-term environmental exposure, e.g., plasma 
nutrient levels) with disease risk, as the biomarkers may be infl uenced by the dis-
ease, its treatment, or lifestyle changes made in response to diagnosis.

Cohort Designs
In prospective cohort studies, information on environmental exposures is collected 
at baseline (and ideally at repeated intervals during follow-up) on a large number 
of subjects. Preferably, DNA and biomarker information should also be collected 
at baseline. In prospective studies without banked samples, DNA for nested case-
control studies could be obtained from cases (and matched controls) as soon as pos-
sible after diagnosis. If follow-up rates and participation rates in DNA collection are 
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high, this minimizes the potential for selection bias, as the underlying cohort that 
gave rise to the cases is unambiguous, though if the interval between diagnosis and 
DNA collection is long, then the potential for survivor bias exists. Assuming follow-
up and participation in nested case-control studies does not differ by ethnicity, the 
potential for population stratifi cation bias is reduced compared with retrospective 
case-control studies, although it may still be a concern in some populations and 
require the use of appropriate statistical genomic control methods.

The principal diffi culty with prospective studies is the large number of subjects 
who must be enrolled and followed to ensure a suffi cient number of cases for an 
adequately powerful analysis. This limits individual cohorts to the study of relatively 
common diseases such as myocardial infarction, diabetes, or the more common can-
cers such as breast, prostate, lung, and colorectal cancers. Individual prospective 
studies are not likely to yield suffi cient power to study rare diseases, although con-
sortia of cohorts may permit pooling of data across multiple studies in order to boost 
sample size. Furthermore, prospective studies may be less practical when additional 
subtyping of diseases is required that is not available from conventional clinical 
records, for example, studies of tumors with different gene expression profi les (85). 
These subtypes may be rare, and it may also be diffi cult to obtain the fresh tissue 
required to conduct the ancillary studies needed in order to classify cases.

Case-Only Design
The case-only design is based on the following observation: if two factors—say two 
genetic loci or a genetic locus and an environmental exposure—are independently 
distributed in the study base, and the odds ratio comparing individuals exposed to 
both factors with those exposed to neither is equal to the product of the odds ratios 
for subjects exposed to only one or the other factor, then the two factors should be 
independent among cases (86–88). In other words, one can test for “interaction” 
(specifi cally, departures from a log-additive odds model) simply by testing whether 
the two factors are associated among cases. Somewhat surprisingly, the case-only 
design can be more powerful than the standard case-control analysis based on logis-
tic regression, even though the former test does not use data on controls.

In fact, it is not the case-only design per se that leads to the increase in effi ciency, 
but the assumption of independence between the two factors in the study base. One 
can modify standard family-based and case-control analyses to incorporate this 
assumption (89–91). The resulting analyses achieve the same power gains as the 
case-only analyses, and they retain the ability to estimate main effects of either fac-
tor (which cannot be estimated in the case only analysis).

However, all of these analyses are sensitive to the assumption of independence 
between the two tested factors, that is, gene–gene or gene–environment indepen-
dence in the study base. Even a slight association can lead to infl ated type I error rates 
for the interaction test (87). In some situations, the assumption of gene– environment 
independence may be justifi ed; in others—such as where “exposure” is a behav-
ior or trait under genetic control, or when there is population stratifi cation—the 
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independence assumption may not be justifi ed. Similarly, for many pairs of 
genetic markers, the assumption of independence may be justifi ed—for example, 
if the markers are on different chromosomes—while for other, linked markers, it 
may not be. A recently proposed empirical Bayesian approach retains much of the 
power of the analyses based on the gene–gene or gene–environment independence 
assumption while retaining approximately correct type I error rates (92). It does 
so by weighting the results from the standard and modifi ed analyses according to 
the evidence for or against the hypothesis of gene–environment independence. This 
approach and other analytic and design issues are reviewed in more depth in the 
recent article by Chatterjee and Mukherjee (4). Although the case-only design has 
the substantial attraction of not requiring collection of data from controls, the fact 
that it is only possible to test for interactions, and not main effects, is a drawback in 
the current era, in which we are still actively attempting to discover novel genetic 
and environmental main effects.

Sample Size and Power

Whether formally testing for gene–environment interaction, estimating stratum-
specifi c parameters, or using data mining techniques to explore unsuspected gene–
environment combinations, sample size is a major limiting factor in the study of 
gene–environment interaction. A well-known rule of thumb states that the sample 
size necessary to detect a departure from a multiplicative model for the joint effect of 
two variables (on the odds ratio or relative risk scale) is at least four times the sample 
size needed to evaluate the main effect of either of the variables (93). Given that envi-
ronmental exposures are almost certainly measured with some error, thus attenuating 
estimates of both environmental main effects and gene–environment interactions, 
the necessary sample sizes are even larger (82–84). Small sample size is a key reason 
why so many genetic associations have failed to replicate and are likely to be false 
positives (94,95). Many recent studies have had sample sizes on the order of a few 
hundreds of cases, which means that only the strongest interaction effects will be 
replicable, and most “signifi cant” interactions are likely to be false positives.

Because of the cost and time involved in large-scale cohort studies, case-control 
studies are an attractive option for the study of gene–environment interaction for 
rare diseases. Still, there are several long-term efforts to put together and follow 
new large cohorts with archived biosamples (including DNA) and information on 
environmental exposures (including lifestyle and anthropometric measures). The 
U.K. Biobank, for example, has currently enrolled over 350,000 subjects out of a 
target of 500,000 (96). In the short term, one way to increase the power of existing 
cohort studies is to pool data across multiple studies. For example, the NCI Breast 
and Prostate Cancer Cohort Consortium (BPC3) is currently examining gene– 
environment interactions in over 8,000 cases of breast cancer, and 10,000 cases 
of prostate cancer, pooled across ten prospective studies with over 800,000 people 
under follow-up and over 7 million person-years of follow-up already accrued (97). 
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An additional benefi t of this approach is the increased coordination among partici-
pating studies, across disciplinary lines (linking genomics and epidemiology), and 
among the epidemiologic community in general. Combining information across 
multiple cohorts, provided measurements are made similarly across studies, can 
mitigate the main weakness of prospective studies (lack of incident cases) while 
capitalizing on the methodologic strengths of the prospective design.

Conclusions

Investment in studies of the joint and independent action of genes and environmental 
exposures may pay off in terms of increased knowledge about disease biology. Even 
if there are limits to inferences about biologic mechanism that can be drawn from 
epidemiologic studies, leveraging information about gene–environment and gene–
gene interaction may lead to the discovery of loci that would not have been detected 
if individual genetic variants were studied in isolation. This may lead to better 
treatments (e.g., by suggesting drug targets) or means of chemoprevention (98). It 
also has been suggested that studies of gene–environment interaction may inform 
targeted “personalized prevention” strategies. Indeed, the assumption behind the 
direct-to-consumer marketing of high-dimensional genotyping from “SNP chips” is 
that knowledge of increased susceptibility to one or more of a range of diseases will 
permit personalized counseling on steps to take to reduce this risk. This scenario 
assumes that the relevant gene–environment interactions have been discovered and 
replicated, so that this advice is evidence-based (99). However, as described above, 
we are only at the beginning of understanding gene–environment interactions for a 
few diseases, and the challenges to detecting and validating hypothesized interac-
tions are formidable (100). Affordably genotyping hundreds of thousands of SNPs 
or sequencing an individual’s genome may be the easy part; the hard part will be 
making sense of it all and using this knowledge wisely.

For both gene–environment and gene–gene interactions, much larger sample 
sizes than are currently available are likely to be needed. For gene–environment 
interactions, the availability and accuracy of environmental measurements is also 
a major limiting factor. While statistical techniques to analyze complex pathways 
are likely to improve, large, well-designed studies with accurate measurements will 
be needed in which to employ the improved methods. Continued attention to, and 
funding of, appropriate epidemiologic studies will be key to unlocking the puzzle of 
interactions in complex diseases.
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Introduction

The rapidly evolving evidence on genetic associations is crucial to integrating human 
genomics into the practice of medicine and public health (1,2). Genetic factors are likely 
to affect the occurrence of numerous common diseases, and therefore identifying and 
characterizing the associated risk (or protection) will be important in improving the 
understanding of etiology and potentially for developing interventions based on genetic 
information. The number of publications on the associations between genes and dis-
eases has increased tremendously; with more than 34,000 published articles, the annual 
number has more than doubled between 2001 and 2008 (3,4). Articles on genetic asso-
ciations have been published in about 1,500 journals and in several languages.

Despite the many similarities between genetic association studies and “classical” 
observational epidemiologic studies (i.e., cross-sectional, case-control, and cohort) of 
lifestyle and environmental factors, genetic association studies present several spe-
cifi c challenges including an unprecedented volume of new data (5,6) and the likeli-
hood of very small individual effects. Genes may operate in complex pathways with 
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gene–environment and gene–gene interactions (7). Moreover, the current evidence base 
on gene–disease associations is fraught with methodologic problems (8–10). Inadequate 
reporting of results, even from well-conducted studies, hampers assessment of a study’s 
strengths and weaknesses, and hence the integration of evidence (11).

Although several commentaries on the conduct, appraisal, and/or reporting of 
genetic association studies have so far been published (12–39), their recommenda-
tions differ. For example, some papers suggest that replication of fi ndings should 
be part of the publication (12,13,16,17,23,26,34–36) whereas others consider 
this suggestion unnecessary or even unreasonable (21,40–44). In many publica-
tions, the guidance has focused on genetic association studies of specifi c diseases 
(14,15,17,19,22,23,25,26,31–38) or the design and conduct of genetic association 
studies (13–15,17,19,20,22,23,25,30–32,35,36) rather than on the quality of the 
reporting.

Despite increasing recognition of these problems, the quality of reporting genetic 
association studies needs to be improved (45–49). For example, an assessment of 
a random sample of 315 genetic association studies published from 2001 to 2003 
found that most studies provided some qualitative descriptions of the study partici-
pants (e.g., origin and enrolment criteria), but reporting of quantitative descriptors, 
such as age and sex, was variable (49). In addition, completeness of reporting of 
methods that allow readers to assess potential biases (e.g., number of exclusions 
or number of samples that could not be genotyped) varied (49). Only some studies 
described methods to validate genotyping or mentioned whether research staff were 
blinded to outcome. The same problems persisted in a smaller sample of studies 
published in 2006 (49). Lack of transparency and incomplete reporting have raised 
concerns in a range of health research fi elds (11,50–53) and poor reporting has been 
associated with biased estimates of effects in clinical intervention studies (54).

The main goal of this article is to propose and justify a set of guiding principles 
for reporting results of genetic association studies. The epidemiology community 
has recently developed the STrengthening the Reporting of OBservational studies 
in Epidemiology (STROBE) Statement for cross-sectional, case-control, and cohort 
studies (55,56). Given the relevance of general epidemiologic principles for genetic 
association studies, we propose recommendations in an extension of the STROBE 
Statement called the STrengthening the REporting of Genetic Association  studies 
(STREGA) Statement. The recommendations of the STROBE Statement have a 
strong foundation because they are based on empirical evidence on the reporting 
of observational studies, and they involved extensive consultations in the epide-
miologic research community (56). We have sought to identify gaps and areas of 
controversy in the evidence regarding potential biases in genetic association stud-
ies. With the recommendations, we have indicated available empirical or theo-
retical work that has demonstrated or suggested that a methodological feature of 
a study can infl uence the direction or magnitude of the association observed. We 
acknowledge that for many items, no such evidence exists. The intended audi-
ence for the reporting guideline is broad and includes epidemiologists, geneticists, 
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statisticians, clinician scientists, and laboratory-based investigators who undertake 
genetic  association studies. In  addition, it includes “users” of such studies who wish 
to understand the basic premise, design, and limitations of genetic association stud-
ies in order to interpret the results. The fi eld of genetic associations is evolving very 
rapidly with the advent of genome-wide association investigations, high-throughput 
platforms assessing genetic variability beyond common single nucleotide polymor-
phisms (SNPs) (e.g., copy number variants, rare variants), and eventually routine 
full sequencing of samples from large populations. Our recommendations are not 
intended to support or oppose the choice of any particular study design or method. 
Instead, they are intended to maximize the transparency, quality, and completeness 
of reporting of what was done and found in a particular study.

Methods

A multidisciplinary group developed the STREGA Statement by using literature 
review, workshop presentations and discussion, and iterative electronic correspon-
dence after the workshop. Thirty-three of 74 invitees participated in the STREGA 
workshop in Ottawa, Ontario, Canada, in June 2006. Participants included epidemi-
ologists, geneticists, statisticians, journal editors, and graduate students.

Before the workshop, an electronic search was performed to identify existing 
reporting guidance for genetic association studies. Workshop participants were also 
asked to identify any additional guidance. They prepared brief presentations on 
existing reporting guidelines, empirical evidence on reporting of genetic associa-
tion studies, the development of the STROBE Statement, and several key areas for 
discussion that were identifi ed on the basis of consultations before the workshop. 
These areas included the selection and participation of study participants, ratio-
nale for choice of genes and variants investigated, genotyping errors, methods for 
inferring haplotypes, population stratifi cation, assessment of Hardy–Weinberg equi-
librium (HWE), multiple testing, reporting of quantitative (continuous) outcomes, 
selectively reporting study results, joint effects, and inference of causation in single 
studies. Additional resources to inform workshop participants were the HuGENet 
handbook (57,58), examples of data extraction forms from systematic reviews or 
meta-analyses, articles on guideline development (59,60), and the checklists devel-
oped for STROBE. To harmonize our recommendations for genetic association stud-
ies with those for observational epidemiologic studies, we communicated with the 
STROBE group during the development process and sought their comments on the 
STREGA draft documents. We also provided comments on the developing STROBE 
Statement and its associated explanation and elaboration document (56).

Results

In Table 10.1, we present the STREGA recommendations, an extension to the 
STROBE checklist (55) for genetic association studies. The resulting STREGA 



Table 10.1 STREGA reporting recommendations, extended from STROBE statement

Item Item Number STROBE Guideline Extension for Genetic Association Studies (STREGA)

Title and Abstract 1 (a) Indicate the study’s design with a commonly used 
term in the title or the abstract.
(b) Provide in the abstract an informative and 
balanced summary of what was done and what was 
found.

Introduction

Background rationale 2 Explain the scientifi c background and rationale for 
the investigation being reported.

Objectives 3 State specifi c objectives, including any prespecifi ed 
hypotheses.

State if the study is the fi rst report of a genetic association, 
a replication effort, or both.

Methods

Study design 4 Present key elements of study design early in the 
paper.

Setting 5 Describe the setting, locations and relevant dates, 
including periods of recruitment, exposure, 
 follow-up, and data collection.

Participants 6 (a) Cohort study—Give the eligibility criteria, and 
the sources and methods of selection of partici-
pants. Describe methods of follow-up. Case-control 
study—Give the eligibility criteria, and the sources 
and methods of case ascertainment and control 
 selection. Give the rationale for the choice of cases 
and controls. Cross-sectional study—Give the 
eligibility criteria, and the sources and methods of 
selection of participants.

Give information on the criteria and methods for selection 
of subsets of participants from a larger study, when relevant.

(Continued)



Table 10.1 Continued

Item Item Number STROBE Guideline Extension for Genetic Association Studies (STREGA)

(b) Cohort study—For matched studies, give match-
ing criteria and number of exposed and unexposed. 
Case-control study—For matched studies, give 
matching criteria and the number of controls per case.

Variables 7 (a) Clearly defi ne all outcomes, exposures, predictors, 
potential confounders, and effect modifi ers. Give 
diagnostic criteria, if applicable.

(b) Clearly defi ne genetic exposures (genetic variants) using 
a widely used nomenclature system. Identify variables likely 
to be associated with population stratifi cation (confounding 
by ethnic origin).

Data sources/ 
measurement

8* (a) For each variable of interest, give sources of data 
and details of methods of assessment (measurement). 
Describe comparability of assessment methods if 
there is more than one group.

(b) Describe laboratory methods, including source and stor-
age of DNA, genotyping methods and platforms (including 
the allele calling algorithm used, and its version), error rates 
and call rates. State the laboratory/center where genotyping 
was done. Describe comparability of laboratory methods 
if there is more than one group. Specify whether genotypes 
were assigned using all of the data from the study simulta-
neously or in smaller batches.

Bias 9 (a) Describe any efforts to address potential sources 
of bias.

(b) For quantitative outcome variables, specify if any investi-
gation of potential bias resulting from pharmacotherapy was 
undertaken. If relevant, describe the nature and magnitude 
of the potential bias, and explain what approach was used to 
deal with this.

Study size 10 Explain how the study size was arrived at.

Quantitative variables 11 Explain how quantitative variables were handled in 
the analyses. If applicable, describe which groupings 
were chosen, and why.

If applicable, describe how effects of treatment were dealt 
with.



Statistical methods 12 (a) Describe all statistical methods, including those 
used to control for confounding.

State software version used and options (or settings) chosen.

(b) Describe any methods used to examine subgroups 
and interactions.

(c) Explain how missing data were addressed.

(d) Cohort study—If applicable, explain how loss to 
follow-up was addressed.
Case-control study—If applicable, explain how 
matching of cases and controls was addressed.
Cross-sectional study—If applicable, describe 
 analytical methods taking account of sampling strategy.

(e) Describe any sensitivity analyses.

(f) State whether Hardy–Weinberg equilibrium was 
 considered and, if so, how.

(g) Describe any methods used for inferring genotypes or 
haplotypes.

(h) Describe any methods used to assess or address 
 population stratifi cation.

(i) Describe any methods used to address multiple 
 comparisons or to control risk of false-positive fi ndings.

(j) Describe any methods used to address and correct for 
relatedness among subjects.

Results

Participants 13* (a) Report the numbers of individuals at each stage of 
the study—e.g., numbers potentially eligible, exam-
ined for eligibility, confi rmed eligible, included in the 
study, completing follow-up, and analyzed.

Report numbers of individuals in whom genotyping was 
attempted and numbers of individuals in whom genotyping 
was successful.

(b) Give reasons for nonparticipation at each stage.

(c) Consider use of a fl ow diagram.

(Continued)
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Item Item Number STROBE Guideline Extension for Genetic Association Studies (STREGA)

Descriptive data 14* (a) Give characteristics of study participants 
(e.g., demographic, clinical, social) and information 
on exposures and potential confounders.

Consider giving information by genotype.

(b) Indicate the number of participants with missing 
data for each variable of interest.

(c) Cohort study—Summarize follow-up time 
(e g., average and total amount).

Outcome data 15* Cohort study—Report numbers of outcome events or 
summary measures over time.

Report outcomes (phenotypes) for each genotype category 
over time.

Case-control study—Report numbers in each 
 exposure category, or summary measures of exposure.

Report numbers in each genotype category.

Cross-sectional study—Report numbers of outcome 
events or summary measures.

Report outcomes (phenotypes) for each genotype category.

Main results 16 (a) Give unadjusted estimates and, if applicable, 
confounder-adjusted estimates and their precision 
(e.g., 95% confi dence intervals). Make clear which 
confounders were adjusted for and why they were 
included.

(b) Report category boundaries when continuous 
variables were categorized.

(c) If relevant, consider translating estimates of rel-
ative risk into absolute risk for a meaningful time 
period.

   (d) Report results of any adjustments for multiple 
comparisons.



Other analyses 17 (a) Report other analyses done—e.g., analyses of 
subgroups and interactions, and sensitivity analyses.

(b) If numerous genetic exposures (genetic variants) were 
examined, summarize results from all analyses undertaken.

(c) If detailed results are available elsewhere, state how they 
can be accessed.

Discussion

Key results 18 Summarize key results with reference to study 
objectives.

Limitations 19 Discuss limitations of the study, taking into account 
sources of potential bias or imprecision. Discuss both 
direction and magnitude of any potential bias.

Interpretation 20 Give a cautious overall interpretation of results 
considering objectives, limitations, multiplicity of 
analyses, results from similar studies, and other 
 relevant evidence.

Generalizability 21 Discuss the generalizability (external validity) of the 
study results.

Other Information

Funding 22 Give the source of funding and the role of the funders 
for the present study and, if applicable, for the 
 original study on which the present article is based.

 

STREGA = STrengthening the REporting of Genetic Association studies; STROBE = STrengthening the REporting of OBservational studies in Epidemiology.
* Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.
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checklist provides additions to 12 of the 22 items on the STROBE checklist. During 
the workshop and subsequent consultations, we identifi ed fi ve main areas of special 
interest that are specifi c to, or especially relevant in, genetic association studies: 
genotyping errors, population stratifi cation, modeling haplotype variation, HWE, 
and replication. We elaborate on each of these areas, starting each section with the 
corresponding STREGA recommendation, followed by a brief outline of the issue 
and an explanation for the recommendations. Complementary information on these 
areas and the rationale for additional STREGA recommendations relating to selec-
tion of participants, choice of genes and variants selected, treatment effects in study-
ing quantitative traits, statistical methods, relatedness, reporting of descriptive and 
outcome data, and issues of data volume are presented in Table 10.2.

Genotyping Errors

Recommendation for reporting of methods (Table 10.1, item 8b): Describe labora-
tory methods, including source and storage of DNA, genotyping methods and plat-
forms (including the allele calling algorithm used, and its version), error rates, and 
call rates. State the laboratory/center where genotyping was done. Describe com-
parability of laboratory methods if there is more than one group. Specify whether 
genotypes were assigned using all of the data from the study simultaneously or in 
smaller batches.

Recommendation for reporting of results (Table 10.1, item 13a): Report numbers 
of individuals in whom genotyping was attempted and numbers of individuals in 
whom genotyping was successful.

Genotyping errors can occur as a result of effects of the DNA sequence fl ank-
ing the marker of interest, poor quality or quantity of the DNA extracted from 
biological samples, biochemical artifacts, poor equipment precision or equipment 
failure, or human error in sample handling, conduct of the array, or handling the 
data obtained from the array (61). A commentary published in 2005 on the possible 
causes and consequences of genotyping errors observed that an increasing number 
of researchers were aware of the problem, but that the effects of such errors had 
largely been neglected (61). The magnitude of genotyping errors has been reported 
to vary between 0.5% and 30% (61–64). In high-throughput centers, an error rate 
of 0.5% per genotype has been observed for blind duplicates that were run on the 
same gel (64). This lower error rate refl ects an explicit choice of markers for which 
genotyping rates have been found to be highly repeatable and whose individual 
polymerase chain reactions (PCR) have been optimized. Nondifferential genotyping 
errors, that is, those that do not differ systematically according to outcome status, 
will usually bias associations toward the null (65,66), just as for other nondifferen-
tial errors. The most marked bias occurs when genotyping sensitivity is poor and 
genotype prevalence is high (>85%) or, as the corollary, when genotyping specifi city 
is poor and genotype prevalence is low (<15%) (65). When measurement of the envi-
ronmental exposure has substantial error, genotyping errors of the order of 3% can 



Table 10.2 Rationale for inclusion of topics in the STREGA recommendations

Specifi c Issue in Genetic 
Association Studies

Rationale for Inclusion in STREGA Item(s) in STREGA Specifi c Suggestions for Reporting

Main areas of special interest (see also main text).

Genotyping errors 
(misclassifi cation of 
exposure)

Nondifferential genotyping errors will 
usually bias associations toward the 
null (65,66). When there are system-
atic differences in genotyping accord-
ing to outcome status (differential 
error), bias in any direction may occur.

8(b): Describe laboratory 
methods, including source 
and storage of DNA, 
genotyping methods and 
platforms (including the 
allele calling algorithm 
used, and its version), 
error rates and call rates. 
State the laboratory/cen-
ter where genotyping was 
done. Describe compa-
rability of laboratory 
methods if there is more 
than one group. Specify 
whether genotypes were 
assigned using all of the 
data from the study simul-
taneously or in smaller 
batches. 13(a): Report 
numbers of individuals 
in whom genotyping was 
attempted and numbers of 
individuals in whom geno-
typing was successful.

Factors affecting the potential extent of misclassifi cation (infor-
mation bias) of genotype include the types and quality of samples, 
timing of collection, and the method used for genotyping (18,61,67).

When high throughput platforms are used, it is important to report 
not only the platform used but also the allele calling algorithm and 
its version. Different calling algorithms have different strengths 
and weaknesses ((68) and supplementary information in (69)). For 
example, some of the currently used algorithms are notably less 
accurate in assigning genotypes to single nucleotide polymor-
phisms with low minor allele frequencies (<0.10) than to single 
nucleotide polymorphisms with higher minor allele frequencies 
(70). Algorithms are continually being improved. Reporting the 
allele calling algorithm and its version will help readers to interpret 
reported results, and it is critical for reproducing the results of the 
study given the same intermediate output fi les summarizing inten-
sity of hybridization.

For some high-throughput platforms, the user may choose to assign 
genotypes using all of the data from the study simultaneously, or in 
smaller batches, such as by plate ((71,72) and supplementary infor-
mation in (69)). This choice can affect both the overall call rate and 
the robustness of the calls.

For case-control studies, whether genotyping was done blind to 
case-control status should be reported, along with the reason for 
this decision.

(Continued)



Table 10.2 Continued

Specifi c Issue in Genetic 
Association Studies

Rationale for Inclusion in STREGA Item(s) in STREGA Specifi c Suggestions for Reporting

Population stratifi cation 
(confounding by ethnic 
origin)

When study subpopulations differ 
both in allele (or genotype) frequen-
cies and disease risks, then confound-
ing will occur if these subpopulations 
are unevenly distributed across 
exposure groups (or between cases 
and controls).

12(h): Describe any 
methods used to assess 
or address population 
stratifi cation.

In view of the debate about the potential implications of popula-
tion stratifi cation for the validity of genetic association studies, 
transparent reporting of the methods used, or stating that none was 
used, to address this potential problem is important for allowing the 
empirical evidence to accrue.

Ethnicity information should be presented (e.g , Winker (74)), 
as should genetic markers or other variables likely to be associ-
ated with population stratifi cation. Details of case-family control 
designs should be provided if they are used.

As several methods of adjusting for population stratifi cation have 
been proposed (75), explicit documentation of the methods is 
needed.

Modeling haplotype 
variation

In designs considered in this article, 
haplotypes have to be inferred because 
of lack of available family informa-
tion. There are diverse methods for 
inferring haplotypes.

12(g): Describe any 
methods used for inferring 
genotypes or haplotypes.

When discrete “windows” are used to summarize haplotypes, 
 variation in the defi nition of these may complicate comparisons 
across studies, as results may be sensitive to choice of windows. 
Related “imputation” strategies are also in use (69,76,77).

It is important to give details on haplotype inference and, when 
possible, uncertainty. Additional considerations for reporting 
include the strategy for dealing with rare haplotypes, window size 
and construction (if used), and choice of software.

Hardy–Weinberg 
 equilibrium (HWE)

Departure from Hardy–Weinberg 
equilibrium may indicate errors 
or peculiarities in the data (73). 
Empirical assessments have found that 
20% to 69% of genetic associations 
were reported with some indica-
tion about conformity with Hardy–
Weinberg equilibrium, and that among 
some of these, there were limitations 
or errors in its assessment (73).

12(f): State whether 
Hardy–Weinberg equilib-
rium was considered and, 
if so, how.

Any statistical tests or measures should be described, as should 
any procedure to allow for deviations from Hardy–Weinberg 
 equilibrium in evaluating genetic associations (78).



Replication Publications that present and syn-
thesize data from several studies in 
a single report are becoming more 
common.

3: State if the study is the 
fi rst report of a genetic 
association, a replication 
effort, or both.

The selected criteria for claiming successful replication should also 
be explicitly documented.

Additional issues

Selection of participants Selection bias may occur if (i) genetic 
associations are investigated in one 
or more subsets of participants (sub-
samples) from a particular study; or 
(ii) there is differential nonparticipa-
tion in groups being compared; or (iii) 
there are differential genotyping call 
rates in groups being compared.

6(a): Give information on 
the criteria and methods 
for selection of subsets of 
participants from a larger 
study, when relevant.
13(a): Report numbers 
of individuals in whom 
genotyping was attempted 
and numbers of individu-
als in whom genotyping 
was successful.

Inclusion and exclusion criteria, sources and methods of selec-
tion of subsamples should be specifi ed, stating whether these were 
based on a priori or post hoc considerations.

Rationale for choice 
of genes and variants 
investigated

Without an explicit rationale, it is 
diffi cult to judge the potential for 
selective reporting of study results. 
There is strong empirical evidence 
from randomized controlled trials 
that reporting of trial outcomes is fre-
quently incomplete and biased in favor 
of statistically signifi cant fi ndings 
(79–81). Some evidence is also avail-
able in pharmacogenetics (82).

7(b): Clearly defi ne 
genetic exposures (genetic 
variants) using a widely 
used nomenclature sys-
tem. Identify variables 
likely to be associated 
with population stratifi -
cation (confounding by 
ethnic origin).

The scientifi c background and rationale for investigating the genes 
and variants should be reported.

For genome-wide association studies, it is important to specify 
what initial testing platforms were used and how gene variants are 
selected for further testing in subsequent stages. This may involve 
statistical considerations (for example, selection of p-value thresh-
old), functional or other biological considerations, fi ne mapping 
choices, or other approaches that need to be specifi ed.

Guidelines for human gene nomenclature have been published 
by the Human Gene Nomenclature Committee (83,84). Standard 
reference numbers for nucleotide sequence variations, largely but 
not only SNPs are provided in dbSNP, the National Center for 
Biotechnology Information’s database of genetic variation (85). For 
variations not listed in dbSNP that can be described relative to a 
specifi ed version, guidelines have been proposed (86,87).

(Continued)



Table 10.2 Continued

Specifi c Issue in Genetic 
Association Studies

Rationale for Inclusion in STREGA Item(s) in STREGA Specifi c Suggestions for Reporting

Treatment effects in 
studies of quantitative 
traits

A study of a quantitative variable may 
be compromised when the trait is sub-
jected to the effects of a treatment (for 
example, the study of a lipid-related 
trait for which several individuals are 
taking lipid-lowering medication). 
Without appropriate correction, this 
can lead to bias in estimating the 
effect and loss of power.

9(b): For quantitative out-
come variables, specify if 
any investigation of poten-
tial bias resulting from 
pharmacotherapy was 
undertaken. If relevant, 
describe the nature and 
magnitude of the potential 
bias, and explain what 
approach was used to deal 
with this.
11: If applicable, describe 
how effects of treatment 
were dealt with.

Several methods of adjusting for treatment effects have been pro-
posed (88). As the approach to deal with treatment effects may 
have an important impact on both the power of the study and the 
interpretation of the results, explicit documentation of the selected 
strategy is needed.

Statistical methods Analysis methods should be transpar-
ent and replicable, and genetic asso-
ciation studies are often performed 
using specialized software.

12(a): State software ver-
sion used and options (or 
settings) chosen.

Relatedness The methods of analysis used in family-
based studies are different from those 
used in studies that are based on unre-
lated cases and controls. Moreover, even 
in the studies that are based on appar-
ently unrelated cases and controls, some 
individuals may have some connection 
and may be (distant) relatives, and this is 
particularly common in small, isolated 
populations, for example, Iceland. This 
may need to be probed with appropriate 
methods and adjusted for in the analysis 
of the data.

12(j): Describe any meth-
ods used to address and 
correct for relatedness 
among subjects

For the great majority of studies in which samples are drawn from 
large, nonisolated populations, relatedness is typically negligible 
and results would not be altered depending on whether relatedness 
is taken into account. This may not be the case in isolated popula-
tions or those with considerable inbreeding. If investigators have 
assessed for relatedness, they should state the method used (89–91) 
and how the results are corrected for identifi ed relatedness.



Reporting of descriptive 
and outcome data

The synthesis of fi ndings across 
studies depends on the availability of 
suffi ciently detailed data.

14(a): Consider giving infor-
mation by genotype.
15: Cohort study—Report 
outcomes (phenotypes) for 
each genotype category 
over time
Case-control study—Report 
numbers in each genotype 
category
Cross-sectional study—Re-
port outcomes (phenotypes) 
for each genotype category

Volume of data The key problem is of possible false-
positive results and selective reporting 
of these. Type I errors are particularly 
relevant to the conduct of genome-
wide association studies. A large 
search among hundreds of thousands 
of genetic variants can be expected 
by chance alone to fi nd thousands of 
false-positive results (odds ratios sig-
nifi cantly different from 1.0).

12(i): Describe any 
methods used to address 
multiple comparisons or 
to control risk of false-
positive fi ndings.
16(d): Report results of 
any adjustments for multi-
ple comparisons.
17(b): If numerous genetic 
exposures (genetic vari-
ants) were examined, 
summarize results from all 
analyses undertaken.
17(c): If detailed results 
are available elsewhere, 
state how they can be 
accessed.

Genome-wide association studies collect information on a very 
large number of genetic variants concomitantly. Initiatives to make 
the entire database transparent and available online may supply a 
defi nitive solution to the problem of selective reporting (7).

Availability of raw data may help interested investigators repro-
duce the published analyses and also pursue additional analyses. 
A potential drawback of public data availability is that investiga-
tors using the data second-hand may not be aware of limitations or 
other problems that were originally encountered, unless these are 
also transparently reported. In this regard, collaboration of the data 
users with the original investigators may be benefi cial. Issues of 
consent and confi dentiality (92,93) may also complicate what data 
can be shared, and how. It would be useful for published reports 
to specify not only what data can be accessed and where, but also 
briefl y mention the procedure. For articles that have used publicly 
available data, it would be useful to clarify whether the original 
investigators were also involved and if so, how.

The volume of data analyzed should also be considered in the inter-
pretation of fi ndings.

Examples of methods of summarizing results include giving distri-
bution of p-values (frequentist statistics), distribution of effect sizes, 
and specifying false discovery rates.

Source: Reprinted from (94) with permission of the Annals of Internal Medicine; the European Journal of Epidemiology; the European Journal of Clinical Investigation; Genetic 
Epidemiology; Human Genetics; the Journal of Clinical Epidemiology, and PLoS Medicine.
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lead to substantial underestimation of the magnitude of an interaction effect (95). 
When there are systematic differences in genotyping according to outcome status 
(differential error), bias in any direction may occur. Unblinded assessment may lead 
to differential misclassifi cation. For genome-wide association studies of SNPs, dif-
ferential misclassifi cation between comparison groups (e.g., cases and controls) can 
occur because of differences in DNA storage, collection, or processing protocols, 
even when the genotyping itself meets the highest possible standards (71). In this 
situation, using samples blinded to comparison group to determine the parameters 
for allele calling could still lead to differential misclassifi cation. To minimize such 
differential misclassifi cation, it would be necessary to calibrate the software sepa-
rately for each group. This is one of the reasons for our recommendation to specify 
whether genotypes were assigned using all of the data from the study simultaneously 
or in smaller batches.

Population Stratifi cation

Recommendation for reporting of methods (Table 10.1, item 12h): Describe any 
methods used to assess or address population stratifi cation.

Population stratifi cation is the presence within a population of subgroups among 
which allele (or genotype, or haplotype) frequencies and disease risks differ. When 
the groups compared in the study differ in their proportions of the population sub-
groups, an association between the genotype and the disease being investigated may 
refl ect the genotype being an indicator identifying a population subgroup rather than 
a causal variant. In this situation, population subgroup is a confounder because it is 
associated with both genotype frequency and disease risk. The potential implications 
of population stratifi cation for the validity of genetic association studies have been 
debated (96–110). Modeling the possible effect of population stratifi cation (when no 
effort has been made to address it) suggests that the effect is likely to be small in most 
situations (102,103,105–107). Meta-analyses of 43 gene–disease associations com-
prising 697 individual studies showed consistent associations across groups of differ-
ent ethnic origin (107), and thus provide evidence against a large effect of population 
stratifi cation, hidden or otherwise. However, as studies of association and interaction 
typically address moderate or small effects and hence require large sample sizes, 
a small bias arising from population stratifi cation may be important (108). Study 
design (case-family control studies) and statistical methods (75) have been proposed 
to address population stratifi cation, but so far few studies have used these suggestions 
(49). Most of the early genome-wide association studies used family-based designs 
or such methods as genomic control and principal components analysis (69,111) to 
control for stratifi cation. These approaches are particularly appropriate for address-
ing bias when the identifi ed genetic effects are very small (odds ratio < 1.20), as has 
been the situation in many recent genome-wide association studies (69,76,112–129). 
In view of the debate about the potential implications of population stratifi cation for 
the validity of genetic association studies, we recommend transparent reporting of 
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the methods used, or stating that none was used, to address this potential problem. 
This reporting will enable empirical evidence to accrue about the effects of popula-
tion stratifi cation and methods to address it.

Modeling Haplotype Variation

Recommendation for reporting of methods (Table 10.1, item 12g): Describe any 
methods used for inferring genotypes or haplotypes.

A haplotype is a combination of specifi c alleles at neighboring genes that tend 
to be inherited together. There has been considerable interest in modeling haplo-
type variation within candidate genes. Typically, the number of haplotypes observed 
within a gene is much smaller than the theoretical number of all possible haplotypes 
(130,131). Motivation for utilizing haplotypes comes, in large part, from the fact that 
multiple SNPs may “tag” an untyped variant more effectively than a single typed 
variant. The subset of SNPs used in such an approach is called “haplotype tagging” 
SNPs. Implicitly, an aim of haplotype tagging is to reduce the number of SNPs 
that have to be genotyped, while maintaining statistical power to detect an asso-
ciation with the phenotype. Maps of human genetic variation are becoming more 
complete, and large-scale genotypic analysis is becoming increasingly feasible. In 
consequence, it is possible that modeling haplotype variation will become more 
focused on rare causal variants, because these may not be included in the genotyp-
ing platforms.

In most current, large-scale genetic association studies, data are collected as 
unphased multilocus genotypes (i.e., which alleles are aligned together on particular 
segments of chromosome is unknown). It is common in such studies to use statis-
tical methods to estimate haplotypes (132–135), and their accuracy and effi ciency 
have been discussed (136–140). Some methods attempt to make use of a concept 
called haplotype “blocks” (141,142), but the results of these methods are sensitive to 
the specifi c defi nitions of the “blocks” (143,144). Reporting of the methods used to 
infer individual haplotypes and population haplotype frequencies, along with their 
associated uncertainties should enhance our understanding of the possible effects 
of different methods of modeling haplotype variation on study results as well as 
enabling comparison and syntheses of results from different studies.

Information on common patterns of genetic variation revealed by the International 
Haplotype Map (HapMap) Project (131) can be applied in the analysis of genome-
wide association studies to infer genotypic variation at markers not typed directly in 
these studies (145,146). Essentially, these methods perform haplotype-based tests but 
make use of information on variation in a set of reference samples (e.g., HapMap) 
to guide the specifi c tests of association, collapsing a potentially large number of 
haplotypes into two classes (the allelic variation) at each marker. It is expected that 
these techniques will increase power in individual studies, and will aid in combin-
ing data across studies, and even across differing genotyping platforms. If imputa-
tion procedures have been used, it is useful to know the method, accuracy thresholds 
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for acceptable imputation, how imputed genotypes were handled or weighted in the 
analysis, and whether any associations based on imputed genotypes were also veri-
fi ed on the basis of direct genotyping at a subsequent stage.

Hardy–Weinberg Equilibrium

Recommendation for reporting of methods (Table 10.1, item 12f): State whether 
Hardy–Weinberg equilibrium was considered and, if so, how.

Hardy–Weinberg equilibrium has become widely accepted as an underlying 
model in population genetics after Hardy (147) and Weinberg (148) proposed the 
concept that genotype frequencies at a genetic locus are stable within one genera-
tion of random mating; the assumption of HWE is equivalent to the independence 
of two alleles at a locus. Views differ on whether testing for departure from HWE 
is a useful method to detect errors or peculiarities in the data set, and also the 
method of testing (149). In particular, it has been suggested that deviation from 
HWE may be a sign of genotyping errors (73,150,151). Testing for departure from 
HWE has a role in detecting gross errors of genotyping in large-scale genotyping 
projects such as identifying SNPs for which the clustering algorithms used to call 
genotypes have broken down (69,70). However, the statistical power to detect less 
important errors of genotyping by testing for departure from HWE is low (68) and, 
in hypothetical data, the presence of HWE was generally not altered by the intro-
duction of genotyping errors (78). Furthermore, the assumptions underlying HWE, 
including random mating, lack of selection according to genotype, and absence of 
mutation or gene fl ow, are rarely met in human populations (152,153). In 5 of 42 
gene–disease associations assessed in meta-analyses of almost 600 studies, the 
results of studies that violated HWE signifi cantly differed from results of stud-
ies that conformed to the model (154). Moreover, the study suggested that exclu-
sion of HWE-violating studies may result in loss of the statistical signifi cance of 
some postulated gene–disease associations and that adjustment for the magnitude 
of deviation from the model may also have the same consequence for some other 
gene–disease associations. Given the differing views about the value of testing for 
departure from HWE and about the test methods, transparent reporting of whether 
such testing was done and, if so, the method used, is important for allowing the 
empirical evidence to accrue.

For massive testing platforms, such as genome-wide association studies, it might 
be expected that many false positive violations of HWE would occur if a lenient 
p-value threshold were set. There is no consensus on the appropriate p-value thresh-
old for HWE-related quality control in this setting. Hence, we recommend that 
investigators state which threshold they have used, if any, to exclude specifi c poly-
morphisms from further consideration. For SNPs with low minor allele frequencies, 
substantially more signifi cant results than expected by chance have been observed, 
and the distribution of alleles at these loci has often been found to show departure 
from HWE.
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For genome-wide association studies, another approach that has been used to 
detect errors or peculiarities in the data set (due to population stratifi cation, genotyp-
ing error, HWE deviations, or other reasons) has been to construct quantile–quantile 
(Q/Q) plots whereby observed association statistics or calculated p-values for each 
SNP are ranked in order from smallest to largest and plotted against the expected 
null distribution (68,70). The shape of the curve can lend insight into whether or not 
systematic biases are present.

Replication
Recommendation: State if the study is the fi rst report of a genetic association, a 
replication effort, or both (Table 10.1, item 3).

Articles that present and synthesize data from several studies in a single report 
are becoming more common. In particular, many genome-wide association analyses 
describe several different study populations, sometimes with different study designs 
and genotyping platforms, and in various stages of discovery and replication (68,70). 
When data from several studies are presented in a single original report, each of the 
constituent studies and the composite results should be fully described. For exam-
ple, a discussion of sample size and the reason for arriving at that size would include 
clear differentiation between the initial group (those that were typed with the full 
set of SNPs) and those that were included in the replication phase only (typed with a 
reduced set of SNPs) (68,70). Describing the methods and results in suffi cient detail 
would require substantial space in print, but options for publishing additional infor-
mation on the study online make this possible.

Discussion

The choices made for study design, conduct, and data analysis potentially infl uence 
the magnitude and direction of results of genetic association studies. However, the 
empirical evidence on these effects is insuffi cient. Transparency of reporting is thus 
essential for developing a better evidence base (Table 10.2). Transparent reporting 
helps address gaps in empirical evidence (45), such as the effects of incomplete par-
ticipation and genotyping errors. It will also help assess the impact of currently con-
troversial issues such as population stratifi cation, methods of inferring haplotypes, 
departure from HWE, and multiple testing on effect estimates under different study 
conditions.

The STREGA Statement proposes a minimum checklist of items for reporting 
genetic association studies. The statement has several strengths. First, it is based 
on existing guidance on reporting observational studies (STROBE). Second, it was 
developed from discussions of an interdisciplinary group that included epidemiolo-
gists, geneticists, statisticians, journal editors, and graduate students, thus refl ecting 
a broad collaborative approach in terminology accessible to scientists from diverse 
disciplines. Finally, it explicitly describes the rationale for the decisions (Table 10.2) 
and has a clear plan for dissemination and evaluation.
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The STREGA recommendations are available at http://www.strega-statement.
org/. We welcome comments, which will be used to refi ne future versions of the rec-
ommendations. We note that little is known about the most effective ways to apply 
reporting guidelines in practice, and that therefore it has been suggested that editors 
and authors collect, analyze, and report their experiences in using such guidelines 
(155). We consider that the STREGA recommendations can be used by authors, 
peer  reviewers, and editors to improve the reporting of genetic association stud-
ies. We invite journals to endorse STREGA, for example by including STREGA 
and its Web address in their Instructions for Authors and by advising authors and 
peer reviewers to use the checklist as a guide. It has been suggested that report-
ing guidelines are most helpful if authors keep the general content of the guideline 
items in mind as they write their initial drafts, then refer to the details of individual 
items as they critically appraise what they have written during the revision process 
(155). We emphasize that the STREGA reporting guidelines should not be used for 
screening submitted manuscripts to determine the quality or validity of the study 
being reported. Adherence to the recommendations may make some manuscripts 
longer, and this may be seen as a drawback in an era of limited space in a print 
journal. However, the ability to post information on the Web should alleviate this 
concern. The place in which supplementary information is presented can be decided 
by authors and editors of the individual journal.

We hope that the recommendations stimulate transparent and improved report-
ing of genetic association studies. In turn, better reporting of original studies would 
facilitate the synthesis of available research results and the further development 
of study methods in genetic epidemiology with the ultimate goal of improving the 
understanding of the role of genetic factors in the cause of diseases.

Summary

Making sense of rapidly evolving evidence on genetic associations is crucial to mak-
ing genuine advances in human genomics and the eventual integration of this infor-
mation in the practice of medicine and public health. Assessment of the strengths 
and weaknesses of this evidence, and hence the ability to synthesize it, has been 
limited by inadequate reporting of results. The STrengthening the REporting of 
Genetic Association (STREGA) studies initiative builds on the STrengthening the 
Reporting of OBservational studies in Epidemiology (STROBE) STatement and 
provides additions to 12 of the 22 items on the STROBE checklist. The additions 
concern population stratifi cation, genotyping errors, modeling haplotype variation, 
Hardy–Weinberg equilibrium, replication, selection of participants, rationale for 
choice of genes and variants, treatment effects in studying quantitative traits, statis-
tical methods, relatedness, reporting of descriptive and outcome data, and the vol-
ume of data issues that are important to consider in genetic association studies. The 
STREGA recommendations do not prescribe or dictate how a genetic association 
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study should be designed but seek to enhance the transparency of its reporting, 
regardless of choices made during design, conduct, or analysis.
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Introduction

The growing interest in genetic predisposition to common diseases, along with the 
rapid advances in genotyping technologies in recent years, has seen an explosion 
in the amount of epidemiologic evidence on gene–disease associations. Along with 
this growth in evidence has come an increasing need to collate and summarize the 
evidence in consistent, informative, and readily accessible formats. Human Genome 
Epidemiology (HuGE) reviews have been a cornerstone of the efforts of the Human 
Genome Epidemiology Network (HuGENet) to develop an online resource to house 
the cumulative and changing information on epidemiologic aspects of human genes 
(1). HuGE reviews may collate evidence on population frequencies of genetic vari-
ants, genotype–phenotype associations, interactions among genes and between 
genes, and environmental exposures, or a combination of these. More than 70 HuGE 
reviews have been completed under the auspices of HuGENet, with more than 80 in 
preparation at the time of writing. The majority of these reviews focus on genotype–
phenotype associations, tackling evidence of association between specifi c genetic 
markers and either disease risk or quantitative traits, or both. Many similar reviews 
are published outside the auspices of HuGENet. In this chapter we explain what 
HuGE reviews aim to achieve and describe some key components of the methodol-
ogy for undertaking them. The material is also directly relevant to reviews and meta-
analysis of genetic association studies undertaken by groups outside of HuGENet.

What Are HuGE Association Reviews?

Genetic associations with common disease outcomes are likely to be numerous and 
mostly of small magnitude (2). Convincing evidence of true association therefore 
requires careful control over potential biases and chance effects. Control over biases 
is important both in study design (3) and in considering the selective availability of 
data on associations that have been examined (4). Large sample sizes are necessary 
for the detection of most associations. Furthermore, replication of fi ndings in inde-
pendent data sets is now widely regarded as a prerequisite for convincing evidence 
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of association. Thus, multiple studies are likely to exist, potentially from noncol-
laborating groups.

The purposes of a HuGE association review are (a) to identify all epidemiolog-
ical investigations of the associations of interest; (b) to assess the reliability of the 
evidence; (c) to determine whether an association exists; and (d) to quantify the 
likely magnitude of an association if it exists. HuGE reviews are typically system-
atic reviews (see Table 11.1), aiming to identify, appraise, and synthesize evidence 
from all relevant existing studies on the topic in question (5). The general outline of 
a HuGE review is provided in Table 11.2. The strengths and limitations of system-
atic reviews are well established for clinical trials, largely through the efforts of The 
Cochrane Collaboration (6). Systematic reviews and meta-analyses are increasingly 
being applied to observational studies, and currently there are as many meta-analyses 
of observational data conducted as there are of clinical trials. The citation impact of 
both types of meta-analyses is equally high, the highest among all study designs in 
the health sciences (7). Meta-analyses of gene–disease association studies provide a 
key method for establishing the genetic components of complex diseases (8).

HuGE reviews cover a wide array of diseases and conditions, ranging from rare 
single gene disorders such as neurofi bromatosis, to common conditions such as pre-
term birth, cancer, and heart disease (9). HuGE reviews focus on variants in a single 
gene, following the so-called “candidate gene” approach to identifying likely pre-
disposing factors. Candidate genes may be chosen on the basis of either biological 
rationale (e.g., plausible biological pathways) or statistical evidence (e.g., fi ndings 
arising from genome-wide association studies, or GWAS). However, HuGE reviews 
serve a different function from combined analyses (meta-analyses) of several whole 
genome association studies, which have a principal emphasis on detection of novel 
disease-associated variants. While it remains likely that a relatively limited number 
of variants play important roles in predisposition to common diseases (10), the col-
lation and presentation of evidence on individual associations, and the interactions 
among them, through HuGE reviews, will continue to be important.

The Evolving Nature of Methodology

The rapid evolution of methodological standards for HuGE reviews is evident from 
the history of guidance on their conduct. They were originally proposed in 1998 by 

Table 11.1 Characteristics of a systematic review

• Prespecifi cation of objectives and criteria for including studies

• Comprehensive, systematic search for studies

• Reproducible methods, and duplication of tasks prone to human error

• Appraisal of included studies (including assessment of risk of bias)

• Synthesis of fi ndings (e.g., using meta-analysis)

• Presentation of results in relation to initial objectives
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Khoury and Dorman (1), and more specifi c guidance for their content was provided 
in the American Journal of Epidemiology in 2000 (12). In January 2001 an expert 
panel workshop, convened by the Centers for Disease Control and Prevention (CDC) 
and the National Institutes of Health (NIH), led to recommendations regarding con-
siderations that should be addressed in reporting studies of genotype prevalence in 
gene–disease associations, both for individual investigators and systematic reviews 
(3). Further experience with the HuGE review process (13) led to provision of revised 
guidance and formats for reviews (14). Four types of review were suggested: full 
reviews, association reviews, prevalence reviews, and mini-reviews. HuGE reviews 
continued to vary in their methodology, and particularly in the application of formal 
meta-analytic methods. A systematic review methodology workshop, convened by 

Table 11.2 Outline of a HuGE review as recommended in the HuGE Review 
Handbook

Title

Abstract

Background

 Gene(s)

 Gene variants and frequency

 Disease(s) or other outcomes

Objectives

Methods

 Selection criteria

 Identifying studies

 Data collection and analysis

Results

 Included studies

 Quality and methodology of studies

 Associations

 Interactions

Discussion

 Main fi ndings

 Limitations

 Biology

 Potential public health impact and other implications of results

   (a) Potential public health impact

   (b) Implications for our understanding of disease

   (c) Implications for research

Potential confl icts of interest

References

Source: From Reference 11.
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the Cambridge Genetics Knowledge Park in November 2004, led to the more exten-
sive guidance described in the HuGE Review Handbook (11,15).

We anticipate considerable further development of guidance for HuGE reviews 
in the future. The fi eld of human genome epidemiology is still relatively new and 
fast-moving in terms of both technologies (the range and types of genetic variation 
that can be investigated) and methodologies (study designs and statistical methods). 
Evidence is accruing on the properties of these methods, particularly as a result 
of improved reporting. Methods of HuGE reviews will change not only to refl ect 
advances in methods for review and synthesis, but particularly also as the nature 
and availability of genomic data evolve over time.

Methods of HuGE Reviews

An editorial in the American Journal of Epidemiology offered six specifi c recom-
mendations for the methodology of HuGE reviews (15). Here we elaborate on each 
of these recommendations, providing an overview of some of the key considerations 
in the review process. Detailed discussion of these issues, and more, is provided in 
the HuGE Review Handbook (11). Even more detailed guidance for the conduct of 
systematic reviews (particularly literature-based systematic reviews) can be found in 
the Cochrane Handbook for Systematic Reviews of Interventions (16).

Encouraging consortia of primary research investigators as the most reli-1. 
able approach for performing combined analyses or meta-analyses (based 
on individual participant data)
HuGE reviews can be undertaken by anyone (see http://www.cdc.gov/ genomics/
hugenet/participate.htm). Literature-based systematic reviews are often pre-
pared by researchers unconnected with the generation of the primary research 
fi ndings. However, information in the literature may be seriously biased in favor 
of positive associations, due to selective nonpublication of uninteresting fi nd-
ings. Correspondence with original researchers is generally recommended in an 
attempt to tackle such problems. A substantially more reliable approach, how-
ever, is for those responsible for generating the original evidence to join forces in 
synthesizing the totality of evidence using consistent defi nitions of disease and 
standardized statistical methods (17); see also Chapter 7. Some possible advan-
tages and disadvantages of different approaches to HuGE reviews are summa-
rized in Table 11.3. In practice, HuGE reviews may compile data from a variety of 
sources, including individual participant data from some studies, aggregate data 
by correspondence from others, and summary statistics from publications for fur-
ther studies. Such “conglomerate evidence” may be expected even for consortia-
based meta-analyses (18). A trade-off may be required between focusing on the 
largest possible data set by considering all sources (thus potentially maximizing 
precision) and focusing on the “in-house” data set by using only individual par-
ticipant data from the studies in the consortia (potentially minimizing bias).
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Adopting methods to minimize human error in the literature-based reviews, 2. 
such as duplicating selection of studies and data extraction
In literature-based reviews and meta-analyses, all reasonable attempts should 
be made to prevent the introduction of errors and personal biases. A key attri-
bute of a systematic review is that criteria for including studies are clearly 
specifi ed in advance. This is perhaps the most important difference between a 
narrative (traditional) review, in which the author is free to select data sources 
that fi t a predetermined hypothesis, and the more objective method of sys-
tematic review. Independent duplication of steps in the review process, such 
as selection of studies, extraction of data, and critical assessment of methods 
used in the individual studies, can further reduce biases and prevent errors. 
Accidental omission of data, or accidental duplication of a study in a meta-
analysis, may lead to spurious false-negative or false-positive fi ndings, par-
ticularly important when effect magnitudes are likely to be small.

Conducting comprehensive (yet practically realistic) searches for eligible 3. 
studies, considering sources beyond MEDLINE
The HuGE Literature Finder, within the HuGE Navigator (http://www. 
hugenavigator.net/), is a major source of information on gene–disease associa-
tion studies, although is currently restricted to records from PubMed published 
after 2000 (19). A review limited to studies identifi ed only from MEDLINE (or 
PubMed) may be insuffi cient, for two reasons. First, any review restricted to 
published literature is prone to publication bias, whereby only a subset compris-
ing the most “publishable” fi ndings is available from the totality of evidence 
on a particular genetic association. Second, MEDLINE is just one of several 
major sources of bibliographic information, and publication bias may, to some 

Table 11.3 Data sources for meta-analysis of genetic association studies

Approach Some Advantages and Disadvantages

Consortium-based meta-analysis with 
 prospective genotyping

Advantages: complete data within the boundaries of the 
consortium; availability of data unrelated to fi ndings; 
maximized ability to harmonize methods.
Disadvantages: logistics of setting up a consortium; 
genotyping costs.

Consortium-based meta-analysis of 
 existing data

Advantages: data not subject to selective availability; 
potential to harmonize data.
Disadvantages: data may be incomplete; inclusion in 
consortium may be related to fi ndings.

Literature-based systematic review and 
liaison with investigators

Advantages: relatively low resource requirements.
Disadvantages: may be prone to bias due to selective 
availability of data.

Literature-based systematic review Advantages: low resource requirements.
Disadvantages: prone to serious bias due to selective 
availability of data.
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extent, be addressed by searching comprehensively for studies available 
through other sources. Other bibliographic databases likely to be useful in a 
HuGE review include EMBASE and the Science Citation Index. The over-
lap between these various databases is far from complete; for example, of 
approximately 4,800 journals indexed in EMBASE, 1,700 are not indexed in 
MEDLINE (20). Numerous studies in other fi elds have concluded that sys-
tematic reviews should search beyond MEDLINE (see Wilkins et al. (21), and 
other references cited in Hopewell et al. (22)) although there is a lack of evi-
dence in the area of HuGE. Furthermore, bibliographic searches may still not 
retrieve all articles that are in the indexed journals (23).

The extent to which a review seeks to identify and include all evidence inter-
nationally is a further consideration. One empirical study found substantial 
differences between genetic associations from studies based in the People’s 
Republic of China compared with studies done in other parts of the world (24). 
Limited evidence from the same study suggested that among the Chinese stud-
ies, more exciting fi ndings tended to be reported in PubMed-indexed journals. 
A practical decision is often made to restrict the review to reports in English 
(and perhaps in other languages familiar to the review team). We suggest that a 
more scientifi cally robust strategy is to restrict the review to studies in particu-
lar geographical areas for which the literature is well covered in the databases 
searched (e.g., North America is well covered by PubMed and Europe is well 
covered by EMBASE). This would avoid the inclusion of evidence from areas 
in which only a minority of studies had been published in English and which, 
in consequence, was potentially biased.

Another potential source of information on existing studies is the increasing 
number of online databases, including data repositories for GWA and other 
association studies (25), and we anticipate that future HuGE reviews will draw 
extensively on such resources. For example, the database of Genotypes and 
Phenotypes (dbGaP; http://www.ncbi.nlm.nih.gov/gap) contains data from the 
Genetic Association Information Network (GAIN) among other initiatives, 
and the European Genotype Archive (EGA; http://www.ebi.ac.uk/ega/) con-
tains data from the Wellcome Trust Case Control Consortium (WTCCC). In 
the last quarter of 2008, a paper raised concern about the possibility of iden-
tifying whether genotypic data on a specifi c individual was included in a pub-
licly available database if an investigator had access to a reference database 
(26). This has generated a great deal of discussion and an initial response was 
to impose limits on the data made publicly available (27). At the time of writ-
ing, the nature and extent of such limits are still under discussion.

Considering in more detail the potential for bias in individual studies and 4. 
in the total body of available evidence
The validity of a meta-analysis depends on the validity of the studies included 
in it, so it is important that each component study is appraised before being 
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included in a statistical synthesis. The most important sources of bias in obser-
vational epidemiological studies are less well understood than those in some 
other study designs such as randomized trials. There is little empirical evidence 
associating study results with study characteristics for genetic association 
studies. Some extensive discussions of potential biases are available, however, 
with the principal candidates being population stratifi cation (confounding due 
to subpopulations in the sample that differ both in genotype prevalence and 
disease risk), case defi nition, and methods in the collection, handling, and 
processing of DNA and the determination of genotypes (including blinding to 
case-control status) (3,28). Unfortunately, the appraisal of potential biases is 
diffi cult in practice, not only due to the uncertainty over which study character-
istics are important, but also because of incomplete or variable reporting of the 
methods used in the studies themselves (29). Initiatives such as the STREGA 
statement, which offers guidelines for reporting of individual genetic associa-
tion studies, may improve the situation in the future (see Chapter 10).

There is good evidence of reporting biases in the HuGE literature, particularly 
of the exaggerated effects that are often seen in the earliest reports of an associa-
tion compared with subsequent attempts to replicate the fi nding (30). Overcoming 
publication bias requires the availability of all eligible data from all eligible stud-
ies (or an unbiased subset). This can only be achieved with prospective generation 
of the data (e.g., by a consortium), or when the reviewers are confi dent that all 
existing studies are either known or reported without bias. Unfortunately, selec-
tive reporting of only the most promising variants is a natural consequence of any 
attempt to summarize an association study of numerous genetic markers within 
the straightjacket of a traditional paper journal article. We now expect association 
studies to exploit the possibility of web-based publication of complete fi ndings, 
but there are often obstacles to prevent this in practice.

HuGE review authors are encouraged to assess the strength of evidence that 
an observed association is genuine, and interim guidance for this process is 
available (31); see also Chapter 12. These so-called “Venice criteria,” named 
informally after the venue of the meeting at which they were developed, assess 
the three domains of precision (e.g., through sample size), consistency of 
results across studies (e.g., through meta-analytic measures of heterogeneity), 
and protection from bias both within and across studies in a meta-analysis.

Encouraging quantitative synthesis of results from multiple studies (meta-5. 
analysis) where appropriate
Meta-analysis is the statistical synthesis of results from multiple studies (32). 
When implemented and interpreted appropriately, and applied to unbiased and 
correctly analyzed studies, it provides a powerful tool to understand similari-
ties and differences between results from different studies. By exploiting the 
totality of evidence, meta-analyses typically offer enhanced power to detect 
associations, and increased precision in the estimation of their magnitude. 
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Meta-analyses are encouraged in HuGE reviews, and the majority of HuGE 
reviews in recent years have included them. Attention should always be paid to 
the possibility of reporting biases in reviews based on the published literature.

Most meta-analyses are undertaken simply as weighted averages of the esti-
mates from the different studies. A metric is chosen for the analysis that ensures 
comparable quantities with reasonable statistical properties. For example, log 
odds ratios are typically combined for case-control studies, and if quantitative 
traits are measured using different methods across studies, they may be stan-
dardized before pooling, usually by expressing the results in terms of standard 
deviations. Consistency of results across studies should always be evaluated, 
which can be achieved using a statistical test of homogeneity or by quantifying 
the between-study variance (or quantities derived from these (33)). It is desir-
able to explore potential reasons for variation in fi ndings across studies, although 
attempts at this can easily become “fi shing expeditions” with unreliable conse-
quences. Thus potential sources of variation in study results should be prespeci-
fi ed whenever possible, and limited in number. Methods are available to temper 
the statistical signifi cance of fi ndings based on small numbers of studies (34).

Meta-analysis methods of gene–disease association studies closely follow 
well-developed methodology for randomized trials (4,35,36). Due to so-called 
“Mendelian randomization” in the transmission of genetic material from par-
ents to children, confounding is generally thought to be of minimal concern 
(although not ignorable, since it may arise through population stratifi cation). 
Thus, unadjusted analyses are common in meta-analyses, even if matched 
studies have adjusted for matching factors such as age and sex. Special consid-
erations in the meta-analysis of gene–disease associations include the choice 
of inheritance model (37,38), the treatment of Hardy-Weinberg equilibrium 
(39,40), and the combination of associations for markers known to be in link-
age disequilibrium (41). Developments in the last area are now allowing com-
plex syntheses of data across GWAS (42).

Encouraging incorporation of intermediate phenotypes (such as molecular 6. 
markers) so that “Mendelian randomization” can be exploited to examine 
the causal effects of such phenotypes
A key development in observational epidemiology in recent years has been the 
recognition that nature’s “randomization” of genetic material when gametes 
are formed can be exploited to infer causal effects of certain risk factors on 
disease (43); see also Chapter 21. Associations between traditional risk fac-
tors (such as lipid levels, exposures to toxins, or behaviors) are often affected 
by confounding (when an extraneous factor is responsible for changes in both 
the exposure and the outcome), or by reverse causation (when the outcome is 
itself responsible for modifying the exposure). However, a methodology for 
overcoming these problems is known as “instrumental variables” (44). An 
instrumental variable is one that is associated with the exposure of interest, but 
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not with the potential confounders. Under the assumption that the effect of the 
instrumental variable affects the outcome only through its effect on the expo-
sure, the causal effect of the exposure can be deduced by examining on the one 
hand the association between instrumental variable and exposure, and on the 
other hand the association between the instrumental variable and the outcome. 
One example of this is the use of a polymorphism in an alcohol dehydrogenase 
gene (ALDH2) as an instrumental variable for assessing the causal effect of 
alcohol exposure on esophageal cancer (45). Because of their different physi-
ological responses to drinking alcohol, individuals with different genotypes 
consume different amounts. However, there is little rationale (or evidence) 
for ALDH2 variants to affect major confounders in the association between 
alcohol intake and esophageal cancer. A meta-analysis that identifi ed an asso-
ciation between esophageal cancer and ALDH2 genotype was interpreted as 
evidence of a causal effect of alcohol on cancer risk (45). Furthermore, a par-
ticular potential strength of the method is that by combining estimates of the 
gene–cancer association and gene–alcohol intake association, an indirect esti-
mate of the causal effect of alcohol intake can be obtained.

Mendelian randomization methods will of course not solve all problems 
of causal inference in observational epidemiology. Strong assumptions are 
required for the approach to be valid. For instance, the genetic variant should 
not be in linkage disequilibrium with another variant involved in disease risk, 
and the method is problematic if there is canalization, that is, an adaptation by 
the body to compensate for a genuine risk conferred by the exposure. Perhaps 
the most important limitation, however, is the diffi culty of identifying genetic 
variants that have real and specifi c effects on the exposures of interest. HuGE 
review authors are encouraged to consider potential intermediate phenotypes 
when undertaking reviews, and to collate and synthesize evidence on asso-
ciations between the genotypes of interest and these intermediate pheno-
types. These intermediate phenotypes may be of interest as outcomes in their 
own right, or may be used subsequently to explore causal relationships using 
Mendelian randomization methods (46). Because effects are typically small, 
particularly for gene–disease outcome associations, meta-analyses are likely 
to be necessary for many Mendelian randomization analyses.

Challenges for the Future

The transfer of systematic review methods, so well established now for synthesiz-
ing clinical trials, into the fi eld of human genome epidemiology HuGE reviews, has 
met with substantial challenges. There are notable differences between genetic epi-
demiology evidence and clinical trial evidence. For example, precisely what con-
stitutes an epidemiologic study can be diffi cult to defi ne, and the vast numbers of 
variants that can now be studied mean that only a small minority of fi ndings can be 
published in the traditional paper journal format. The need for large sample sizes 
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is well recognized, and collaboration among research groups to pool the totality 
of relevant evidence may soon be the norm (47) while continuing to be the excep-
tion for clinical trials (48). An informatics infrastructure for the HuGE reviews has 
not been developed, although the reviews are well indexed and therefore easy to 
locate using HuGE Navigator. Major advances have been made for individual dis-
ease areas, however, particularly the comprehensive databases of studies and meta-
analyses in Alzheimer disease (www.alzgene.org), Parkinson disease (www.pdgene.
org), and schizophrenia (www.szgene.org) (49,50). Such databases form the basis of 
some of the fi eld-wide synopses of all available evidence on genetic predisposition 
to major diseases described in Chapter 12 and illustrated in Part III.

The preparation of systematic (HuGE) reviews of individual associations with dis-
ease risk or quantitative traits is just one piece of a much larger jigsaw. They are key 
informants of fi eld-wide synopses. On their own, however, they offer the opportunity 
to consider the likelihood that the totality of evidence for a particular association is 
available, to examine rigorously the validity of each piece of evidence, to investigate 
potential inconsistencies in fi ndings across studies, and—where associations are dem-
onstrated to be robust—to consider potential biological mechanisms and discuss impli-
cations for further research. This rigor clearly cannot be afforded to every potential 
association. However, while the number of associations that are established without 
doubt remains small, HuGE reviews have an important role to play in ensuring we are 
not misled unnecessarily by fi ndings that appear to be more exciting than they are.
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The rapid growth in published genetic association studies (1) and the more recent 
successes of genome-wide association studies (GWAS) in fi nding disease suscep-
tibility loci for several common diseases (2) present a major challenge for knowl-
edge synthesis and dissemination. Knowledge synthesis is needed to guide further 
research, drug discovery efforts (3), and translational efforts for personalized risk 
assessment and therapy. The recent trend for direct-to-consumer advertising of 
whole genome analysis by several companies underscores the importance of a cred-
ible process for data synthesis and evaluation of the validity and utility of claims 
related to genetic prediction of disease risks (4–7).

In 2008, over 7,000 original articles were published on human genome epi-
demiology and the annual number has been rising rapidly (Table 12.1) (8). 
Furthermore, the published literature represents only a fraction of the data actu-
ally collected and analyzed. In addition, until recently, most studies have tar-
geted one or a few gene variants (the candidate gene approach), but many new 
articles report the results of GWAS, and are expected to become increasingly 
common. More than 400 GWAS have been published total, not just since 2007, 
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but the pace has accelerated since 2007 (8). Only a few of these studies, how-
ever, have been deposited into accessible online databases such as the Database 
on Genotypes and Phenotypes (dbGAP) at the National Library of Medicine (9), 
the Cancer Genetic Markers of Susceptibility database (CGEMS) at the National 
Cancer Institute (10), and the Wellcome Trust Case Control Consortium (11). 
This number is expected to increase under new policies governing data sharing 
for GWAS (12), although type of access and confi dentiality issues may continue 
to need careful consideration (13).

Despite a massive amount of primary data, the conclusions of genetic association 
studies are not always clear, requiring an evidence-based synthesis that takes into 
account the amount of evidence, the extent of replication, and protection from bias. 
Although approximately 1,000 systematic reviews and meta-analyses have been 
published since 2001, most have addressed only one or a few specifi c gene–disease 
associations at a time (8). Moreoever, the amount of accumulated data that needs to 
be integrated continues to grow rapidly, with high-throughput genotyping platforms 
raising the challenge exponentially.

As part of ongoing efforts in this fi eld, we report here fi ndings and recommen-
dations from a multidisciplinary workshop, including geneticists, epidemiologists, 
journal editors, and bioinformatics experts, that was sponsored by the Human 
Genome Epidemiology Network (HuGENet) and held in Atlanta on January 24–25, 
2008. The meeting was convened to discuss synthesis and appraisal of cumulative 
evidence on genetic associations and to develop a strategy for an online encyclope-
dia on genetic variation and common human diseases.

Table 12.1 Trends in numbers of published articles on human genome 
epidemiology, meta-analyses, and genome-wide association studies and 
numbers of genes studied, by year, 2001–2007*

Year No. of Genes† No. of Diseases no. of articles published

   Total GWAS Meta-Analyses‡

2001  633  690 2,492  0  34

2002  794  855 3,196  0  45

2003  832  880 3,476  3  65

2004 1,124 1,021 4,280  0  86

2005 1,308 1,077 5,029  5 113

2006 1,502 1,109 5,364  12 155

2007 2,142 1,292 7,222 104 208

2008 3,336 1,203 7,659 134 236

*HuGE Navigator query. Available at http://www.hugenavigator.net/. Accessed February 14, 2009.
†Genes column does not include the numbers of studied variants per gene (diffi cult to obtain).
‡Meta analyses also include HuGE reviews.
GWAS: Genome-wide association studies (individual genes not counted in genes column, unless fea-

tured in the paper).
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Progress in the HuGENet Road Map

HuGENet (14,15) is an informal global collaboration of individuals and organiza-
tions interested in accelerating the development of the knowledge base on genetic 
variation and human health. HuGENet has developed a “road map” (16) with several 
components: (i) working with genetic epidemiology study platforms (primarily con-
sortia and networks) to improve the execution and output of these groups under the 
rubric of “Network of Networks” (17); (ii) promoting the publication of methodolog-
ically sound genetic association studies with transparent reporting of their methods 
(STrengthening the REporting of Genetic Associations or STREGA) (18) and avoid-
ance of selective reporting; (iii) developing methods for synthesis and meta-analysis 
of the literature on genetic associations (the HuGE Review Handbook, version 1.0) 
(18); and (iv) developing “fi eld synopses” (19) with an online encyclopedia summa-
rizing what we know and what we do not know about genetic associations through 
a systematic assessment of their cumulative evidence. Such fi eld synopses were also 
called for in a Nature Genetics 2006 editorial (20).

Field Synopses: Assessing Cumulative Evidence for 
Genetic Associations

An initial meeting of the Network of Networks in 2005 led to the formation of a 
working group on methods for assessing cumulative evidence. A workshop orga-
nized in Venice, Italy in 2006 (21) generated interim guidelines for grading the 
cumulative evidence in genetic associations based on three criteria: (i) the amount 
of evidence; (ii) the extent of replication; and (iii) protection from bias (22). The 
proposed scheme allows for three categories of descending credibility (A,B,C) for 
each of these criteria and also for a composite assessment of “strong,” “moderate,” 
or “weak” credibility (see Appendix and Reference 20 for more details). Briefl y, 
an overall “strong” rating is reserved for a AAA rating, while an overall “weak” 
rating is reserved for associations with one or more C ratings. The rest are labeled 
as “moderate.” We note that these ratings could change over time with data accru-
ing from additional studies. The panel also discussed issues of biological and other 
experimental evidence and of the clinical importance of genetic associations. Pilot 
studies were planned in selected fi elds to assess cumulative evidence on gene–
disease associations, calibrate the proposed guidelines, and integrate the fi ndings 
into comprehensive fi eld synopses. As of August 2009, pilot fi eld synopses have 
been conducted for several diseases including Alzheimer disease, bladder cancer, 
schizophrenia, preterm birth, and coronary heart disease, as well as DNA repair 
genes and cancer phenotypes.

A fi eld synopsis is a regularly updated snapshot of the current state of knowl-
edge about genetic associations in a particular fi eld of research defi ned by a disease 
(e.g., Alzheimer disease), phenotype (e.g., body mass index), or family of genes (e.g., 
DNA repair genes). The ideal attributes of a fi eld synopsis are that it (a) is freely 



Methods and approaches for data collection, analysis, and integration230

available; (b) uses online databases that are curated by researchers to develop regu-
larly updated “online tables” on the volume of the evidence and magnitude of the 
associations between the disease and all genetic variants investigated; (c) uses objec-
tive and transparent criteria for grading the credibility of cumulative evidence; (d) 
summarizes the information in peer-reviewed articles; and (e) updates information 
on a regular basis. The fi rst fi eld synopsis—the source of AlzGene, the Alzheimer 
disease genetic association database (23)—was developed by Bertram, et al. and 
published in January 2007. This was followed by the publication of a fi eld synopsis 
on schizophrenia (24) and one on DNA repair genes (25), while three other synop-
ses are under development or peer review.

Experience with Field Synopses to Date

At the HuGENet workshop, several teams presented fi ndings and experiences in 
developing fi eld synopses, and on grading the epidemiologic evidence accord-
ing to the interim Venice guidelines (22). Key features of these efforts are sum-
marized in Table 12.2. All synopses include multiple meta-analyses involving 
large numbers of data sets, except for preterm birth, where evidence is sparse. 
Researchers performing synopses have used different thresholds or trigger points 
for conducting a meta-analysis. For example, in the coronary heart disease fi elds 
synopsis, investigators have considered only those associations for which at least 
one previous effort has been made to perform a meta-analysis. Data from GWAS 
have been incorporated in synopses on Alzheimer disease, schizophrenia, DNA 
repair genes, and bladder cancer. The preterm birth fi eld synopsis points out the 
need for further research on the genetic contribution to this major public health 
challenge.

Many associations in the Alzheimer, schizophrenia, and two cancer-related 
fi eld synopses yielded formally statistically signifi cant results at the p < 0.05 
level (Table 12.2). Nevertheless, only a few associations met the designation of 
“strong” evidence according to the Venice criteria. Similarly, in several synopses, 
none of the probed associations attained the status of “strong” evidence. Finally, 
so far, fi eld synopses have examined only one main phenotype, except in the 
case of DNA repair genes. In addition to main effects, synopses have investigated 
genetic effects according to different genetic models, and for subgroups—for 
example, subgroups based on exposure, ethnic group, participant characteris-
tics, or phenotypic subgroups. Decisions to undertake additional analyses need 
to be made on the basis of data availability. For example, in most fi eld synopses, 
investigators were able to assess different genetic models. Often, available epi-
demiologic evidence may be stronger for one genetic model than for another. By 
contrast, there have been relatively fewer subgroup analyses based on exposures 
and participant characteristics, because of suboptimal reporting of these factors 
in genetic epidemiology studies, a defi ciency that the STREGA guidance aims to 
address (18).



Table 12.2 Key characteristics of pilot fi eld synopses of genetic associations

 No. of Meta-
Analyses

No. of Data 
Sets*(a)

Threshold† for 
Meta-Analysis

No. of Statistically 
Signifi cant Associations‡

Strong§ (Grade A) World Wide Web Address

Alzheimer disease|| 228 1,072 4 data sets 53 NA www.alzgene.org

Schizophrenia# 118 1,179 4 data sets 24 4 www.szgene.org

DNA repair genes and 
various cancers

241 1,087 2 independent 
teams

31 3 www.episat.org

Bladder cancer 36 356 3 data sets 7 1 Not yet online

Coronary heart disease 48 1,039 — 4 0 www.chdgene.com

Preterm birth 17 87 3 data sets 2 0 www.prebic.net

Major depression 22 131 3 data sets 6 2 Not yet online

*Total number of data sets included in the meta-analyses (not including data sets that did not undergo meta-analysis).
†Authors’ prerequisite condition for conducting a meta-analysis.
‡Statistically signifi cant (P < 0.05) by random-effects calculations on the default (per allelele) analysis (for coronary heart disease, results are based on a meta-regression model and  correspond 

to effects in the largest studies, while for DNA repair genes, both recessive and dominant models were investigated).
§Grade AAA with regard to all three Venice criteria (18).
||Current on February 27, 2008.
#Current on April 30, 2008.
Data sets: the sum of data sets included in the meta-analyses (not including data sets that did not undergo meta-analysis); threshold: authors’ prerequisite condition for conducting meta-

analysis; signifi cant: p<0.05 by random effects calculations on the default (per allele) analysis (for coronary heart disease, results are based on a meta-regression model and correspond to effects 
in the largest studies, while for DNA repair genes both recessive and dominant models were investigated); strong (grade A): grade AAA in all three Venice criteria; online address: web site for 
deposited data sets.
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Insights from Current Field Synopses

The pilot fi eld synopses provided detailed insight about the grading process in the 
three specifi ed areas: amount of evidence, replication, and protection from bias. 
They identifi ed limitations that will help refi ne the current approach.

Amount of Evidence
For amount of evidence, synopses have used a classifi cation scheme based on the 
sample size of the minor genetic group (participants or alleles, depending on the 
genetic model). This is a simple measure that is readily available and has a close 
connection to power, Bayes factors, or false discovery rate (22). For candidate-
gene variants, several postulated associations fail to reach grade A evidence (see 
Table 12.3). Currently, with large collaborative efforts stemming from GWAS and 
subsequent replication studies, this is likely to be less of a problem at least for com-
mon variants with a frequency greater than 5%–10%. For variants with lower fre-
quency, very large sample sizes may be required. Nevertheless, some consortia have 
the potential of reaching even sample sizes exceeding 100,000, which means more 
than 1,000 for the minor allele, even for variants that occur in 0.5% of the gen-
eral population. For example, the international consortium on osteoporosis (Genetic 
Factors for Osteoporosis, GEFOS) funded by the European Commission includes 61 
studies with 133,333 participants, and for at least 14 of these studies, investigators 
have already conducted or plan to conduct GWAS. We may need to revisit the crite-
ria on amount of evidence once we have a better sense of the effect sizes regularly 
encountered for more rare variants.

Replication
Field synopses have used I2 to assign grades for inconsistency (amount of hetero-
geneity) (i.e., A for <25%, B for 25%–50%, C for >50%) across studies (23–25). 
One-third to one-half of the formally signifi cant associations has moderate or large 
I2values. However, I2 often has large uncertainty when there are only a few stud-
ies (26). Moreover, qualitative epidemiologic considerations about the presence of 
and potential explanation for heterogeneity would need to be taken into account in 
judging replication. For example, the association between N-acetyltransferase type 
2 (NAT2) variants and bladder cancer risk is expected to be exposure-specifi c; thus, 
heterogeneity may readily be expected between populations with different expo-
sures (e.g., different types of tobacco in European populations versus other popula-
tions) (27,28).

Another consideration is whether I2 refl ects heterogeneity of estimates around the 
null value, or heterogeneity in the magnitude of association. The former would ques-
tion the presence of an association, whereas the latter would question the strength of 
the association. For instance, even for a consistent association such as the glutathi-
one S-transferase M1 (GSTM1) null genotype and bladder cancer risk, there is some 
evidence for heterogeneity in the magnitude of the association across studies (28). 
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However, such epidemiologic insight must be considered with caution, to avoid 
introducing subjective, speculative processes in the grading. At a minimum, consid-
erations for upgrading or downgrading should be explicit. It may be reasonable to 
grade as A on this criterion associations with moderate or high heterogeneity with 
an extensive replication record. This replication includes a P-value for the summary 

Table 12.3 Venice interim guidelines for assessing the credibility of cumulative 
evidence on genetic associations (Ioannidis et al., reference 22)

Criteria and Categories Proposed Operationalization

Amount of evidence
A: Large-scale evidence
B: Moderate amount of evidence
C: Little evidence

Thresholds may be defi ned on the basis of sample 
size, power, or false-discovery rate considerations. 
The frequency of the genetic variant of interest 
should be accounted for. As a simple rule, we sug-
gest that category A require a sample size of more 
than 1,000 (total number in cases and controls, 
assuming a 1:1 ratio) evaluated in the least common 
genetic group of interest; that B correspond to a 
sample size of 100–1,000 evaluated in this group; 
and that C correspond to a sample size of less than 
100 evaluated in this group (see “Discussion” section 
in the text and Table 12.2 for further elaboration).

Replication
A: Extensive replication including at least 
1 well-conducted meta-analysis with little 
between-study inconsistency
B: Well-conducted meta-analysis with some 
methodological limitations or moderate 
between-study inconsistency
C: No association; no independent replication; 
failed replication; scattered studies; fl awed 
meta-analysis or large inconsistency

Between-study inconsistency entails statistical 
considerations (e.g , defi ned by metrics such as I 
2, where values of 50% and above are considered 
large and values of 25–50% are considered moderate 
inconsistency) and also epidemiologic considerations 
for the similarity/standardization or at least harmoni-
zation of phenotyping, genotyping, and analytical 
models across studies. See “Discussion” section 
in the text for the threshold (statistical or other) 
required for claiming replication under different 
circumstances (e g., with or without inclusion of the 
discovery data in situations with massive testing of 
polymorphisms).

Protection from bias
A: Bias, if at all present, could affect the 
magnitude but probably not the presence of 
the association
B: No obvious bias that may affect the pres-
ence of the association, but there is consider-
able missing information on the generation of 
evidence
C: Considerable potential for or demonstrable 
bias that can affect even the presence or 
absence of the association

A prerequisite for A is that the bias due to phenotype 
measurement, genotype measurement, confounding 
(population stratifi cation), and selective reporting 
(for meta-analyses) can be appraised as not being 
high (as shown in detail in Table 12.4)—plus, there 
is no other demonstrable bias in any other aspect of 
the design, analysis, or accumulation of the evidence 
that could invalidate the presence of the proposed 
association. In category B, although no strong biases 
are visible, there is no such assurance that major 
sources of bias have been minimized or accounted 
for, because information is missing on how phe-
notyping, genotyping, and confounding have been 
handled. Given that occult bias can never be ruled 
out completely, note that even in category A, we use 
the qualifi er “probably.”
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effect (excluding the discovery data set), of p < 10–7 even in random-effect models 
that account for between-study heterogeneity or have a false-positive report prob-
ability rate less than 10% or a Bayes factor less than 10–5.

For example, the apparent heterogeneity in the effect of NAT2 slow acetylation on 
bladder cancer risk can be explained by differences in the pattern of tobacco smok-
ing across study populations (28). However, the presence of heterogeneity would 
refl ect even in these cases the possibility that, bias set aside, one would need to 
identify the sources of heterogeneity in subsequent studies. These could include not 
only differential effects under different exposures, but also the possibility that the 
association is with a correlated phenotype and not the one tested (e.g., the fat mass 
and obesity-associated gene, diabetes, and obesity) (29), the impact of the differ-
ent ascertainment schemes used in different studies (30), genotype misclassifi cation 
(especially in isolated candidate gene studies), or a marker polymorphism that is in 
variable linkage disequilibrium with the causative variant across the populations 
(31). The latter scenario could become common in associations that emerge out of 
“agnostic” GWAS, where it is unlikely that the causal variant will be directly iden-
tifi ed. In the setting of GWAS, it is easy to check whether linkage disequilibrium 
structures are different in different populations; in the presence of similar linkage 
disequilibrium structure, a cause of heterogeneity can be quickly excluded. It has 
been demonstrated that beyond a given threshold of inconsistency, no matter how 
large the studies we conduct, we may never have enough power to replicate an asso-
ciation (nonreplicability threshold) (32).

Another issue is the ability of the cumulative evidence to exclude an association 
based on lack of replication. It is notable that the Venice criteria include, under “rep-
lication C,” also the possibility of “no association and failed replication,” based on 
traditional nonsignifi cant results for the meta-analysis. Minute effects can never be 
excluded, and in fact, in GWAS, many true associations yield modest results that 
do not cross genome-wide association p-value thresholds or have equivalently low 
false report probability rates. Many true fi ndings do not rise to the top of the single 
nucleotide polymorphism p-value ranks in phase 1 of a genome-wide association 
study (33). Despite extremely large sample sizes and cumulative meta-analyses of 
many GWAS, many associations may remain undiscovered and/or inconclusive. The 
Venice criteria should not be used to conclude that there is strong evidence for a null 
association.

Protection from Bias
A research fi nding cannot reach suffi cient credibility (>50%) unless the probability 
of a false-positive association is less than the prestudy odds of an association’s being 
true (34). The Venice criteria include an extensive checklist for sources of biases in 
different settings. The checklist has different considerations depending on whether 
the evidence comes from retrospective meta-analyses of published data or prospec-
tive GWAS and replication studies from collaborative consortia with harmonization 
of data collection and analysis.
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Bias checks that have been adopted in these synopses for retrospective meta-anal-
ysis include automated checks that can be readily applied to all meta-analyses of 
published data. These are shown in Table 12.4, along with a list of issues that need 
to be considered. General checks (that can be applied automatically to all fi elds) 
have the advantage of being objective and unambiguous, but they cannot provide 
defi nitive proof for the presence or absence of bias. For instance, a small effect size 
(e.g., odds ratio < 1.15) could be explained by bias, but many of the confi rmed asso-
ciations between single nucleotide polymorphisms and chronic diseases are of this 
order of magnitude. Therefore, small effect sizes, if seen consistently across many 
studies and with no evidence for publication bias, should not be automatically penal-
ized. For prospective evidence, such as data accumulated from one or more GWAS 
with prospective replication across several teams in a consortium or prospective 
meta-analysis of many GWAS from collaborative studies (35) the considerations are 
quite different. Here, the small magnitude of effect size should not be invoked as 
evidence of lack of protection from bias, and similarly small-study effect bias or an 
excess of single studies with signifi cant fi ndings is not an issue here, provided there 
is no selective reporting of results (there is no reason for such selective reporting in 
a consortium).

For example, in the schizophrenia synopsis (24), of the 24 associations with nom-
inal statistical signifi cance, 9 associations were graded as “A” and 15 as “C” for 

Table 12.4 Some checks for retrospective meta-analyses in fi eld synopses of 
genetic associations

General checks for the occurrence of or susceptibility to potential problems*

• Small effect size (e.g., odds ratio <1.15-fold from the null value)

• Association lost with exclusion of fi rst study

• Association lost with exclusion of HWE-violating studies or with adjustment for HWE

•  Evidence for small-study effect in an asymmetry regression test with proper type I error 
(Stat Med. 2006;25:3443–3457)

•  Evidence for excess of single studies with formally statistically signifi cant results 
(Clin Trials. 2007;4:245–253)

Topic- or subject-specifi c checks: Consider whether they are problems

• Unclear/misclassifi ed phenotypes with possible differential misclassifi cation against genotyping

• Differential misclassifi cation of genotyping against phenotypes

•  Major concerns for population stratifi cation (need to justify for affecting odds ratio greater than 
1.15-fold, not invoked to date)

•  Any other reason (case-by-case basis) that would render the evidence for association highly 
questionable

*All general checks are likely to have only modest, imperfect sensitivity and specifi city for detecting problems. In 
particular for effect size, a small effect size may very well refl ect a true association, since many genetic associations 
have small effect sizes. However, if this effect has been documented in a retrospective meta-analysis that is suscepti-
ble to publication and other reporting biases, it also needs to be replicated in a prospective setting where such biases 
cannot operate before high credibility can be attributed to it.
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“protection from bias.” The main reasons for low grades were a small summary 
odds ratio (odds ratio < 1.15) in what are retrospective meta-analyses of published 
data (n = 6 associations), and loss of signifi cance after excluding the initial study 
(n = 6). Less common reasons were loss of signifi cance after excluding studies that 
violated Hardy-Weinberg equilibrium and signifi cant differences in effect between 
small and larger studies.

Issues to Consider for Moving Forward

Defi ning Thresholds for Evaluating Credibility
The threshold for considering an association for further assessment must be defi ned 
in each synopsis, but it may be diffi cult to reach full consensus on this issue. Given 
that current synopses have used a large amount of evidence from candidate gene 
studies, most have considered for grading all probed associations that pass very 
lenient levels of statistical signifi cance in meta-analysis (typically, p < 0.05 inferred 
from random-effects calculations). However, experience to date indicates that asso-
ciations with grade A for the amount of evidence but p-values just below 0.05 have 
either very small effects (and get a C for protection from bias if a retrospective 
meta-analysis) or moderate/large heterogeneity (and thus get a B or C for replica-
tion consistency). Even for such associations that stem from the candidate gene era, 
it is uncommon to get a rating of “strong” epidemiologic evidence grading (AAA), 
unless the p-value for the summary effect is substantially lower. Associations that 
arise out of GWAS require an even more demanding threshold. Thresholds may be 
set based either on p-value criteria for genome-wide signifi cance or using Bayesian 
approaches, of which there are several variants (36–39).

In view of the potential multiplicity of phenotypes examined and analyses per-
formed, some authors believe that the rigorous criteria for statistical signifi cance 
used in GWAS should be applied to candidate gene-derived associations. If so, 
p-values of 10–7 or lower would be required for a locus to be considered “confi rmed” 
(40,41). Figure 12.1a shows the distribution of p-values of the loci identifi ed by 
GWAS for binary outcome phenotypes and which have been included in the National 
Human Genome Research Institute (NHGRI) GWAS catalog as of October 14, 2008 
(42,43). Of the 466 entries in the catalog, after excluding those pertaining to stud-
ies that did not reach any hits with p < 10–5 and those that had nonbinary outcomes, 
223 loci are included here. As shown, fewer than two-thirds of them (142/223) have 
a p-value < 10–7 and only 39% (87/223) have a p-value < 10–10. When several stud-
ies and data sets are combined in genome-wide investigations, typically researchers 
have used pooled, stratifi ed, or simple fi xed effects analyses; random effects or other 
approaches that also take into account the heterogeneity between data sets often 
would have yielded even more conservative p-values (44). This suggests that the 
majority of signals emerging from current GWAS and early replication efforts do 
not yet cross stringent levels of “genome-wide signifi cance.” This further highlights 
the need to include far more data from additional GWAS and replication data sets, 
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Figure 12.1 (a) Levels of statistical signifi cance for associations of loci with p-value of 10–5 
or lower identifi ed through GWAS and entered in the catalog of GWAS as of October 14, 2008 
(41,42) and limited to those that have binary phenotypes (n = 223). For details on selection of 
loci in the catalog see References 41 and 42. (b) Odds ratios (per allele) for the 223 associa-
tions. (c) Odds ratios for 142 of the 233 associations that have p < 10–7. Not shown are 5, 13, 
and 7 outliers that had values outside the depicted range in the three panels respectively.
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and this can be routinely accomplished in the setting of fi eld synopses collating all 
of this information.

Bayesian approaches offer the advantage of allowing different prior probabilities 
for an association being present based on external evidence (thus bridging agnostic 
and candidate approaches) (36–39). These methods also allow consideration of the 
impact of different assumptions about the genetic effect sizes. Empirical evidence 
from GWAS can offer insight about typical discovered effects. Figure 12.1b shows 
the distribution of the odds ratios (typically per allele, as reported in the NHGRI 
catalog) (42,43) in the 223 GWAS-discovered loci. As shown, the median effect cor-
responds to an odds ratio of 1.28, and the same median is seen for the 142 associa-
tions with p < 10–7 (Figure 12.1c). These estimates may be infl ated compared to the 
true effects, due to the “winner’s curse” phenomenon (infl ation of effects selected 
based on signifi cance thresholds) (45,46). A median true odds ratio of 1.1–1.2 is 
therefore reasonable for these associations, and some effects many be even smaller, 
while exceptions of large odds ratios are probably uncommon. Nevertheless, one 
should acknowledge that the effect of the causal factor that is in the neighborhood 
of the tagging polymorphism may be larger, and we cannot yet exclude the possibil-
ity of considerably larger odds ratios for low frequency variants (47). Such variants 
were not assessed in the fi rst wave of GWAS, but they are being increasingly tar-
geted in current and future efforts (48,49).

As more synopses accrue, we can examine the stability of the Venice  grading 
for various associations. This will help us understand whether some types of 
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associations can change from having weak credibility to having strong credibility 
(and vice versa). As is described below, gathering empirical evidence into fi eld syn-
opsis databases will allow greater insight in the assessment of cumulative evidence 
on genetic associations.

Defi ning Conglomerate Evidence
It is already established practice for hypotheses about specifi c postulated associa-
tions to be tested using data from combinations of prospective consortia analyses 
stemming from GWAS and their meta-analyses and replication studies; possibly 
several consortia working on the same disease and phenotypes; additional scat-
tered studies by teams that are not included in any of the consortia; and even retro-
spective meta-analyses encompassing some/many/all of these sources of data. Such 
“conglomerate evidence” from various sources of data may appear in various time 
sequences. The Venice criteria suggested that one should consider the highest possi-
ble level of evidence when data come from disparate sources. Perhaps the best cur-
rently available source is a well-designed prospective consortium analysis including 
several teams that have performed GWAS and replications. The results of such an 
analysis should have a much greater weight than the results of scattered smaller 
studies. If the consortium evidence results in “strong” evidence, it would not be 
reasonable to underrate this evidence because of a few small, scattered, inconclu-
sive studies. However, the challenge will become more serious when many consor-
tia with one or more genome-wide platforms are available, and when the scattered 
or retrospectively meta-analyzed data are much larger in amount than the original 
consortium-level data on which the reported association was based. Dealing effi -
ciently with this situation requires transparent and comprehensive availability of the 
evidence from these diverse studies as discussed below.

Global Collaboration: From Data to Knowledge

After reviewing pilot fi eld synopses, participants in the HuGENet workshop dis-
cussed how to link emerging data on genetic associations with other sources of 
information on the biology of genes and gene–disease relations. Clearly, the advent 
of GWAS in large-scale collaborative studies involving networks and consortia 
is a crucial fi rst step toward the generation of large-scale data sets. Furthermore, 
the deposition of these data in accessible public databases can help to address the 
problem of publication bias commonly seen in candidate gene association stud-
ies. Nevertheless, additional efforts are needed to transform data into a knowledge 
base. Systematic reviews and meta-analyses represent a crucial step in building the 
knowledge base on genetic variation and human health. Such efforts need to be 
transparent and their results made available in online databases and publications. 
The willingness of journal editors to contribute to these efforts is critical, as inves-
tigators and systematic reviewers struggle to gain academic recognition for their 
work, which is often part of multinational, multiple investigator studies. Finally, the 
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National Library of Medicine (http://www.ncbi.nlm.nih.gov/) has a leading role in 
linking genetic association studies with other existing databases on gene sequences, 
products, and linkages to disease processes (50).

At the HuGENet workshop, a vision emerged of collaboration to create a sustain-
able, credible knowledge base on genetic variation and human diseases. As shown in 
Figure 12.2, the collaboration involves research investigators, systematic reviewers, 
online publishers, and database developers with variable degrees of overlap among 
the groups. For example, investigators who are part of research consortia have their 
own informatics tools and databases, and they can conduct systematic reviews of 
their own fi eld based on their own data or also including data from teams external to 
the consortium. In addition, other reviewers could contribute to these efforts, as evi-
denced by many previous efforts in meta-analyses and Human Genome Epidemiology 
(HuGE) reviews. Figure 12.2 shows the fl ow from generation of new data to system-
atic appraisal and synthesis and to online dissemination via journals and databases.

A successful example of collaboration already exists in the fi eld of type 2 diabetes. 
Investigators from diverse consortia have combined efforts to conduct comprehensive 
meta-analyses of all GWAS and replication studies. A fi rst meta-analysis combined 
three GWAS with a total of over 10,000 samples; this was followed by a second stage 
of replication of the most interesting signals in over 22,000 independent samples 
and a subsequent third stage of replication on over 57,000 samples, with data being 
combined by means of formal meta-analysis methods (51). Similar meta-analyses 
are being designed and carried out by collaborating consortia in several other fi elds 

Figure 12.2 A vision for collaboration among disease- and gene-specifi c investigators, 
systematic reviewers, and online publishers. HuGENet, Human Genome Epidemiology 
Network; HVP, Human Variome Project; P3G, Public Population Project in Genomics
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(for example, the Psychiatric GWAS Consortium, which is conducting meta-analyses 
within and between fi ve psychiatric disorders; https://pgc.unc.edu/faqs.html).

Several global collaborations focused on genotype-phenotype correlations can 
help support fi elds where large-scale studies are still in the making. For example, 
HuGENet sponsors the HuGE Navigator (5), a knowledge base with online tools 
for capturing and organizing the most up-to-date information on genetic associa-
tions and other related information. The Human Variome Project (HVP) is focused 
on the production and synthesis of gene- and gene-variant-centered databases with 
linked phenotypic outcomes (52). The Public Population Project in Genomics (P3G) 
(53) aims to harmonize data collected from large-scale cohort studies and biobanks 
around the world. Cross links among HuGENet, P3G, HVP, and other groups are 
crucial to convene and facilitate collective efforts in developing the knowledge base 
on genetic variation and human diseases. Efforts in coordinating these global col-
laborations are already under way through cross-linking of these enterprises. For 
example, P3G has an international working group in epidemiology and biostatistics 
that is closely related to the HuGENet movement. Another, more specialized online 
knowledge base development effort that can be synergistic is PharmGKB (the 
Pharmacogenomics Knowledge Base) (54). In addition, GeneReviews are expert-
authored, peer-reviewed disease descriptions focused on the use of genetic testing 
in the diagnosis, management, and genetic counseling of patients and their families. 
GeneReviews are part of the GeneTests web site (http://www.ncbi.nlm.nih.gov/sites/
GeneTests/?db=GeneTests), which also includes international directories of genetics 
clinics and genetics laboratories (55,56). Finally, it is important for epidemiologic 
efforts to be linked with biological efforts, including experimental work, assessment 
of endophenotypes, and functional studies in different model systems.

Schizophrenia: Field Synopsis and Example of 
Development of a Knowledge Base

As an example of the collaboration among primary investigators, systematic review-
ers, and online publishers, Bertram et al. provide a model approach to a distrib-
uted knowledge base of genetic variants that features collaboration among the three 
groups outlined above. They have synthesized primary research on genetic asso-
ciations in schizophrenia, and they developed a regularly updated, online SzGene 
database (http://www.schizophreniaforum.org/res/sczgene/default.asp), that collects 
and curates published results in this area. A peer-reviewed fi eld synopsis summa-
rizes the cumulative evidence and evaluates it according to the Venice criteria. The 
fi eld synopsis is regularly updated online with updated cumulative meta-analyses. 
Bertram et al. have developed similar resources for Alzheimer disease (http://www.
alzforum.org/res/com/gen/alzgene/default.asp).

The HuGE Navigator web site (http://www.hugenavigator.net/) serves to link fi eld-
specifi c efforts like SzGene with other online databases through the HuGEpedia. 
The HuGEpedia can be accessed by using either phenotype (Phenopedia) or a 
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gene (Genopedia) as the starting point. For example, searching the Phenopedia for 
schizophrenia leads users to a page that provides an up-to-date summary of genes 
studied for association with schizophrenia, links to abstracts of the original publi-
cations in PubMed, meta-analyses and HuGE reviews, and abstracted meta tables. 
The HuGE Navigator can also be searched to locate investigators in the fi eld and to 
display geographic and temporal trends in the published literature. Finally, HuGE 
Navigator attempts to identify and link to all published GWAS in the fi eld, as well as 
to data sets deposited and available through the National Center for Biotechnology 
Information’s (NCBI) dbGaP. Although HuGE Navigator is not a comprehensive 
data repository, it serves as a fi rst stop for orientation and links to more authorita-
tive data sources and fi eld synopses. The highest level of data integration in this 
example occurs through links with NCBI databases (such as PubMed, Entrez Gene, 
and dbGaP). The NCBI online book, Genes and Diseases (57), could also expand to 
accommodate the most current synopses in individual fi elds.

Concluding Remarks

This is a crucial time in human genomics research, when advances in genome-wide 
analysis platforms coupled with declining costs are producing an unprecedented 
outpouring of replicated genetic associations with common diseases. To make the 
most of the research enterprise and to promote reliable and timely knowledge syn-
thesis, the multidisciplinary working group offers the following recommendations.

First, data from GWAS should be made available for interested researchers to 
avoid selective positive reporting of spurious associations and to facilitate meta-
analyses of particular associations. Involvement of the primary investigators of the 
GWAS in collaborative projects and meta-analyses should be encouraged. There is 
a risk of errors and misconceptions being introduced if the primary investigators 
who are intimately familiar with the data are not involved. Second, researchers and 
research networks should develop fi eld synopses that use meta-analysis to integrate 
published and unpublished data and evaluate the cumulative evidence. The Venice 
guidelines offer interim guidance, and further empirical research is needed to assess 
the stability and implementation of these guidelines. Third, we encourage the devel-
opment of fi eld-specifi c databases, such as the SzGene database discussed above. 
Fourth, we encourage journal editors to publish fi eld synopses with regular updates 
as called for by Nature Genetics in 2006 (20). Fifth, we recommend that journals 
and online publishers develop and make widely available databases that include 
standardized and systematically collected information from original research for 
research synthesis. The HuGE Navigator is one approach presented here, but oth-
ers could emerge in the future. The rapidity of data accumulation necessitates such 
a systematic approach as a starting point for evaluating the gaps in our knowledge 
base. To succeed, these efforts depend on collaboration fueled by the availability 
of funding, not only for generating original research data, but also for efforts in 
research synthesis and dissemination. Finally, we need to ensure that epidemiologic 
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research synthesis discussed here is accompanied by critical appraisal and synthe-
sis of biologic research. The combination of epidemiology and biology is crucial to 
enhance the credibility of genetic associations and to accelerate their applications in 
clinical medicine and population health.
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Introduction

Colorectal cancer is a major global public health problem, with approximately 
950,000 cases newly diagnosed each year (1). Risk of developing colorectal cancer 
increases steeply with age and incidence is rising in many industrialized countries 
as life expectancy and the numbers of elderly people increase. Incidence is also ris-
ing in many developing countries, as diet and lifestyle become more similar to those 
in industrialized countries.

Approximately 25% of colorectal cancer cases are associated with a family his-
tory; risk is increased two to four times in fi rst-degree relatives of a patient with 
colorectal cancer. A substantial proportion of the familial aggregation of colorec-
tal cancer results from inherited susceptibility. Excess familial cancer risk can 
be accounted for by a combination of rare high-penetrance mutations and large 
numbers of common variants each conferring small genotypic risk (on the order 
of 1.1– 2.0). These latter variants combine additively or multiplicatively to confer a 
range of susceptibilities in the population (2).

The relationships of genetic variants with human disease described so far largely 
refl ect the study designs used to identify them. Linkage studies conducted among 
families with multiple cases of disease were successful in identifying highly pen-
etrant variants with large effects (such as hMLH1, hMSH2, and APC; see below). 
The discovery of genes responsible for inherited colorectal cancer syndromes has 
been important in identifying important etiologic pathways such as the beta-catenin/
APC and TGF beta/SMAD pathways. Association studies conducted in general 
population samples using common genetic markers typically fi nd variants with very 
small effects (such as SMAD7 and CRAC1; see Section “Common Low-Penetrance 
Variants Identifi ed from Genome-Wide Association Studies”). Future resequencing 
studies are expected to identify rarer variants (e.g., prevalence 0.05–5%) with inter-
mediate effects (3). Genome-wide studies of structural variation will likely identify 
deletions, amplifi cations, and other copy number variations infl uencing colorectal 
cancer risk.

13
Colorectal cancer

Harry Campbell, Steven Hawken, Evropi Theodoratou, 
Alex Demarsh, Kimberley Hutchings, Candice Y. Johnson, 
Lindsey Masson, Linda Sharp, Valerie Tait, and Julian Little



Case Studies: Cumulative Assessment250

Rare, High-Penetrance Variants

Mismatch Repair Gene Mutations (hMLH1, hMSH2, 
hMLH6, hPMS1, hPMS2)
The clinical syndrome due to mismatch repair gene defi ciency is known as 
Hereditary Non-Polyposis Colorectal Cancer (HNPCC) and accounts for 2–5% of 
all colorectal cancer cases. Affected kindreds have an unusually high occurrence of 
colorectal and certain extracolonic cancers, with a relatively early age of onset.

Evidence to support a role for the mismatch repair genes hMLH1 and hMSH2 
in the etiology of colorectal cancer has come from linkage analysis, segregation 
studies, and molecular–biologic analysis. The mismatch repair genes hMLH1 and 
hMSH2 are integral components of the DNA mismatch repair pathway. A HuGE 
review in 2002 identifi ed 259 different pathogenic mutations (and 45 variants) in 
hMLH1 and 191 different pathogenic mutations (and 55 variants) in hMSH2 (4). In 
addition, deletions in mismatch repair genes appear to occur relatively commonly, 
particularly in hMSH2. HNPCC families in which mutations in hMLH1 and hMSH2 
are not identifi ed may harbor pathogenic mutations in other mismatch repair genes, 
such as hMSH6 and hPMS2.

The available data do not suggest any substantial differences in the frequency of 
hMLH1 or hMSH2 mutations among populations or ethnic groups (5). The penetrance 
of mutations in hMLH1/hMSH2 is incomplete and is signifi cantly higher in men 
(approximately 80%) than in women (approximately 40%). A standardized incidence 
ratio of 68 for colorectal cancer was reported for carriers of hMLH1 or hMSH2 muta-
tions compared with the general population (6). First-degree relatives of mutation car-
riers had a relative risk of 8.1 compared with fi rst-degree relatives of noncarriers (7).

APC
The adenomatous polyposis coli (APC) gene is a tumor suppressor gene, and muta-
tions resulting in loss of APC protein function are associated with carcinogene-
sis. APC protein down-regulates the Wnt signaling pathway through its binding to 
β-catenin and axin (8).

APC germline mutations lead to the highly penetrant, autosomal dominant neo-
plastic syndrome of Familial Adenomatous Polyposis Coli (FAP). This condition 
has an annual incidence of about 1:7,000 live births and is characterized by hun-
dreds or thousands of colorectal adenomas, which if untreated can develop into car-
cinomas (9). FAP accounts for about 1% of all colorectal cancer cases.

Low-penetrance APC mutations have been implicated in familial colorectal 
cancer cases (10). The most common APC variants associated with inherited sus-
ceptibility are I1307K and E1317Q. At least 12 single nucleotide polymorphisms 
(SNPs) of APC have been identifi ed, 8 of them in exon 15. The most common allele 
(Asp1822Val, frequency 10–22%) was found not to be associated with development 
of colorectal cancer in three studies but a positive association has been observed 
with two others.
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MUTYH
Another familial form of colorectal cancer, MUTYH-associated polyposis (MAP), 
was fi rst described in families with multiple colorectal adenomas or carcinomas who 
lacked inherited APC mutations (11,12). The MAP phenotype is clinically compara-
ble to the FAP phenotype; however, it is recessively transmitted and generally results 
in a smaller number of adenomas and later age at onset of colorectal cancer (13).

MUTYH is a base excision repair gene. Approximately 30 mutations that alter the 
protein product, 52 missense variants, and 3 inframe insertions/deletions have been 
identifi ed (14). The two most common MUTYH variants in whites account for >80% 
of disease-causing alleles; additional alleles have been identifi ed in other populations.

OGG1
Base-excision repair maintains genome stability by countering oxidative DNA 
 damage. OGG1 acts together with MYH and MTH1 to identify and remove 
8- oxoguanine that has been incorporated into DNA. OGG1 variants have been 
reported in association with colorectal cancer, alone or in combination with muta-
tions in other genes (15,16).

Other Rare Variants
Several other rare, autosomal dominant disorders include increased risk of colorec-
tal cancer. Juvenile Polyposis Syndrome, caused by mutations in SMAD4, PTEN, or 
BMPR1A, is associated with early onset colorectal cancer, typically before 20 years 
of age.

Common, Low-Penetrance Variants

Many studies have investigated associations of colorectal cancer with common vari-
ants of low-penetrance genes. Initially, most of these studies were hypothesis-driven, 
usually focusing on genes thought to be involved in the metabolism of particular 
environmental risk factors (the “candidate gene” approach). We have organized this 
section of the chapter around genes that operate in pathways that are thought to play 
a role in the causation of colorectal cancer.

We identifi ed relevant studies by using the HuGE Navigator (available at http://
www.hugenavigator.net) and extracted information using approaches we have used 
in HuGE reviews.

Genetic Variants Affecting Multiple Substrate Metabolism
Many studies have examined associations between colorectal cancer and variants 
of genes encoding enzymes involved in metabolism of carcinogens that are pres-
ent in tobacco smoke or produced as a result of cooking meats. The most extensive 
evidence relates to the glutathione S-transferase genes GSTM1, GSTT1, and GSTP1, 
the cytochrome P450 1A1 gene CYP1A1, and the N-acteyltranferase genes NAT1 
and NAT2.
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The glutathione S-transferases (GSTs). The glutathione S-transferases 
(GSTs) play a central role in the detoxifi cation of  carcinogens by catalyzing the con-
jugation of glutathione to potentially genotoxic compounds, including polyaromatic 
hydrocarbons (17). However, GSTs also conjugate isothiocyanates, which are potent 
inducers of enzymes that detoxify environmental mutagens, thereby diverting the 
isothiocyanates from the enzyme induction pathway to excretion. These two oppos-
ing potential mechanisms suggest that the role of GSTs in cancer risk is complex. 
GSTs also modulate the induction of the enzymes and proteins important for cellu-
lar functions such as DNA repair.

Systematic reviews and meta-analyses have been conducted examining the associ-
ation between GSTM1, GSTT1, GSTP1, and colorectal cancer susceptibility (17–21).

GSTM1: Twenty-eight studies have investigated the association of GSTM1 with col-
orectal cancer. Overall, there is evidence of a weak association of the GSTM1 null 
genotype with colorectal cancer, with substantial heterogeneity.

GSTT1: Twenty-three studies have investigated the association between GSTT1 and 
colorectal cancer (Table 13.1). Overall, the evidence suggests a weak association of 
the GSTT1 null genotype with colorectal cancer.

GSTP1: Eleven studies have investigated the association of GSTP1 with colorectal 
cancer. None of the studies supports an association.

The cytochrome P450 genes. The cytochrome P450 (CYP) family of enzymes 
includes over 50 characterized genes, of which the CYP1, CYP2, and CYP3 families 
are involved in phase I metabolism of xenobiotics and drugs and also metabolism of 
some endogenous compounds.

CYP1A1: The CYP1A1 gene is under the regulatory control of the aryl hydrocarbon 
receptor, a transcription factor that regulates gene expression. Overall, there is lim-
ited evidence for association with the T3801C variant, and the Ile462Val variant. 
Both studies investigating the Thr461Asn variant found that the Thr/Asn genotype 
was associated with signifi cantly reduced risk of colorectal cancer compared with 
the Thr/Thr genotype.

CYP1A2: Five studies from Korea, France, Hungary, Spain, and the United Kingdom 
have investigated the A164C (rs762551) genotype in colorectal cancer, with negative 
or inconsistent results.

CYP1B1: Studies of European populations provide no support for association with 
colorectal cancer for the C1294G (rs1056836) or the N453S (rs1800440) variant.

CYP2C9: Six studies of CYP2C9*2 genotype and colorectal cancer have had incon-
sistent results. None of the fi ve studies of CYP2C9*3 genotype found an associa-
tion. Of the four studies that analyzed both CYP2C9*2 and CYP2C9*3 variants, 
three suggested an inverse association with possession of one or both variant alleles. 
Because these studies included only small numbers of persons with the variant 



Table 13.1 Summary of studies by region and date of publication of GSTT1 null genotype and colorectal cancer

Authors Date Country/
Ethnicity

Gender Description of Cases Description of Controls Number 
of Cases/
Controls

% of 
Controls 
GSTT1 null

OR (95% CI)

Abdel-Rahman 
et al. (22)

1999 Egypt M/F Newly diagnosed patients 
from three cancer 
hospitals

Healthy controls, friends of 
other cancer patients from the 
same centers, matched on age

59/51 41.2 Crude OR:
0.85 (0.37, 1.97)

Lee et al. (23) 1995 Singapore Surgical patients Patients with no history of 
neoplasms from the clinical 
chemistry department of a local 
hospital

300/183 49 Not reported

Yoshioka et al. 
(24)

1999 Japan Consecutive histologically 
confi rmed

Hospital based (routine physical 
exam)

106/100 41 Crude OR: 1.33 
(0.77, 2.32)

Zhu et al. (25) 2002 China Sporadic colorectal ade-
nocarcinoma patients

Healthy controls 104/101 47.5 1.63 (0.94, 2.84)

Chen et al. (26) 2004 China M/F 125/339 20.4 0.88 (0.52, 1.49)

Yeh et al. (27) 2005 China M/F Histologically confi rmed 
new cases

Hospital based (presenting for 
routine checkup)

723/733 49.1 1.25 (1.02, 1.53)

Chenevix-
Trench et al. 
(28)

1995 Australia Patients with colorectal 
adenocarcinoma

Source not stated (n = 94) and 
cancer free geriatric patients 
(n = 54)

132/148 19
9

0.7 (0.3, 1.4)
1.5 (0.6, 4.3)

Butler et al. 
(29)

2001 Australia 
white

M/F Queen Elizabeth Hospital, 
white adults 

Hospital based (blood donors) 203/200 20.0 Crude OR:
2.18 (1.38, 3.43)

Zhang et al. 
(30)

1999 Sweden Pathology confi rmed Population based 99/109 20% 4.49 (2.42, 8.34)

(Continued)



Table 13.1 Continued.

Authors Date Country/
Ethnicity

Gender Description of Cases Description of Controls Number 
of Cases/
Controls

% of 
Controls 
GSTT1 null

OR (95% CI)

Laso et al. (31) 2002 Spain M/F Consecutive patients 
undergoing surgery 
from the University of 
Barcelona Hospital Clinic, 
Spain

Hospital based, during the same 
time period as case accrual

247/296 11.1 Crude OR:
1.68 (1, 2.82)

van der Hel 
et al. (32)

2003 Netherlands F Population-based screen-
ing program for early 
detection of breast cancer

Population based 234/765 29.3 0 91 (0.65, 1.28)

Kiss et al. (33) 2004 Hungary M/F Histologically confi rmed Hospital based cancer-free con-
trols (inpatients and outpatients)

500/500 21.6 Crude OR:
1.29 (0.95, 1.74)

van der Logt 
et al. (34)

2004 Netherlands M/F Gastroenterology and 
general surgery patients

Recruited from local newspaper 371/415 16.6 Crude OR:
1.2 (0.84, 1.7)

Saadat and 
Saadat (35)

2001 Iran M/F Pathologically confi rmed Healthy blood donor matched to 
cases on age and gender

46/131 11.5 Crude OR:
1.41 (0.70, 2.88)

Ates et al. (36) 2005 Turkey M/F Consecutive histologically 
confi rmed (inpatients and 
outpatients)

Unrelated healthy controls 
recruited from two hospitals in 
Turkey

181/204 26.0 Adjusted OR:
1.64 (1.10, 2.59)

Nascimento 
et al. (37)

2003 Brazil M/F Consecutive histologically 
confi rmed cases

Blood donors from the same 
hospital

102/300 17.3 Crude OR:
0 95 (0.50, 1.80)

Seow et al. 
(38)

2002 Singapore M/F Incident cases identifi ed 
through population-
based Singapore Cancer 
Registry

Cancer-free participants of the 
Singapore Chinese Health Study 
(population based, prospective)

213/1194 40.2 Adjusted OR:
0.88 (0.64, 1.21)



Welfare et al. 
(39)

1999 U.K. M/F Histologically confi rmed 
cases

Community-based controls 201/187 16.9 Adjusted OR:
1.21 (0.63, 2.0)

Loktionov 
et al. (40)

2001 U.K. Histologically confi rmed 
cases

Cancer/adenoma free par-
ticipants of the ongoing UK 
Flexible Sigmoidoscopy 
Screening Trial

206/355 15.2 Crude OR:
1.43 (0.89, 2.28)

Sachse et al. 
(41)

2002 U.K. M/F Incident cases Healthy population-based con-
trols with no history of previous 
cancer

490/593 63.7 Crude OR:
0.87 (0.67, 1.13)

Rajagopal 
et al. (42)

2005 U.K. white M/F Surgical cases with oper-
ative and histological 
confi rmation

Hospital-based cancer-free 
controls

361/881 17.9 Crude OR:
1.65 (1.22, 2.24)

Little et al. (43) 2006 U.K. M/F Histologically confi rmed 
cases identifi ed from the 
database of the pathology 
laboratory

Selected from the Grampian 
Community Health Index (list 
of everyone registered with a 
GP) matched by age and sex

264/408 17 Adjusted OR:
1.25 (0.81, 1.93)
Adjusted OR:
1.23 (0.74, 2.02)

Gertig et al. 
(44)

1998 U.S. white M Cases with CRC from the 
prospective Physician’s 
Health Study

White male participants not 
diagnosed with CRC within the 
prospective Physicians’ Health 
Study

212/221 23 0.8 (0.5, 1.2)
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 genotypes and the associations they found were inconsistent, they provide only weak 
and insuffi cient evidence.

CYP2C19: Three studies from Spain, Turkey, and the United Kingdom investigated 
the association of G681A with colorectal cancer, with inconsistent results.

CYP2D6: Three studies from Australia, Spain, and the United Kingdom have inves-
tigated variants in this gene; however, because different gene nomenclatures were 
used, it is diffi cult to compare the results, which were inconsistent.

CYP2E1: Studies of two variants found on the c2 allele (rs3813867, rs2031920) and a 
variant of intron 6 (7632T>A/Dra I) conducted in Australia, China, France, Hungary, 
the Netherlands, Spain, and the United States have been negative or inconclusive.

CYP3A4: Two studies found no association of G20230A (rs2242480), found on the 
CYP3A4*1G or *1H alleles, with colorectal cancer.

CYP3A5: The intronic variant 6986A>G (rs776746), found on alleles CYP3A5*3A 
to CYP3A5*3L, has been investigated in two small studies of colorectal cancer. No 
association was found in either.

Other CYP genes: Variants of CYP2C8, CYP11A1, CYP17A1, CYP19A1, and 
CYP7A1 have each been investigated in only one study, with no associations found.

The N-acetyltransferases. N-acetyltransferase 1 (NAT1) and N-acetyltransferase 
2 (NAT2) function as phase II conjugating enzymes, implicated in the activation and 
detoxifi cation of known carcinogens.

NAT1: The initial report of an OR of 1.9 with 95% confi dence interval (95% CI 1.2–
3.1) for association with possession of the NAT1*10 allele has not been replicated in 
most of the subsequent studies.

NAT2: Early studies reported that the NAT2 rapid acetylation phenotype was asso-
ciated with increased risk of colorectal cancer and a meta-analysis estimated the 
pooled OR as 1.51 (95% CI 1.07–2.12) (21). In a meta-analysis of 15 studies pub-
lished before October 2001 (21), the combined risk estimate for rapid acetylators 
(inferred on the basis of their genotype) was 1.03 (95% CI 0.94–1.12). Most studies 
published since the meta-analysis have been null.

Genetic Variants Affecting Nutrient Metabolism
Virtually all epidemiologic studies of diet and colorectal cancer have been obser-
vational and subject to three potential biases: (i) diet is related to other aspects of 
lifestyle, which may infl uence risk, (ii) people eat foods rather than nutrients, and 
(iii) misclassifi cation of intake, either of the food group or nutrient being investigated 
or of other food groups or nutrients, could dilute or bias the associations. Studying 
associations with genetic variants that infl uence nutrient metabolism might help 
unravel the relationship of dietary factors with colorectal cancer.
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Variants of genes associated with alcohol intake and metabolism. Case-
control studies have examined the associations between colorectal cancer and vari-
ants of ALDH2, ADH1B (ADH2), or ADH1C (ADH3). Population frequencies of the 
most commonly studied variants of these genes have been reviewed recently.

ALDH2: The most frequently reported associations are with a variant of ALDH2 
most prevalent in Asian populations (Table 13.2). The ALDH2*487Lys (rs671) vari-
ant results in reduced activity of the mitochondrial enzyme aldehyde dehydroge-
nase, leading to high levels of acetylaldehyde, which is thought to be carcinogenic. 
Because accumulation of acetaldehyde also produces unpleasant symptoms (facial 
fl ushing, increased heart rate, and nausea), persons who are homozygous or hetero-
zygous for reduced-activity ALDH2 variants may consume less alcohol than do 
those without the variant, which could lower the risk of alcohol-related diseases.

We combined the results of six case-control studies in a meta-analysis, which 
found the following summary ORs and 95% CIs: for heterozygotes (ALDH2 Glu/
Lys vs. ALDH2 Glu/Glu), OR 0.87 (95% CI 0.73–1.04); for homozygotes (ALDH2 
Lys/Lys vs. ALDH2 Glu/Glu), OR 0.73 (95% CI 0.57–0.95). Thus, the evidence sug-
gests an inverse association of the ALDH2*487Lys allele with colorectal cancer in 
populations of north-eastern Asian ancestry.

ADH1B: Combining the results of three case-control studies, one in Europe and two 
in Japan, to test for heterozygous (ADH1B Arg/His vs. ADH1B His/His) or homozy-
gous (ADH1B Arg/Arg vs. ADH1B His/His) genetic effects, we found combined 
ORs and 95% CIs of 1.29 (1.10, 1.52) for heterozygotes and 1.51 (1.05, 2.16) for 
homozygotes. It is noteworthy that this association was confi ned to the two Japanese 
studies. Although the evidence is limited, the consistency of the results across these 
two studies suggests that this association deserves further research attention.

ADH1C: None of the four studies of the ADH1C Ile349Val variant and colorectal can-
cer has supported an association with colorectal cancer. Combining the results of four 
case-control studies to test for heterozygous (Ile/Val vs. ADH1C Ile/Ile) or homozy-
gous (Val/Val vs. ADH1C Ile/Ile) genetic effects, we found combined ORs and 95% 
CIs of 1.03 (0.90, 1.19) for heterozygotes and of 1.02 (0.85, 1.23) for homozygotes.

Variants related to folate and one-carbon metabolism. Folate is a B vita-
min (B9) found most abundantly in vegetables and fortifi ed grain products. Folate 
mediates the transfer of one-carbon units in a variety of cellular reactions, most notably 
in thymidine, purine, and methionine synthesis. Thymidine and purine are required 
for DNA synthesis and repair, whereas methionine is a precursor in reactions neces-
sary in the maintenance of normal DNA methylation patterns (45). Hypomethylation of 
DNA is hypothesized to contribute to carcinogenesis through a number of mechanisms, 
including proto-oncogene activation, genomic instability and chromosomal structural 
aberrations, or uracil misincorporation during DNA synthesis.

MTHFR: MTHFR is responsible for converting 5,10-methylene-tetrahydrofolate to 
5-methylenetetrahydrofolate, the principal circulating form of folate. Several studies 
have investigated two common variants of MTHFR, C677T and A1298C, in relation 



Table 13.2 Summary of studies of the ALDH2 Glu487Lys polymorphism and cancers of the colon and/or rectum

Study/
Outcome

Year Country/
Ethnicity

Gender Description of 
Cases

Description of 
Controls

Number of 
Cases/Controls

Lys Allele 
Frequency

Comparison OR (95% CI)

Yin et al. 
(46)

2007 Japan M/F Consecutive sur-
gical admissions

Two-stage ran-
dom sampling 
from hospital 
catchment areas

685/778 0.267 Lys/Lys vs Glu/Glu
Lys/Glu vs Glu/Glu

0.55 (0.33–0.93)
0.89 (0.71–1.13)

Matsuo (47) 2006 Japan M/F Aichi Cancer 
Centre Hospital 
(ACCH)

Outpatients dur-
ing same time 
period as case 
diagnoses

257/768 0.297 Lys/Lys vs Glu/Glu
Lys/Glu vs Glu/Glu

0.98 (0.54–1.75)
0.99 (0.71–1.37)

Kuriki (48) 2005 Japan M/F Aichi Cancer 
Centre Hospital 
(ACCH)

Hospital 
outpatients

Men: 72/116
Women: 54/122

Men: 
0.259

Women: 
0.291

Lys carrier vs not Men: 1.04 
(0.53–2.06)
Women: 0.87 
(0.45–1.68)

Otani (49) 2005 Japan M/F All presenting 
cases identifi ed

Hospital 
outpatients

107/224 0.228 Lys/Lys vs Glu/Glu
Lys/Glu vs Glu/Glu

1.2 (0.49–2.9)
1.1 (0.67–1 9)



Matsuo (50) 2002 Japan M/F Aichi Cancer 
Centre Hospital 
(ACCH)

Gastroscopy 
outpatients

Men: 82/118
Women: 59/123

Men: 
0.263

Women: 
0.293

Men: 
Lys/Lys vs Glu/Glu
Lys/Glu vs Glu/Glu
Women: 
Lys/Lys vs Glu/Glu
Lys/Glu vs Glu/Glu

0.38 (0.10–1.51)
0.70 (0.38–1.30)

0.63 (0.16–2.48)
1.11 (0.58–2.14)

Murata (51)
Colon cancer

1999 Japan M/F Colon cancer 
surgery patients

Noncancer 
outpatients

Men: 89/60 0.200 “Doses of mutant 
allele”

Men: 2.13 
(0.97–4.66)

Murata (51)
Rectal cancer

1999 Japan M/F Colon cancer 
surgery patients

Noncancer 
outpatients

Men: 74/60 0.200 “Doses of mutant 
allele”

Men: 1.03 
(0.48–2.20)

Yokoyama 
(52)
Colon cancer

1998 Japan M Consecutively 
admitted alco-
holic males with 
colon cancer

Cancer-free 
alcoholic males 
consecutively 
admitted to 
same institution

46/487 0.045 Lys/Glu vs Glu/Glu 3.35 (1.51–7.45)

Jiang (53)
Rectal cancer

2007 China M/F Incident cases Population 
based

210/439 0.223 Lys/Lys vs Glu/Glu
Lys/Glu vs Glu/Glu

0.72 (0.45–1.15)
0.74 (0.51–1.06)
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to colorectal neoplasia; these include several meta-analyses and a HuGE review 
(18,19,54–57). So far, few studies have investigated the effects of combinations of 
variants (48).

MTHFR C677T: Twenty-nine individual studies of MTHFR C677T have been pub-
lished, together including more than 13,000 colorectal cancer cases. In general, the 
risk of colorectal cancer appears to be lower in persons with the TT genotype, com-
pared with the CC genotype (Table 13.3). We performed an updated meta-analysis 
for this chapter and found the summary OR 0.83 (95% CI 0.76–0.91) for persons 
with the TT versus the CC genotype. Some evidence suggests that the apparently 
protective effect of the TT genotype may be negated in persons with low folate or 
methionine intake and in persons who consume large quantities of alcohol.

MTHFR A1298C: Seventeen studies of MTHFR A1298C have been published, 
together including more than 7,000 colorectal cancer cases. Most studies found that 
CC homozygotes were at moderately reduced risk of colorectal cancer compared 
with AA homozygotes. Our updated, random-effects meta-analysis of these 17 stud-
ies found a summary OR 0.80 (95% CI 0.7–0.93) for persons with the CC versus 
the AA genotype. The C677T and A1298C variants appear to be in strong linkage 
disequilibrium, suggesting that studies of the A1298C and C677T variants are mea-
suring the same association with colorectal cancer.

Methionine synthase (MTR): Ten studies of MTR A2756G have been published, 
together including more than 9,000 colorectal cancer cases. Our meta-analysis of 
all the available studies found a null summary effect, as well as evidence of statisti-
cal heterogeneity. Further investigation is required to determine whether population 
differences in environmental exposures (e.g., alcohol, diet) could help explain this 
heterogeneity.

Methionine synthase reductase (MTRR): The GG genotype of the A66G variant has 
been inconsistently associated with moderately reduced risk of colorectal cancer.

Cystathionine-β-synthase (CBS): Three studies have examined a 68 base-pair 
insertion in exon 8 of the CBS gene in relation to colorectal cancer. An Australian 
study found that the 68bp insertion was less frequent in subjects with proximal 
tumors, suggesting a possible protective effect. Two additional studies in the United 
States and United Kingdom found no evidence of an association.

Thymidylate synthase (TS): The TS enhancer region contains a series of 28 base-pair 
tandem repeats, most commonly 2 repeats (2rpt) or 3 repeats (3rpt); the 3rpt variant 
produces a nearly threefold increase in TS expression. The fi ve studies comparing 
2rpt genotypes with non-2rpt genotypes in relation to colorectal cancer suggest a pro-
tective effect for 2rpt variants, although not all reached statistical signifi cance.

Variants of iron metabolism genes. Iron is a key element in cellular pro-
cesses (58) and may have a role in the etiology of cancer (59), including colorectal 
cancer (60).



Table 13.3 Summary of features of studies of MTHFR C677T polymorphism and colorectal cancer

Study Year Country/
Ethnicity

Gender Description of Cases Description of 
Controls

% TT in 
Controls

Number of 
Cases/Controls

Chen et al. (61) 1996 U.S. white M Health Professionals Followup Study 
(HPFS)

HPFS 13.4 144/627

Ma et al. (62)* 1997 U.S. white M Physicians’ Health Study (PHS) PHS 15.0 202/326

Slattery et al. (63)† 1999 U.S. >90% white M/F Kaiser Permanente Medical Care 
Program (KPMCP)

Population 11.4 1,467/1,821

Park et al. (64) 1999 Korea M/F Hospital series Hospital 16.1 200/460

Ryan et al. (65) 2001 Ireland M/F Hospital series Hospital 9.8 136/848

Chen et al. (66)*,‡ 2002 U.S. white M PHS PHS 15.0 202/326

Shannon et al. (67) 2002 Australia M/F Hospital series Population 9.4 501/1,207

Keku et al. (68)‡ 2002 U.S. white M/F North Carolina Colon Cancer Study 
(NCCCS)

Population 9.5 308/539

U.S. black 1.8 244/329

Le Marchand et al. 
(69)‡

2002 U.S. Japanese M/F Hawaii Tumor Registry (HTR) Population 19.4 322/397

U.S. white 14.0 149/171

U.S. Hawaiian 3.4 77/88

Matsuo et al. (70)‡ 2002 Japan M/F Hospital series Hospital 14.9 142/241

Sachse et al. (41) 2002 U K. white M/F Hospital series Hospital 8.3 490/592

Toffoli et al. (71)‡ 2003 Italy M/F Hospital series Population 20.1 276/279

Heijmans et al. (72) 2003 Netherlands M Zutphen Elderly Study (ZES) cohort ZES cohort 7.9 18/7,933§

Plaschke et al. (73)‡ 2003 Germany M/F Hospital series Hospital 11.0 287/346

Pufulete et al. (74)‡ 2003 U.K. M/F Hospital series Hospital 7.9 28/76

Kim et al. (75) 2004 Korea M/F Hospital series Hospital 14.7 243/225

(Continued)



Table 13.3 Continued

Study Year Country/
Ethnicity

Gender Description of Cases Description of 
Controls

% TT in 
Controls

Number of 
Cases/Controls

Curtin et al. (76)†,‡ 2004 U.S. >90% white M/F KPMCP Population 11.5 1,608/1,972

Yin et al. (77)‡ 2004 Japan M/F Hospital series Population 17.1 685/778

Ulvik et al. (78) 2004 Norway M/F JANUS cohort JANUS cohort 9.7 2,159/2,190

Le Marchand et al. (79) 2005 U.S. mixed M/F Multiethnic cohort Population 12.6 822/2,021

Otani et al. (49)‡ 2005 Japan M/F Hospital series Hospital 25.7 106/222

Matsuo et al. (80)‡ 2005 Japan M/F Hospital series Hospital 17.4 256/771

Jiang et al. (81)‡ 2005 China M/F Screening cohort Screening cohort 18.3 196/980

Wang et al. (82)‡ 2006 India M/F Hospital series Population 0 302/291

Webb et al. (83) 2006 U.K. white M/F Hospital series Population 12.1 2,556/2,692

Koushik et al. (84)‡ 2006 U.S. 97% white M/F Nurses Health Study(NHS)/HPFS NHS/HPFS 14.1 349/794

Murtaugh et al. (85)‡ 2007 U.S. 84% white M/F KPMCP Population 11.5 742/970

Sharp et al. (86)‡ 2007 U K. 98% white M/F Grampian Health Board Registry Population 11.9 264/408

Theodoratou (87)‡ 2008 U K. >99% white M/F Hospital series Population 11.5 999/1,010

*Data for same subjects, used later publication in meta-analysis (66).
†Data for same subjects, used later publication in meta-analysis (76).
‡Also looked at A1298C.
§Prospective cohort study.
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HFE: HFE is an MHC-Class I molecule involved in the uptake of iron in the small 
intestine. Two HFE mutations, C282Y and H63D, are associated with hereditary 
hemochromatosis in populations of European origin. Both mutations are associ-
ated with elevated transferrin saturation and serum ferritin levels, with variable 
biochemical penetrance that may be modifi ed by several factors (see Section “Gene–
Environment Interaction in the Etiology of Colorectal Cancer”).

We identifi ed seven case-control studies that investigated associations of the 
C282Y and H63D variants with colorectal cancer. The frequency of the Y282 allele 
rarely exceeds 0.10 and these studies were underpowered to assess its effect. Two 
studies also investigated the S142G variant (rs3817672) in the transferrin receptor 
gene (TFRC) as a potential modifi er of association with the C282Y and H63D vari-
ants of HFE. These seven studies offer little evidence to support an association of 
the C282Y variant with colorectal cancer; the four studies that examined association 
with the H63D variant gave inconsistent results.

Variants infl uencing vitamin D and calcium metabolism. VDR: 1α, 
25-dihydroxy vitamin D3 [1α,25(OH)2D3], the active form of vitamin D, is synthe-
sized from both dietary vitamin D and skin-derived precursors through the action of 
ultraviolet sunlight. In addition to its role in regulating calcium absorption and blood 
calcium concentration, vitamin D may have anticarcinogenic activity via its binding 
to the vitamin D receptor (VDR) (88). Vitamin D could affect colorectal cancer 
risk by infl uencing cell proliferation and differentiation, apoptosis, and angiogenesis 
(89,90) or by affecting insulin resistance (91).

Several variants of the VDR gene have been identifi ed. A poly-A repeat at the 
3′ untranslated region of the gene has been found to be associated with increased 
mRNA expression; it is in linkage disequilibrium with four restriction fragment 
length variants (RFLPs) known as BsmI (rs1544410), ApaI (rs7975232), TaqI 
(rs731236), and Tru9I. An RFLP (FokI, rs10735810) at the fi rst potential start site 
of the gene (ATG to ACG) results in a long version of the VDR protein (T-allele 
or the “f” allele) or a protein shortened by three amino acids (C-allele or the “F” 
allele).

Several case-control studies have investigated the associations of VDR variants with 
colorectal cancer (91); some have reported a positive association with the “f” allele 
(rs10735810). Our meta-analysis of four studies of FokI found OR 0.94 (95% CI 0.58–
1.53); our meta-analysis of three studies of BsmI found OR 1.18 (95% CI 1.04–1.33).

Lipid metabolism. APOE: The apolipoprotein E (APOE) gene has three alleles: 
APOE ε2, APOE ε3, and APOE ε4. These alleles arise due to two missense SNPs, 
rs429358 and rs7412, which result in T/C base substitution, and corresponding Cys/
Arg amino acid changes at residues 112 and 158, respectively. APOE may infl uence 
colorectal cancer development through three possible pathways: cholesterol and bile 
metabolism, triglyceride and insulin regulation, and infl ammation (92).
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Five studies have examined APOE variants in relation to colorectal cancer. One 
study found that APOE ε4 was associated with signifi cantly reduced risk of prox-
imal colon cancer (OR 0.35, 95% CI 0.14–0.86). A study conducted in the United 
Kingdom found that persons with the ε2/ε3 genotype had a 90% increased risk of 
colorectal cancer compared with the ε3/ε3 genotype; no association was found with 
the ε4 genotype. A U.S. study found that the absence of an APOE ε3 allele signif-
icantly increased the risk of colon cancer (OR 1.37 95% CI 1.00–1.87), especially 
among those diagnosed at greater than 64 years of age; in this study, APOE geno-
type was not associated with rectal cancer.

Physical activity, obesity, and insulin-related variants. More than 40 
case-control or cohort studies have examined physical activity and the risk of col-
orectal cancer (93). These studies provide consistent evidence that physical activity 
is associated with a reduced risk of colon cancer, with relative risks for the high-
est category of activity compared with the lowest in the range 0.4–0.9 (94). The 
risk decreases in a dose–response fashion with increasing levels of activity (93). 
Excess weight raises risk of developing colon cancer (but not rectal cancer), with 
an increase of 15% in risk for an overweight person and 33% for an obese person 
(95,96). The similarity of risk factors for colon cancer and diabetes, and the obser-
vation that insulin promotes the growth of colon cells in vitro and colon tumors 
in vivo, suggested that hyperinsulinaemia and insulin resistance could lead to col-
orectal cancer through the growth-promoting effects of elevated levels of insulin, 
glucose, or triglycerides.

IGF: One mechanism by which raised insulin levels could affect cancer risk is by 
increasing the bioactivity of insulin-like growth factor-1 (IGF-1) and inhibiting pro-
duction of two main binding proteins, IGFBP-1 and IGFBP-2 (97). IGF-1 has mito-
genic effects on normal and neoplastic cells, inhibiting apoptosis and stimulating 
cell proliferation (97). The machinery of the IGF complex is comprised of peptide 
ligands (IGF-I and IGF-II), as well as their respective receptors, binding proteins 
(IGFBP-1–6), and IGFBP proteases. The combination of a Western-style diet, sed-
entary lifestyle, and obesity might lead to an increase in circulating insulin lev-
els, which could trigger elevation of IGF-I bioavailability through insulin-mediated 
changes in IGFBP concentrations (98).

Four prospective studies of colorectal cancer have observed a greater than two-
fold increased risk amongst those in the highest quintile of circulating IGF-1 levels, 
compared with those in the lowest quintile. However, one of the four studies looked 
separately at rectal cancer and found a statistically nonsignifi cant (p = 0.09) inverse 
trend, which provides some weak evidence that this relationship may not hold for 
rectal cancer. One prospective study observed an inverse relationship between 
IGFBP-1 and IGFBP-2 levels and colorectal cancer, but two others were null.

One study reported that a genetic variant at position 1663 in the human growth 
hormone-1 (GH1) gene reduced colorectal cancer risk. Another study reported that 
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variants in genes encoding the insulin receptor substrates (IRS-1, IRS-2) increased 
colon cancer risk; this study also reported that variants in the IGF-1 and IGFBP-3 
genes were not independently related to cancer but appeared to act together with 
IRS-1 to infl uence risk. IRS-1 and IGF-1 variants have been reported to be associ-
ated with an increased risk of colon cancers with specifi c KRAS2 and TP53 muta-
tions. All of these fi ndings require replication.

Genetic Variants Affecting Infl ammation and Immune 
Response
Prostaglandin-endoperoxide synthase (PTGS), also known as cyclo-oxygenase (COX), 
is involved in the biosynthesis of the prostanoids. It has two isozymes, a constitutive 
PTGS1, and an inducible PTGS2. PTGS2 is involved in infl ammation and mitogenesis.

PTGS1/COX1. No associations with colorectal cancer were found in three 
studies of variants in the PTGS1/COX1 gene; however, the rarity of the minor vari-
ants necessitates larger, population-based studies.

PTGS2/COX2. A large study in Beijing found positive associations with vari-
ants at -1195 and -765; however, two other studies found no association with the 
-765 variant. Two studies of the Val511Ala variant (rs5273) found no association 
with colorectal cancer.

PPARD and PPARG. Peroxisome proliferator-activated receptors (PPARs) are 
a group of nuclear receptor proteins that function as transcription factors regulat-
ing gene expression. PPARG is expressed in high levels in normal colonic mucosa, 
colorectal adenoma, and colon cancer cell lines; it has been implicated as a poten-
tial mediator of colorectal cancer risk in animal studies. An association study of 
PPARG Pro12Ala (rs1801282) reported the following OR (95% CI): 0.83 (0.69–1.01) 
for proximal tumors, 1.00 (0.83–1.21) for distal tumors, and 1.04 (0.86–1.25) for 
rectal tumors. No association with this variant was observed in two other studies. 
Single studies found no association of PPARG C1431 or an unspecifi ed rare variant 
of PPARD with colorectal cancer. A single study of the PPARG C478T variant sug-
gested that the TT genotype might be associated with reduced risk.

Cytokine genes. Cytokines include the interleukins, lymphokines, and cell sig-
nal molecules, such as tumor necrosis factor and the interferons. IL-1, IL-6, and 
IL-8 proteins are generally considered proinfl ammatory and IL-4, IL-4R, and IL-10 
antiinfl ammatory in effect.

Interleukin-1β: The three most commonly studied SNPs in IL-1β are T-31C 
(rs1143627), C-511T (rs16944), and +3954C/T (rs1143634); the fi rst two are in close 
linkage disequilibrium and may infl uence gene expression. Three studies of T-31C 
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found no signifi cant association with colorectal cancer. Two studies that examined 
the C-511T variant in H. pylori positive persons found that risk of colorectal cancer 
was reduced in those carrying the T-allele.

Interleukin-6: Studies of the IL-6 -174G/C variant (rs1800795) have produced con-
fl icting results.

Interleukin-8: No clear association has been found for the IL-8 T-251A variant 
(rs4073) with colorectal cancer.

Interleukin-4: In a study reporting a signifi cant inverse association of the IL-4 -584T 
allele (rs2243250) with colorectal cancer, Hardy-Weinberg equilibrium was violated 
in the control samples and this association was not replicated in a subsequent study.

Interleukin-10: Two studies found no association with colorectal cancer for any 
of three variants in the promoter region of the IL-10 gene: -1082G/A (rs1800871), 
-592C/A (rs1800872), and -819C/T (rs1800871).

Interleukin-1RN: Two small studies investigating the association of an 86 base-pair 
VNTR variant in intron 2 of the IL-1RN gene (interleukin-1 receptor antagonist) with 
colorectal cancer reported confl icting results. A population-based study in Germany 
found no association of the IL-1RN A9589T variant (rs454078) with colorectal cancer.

Interleukins-12A and 18: In a single study of colorectal cancer and variants of 
IL12A, no association was observed. In a small single study of IL18, a positive asso-
ciation was found with the 607A variant.

Tumor necrosis factor-α (TNFα): None of fi ve studies investigating the association 
of the -308G/A variant (rs1800629) with colorectal cancer found signifi cant asso-
ciations. Investigations of a TNFα microsatellite dinucleotide repeat polymorphism 
have had confl icting results.

Toll-like receptors (TLRs). Toll-like receptors are a key component of the 
innate immune system and infl ammatory response to pathogens through activation 
of the NF-κB and mitogen-associated protein (MAP) kinase signaling pathways 
(99). Toll-like receptor 4 (TLR4) is of particular interest with respect to gastrointes-
tinal malignancies (99,100).

Three studies have examined the association of colorectal cancer with variants in 
the TLR4 gene. Positive results from a small study in Croatia were not replicated in 
two larger studies. The Croatian study also reported an association of a GT dinucle-
otide repeat microsatellite variant (intron 2) in the TLR2 gene but no association 
with the Arg753Gln variant (rs5743708).

Other infl ammation-related or immunoregulatory genes. HRAS (Harvey 
Rat Sarcoma Virus Proto-oncogene): H-ras1, a proto-oncogene that encodes a protein 
involved in mitogenic signal transduction and differentiation, is highly polymorphic in 
humans (19). Several studies have evaluated the association between HRAS1-VNTR 
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rare alleles and colorectal cancer. Two systematic reviews that included pooled anal-
yses of HRAS1-VNTR rare alleles (frequencies in controls ranging from 1% to 6%) 
reported the following OR (95% CI): 2.5 (1.54–4.05) and 2.67 (1.47–4.85).

NF-kappaB (NFKB1): Nuclear factor-kappaB (NF-kappaB) is an inducible tran-
scription factor that plays a major role in the regulation of genes involved in 
immune and infl ammatory response. Studies of an insertion/deletion variant 
(-94ins/delATTG) in the promoter region of the NFKB1 gene have had variable 
results. The insertion/deletion variant was not associated with colorectal cancer 
survival. Another study reported a signifi cant association with sporadic colorectal 
cancer in a Swedish study population with ORs and 95% CIs of 7.73 (3.06–19.57) 
for heterozygote deletion and 6.58 (2.35–18.43) for homozygote deletion; no associ-
ation was found among Swedish patients with a family history of colorectal cancer 
or in a Chinese population.

LTA/TNFβ: Lymphotoxin alpha (LTA), a member of the TNF superfamily, is also 
known as TNFβ. A single study has reported association with colorectal cancer for 
a haplotype in the major histocompatibility locus region containing SNPs of TNFα, 
RAGE, HSP70-2, and LTA. Another study suggested an association with the NcoI 
RFLP of TNFβ.

NOS2: A single study found no association of NOS2 tetra-repeat and penta-repeat 
polymorphisms with colorectal cancer. Another study found no association with the 
NOS2A +524T>C variant.

Genetic Variation and Exogenous Hormones
Exogenous estrogens such as hormone replacement therapy (HRT) might be associ-
ated with colorectal tumors. In two large randomized controlled trials of the possible 
health benefi ts of HRT in postmenopausal women (101), the incidence of colorectal 
cancer was reduced by about a third (pooled RR = 0.64, 95% CI 0.45–0.92) (102). 
Information is limited on the potential genetic modifi ers of this apparent protective 
effect (see Section “Gene–Environment Interaction in the Etiology of Colorectal 
Cancer”).

Estrogen-metabolizing genes: Seven variants in ten estrogen-metabolizing genes 
were studied for association with colorectal cancer risk: COMT (Val158Met, rs4680), 
HSD17 (v1V), CYP17 (rs743572), CYP19 (Arg264Cys, rs70051; C1558T), CYP1A1 
(Ile462Val, rs1048943; MspI RFLP), CYP1B1 (Leu432Val, rs1056836), and estrogen 
receptor (ER) α IVSI (C401T, rs2234693). No associations were found.

Estrogen and androgen receptors: A single study investigated the role of variants 
in the ERα (A351G, rs9340799), ERβ (G1082A, rs1256049, and a CA repeat variant 
in intron 5), and androgen receptor (AR, CAG repeat variant) genes. The risk of colo-
rectal cancer was increased in women with at least 25 CA repeats on both alleles in 
ER β (OR 2.13, 95% CI 1.24–3.64) and in men with increasing numbers of AR CAG 
repeats (OR 1.28, 95% CI 1.06–1.54). These studies have not been replicated.
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Genetic Variants Associated with Adhesion Molecules and 
Extracellular Matrix Remodeling
Tumor cell–stromal cell interactions and remodeling of the extracellular matrix 
(ECM) have implications for the progression and spread of cancer (103,104).

CDH1: Of the many cell–cell adhesion molecules, E-cadherin (encoded by CDH1l) 
has so far received the greatest attention in relation to colorectal cancer. A system-
atic review of colorectal cancer in association with CDH1*160A reported a pooled 
OR 1.15 (95% CI 0.89–1.5). Two subsequent studies reported that the A-allele was 
not associated with colorectal cancer. A systematic review of association with the 
870A variant reported OR 1.19 (95% CI 1.06–1.34).

ICAM1: A single study reported no associations with colorectal cancer for variants 
in the ICAM1 gene (G241R, rs1799969; K469E, rs5498).

MMP variants: Matrix metalloproteinases, a family of 23 enzymes in humans, 
are important for proteolysis of the extracellular matrix but also for cell growth, 
regulation of apoptosis, and cell motility (105,106). Nine studies have investi-
gated associations between variants in this family of genes and colorectal cancer. 
Several small studies suggested that the homozygous MMP-1 1607G genotype is 
associated with colorectal cancer, but this was not replicated in larger studies. In 
one of these studies, a MMP-3 variant causing lower enzyme activity was associ-
ated with colorectal cancer (OR = 2.1; 95% CI = 1.2–3.8). No consistent pattern of 
association between MMP-2, -3, or -9 promoter variants and colorectal cancer has 
been found.

Genetic Variants Affecting Angiogenesis
Angiogenesis is a key process in the development and progression of cancer 
(107). Signaling by vascular endothelial growth factor (VEGF) is an important 
rate- limiting step in angiogenesis (107). Four members of the VEGF family have 
been identifi ed—VEGF-A, VEGF-B, VEGF-C, and VEGF-D (now designated 
FIGF, c-fos induced growth factor). VEGF-A is the most abundant in colorec-
tal tissues, where increased VEGF-A expression has been observed (108,109). 
Increased expression of VEGF-A and VEGF-C has also been reported in colorec-
tal cancer (108).

No associations with colorectal cancer have been found for any of three VEGF-A 
variants: -2578C/A, -634G/C, and +936C/T).

Very limited evidence is available to assess the importance of other genes thought 
to be implicated in angiogenesis and related infl ammatory pathways in the develop-
ment of colorectal cancer. Two studies reported no association with colorectal can-
cer of the G801A variant (rs1801157) of CXCL12.

Associations of colorectal cancer with variation in two other angiogenesis-re-
lated genes (PTGS2/COX2, IL-8) are reviewed in Sections “PTGS2/COX2” and 
“Cytokine genes.”
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Genetic Variants Affecting Inhibition of Cell Growth

TGF-beta signaling pathway. TGF-β is a cell growth inhibitor that acts 
by binding to type I (TGFBR1) and type II (TGFBR2) transmembrane receptors 
to form a  heteromeric complex, TGFBR1/TGFBR2. TGFBR2 phosphorylates 
TGFBR1, which in turn activates TGFBR1 kinase. Defects in this mechanism can 
lead to unrestricted cell growth due to the loss of growth inhibitory activity.

TGFB1: Two studies reported no association of variants in the TGFB1 gene (trans-
forming growth factor-β1) with colorectal cancer.

TGF-beta receptors (TGFBR1, TGFBR2): A meta-analysis comprising 12 case-
control studies of colorectal cancer, with a combined 1,585 cases and 4,399 controls, 
reported an association of TGFBR1*6A with colorectal cancer (OR 1.20, 95% CI 1.01–
1.43). Germline mutations of TGFBR2 may predispose to the development of HNPCC.

Cell cycle regulatory genes (CCND1). Cyclin D1, encoded by the CCND1 
gene, has a key role in the cell cycle. A recent meta-analysis comprising 12 case-
control studies and a total of 8,260 cases reported a small but signifi cant positive 
association of the G870A variant (rs603965) with colorectal cancer (OR = 1.19, 95% 
CI 1.06–1.34) (110). In a subsequent study, risk of familial (but not sporadic) col-
orectal cancer was increased in persons with homozygous AA genotypes, compared 
with GG homozygotes.

Common Low-Penetrance Variants Identifi ed from 
Genome-Wide Association Studies

Recently, the increasing availability of multigene chips and microarrays has 
prompted a move toward “scanning” large numbers of SNPs for possible associa-
tions with disease. In this section, we briefl y summarize genome-wide association 
studies (GWAS) of colorectal cancer that had been reported at the time of writing.

Known rare, high-penetrance germline mutations account for less than 5% of 
cases of colorectal cancer. Recent fi ndings from GWAS have identifi ed common 
genetic variants at six loci, increasing the proportion of colorectal cancer that can 
be associated with specifi c genetic risk factors. ORs are typically in the range of 
1.1–1.4 for heterozygous carriers of the risk allele and 1.6–1.7 for homozygotes. The 
associations of these six loci with colorectal cancer tend to be consistent among 
studied populations in different parts of the world.

The fi rst of these six loci, on chromosome 8q24, is close to POU5F1P1, a known 
transcription factor, and 340,873 bp telomeric to the oncogene MYC (111–113). 
Variants from several regions at this locus, separated by sites of recombination, con-
fer independent risk and have also been shown to be associated with prostate and 
breast cancer risk.
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The second locus, on chromosome 15q13.3, is known as CRAC1 or HMPS 
(hereditary mixed polyposis syndrome) (114). One SNP is located in the 3′ UTR of 
GREM1, which codes a bone morphogenetic protein (BMP) involved in the TGF-
beta/BMP pathway that is causally involved in juvenile polyposis.

The third locus, SMAD7, on chromosome 18q21, is involved in TGF-beta and Wnt 
signaling (115). SMAD7 acts as an intracellular antagonist of TGF-beta signaling and 
changes in its expression have been shown to infl uence progression of colorectal cancer.

A fourth locus, at 8q23, contains the gene EIF3H, for which amplifi cation and 
overexpression have been described in breast, prostate, and hepatocellular cancers 
(116). No causal gene has been identifi ed at the fi fth locus at 10p14 (116). The sixth 
locus, at 11q23, contains four open reading frames and a polymorphic binding site 
for micro-RNAs (117).

The six loci identifi ed so far by GWAS account for <5% of excess familial col-
orectal cancer risk. Given the limited power of these studies to detect the least 
common variants, it seems likely that many (perhaps 50–100) additional common 
variants remain to be discovered. Although their individual effects on risk are 
small, the combined effects of several variants could produce much larger risks and 
so could be clinically useful in directing prevention strategies. Further development 
of risk profi ling using common variants will require the identifi cation of additional 
variants in larger GWAS and through meta-analysis of GWAS. Large, multinational 
cohort studies will be needed to validate such genetic risk predictive models.

Gene–Environment Interaction in the Etiology of 
Colorectal Cancer

Investigation of potential gene–environment interactions has focused on candidate 
genes with a role in metabolism of dietary, drug, and environmental constituents 
associated with risk of colorectal cancer. Studies have investigated interactions of 
variants of GSTM1, GSTT1, and CYP1A1 with tobacco smoking; APC variants with 
diet (intake of total fat and specifi c fat types) and lifestyle factors (taking hormone 
replacement therapy [HRT]); HFE C282Y and H63D with age, gender, ethnic group, 
other genes, smoking, alcohol intake and dietary intake of iron; CYP1A1, NAT1, and 
NAT2 with meat intake; variants of GSTM1, GSTT1, and CYP1A1 with vegetable 
intake; variants of MTHFR, MTR, MTRR, and CBS with intake of folate and related 
nutrients; variants of COX2 (PTGS2), PPARD, UGT1A6, CYP2C8, CYP2C9, and 
genes encoding the interleukins with NSAID use; and genes thought to infl uence 
hormone metabolism with HRT use.

Overall, consistent evidence of gene–environment interaction has not been 
observed. Although investigating the complex interplay of genes and environment is 
widely considered to offer much promise for improving our understanding of the eti-
ology of complex diseases, including colorectal cancer, research in this area is chal-
lenging (118). Many studies of gene–environment interaction and colorectal cancer 
have lacked statistical power to detect interaction. For example, of four studies that 
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assessed interactions of CYP1A1 variants with different levels of smoking and con-
sumption of meat, vegetables, and fruit, two studies included only about 200 cases. 
The methods used to test for interaction have varied among studies, making it diffi -
cult to integrate and summarize the evidence. For example, some studies have clas-
sifi ed persons as “smokers” or “nonsmokers” (or “smokers,” “former smokers,” or 
“nonsmokers”); however, others have collected detailed information concerning the 
number of cigarettes smoked per day, age when individuals started smoking, and 
number of years smoked. Furthermore, although the metabolism of any exposure is 
likely to depend on the balance among the relative activities of all enzymes active 
within the metabolic pathway, few studies have investigated interactions of exposures 
with combinations of genes (or SNPs) operating in such pathways. New analytical 
approaches for exploring gene pathways in disease etiology are under development 
but their performance characteristics and properties are not yet well understood.

Conclusions

Inherited genetic factors play an important role in the etiology of colorectal cancer. 
Rare high-penetrance mutations account for a small proportion of disease but their 
identifi cation plays an important role in the clinical management of the high-risk fam-
ilies in which these mutations segregate. The results of most candidate gene associa-
tion studies of colorectal cancer have not been replicated consistently. Many results 
can be considered false positives; others may represent very small effects, which will 
require replication in larger studies before fi rm conclusions can be reached.

More recently, genome-wide association studies have discovered many com-
mon, low-penetrance genetic variants associated with risk of colorectal cancer. 
These studies have been conducted by large-scale, international collaborations (see 
Chapter 6). Further research is required to identify causal variants and to investigate 
pathophysiological pathways. Before tests for multiple common variants are used for 
risk profi ling (e.g., to guide prevention and treatment strategies), prospective studies 
in several populations will be needed to validate risk estimates and to demonstrate 
improved health outcomes.
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14
Childhood leukemias

Anand P. Chokkalingam and Patricia A. Buffl er

Introduction

The term “leukemia” refers broadly to cancer of the white blood cells, or leuko-
cytes. As a group, leukemias are the most common cancer among people under 15 
years of age, accounting for 32% of all childhood malignancies. Age-standardized 
annual incidence rates worldwide range from 1.2 to 7.6 per 100,000 (1). In the United 
States, rates are 4.5 per 100,000, with an estimated 2,500 new childhood leukemia 
(CL) cases diagnosed annually (2). The highest incidence rates are in the 1–4-year-
old age subgroup (2).

The etiology of childhood leukemias is believed to be distinct from that of adults, 
due largely to the clearer role for early life exposures, including those in utero. 
However, few risk factors have been established. Those that have been established 
include ionizing radiation, chemotherapeutic agents, and specifi c genetic abnormal-
ities; these explain less than 10% of incidence, leaving at least 90% of cases with an 
unresolved etiologic mechanism (3,4). A number of exogenous risk factors have been 
suggested, including immunological factors, environmental factors, and maternal 
and child dietary factors. In addition, a heritable component has been suggested (5).

It is becoming increasingly clear that “childhood leukemia” actually refers to 
a group of diseases, composed immunophenotypically of ~80% childhood acute 
lymphoblastic leukemia (ALL) and ~17% childhood acute myeloblastic leukemia 
(AML), with the remainder including chronic myeloblastic and chronic lymphoblas-
tic leukemias. Furthermore, even fi ner subgroupings can be made on the basis of 
affected precursor cell type (e.g., B-cell ALL), cytogenetic factors (e.g., TEL-AML1, 
hyperdiploidy), age of onset (e.g., infant leukemia, 0–12 months), and combinations 
thereof (common B-cell ALL [c-ALL], diagnosed between ages 2 and 5 years and 
expressing surface antigens CD10 and CD19). It is likely that the etiology of each of 
these immunophenotypic subtypes is distinct.

The early age of onset of childhood leukemias strongly suggests the role of 
genetic factors. However, much of the dramatic excess risk observed among mono-
zygotic versus dizygotic twins of ALL patients has been attributed in good part to 
intraplacental metastasis, rather than a highly penetrant inherited risk allele (5), sug-
gesting that for ALL, as with other multifactorial diseases (6), inherited risk alleles 
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are likely to be low-penetrance susceptibility alleles that may interact with environ-
mental factors to modulate disease risk. Indeed, common ALL chromosomal rear-
rangements are found in ~1% of healthy children (7), and in vitro and animal studies 
have shown that while expression of the TEL-AML1 fusion protein is suffi cient to 
establish a covert preleukemic clone, it is not suffi cient to transform hematopoietic 
cell lines into leukemic cells (8). Rearrangements alone are insuffi cient for disease 
onset, and there may be a strong role for genetic susceptibility, via main effects 
of genes or interaction with other factors, in at least one of the two or more “hits” 
(from Greaves’ “two-hit hypothesis”) (9) required for onset of ALL.

Genetically infl uenced mechanisms including immunity and response to infec-
tion, as well as one-carbon metabolism, are designed to protect against various 
external threats. Other mechanisms are involved as well, such as membrane trans-
port; detoxifi cation and biotransformation of reactive intermediates derived from 
environmental carcinogens; trapping or decomposition of reactive oxygen species 
(ROS); and DNA repair enzymes. Functionally signifi cant inherited polymorphisms 
in genes involved at critical junctions along these pathways may alter the way in 
which a child responds to environmental threats and may lead to an increased risk 
of developing childhood leukemias. A growing number of primary studies and 
meta-analyses (10,11) have been published linking variants in these genes with risk 
of childhood ALL or AML.

The purpose of this review is to summarize the total body of literature on the 
genetic epidemiology of childhood leukemias, focusing specifi cally on main effects 
of gene variants, highlighting conclusions that can be drawn based on the work to 
date, and emphasizing challenges and future directions.

Methods

Study Identifi cation and Eligibility
We searched PubMed (National Library of Medicine, Bethesda, MD) using the fol-
lowing search strategy: (childhood OR childre* OR pediatri* OR paediatri*) AND 
(leukemia [ti] OR leukemias [ti] OR leukaemia [ti] OR leukaemias [ti]) AND (poly-
morphi* OR (genetic AND varian*)). The last search was run on October 17, 2007. 
We included studies that reported on ALL and/or AML, provided the results for 
each type were reported separately. We excluded news reports, studies of treatment 
response (i.e., not of disease risk), studies of gene–environment interactions in which 
the gene main effects could not be discerned separately, studies which did not report 
results separately for children, case-only gene–environment interaction studies, and 
studies not reported in English.

Data Extraction
We reviewed each paper, noting year of publication, country of origin, study design 
(single study, meta-analysis), numbers of cases and controls, ages, use of child 
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controls, genetic contrast(s), and effect size(s). Among overlapping studies, only the 
largest was retained. When a well-conducted meta-analysis of variant/disease asso-
ciations was available, that study served as a summary of all included single studies, 
and we extracted summary data from the meta-analysis as well as any subsequent 
single studies. We considered a meta-analysis to be well-conducted if it performed 
a comprehensive literature search, clearly explained its inclusion and exclusion cri-
teria, and performed appropriate statistical analyses, including fi xed- and random-
effects models, assessment of heterogeneity, and publication bias. Meta-analyses 
that did not meet these criteria were excluded from this synopsis.

Assessment of Evidence
We followed the Venice criteria (12) in assessing the quality of the evidence for 
genetic associations with childhood ALL and AML. Briefl y, we assigned letter 
scores (A, B, or C) for each variant-disease association for each of the following 
areas: amount of evidence, replication, and protection from bias. For example, an 
association that shows consistent results in a well-conducted meta-analysis with over 
1,000 cases (with low heterogeneity), and with a few other individual studies gener-
ally reporting the same effect, would garner a “B” in the area of amount, and “B” in 
the area of replication. (If null effects, that is, odds ratios close to 1, were reported 
in most studies, these too were considered replicated.) In contrast, a meta-analysis 
of over 10,000 cases with low heterogeneity followed by multiple individual studies 
across numerous populations reporting the same effect would warrant an “A” in the 
area of amount and an “A” in the area of replication. If there was no reason to sus-
pect a strong effect of population stratifi cation or notable genotyping error, the asso-
ciation would garner a “B” in the area of protection from bias; strong evidence of 
design-based and/or analytical methods to address these concerns would warrant an 
“A.” Finally, the lowest individual area score was assigned as the overall summary 
score (12). We strove to report variants by RefSeq numbers, and where possible, 
their allele frequencies in the various HapMap populations (http://www.hapmap.
org) and the SNP500 control group (http://snp500cancer.nci.nih.gov/).

Results

Using the search strategy and exclusion criteria noted above, we identifi ed 57 studies 
for inclusion (10,13–69). Of these, 22 primary papers (13–22,29–34,41,46–49,69) were 
included in three well-conducted meta-analyses (10,11,68), and thus were not extracted 
separately. The literature to date refl ects an examination of 67 variants in 36 genes 
in childhood leukemia etiology (Figure 14.1). These genes can generally be divided 
into the following pathways: folate metabolism, xenobiotic metabolism, immune func-
tion, DNA repair, and other. The evidence for each variant-disease association was 
assessed as described above, and the results are summarized in Table 14.1, organized 
by disease entity (i.e., ALL or AML) and by gene pathway. Below, we describe each of 
the pathways and results and the status of evidence in each.



Childhood Leukemias 281

Folate Metabolism
Folate, an essential micronutrient, plays a central role in preserving the balance 
between fi delity of DNA synthesis and availability of methyl groups for DNA 
methylation (14). Defi ciency in folate induces chromosomal damage and forma-
tion of fragile chromosomal sites, which are often associated with carcinogenesis 
(70), and there is suggestive evidence that maternal folate supplementation dur-
ing pregnancy reduces risk of ALL in children (71). Furthermore, hyperdiploid 

Figure 14.1 Count of primary childhood leukemia genetic epidemiology reports, by ALL/
AML and Gene as of October 17, 2007.
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Table 14.1 Summary of evidence for genetic associations with childhood acute lymphoblastic leukemia (ALL)
and acute myeloblastic leukemia (AML)

Polymorphism ALL

Variant AF Evidence assessment†

Pathway/
Gene

Name(s)* RefSeq num-
ber (if avail)

CEU HCB JPT YRI SNP500 
Controls

Amt Replic’n Protected 
from bias

OVERALL

Folate metabolism

MTHFR 677C>T, A222V rs1801133 0.242 0.511 0.364 0.108 0.284 B B A B

1298A>C, E429A rs1801131 0.358 0.2 0.178 0.102 0.265 B C A C

DHFR 3’ UTR 829C>T not found — — — — — C C B C

RFC1/
SLC19A1

80G>A (R27H) not found — — — — — C C B C

MTR/MS D919G, 2756A>G, 
Ex26-20A>G

rs1805087 0.167 0.067 0.233 0.3 0.206 C C B C

MTRR 66A>G, 149M, 
Ex2-64A>G

rs1801394 0.448 0.25 0.302 0.233 0.426 C C B C

524C>T, S202L, 
Ex5+123C>T

rs1532268 0.733 0.878 0.967 0.792 0.309 C C B C

1049A>G, K377R, 
Ex7-9A>G

rs162036 0.233 0.233 0.102 0.449 N/A C C B C

1783C>T, H622Y, 
Ex14+14C>T

rs10380 0.2 0.2 0.111 0.375 0.191 C C B C

SHMT1 L474F, 1420C>T rs1979277 0.342 0.078 0.044 0.4 0.25 C C B C

MTHFD1 401G>A, R134K, 
Ex6+24A>G

rs1950902 0.792 0.778 0.773 0.892 0.837 C C B C

1958G>A, R653Q, 
Ex20-39G>A

rs2236225 0.458 0.222 0.261 0.2 N/A C C B C

TYMS 2R>3R 5’UTR 28bp 
repeat

None — — — — — C C B C

1494del6 3’ UTR 
6bp deletion

rs16430 N/A N/A N/A N/A 0.53 C C B C

Xenobiotic metabolism

GSTM1 Deletion in Ex4 None — — — — — B B B B

GSTT1 Deletion in Ex5 None — — — — — B B B B

GSTP1 l105V, GSTP1*B, 
Bsmal

rs1695 0.625 0.822 0.889 0.642 0.672 B B B B
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AML

Evidence assessment†

Association, Comments Amt Replic’n Protected 
from bias

OVERALL Association, 
Comments

Meta-analysis (10 studies, through 4/06) shows 
no signifi cant decrease in risk in 1,914 cases. Of 
three subsequent studies, two are null and one 
showed signifi cantly decreased risk.

— — — — —

Meta-analysis (10 studies, through 4/06) shows 
no association with risk in 1,710 cases. Of two 
subsequent studies, one shows signifi cant risk 
increase, while other shows signifi cant risk 
reduction.

— — — — —

No association, one study — — — — —

No association, two studies — — — — —

No association, one study — — — — —

Signifi cant association, one study — — — — —

No association, one study — — — — —

No association, one study — — — — —

No association, one study — — — — —

No association, one study — — — — —

No association, one study — — — — —

No association, one study — — — — —

No association, two studies — — — — —

No association, one study — — — — —

Meta analysis (seven studies, through 7/04) 
shows no association. Of six subsequent studies, 
three showed signifi cant risk increase, one 
showed borderline increase, and two were null.

C C B C Mixed results: of 
three studies, two 
were null and one 
showed signifi cant 
risk increase.

Meta-analysis (seven studies, through 7/04) 
shows no association. Of six subsequent studies, 
three showed non-signifi cant increases, and 
three were null.

C C B C No association, three 
studies.

Meta-analysis (four studies, through 7/04) 
shows no association. Of three subsequent 
studies, one showed a signifi cant increase and 
two were null.

C C C C No association, one 
study.

(Continued)
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Table 14.1 Continued

Polymorphism ALL

Variant AF Evidence assessment†

Pathway/
Gene

Name(s)* RefSeq num-
ber (if avail)

CEU HCB JPT YRI SNP500 
Controls

Amt Replic’n Protected 
from bias

OVERALL

CYP1A1 6235T>C, Msp1, 
CYP1A1*2A, m1

rs4646903 N/A N/A N/A N/A 0.316 C C C C

CYP1A1*2C, 
CYP1A1*2B, m2, 
1462V, 4889A>G

rs1048943 0.067 0.256 0.2 0 0.118 C C C C

CYP1A1*4, m4, 
T461N, 4887C>A

rs1799814 0.025 0 0 0 0.029 C C C C

CYP2D6 CYP2D6*3, 1bp del 
at 2637, BstNI

rs45593132 N/A N/A N/A N/A N/A C C C C

CYP2D6*4, Hpall, 
1934G>A

rs3892097 N/A N/A N/A N/A 0.108 C C C C

CYP2E1 CYP2E1*5, 
-1259G>C

rs3813867 0.067 0.289 0.205 0.067 0.049 C C C C

CYP2E1*3, 
-1019C>T, Pstl

rs2031920 0.059 0.289 0.205 0 0.049 C C C C

CYP3A4 CYP3A4*1B, 
-391A>G

rs2740574 0.025 0 0 0.746 0.157 C C C C

CYP3A5 CYP3A5*3 None — — — — — C C C C

NQO1 P187S, 
Ex6+40C>T, 
609 ex6

rs1800566 0.217 0.522 0.389 0.192 0.265 B B A B

R139W, Ex4-3C>T, 
465C>T

rs4986998 0.008 0.022 0.034 0 0.02 C C B C

EPHX1 Ex3-28T>C, Y113H rs1051740 0.325 0.467 0.444 0.1 0.358 C C B C

Ex4+52A>G, 
H139R

rs2234922 0.175 0.056 0.111 0.383 0.203 C C B C

ABCB1/
MDR1

3435C>T rs1045642 0.542 0.4 0.478 0.117 0.417 C C B C

2352G>A not found — — — — — C C B C

934A>G not found — — — — — C C B C

692T>C not found — — — — — C C B C

-129T>C None — — — — — C C B C

1236C>T rs1128503 0.392 0.689 0.578 0.123 N/A C C B C

2677G>T,A rs2032582 0.398 N/A N/A 0 A = 0.039
T = 0.353

C C B C

NAT1 ≥ 1 copy of *10 N/A — — — — — C C B C

NAT2 slow/slow 
phenotype

N/A — — — — — C C B C
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AML

Evidence assessment†

Association, Comments Amt Replic’n Protected 
from bias

OVERALL Association, 
Comments

Mixed results—four of seven show some effect 
(consistent allele) while rest are null. There is 
inconsistency in reporting of CYP1A1 alleles.

C C C C No association, three 
studies.

Mixed results—one of three shows association, 
other two are null. There is inconsistency in 
reporting of CYP1A1 alleles.

— — — — —

No association in two studies. — — — — —

No association in two studies, *3 allele is rare. 
There is inconsistency in reporting of CYP2D6 
alleles.

C C C C No association in 
one study, *3 allele is 
rare. There is incon-
sistency in reporting 
of CYP2D6 alleles.

No association in three studies, *4 allele is not 
common. There is inconsistency in reporting of 
CYP2D6 alleles.

C C C C No association in 
one study, *4 allele 
is not common. 
There is inconsis-
tency in reporting of 
CYP2D6 alleles.

Signifi cant association, two studies. C C C C Signifi cant associa-
tion, one study.

No association, one study. — — — — —

No association, one study. Rare variant. — — — — —

No association, one study. — — — — —

Meta-analysis (seven studies, through 10/07) 
shows no association. Reporting of *2 allele 
inconsistent among primary studies.

— — — — —

No association, two studies. — — — — —

No association, one study. C C C C No association, one 
study.

No association, one study. C C C C No association, one 
study.

Mixed results: of three studies, two support 
elevated risk with T allele, while one shows 
null results.

— — — — —

No association, one study. — — — — —

No association, one study. — — — — —

No association, one study. — — — — —

No association, one study. — — — — —

No association, one study. — — — — —

No association, one study. — — — — —

No association, one study. — — — — —

Signifi cant association, one study. — — — — —

(Continued)
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Table 14.1 Continued

Polymorphism ALL

Variant AF Evidence assessment†

Pathway/
Gene

Name(s)* RefSeq num-
ber (if avail)

CEU HCB JPT YRI SNP500 
Controls

Amt Replic’n Protected 
from bias

OVERALL

Immune function

HLA DR53/DRB4 N/A — — — — — C C B C

DQB1*05 N/A — — — — — C C C C

DPB1*0201 N/A — — — — — C C B C

TNF -850C>T rs4248158 — — — — — C C C C

DNA repair

ERCC1 8092C>A not found — — — — — C C B C

19007G>A not found — — — — — C C B C

MLH1 1219V, Ex8-23A>G rs1799977 0.333 0.044 0.078 0.042 0.147 C C B C

MSH3 R-940E not found — — — — — C C B C

T-1036A not found — — — — — C C B C

XPD/
ERCC2

D312N rs1799793 0.314 0.067 0.102 0.068 0.176 C C B C

K751Q, 
Ex23+61A>C

rs13181 0.625 (t) 0.678 0.633 0.658 0.211 C C B C

XRCC1 R194W rs1799782 0.092 0.244 0.278 0.083 0.129 C C B C

R280H rs25489 0.033 N/A N/A 0.025 N/A C C B C

R399Q rs25487 N/A 0.274 0.279 0.1 0.353 C B B C

CDKN1A -1284T>C rs733590 0.392 N/A N/A N/A N/A C C B C

-899T>G rs762624 N/A N/A N/A N/A N/A C C B C

-791T>C rs2395655 0.608 0.533 0.378 0.225 N/A C C B C

CDKN1B -1857C>T rs3759217 0.058 0.056 0.07 0.05 N/A C C B C

-1608G>A None — — — — — C C B C

-373G>T None — — — — — C C B C

CDKN2A -222T>A None — — — — — C C B C

CDKN2B -1270C>T None — — — — — C C B C

-593A>T,C None — — — — — C C B C

-287G>C None — — — — — C C B C

Other

MPO -642G>A, (463 pro-
moter variant)

rs2333227 N/A N/A N/A N/A 0.245 C C B C

CCND1 Ex4-1G>A, P241P rs603965 0.517 0.544 0.389 0.158 0.431 C C C C

FANCC S26F rs1800361 N/A N/A N/A N/A N/A — — — —

PRF1 A91V, 272C>A rs35947132 N/A N/A N/A N/A N/A B C C C

*Marker naming conventions: [amino acid][position][amino acid], e.g., R139W; or [position][base]>[base], e.g., 465C>T.
†Venice criteria (loannidis et al., 2007).
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AML

Evidence assessment†

Association, Comments Amt Replic’n Protected 
from bias

OVERALL Association, 
Comments

Signifi cant association, one study. — — — — —

Signifi cant association, one study. — — — — —

Signifi cant association, two studies. — — — — —

Signifi cant association, one study. — — — — —

Signfi cant association, one study. — — — — —

No association, one study. — — — — —

No association, one study. — — — — —

No association, one study. — — — — —

No association, one study. — — — — —

No association, one study. — — — — —

No association, one study. C C C C No association, one 
study.

Mixed results: of two studies, one showed null 
effect, one showed reduced risk with variant.

— — — — —

No association, two studies. — — — — —

Signifi cant association, two studies in varied 
populations (elevated risk).

— — — — —

No association, one study. — — — — —

No association, one study. — — — — —

No association, one study. — — — — —

No association, one study. — — — — —

No association, one study. — — — — —

No association, one study. — — — — —

Signifi cant association, one study. — — — — —

No association, one study. — — — — —

No association, one study. — — — — —

No association, one study. — — — — —

No association, one study. — — — — —

Signifi cant association, one study. — — — — —

— C C C C Signifi cant associa-
tion, one study.

No association, one large study (>2000 cases) — — — — —
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cases, whose lymphocytes often have multiple copies of chromosome 21, are par-
ticularly responsive to methotrexate, the folate pathway inhibitor whose receptor is 
encoded on chromosome 21 (72). Variants in the more than a dozen genes, including 
those encoding the methylene tetrahydrofolate reductase (MTHFR), dihydrofolate 
reductase (DHFR), reduced folate carrier (SLC19A1), methionine synthase (MTR), 
5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR), serine 
hydroxymethyltransferase 1 (SHMT1), methylenetetrahydrofolate dehydrogenase 1 
(MTHFD1), and thymidylate synthetase (TYMS), may alter folate metabolism and 
therefore risk of childhood leukemia.

The most studied gene in the folate pathway is MTHFR, which has two low-function 
polymorphisms: 677C>T (rs1801133) and 1298A>C (rs1801131). A recent meta-
analysis (10) of ten studies (13–22) concluded that there was no signifi cant association 
of 677C>T with ALL risk, and three subsequent studies indicate either no associa-
tion or a reduced risk associated with the variant (23–25); on balance, results indicate 
a modestly decreased risk or no effect of this marker, an effect that was consistent 
across most studies. The evidence was given an overall rating of “B.” In contrast, the 
1298A>C marker of MTHFR was found in the same meta-analysis to be unassociated 
with childhood ALL risk (10): individual studies were heterogeneous in their fi ndings, 
an effect mirrored by two subsequent studies (24,25), one of which reported a signif-
icant risk increase while the other reported a signifi cant risk decrease. Overall evi-
dence for this marker was rated at “C,” given the absence of consistent replication.

With the exception of MTHFR, all the other genes in the folate pathway have 
shown null results for ALL, were studied in a single study, or both (23,26–28). 
Overall evidence for each of these was ranked as “C.” No results have been pub-
lished for childhood AML risk and folate genes.

Xenobiotic Metabolism
In order to exert their effects, potentially harmful chemicals must fi rst gain entry 
into target cells, and then undergo cellular metabolic processes that might alter 
activity. Membrane transporters such as those encoded by the multiple drug resis-
tance (ABCB1/MDR1) gene act as effl ux pumps to expel compounds from the cell 
and are strategically expressed in regions of the body that act as epithelial barriers 
or perform excretory functions (73). In addition, enzymes involved in phase I (bio-
activation) and phase II (detoxifi cation) metabolism maintain a critical balance of 
activation and inactivation of a wide range of chemical exposures of relevance to 
CL, including drugs, chemical carcinogens, insecticides, petroleum products, nitro-
samines, PAHs, and other environmental pollutants (74). Major metabolic enzyme 
families include the phase I cytochrome P450 (CYP) and the phase II glutathione-S-
transferase (GST) and N-acetyl transferase (NAT) enzymes.

In childhood leukemia, the most commonly studied xenobiotic metabolism 
genes are those in the GST family, specifi cally, GST-mu-1 (GSTM1), GST-theta-1 
(GSTT1), and GST-pi-1 (GSTP1). GSTM1 detoxifi es polycyclic aromatic hydrocar-
bons, and GSTT1 metabolizes epoxides and halomethanes; common deletions in 
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both of these genes result in the loss of enzyme function (75). In contrast, the most 
commonly studied variant in GSTP1 is a single nucleotide polymorphism: I105V. A 
meta-analysis (11) of seven studies published through July 2004 (15,29–34) revealed 
no overall association of the GSTM1 and GSTT1 deletions with risk of childhood 
ALL, and six subsequent studies (35–40) showed null results to modestly increased 
risks for the GSTM1 marker and null results for the GSTT1 marker, suggesting no 
association overall. For GSTP1 and ALL, a meta-analysis (11) including four studies 
published through July 2004 (15,33,34,43) showed no overall association, a fi nding 
supported by three subsequent studies (35,40,42). Overall evidence for each of these 
GSTs in childhood ALL risk was assessed at “B.”

Variants in the GSTs have also been examined in risk of childhood AML; how-
ever, far fewer studies have been conducted than for childhood ALL, and sometimes 
just one study has been conducted (15,38,40,44). Evidence for GSTs in childhood 
AML was assessed at an overall ranking of “C.”

There are a large number of enzymes in the CYP superfamily of hemoproteins, 
which are primarily membrane-bound enzymes involved in phase I xenobiotic 
metabolism. CYP enzymes can metabolize multiple substrates, playing an impor-
tant role in hepatic metabolism of drugs and toxic compounds, as well as extrahe-
patic synthesis and metabolism of cholesterol and hormones. Epidemiologic studies 
have examined genes encoding fi ve of these enzymes in association with childhood 
leukemias (CYP1A1, CYP2D6, CYP2E1, CYP3A4, and CYP3A5). However, there is 
some inconsistency with regard to reporting of variant alleles of several CYP genes, 
notably CYP1A1 and CYP2D6. This inconsistency stems from the occasional group-
ing of multiple SNPs into multi-SNP alleles that are akin to haplotypes; however, 
not all studies regularly genotype all of the variants needed to adequately classify 
these multi-SNP alleles, and the description of the genotyping and allele classifi ca-
tion methods is often inadequate to allow verifi cation that the alleles were classifi ed 
correctly. As a result, in this synopsis, we focus on the effects of each individual 
SNP, rather than the multi-SNP alleles.

Results from the seven individual studies that have examined the 6235T>C vari-
ant in CYP1A1 with regard to childhood ALL risk are inconsistent, with four show-
ing some evidence of association with the same allele (29,34,36,38), while the other 
three showed no effect (15,39,40). Fewer childhood ALL studies reported on the 
other two CYP1A1 variants: just three reported on the 4889A>G (29,36,39), and two 
reported on the 4887T>A variant (29,39). Overall, evidence for CYP1A1 markers in 
ALL risk was rated at “C,” with no consistent effect. A meta-analysis for CYP1A1 
is warranted; however, it would have to address the potential inconsistencies in 
allele reporting, as noted above. For remaining CYP genes, including CYP2D6, 
CYP2E1, CYP3A4, and CYP3A5, there were only one or two reports for each variant 
(29,34,36,38,39,43). Overall evidence for these remaining CYP genes in childhood 
ALL risk was rated at “C.”

There are limited reports of CYP genes in childhood AML risk; the most often 
reported is the 6235T>C variant of CYP1A1, and three individual studies found no 
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association (15,38,40). However, the amount of evidence here is small, and overall 
evidence thus garnered a “C.” Few reports have been published for other CYP gene 
variants in childhood AML (38).

Several reports of the NAD(P)H dehydrogenase, quinone 1 (NQO1) in childhood 
ALL risk have been published to date. This phase II enzyme detoxifi es quinones 
and acts as an antioxidant, reducing the exposure of DNA to reactive oxygen spe-
cies. Seven reports published through October 2007 (40,41,46–49,69) were summa-
rized in a recent meta-analysis (68), which found no childhood ALL association of 
rs1800566, a loss-of-function variant. Results across these individual studies were 
moderately consistent, and thus the evidence for this NQO1 variant in childhood 
ALL risk is rated as “B” overall. However, it should be noted that, as with the CYP 
alleles, there is some inconsistency in the reporting of these alleles. Another variant 
in the NQO1 gene, rs4986998, has been reported in only two studies (48,69), both 
reporting no association. Evidence for this NQO1 marker in childhood ALL etiol-
ogy is rated “C” overall. No studies of NQO1 variants and childhood AML have 
been reported.

With the exception of ABCB1/MDR1, for which there are three inconsistent 
reports on the 3435C>T variant in childhood ALL risk (51–53), there are scattered 
single reports for the remaining genes in the xenobiotic metabolism pathway and 
risk of either childhood ALL (40,50) or childhood AML (40). Where evidence is 
available for any of these genes it is rated “C” overall.

Immune Function
As a malignancy of lymphocytes, ALL is likely to be infl uenced by elements of the 
immune system’s normal function, which is to protect against infectious agents and 
tumor growth. However, despite biological plausibility for a role of immune func-
tion genes in the genetic epidemiology of childhood leukemias, few reports have 
been published to date. The human leukocyte antigen (HLA) is an obvious target, 
due to its critical role in presentation of specifi c antigenic peptides derived from 
infectious agents. However, the major histocompatibility complex (MHC) is com-
plicated, and traditional methods of assessing HLA types are time-consuming 
and costly, and therefore prohibitive for large epidemiologic studies. Nevertheless, 
three HLA loci have been examined. HLA-DRB4 and HLA-DQB1 were found to be 
signifi cantly- associated with risk in individual studies (54,55). Another locus, the 
HLA-DPB1 locus, was found to be associated with childhood ALL in two UK stud-
ies (56,57). Finally, a single study of tumor necrosis factor (TNF) with risk of child-
hood ALL found no association (58). Owing to the small number of studies published 
to date, the evidence for all genes involved in immune function in childhood ALL is 
rated “C” overall. No studies have examined these genes in childhood AML.

DNA Repair
DNA is regularly assaulted by a variety of endogenous processes and exogenous 
factors, including cigarette smoke, dietary factors, ROSs, and chemicals, all of 
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which can cause varying degrees of DNA damage and lead to DNA mutation, 
which can in turn contribute to cancer development (76). DNA repair mechanisms 
defend against these exogenous insults, correcting DNA damage as well as normal 
replication errors. Base excision repair removes simple base modifi cations, includ-
ing single-strand breaks, oxidative DNA damage, and alkylation and nonbulky 
adducts (77). Nucleotide excision repair removes larger lesions, which often result 
from environmental damage, including UV radiation and external carcinogens (78). 
Alkyltransferases directly reverse DNA damage by transferring alkyl groups from 
damaged DNA onto a transferase enzyme (79). Double-stranded DNA breaks are 
repaired through several mechanisms including the homologous recombination 
repair pathway (80). In addition to involvement in susceptibility, functional changes 
in DNA repair may play a specifi c role in facilitating some of the chromosomal 
rearrangements that are the hallmark of ALL and are often considered the fi rst of a 
two (or more) hit etiological hypothesis (81).

Three different variants in the X-ray cross-complementary group 1 (XRCC1) gene 
have been studied with regard to childhood ALL. Results from just two studies were 
consistent for rs25489 (no association) and rs25487 (increased risk associated with 
variant allele), and mixed for rs1799782 (59,60). The evidence is rated as “C” given 
the small number of studies. Eight other genes in the DNA repair pathway have also 
been examined; however, just a single study has been published for variants in each 
(59,61–63,65). Overall evidence for involvement of DNA repair genes in childhood 
ALL is rated as “C.” No studies of these genes have been published for childhood 
AML.

Other Genes
A handful of other genes that do not fi t into one of the pathways above have also 
been examined with respect to childhood ALL or AML, including myeloperoxi-
dase (MPO), cyclin D1 (CCND1), Fanconi’s anemia group C (FANCC), and perforin 
(PRF1). These genes have all been examined in single reports, and with the excep-
tion of PRF1, which included >2,500 cases (64), all studies were of moderate size 
(<200 cases) (41,66,67). Thus, evidence for all these genes is rated overall as “C”; 
little can be said regarding their involvement in risk of childhood leukemia.

Summary and Future Directions

There is a growing amount of evidence for associations of gene variants in child-
hood leukemia etiology, particularly for ALL. However, when assessed by the 
Venice criteria (12), this evidence is insuffi cient for most genes. No genes had evi-
dence rated “A.” Of the fi ve genes where evidence for one or more variants ranked 
“B” (MTHFR, GSTM1, GSTT1, GSTP1, and NQO1), none was found to show a sig-
nifi cant association, and most were indicative of a null effect. However, overall, few 
genes have been studied to date for ALL, and many high-probability candidates 
remain unexamined or unreplicated. Even fewer genes have been studied for AML. 
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In addition, entire pathways with strong biological plausibility, such as the immune 
function and DNA repair pathways, remain poorly studied.

For gene variants where there are six or more individual studies, all but one were 
included in a well-conducted meta-analysis. There are currently eight individual stud-
ies of the CYP1A1 6235T>C variant (rs4646903). A meta-analysis will soon be war-
ranted for this marker and others in the CYP1A1 gene, and will require careful scrutiny 
of the individual studies to ensure that the variant alleles are reported consistently.

It is important to note that the effects of genes occur within the context of expo-
sure to other risk factors, including both environmental and genetic factors. While 
gene–gene and gene–environment interactions are beyond the scope of the current 
synopsis, the gene main effects observed in the included studies of childhood leuke-
mia are likely to be masked or otherwise infl uenced by such interactions.

As a summary of genetic variants associated with “childhood” disease, this 
synopsis posed some unique challenges. For one, because childhood leukemia is 
a somewhat rare and therefore diffi cult-to-study disease, the sample size in most 
individual reports is modest, usually 100 to 200 cases. Such a sample size is insuf-
fi cient to properly examine risk associated with variants that are present at 5–10% 
frequency. Thus, analyses combining data across multiple studies are perhaps more 
relevant for childhood leukemia than for other, more common diseases. In addi-
tion, the age-based defi nition of childhood varies across many studies. In some, it 
is <15 years, while in others it is <21 years. For a summary such as this chapter, it 
is not feasible to drill down further within each individual study to focus on certain 
age groups—such an effort would, however, be appropriate for a pooled analysis or 
meta-analysis of a single association. Another consideration is that many studies uti-
lize adult controls compared to child cases. This may lead to potential bias, in that 
observed associations may in fact be related to longevity rather than childhood leu-
kemia. Provided these associations hold up in other studies that use child controls, 
such longevity concerns can be allayed; however, it is important that this issue be 
considered in pooled and meta-analyses.

There were a number of general challenges as well. One was that we restricted 
inclusion to English-language articles. Five articles were thus excluded; all were in 
Chinese. However, a review of their English abstracts indicated that these articles 
often merged childhood and adult leukemias, or failed to report AML and ALL 
separately; thus, it is likely that these papers would have been excluded from this 
synopsis on other grounds. In addition, it is unknown how many reports we may 
have missed by restricting our literature search to PubMed. However, this number of 
reports is unlikely to be large, and given the nature of this synopsis, the overall con-
clusions would unlikely be impacted. The naming of variants, too, was not always 
straightforward. Naming conventions have been standardized only recently. As a 
result, for some studies, particularly older ones that often refer to polymorphisms by 
a restriction enzyme, it is not always clear whether the reported polymorphism is the 
same as in more recent reports. Furthermore, as noted earlier in this synopsis, the 
naming of multi-SNP variant alleles poses a challenge for reporting and pooling, as 
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investigators have not been consistent in their naming conventions for such alleles. 
For example, while two unique variants are required in order to possess the *2 allele 
in one study, another study may require just one of those variants to characterize 
the *2 allele. However, such challenges are to be expected in a rapidly evolving 
fi eld such as genetic epidemiology, and with many naming conventions now widely 
accepted it will be easier to merge results going forward.

One new initiative in the area of childhood leukemia research is evolution of the 
Childhood Leukemia International Consortium (CLIC, http://clic.berkeley.edu). 
Started in 2006, this international consortium is open to all investigators who have 
or are developing an epidemiologic study of childhood leukemias. Participation in 
this consortium will enable individual investigators to conduct coordinated analy-
sis and/or publish results for individual markers and/or genes, permitting rapid 
replication of both positive and null results with suffi cient sample sizes. Indeed, as 
noted above, for childhood leukemias, the acquisition of suffi cient sample sizes will 
require collaboration between study groups, particularly for AML, and even fi ner 
subgroups defi ned by cytogenetic and epigenetic factors.

Another exciting development is the advent of large-scale genotyping and whole 
genome scans. Such approaches involve interesting new analytical and statistical 
challenges, including power, multiple comparisons, and false-positives. However, 
the availability of large, standardized panels from such companies as Illumina 
(San Diego, CA) and Affymetrix (Santa Clara, CA) will also permit uniformity of 
genotyping across studies, allowing ready pooling of data and replication of fi nd-
ings. Per-sample costs for these panels continue to decrease, and it is thus becom-
ing increasingly feasible to implement these in childhood leukemia epidemiology 
studies. In the future, synopses such as this will take advantage of applications of 
these large-scale genotyping panels across successive groups of cases and controls, 
so that novel genes will be revealed from the data. This is in contrast to the current 
candidate gene approach, which has been useful so far, but suffers from a slow pace 
of results and replication, as well as the already-noted inconsistencies in genotyping 
approaches and naming conventions.

In summary, the literature for genetic associations with childhood leukemia is 
small but growing, and much remains to be done. While the best-studied genes 
to date show no overall association, there are a number of highly likely candidate 
genes and entire pathways that remain under-studied. Evolving efforts, including the 
development of the Childhood Leukemia International Consortium and the appli-
cation of large-scale genotyping technologies to epidemiology studies, hold much 
promise for this fi eld. The next fi ve years will see enormous growth in our knowl-
edge of the genetic epidemiology of childhood leukemias.
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Background

Bladder carcinogenesis is an excellent model for the evaluation of genetic suscep-
tibility and gene–environment interactions because of the relatively homogeneous 
histology, the well-established causes of bladder cancer, including tobacco and 
occupational aromatic amine (AA) exposure, and the considerable interindividual 
variation in carcinogen metabolizing and DNA repair genes relevant for aromatic 
amine-induced cancer. There have been numerous studies investigating the asso-
ciation of genetic polymorphisms and bladder cancer risk. Initial reports carried 
out in the 1980s were often small, with limited power to detect associations with 
risk. More recently, larger studies have become prominent and meta-analyses and 
pooled analyses summarizing the literature have provided strong evidence for asso-
ciations between common genetic variants and bladder cancer risk. The majority 
of these reports have been on polymorphisms in candidate genes that are involved 
in processes thought to mediate bladder carcinogenesis such as carcinogen metab-
olism, DNA repair, infl ammation, cell cycle control, apoptosis, oxidative stress, 
and methy lation. In addition to the study of candidate genes and pathways, sev-
eral genome-wide association studies (GWAS) are in progress, using an agnostic 
approach to identify novel common susceptibility loci with dense genetic markers 
that capture the majority of common variation across the genome. For this chapter, 
we performed a literature search using the HuGE Navigator with the term “blad-
der cancer” and PubMed searches with the terms “bladder cancer polymorphisms” 
and “bladder cancer risk variants” through September, 2008 for the purpose of per-
forming systematic meta-analysis (Figueroa, et al., in progress). Publications that 
did not have controls that were related to outcomes other than bladder cancer risk 
(e.g., survival), or were performed in special populations (e.g., nonsmokers), were 
excluded. From this search we identifi ed 32 SNPs reported on in three or more stud-
ies (Table 15.1) and we summarize here the current evidence for the role of common 
genetic  variation in the etiology of bladder cancer.
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Table 15.1 Summary table of SNPs reported on in three or more studies with frequency data and total number of cases and  controls 
available for meta-analysis

Pathway Gene Chromosomal 
Location

Polymorphism 
(dbSNP 

rsnumber)

Position Additional 
Information

Minor Allele 
or the Nonrisk 

Allele

MAF Studies 
(N)

Cases 
(N)

Controls 
(N)

References

CMET GSTM1 1p13.3 null/present Ex4+10+>– Gene 
deletion

Present NA 36 6,913 9,586 (1–9)*

CMET GSTP1 11q13 rs1695 Ex5-24A>G I105V G (Val) 0.29 8 1,912 2,358 (10)*

CMET GSTT1 22q11.23 null/present Ex5-49+>– Gene 
deletion

Present NA 26 5,861 7,478 (1–7,9,11–27)

CMET NAT1 8p23.1-p21.3 rs1057126 Ex3-177A>T 3’UTR Fast acetylation† NA 10 2,759 3,108 (3,5,28–35)*,†

CMET NAT1 8p23.1-p21.3 rs15561 Ex3-170A>C 3’UTR Fast acetylation† NA 10 2,759 3,108 (3,5,28–35)*,†

CMET NAT2 8p22 rs1208 Ex2-367G>A R268K Fast acetylation† NA 41 6,363 11,805 (1–5,36–39)*

CMET NAT2 8p22 rs1799930 Ex2-580G>A R197Q Fast acetylation† NA 41 6,363 11,805 (1–5,36–39)*

CMET NAT2 8p22 rs1799931 Ex2-313G>A G286E Fast acetylation† NA 41 6,363 11,805 (1–5,36–39)*

CMET NAT2 8p22 rs1801279 Ex2+197G>A R64Q Fast acetylation† NA 41 6,363 11,805 (1–5,36–39)*

CMET NAT2 8p22 rs1801280 Ex2+347T>C I114T Fast acetylation† NA 41 6,363 11,805 (1–5,36–39)*

CMET NQO1 16q22.1 rs1800566 Ex6+40C>T P187S T (Ser) 0.25 8 2,603 2,694 (2,12,13,22,40–44)

CMET SULT1A1 16p12.1 rs9282861 Ex9+44G>A R213H A (His) 0.49 3 1,083 1,189 (12,45,46)

DNA repair APEX1 14q11.2-q12 rs1130409 Ex5+5T>G D148E C (Glu) 0.47 5 2,334 2,522 (47–51)

DNA repair ERCC2 19q13.3 rs1799793 Ex10-16G>A D312N A (Asn) 0.34 5 2,399 2,668 (2,47,52–54)

DNA repair ERCC2 19q13.3 rs13181 Ex23+61A>C K751Q C (Gln) 0.34 9 3,377 3,638 (2,8,13,29,47,52–55)

DNA repair ERCC5 13q33 rs17655 Ex15-344G>C D1104H C (His) 0.25 3 2,055 2,020 (13,47,52)

DNA repair NBN 8q21 rs1805794 Ex6-32G>C E185Q C (Gln) 0.31 5 2,798 2,835 (2,13,47,56,57)

DNA repair OGG1 3p26.2 rs1052133 Ex6-315C>G S326C G (Cys) 0.26 4 1,953 1,871 (47,48,58,59)

DNA repair XPC 3p25 rs2228000 Ex9-377C>T A499V T (Val) 0.25 4 2,310 2,419 (2,47,52,60)



DNA repair XPC 3p25 rs2279017 IVS12-6A>C + 0.37 3 1,222 1,336 (2,47,60)

DNA repair XPC 3p25 rs2228001 Ex16+211C>A K939Q C (Gln) 0.40 4 2,592 2,557 (13,47,52,60)

DNA repair XRCC1 19q13.2 rs1799782 Ex6-22C>T R194W T (Trp) 0.07 6 3,072 3,206 (47,48,53,54,61,62)

DNA repair XRCC1 19q13.2 rs25489 Ex9+16G>A R280H A (His) 0.05 3 1,808 1,771 (48,61,62)

DNA repair XRCC1 19q13.2 rs25487 Ex10-4A>G Q399R A (Gln) 0.35 10 3,693 3,931 (2,13,47,48,53–55,
58,61,62)*

DNA repair XRCC2 7q36.1 rs3218536 Ex3+442G>A R188H A (His) 0.10 3 1,899 1,833 (47,54,56)

DNA repair XRCC3 14q32.3 rs1799796 IVS7-14A>G G 0.33 3 967 1,055 (2,47,54)

DNA repair XRCC3 14q32.3 rs861539 Ex8-53C>T T241M T (Met) 0.37 8 3,173 3,302 (2,13,47,53–56,63)*

DNA repair XRCC4 5q13-q14 rs1805377 IVS7-1G>A Splice site A 0.10 3 1,742 1,756 (2,47,56)

Methylation MTHFR 1p36.3 rs1801133 Ex5+79C>T A222V T (Val) 0.36 7 2,492 2,638 (13,22,64–68)

Methylation MTHFR 1p36.3 rs1801131 Ex8-62A>C E429A C (Ala) 0.29 6 2,356 2,513 (13,22,64–67)

Methylation MTR 1q43 rs1805087 Ex26-20A>G D919G G (Gly) 0.19 3 685 689 (65,66,68)

Cell Cycle CCND1 11q13 rs9344 Ex4-1G>A Splice site at 
codon 241

A 0.46 4 1,656 1,774 (13,69–71)

Cell Cycle TP53 17p13.1 rs1042522 Ex4+119C>G R72P C (Pro) 0.25 3 712 731 (71–73)

Infl ammation IL1B 2q14 rs1143634 Ex5+14C>T F105F T 0.20 3 876 887 (74–76)

Infl ammation IL1B 2q14 rs16944 -1060T>C T 0.35 3 866 882 (74–76)

Apoptosis TNF 6p21.3 rs1800629 -487A>G A 0.14 3 916 984 (59,76,77)

Oxidative 
stress

SOD2 6q25.3 rs4880 Ex2+24T>C V16A T (Val) 0.62 3 649 637 (78–80)

*Denotes that a meta-analysis has been performed for this SNP and is listed in the references.
†SNPs listed for NAT1 and NAT2 are all needed in order to determine the haplotypes and fast or slow acetylation activity as reviewed in references (81,82).
CMET = Carcinogen metabolism pathway; MAF = Average minor allele frequency among the available studies; NA = Not applicable since the composite haplotype is what is reported on for 

NAT1 and NAT2 acetylator genotypes.
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Epidemiology of Bladder Cancer
It is estimated that in the United States about 57,000 cases of cancer of the uri-
nary bladder are diagnosed and 12,500 deaths from the disease occur each year 
(83). Bladder cancer in the United States accounts for 6% of all new cancer cases 
among men and 2% of new cancer cases among women. Bladder cancer is a rela-
tively homogeneous disease within industrialized countries and transitional cell 
carcinomas constitute 93–95% of malignant tumors of the urinary bladder (84). 
The other 5–7% of nontransitional cell carcinomas includes squamous cell carci-
nomas, adenocarcinomas, undifferentiated carcinomas, and other rare histological 
types (85). Heterogeneity of disease often requires the subclassifi cation of tumors 
resulting in reduced power to detect associations within distinct subtypes. Thus, the 
relative homogeneity of bladder tumors facilitates investigations of genetic suscepti-
bility compared to other more heterogeneous diseases.

Tobacco smoking and occupational exposure to AA are known bladder cancer risk 
factors that explain a large proportion of the disease (86). Because of the critical role 
of AA and perhaps other chemical carcinogens in tobacco smoke in the etiology of 
bladder cancer, common variation in carcinogen metabolizing genes and DNA repair 
mechanisms have been the most prominent genetic candidates studied to date.

Inherited Susceptibility to Bladder Cancer

Family History of Cancer and Bladder Cancer Risk
Reports of familial clustering of early onset bladder cancer provide evidence for a 
genetic component in bladder cancer (87–92). Studies examining familial risk have 
found relative risks ranging from 1.2 to 4.0 for subjects with at least one fi rst-degree 
relative diagnosed with bladder cancer (93). Bladder cancer may also occur more 
frequently in certain familial syndromes. For instance, hereditary nonpolyposis 
colon cancer has been reported to increase the risk of bladder cancer (94), although 
the fi nding is not fully consistent (95). In addition, a recent study found increased 
bladder cancer risk among hereditary retinoblastoma cases (96). However, to date, 
there are no established high-penetrance mutations in genes associated with bladder 
cancer. Overall, there is little evidence to suggest the existence of a major hereditary 
form of bladder cancer.

Common Genetic Polymorphisms and Bladder 
Cancer Risk
Many studies have evaluated genetic polymorphisms and bladder cancer risk, but 
most early studies had limited statistical power to detect moderate to weak associa-
tions, particularly when the prior probability of association is low, or for the evalu-
ation of gene–environment interactions (97). Systematic meta-analyses and pooled 
analyses of data from individual studies are important means to identify associa-
tions unlikely to be false-positives. Here, we review the rationale and fi ndings from 
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association studies of bladder cancer by biologic pathways, and present updated 
meta-analyses for the four most commonly studied polymorphisms in bladder 
cancer: N-acetyl transferase2 (NAT2), N-acetyl transferase1 (NAT1), glutathione 
S-transferase M1 (GSTM1), and glutathione S-transferase T1 (GSTT1).

Carcinogen Metabolism
N-acetyl transferases (NAT1 and NAT2). The NAT1 and NAT2 genes are both 
located on chromosome 8, NAT1 on 8p21.3–23.1 and NAT2 on 8p21.3–23.1 and 
8p22 (81,98). NATs can metabolize aromatic and heterocyclic amines, which are 
known carcinogens that can produce tumors in animal models (99). Activation and 
detoxifi cation pathways for bladder carcinogens such as AA have been implicated 
in bladder cancer etiology (100–102). The capability to detoxify aromatic mono-
amines by N-acetylation, including 4-aminobiphenyl, which has been implicated 
in tobacco-related bladder carcinogenesis, is polymorphic in human populations. 
A number of NAT2 alleles have been identifi ed (http://louisville.edu/medschool/
pharmacology/NAT2.html). The effects of NAT2 polymorphisms and the combina-
torial haplotypes or allelic types and their molecular genetics have been reviewed 
extensively (82). Recombinant expression systems have been the primary means of 
data to show that NAT2 allelic variants have reduced substrate affi nity, catalytic 
 activities, or altered protein stability, which result in slow or fast/intermediate acety-
lator phenotypes (81,98). The alleles for NAT2 rapid-acetylator alleles are NAT2*4, 
NAT2*11A, NAT2*12A, NAT2*12B, NAT2*12C, NAT2*13; about 50% of Caucasian, 
and a lower percentage of African (30%) and Asian (15%) populations, are homozy-
gous for a mutated NAT2 responsible for decreased enzyme activity (slow acetyla-
tors) (98,103,104).

Lower et al. fi rst hypothesized in 1979 that individuals with the NAT2 slow acety-
lation phenotype would be at higher risk of bladder cancer if they were exposed 
to AA (105). A relatively large number of studies were carried out subsequently to 
evaluate this hypothesis. The majority of studies have been in Caucasian populations 
where the frequency of the slow acetylator phenotype is so prevalent that the genetic 
models have most commonly evaluated the risk associated with the slow acetyla-
tor phenotype compared to fast/intermediate acetylators and bladder cancer risk. 
Pooling and meta-analyses have shown compelling evidence for an increased risk of 
bladder cancer among NAT2 slow acetylators (1,36,37). We have updated previous 
meta-analyses to include fi ve additional studies (2–5,38), shown in Figure 15.1. This 
meta-analysis included 41 studies with a total of 6,363 cases and 11,805 controls, 
and provides further evidence for an increased risk of bladder cancer for NAT2 slow 
acetylators compared with fast/intermediate acetylators (overall p-value = 3 × 10–8). 
The association is strongest among European Caucasians in whom a majority of the 
studies have been carried out (20 total [OR and 95% CI for European Caucasians 
1.42 (1.29–1.56)]; Figure 15.1). The meta-analyses showed evidence of signifi cant 
heterogeneity of relative risk estimates across studies, as determined by the I2 sta-
tistic. The heterogeneity was reduced when analyses were restricted to Caucasians 
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from Europe and the United States, and increased among the ten Asian studies (Figure 
15.1). There was no evidence of potential bias from the Harbord’s test (p = 0.95; see 
Appendix A for more details).

Previous analyses have also shown evidence of an interaction between smoking 
status and NAT2 genotype (1,37). We have updated our previous case-only meta-
analysis and show evidence for interaction using data from 4,503 cases in 23 studies 
(Figure 15.2). This association was present only among European Caucasians, and 
was not observed in Asian studies or in studies carried out among Caucasians in 

Figure 15.1 NAT2 slow acetylation and bladder cancer risk. Association between NAT2 
and bladder cancer risk. Odds ratios (OR) and 95% confi dence intervals (CI) are for NAT2 
slow versus intermediate/fast acetylators. Studies are weighted and presented by rank 
according to the inverse of the variance of the log OR estimate. I2 statistic and correspond-
ing p-values are used to assess heterogeneity of ORs across studies. There was also no evi-
dence for an excess of statistically signifi cant fi ndings (p = 0.85).
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the United States. This may suggest differences in the interaction by geographic 
region, which could be correlated with other factors such as tobacco type (blond vs. 
black tobacco); however, there are notably fewer studies on Asians and United States 
Caucasians, and further data are needed to determine if an interaction exists (Figure 
15.2). In addition, a recent Bayesian meta-analysis of NAT2 genotype/ phenotype 
also supports a stronger risk of bladder cancer associated with the NAT2 slow 
acetylation among smokers, using methods that accommodate evidence from stud-
ies where some exposure variables have been reported differently or omitted (106). 
Since tobacco smoking is a primary source of exposure to AA in the general popu-
lation and NAT2 slow acetylators have a decreased capacity to detoxify aromatic 
monoamines, this gene–environment interaction has strong biological plausibility 
(98). Further evidence supporting the interaction includes a report where smokers 

Figure 15.2 Case-only meta-analysis of the interaction between NAT2 and smoking on 
bladder cancer risk. Interaction between NAT2, smoking, and bladder cancer risk. Odds 
ratios (OR) and 95% confi dence intervals (CI) for multiplicative interaction using a case-
only design. Studies are weighted and presented by rank according to the inverse of the 
variance of the log OR estimate. I2 statistic and corresponding p-values are used to assess 
heterogeneity of interaction ORs across studies.
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with the NAT2 slow polymorphism had higher levels of 4-aminobiphenyl hemoglo-
bin adducts in peripheral red blood cells than smokers with the NAT2 rapid poly-
morphism (107). However, additional studies in diverse geographic regions are still 
required to confi rm this interaction.

Most studies discussed above were conducted in the general population, with-
out specifi c occupational or environmental exposures to bladder carcinogens. 
Studies among subjects occupationally exposed to AA also tend to show associa-
tions between NAT2 slow acetylation and increased bladder cancer risk (108,109). 
For example, in a groundbreaking paper, Cartwright et al. reported that individu-
als in the United Kingdom with occupational exposure to aromatic amines were at 
very high risk of bladder cancer. Furthermore, Cartwright et al. observed that slow 
acetylator status could be used to identify susceptible individuals in potentially haz-
ardous occupations (OR = 16.7, 95% CI = 2.2–129.1) (110). In contrast, a study of 
NAT2 genotype and phenotype and bladder cancer in participants from a cohort of 
workers with well-documented occupational exposure to benzidine, a potent bladder 
 carcinogen, found that NAT2 slow acetylation was protective, with a pooled estimate 
from two studies carried out in the same population of OR = 0.3 (95% CI = 0.1–1.0) 
(111,112). Further, experimental studies have shown that the N-acetylation of ben-
zidine, an aryldiamine, produces a far better substrate for subsequent oxidation to 
its hydroxylamine (113). In addition, a study of workers exposed to benzidine or 
benzidine-based dyes supported the experimental observation that N-acetylation is 
an activation step for benzidine by demonstrating that the predominant DNA adduct 
in exfoliated urothelial cells was N-acetylated (114). This body of work suggests that 
in contrast to arylmonoamines, such as 4-aminobiphenyl and 2-naphthylamine from 
tobacco smoke, N-acetylation of aryldiamines such as benzidine is an activation 
rather than a detoxifi cation step. Further complicating the situation is that benzidine 
is a better substrate for NAT1 than NAT2 (113). Taken together, it would seem that 
the NAT2 slow acetylation does not increase risk for bladder cancer among workers 
exposed to benzidine and may indeed be protective.

The NAT1 gene codes for an enzyme involved in the activation of aromatic 
amines by O-acetylation (98). NAT1 shows selectivity for p-amino-benzoic acid and 
p-phenylene-diamine and there are 26 alleles for NAT1 identifi ed in humans (see 
http://louisville.edu/medschool/pharmacology/Human.NAT1.pdf). The NAT1*10 
genotype, has been associated with higher levels of NAT1 activity and DNA 
adducts in human bladder tissue (115). There is, however, inconsistent evidence for 
an association between bladder cancer risk and NAT1*10 allele alone or in combi-
nation with NAT2 slow acetylation (1,28,39). We conducted a meta-analysis of ten 
published studies including a total of 2,759 cases and 3,108 controls, and estimated 
a summary relative risk for NAT1*10 “at risk” allele compared with NAT1*4 of 
OR = 1.02 (95% CI = 0.85–1.23), p-value = 0.82 (Table 15.2). There was evidence 
of signifi cant heterogeneity across studies from the I2 statistic (see Appendix A for 
more details). There was also some evidence for an excess of statistically signifi -
cant fi ndings. Therefore, current evidence does not support an overall association 



Table 15.2 Meta-analysis of GSTT1 and NAT1 polymorphisms and bladder cancer risk

Gene Polymorphism  Cases (N) Controls (N) Studies (N) OR 95% CI pval I2 pval I2

NAT1 Slow vs Fast All ethnicities 2,759 3,108 10 1.02 0.85 1.23 0.82 0.012 57.4

Caucasians Only 2,578 2,815 8 1.06 0.87 1.28 0.57 0.017 59.0

European Caucasians 1,874 2,133 6 1.13 0.89 1.43 0.32 0.029 59.9

European Caucasians 
(with atleast 100 cases)

1,761 1,668 4 1.26 0.98 1.62 0.07 0.048 62.1

GSTT1 null vs present All ethnicities 5,861 7,478 26 1.07 0.94 1.22 0.27 0.009 44.0

Caucasians Only 4,694 5,808 19 1.10 0.95 1.28 0.21 0.048 38.0

European Caucasians 2,651 2,940 10 1.12 0.86 1.46 0.40 0.010 58.5

European Caucasians 
(with atleast 100 cases)

2,425 2,391 7 1.13 0.85 1.51 0.40 0.017 61.2

USA Caucasians 1,703 2,506 5 1.03 0.87 1.22 0.75 0.462 0.0

  Asians 961 1,224 5 0.89 0.71 1.12 0.32 0.158 39.4

Notes: Association between GSTT1, NAT1, and bladder cancer risk. Odds ratios (OR) and 95% confi dence intervals (CI) are for GSTT1 null versus present genotypes; and 
NAT1*10 at risk allele compared with the NAT1*4 allele. I2 statistic and corresponding p-values are used to assess heterogeneity of ORs across studies.
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between NAT1 polymorphisms and bladder cancer risk. It has been recently sug-
gested by Sanderson et al. that there may be an interaction between NAT1, NAT2, 
and smoking; however, this needs to be further corroborated in additional epidemi-
ology  studies (39).

Glutathione S-transferases (GSTM1, GSTT1, and GSTP1). The cytosolic glutathi-
one transferases (GST) are a superfamily of phase II enzymes that conjugate electro-
philic substrates with the nucleophilic tripeptide glutathione (116). The GSTM1 gene 
codes for the cytosolic mu class of glutathione S-transferases, an enzyme involved 
in detoxifi cation of a range of carcinogens, including afl atoxin B, aryl halides, poly-
cyclic aromatic hydrocarbons (PAHs), and reactive oxygen species (117,118). A com-
mon homozygous deletion (null genotype) polymorphism of GSTM1 is associated 
with lack of enzyme activity (119), which is present in about 50% of Caucasians. 
Meta-analyses have consistently reported that the GSTM1 null genotype increases 
risk of bladder cancer (1,120). We present an updated meta-analysis in Figure 15.3 
that includes eight additional studies (2–9) and one updated report (11) in addition to 
the studies included in our previous publication (1). The meta-analysis of 36 studies 
shows a consistent association with bladder cancer risk for the GSTM1 null com-
pared with present genotype across all ethnicities (OR ranging from 1.26 to 1.47, 
depending on geographic region) (Figure 15.3). There is evidence from I2 of sig-
nifi cant heterogeneity of relative risk estimates across studies; however, as the plot 
shows, this heterogeneity is not around the null value of 1.0, but rather around the 
point estimate of 1.43. There was no evidence of potential bias from the Harbord’s 
test (p = 0.27, see Appendix A for more details). It has been previously shown by 
Garcia-Closas et al., 2005 (1) that the relative risk for GSTM1 null genotype and 
bladder cancer is similar for smokers and never smokers, suggesting that the GSTM1 
activity protects equally against tobacco-related and non-tobacco-related bladder 
cancers, and may reduce the risk of bladder cancer through mechanisms that are 
not specifi c to the detoxifi cation of PAHs in tobacco smoke. We present an updated 
case-only analysis of GSTM1 (Figure 15.4) that is consistent with what has been 
previously reported (1), with an interaction OR of 1.01 (0.87–1.16) and a p-value for 
interaction = 0.94. The biologic basis for this consistent association, which is pres-
ent in studies carried out in Europe, the United States, and Asia, has not yet been 
clarifi ed. Other hypothesized mechanisms of action for GSTM1 are protection from 
oxidative damage through metabolism of reactive oxygen species (118).

The GSTT1 gene has been identifi ed as encoding a specifi c glutathione trans-
ferase activity that can catalyze the glutathione conjugation of dichloromethane 
and epoxides and can be carcinogenic (121,122). This enzyme also displays a gene 
deletion in about 10–20% of Caucasian individuals. The GSTT1 deletion has been 
investigated in 26 studies of bladder cancer; however there is no evidence for an 
association in our meta-analysis of 5,861 cases and 7,478 controls (Table 15.2). 
Meta-analysis of GSTT1 suggests signifi cant heterogeneity around the null, unlike 
GSTM1, where meta-analyses show consistent associations with increased risk. 
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These results do not support GSTT1 null deletion as an important susceptibility 
factor for bladder cancer.

GSTP1b allele is a nonsynonymous polymorphism (rs1695) that converts the 105 
amino acid to valine; it has been shown to possess an elevated enzymatic activity 
toward certain substrates like chrysene-1,2-diol-3,4-epoxide, ethacrynic acid, and 
bromosulfophthalein, whereas GSTP1a allele has an isoleucine at position 105 and 
has been shown to possess an elevated enzymatic activity for substances like 3,4-
dichloro-1-nitrobenzene and 1-chloro-2, 4-dinitrobenzene. The GSTP1 Ile105Val 
(rs1695) valine form has been thought to be the at risk allele (118,123,124). A recent 

Figure 15.3 GSTM1 null genotype and bladder cancer risk. Association between GSTM1 
and bladder cancer risk. Odds ratios (OR) and 95% confi dence intervals (CI) are for GSTM1 
null versus present genotypes. Studies are weighted and presented by rank according to the 
inverse of the variance of the log OR estimate. I2 statistic and corresponding p-values are 
used to assess heterogeneity of ORs across studies. There was also no evidence for an excess 
of statistically signifi cant fi ndings (p = 0.99).
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pooled analysis of the GSTP1 Ile105Val and bladder cancer risk suggested the Ile/
Val Val/Val genotypes were signifi cantly associated with bladder cancer risk, com-
pared with the GSTP1 Ile/Ile genotype OR = 1.54 (95% CI = 1.21, 1.99; p < 0.001) 
for Ile/Val, OR = 2.17 (95% CI = 1.27, 3.71; p = 0.005), respectively. The associa-
tion appeared to be the strongest in Asian countries. When the analysis was limited 
to European Caucasians (nine studies), the summary OR decreased (OR = 1.24, 
95% CI = 1.00–1.52) (10). There was evidence of unexplained heterogeneity of 
these associations and the cause of this is unclear. Therefore additional studies are 
needed to clarify the relationship between genetic variants in GSTP1 and bladder 
cancer risk.

Cytochrome P450s, sulfotransferases, NAD(P)H dehydrogenase quinone. Other 
enzymes that could affect the risk of bladder cancer include cytochrome P450 

Figure 15.4 Case-only meta-analysis of the interaction between GSTM1, smoking, and 
bladder cancer risk. Interaction between GSTM1, smoking, and bladder cancer risk. Odds 
ratios (OR) and 95% confi dence intervals (CI) are for multiplicative interaction using a 
case-only design. Studies are weighted and presented by rank according to the inverse of the 
variance of the log OR estimate. I2 statistic and corresponding p-values are used to assess 
heterogeneity of interaction ORs across studies.
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China
USA
Japan
Germany
Spain
USA

29
53
62
95
51
201
130
114
100
121
106
232
103
174
234
213
202
354
325
374
1226
622

3.20 (0.26, 40.06)
2.00 (0.46, 8.75)
1.89 (0.48, 7.40)
0.85 (0.24, 3.01)
0.68 (0.21, 2.28)
1.05 (0.37, 2.96)
3.23 (1.19, 8.79)
1.42 (0.59, 3.42)
0.44 (0.18, 1.03)
1.24 (0.53, 2.93)
1.34 (0.60, 2.96)
0.85 (0.39, 1.89)
0.72 (0.33, 1.58)
0.85 (0.39, 1.86)
0.96 (0.44, 2.07)
1.32 (0.65, 2.67)
1.07 (0.61, 1.88)
1.04 (0.61, 1.77)
1.11 (0.69, 1.78)
1.06 (0.68, 1.66)
0.77 (0.54, 1.11)
1.00 (0.70, 1.43)
1.01 (0.87, 1.16)

OR (95% Cl)

.4 .6 1 1.5 2.2

 Cases (N) Studies (N) Interaction OR 95% CI pval I pval I2

All ethnicities 5,121 22 1.01 0.87  1.16 0.94 0.708 0.0
Caucasians only 3,644 13 1.02 0.85  1.21 0.84 0.542 0.0
European Caucasians 2,426 9 1.03 0.78  1.37 0.82 0.305 15.4
USA Caucasians 1,218 4 1.06 0.81  1.40 0.65 0.750 0.0
Asians 933 4 1.01 0.75  1.37 0.93 0.908 0.0
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enzymes such as CYP1A1, CYP1B1, CYP2C19, CYP2D6, CYP2E1, sulfotrans-
ferases (SULT) involved in the activation of aromatic amines, and NAD(P)H 
dehydrogenase quinone 1 (NQO1). Cytochrome P450 CYP1A2 is involved in the 
activation of aromatic amines by N-hydroxylation, and is polymorphic in human 
populations; however, the functional relevance of the genetic variants is not well 
characterized (125), and to date it is unclear whether they play a role in bladder 
cancer. In a recent report by Figueroa et al. (40) two nonredundant SNPs in the 
CYP1A1 gene in the promoter and 3′ of the STP codon were associated with blad-
der cancer risk: CYP1A1 rs2472299 and CYP1A1 rs2198843. In addition, one SNP 
in the promoter of the CYP1B1 gene (rs162555) and a rare SNP Y62F (rs4987024) in 
SULT1A2, a gene involved in the activation of aromatic amines (126), were associ-
ated with bladder cancer risk (40). Furthermore, a nonsynonymous SNP in SULT1A1 
rs9282861(R213H) has been consistently observed to be inversely associated with 
bladder cancer risk in three studies (4,12,45). All of these fi ndings require replica-
tion in additional studies. The nonsynonymous SNPs in CYP1A1 rs1048943 (I462V) 
and CYP1B1 rs1056836 (V432L) have been shown to be associated with altered 
enzymatic activity; however, there is little evidence to suggest their association with 
bladder cancer risk (40,127).

NQO1’s activity has been found to have detoxifying properties by reducing the 
presence of hydroquinones that can be excreted, but activates nitroaromatic amines 
present in tobacco smoke (41,128–130). The variant allele of NQO1 rs1800566 
(P187S) has been shown to have reduced quinone reductase activity from in vitro 
studies (131–133). A recent meta-analysis of six bladder cancer studies of 1,410 
cases and 1,485 controls in Caucasian populations suggest an increased risk for the 
rs1800566 (P187S) CT/TT genotype of 1.20 (1.00–1.43) (41). However, this associa-
tion was not confi rmed in a large case-control study in Spain (40) and relative risk 
estimates suggested an inverse relationship with risk.

DNA repair. A complex network of complementary DNA repair mechanisms exists 
to prevent the detrimental consequences of DNA damage caused by endogenous and 
exogenous exposures, and genetic variation in DNA repair genes may alter repair 
function and contribute to cancer risk (134). There are four main types of DNA 
repair pathways: nucleotide-excision repair (NER), base-excision repair (BER), 
double-strand break repair (DSBR), and mismatch repair (MMR). Of the different 
DNA repair pathways, genetic polymorphisms in NER, BER, and DSBR have been 
investigated in multiple studies of bladder cancer.

Nucelotide-excision repair genes. The main pathway involved in the repair of bulky 
chemical adducts produced by aromatic amines and other carcinogens in tobacco 
smoke is the nucleotide-excision repair (NER) pathway (135). Epidemiologic stud-
ies suggest that genetic variation in NER genes could affect bladder cancer risk 
(29,52,60,136,137). There is evidence from fi ve studies that two correlated poly-
morphisms, in ERCC2, (D312N) rs1799793 and ERCC2 (K751Q) rs13181, exhibit a 
modest association with bladder cancer risk. However, additional evidence is needed 
to establish these associations. The XPC gene is involved in damage recognition in 
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NER, and two SNPs have been evaluated in multiple studies rs2228000 (A499V) 
and rs2228001 (K939Q). The XPC rs2228000 (A499V) SNP was evaluated in four 
studies, which suggest a recessive association with risk with the TT (Val/Val) geno-
type (13,52,60,136). In contrast, there is little evidence to suggest an association 
with risk in these four studies for the XPC rs2228001 (K939Q) SNP. Lastly, there 
was little evidence from three studies that a SNP in the endonuclease ERCC5 gene, 
rs17655 (D1104H), was associated with bladder cancer (13,47,52).

In summary, the NER is a promising candidate pathway for bladder cancer and 
current studies suggest the presence of weak associations between common genetic 
variation in this pathway and risk. Ongoing collaborative studies will be critical in 
providing the additional evidence required to confi rm or rule out these associations.

Base-excision repair genes. BER plays a key role in DNA repair by removing DNA 
damaged by oxidation, deamination, and ring fragmentation (138). Exposure to tobacco 
smoking can increase production of reactive oxygen species (ROS), which have the 
potential to induce oxidative damage (139), so BER ability might be associated with 
bladder cancer risk. BER is primarily responsible for repairing single nucleotides 
and consists of four steps: (i) excising the damaged base by glycosylases (OGG1 and 
MUTYH); (ii) incising the DNA backbone by an endonuclease (APEX1, also known as 
APE); (iii) fi lling the nucleotide gap by polymerases (POLB and POLD) coordinated 
by the XRCC1 scaffold protein, the protein-modifying poly ADP ribose proteins (e.g., 
PARP1), and the replication component PCNA for long base repair patches; and (iv) 
ligating the remaining nick by ligases (LIG1 and LIG3) (139,140). A SNP in OGG1 
S326C (rs1052133) has been evaluated in four studies, three of which found inverse 
associations with risk among the homozygote variant carriers (47–49,58,141), com-
pared with the CC genotype; however, more data from other studies are needed to 
confi rm or deny the potential recessive effects of this polymorphism.

Bladder cancer risk and XRCC1 genetic variation have been the focus of a 
 number of studies (2,13,48–50,53–55,58,61–63,141–148). The XRCC1 gene encodes 
the major coordinating protein of BER and interacts with PARP1, LIG3, and 
POLB. The XRCC1 rs25487 (Q399R) variant results in an amino acid substitution 
in the region of XRCC1 responsible for interacting with PARP1 (147). However, 
meta-analyses including a total of 2,900 cases and 2,893 controls from our study 
population and six previously published studies (13,47,55,62,141,143) showed no sig-
nifi cant overall association with bladder cancer risk , with ORs of 1.08 (0.94–1.23) 
and 0.99 (0.83–1.19) for heterozygote and homozygote variants, respectively (48). 
Associations with bladder cancer risk for CT/TT genotypes for a relatively rare 
nonsynonymous polymorphism in XRCC1 rs1799782 (R194W) have been inconsis-
tent compared with the CC genotype in four studies (47,48,62,148). Lastly, variants 
for the APEX1 rs3136820 (D148E) SNP (47–49,58,141,148) have been suggested to 
potentially have a moderate decrease in bladder cancer risk among homozygous 
variant carriers and evidence for an interaction with smoking was suggested (51) but 
was not confi rmed (48), and requires additional studies. In summary, the current lit-
erature provides weak  evidence for associations between common variation in BER 
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and bladder cancer risk, and suggested associations require confi rmation in future 
studies.

Double-strand break repair genes. DSBR is important in maintaining genomic sta-
bility and defi ciency can result in susceptibility to cancer. DNA double-strand breaks 
(DSBs) can promote genomic instability resulting in chromosomal abnormalities 
(149–152), which can arise from a variety of exogenous and endogenous exposures 
including ionizing radiation and tobacco smoke (151,153–155). Given the importance 
of DSBR in cellular genomic maintenance, interindividual variation in DSBR path-
way genes that sense and repair this damage could contribute to bladder cancer risk. 
Recent evidence suggests that DSBs could be relevant for bladder  cancer, and include 
reports of somatic mutations and altered expression of DNA damage response path-
way genes ATM and CHK2 (156), and DSBR nonhomologous end joining (NHEJ) 
mechanisms that have been reported to be more error prone in bladder tumors (157). 
The XRCC3 nonsynonymous SNP T241M (rs861539) has been related to bladder 
cancer risk in previous studies and a recent meta-analysis of seven studies includ-
ing 2,003 cases and 2,140 controls suggests a weak increase in risk (OR 1.17, 95% 
CI = 1.00–1.36) (48). Additional DSBR SNPs evaluated in relation to bladder can-
cer risk include the NBN rs1805794 (E185Q) and a rare SNP in XRCC2 rs3218536 
(R188H) and will require additional evidence to determine if they are associated 
with risk (47,54,56). The DSBR genes have some promising fi ndings that could be 
susceptibility factors, and more evidence is needed to confi rm these leads.

Other pathways and genes. Genetic polymorphisms in cell cycle control genes, 
infl ammation, methylation, and apoptosis have also been evaluated in relation to 
bladder cancer risk with promising but unconfi rmed fi ndings (47,64,158). The 
CDH1 Cadherin gene, which is commonly methylated in bladder cancers, is one 
of the most promising, as there is evidence that polymorphisms in this gene may be 
associated with risk (14,159), but these have been evaluated in very few studies, and 
further evidence is needed. In the future, these pathways, which are hypothesized to 
be important for many cancers, may represent novel risk factors.

Summary. In summary, the current literature provides consistent evidence for an 
association with bladder cancer risk and common variants in two key carcinogen 
metabolizing genes, NAT2 and GSTM1; however, the current evidence for other 
putative functional variants in candidate genes is weak. Although weak to modest 
associations, associations with variants in these genes, or gene–gene or gene–envi-
ronment interactions are possible, they will require very large collaborative stud-
ies to be established. The International Consortium of Bladder Cancer (http://dceg.
cancer.gov/icbc/) has been established to facilitate these large-scale analyses with 
adequate power to detect weak associations and interactions, using both candidate 
gene and genome-wide approaches. Although most studies to date have evaluated 
only a few variants in each candidate gene, advances in genotyping technology and 
SNP databases are allowing more comprehensive evaluation of common variants in 
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pathways of interest, as well as exploratory analyses using genome-wide scans, and 
it is expected that in the coming years new regions associated with bladder cancer 
risk will be identifi ed.

Functional Susceptibility Assays

Integrative assays that refl ect multiple biologic infl uences in carcinogenic pathways 
such as germline variation, epigenetic changes, and regulation of gene expression 
and protein activity are promising biomarkers of susceptibility. For instance, assays 
that measure the capacity to repair DNA after exposure to carcinogens in cultured 
peripheral lymphocytes have been used as an integrative measure of susceptibil-
ity to carcinogenic exposures. Mutagen sensitivity assays are an indirect measure 
of DNA repair capacity, and it is known that different mutagens elicit different 
DNA repair pathways. Evidence to support this hypothesis comes from two reports 
where bladder cancer cases had a greater tendency to have DNA damage caused by 
benzo(a)pyrene diol epoxide (160), and to have decreased capacity to repair DNA 
damage induced by 4-aminobiphenyl in lymphocyte cultures (161). Future studies 
are needed to support these fi ndings in other populations, particularly in prospec-
tive studies with collection of blood samples prior to the diagnosis of bladder can-
cer. Although these are markers of susceptibility, these are complex and expensive 
assays and thus diffi cult to use in large epidemiology studies.

Telomeres, the termini of linear chromosomes, consist of large but variable num-
bers of DNA oligomer repeats embedded in a nucleoprotein complex (162) and 
have also been reported to be associated with aging diseases such as cancer (163). 
Telomere shortening has been inversely associated with age, and telomere length 
can vary in human peripheral blood lymphocytes and buffy coats from individuals 
with the same age (162,163). It is hypothesized that individuals with telomere dys-
function may be at a higher risk for bladder cancer because of elevated likelihood 
for genetic instability. Data to support this hypothesis come from studies showing 
evidence for an association between shorter telomeres and an increase in blad-
der cancer risk (2,164,165). Changes in patterns of DNA methylation at promoter 
CpG-islands in tumor tissue frequently occur, and global hypomethylation of DNA 
is thought to contribute to carcinogenesis by the induction of genome instability 
and gene-specifi c hypomethylation (166). Recently, a report by Moore (167) showed 
that leukocyte DNA hypomethylation is associated with increased risk of develop-
ing bladder cancer, and this association was independent of smoking and other risk 
factors. This suggests that the amount of global methylation in genomic DNA could 
provide a useful biomarker of susceptibility to certain cancer types. Telomere length 
assays and methylation assays are attractive because they are thought to refl ect both 
genetic and environmental infl uences. Future work needs to be done to follow up 
on these fi ndings, which have been mostly performed in case-control studies, using 
prospective cohorts with samples taken at multiple time points in order to rule out 
reverse causality.
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Future Directions

Genome-wide association studies are currently underway and it is expected that 
these studies will identify new loci associated with bladder cancer risk, and yield 
new insights into gene–gene and gene–environmental interactions. Using the current 
platforms, dense genotyping for both SNPs and copy number variants are expected 
to provide important information on risk of bladder cancer by stage, grade, and 
molecular subtypes, and response to treatment (particularly treatment with Bacillus 
Calmette-Guerin [BCG], which stimulates an immune response within the bladder 
to help destroy any remaining cancer cells), recurrence, and ultimately survival.
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Appendix A

Meta-analysis methods

We updated previously published meta-analysis of NAT2 and NAT1 slow acetyla-
tors compared with fast acetylators, and GSTM1 and GSTT1 null carriers com-
pared with present carriers (1,37). We conducted a HuGE Navigator literature fi nder 
database search and a PubMed literature search of peer reviewed studies published 
on or before September 2008 in English. A random-effect model was used to esti-
mate summary ORs and 95% CIs by weighing each study result by a within- and 
between-study variance (168). Homogeneity of study results was assessed by the 
I-squared statistic (169). For GSTM1 and NAT2 polymorphisms that showed sig-
nifi cant associations, the Harbord’s test (170), which tests the relationship between 
the magnitude of the association and the precision of the estimate, was used as a 
possible indication of publication or related biases. Lastly, for these two SNPs, we 
performed an additional diagnostic test that can detect whether there is an excess of 
statistically signifi cant single studies (171). Statistical analyses were performed with 
STATA Version 9.1, Special Edition (STATA Corporation, College Station, TX).
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Introduction

Type 2 diabetes (T2D) represents one of the most important causes of global mor-
bidity and mortality. On current projections, the prevalence of this condition will 
double within a generation, with most of this increase occurring in the countries 
least well equipped to deal with the social and economic consequences (1). These 
rapid changes in prevalence clearly refl ect global shifts in lifestyle (greater 
caloric intake and reduced energy expenditure) that are closely linked to rising 
rates of  obesity. Nevertheless, twin and family studies have repeatedly demon-
strated that individual predisposition to T2D has a substantial genetic component 
(2). Identifi cation of the genes and variants responsible for these predisposition 
effects provides valuable insights into pathogenesis; these should, in turn, spur 
translational advances in clinical care, including development of novel therapeutic 
and diagnostic approaches. In addition, it may well become increasingly  possible 
to use personal genetic profi le information as a means toward more targeted, 
 individualized  clinical management.

Genetics of Type 2 Diabetes: The Past

Until the current phase of rapid advances in the identifi cation of variants infl uenc-
ing individual risk of multifactorial type 2 diabetes (see Section Genetics of Type 2 
Diabetes: The Present), progress in this fi eld had been tentative. Putting aside type 
1 diabetes (which we do not consider in this chapter—for an up-to-date review see 
Reference 3), success in diabetes genetics was mostly restricted to studies of highly 
penetrant monogenic and syndromic forms of nonautoimmune diabetes such as 
maturity onset diabetes of the young (MODY) and neonatal diabetes (NDM).

Monogenic and Syndromic Forms of Diabetes
The cardinal features of MODY (autosomal dominant family history, early-onset 
nonautoimmune diabetes) meant this condition was readily amenable to linkage-
based positional-cloning approaches applied to segregating pedigrees (4). Clinical 
suspicions about phenotypic heterogeneity (5) were substantiated by gene-mapping 
efforts that revealed a number of distinct genetic causes for MODY. On most counts, 
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seven genes have been implicated (4,6), with the principal phenotypic differences 
noted between those instances of MODY attributable to defects in glucose-sensing 
due to mutations in the glucokinase gene (7,8), and those resulting from mutations 
in islet-transcription factors (9,10). While the former have a modest increase in fast-
ing glucose levels detectable at birth and stable thereafter, the latter result in a pro-
gressive form of diabetes in which serious diabetes-related complications are much 
more likely. Because there are important prognostic and therapeutic differences 
between these different molecular etiologies of diabetes—patients with transcrip-
tion factor mutations are notably sensitive to sulfonylureas (11), while those with 
glucose-sensing defects usually respond well to diet—this is an area where molec-
ular diagnostics and individual genetic profi ling are already a feature of standard 
clinical care (12).

There is a similar story with neonatal diabetes mellitus, which, as the name sug-
gests, is characterized by diabetes onset in the fi rst few months of life. Historically, 
this condition was categorized on clinical grounds into transient and permanent 
forms, the former characterized by remission during childhood but with a recur-
rence of T2D later in life. Identifi cation of genes harboring mutations responsi-
ble for this largely sporadic condition has demonstrated that these subtypes lie on 
a continuum. Although imprinting defects on chr6 are a common cause of tran-
sient NDM (13), and INS mutations of permanent NDM (6), mutations in the genes 
encoding the two components of the beta-cell KATP channel (KCNJ11 and ABCC8) 
can cause either, with clinical severity largely mirroring the extent to which the 
mutation concerned abrogates channel function (14). Indeed, when the mutations 
are particularly severe, the phenotypic consequences can extend to involvement 
of other tissues (e.g., brain) in which these genes are expressed (15). Crucially, 
evidence that the adverse effect of many KCNJ11 mutations on channel closure 
is restricted to physiological, and not pharmacological, stimuli has allowed many 
individuals diagnosed with NDM (who conventionally had been treated with insu-
lin) to achieve much improved metabolic control on oral medication (11).

As well as these examples, gene discovery efforts conducted in the many rare 
Mendelian syndromes which include diabetes among their clinical features, have 
identifi ed many other genes harboring causal mutations with the capacity to disturb 
glucose homeostasis (16,17). These genetic abnormalities extend to the mitochon-
drial genome, where heteroplasmic mutations at position 3243 (in a gene encoding 
a transfer RNA) have been shown to result in a syndrome of maternally inherited 
diabetes and deafness (18).

Although all of these conditions are relatively rare (in combination, they account 
for only a few percent of all nonautoimmune diabetes), they provide several lessons 
relevant to the subsequent discussion of multifactorial diabetes. First, these studies 
demonstrate that diabetes can result from defects in many different processes, though 
most affect in various ways the capacity of the pancreatic beta cell to maintain ade-
quate glucose-stimulated insulin secretion in the face of advancing age or insulin 
resistance. Second, precisely because the prognostic implications of each specifi c 
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diagnosis for the subject and the subject’s relatives are so diverse, and because the 
benefi ts of optimizing therapy to the specifi c molecular diagnosis are so clear, there 
has been a steady increase in the use of clinical genetic approaches to ensure that, 
wherever possible, each subject obtains an accurate molecular diagnosis (4).

Multifactorial diabetes. In comparison, progress in fi nding the genes involved in 
individual predisposition to more common, late-onset, multifactorial forms of nonau-
toimmune diabetes has, until recently, been slow. This difference in pace refl ects the 
obvious fact that much of the success in identifying genes causal for monogenic or 
syndromic diabetes was predicated on exploiting the strong genotype–phenotype cor-
relations that defi ne such conditions. In multifactorial diabetes, predisposition is the 
consequence of multiple contributory factors (both genetic and environmental) and the 
effect of any single variant accordingly modest. This has serious repercussions in terms 
of power and interpretation (19) that are only now being overcome (see following text).

Through the late 1990s and the early part of this decade, two predominant 
approaches to gene discovery for T2D were in play. The linkage approach sought 
to locate chromosomal regions that, within families, displayed unusual patterns 
of cosegregation with diabetes. These studies exploited a variety of experimental 
designs: sometimes the focus was on large multiplex pedigrees, at other times on 
collections of nuclear families or affected sib pairs. The linkage approach is power-
ful when, as with MODY, the causal variants are penetrant, but it becomes much 
less attractive when penetrances are low and there is substantial locus heterogeneity, 
both of which are likely to prevail in T2D. Although more than 40 linkage scans 
for T2D have been performed, the overall picture has been one of multiple modest 
signals, few of which show much evidence of replication (20,21). These studies have 
made it clear that, as far as T2D is concerned, there are no common variants of large 
effect (equivalent, for example, to HLA in type 1 diabetes). Efforts to fi ne-map the 
causal variants within replicated linkage signals continue, but have in most cases 
been superseded, for reasons of cost and effi ciency, by genome-wide association 
(GWA) approaches. However, a desire to identify associated variants within the rep-
licating linkage signal on chromosome 10 contributed to the discovery of TCF7L2 
as a T2D susceptibility locus in 2006 (22) (Figure 16.1). Although this signal has 
been widely replicated (23), and these variants have the largest effect size of any 
common T2D-susceptibility variant identifi ed, those effect sizes are far too small 
to account for the observed linkage signal. It seems therefore that the discovery of 
TCF7L2 by fi ne-mapping was serendipitous.

The complementary approach to multifactorial T2D gene discovery has focused 
on association mapping in sets of unrelated individuals (typically, cases and con-
trols). Although this approach is paying dividends now that it is being applied 
genome wide (see following text), previously the cost and throughput of genotyp-
ing technologies restricted such analyses to consideration of only modest numbers 
of variants. Not surprisingly, therefore, these efforts focused on subsets of variants 
selected because they were considered particularly likely to infl uence individual risk 
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of T2D (16). Usually, such selection focused on “candidate” genes, plucked from 
the genome on the basis of some perceived fi t between their known or presumed 
function and the mechanisms thought to be involved in diabetes pathogenesis. This 
approach, although it did generate two notable successes (PPARG and KCNJII), 
was blighted by three main factors. First, poor understanding of T2D pathogenesis 
(the very reason why genetic studies were being done in the fi rst place), meant that 
candidate gene selection was an imprecise art: even the most promising candidates 
still had low prior odds of harboring variants affecting disease predisposition, espe-
cially because most studies provided only patchy coverage of the variants contained 
within such a gene (16,24). Second, the prevalent use of small sample sizes meant 
that, for realistic models of locus effect size, the power of any given study to detect 
an association, even if it existed, was typically poor. And third, an understandable 
desire to declare “positive” associations on the basis of nominally signifi cant fi nd-
ings (without due allowance for all the statistical tests performed), resulted in the 
promulgation of a large number of completely spurious claims of causal associa-
tion. Because the chances of detecting real signals were low and the opportunities 
for declaring false-positive associations legion, the inevitable consequence was that 
although many associations were claimed, very few of these were genuine and, nat-
urally, failures of replication were the order of the day (24,25).

There were two notable exceptions to this pattern. Common variants in two can-
didates (PPARG and KCNJ11) were, in a series of studies of ever-increasing size, 
shown to be robustly associated with T2D risk (26–28) (Figure 16.1). In each case, 
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the genes involved represented particularly compelling candidates (each encodes a 
protein, which in turn forms the target for one of the established classes of dia-
betes therapeutic agents, thiazolidinediones and sulphonylureas, respectively). The 
variants studied were—as nonsynonymous coding substitutions for which there was 
empirical evidence of a functional effect—a cut above the average in terms of their 
biological credentials. Both variants had only modest effect sizes (per-allele odds 
ratios of ~1.2), and it was only through aggregation of data from multiple data sets 
that the association signals became entirely convincing. Both variants have been 
independently detected in the GWA studies which have appeared more recently 
(29–35). There have also been two recent additions to the list of T2D susceptibility 
genes (WFS1 and TCF2), identifi ed through large-scale pathway-based approaches 
(36–38) (Figure 16.1).

Genetics of Type 2 Diabetes: The Present

Advances in high-throughput genotyping technologies, a better understanding 
of human sequence variation, and the availability of large-scale sample sets have 
culminated in the feasibility of GWA scans. Over the past 18 months, the fi eld of 
T2D genetics has seen tremendous progress with six large-scale GWA scans pub-
lished (29–35). This gene-agnostic approach to disease gene hunting has overcome 
the problem of selecting a target on the basis of assigned biological candidacy. 
Furthermore, by probing several hundreds of thousands of single nucleotide poly-
morphisms (SNPs) genome wide (defi ned by commercial genotyping platform 
content), these studies capture a large proportion of common variation, thereby 
addressing the issue of restricted marker selection. In addition, the fi eld is now 
much wiser in terms of declaring association, with stringent statistical thresholds 
observed, and with adherence to the gold standard of replication a strict prerequi-
site for proclaiming that an associated locus plays a role in disease susceptibility. 
Advances in statistical methods for handling, analyzing, and interpreting large-scale 
data have furthermore enabled researchers to tackle pragmatic problems such as 
those of population stratifi cation, the delineation of intervals most likely to harbor 
associated disease variants, and the accurate inference of association signals at vari-
ants that have not been directly assayed.

The era of GWA scans has already been extremely successful in identifying 
additional T2D susceptibility loci. In addition to confi rming the fi ve loci identifi ed 
through more targeted approaches (TCF7L2, PPARG, KCNJ11, TCF2, and WFS1), 
the T2D GWA scans published during 2007 detected another set of six independent, 
robustly replicating signals, bringing the total to eleven (including one locus that 
was subsequently shown to mediate its effect on T2D through obesity) (Figure 16.1). 
These studies were all carried out in individuals of European descent. The study 
designs, however, varied across scans, mainly in terms of genotyping platform, case 
and control ascertainment, sample size, and the approaches taken in the follow-up 
of novel signals.
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The fi rst scan to be published (33) made use of two commercially available plat-
forms, genotyping a moderately sized sample on the Illumina HumanHap300 and 
Infi nium Human1 arrays. T2D cases, from France, were preferentially selected to 
have a positive family history of T2D, early age at onset, and to be lean. By fol-
lowing up interesting signals in a larger independent sample, also from France, this 
scan confi rmed TCF7L2 and identifi ed four putative T2D susceptibility loci, of 
which two (SLC30A8, and HHEX/IDE) have since been widely replicated. Three 
further groups undertaking GWA scans for T2D recognized the power gains to be 
afforded by collaboration and combined efforts to detect additional disease vari-
ants (29–32). Together, these studies (comprising the three GWA scans and large-
scale follow-up sample sets) confi rmed known associations at TCF7L2, PPARG, 
KCNJ11, SLC30A8, and HHEX/IDE and identifi ed four novel loci (in and around 
the CDKAL1, CDKN2A/2B, FTO, and IGF2BP2 genes). The Diabetes Genetics 
Initiative (DGI) scan used the Affymetrix 500k chip to genotype T2D cases (par-
tially enriched for family history) and controls from Finland and Sweden, and 
reviewed interesting fi ndings in large-scale samples of European descent (29). The 
Wellcome Trust Case Control Consortium scan is the largest scan to be carried out 
to date, genotyping 2,000 T2D cases (enriched for family history and early onset), 
and 3,000 controls, all from the United Kingdom, on the 500k Affymetrix plat-
form (31). The large-scale replication set samples for this study also came from the 
United Kingdom (32). The Finland-United States Investigation of NIDDM genetics 
(FUSION) scan employed the Illumina HumanHap300 to genotype T2D cases (par-
tially enriched for family history) and controls, and followed up interesting signals 
in an independent set of individuals, all from Finland (30). A further T2D GWA 
scan focused on T2D cases and controls from Iceland, genotyped on the Illumina 
HumanHap300 platform, with signals of interest pursued in independent samples 
from Europe, Hong Kong, and West Africa (35). This study provided independent 
identifi cation of the CDKAL1 signal and confi rmed several of the previously identi-
fi ed T2D loci. Finally, a smaller-scale scan carried out in individuals of European 
descent used the HumanHap300 platform, a replication set from France to follow 
up promising signals, and confi rmed TCF7L2 as a T2D risk locus, but lacked the 
power to detect further novel signals (32).

These discoveries have generated new insights into established and putative new 
etiological pathways in T2D. Examination of variants in the HHEX/IDE, SLC30A8, 
and CDKAL1 susceptibility regions demonstrated associations with reduced pan-
creatic beta-cell function (35,39). IGF2BP2 codes for insulin-like growth factor 2 
binding protein 2, and, among other things, regulates translation of IGF2 (which 
has known effects on both insulin secretion and action). The FTO locus is now well 
established as the fi rst robustly replicating obesity risk variant (40). Finally, the 
CDKAL1 and CDKN2A and CDKN2B genes are involved in cell-cycle regulation: 
fi nding that these variants infl uence T2D risk through an effect on beta-cell prolifer-
ation and regeneration, if confi rmed, will help to address longstanding controversies 
regarding the contribution of reduced beta-cell mass to the pathogenesis of T2D.
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Importantly, these newly identifi ed signals are most likely to represent proxies of 
the truly causal variants. Extensive fi ne-mapping and resequencing experiments will 
be necessary to pinpoint the most probable locations of the variants that are directly 
causal for disease; extensive functional and physiological studies will be required 
to elucidate the exact role of these risk loci in T2D etiopathogenesis. The success 
of GWA scans has provided us with additional insights into the genetic architecture 
of common disease in general. Although rarer variants are also likely to contribute 
to disease risk (see Section Genetics of Type 2 Diabetes: The Future?), the variants 
identifi ed so far are common (mainly owing to the SNP content of available arrays) 
and have modest effect sizes. In fact, the allelic odds ratios of previously established 
T2D susceptibility genes (such as PPARG) are so modest that single GWA scans 
failed to detect them on the basis of statistical genome-wide signifi cance. Clearly, 
further increases in statistical power are necessary if we are to achieve more com-
prehensive detection of T2D-susceptibility loci. The combination of genome-wide 
scans in a meta-analysis framework is one way of achieving this.

Taking this natural next step, the DGI, FUSION, and WTCCC groups undertook 
a meta-analysis of the three respective scans, under the auspices of the Diabetes 
Genetics Replication and Meta-Analysis (DIAGRAM) Consortium (41). The 
chances of identifying additional T2D risk loci were further enhanced by follow-
ing imputation approaches (42) to infer genotypes at untyped variants across the 
HapMap. A total of ~2.2 million SNPs passing stringent genotype quality control 
were combined across 10,128 samples, and promising novel signals were followed 
up in large-scale replication samples, all of European descent. Six novel T2D risk 
loci were confi rmed (in and around the JAZF1, CDC123/CAMK1D, TSPAN8/LGR5, 
THADA, ADAMTS9, and NOTCH2 genes) (Figure 16.1). These fi ndings highlight 
the value of increased GWA sample size, imputation approaches, and replication 
typing in several tens of thousands of samples. They also defi ne novel pathways 
involved in glucose homeostasis and diabetes pathogenesis. The effect sizes at all 
six new T2D loci were modest or small (with allelic odds ratio estimates as low as 
1.09), indicating that efforts on an even larger scale will be required to identify addi-
tional common risk variants, which are likely to be of smaller or equal effect size. 
As with the previously established T2D susceptibility loci, these discoveries repre-
sent only a fi rst, but crucial, step in gaining a better understanding of T2D etiology.

Genetics of Type 2 Diabetes: The Future?

Despite these successes in identifying variants infl uencing diabetes susceptibility 
and improving our understanding of the pathogenesis of T2D, it is evident that these 
loci explain only a small proportion of the variance in individual predisposition.

There are several ways of arriving at such measures, but here we consider just 
two. In terms of familial aggregation, the combined sibling relative risk attrib-
utable to all the known common susceptibility variants for diabetes is ~1.07. This 
compares unfavorably with epidemiologic estimates of the total extent of familial 
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aggregation (~3 in Europeans) (43). If we look instead at measures of discriminative 
accuracy (such as those derived from receiver operating characteristic curves (44)), 
the  picture is similar. Although it is possible to defi ne small numbers of individuals 
who, by dint of inheriting very few or very many of the known susceptibility vari-
ants, have widely divergent risks of diabetes, most individuals will fall in the middle 
of the distribution of risk-allele counts, and depart only modestly from “average” 
risk (44). As a result, the discriminative accuracy (the area under the receiver oper-
ating characteristic curve) achievable with the known variants comes to only ~60%, 
a value that suffers in comparison with that achievable (~80%) using a group of 
“ traditional” risk factors (e.g., age, BMI, ethnicity). The extent to which genetic and 
traditional risk factors provide independent, orthogonal information on individual 
predisposition is, as yet, unclear; it seems likely, however, that there will be consid-
erable overlap.

Although these fi ndings certainly suggest that the opportunities for individual 
risk-prediction are, at present, rather limited, they raise a very interesting question. 
If the known common variants are NOT responsible for the familial aggregation 
and heritability of T2D observed in epidemiologic studies, what is?

Inevitably, other common SNP variants will be found and will boost the overall 
variance explained; however, they are likely to have only modest effects if they have 
not been found by now. Similarly, efforts to fi ne-map the association signals (which 
will in some cases reveal untyped variants with substantially larger effects) and to 
understand nonadditive interactions may help to bridge this “heritability” gap, as 
will efforts to examine other types of variants (notably structural variants such as 
CNVs) that are poorly tagged on existing GWA platforms, and to understand the 
role of epigenetic modifi cations.

It now seems likely that the best boost to predictive power may well come from 
efforts to determine the extent to which T2D predisposition is infl uenced by inter-
mediate penetrance variants (45,46). It is clear from T2D linkage studies that such 
variants cannot be common as well as penetrant (as otherwise we would have 
detected them), but low-frequency, intermediate-penetrance variants will typically 
have escaped attention by the approaches that have dominated gene discovery so 
far, neither penetrant enough to be detected using classical monogenic linkage 
approaches, nor common enough to be captured by GWA studies. Higher pene-
trance means tighter genotype–phenotype correlations and much greater predictive 
power. For example, a variant with a minor allele frequency of 1% and genotype rel-
ative risk of 3 has a greater locus-specifi c sibling relative risk than the known vari-
ants in TCF7L2. Only ~30 such loci distributed across the genome would suffi ce to 
explain the observed sibling relative risk for diabetes, and to match traditional risk 
factors on tests of discriminative accuracy. The advent of new high-throughput rese-
quencing techniques provides the fi rst opportunity for researchers to seek out such 
variants in a systematic way. The degree to which these efforts succeed will have an 
important bearing on the potential for individual prediction as a tool for improved 
management of multifactorial T2D.
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Of course, prediction of disease at the level of the individual is not the only way 
in which present and future genetic discoveries can contribute to improved clinical 
management and prevention of diabetes. The biology revealed by these discoveries 
offers new opportunities for development of novel therapeutic and even preventa-
tive approaches. Perhaps the best prospects for the latter to date follow from the 
illustration, through genetics, that variants in the SLC30A8 gene infl uence diabe-
tes susceptibility (33). SLC30A8 encodes a zinc transporter central to the normal 
function of insulin-containing secretory granules in the pancreatic beta cell. This 
observation has rekindled interest in possible relationships between dietary zinc 
exposure and diabetes risk. If future studies were to prove that zinc exposure rep-
resents a modifi able risk factor for T2D, appropriate public health measures could 
be contemplated.

In addition, although the specifi city and sensitivity of the predisposing genetic 
variants may be insuffi cient to merit their use for individual prediction, this does not 
preclude their potential to identify (perhaps in combination with classical, nonge-
netic risk factors) groups of individuals at particularly high risk of developing T2D. 
Such “high-risk” groups are particularly attractive recruits to intervention trials, 
because the high baseline rate of disease progression should enhance power, reduce 
costs, and provide more effi cient resolution of important public health questions. In 
all of these ways, genetic discoveries can provide the keys to unlock future public 
health advances in the management of diabetes.
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Abstract

Osteoporosis is—together with osteoarthritis—the most common locomotor dis-
ease, and its clinical sequela, including fractures, cause substantial disease burden 
and costs. It has strong genetic infl uences, and identifi cation of the underlying DNA 
variants can help in understanding the disease process and might benefi t develop-
ment of interventions and diagnostics. Yet, its complex genetic architecture, that 
is, with larger effects for rare risk alleles and small effects of more common risk 
alleles, has just begun to be revealed but leave the majority of risk alleles still 
unidentifi ed. Of the different approaches used, genetic association analysis followed 
by replication and prospective, multicentred meta-analysis has proven successful to 
identify genetic markers for osteoporosis. To accomplish this, the GENOMOS and 
GEFOS consortia have been established, using large collections of DNA samples 
from subjects with osteoporosis phenotypes that use standardized methodology and 
defi nitions. These collaborative consortia have identifi ed—and refuted—associ-
ations of well-known candidate genes, and also play an important role in valida-
tion of risk alleles from genome-wide association studies (GWAS) for osteoporosis. 
Together with studies on rare variants, the GWA approach, in combination with 
the GENOMOS/GEFOS consortia, will help in clarifying the genetic architecture 
of complex bone traits such as bone mineral density (BMD), and—eventually—in 
understanding the genetics of fracture risk, the clinically more relevant but biologi-
cally more challenging endpoint in osteoporosis. Such genetic insights will be useful 
in understanding biology and are likely to also fi nd applications in clinical practice.

Osteoporosis Has Genetic Infl uences

Osteoporosis is defi ned by decreased BMD and degenerative microarchitectural 
changes of bone tissue, and consequently an increased fracture risk. In the absence 
of molecular insights into the cause of the disease, defi nitions remain vague and 
descriptive. The main emphasis in this defi nition is on aspects of bone while the 
clinically relevant endpoint in osteoporosis, that is, fracture risk, is only in part 
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determined by bone characteristics. Also, other anthropometric and physiological 
parameters contribute to the risk of suffering fractures, such as falling risk (deter-
mining trauma, which involves cognitive function and muscle control) and obesity 
(that can dampen the impact of a fall) (see Figure 17.1). Thus, the genetic analysis 
of osteoporosis will include the genetics of bone characteristics, such as BMD, but 
also needs to address the genetics of cognition, muscle strength, and so on and other 
factors related to risk of falling.

Many aspects of osteoporosis have been found to have strong genetic infl uences 
(Table 17.1). This can be derived, for example, from genetic epidemiologic analyses, 
which showed that, in women, a maternal family history of fracture is positively 
related to fracture risk (1). Most evidence, however, has come from twin studies 
on BMD (2–6). For BMD the heritability has been estimated to be high: 50–80% 
(2–5). Thus, although twin studies can overestimate the heritability, a considerable 
part of the variance in BMD values might be explained by genetic factors, while the 
remaining part could be due to environmental factors and/or to gene–environment 
interactions. This also implicates that there are “bone density” genes, variants of 
which will result in BMD levels that are different between individuals. These dif-
ferences can become apparent in different ways, for example, as peak BMD or as 
differences in the rates of bone loss at advanced age. While this notion has resulted 
in much attention being paid to the genetics of BMD in the fi eld of osteoporosis, it is 
likely that this attention is also due simply to the widespread availability of devices 
to measure BMD. This does not necessarily imply that BMD is the most important 
biological parameter of bone strength to consider or the most important genetic fac-
tor in osteoporosis. At the same time, it is important to realize that (low) BMD is 
but one of many risk factors for osteoporotic fracture, the clinically most relevant 
endpoint of the disease.

Figure 17.1 Schematic depiction of the genetic architecture of osteoporosis as a complex 
trait.
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Heritability estimates of fracture risk have been—understandably—much more 
limited due to the scarcity of good studies allowing precise estimates. Andrew et al. 
(5) studied 6,570 white healthy UK female volunteer twins between 18 and 80 years 
of age, and identifi ed and validated 220 nontraumatic wrist fracture cases. They 
estimated a heritability of 54% for the genetic contribution to liability of wrist frac-
ture in these women. Interestingly, while BMD was also highly heritable, the statis-
tical models showed very little overlap of shared genes between the two traits in this 
study. Michaelsson et al. (6) studied 33,432 Swedish twins (including 6,021 twins 
with any fracture, 3,599 with an osteoporotic fracture, and 1,055 with a hip fracture 
after the age of 50 years) and concluded that heritability of hip fracture overall was 
48% but was 68% in twins younger than 69 years, and decreased to 3% in elderly 
twins 79 years and older. Indeed, another Finnish study of elderly twins showed 
very little heritability for risk of fracture (7).

Altogether, this suggests that fracture risk is genetically determined, but that at 
older age other, perhaps environmental, factors become more important in explaining 
variance in fracture risk, and may be in modifying the effect of genetic predisposition. 
Gene–environment interactions one can think of, in this respect, include diet, exercise, 
and exposure to sunlight (for vitamin D metabolism). While genetic predisposition 
will be constant during life, environmental factors tend to change during the different 
periods of life resulting in different “expression levels” of the genetic susceptibility. 
The complex aggregate phenotype of aging is associated with a general functional 
decline resulting in, for example, less exercise, less time spent outdoors, changes in 
diet, and so on. This gene–environment interaction can result in diminished expres-
sion of these genotype factors in the fi nal phenotype (“the penetrance”) for particular 
genetic susceptibilities or, alternatively, their being revealed only later on in life after a 
period during which they go unnoticed due to suffi cient exposure to one or more envi-
ronmental factors. Given the Human Genome Project and its sequela, most attention 
in the analysis of gene–environment interactions has gone to the genes (also referred 
to as the “genocentric” approach). The idea behind this is that once we know which 

Table 17.1 Heritability estimates of osteoporosis-related phenotypes

Phenotype Heritability (h2)

Bone mineral density 50–80%

Bone turnover/biochemical markers 40–70%

Bone geometry 70–85%

Quantitative ultrasound parameters 80%

Height 80–90%

Age-at-menopause 60%

Body mass index 60–70%

Hip fracture risk 3–68%

Wrist fracture risk 54%
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gene variants are involved, it will be more straightforward to analyze the contribution 
of environmental factors and their interplay with genetic factors.

Risk Gene Identifi cation in Complex Genetic Diseases

Most common diseases such as diabetes, osteoporosis, and cardiovascular diseases, 
as well as many disease-related so-called intermediate traits or endophenotypes 
such as cholesterol levels, glucose levels, and bone mineral density, have strong 
genetic infl uences, meaning that genetic variants that contribute to this heritability 
will exist. Yet, the identifi cation of genetic factors underlying these disorders and 
traits and clarifying their genetic architecture has been very problematic, given the 
complex nature of the phenotypes and the limited molecular tools available at the 
time to identify the underlying genetic factors. Complex diseases are typically infl u-
enced by many genetic variants, of which common ones have modest effect sizes 
and the rare ones more substantial, while the variability in expression of the disease 
phenotype is also infl uenced by environmental factors in interaction with the genetic 
factors. Figure 17.2 shows the molecular genetic approaches most commonly used 
in the past two decades to identify genetic susceptibility factors for such complex 
diseases: the top-down genome-wide approaches and the bottom-up candidate gene 
approaches. It is safe to say now that linkage approaches in related subjects have 

Figure 17.2 Some characteristics of the most commonly used molecular approaches to 
identify susceptibility alleles for complex disorders. “Resolution” indicates the size of the 
chromosomal area, which is identifi ed as being linked/associated to the phenotype of inter-
est, and which can vary from one base pair to many millions of base pairs. “Effectiveness” 
indicates the success rate of the method to identify risk alleles for complex genetic diseases 
and phenotypes, either common or rare, as derived from publications.
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been unsuccessful in identifying common genetic factors in complex disease. This 
is most likely due to the low power of this approach to detect the subtle effects and 
to the low “genetic resolution,” meaning that very large chromosomal areas were 
potentially identifi ed but with many possible candidate genes in each. On the other 
hand, the candidate gene approach in association studies has frequently suffered 
from irreproducible results, mostly due to limited samples size and lack of standard-
ization in phenotyping and genotyping. In the fi eld of osteoporosis genetics, the 
GENOMOS consortium and, more recently, the GEFOS consortium, were started to 
address the problems in the candidate gene association analysis in particular, and in 
the genome-wide association studies (GWAS).

Novel approaches based on large-scale and high-throughput sequencing are 
now emerging, which will generate a complete catalog of all variants present in 
a given sequence, rare and common, rather than having to rely on markers and 
patterns of linkage disequilibrium. These sequencing techniques are now being 
used for deep sequence analysis of selected areas (e.g., hits from GWAS), but are 
not yet able to provide the complete human genome sequences in large collections 
of samples. Yet hopes are high, and the expectation is that within a few years this 
will be possible at acceptable costs and on a large scale. This will result in a sec-
ond surge of genetic association studies generating comprehensive collections of 
sequence variations, common and (very) rare, including de novo events in individ-
uals. Nevertheless, also for these studies, the large consortia such as GENOMOS/
GEFOS will play a crucial role, given the requirements for large samples sizes 
to detect the effects and the infrastructure for proper association studies with 
standardization and replication.

We will fi rst briefl y discuss the classical association study design, followed by a 
description of the GENOMOS consortium, the recent GWAS on osteoporosis, and 
the GEFOS project.

Association Analysis of Candidate Gene Polymorphisms
The bottom-up approach to identify genetic risk factors for osteoporosis builds upon 
biology, that is, the known involvement of a particular gene in aspects of osteo-
porosis, for example, bone metabolism. This gene is then referred to as a “candi-
date gene.” The candidacy of such a gene can be established by several lines of 
evidence:

Cell biological and molecular biological experiments, indicating, for example, 1. 
bone cell-specifi c expression of the gene.
Animal models in which a gene has been mutated (e.g2. ., natural mouse 
mutants), over-expressed (transgenic mice), or deleted (knock-out mice), and 
which result in a bone-phenotype.
Naturally occurring mutations of the human gene, resulting in monogenic 3. 
Mendelian diseases with a bone phenotype.
More recently, any “hit” from a GWA study.4. 
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Subsequently, such genes are scrutinized for sequence variants, which lead to 
(subtle) differences in level and/or function of the encoded protein. We distinguish 
mutations, rare variants, and polymorphisms purely on the basis of frequency: poly-
morphisms occur in at least 1% of the population, rare variants in less than 1% 
of the general population, while mutations occur in particular pedigrees and are 
usually linked to a monogenetic disease. The DNA sequence variant that is cur-
rently mostly being studied is the Single Nucleotide Polymorphism or SNP, which is 
the most common type of variation in the human genome. Of course, several other 
types of sequence variation need consideration, such as variable number of tan-
dem repeats (VNTR) and copy number variations (CNV). Yet, especially the CNVs 
require specialized analytical tools and reference data to study in large populations, 
which are now being generated. Therefore, assessing their role in complex disease 
in a comprehensive way will have to wait for further studies, whereas for SNPs, 
most technology is now in place, resulting in many studies on SNPs in relation to 
complex diseases.

Several databases are now available, which contain information on DNA sequence 
variation, especially on the common variants in any gene of the Human Genome 
(e.g., dbSNP from, NCBI, Celera, HapMap, and several more specialized databases 
such as from the program for genomic analysis (PGA)). Common DNA sequence 
variations were usually regarded as just polymorphic (so-called “anonymous” poly-
morphisms) until proven otherwise, but this view is changing. Many of them have 
now been shown to have consequences for the level and/or activity of the protein 
encoded, and are termed functional polymorphisms. These can include, for exam-
ple, sequence variations leading to alterations in the amino acid composition of the 
protein, changes in the 5′ promoter region leading to differences in mRNA expres-
sion, and/or polymorphisms in the 3′ region leading to differences in mRNA degra-
dation. In particular, the GWAS (see below) have identifi ed polymorphisms that can 
be very far away from an actual gene and most likely are involved in fi ne regulation 
of the gene of interest. As a result of this large amount of evidence that is being 
accumulated for DNA polymorphisms, we are now regarding all of them as poten-
tially functional, until proven otherwise.

Polymorphisms of interest are usually fi rst tested in population-based and/or 
case-control “association studies,” to evaluate their contribution to the phenotype of 
interest at the population level. However, association studies do not establish cause 
and effect; they just show correlation or cooccurrence of one with the other. Cause 
and effect have to be established in truly functional cellular and molecular biolog-
ical experiments involving, for example, transfection of cell lines with allelic con-
structs and testing activities of the different alleles. This can occur at different levels 
of organization and depends on the type of protein analyzed, for example, enzymes 
versus matrix molecules versus transcription factors. Acknowledging these com-
plexities, it will remain a challenge, once an association has been observed, to iden-
tify the correct test of functionality, and once functionality has been established, to 
identify the correct endpoint in an epidemiologic study.
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Functional polymorphisms lead to meaningful biological differences in function 
of the encoded “osteoporosis” protein, thus making the interpretation of associa-
tion analyses using these variants quite straightforward. For example, for functional 
polymorphisms, it is expected that the same allele will be associated with the same 
phenotype in different populations. This can even be extended to similar associa-
tions being present in different ethnic groups, although allele frequencies can of 
course differ by ethnicity.

Out of the lines of evidence mentioned above, numerous candidate genes for risk 
of osteoporosis have emerged. These include “classical” candidate genes for osteo-
porosis such as collagen type I, the vitamin D receptor, and the estrogen receptors 
alpha and beta. Yet, recently identifi ed “bone” genes, such as LRP5, also are can-
didate genes because their involvement in bone biology has now been established. 
These studies on monogenetic pedigrees in which an LRP5 mutation was segregat-
ing (such as in the High Bone Mass phenotype pedigrees or in osteoporosis pseudo-
glioma pedigrees) have identifi ed LRP5 as a candidate gene for osteoporosis, while 
work from the GENOMOS consortium as well as the recent GWAS have also identi-
fi ed LRP5 as a risk gene for osteoporosis (see below).

Genetic Effects: Large versus Small and Common 
versus Rare

From the analysis of the successfully identifi ed genetic risk factors for complex 
disorders, it is now clear that for complex disorders in general, the risks associ-
ated with each individual common genetic variant are generally modest in terms of 
effect size. For polymorphisms involved in several complex disorders a trend can 
be discerned whereby the more common variants are associated with smaller risks 
(such as PPARG Pro12Ala in type 2 diabetes) than the more rare variants (such as 
Factor V Leiden and thrombosis).

While the risk of disease is indeed small for such individual genetic risk variants, 
because there are millions of these common variants in the human genome, the 
combined effect—or genetic load—of these risk variants can be substantial, both 
for the individual as well as at the population level. One can speculate that evolution 
has allowed these common variants to fl oat around in the human population because 
they do not compromise reproductive success (or might even enhance it), and only 
start to affect fi tness of the individual carrying such variants late in life, far after the 
reproductive period. On the other end of the spectrum, more rare variants might be 
selected out in evolution because they do affect reproductive success and/or will be 
private to individuals as newly arisen mutations.

Overall, the current thought about underlying genetic risk variants of complex 
diseases such as osteoporosis is that there may be hundreds of common variants 
conferring risk, but any given individual will also carry several genetic variants that 
are (very) rare in the population and might have bigger associated genetic risks. As 
discussed below, we now are successfully identifying these more common effects 
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with the smaller effect sizes. We will have to wait until cost-effective total human 
genome sequencing techniques become available to identify in individuals the col-
lections of the much rarer sequence variants that perhaps confer larger effects.

These small effect sizes of common variants also explain why it has been diffi cult 
to identify such risks convincingly, in spite of these genetic variants being so com-
mon. Common in this respect means allele frequencies of a genetic risk factor of 
5% to 50%, and modest effect sizes means odds ratios of 1.1–2.0. Statistical power 
calculations show that indeed very large study populations of 1,000–10,000 subjects 
of case-control collections and/or population-based cohorts need to be studied in 
order to demonstrate convincingly such small effects by association analysis. Only 
recently have such large study populations become available and consortia been 
assembled to address these challenges in a robust manner using meta-analysis to 
estimate true effect sizes of individual variants.

Meta-Analysis

Since more and more association analyses are performed from an ever-increasing 
list of candidate gene polymorphisms, it is necessary to put all these data in per-
spective by performing meta-analyses of the individual association analyses. Meta-
analysis can quantify the results of various studies on the same topic, and estimate 
and explain their diversity. Recent evidence indicates that a systematic meta-analysis 
approach can estimate population-wide effects of genetic risk factors for human dis-
ease (8), and that large studies are more conservative in these estimates and should 
preferably be used (9). An analysis of 301 studies on genetic associations (on many 
different diseases) concluded that there are many common variants in the human 
genome with modest, but real, effects on common disease risk, and that studies 
using large samples will be able to convincingly identify such variants (10). This 
notion in the fi eld of complex genetics has led to the creation of consortia of inves-
tigators working on the same disease, and then in particular on the genetics of com-
plex diseases and traits. While these consortia fi rst operated in isolation, they are 
now collaborating through the HuGENet™ (http://www.cdc.gov/genomics/hugenet) 
instigated network of networks (11,12). Among such consortia, GENOMOS (http://
www.genomos.eu), as the network of investigators working on genetics of osteopo-
rosis, was one of the fi rst (starting in 2003) and was involved in the fi rst Network of 
Networks meetings.

Meta-analysis initially had some drawbacks because it was mostly based on com-
bining sets of existing data resulting in, at times, substantial bias in the outcome. 
This is mainly because there is publication bias in the literature (positive studies 
reporting exaggerated effects) and there was virtually no standardization among 
investigators in methods of genotyping or phenotyping and data analysis. Yet, with 
the advent of growing consortia of investigators working on the subtle effects in 
complex genetics, the concept of meta-analysis has developed into one of prospec-
tive meta-analysis. Here, the investigators collectively perform genotyping under 
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standardized conditions and agree on the outcomes, well before the outcome of indi-
vidual studies is known. This approach will therefore include positive as well as 
negative studies on the polymorphism of interest. The GENOMOS consortium was 
one of the fi rst networks to use such a prospective meta-analytic approach to start a 
systematic test of candidate gene polymorphisms in the fi eld of osteoporosis.

The GENOMOS Consortium

The EU-sponsored GENOMOS (Genetic Markers for Osteoporosis) consortium 
attempts to perform such studies using standardized methods of genotyping and 
phenotyping. The GENOMOS project involves the large-scale study of several can-
didate gene polymorphisms in relation to osteoporosis-related outcomes in subjects 
drawn from several European centers. Its main outcomes are fractures and femoral 
neck and lumbar spine BMD. An overview of the participating centers and groups 
at the start of the project is given in Figure 17.3. Design details are further described 

Figure 17.3 A geographical overview of the initial participating centers in the GENOMOS 
consortium at the start in 2003. These include the centers with study populations used for 
genotyping and association analysis (in black dots), and a center specializing in fi nding 
causative genes in monogenetic bone disorders (Antwerp, Belgium), and the statistical cen-
ter for meta-analysis (Ioaninina, Greece).
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in the fi rst meta-analysis of individual-level data on the ESR1 gene (13) and can be 
found on the website (http://www.genomos.eu).

Apart from being a very large study of genetics of osteoporosis, an important 
aspect of this study is its prospective multicenter design. This means that the geno-
type data are generated for all centers fi rst, and only AFTER that is completed is 
the association analysis done, thereby rendering it immune to possible publication 
bias. The targets of the study were initially polymorphisms for which some a priori 
evidence for involvement in osteoporosis was present already; it was not designed to 
be a risk gene-discovery tool and currently therefore could not, for example, assess 
all genetic diversity across a candidate gene. While fracture has been debated as 
an endpoint in genetics of osteoporosis studies, this was chosen in the GENOMOS 
study because it is clinically the most relevant endpoint. Statistical power of the 
GENOMOS study to detect genetic effects on fracture risk is high, with >5,000 
fractures, while this number is still growing due to popularity of the symposium as 
well as the incidence of fracture with the passage of time in several of the longitu-
dinal cohorts.

An overview of all the meta-analyses published by the GENOMOS consortium 
so far is presented in Table 17.2. The very fi rst GENOMOS meta-analysis of three 
polymorphisms in the ESR1 gene (intron 1 polymorphisms XbaI and PvuII and 
the promoter (TA) variable number of tandem repeats microsatellite) and haplo-
types thereof, among 18,917 individuals in eight European centers, demonstrated 
no effects on BMD, but a modest effect on fracture risk (19–35% risk reduction for 
XbaI homozygotes), independent of BMD (13). Subsequent usual suspects in the 
genetics of osteoporosis scrutinized by GENOMOS were the Sp1 COLIA1 gene 
polymorphism (14), fi ve polymorphisms in the vitamin D receptor gene including 
the Cdx2 promoter variant, the FokI variant, and the BsmI, ApaI, and the TaqI vari-
ants (15), fi ve polymorphisms in the TGFbeta gene (16), and the exon 9 and exon 13 
variants in LRP5 and the exon 9 variant in LRP6 (17).

Overall, the major results of the GENOMOS study included the identifi cation of 
the LRP5 variants as true osteoporosis risk variants, but with modest effects size. 
The LRP5 effects were very consistent across different populations, rendering very 
low p-values for the overall effect (although it was small), probably indicating that 
this is a universal genetic effect for osteoporosis, which can be expected to appear in 
nearly every population studied. In addition, we identifi ed the ESR1 SNPs as frac-
ture risk factors and not so much as BMD associated variants, and also showed that 
the Sp1 COLIA1 variant was associated with a modest increase in vertebral fracture 
risk, as we did for the Cdx2 variant in the VDR gene. These results show that the 
candidate gene approach is fruitful in identifi cation of osteoporosis risk alleles, but 
only when applied as rigorously as in GENOMOS. In addition, it showed that the 
effect size of the common risk alleles in osteoporosis is modest. This might refl ect 
our poor choice of candidate genes (not being able to select the most important risk 
genes for osteoporosis), but also illustrates the general allelic architecture of BMD. 
In view of the recent GWAS results, the latter scenario has proven to be correct.



Table 17.2 Large-scale evidence for candidate gene associations from the GENOMOS study

ASSOCIATIONS WITH OP PHENOTYPES

BMD (SD) Fracture (Odds Ratio)

Gene (n = 6) SNPs (n = 17) Sample n Femoral Neck Lumbar Spine Vertebral Non-Vertebral  Publication

ESR1 3 18,917 — — 1.2–1.3 1.1–1.2 Ioannidis et al., JAMA 2004 (13)

COLIA1 1 20,786 0.15 0.15 1.1 (Sp1) — Ralston et al., PLoS Med 2006 (14)

VDR 5 26,242 — — 1.1 (Cdx2) — Uitterlinden et al., Ann Int Med 2006 (15)

TGFbeta 5 28,924 — — — — Langdahl et al , Bone 2008 (16)

LRP5 2 37,760 0.15 0.15 1.12–1.26 1.06–1.14 Van Meurs et al., JAMA 2008 (17)

LRP6 1 37,760 — — — — Ibid. (17)
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Importantly, we also excluded 5 TGFbeta variants to contribute to osteoporosis 
and most likely also other variants in the coding region of this prominent candi-
date gene for osteoporosis. This is equally important to the fi eld of osteoporosis 
genetics as is fi nding risk alleles, as it signals to the scientifi c research commu-
nity not to spend scarce resources studying TGFbeta variants further in relation to 
osteoporosis.

In the course of the GENOMOS project we have also evaluated several differ-
ent approaches to fi nd new potential genetic markers for osteoporosis. Of these, 
the work package on analyzing monogenetic families has been very successful in 
identifying new candidate genes, including LRP5, which was also identifi ed in our 
consortium as a prominent risk gene for osteoporosis. Other approaches, such as 
linkage analysis in families or TDT testing in sib pairs selected on (mild) osteopo-
rosis, were found to be not successful. In addition, we tested some techniques for 
genetic association studies, which were found to be helpful (haplotyping in popu-
lation data using estimation algorithms) or not so helpful (LD mapping in pooled 
samples). These are all equally relevant messages to the scientifi c community on 
how to progress in the most effi cient way in complex osteoporosis genetics.

While there were attempts in the original project to study gene–environment 
interactions relating to use of HRT medication in relation to ESR1 genotypes, and 
dietary calcium intake in relation to VDR genotype, these were less successful. No 
major effect of HRT use was seen for the effect of the ESR1 genotype on BMD 
or fracture risk, but the study was hampered by lack of standardized methods to 
assess HRT use and quality of the data sets. No major effect of dietary Ca intake 
was seen for the effect of the VDR genotype on BMD or fracture risk, but again, 
the study was hampered by lack of standardized methods and quality of the data 
sets.

In conclusion we can now say that

 (a) GENOMOS has been established as the leading consortium of research groups 
working on the genetics of osteoporosis.

 (b) GENOMOS has identifi ed and refuted genetic risk factors for osteoporosis.
 (c) The effects sizes of the identifi ed genetic risk factors for osteoporosis is mod-

est at best, with effects of 0.1 SD in BMD and 20–30% increases in risk for 
osteoporotic fracture.

 (d) The results of GENOMOS activities have not yet led to clinically useful genetic 
markers and/or commercially interesting activities with any economic impact. 
This is due to the candidate gene approach taken so far, and the small effect 
sizes of individual genetic markers.

Although successful, drawbacks of the GENOMOS consortium include the fact 
that only well-known candidate genes were analyzed so far, and so we could not 
expect to generate much new biology, with the exception of studies on monogenetic 
diseases. In addition, GENOMOS only studied Caucasians, so the generalizability 



Osteoporosis 349

of the fi ndings is unknown for other ethnicities. The endpoints were limited to the 
classical osteoporosis endpoints BMD and fracture risk. Both of these are cumber-
some to interpret in biological and clinical ways, and do not tell the complete story 
about osteoporosis. Finally, no risk modeling was performed to assess the contri-
bution of the genetic risk factors we identifi ed in GENOMOS in relation to well-
established osteoporosis risk factors such as age, gender, BMI, use of a walking aid, 
and so on.

To address these shortcomings of the GENOMOS project, a follow-up project 
was sponsored under the FP7 program of the European Commission: GEFOS, the 
son of GENOMOS, was born. The GEFOS project (Figure 17.4; http://www.gefos.
org) was started in March 2008, and uses the several GWAS on osteoporosis that 
are available or ongoing as its starting point. Under GEFOS, the sample size of the 
GENOMOS consortium has also increased further to ~100,000 samples, and is used 
to replicate hits coming from the GWAS. GEFOS will also include additional bone 
phenotypes (such as CT and ultrasound) to study as endpoints in the meta-analysis 
and/or GWAS, and will introduce risk modeling of the identifi ed genetic risk factors 
in relation to other osteoporosis risk factors.

Genome-Wide Association Studies

Due to technological developments, the association study design has regained pop-
ularity, but now on a genome-wide scale, with an unprecedented density of genetic 

Figure 17.4 A geographical overview of the participating centers in the GEFOS consor-
tium at the start in 2008. These include the centers with GWAS data in their study pop-
ulations (dark gray dots) and the GENOMOS centers (black dots), and centers that have 
expressed interest in joining the GEFOS/GENOMOS effort (light gray dots).
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markers: the GWAS (18). This renaissance has mostly been driven by the discovery 
of millions of SNPs throughout the human genome and the development of so-called 
microarray technology to type such SNPs accurately on a massive parallel scale.

Genome-wide association studies (see Figure 17.5) have had considerable suc-
cess in identifying common genetic susceptibility alleles (18). GWAS consist of 
 screening the genome of many hundreds to thousands of subjects in a case-control 
study or population-based cohort study, with >300,000 SNPs, followed by a simple 
association analysis between a phenotype and all the genetic markers. This identi-
fi es genetic markers associated to the phenotype of interest with a certain statistical 
signifi cance. Because of the multiplicity of testing with so many markers, thresholds 
have been considered to declare an association “genome-wide signifi cant” (gws). For 
example, when analyzing 500,000 markers, this threshold is 1.10–7 (0.05/500,000), 
but given more recent approaches to exploit the linkage relationships between the 
millions of SNPs in the HapMap database (by imputation), 5.10–8 is now a more 

Figure 17.5 A schematic overview of the process of performing a GWA study. Each of the 
DNA samples from, for example, a typical case-control collection for a disease consisting of 
5,000 DNA samples, are subjected to genome-wide SNP genotyping using any of two plat-
forms (Illumina and Affymetrix). These will generate ~0.5 million genotypes per DNA sample, 
which combine to 2.5 billion genotypes across the 5,000 samples, which are then analyzed 
for association to the disease by standard chi-square tests in programs such as PLINK. The 
output of such programs is usually depicted as so-called “Manhattan plots,” whereby each 
dot represents the p-value for association of one SNP (out of the 0.5 million). Selected SNPs 
are then identifi ed (“the low-hanging fruit”) to be subjected to replication efforts in additional 
DNA collections with the phenotype of interest. A meta-analysis on the combined evidence 
will establish consistency of the association, effect-size, and statistical signifi cance.
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widely used gws level in GWAS. Seeing gws associations is dependent on factors 
such as the effect size of the genetic variants on the phenotype and the size of the 
study sample. Usually, a typical GWAS consists of a discovery sample with GWA 
data and a replication sample with GWA data. From the discovery sample of GWAS, 
the “top-hits” (e.g., all genetic markers that reach a signifi cance of 1.10–4 or less) 
will be analyzed in the replication GWA data set(s) to see which markers replicate 
at nominal signifi cance level, and which will reach the gws level after combining 
the data sets in a meta-analysis. Top hits can also be further analyzed in subsequent 
replication cohorts that do not necessarily have GWA data, but can be genotyped for 
the particular genetic markers identifi ed. Such efforts now routinely include several 
thousands, if not tens of thousands, of individuals, and so the power is substantial to 
discover smaller and smaller effect sizes.

The current GWA genotyping platforms are optimized to discover common risk 
alleles rather than rare variants and thus, GWAS have their limitations in explaining 
all genetic variance of a disease or trait. For example, the explained genetic variance 
in type 2 diabetes mellitus by the recently discovered common variants in risk genes 
by GWAS is still limited to—at most—10% (18), and similar fi gures are observed for 
typical quantitative traits such as height (19–21). Yet, we must realize these are still 
early days in complex genetics, because we have only uncovered the “low-hanging 
fruit” in this fi rst round of GWAS. Below the gws loci, there are many less signifi -
cant signals with a smaller effects size, which will be identifi ed by further increasing 
the sample size of either GWAS cohorts or replication cohorts. The complex genet-
ics research community has now organized itself into a still-growing consortium of 
research groups who join GWAS data sets and are providing excellent forums for har-
monizing phenotype defi nitions, such as GENOMOS. GWAS of osteoporosis pheno-
types have only just been performed, and so progress in genetics of osteoporosis is 
lagging a bit behind in comparison to areas such as diabetes or traits such as height.

GWAS of Osteoporosis

The very fi rst attempt to identify BMD loci through GWAS is presented by inves-
tigators from the Framingham study using the 100K Affymetrix platform and a 
limited sample size of n = 1,141 men and women (22). This effort did not result in 
BMD loci that reached the so-called gws, and made it clear that larger samples sizes 
were to be used, as well as genotyping platforms with a higher genome coverage 
such as the Illumina 317K or 550K platforms. Recently, the fi rst three GWAS on 
BMD have been published, which identifi ed several loci contributing to BMD that 
reached gws. One study was coming from analysis of the TwinsUK cohort and the 
Rotterdam Study, both looking at Caucasian women from the United Kingdom and 
the Netherlands, respectively (23), and the other studies were from deCODE and 
based on Icelandic subjects (24,25) (see Table 17.3 for an overview of the three stud-
ies). These three studies represent the fi rst large-scale high-density GWAS efforts 
reporting BMD loci from a hypothesis-free approach. One locus was overlapping 
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between the efforts, that is, the OPG locus on chromosome 8, while the TwinsUK/
ERGO effort reported on an additional locus, that is, LRP5, and the deCODE 
GWAS reported eight additional loci, bringing the total now to ten BMD loci identi-
fi ed through GWAS. LRP5 was interesting because this gene and indeed this par-
ticular SNP (the exon 13 SNP) was reported just 1 month earlier by the GENOMOS 
consortium to be associated with very high confi dence to BMD in the study by van 
Meurs et al. (17). The explained variance of the genetic factors for BMD that was 
reached by these studies was low (1–4%). This indicates that, as with the GWAS 
results for height (19–21), BMD is a truly complex trait with many loci (hundreds?) 
of small effect. This also indicates that even larger sample sizes than the one used by 
the deCODE study (n = 15,375) are necessary to identify these additional common 
factors. Taken together, this puts the GEFOS effort in the spotlight, because this 
consortium was able to eventually accumulate >40,000 samples with GWAS data 
(Figure 17.4) and therefore was well powered to identify the second wave of BMD 
loci in combination with the expanded GENOMOS consortium to include >100,000 
replication samples. In addition, the range of subjects is now enlarged to include 
also younger subjects and subjects of different ethnic background such as Asians 
and African-Americans. The GWAS on osteoporosis in some of the GEFOS cohorts 
is still underway, and meta-analysis of combined data is planned soon to identify 
additional BMD loci beyond what the deCODE and TwinsUK/Rotterdam Study 
GWAS have identifi ed. Initially, the GWAS in osteoporosis will focus on BMD as 
a normally distributed quantitative trait, a risk parameter for osteoporosis. In addi-
tion, it will be possible, across the several GWAS, to identify risk alleles for fracture 

Table 17.3 Comparison of three GWAS on bone mineral density

 Twins UK/ ERGO NL deCODE/DK/AUS deCODE/DK/AUS

Author Richards B, Rivadeneira 
F, et al. (23)

Styrkarsdottir U, 
et al. (24)

Styrkarsdottir U, 
et al. (25)

Journal Lancet, April 29, 2008 NEJM, April 30, 2008 Nature Genetics, 
December 14, 2008

GWA discovery Twins UK (n = 1,586) deCODE (n = 5,861) deCODE (n = 6,865)

Platform Illumina 317K Illumina 317K Illumina 317K

Replication 
cohorts

Rotterdam Study NL 
(n = 4,877)
Chingford UK (n = 718)

Iceland (n = 4,165)
Danish (n = 2,269)
Australian (n = 1,491)

Iceland (n = 3,135)
Danish (n = 3,884)
Australian (n = 1,491)

Total n 8,557 13,786 15,375

gws hits: # BMD 
loci

2: LRP5, OPG 5: OPG, RANKL, 
ESR1, ZFBTB40, 
MHC

4: SOST, MARK3, SP7, 
RANK

Also fracture risk? 1 (LRP5) 3 (+3 post hoc) 1 (SOST)

Explained 
 variance BMD

~1% ~3% ~4% (including 
 previous SNPs)
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risk (all types of fracture, hip fracture, vertebral fracture, etc.) and other phenotypes 
in osteoporosis such as bone geometry parameters and CT and QUS parameters. 
Yet, as we noted in the introduction, bone strength is only one of the risk factors for 
osteoporotic fracture. Together with loci coming from GWAS on cognitive function, 
muscle mass, and obesity/fat distribution, the bone strength loci will help to explain 
the variance in fracture risk, that is to say, for the common risk alleles involved in 
osteoporosis.

Rare Variants
The current round of GWAS tend to focus on this low-hanging fruit, while we know 
that there are many more such common, especially less common, variants to be dis-
covered with less impressive p-values in the discovery phase, due to even smaller 
effect size and/or even smaller population frequency. Identifying such small effects 
is possible, but will require even larger sample sizes to detect them in a statistically 
robust and convincing way. All current GWAS focus on common variants with, 
say, >5% population frequency, but we have seen already that there are less com-
mon variants (0.5–5% population frequency) and even rare variants (<0.5% popula-
tion frequency) that will help to explain risk of disease or the variance of a trait of 
interest.

Examples highlighting the existence of such less common variants involved in 
complex traits were demonstrated for sequence variations in genes related to cho-
lesterol levels. Cohen et al. (26) tested whether rare DNA sequence variants collec-
tively contributed to variation in plasma levels of high-density lipoprotein cholesterol 
(HDL-C). They sequenced three candidate genes (ABCA1, APOA1, and LCAT) that 
caused Mendelian forms of low HDL-C levels in individuals from a population-
based study on cholesterol levels. Nonsynonymous sequence variants were signifi -
cantly more common (16% vs 2%) in individuals with low HDL-C (<fi fth percentile) 
than in those with high HDL-C (>95th percentile). Similar fi ndings were obtained 
in an independent population, and biochemical studies indicated that most sequence 
variants in the low HDL-C group were functionally important and had substantial 
effect sizes. Thus, rare alleles with major phenotypic effects contribute signifi cantly 
to low plasma HDL-C levels in the general population.

Similarly, such rare alleles of bone genes might contribute to variation in BMD 
and other bone parameters, and even fracture risk in the general population. 
Figure 17.6 highlights how such different genetic variants together constitute the 
genetic architecture of a trait like BMD in osteoporosis. At the extremes, with either 
very low or very high BMD, we have already identifi ed bone genes mutations that 
lead to these rare and severe phenotypes, and become apparent as Mendelian bone 
diseases such as osteogenesis imperfecta and the High Bone Mass phenotype. In the 
normal range of the BMD distribution, efforts such as testing of candidate genes in 
GENOMOS and GWAS are now identifying genetic variants that are common and 
have modest effect size. Soon, we will embark on deep-sequencing projects, which 
will identify less common genetic variants (<5%), and which might have modest 
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to substantial effect sizes. Again, these might include SNPs but also other types of 
genetic markers such as CNVs.

The future challenge, beyond the GWAS era, will therefore be to identify more rare 
variants through deep-sequencing approaches, for example, of the several loci/genes 
identifi ed through GWAS on BMD and related phenotypes. Combinations of such rare 
and the more common genetic variants in these particular genes can then be scruti-
nized for their diagnostic potential in large, well-phenotyped cohorts, also in relation 
to the more classical risk factors such as age, BMI, and previous fracture. Such panels 
of combinations of genetic risk factors are expected to explain more of the genetic risk 
for osteoporosis than just the common variants or just the (very) rare variants.
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Figure 17.6 A schematic overview of the genetic architecture of BMD, as one of the risk 
parameters in osteoporosis, resulting from recent gene identifi cation efforts. BMD is plot-
ted as a normally distributed phenotype in any random population; indicated are some of 
the genetic variants that have been described explaining extreme values of BMD, mainly in 
monogenetic diseases, and the BMD loci that have now been identifi ed through GENOMOS 
and two GWAS. Below, the category of analytical approaches is presented in relation to 
which genetic variants can be identifi ed with them.
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Preterm birth (PTB) is a perplexing clinical condition and major public health chal-
lenge. In 2006, 12.8% of all births in the United States were preterm, defi ned as 
occurring before 37 completed weeks of gestation (1). Preterm birth is the second 
leading cause of infant mortality and the leading cause of infant mortality among 
black infants in the United States, as well as the major contributor to worldwide 
infant mortality and morbidity (2). Children born preterm may suffer lifelong 
 morbidities including lung disease, vision and hearing defi cits, and other neurosen-
sory impairments (3), and PTB can predispose children to adult diseases such as 
hypertension and diabetes (4).

Despite the signifi cant public health burden of PTB, there are few effective strat-
egies to reliably predict or prevent PTB (5,6). The etiology of this common complex 
condition remains elusive. Efforts to identify environmental contributors suggest 
that smoking, stress, black race, nutritional defi cits, and infection contribute to, but 
do not explain, the majority of PTBs (7). Therefore, the discovery of predisposing 
genetic variants and relevant gene–environment interactions (see Figure 18.1) will 
likely be of great value in unraveling the mystery of PTB, by identifying women 
at risk and setting the stage for research and enhanced clinical and public health 
 prevention strategies.

Systematic Review of the Literature

To summarize current knowledge of gene–disease associations in PTB—and 
to  identify knowledge gaps—a team of researchers from the Preterm Birth 
International Collaborative (PREBIC), Human Genome Epidemiology Network 
(HuGENet), World Health Organization (WHO), Albert Einstein College of 
Medicine (AECOM), Massachusetts General Hospital (MGH), and March of Dimes 
(MOD) (see acknowledgments for complete list of participants) recently performed 
a systematic review of the literature on genetic associations with PTB (8), modeled 
after an approach developed at MGH (9,10). Using a comprehensive search strategy 
in PubMed and EMBASE, our team identifi ed almost 6,000 relevant abstracts and 
screened them by hand according to inclusion and exclusion criteria. To be included, 
articles had to (1) describe human maternal, newborn, or paternal DNA variants in 
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relation to preterm birth, (2) provide the case defi nition of preterm birth in gesta-
tional weeks at delivery, and (3) report the genotypes for cases and controls. Review 
articles,  family-based studies, case reports, case-only studies, and studies exclu-
sively of twins were excluded. Data were extracted for meta-analysis from the 48 
articles that met the inclusion and exclusion criteria.

We compared the 48 articles identifi ed by our search strategy with a search of the 
HuGE published literature (11) using the HuGE Navigator website (12,13), which 
identifi ed 47 articles, and the Genetic Association Database (GAD) (14), which iden-
tifi ed 3 articles. All articles found by HuGE Navigator and GAD had already been 
identifi ed by our search strategy.

Overall, these 48 articles provided data on 144 polymorphisms in 76 genes. Thirty-
four articles reported data on maternal DNA (15–48), describing 88 polymorphisms 
in 40 genes, while 26 articles reported on newborn DNA (18,23,27,31,34,35,39–41,
43,44,47,49–62), describing 114 polymorphisms in 63 genes; only 2 articles reported 
on paternal DNA (40,41), describing 4 polymorphisms in 3 genes.

Our meta-analysis found modest associations of preterm birth with three single 
nucleotide polymorphisms (SNPs), two in maternal DNA and one in neonatal DNA, 
which are described under Cumulative Evidence below. The complete fi eld synopsis 
is available online at http://bioinformatics.aecom.yu.edu/ptbgene/index.html. In this 
analysis, many lessons were learned that might be valuable for researchers develop-
ing fi eld synopses for other health outcomes. The principal challenges related to 
defi ning the phenotype, analyzing multiple genomes, capturing high-quality envi-
ronmental data, reporting genotype data, and grading the evidence, all of which will 
be further addressed in this chapter.

Figure 18.1 Pathways to preterm birth with select gene variants that have been studied. 
Source: Adapted from Lockwood CJ, Kuczynski E, Paediatr Perinat Epidemiol. 2001;15:78. 
With permission of Wiley-Blackwell Publishing.
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Defi ning the Phenotype
Defi ning the phenotype for PTB is extremely challenging. It might seem straight-
forward to determine which infants are born before 37 completed weeks gestation, 
which is the formal defi nition of PTB (63), because gestational ages are listed on 
birth certifi cates. However, because a multitude of factors contribute to PTB, defi n-
ing a biologically homogeneous group, in which one might realistically expect to 
identify an underlying genetic predisposition, is much more diffi cult.

Approximately 40–45% of PTBs are estimated to follow spontaneous preterm 
labor, 30–35% are indicated due to maternal or fetal medical complications, and 
25–30% follow preterm premature rupture of the membranes (PPROM, which is 
defi ned as spontaneous rupture of the membranes at less than 37 weeks gestation at 
least 1 hour before the onset of contractions) (7). Should we expect to fi nd a genetic 
variant that contributes to all three types of PTB? For example, if we were to com-
pare the DNA of a woman whose labor was induced at 36 weeks due to preeclamp-
sia with another who underwent a cesarean section at 34 weeks for placenta previa 
and bleeding, is it plausible that we might identify genetic variants that contrib-
ute to both clinical scenarios? Could a spontaneous PTB at 26 weeks secondary to 
chorioamnionitis be related to the same genetic variants that predispose to deliv-
ery of a 35 week newborn whose mother had HELLP (hemolytic anemia, elevated 
liver enzymes, and low platelet count) syndrome? When etiology creeps into the 
 phenotypic description, it is not clear how subgroups of the PTB phenotype should 
be defi ned. Thus, while gestational age dating seems the simplest of measures, the 
phenotype is much more nuanced. Stratifying the complex phenotype of PTB into 
sub-phenotypes likely to share underlying predisposing factors is an important step 
in designing studies to examine genetic associations with PTB.

For the purposes of our systematic review and fi eld synopsis, we applied extremely 
liberal search criteria in PubMed and EMBASE and included all abstracts that had 
anything to do with preterm labor or PTB. As a result, we had to screen almost 
6,000 abstracts to identify 48 articles that met our inclusion and exclusion criteria. 
We then read the articles and attempted to classify the PTB phenotype as (1) PTB 
following preterm labor; (2) PTB following PPROM; (3) PTB following maternal 
medical complications such as preeclampsia or diabetes; (4) PTB following fetal 
complications such as small for gestational age (SGA) or intrauterine growth restric-
tion (IUGR); or (5) PTB, not otherwise specifi ed. Our goal for the fi eld synopsis was 
to identify genetic variants associated with spontaneous singleton preterm birth, 
as this phenotype may be most likely to have a genetic basis; however, in the end 
this was not possible because in many studies, it was diffi cult to determine exactly 
how the phenotype had been defi ned. Many studies did not differentiate between 
the fi ve general types of PTB, or grouped all these types together. In the articles 
that reported maternal data, 18 defi ned the phenotype as PTB following spontane-
ous preterm labor, 7 defi ned the phenotype as spontaneous PTB or PTB following 
PPROM, and 9 defi ned the phenotype simply as PTB, without further specifi ca-
tion. In the articles that reported newborn data, 6 defi ned the phenotype as PTB 
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following spontaneous preterm labor, 1 defi ned it as PTB following PPROM, 3 
combined spontaneous and PPROM cases, 1 defi ned the phenotype as PTB includ-
ing maternal and fetal indications as well as spontaneous PTB, and 15 defi ned the 
phenotype simply as PTB. Neither of the two studies that reported paternal DNA 
defi ned the specifi c PTB phenotype.

Even studies that defi ned PTB as spontaneous varied in their choice of a gesta-
tional age threshold. Many investigators defi ned PTB, as the National Center for 
Health Statistics does, as birth before 37 completed weeks gestation (64), but others 
chose to defi ne PTB as birth before 36 weeks, 35 weeks, 34 weeks, 32 weeks, and 
so on. Specifi cally, of the 34 articles that reported maternal genotypes, 24 defi ned 
preterm birth as birth before 37 completed weeks gestation, 2 articles used a defi ni-
tion of 36 weeks, 4 used 35 weeks, 2 used 34 weeks, and 2 used 32 weeks. Of the 26 
articles reporting on newborn genotypes, 13 defi ned preterm birth as birth before 37 
completed weeks gestation, but 4 used a defi nition of 36 weeks, 6 used 35 weeks, 1 
used 34 weeks, 1 used 30 weeks, and 1 used 27 weeks. The 2 articles that reported 
paternal genotypes used 37 weeks as the case defi nition.

Gestational age dating is itself subject to much error and some methods of dat-
ing can lead to biased estimates. Methods commonly used for pregnancy dating—
including calculation based on last menstrual period, second trimester ultrasound 
examination, and (more recently and most accurately) fi rst trimester ultrasound 
examination—produce varying estimates of gestational age. One study in California 
demonstrated that early ultrasound (<20 weeks gestation) tends to underestimate 
gestational age and leads to a higher reported incidence of PTB (65). The articles we 
reviewed generally provided little or no data on the method of pregnancy dating.

Converting the continuous variable of gestational age into a dichotomous out-
come—PTB versus term birth—might arbitrarily distort the analysis of biological 
relationships. Using a cutoff of 37 weeks to defi ne PTB for health statistics serves 
a purpose by allowing for comparisons and trend analysis; however, it may not be 
biologically meaningful. Recent trends suggest that some late PTBs (34 0/7 weeks 
to 36 6/7 weeks) may be due to social factors, such as facility scheduling and patient 
preference (66); including these births as cases could hinder the analysis of underly-
ing biological and genetic factors. Defi ning an earlier gestational age threshold (such 
as very preterm birth, which is defi ned as <32 weeks) or analyzing gestational age 
as a continuous variable might be useful to gain a better understanding of underly-
ing genetic associations.

A fi nal concern about phenotype is the relationship between PTB and low birth 
weight. Preterm birth and low birth weight are related but distinct conditions. 
Low birth weight is defi ned as birth weight less than 2,500 g at birth. Historically, 
PTB and low birth weight have sometimes been used interchangeably in reports 
of research studies; however, this further confuses accurate description of the PTB 
phenotype because low birth weight represents two different outcomes: (1) a neonate 
whose size is appropriate for gestational age but who is born preterm or (2) a neo-
nate who is small for gestational age (SGA), and thus may be >37 weeks gestation 
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but weighs <2,500 g. These two outcomes may derive from quite distinct physi-
ologic processes that may or may not share underlying etiologies. Even now, some 
studies combine preterm birth with low birth weight to defi ne a single phenotype, 
blurring the actual entity under study.

Multiple Genomes
Studying the genetic contribution to PTB requires the special consideration of 
potential interactions among three genomes: the maternal, the fetal, and the pater-
nal. While studies have shown that the greatest contribution is from the maternal 
genome (67), followed by the fetal and the paternal (68), precise characterization 
of parental versus fetal genetic contribution to PTB is lacking. Many studies have 
utilized a case-control study design and compared genotypes of case mothers ver-
sus control mothers or case neonates versus control neonates. Another set of stud-
ies has used family-based approaches, looking at dyads (mother–newborn) or triads 
(mother–father–newborn), but these studies are not easily pooled with case-control 
studies for meta-analysis. Multifactor dimensionality reduction has been used as a 
nonparametric and genetic model-free alternative to logistic regression for the detec-
tion and characterization of nonlinear interactions among discrete genetic and envi-
ronmental factors (69). Additional methods are needed to sort out the perplexing 
interplay of genetic variation in three genomes that contributes to PTB. Methods in 
human genome epidemiology that would allow us to understand the interactions of 
environmental factors with three genomes would be of great value in better under-
standing the etiology of PTB.

Further complicating the conduct of studies addressing the relative contributions 
to PTB of maternal and fetal genetic variation is the fact that the obstetrical research 
community studies PTB as an outcome, whereas the pediatric community sees PTB 
as a starting point. For example, many studies that examine genetic factors contrib-
uting to pediatric outcomes such as retinopathy of prematurity (70) or bronchopul-
monary dysplasia (71) enroll PTBs as the entry cohort, genotype the babies, and 
follow them for the occurrence of these common outcomes. A large longitudinal 
study that enrolled mother–infant cohorts prenatally and followed them through the 
newborn period would have the added value of contributing to our understanding of 
not only the etiology of PTB but of its varied consequences. Collaborative studies 
that integrate both the obstetric and pediatric perspective and follow pregnancies 
and babies longitudinally, such as the National Children’s Study (72), promise to 
add tremendously to our understanding of genetic associations with a host of aspects 
of pregnancy outcome as well as pediatric well-being.

Environmental Data
A few studies of PTB have examined relevant gene–environment interactions. These 
include studies of the relationship between TNF-α variants and bacterial vaginosis 
(73) and the interaction of genetic variation in the xenobiotic enzymes GSTT1 and 
CYP1A1 with smoking (32). Many genetic association studies of PTB do not report 
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any environmental data at all. The detailed description and classifi cation of pheno-
type serves as a model for the detailed description and classifi cation of environmen-
tal exposures that must be collected to study relevant gene–environment interactions 
in PTB. Many traditional etiologic studies of PTB have collected detailed environ-
mental data; such data should also be collected in studies of genetic associations 
with PTB.

Genotype Data

One of the most surprising fi ndings of our review was the variety of complex ways 
in which genotypes were reported. In many analyses, subjects with the homozygous 
minor allele and heterozygotes were combined into one category, presumably due to 
small sample sizes. In addition, many studies only reported allele frequencies and 
did not report genotypes. Sometimes allele frequency data or genotype data were 
reported for mothers, sometimes for newborns, and sometimes for both. Paternal 
data were reported in only a handful of studies.

A basic recommendation for future studies is to present the numbers of cases and 
controls with each genotype in all groups studied. The following 2×3 table can be 
used to present maternal genotype data in straightforward fashion:

Table 18.1 Mothers

 # Cases # Controls

AA genotype

Aa genotype

aa genotype   

Genotype data for newborns and fathers should be represented in the same way. 
If this simple presentation of the data were required for all publications, as it is by 
some journals (74), readers would gain a better understanding of the study popula-
tion and the process of pooling data for meta-analysis would be greatly enhanced. 
Further stratifying such tables, for example, by detailed phenotype or by racial or 
ethnic group, would also be useful.

Systematic review of gene–disease associations requires specifi c data at the level 
of genetic variants. Although consistent reporting of SNPs and other variants in 
the PTB literature has improved over time, identifying SNPs in older articles can 
be challenging. Consistent identifi cation of genetic variants according to a standard 
classifi cation scheme, such as dbSNP (75), will facilitate systematic data review and 
synthesis. Even when a SNP is identifi ed, deciphering which allele is reported as the 
major versus minor allele is often diffi cult. Using references such as the ancestral 
allele in dbSNP (75) can serve as a useful guidepost in the process of standardizing 
the reporting of genetic variants.
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Cumulative Evidence and Grading the Evidence
Our meta-analysis of ten maternal polymorphisms in nine genes found that SNPs in 
two genes—beta-2 adrenergic receptor (ADRB2, rs1042713) and interferon gamma 
(IFNG, rs2430561)—had nominally signifi cant associations with PTB (p-values in 
the main, allele-based analyses were p = 0.0096 and p = 0.014, respectively). Meta-
analysis of seven neonatal polymorphisms in seven genes found one SNP in coagu-
lation factor 2 (F2, rs1799963) with a nominal association with PTB (p = 0.03). 
Updated data are available online at http://bioinformatics.aecom.yu.edu/ptbgene/
index.html.

Cumulative evidence for genetic associations can be assessed by using three cri-
teria (the “Venice criteria”) proposed by the Network of Networks and HuGENet: 
(1) the amount of evidence; (2) the extent of replication; and (3) the degree of protec-
tion from bias (76). No gene–disease association in our fi eld synopsis warranted an 
A grade in any of these three categories.

Amount of evidence. Many of the studies we reviewed were case reports (which we 
excluded) or small case-control studies, with an average size of 35–600 cases and 
usually a somewhat larger number of controls. Only 9 of the 34 reported analyses of 
maternal DNA and 10 of the 26 analyses of neonatal DNA included more than 100 
cases; thus, even when 3 studies had evaluated a particular SNP, the total number of 
cases studied was usually well under 1,000.

Extent of replication. Many SNPs were evaluated in only one or two studies. 
Suffi cient data for meta-analysis, reported from three or more studies, were avail-
able for ten polymorphisms in nine genes for maternal DNA and seven polymor-
phisms in seven genes for newborn DNA. Nearly all observed associations were 
statistically nonsignifi cant when the fi rst study was excluded from analysis. The 
lack of replication we observed suggests that larger cohorts are needed for both gene 
discovery and replication.

Degree of protection from bias. Genetic association studies of PTB are also subject 
to many biases, beginning with those arising from inconsistencies in defi ning the 
phenotype.

Conclusion

The public health burden of PTB continues to mount and the clinical management 
remains challenging. Research attempting to understand the genetic contribution to 
PTB has produced a modest amount of literature, consisting mostly of candidate 
gene studies, which have thus far not revealed robust and replicated gene–disease 
associations. A better understanding of the genetic contribution to PTB and what 
it might reveal about the underlying biology and etiology of this common complex 
condition will likely be enhanced by genome-wide association studies (GWAS). 
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GWAS allow hypothesis-free interrogation of the genome and will likely uncover 
novel contributions to PTB. Although the technology for GWAS is becoming more 
accessible and affordable (77), our experience points out that the success of such 
studies is contingent upon (i) good clinical phenotyping; (ii) detailed data collection 
regarding environmental exposures; (iii) enhanced methods to look at the interaction 
of multiple genomes; and (iv) continued use of standardized genotyping and report-
ing methods using common nomenclature. Dissecting the complex, heterogeneous 
phenotype of PTB remains a huge research and clinical challenge. Human genome 
epidemiology holds promise for helping to address this public health challenge.
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Introduction

Coronary heart disease (CHD)—which includes myocardial infarction, angina pec-
toris, and stenosis of the coronary arteries—is a public health problem of substantial 
international importance. It is the leading cause of death worldwide, with over 7 mil-
lion deaths per year (1), a major source of disability and a considerable economic bur-
den (2). Over the past half-century, several major modifi able risk factors have been 
identifi ed, such as smoking, diabetes, elevated levels of blood pressure, and circulat-
ing lipids. The tendency for CHD to cluster in families (coeffi cient of familial clus-
tering [λs] estimated to be between two and seven) suggests that genetic variation, 
either directly or through modulation of known or as yet unidentifi ed risk factors, 
importantly infl uences CHD risk (3). Identifi cation of CHD susceptibility variants is 
of potential interest because it should contribute to insights into disease pathophysi-
ology that may translate into clinical benefi ts through (i) identifi cation of novel 
therapeutics; (ii) improved stratifi cation of disease risk in vulnerable populations; 
(iii) more cost-effective targeting of existing interventions; and (iv) identifi cation and 
understanding of joint gene–environment effects. The realization of these potential 
benefi ts is, however, predicated on reliable genetic discovery and validation.

Progress in identifying the genome sequence variants underlying the inherited 
effects has been slow. Until recently, studies have typically involved biological 
approaches to candidate identifi cation, leading to specifi c explorations of candidate 
genes in lipid, infl ammatory, hemostatic, and other pathways suggested by prevail-
ing mechanistic understanding. Many of the early reports of promising fi ndings 
using this approach have, however, not been confi rmed by later and larger stud-
ies. More recently, genome-wide association studies (GWAS) have examined CHD 
associations with large numbers of variants distributed across the genome, entail-
ing hypothesis-free global-testing methods. This approach is starting to uncover 
novel loci with strong evidence of association with CHD, but with as-yet unknown 
 biological relevance.

This chapter provides a critical and quantitative review of the current state of evi-
dence regarding potential genetic susceptibility loci and CHD. We review published 
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quantitative reviews of candidate gene polymorphisms and published GWAS 
addressing CHD.

Methods

Candidate Gene Association Studies
We sought all published quantitative reviews of association studies of genetic vari-
ants and CHD outcomes. Quantitative reviews were defi ned as reviews of at least 
three gene–disease association studies in which numerical data from each study 
were presented systematically. CHD endpoints were defi ned as myocardial infarc-
tion (MI), angina pectoris (stable or unstable), coronary stenosis, or coronary death. 
Search strategies included coronary disease terms, genetic terms, and phrases to 
identify reviews or meta-analyses and were applied to electronic databases includ-
ing PubMed, Embase, BIOSIS, and Web of Science. We scanned titles and abstracts 
of identifi ed articles to exclude papers that were obviously irrelevant. Full text cop-
ies of remaining articles were collected and examined against prespecifi ed inclusion 
criteria.

For each polymorphism that had been reviewed, we selected the single most infor-
mative review based on the number of studies included, total number of participants 
across studies, and the date of publication. We collected details of the polymorphisms 
studied, the methods used to fi nd and assess studies, and summary results, and collated 
the information into a highly structured database. In addition, we collected details of 
participants and design of all association studies in each review, referring back to the 
original articles where necessary. We conducted rigorous meta-analyses based on the 
studies included in the original quantitative reviews, and made adjustments to results 
where investigators appeared to have extracted data incorrectly or used inappropriate 
methods to pool studies (e.g., double counting of cases or controls).

Analysis
We conducted meta-analyses using standard fi xed-effect and random-effects meth-
ods, assuming a per-allele genetic model when data were available by genotype. 
For variants where some studies reported only partial genotype data (i.e., numbers 
of carriers and noncarriers), prohibiting a per-allele model, we used the genetic 
model adopted by authors of the original review. We also conducted fi xed-effect 
meta-analyses to contrast results from larger studies (at least 500 cases or 1,000 
total participants) with those from smaller studies, and to contrast studies conducted 
in exclusively white populations with those in exclusively East Asian populations. 
The fi xed-effect model was chosen for these subsidiary analyses, recognizing that 
this does not account for heterogeneity, in order to avoid placing excess weight on 
smaller studies that may be more prone to selective reporting bias and infl ated effect 
sizes. Formal tests for differences between subgroups were performed using a chi-
squared test, with Harbord’s modifi ed regression test used to assess funnel plot 
asymmetry (4).
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For presentation in the main table of fi ndings, we undertook a more complex 
meta-analysis for each variant that enabled us to (i) present a per-allele odds ratio in 
every case, irrespective of how data were reported and (ii) address to some extent 
the dependence of association magnitudes on study size. For this we implemented 
a model that exploits a Hardy–Weinberg equilibrium (HWE) assumption to “rec-
reate” genotype data from incompletely reported results (5). We further extended 
this to a random-effects meta-regression of (log) odds ratio on inverse sample size, 
and calculated the predicted magnitude corresponding to the largest observed study 
within each meta-analysis, along with its confi dence interval (6). The model was 
implemented in a Bayesian framework using WinBUGS (7), assuming noninforma-
tive prior distributions.

We describe the amount of evidence available for each variant using the number 
of included association studies, the numbers of participants (cases and controls), and 
the amount of information in each review, defi ned by the sum of the weights from 
an inverse variance meta-analysis model. We describe the consistency of evidence 
using the I2 statistic, since it can be compared across different effect measures and 
across different numbers of studies (8). Allele frequencies for the allele of inter-
est were calculated by pooling genotype counts in the control groups across stud-
ies, assuming HWE in studies for which complete genotype information was not 
available.

Concerns about Bias
Bias in a genetic association study can arise at several different stages of investiga-
tion: defi nition of outcomes, ascertainment of participants, assessment of genotypes, 
and reporting of results (9). Further biases may occur at the quantitative review stage 
if reporting of studies is related to the magnitude of association (publication bias). 
Characteristics of studies and reviews that could suggest presence of such biases 
were collected with emphasis on the numbers of studies for which the control group 
deviated from HWE, the number of studies in which it was known that investigators 
were blinded to case-control status when calling genotypes, the design of studies 
(retrospective or prospective), source of study controls (general population or other, 
for example, hospital or clinic controls), use of formal systematic review methods to 
ascertain association studies, and attempts to correspond with study authors to con-
fi rm, collect, or ascertain data. Insuffi cient information was generally provided by 
individual reports to enable assessment of the possibility of genotyping errors. We 
provide comments on concerns about potential biases in each review in preference 
to using quality assessment scales.

For presentation in the main summary table, we classifi ed each meta-analysis 
using the following criteria. A nonsystematic review indicated that a thorough 
attempt to fi nd all published literature had not been described in the review meth-
ods. Funnel plot asymmetry (FPA) was considered to be present when there were at 
least ten studies and either the Harbord test or a test comparing larger and smaller 
studies was statistically signifi cant at the 5% level. Concerns over ethnicity arose 
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when a test of difference between whites and East Asians was statistically signifi -
cant at a 5% level and there were at least two studies in each category. We expressed 
concern over HWE if exclusion of studies that could be determined to have statis-
tically signifi cant departure from HWE changed the summary odds ratio by more 
than 5%. Heterogeneity was considered to be present when there were at least fi ve 
studies and either I2 was greater than 50% or a lower 95% confi dence interval for I2 
exceeded 20%.

GWA Studies
We sought GWAS involving more than 10,000 variants by searching the recent 
literature for terms such as “genome-wide” and “whole-genome.” We extracted 
summary information from each GWA study with details of most signifi cant loci 
identifi ed and signifi cance thresholds required for replication. We also examined 
whether these fi ndings had been replicated in independent samples, and collected 
per-allele odds ratios for the strongest signals. For the locus at 9p21.3, these odds 
ratios and their confi dence intervals were pooled across samples using a random-
effects meta-analysis model with inverse variance weighting.

Results

Candidate Gene Reviews
We identifi ed quantitative reviews of 48 variants in 33 candidate genes, reported in 
24 articles (10–33) (Table 19.1). Numbers of studies included in each review ranged 
from 3 to 108 studies per variant, with a median of 19. Most variants had been stud-
ied in a total of between 10,000 and 100,000 participants, although only 15 variants 
had been studied in more than 10,000 cases.

Despite the existence of considerable evidence on several polymorphisms, few 
appeared to have strong, consistent associations with CHD. Only one polymor-
phism—the e4 variant of the apolipoprotein E (APOE) gene—had a 95% confi dence 
interval that excludes the null, once size effects were taken into account. Excluding 
variants with so much uncertainty that 95% confi dence intervals extend beyond 
the scale in Table 19.1, per-allele odds ratio estimates ranged from 0.88 to 1.24. 
Considerable heterogeneity was seen for half of the variants with I2 values greater 
than 50% in 24 of the meta-analyses and a lower 95% confi dence interval exceed-
ing 20% in two further meta-analyses. Study size effects, which may be indicative 
of publication bias, were also commonly seen with 18 variants showing funnel plot 
asymmetry or having signifi cantly different summary results in larger and smaller 
studies (Table 19.2). Despite the heterogeneity present in the data on many variants, 
the results calculated using random-effects models were generally similar to those 
using fi xed-effect models. For fi ve variants, the statistical signifi cance of the meta-
analytic mean depended on the meta-analysis model used, and for e4 carriers of 
the APOE gene the confi dence intervals for fi xed-effect and random-effects meta-
analyses do not overlap (see Section “Discussion”).
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A number of polymorphisms appeared to exhibit different effects in populations 
of different ethnicity. Summary estimates differed signifi cantly (p < 0.05) between 
whites and East Asians in 9 of the 32 meta-analyses in which participants from each 
group were included. In some cases, allele frequencies also differed importantly 
between the two groups. For example, the XbaI polymorphism of the apolipoprotein 
B gene has a frequency of 0.52 in white controls, but a frequency of 0.95 in East 
Asian controls, with apparently opposing associations (although the estimate in East 
Asian populations was not signifi cantly different from the null).

We summarized study characteristics that might be associated with biases in 
Table 19.3. Nearly half of the meta-analyses (23/48) contained at least 10% of stud-
ies with a statistically signifi cant (p < 0.05) deviation from HWE in controls, sug-
gestive of potential genotyping error in these studies; however, exclusion of these 
studies from meta-analyses only altered the summary odds ratio by more than 5% 
for four of the variants. Genotyping call rates were rarely reported, so we could 
not assess this important feature. A third of studies (374/1126, or 34%) reported 
that laboratory technicians were blinded to case-control status when genotyping. 
The majority of studies (89%) were case-control or cross-sectional in design, with a 
small proportion of prospective cohort studies or nested case-control studies based 
in prospective cohorts (and, therefore, using “internal” population controls). Overall, 
controls in available studies were drawn approximately evenly from essentially gen-
eral population sources and other sources such as clinics or hospitals where disease-
free status was not guaranteed.

Genome-Wide Studies
By January 2009, seven GWAS assessing associations with CHD had been pub-
lished that included at least 10,000 variants (34–40) (Table 19.4). One particular 
locus (9p21.3) has been consistently replicated in the four densest studies, indicating 
the presence of a potentially “true” association with a single nucleotide polymor-
phism (SNP) at this locus, although the exact causal SNP has not yet been identifi ed. 
A meta-analysis of SNPs from GWAS and replication studies that have genotyped 
SNPs in this region (35,37,39,41–50) showed a highly signifi cant association with an 
increase in risk of about 30% for each copy of the risk allele carried (Figure 19.1). 
Other loci that warrant further investigation are those that have been replicated in 
large studies, such as 6q25.1 and 2q36.3 replicated in the German MI study (39). 
Signifi cant SNPs at 16q23 have also been identifi ed in two initial GWAS (WTCCC 
and Framingham Heart Study), although the p-values in each study did not reach 
genome-wide statistical signifi cance and the region was not replicated in other sam-
ples. Focused genotyping in large numbers of cases will be required to confi rm or 
refute these weaker fi ndings, as seen when apparent associations with the rs909253 
SNP in the lymphotoxin alpha gene at 6p21.3 discovered by the OACIS GWA study 
(38) were not replicated in a number of follow-up studies, including the ISIS study 
of over 6,000 cases (14).
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Table 19.1 Summary details of 48 reviews of polymorphisms with CHD outcomes

Biological 
pathway

report First 
study

Reviews* genetic variant Outcome

 Author Year   Gene Variant Allele Posn rs Freq†

Lipids

Bennet 2007 1983 5 APOE e4 e4 exon4 7412/429358 0.15 CHD

Bennet 2007 1983 5 APOE e2 e2 exon4 7412/429358 0.09 CHD

Sagoo 2008 1995 5 LPL N291S S exon 6 268 0.03 CHD

Sagoo 2008 1992 6 LPL S447X X exon 9 328 0.10 CHD

Sagoo 2008 1995 4 LPL D9N N exon2 1801177 0.02 CHD

Sagoo 2008 1990 3 LPL PvuII P2 intron 6 285 0.46 CHD

Sagoo 2008 1996 2 LPL T-93G G promoter 1800590 0.02 CHD

Sagoo 2008 1989 2 LPL HindIII H1 intron 8 320 0.29 CHD

Sagoo 2008 1997 3 LPL G188E E exon 5 – <0.01 CHD

Lawlor 2004 1995 3 PON1 Q192R R exon 6 662 0.32 CHD

Wheeler 2004 1997 2 PON1 L55M M exon 3 854560 0.27 CHD

Wheeler 2004 2000 1 PON1 T-107C C promoter 705379 0.47 CHD

Wheeler 2004 1998 1 PON2 S311C C exon 9 7493 0.22 CHD

Boekholdt 2005 1995 1 CETP TaqIB B2 intron 1 708272 0.44 CHD

Chiodini 2003 1990 2 APOB SpIns/Del Del exon 1 11279109 0.31 CHD

Chiodini 2003 1986 2 APOB XBal X- exon 26 693 0.63 CHD

Chiodini 2003 1986 2 APOB EcoRI E- exon 29 1042031 0.14 CHD

Infl ammation

Sie 2006 2001 1 IL6 G-174C C promoter 1800795 0.42 CHD

Clarke 2006 2002 1 LTA rs909253 C intron 1 909253 0.37 MI

Koch 2008 2001 1 THBS4 A387P P exon 10 1866389 0.22 MI

Koch 2008 2001 1 THBS1 N700S S exon 13 2228262 0.10 MI

Koch 2008 2001 1 THBS2 T3949G G 3’UTR 8089 0.24 MI

Pereira 2007 1998 2 TNF-alpha G-308A A promoter 1800629 0.15 CHD

Koch 2006 2003 1 TLR4 D299G G exon 3 4986790 0.07 MI

Abilleira 2006 1999 1 MMP3 5A/6A 5A promoter 3025058 0.31 MI

Abilleira 2006 2001 1 MMP9 C-1562T T promoter 3918242 0.12 Stenosis

Renin-angiotensin

Morgan 2003 1992 9 ACE I/D Del intron 16 1799752 0.52 MI

Xu 2007 1995 2 AGT M235T T exon 2 699 0.48 CHD

Xu 2007 1995 2 AGT T174M M exon 2 4762 0.12 CHD

Casas 2006 1998 2 NOS3 E298D D exon 8 1799983 0.26 CHD

Casas 2006 1998 2 NOS3 T-786C C promoter 2070744 0.23 CHD

Casas 2006 1996 2 NOS3 intron 4 a intron 4 – 0.14 CHD

Ntzani 2007 1994 1 AGTR1 A1166C C 3’UTR 5186 0.27 MI

Hemostasis

Ye 2006 1995 8 Factor V R506Q Q exon 10 6025 0.03 CHD

Ye 2006 1996 9 ITGB3/GPIIIa P1A1/A2 A2 exon 2 5918 0.15 CHD

Ye 2006 1997 5 Factor II G20210A A 3’UTR 1799963 0.01 CHD

Ye 2006 1991 4 PAI-1 4G/5G 4G promoter 1799889 0.52 CHD

Ye 2006 1995 2 Factor VII R353Q Q exon 8 6046 0.12 CHD

Ye 2006 1999 1 GPIa C807T T exon 7 1126643 0.38 CHD

Ye 2006 1997 1 GPIba T-5C C promoter 2243093 0.13 CHD

Keavney 2006 1993 3 FGB G-455A A promoter 1800790 0.20 CHD

Voko 2007 1998 2 Factor XIII V34L L exon 2 5985 0.24 CHD
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amount of information summary estimates¶ consistency concerns about validity#

Cases Controls Total n‡ Info§ Per-allele OR & 95% CI I2 & 95% CI Non FPA Ethn HWE Het

                 

31816 69017 100833 108 3227 1.15 (1.03, 1.28) 70 (64, 75) ○ ● ● ○ ●

26469 59724 86193 108 1733 0.90 (0.80, 1.02) 57 (46, 65) ○ ○ ● ○ ●

13883 24145 38028 21 371 1.02 (0.88, 1.21) 5 (0, 49) ○ ○ ◐ ○ ○

11050 20221 31271 26 878 0.88 (0.74, 1.00) 50 (21, 68) ○ ○ ● ○ ●

9812 18519 28331 21 272 1.24 (1.00, 1.56) 17 (0, 51) ○ ○ ◐ ○ ○

8440 8774 17214 18 1985 0.99 (0.86, 1.16) 32 (0, 61) ○ ○ ○ ○ ○

5045 10395 15440 7 107 1.11 (0.72, 1.52) 10 (0, 74) ○ ◐ ◐ ○ ○

6226 5244 11470 23 635 0.94 (0.84, 1.07) 16 (0, 49) ○ ○ ○ ○ ○

2524 8595 11119 3 3 1.41 (0.26, 6.99) 0 – ○ ◐ ◐ ○ ◐

10816 16706 27522 38 2244 1.07 (0.96, 1.21) 61 (0, 64) ○ ● ● ○ ●

5989 6427 12416 20 944 1.00 (0.91, 1.10) 0 (0, 49) ○ ○ ○ ○ ○

1366 1332 2698 4 334 1.01 (0.79, 1.44) 43 (0, 81) ○ ◐ ● ● ◐

1498 2100 3598 7 288 1.01 (0.72, 1.39) 67 (26, 85) ○ ◐ ○ ● ●

2857 5938 8795 7 767 0.88 (0.78, 1.03) 0 (0, 71) ○ ◐ ◐ ○ ○

3777 4834 8611 19 859 1.10 (0.89, 1.45) 57 (28, 74) ○ ○ ○ ○ ●

2503 3071 5574 19 467 1.01 (0.79, 1.34) 59 (31, 75) ○ ○ ● ○ ●

1677 1900 3577 14 160 1.16 (0.89, 1.49) 19 (0, 56) ○ ○ ○ ○ ○

6927 13374 20301 8 1509 1.00 (0.92, 1.09) 54 (0, 79) ○ ◐ ◐ ○ ●

9772 5356 15128 5 1534 1.04 (0.92, 1.28) 62 (0, 86) ● ◐ ◐ ○ ●

6978 5745 12723 8 949 0.99 (0.84, 1.20) 63 (21, 83) ○ ◐ ◐ ○ ●

6388 4736 11124 5 440 1.06 (0.81, 1.36) 35 (0, 76) ○ ◐ ◐ ○ ○

4930 3277 8207 4 592 1.00 (0.67, 1.40) 70 (14, 90) ○ ◐ ◐ ○ ◐

6740 5678 12418 17 560 0.93 (0.80, 1.08) 49 (11, 71) ○ ○ ◐ ○ ○

6143 4158 10301 7 213 0.91 (0.55, 1.36) 64 (18, 84) ● ◐ ◐ ○ ●

2549 3202 5751 7 269 1.23 (0.87, 1.80) 87 (76, 93) ○ ◐ ◐ ○ ●

3909 1251 5160 5 211 1.05 (0.67, 1.78) 67 (15, 87) ○ ◐ ○ ● ●

13506 27508 41014 40 1530 1.02 (0.96, 1.09) 60 (44, 72) ○ ● ● ○ ●

13279 16701 29980 41 2714 1.00 (0.88, 1.12) 56 (37, 69) ○ ● ○ ○ ●

8605 11967 20572 16 785 0.93 (0.81, 1.24) 54 (19, 74) ○ ● ○ ○ ●

13298 12197 25495 40 1837 0.95 (0.85, 1.08) 69 (57, 77) ○ ● ○ ○ ●

10004 12829 22833 21 1414 1.09 (0.94, 1.28) 64 (42, 77) ○ ● ○ ○ ●

9704 9324 19028 30 945 1.04 (0.89, 1.20) 57 (35, 71) ○ ○ ○ ○ ●

9663 15484 25147 25 2232 1.05 (0.92, 1.24) 62 (41, 75) ○ ● ○ ○ ●

15121 26909 42030 57 437 1.02 (0.90, 1.16) 15 (0, 40) ○ ● ◐ ○ ○

12524 21616 34140 44 1440 0.94 (0.81, 1.09) 60 (45, 72) ○ ○ ◐ ○ ●

11309 14015 25324 32 134 1.00 (0.80, 1.24) 28 (0, 53) ○ ● ◐ ○ ○

10770 12388 23158 35 2658 0.99 (0.90, 1.07) 57 (37, 71) ○ ● ○ ○ ●

6875 11217 18092 24 756 1.02 (0.92, 1.14) 0 (0, 45) ○ ○ ○ ○ ○

5853 5998 11851 15 1311 1.01 (0.89, 1.16) 47 (2, 71) ○ ○ ○ ○ ○

4898 5185 10083 13 474 1.07 (0.87, 1.27) 39 (0, 68) ○ ○ ○ ● ○

12220 18715 30935 20 1915 0.96 (0.87, 1.03) 25 (0, 57) ○ ○ ○ ○ ○

5751 6526 12277 16 990 1.02 (0.89, 1.14) 65 (40, 79) ○ ● ◐ ○ ●

 5 1 2
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Table 19.2 Subsidiary analyses of reviews

Biological 
pathway

Model* meta-analysis model

report genetic variant fixed† random consistency

 
Author Year Gene Variant n  OR 95% CI OR 95% CI I2 95% CI

Lipids

Bennet 2007 APOE e4 108 Dominant 1.19 (1.15, 1.24) 1.39 (1.29, 1.50) 70 (64, 75)

Bennet 2007 APOE e2 108 Dominant 0.91 (0.86, 0.95) 0.93 (0.86, 1.02) 57 (46, 65)

Sagoo 2008 LPL N291S 21 Dominant 1.06 (0.96, 1.17) 1.07 (0.96, 1.20) 5 (0, 49)

Sagoo 2008 LPL S447X 26 Dominant 0.88 (0.82, 0.94) 0.84 (0.75, 0.94) 50 (21, 68)

Sagoo 2008 LPL D9N 21 Dominant 1.26 (1.12, 1.42) 1.33 (1.14, 1.56) 17 (0, 51)

Sagoo 2008 LPL PvuII 18 Per-allele 0.97 (0.93, 1.01) 0.97 (0.89, 1.05) 32 (0, 61)

Sagoo 2008 LPL T-93G 7 Dominant 1.24 (1.03, 1.50) 1.22 (0.98, 1.52) 10 (0, 74)

Sagoo 2008 LPL HindIII 23 Dominant 0.89 (0.83, 0.96) 0.89 (0.81, 0.98) 16 (0, 49)

Sagoo 2008 LPL G188E 3 Dominant 2.80 (0.88, 8.87) 2.80 (0.88, 8.87) 0 –

Lawlor 2004 PON1 Q192R 38 Per-allele 1.12 (1.07, 1.16) 1.16 (1.08, 1.25) 61 (0, 64)

Wheeler 2004 PON1 L55M 20 Dominant 0.97 (0.89, 1.05) 0.96 (0.88, 1.06) 0 (0, 49)

Wheeler 2004 PON1 T-107C 4 Per-allele 1.02 (0.92, 1.14) 1.05 (0.90, 1.22) 43 (0, 81)

Wheeler 2004 PON2 S311C 7 Per-allele 1.04 (0.93, 1.17) 1.02 (0.83, 1.26) 67 (26, 85)

Boekholdt 2005 CETP TaqIB 7 Per-allele 0.88 (0.82, 0.95) 0.88 (0.82, 0.95) 0 (0, 71)

Chiodini 2003 APOB SpIns/Del 19 Per-allele 1.10 (1.03, 1.81) 1.09 (0.98, 1.22) 57 (28, 74)

Chiodini 2003 APOB XBaI 19 Per-allele 1.09 (1.00, 1.19) 1.13 (0.97, 1.32) 59 (31, 75)

Chiodini 2003 APOB EcoRI 14 Dominant 1.33 (1.14, 1.55) 1.36 (1.14, 1.63) 19 (0, 56)

Infl ammation

Sie 2006 IL6 G-174C 8 Per-allele 1.03 (0.98, 1.08) 1.05 (0.97, 1.14) 54 (0, 79)

Clarke 2006 LTA 909253 5 Per-allele 1.05 (1.00, 1.11) 1.10 (1.00, 1.21) 62 (0, 86)

Koch 2008 THBS4 A387P 8 Per-allele 1.03 (0.97, 1.10) 1.05 (0.93, 1.17) 63 (21, 83)

Koch 2008 THBS1 N700S 5 Per-allele 1.08 (0.98, 1.19) 1.07 (0.93, 1.24) 35 (0, 76)

Koch 2008 THBS2 T3949G 4 Per-allele 1.04 (0.96, 1.13) 0.98 (0.83, 1.16) 70 (14, 90)

Pereira 2007 TNF-alpha G-308A 17 Dominant 1.04 (0.96, 1.13) 1.07 (0.94, 1.21) 49 (11, 71)

Koch 2006 TLR4 D299G 7 Dominant 0.93 (0.82, 1.07) 0.90 (0.69, 1.17) 64 (18, 84)

Abilleira 2006 MMP3 5A/6A 7 Dominant 1.24 (1.10, 1.39) 1.38 (0.98, 1.95) 87 (76, 93)

Abilleira 2006 MMP9 C-1562T 5 Per-allele 1.08 (0.94, 1.24) 1.18 (0.89, 1.56) 67 (15, 87)

Table 19.1 Continued

Biological 
pathway

report First 
study

Reviews* genetic variant Outcome

 Author Year   Gene Variant Allele Posn rs Freq†

Others

van der A 2006 1998 1 HFE C282Y Y exon 4 1800562 0.06 CHD

van der A 2006 1998 1 HFE H63D D exon 2 1799945 0.15 CHD

Lewis 2005 1996 8 MTHFR C677T T exon 5 1801133 0.34 CHD

Kjaergaard 2007 2000 1 ESR1 T-397C C intron 1 2234693 0.45 MI

Di 
Castelnuovo

2008 1998 1 CYBA C242T T exon 4 4673 0.24 CHD

 Zafarmand 2008 1997 1 ADRB3 W64R R exon 1 4994 0.08 CHD

Ordered by biological category, review, then variant in descending order of total number of participants.
Abbreviations: CHD = coronary heart disease, defi ned as myocardial infarction (MI), coronary stenosis, angina or fatal
Reviews* - Total number of reviews for each variant including the one listed; Freq† - Frequency of allele of interest, not necessarily 

information in each meta-analysis defi ned as the sum of the weights from an inverse-variance weighted analysis; Summary estimates¶  - Pooled 
Comments on potential concerns about bias (Non-sys, no evidence of systematic review methods; FPA, funnel plot asymmetry/study size 
high proportion of studies deviating from Hardy-Weinberg equilibrium)—see Tables 19.2 and 19.3.

○ = no concerns; ● = concerns; ◐ = insuffi cient evidence to judge.
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study size participant ethnicity

larger‡ smaller x2 harbord white east Asian x2

n OR 95% CI I2 n OR 95% CI I2 p# p n OR 95% CI Freq n OR 95% CI Freq p§

23 1.09 (1.04, 1.13) 51 85 1.51 (1.42, 1.61) 65 <0.001 <0.001 33 1.12 (1.05, 1.18) 0.16 36 1.73 (1.56, 1.92) 0.09 <0.001

21 0.88 (0.83, 0.94) 59 87 0.95 (0.88, 1.03) 56 0.133 0.33 33 0.86 (0.80, 0.93) 0.10 36 1.10 (0.96, 1.24) 0.06 0.001

8 1.05 (0.94, 1.17) 40 13 1.10 (0.83, 1.46) 0 0.785 0.39 11 1.13 (0.85, 1.49) 0.02 0 – – – –

9 0.91 (0.85, 0.98) 19 17 0.79 (0.69, 0.90) 56 0.069 0.19 13 0.90 (0.81, 1.01) 0.12 3 0.60 (0.42, 0.85) 0.12 0.030

9 1.22 (1.06, 1.40) 54 11 1.39 (1.10, 1.77) 0 0.339 0.10 11 1.36 (1.04, 1.79) 0.02 0 – – – –

3 0.96 (0.91, 1.01) 44 15 1.00 (0.92, 1.10) 32 0.422 0.82 10 0.94 (0.86, 1.03) 0.48 3 1.13 (0.90, 1.41) 0.38 0.142

4 1.28 (1.04, 1.57) 0 3 1.03 (0.62, 1.70) 46 0.435 0.90 4 1.13 (0.74, 1.71) 0.02 0 – – – –

5 0.91 (0.82, 1.01) 0 18 0.87 (0.77, 0.98) 30 0.578 0.69 14 0.90 (0.82, 0.99) 0.29 4 0.73 (0.56, 0.95) 0.29 0.139

1 3.20 (0.86, 11.9) – 1 1.78 (0.16, 19.7) – 0.674 – 2 2.80 (0.88, 8.87) <0.01 0 – – – –

7 1.05 (0.99, 1.11) 0 31 1.18 (1.12, 1.25) 64 0.004 0.07 23 1.08 (1.03, 1.14) 0.28 11 1.19 (1.10, 1.29) 0.43 0.038

3 1.02 (0.93, 1.11) 0 16 0.99 (0.90, 1.08) 0 0.649 0.09 12 1.02 (0.95, 1.09) 0.35 4 0.87 (0.67, 1.13) 0.07 0.267

0 – – – 4 1.02 (0.92, 1.14) 43 – 0.06 2 1.26 (1.01, 1.56) 0.49 2 0.95 (0.84, 1.08) 0.47 0.030

0 – – – 7 1.04 (0.93, 1.17) 67 – 0.77 2 1.06 (0.82, 1.38) 0.23 4 1.12 (0.97, 1.28) 0.19 0.743

4 0.88 (0.82, 0.95) 22 3 0.92 (0.80, 1.07) 0 0.520 0.08 6 0.88 (0.82, 0.95) 0.44 0 – – – –

1 1.15 (1.01, 1.30) – 18 1.09 (1.01, 1.18) 59 0.485 0.79 12 1.14 (1.06, 1.23) 0.34 5 0.98 (0.82, 1.16) 0.23 0.104

0 – – – 19 1.09 (1.00, 1.19) 59 – 0.62 12 1.13 (1.02, 1.25) 0.52 3 0.81 (0.56, 1.18) 0.95 0.048

0 – – – 14 1.33 (1.14, 1.55) 19 – 0.17 9 1.31 (1.10, 1.56) 0.18 3 1.43 (0.93, 2.18) 0.05 0.708

7 1.02 (0.97, 1.07) 1 1 2.04 (1.30, 3.20) – 0.002 0.007 6 1.03 (0.97, 1.10) 0.42 0 – – – –

4 1.03 (0.98, 1.09) 0 1 1.39 (1.14, 1.69) – 0.005 0.07 1 1.08 (0.90, 1.29) 0.34 3 1.14 (1.05, 1.25) 0.39 0.549

4 0.98 (0.91, 1.05) 52 4 1.19 (1.05, 1.35) 49 0.009 0.35 7 1.03 (0.97, 1.10) 0.22 0 – – – –

4 1.08 (0.98, 1.19) 65 1 1.15 (0.77, 1.70) – 0.756 0.82 5 1.08 (0.98, 1.19) 0.10 0 – – – –

3 1.05 (0.96, 1.14) 79 1 0.95 (0.72, 1.27) – 0.544 0.25 4 1.04 (0.96, 1.13) 0.25 0 – – – –

4 1.02 (0.91, 1.14) 0 13 1.06 (0.94, 1.20) 61 0.636 0.15 7 1.09 (0.96, 1.25) 0.16 0 – – – –

3 0.95 (0.82, 1.11) 69 4 0.85 (0.62, 1.17) 69 0.515 0.63 4 0.80 (0.67, 0.95) 0.07 0 – – – –

2 1.00 (0.84, 1.19) 95 5 1.48 (1.26, 1.74) 78 0.001 0.14 1 1.85 (1.12, 3.06) 0.50 4 1.17 (1.01, 1.36) 0.20 0.086

3 1.08 (0.93, 1.25) 63 2 1.09 (0.80, 1.50) 86 0.924 0.15 3 1.08 (0.93, 1.25) 0.12 2 1.09 (0.80, 1.50) 0.15 0.924

amount of information summary estimates¶ consistency concerns about validity#

Cases Controls Total n‡ Info§ Per-allele OR & 95% CI I2 & 95% CI Non FPA Ethn HWE Het

8839 51105 59944 23 709 1.02 (0.91, 1.15) 22 (0, 53) ○ ○ ◐ ○ ○

7239 47129 54368 13 1109 1.05 (0.96, 1.12) 14 (0, 53) ○ ● ◐ ○ ○

25428 33041 58469 79 1033 1.02 (0.96, 1.08) 41 (23, 55) ○ ○ ● ○ ●

4516 12190 16706 8 888 1.02 (0.91, 1.22) 47 (0, 76) ○ ◐ ◐ ○ ○

5406 2991 8397 8 630 0.93 (0.69, 1.22) 63 (20, 83) ○ ◐ ● ○ ●

4062 4962 9024 10 244 1.04 (0.82, 1.31) 42 (0, 72) ○ ○ ○ ○ ○

coronary event.
the rare allele, calculated under HWE where 3 × 2 data unavailable; n‡ - Number of studies included in meta-analysis; Info§ - Amount of 
additive (per-allele) odds ratios from a random-effects meta-regression accounting for study sample size (see Methods); Validity# - 
effects, Het, moderate/high between-study heterogeneity, Ethn, difference in results between White/East Asian studies, HWE, 
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Discussion

The HuGENet roadmap has encouraged preparation of cumulative overviews of 
genetic association studies of various complex disease outcomes in order to “iden-
tify gaps, avoid wasteful duplication, and promote translation” of emerging knowl-
edge in genetic epidemiology (51). In this chapter, we have presented such a synopsis 
in relation to CHD, a condition that may involve one of the largest evidence bases in 
relation to both candidate genes and genome-wide studies of any complex outcome.

After making allowances for the potential impact of study size, the e2/e3/e4 var-
iant of the APOE gene was the only susceptibility locus among the several dozen 
candidate genes reviewed here that showed convincing evidence of associations 
with CHD. A recent systematic review of APOE genotypes involved tabular data 
from authors of available studies as well as from previously unreported studies. It 
reported approximately linear associations of APOE genotypes with low-density 

Table 19.2 Continued

Biological 
pathway

Model* meta-analysis model

report genetic variant fixed† random consistency

 
Author Year Gene Variant n  OR 95% CI OR 95% CI I2 95% CI

Renin-angiotensin

Morgan 2003 ACE I/D 40 Recessive 1.15 (1.09, 1.21) 1.24 (1.13, 1.37) 60 (44, 72)

Xu 2007 AGT M235T 41 Per-allele 1.05 (1.01, 1.09) 1.10 (1.03, 1.17) 56 (37, 69)

Xu 2007 AGT T174M 16 Per-allele 1.03 (0.96, 1.10) 1.09 (0.96, 1.24) 54 (19, 74)

Casas 2006 NOS3 E298D 40 Per-allele 1.10 (1.05, 1.15) 1.17 (1.07, 1.28) 69 (57, 77)

Casas 2006 NOS3 T-786C 21 Per-allele 1.13 (1.07, 1.19) 1.16 (1.06, 1.28) 64 (42, 77)

Casas 2006 NOS3 Intron 4 30 Per-allele 1.10 (1.03, 1.17) 1.13 (1.02, 1.25) 57 (35, 71)

Ntzani 2007 AGT1R A1166C 25 Per-allele 1.04 (1.00, 1.08) 1.12 (1.03, 1.22) 62 (41, 75)

Hemostasis

Ye 2006 Factor V R506Q 57 Per-allele 1.17 (1.06, 1.28) 1.21 (1.08, 1.36) 15 (0, 40)

Ye 2006 ITGB3/
GPIIIa

P1A1/A2 44 Per-allele 0.99 (0.94, 1.04) 1.02 (0.93, 1.12) 60 (45, 72)

Ye 2006 Factor II G20210A 32 Per-allele 1.28 (1.08, 1.51) 1.36 (1.10, 1.69) 28 (0, 53)

Ye 2006 PAI-1 4G/5G 35 Per-allele 1.05 (1.01, 1.09) 1.08 (1.01, 1.15) 57 (37, 71)

Ye 2006 Factor VII R353Q 24 Per-allele 0.98 (0.91, 1.05) 0.98 (0.91, 1.05) 0 (0, 45)

Ye 2006 GPIa C807T 15 Per-allele 1.03 (0.97, 1.08) 1.04 (0.96, 1.13) 47 (2, 71)

Ye 2006 GPIba T-5C 13 Per-allele 1.05 (0.96, 1.15) 1.03 (0.90, 1.17) 39 (0, 68)

Keavney 2006 FGB G-455A 20 Per-allele 1.00 (0.95, 1.04) 0.99 (0.93, 1.05) 25 (0, 57)

Voko 2007 Factor XIII V34L 16 Per-allele 0.93 (0.87, 0.99) 0.86 (0.76, 0.96) 65 (40, 79)

Others

van der A 2006 HFE C282Y 23 Dominant 1.02 (0.95, 1.10) 1.02 (0.93, 1.13) 22 (0, 53)

van der A 2006 HFE H63D 13 Dominant 1.04 (0.98, 1.11) 1.03 (0.96, 1.10) 14 (0, 53)

Lewis 2005 MTHFR C677T 79 Homozygote 1.11 (1.05, 1.18) 1.15 (1.05, 1.27) 41 (23, 55)

Kjaergaard 2007 ESR1 T-397C 8 Per-allele 1.01 (0.95, 1.08) 1.06 (0.95, 1.17) 47 (0, 76)

Di Castelnuovo 2008 CYBA C242T 8 Per-allele 0.97 (0.90, 1.05) 0.98 (0.85, 1.13) 63 (20, 83)

 Zafarmand 2008 ADRB3 W64R 10 Dominant 1.08 (0.95, 1.22) 1.10 (0.92, 1.31) 42 (0, 72)

Fixed-effect meta-analysis used unless stated.
Model* - Genetic model used (per-allele where data allow); Fixed† - Summary odds ratio and 95% confi dence interval from frequentist

chi-squared test for signifi cant between-subgroup heterogeneity.
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lipoprotein cholesterol levels and with coronary risk (11). This meta-analysis also 
reported striking discrepancies in odds ratios for CHD between the larger studies of 
APOE genotypes (at least 500 cases) and the smaller studies (fewer than 500 cases), 
with inclusion of the smaller studies resulting in overestimation of the relevance 
of the e4 variant and obscuring the relevance of the e2 variant. Interim guidelines 
for assessing the strength of evidence from association studies have been published 
recently, proposing a “semi-quantitative index” to class epidemiologic evidence into 
strong, moderate, or weak categories (9). Despite the large amounts of evidence 
compiled for many variants with CHD, heterogeneity between studies, a lack of 
replication, and concerns about biases—particularly about publication bias—would 
give all candidate genes other than APOE a “weak” grading.

Several conclusions can be derived from this analysis of data on candidate vari-
ants in CHD. The size of any realistic effects of any particular variant in CHD is 
likely to be much more moderate than initially anticipated, as demonstrated by the 

study size participant ethnicity

larger‡ smaller x2 harbord white east Asian x2

n OR 95% CI I2 n OR 95% CI I2 p# p n OR 95% CI Freq n OR 95% CI Freq p§

7 1.08 (1.01, 1.15) 0 33 1.27 (1.17, 1.38) 62 0.002 0.007 24 1.16 (1.08, 1.24) 0.52 7 1.52 (1.22, 1.89) 0.35 0.022

4 0.98 (0.93, 1.04) 0 37 1.12 (1.06, 1.18) 54 0.001 0.03 14 1.07 (1.02, 1.14) 0.42 12 1.17 (1.05, 1.29) 0.78 0.181

4 0.99 (0.91, 1.07) 0 12 1.19 (1.03, 1.38) 60 0.030 0.17 5 1.02 (0.92, 1.14) 0.13 6 1.02 (0.84, 1.24) 0.10 0.991

11 0.99 (0.93, 1.06) 65 29 1.24 (1.16, 1.33) 61 <0.001 0.008 21 1.06 (1.01, 1.12) 0.33 11 1.16 (1.01, 1.32) 0.08 0.229

9 1.07 (1.00, 1.14) 61 12 1.26 (1.15, 1.37) 58 0.004 0.15 10 1.10 (1.03, 1.18) 0.39 6 1.13 (1.03, 1.24) 0.10 0.678

9 1.08 (0.99, 1.17) 68 21 1.13 (1.02, 1.24) 52 0.494 0.20 14 1.09 (1.01, 1.18) 0.14 10 1.07 (0.94, 1.23) 0.12 0.870

5 0.98 (0.93, 1.03) 0 20 1.20 (1.11, 1.29) 56 <0.001 0.04 15 1.12 (1.05, 1.19) 0.28 2 1.47 (0.88, 2.44) 0.06 0.299

10 1.06 (0.93, 1.20) 28 43 1.31 (1.14, 1.50) 3 0.026 0.01 28 1.25 (1.09, 1.43) 0.02 1 2.82 (0.63, 12.7) 0.00 0.291

8 0.98 (0.92, 1.05) 0 34 1.00 (0.93, 1.09) 67 0.644 0.39 31 0.98 (0.92, 1.04) 0.15 1 3.09 (0.32, 29.9) 0.01 0.320

9 1.02 (0.81, 1.28) 6 23 1.69 (1.31, 2.18) 15 0.004 0.03 17 1.19 (0.96, 1.47) 0.01 0 – – – –

8 1.02 (0.97, 1.07) 17 27 1.10 (1.04, 1.17) 61 0.049 0.05 22 1.05 (1.00, 1.10) 0.49 7 1.04 (0.94, 1.15) 0.61 0.873

6 1.02 (0.93, 1.11) 0 18 0.92 (0.82, 1.03) 0 0.171 0.18 16 1.00 (0.92, 1.08) 0.13 5 0.90 (0.72, 1.14) 0.07 0.434

4 0.99 (0.92, 1.07) 10 11 1.07 (0.99, 1.16) 52 0.167 0.35 9 1.01 (0.95, 1.08) 0.38 4 1.05 (0.94, 1.18) 0.37 0.578

4 1.08 (0.97, 1.22) 0 9 1.00 (0.86, 1.15) 54 0.375 0.29 7 1.08 (0.97, 1.19) 0.12 3 1.08 (0.86, 1.35) 0.15 0.996

8 1.00 (0.95, 1.05) 0 12 0.99 (0.90, 1.09) 47 0.916 0.79 8 0.96 (0.90, 1.04) 0.20 3 1.07 (0.87, 1.31) 0.14 0.369

4 1.03 (0.95, 1.12) 0 12 0.81 (0.73, 0.89) 61 <0.001 0.002 10 0.98 (0.92, 1.06) 0.23 0 – – – –

12 1.02 (0.95, 1.10) 7 11 1.01 (0.80, 1.28) 39 0.933 0.63 14 1.03 (0.95, 1.12) 0.06 0 – – – –

8 1.06 (1.00, 1.13) 0 5 0.85 (0.69, 1.05) 0 0.048 0.008 8 1.06 (1.00, 1.14) 0.14 0 – – – –

17 1.07 (0.98, 1.16) 37 62 1.17 (1.07, 1.28) 42 0.128 0.10 29 1.01 (0.92, 1.11) 0.36 16 1.25 (1.07, 1.46) 0.35 0.024

5 0.98 (0.91, 1.06) 18 3 1.16 (1.00, 1.34) 55 0.050 0.007 6 1.01 (0.94, 1.09) 0.45 0 – – – –

4 0.97 (0.89, 1.04) 64 4 1.01 (0.82, 1.24) 71 0.693 0.99 3 1.04 (0.94, 1.15) 0.34 3 0.78 (0.67, 0.90) 0.12 0.001

4 1.05 (0.90, 1.23) 53 6 1.11 (0.90, 1.37) 43 0.686 0.44 3 0.92 (0.76, 1.11) 0.08 4 1.06 (0.81, 1.37) 0.12 0.411

fi xed-effect meta-analysis using original model; Larger‡ - Results from larger studies defi ned as ≥500 cases or ≥1,000 participants; p§ - p value from a 



Table 19.3 Characteristics of studies allowing assessment of susceptibility to bias

Biological 
pathway

Gene Variant genotyping study population review 
methods

 
report hwe blinded study design control source Review

Author Year   Dev* n† OR OR % Yes‡ No§ Retro¶ Prosp# Popn** Other†† Corr‡‡ Sys§§

Lipids

Bennet 2007 APOE e4 12 103 1.18 1.19 −0.8 37 63 87 21 51 32 Y Y

Bennet 2007 APOE e2 7 103 0.90 0.91 1 37 63 87 21 51 32 Y Y

Sagoo 2008 LPL N291S 1 15 1.07 1.11 3.7 10 11 16 5 16 5 Y Y

Sagoo 2008 LPL S447X 1 21 0.84 0.83 1 10 16 22 4 17 9 Y Y

Sagoo 2008 LPL D9N 2 17 1.33 1.36 2.3 10 11 17 4 14 7 Y Y

Sagoo 2008 LPL PvuII 1 18 0.97 0.98 1.0 6 12 18 0 6 11 Y Y

Sagoo 2008 LPL T-93G 1 6 1.22 1.21 0.8 1 6 7 0 3 4 Y Y

Sagoo 2008 LPL HindIII 1 22 0.89 0.89 0 6 17 22 1 13 8 Y Y

Sagoo 2008 LPL G188E 0 1 2.80 – – 0 3 3 0 3 0 Y Y

Lawlor 2004 PON1 Q192R 4 38 1.16 1.14 1.7 10 28 33 5 12 26 N Y

Wheeler 2004 PON1 L55M 2 19 0.96 0.97 1.0 2 18 18 2 5 15 Y Y

Wheeler 2004 PON1 T-107C 1 4 1.05 1.11 5.7 1 3 4 0 1 3 Y Y

Wheeler 2004 PON2 S311C 1 7 1.02 1.08 5.9 0 7 7 0 3 4 Y Y

Boekholdt 2005 CETP TaqIB 1 7 0.88 0.88 0 3 4 3 4 6 1 Y Y¶¶

Chiodini 2003 APOB SpIns/Del 1 19 1.09 1.11 1.8 5 14 19 0 11 8 N Y##

Chiodini 2003 APOB XBaI 1 19 1.13 1.14 0.9 2 17 19 0 11 8 N Y##

Chiodini 2003 APOB EcoRI 1 13 1.36 1.31 3.7 2 12 14 0 8 6 N Y##



Infl ammation

Sie 2006 IL6 G-174C 0 8 1.05 – – 3 5 5 3 6 2 N Y¶¶

Clarke 2006 LTA 909253 0 5 1.10 – – 3 2 5 0 2 3 N N

Koch 2008 THBS4 A387P 0 8 1.05 – – 3 5 6 2 6 2 N Y¶¶

Koch 2008 THBS1 N700S 0 5 1.07 – – 3 2 5 0 4 1 N Y¶¶

Koch 2008 THBS2 T3949G 0 4 0.98 – – 2 2 4 0 3 1 N Y¶¶

Pereira 2007 TNF-alpha G-308A 0 14 1.07 – – 5 12 16 0 10 7 Y Y##

Koch 2006 TLR4 D299G 1 4 0.90 0.94 4.4 1 6 6 1 4 3 N N¶¶

Abilleira 2006 MMP3 5A/6A 2 6 1.38 1.41 2.2 2 5 7 0 2 5 N Y

Abilleira 2006 MMP9 C-1562T 1 5 1.18 1.29 9.3 1 4 5 0 0 5 N Y

Renin-angiotensin

Morgan 2003 ACE I/D 7 36 1.24 1.22 1.6 15 25 39 1 21 19 N Y

Xu 2007 AGT M235T 6 41 1.10 1.07 2.7 8 33 38 3 18 23 N Y

Xu 2007 AGT T174M 0 16 1.09 – – 2 14 16 0 7 9 N Y

Casas 2006 NOS3 E298D 2 40 1.17 1.19 1.7 20 20 36 2 18 22 Y Y

Casas 2006 NOS3 T-786C 0 21 1.16 – – 12 9 20 1 13 8 Y Y

Casas 2006 NOS3 Intron 4 2 30 1.13 1.15 1.8 12 18 28 1 13 17 Y Y

Ntzani 2007 AGT1R A1166C 3 25 1.12 1.12 0 13 12 22 3 16 9 Y Y

Hemostasis

Ye 2006 Factor V R506Q 1 57 1.21 1.21 0 26 31 51 4 34 23 Y Y

Ye 2006 ITGB3/
GPIIIa

P1A1/A2 5 44 1.02 1.06 3.9 18 26 42 2 18 26 Y Y

Ye 2006 Factor II G20210A 2 32 1.36 1.41 3.7 16 16 34 2 22 16 Y Y

Ye 2006 PAI-1 4G/5G 7 35 1.08 1.06 1.9 13 22 30 3 18 17 Y Y

Ye 2006 Factor VII R353Q 3 24 0.98 0.97 1.0 12 12 22 2 11 13 Y Y

(Continued)



Table 19.3 Continued

Biological 
pathway

Gene Variant genotyping study population review 
methods

 
report hwe blinded study design control source Review

Author Year   Dev* n† OR OR % Yes‡ No§ Retro¶ Prosp# Popn** Other†† Corr‡‡ Sys§§

Ye 2006 GPIa C807T 4 15 1.04 0.99 4.8 5 10 14 1 6 9 Y Y

Ye 2006 GPIba T-5C 2 13 1.03 1.09 5.8 6 7 13 0 3 10 Y Y

Keavney 2006 FGB G-455A 2 20 0.99 1.01 2.0 6 14 15 3 13 7 Y Y

Voko 2007 Factor XIII V34L 0 16 0.86 – – 6 10 15 0 9 7 N Y

Others

van der A 2006 HFE C282Y 1 14 1.02 1.03 1.0 7 16 15 6 13 10 N Y¶¶

van der A 2006 HFE H63D 1 9 1.03 1.05 1.9 2 11 10 2 7 6 N Y¶¶

Lewis 2005 MTHFR C677T 5 73 1.16 1.17 0.9 19 61 74 4 37 43 Y Y

Kjaergaard 2007 ESR1 T-397C 0 8 1.06 – – 1 9 4 4 4 4 Y Y

Di Castelnuovo 2008 CYBA C242T 1 8 0.97 0.99 2.1 2 6 8 0 3 5 N Y

 Zafarmand 2008 ADRB3 W64R 1 9 1.10 1.05 4.5 1 9 8 2 3 7 N Y

Dev* - Number of studies where controls deviate (p < 0.05) from Hardy-Weinberg equilibrium; n† - Number of studies in which deviation from HWE could be assessed; OR - Summary 
odds ratio with HWE-deviating studies excluded; % - Percentage change in odds ratio once HWE-deviating studies are excluded; Yes‡ - Number of studies which reported blinded genotyp-
ing; No§ - Number of studies where blinding was not used or not reported; Retro¶ - Studies using a retrospective (case-control/cross-sectional) design; Prosp# - Studies using a prospective 
cohort (or nested case-control) design; Popn** - Studies where controls were drawn from disease-free population samples; Other†† - Other control sources, for example, hospital or angiog-
raphy clinic; Corr‡‡ - Review where correspondence with authors was used to obtain data; Sys§§ - Reviews where a systematic review approach was reportedly taken; Y/N¶¶ - Restricted to 
White/European studies only; Y## - Restricted to retrospective studies only.
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per-allele odds ratio in this review, which for most variants ranged from about 0.9 to 
1.2. It may be that some of these inconclusively studied variants have real but only 
modest associations with CHD. This residual uncertainty, despite years of investi-
gation in small-to-moderate sized studies, implies the need for research strategies 
that enable the reliable assessment of moderate effects. There is, in particular, the 
need for studies that can minimize random error (by inclusion of much larger num-
ber of CHD cases and controls than hitherto), reporting biases (by conduct of very 
large individual studies or by analyses in prespecifi ed consortia of smaller stud-
ies), and genotyping errors (by application of rigorous assay methods and labora-
tory approaches, such as mixing samples from cases and controls in assay plates, 
masking laboratory technicians to the samples’ case-control status and reporting 
genotyping call rates).

The seven GWAS of clinical coronary outcomes published by January 2009 have 
generally been conducted in populations of Northern European ancestry (Table 
19.4). These studies have involved between 94 and 1,926 coronary cases, some pro-
viding adequate power to detect odds ratios of 1.5 or larger but not to detect more 
moderate odds ratios. As initial GWAS in CHD reported on loci with odds ratios 
less than 1.5 (notably the 9p21.3 locus: Figure 19.1), it suggests that several (perhaps 
many) additional loci with effects of similar magnitude remain undetected and await 
discovery. Similar considerations apply to the evaluation of less common genetic 
variants, as acknowledged in the WTCCC report: “even with 2,000 cases and 3,000 
controls, adequate power is restricted to common variants of relatively large effect” 
and “given the likely distribution of effect sizes for most complex traits, there are 
strong grounds for prosecution of GWA studies on an even larger scale than ours” 
(34). Combined analysis of data from the WTCCC and the German MI Family stud-
ies (involving a total of 2,801 coronary cases) suggested possible associations with 
a further four loci not detected in either study separately, reinforcing how greater 
power can enhance discovery (39). Other variants, such as those seen at 16q23 and 
6q25.1, have been replicated in at least one independent sample and require fur-
ther investigation. As the numbers of SNPs assessed continues to increase, the shar-
ing of fi ndings and datasets by investigators will enable more rapid validation. For 
example, the lack of association at the 9p21.3 locus in the Japanese OACIS study 
(38) may be an indication that the association varies between populations, although 
without access to full details of the SNPs genotyped it is not possible to determine if 
this region was adequately covered in the study.

The current review was limited by inclusion of only candidate variants that had 
already been studied in a meta-analysis, although our database searches identifi ed 
fewer than 20 further candidate variants in CHD that had been investigated in at 
least fi ve individual studies. As the genetic and genomic epidemiology of CHD is a 
particularly rapidly moving fi eld, bespoke fi eld synopses can become quickly out-
dated, arguing for the creation of publicly accessible electronic systems that enable 
rapid (and, to some extent, automated) updating and searching methods to pro-
vide summaries of the available evidence. An early exemplar of such an approach 
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Table 19.4 Summary of genome-wide association studies of over 10,000 SNPs in CHD

Initial genome-wide studies

Study Location Cases Controls Outcome SNPs* Threshold† Hits‡ Locus p Study

WTCCC 
(34,39)

UK 1,926 2,938 CHD 392,975 p < 0.001 
& FPRP<0.5

9 WTCCC hits 
replicated with 
German MI study

German 
MI Family 
Study (39)

Germany 875 1,644 MI with 
FH

272,602 – – Combined 
analysis of 
both GWAS

deCODE 
(35)

Iceland 1,607 6,728 MI 305,593 None
Top hit 
only

1 Icelandic B

Atlanta

Philadelphia

Durham

Ottawa 
Heart Study 
(37)

Canada 322 312 Severe 
CHD

72,864 P < 0.025 2,586 Ottawa Heart 
Study 2

ARIC

CCHS

Dallas Heart 
Study

Ottawa Heart 
Study 3

Framingham 
(36)

USA 118 1,227 Major 
CHD

70,987 P < 10–5 1 16q23
(9p21.3

9.7 × 10–6

2.5×10–4)
–

OACIS (38) Japan 94 658 MI 65,671 P < 0.01 ≥773 OACIS 
replication

Celera (40) USA 340 346 MI 11,053 P < 0.05 637 Celera 2

Celera 3

            

Abbreviations: WTCCC - Wellcome Trust Case-Control Consortium; OACIS - Osaka Acute Coronary Insuffi ciency Study; 
history; CAD, coronary artery disease; IHD - ischemic heart disease; FDR - false-discovery rate; SNP - single nucleotide 
SNPs* - Number of SNPs that passed error-checking stages; Threshold† - Signifi cance threshold for genotyping in replication 
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Replication studies

Location Cases Controls Outcome SNPs* Threshold† Hits‡ Locus p Per-allele OR§

p < 0.05 3 9p21.3 6.8 × 10–6 1.33 (1.18, 1.51)

6q25.1 1 × 10–3 1.24 (1.09, 1.41)

2q36.3 4 × 10–3 1.20 (1.06, 1.35)

Joint p < 1.3 
× 10×-6 & 
FPRP<0.2

4 1p13.3 4.1 × 10–9 1.29 (1.18, 1.40)

1q41 1.3 × 10–6 1.20 (1.12, 1.30)

10q11.21 9.5 × 10–8 1.33 (1.20, 1.48)

15q22.33 1.2 × 10–7 1.21 (1.13, 1.30)

Iceland 665 3,533 MI 3− 1 9p21.3 1.4 × 10–5 1.31 (1.16, 1.47)

USA 596 1,284 MI MI 9p21.3 1.5 × 10–4 1.31 (1.14, 1.50)

USA 582 504 MI 3 9p21.3 1.9 × 10–4 1.38 (1.17, 1.64)

USA 1,137 718 MI 3 9p21.3 2.7 × 10–4 1.28 (1.12, 1.46)

Canada 311 326 Severe CHD 2,586 p < 0.025 50

USA 1,347 9,054 Incident CHD 50 p < 0.025 1 9p21.3 4 × 10–3 1.16 (1.06, 1.28)

Denmark 1,525 9,053 Incident IHD 2 – 9p21.3 4 × 10–4 1.17 (1.08, 1.26)

USA 154 527 CAD 2 – 9p21.3 2.5 × 10–2 1.34 (1.04, 1.74)

Canada 647 847 CHD 2 – 9p21.3 3 × 10–4 1.41 (1.21, 1.64)

Japan 1,133 1,878 MI >773 Unknown 1 6p21 3.3 × 10–6 1.21 (1.09, 1.35)

USA 445 606 MI 637 p < 0.05 30

USA 560 891 MI 31 p < 0.05 & 5 4q32 2.8 × 10–3 1.25 (1.10, 1.43)

FDR < 0.1 6q22 6.7 × 10–3 1.23 (1.06, 1.42)

12p13 1.8 × 10–3 1.28 (1.11, 1.46)

1q44 1.3 × 10–2 1.19 (1.05, 1.36)

       19p13.2 3.4 × 10–3 1.25 (1.09, 1.44)

ARIC - Atherosclerosis Risk in Communities; CCHS - Copenhagen City Heart Study; MI - myocardial infarction; FH - family 
polymorphism; FPRP, false positive report probability.
study; Hits‡ - Number of loci reaching threshold; Per-allele OR§ - Per-allele odds ratio with 95% confi dence interval.
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has been the AlzGene database (52), which collects data on all genetic association 
studies with Alzheimer disease outcomes and produces crude, up-to-date meta-
analyses, enabling cumulative assessment of the state of the evidence of variants 
investigated in at least four separate studies. A number of other examples of such 
synopses have also been created, including SzGene for schizophrenia (www.szgene.
org) (53), PDGene for Parkinson disease (www.pdgene.org), and Episat for DNA 
repair gene variants and cancer (www.episat.org) (54). Such resources may be useful 
for researchers (e.g., to prioritize hypotheses for new genotyping and to help con-
trol publication bias) and funding agencies (e.g., to optimize the use of resources). 
Following this successful example, we are in the process of developing “CHDGene” 
as such a resource for those interested in the genetic epidemiology of cardiovascular 
disease.

CCHS - Copenhagen City Heart Study; OHS - Ottawa Heart Study; DHS - Dallas Heart Study; LMDS - Left Main 
Disease Study; NPHS2 - Northwick Park Heart Study 2; WTCCC - Wellcome Trust Case-Control Consortium; PHS - 
Physicians’ Health Study; ARIC - Atherosclerosis Risk In Communities.

Figure 19.1 Random-effects meta-analysis of per-allele odds ratios from SNPs at locus 
9p21.3. 
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Introduction

As is the case for most of the other phenotypes described in this part of the book, 
efforts to identify the genes that modulate the risk for schizophrenia (SZ) have met 
with only limited success. This is at least in part due to problems that aggravate 
epidemiologic research in many psychiatric diseases, for example, a considerable 
degree of phenotypic variability and diagnostic uncertainty, the lack of extended 
pedigrees with Mendelian inheritance, and the absence of defi nitive disease-specifi c 
neuropathological features or biomarkers (1). The identifi cation of susceptibility 
genes is further complicated by gene–gene interactions that are diffi cult to predict 
and model, and a likely substantial but diffi cult to detect, environmental component. 
Notwithstanding these challenges, several chromosomal regions thought to harbor 
SZ genes have been identifi ed via whole genome linkage analyses, a few overlap-
ping across different samples (2,3). In the search for the genes putatively underly-
ing these and other chromosomal regions, over 1,300 SZ “candidate gene” studies 
have been published over the past two decades claiming or refuting genetic associa-
tion between certain alleles and affection status and/or certain endophenotypes (4). 
Currently, more than 150 SZ genetic association papers are published each year, 
at an ever-increasing pace (5). Despite these tremendous efforts, no single gene or 
genetic variant has yet been established as a bona fi de SZ gene, at least not with the 
confi dence attributed to other complex disease genes, such as APOE in Alzheimer 
disease (6) or CFH in macular degeneration (7). For geneticists as well as clinicians, 
the growing number of (mostly confl icting) genetic fi ndings has become increas-
ingly diffi cult to follow, evaluate, and interpret, calling for a systematic fi eld synop-
sis and online encyclopedia as proposed by the HuGE investigators in 2006 (8).

Field Synopsis and Online Encyclopedia: The SzGene 
Database

In 2006 our group in collaboration with the Schizophrenia Research Forum started 
building a publicly available database, “SzGene” (http://www.szgene.org), which 
systematically collects, summarizes, and meta-analyzes all genetic association 
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studies published in the fi eld of SZ, including genome-wide association studies 
(GWAS) (4). After thorough and still ongoing searches of the available scientifi c 
literature, key variables are extracted from original publications and summarized 
on the SzGene web site. Furthermore, if published genotype data are available 
from at least four independent case-control studies, they are subjected to random 
effects meta- analyses of study-level allelic odds ratios (ORs). As of October 1, 2008, 
SzGene includes over 1,300 individual studies, and showcases the results of over 
150 meta-analyses. In these, 27 genes show nominally signifi cant risk effects in a 
recent freeze of the database content (Table 20.1). The average allelic summary ORs 
are generally very modest, that is ~1.2 (range: 1.06–1.63) for “risk” alleles, and ~0.8 
(range: 0.69–0.94) for “protective” alleles, compared to an OR of ~3–4 for a single 
copy of the APOE ε4-allele in Alzheimer disease (6). These modest effect sizes are 
in good agreement with those found in other large-scale studies on the genetics of 
complex diseases (6,9,10), and have important (and well-known) implications for the 
design of future genetic association studies in SZ, as sample sizes will need to be 
vastly increased in order to detect or exclude ORs of 1.5 or below with suffi cient 
confi dence. For instance, to detect an allelic OR of 1.25 with 80% power at a p-value 
of 0.05, sample sizes between ~1,400 and 6,000 combined cases and controls are 
needed for disease allele frequencies ranging from 0.50 to 0.05, respectively (based 
on calculations using the tools described in References 11 and 12). Sample sizes 
need to be increased approximately fi vefold to detect such modest effects with the 
same power at p-values below 5 × 10–8, which is one threshold that has been pro-
posed for declaring genome-wide signifi cance (13,14).

Summary of SzGene Methods

SzGene was modeled after a database developed earlier by our research group 
for the systematic annotation and meta-analysis of genetic association studies in 
Alzheimer disease (“AlzGene”) (6). AlzGene was the fi rst systematic and continu-
ously updated fi eld synopsis of any genetically complex disease. The corresponding 
web site (http://www.alzgene.org) was fi rst launched in July of 2004 and included 
detailed summaries of ~150 publications for approximately 20 genes. Current 
AlzGene statistics exceed 1,100 publications and 550 genes/loci. From these fi g-
ures it becomes clear that the “engine” underlying AlzGene, SzGene, and related 
databases are the ongoing literature searches for publications eligible for inclusion.
Studies are considered eligible if: (a) they represent genetic association studies, 
(b) they are published in a peer-reviewed journal, and (c) they are published in English. 
Clearly, these criteria are arbitrary and nonexhaustive and therefore may lead to bias 
in the resulting meta-analyses (e.g., because data presented at scientifi c meetings or 
published in a language other than English are ignored). However, to the degree that 
it can be detected, we found no evidence that this strategy, which could lead to the 
exclusion of a disproportionate amount of “negative” data, resulted in any signifi -
cant bias, at least not in the majority of meta-analyses with a nominally signifi cant 



Table 20.1 SzGene “Top Results” (current on October 1, 2008)

Locus/Gene Polymorphism SzGene OR (95% CI)* p-value* # SZ Cases # Controls # Samples† Ethnicity

AKT1 rs2494732 1.09 (1.00–1.18) 0.05 4,194 4,416 6 ALL

APOE ε2/3/4‡ 1.16 (1.01–1.33) 0.04 1,563 3,003 16 CAU

DAO rs4623951 0.88 (0.79–0.98) 0.03 1,509 1,521 4 ALL

DAOA rs3916971 0.84 (0.73–0.96) 0.01 844 922 4 ALL

DRD1 rs4532 1.18 (1.01–1.38) 0.04 725 1,075 5 ALL

DRD2 rs6277 1.34 (1.07–1.68) 0.01 2,653 3,262 5 CAU

DRD4 120-bp TR 0.81 (0.7–0.94) 0.005 1,236 1,199 4 ALL

DTNBP1 rs1011313 1.12 (1.01–1.25) 0.03 5,319 5,454 11 CAU

GABRB2 rs6556547 0.70 (0.52–0.95) 0.02 774 620 3 CAU

GRIN2B rs1019385 0.69 (0.54–0.88) 0.003 502 466 4 ALL

HP Hp1/2 0.88 (0.8–0.98) 0.02 1,346 2,018 6 ALL

GWA_11p14.1 rs1602565 1.19 (1.08–1.31) 0.0007 5,475 10,845 7 CAU

GWA_16p13.12 rs7192086 1.12 (1.06–1.18) 0.00003 7,179 12,623 9 ALL

HTR2A rs6311 1.16 (1.01–1.33) 0.03 2,678 2,964 8 ALL

IL1B rs16944 0.84 (0.74–0 96) 0.01 882 1,295 5 CAU

MTHFR rs1801133 1.14 (1.03–1.25) 0.009 2,529 4,068 16 ALL

NRG1 rs10503929 0.87 (0.79–0.97) 0.009 2,524 2,797 4 ALL



PLXNA2 rs1327175 0.76 (0.58–0 99) 0.04 1,711 1,770 7 ALL

OPCML rs3016384 0.93 (0.87–0 99) 0.02 7,187 12,675 9 ALL

PPP3CC rs2461491 1.06 (1.01–1.12) 0.02 5,991 5,960 5 ALL

RELN rs7341475 0.86 (0.79–0.95) 0.003 2,594 6,587 4 CAU

RGS4 rs2661319 0.94 (0.89–0.99) 0.01 7,765 8,629 12 ALL

TP53 rs1042522 1.13 (1.01–1.26) 0.03 1,418 1,410 5 ALL

RPGRIP1L rs9922369 1.30 (1.04–1.63) 0.02 5,473 10,823 7 CAU

SLC18A1 rs2270641 1.63 (1.03–2.57) 0.04 759 885 4 ALL

TPH1 rs1800532 1.25 (1.08–1.44) 0.002 1,239 1,708 6 ALL

ZNF804A rs1344706 0.89 (0.84–0.95) 0.0005 7,183 12,663 9 ALL

List of loci containing at least one polymorphism showing nominally signifi cant (p-value ≤0.05) summary ORs in SzGene on October 1, 2008. To be considered as 
“Top Result,” summary OR needs to be signifi cant across samples from all ethnic backgrounds (“ALL”) or in Caucasians only (“CAU”). Whenever nominally statisti-
cally signifi cant results are observed for both, that is, ALL and CAU, only the analysis that has the largest genetic effect size (OR deviating the most from 1) is reported 
here. Note that SzGene is continuously updated, so results displayed online may differ from the results above; consult the SzGene web site for up-to-date numbers and 
additional meta-analyses in these and other loci (http://www.szgene.org). Shaded loci (DRDI, DTNBPI, MTHFR, and TPHI) showed “strong epidemiologic credibil-
ity” applying recently proposed (17) guidelines in our original SzGene publication (4). Loci prefi xed with “GWA_” were originally identifi ed in a GWAS and have not 
yet been assigned to a specifi c gene.

*Summary ORs, 95% confi dence intervals (CI), and p-values are based on random-effects allelic contrasts comparing minor versus major alleles.
†Number of samples refers to the number of independent case-control samples used in the meta-analyses; multiple samples may be reported in the same publication 

and are considered separately if they are independent, that is, nonoverlapping. Samples overlapping across publications are only used once, usually by including the 
data sets with the largest number of available genotypes.

‡Results are based on comparing ε4- versus ε3-alleles at this locus.
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outcome. For more details on the methods related to the literature searches, data 
management, and statistical procedures, please consult the original SzGene paper 
(4) and the database web site (http://www.szgene.org).

To allow for an unbiased and systematic extraction of demographic variables and 
genotype data from each study, several data management procedures were put into 
place. Full length copies of all papers eligible for inclusion in SzGene are obtained 
and stored offl ine. As a general rule, all applicable data are fi rst entered into an 
offl ine version of the database, where they are double-checked against the original 
publications before any further processing (e.g., meta-analysis and posting on the 
SzGene web site). Each SzGene study entry consists of the name of the fi rst author, 
year of publication, and PubMed ID number, along with key population-specifi c 
details extracted from each study, such as: ascertainment design (family-based or 
case-control), ethnic background and population (i.e., country) of origin, as well as 
sample source (clinic-, population-, or community-based), the number of cases with 
gender ratio, age at onset, age at examination, method of diagnosis, the number of 
controls with gender ratio and age at examination, and the reported study results. 
Whenever possible, NCBI’s “dbSNP” identifi ers (“rs numbers”) were used to des-
ignate polymorphism identities throughout the database. Genotype distributions 
are listed for each polymorphism as provided in the original publication. Whenever 
genotype distributions are not presented in the publication, they are calculated from 
reported allele frequencies and sample sizes (assuming no deviations from HWE 
unless reported otherwise in the original paper). In many instances, authors reported 
genotype data in the same or largely overlapping samples in separately published 
articles. Where such overlap was specifi ed by the authors or suspected overlap was 
confi rmed by the authors, the overlap is indicated and only genotype data from the 
largest cohort is included in SzGene and its meta-analyses.

Statistical analyses in SzGene revolve mainly around the meta-analysis of study-
specifi c ORs. For all variants with minor allele frequencies >0.01 in “healthy” con-
trols and with case-control genotype data available from four or more samples, crude 
study-level ORs and 95% confi dence intervals (CIs) are calculated for each study 
using allelic contrasts (generally, minor vs major allele). Summary ORs and 95% CIs 
are calculated using the DerSimonian and Laird random-effects model (15), which 
utilizes weights that incorporate both the within-study and between-study variance. 
This procedure is fi rst performed on all studies regardless of ethnicity (denoted by 
“All Studies” on the meta-analysis graphs; Figure 20.1c). Summary ORs and 95% 
CIs are also calculated for studies of Caucasian ancestry if three or more such stud-
ies existed (“All Caucasian Studies”). Generally, too few samples of non-Caucasian 
ancestry exist to allow meaningful meta-analyses on non-Caucasian ancestry pop-
ulations. Routine sensitivity analyses include the calculation of summary ORs and 
95% CIs for all studies excluding the initial report (“All Excluding Initial”) and after 
excluding studies violating HWE according to a chi-square test at p ≤ 0.05 (“All Excl 
HWE Deviations”). We also routinely construct funnel plots that depict the ORs (on 
a logarithmic scale) against their standard error for each study (16), and these plots 
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are available online for all variants. Finally, the online version of SzGene maintains 
a continuously updated list of associations that have been evaluated in meta-analyses 
and yield statistically signifi cant results (p < 0.05) in the main analysis of all ethnici-
ties or in studies of Caucasian descent (“Top Results”).

To all “Top Results” we also applied a recently proposed grading scheme to assess 
the strength of the “epidemiologic credibility” of each meta-analysis. This interim 
grading scheme has recently been developed by investigators from HuGENet and 
details on its background are published elsewhere (see also Chapter 4) (17). Briefl y, 
each meta-analyzed association is graded (using grades A to C, where A represents 
the “best” possible grade) based on the: (a) amount of evidence (i.e., sample size), 
(b) consistency of replication (i.e., degree of heterogeneity), and (c) protection from 
bias (e.g., publication bias, loss of signifi cance after exclusion of the initial study). 
Overall epidemiologic credibility is then rated as A, (or “strong,”) if associations 
receive three A grades; as B, (or “moderate,”) if they received any B, but no C; and 
C, (or “weak,”) if they received at least one C grade in any of the three assessment 
criteria (17). Future versions of SzGene will provide a list of “Top Results” rank-
ordered based on the outcome of this (and possibly other) grading assessments.

After completing the data entry, processing, and analysis procedures described 
above, all study-specifi c variables, genotype data, and meta-analysis results 
are posted to the online database version of SzGene. This is written in a server-
side scripting environment (using Microsoft Active Server Pages), and all data is 
stored and managed in Microsoft SQL Server, a relational database management 
system. The online database is hosted by the “Schizophrenia Research Forum,” a 
nonprofi t, internet-based community portal dedicated to furthering collaboration 
among researchers to help in the search for causes, treatments, and understanding 
of schizophrenia. The SzGene site can be accessed via its own designated URLs 
(http://www.szgene.org or http://www.schizophreniagene.org) or directly through 
the Schizophrenia Research Forum (http://www.schizophreniaforum.org/res/scz-
gene/default.asp; see Figure 20.1a for a screenshot of the home page, including an 
expanded list of recent “Top Results”).

The SzGene site is divided into three sections: (i) “Gene-specifi c summary” pages, 
which list all studies and study-specifi c descriptors for any gene included in SzGene 
(Figure 20.1b); (ii) “Polymorphism detail” pages, which list published genotype dis-
tributions for each polymorphism and sample analyzed per study (Figure 20.1c); 
(iii) “Meta-analysis” pages, which provide ethnicity-specifi c pooled genotype distri-
butions (after summation of study-specifi c genotype counts; Figure 20.1d), and forest 
plots based on allele-specifi c random-effects analyses including summary ORs and 
95% CIs for each polymorphism with data available in at least four independent sam-
ples. Each meta-analysis page also provides a link to a polymorphism-specifi c funnel 
plot to allow a visual assessment of publication bias. The SzGene web interface (Figure 
20.1a) can be searched either by gene name or alias (with direct links to the appropri-
ate entries in NCBI’s “EntrezGene,” by protein name or alias (with links to NCBI’s 
“EntrezProtein”), by polymorphism name or alias (with links to NCBI’s “dbSNP”), by 
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Figure 20.1 Example screenshots from SzGene.

(a) SzGene homepage (http://www.szgene.org) with “Top Results” list expanded (current on 
October 1, 2008; for details on these results see Table 20.1).
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name of the fi rst author and year of publication (with links to NCBI’s “PubMed”), or 
by a free-text search. Finally, users can search by chromosomal location, where gene 
symbols are listed according to their approximate location next to cytogenetic images 
of each chromosome. As an experimental addition to these chromosome overviews, 
we have highlighted potential SZ linkage regions as reported by Lewis et al. (3).

First SzGene Results

For the purpose of this summary, the database content was “frozen” on October 1, 
2008, similar to what was done for the original SzGene paper (4). At that time, 1,374 
individual publications reporting on 6,397 genetic variants (or polymorphisms) in 
739 different genes were included, after screening approximately 16,000 titles and 
abstracts (note that the database continues to be regularly updated; therefore, the 
results presented below may differ from those found online).

Of the 6,397 included polymorphisms, 154 variants in 63 genes had suffi cient 
data to warrant meta-analysis (i.e., genotype data available from at least four inde-
pendent case-control samples) on October 1, 2008. On average, these meta-anal-
yses were based on ~7,600 combined cases and controls, originating from seven 

Figure 20.1 Continued.

(b) “Gene summary” page: summarizes key variables of each study published for DRD2 
and eligible for inclusion in SzGene. Note that this screenshot only depicts the top section of 
this page which on June 7, 2008 listed a total of 65 individual publications.
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independent data sets. While 37 of the meta-analyzed variants in 27 genes showed 
nominally signifi cant (p ≤ 0.05) summary ORs (AKT1, APOE, DAO, DAOA, DRD1, 
DRD2, DRD4, DTNBP1, GABRB2, GRIN2B, HP, GWA_11p14.1, GWA_16p13.12, 
HTR2A, IL1B, MTHFR, NRG1, PLXNA2, OPCML, PPP3CC, RELN , RGS4, TP53, 
RPGRIP1L, SLC18A1, TPH1, and ZNF804A; Table 20.1), the vast majority of poly-
morphisms yielded no signifi cant association with SZ risk. However, in only about 
half of all meta-analyses was the combined sample size suffi cient to detect an allelic 
OR of ~1.25 with 80% power (see above), which could have affected both positive 
and negative results. Overall, our systematic approach applied to the SZ genetics lit-
erature nearly doubled the number of meta-analyses published in the fi eld, including 
the detection of signifi cant effects in seven genes (DAO, DRD1, DTNBP1, GABRB2, 

Figure 20.1 Continued.

(c) “Polymorphism details” page: summarizes the genotype distributions for each polymor-
phism and sample investigated by each study (using Dubertret, 2001 as an example).
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HP, PLXNA2, and TP53) that were not meta-analyzed prior to the freeze data of 
the original SzGene publication (4). Finally, application of the HuGENet grading 
scheme (17) to all nominally signifi cant associations of the initial data freeze sug-
gested that variants in at least four genes obtained an overall “A grade,” implying 

Figure 20.1 Continued.

(d) “Meta-analysis” page: shows forest plots for all polymorphisms with suffi cient geno-
type data to warrant meta-analyses (note that for many loci, several polymorphisms had 
suffi cient data and that meta-analyses can be chosen from a pull-down menu; here rs6277 
[Pro319Pro] was chosen as an example).
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that their meta-analysis results showed a strong degree of “epidemiologic credibil-
ity” (i.e., DRD1, DTNBP1, MTHFR, TPH1; Table 20.1 and Reference 4). Thus, at 
least based on these interim criteria, these genes currently appear as the best con-
tenders to harbor genuine susceptibility alleles within the whole domain of genetic 
epidemiology in SZ.

Inclusion of GWAS in SzGene

As described in more detail elsewhere in this book (Chapter 8), recent advances in 
large-scale genotyping technologies now enable researchers to perform comprehensive 
and largely hypothesis-free GWAS. As of July 2008, six groups had reported results 
using this approach in SZ (18–23) (Table 20.2), testing between ~25,000 and ~500,000 
markers in the initial screening phase. The sheer scale of GWAS makes their system-
atic inclusion in SzGene a daunting and computationally demanding task. We have 
devised the following three-stage protocol to capture the most relevant genetic infor-
mation from GWAS without the need to display each data point or result online.

Stage 1 focuses on the inclusion and display of genes and polymorphisms high-
lighted (or “featured”) by the authors of a GWAS (Table 20.2). Usually, these loci 
are emphasized in the original publication because they show some degree of 
genetic association after completion of all analyses, for example, correction for mul-
tiple comparisons and/or replication in multiple independent data sets. Stage 1 data 
represent the core fi ndings of each GWAS, and their inclusion is relatively straight-
forward as the distributions of these genes and polymorphisms are usually readily 
available from the original publication.

Stage 2 makes use of “non-featured” genotypes, that is, of polymorphisms not 
reported as associated with SZ in the original publications, provided the complete 
GWAS data are publicly available. Practically, this entails identifying all markers 
not addressed in Stage 1 for overlap with polymorphisms already included in SzGene 
and including data on their distribution to recalculate the meta-analyses. Note that the 
failure to identify previously proposed candidate gene effects within the setting of a 
GWAS does not necessarily preclude such effects from existing. Rather, this scenario 
could refl ect insuffi cient power due to small sample size. For instance, the combined 
(cases and controls) sample sizes used for GWAS in the fi ve currently published stud-
ies in SZ ranged from ~300 to ~3,500. Thus, none of these studies came even close to 
the minimum sample sizes needed (~7,000 combined cases and controls, see above) 
to detect ORs ~1.25 with 80% power at p-values ≤5 × 10–8.

Stage 3 entails conducting systematic meta-analyses for all variants overlapping 
across independent samples, provided that at least four complete GWAS data sets 
have been made publicly available. Only variants showing genome-wide signifi cant 
summary ORs in these meta-analyses will be displayed on the SzGene web site. 
The threshold for declaring statistical signifi cance in this context will be more 
stringent than for meta-analyses of individual candidate polymorphisms, due to 
the large number of tests performed. Procedures for implementing this stage, and 



Table 20.2 Overview of published GWAS in SZ (current on October 1, 2008)

GWAS Design Population Platform # SNPs Data 
Available?

# SZ Cases* 
(Total)

# Controls* 
(Total)

“Featured” Genes

Mah, 2006 (18) Case-control 
& Family-
based

USA, Australia 
& Other

Customized cSNPs 25,494 No 320 (1,082) 325 (1,123) PLXNA21

Lencz, 2007 (19) Case-control USA Affymetrix (500K) 439,511 No 178 (249) 144 (175) CSF2RA2, IL3RA3

Shifman, 2008 (21) Case-control Israel, USA, EU Affymetrix (500k) 510,552 No 660 (3,015) 2,771 (7,183) RELN4

Kirov, 2008 (20) Family-based Bulgaria Illumina (550K) 43,680 No 574 (n.a.) 1,753 (n.a ) CCDC605, RBP16

Sullivan, 2008 (22) Case-control USA Affymetrix (500K) 
& Perlegen

492,900 Yes† 738 (n.a.) 733 (n.a.) none

O’Donovan, 2008 (23) Case-control Mixed Affymetrix (500K) 362,532 No 479 (6829) 2,937 (9,897) ZNF804A,7 
GWA_11p14.1,8 

GWA_16p13.129

Modifi ed after content on the SzGene web site (http://www.szgene.org) (5); current on October 1, 2008. Studies are listed in order of publication date. “Featured Genes” are those genes/loci 
that were declared as “associated” in the original publication; but criteria for declaring association may vary across studies. Note that the studies by Mah, 2006, Shifman, 2008, and Kirov, 2008 
used pooled genotypes in their initial GWAS analyses.

*Numbers of “SZ Cases” and “Controls” refers to sample sizes used in initial GWAS, whereas “Total” refers to initial sample plus any follow-up samples (where applicable); please consult 
SzGene web site for more details on these studies.

†Original publication states that “individual phenotype and genotype data (has been) made available to the scientifi c community”; application from SzGene curatorial team for access to these 
data is currently pending.

The following URLs are to the respective gene summaries on the database's web site:
1. http://www.schizophreniaforum.org/res/sczgene/geneoverview.asp?geneID=259 
2. http://www.schizophreniaforum.org/res/sczgene/geneoverview.asp?geneID=495
3. http://www.schizophreniaforum.org/res/sczgene/geneoverview.asp?geneID=204
4. http://www.schizophreniaforum.org/res/sczgene/geneoverview.asp?geneID=18
5. http://www.schizophreniaforum.org/res/sczgene/geneoverview.asp?geneID=692
6. http://www.schizophreniaforum.org/res/sczgene/geneoverview.asp?geneID=691
7. http://www.schizophreniaforum.org/res/sczgene/geneoverview.asp?geneID=739
8. http://www.schizophreniaforum.org/res/sczgene/geneoverview.asp?geneID=731
9. http://www.schizophreniaforum.org/res/sczgene/geneoverview.asp?geneID=733
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the defi nition of appropriate threshold criteria are currently being developed by our 
group and by others (24).

Strengths and Limitations of the SzGene Approach

Assuming that the literature searches, inclusion criteria, data management, and data 
analysis procedures work reasonably well and actually provide a correct and exhaus-
tive account of the available literature, SzGene is the single most comprehensive 
resource for the status of genetics research in SZ available to date (see below for 
important limitations to this and the following statements). In our original datafreeze 
(4) we could show that literature searches in SzGene outperformed those of several 
other literature/genetics databases, and that the results of our meta-analyses were in 
very good agreement with those published previously in nearly 80 individual papers. 
Published meta-analyses, however, have one important disadvantage: by nature of 
their design, they run the risk of becoming outdated quickly, possibly as soon as new 
data from one or two additional studies are published. Provided that suffi cient fund-
ing remains available, SzGene does not have this caveat. Any meta-analysis in the 
database can be updated shortly after the publication of new data. Another strength 
of SzGene and related databases is that it is not limited to meta-analyses on cer-
tain genes or networks of genes (e.g., those that are in the same pathway or gene 
family), but considers all published loci simultaneously, making the comparison of 
results across studies, genes, pathways, chromosomal regions, and so on very easy. 
Furthermore, all loci containing at least one polymorphism nominally signifi cant for 
meta-analysis are separately highlighted on the database homepage in a section called 
“Top Results.” Thus, consulting this section of the SzGene web site will provide the 
user with a complete—and essentially real-time—snapshot of the “most promising” 
SZ candidate genes, based on the systematic evaluation of literally hundreds of indi-
vidual studies and thousands of data points. As such, the “Top Results” list could help 
prioritize future genetic association studies (e.g., for further independent replication, 
or fi ne-mapping), and guide functional genomics and molecular studies investigating 
the potential pathogenetic mechanisms underlying the putative genetic associations.

While regularly updated online encyclopedias such as SzGene and related data-
bases drastically facilitate the evaluation and interpretation of genetic association 
data in their respective fi elds, their overall approach, naturally, is not without cave-
ats. First and foremost, despite the comprehensive and systematic searches of the 
scientifi c literature, we cannot exclude the possibility that some association stud-
ies were overlooked or entered erroneously. This can be partly alleviated with the 
help of database users who are explicitly encouraged to alert the curatorial team 
of any errors or omissions, which will be fi xed as soon as possible. Other limita-
tions include our restriction to allele contrasts in the meta-analyses (which allows 
no inference of the true underlying mode of inheritance and is usually less powerful 
than genotype-based tests), the nonconsideration of haplotype-based genotype data 
or imputed single-locus genotypes (possibly missing important associations), the 
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exclusive focus on “main effects” (and the inherent inability to account for gene–
gene and gene–environment interactions), and the lack of adjustment for certain 
covariates such as age and gender (which is impossible to do systematically without 
access to study-level raw data). Furthermore, protection from bias is particularly 
diffi cult to ensure or assess, since latent bias is always possible and no test can have 
very high sensitivity and specifi city for all types of possible biases. Finally, it needs 
to be stressed that the number of “true” associations is almost certainly going to 
be smaller than the number of nominally signifi cant fi ndings listed at any time on 
the SzGene web site (25,26). This has a number of reasons, including multiple test-
ing, linkage disequilibrium among associated variants, undetected publication or 
other reporting biases, as well as study-level technical artifacts that may have gone 
unnoticed or may be impossible to detect. Moreover, most of the “positive” meta-
analysis outcomes in SzGene currently do not reach very high levels of statistical 
signifi cance (see Table 20.1), none even approaching the common thresholds used to 
establish genome-wide signifi cance, for example, a p-value ≤5 × 10–8 (note that this 
is different for the “Top Results” of AlzGene or PDGene [http://www.pdgene.org], 
where several meta-analyses show p-values below 5 × 10–8).

Generally, the possibility of a false-positive meta-analysis fi nding always exists, 
even for the highest ranked “Top Result.” Eventually, genuine risk effects can only 
be proven by the accumulation of suffi cient unbiased genotype data in favor of the 
presumed association in combination with functional genomics and biological evi-
dence suggesting a direct biochemical involvement of the associated variant (13). 
Notwithstanding these limitations, there is good reason to believe that the variants 
and loci highlighted in the “Top Results” section of SzGene and related databases 
currently represent the best bets as to which of the hundreds of putative candidate 
genes might genuinely contribute to disease susceptibility and pathogenesis. As 
such, they probably warrant follow-up with high priority.
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Introduction

Conventional risk factor epidemiology—directly studying environmentally modi-
fi able exposures that may infl uence disease risk—and genetic epidemiology have 
similarities and differences. The case-control design is, for example, more popu-
lar in genetic epidemiology than it currently is in conventional risk factor epide-
miology, and while the importance of sample size is recognized in conventional 
epidemio logy, the huge collaborative ventures currently being undertaken in genetic 
epidemio logy have not been the norm, since special attention has, appropriately, 
been paid to detailed exposure and outcome measurement (1). In genetic epidemiol-
ogy there has recently been much attention paid to false-positive fi ndings gener-
ated by multiple hypothesis testing against a background of inadequate statistical 
power (2,3) whereas in risk factor epidemiology problems generated by confounding 
and bias have been to the forefront (4). In this chapter we deal with Mendelian ran-
domization, a principle that underlies some of the differences between conventional 
risk factor and genetic epidemiology, and also renders genetic epidemiology a use-
ful tool for improving the identifi cation of environmentally modifi able risk factors 
that are causally related to disease outcomes, and therefore targets for therapeutic or 
preventative intervention.

Understanding Environmentally Modifi able Causes of 
Disease: Why We Need New Approaches

Conventional risk factor epidemiology approaches have had major successes in identify-
ing modifi able causes of disease. However, in recent years there have been several high-
profi le cases in which such approaches have appeared to produce misleading fi ndings.

Consider cardiovascular disease, where observational studies suggesting that 
beta-carotene (5), vitamin E supplements (6,7), vitamin C supplements (8), and hor-
mone replacement therapy (9) were protective were followed by large randomized 
controlled trials (RCTs) showing no such protection (10–15). In each case, special 
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pleading was advanced to explain the discrepancy; were the doses of vitamins given 
in the trials too high, too low, or of too short duration to be comparable to the obser-
vational studies (16,17)? Did hormone replacement therapy use start too late in the 
trials (18)? Were differences explained by duration of follow-up or other design 
aspects (19)? Were interactions with other factors such as smoking or alcohol con-
sumption key? Rather than such specifi c—and post hoc—explanations being true 
(with the reassuring conclusion that both the observational studies and the trials had 
got the right answers, but to different questions), it is likely that a general problem of 
confounding—by lifestyle and socioeconomic factors, or by baseline health status 
and prescription policies—is responsible (20–23). Indeed, in the vitamin E supple-
ments example, the observational studies and the trials tested precisely the same 
thing. Figures 21.1a and 21.1b show the fi ndings from observational studies of tak-
ing vitamin E supplements (6,7) and a meta-analysis of trials of supplements (24). 
The point here is that the observational studies specifi cally investigated the effect 
of taking supplements for a short period (2–4 years) and found an apparent robust 
and large protective effect, even after adjustment for confounders. The trials tested 
randomization to essentially the same supplements for the same period, and found 
no protective effect.

The potentially misleading fi ndings from observational studies have conse-
quences, of course. For example, Figure 21.2 demonstrates that nearly half of U.S. 
adults are taking either vitamin E supplements or multivitamin/multimineral supple-
ments that generally contain vitamin E (25). Figure 21.3 presents data from the three 
available time points, where it is seen that there appears to have been a particular 
increase in vitamin E use after 1992 (26), possibly consequent upon the publication 
of the two observational studies mentioned above, which have received nearly 3,000 
citations between them since publication.

What underlies the discrepancy between these fi ndings? One likely possibility 
is that there is considerable confounding between use of vitamin E supplements 

Figure 21.1 (a) Observed effect of duration of vitamin E supplement use compared to no use 
on coronary heart disease (CHD) events in the Health Professionals Follow-up Study (6). 
(b) Vitamin E supplement use and risk of CHD in that and another observational study (6,7) 
and in a meta-analysis of RCTs (24) (relative risks and 95% confi dence intervals for taking 
and not taking vitamin E supplements).
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and other exposures that could increase the risk of coronary heart disease (CHD). 
Such confounding is extensive, as has been demonstrated with respect to vitamin C 
(27), and can generate the magnitude of associations found in observational studies 
(27,28). Other processes in addition to confounding can generate robust, but non-
causal, associations in observational studies. Reverse causation—where the disease 
infl uences the apparent exposure, rather than vice versa—may generate strong and 
replicable associations. For example, many studies have found that people with low 
circulating cholesterol levels are at increased risk of several cancers, including colon 
cancer. If causal, this is an important association as it might mean that efforts to 
lower cholesterol levels would increase the risk of cancer. However, it is possible 
that the early stages of cancer may, many years before diagnosis or death, lead to a 
lowering in cholesterol levels, rather than low cholesterol levels increasing the risk of 
cancer. Similarly, in studies of infl ammatory markers such as C-reactive protein and 
cardiovascular disease risk, it is possible that early stages of atherosclerosis—which 

Figure 21.2 Use of vitamin supplements in past month among U.S. adults, 1999–2000 (25). 
Source: Radimer K, et al., Am J Epidemiol 2004;160:339–349.
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is an infl ammatory process—lead to elevation in circulating infl ammatory mark-
ers. Since people with atherosclerosis are more likely to experience cardiovascular 
events, a robust, but noncausal, association between levels of infl ammatory markers 
and incident cardiovascular disease is generated. Reverse causation can also occur 
through behavioral processes—for example, people with early stages and symptoms 
of cardiovascular disease may reduce their consumption of alcohol, which would 
generate a situation in which alcohol intake appears to protect against cardiovas-
cular disease. Finally, a form of reverse causation can occur through reporting 
bias, with the presence of disease infl uencing reporting disposition. In case-control 
studies, people with the disease under investigation may report on their prior expo-
sure history in a different way than do controls—perhaps because the former will 
think harder about potential reasons that account for why they have developed the 
disease.

In observational studies, associations between an exposure and disease will gen-
erally be biased if there is selection according to an exposure–disease combination 
in case-control studies, or according to an exposure–disease risk combination in 
prospective studies. Such selection may arise through differential participation in 
research studies, for example, conducting studies in settings such as hospitals where 
cases and controls are not representative of the general population. If, for example, 
those people experiencing an exposure but at low risk of disease for other reasons 
were differentially excluded from a study, the exposure would appear to be positively 
related to disease outcome, even if there were no such association in the underlying 
population. This is a form of “Berkson’s bias,” well known to epidemiologists (29). A 
possible example of such associative selection bias relates to the fi nding in the large 
American Cancer Society volunteer cohort that high alcohol consumption (which 
would be expected to increase stroke risk through association with high blood pres-
sure), was associated with a reduced risk of stroke (30). While ischemic stroke risk 
might be reduced by the HDL-cholesterol raising effects of alcohol, the outcome 
category included hemorrhagic stroke, for which there is no obvious mechanism 
through which alcohol would reduce risk. Population-based studies have found that 
heavy alcohol consumption tends to increase stroke risk, particularly hemorrhagic 
stroke (31,32). These discordant fi ndings are likely explained by the small propor-
tion of heavy drinkers who volunteer for a study about the health effects of their life-
style being unrepresentative of all heavy drinkers in the population, the volunteers 
among heavy drinkers being healthier than those who do not volunteer. Moderate 
drinkers and nondrinkers who volunteer may be more representative of moderate 
drinkers and nondrinkers in the underlying population. Thus the low risk of stroke 
in the heavy drinkers who volunteer for the study could erroneously make it appear 
that alcohol reduces the risk of stroke.

The problems of confounding and bias discussed above relate to the production 
of associations in observational studies that are not reliable indicators of the true 
direction of causal associations. A separate issue is that the strength of associations 
between causal risk factors and disease in observational studies will generally be 
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underestimated due to random measurement imprecision in indexing the exposure. 
A century ago, Charles Spearman demonstrated mathematically how such measure-
ment imprecision would lead to what he termed the “attenuation by errors” of asso-
ciations (33,34). This has lately been renamed “regression dilution bias.”

Observational studies can and do produce fi ndings that either spuriously enhance 
or downgrade estimates of causal associations between modifi able exposures and 
disease. This has serious consequences for the appropriateness of interventions 
that aim to reduce disease risk in populations. It is for these reasons that alternative 
approaches—including those within the Mendelian randomization framework—
need to be applied.

Phenocopies, Genocopies, and the Causes of Disease

An approach that can strengthen inference from observational studies is to apply 
the concepts of phenocopy and genocopy to population-based research settings. The 
term phenocopy is attributed to Goldschmidt (35) and is used to describe the situa-
tion where an environmental exposure could produce the same outcome as was pro-
duced by a genetic mutation. As Goldschmidt explained, “different causes produce 
the same end effect, presumably by changing the same developmental processes in 
an identical way” (35). In human genetics the term phenocopy refers to an envi-
ronmentally produced disease state that is similar to a clear genetic syndrome. For 
example, the niacin-defi ciency disease pellagra is clinically similar to the autoso-
mal recessive condition Hartnup disease (36), and pellagra has been referred to as a 
phenocopy of the genetic disorder (37,38). Hartnup disease is due to reduced neutral 
amino acid absorption from the intestine and reabsorption from the kidney, leading 
to low levels of blood tryptophan, which in turn leads to a biochemical anomaly that 
is similar to that seen when the diet is defi cient in niacin (39,40). Genocopy is a less 
utilized term, attributed to Schmalhausen (Schmalhausen 1938 cited by Gause 1942) 
(41) but has generally been considered to be the reverse of phenocopy—that is, when 
genetic variation generates an outcome that could be produced by an environmen-
tal exposure (42). It is clear that, even when the term genocopy is used polemically, 
as, for example, in a critique of excessively reductionist uses of neurogenetics in 
explaining behavioral variation (43), phenocopy and genocopy are the converse of 
one another, refl ecting differently motivated accounts of how both genetic and envi-
ronmental factors infl uence physical state. Thus, for example, Hartnup disease can 
be called a genocopy of pellagra, while pellagra can be considered a phenocopy of 
Hartnup disease. Mendelian randomization can, therefore, be viewed as an applica-
tion of the phenocopy–genocopy nexus that allows causation to be separated from 
association through the common outcome produced by different starting points.

Phenocopies of major genetic disorders are generally rarely encountered in clini-
cal medicine, but as Lenz comments (44), “they are, however, most important as 
models which might help to elucidate the pathways of gene action.” As we will 
discuss, Mendelian randomization is concerned with less major (and thus more 
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common) disturbances, and reverses the direction of phenocopy → genocopy, to 
 utilize genocopies, of known genetic mechanism, to inform us better about path-
ways through which the environment infl uences health.

The scope of phenocopy–genocopy has been discussed by Zuckerlandl and Villett 
(45), who advance mechanisms through which there can be equivalence between 
environmental and genotypic infl uences. Indeed, they state that there is “no doubt 
that all environmental effects can be mimicked by one or several mutations.” The 
notion that genetic and environmental infl uences can be both equivalent and inter-
changeable has received considerable attention in developmental biology (46,47). 
Furthermore, population genetic analyses of correlations between different traits 
suggest that there are common pathways of genetic and environmental infl uences, 
with Cheverud concluding that “most environmentally caused phenotypic variants 
should have genetic counterparts and vice versa” (48).

Mendelian Randomization: What Is It and How Does 
It Work?

The basic principle utilized in the Mendelian randomization approach is that if 
genetic variants either alter the level of, or mirror the biological effects of, a mod-
ifi able environmental exposure that itself alters disease risk, then these genetic 
variants should be related to disease risk to the extent predicted by their infl uence 
on exposure to the risk factor. Common genetic polymorphisms that have a well-
characterized biological function (or are markers for such variants) can therefore be 
utilized to study the effect of a suspected environmental exposure on disease risk 
(49–55).

It may seem illogical to study genetic variants as proxies for environmental expo-
sures rather than measure the exposures themselves. However, there are several 
crucial advantages of utilizing functional genetic variants (or their markers) in this 
manner that relate to the problems with observational studies outlined above. First, 
unlike environmental exposures, genetic variants are not generally associated with 
the wide range of behavioral, social, and physiological factors that, for example, 
confound the association between vitamin E supplementation use and CHD. This 
means that if a genetic variant is used as a proxy for an environmentally modifi -
able exposure, it is unlikely to be confounded in the way that direct measures of the 
exposure will be. Further, aside from the effects of population structure (56), such 
variants will not be associated with other genetic variants, except through linkage 
disequilibrium.

Second, we have seen how inferences drawn from observational studies may be 
subject to bias due to reverse causation. Disease processes may infl uence exposure 
levels such as alcohol intake, or measures of intermediate phenotypes such as cho-
lesterol levels and C-reactive protein. However, germline genetic variants associated 
with average alcohol intake or circulating levels of intermediate phenotypes will 
not be infl uenced by the onset of disease. This will be equally true with respect to 
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reporting bias generated by knowledge of disease status in case-control studies, or 
to differential reporting bias in any study design.

Third, selection bias, whereby selection into a study is related to both exposure 
level and disease risk and can generate spurious associations (as illustrated above 
with respect to alcohol and hemorrhagic stroke), is unlikely to occur with respect to 
genetic variants. For example, in a series of cancer case-control studies, there was 
no association between a wide range of genetic variants and participation rates (57).

Finally, a genetic variant will indicate long-term levels of exposure, and, if the 
variant is considered to be a proxy for such exposure, it will not suffer from the 
measurement error inherent in phenotypes that have high levels of variability. For 
example, differences between groups defi ned by cholesterol level-related genotype 
will, over a long period, refl ect the cumulative differences in absolute cholesterol 
levels between the groups. For individuals, blood cholesterol is variable over time, 
and the use of single measures of cholesterol will underestimate the true strength of 
association between cholesterol and, for instance, coronary heart disease. Indeed, 
use of the Mendelian randomization approach predicts a strength of association that 
is in line with randomized controlled trial fi ndings of effects of cholesterol lowering, 
when the increasing benefi ts seen over the relatively short trial period are projected 
to the expectation for differences over a lifetime (50).

Mendelian Randomization: Is the Principle Sound?

The principle of Mendelian randomization relies on the basic (but approximate) 
laws of Mendelian genetics. If the probability that a postmeiotic germ cell that has 
received any particular allele at segregation contributes to a viable conceptus is 
independent of environment (following on from Mendel’s fi rst law), and if genetic 
variants sort independently (following on from Mendel’s second law), then at a pop-
ulation level these variants will tend to be unassociated with the confounding factors 
that generally distort conventional observational studies. This particular strength of 
genetic studies was explicitly recognized by the pioneering geneticist and statisti-
cian R.A. Fisher from the 1920s onward. As Fisher said:

Genetics is indeed in a peculiarly favored condition in that Providence has 
shielded the geneticist from many of the diffi culties of a reliably controlled 
comparison. The different genotypes possible from the same mating have 
been beautifully randomized by the meiotic process . . . Generally speaking, the 
geneticist, even if he foolishly wanted to, could not introduce systematic errors 
into the comparison of genotypes, because for most of the relevant time he has 
not yet recognized them. (58)

The principle was explicitly utilized in observational studies from the 1960s 
(59–62), with the term Mendelian randomization being introduced by Richard 
Gray and Keith Wheatley in 1991 (63), in the context of an innovative genetically 
informed observational approach to asses the effects of bone marrow transplantation 
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in the treatment of childhood acute myeloid leukaemia. More recently the term has 
been widely used in discussions of observational epidemiologic studies (49,64–67). 
Further discussion of the origin of this approach is given elsewhere (68).

Empirical evidence that there is lack of confounding of genetic variants with fac-
tors that confound exposures in conventional observational epidemiologic studies 
comes from several sources. For example, consider the virtually identical allele fre-
quencies in the British 1958 birth cohort and British blood donors (69). Blood donors 
are clearly a very selected sample of the population, whereas the 1958 birth cohort 
comprised all births born in one week in Britain with relatively low selection bias. 
Blood donors and the general population sample would differ considerably with 
respect to the behavioral, socioeconomic, and physiological risk factors that are the 
confounding factors in observational epidemiologic studies. Figure 21.4 shows in 
its top panel the statistical evidence of differences in allele frequencies of 500,568 
SNPs assayed using the Affymetrix 500K chip between subjects from the 1958 birth 
cohort and the U.K. blood donors, stratifi ed by 12 broad regions of Britain. The bot-
tom panel shows good agreement of the test statistics found with those expected on 
the basis of there being no actual differences in allele frequencies. The fact that very 

Figure 21.4 Comparisons of 500,568 SNP variants in the 1958 birth cohort and U.K. 
blood donors. Data from Wellcome Trust Case Control Consortium, Nature (2007) (69) 
(a) Statistical signifi cance of differences in allele frequencies; (b) agreement with null dis-
tribution of differences. Reprinted by permission from Macmillan Publishers Ltd: Nature 
(doi:10.1038/nature)
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few robust differences between these two groups were found despite the consider-
able differences there are between the groups with respect to many social, behav-
ioral, and environmental factors is in line with expectations based on the Mendelian 
randomization principle. Similarly, we have recently demonstrated the lack of asso-
ciation between a range of SNPs of known phenotypic effects and nearly 100 socio-
cultural, behavioral, and biological risk factors for disease (70).

Mendelian Randomization in Practice

The term Mendelian randomization has now become widely used, with a variety of 
meanings. This partly refl ects the fact that there are several categories of inference 
that can be drawn from studies utilizing the Mendelian randomization approach. In 
the most direct forms, genetic variants can be related to the probability or level of 
exposure (“exposure propensity”) or to intermediate phenotypes believed to infl u-
ence disease risk. Less direct evidence can come from genetic variant–disease asso-
ciations that indicate that a particular biological pathway may be of importance, 
perhaps because the variants modify the effects of environmental exposures. Several 
examples of these categories have been given elsewhere (49,50,52,54,55); here a few 
illustrative cases are briefl y outlined.

Exposure Propensity

Alcohol Intake and Health
The possible protective effect of moderate alcohol consumption on CHD risk 
remains controversial (71–73). Nondrinkers may be at a higher risk of CHD because 
health problems (perhaps induced by previous alcohol abuse) dissuade them from 
drinking (74). As well as this form of reverse causation, confounding could play a 
role, with nondrinkers being more likely to display an adverse profi le of socioeco-
nomic or other behavioral risk factors for CHD (31). Alternatively, alcohol may have 
a direct biological effect that lessens the risk of CHD—for example, by increasing 
the levels of protective high-density lipoprotein (HDL) cholesterol (75). It is, how-
ever, unlikely that an RCT of alcohol intake, able to test whether there is a protec-
tive effect of alcohol on CHD events, will be carried out.

Alcohol is oxidized to acetaldehyde, which in turn is oxidized by aldehyde 
dehydrogenases (ALDHs) to acetate. Half of Japanese people are heterozygotes or 
homozygotes for a null variant of ALDH2 and peak blood acetaldehyde concentra-
tions post alcohol challenge are 18 times and 5 times higher respectively among 
homozygous null variant and heterozygous individuals compared with homozy-
gous wild type individuals (76). This renders the consumption of alcohol unpleas-
ant through inducing facial fl ushing, palpitations, drowsiness, and other symptoms. 
As Figure 21.5 shows, there are very considerable differences in alcohol consump-
tion according to genotype (77). The principles of Mendelian randomization are 
seen to apply—two factors that would be expected to be associated with alcohol 
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consumption, age, and cigarette smoking, which would confound conventional 
observational associations between alcohol and disease, are not related to genotype 
despite the strong association of genotype with alcohol consumption (Figure 21.6).

It would be expected that ALDH2 genotype infl uences diseases known to be 
related to alcohol consumption, and as proof of principle it has been shown that 
ALDH2 null variant homozygosity—associated with low alcohol consumption—is 
indeed related to a lower risk of liver cirrhosis (78). Considerable evidence, includ-
ing data from randomized controlled trials, suggests that alcohol increases HDL 
cholesterol levels (79,80) (which should protect against CHD). In line with this, 
ALDH2 genotype is strongly associated with HDL cholesterol in the expected 
direction (Figure 21.7). With respect to blood pressure, observational evidence 
suggests that long-term alcohol intake produces an increased risk of hypertension 
and higher prevailing blood pressure levels. A meta-analysis of studies of ALDH2 

Figure 21.5 Relationship between alcohol intake and ALDH2 genotype (*1*1 homozygous 
wild variant, *1*2 heterozygous variant, *2*2 homozygous null variant). Data from Takagi 
et al. 2002 (77).
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genotype and blood pressure suggests there is indeed a substantial effect in this 
direction (81). As shown in Figure 21.8, alcohol consumption is strongly related to 
genotype among men, and despite higher levels of overall alcohol consumption in 
some studies compared with others the shape of the association remains similar. 
Among women, however, there is no evidence of association between drinking and 
genotype with aelohol consumption being universely low in women in the popula-
tions studied. Figure 21.9 demonstrates that among men homozygous for the null 
variant, who drink considerably less alcohol than those homozygous for the com-
mon wild type, systolic blood pressures are considerably lower (Figure 21.10). By 
contrast, among women, for whom genotype is unrelated to alcohol intake, there is 
no association between genotype and systolic blood pressure. The differential geno-
type blood pressure associations in men and women indicate that there is no other 
mechanism linking genotype and blood pressure than that relating to alcohol intake. 
If alternative pathways existed, both men and women would be expected to have 

Figure 21.7 Relationship between HDL cholesterol and ALDH2 genotype (*1*1 homozy-
gous wild variant, *1*2 heterozygous variant, *2*2 homozygous null variant). Data from 
Tagaki et al. 2002 (77).
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the same genotype-blood pressure association. Figure 21.11 demonstrates that men 
who are homozygous for the wild type have nearly two and a half times the risk 
of hypertension than men who are homozygous for the null variant. Heterozygous 
men who drink an intermediate amount of alcohol have a more modest elevated 
risk of hypertension compared to men with homozygous null variant. Thus, a dose–
response association of hypertension and genotype is seen, in line with the dose–
response association between genotype and alcohol intake.

Alcohol intake has also been postulated to increase the risk of esophageal cancer; 
however, some have questioned the importance of its role (82). Figure 21.12 presents 
fi ndings from a meta-analysis of studies of ALDH2 genotype and esophageal can-
cer risk (83), clearly showing that people who are homozygous for the null variant, 
who therefore consume considerably less alcohol, have a greatly reduced risk of 
esophageal cancer. The reduction in risk is close to that predicted from size of effect 
of genotype on alcohol consumption and the dose–response of alcohol on esopha-
geal cancer risk (84). When the heterozygous individuals are compared with those 
homozygous for the functional variant, an interesting picture emerges—the risk of 
esophageal cancer is higher in the heterozygotes who drink rather less alcohol than 
those with the homozygous functional variant. If alcohol itself were the direct causal 
factor cancer risk would be intermediate in the heterozygotes compared with the 
other two groups. Acetaldehyde is the more likely direct causal factor, as heterozy-
gotes drink some alcohol but metabolize it ineffi ciently, leading to accumulation 
of higher levels of acetaldehyde than would occur in homozygotes for the common 

Figure 21.9 ALDH2 genotype and systolic blood pressure. Data from Chen et al. (81).
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variant, who metabolize alcohol effi ciently, and homozygote null individuals, who 
drink insuffi cient alcohol to produce raised acetaldehyde levels.

Intermediate Phenotypes

Genetic variants can infl uence circulating biochemical factors such as cholesterol, 
homocysteine, or fi brinogen levels. This provides a method for assessing causality 

Figure 21.10 Mean difference in diastolic (top panel) and systolic (bottom panel) blood pressure 
in males by ALDH2 genotypes: heterozygous variant (12) versus homozygous null variant (22) and 
homozygous common variant (11) versus homozygous null variant (22). Data from Chen et al. (81).
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Figure 21.12 Risk of esophageal cancer in individuals with the ALDH2*2*2 versus 
ALDH2*1*1 genotype. Data from Lewis and Davey Smith (83).
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in associations observed between these measures (intermediate phenotypes) and 
disease, and thus whether interventions to modify the intermediate phenotype could 
be expected to infl uence disease risk.

Cholesterol and Coronary Heart Disease
Familial hypercholesterolaemia is a dominantly inherited condition in which many 
rare mutations (over 700 DNA sequence variations (85)) of the low-density lipo-
protein receptor gene (about 10 million people affected worldwide, a prevalence of 
around 0.2%) lead to high circulating cholesterol levels (86). The high risk of prema-
ture CHD in people with this condition was readily appreciated, with an early U.K. 
report demonstrating that by age 50 half of men and 12% of women had suffered 
from CHD (87). Compared with the population of England and Wales (mean total 
cholesterol 6.0 mmol/L), people with familial hypercholesterolaemia (mean total 
cholesterol 9 mmol/l) suffered a 3.9-fold increased risk of CHD mortality, although 
very high relative risks among those aged less than 40 years have been observed 
(88). These observations, regarding genetically determined variation in risk, pro-
vided strong evidence that the associations between blood cholesterol and CHD 
seen in general populations refl ected a causal relationship. The causal nature of the 
association between blood cholesterol levels and CHD has historically been contro-
versial (89). As both Daniel Steinberg (90) and Ole Færgeman (91) discuss, many 
clinicians and public health practitioners rejected the notion of a causal link for a 
range of reasons. However, from the late 1930s onward, evidence that people with 
genetically high levels of cholesterol had high risk for CHD should have been pow-
erful and convincing evidence of the causal infl uence of elevated blood cholesterol 
in the general population.

With the advent of effective means of reducing blood cholesterol through statin 
treatment, there remains no serious doubt that the cholesterol-CHD relationship is 
causal. Among people without CHD, reducing total cholesterol levels with statin 
drugs by around 1–1.5 mmol/1 reduces CHD mortality by around 25% over 5 years. 
Assuming a linear relationship between blood cholesterol and CHD risk, and given 
the difference in cholesterol of 3.0 mmol/1 between people with familial hypercho-
lesterolaemia and the general population, the randomized controlled trial evidence 
on the effect on CHD mortality of lowering total cholesterol would predict a rela-
tive risk for CHD of around 2, as opposed to 3.9, for people with familial hyperc-
holesterolaemia. However, the trials also demonstrate that the relative reduction in 
CHD mortality increases over time from randomization—and thus time with low-
ered cholesterol—as would be expected if elevated levels of cholesterol operate over 
decades to infl uence the development of atherosclerosis. People with familial hyper-
cholesterolaemia will have had high total cholesterol levels throughout their lives, 
and this would be expected to generate a greater risk than that predicted by the 
results of lowering cholesterol levels for only 5 years. Furthermore, ecological stud-
ies relating cholesterol levels to CHD demonstrate that the strength of association 
increases as the lag period between cholesterol level assessment and CHD mortality 
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increases (92), again suggesting that long-term differences in cholesterol level are 
the important etiological factor in CHD. As discussed above, Mendelian randomiza-
tion is one method for assessing the effects of long-term differences in exposures 
on disease risk, free from the diluting problems of both measurement error and of 
only having short-term assessment of risk factor levels. This reasoning provides an 
indication that cholesterol-lowering efforts should be lifelong rather than limited 
to the period for which RCT evidence with respect to CHD outcomes is available. 
Recently, several common genetic variants that are related to cholesterol level and 
CHD risk have been identifi ed, and these have also demonstrated effects on CHD 
risk consistent with lifelong differences in cholesterol level (55,93–95).

C-Reactive Protein (CRP) and Coronary Heart Disease
Strong associations of C-reactive protein (CRP), an acute phase infl ammatory 
marker, with hypertension, insulin resistance, and CHD have been repeatedly 
observed (96–101), with the obvious inference that CRP is a cause of these condi-
tions (102–104). A Mendelian randomization study has examined the association 
between polymorphisms of the CRP gene and demonstrated that while serum CRP 
differences were highly predictive of blood pressure and hypertension, the CRP 
variants—which are related to sizeable serum CRP differences—were not associ-
ated with these same outcomes (105). It is likely that these divergent fi ndings are 
explained by the extensive confounding between serum CRP and outcomes. Current 
evidence on this issue, though statistically underpowered, also suggests that CRP 
levels do not lead to elevated risk of insulin resistance (106) or CHD (107– 109). 
Again, confounding and reverse causation—where existing coronary disease or 
insulin resistance may infl uence CRP levels—could account for this discrepancy. 
Similar fi ndings have been reported for serum fi brinogen, variants in the beta 
fi brinogen gene and CHD (110). The CRP and fi brinogen examples demonstrate 
that Mendelian randomization can both increase evidence for a causal effect of an 
environmentally modifi able factor (as in the cases of alcohol and cholesterol levels 
discussed earlier) and also provide evidence against causal effects, which can help 
direct efforts away from targets of no preventative or therapeutic relevance.

Maternal Genotype as an Indicator of Intrauterine 
Environment

Maternal Folate Intake and Neural Tube Defects
Mendelian randomization studies can provide unique insights into the causal nature 
of intrauterine environment infl uences on later disease outcomes. In such studies, 
maternal genotype is taken to be a proxy for environmentally modifi able expo-
sures mediated through the mother that infl uence the intrauterine environment. 
For example, it is now widely accepted that neural tube defects (NTDs) can in 
part be prevented by periconceptional maternal folate supplementation. RCTs of 
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folate supplementation have provided the key evidence in this regard (111,112). But 
could we have reached the same conclusion before the RCTs were carried out, if 
we had had access to evidence from genetic association studies? Using the MTHFR 
677C→T polymorphism (a genetic variant that is associated with methyltetrahydro-
folate reductase activity and circulating homocysteine levels; TT genotype being 
associated with higher homocysteine levels) as a marker of interuterine exposure 
in newborns with NTDs compared to controls, an increased risk in TT versus CC 
newborns has been found, with a relative risk of 1.75 (95% confi dence interval (CI): 
1.41–2.18) in a meta-analysis of all such studies (113). Using the same MTHFR 
variant in parents and examining the risk of NTD in their offspring, mothers who 
have the TT genotype have an increased risk of 2.04 (95% CI: 1.49–2.81) of hav-
ing an offspring with a NTD compared to mothers who have the CC genotype. 
For TT fathers, the equivalent relative risk is 1.18 (95% CI: 0.65–2.12) (113). This 
pattern of associations suggests that it is the intrauterine environment—infl uenced 
by maternal TT genotype—rather than the genotype of offspring that is related to 
disease risk (Figure 21.13). As the MTHFR variant is being used as a marker for 
low maternal folate intake in pregnancy—which is associated with raised homo-
cysteine—these fi ndings support the hypothesis that maternal folate intake is the 
exposure of importance.

In this case, the fi ndings from observational studies, genetic association studies, 
and an RCT are closely similar. Had the technology been available, the genetic asso-
ciation studies, with the divergent infl uence of maternal versus paternal genotype on 
NTD risk, would have provided strong evidence of the benefi cial effect of folate 
supplementation, before the results of any RCT had been completed; although trials 
would still have been necessary to confi rm the effect was causal for folate supple-
mentation. Certainly, the genetic association studies would have provided better evi-
dence than that given by conventional epidemiologic studies that had to cope with 
the problems of accurately assessing diet and also with the considerable confound-
ing of maternal folate intake with a wide variety of lifestyle and socioeconomic 

Figure 21.13 Inheritance of MTHFR polymorphism, and neural tube defects. Data derived 
from Botto and Yang (113).

Mother – TT – foetus exposed
in utero: RR 2.04

Father – TT – but no way that  
this can affect in utero  
exposure of foetus: RR 1.18

Foetus – TT – inherits 50% from mother and 50% from father – hence
intermediate risk: RR 1.75
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factors that may also infl uence NTD risk. The association of genotype with NTD 
risk does not suggest that genetic screening is indicated; rather, it demonstrates that 
an environmental intervention may benefi t the whole population, independent of the 
genotype of individuals receiving the intervention.

Studies utilizing maternal genotype as a proxy for environmentally modifi able 
infl uences on the intrauterine environment can be analyzed in a variety of ways. 
First, the mothers of offspring with a particular outcome can be compared to a 
control group of mothers who have offspring without the outcome, in a conven-
tional case-control design, but with the mother as the exposed individual (or con-
trol) rather than the offspring with the particular health outcome (or the control 
offspring). Fathers could serve as a control group when autosomal genetic variants 
are being studied. If the exposure is mediated by the mother, maternal genotype, 
rather than offspring genotype, will be the appropriate exposure indicator. Clearly, 
maternal and offspring genotype are associated, but conditional on each other; it 
should be the maternal genotype that shows the association with the health outcome 
among the offspring. Indeed, in theory, it would be possible to simply compare 
genotype distributions of mothers and offspring, with a higher prevalence among 
mothers providing evidence that maternal genotype, through an intrauterine path-
way, is of importance. However, the statistical power of such an approach is low, and 
an external control group, whether fathers or women who have offspring without the 
health outcome, is generally preferable.

Alcohol Intake and Offspring Development
The infl uence of alcohol intake by pregnant women on the health and development 
of their offspring is well recognized for very high levels of intake, in the form of 
fetal alcohol syndrome (115). However, the infl uence outside of this extreme situ-
ation is less easy to assess, particularly as higher levels of alcohol intake will be 
related to a wide array of potential sociocultural, behavioral, and environmental 
confounding factors. Furthermore, there may be systematic bias in how mothers 
report alcohol intake during pregnancy, which could distort associations with health 
outcomes. Therefore, outside of the case of very high alcohol intake by mothers, it 
is diffi cult to establish a causal link between maternal alcohol intake and offspring 
developmental characteristics. Some studies have approached this by investigating 
alcohol-metabolizing genotypes in mothers and offspring outcomes.

Although sample sizes have been low and the analysis strategies not optimum, 
they provide some evidence to support the infl uence of maternal genotype (116–
118). For example, in one study, mental development at age 7.5 was delayed among 
offspring of mothers possessing a genetic variant associated with less rapid alcohol 
metabolism. Among these mothers there would presumably be less rapid clearance 
of alcohol, and thus an increased infl uence of maternal alcohol on offspring during 
the intrauterine period (117). Offspring genotype was not independently related to 
these outcomes, indicating that the crucial exposure related to maternal alcohol lev-
els. As in the MTHFR examples, these studies are of relevance because they provide 
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evidence of the infl uence of maternal alcohol levels—unconfounded by socioeco-
nomic position, smoking, and other variables—on offspring development, rather 
than because they highlight a particular maternal genotype that is of importance. 
In the absence of alcohol drinking, the maternal genotype would presumably have 
no infl uence on offspring outcomes. The association of maternal genotype and off-
spring outcome suggests that alcohol levels in mothers, and therefore their alcohol 
consumption, have an infl uence on offspring development.

Implications of Mendelian Randomization Study 
Findings

Establishing the causal infl uence of environmentally modifi able risk factors from 
Mendelian randomization designs informs policies for improving population health 
through population-level interventions targeting the modifi able risk factors. Such 
evidence does not imply that the appropriate strategy is genetic screening to identify 
those at high risk and the application of selective exposure reduction policies. For 
example, the implications of studies on maternal MTHFR genotype and offspring 
NTD risk is that population risk for NTDs can be reduced through increased folate 
intake peri-conceptionally and in early pregnancy. It does not suggest that women 
should be screened for MTHFR genotype and women with the TT variant treated 
with folate; women without the TT genotype but with low folate intake are still 
exposed to preventable risk of having babies with NTDs. Similarly establishing the 
association between genetic variants (such as familial defective ApoB) associated 
with elevated cholesterol level and CHD risk strengthens causal evidence that ele-
vated cholesterol is a modifi able risk factor for CHD for the whole population. Thus, 
even though the population attributable risk for CHD of this variant is small, it use-
fully informs public health approaches to improving population health. It is this 
aspect of Mendelian randomization that illustrates its distinction from conventional 
risk identifi cation and genetic screening applications of genetic epidemiology.

Mendelian Randomization and Randomized 
Controlled Trials

Randomized controlled trials are clearly the defi nitive means of obtaining evidence 
on the effects of modifying disease risk processes. There are similarities in the logical 
structure of RCTs and Mendelian randomization studies as illustrated in Figure 21.14, 
which draws attention to the unconfounded nature of exposures for which genetic 
variants serve as proxies (analogous to the unconfounded nature of a randomized 
intervention), the impossibility of reverse causation as an infl uence on exposure-out-
come associations in both Mendelian randomization and randomized controlled trial 
settings, and the importance of intention to treat analyses—that is, analysis by group 
defi ned by genetic variant, irrespective of associations between the genetic variant 
and the exposure for which this is a proxy within any particular individual.
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The analogy with randomized controlled trials is also useful with respect to one 
objection that has been raised in conjunction with Mendelian randomization stud-
ies. This is that the environmentally modifi able exposure for which genetic variants 
serve as proxies (such as alcohol intake or circulating CRP levels) is infl uenced by 
many other factors in addition to the genetic variants (119). This is, of course, true. 
However, consider a randomized controlled trial (RCT) of blood pressure- lowering 
medication. Blood pressure is mainly infl uenced by factors other than taking blood 
pressure lowering medication—obesity, alcohol intake, salt consumption and other 
dietary factors, smoking, exercise, physical fi tness, genetic factors, and early-life 
developmental infl uences are all of importance. However, the randomization that 
occurs in trials ensures that these factors are balanced between the groups that 
receive the blood pressure lowering medication and those that do not. Thus, the 
fact that many other factors are related to the modifi able exposure does not vitiate 
the power of RCTs; neither does it vitiate the strength of Mendelian randomization 
designs.

A related objection is that the genetic variants often explain only a trivial pro-
portion of the variance in the environmentally modifi able risk factor for which the 
genetic variants are surrogate variables (120). Again, consider a RCT of blood pres-
sure-lowering medication, where 50% of participants receive the medication and 
50% received a placebo. If the antihypertensive therapy reduced blood pressure by 
a quarter of a standard deviation (i.e., 5 mmHg reduction in systolic blood pres-
sure with blood pressure having a standard deviation of 20 mmHg), then within 
the whole study group, treatment assignment (i.e., antihypertensive use versus pla-
cebo) will explain 1.25% of the variance in blood pressure. In the example of CRP 
haplotypes used as instruments for CRP levels, these haplotypes explain 1.66% of 
the variance in CRP levels in the population (53). As can be seen, the quantitative 

Figure 21.14 Mendelian randomization and randomized controlled trial designs compared.
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association of genetic variants as instruments can be similar to that of randomized 
treatments with respect to biological processes that such treatments modify. Both 
logic and quantifi cation fail to support criticisms of the Mendelian randomization 
approach based on either the obvious fact that many factors infl uence most pheno-
types of interest or that particular genetic variants only account for a small propor-
tion of variance in the phenotype.

Mendelian Randomization and Instrumental 
Variable Approaches

As well as the analogy with RCTs, Mendelian randomization can also be likened 
to instrumental variable approaches that have been heavily utilized in economet-
rics and social science, although rather less so in epidemiology. In an instrumental 
variable approach, the instrument is a variable that is only related to the outcome 
through its association with the modifi able exposure of interest. The instrument is 
not related to confounding factors, nor is its assessment biased in a manner that 
would generate a spurious association with the outcome. Furthermore, the instru-
ment will not be infl uenced by the development of the outcome (i.e., there will be 
no reverse causation). Figure 21.15 presents this basic schema, where the dotted line 
between genotype and the outcome provides an unconfounded and unbiased esti-
mate of the causal association between the exposure for which the genotype is a 
proxy and the outcome. The development of instrumental variable methods within 
econometrics, in particular, has led to a sophisticated suite of statistical methods 
for estimating causal effects, and these have now been applied within Mendelian 
randomization studies (105,106,110). The parallels between Mendelian randomiza-
tion and instrumental variable approaches are discussed in more detail elsewhere 
(53,122).

The instrumental variable method allows for the estimation of the causal effect 
size of the modifi able environmental exposure of interest and the outcome, together 
with estimates of the precision of the effect. Thus, in the example of alcohol intake 
(indexed by ALDH2 genotype) and blood pressure discussed earlier, it is possible 

Figure 21.15 Mendelian randomization as an instrumental variables approach.
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to utilize the joint associations of ALDH2 genotype and alcohol intake and ALDH2 
genotype and blood pressure to estimate the causal infl uence of alcohol intake on 
blood pressure. Figure 21.16 reports such an analysis, showing that for a 1 g per day 
increase in alcohol intake, there are robust increases in diastolic and systolic blood 
pressure among men (81).

Mendelian Randomization and Gene by 
Environment Interaction

Mendelian randomization is one way in which genetic epidemiology can inform 
understanding about environmental determinants of disease. A more conventional 
approach has been to study interactions between environmental exposures and 
genotype (123,124). From epidemiologic and Mendelian randomization perspec-
tives, several issues arise with gene–environment interactions.

The most reliable fi ndings in genetic association studies relate to the main 
effects of polymorphisms on disease risk (66). The power to detect meaningful 
gene–environment interaction is low (125), with the result being that there are a 
large number of reports of spurious gene–environment interactions in the medical 
literature (2,126). Detection of the presence or absence of statistical interactions 
depends upon the scale used (e.g., linear or logarithmic with respect to the exposure-
disease outcome) but the biological meaning of any observed deviation from either 
an additive or multiplicative model is generally uncertain (127). Mendelian rando-
mization is most powerful when studying modifi able exposures that are diffi cult to 

Figure 21.16 Association between alcohol intake and diastolic (top panel) and systolic (bot-
tom panel) blood pressure estimated from instrumental variables analysis utilizing ALDH2 
genotype as the instrument. Data from Chen et al. (81).
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measure and/or considerably confounded, such as dietary factors. Given measure-
ment error—particularly if this is differential with respect to other factors infl u-
encing disease risk—interactions are both diffi cult to detect and often misleading 
when, apparently, they are found (66).

The interpretation of interactions may be easier with exposures that differ qual-
itatively rather than quantitatively between individuals. Consider the issue of the 
infl uence of smoking tobacco on bladder cancer risk. Observational studies suggest 
an association, but clearly confounding and a variety of biases could generate such 
an association. The potential carcinogens in tobacco smoke of relevance to blad-
der cancer risk include aromatic and heterocyclic amines, which are detoxifi ed by 
N-acetyl transferase 2 (NAT2). Genetic variation in NAT2 leads to slower or faster 
acetylation states. If the carcinogens in tobacco smoke do increase the risk of blad-
der cancer, then it would be expected that slow acetylators, who have a reduced 
rate of detoxifi cation of these carcinogens, would be at an increased risk of bladder 
cancer if they were smokers, whereas if they were not exposed to these carcinogens 
(and the major exposure route for those outside of particular industries is through 
tobacco smoke) then an association of genotype with bladder cancer risk would not 
be anticipated. Table 21.1 tabulates fi ndings from the largest study to date reported 
in a way that allows consideration of this simple hypothesis (128). As can be 
seen, the infl uence of the NAT2 slow acetylation genotype is only appreciable among 
those also exposed to smoking. Since the genotype will be unrelated to confounders, 
it is diffi cult to reason why this situation should arise unless smoking is a causal fac-
tor with respect to bladder cancer. Thus the presence of a sizable effect of genotype in 
the exposed group but not in the unexposed group provides evidence as to the causal 
nature of the environmentally modifi able risk factor, in this example, smoking. It must 
be recognized, however, that gene–environment interactions interpreted within the 
Mendelian randomization framework as evidence regarding the causal nature of envi-
ronmentally modifi able exposures are not protected from confounding to the same 
extent as main genetic effects. In the NAT2/smoking/bladder cancer example any fac-
tor related to smoking—such as social class—will tend to show a greater association 
with bladder cancer within NAT2 slow acetylators than within NAT2 rapid acetylators. 
Because there is not a one-to-one association of social class with smoking, this will 
not produce the quantitative interaction of essentially no effect of the genotype in one 
exposure stratum and an effect in the other, as in the NAT2/smoking interaction, but 
rather a quantitative interaction of a greater effect of NAT2 in the poorer social classes 

Table 21.1 Association of NAT2 slow acetylation geno-
type with bladder cancer in never and ever smokers 
and overall. Odds ratio (95% confi dence intervals) Data 
from Garcia-Closas et al. (128)

Overall Never Smokers Ever Smokers

1.4 (1.2–1.7) 0.9 (0.6–1.3) 1.6 (1.3–1 9)
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(amongst whom smoking is more prevalent) and a smaller (but still evident) effect in 
the better-off social classes, amongst whom smoking tends to be less prevalent. Thus, 
situations in which both the biological basis of an expected interaction is well under-
stood and in which a qualitative (effect vs no effect) interaction may be postulated are 
the ones that are most amenable to interpretations related to the general causal nature 
of the environmentally modifi able risk factor. Mendelian randomization interpreta-
tions of gene by environment interactions are discussed in detail elsewhere (125).

Problems and Limitations of Mendelian Randomization

We consider Mendelian randomization to be one of the brightest current prospects 
for improving causal understanding within population-based studies. There are, 
however, several potential limitations to the application of this methodology (49), 
which will now be discussed.

Failure to Establish Reliable Genotype-Intermediate 
Phenotype or Genotype-Disease Associations

If the associations between genotype and a potential intermediate phenotype, or 
between genotype and disease outcome, are not reliably estimated, then interpret-
ing these associations in terms of their implications for potential environmental 
causes of disease will clearly be inappropriate. This is not an issue peculiar to 
Mendelian randomization, rather the nonreplicable nature of perhaps most appar-
ent fi ndings in genetic association studies is a serious limitation to the whole 
enterprise. This issue has been discussed elsewhere (2,129), and will not be dealt 
with further here. Instead, problems with the Mendelian randomization approach 
even when reliable genotype-phenotype associations can be determined will be 
addressed.

Confounding of Genotype—Environmentally Modifi able 
Risk Factor—Disease Associations

The power of Mendelian randomization lies in its ability to avoid the often sub-
stantial confounding seen in conventional observational epidemiology. However, 
confounding can be reintroduced into Mendelian randomization studies, and when 
interpreting the results, this possibility needs to be considered.

Linkage Disequilibrium
It is possible that the locus under study is in linkage disequilibrium—that is, is asso-
ciated with another polymorphic locus, with the effect of the polymorphism under 
investigation being confounded by the infl uence of the other polymorphism. It may 
seem unlikely—given the relatively short distances over which linkage disequilib-
rium is seen in the human genome—that a polymorphism infl uencing, for instance, 



Mendelian Randomization 431

CHD risk would be associated with another polymorphism infl uencing CHD risk 
(and thus producing confounding). There are, nevertheless, examples of different 
genes infl uencing the same metabolic pathway being in physical proximity. For 
example, different polymorphisms infl uencing alcohol metabolism appear to be in 
linkage disequilibrium (130).

Pleiotropy and the Multifunction of Genes
Mendelian randomization is most useful when it can be used to relate a single inter-
mediate phenotype to a disease outcome. However, polymorphisms may (and prob-
ably often will) infl uence more that one intermediate phenotype, and this may mean 
they proxy for more than one environmentally modifi able risk factor. This can be 
the case through multiple effects mediated by their RNA expression or intermediate 
protein coding, through alternative splicing, where one polymorphic region contrib-
utes to alternative forms of more than one protein, or through other mechanisms. 
The most robust interpretations will be possible when the functional polymorphism 
appears to directly infl uence the level of the intermediate phenotype of interest (as 
in the CRP example), but such examples are probably going to be less common in 
Mendelian randomization than in cases where the polymorphism can infl uence sev-
eral systems, with different potential interpretations of how the effect on outcome is 
generated.

How to Investigate Reintroduced Confounding within 
Mendelian Randomization
Linkage disequilibrium and pleiotropy can reintroduce confounding and thus viti-
ate the potential value of the Mendelian randomization approach. Genomic knowl-
edge may help in estimating the degree to which these are likely to be problems in 
any particular Mendelian randomization study, through, for instance, explication of 
genetic variants that may be in linkage disequilibrium with the variant under study, 
or the function of a particular variant and its known pleiotropic effects. Furthermore, 
genetic variation can be related to measures of potential confounding factors in 
each study, and the magnitude of such confounding estimated. Empirical studies to 
date suggest that common genetic variants are largely unrelated to the behavioral 
and socioeconomic factors considered to be important confounders in conventional 
observational studies (70). However, relying on measurement of confounders does, of 
course, remove the central purpose of Mendelian randomization, which is to balance 
unmeasured as well as measured confounders (as randomization does in RCTs).

In some circumstances, the genetic variant will be related to the environmentally 
modifi able exposure of interest in some population subgroups but not in others. An 
example of this relates to the alcohol ALDH2 genotype and blood pressure associa-
tion affecting men but not women, discussed earlier (see Figure 21.8). If ALDH2 
genetic variation infl uenced blood pressure for reasons other than its infl uence on 
alcohol intake, for example, if it was in linkage disequilibrium with another genetic 
variant that infl uenced blood pressure through another pathway or if there was a 
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pleiotropic effect of the genetic variant on blood pressure, the same genotype-blood 
pressure association should be seen among both men and women. If, however, the 
genetic variant only infl uences blood pressure through its effect on alcohol intake, 
an effect should only be seen in men, which is what is observed (see Figure 21.9). 
This further strengthens the evidence that the genotype-blood pressure association 
depends on the genotype infl uencing alcohol intake, and that the associations do 
indeed provide causal evidence of an infl uence of alcohol intake on blood pressure.

In some cases, it may be possible to identify two separate genetic variants, which 
are not in linkage disequilibrium with each other, but which both serve as prox-
ies for the environmentally modifi able risk factor of interest. If both variants are 
related to the outcome of interest and point to the same underlying association, then 
it becomes much less plausible that reintroduced confounding explains the asso-
ciation, since it would have to be acting in the same way for these two unlinked 
variants. This can be likened to RCTs of different blood pressure lowering agents, 
which work through different mechanisms and have different potential side effects, 
but lower blood pressure to the same degree. If the different agents produce the 
same reductions in cardiovascular disease risk, then it is unlikely that this is through 
agent-specifi c effects of the drugs; rather, it points to blood pressure lowering as 
being key. Use of multiple variants in this way has been applied in the study of the 
association of body mass index with more mineral density (131).

Canalization and Developmental Stability

Perhaps a greater potential problem for Mendelian randomization than reintro-
duced confounding arises from the developmental compensation that may occur 
through a polymorphic genotype being expressed during fetal or early postnatal 
development, and thus infl uencing development in such a way as to buffer against 
the effect of the polymorphism. Such compensatory processes have been discussed 
since C.H. Waddington introduced the notion of canalization in the 1940s (132). 
Canalization refers to the buffering of the effects of either environmental or genetic 
forces attempting to perturb development, and Waddington’s ideas have been well 
developed both empirically and theoretically (133–139). Such buffering can be 
achieved either through genetic redundancy (more than one gene having the same 
or similar function) or through alternative metabolic routes, where the complexity 
of metabolic networks allows recruitment of different pathways to reach the same 
phenotypic endpoint. In effect, a functional polymorphism expressed during fetal 
development or postnatal growth may infl uence the expression of a wide range of 
other genes, leading to changes that may compensate for the infl uence of the poly-
morphism. Put crudely, if a person has developed and grown from the intrauterine 
period onward within an environment in which one factor is perturbed (e.g., there is 
elevated CRP due to genotype) then they may be rendered resistant to the infl uence 
of lifelong elevated circulating CRP, through permanent changes in tissue structure 
and function that counterbalance its effects. In intervention trials—for example, 
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hypothetical RCTs of CRP-lowering drugs—the intervention is generally random-
ized to participants during their middle age; similarly, in observational studies of 
this issue, CRP levels are ascertained during adulthood. In Mendelian randomiza-
tion, on the other hand, randomization occurs before birth. This leads to important 
caveats when attempting to relate the fi ndings of conventional observational epide-
miologic studies to the fi ndings of studies carried out within the Mendelian random-
ization paradigm.

The most dramatic demonstrations of developmental compensation come from 
knockout studies—where a functioning gene is essentially removed from an organ-
ism. The overall phenotypic effects of such knockouts have often been much lower 
than knowledge of the function of the genes would predict, even in the absence of 
other genes carrying out the same function as the knockout gene (140–143). For 
example, pharmacological inhibition demonstrates that myoglobulin is essential to 
maintain energy balance and contractile function in the myocardium of mice, yet 
disrupting the myoglobulin gene resulted in mice devoid of myoglobulin with no 
disruption of cardiac function (144).

In the fi eld of animal genetic engineering studies—such as knockout preparations 
or transgenic animals manipulated so as to overexpress foreign DNA—the interpre-
tive problem created by developmental compensation is well recognized (140–143). 
Conditional preparations—in which the level of transgene expression can be induced 
or suppressed through the application of external agents—are now being utilized to 
investigate the infl uence of such altered gene expression after the developmental 
stages during which compensation can occur (145). Thus, further evidence on the 
issue of genetic buffering should emerge to inform interpretations of both animal 
and human studies.

Most examples of developmental compensation relate to dramatic genetic or envi-
ronmental insults; thus it is unclear whether the generally small phenotypic differ-
ences induced by common functional polymorphisms will be suffi cient to induce 
compensatory responses. The fact that the large gene–environment interactions that 
have been observed often relate to novel exposures that have not been present dur-
ing the evolution of a species (e.g., drug interactions) (125,146) may indicate that 
homogenization of response to exposures that are widely experienced—as would 
be the case with the products of functional polymorphisms or common mutations—
has occurred; canalizing mechanisms could be particularly relevant in these cases. 
Further work on the basic mechanisms of developmental stability and how this 
relates to relatively small exposure differences during development will allow these 
considerations to be taken forward. Knowledge of the stage of development at which 
a genetic variant has functional effects will also allow the potential of developmen-
tal compensation to buffer the response to the variant to be assessed.

In some Mendelian randomization designs, developmental compensation is not 
an issue. For example, when maternal genotype is utilized as an indicator of the 
intrauterine environment, then the response of the fetus will not differ whether 
the effect is induced by maternal genotype or by environmental perturbation, and 
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the effect on the fetus can be taken to indicate the effect of environmental infl u-
ences during the intrauterine period. Also in cases where a variant infl uences an 
adulthood environmental exposure—for example, ALDH2 variation and alcohol 
intake—developmental compensation to genotype will not be an issue. In many 
cases of gene–environment interaction interpreted with respect to causality of the 
environmental factor, the same applies. Solving the potential problem of canaliza-
tion in some Mendelian randomization situations cannot currently be adequately 
assessed, but the lines of research described above are likely to help.

Complexity of Associations and Interpretations
The interpretation of fi ndings from studies in which the Mendelian randomization 
approach has been adopted can often be complex. The association between ALDH2 
genotype and esophageal cancer, discussed earlier, provides one example. Genotype 
is related both to level of alcohol drinking and, given situations where some alcohol 
is consumed, also to levels of acetaldehyde at any given level of alcohol consump-
tion. This leads to the situation where heterozygotes—who consume less alcohol 
than homozygous wild type individuals—have increased risk of esophageal cancer, 
because they experience higher acetaldehyde; despite less alcohol consumption and 
less acetaldehyde production, they are slower in clearing the acetaldehyde that is 
produced. As a second example, consider the association of extracellular superoxide 
dismutase (EC-SOD) and CHD. EC-SOD is an extracellular scavenger of superox-
ide anions, and thus genetic variants associated with higher circulating EC-SOD 
levels might be considered to mimic higher levels of antioxidants. However, fi ndings 
are dramatically opposite to this—bearers of such variants have an increased risk of 
CHD (147). The explanation of this apparent paradox is that the higher circulating 
EC-SOD levels associated with the variant may arise from movement of EC-SOD 
from arterial walls; thus the in situ antioxidative properties of these arterial walls 
is lower in individuals with the variant associated with higher circulating EC-SOD. 
The complexity of these interpretations—together with their sometimes speculative 
nature—detracts from the transparency that otherwise makes the Mendelian ran-
domization approach attractive.

Lack of Suitable Genetic Variants to Proxy for Exposure 
of Interest
An obvious limitation of Mendelian randomization is that it can only examine 
areas for which there are functional polymorphisms (or genetic markers linked 
to such functional polymorphisms) that are relevant to the modifi able exposure 
of interest. In the context of genetic association studies, it has been pointed out 
more generally that in many cases, even if a locus is involved in a disease-related 
metabolic process, there may be no suitable marker or functional polymorphism 
to allow study of this process (148). In an earlier paper on Mendelian randomiza-
tion (49) we discussed the example of vitamin C, since observational epidemiology 
appeared to have got the wrong answer regarding associations between vitamin C 
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levels and disease. We considered whether the association between vitamin C and 
CHD could have been studied utilizing the principles of Mendelian randomization. 
We stated that polymorphisms exist that are related to lower circulating vitamin 
C levels—for example, the haptoglobin polymorphism (149)—but in this case the 
effect on vitamin C is at some distance from the polymorphic protein and the other 
phenotypic differences could have an infl uence on CHD risk that would distort 
examination of the infl uence of vitamin C levels through relating genotype to dis-
ease. SLC23A1—a gene encoding for the vitamin C transporter SVCT1, which is 
involved in vitamin C transport by intestinal cells—would be an attractive candi-
date for Mendelian randomization studies. However, by 2003 (the date of our earlier 
paper) a search for variants had failed to fi nd any common SNP that could be used 
in such a way (150). We therefore used this as an example of a situation where suit-
able polymorphisms for studying the modifi able risk factor of interest—in this case 
vitamin C—could not be located. However, since the earlier paper was written, 
functional variation in SLC23A1 has been identifi ed that is related to circulating 
vitamin C levels (Timpson et al., personal communication). We use this example 
not to suggest that the obstacle of locating relevant genetic variation for particular 
problems will always be overcome but to point out that rapidly developing knowl-
edge of human genomics will identify more variants that can serve as instruments 
for Mendelian randomization studies.

Conclusions

Mendelian Randomization, What It Is and What It Isn’t
Mendelian randomization is not predicated on the presumption that genetic vari-
ants are major determinants of health and disease within populations. There are 
many cogent critiques of genetic reductionism and the overselling of “discoveries” 
in genetics that reiterate obvious truths so clearly (albeit somewhat repetitively) that 
there is no need to repeat them here (e.g., 43,151–154). Mendelian randomization 
does not depend on there being “genes for” particular traits, and certainly not in the 
strict sense of a gene “for” a trait being one that is maintained by selection because 
of its causal association with that trait (155). The association of genotype and the 
environmentally modifi able factor that it proxies for will be like most genotype-
phenotype associations, one that is contingent and cannot be reduced to individual 
level prediction, but within environmental limits will pertain at a group level (156). 
This is analogous to an RCT of antihypertensive agents, where at a collective level 
the group randomized to active medication will have lower mean blood pressure 
than the group randomized to placebo, but at an individual level many participants 
randomized to active treatment will have higher blood pressure than many individu-
als randomized to placebo. Indeed, in the phenocopy/genocopy example of pellagra 
and Hartnup disease discussed above, only a minority of the Hartnup gene carriers 
develop symptoms, but at a group level they have both a much greater tendency to 
such symptoms and a shift in amino acid levels that refl ect this (157,158). These 
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group level differences are what create the analogy between Mendelian randomiza-
tion and RCTs, outlined in Figure 21.14.

Finally, the associations that Mendelian randomization depend upon do need to 
pertain to a defi nable group at a particular time, but do not need to be immuta-
ble. Thus, ALDH2 variation will not be related to alcohol consumption in a soci-
ety where alcohol is not consumed; the association will vary by gender, by cultural 
group, and may change over time (159,160). Within the setting of a study of a well-
defi ned group, however, the genotype will be associated with group-level differ-
ences in alcohol consumption and group assignment will not be associated with 
confounding variables.

Mendelian Randomization and Genetic Epidemiology
Critiques of contemporary genetic epidemiology often focus on two features of 
fi ndings from genetic association studies: that the population attributable risk of 
the genetic variants is low, and that in any case the infl uence of genetic factors is 
not reversible. Illustrating both of these criticisms, Terwilliger and Weiss suggest 
the following as reasons for considering that many of the current claims regard-
ing genetic epidemiology are hype: (a) that alleles identifi ed as increasing the risk 
of common diseases “tend to be involved in only a small subset of all cases of 
such diseases” and (b) that in any case “while the concept of attributable risk is an 
important one for evaluating the impact of removable environmental factors, for 
non-removable genetic risk factors, it is a moot point” (161). These evaluations of 
the role of genetic epidemiology are not relevant when considering the potential 
contributions of Mendelian randomization. This approach is not concerned with 
the population attributable risk of any particular genetic variant, but the degree 
to which associations between the genetic variant and disease outcomes can dem-
onstrate the importance of environmentally modifi able factors as causes of dis-
ease, for which the population attributable risk is of relevance to public health 
prioritization. Consider, for example, the case of familial hypercholesterolaemia 
or familial defective Apo B. The genetic mutations associated with these condi-
tions will only account for a trivial percentage of cases of CHD within the popula-
tion—that is, the population attributable risk will be low. For example, in a Danish 
population, the frequency of familial defective Apo B is 0.08% and, despite its 
sevenfold increased risk of CHD, will only generate a population attributable risk 
of 0.5% (162). However, by identifying blood cholesterol levels as a causal fac-
tor for CHD, the triangular association between genotype, blood cholesterol, and 
CHD risk identifi es an environmentally modifi able factor with a very high popu-
lation attributable risk—assuming that 50% of the population have raised blood 
cholesterol above 6.0 mmol/l and this is associated with a relative twofold risk, 
a population attributable risk of 33% is obtained. The same logic applies to the 
other examples discussed above—the attributable risk of the genotype is low, but 
the population attributable risk of the modifi able environmental factor identifi ed 
as causal through the genotype–disease associations is large. The same reasoning 
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applies when considering the suggestion that since genotype cannot be modifi ed, 
genotype–disease associations are not of public health importance (161). The point 
of Mendelian randomization approaches is not to attempt to modify genotype, but 
to utilize genotype–disease associations to strengthen inferences regarding modifi -
able environmental risks for disease, and then reduce disease risk in the population 
through applying this knowledge.

Mendelian randomization differs from other contemporary approaches to genetic 
epidemiology in that its central concern is not with the magnitude of genetic vari-
ant infl uences on disease, but rather on what the genetic associations tell us about 
environmentally modifi able causes of disease. As David B. Abrams, former direc-
tor of the Offi ce of Behavioral and Social Sciences Research at the U.S. National 
Institutes of Health has said, “The more we learn about genes the more we see how 
important environment and lifestyle really are.” Many years earlier, the pioneering 
geneticist Thomas Hunt Morgan articulated a similar sentiment in his Nobel Prize 
acceptance speech, when he contrasted his views with the then popular genetic 
approach to disease: eugenics. He thought that “through public hygiene and pro-
tective measures of various kinds we can more successfully cope with some of 
the evils that human fl esh is heir to. Medical science will here take the lead—
but I hope that genetics can at times offer a helping hand” (163). More than seven 
decades later, it might now be time for genetic research to strengthen the knowl-
edge base of public health directly.
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Introduction

Common diseases such as type 2 diabetes, osteoporosis, and cardiovascular disease 
are caused by a complex interplay of many genetic and nongenetic factors, each of 
which conveys a minor increase in the risk of disease. Although the genetic contribu-
tions to these multifactorial diseases are still poorly understood, enormous progress 
in the identifi cation of susceptibility genes is expected from the large-scale genome-
wide association studies (1,2) and biobank initiatives that have been launched world-
wide (3). The vast amount of information issuing from these studies is fueling the 
search for useful applications of genetic testing to guide prevention and early detec-
tion of common diseases with substantial public health impact. One of the greatest 
expectations is that unraveling the genetic origins of common diseases will lead to 
individualized medicine, in which prevention and treatment strategies are personal-
ized on the basis of the results of predictive genetic tests. Examples of multifactorial 
diseases showing promise for predictive genetic testing include type 2 diabetes and 
age-related macular degeneration (4,5).

Predictive genetic tests can be used to identify persons who have a disease at the 
time of testing (diagnosis) or who will develop the disease in the future (predic-
tion). Genetic testing is useful when the value it adds to existing efforts to reduce 
morbidity or mortality (or to effi ciency or effectiveness of health care programs) 
outweighs the additional costs. This evaluation includes not only measures of test 
performance, but also of health benefi ts, side effects, fi nancial costs, and psycho-
social, ethical, legal, and social implications (6). A brief assessment of the clinical 
validity and utility of a potential genetic test can help decide whether it merits fur-
ther, in-depth evaluation.

In this chapter, we fi rst explain how genetic contributions to monogenetic and 
complex diseases differ, and how these differences affect the predictive value of 
genetic tests. Then we review some measures for the clinical validity and utility 
of a single genetic test; we demonstrate that although they are based on the same 
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epidemiological parameters, they provide different information about the usefulness 
of a genetic test.

Genetic Predisposition to Monogenic and 
Complex Diseases

Monogenic Diseases
Monogenic diseases such as Huntington disease, familial hypercholesterolemia, cys-
tic fi brosis, and several hereditary forms of cancer are completely or predominantly 
caused by mutations in a single gene. Predictive testing for these mutations is very 
informative because disease risks differ substantially between carriers and noncar-
riers, as shown in Figure 22.1 for Huntington disease, hereditary breast cancer, and 
nonpolyposis colorectal cancer (7–9). These mutations are typically rare; thus, the 
risk of disease in carriers is substantially increased, whereas the risk of disease in 
noncarriers approximates the population average.

Because of the large difference in disease risk between carriers and noncarri-
ers, genetic testing can be useful for targeting preventive or therapeutic interven-
tions to the relatively small group of individuals at increased risk. Examples include 
intensive surveillance and prophylactic surgery for breast and ovarian cancer and 
prescription of statins for familial hypercholesterolemia. Genetic testing is also con-
sidered valuable in the absence of effective interventions to relieve uncertainty—
even when test results are positive—and to prepare for the future.

Multifactorial Diseases
Because multifactorial diseases are caused by complex interactions of many genetic 
and nongenetic factors, the predictive value of testing for a single genetic variant is 

Figure 22.1 Disease risks of carriers and noncarriers in genetic testing for monogenic 
disorders (10). The genetic variants tested are CAG repeats in 4p16.3 for Huntington dis-
ease (7), BRCA1/BRCA2 mutations for breast cancer (8), and MLH1/hMSH2 mutations for 
 colorectal cancer (9).
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limited. The disease risk in carriers of the risk variant is only slightly higher than 
that in noncarriers. For example, several examples of genetic test results for predict-
ing type 2 diabetes are shown in Figure 22.2. Because risk variants are generally 
common (>1%), carriers and noncarriers have disease risks that are only slightly 
higher or lower, respectively, than the population average. The differences in disease 
risk are small and noncarriers remain at risk.

Because multiple genetic and nongenetic factors each have only a minor role in 
the etiology of multifactorial diseases, researchers and test developers have turned 
their attention to genetic prediction of disease based on simultaneous testing for 
multiple genetic variants. This approach is called genetic profi ling. A genetic pro-
fi le describes the genotypes for all tested variants and predicts disease risk as a 
function of their combined effects. For example, when single genetic variants are 
equally associated with disease, predicted risk is simply proportional to the number 
of risk genotypes in the genetic profi le, as illustrated in Figure 22.3. Figure 22.3a 
shows the expected distribution of the number of risk genotypes when 40 genes are 
tested simultaneously: all individuals have at least some risk genotypes but none 
have risk genotypes for all variants tested. Figure 22.3b shows the associated risk 
when each single risk genotype increases the risk of disease by 50% (odds ratio = 
1.5): the greater the number of risk genotypes present, the higher the risk of disease. 
Genetic profi les associated with very high disease risks are rare. Most people have 
disease risks that are only slightly higher or lower than the average disease risk in 
the population.

In Figure 22.3c, we consider a more realistic scenario in which some genetic fac-
tors are stronger predictors of disease than others. The odds ratios of the individ-
ual genetic variants vary from 1.05 for genotypes that are more common to 2.0 for 
those that are less common. In this case, a person’s disease risk depends on both the 

Figure 22.2 Disease risks of carriers and noncarriers in single genetic testing for multifac-
torial disorders (10). Data on the odds ratios of the genetic variants are obtained from the 
literature (PPARG (11), CAPN10 (12), TCF7L2 (13)). For the calculation of the disease risks 
from the published odds ratios, we assumed a lifetime risk of type 2 diabetes of 33% (14).
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number of risk genotypes carried and on each genotype-specifi c risk. Genotypes 
more strongly associated with disease contribute more to a person’s disease risk 
than do those with weaker associations. The result is a scattering of disease risks 
rather than clearly distinguishable risk categories. Considering the role of environ-
mental factors, as well as gene–environment interactions, would contribute to fur-
ther variation in disease risks for individuals with the same genetic profi le.

Evaluation of Single Genetic Tests

Clinical validity and clinical utility are key measures for evaluating genetic tests 
(6). Clinical validity defi nes the ability of a test to detect or predict disease; clini-
cal utility focuses on health outcomes, both positive and negative, associated with 
testing. Several measures of clinical validity and clinical utility (Table 22.1) can be 
calculated from a basic 2×2 table summarizing the numbers of carriers and noncar-
riers of risk genotypes who will and will not develop the disease (Table 22.2). A 
2×2 table simply assumes that the genetic marker has a risk genotype and a referent 
genotype (assuming a dominant or recessive effect), but three or more genotypes 
can be considered as well. The table is defi ned by basic epidemiological parameters: 
the population disease risk, the genotype frequencies, and the association between 
genotypes and the risk of disease (Table 22.1).

To illustrate the formulas of Table 22.1, we present examples of genetic testing 
for monogenic diseases in offspring of patients (Huntington disease) or of muta-
tion carriers (hereditary breast and colorectal cancer) and for multifactorial diseases 

Figure 22.3 Disease risks associated with profi les in genetic testing for multifactorial dis-
orders (10). Bars indicate the frequency distribution of the genetic profi les quantifi ed by the 
number of risk genotypes in the profi le. The frequencies are presented on the left axis. The 
scatter plots represent the disease risks associated with the genetic profi les when all indi-
vidual variants have the same odds ratio (OR = 1.5; Figure 22.3b) and when the odds ratios 
vary (Figure 22.3c). The disease risks are presented on the right axis. Genetic profi les were 
constructed using a previously described method (15). We assumed that the disease risk in 
the population was 10% and that the frequencies of the risk genotypes varied between 1% 
and 60% (incremental from 1% to 19% by 1% and from 20% to 60% by 2%). In Figure 22.3c 
we assumed that the odds ratios varied from 1.05 to 2.0 (incremental from 1.05 to 1.19 by 
0.01 and from 1.20 to 2.0 by 0.05).
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Table 22.1 Overview of epidemiological, clinical, and public health measures in 
the evaluation of predictive genetic tests

Measure Description Formula

Epidemiological evaluation

Genotype frequency Frequency of genotype in total population P(g) = g/N

Population risk Disease risk in total population P(D) = D/N

Penetrance Disease risk conditional on genotype status

Relative risk Ratio of disease risks of carriers and 
noncarriers

RR = P(D | G) / P(D | n G) 

Odds ratio Ratio of odds of disease of carriers and 
noncarriers

Risk difference Difference between disease risks of carriers 
and noncarriers

RD = P(D | G)−P(D | n G)

Clinical validity

Sensitivity Proportion of carriers among affected Se = P(G|D)

Specifi city Proportion of noncarriers among unaffected Sp = P(nG|nD)

False positive rate Proportion of carriers among unaffected FPR = 1−Sp = P(G|nD)

False negative rate Proportion of noncarriers among affected FNR = 1−Se = P(nG|D)

Positive predictive 
value 

Proportion of affected among carriers PPV = P(D|G)

Negative predictive 
value

Proportion of unaffected among noncarriers NPV = P(nD|nG)

Clinical or public health utility

Likelihood ratio Ratio of the genotype frequency in affected 
and the genotype frequency in unaffected

LRg = P(g|D)/P(g|nD)

Population attrib-
utable fraction

Proportion of cases that is attributable to the 
genetic variant

PAF
P D P D nG

P D
=

−( ) ( | )

( )

Number needed to 
treat

Number needed to treat to prevent one case NNT
RD

=
1

Number needed to 
screen

Number of cases needed to screen to  prevent 
one case

NNS
NNT

P G
=

( )

Persons with the risk genotype are called “carriers”; those without the risk genotype are “noncarriers.” Persons 
who will develop the disease are called “affected”; those who will not are called “unaffected.” The letter “g” repre-
sents the number of persons with a given genotype, which can be either the risk genotype (G) or the referent genotype 
(nG). N = the total number of persons in a population; D = the number of persons who will develop the disease; nD = 
the number of persons who will not develop the disease; P = probability. The symbol “|” stands for “conditional on”: 
for example, P(D|G) means “the probability of disease conditional on the risk genotype,” or “the proportion of per-
sons with the risk genotype who will develop disease.” The symbol “∩” denotes “and.” Although the examples refer 
to predictive testing for future disease, all measures can also be calculated for diagnostic tests that aim to identify 
persons with or without the disease.

P D g
P D g

P g
( | )

( )

( )
=

∩

OR
P D G P nD nG

P D nG P nD G
=

( | ) * ( | )

( | ) * ( | )
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in the general population (type 2 diabetes) in Table 22.3. Note that examples refer 
to predictive testing for future disease, but all measures can also be calculated for 
diagnostic tests that aim to identify persons with or without the disease.

Epidemiological Parameters
The population disease risk is the probability that a member of a defi ned popula-
tion will develop disease within a specifi ed period of time (Table 22.1). Genotype 
frequencies are the population proportions of carriers and noncarriers of the risk 
genotype. Measures of association, such as the relative risk, risk difference, and 
odds ratio compare the risk or odds of disease in carriers and noncarriers of the 
risk genotype. Relative risk is the ratio of the disease risk in carriers divided by the 
disease risk in the noncarriers; risk difference is the absolute difference between 
the disease risk of carriers and noncarriers; and odds ratio is the ratio of the odds 
of disease in carriers divided by the odds of disease in noncarriers. Odds ratio is 
also the ratio of the odds of the risk genotype in individuals who will develop the 
disease and those who will not (referred to as affected and unaffected individuals 
in Table 22.1). In contrast to the relative risk and risk difference, the odds ratio is 
the same whether one looks from the genotype or from the disease perspective, that 
is, horizontally or vertically in Table 22.2 (16). Odds ratios may be used to approxi-
mate relative risks in rare diseases; however, odds ratios overestimate relative risks 
in common diseases.

In monogenic diseases such as Huntington disease, where disease develops in all 
carriers but in no noncarriers, the genotype frequency is equal to the disease risk in 
the population (17). In this situation, the disease risk is 100% for carriers and 0% for 
noncarriers (Figure 22.1; Table 22.3). In contrast, carriers of genetic variants associ-
ated with risk for complex diseases have risks that are only slightly higher than the 
risks in noncarriers (Figure 22.2).

Clinical Validity
Clinical validity measures the ability of genetic markers to detect or predict disease. 
Clinical validity comprises both the discriminative accuracy of the test and the 

Table 22.2 Basic table for the calculation of the clinical and public health 
measures of a single genetic test based on epidemiological data

 Will develop disease Will not develop disease Total

Carriers of risk genotype True positive False positive G

Noncarriers False negative True negative nG

Total D nD N

Persons with the risk genotype are called “carriers”; those without the risk genotype are “noncarriers.” 
The letter “g” represents the number of persons with a given genotype, which can be either the risk genotype 
(G) or the referent genotype (nG). N = the total number of individuals in a population; D = the number of indi-
viduals who develop the disease; nD = the number of individuals who will not develop the disease.



Table 22.3 Examples of the evaluation of predictive genetic tests for monogenic and multifactorial diseases

Disease  Huntington disease Breast cancer Colorectal cancer Type 2 diabetes

clinical scenario*  Offspring of patients Offspring of mutation carriers General population

Gene 4p16.3 BRCA1/2 MLH1/MSH2 PPARG CAPN10 TCF7L2

Marker CAG repeats P12A SNP44 rs7903147

Genotype defi nition At-risk Mutations Mutations Mutations PP TT TT

Referent PA/AA CC/CT CC/CT

Epidemiological evaluation

Genotype frequency At-risk 50% 50% 50% 73% (18) 62% (18) 7% (13)

Referent 50% 50% 50% 26% 38% 93%

Disease risk 50% 39%† 38%† 33% (14) 33% (14) 33% (14)

Penetrance At-risk 100% 65% (19) 70% (9) 36% 36% 49%

Referent 0% 13% (20) 6% (20) 24% 28% 32%

Odds ratio ∞ 12.9 40.1 1.77 (18) 1.45 (18) 2.05 (13)

Relative risk ∞ 5.13 12.6 1.49 1.29 1.54

Risk difference 100% 52% 64% 12% 8% 17%

Clinical validity and utility

Sensitivity 100% 84% 93% 80% 68% 10%

(Continued)



Table 22.3 Continued

Disease  Huntington disease Breast cancer Colorectal cancer Type 2 diabetes

clinical scenario*  Offspring of patients Offspring of mutation carriers General population

Specifi city 100% 72% 76% 31% 41% 95%

False negative rate 0% 29% 24% 70% 59% 90%

False positive rate 0% 16% 7% 20% 32% 5%

Positive predictive value 100% 65% 70% 36% 36% 49%

Negative predictive value 100% 87% 94% 76% 72% 68%

Likelihood ratio At-risk ∞ 2.94 3.88 1.15 1.15 1.94

Referent 0 0.23 0.1 0.65 0.79 0.95

Clinical or public health impact

Population attributable fraction 100% 67% 85% 26% 15% 4%

Number needed to treat 1 2 2 8 12 6

Number needed to screen 2 4 3 11 20 84

Numbers are for illustration purposes only. Specifi c risk estimates may vary among populations. All calculations were performed according to the formulas from Table 22.2, by using the 
Risk Translator of the HuGE Navigator (www.hugenavigator.net).

*Clinical scenario specifi es the target population for the genetic testing.
†Disease risks for offspring of mutation carriers, calculated as the average of the penetrances.
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predictive value of the test results. The discriminative accuracy of a genetic marker 
is the extent to which the marker can discriminate between individuals who will 
develop the disease and those who will not. Key indicators of discriminative accu-
racy are sensitivity and specifi city. Sensitivity is the proportion of carriers among 
persons who will develop the disease. Specifi city is the proportion of noncarriers 
among persons who will not develop the disease. Sensitivity and specifi city are 
measures of the genetic marker’s ability to correctly classify persons according to 
their future disease status. Sensitivity, and specifi city are also known as the true 
positive rate and the true negative rate. Conversely, the false positive rate is equal 
to one minus the specifi city, and the false negative rate is equal to one minus the 
sensitivity.

The predictive value of a genetic marker is its ability to predict disease. Positive 
predictive value is the absolute risk of disease in carriers, and negative predictive 
value is the probability that noncarriers will not develop the disease. Positive pre-
dictive value is related to the genetic epidemiological concept of penetrance.

Clinical Utility
Clinical utility is defi ned in terms of the extent to which genetic testing improves 
disease prediction beyond conventional risk factors, improves population health out-
comes, and improves health care services by increasing the effi ciency of interventions. 
A comprehensive assessment of clinical utility further requires data on social, eco-
nomic, and behavioral factors as well as knowledge of test performance and disease 
risks. Genetic testing is useful when it suffi ciently changes the distribution of risks 
predicted before testing. When a genetic marker is associated with risk of disease, 
carriers of the risk genotype have a higher risk of disease and noncarriers a lower risk 
of disease compared to the average or pretest disease risk. The likelihood ratio is the 
magnitude of change from the pretest to the posttest disease risk. The likelihood ratio 
of a certain genotype differs from its odds ratio in that the odds ratio compares the 
odds of disease to a referent genotype, whereas the likelihood ratio compares to the 
pretest odds of disease. A likelihood ratio higher than 1.0 indicates that the genotype 
is associated with increased risk of disease, and a likelihood ratio lower than 1.0 with 
a decreased disease risk compared to the risk of disease before testing. When the 
likelihood ratio is approximately 1.0 (see Table 22.3 for the risk genotypes of PPARG 
and CAPN10 and the referent genotype of TCF7L2), the penetrance approaches the 
pretest risk of disease. When the likelihood ratios of all genotypes approximate 1.0, 
their odds ratios approximate 1.0 and the test is uninformative.

Population-attributable fraction is an epidemiologic parameter that aims to assess 
the potential of a genetic test to improve population health outcomes. The popula-
tion-attributable fraction is the proportion of cases that can be prevented when a 
particular risk factor is eliminated. Population-attributable fraction increases with 
higher frequency of the risk genotype and with stronger association of the risk geno-
type with disease risk. Common interpretations of the population-attributable frac-
tion (Table 22.1) are based on assumptions that the risk factor can be eliminated and 
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that there is no confounding by other risk factors. For risk factors that cannot be 
eliminated, such as genetic risk factors, population-attributable fraction is the pro-
portion of cases that could be prevented by a preventive intervention that is 100% 
effective and is adopted by all carriers. Thus, population-attributable fraction can be 
interpreted as the maximum number of cases that could be prevented by eliminating 
the adverse effects of the genetic risk factor.

While population-attributable fraction indicates the proportion of cases that can 
be prevented, the effi ciency of interventions to achieve this reduction is indicated by 
the number needed to treat and the number needed to screen. The number needed to 
treat is the number of at-risk persons who would need to adopt the preventive inter-
vention to prevent one case. The number needed to screen is the number of persons 
who would have to be tested to fi nd a suffi cient number of persons needed to treat to 
prevent one case.

Evaluation of Genetic Profi ling

Genetic profi les based on multiple variants can be evaluated for clinical validity and 
utility by the same measures used to evaluate single genetic tests; however, their 
calculation is sometimes more complex because testing at multiple loci yields a 
large number of different profi les (Figure 22.3). Regression modeling can be used to 
estimate some measures—such as the odds ratio, risk difference, predictive value, 
likelihood ratio, and population-attributable fraction—for specifi c profi les. Other 
measures, such as sensitivity and specifi city, can only be calculated for genetic 
markers with two genotypes but have analogous measures for tests with continuous 
results. The area under the receiver operating characteristic curve (AUC) is a sum-
mary measure of discriminative accuracy for continuous tests that is related to the 
sensitivity and specifi city.

Discussion

Several measures of clinical validity and clinical utility can be calculated when 
information is available for estimating genotype frequencies, disease risk in the 
population, and the association of genotypes with disease risk. We demonstrate that 
these different measures, though calculated from the same three epidemiological 
parameters, provide different and complementary information about the clinical 
validity and utility of a genetic test.

The measures of clinical validity and clinical utility that we have discussed are 
related; all of them can be calculated from the same 2×2 table, and hence each can 
be calculated from the others. For example, the likelihood ratio of the risk genotype 
is the odds of disease in genotype carriers divided by the odds of disease in the total 
population; it is also equivalent to the true positive rate divided by the false posi-
tive rate, or the sensitivity divided by (1-specifi city). Likewise, the odds ratio is the 
likelihood ratio of the risk genotype divided by the likelihood ratio of the referent 
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genotype. Although these indicators can be calculated from one another, they have 
different interpretations. For example, a genetic test with appreciable clinical valid-
ity may have a low population-attributable fraction when the frequency of the risk 
genotype is low. Furthermore, a test with a substantial population-attributable frac-
tion may have poor clinical validity when the disease is very common and the odds 
ratio is low (e.g., as for PPARG in type 2 diabetes risk; see Table 22.3).

In this chapter, we present several key points relevant to the evaluation of genetic 
testing. Most important, we demonstrate that clinical validity and utility vary with 
differences in the same three epidemiological parameters, whether testing single 
or multiple genetic variants. Thus, a test that is useful for predicting disease in one 
population may not be useful in another population, for example, where the risk of 
disease is lower, the frequency of the risk genotype is lower, or the gene–disease 
association is weaker. Because disease risks, genotype frequencies, and risk ratios 
may vary among populations, the clinical validity and utility of a genetic test should 
be evaluated for each disease in every setting in which the test will be applied (6). 
For example, the frequency of BRCA1/2 mutations and the risk of breast cancer in 
the general population are very different from the parameters for diseases included 
in Table 22.3; thus, their clinical validity and utility vary accordingly.

Sensitivity and specifi city, as well as positive and negative predictive values, 
should be evaluated simultaneously in the context of one another. Table 22.3 dem-
onstrates that a genetic marker with a frequent risk genotype by defi nition has good 
sensitivity. A test based on a genetic marker that is not associated with a disease 
will have sensitivity and 1-specifi city equal to the frequency of the risk genotype. 
For example, the minimum sensitivity of the PPARG P12A polymorphism is 73%, 
irrespective of which disease is tested for and irrespective of whether the marker 
is associated with the disease. The same holds for the positive predictive value 
and 1-negative predictive value, which are at least equal to the population risk of 
disease. This means, for example, that the positive predictive value of any diabe-
tes risk genotype is at least 33%, regardless of the strength of the association (see 
Table 22.3) (14).

By defi nition, a “risk genotype” is associated with a higher risk of disease com-
pared with the referent genotypes; however, this does not mean that the posttest 
disease risk in carriers will be markedly higher than the average population disease 
risk (i.e., the probability of disease prior to testing). When the risk genotype is very 
common (>50%, such as the PPARG and CAPN10 genotypes in Table 22.3), the 
absolute increase in risk among carriers is smaller than the decrease among non-
carriers. Advocates for the potential clinical or public health impact of a genetic 
test often emphasize the proportion of the population that carries the risk genotype; 
however, a genetic test for a very common risk genotype might be more useful for 
identifying individuals at low risk of disease.

Deciding which measure of clinical validity or clinical utility is of primary 
 interest is not an arbitrary decision, but instead is determined by the intended use of 
the test and the perspective of the user. For example, a test that is used for screening 
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to select persons for further diagnostic testing should have high sensitivity and rea-
sonably good specifi city, so that it identifi es most affected individuals without yield-
ing an excessive number of false positives. Persons who undergo genetic testing 
want to know their own risks of disease based on genotype (indicated by the pene-
trance or predictive value) and the extent to which genetic test results change their 
estimated risk (indicated by the likelihood ratio). Policy makers or health care pay-
ers are likely more interested in the number of individuals that need to be screened 
or treated to achieve a certain reduction in disease risk and morbidity. Because dif-
ferent perspectives rely on different primary indicators, genetic testing can easily be 
useful from one perspective but not from another (21).

In summary, the clinical validity and clinical utility of a genetic test depend on 
the disease risk, the genotype frequency, and the association of a genetic marker 
with the risk of disease. Different performance measures can lead to different con-
clusions about the value of genetic testing; therefore, each of these measures should 
be reported and evaluated in the context of the others. The HuGE Navigator (www.
hugenavigator.net; see Chapter 4) includes the HuGE Risk Translator, which can be 
used to calculate measures of clinical validity and clinical utility based on combina-
tions of epidemiological parameters (measures of disease risk, genotype frequency, 
and association) supplied by the user. This concise but rigorous evaluation is a fi rst 
step in determining whether a genetic test warrants further evaluation in terms of 
cost-effectiveness, policy implications, and ethical, legal, and social implications. 
This more comprehensive evaluation is required to justify introduction of the test in 
clinical care or public health practice.
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The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) 
Initiative, established by the Office of Public Health Genomics at the Centers for 
Disease Control and Prevention, supports the development and implementation of 
a rigorous, evidence-based process for evaluating genetic tests and other genomic 
applications for clinical and public health practice in the United States. An indepen-
dent, nonfederal EGAPP Working Group (EWG), a multidisciplinary expert panel 
selects topics, oversees the systematic review of evidence, and makes recommen-
dations based on that evidence. This chapter describes the EGAPP processes and 
details the specific methods and approaches used by the EWG.

The completion of the Human Genome Project has generated enthusiasm for 
translating genome discoveries into testing applications that have potential to 
improve health care and usher in a new era of “personalized medicine” (1–4). For 
the past decade, however, questions have been raised about the appropriate eviden-
tiary standards and regulatory oversight for this translation process (5–10). The U.S. 
Preventive Services Task Force (USPSTF) was the first established national process 
to apply an evidence-based approach to the development of practice guidelines for 
genetic tests, focusing on BRCA1/2 testing (to assess risk for heritable breast can-
cer) and on HFE testing for hereditary hemochromatosis (11,12). The Centers for 
Disease Control and Prevention-funded ACCE Project piloted an evidence evalua-
tion framework of 44 questions, which defines the scope of the review (i.e., disorder, 
genetic test, clinical scenario) and addresses the previously proposed (6,7) compo-
nents of evaluation: Analytic and Clinical validity, Clinical utility and associated 
Ethical, legal, and social implications. The ACCE Project examined available evi-
dence on five genetic testing applications, providing evidence summaries that could 

Reprinted with permission from Genet Med. 2009;11(1):3–14.
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be used by others to formulate recommendations (13–16). Systematic reviews on 
genetic tests have also been conducted by other groups (17–20).

Genetic tests tend to fit less well within “gold-standard” processes for systematic 
evidence review for several reasons (21–24). Many genetic disorders are uncommon 
or rare, making data collection difficult. Even greater challenges are presented by 
newly emerging genomic tests with potential for wider clinical use, such as genomic 
profiles that provide information on susceptibility for common complex disorders 
(e.g., diabetes, heart disease) or drug-related adverse events, and tests for disease 
prognosis (25,26). The actions or interventions that are warranted based on test 
results, and the outcomes of interest, are often not well defined. In addition, the 
underlying technologies are rapidly emerging, complex, and constantly evolving. 
Interpretation of test results is also complex, and may have implications for  family 
members. Of most concern, the number and quality of studies are limited. Test 
applications are being proposed and marketed based on descriptive evidence and 
pathophysiologic reasoning, often lacking well-designed clinical trials or observa-
tional studies to establish validity and utility, but advocated by industry and patient 
interest groups.

The EGAPP Initiative

The EGAPP Working Group (EWG) is an independent panel established in April 
2005, to develop a systematic process for evidence-based assessment that is 
specifically focused on genetic tests and other applications of genomic techno-
logy. Key objectives of the EWG are to develop a transparent, publicly account-
able process, minimize conflicts of interest, optimize existing evidence review 
methods to address the challenges presented by complex and rapidly emerging 
genomic applications, and provide clear linkage between the scientific evidence 
and the subsequently developed EWG recommendation statements. The EWG 
is currently composed of 16 multidisciplinary experts in areas such as clinical 
practice, evidence-based medicine, genomics, public health, laboratory practice, 
epidemiology, economics, ethics, policy, and health technology assessment (27). 
This nonfederal panel is supported by the EGAPP initiative launched in late 2004 
by the Office of Public Health Genomics at the Centers for Disease Control and 
Prevention (CDC). In addition to supporting the activities of the EWG, EGAPP is 
developing data collection, synthesis, and review capacity to support timely and 
efficient translation of genomic applications into practice, evaluating the products 
and impact of the EWG’s pilot phase, and working with the EGAPP Stakeholders 
Group on topic prioritization, information dissemination, and product feedback 
(28). The EWG is not a federal advisory committee, but rather aims to provide 
information to clinicians and other key stakeholders on the integration of geno-
mics into clinical practice. The EGAPP initiative has no oversight or regulatory 
authority.
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Scope and Selection of Genetic Tests as Topics for 
Evidence Review

Much debate has centered on the defi nition of a “genetic test.” Because of the evolv-
ing nature of the tests and technologies, the EWG has adopted the broad view articu-
lated in a recent report of the Secretary’s Advisory Committee on Genetics, Health, 
and Society (10):

A genetic test involves the analysis of chromosomes, deoxyribonucleic acid 
(DNA), ribonucleic acid (RNA), genes, or gene products (e.g., enzymes and 
other proteins) to detect heritable or somatic variations related to disease or 
health. Whether a laboratory method is considered a genetic test also depends 
on the intended use, claim or purpose of a test.

Based on resource limitations, EGAPP focuses on tests having wider population 
application (e.g., higher disorder prevalence, higher frequency of test use), those 
with potential to impact clinical and public health practice (e.g., emerging prognos-
tic and pharmacogenomic tests), and those for which there is significant demand for 
information. Tests currently eligible for EGAPP review include those used to guide 
intervention in symptomatic (e.g., diagnosis, prognosis, treatment) or asymptomatic 
individuals (e.g., disease screening), to identify individuals at risk for future disor-
ders (e.g., risk assessment or susceptibility testing), or to predict treatment response 
or adverse events (e.g., pharmacogenomic tests) (Table 23.1). Though the methods 
developed for systematic review are applicable, EGAPP is not currently considering 
diagnostic tests for rare single gene disorders, newborn screening tests, or prenatal 
screening and carrier tests for reproductive decision making, as these tests are being 
addressed by other processes (10,29–39).

EGAPP-commissioned evidence reports and EWG recommendation statements 
are focused on patients seen in traditional primary or specialty care clinical set-
tings, but may address other contexts, such as direct web-based offering of tests to 
consumers without clinician involvement (e.g., direct-to-consumer or DTC genetic 
testing). EWG recommendations may vary for different applications of the same test 
or for different clinical scenarios, and may address testing algorithms that include 
preliminary tests (e.g., family history or other laboratory tests that identify high risk 
populations).

Candidate topics (i.e., applications of genetic tests in specific clinical scenarios 
to be considered for evidence review) are identified through horizon scanning in 
the published and unpublished literature (e.g., databases, web postings), or nomi-
nated by EWG members, outside experts and consultants, federal agencies, health-
care providers and payers, or other stakeholders (40). Like the USPSTF (23), the 
EWG does not have an explicit process for ranking topics. EGAPP staff prepares 
background summaries on each potential topic, which are reviewed and given pre-
liminary priorities by an EWG Topics Subcommittee, based on specific criteria and 
aimed at achieving a diverse portfolio of topics that also challenge the evidence 
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review methods (Table 23.2). Final selections are determined by vote of the full 
EWG. EGAPP is currently developing a more systematic and transparent process 
for prioritizing topics that is better informed by stakeholders.

Review of the Evidence

Evidence Review Strategies
When topics are selected for review by the EWG, CDC commissions systematic 
reviews of the available evidence. These reviews may include meta-analyses and eco-
nomic evaluations. New topics are added on a phased schedule as funding and staff 
capacity allow. All EWG members, review team members, and consultants disclose 
potential conflicts of interest for each topic considered. Following the identification 
of the scope and the outcomes of interest for a systematic review, key questions and 
an analytic framework are developed by the EWG, and later refined by the review 
team in consultation with a technical expert panel (TEP). The EWG assigns mem-
bers to serve on the TEP, along with other experts selected by those conducting the 
review; these members constitute the EWG “topic team” for that review. Based on 

Table 23.1 Categories of genetic test applications and some characteristics of 
how clinical validity and utility are assessed

Application of test Clinical validity Clinical utility

Diagnosis (symp-
tomatic patient)

Association of marker with disorder Improved clinical outcomes*—health 
outcomes based on diagnosis and 
subsequent intervention or treatment

Availability of information useful for 
personal or clinical decision making

End of diagnostic odyssey

Disease screen-
ing (asymptomatic 
patient)

Association of marker with disorder Improved health outcome based on 
early intervention for screen positive 
individuals to identify a disorder 
for which there is intervention or 
treatment, or provision of informa-
tion useful for personal or clinical 
decision making

Risk assessment/
susceptibility

Association of marker with future 
disorder (consider possible effect of 
penetrance)

Improved health outcomes based 
on prevention or early detection 
strategies

Prognosis of diag-
nosed disease

Association of marker with natural 
history benchmarks of the disorder

Improved health outcomes, or out-
comes of value to patients, based on 
changes in patient management

Predicting treat-
ment response or 
adverse events 
(pharmacogenomics)

Association of marker with a phe-
notype/metabolic state that relates 
to drug efficacy or adverse drug 
reactions

Improved health outcomes or adher-
ence based on drug selection or 
dosage

*Clinical outcomes are the net health benefit (benefits and harms) for the patients and/or population in which the 
test is used.
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the multidisciplinary nature of the panel, selection of EWG topic teams aims to 
include expertise in evidence-based medicine and scientific content.

For five of eight testing applications selected by the EWG to date, CDC-funded 
systematic evidence reviews have been conducted in partnership with the Agency for 
Healthcare Research and Quality (AHRQ) Evidence-based Practice Centers (EPCs) 
(41). Based on expertise in conducting comprehensive, well-documented literature 
searches and evaluation, AHRQ EPCs represent an important resource for perform-
ing comprehensive reviews on applications of genomic technology. However, com-
prehensive reviews are time and resource intensive, and the numbers of relevant tests 
are rapidly increasing. Some tests have multiple applications and require review of 
more than one clinical scenario (7,10).

Consequently, the EWG is also investigating alternative strategies to produce 
shorter, less expensive, but no less rigorous, systematic reviews of the evidence 
needed to make decisions about immediate usefulness and highlight important gaps 
in knowledge. A key objective is to develop methods to support “targeted” or “rapid” 
reviews that are both timely and methodologically sound (13,17–20,42). Candidate 
topics for such reviews include situations when the published literature base is very 

Table 23.2 Criteria for preliminary ranking of topics

Criteria related 
to health 
burden

What is the potential public health impact based on the prevalence/incidence of the 
disorder, the prevalence of gene variants, or the number of individuals likely to be 
tested?

What is the severity of the disease?

How strong is the reported relationship between a test result and a disease/drug 
response?

Is there an effective intervention for those with a positive test or their family 
members?

Who will use the information in clinical practice (e.g., health care providers, 
 payers) and how relevant might this review be to their decision making?

Criteria related 
to practice 
issues

What is the availability of the test in clinical practice?

Is an inappropriate test use possible or likely?

What is the potential impact of an evidence review or recommendations on clinical 
practice? On consumers?

Other 
 considerations

How does the test add to the portfolio of EGAPP evidence-based reviews? As 
a pilot project, EGAPP aims to develop a portfolio of evidence reviews that 
adequately tests the process and methodologies.

Will it be possible to make a recommendation, given the body of data available? 
EGAPP is attempting to balance selection of somewhat established tests versus 
emerging tests for which insufficient evidence or unpublished data are more likely.

Are there other practical considerations? For example, avoiding duplication of 
 evidence reviews already underway by other groups.

How does this test contribute to diversity in reviews? In what category is this test? 
As a pilot project, EGAPP aims to consider different categories of tests 
(e g.,  pharmacogenomics or cancer), mutation types (e.g., inherited or somatic) or 
test types (e.g., predictive or diagnostic).
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limited, when it is possible to focus on a single evaluation component (e.g., clinical 
validity) that is most critical for decision making, and when information is urgently 
needed on a test with immediate potential for great benefit or harm. Three such 
targeted reviews are being coordinated by CDC-based EGAPP staff in collaboration 
with technical contractors, and with early participation of expert core consultants 
who can identify data sources and provide expert guidance on the interpretation of 
results (43). Regardless of the source, a primary objective for all evidence reviews is 
that the final product is a comprehensive evaluation and interpretation of the avail-
able evidence, rather than summary descriptions of relevant studies.

Structuring the Evidence Review

“Evidence” is defined as peer-reviewed publications of original data or systematic 
review or meta-analysis of such studies; editorials and expert opinion pieces are 
not included (23,44). However, EWG methods allow for inclusion of peer-reviewed 
unpublished literature (e.g., information from Food and Drug Administration [FDA] 
Advisory Committee meetings), and for consideration on a case-by-case basis of 
other sources, such as review articles addressing relevant technical or contextual 
issues, or unpublished data. Topics are carefully defined based on the medical disor-
der, the specific test (or tests) to be used, and the specific clinical scenario in which 
it will be used.

The medical “disorder” (a term chosen as more encompassing than “disease”) 
should optimally be defined in terms of its clinical characteristics, rather than by the 
laboratory test being used to detect it. Terms such as condition or risk factor gener-
ally designate intermediate or surrogate outcomes or findings, which may be of inter-
est in some cases; for example, identifying individuals at risk for atrial fibrillation as 
an intermediate outcome for preventing the clinical outcome of cardiogenic stroke. 
In pharmacogenomic testing, the disorder, or outcome of interest, may be a reduc-
tion in adverse drug events (e.g., avoiding severe neutropenia among cancer patients 
to be treated with irinotecan via UGT1A1 genotyping and dose reduction in those at 
high risk), optimizing treatment (e.g., adjusting initial warfarin dose using CYP2C9 
and VKORC1 genotyping to more quickly achieve optimal anticoagulation in order to 
avoid adverse events), or more effectively targeting drug interventions to those patients 
most likely to benefit (e.g., herceptin for HER2 overexpressing breast cancers).

Characterizing the genetic test(s) is the second important step. For example, the 
American College of Medical Genetics defined the genetic testing panel for cystic 
fibrosis in the context of carrier testing as the 23 most common CFTR mutations 
(i.e., present at a population frequency of 0.1% or more) associated with classic, 
early onset cystic fibrosis in a U.S. pan-ethnic study population. This allowed the 
subsequent review of analytic and clinical validity to focus on a relatively small 
subset of the 1,000 or more known mutations (45). Rarely, a nongenetic test may be 
evaluated, particularly if it is an existing alternative to mutation testing. An example 
would be biochemical testing for iron overload (e.g., serum transferrin saturation, 
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serum ferritin) compared with HFE genotyping for identification of hereditary 
hemochromatosis.

A clear definition of the clinical scenario is of major importance, as the perfor-
mance characteristics of a given test may vary depending on the intended use of 
the test, including the clinical setting (e.g., primary care, specialty settings), how 
the test will be applied (e.g., diagnosis or screening), and who will be tested (e.g., 
general population or selected high risk individuals). Preliminary tests should also 
be considered as part of the clinical scenario. For example, when testing for Lynch 
syndrome among newly diagnosed colorectal cancer cases, it may be too expensive 
to sequence two or more mismatch repair genes (e.g., MLH1, MSH2) in all patients. 
For this reason, preliminary tests, such as family history, microsatellite instabil-
ity, or immunohistochemical testing, may be evaluated as strategies for selecting a 
smaller group of higher risk individuals to offer gene sequencing.

Methods

Methods of the EWG for reviewing the evidence share many elements of existing 
processes, such as the USPSTF (23), the AHRQ Evidence-based Practice Center 
Program (46), the Centre for Evidence Based Medicine (47), and others (44,48–53). 
These include the use of analytic frameworks with key questions to frame the evi-
dence review; clear definitions of clinical and other outcomes of interest; explicit 
search strategies; use of hierarchies to characterize data sources and study designs; 
assessment of quality of individual studies and overall certainty of evidence; link-
age of evidence to recommendations; and minimizing conflicts of interest through-
out the process. Typically, however, the current evidence on genomic applications is 
limited to evaluating gene–disease associations, and is unlikely to include random-
ized controlled trials that evaluate test-based interventions and patient outcomes. 
Consequently, the EWG must rigorously assess the quality of observational studies, 
which may not be designed to address the questions posed.

In this new field, direct evidence to answer an overarching question about the 
effectiveness and value of testing is rarely available. Therefore, it is necessary to 
construct a chain of evidence, beginning with the technical performance of the test 
(analytic validity) and the strength of the association between a genotype and disor-
der of interest. The strength of this association determines the test’s ability to diag-
nose a disorder, assess susceptibility or risk, or provide information on prognosis or 
variation in drug response (clinical validity). The final link is the evidence that test 
results can change patient management decisions and improve net health outcomes 
(clinical utility).

To address some unique aspects of genetic test evaluation, the EWG has adopted 
several aspects of the ACCE model process, including formal assessment of analytic 
validity; use of unpublished literature for some evaluation components when pub-
lished data are lacking or of low quality; consideration of ethical, legal, and social 
implications as integral to all components of evaluation; and use of questions from 
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the ACCE analytic framework to organize collection of information (13). Important 
concepts that underlie the EGAPP process and add value include (i) providing a 
venue for multidisciplinary independent assessment of collected evidence; (ii) con-
ducting reviews that maintain a focus on medical outcomes that matter to patients, 
but also consider a range of specific family and societal outcomes when appropriate 
(54); (iii) developing and optimizing methods for assessing individual study quality, 
adequacy of evidence for each component of the analytic framework, and certainty 
of the overall body of evidence; (iv) focusing on summarization and synthesis of 
the evidence and identification of gaps in knowledge; and (v) ultimately, providing 
a foundation for evidentiary standards that can guide policy decisions. Although 
evidentiary standards will necessarily vary depending on test application (e.g., for 
diagnosis or to guide therapy) and the clinical situation, the methods and approaches 
described in this chapter are generally applicable; further refinement is anticipated 
as experience is gained.

The Analytic Framework and Key Questions

After the selection and structuring of the topic to be reviewed, the EWG Methods 
Subcommittee drafts an analytic framework for the defined topic that explicitly illus-
trates the clinical scenario, the intermediate and health outcomes of interest, and 
the key questions to be addressed. Table 23.1 provides generic examples of clinical 
scenarios. However, analytic frameworks for genetic tests differ based on clinical 
scenario, and must be customized for each topic. Figure 23.1 shows the example of 
an analytic framework used to develop the first EWG recommendation, Testing for 
Cytochrome P450 Polymorphisms in Adults with Nonpsychotic Depression Prior 
to Treatment with Selective Serotonin Reuptake Inhibitors (SSRIs); numbers in the 
figure refer to the key questions listed in the legend (55,56).

The first key question is an overarching question to determine whether there is 
direct evidence that using the test leads to clinically meaningful improvement in 
outcomes or is useful in medical or personal decision making. In this case, EGAPP 
uses the USPSTF definition of direct evidence, “a single body of evidence establishes 
the connection” between the use of the genetic test (and possibly subsequent tests or 
interventions) and health outcomes (23). Thus, the overarching question addresses 
clinical utility, and specific measures of the outcomes of interest. For genetic tests, 
such direct evidence on outcomes is most commonly not available or of low quality, 
so a “chain of evidence” is constructed using a series of key questions. EGAPP fol-
lows the convention that the chain of evidence is indirect if, rather than answering 
the overarching question, two or more bodies of evidence (linkages in the analytic 
framework) are used to connect the use of the test with health outcomes (23,57).

After the overarching question, the remaining key questions address the compo-
nents of evaluation as links in a possible chain of evidence: analytic validity (tech-
nical test performance), clinical validity (the strength of association that determines 
the test’s ability to accurately and reliably identify or predict the disorder of interest), 



Figure 23.1 Analytic framework and key questions for evaluating one application of a genetic test in a specifi c clinical scenario: Testing for Cytochrome 
P450 Polymorphisms in Adults with Nonpsychotic Depression Treated With Selective Serotonin Reuptake Inhibitors (SSRIs); modifi ed from Reference 
56. The numbers correspond to the following key questions:
1. Overarching question: Does testing for cytochrome P450 (CYP450) polymorphisms in adults entering selective serotonin reuptake inhibitor (SSRI) treat-
ment for nonpsychotic depression lead to improvement in outcomes, or are testing results useful in medical, personal, or public health decision making?
2. What is the analytic validity of tests that identify key CYP450 polymorphisms?
3. Clinical validity: (a), How well do particular CYP450 genotypes predict metabolism of particular SSRIs? (b), How well does CYP450 testing predict 
drug efficacy? (c), Do factors such as race/ethnicity, diet, or other medications, affect these associations?
4. Clinical utility: (a), Does CYP450 testing influence depression management decisions by patients and providers in ways that could improve or worsen 
outcomes? (b), Does the identification of the CYP450 genotypes in adults entering SSRI treatment for nonpsychotic depression lead to improved clinical 
outcomes compared to not testing? (c), Are the testing results useful in medical, personal, or public health decision making?
5. What are the harms associated with testing for CYP450 polymorphisms and subsequent management options?
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and clinical utility (balance of benefits and harms when the test is used to influence 
patient management). Determining whether a chain of indirect evidence can be 
applied to answer the overarching question requires consideration of the quality of 
individual studies, the adequacy of evidence for each link in the evidence chain, 
and the certainty of benefit based on the quantity (i.e., number and size) and quality 
(i.e., internal validity) of studies, the consistency and generalizability of results, and 
understanding of other factors or contextual issues that might influence the conclu-
sions (23,57). The USPSTF has recently updated its methods and clarified its termi-
nology (57). Because this approach is both thoughtful and directly applicable to the 
work of EGAPP, the EWG has adopted the terminology; an additional benefit will 
be to provide consistency for shared audiences.

Evidence Collection and Assessment

The review team considers the analytic framework, key questions, and any 
specific methodological approaches proposed by the EWG. As previously noted, 
the report will focus on clinical factors (e.g., natural history of disease, thera-
peutic alternatives) and outcomes (e.g., morbidity, mortality, quality of life), but 
the EWG may request that other familial, ethical, societal, or intermediate out-
comes also be considered for a specific topic (54). The EWG may also request 
information on other relevant factors (e.g., impact on management decisions by 
patients and providers) and contextual issues (e.g., cost effectiveness, current use, 
or feasibility of use).

Methods for individual evidence reviews will differ in small ways based on the 
reviewers (AHRQ EPC or other review team), the strategy for review (e.g., com-
prehensive, targeted/rapid), and the topic. These differences will be transparent 
because all evidence reviews describe methods and follow the same general steps: 
framing the specific questions for review; gathering technical experts and review-
ers; identifying data sources, searching for evidence using explicit strategies and 
study inclusion/exclusion criteria; specifying criteria for assessing quality of studies; 
abstracting data into evidence tables; synthesizing findings; and identifying gaps 
and making suggestions for future research.

All draft evidence reports are distributed to the TEP and other selected experts for 
technical review. After consideration of reviewer comments, EPCs provide a final 
report that is approved and released by AHRQ and posted on the AHRQ web site; 
the EPC may subsequently publish a summary of the evidence. Non-EPC review 
teams submit final reports to CDC and the EWG, along with the comments from 
the technical reviewers and how they were addressed; the EWG approves the final 
report. Final evidence reports (or links to AHRQ reports) are posted on the http://
www.egappreviews.org Web site. When possible, a manuscript summarizing the 
evidence report is prepared to submit for publication along with the clinical practice 
recommendations developed by the EWG (56).
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Grading Quality of Individual Studies

Table 23.3 provides the hierarchies of data sources for analytic validity, and of study 
designs for clinical validity and utility, designated for all as Level 1 (highest) to Level 4. 
Table 23.4 provides a checklist of questions for assessing the quality of individual stud-
ies for each evaluation component based on the published literature (5,13,23,48,58,59). 
Different reviewers may provide a quality rating for individual studies that is based on 
specified criteria, or derived using a more quantitative algorithm. The EWG ranks indi-
vidual studies as Good, Fair, or Marginal based on critical appraisal using the criteria 
in Tables 23.3 and 23.4. The designation Marginal (rather than Poor) acknowledges 
that some studies may not have been “poor” in overall design or conduct, but may not 
have been designed to address the specific key question in the evidence review.

Table 23.3 Hierarchies of data sources and study designs for the components of 
evaluation

Level* Analytic validity Clinical validity Clinical utility

1 Collaborative study 
using a large panel of 
 well- characterized samples

Summary data from  
well-designed external 
proficiency testing schemes 
or interlaboratory  comparison 
programs

Well-designed 
 longitudinal cohort 
studies

Validated clinical deci-
sion rule†

Meta-analysis of 
 randomized controlled 
 trials (RCT)

2 Other data from proficiency 
testing schemes

Well-designed peer- reviewed 
studies (e.g., method 
 comparisons, validation studies)

Expert panel reviewed FDA 
summaries

Well-designed 
 case- control studies

A single randomized 
 controlled trial

3 Less well-designed 
 peer-reviewed studies

Lower quality 
 case- control and 
 cross- sectional studies
Unvalidated clinical 
 decision rule†

Controlled trial without 
randomization

Cohort or case-control 
study

4 Unpublished and/or 
 nonpeer-reviewed research, 
 clinical  laboratory, or 
 manufacturer data

Studies on performance of the 
same basic methodology, but 
used to test for a different target

Case series

Unpublished and/or 
 nonpeer-reviewed research, 
 clinical  laboratory or 
 manufacturer data

Consensus guidelines

Expert opinion

Case series

Unpublished and/or 
nonpeer-reviewed studies

Clinical laboratory or 
 manufacturer data

Consensus guidelines
Expert opinion

*Highest level is 1.
†A clinical decision rule is an algorithm leading to result categorization. It can also be defined as a clinical tool 

that quantifies the contributions made by different variables (e.g., test result, family history) in order to determine 
classification/interpretation of a test result (e.g., for diagnosis, prognosis, therapeutic response) in situations requiring 
complex decision making (55).
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Table 23.4 Criteria for assessing quality of individual studies (internal 
validity) (55)

Analytic validity Clinical validity Clinical utility

Adequate descriptions of 
the index test (test under 
evaluation)

Source and inclusion 
of positive and nega-
tive control materials 
Reproducibility of test 
results

Quality control/assurance 
measures

Adequate descriptions of 
the test under evaluation

Specific methods/plat-
forms evaluated

Number of positive 
samples and negative 
controls tested

Adequate descriptions of 
the basis for the “right 
answer”

Comparison to a “gold 
standard” referent test

Consensus (e.g., external 
proficiency testing)

Characterized control 
materials (e.g., NIST, 
sequenced)

Avoidance of biases

Blinded testing and 
interpretation

Specimens represent rou-
tinely analyzed clinical 
specimens in all aspects 
(e.g., collection, transport, 
processing)

Reporting of test failures 
and uninterpretable or 
indeterminate results

Analysis of data

Point estimates of analytic 
sensitivity and specificity 
with 95% confidence 
intervals

Sample size/power calcu-
lations addressed

Clear description of the 
disorder/phenotype and 
outcomes of interest

Status verified for all cases
Appropriate verification of 
controls

Verification does not rely on 
index test result

Prevalence estimates are 
provided

Adequate description of 
study design and test/
methodology

Adequate description of the 
study population

Inclusion/exclusion criteria

Sample size, demographics

Study population defined and 
representative of the clinical 
population to be tested

Allele/genotype frequen-
cies or analyte distribu-
tions known in general and 
subpopulations

Independent blind compari-
son with appropriate, cred-
ible reference standard(s)

Independent of the test

Used regardless of test results

Description of handling of 
indeterminate results and 
outliers

Blinded testing and interpre-
tation of results

Analysis of data

Possible biases are identified 
and potential impact 
discussed

Point estimates of clinical 
sensitivity and specificity 
with 95% confidence 
intervals

Estimates of positive and 
negative predictive values

Clear description of the outcomes of 
interest

What was the relative importance 
of outcomes measured; which were 
prespecified primary outcomes and 
which were secondary?

Clear presentation of the study design

Was there clear definition of the specific 
outcomes or decision options to be 
 studied (clinical and other endpoints)?

Was interpretation of outcomes/end-
points blinded?

Were negative results verified?

Was data collection prospective or 
retrospective?

If an experimental study design was 
used, were subjects randomized? Were 
intervention and evaluation of outcomes 
blinded?

Did the study include comparison with 
current practice/empirical treatment 
(value added)?

Intervention

What interventions were used?

What were the criteria for the use of the 
interventions?

Analysis of data

Is the information provided sufficient to 
rate the quality of the studies?

Are the data relevant to each outcome 
identified?

Is the analysis or modeling explicit and 
understandable?

Are analytic methods prespecified, 
adequately described, and appropriate 
for the study design?

Were losses to follow-up and resulting 
potential for bias accounted for?

Is there assessment of other sources of 
bias and confounding?

Are there point estimates of impact 
with 95% CI?

Is the analysis adequate for the pro-
posed use?

NIST = National Institute of Standards and Quality.
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Components of Evaluation

Analytic Validity. EGAPP defines the analytic validity of a genetic test as its 
ability to accurately and reliably measure the genotype (or analyte) of interest in 
the clinical laboratory, and in specimens representative of the population of inter-
est (13). Analytic validity includes analytic sensitivity (detection rate), analytic 
specificity (1-false positive rate), reliability (e.g., repeatability of test results), and 
assay robustness (e.g., resistance to small changes in preanalytic or analytic vari-
ables) (13). As illustrated by the “ACCE wheel” figure (http://www.cdc.gov/genom-
ics/gtesting/ACCE.htm), these elements of analytic validity are themselves integral 
elements in the assessment of clinical validity (13,42). Many evidence-based pro-
cesses assume that evaluating clinical validity will address any analytic problems, 
and do not formally consider analytic validity (23). The EWG has elected to pursue 
formal evaluation of analytic validity because genetic and genomic technologies are 
complex and rapidly evolving, and validation data are limited. New tests may not 
have been validated in multiple sites, for all populations of interest, or under routine 
clinical laboratory conditions over time. More importantly, review of analytic valid-
ity can also determine whether clinical validity can be improved by addressing test 
performance.

Tests kits or reagents that have been cleared or approved by the FDA may provide 
information on analytic validity that is publicly available for review (e.g., FDA sub-
mission summaries) (60). However, most currently available genetic tests are offered 
as laboratory developed tests not currently reviewed by the FDA, and information 
from other sources must be sought and evaluated. Different genetic tests may use a 
similar methodology, and information on the analytic validity of a common tech-
nology, as applied to genes not related to the review, may be informative. However, 
general information about the technology cannot be used as a substitute for specific 
information about the test under review. Based on experience to date, access to 
specific expertise in clinical laboratory genetics and test development is important 
for effective review of analytic validity.

Table 23.3 (column 1) provides a quality ranking of data sources that are used to 
obtain unbiased and reliable information about analytic validity. The best informa-
tion (quality Level 1) comes from collaborative studies using a single large, carefully 
selected panel of well-characterized samples (both cases and controls) that are blindly 
tested and reported, with the results independently analyzed. At this time, such stud-
ies are largely hypothetical, but an example that comes close is the Genetic Testing 
Quality Control Materials Program at CDC (61). As part of this program, samples 
precharacterized for specific genetic variants can be accessed from Coriell Cell 
Repositories (Camden, NJ) by other laboratories to perform in-house validation stud-
ies (62). Data from proficiency testing schemes (Levels 1 or 2) can provide some infor-
mation about all three phases of analytic validity (i.e., analytic, pre- and postanalytic), 
as well as interlaboratory and intermethod variability. ACCE questions 8 through 17 
are helpful in ensuring that all aspects of analytic validity have been addressed (42).
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Table 23.4 (column 1) lists additional criteria for assessing the quality of indi-
vidual studies on analytic validity. Assessment of the overall quality of evidence 
for analytic validity includes consideration of the quality of studies, the quantity of 
data (e.g., number and size of studies, genes/alleles tested), and the consistency and 
generalizability of the evidence (also see Table 23.5, column 1). The consistency of 
findings can be assessed formally (e.g., by testing for homogeneity), or by less for-
mal methods (e.g., providing a central estimate and range of values) when sufficient 
data are lacking. One or more internally valid studies do not necessarily provide 
sufficient information to conclude that analytic validity has been established for the 
test. Supporting the use of a test in routine clinical practice requires data on analytic 
validity that are generalizable to use in diverse “real world” settings.

Clinical Validity. EGAPP defines the clinical validity of a genetic test as its 
ability to accurately and reliably predict the clinically defined disorder or pheno-
type of interest. Clinical validity encompasses clinical sensitivity and specificity 
(integrating analytic validity), and predictive values of positive and negative tests 
that take into account the disorder prevalence (the proportion of individuals in 
the selected setting who have, or will develop, the phenotype/clinical disorder 
of interest). Clinical validity may also be affected by reduced penetrance (i.e., 
the proportion of individuals with a disease-related genotype or mutation who 
develop disease), variable expressivity (i.e., variable severity of disease among 
individuals with the same genotype), and other genetic (e.g., variability in allele/
genotype frequencies or gene–disease association in racial/ethnic subpopulations) 
or environmental factors. ACCE questions 18 through 25 are helpful in organizing 
information on clinical validity (42).

Table 23.3 (column 2) provides a hierarchy of study designs for assessing qual-
ity of individual studies (13,23,44,46–48,50,53,63). Published checklists for report-
ing studies on clinical validity are reasonably consistent, and Table 23.4 (column 2) 
provides additional criteria adopted for grading the quality of studies (e.g., execu-
tion, minimizing bias) (5,13,23,44,46–51,53,58,59,63). As with analytic validity, 
the important characteristics defining overall quality of evidence on clinical valid-
ity include the number and quality of studies, the representativeness of the study 
population(s) compared with the population(s) to be tested, and the consistency and 
generalizability of the findings (Table 23.5). The quantity of data includes the num-
ber of studies, and the number of total subjects in the studies. The overall consis-
tency of clinical validity estimates can be determined by formal methods such as 
meta-analysis. Minimally, estimates of clinical sensitivity and specificity should 
include confidence intervals (63). In pilot studies, initial estimates of clinical valid-
ity may be derived from small data sets focused on individuals known to have, ver-
sus not have, a disorder, or from case/control studies that may not represent the wide 
range or frequency of results that will be found in the general population. Although 
important to establish proof of concept, such studies are insufficient evidence for 
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Table 23.5 Grading the quality of evidence for the individual components of 
the chain of evidence (key questions) (57)

Adequacy of 
information 
to answer key 
questions

Analytic validity Clinical validity Clinical utility

Convincing Studies that provide 
confident estimates of 
analytic sensitivity and 
specificity using intended 
sample types from repre-
sentative populations

Well-designed and conducted 
studies in representative 
population(s) that measure the 
strength of association between 
a genotype or biomarker and a 
specific and well-defined disease 
or phenotype

Well-designed and 
conducted studies 
in representative 
population(s) that 
assess specified 
health outcomes

Two or more Level 1 or 2 
studies that are general-
izable, have a sufficient 
number and distribution 
of challenges, and report 
consistent results

Systematic review/meta-
analysis of Level 1 studies with 
homogeneity

Systematic review/
meta-analysis of ran-
domized controlled 
trials showing consis-
tency in results

At least one large ran-
domized controlled 
trial (Level 2)

One Level 1 or 2 study that 
is generalizable and has an 
appropriate number and 
distribution of challenges

Validated Clinical Decision Rule

High quality Level 1 cohort 
study

Adequate Two or more Level 1 or 2 
studies that

 Lack the appropriate 
number and/or distribution 
of challenges

 Are consistent, but not 
generalizable

Systematic review of lower 
 quality studies

Review of Level 1 or 2 studies 
with heterogeneity

Case-control study with good 
reference standards

Systematic review 
with heterogeneity

One or more con-
trolled trials without 
randomization 
(Level 3)

Systematic review of 
Level 3 cohort studies 
with consistent results

 Modeling showing that 
lower quality (Level 3, 4) 
studies may be acceptable 
for a specific well-defined 
clinical scenario

Unvalidated Clinical Decision 
Rule (Level 2)

Inadequate Combinations of higher 
quality studies that show 
important unexplained 
inconsistencies

One or more lower quality 
studies (Level 3 or 4)

Expert opinion

Single case-control study

 Nonconsecutive cases

 Lacks consistently applied 
 reference standards

Single Level 2 or 3 cohort/
case-control study

 Reference standard defined 
by the test or not used 
systematically

 Study not blinded
Level 4 data

Systematic review 
of Level 3 quality 
studies or studies with 
heterogeneity

Single Level 3 cohort 
or case-control study
Level 4 data
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clinical application; additional data are needed from the entire range of the intended 
clinical population to reliably quantify clinical validity before introduction.

Clinical Utility. EGAPP defines the clinical utility of a genetic test as the 
evidence of improved measurable clinical outcomes, and its usefulness and added 
value to patient management decision making compared with current management 
without genetic testing. If a test has utility, it means that the results (positive or 
negative) provide information that is of value to the person, or sometimes to the 
individual’s family or community, in making decisions about effective treatment or 
preventive strategies. Clinical utility encompasses effectiveness (evidence of util-
ity in real clinical settings), and the net benefit (the balance of benefits and harms). 
Frequently, it also involves assessment of efficacy (evidence of utility in controlled 
settings like a clinical trial).

Tables 23.3 and 23.4 (column 3) provide the hierarchy of study designs for 
clinical utility, and other criteria for grading the internal validity of studies (e.g., 
execution, minimizing bias) adopted from other published approaches (13,23,46–
48,57). Paralleling the assessment of analytic and clinical validity, the three 
important quality characteristics for clinical utility are quality of individual stud-
ies and the overall body of evidence, the quantity of relevant data, and the con-
sistency and generalizability of the findings (Table 23.5). Another criterion to 
be considered is whether implementation of testing in different settings, such as 
clinician ordered versus direct-to-consumer, could lead to variability in health 
outcomes.

Grading the Quality of Evidence for the Individual 
Components in the Chain of Evidence (Key Questions)
Table 23.5 provides criteria for assessing the quality of the body of evidence for the 
individual components of evaluation, analytic validity (column 2), clinical validity 
(column 3), and clinical utility (column 4) (23,44,47,48,64). The adequacy of the 
information to answer the key questions related to each evaluation component is 
classified as Convincing, Adequate, or Inadequate. This information is critical to 
assess the “strength of linkages” in the chain of evidence (57). The intent of this 
approach is to minimize the risk of being wrong in the conclusions derived from 
the evidence. When the quality of evidence is Convincing, the observed estimate or 
effect is likely to be real, rather than explained by flawed study methodology; when 
Adequate, the observed results may be influenced by such flaws. When the quality 
of evidence is Inadequate, the observed results are more likely to be the result of 
flaws in study methodology rather than an accurate assessment; availability of only 
Marginal quality studies always results in Inadequate quality.

Based on the evidence available, the overall level of certainty of net health benefit 
is categorized as High, Moderate, or Low (57). High certainty is associated with con-
sistent and generalizable results from well-designed and conducted studies, making 
it unlikely that estimates and conclusions will change based on future studies. When 
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the level of certainty is Moderate, some data are available, but limitations in data 
quantity, quality, consistency, or generalizability reduce confidence in the results, 
and, as more information becomes available, the estimate or effect may change 
enough to alter the conclusion. Low certainty is associated with insufficient or poor 
quality data, results that are not consistent or generalizable, or lack of information 
on important outcomes of interest; as a result, conclusions are likely to change based 
on future studies.

Translating Evidence into Recommendations. Based on the evidence 
report, the EWG’s assessment of the magnitude of net benefit and the certainty of 
evidence, and consideration of other clinical and contextual issues, the EWG formu-
lates clinical practice recommendations (Table 23.6). Although the information will 
have value to other stakeholders, the primary intended audience for the content and 
format of the recommendation statement is clinicians. The information is intended 
to provide transparent, authoritative advice, inform targeted research agendas, and 
underscore the increasing need for translational research that supports the appropri-
ate transition of genomic discoveries to tests, and then to specific clinical applica-
tions that will improve health or add other value in clinical practice.

Key factors considered in the development of a recommendation are the relative 
importance of the outcomes selected for review, the benefits (e.g., improved clini-
cal outcome, reduction of risk) that result from the use of the test and subsequent 

Table 23.6 Recommendations based on certainty of evidence, magnitude of net 
benefi t, and contextual issues

Level of certainty Recommendation

High or moderate Recommend for...

. . . if the magnitude of net benefit is Substantial, Moderate, or Small*, unless 
additional considerations warrant caution.

Consider the importance of each relevant contextual factor and its magnitude or 
finding.

Recommend against...

. . . if the magnitude of net benefit is zero or there are net harms.

Consider the importance of each relevant contextual factor and its magnitude or 
finding.

Low Insufficient evidence...

. . . if the evidence for clinical utility or clinical validity is insufficient in quantity 
or quality to support conclusions or make a recommendation.

Consider the importance of each contextual factor and its magnitude or finding.

Determine whether the recommendation should be Insufficient (neutral), 
Insufficient (encouraging), or Insufficient (discouraging).

Provide information on key information gaps to drive a research agenda.

*Categories for the “magnitude of effect” or “magnitude of net benefit” used are substantial, moderate, small, 
and zero (57).
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actions or interventions (or if not available, maximum potential benefits), the harms 
(e.g., adverse clinical outcome, increase in risk or burden) that result from the use 
of the test and subsequent actions/interventions (or if not available, largest potential 
harms), and the efficacy and effectiveness of the test and follow-up compared with 
currently used interventions (or doing nothing). Simple decision models or outcomes 
tables may be used to assess the magnitudes of benefits and harms, and estimate the 
net effect. Consistent with the terminology used by the USPSTF, the magnitude of 
net benefit (benefit minus harm) may be classified as Substantial, Moderate, Small, 
or Zero (57).

Considering Contextual Factors

Contextual issues include clinical factors (e.g., severity of disorder, therapeutic alter-
natives), availability of diagnostic alternatives, current availability and use of the 
test, economics (e.g., cost, cost effectiveness, and opportunity costs), and other ethi-
cal and psychosocial considerations (e.g., insurability, family factors, acceptability, 
equity/fairness). Cost-effectiveness analysis is especially important when a recom-
mendation for testing is made. Contextual issues that are not included in preparing 
EGAPP recommendation statements are values or preferences, budget constraints, 
and precedent. Societal perspectives on whether use of the test in the proposed clini-
cal scenario is ethical are explored before commissioning an evidence review.

The ACCE analytic framework considers as part of clinical utility the assess-
ment of a number of additional elements related to the integration of testing into 
routine practice (e.g., adequate facilities/resources to support testing and appropri-
ate follow-up, plan for monitoring the test in practice, availability of validated edu-
cational materials for providers and consumers) (13). The EWG considers that most 
of these elements constitute information that should not be included in the consid-
eration of clinical utility, but may be considered as contextual factors in develop-
ing recommendation statements and in translating recommendations into clinical 
practice.

Recommendation Language

Standard EGAPP language for recommendation statements uses the terms: 
Recommend For, Recommend Against, or Insufficient Evidence (Table 23.6). 
Because the types of emerging genomic tests addressed by EGAPP are more likely 
to have findings of Insufficient Evidence, three additional qualifiers may be added. 
Based on the existing evidence and consideration of contextual issues and model-
ing, Insufficient Evidence could be considered “Neutral” (not possible to predict 
with current evidence), “Discouraging” (discouraged until specific gaps in know-
ledge are filled or not likely to meet evidentiary standards even with further study), 
and “Encouraging” (likely to meet evidentiary standards with further studies or 
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reasonable to use in limited situations based on existing evidence while additional 
evidence is gathered).

As a hypothetical example of how the various components of the review are 
brought together to reach a conclusion, consider the model of a pharmacogenetic 
test proposed for screening individuals who are entering treatment with a specific 
drug. The intended use is to identify individuals who are at risk for a serious adverse 
reaction to the drug. The analytic validity and clinical validity of the test are estab-
lished and are adequately high. However, the specific adverse outcomes of inter-
est are often clinically diagnosed and treated as part of routine management, and 
clinical studies have not been conducted to show the incremental benefit of the test 
in improving patient outcomes. Because there is no evidence to support improve-
ment in health outcome or other benefit of using the test (e.g., more effective, more 
acceptable to patients, or less costly), the EWG would consider the recommendation 
to be Insufficient Evidence (Neutral). In a second scenario, a genetic test is pro-
posed for testing patients with a specific disorder to provide information on progno-
sis and treatment. Clinical trials have provided good evidence for benefit to a subset 
of patients based on the test results, but more studies are needed to determine the 
validity and utility of testing more generally. The EWG is likely to consider the rec-
ommendation to be Insufficient Evidence (Encouraging).

Products and Review

Draft evidence reports are distributed by the EPC or other contractor for expert peer 
review. Objectives for peer review of draft evidence reports are to ensure accuracy, 
completeness, clarity, and organization of the document; assess modeling, if pres-
ent, for parameters, assumptions, and clinical relevance; and to identify scientific or 
contextual issues that need to be addressed or clarified in the final evidence report. 
In general, the selection of reviewers is based on expertise, with consideration given 
to potential conflicts of interest.

When a final evidence report is received by the EWG, a writing team begins 
development of the recommendation statement. Technical comments are solicited 
from test developers on the evidence report’s accuracy and completeness, and are 
considered by the writing team. The recommendation statement is intended to sum-
marize current knowledge on the validity and utility of an intended use of a genetic 
test (what we know and do not know), consider contextual issues related to imple-
mentation, provide guidance on appropriate use, list key gaps in knowledge, and 
suggest a research agenda. Following acceptance by the full EWG, the draft EGAPP 
recommendation statement is distributed for comment to peer reviewers selected 
from organizations expected to be impacted by the recommendation, the EGAPP 
Stakeholders Group, and other key target audiences (e.g., healthcare payers, con-
sumer organizations). The objectives of this peer review process are to ensure the 
accuracy and completeness of the evidence summarized in the recommendation 
statement and the transparency of the linkage to the evidence report, improve the 
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clarity and organization of information, solicit feedback from different perspectives, 
identify contextual issues that have not been addressed, and avoid unintended con-
sequences. Final drafts of recommendation statements are approved by the EWG 
and submitted for publication in Genetics in Medicine. Once published, the journal 
provides open access to these documents, and the link is also posted on the www.
egappreviews.org. web site Announcements of recommendation statements are dis-
tributed by email to a large number of stakeholders and the media. The newly estab-
lished EGAPP Stakeholders Group will advise on and facilitate dissemination of 
evidence reports and recommendation statements.

Summary

This document describes methods developed by the EWG for establishing a sys-
tematic, evidence-based assessment process that is specifically focused on genetic 
tests and other applications of genomic technology. The methods aim for transpar-
ency, public accountability, and minimization of conflicts of interest, and provide 
a framework to guide all aspects of genetic test assessment, beginning with topic 
selection and concluding with recommendations and dissemination. Key objectives 
are to optimize existing evidence review methods to address the challenges pre-
sented by complex and rapidly emerging genomic applications, and to establish a 
clear linkage between the scientific evidence, the conclusions/recommendations, 
and the information that is subsequently disseminated.

In combining elements from other internationally recognized assessment schemes 
in its methods, the EWG seeks to maintain continuity in approach and nomencla-
ture, avoid confusion in communication, and capture existing expertise and experi-
ence. The panel’s methods differ from others in some respects, however, by calling 
for formal assessment of analytic validity (in addition to clinical validity and clini-
cal utility) in its evidence reviews, and including (on a selective basis) nontraditional 
sources of information such as gray literature, unpublished data, and review articles 
that address relevant technical or contextual issues. The methods and process of the 
EWG remain a work in progress and will continue to evolve as knowledge is gained 
from each evidence review and recommendation statement.

Future challenges include modifying current methods to achieve more rapid, less 
expensive, and targeted evidence reviews for test applications with limited litera-
ture, without sacrificing the quality of the answers needed to inform practice deci-
sions and research agendas. A more systematic horizon scanning process is being 
developed to identify high priority topics more effectively, in partnership with the 
EGAPP Stakeholders Group and other stakeholders. Additional partnerships will 
need to be created to develop evidentiary standards and build additional evidence 
review capacity, nationally. Finally, the identification of specific gaps in knowl-
edge in the evidence offers the opportunity to raise awareness among researchers, 
funding entities, and review panels, and thereby focus future translation research 
agendas.
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Introduction

Genetic and genomic tests are rapidly emerging from the efforts of the Human 
Genome Project. As of August 2009, GeneTests (www.genetests.org) listed 599 lab-
oratories testing for 1,772 diseases, of which 1,498 are offered clinically. Between 
1997 and 2007, the number of clinically offered tests has increased at an annual rate 
of about 25%. Even this is an underestimate, since registration is voluntary and tests 
for somatic mutations are not included. Many more tests are in the development 
pipeline, and as they enter the medical marketplace, clinicians, policy makers, and 
health care payers must make decisions about provision or coverage in a timely and 
affordable manner.

Evidence Reviews
In the United States, evaluation of such testing falls generally into two categories: 
comprehensive and ad hoc. Comprehensive evaluations are resource intensive, 
highly structured, transparent, and usually take many months to years to complete. 
At present, many of the comprehensive evidence reviews are commissioned or per-
formed by government entities. Ad hoc reviews include those performed by a number 
of health insurers, medical delivery systems, professional organizations, technology 
assessments entities (for-profi t and not-for-profi t), and other entities that are required 
or compelled to examine the evidence about the effectiveness of genetic tests. In the 
authors’ experience, ad hoc reviews are more variable with respect to their struc-
ture, transparency, objectiveness, timeliness, and thoroughness.

Two notable organizations in the United States that perform comprehensive tech-
nology reviews include the US Preventive Services Task Force (USPSTF) and the 
Medicare Evidence Development and Coverage Advisory Committee (MEDCAC). 
The USPSTF focuses on evaluating screening tests for public health (1). The 
MEDCAC was established to provide independent guidance and expert advice to the 
Center for Medicare and Medicaid Services (2). Neither has an evaluative process 
specifi c for genetic/genomic tests. The US National Institutes of Health-Department 
of Energy (NIH-DOE) Task Force on Genetic Testing (TFGT) and the Health and 
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Human Services Secretary’s Advisory Committee on Genetic Testing (SACGT) 
proposed the adoption of the ACCE criteria, which subsequently led to the ACCE 
and EGAPP models (see separate discussion, below).

In the United Kingdom, the National Institute for Clinical Excellence (NICE) 
is the principal entity responsible for directing the review of new medical tech-
nologies, and supports both a “global standard [comprehensive] process” as well 
as the current development of their Single Technology Appraisal process for 
more rapid review of “life-saving drugs.” Neither is specifi c for genetic/genomic 
tests (or even diagnostics). The Cochrane Collaboration (with Cochrane Centers 
throughout the world) has developed a general model for evaluating medical 
interventions. This comprehensive model is designed to evaluate clinical util-
ity via the assessment of results from randomized trials. Recently, the Cochrane 
Collaboration has begun efforts to develop methods to guide systematic reviews 
of diagnostic test performance (3). In the past several years, the United Kingdom’s 
Department of Health, via its Genetic Testing Network (UKGTN), has developed 
a standardized methodology for the rapid review of genetic tests for single-gene 
disorders (4). No doubt, organizations in many other developed countries have 
review processes, both comprehensive and ad hoc, to address the evaluation of 
medical technologies.

Private Sector Evidence Reviews
Various private organizations (e.g., ECRI Institute, Hayes Inc.) also conduct and sell 
technology assessment reports. Their efforts to review genetic tests have expanded 
commensurate with demand. Hayes has developed a model and now provides a 
service for purchase, specifi cally for evaluating genetic tests based on ACCE and 
EGAPP model concepts. Their reviews emphasize clinical utility. Some large pay-
ers (e.g., Aetna, Blue Cross/Blue Shield, Cigna) have the resources to support and 
maintain dedicated personnel to perform comprehensive technology assessments, 
and may have proprietary methods for evaluating genetic tests. The Blue Cross and 
Blue Shield Association Technology Evaluation Center currently has a strong focus 
on genomics. Aetna, Cigna, and others have also reviewed many genetic/genomic 
tests, many of which are publicly available via the Internet. Smaller payers apply a 
variety of methods, within their resource and time constraints.

The ACCE Model
Beginning with the 1997 NIH-DOE Task Force on Genetic Testing report, Promoting 
Safe and Effective Genetic Testing (5), followed by the SACGT report, Enhancing 
the Oversight of Genetic Tests (6) in 2000, evidence regarding genetic tests was 
divided into four broad areas: analytic validity (does the test accurately measure 
the target), clinical validity (do test results correlate with the disorder of interest), 
clinical utility (what are the harms and medical benefi ts), and ethical, legal, and 
social implications (what safeguards have been implemented and are they effec-
tive). Subsequently, the Offi ce of Public Health Genomics at the Centers for Disease 
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Control and Prevention (CDC) requested proposals aimed at addressing some of 
the defi cits in evaluating genetic tests that had been identifi ed by these and other 
reports. This resulted in the CDC-funded ACCE project (an acronym of Analytic 
validity, Clinical validity, Clinical utility, and Ethical, legal and social implica-
tions). The ACCE project culminated in an evaluation framework comprising 44 
questions that address the four components of evaluation for a specifi ed disorder, 
test, and clinical scenario that was tested in a wide range of settings, using various 
methodologies, to produce evidence-based reviews of fi ve genetic tests (7). All of 
the completed sections were placed into the public domain for review and comment. 
The ACCE model has since become the backbone of most formal efforts to evaluate 
genetic tests, including those performed in Europe (8,9).

The EGAPP Process
In 2005 the Evaluation of Genomic Applications in Practice and Prevention 
(EGAPP) program was established to extend and refi ne the ACCE model by for-
malizing assessment of the strength of evidence and by adding an independent, 
multidisciplinary EGAPP Working Group (EWG), whose primary function is to 
make evidence-based recommendations. Key objectives of the EWG are to develop 
a transparent, publicly accountable process, minimize confl icts of interest, optimize 
existing evidence review methods to address the challenges presented by complex 
and rapidly emerging genomic applications, and provide clear linkage between the 
scientifi c evidence and the subsequently developed EWG recommendation state-
ments (10). While the ACCE framework is a useful construct when considering the 
completeness of any technology assessment for EGAPP, EGAPP is a process that 
incorporates additional steps to develop, ultimately, formal recommendation state-
ments. The EGAPP initiative is currently the premier model in the United States for 
evaluation of genetic tests; however, its current format generally requires extensive 
resources and time to complete.

Thus, there are multiple review formats being used by a variety of different stake-
holders but, as yet, no universally accepted standard. In our experience, nearly all 
genetic/genomic test-specifi c evaluation approaches are based on at least some ele-
ments of the ACCE model. This chapter aims at encapsulating the most important 
elements for the performance of rapid reviews of genetic and genomic tests, and 
suggests one possible recipe for performing a rapid review. We have recently pub-
lished a methods paper on a rapid ACCE model for evaluating genetic tests, based 
on our early experiences using a modifi cation of the ACCE approach to evaluate 
two genetic tests (11). More recently, Burke and Zimmern, in a report funded by 
the United Kingdom’s Department of Health for the UK Genetic Testing Network 
(UKGTN), and based on extensive experience with rapid reviews of genetic tests, 
published (online) an Expanded Framework for Genetic Test Evaluation (based 
on the ACCE model) that addresses additional elements and issues (12). However, 
those reviews are aimed at rare genetic disorders that pose their own unique 
 problem set.
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Rapid Evidence Reviews

Proposed Uses and Stakeholders of Rapid Reviews
Rapid reviews of genetic tests are necessary when circumstances require relatively 
quick decisions about test use or reimbursement. In the United States, this is primar-
ily among payers, and secondarily among health care delivery systems (especially 
integrated ones). Implicit in the need for a relatively quick decision is a limitation in 
resources for evaluation. In addition, rapid reviews can be applied when resources 
are limited, the literature is limited, or when the review can be focused on specifi c 
portions of the question (e.g., clinical utility).

In the United Kingdom, there is a well-coordinated and relatively mature pro-
cess for reviewing genetic tests for single-gene (Mendelian) disorders. All emerging 
genetic tests for Mendelian disorders that might be used by the NHS are submitted 
as “gene dossiers” for review. Such submissions are generally made by providers 
within molecular diagnostics laboratories. These reviews are now performed rapidly 
using a consistent framework, with favorable decisions implemented, albeit imper-
fectly, into routine NHS care delivery.

Decisions about reimbursement and clinical use may require only a subset of ques-
tions for review, defi ned by decision makers’ needs, whereby the scope of the ques-
tions addressed and/or the published literature is limited (i.e., “targeted”). Providers 
and clinicians often focus only on the clinical utility, with the belief that if a test 
has demonstrated utility, then its analytic validity and clinical validity are likely to 
be acceptable as well. More comprehensive reviews are performed by public policy 
makers, guideline developers, and those wanting to describe completely the current 
state of a given test, including identifying gaps in knowledge.

It is important to differentiate between a “targeted” review, which is compatible 
with being done rapidly, and a comprehensive review, that will take considerably 
more resources. The Roche AmpliChip™ for CYP2D6 and CYP2C19 analysis can 
be used as an example. The United States Food and Drug Administration (FDA) 
evaluated this test under its regulatory authority for medical devices, specifi cally 
the In Vitro Diagnostic Multivariate Index Analysis (IVDMIA) draft guidelines. 
FDA reviews tend to focus principally on safety considerations; therefore, the data 
demonstrating analytic validity and clinical validity are the main focus. There is 
limited information required for clinical utility beyond the plausibility that the test 
could improve health. The recent FDA clearance of the Roche AmpliChip dem-
onstrated analytic validity by comparing the chip results with sequencing results. 
Limited information was provided about clinical validity, relying mostly on relating 
the metabolic phenotype (defi ned by probe drugs) to the CYP genotype. This is an 
example of a targeted review. More recently, a comprehensive review commissioned 
by the EGAPP Working Group found little or no association of CYP2D6 genotypes 
and SSRI levels in patients with depression (13). Not only was there no evidence of 
clinical utility in the literature, but there was poor correlation of blood levels of the 
SSRI drugs with the polymorphisms under study (i.e., clinical validity).
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In contrast to the FDA, a payer is interested in how the result of this test would 
impact care of their members (i.e., clinical utility). If an evidence review found no 
evidence addressing this question, it would likely conclude that the test is experimen-
tal/investigational, and therefore not provide insurance coverage. To take it a step 
further, a medical delivery system would likely consider the test as part of a clinical 
process, whereby the resources and activities required to provide and fund the test, 
with interpretation, to its patients would also be considered in decision making.

While professional societies and support groups would prefer to have a compre-
hensive review in order to develop guidelines, many emerging tests have an incom-
plete base of evidence. Box 24.1 contains two recent examples of rapid ACCE 
reviews, one requested by a disease-specifi c support group, the other by a profes-
sional society.

If timely, evidence-based reviews are performed and made publicly available, 
then other stakeholders will likely emerge, including clinicians and delivery sys-
tems, policy makers at various levels, and the public. This has been seen in the 
EGAPP program with the establishment of the EGAPP Stakeholder’s Group (ESG) 
(16). However, if these reviews are only available through the private sector, their 
accessibility will be limited.

How Might Requests for Reviews Come About?
The majority of industrialized countries have a form of universal health care delivery 
and payment. With this comes centralized medical decision making, where emerging 
modalities of diagnosis and treatment are prioritized and reviewed systematically. 
The fragmented nature of health care decision making in the United States leads to 
different stakeholder perspectives as well as different reasons for reviews.

In the case of public health indications such as newborn screening, professional 
society guideline development, and national coverage decisions (e.g., Medicare), 
comprehensive evidence review processes are preferred, though such reviews may, 
at times, be targeted.

In the private health care sector, most technology assessment activity regarding new 
genetic tests is by payers, secondarily by health care delivery systems (especially inte-
grated ones), and medical specialty societies. The stimulus to perform a technology 

Box 24.1

Completed rapid ACCE reviews:
• BMPR2 testing for idiopathic pulmonary hypertension (14)
• CYP2C9 and VKORC1 variant testing to aid initial dosing of warfarin (15)
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review in these settings is often an impending or a recent FDA approval, provider 
or multiple patient requests for a new test, or a new marketing effort to providers or 
direct to consumers. There is little literature that systematically evaluates how health 
care entities perform technology assessment for any purpose, much less specifi c to 
genetic testing (17). This was examined in detail in a presentation at the Institute of 
Medicine in 2007, and the interested reader is referred here for a full discussion (18).

How Rapid Is “Rapid Review”?
The timeframe for a rapid review of a genetic test is established by those making 
a recommendation for its use, provision, or coverage. This is dictated by the avail-
ability of the test, its impact within the jurisdiction of the decision-making entity, 
the resources available for the evaluation, and the complexity or magnitude of the 
evaluation. We suggest that a rapid review be defi ned as one that can be completed 
in a matter of several weeks or months from the time of topic identifi cation, apply-
ing adequate resources to ensure that the evidence collected is suitable for decision 
making. Overall, less than 200 hours of research time would normally be required. 
Substantially less time (e.g., 20–40 hours) and resources may be needed to com-
plete a rapid review for the purpose of an insurance coverage decision (given that 
the focus is mostly around evidence of clinical utility), compared with a more com-
prehensive evidence review commissioned by a medical specialty society for the 
purposes of guideline development.

Performing a Rapid ACCE Review

Expertise Required
The expertise required for a rapid, evidence-based review of genetic tests is essen-
tially the same as that for any medical intervention, with the caveat being that the 
analyst be well versed in evaluating screening and diagnostic testing, commensurate 
with the complexity of the analytic challenges and decision needs of the stakehold-
ers. Given several unique aspects of genetic tests, including results that are fre-
quently probabilistic rather than deterministic, impact on other family members, as 
well as the relatively high rate of uninformative or equivocal test results, the review-
ers will need familiarity specifi c to these issues. It may be highly desirable to have 
a clinical and/or molecular geneticist on the review team. Content experts play a 
key role by providing clinical context, clarifying competing testing modalities, and 
explaining specialized language and/or nomenclature. Complete interpretation of 
results may require expertise from related fi elds such as medical education, social 
science, ethics, and the law.

Understanding the Test and Clinical Setting
Prior to beginning any systematic review, the specifi c clinical disorder, test, and 
setting for which the test is intended must be articulated carefully and thoughtfully, 
including the exact nature of the proposed test and the alternatives to the test (19). 
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Implicit in this process is the recognition that there is a chain of events linking the 
use of the test and its results to decisions that ultimately lead to the primary out-
comes of interest (e.g., changes in health care that result in improvements in quality 
of life, morbidity, or mortality). Often the test results are intermediate or surrogate 
outcomes which may, or may not, lead to improvement in primary medical out-
comes. For example, it is clear that CYP2C9 genotypes are related to warfarin dose 
at stable INR. However, current evidence is lacking that adjusting initial dosing 
based on genotype would result in improved outcomes (15). Policy makers must 
determine whether knowledge of secondary outcomes is suffi cient to drive deci-
sions or whether knowledge of primary health outcomes is required. In either case, 
broader issues may also be important to address, not the least of which could be 
ethical, legal, and social issues (ELSI) as well as operational issues. These choices 
will shape the entire evaluation process.

The Review Process
Once the topic is clearly specifi ed, the review should begin with a systematic search 
of published literature. If stakeholders are based in the United States and decisions 
are “local,” then a search of PubMed may suffi ce. However, due to the extensive 
literature published elsewhere in the world not indexed in PubMed; it may be impor-
tant to also search other databases including the Euro-centric EMBASE literature 
base, Science Citation Index, and BIOSIS.

When the literature base is small and/or incomplete, as will frequently be the 
case with emerging genetic/genomic tests, it may be useful to search for and include 
analysis of data that has not been through a peer review process. The sources of 
this type of data are sometimes referred to as “gray literature.” Such data may be 
available from academic laboratories that are doing the leading-edge work in this 
area, from manufacturers or support groups, or as part of publicly available FDA 
submissions. The SACGT Oversight report previously referenced has called for 

Box 24.2

Expertise required for a rapid ACCE review:
 Clinical laboratory science
 Epidemiology/biostatistics
 Clinical medicine
 Genetics

And Preferred:
 Economics
 Education and the law
 Social science/ethics
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increased transparency and availability of these data to the public. This may pro-
vide information needed to answer important analytic questions via application of 
standard statistical methods. Regardless of the source, analysts must be cautious 
when using gray data due to the possibility of multiple biases (not unlike published 
and peer-reviewed literature). There may also be fi nancial or intellectual invest-
ment in the test as well as inadequate information about methods used to obtain 
the data. Another alternative to gray data is the use of expert opinion. The use of 
multiple content experts from different institutions, with outside reviewers when 
possible, may reduce the risk of bias and improve the credibility of the review. 
However, if experts are the only source of information, a gap in knowledge should 
be acknowledged.

The Basic Formula
For clinicians and payers, here is one possible step-by-step approach to a rapid 
ACCE review of an emerging genetic/genomic test:

Assemble a knowledgeable group of stakeholders and content experts along 1. 
with the team performing the review and those developing recommendations 
or making coverage decisions.
Begin the discussion by clarifying the details of the review. This is often a 2. 
discovery process, as the evaluation team clarifi es the issues and evidence. 
Central to this (iterative) process is determination of the outcome(s) that 
drive(s) the decision-making process. It is important to understand fully the 
role of the testing in the chain of events leading to the primary outcomes in 
order to assess the value of the testing.
Defi ne and agree on key terms and defi nitions related to the review and 3. 
decisions.
Carefully defi ne the disorder of interest, the setting (or clinical scenario), and 4. 
the specifi c test that will be used. The analyst might ask the clinician and 

Box 24.3

Rapid ACCE review checklist:
• Assemble knowledgeable stakeholders/content experts
• Defi ne the disorder, setting, and test
• Review the literature using a structured approach
• Interpret the results (knowledge synthesis)
• Summarize the identifi ed gaps in knowledge
• Make decisions/recommendations using transparent methods
• Communicate results
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laboratory expert for key references, and whether they have access to relevant 
unpublished data pertinent to the emerging, key questions.
The analyst then performs a thorough review of literature, perhaps in consul-5. 
tation with clinical and/or laboratory experts, with a clear focus on gathering 
data to address the key questions upon which the decision will be based.
The analyst links the data extracted from the literature with key questions 6. 
and evaluates study strengths and level of confi dence (when decision-makers 
expect this). If the literature base is small, a quantitative analysis of available 
data may be relatively simple (20,21).
The analyst begins building the evidence review, based on a format that meets 7. 
the needs of the stakeholders. Internal, and ideally external, review is then 
solicited as a way of ensuring that the data review and interpretation are com-
plete and correct.
Steps 5–7 can be repeated as needed to support completion of answers to key 8. 
questions. Outside experts can provide value to the fi nal report, upon which a 
decision to provide or cover is made.
Communicate to stakeholders the conclusions of the review, with a summary 9. 
of gaps in evidence in a consistent and useful format. One such format has 
been proposed by Ramsey et al. (22), who also suggested making and commu-
nicating information about pricing/reimbursement of tests.

This simple sequence of steps is not substantially different from how one would 
evaluate a non-genetic application, whether simple (e.g., serum cholesterol) or com-
plex/expensive (e.g., imaging test). Some of the issues that do distinguish genetic/
genomic tests from non-genetic tests include the discovery of genomic elements 
heretofore undiscovered and thus not understood, a far higher magnitude of com-
plexity in test interpretation, familial issues that may, at times, supersede those of 
the patient, and complex ethical, legal, and social implications.

The timeframe for the review is often defi ned by decision-makers’ needs. Principal 
among these needs are the time, often a few weeks to a few months, to make a deci-
sion, and the limited experience of staff to conduct the review. Regardless of the 
timeframe and resources, a consistent, structured and, preferably transparent, meth-
odology is desired. The ACCE questions and structure may be helpful in guiding 
reviewers’ initial efforts.

We suggest that perhaps a partial distinction of “rapid” versus “comprehensive” is 
that time (relatively short) and resources (limited) are the defi ning issues of a rapid 
review, while completeness distinguishes a comprehensive review, the consequence 
of which is often a considerable commitment to time and resources.

Analytic Challenges

There will be many challenges as genetic/genomic tests become even more complex, 
and are applied in predicting the risk of complex conditions such as heart disease 
or diabetes. Principal among these is the lack of adequate amounts of relevant data 
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leading to gaps in evidence. This is a common problem impacting the evaluation of 
virtually all new technologies and is not unique to the evaluation of genetic tests. 
Second is what might be called the “gold standard” problem. Many new genetic/
genomic tests measure things that have never been measured before, or to a degree 
of detail not previously possible. Thus, a true reference standard may not exist.

As an example, molecular cytogenetic techniques, such as array-Comparative 
Genomic Hybridization (a-CGH), when applied to the evaluation of a patient with 
developmental delay, has much higher “resolution” than the current standard diag-
nostic test (microscopic analysis of banded chromosomes—a karyotype). Thus, 
a-CGH will detect copy number changes that are undetectable by the “gold standard” 
methodology it may supplant. These new fi ndings are not always able to be unambig-
uously assigned to any phenotype of interest. This refl ects the “open-ended” nature 
of some of the new methods, where the test “looks for” any abnormality, not all of 
which are known in advance, and for which the clinical signifi cance is indeterminate. 
This contrasts with “closed” assays, which look only for specifi ed abnormalities (12).

Additionally, the qualitative or informational nature of some patient (i.e., fi nal) 
outcomes, as well as ELSI issues resulting from and associated with genetic tests, 
provide substantial challenges in quantifying benefi ts. Payne et al. have made a sub-
stantial contribution in this regard by determining, of all outcomes related to genetic 
services reported in the literature, which are most important to providers, patients, 
and families (23).

There are several situations that pose diffi cult challenges for those charged with 
assessing the value of a test in a specifi c clinical application. These include tests 
with a high level of analytic and/or conceptual complexity (e.g., multiplex testing 
platforms, testing for complex disorders); tests where evidence and experience are 
changing extremely rapidly; rare disorders where there will always be limited ana-
lytic and clinical data; and predictive testing where the phenotype of interest may 
not appear for many years. Given the rapid progress in testing methods, it is likely 
these challenges will only increase as analytics are introduced that include molec-
ular “signatures” (e.g., expression and protein arrays), combining with a variety of 
clinical factors and biomarkers (multivariate analysis), and ultimately systems bio-
medicine (24,25) to better stratify diagnosis, prognosis, and treatment selection. It 
is also likely that the results of these analyses will not be directly related to the 
primary outcomes of clinical interest, but rather to secondary outcomes that can be 
linked to the primary outcomes by a chain of evidence that must also be assessed 
for its strength and integrity. For example, in pharmacogenomic testing for warfa-
rin, the outcomes most frequently studied are prediction of the dose at sample INR, 
time to stable dosing, and time in INR target range. These are intermediate out-
comes for which evidence exists that links them to the primary outcomes of interest: 
adverse drug events such as bleeding and clotting (see Chapter 31 in this volume 
for a full discussion of this issue). These challenges, and others, may prevent ana-
lysts from estimating the classic measures of test performance such as sensitivity 
and specifi city. Rather, analysts may have to settle for measures such as diagnostic 
yield, false positive rate (26), or other metrics of performance, including some as yet 
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undeveloped. New ways to model the clinical and cost effectiveness of these new 
tests may be needed (22).

Completeness of Evidence—When Do We Know Enough?

There is no standard answer to this question. However, Eddy (1997) captured the 
essence of this question when he suggested that available evidence must be suffi cient 
to enable appropriately trained, motivated, and impartial people to draw conclusions 
about the magnitudes of the effects of the treatment, compared with no treatment, 
on all the health outcomes they consider important. If not, the technology (test) can 
reasonably be considered “investigational” (27). Aronson (2008) addressed this 
issue specifi cally when she stated that establishing clinical utility generally relies 
heavily on indirect evidence, using a causal chain of logic, inference, and linkage of 
various bodies of literature, from the diagnostic performance of the test to the effect 
on patient management and, ultimately, to the effect on health outcomes (28).

The functional answer to the question is that it depends upon the decision-makers 
and the context within which they make decisions, which can be quite complex and 
involve more issues than just “do we know enough.”

For rare genetic tests, the Collaboration, Education and Test Translation (CETT) 
program, sponsored by the National Institutes of Health (NIH) Offi ce of Rare 
Diseases (ORD), has addressed this issue by establishing a standard process of dis-
tilling current evidence, assessing utility based on that evidence, and reviewing the 
testing procedure to make sure it is consistent with the best evidence (29). They 
take this one step further by partnering with researchers in the fi eld and requiring 
submission of clinical and test data to a publicly available database for at least fi ve 
years. While this seems to work well for rare tests, this process is neither appropri-
ate nor scalable for higher volume or complex testing models, given the potentially 
large impact on patient outcomes and cost. However, the concept of post-market 
data collection to increase the knowledge base is highly desirable. As such, many 
(including the SACGT Oversight Report), are advocating the development of such 
systems.

As Ramsey et al. (22) and others suggest, and Aronson implies (above), decision- 
analytic methods often are necessary to piece together available data to estimate the 
effectiveness and cost effectiveness of genetic tests. Such methods help clarify the 
important questions, illustrate and quantify relationships between relevant variables, 
and identify gaps in evidence, thereby encouraging transparent and rational decision 
making. Burke and Zimmern also suggest, in their discussion of optimality of services, 
that when budgets are constrained, costly new genomic testing services or those with 
limited benefi ts should undergo formal cost-effectiveness studies (12). Similarly so for 
low-cost but high-volume tests such as CYP2C9 and VKORC1 for warfarin dosing.

In the United States, however, the Centers for Medicare and Medicaid Services 
(CMS) federal agency is explicitly prohibited from basing coverage decisions for 
Medicare and Medicaid on cost effectiveness. Likewise, state regulations universally 
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prohibit health insurers from using cost effectiveness as a coverage criterion but do 
not prohibit the use of economic analyses (e.g., cost consequences) that demonstrate 
cost comparisons when the effectiveness of interventions is considered equivalent 
(28). These limitations seem to be vulnerable to change. The crux of the issue is 
that any measure considered must refl ect the realities of the (local) decision-making 
environment and that an economic measure, if chosen for evaluation, can be legally 
applied and provide some potential to infl uence thinking and decision-making that 
ultimately leads to more effi cient yet equitable provision of health care services (30).

Summary

Table 24.1 lists and compares selected characteristics of rapid versus comprehen-
sive reviews. Many of these decisions and challenges facing stakeholders who 

Table 24.1 Comparison of selected characteristics of rapid versus comprehen-
sive evidence-based reviews

Type of evidence-based review

Characteristic Rapid Comprehensive

Elapsed time Several weeks/months One year or more

Cost (dollars) Thousands One hundred thousand or more

Cost (hours of time) <200 Possibly 1,000 or more

Structure Variable; may be targeted to specifi c 
questions

Structured analytic framework 
or complete set of 44 ACCE 
questions

Methodology May vary in rigor depending on the 
reviewing group

Often well described and 
 conscientiously followed

Topics addressed Emerging, or highly focused on 
 established topics

Wide-ranging, from established 
to emerging

ACCE components 
addressed

One or more, but often not all four All four components 
 customarily reviewed

Gaps in knowledge May or may not be addressed Usually a relatively complete 
list of gaps

Target audience Often narrowly focused to those 
 funding the review

Aimed at a wider general 
audience

Literature review Structured, but may be limited in 
scope

Broader scope of sources 
with more formal review of 
included/excluded studies

Size of literature 
base

Usually 100 or fewer references 
considered

Hundreds or even thousands of 
references considered

Use of gray literature Often useful, as data for emerging 
tests are limited

May be diffi cult because of the 
highly structured methodology

Use of modeling Limited, although simple modeling 
may be applied to address targeted 
questions (e.g., “affordability”)

Possible modeling of benefi ts 
versus harms as well as 
economics
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must choose between these two review types may be substantially reduced, if not 
eliminated, if a technology assessment service specifi c to genetic testing becomes 
available. This assumes that a review process uses an accepted and transparent 
methodology, is credible, timely, accessible, addresses the clinically relevant ques-
tions, and is affordable. The EGAPP Stakeholders’ Group is advising the EGAPP 
Working Group on these issues. Results from this interaction may have broad appli-
cability to the fi eld.

Additionally, stakeholders must bear in mind that a genetic test, if implemented, 
becomes part of a process that includes many parts. Thus, the technical merits of 
the test or assay itself are only part of the delivery of care. Ability of providers to 
access test results in a timely and useful format, interpret them accurately, to guide 
appropriate modifi cations to care, including patient compliance, can all impact the 
optimal performance of a test. Modeling and decision analysis may be useful to “put 
it all together,” especially when there are gaps in information, as will generally be 
the case both for emerging as well as established genetic tests.
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The completion of the sequence of the human genome has led to the discovery of a 
growing number of genetic variants associated with common, complex diseases and 
traits. This improved understanding of the role that genetic variants play in common 
health conditions is anticipated to benefi t public health through several routes. First, 
such research will shed light on mechanisms of disease and accelerate the deve-
lopment of new therapeutic interventions. Second, it will increase diagnostic preci-
sion and enable individualized therapies (e.g., pharmacogenomics). Third, and the 
focus for this chapter, is that new genomic information will allow for personalized 
risk prediction in ways that might motivate healthy individuals to engage in risk-
reducing behavioral changes. For the purposes of this chapter, we are considering 
behavior change to include cancer screening, quitting smoking, improving diet, and 
increasing physical activity.

Common, complex diseases such as heart disease, cancer, and diabetes, as well as 
the precursors to these diseases such as obesity, hypertension, and hypercholester-
olemia, represent a global health epidemic (1). This epidemic is attributed largely to 
population trends in poor diet (e.g., calorie-dense, nutrient-defi cient foods) and phy-
sical inactivity (e.g., physical environments that discourage walking). Additionally, 
despite signifi cant reductions in cigarette smoking in Western countries in the past 
few decades, many people still struggle unsuccessfully to quit, and a signifi cant pro-
portion of adolescents and young adults worldwide continue to start smoking. There 
are numerous evidence-based interventions to help individuals modify these health-
harming behaviors. However, successfully producing long-term behavior changes 
and motivating individuals to avail themselves of behavior change interventions 
continues to be extremely challenging (2).

Throughout this chapter, we use the term “genetic information” to refer to gen-
eral information about single gene variants or personalized information based on a 
genetic test result for a single gene variant. By contrast, we use the term “genomic 
information” to refer to general or personalized information that considers multiple 
genetic variants, gene–gene interactions or gene–environment interactions. We use 
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“social and behavioral research” to refer to the broad fi eld of research concerned 
with applying theoretical models (e.g., Theory of Planned Behavior, Self-Regulation 
Theory, Protection Motivation Theory) to explain health behaviors and suggest 
behavior change strategies. Application of these models enables hypothesis-driven 
analyses of posited associations among social and psychological factors that can 
infl uence behavioral outcomes (3,4). Social and behavioral research employs a range 
of measures and study designs that are suitable to varying degrees to address differ-
ent research questions at different stages in the research process (5,6).

Social and behavioral research has given a good deal of focus to the develop-
ment and evaluation of disease risk communication approaches with the aim to 
motivate risk-reducing behavior changes. Social and behavioral theory suggests 
that the advantage of genomic information over other types of feedback (e.g., other 
biomarkers or behavioral risk assessments) is its highly personalized nature and its 
potential for greater motivational potency. Proponents of genomic information sug-
gest that such feedback could be provided to healthy, asymptomatic individuals or 
populations and contribute substantially to primary prevention of common chronic 
 diseases (7).

On the other hand, there is considerable skepticism being voiced about the poten-
tial of genomic information to motivate behavior change. Skeptics argue, for exam-
ple, that the biology underlying these gene–disease risk estimates will be unclear or 
complex and that the low levels of risk conferred by common genetic risk variants 
(often ranging from 10% to 30% increased risk) for most common health conditions 
will result in confusion or, worse yet, create unnecessary concerns or provide false 
reassurances (8). However, relatively little social and behavioral research has been 
conducted to inform the debate about the potential utility of genomic information 
for motivating behavior change.

The ongoing debate raises important questions and testable hypotheses about 
the mechanisms through which genomic information might be more motivational 
than existing risk feedback approaches. For example, can genomic risk information 
improve upon state-of-the-art risk communications by personalizing risk in differ-
ent or better ways than other risk indicators (e.g., blood pressure, cholesterol level, 
or family history) to motivate adoption of healthy behaviors? And can personalized 
genomic information inspire risk reduction above that achieved with current inter-
vention approaches, given that the disease risk conferred by individual, common 
gene variants is modest? Indeed, rigorous social and behavioral research is needed 
to address these and other questions in order to evaluate whether and how genomic 
information can be translated into public health benefi t through improved commu-
nication strategies and behavior change interventions.

In this chapter, we describe and critique the state of the science with respect 
to understanding how genetic information has been, and how genomic informa-
tion might in the future be used to improve health by encouraging health behav-
iors that decrease chronic disease risk. To this end, we review studies in which the 
impact of providing genetic information has been evaluated as a means to infl uence 
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behavioral outcomes. We then identify gaps in the research and recommend new 
conceptual and methodological directions to accelerate this fi eld of research. Lastly, 
we recom mend roles that social and behavioral science can play in the next genera-
tion of research to consider the translation potential of genomic information for pub-
lic health benefi t. We have organized the chapter to address three broad questions: 
Does the available evidence indicate that genetic information motivates behavior 
change? What research gaps can social and behavioral science fi ll with respect to 
gauging the utility of genomic information to change behavior? What future roles 
should social and behavioral research play in the evaluation of the utility of genomic 
information to improve public health?

In selecting the content for this chapter we have made the following decisions 
and assumptions. First, we excluded studies that explore treatment matching based 
on post hoc comparisons of the relative effi cacy of pharmacological treatments by 
genotype (see for example References 9 and 10). These studies have not provided 
genetic information to individuals to infl uence their behaviors. Additionally, we 
assume it to be unlikely that genetic or genomic information will stand alone as a 
risk communication and behavior change strategy. Instead, we anticipate that such 
information will be combined with other risk factors such as gender, family history, 
and behavior and that these amalgamated risk assessments will be provided in the 
context of multicomponent complex interventions—that is, those that are “made up 
of various interconnecting parts” (11). Examples of complex interventions include 
programs to prevent heart disease and health promotion interventions directed at 
individuals to support dietary change (11). To limit the scope of the chapter, we have 
not included discussion of the opportunities and challenges of family history-based 
risk assessments but direct the reader to other thorough reviews on this subject 
(12–17). Lastly, with the rapid pace of genome-wide association studies (GWAS), 
we assume that clinically valid genetic or genomic “markers” of disease risk will be 
forthcoming and that individually these markers will have relatively modest asso-
ciations with disease risk.

Does the Available Evidence Indicate that Genetic 
Information Motivates Behavior Change?

The best answer to this fi rst question that can be distilled from the literature is 
that there is not yet enough evidence to determine whether genomic information 
can motivate behavior change. To date, most of the work in this area has focused 
on whether feedback of mutation carrier status for hereditary breast, ovarian, and 
colon cancers infl uences behaviors such as cancer screening. A less developed but 
emerging area of research is exploring how lifestyle behaviors such as smoking, 
unhealthy diet, and physical inactivity are affected by personalized genetic informa-
tion relating to common health conditions that have more complex etiologies, such 
as heart disease and lung cancer. This latter area of research has focused primarily 
on genetic information as a tool to motivate smoking cessation, but is starting to 
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move toward examining other behavior changes, such as making improvements in 
dietary habits. We will briefl y describe the evidence regarding whether personal 
genomic information infl uences each of these behaviors (cancer screening, smoking 
cessation, diet, and exercise).

Cancer Screening
Several comprehensive reviews have been published summarizing the evidence 
regarding the impact of genetic information on behavioral outcomes such as can-
cer screening (9,18–20). As reviewed in these articles, early studies of the impact 
of genetic information on cancer screening focused primarily on the impact of pro-
viding individuals with personal test results indicating the presence or absence of 
BRCA1 and BRCA2 gene mutations. While rare, these mutations are strongly asso-
ciated with increased risk (35–85% increased lifetime risk) of hereditary breast and 
ovarian cancer (HBOC).

The most recent review (20) included 32 studies on HBOC, hereditary nonpolypo-
sis colorectal cancer (HNPCC), or both HBOC and HNPCC. Most of these studies 
were conducted in tertiary care cancer centers with populations at high family his-
tory-based risk of, or already diagnosed with, cancer. The fi ndings from these stud-
ies generally indicate that, after receiving genetic test results, individuals informed 
that they are carriers of a BRCA1/2 mutation are signifi cantly more likely than non-
carriers to have a mammogram (21,22) and to undergo appropriate ovarian cancer 
screening (23) in the recommended time interval. Similarly, individuals informed 
that they carry an HNPCC-related gene mutation are more likely than noncarriers 
to have a colonoscopy in the recommended time interval (24–27). In most cases, the 
between-group differences are accounted for by maintenance of already high rates 
of screening among mutation carriers, and appropriately decreased rates of screen-
ing among noncarriers (27).

These studies have generally provided participants with intensive genetic counsel-
ing sessions (an hour or more in duration) conducted by certifi ed genetic  counselors 
both before and after delivery of personal test results. The sample sizes for these 
studies have been quite small, and descriptive study designs have predominated 
and rarely include randomization of participants to different genetic information 
 delivery formats.

Smoking Cessation
To date, 13 studies have explored the impact of genetic information on motivation to 
quit smoking or smoking cessation. Figure 25.1 illustrates that the studies spanned 
over a decade in their execution (1997–2008), a time of rapid developments in genet-
ics research and of considerable change in public awareness of genetic testing. As 
Figure 25.1 shows, four of these studies were randomized controlled trials (RCTs) 
where the effects of actual genetic test result feedback on cessation outcomes 
were compared with a nontested control condition (28–31). All four studies tested 
individuals for a single genetic variant believed to be associated with increased 
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susceptibility to lung cancer and used this as the basis for their personal risk feed-
back, although three different genetic variants were used (CYP2D6, GSTM1, and 
L-myc). In addition, the studies varied greatly in their approach.

The four RCT studies differed in the intensity of interpersonal support provided 
to participants, which has been associated positively with successful smoking cessa-
tion. For example, Lerman and colleagues (28) provided smokers with a 60-minute 
comprehensive face-to-face quit smoking consultation. Two-thirds of participants 
were then randomized to receive an additional 10-minute motivational discussion 
based on either results of breath samples analyzed for carbon monoxide, or personal 
genetic test results based on CYP2D6 genotyping. Those identifi ed as “extensive 
metabolizers” based on CYP2D6 testing were told that they were more susceptible 
to lung cancer than poor metabolizers.

McBride and colleagues (29) randomly assigned participants to either a standard-
of-care self-help smoking cessation intervention alone or in combination with 
GSTM1 genetic testing and telephone counseling. Smokers who underwent genetic 
testing for the GSTM1 gene received an in-person explanation from a health educa-
tor about the GSTM1 gene prior to testing and a personalized GSTM1 genetic test 
result booklet along with four follow-up counseling calls from a health educator. Use 
of the GSTM1 gene for feedback enabled comparisons between those who received 
higher than average genetic risk feedback (about one-third of the participants in this 
study) and those who received “not at higher” risk feedback.

Ito and colleagues (30) randomly assigned participants (a third of whom already 
had cancer) to either a control condition in which no smoking cessation intervention 
was delivered, or a genetic information condition in which participants received a 

Figure 25.1 Studies examining the impact of genetic information on smoking cessation and 
related outcomes.
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blood test, a face-to-face 10-minute explanation about the effects of the L-myc poly-
morphism on cancer risk due to smoking and an L-myc genetic test result by mail. 
Participants who had the LL genotype received a “non-risky” test result and partici-
pants who had the LS/SS genotypes received a “risky” test result. The participants 
received no other assistance with smoking cessation.

Most recently, Sanderson and colleagues (31) provided all participating smokers 
with a brief 20-minute in-person smoking cessation intervention. Two-thirds of the 
participants were subsequently randomized to an in-person explanation of lung can-
cer risk associated with the GSTM1 genotype using a 17-page illustrated guide to 
GSTM1, smoking, and lung cancer, were offered genetic testing for GSTM1 using 
a cheek-cell DNA swab, and received a copy of the GSTM1 information booklet 
to take home. These participants received their GSTM1 test results in person two 
weeks later, and received another copy of the GSTM1 booklet that had their per-
sonal test result marked in it. The Ito and Sanderson study designs (30, 31) had the 
advantage over previous trials of enabling pair-wise comparisons of cessation rates 
and associated cognitive and affective outcomes between a nontested control condi-
tion, a “risky/higher-risk” genetic test result condition, and a “non-risky/lower-risk” 
genetic test result condition.

Cessation rates for these randomized trials were measured at different time points 
with inconsistent outcomes. Lerman and colleagues (28) found no effect of personal 
genetic test result feedback on smoking cessation rates at a 2-month or a 1-year fol-
low-up. McBride and colleagues (29) reported a signifi cantly greater cessation rate 
in the genetic testing group compared to the nontested comparison group at 6-month 
follow-up, but the independent contribution of genetic risk feedback could not be dis-
entangled from the known positive effects of telephone counseling. Within the genetic 
testing group, cessation rates did not differ between those who received “high” ver-
sus “not high” risk results. Ito and colleagues (30) found a signifi cant difference in 
cessation rates at one of the follow-ups within the subgroup of participants who had 
not had cancer: 8% of the no-intervention control group and 9% of the group receiv-
ing the “non-risky genotype” feedback who had quit smoking, compared to 21% of 
the group receiving the “risky genotype” feedback had quit smoking, at the 9-month 
follow-up. Sanderson and colleagues (31) found signifi cantly higher cessation rates in 
the “higher-risk” group than control group at 1-week follow-up, but no difference at 
a 2-month follow-up (although note that this study was considerably smaller than the 
others and so was underpowered to detect a difference at this later follow-up).

An observational study (32) recruited smokers to participate in genetic testing 
for alpha-1 antitrypsin defi ciency (AATD), a condition exacerbated by smoking that 
can lead to early-onset emphysema and hepatic impairment. This intervention was 
conducted almost entirely by mail with no face-to-face contact. Smokers who took 
the genetic test and were subsequently informed that their test results indicated they 
were severely AAT defi cient were no more likely to have quit smoking at 3-month 
follow-up than those informed that their test results indicated they had normal AAT 
levels.
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All of the above studies evaluated genetic risk information based on a single com-
mon gene variant. This risk communication approach grossly oversimplifi es what is 
a complex etiology involving multiple genes and multiple facets of smoking topo-
graphy. Hamajima and colleagues (33,34) therefore made initial steps toward using 
more complex genomic information, by providing smokers with information and 
feedback about cancer susceptibility based on three common variants in genes that 
code for enzymes involved in the detoxifi cation of carcinogens: GSTM1, GSTT1, 
and NQO1. Participants who received personal information that they had more high-
risk gene variants were more likely to quit smoking than those who received per-
sonal information that they had fewer high-risk variants (4% of those with 0 or 1 
genotypes with no enzyme activity quit smoking, compared to 17% of those with 2 
or 3 genotypes with no enzyme activity).

In a recent observational study (35), relatives of patients with late-stage lung can-
cer were offered a web-based decision aid and GSTM1 genetic testing. Results indi-
cated that smokers receiving “higher-risk” genetic test results were no more likely 
than those receiving “lower-risk” genetic test results to take up offered free smoking 
cessation services (35). However, participants in the study were highly motivated to 
quit smoking prior to seeking genetic testing.

It is diffi cult to draw conclusions from these studies due to the multiple method-
ological differences between the studies. Moreover, these studies offer little insight 
into the immediate emotional and cognitive responses participants may have had to 
genetic feedback. For several of the studies, it is not clear how individuals responded 
to the feedback, only that such feedback did not prompt changes in their success 
at quitting smoking (29, 32). More in-depth information about immediate responses 
to genetic feedback could be informative in guiding the development of alternative 
approaches to be tested in future RCTs. The studies suggest future directions for 
research and provide the groundwork for RCTs that, for example, compare different 
types of genetic information content and delivery. Such preliminary research often is 
essential to establish the probable active ingredients of complex interventions (11).

The “experimental analog” method that uses hypothetical genetic testing scenar-
ios rather than real genetic testing, may have a number of advantages for early phase 
formative research. Currently, the use of real genetic testing is costly, and time-
consuming (return of feedback can take 3 months or more). Experimental analog 
methods allow researchers to: anticipate reactions to genetic tests that are not yet a 
clinical reality, have greater experimental control than is possible in a clinical situ-
ation to reduce differences between experimental conditions, and allow researchers 
to assign equal numbers of participants to each genetic test result condition (36). In 
experimental analog studies generally, participants are asked to imagine themselves 
in a situation and to respond as if they had experienced the events described (37).

Four studies have used experimental analog methodology to evaluate the poten-
tial effect of genetic information on psychological antecedents of smoking cessation 
such as perceived personal control or ability to quit smoking and/or motivation to 
quit smoking (36–39). Wright and colleagues (38) asked smokers to imagine they had 
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received a high-risk genetic test result for nicotine addiction. They found that smokers 
who received the high-risk test results were more likely to choose a pharmacological 
intervention over their own willpower than those in a control condition, a fi nding the 
authors suggested might be indicative of lower perceived personal control also referred 
to as “genetic fatalism.” Moreover, in a second study (36), smokers who received simi-
lar genetic test results for heart disease risk were no more motivated to quit smoking 
than those who did not receive personal genetic test results. In the third experimental 
analog study (37), smokers receiving Crohn’s disease risk assessments were no more 
motivated to quit smoking when the risk assessment included genetic information than 
when it was based on family history and smoking status alone. In contrast, Sanderson 
and Michie (39) found that smokers who imagined receiving a high-risk genetic test 
result for heart disease risk reported greater intention to quit smoking than those whose 
personal results indicated a low-risk genetic test result or a high-risk result based on an 
oxidative stress test. Additionally, Sanderson and Wardle (40) included questions in a 
mailed survey to explore whether genetic information about different diseases might 
be more or less motivational to smokers. When imagining receiving a high-risk test 
result, smokers who considered a hypothetical scenario about personal cancer genetic 
information did not differ in motivation to quit smoking from those who considered a 
scenario about personal heart disease genetic information (40).

While it is diffi cult to draw any fi rm conclusions about the impact of genetic 
information on smoking cessation and related outcomes, the research to date has 
suggested a range of methodological approaches and research questions that can be 
applied and explored in future research.

Diet and Exercise
Only fi ve studies have examined the impact of genetic testing on lifestyle behav-
iors other than smoking, such as eating a healthy diet and exercising (41–45). As 
with the research on smoking cessation, the studies exploring the effects of genetic 
information on motivation to improve diet and to be physically active have varied in 
behavioral outcomes, disease or trait phenotypes tested, timing of follow-ups, and 
control conditions.

Two studies have explored genetic information with respect to its potential to moti-
vate or demotivate weight loss. Harvey-Berino and colleagues (41) evaluated genetic 
risk information based on a variant in the beta-3-adrenergic receptor (beta-3-AR) 
gene, which was believed to negatively infl uence weight loss and energy expenditure. 
In this small pilot study conducted with 30 obese women who were participating in 
a weight loss program, women who were told they had the adverse variant showed 
no differences over time in reported confi dence in their ability to lose weight com-
pared to those who were told they did not have the adverse variant. Frosch and col-
leagues (44) used an experimental analog design in which participants were randomly 
assigned to review one of four hypothetical vignettes in a 2×2 experimental design 
(genetic versus hormone test, and increased versus average risk of obesity). There was 
no effect of test type on the primary outcome, intention to eat a healthy diet.
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Hicken and Tucker (42) evaluated the effect of genetic risk feedback about a fi c-
titious disease called Asch syndrome on intentions to adopt risk-reducing behav-
iors, including reducing dietary fat, and consuming soy products. Participants were 
informed that they had a positive family history for Asch syndrome, and were then 
randomly assigned to one of three experimental conditions: increased risk (30–40%) 
based on “positive family history” alone; increased risk (30–40%) based on “positive 
family history” plus a “positive genetic test result”; or average risk (10–12%) con-
ferred by a “positive family history” plus a “negative genetic test result.” Participants 
who were told that their increased risk was based on a genetic test were no more 
likely to report intending to engage in any of the recommended behaviors than those 
who were informed that their increased risk was based on family history alone.

Marteau and colleagues (43) evaluated whether genetic information negatively 
infl uenced adherence to cholesterol-lowering medication, diet, physical activity, and 
smoking cessation. Participants with familial hypercholesterolemia (a hereditary 
form of heart disease) and their relatives were randomized to one of two groups: 
routine clinical diagnosis or routine clinical diagnosis plus genetic testing. Results 
indicated no support for the supposition that genetic confi rmation of the condition 
was associated with lowered personal control, nor were there any differences on any 
of the behavioral outcomes.

Roberts and colleagues (45,46) randomly assigned fi rst-degree relatives of 
Alzheimer patients to receive either individualized numerical risk assessment based 
on family history and gender alone (control group) or an individualized numerical 
risk assessment based on family history, gender, and APOE genotype (intervention 
group). Control participants were given lifetime risk estimates of 18% through 29%, 
and intervention participants received estimates of 13% through 57%. Although 
participants were informed that there were no proven preventive measures for 
Alzheimer disease, those receiving the higher-risk ε4-positive result were signifi -
cantly more likely than both ε4-negative participants (52% versus 24%) and control 
participants (52% versus 30%) to self-report at least one of three health behavior 
changes (diet, exercise, or medications and/or vitamins). Use of medications or vita-
mins, and adding vitamin E specifi cally, were the most commonly reported behav-
ior changes amongst ε4-positive participants.

The differences between these studies limit the conclusions that can be drawn. 
However, as in the case of smoking cessation, genetic feedback, even for conditions 
such as Alzheimer disease, does not appear to demoralize individuals. However, 
these results also suggest that such feedback may not consistently be a motivator for 
behavior change.

Gaps in the Research

With only a few years having passed since the completion of the Human Genome 
Project, it is not surprising that there are signifi cant gaps in public health applica-
tions of genomics and related social and behavioral research. In this section, we 



Applications of Epidemiologic Methods506

outline four particularly noteworthy and interrelated gaps. Attending to these gaps 
now could advance the social and behavioral research fi eld signifi cantly, and in turn 
improve the chances that genomic discoveries will result in public health benefi t.

Few Studies Have Examined the Psychological Impact of 
Genomic Information About Common, Complex Diseases 
and Traits
Social and behavioral translational research in the genetics fi eld has to date been 
heavily infl uenced by early discoveries of gene variants that independently confer 
very high lifetime risks of familial cancer syndromes. This has had several effects 
on the emerging research agenda to evaluate the potential of genomic information 
related to common complex diseases and traits. First, the majority of studies directed 
to common complex diseases have continued in the tradition of evaluating genetic 
information based on single genetic variants, rather than multiple genetic variants or 
genomic information. This clearly belies the genetic, behavioral, and environmen-
tal complexity of these conditions. Additionally, this means that risk messages have 
been based on odds ratios of 1.2–1.5, with little understanding of how these lower 
probabilities, as compared to Mendelian-inherited conditions, might infl uence the 
motivational potency of these messages.

Second, the Mendelian inheritance paradigm has infl uenced selection of psy-
chological (cognitive, affective, and behavioral) outcomes that have been assessed. 
Research to understand the impact of genomic information on social and behav-
ioral outcomes has fallen largely under the aegis of the Ethical, Legal, and Social 
Implications (ELSI) research, which has to date focused more on the potential harms 
than benefi ts of developments in genetics. Thus, rather than focusing on affective 
and behavioral outcomes suggested by behavior change theories, the research has 
emphasized the potential negative implications, for instance, measures of traumatic 
distress such as the impact of events scale. While concerns about genomics must 
be taken seriously, even highly predictive genetic tests (e.g., BRCA1/2 and APOE) 
have not been shown to lead to any sustained adverse emotional outcomes such as 
depression and worry (45,47,48). Despite this, there remains a general perception 
that the potential for personal genomic information to lead to adverse outcomes is 
high. Consequently, research that explores possible benefi ts of personal genomic 
information, such as the potential to lead to much-needed improvements in lifestyle 
behaviors, has lagged behind that focusing on potential harms.

Third, concerns about the possibly exceptional nature of genomic information 
also have infl uenced selection of target populations. For example, much of the 
research has targeted adult patient populations already known to have or be at very 
high risk of disease. Asymptomatic general-public populations have rarely been the 
focus of this research. However, the preventive potential of genomic risk informa-
tion suggests that such healthy individuals may be the most appropriate targets of 
this research. This also raises the thorny issue of the appropriate age to introduce 
the possibility of genetic testing. Expert panels have recommended against genetic 
testing of minors to assess susceptibility for adult-onset conditions (49) although 
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some have argued that it is unethical to deny the option of testing when it may be 
benefi cial (50). Given that early adoption of preventive behaviors might have the 
greatest benefi t to health for minors (51), the question of at which age it is appropri-
ate to start genetic testing requires greater exploration.

Methodological Rigor Has Been Limited
The research to date has had notable methodological weaknesses. Here we focus 
on three that raise questions about the veracity of the research fi ndings: (i) small, 
highly self-selected samples; (ii) over-reliance on self-reported outcomes; and (iii) 
inadequately or inappropriately timed follow-up assessments.

Populations studied. Study samples have over-represented females, whites, highly 
educated individuals with health insurance, and those who have access to medi-
cal care. Moreover, the majority of studies have had sample sizes of less than 100, 
with most underpowered to evaluate behavioral outcomes. Study recruitment has 
been conducted in settings serving predominantly high-risk populations. Few stud-
ies have recruited from the general population or primary care settings where health 
promotion and disease prevention efforts typically take place. Base rates of screen-
ing behaviors and other health behaviors of high-risk populations such as those with 
familial cancer syndromes are not likely to be comparable to those found among 
general populations. Moreover, general population groups are likely to have lower 
genetic literacy (52) and lower awareness of the availability of genetic testing than 
high-risk populations. The general lack of population-based recruitment approaches 
that would enable comparison of characteristics of those who do and do not seek 
genetic testing makes it diffi cult to evaluate the external validity of study fi ndings. 
Additionally, attrition rates are rarely described, raising additional questions about 
external validity. These limitations make it hard to draw inferences from the current 
research about the motivational potential of genomic information.

Over reliance on self-reported outcomes. Almost all of the studies to date have 
relied on self-reported behavioral outcomes, such as individuals telling survey inter-
viewers after participating in an intervention whether they have or have not changed 
the target behavior. Few of the smoking cessation studies used gold standard bio-
chemical validation of abstinence such as cotinine assays. Studies relying on hypo-
thetical vignettes about genetic information necessarily have relied on self-reports 
of motivation and intention to change behavior. The hypothetical nature of these 
studies and the social desirability of reporting motivation to behave in a healthier 
manner might explain in part the higher rates of favorable effects of genetic infor-
mation on motivation and intentions in these studies, which have less often been 
found in studies using actual genetic testing.

Timing of follow-up assessments. The studies to date have varied greatly in the time 
points at which follow-up data have been collected. Additionally, many of the stud-
ies have timed follow-up assessments at 3-, 6-, and 12-month follow-ups, the stan-
dard follow-up points for behavior change interventions. While this timing makes 
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good conceptual sense for assessing standard behavioral outcomes (e.g., smoking 
cessation, improvements in physical activity), it is less well suited to tap into more 
immediate cognitive and motivational changes that might accompany consideration 
of genetic testing and interpretation of test results, and precede behavioral changes. 
A case in point is that the few randomized controlled trials to date included standard 
follow-up points for assessing behavioral outcomes. These trials not only found no 
benefi t of genetic information for behavioral outcomes but also provided few clues 
for developing the next generation of genetic information for testing. Immediate and 
early cognitive and emotional responses to genetic information in the hours, days, 
and weeks following genetic testing are needed to gain insight into how they infl u-
ence behavioral outcomes further downstream. The frequency of assessment also 
must be considered carefully so as not to encourage response bias that could result 
from too frequent or too closely timed assessments.

Research is Too Narrowly Focused on Perceived Risk 
and Fatalism
Perceived disease risk has been considered almost exclusively as the mediating cog-
nitive mechanism through which genomic information might infl uence behavior. 
However, although people who feel threatened are somewhat more likely to take 
action and change their behavior than people who do not feel threatened, simply 
raising an individual’s perception of personal risk is not always suffi cient in and 
of itself to directly motivate behavior change (53). Other important cognitions and 
emotions associated with behavior include: “perceived response-effi cacy” or con-
fi dence that the recommended behavior can reduce the threat (53,54), “perceived 
self-effi cacy” or confi dence in ability to change the behavior (55,56), beliefs about 
the causes and consequences of the threat (57), and self-esteem (58).

To date, when these other cognitions have been addressed, research questions 
have usually been posed in a negative frame, asking whether genetic information 
might induce feelings of fatalism, lack of personal control, or reduced self- effi cacy. 
However, self-esteem (positive self-image or feelings of self-worth) could be 
increased by providing individuals with information indicating that their tendency 
to “eat in the absence of hunger” (59) is infl uenced by dopamine gene variants, not 
simply a “lack of willpower.” Whether genomic information can be used to enhance 
positive feelings of self-worth, improve positive self-image and reduce stigma, guilt, 
and self-blame has yet to be explored. Clearly, the cognitive and emotional pathways 
through which genomic information might infl uence behavioral outcomes are far 
more complex than the impact on perceived disease risk alone.

The Social and Behavioral Research Agenda Has Not 
Been Guided by Consensus Priorities or Strategic 
Planning
There is currently no systematic planning effort underway to understand whether 
and how genomic information might best be applied to address public health 
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priorities related to multifactorial, complex conditions (e.g., heart disease, type 2 
diabetes, asthma, and obesity) that are infl uenced by multiple genetic, behavioral, 
and environmental factors (60). As a result, the “tail has wagged the dog,” with 
most genomic information research focusing on the latest genetic variant to accrue 
suffi cient evidence base for an association with a disease outcome. Study outcomes 
have focused on disease risk, the genetic risk variants used to indicate risk have 
differed between studies even when studying the same disease, and study designs 
and outcome measures have varied widely. Additionally, the literature is largely 
dominated by descriptive studies of genetic test uptake, and the cognitive and emo-
tional responses to genetic test results measured have usually been negative, such as 
depression, anxiety, worry, and fatalism.

Roles for Social and Behavioral Research

Based on the gaps outlined above, we recommend four roles for future social and 
behavioral research to increase understanding of the utility of genomic information 
to improve public health through behavior change means.

ROLE 1: Building a bridge between basic science, 
 medicine, and public health
Dr. Elias Zerhouni, former Director of the NIH, suggests that we are in a time 
of “revolutionary and rapid changes in science” (http://nihrecord.od.nih.gov/news-
letters/03_16_2004/story01.htm) and that currently researchers are not organized 
optimally for tackling the complexity and scale of biological problems. He sug-
gests that “multidisciplinary research teams of the future” are needed to address 
contemporary health problems. Public health genomics is one such new fi eld con-
cerned with the responsible and effective translation of genome-based knowledge 
and technologies for the benefi t of population health (61). Researchers from all 
backgrounds will increasingly need to be prepared and able to talk across disci-
plinary boundaries, and to arrive at mutual understandings of methodologies and 
conceptual models that can be used to translate basic science most effectively into 
public health benefi t. More programs in public health genomics such as the fl agship 
interdepartmental undergraduate and graduate training programs at the University 
of Michigan (see http://www.sph.umich.edu/genetics/) and the University of 
Washington (see http://depts.washington.edu/phgen) are needed to train scientists 
in translation and the conduct of high-quality research into the potential utility of 
genomic information.

Additionally, it will be essential that the genetic literacy of medical students and 
the frontline primary care providers of the future be improved far beyond what it 
is today. It may also be useful for there to be a paradigm shift within the genetic 
counseling training programs to incorporate preventive health education and behav-
ior change counseling.
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ROLE 2: Expanding research emphasis to include both 
distal disease phenotypes and more proximal intermediate 
phenotypes
Evaluation of the utility of genetic information has almost completely focused on 
information based on genetic variations associated with distal disease phenotypes 
such as heart disease and cancer. However, genetic variants are now starting to be 
associated with more proximal intermediate phenotypes such as obesity (62), sati-
ety (63), airway reactivity (64), and physiological response to exercise (65). Each of 
these traits or biological processes plays a role in not one but many diseases. Social 
and behavioral research approaches are needed to evaluate the utility of providing 
individuals with personal genomic information about these emerging intermediate 
phenotypes. This research will require a focus not only on the potential cognitive, 
affective, and behavioral outcomes of providing individuals with this information, 
but also how to communicate the information effectively and appropriately for the 
general population as well as different subgroups. Whether personal genomic infor-
mation about variants associated with intermediate phenotypes, such as appetite or 
responses to physical activity, is more, less, or equally motivating compared to per-
sonal genomic information about heart disease or cancer risk is an important ques-
tion that also remains to be answered.

ROLE 3: Priority setting and planning horizon-scanning 
research agendas that consider future technologies
The rapid progression and decreasing cost of genetic technologies and GWAS have 
had a profound effect on the pace at which the genetic risk factors for diseases 
and traits are being identifi ed (66). Computational advances will enable increas-
ingly comprehensive and accurate “genomic risk portraits” of individuals based 
on proteomic, transcriptomic, lifestyles, and environmental factors. The resultant 
risk algorithms and personal risk messages will be much more complex than those 
based on traditional risk factors or single genetic variants in isolation.

Social and behavioral research provides useful theoretical frameworks for advanc-
ing hypothesis-driven research to understand how these increasing levels of person-
alization might best be communicated to target audiences, how such information 
might infl uence behavioral outcomes, and how this information might improve upon 
current public health interventions. A few of the research questions that need to 
be addressed include: Can genomic information be integrated with existing widely 
available risk prediction and communication tools (e.g., www.yourdiseaserisk. 
harvard.edu) to increase their effi cacy for motivating behavior change? Can indi-
viduals make sense of these complex risk profi les? How should messages be framed 
when information appears to contradict itself, for example, when an individual has 
both risk-reducing and risk-conferring gene variants for the same disease or trait? 
Given the wide range of research questions that will be generated by these new and 
emerging technologies, priority setting based on what has been learned previously 
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about the dissemination of technological innovations related to public health will be 
essential.

New planning mechanisms need to be developed to begin these conversations. 
The CDC’s Offi ce of Public Health Genomics has played a critical role to date 
in increasing attention to these important issues. The American Public Health 
Association (APHA) and the Society of Behavioral Medicine (SBM) are examples 
of additional leading organizations that also could play a central role in develop-
ing forums for setting priorities for social and behavioral research on the utility of 
genomic information. Integrating genomics into the scientifi c programs and publica-
tions of these infl uential organizations will be useful in directing research to under-
stand the potential translation of genomic information into public health benefi t.

ROLE 4: Implementing appropriately phased programs of 
applied research
The increasing recognition of the complex biopsychosocial nature of health means 
that interventions designed to improve health will likely increase in complexity as 
well. Social and behavioral research into changing behavior suggests that complex, 
multicomponent, sustained interventions are most successful in promoting enduring 
behavior change. However, arriving at the optimal combinations of intervention com-
ponents that are effi cacious, cost-effective and not overly burdensome for individuals 
will continue to require a good deal of research. Campbell and colleagues (11,67) 
speak to this eloquently in calling for a more systematic, phased approach to research 
to understand and shape improvements in complex health promotion interventions. 
As Campbell and others show, there are several phases to the research process that 
can be conducted linearly or simultaneously. Figure 25.2 illustrates that this type of 
phased framework is useful in guiding structured research programs to assess how 
best to integrate new genomic discoveries into existing public health interventions.

As shown in Figure 25.2, the fi rst step, the Preclinical or Theory Phase (11, 67), 
is to explore relevant models and theories to suggest mechanisms by which genomic 
information might have benefi cial impact on motivation, emotions, cognitions, 
and ultimately behavior change. For example, Marteau and Weinman (68) adapted 
Leventhal’s common sense model of the self-regulation of health and illness to sug-
gest hypotheses about whether and how individual beliefs about disease causation 
may infl uence psychological responses to genomic information (68).

In the Phase I “Modeling” step, interviews and surveys, as well as focus groups, 
experimental analog (hypothetical scenarios) studies, case studies, and observa-
tional studies are conducted to defi ne the components of the intervention and to 
provide evidence that the underlying mechanisms through which genomic informa-
tion exerts its effects, as well as how it interacts with other components of the inter-
vention, can be predicted. It is important to highlight that this Phase I research is 
viewed not as being conducted in isolation, but rather, where appropriate, as part of 
comprehensive research programs in which the results are directly used to inform 
the design of subsequent studies using actual genetic tests.
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In Phase II, the information gathered in Phase I is used to develop the optimum 
intervention and study design, and one or more small exploratory RCTs are con-
ducted to describe a feasible protocol for comparing an intervention incorporat-
ing genomic information using real genetic testing with an appropriate alternative. 
When is it appropriate to move from hypothetical scenario methods to studies that 
use actual genetic testing and feedback of real personal genomic information? The 
planning strategies laid out (see Role 3 above) should be helpful in addressing this 
critical question. Additionally, Phase II trials can be useful as an intermediate step 
between Phase I hypothetical studies and large fully powered Phase III trials. Phase 
II trials are useful in the development and evaluation of different delivery formats, 
appropriate genomic feedback information materials, and determining appropriate 
comparison conditions. A Phase II methodological approach also enables increased 
methodological rigor allowing greater internal validity to consider and refi ne best 
practices for delivering interventions and considering the individual contributions of 
components of these interventions.

In Phase III, a theoretically defensible and adequately controlled RCT with appro-
priate statistical power is conducted comparing a fully defi ned complex intervention 
that incorporates a genomic information component with an appropriate alternative. 
Large Phase III trials might be considered once enough Phase I and II data demon-
strate the safety and optimal interventions on which to base a large-scale trial.

Finally, the purpose of Phase IV is to examine the implementation of the inter-
vention into practice, paying particular attention to the rate of uptake, the stability 

Figure 25.2 Adaptation of the MRC framework (11) to illustrate the sequential phases of 
developing complex interventions that incorporate genomic information to improve health.
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of the intervention, any broadening of subject groups, and the possible existence of 
adverse effects (11, 67). As suggested more generally by Campbell and colleagues, 
implementing appropriately phased programs of applied research in this way will 
give researchers and funding bodies reasonable confi dence that appropriately 
designed and relevant studies are being proposed, which examine the potential util-
ity of genomic information as part of complex interventions to improve health (11).

Concluding Comment: What Is the Role of Social and 
Behavioral Research in Assessing Utility of Genetic 
Information?

In this chapter, we have provided an overview of the social and behavioral research 
that has been conducted to date assessing the potential utility of genetic informa-
tion, pointed out some of the gaps in this research, and made some recommendations 
about how to move the fi eld forward. We suggest that social and behavioral science 
has multiple roles to play in assessing the utility of genetic information, including 
research agenda setting, collaborating, training, and matching appropriate methodol-
ogies and conceptual models to important questions. All these activities are essential 
and needed now if we are to begin to amass the empirical evidence needed to inform 
whether and how genomics can be translated and incorporated into multicomponent 
behavior change interventions to produce benefi t for the health of all.

Note: No statement in this article should be construed as an offi cial position of the 
National Human Genome Research Institute, NIH, or the Department of Health and 
Human Services.
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The fi rst newborn screening programs to use dried blood spots collected on fi lter 
paper cards and sent to biochemical screening laboratories to screen for phenyl-
ketonuria (PKU) began in the United States in 1962 (1). Most screening programs 
before the early 2000s screened for only a handful of disorders, chiefl y PKU and 
congenital hypothyroidism (CH). In the United States, most screening panels at the 
time also included galactosemia and hemoglobinopathies (2), but these were rarely 
included in other countries (3). In recent years, programs in many countries have 
used tandem mass spectrometry (MS/MS) to screen for a number of rare metabolic 
disorders (2,4).

This chapter outlines key methodological issues in collecting and analyzing data 
on outcomes in individuals with genetic disorders that are candidates for inclusion in 
screening panels and reviews the relevant literature for two disorders that have rel-
atively abundant evidence. One disorder is medium-chain acyl-CoA dehydrogenase 
defi ciency (MCADD), which is a fatty acid oxidation disorder that is the most common 
of the new disorders detected by mass-throughput MS/MS technology (5). MCADD 
has been the “poster child” for expanded newborn screening. The other disorder is 
cystic fi brosis (CF), which is also increasingly being added to screening panels (6).

Sources of Evidence on Clinical Utility of 
Newborn Screening

The clinical utility of a screening test is commonly defi ned as the balance of ben-
efi ts and harms in terms of health and psychosocial outcomes (7). Psychosocial 
issues include potential harms of false-positive or carrier screening results on anx-
iety, misunderstanding, and parent-child bonding (8,9). Leaving these issues aside, 
the effect of newborn screening on health status for a given disorder can be assessed 
by comparing outcomes observed among cohorts of individuals born with a given 
disorder, some of whom received newborn screening and some of whom did not. 
Potential sources of data are randomized trials and observational cohort studies, 
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with most available data coming from observational data. For the latter, challenges 
lie in ensuring that both cases and outcomes are reliably ascertained, particularly in 
unscreened cohorts. These challenges, a number of which are reviewed in this sec-
tion, are not unique to genetic disorders.

Randomized controlled trials (RCTs), which are the most reliable source of evi-
dence for evaluating effectiveness (10), have been conducted for only one newborn 
screening test, cystic fi brosis, and those trials involved small numbers of cases 
(11,12). An RCT of screening for less common metabolic disorders would require 
millions of infants to be enrolled, which is not practical even if ethically tolerable 
(13). Also, the close monitoring of patients in RCT can lessen the external validity 
or generalizability of results to individuals receiving care in the community (14).

Observational data are challenging to analyze because there are multiple potential 
sources of bias that need to be considered. In particular, unscreened cohorts of indi-
viduals identifi ed with a genetic disorder are not necessarily equivalent to screened 
cohorts because of underascertainment. Underascertainment can have two opposite 
effects. First, disorders that often go undiagnosed because certain individuals are 
either asymptomatic or have only mild signs and symptoms can result in relatively 
severely affected individuals being overrepresented among those who are clinically 
detected relative to the population of those with the disorder. If this is the case, the 
frequency of poor outcomes among those clinically detected with the disorder could 
be overstated. On the other hand, if affected individuals who have not been clinically 
diagnosed experience sudden death, perhaps during an infectious episode, the death 
might be attributed to an infectious agent or to unknown cause, thereby leading to 
an underestimation of the risk of death due to the disorder. One way to adjust for the 
fi rst type of bias is to examine the differences in the distributions of genetic variants 
associated with differences in phenotypes between screened and unscreened cohorts. 
This presumes that genotype–phenotype associations are already established.

A potential source of unbiased estimates of outcomes in unscreened cohorts is 
the retrospective analysis of stored dried blood spot specimens collected by new-
born screening programs that did not screen for the disorder of interest at the time 
the specimens were collected (15). Such specimens need to be linked to databases 
containing either information on outcomes or information permitting families to 
be contacted to obtain those data. This type of method is particularly valuable for 
investigating the frequency of sudden death in the absence of diagnosis for those 
disorders for which the analytes are suffi ciently stable for retrospective testing to be 
reliably done. Also, screening randomly selected specimens for rare disorders, for 
example, prevalence of 1 in 20,000 births would require testing of a very large num-
ber of specimens in order to detect more than a handful of cases. Furthermore, cer-
tain disorders are diffi cult to reliably identify with simple tests, and confi rmation by 
genotyping can be very expensive if feasible. If the primary endpoint for a disorder 
is mortality, a less expensive alternative is to link stored blood spot specimens with 
infant and child death records and test only those specimens for the disorder, along 
with a matched sample of control specimens. Ideally, specimens should be retrieved 
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for all children who died in infancy or early childhood, since deaths caused by a 
disorder might be incorrectly attributed to infectious or other causes.

An excellent example of a retrospective screening study is one that analyzed 
100,239 stored dried blood spot specimens collected in Sweden prior to the initi-
ation of screening for CH and followed up with families to confi rm diagnoses and 
assess outcomes (16). Alm et al. linked 32 specimens positive for CH by thyroid 
stimulating hormone (TSH) screening to children’s records, and 31 of these children 
could be tracked at 5 years of age. Medical records revealed that 15 of the children 
had been clinically diagnosed with CH, and an additional 7 children were found 
by the investigators to have undiagnosed hypothyroidism. The Griffi ths Mental 
Development Scales were administered to 26 of the 31 children. Two of 14 (14%) 
children who had been clinically detected with CH had a developmental quotient 
(DQ), equivalent to IQ, of < 70, indicative of developmental delay and probable 
intellectual disability. No child with untreated CH was found to have low overall 
cognitive test scores, although statistically signifi cant reductions on specifi c test 
scales were observed even among that group.

Many studies report improved outcomes in screened cohorts using historical 
cohorts as comparison groups, but it is often diffi cult to distinguish the effects of 
screening from that of improved treatments. The “natural history” of a disorder is the 
course of disease in the absence of treatment. Disease outcomes often improve over 
time as a result of changes in clinical awareness and diagnostic and therapeutic prac-
tices. Consequently, estimates based on historical cohorts born prior to the introduc-
tion of screening and effective treatment are likely to overstate the benefi ts of early 
identifi cation (17,18). For example, U.S. adults for whom PKU was not detected at 
birth by newborn screening but who were put on a low phenylalanine diet beginning 
in the fi rst several years of life mostly did not experience severe disability as adults, 
although they did experience some degree of disability (17,19). Comparisons from 
different geographic areas are likewise subject to bias if the availability of screening 
is correlated with the clinical awareness and management of a disorder (18).

Another common challenge to the identifi cation of the effectiveness of screen-
ing is a lack of long-term follow-up for both screened and unscreened cohorts. Few 
long-term follow-up studies of screened cohorts have been reported, with the excep-
tions of PKU, CH, and CF. Cognitive testing is unreliable in infants and toddlers, 
and hence studies with follow-up of 1 or 2 years after birth (20) are diffi cult to inter-
pret. The best-studied fatty acid oxidation disorder included in expanded screening 
panels, MCADD, has only had cognitive outcomes tracked up to 4 years of age (21).

Evidence on the Clinical Utility of Screening: Case 
Studies

Cystic Fibrosis
Cystic fi brosis is an autosomal recessive disorder affecting chiefl y the lungs and the 
gastrointestinal tract that is caused by mutations in the CFTR gene (OMIM 602421). 
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A single common mutation, ∆F508, accounts for two-thirds of all CF alleles world-
wide (22). Approximately 15–20% of newborns with CF develop meconium ileus 
(MI), an intestinal obstruction present at birth that generally requires surgery to 
correct. The most common presenting symptoms among infants with CF but with-
out MI are respiratory (recurrent cough, wheezing) and gastrointestinal, including 
loose stools and failure to thrive (23). Because symptoms are nonspecifi c, it is com-
mon for a diagnosis of CF not to be reached until after an infant is 12 months of 
age, and after multiple work-ups (24). Growth failure is secondary to maldigestion 
caused by insuffi ciency of pancreatic enzymes among most children with CF. As 
children age, growth retardation, chronic cough, lung infections, and decreased lung 
function become increasingly common. Spirometry is the method used to measure 
lung function, with the standard metric being forced expiratory volume in 1 sec-
ond, or FEV1 as a percentage of predicted values based on height and age. However, 
FEV1 cannot be reliably measured in children less than 6 years of age, and it is not 
a sensitive measure of early-stage lung disease in children, reducing its utility as an 
outcome measure for evaluating CF newborn screening (25). Mortality in CF gener-
ally is associated with chronic obstructive pulmonary disease, with respiratory fail-
ure being the primary cause of death in more than 90% of people with CF (26).

A relative abundance of data exists to evaluate the clinical utility of newborn 
screening for CF, including two randomized trials in Wisconsin and England, four 
cohort studies with data on both screened and unscreened cohorts, and several anal-
yses of two national patient registries in the United States and the United Kingdom 
(6,27). Summaries of fi ndings from the two trials and two cohort studies follow, 
along with registry analyses. Because the focus is on data sources and methods of 
analysis to control for bias, results are presented study by study rather than by out-
come. Findings relating to nutritional status and growth (12), which have consis-
tently favored screened cohorts (6,27), are not discussed.

Randomized trials. The Wisconsin CF Neonatal Screening Project randomly 
assigned neonates born in Wisconsin during 1985–1994 to either a screened or con-
trol group (12). CF screening was performed for all children, but positive results 
were reported only to families in the screened group. Positive results were released 
to families in the control group if parents requested the results or when the child 
reached 4 years of age. Subjects with a diagnosis of CF were recruited into a pro-
tocol with follow-up every 6 weeks during the fi rst year of life and every 3 months 
through 17 years of age. All children received care at one of two centers. Despite 
randomization, signifi cantly more subjects with no ∆F508 allele (p <0.001) were 
in the control group (12). The Wisconsin study found signifi cantly better growth 
status among those in the screened group (12), but no signifi cant difference in either 
lung function (spirometry) or chest radiography, which is a more sensitive measure 
of lung disease (25). Endpoints not originally targeted but assessed in response to 
suggestions from experts (28) were health-related quality of life (no difference; 29) 
and cognitive ability (a signifi cant difference among the subset of children with a 
vitamin E defi ciency during infancy; 30). The Wisconsin study was not powered to 
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evaluate mortality as an endpoint (28). Perhaps because of the close follow-up pro-
vided in the RCT, no deaths prior to 10 years of age were observed in either group 
among those without MI, unlike in the general pediatric population with CF (31).

In the United Kingdom, all neonates born in Wales and the West Midlands during 
1985–1989 were randomly allocated to undergo or not undergo CF screening on an 
alternate-week basis (11). Because no screening was performed for those in the con-
trol group, an unknown number of undiagnosed cases of CF were not ascertained 
and no unbiased comparison of clinical outcomes could be undertaken; no differ-
ences in lung function were observed (11). Investigators subsequently reviewed reg-
istry and death certifi cate data to identify CF-related deaths among children in the 
unscreened group (32). No early deaths were reported among 78 children without 
MI in the screened group compared with four CF-related deaths before 5 years of 
age among 71 children without MI in the unscreened cohort (5.6 per 100) (p < .05). 
Two of the four deaths occurred among children who had received a clinical diagno-
sis of CF by 7 weeks of age based on the development of symptoms, and it was not 
clear whether the deaths would have been averted by screening (32).

Cohort studies. A historical cohort study in Australia compared 57 children with CF 
without MI who were born in New South Wales during the 3 years before July 1981, 
before screening was available, and 60 born during July 1981 to July 1984, when 
screening was available (33). All analyses were conducted on an intent-to-treat basis, 
with children included in the screened cohort if they were born while screening was 
offered, including three children not detected through screening. All subjects were 
followed at a single clinic. Signifi cant differences in favor of the screened cohort 
were observed in hospitalizations during the fi rst 2 years of life, in height at ages 1 
and 5 years, in lung function at ages 5, 10, and 15 years, in chest radiographs at age 
15 years, and in survival at age 10 years (33–35). The investigators acknowledged 
changes in treatment introduced during 1981–1983 could potentially have biased 
outcomes in favor of the screened cohort (34). However, no differences in outcomes 
were reported among children with CF and MI. Also, most of the differences in the 
Australian study have been confi rmed by subsequent studies, with the exception of 
the lung function fi ndings (6).

A concurrent geographical cohort study from northern France compared chil-
dren with CF born during 1989–1998 in Brittany, which screened newborns for CF, 
with a comparison group of newborns in a neighboring region, Loire-Atlantique, 
which did not implement screening for CF and was said to have had comparable 
CF care (36). Standardized follow-up and therapeutic management was provided for 
patients in both regions who received a diagnosis of CF. Differential ascertainment 
did not appear to be a major problem, because the same birth prevalence of CF was 
observed in both areas. False-negative screening results (n = 5) were excluded by 
the investigators from the screened cohort, which is a potential source of bias and a 
weakness of the study design. Signifi cant differences in favor of the screened cohort 
were reported for hospitalizations, height at ages 1, 3, and 5 years, chest radiographs 
and clinical scores, and mortality, although no differences were observed in lung 
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function among the limited subset of individuals with spirometry measures (36). 
The investigators reported three CF-related deaths among 36 children without MI 
born in Loire-Atlantique (8.3 per 100), and no deaths among 77 children without MI 
born in Brittany (p < .05).

Patient registries. Three analyses (two published and one unpublished) of U.S. data 
from the Cystic Fibrosis Foundation National Patient Registry (CFFPR) reported 
evidence of improved lung function, although the fi rst one in particular had biased 
case ascertainment. Wang et al. analyzed children at least 6 years of age in 1996 
who were born during 1987–1990 and were diagnosed with CF by 36 months of age 
or the end of 1990, whichever came sooner (37). They classifi ed CF cases without 
MI into four categories: early asymptomatic diagnosis (EAD), early symptomatic 
diagnosis (ESD), later asymptomatic diagnosis (LAD), and later symptomatic diag-
nosis (LSD), each on the basis of two dichotomous variables: age of diagnosis before 
or after 6 weeks of age and the presence of clinical signs and symptoms at the time 
of diagnosis. Asymptomatic diagnosis was defi ned as diagnosis by family history, 
genotype, prenatal diagnosis, or neonatal screening in the absence of clinical signs 
or symptoms recorded at the time of diagnosis. Children in the EAD group had 
signifi cantly higher FEV1 scores. However, this fi nding was due to truncation of the 
late diagnosis groups. An unpublished analysis of data from the 2002 CFFPR by 
Grosse, Devine, and Rosenfeld found that the difference in mean lung function was 
attenuated when the 1990 diagnosis cutoff was removed and was eliminated when 
the arbitrary 36 month diagnostic cutoff was removed. In any case, the EAD group 
primarily consisted of infants diagnosed based on family history, and the majority 
of children detected based on newborn screening either had symptoms at diagnosis 
or were diagnosed after 6 weeks of age.

An analysis of data from the 2002 CFFPR by Accurso et al. compared lung func-
tion in relation to four types of diagnosis: newborn screening, symptomatic, MI, and 
prenatal diagnosis (24). The analysis excluded individuals diagnosed on the basis 
of a family history of CF, which was the leading source of asymptomatic diagno-
ses during the period. Children who had both newborn screening and symptoms 
checked were assigned to the newborn screening group (Marci Sontag, personal 
communication, February 13, 2008). Individuals at 6–10 and 11–20 years of age 
classifi ed as diagnosed through newborn screening had signifi cantly higher FEV1 
scores than those in the symptomatic diagnosis group (24). Mean FEV1 for those 
with prenatal diagnoses did not differ from those with symptomatic or MI diagno-
ses, even though prenatal and newborn screening both enabled early detection and 
preventive care. The high FEV1 scores in the newborn screening group might have 
been due to unmeasured confounding or selection bias.

In an unpublished analysis of 2002 CFFPR data, Grosse, Devine, and Rosenfeld 
used the presence of newborn screening for CF in a state at the time of birth as a 
predictor variable in regression analysis on FEV1 scores among children 6–10 years 
of age. Children born in states with CF newborn screening programs had signifi -
cantly better lung function, controlling for other predictors of lung function. Only 
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a small number of states at the time screened for CF and it was not possible to 
determine whether states with better management of CF were more likely to have 
adopted screening, early treatment made possible by screening causally improved 
lung function, or both.

Three analyses of CFFPR data examined the association of newborn screening 
with survival. First, Lai et al. used the 2000 registry data to compare children or 
adults with a newborn or prenatal screening diagnosis recorded and those diagnosed 
with MI or with symptoms other than MI (23). They reported signifi cantly longer 
survival among those in the screening group compared with those in both the MI 
and symptom groups. However, most of the difference in survival was estimated 
to have occurred after 20 years of age. This is unlikely, since neither newborn nor 
prenatal screening was available before the 1980s (6). The CFFPR contains records 
in which a newborn screening diagnosis was listed for children born in states with-
out screening programs at the time or which occurred after 1 year of age. The same 
investigators subsequently published an analysis that restricted the analysis to indi-
viduals diagnosed after 1986 and to deaths occurring before 14 years of age (38). 
That analysis reported that the association with mortality remained but was of bor-
derline statistical signifi cance (p < .10).

Finally, Grosse et al. compared the cumulative risk of death to 10 years of age 
among children with CF who were born during 1987–1991 in states with or with-
out CF statewide newborn screening programs (31). The former group consisted 
of Colorado, Wisconsin, and Wyoming; children born in three states with volun-
tary private screening programs with incomplete coverage (Connecticut, Montana, 
and Pennsylvania) were excluded from the analysis. The analysis found an abso-
lute difference in risk of 1.7 per 100 (0.65 versus 2.35 per 100), with a rate ratio of 
3.6 (p= .13). Although not statistically signifi cant, the difference in risk was only 
slightly smaller than that reported in the individual-level analysis (38). The small 
number of children born in states with screening programs made the results dif-
fi cult to interpret. It is possible that better quality of care provided in states with 
screening programs could have accounted for the lower mortality rates observed. 
On the other hand, there is a greater likelihood that children with CF born in states 
without screening could have died due to complications of the disorder, such as elec-
trolyte imbalance under heat stress, without a diagnosis having been established or 
recorded. Only a retrospective screening study conducted using stored specimens 
from a cohort not screened for CF at birth could quantify such deaths.

The 2002 UK Cystic Fibrosis Database (UKCFD) has been analyzed in several 
publications to compare outcomes for children 1–9 years of age without MI who were 
identifi ed either through newborn screening or manifestation of symptoms and who 
were diagnosed beginning in 1994 (39–41). The investigators reported that children 
in the newborn screening group did not differ in terms of FEV1 scores but differed 
signifi cantly in chest radiography at 6 years of age. They focused on the fi nding that 
children in the screened group were less likely to have received intensive or long-
term therapies, which was regarded as indicative of less lung disease and a lower 
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need for aggressive treatment (39). The percentage of children homozygous for the 
∆F508 mutation was similar for each group (about 50%), and results of analyses 
stratifi ed by genotype to test for potential confounding were comparable with those 
of the overall analysis. The one exception was that pancreatic enzyme replacement 
therapy was signifi cantly more common in the clinically detected group overall but 
not among ∆F508 homozygotes (39). At the time children were born, screening for 
CF was universal in Wales and Northern Ireland, limited in England, and not avail-
able in Scotland. An analysis restricted to observations from seven English CF cen-
ters that treated appreciable numbers of children in both groups generated fi ndings 
comparable with those in the overall sample (39).

Finally, the UKCFD was used to assess potential harm from unnecessary treat-
ment. It was found that those with CF diagnosed through newborn screening have not 
been prematurely introduced to aggressive therapies, including pancreatic enzyme 
replacement therapy prior to the emergence of pancreatic insuffi ciency (40,41). 
This question has not been studied in the United States. A concern expressed in the 
United States is that many individuals are identifi ed with borderline or atypical CF 
and have an unknown prognosis with unknown benefi t (or harm) of treatment (42).

The potential harms of screening for CF include a risk that infants with newly 
diagnosed CF might be exposed to other CF patients with established Pseudomonas 
aeruginosa lung infections and become infected themselves (6). This almost cer-
tainly happened in one of the two centers in the Wisconsin trial, causing infants 
diagnosed with CF who were treated in that center and born during the fi rst part of 
the trial to develop serious, chronic lung infections at an earlier age (27). However, 
CF centers have since instituted safeguards against exposure of CF patients to other 
patients to minimize this risk, and there is no evidence that this harm has subse-
quently been repeated (24).

Medium-Chain Acyl-CoA Dehydrogenase Defi ciency

Medium-chain acyl-coA dehydrogenase defi ciency (MCADD) is an autosomal reces-
sive mitochondrial fatty acid oxidation disorder that is caused by mutations on the 
ACADM or MCAD gene (OMIM 607008). Defi ciency in the MCAD protein reduces 
the formation of ketone bodies in the liver that provide an alternative energy source 
during periods of prolonged fasting or increased energy demands. Consequently, 
clinical presentation is usually related to hypoglycemia brought about by fasting 
and increased metabolic stress and can result in encephalopathy or sudden death. 
Although most patients present during infancy or early childhood, acute crises can 
occur throughout life. Most studies reported high mortality (16–26%) and variable 
levels of neurological sequelae among survivors of an acute metabolic crisis (43,44). 
Clinical case series have reported permanent sequelae in up to one-fourth to one-
third of survivors in symptomatic MCADD (45,46).

The highest quality outcomes data for MCADD that are currently available 
come from one retrospective screening study conducted in England (47) and from 
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studies of outcomes among screened and unscreened cohorts born in different 
states in Australia and followed to 4 years of age using a standardized protocol 
(21,48). Ascertainment bias in unscreened cohorts is a major problem. Population-
based surveillance data from Australia and Western Europe indicated that in the 
absence of screening 35–60% of cases of MCADD were detected based on clini-
cal signs or family history (21,49–51). MCADD was more rarely diagnosed in the 
United States prior to screening (52). Furthermore, children detected clinically 
have been reported to be more likely to be homozygotes for the relatively severe 
common mutation than are those detected through screening programs (5,49). 
Consequently, extrapolation of the frequency of sequelae among individuals 
with MCADD diagnosed in unscreened cohorts to all individuals with MCADD 
detected by screening will almost inevitably overstate the potential benefi ts of 
screening (53).

At least 25% of children with MCADD appear to remain asymptomatic and a 
similar percentage of affected children are likely to display relatively limited clini-
cal signs and symptoms (44,47). Conversely, in the absence of screening an impor-
tant percentage of children with MCADD experience fatal decompensation episodes 
that are likely to go undiagnosed, approximately 5–6% according to a retrospective 
analysis of stored blood spot specimens for unexplained child deaths in Virginia 
(54). Consequently, a count of child deaths attributed to MCADD in an unscreened 
population could understate the actual number of deaths caused by the disorder. In 
addition, sudden deaths among adults with MCADD can occur.

One retrospective MCADD screening study assessed outcomes for a random 
sample of stored specimens. Pourfarzam et al. analyzed 100,600 stored dried blood 
spot specimens collected from infants born in the northern United Kingdom during 
1991–1993 and found that 14 screened positive for MCADD (47). They followed 
up with an examination of medical records and family surveys for all 14 children, 
including 12 children who were still alive at 7–9 years of age. They identifi ed eight 
children as having MCADD, including three who had been clinically diagnosed 
prior to the study. One of the latter three had died at 17 months of age and was diag-
nosed post mortem. Three of the seven survivors with MCADD had experienced 
episodes of encephalopathy, two had had milder symptoms, and two had no symp-
toms recorded, although one of the latter had learning diffi culties that might have 
been unrelated to the metabolic disorder. None of the survivors had a developmental 
disability that could be linked to a metabolic decompensation crisis. The number 
of observations was too restricted to provide precise estimates of the frequency of 
death or sequelae.

The frequency with which children with biochemical MCADD develop seri-
ous, life-threatening symptoms can also be assessed by using information on the 
older siblings of probands detected as newborns through screening. For example, 
Waisbren et al., through testing family members of 20 infants detected through 
screening, identifi ed seven older surviving siblings with MCADD, of whom four 
had shown symptoms (hypoglycemia and extreme lethargy) of MCADD (the other 
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three remained asymptomatic) (20). That study did not consider older siblings who 
might have died of MCADD. In another study, Pollitt and Leonard reported that 
four of six older siblings confi rmed to have MCADD had experienced symptoms, 
and that an additional four siblings died with symptoms compatible with MCADD, 
although it could not be confi rmed that they had MCADD (44).

The most informative study to date on MCADD outcomes utilized contempo-
raneous population-based screened and unscreened cohorts with MCADD born in 
Australia during 1994–2002 (21). A unique feature of the study was the reportedly 
complete ascertainment of all diagnosed cases of MCADD in Australia including 
those states that did not screen for the disorder at the time. Wilcken et al. analyzed 
the frequency of death and developmental delay among children followed to 4 years 
of age. They reported deaths among 6 (17%) of 35 children with the disorder diag-
nosed through clinical presentation or after diagnosis of a sibling, compared with 
1 (4%) of 24 in those diagnosed through screening, as noted in an accompanying 
commentary (53). The latter death occurred in the fi rst 3 days of life, before labora-
tory screening was done (55).

The death rate among the approximately 50% of the Australian MCADD 
unscreened cohort who were not diagnosed with the disorder based on clinical man-
ifestations was probably lower than among those who did come to clinical attention. 
Wilcken et al. proposed that the death rate was perhaps only half as high in that 
group, which implies an overall unscreened cohort death rate of 12% (21). The 12% 
estimate can be compared with a death rate of 25% that is often cited on the basis 
of clinical case series but was the same as that reported in a retrospective study of 
stored blood spot specimens (47). Surprisingly, a subsequent publication from the 
same group that compared health care utilization for the screened and unscreened 
cohorts did not make an adjustment for ascertainment bias among the unscreened 
cohort (48).

A recent study of 137 Dutch individuals identifi ed with MCADD from the late 
1970s to 2003 based on clinical symptoms or family history, including individuals 
diagnosed post mortem, found a 20% death rate (56). However, mortality was lower, 
15%, when restricted to the 110 probands, and no deaths were observed among 18 
individuals detected in the newborn period through testing prompted by family 
history. The investigators made no adjustment for asymptomatic individuals with 
MCADD who were not included in their observations.

Although the risk of mortality is reduced through newborn screening for MCADD, 
it is not eliminated (21,55). First, infants with MCADD can die during the fi rst 3 
days after birth, before screening results can be reported (55,57). Second, reports 
from the United States and Germany discussed children diagnosed with MCADD 
who died despite receiving treatment (58,59). An analysis on the fi rst 46 children 
diagnosed with MCADD through screening of 713,552 infants in four New England 
states identifi ed two deaths (4%) at 11 and 33 months of age that were attributed 
to MCADD (59). The California newborn screening program reported two deaths 
in screened infants with MCADD that occurred in the fi rst week after birth (Fred 
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Lorey, personal communication, February 21, 2008). A retrospective screening 
study would be required to reliably ascertain the risk of death in an unscreened 
cohort.

Another endpoint in MCADD is disability among survivors of metabolic decom-
pensation crises. However, clinical case reports are likely to be affected by ascertain-
ment bias due to more severely affected children being more likely to be referred to 
specialized centers. Another problem is a lack of standardization in developmental 
assessments. In particular, there is a tendency for case series to cite poorly defi ned 
neurological sequelae and to fail to report the number of children affected rather 
than the number of symptoms. Sequelae resulting in intellectual disability typically 
occurred in 5–6% of all children with MCADD, with milder sequelae affecting per-
haps a similar number of additional children (5). Those estimates take into account 
the probability that one-quarter to one-half of children with MCADD do not experi-
ence a metabolic crisis during childhood that would put them at risk of neurological 
disability.

Two recent publications reported on neurological sequelae among unscreened 
individuals with MCADD. The Australian study found no developmental delay in 
either screened or unscreened children at least 4 years of age who were adminis-
tered cognitive assessments (21,48). The fi nding that unscreened children did not 
have serious problems was more favorable than had been previously reported for 
unscreened children with MCADD, not only in Australia but in other countries 
as well (5,53). This fi nding refl ected improved clinical awareness of MCADD in 
Australia in recent years (21).

Van der Hilst et al. reported that fi ve (4%) of 116 Dutch patients with MCADD 
born during 1985–2003 had been institutionalized, three of whom required perma-
nent institutional care (60). This is slightly lower than the 6% frequency of severe 
disability reported by the same investigators for a sample of 155 patients that pre-
sumably included 39 born prior to 1985 (56). The latter sample included 18 subjects 
identifi ed neonatally through family history, one (5%) of whom had a mild neuro-
logical impairment. No information was presented as to the ages of individuals who 
were classifi ed as having severe disability, the criteria that were used, or cognitive 
assessments.

One potential harm from screening for MCADD is unnecessary treatment 
for children who would have remained asymptomatic or without sequelae. The 
Australian study cited previously reported that children in the screened cohort were 
less likely to have been hospitalized than were those in the unscreened cohort, 42% 
versus 71%, respectively (48). However, compared with the frequency of MCADD 
in states with screening, probably only 60% of children in the unscreened cohort 
were diagnosed. If those who did not come to clinical attention were not hospital-
ized, the rates of hospitalization among the screened and unscreened cohorts would 
have been approximately equal. Consequently, these data do not provide evidence of 
reduced rates of hospitalization with screening. At least these data do suggest that 
screening does not cause excess hospitalizations in screened children.
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Lessons Learned

Evaluating the cumulative evidence of clinical utility from multiple epidemiologic 
studies is even more challenging than interpreting the results of a single study. 
Ioannidis et al. have proposed three types of criteria: amount of evidence in terms 
of total numbers of observations, consistency in fi ndings among studies, and study 
quality in terms of protection from bias (61). In addition, it seems reasonable to take 
into account effect size. Other things constant, a larger effect size in terms of pro-
portional improvement in outcomes is associated with greater clinical utility.

The cumulative evidence of clinical utility from newborn screening is uneven. 
Among the two disorders reviewed here, the greatest amount and quality of evi-
dence exists for CF, with two randomized trials of screening, several cohort stud-
ies, and analysis of two national patient registries. However, consistency of fi ndings 
in CF studies of screening is variable. The most consistent evidence among study 
fi ndings is for growth and the weakest evidence is for lung function. Most studies, 
including one randomized trial, have found signifi cant differences in mortality, but 
the highest quality trial did not.

For MCADD, one small retrospective screening study and two pilot screening 
studies with long-term follow-up are available. In addition to the Australian study, a 
large-scale MCADD screening study in the United Kingdom has collected outcomes 
data that will be reported at a later date. There has been a lack of consistency of fi nd-
ings in terms of both mortality and disability. Although studies have consistently 
reported deaths among at least 10% of children with MCADD in the absence of 
screening, this percentage is variable and subject to ascertainment bias in both direc-
tions. Also, there are persistent reports of deaths from MCADD even with screening, 
occurring among as many as 4% of children born with MCADD (55,59), but the 
numbers involved are very small. Finally, to the extent that cognitive impairment in 
MCADD can be prevented without screening, as suggested by the Australian study, 
the number of cases of disability prevented by screening is context specifi c.

The MCADD case study illustrates the challenge of evaluating rare disorders; 
most other disorders being added to newborn screening panels are even less com-
mon. Because of the rarity of MCADD, about 1 in 15,000 births, comprehensive 
follow-up data on millions of children screened for MCADD are needed in order to 
generate reliable data on outcomes of screening (53). The Australian data suggest 
that perhaps 70% of child deaths from MCADD are prevented by newborn screen-
ing (21). Although this is less than 100%, it is still important evidence of the clinical 
utility of screening for MCADD. In the absence of pooling of long-term follow-up 
data from multiple screening programs utilizing a standard protocol (50), all assess-
ments of clinical utility of screening must remain tentative.

A long lead time is needed before a fully evidence-based decision about the clini-
cal utility of screening can be reached. The fi rst statewide screening programs for 
CF began in 1981 in Australia and 1982 in the United States. The fi rst statewide 
screening programs for MCADD began in 1997 in the United States and in 1998 
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in Australia. Two U.K. health technology assessments published in 1997 concluded 
that screening for MCADD met all or almost all recognized criteria for screening 
programs (62,63). A subsequent U.K. report (64) confi rmed and expanded on the 
fi rst assessment (62). However, it was only in 2007 that the National Health Service 
decided to adopt universal screening for MCADD in England, after preliminary 
results from a pilot screening study confi rmed fi ndings from other countries. In 
the United States, Massachusetts adopted universal screening for MCADD in 1998 
(65,66), based in large part on one of the U.K. reviews (62). Numerous other states 
followed subsequently (67).

Given what is known now, the early adopters of screening for CF and MCADD 
appear to have been justifi ed in their decisions. There is a societal cost of delay-
ing the initiation of screening tests that can save lives and prevent disability, which 
needs to be balanced against the cost of deciding to screen for disorders that might 
eventually be shown to not provide clear benefi t. Large-scale pilot screening pro-
grams with rigorous evaluation protocols are essential to contribute to the evidence 
base. In addition, policy makers should be prepared to discontinue screening tests 
for which evidence of utility is ultimately lacking.
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Introduction

A promising area of genomics is the use of information about genetic variation 
to guide drug therapy, a fi eld known as pharmacogenomics. Pharmacogenomic 
applications can be broadly categorized into (a) those related to variation in drug 
metabolism and disposition genes, which affect the levels of active drug or metabo-
lites in the body and thus both effectiveness and side effects, and (b) those related 
to variation in genes for drug targets, which primarily infl uence the effectiveness 
of a drug (1,2). These categories can be applied to both inherited and acquired 
variation. There has been signifi cant excitement about the potential of this fi eld 
over the past decade, but pharmacogenomics actually has an extensive 50-year his-
tory. Arno Motulsky proposed in 1957 that the inheritance of acquired traits could 
explain individual differences in drug effi cacy and adverse drug reactions (ADRs) 
(3,4). The majority of early research focused on common polymorphisms in the 
drug metabolizing enzymes, which were identifi ed using a candidate gene approach 
in patients with an unusual drug response (1). More recently, with technological 
advances in DNA analysis, rarer variants and those affecting drug effectiveness 
have been evaluated (2). In this chapter, the role of epidemiology in assessing phar-
macogenomic associations is discussed, as well as approaches utilizing epidemio-
logic data to quantify the potential benefi ts and harms of pharmacogenomic tests 
in clinical use.

Epidemiology and Pharmacogenomics

A multitude of potential pharmacogenomic applications have been investigated 
over the past decade, including the relationship between genetic variation and 
drug treatment outcomes in asthma, hyperlipidemia, hypertension, and oncology 
(1,2). However, as with disease genetics, various widely cited association studies 
have not been reproduced and validated. For example, one study indicated a sig-
nifi cant relationship between an alpha-adducin gene variant and diuretic antihy-
pertensive response (5), but several recent, larger studies failed to identify such an 
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association (6–9). The association between the CETP polymorphisms and statin 
therapy outcomes has been widely studied, but a recent meta-analysis failed to 
validate the association (10). Pharmacogenomic associations that have not been 
consistently replicated include: ACE gene polymorphisms and antihypertensives 
(11), beta-receptor polymorphisms and both asthma (12,13) and heart failure med-
ications (14), and serotonin transporters and antidepressants (15–17). The impor-
tance of sound epidemiologic approaches to assessing genetic associations has 
been verifi ed by this experience, including appropriately powered studies, assess-
ment of potential selection bias and confounding, adjustment for multiple compar-
isons, careful assessment of phenotypes, and caution regarding publication bias 
(18–20). Multicenter, multinational consortiums will serve as a critical mecha-
nism for providing the necessary sample sizes to identify and validate pharmacog-
enomic associations, for example, the International Warfarin Pharmacogenetics 
Consortium (IWPC).

Validated Examples—Current “State of the Science”

Drug Metabolism Genes
Despite these challenges, several important pharmacogenomic associations have 
been established (Table 27.1). Validated examples of genetic variants related to 
drug metabolism include: (a) TPMT variants and toxicity to the anticancer drug 
6- mercaptopurine in children with acute lymphoblastic leukemia (21,22), (b) 
CYP2C9 variants and dose requirements of the blood thinner drug warfarin in 
patients with clotting disorders (23,24), and (c) UGT1A1 variants and toxicity to the 
anticolon cancer drug irinotecan (25).

These associations have been reproduced in various studies and are generally 
accepted in the scientifi c and clinical community as valid. In addition, the U.S. 
Food and Drug Administration (FDA) has added information about pharmacog-
enomic effects to the labeling of these drugs although testing has not been required 
to date (26,27). Another interesting example is the association between the CYP2D6 
drug metabolism gene and response to tamoxifen therapy in breast cancer. Patients 
with low-activity CYP2D6 variants actually receive less benefi t because tamoxifen 
requires modifi cation by CYP2D6 in the body to active forms (28–30). CYP2D6 poor 
metabolizer genotypes have also been associated with decreased effi cacy of codeine, 
which similarly requires activation in the body by CYP2D6 (31). Conversely, ultra-
rapid CYP2D6 metabolizer status in mothers of breastfeeding infants has been asso-
ciated with cases of infant mortality (32). The antiplatelet drug clopidogrel is yet 
another drug that requires activation by drug metabolizing enzymes—in this case, 
CYP2C19. A recent study found that patients with a lower activity variant (30% 
of the population) had lower levels of active metabolites, and a 50% higher risk of 
the composite primary effi cacy outcome of the risk of death from cardiovascular 
causes, myocardial infarction, or stroke (33).
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Hypersensitivity Reactions
The relationship between an HLA variant and hypersensitivity reactions to the anti-
HIV drug abacavir has been well established in various studies and populations, and 
is likely clinically useful (34,35). The antiseizure drug carbamazepine has a rare 
risk of an extremely serious hypersensitivity reaction—Stevens-Johnson syndrome 
and toxic epidermal necrolysis. The association has been established in Chinese but 
not Caucasian populations—potentially due to the higher prevalence of the relevant 
variant in many Asian populations (36).

Drug Targets
There are relatively few well-validated examples of variation in a drug target infl u-
encing drug outcomes. The effect of VKORC1 variants on warfarin dose require-
ments is probably the most well known. Variation in the promoter region (explained 
by a single SNP) explains approximately 25% of dosing variability, and infl uences 
anticoagulation levels in the initial days of therapy (37,38). In another emerging 

Table 27.1 Selected examples of pharmacogenomic associations

Category Gene Drug Association/Outcome

Inherited genetic variation

Drug 
metabolism

CYP2C9 Warfarin dose requirement, drug response, and 
severe bleeding events

CYP2C19 Clopidogrel major cardiovascular outcomes

CYP2D6 Codeine variation in effect (pain control and 
respiratory depression)

CYP2D6 Tamoxifen disease recurrence in early stage breast 
cancer (some contradictory study 
fi ndings)

Hypersensitivity 
reactions

HLA Abacavir hypersensitivity reaction

HLA Carbamazepine Stevens-Johnson syndrome

Drug targets VKORC1 Warfarin dose requirement and initial drug 
response

Acquired genetic variation

HER2-neu Trastuzumab treatment response in early stage and 
metastatic breast cancer

various 
(OncotypeDx)

Chemotherapy risk score predicts breast cancer recur-
rence and chemotherapy response

various 
(MammaPrint)

Chemotherapy risk score predicts breast cancer 
recurrence

 KRAS Cetuximab, 
panitumumab

treatment response in colon cancer

See text for references.
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 example, heart failure patients with a specifi c beta-1 adrenergic receptor genotype 
had a signifi cant response to bucindolol; the FDA is evaluating these fi ndings (39).

Acquired Genetic Variation
Evaluation of tumor cell lines is often used for guiding chemotherapy in oncology. A 
now classic example of using genetic information to do so is assessment of variation 
in the growth factor receptor gene HER2/neu, which is overexpressed in approx-
imately 25% of metastatic breast tumors. Patients with tumors that overexpress 
HER2/neu are eligible for treatment with the targeted monoclonal antibody drug 
trastuzumab (Herceptin) (40). More recent examples include two gene expression 
profi les designed to help identify women with early-stage breast cancer who are at 
higher risk of disease recurrence and thus better candidates for adjuvant chemother-
apy. Both the MammaPrint and OncotypeDx tests have been validated using retro-
spective analyses—in particular, both tests have been associated with recurrence 
risk, while the latter has also been associated with chemotherapy response (41–44). 
Recent studies suggest that colorectal cancer patients with KRAS mutations are not 
responsive to the EGFR-antibody drugs cetuximab and panitumumab, based on ret-
rospective analyses of several clinical trials (45,46). Lastly, responses to the small 
molecule EGFR tyrosine kinase inhibitors erlotinib and gefi tinib in nonsmall cell 
lung cancer have been correlated with gene mutations, protein expression, and gene 
copy number, although samples were available from only 30–40% of patients in the 
key Phase III trials, and further data and evaluation are needed (47).

The Translational Challenge: Evidence of Clinical Utility

Despite the promising examples discussed above, pharmacogenomics is currently 
rarely used in clinical practice (48). For example, a pharmacogenomic test is rou-
tinely used with only one drug (trastuzumab) of the top 200 drugs by sales, and none 
of the top 200 drugs by prescription volume (49,50). Although valid associations 
have been identifi ed and tests are available, routine pharmacogenomic testing with 
6-mercaptopurine, warfarin, and irinotecan therapy is conducted in a relatively lim-
ited number of settings—primarily academic research centers.

A major challenge for clinicians and policy makers is the general lack of direct 
evidence—that is, data from a randomized controlled trial (RCT)—indicating that 
testing improves patient outcomes compared to usual care. In the fi rst prospective 
RCT designed to evaluate the outcomes of pharmacogenomic testing, investigators 
compared HLA testing to guide abacavir drug selection versus usual care in the 
treatment of HIV infection (51). Screening eliminated immunologically confi rmed 
hypersensitivity reaction (0% in the prospective screening group versus 2.7% in the 
control group, p < 0.001). Other pharmacogenomic-based RCTs are currently being 
conducted with warfarin therapy (52,53) and the breast cancer gene expression pro-
fi les (54). However, results from these studies will not be available for several years, 
and for some pharmacogenomic tests, such studies may never be conducted because 



Assessing the Potential Clinical Impact of Pharmacogenomics 537

of (a) the lack of fi nancial incentives for private industry to invest in such trials, (b) the 
challenges in identifying valid associations, (c) limited availability of a test kit or test 
results within a clinical decision-making timeframe, and lastly (d) genetic variation 
may not account for the majority of variation in drug-related therapeutic outcomes 
(48,55). Developing treatment and reimbursement guidelines for genetic tests thus 
promises to be challenging. Although prognostic and predictive information derived 
from genetic testing is not necessarily unique compared to phenotypic assays, there 
are important differences: (a) fi rst, and most obvious, is the volume of data—genome-
wide scans provide data on hundreds of thousands of variants; (b) there are relatively 
low regulatory barriers to the provision of test results and marketing claims—genetic 
tests have been marketed within days of the report of a novel genetic association; and 
(c) costs are dramatically decreasing, with genome-wide evaluations now available at 
costs similar to tests for a few SNPs. Thus, combined with the general lack of direct 
evidence of clinical utility, policy makers and  clinicians are faced with signifi cant 
uncertainty about a large number of potential  applications of genetic information.

Approaches to Evaluating Pharmacogenomics with 
Indirect Evidence

It is helpful to consider the context and evidence framework used to evaluate drugs 
when considering evidence criteria for pharmacogenomic tests. As outlined in the 
FDA document Guidance for Industry: Providing clinical evidence of effective-
ness for human drugs and biological products, two well-conducted, independent 
RCTs are generally required to provide suffi cient direct evidence of effi cacy (56). 
However, the Guidance for Industry also states “it may be possible to conclude that 
a new dose, regimen, or dosage form is effective on the basis of pharmacokinetic 
data without an additional clinical effi cacy trial.” These guidelines imply that the 
level of evidence for a pharmacogenomic test could depend on the specifi cs of the 
case. For example, when the intervention based on a test result is a dosage change, 
“indirect” evidence such as the association between variants and clinically relevant 
outcomes, mechanistic plausibility, and pharmacokinetic-pharmacodynamic model-
ing could be considered (57). The challenge is to integrate this approach with well-
established methods for evidence-based assessment of health care technologies.

The U.S. Centers for Disease Control and Prevention (CDC) has sponsored an 
assessment process for pre- and post-market evaluation of the effectiveness for DNA-
based genetic tests through the Evaluation of Genomic Applications in Practice and 
Prevention (EGAPP) initiative and the independent EGAPP Working Group (58). 
EGAPP has sponsored evidence reviews of several pharmacogenomic tests, includ-
ing gene expression profi ling in breast cancer, and CYP2D6 genotyping in the treat-
ment of depression (17,44). These assessments, in conjunction with Human Genome 
Epidemiology (HuGE) reviews, serve a critical role in establishing the validity of 
claimed associations and their clinical relevance (59). Another primary goal of the 
EGAPP process, as the name suggests, is to identify evidence gaps. Given a general 
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lack of direct evidence of clinical utility, a conclusion of “insuffi cient evidence to 
recommend for or against use” will be reached frequently. Indeed, in the case of 
CYP2D6 genotyping to guide the use of antidepressants, EGAPP found insuffi cient 
evidence—even of a valid association between CYP2D6 variants and antidepressant 
response or dose requirements (60).

Despite a lack of comparative effectiveness data on clinical utility (or even valid 
associations), however, it is possible to estimate a range of potential benefi ts—and 
harms—of pharmacogenomic tests using clinical and epidemiologic data in both 
a qualitative approach and a quantitative decision modeling framework. These 
approaches can provide bounds for the potential clinical utility of a pharmacog-
enomic test, as well as highlight critical data gaps that should be the focus of future 
research efforts.

Qualitative Framework for Assessing Pharmacogenomic 
Tests

A qualitative framework based on decision modeling and risk–benefi t analysis has 
been developed for situations in which an expedient, preliminary estimate of clin-
ical utility is needed (61). The genetic, clinical, and epidemiologic considerations 
comprising this framework are discussed below, using some of the examples pre-
sented in Table 27.1 to illustrate its application.

Comparison to the Next-Best Alternative
An important tenet of decision modeling in health care is that the outcomes of an 
intervention be assessed compared to the next best alternative—in what is called an 
“incremental analysis” (62). The comparator strategy for a pharmacogenomic test is 
the ability to monitor patients for toxic effects or drug response and individualize 
their therapy accordingly—without the use of pharmacogenomic testing. Two exam-
ples highlight this issue. Variation in the CYP2C9 and VKORC1 genes clearly impact 
warfarin dosing requirements, but given that anticoagulation status is (or should be) 
already closely monitored and individualized in warfarin patients, the incremental 
benefi ts of pharmacogenomics knowledge are less clear (38,63). In contrast, CYP2D6 
variants may be predictive for lack of response to tamoxifen, and in this case, women 
and their physicians do not have any way to assess whether treatment is effective—
other than monitoring for breast cancer recurrence (28,30). Furthermore, aromatase 
inhibitors provide a viable treatment alternative to tamoxifen.

Validity and Clinical Relevance of Genetic Associations
As discussed above, it is clearly important to follow recent recommendations for 
validating genetic associations, particularly with the advent of genome-wide asso-
ciation studies and the risk of false-positive fi ndings (64,65). In addition, the nature 
of the clinical outcome for which a valid association has been identifi ed should be 
carefully considered. For example, VKORC1 variants explain approximately 25% of 
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warfarin dose requirement variability, compared to approximately 10% for CYP2C9 
variants (37). Yet CYP2C9 variants have been associated with a 2–4 times higher 
risk of major bleeding in several independent studies, while VKORC1 variants do not 
appear to confer as signifi cant a risk (23,66,67). These fi ndings could be explained 
by the infl uence of CYP2C9 variants on warfarin elimination half-life or an as yet 
unknown independent association of CYP2C9 variants with bleeding risk, but most 
importantly, they illustrate the challenge of relying on intermediate outcomes (such 
as dose requirements, or anticoagulation level) to model (or implicitly infer) the 
infl uence of genetic variants on clinical events, life expectancy, and quality of life.

Prevalence of Genomic Variation
The frequency of the variant of interest in the target patient populations can have 
important effects on (a) the positive and negative predictive value of a test and 
(b) the effi ciency (cost-effectiveness) of testing. Variants that have a low prevalence 
(e.g., <1%) will have poorer positive predictive value, and require that signifi cantly 
more tests be conducted per variant identifi ed in a population.

The relationship between genomic variation and geographic origin may present 
some signifi cant challenges for health care delivery. For instance, will a patient’s 
race or ethnicity implicitly be incorporated into treatment guidelines or drug reim-
bursement policies (e.g., drug formularies) that account for such pharmacogenomic 
effects? These issues may be exacerbated by the lack of data in traditionally under-
served populations. In a recent systematic review, Jaja and colleagues did not identify 
a single study that evaluated the prevalence of CYP variants in an American Indian 
population (68). In contrast, it appears variation in VKORC1 explains a  signifi cant 
portion of observed differences in warfarin dosing requirements across races, which 
may lead to more accurate dosing for patients of all races (37).

Availability, Risks, and Benefi ts of an Intervention Based 
on Test Results
Genomic variation associated with drug response has the advantage of providing 
relatively clear potential interventions: (a) change drug dosing, (b) change drugs, or 
(c) change monitoring. Estimating the effectiveness of these interventions compared 
to alternative approaches may be challenging, as discussed above, but the potential 
impacts are likely clearer than for interventions based on genetic tests for disease 
risk (such as lifestyle modifi cation). A particular issue that will have a tremendous 
impact on the outcomes of testing is the actions of patients and providers in response 
to test results. For example, if a woman is categorized as having a low risk of breast 
cancer recurrence using a gene expression profi le, yet chooses to undergo adjuvant 
chemotherapy, potential cost and quality of life benefi ts would be lost.

Outcomes Severity
The severity of the outcome that is the target for improvement will impact the abso-
lute benefi t derived from the test information. The morbidity (including patient 
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quality of life), mortality, and likelihood of the clinical event are all important. For 
example, with warfarin therapy, the type of bleed that might be prevented—minor, 
major, fatal—is critically important, as are the probabilities of each of these events.

In summary, each of these factors should be carefully considered in the evaluation 
of a pharmacogenomic test—primarily to identify tests that are not likely to be bene-
fi cial, those that may be, and tests that have a relatively strong set of indirect data sup-
porting their use. This approach has the advantage of being relatively expedient, but 
there are several important limitations. First, how is the balance of risks versus ben-
efi ts weighted to determine if there is an overall net benefi t? For example, how does 
the avoidance of chemotherapy compare to the risk of cancer recurrence? Second, 
particularly for genetic tests, there is a signifi cant degree of uncertainty in many of 
the data elements—how can this be assessed? Lastly, it is important to ensure that 
all relevant comparators and clinical events have been included and communicated 
clearly to decision makers—doing so without a formal framework is challenging.

Quantitative Risk–Benefi t Assessment

Recently, there has been heightened interest in the use of approaches to quantitatively 
assess risk–benefi t tradeoffs. These efforts have been driven in part by drug safety 
concerns. A recent Institute of Medicine (IOM) study initiated by the FDA and the 
Department of Health and Human Services (DHHS), The Future of Drug Safety: 
Promoting and Protecting the Health of the Public, advised that the FDA’s Center 
for Drug Evaluation and Research (CDER) “develop and continually improve a sys-
tematic approach to risk–benefi t analysis” (69). One of the approaches being consid-
ered by the FDA is a decision-analytic, health-outcomes based approach (70).

Decision Modeling
Decision-analytic modeling provides an explicit framework for incorporating data 
from various sources in a quantitative and transparent fashion. Weinstein and 
Fineberg describe the decision-analytic approach as: (i) identify and bound the deci-
sion problem, (ii) structure the decision problem over time by developing a deci-
sion tree, (iii) characterize the information needed to inform the structure, and (iv) 
choose a preferred course of action (71,72). For example, decision-analytic tech-
niques could be applied to gene expression profi ling in breast cancer, where the test 
result is used to identify women at lower risk of cancer recurrence and thus decrease 
their likelihood of receiving adjuvant chemotherapy (54). Decision modeling could 
be used to incorporate

the association between test result and disease recurrence risk,a) 
the association between test result and response to chemotherapy,b) 
the baseline risk of disease recurrence, andc) 
baseline treatment effect.d) 
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These data potentially would be derived from four or more separate studies, and 
be used to generate an estimate of the outcomes for women who utilize gene expres-
sion profi ling versus those that do not.

There are two important, and related, limitations to decision-analytic modeling: 
lack of transparency and subjectivity. The approach requires judgment about which 
data to incorporate and estimates about the effect of the intervention on long-term 
outcomes such as disease progression and life expectancy. Because multiple data 
sources are incorporated in potentially complex models, there is often concern about 
the validity of the analysis and the potential for bias in the results. These are valid 
concerns, and can only be addressed through clear presentation of data inputs, model 
structure, assumptions, and analysis, in conjunction with rigorous peer review.

Evaluation of Uncertainty
A valuable component of decision modeling is the ability to explicitly evaluate uncer-
tainty—particularly related to uncertainty in the data inputs, referred to as param-
eter uncertainty (72,73). Analysts can calculate not only expected or mean values for 
the probability and magnitude of benefi ts and risks, but also the variance surround-
ing these estimates. Parameter uncertainty for individual inputs can be derived from 
95% confi dence intervals of specifi c studies or meta-analyses, the range of point esti-
mates reported in the literature, or expert opinion. Decision makers can evaluate and 
revise these estimates, thus making any implicit assumptions explicit. Analytically, 
the uncertainty in the various parameters in the analysis (including probabilities, life 
expectancy, and quality of life) is evaluated using a variety of approaches. In one-way 
sensitivity analyses, a single parameter is varied over a specifi ed range and the impact 
on results evaluated. This is typically done for all inputs to identify the key param-
eters. The overall uncertainty in a decision analysis can be evaluated using proba-
bilistic sensitivity analysis, in which distributions are assigned to the model inputs, 
and Monte Carlo simulation used to repeatedly draw sets of model inputs from these 
distributions (74). The distribution of results can provide decision makers with a more 
comprehensive assessment of the range and likelihood of various outcomes.

A Summary Measure of Net Benefi t (Clinical Utility)
A decision model can be used to quantify the likelihood of various clinical events 
given different courses of action—including patient morbidity and mortality—but 
a framework to assess the relative value of morbidity and length of life is needed 
to derive a summary measure of clinical benefi t. The fi elds of outcomes research 
and health economics utilize the quality-adjusted life year (QALY) to address this 
need (70). Patients’ quality of life is accounted for by weighting life expectancy in a 
certain state of health by people’s preferences for that state of health. These prefer-
ences are derived using several quantitative approaches, and fundamentally involve 
asking respondents to trade quality of life for life expectancy (or risk of death) (62). 
Preferences range from 0 = death to 1 = perfect health. For example, a life expectancy 
of 2.0 years with a quality of life preference rating of 0.8 would give 1.6 QALYs.
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Net risk-benefi t can be expressed either as a ratio or a difference, with the latter 
being more clinically intuitive. The incremental net health benefi t (INHB) for one 
technology versus another is thus:

INHB = (B2–B1) – (R2–R1)

where B2 and R2 are the effectiveness and risk of the new intervention being evalu-
ated and B1 and R1 are the effectiveness and risk of the standard therapy, and both 
effectiveness and risk are measured in QALYs. A positive INHB would be consid-
ered favorable—that is, the clinical benefi ts of the intervention outweigh the clini-
cal risks in terms of their impact on QALYs, and the test would be deemed to have 
“clinical utility.”

The advantages of using QALYs to measure both risks and benefi ts are that dif-
ferent clinical events are weighted according to their impact on life expectancy and 
quality of life, and a summary measure can be calculated. The challenges in apply-
ing and interpreting QALY-based risk–benefi t analysis include heterogeneity in peo-
ple’s preferences for specifi c risks and benefi ts, modeling complexity, and including 
qualitative social factors that may arise, particularly with genomics, such as impact 
on family members and the value of “information for information’s sake” (75,76). 
Given these challenges, it is useful to present projected clinical events (e.g., heart 
attacks or GI bleeds) rather than relying only on QALYs, and allow decision makers 
to implicitly weigh these outcomes in comparison to the projected QALY impacts.

Risk-Benefi t Analysis and Decision Making
Once decision makers have available quantitative estimates of the potential net ben-
efi t, the amount of uncertainty in this estimate, and identifi cation of the most impor-
tant data gaps, they will be better positioned to ascertain not only the likely clinical 
utility of the test, but assess the evidence requirements that should be established 
for that specifi c test. For example, indirect evidence may be suffi cient for a test with 
a high likelihood of benefi t and low risk, whereas a test with uncertain benefi t and 
potential downsides might require direct evidence (e.g., RCT-level) of clinical utility 
before it could be recommended for use.

Example: Pharmacogenomics of Aminoglycoside-Induced 
Hearing Loss

Background and Rationale
A genetic test to identify patients with a mitochondrial mutation (A1555G) that may 
predispose patients to aminoglycoside-induced hearing loss has recently been devel-
oped and marketed (77). Although the A1555G variant is rare, it appears to confer a 
high risk of severe hearing loss in patients exposed to aminoglycosides. The ques-
tion arises: in what population might this test be most useful? Aminoglycosides 
are a cornerstone of fi rst-line therapy in cystic fi brosis (CF) patients with acute 
Pseudomonas aeruginosa respiratory infections, yet aminoglycoside-induced 
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hearing loss (ranging from mild to severe) may occur in 1–15% of CF patients 
(78,79). The benefi t of a proven, fi rst-line agent for a serious and potentially life-
threatening infection must be weighed against the risk of developing drug-induced 
hearing loss. To gain a better understanding of the potential outcomes associated 
with A1555G mitochondrial testing to guide aminoglycoside use in this patient 
population, we previously developed and evaluated a decision analytic model of 
this approach (80).

Approach
The structure of the decision model is shown in Figure 27.1. The two strategies eval-
uated are standard of care (no testing) versus A1555G testing. In patients receiving 
the genetic test, those with the mutation were assumed to be treated with IV cipro-
fl oxacin and ceftazidime while those testing negative were assumed to be treated 
with tobramycin and ceftazidime. Patients in the standard care group received 
tobramycin and ceftazidime.

Data were derived from the literature, data from the U.S. Cystic Fibrosis 
Foundation National Patient Registry, and expert clinical opinion as needed. It was 
assumed in the base case that there was no difference in mortality between patients 
receiving quinolones + β-lactam versus those receiving aminoglycoside + β-lactam. 
This assumption was based on evidence from one randomized clinical trial sug-
gesting equivalent effi cacy of quinolones to aminoglycosides at eradicating gram-
negative bacterial infections (81). However, because there is evidence of higher rates 
of quinolone resistant Pseudomonas infections compared to tobramycin-resistant 
infections in CF patients (82), we used a scenario analysis to assess the poten-
tial negative impacts of this drug switch by estimating a 10% relative increase in 
 lifetime mortality with ciprofl oxacin versus tobramycin to obtain a higher absolute 
risk of death of 2.8% attributable to lifetime use of a second-line therapy.

The systematic review of association studies revealed few data, with much of the 
available data of relatively poor quality. Most studies were small (<50 people) and 
conducted on either large high-risk pedigrees of maternally inherited hearing loss or 
conducted on individuals who already had severe to profound hearing loss. For variant 
positive individuals, the probability of mild hearing loss as a result of aminoglycoside 
exposure was estimated at 66% (83). The estimated prevalence in the U.S. population 
was approximately 1 in 1,000 (84), although two studies investigating the prevalence 
of the variant in populations worldwide have reported widely varying estimates, from 
5 to 500 per 1,000 (85,86). The sensitivity and specifi city of the A1555G test were esti-
mated to be 99.9% and 87.0% based on communications with the test provider.

Results
In the base-case evaluation of the decision model, A1555G testing decreased the 
lifetime absolute risk of severe aminoglycoside-induced hearing loss by 0.12%. 
Because of the low prevalence of the mutation, over 800 patients would have to 
be tested to prevent one case of severe hearing loss, and in combination with a test 
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specifi city of 87%, over 95% of patients that tested positive would be false-positives. 
The magnitude of the benefi t in terms of quality of life was relatively small, with an 
expected increase of 0.0043 QALYs (1.6 days).

Given the uncertainty in the data informing the model, there was signifi cant vari-
ability in the results. For instance, if avoidance of aminoglycosides in patients testing 
positive leads to an absolute increase in the lifetime risk of death from Pseudomonas 
infection of 0.8% or greater (e.g., as a result of increased drug resistance), A1555G 
testing could lead to a decrease in QALYs—that is, the risks would outweigh the 
benefi ts (Table 27.2). Several other model inputs infl uenced the results, most notably 
the probability of exposure to an aminoglycoside, test specifi city, the quality of life 
impact of hearing loss, and mutation prevalence. Figure 27.2 shows the impact of 
both the risk of switching drug therapy, and test specifi city, on the overall benefi t 
(difference in QALYs) of the testing versus not testing strategies.

Implications
The results of the decision analysis indicate that there are signifi cant data gaps and 
uncertainty in the outcomes with A1555G testing, and that it could lead to worse 
patient outcomes overall due to the avoidance of fi rst-line therapy in the great major-
ity of patients who are false positives. These fi ndings have important policy implica-
tions. For example, a recent editorial in BMJ stated:

We recommend that the true prevalence of the mutation . . . be ascertained to 
determine the cost effectiveness of screening everyone prescribed aminogly-
coside antibiotics. In the meantime, patients who are likely to receive multiple 
courses of aminoglycosides . . . should be screened. (87)

In contrast, the decision analysis suggests additional data should be collected 
before eliminating a fi rst-line agent used to treat often life-threatening infections. 

Table 27.2 Evaluation of uncertainty for decision model of pharmacogenomic 
testing to avoid aminoglycoside-induced hearing loss

INPUT VALUE RESULT (QALYS)

Model Input Low High Range 

Absolute increase in mortality risk from avoiding 
fi rst-line therapy

0.000 0.028 –0.012 0.004

Probability of exposure to aminoglycoside 0.300 0.800 0.003 0.007

Test specifi city 0.830 0 930 0.002 0.006

Quality of life impact of mild hearing loss 0.850 0 950 0.003 0.006

Mutation prevalence 0.000 0.005 0.004 0.006

Quality of life of severe hearing loss (cochlear 
implant) 0.750 0.850 0.004 0.005

QALY, quality-adjusted life year     
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This example highlights the ability of decision-analytic techniques to synthesize 
disparate data, assess uncertainty resulting from a paucity of data, and provide 
quantitative estimates of risk–benefi t tradeoff through the use of a QALY health 
outcomes framework.

Summary

Pharmacogenomics is a promising yet complex application of human genomics to 
health care. Although identifi cation of valid genetic associations and establishment 
of the clinical utility of pharmacogenomic applications has unfolded at a measured 
pace, promising clinical applications are beginning to emerge. A paucity of data 
will be an ongoing challenge, and an opportunity exists to utilize clinical and epide-
miologic data within quantitative modeling frameworks to evaluate the likely health 
benefi ts and risks of pharmacogenomic tests and the uncertainty surrounding these 
estimates, and identify critical data gaps. These analyses can provide guidance for 
patients, providers, and policy makers in a genomic era of many possibilities yet 
 little evidence.
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Introduction

Epigenetics, the study of mechanisms that involve mitotically heritable changes 
in DNA other than changes in nucleotide sequence, represents a new frontier in 
research, especially in cancer. Most of our cells contain the same DNA, yet gene 
expression varies dramatically among different tissues. Epigenetic mechanisms 
establish and maintain this tissue-specifi c gene expression. Information in the 
genome exists in at least two forms, genetic and epigenetic. The genetic information 
provides the blueprint for the manufacture of all the proteins necessary to create 
a living organism, whereas the epigenetic information provides additional instruc-
tions on how, where, and when the genetic information will be used.

The DNA methylation and histone modifi cation patterns associated with the 
development and progression of cancer have potential clinical use. The functional 
importance of epigenetic changes lies in their ability to regulate gene expression. 
Three major steps in epigenetic regulation are promoter methylation, histone acet-
ylation/deacetylation, and chromatin conformation changes. Recently, the role of 
small noncoding RNAs has been included as an epigenetic mechanism (1). DNA 
methylation is one of the most common epigenetic events taking place in the human 
genome. Of the various types of epigenetic regulations, DNA methylation is a com-
plex process where DNA methyltransferases (DNMTs) catalyze the addition of a 
methyl group to the 5-carbon position of the cytosine. DNA methylation of cyto-
sine occurs when a guanine base follows cytosine, so the dinucleotide (CpG) gets 
methylated. Clusters of CpGs are called “CpG islands,” which are predominantly 
located in the promoter region. Three DNMTs (DNMT1, DNMT3a, and DNMT3b) 
have been identifi ed and recent studies have revealed that a functional cooperation 
between DNMT1 and DNMT3b is needed to maintain methylation status in cancer 
cells (2).

A variety of chemicals (such as nickel, arsenic, cadmium), certain base analogs, 
radiation, smoke, stress, hormones (such as estradiol), and reactive oxygen species 
can alter the phenotypes of mammalian cells, via epigenetic mechanisms, without 
changing the underlying DNA sequence (3). These agents can alter the methylation 
and/or acetylation state of the DNA. Contrary to mutations, epigenetic changes can 
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be reversed by chemicals and thus provide opportunities for development of inter-
vention and treatment strategies. Epigenetic markers could be used in cancer detec-
tion, diagnosis, prognosis, and epidemiology. Research opportunities at the National 
Cancer Institute (NCI), one of the 27 Institutes and Centers at the National Institutes 
of Health (NIH) and efforts to complete human epigenome are discussed.

Epigenetic Mechanisms

Our understanding of the role of epigenetic abnormalities in disease processes is still 
in its infancy. Epigenetic controls can become dysregulated in cancer cells. Such 
dysregulation can affect a variety of gene types, including tumor suppressor genes, 
oncogenes, and cancer-associated viral genes, all of which are subject to regula-
tion by epigenetic mechanisms (4–6). Genomic methylation patterns are frequently 
altered in tumor cells, with global hypomethylation accompanying region-specifi c 
hypermethylation events. When hypermethylation occurs within the promoter of a 
tumor suppressor gene, silencing of expression of the associated gene can occur, 
providing the cell with a growth advantage in a manner akin to deletions or muta-
tions. Examples of such genes are APC, RAR, DAPK, E-cadherin, GSTP1, LKB1, 
MGMT, and TIMP3. Conversely, hypomethylation of oncogenes leads to upregula-
tion of genes associated with cell proliferation in cancer tissues. Examples of onco-
genes activated by hypomethylation are Raf, c-fos, c-myc, c-Ha-ras, and c-k-ras. 
Importantly, the change in methylation patterns is considered an early event in can-
cer development. Selected genes regulated by epigenetic mechanism in cancer are 
shown in Table 28.1. The components of epigentic mechanism and gene expression 
are shown in Figure 28.1.

Epigenetic mechanisms have been studied in many seemingly disparate areas of 
scientifi c investigations from organ development to gene regulation. The importance 
of pursuing such investigations has come to the forefront, following the comple-
tion of the Human Genome Project. The challenge now is to understand the regu-
lation of gene function, an activity that is dependent to a large extent on epigenetic 
control. One area of scientifi c investigation into epigenetic controls involves histone 
deacetylation. Histone deacetylation leads to chromatin condensation, with concom-
itant transcriptional repression. Conversely, the covalent addition of acetyl groups to 
the lysines in the tails of histones appears to result in decondensed chromatin that 
is associated with upregulation of gene expression. Histone acetylation and deacety-
lation function in a dynamic equilibrium in a manner that is regulated by histone 
acetyltransferases (HATs) and histone deacetylases (HDACs) (7). The quantitative 
balance between HATs and HDACs, and thus the dynamics of histone acetylation 
can be altered by exogenous agents. Those epigenetic agents that alter net acetyla-
tion so as to favor chromatin decondensation and gene expression are only effective 
in the context of previously “competent” chromatin, that is, partially transcription-
ally active chromatin.
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Table 28.1 Epigenetic modifi cations in different cancers

Cancer Type Genes Epigenetic Change 
and Comments

Reference

Bladder 
cancer

CDKN2A, p16INK4A, RASSF1A, 
PRSS3

Hypermethylation 
(detected in tissue as 
well as in exfoliated 
cells from urine)

Marsit et al., 2006 
(129)

Brain cancer MGMT, TIMP-3 Hypermethylation in 
glioblastoma, could be 
used for diagnosis and 
prognosis

(60,130,131)

Breast cancer APC, BRCA1, CDH1, CXCL12, 
Cyclin D2, HIC-1, PROX1, 
RARbeta, RASSF1a, RUNX3, 
TMS1

Hypermethylation (90,132–139)

B-cell acute 
lymphoblas-
tic leukemia 
(BALL)

Interleukin-12 receptor beta2 
(IL-12Rbeta2)

Hypermethylation 
for tumor escape to B 
ALL

(140)

Cervical 
cancer

SPARC, TFPI2, RRAD, SFRP1, 
MT1G, NMES1

Hypermethylated in 
invasive cancer

(49)

Colon cancer APC, CDKN2A,CRBP1, DAPK, 
MGMT, MLH1, TIMP-3

Hypermethylation (28,40,51–54,58,141)

Endometrial 
cancer

MLH1, TITF1, SESN3 Hypermethylation (142,143)

Esophageal 
cancer

APC, CDKN2A, CALCA, 
MGMT, TIMP3p, p14ARF

Hypermethylation (58,144)

Gastric cancer ATM, p16INK4a(CDKN2A), 
hMLH1, MGMT, DAPK, 
CDH1(ECAD)

Hypermethylation,
H. pylori infection in 
80% cases

(80,145)

Head and 
neck cancer

DAPK, MGMT, p16INK4A Hypermethylation (146)

Kidney (renal) 
cancer

RASSF1, RSSA3, TIMP-3, 
p16INK4A

Hypermethylation (33–35)

Liver cancer T-cadherin, p16INK4A Hypermethylation of 
p16 and T-cadherin; 
functional assay 
of T-cadherin 
shows reduction in 
T-cadherin level which 
is correlated with the 
progression of liver 
cancer

(56,146,147)

Lung cancer RASSF1, RARbeta, DAPK, 
p16INK4A, p15, MGMT

Hypermethylation (51,52,146,148)

Nasopharyng-
eal carcinoma

RASSF1A, p16/INK4A, p14/
ARF

Hypermethylation (149)

(Continued)
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Investigations into the manner in which DNA methylation infl uences gene expres-
sion have revealed proteins that bind specifi cally to the methylated DNA. Binding of 
such proteins to methylated DNA leads to the suppression of gene expression. Only 
a few methylated DNA binding proteins have been identifi ed thus far. One of these, 
MeCP2, binds to methylated DNA, leading to inhibition of gene expression.

Another context in which methylation of DNA exerts important control over gene 
expression involves viral genes. For example, methylation of the promoter region 
of the Epstein-Barr Virus (EBV) genome maintains latency of the virus thereby 
preventing the expression of viral antigens. The absence of viral antigens enables 
EBV to escape immune surveillance. Evasion of the host immune system may well 
explain the observed association of EBV infection with certain lymphomas and 
nasopharyngeal carcinomas.

The organization of DNA into chromatin presents the cell with the opportu-
nity to use powerful regulatory mechanisms broadly defi ned as epigenetics (8). 
Research designed to characterize the molecular basis of disease tends to be 
gene-centric and may therefore miss important sources of variation of expres-
sion. Increasing evidence demonstrates that epigenetic mechanisms are linked 
to gene activation, gene silencing, and chromosomal instability (9–12). Thus, a 

Table 28.1 Continued

Cancer Type Genes Epigenetic Change 
and Comments

Reference

Non-Hodgkin 
Lymphoma 
(NHL)

DLC-1, PCDHGB7, CYP27B1, 
EFNA5, CCND1 and RARbeta2

Hypermethylation (150)

Ovarian 
cancer

FANCF, IGFBP-3, GSTP1, 
ER-alpha, hMLH1

Member of Fanconi 
gene family involved 
in DNA repair, genes 
involved in detoxi-
fi cation, and tumor 
suppressor genes

(41,151,152)

Pancreatic 
cancer

p14, p16INK4A Hypermethylation (32,45–47)

Prostate 
cancer

GSTP1 Hypermethylation (146)

Skin cancer CDH1, p73, SOCS (suppressors 
of cytokine signaling)

Hypermethylation (153–156)

Thyroid 
cancer

RASSF1 Hypermethylation (157)

Wilms’ 
tumors

glioma pathogenesis-related 1/
related to testis-specifi c, vespid, 
and pathogenesis proteins 1 
(GLIPR1/RTVP-1)

Hypomethylation (30)

Note: In most cases, tissue samples were analyzed for epigenetic changes, and in a few cases biofl uids containing 
either circular DNA or exfoliated cells were used.



Figure 28.1 Schematic representation of the epigenetic mechanism. (a). Major players in epigenetic regulation are DNA methylation, histone modifi -
cation, chromatin compactation and noncoding small RNAs. (b). Hypermethylation of tumor suppressor genes and hypomethylation of oncogenes. (c). 
Histone modifi cation and chromatin compactation.
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purely DNA sequence-based approach (naked DNA snapshot) may be insuffi cient 
to explain pathogenesis of diseases that have a heritable component, but are mod-
ulated by other nongenetic or extragenetic mechanisms. For example, genomic 
imprinting silences one parental allele in the zygotes of gametes via DNA methyl-
ation and histone modifi cation (8). Imprinting in the germline via gene methylation 
is heritable, and can result in transgenerational effects. Only about 1% of genes 
are imprinted by this mechanism (13–21). Among the human diseases associated 
with dysfunctional epigenetic regulation and/or deregulation of imprinted genes 
are Beckwidth-Wiedeman syndrome, Prader-Willi/Angelman syndrome, placental 
overgrowth, neurological and behavioral disorders, neuroblastoma, breast can-
cer, acute myeloblastic leukemia, Wilms’ tumor, and rhabdomyosarcoma (15–21). 
Evidence suggests that deregulation of imprinting also may impact immunologi-
cal disorders such as type 1 diabetes, rheumatoid arthritis, lupus, infl ammatory 
bowel disease, and selective IgA defi ciency.

Epigenetics and Its Potential Applications in 
Epidemiology

The study of the associations between epigenetic variation and risk of disease has 
been called epigenetic epidemiology (22). Although methylation markers have been 
studied in different populations at high risk of developing cancer, histone and other 
epigenetic markers have not been evaluated for the same purpose. There is an urgent 
need to identify epigenetic biomarkers for epidemiologic purposes. A biomarker is 
a phenotypic parameter (generally a protein or other molecule, a structure or a pro-
cess) that is measured and evaluated as an indicator of normal or pathogenic biolog-
ical processes, or pharmacologic responses to a therapeutic intervention. In cancer 
epidemiology, it is sometimes not possible to obtain DNA from study participants. 
Fortunately, emerging evidence suggests that aberrantly methylated DNA can be 
measured noninvasively. In addition, if epigenetic biomarkers can be found and val-
idated for use not only as surrogates for epigenetic characteristics but also as indi-
cators of the effects of epigenetic characteristics, their study will facilitate further 
research into the role of epigenetic factors in cancer etiology.

It is critical that sensitive, quantitative, high-throughput techniques should be 
used to identify epigenetic changes in the large number of samples required for pop-
ulation-based research and for the identifi cation and validation of biomarkers. Such 
technologies now exist and are important for the comparison of cancer risk between 
groups of people with different epigenetic patterns. Current technologies to detect 
epigenetic changes are quantitative, robust, inexpensive, sensitive, and applicable for 
the analysis of a large number of samples (23). Methylation markers can be detected 
in tissues, exfoliated cells (buccal cells), serum, and other body fl uids (urine, pan-
creatic fl uid, and nipple aspirate) (24–27). Since the assays are based on polymerase 
chain reaction (PCR), only a small amount of cells (or DNA) are needed for test-
ing. Primers are designed to either cover sites of potential methylation or to cover 
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nonmethylation sites. The PCR product is then analyzed by sequencing ( multiplex 
PCR), restriction analysis (RLGS, Restriction Landmark Genomic Scanning), or 
differential methylation hybridization. The advantage of PCR-based quantitative 
high-throughput assays for methylation is that a panel of tests could be used to gen-
erate methylation profi les. Similarly, technologies to detect the acetylation status of 
histones have also been developed.

Evidence from epidemiologic studies of colon cancer suggests that epigenetic 
factors may play a critical role in the development of colon cancer (28). However, 
colon cancer is the only cancer for which the role of epigenetics is evaluated in 
detail. A large number of cancer genes reportedly carry a high level of methyla-
tion in a normally unmethylated promoter. Examples from the scientifi c literature 
include RASSF1, RARbeta, DAPK, p16, p15, MGMT, and GSTP1 in lung cancer; 
CDKN2A, CALCA, MGMT, and TIMP3p in esophageal cancer; 14ARF in ulcerative 
colitis; MGMT in glioblastoma, GSTP1 in prostate cancer; and HIC-1 and p53 in 
breast cancer (Table 28.1). It is not yet established whether methylation is the initiat-
ing event or the secondary event in gene silencing. Irrespective of the role of methy-
lation in the initiation of tumor development, methylation plays a key role in an 
epigenetically mediated loss-of-gene function for tumorigenesis, similar to the role 
of mutations in coding regions (29). For instance, hypomethylation of the glioma 
pathogenesis-related 1 (related to testis-specifi c, vespid, and pathogenesis proteins 
1 [GLIPR1/RTVP-1]) gene compared to normal tissues has been reported in more 
than 80% of Wilms’ tumors with a complex etiology (30). RNA expression data sup-
ports gene activation data confi rming epigenetic regulation in this tumor type.

Epigenetics has seen a recent surge of interest among cancer researchers as alter-
ations in DNA methylation has emerged as one of the most consistent molecular 
changes in various neoplasms (31). Population-based studies involving environmen-
tal and occupational exposure, infectious agents, personal susceptibility factors, and 
acquired genetic factors may identify high-risk populations likely to develop cancer; 
additionally, such studies are very informative and signifi cant in designing future 
community-based health initiatives. Epigenetic biomarkers could be used to identify 
high-risk populations that may benefi t from interventions. Furthermore, since famil-
ial cancer comprises only 10–15% of all cancers, epigenetic approaches may help 
understand the remaining 85–90% of cancers.

Gene silencing and the formation of methylation patterns in the genome can 
teach us about mechanisms that operate in cancer progression as well as the study 
of the etiology of other diseases. In those cancers where the incidence rate and sur-
vival rate are similar, such as pancreatic cancer, methylation patterns of p16 and 
p14 in pancreatic fl uid have been crucial in distinguishing normal subjects from 
those with pancreatitis and pancreatic cancer. In a study conducted by Klump et al. 
(32), pancreatic fl uid was used to detect pancreatic cancer. In addition, methylation 
profi les may help identify a group of genes that can be used as markers of preneo-
plastic lesions. Epigenetic processes have been implicated in mechanisms of can-
cer progression (e.g., cell cycle control, DNA damage, apoptosis, and invasion) in 
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bladder cancer. In bladder cancer, arsenic and smoking exposure have been shown 
to contribute to cancer development based on the methylation profi le of p16INK4A, 
RASSF1A, and RSS3 genes in a case-control study (33–35). Bladder cancer occurs 
about three times more in males than in females. Exfoliated cells in urine have been 
successfully used in methylation analysis to detect bladder cancer. Among the three 
most commonly studied genes in bladder cancer, RASSF1A has been linked with 
invasive cancer. After lung cancer, tobacco exposure has been identifi ed as a promi-
nent etiological factor for bladder cancer. While lung cancer incidence depends on 
dose of smoking, such a relationship has not been observed in bladder cancer.

An important distinction between genetic and epigenetic changes in cancer is that 
the latter might be more easily reversed using therapeutic interventions. There is a crit-
ical need to understand epigenetic alterations in precancerous lesions that lead to can-
cer development. This knowledge could then be applied to risk assessment and early 
detection efforts, and provide molecular targets for chemopreventive interventions.

Epigenetic changes appear to serve as an alternative to mutations in selected 
genes, and such changes have emerged as particularly common in human leukemias. 
Strategies should be developed for epidemiologic studies to identify causal associa-
tions between early exposures, long-term changes in epigenetic regulation, and can-
cer. This may help to develop early interventions and ultimately improve health.

One example in the fi eld of cancer epigenetics and epidemiology is described 
below. To understand the relationship between genetic variation, global methylation 
patterns, and regional hypermethylation of tumor suppressor genes, a case-control 
study was conducted in acute lymphoblastic leukemia (ALL), non-Hodgkin’s lymph-
oma (NHL), and Multiple Myeloma (MM). The selected genes for studies were 
methylenetetrahydrofolate reductase (MTHFR) (a key methyl-group metabolism 
gene), and the de novo DNA methyl transferase gene DNM3b (2,36,37). In these 
genes, polymorphisms were observed in diseased samples. Results from this ongo-
ing study will help us identify the association between genetic polymorphisms and 
gene-specifi c or global methylation changes. If abnormal methylation of a group of 
promoters is found to be associated with a specifi c polymorphism, it may serve as 
an early marker to identify individuals at high risk of developing the disease.

Clinical Implications

Methylation and histone deacetylation markers have implication in cancer detec-
tion, diagnosis, response to therapy, and disease stratifi cation (11,38–40). At the 
early onset of disease, the number of epigenetic events exceed the number of genetic 
events (41–43). A number of methylation markers have been evaluated for early 
detection of cancer and have shown promising results (1). Some of these markers 
may also serve as risk assessment tools for disease. For example, GSTP1 hyper-
methylation has been reported in about 90% of prostate cancer patients but not in 
benign hyperplastic prostate tissue (44). Thus GSTP1 methylation could be used to 
distinguish between prostate cancer and benign tissue.
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For cancer detection in solid tissue, biofl uids, exfoliated cells (detached tumor 
cells in circulation), and imaging techniques are used (Table 28.2). It is diffi cult to 
detect cancer in many solid tumors until it has metastasized. Visual detection and 
direct palpation are possible when the affected site is accessible. However, in some 
cases, such as pancreatic cancer, this is not possible due to the anatomical location 
of the organ. In such cases, biomarkers (methylation of p14 and p16) detected in 
the biofl uid (pancreatic fl uid for detecting pancreatic cancer) would be very use-
ful (32,45–47). Prostate cancer has been detected by analyzing urine from patients 
(based on hypermethylation of GSTP1) (48). A few examples of epigenetics and its 
clinical implications are described below.

In invasive cervical cancer (ICC), genome-wide methylation analysis was per-
formed in samples from controls and cases. More than 200 genes were hypermethy-
lated in cervical cancer samples (49). A set of six genes (SPARC, TFPI2, RRAD, 
SFRP1, MT1G, and NMES1) was proposed as screening markers, as these genes were 
shown to become hypermethylated in follow-up studies. These methylation markers 
are useful for cancer detection as well as disease stratifi cation. Cell lines made from 
ICC were responsive to epigenetic inhibitors, which further confi rmed epigenetic 
regulation of gene expression. In another study, exfoliated cells isolated from urine 
of cervical cancer patients were used for methylation profi ling. Samples were taken 
from normal, carcinoma in situ (CS), and cervical intraepithelial neoplasia grade 1 

Table 28.2 Samples suitable for epigenetic studies

Sample Comments Reference

Bronchoalveolar lavage Lung cancer detection (146,163)

Buccal cells Oral and lung cancer detection (164,165)

Ductal lavage fl uid Cyclin D2, RARbeta, Twist hypermethylation in 
breast cancer

(146)

Cervical swab Cervical cancer detection (166,167)

Duodenal fl uid Pancreatic cancer detection (24,27)

Ejaculate GSTP1 methylation in prostate cancer (146)

Exfoliated cells Bladder, cervical. and gastric cancer detection by 
methylation analysis

(168–170)

Nipple aspirate RASSF1A, DAPK methylation in breast cancer (146)

Pleural lavage Lung cancer detection (26,146)

Saliva MGMT hypermethylation in head and neck cancer (146,171)

Sputum Sputum was collected from a population of smok-
ers and nonsmokers and analyzed for double-strand 
breaks and DNA repair capacity to evaluate correla-
tion with methylation index in a set of seven genes

(66,146,172,173)

Stool SFRP2 hypermethylation in colorectal cancer (25,146,174)

Urine GSTP1 methylation in prostate cancer;
APC, RASSF1A, p14 methylation in bladder cancer

(146,175,176)

Note: Tissue and blood cells have been used to detect epigenetic markers in several studies (5,177,178).
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(CIN-1), grade 2 (CIN-2), and grade 3 (CIN-3) (50). Results indicated a differential 
methylation pattern in samples from different grades.

Shame et al. completed a low-resolution genome-wide methylation profi le of sev-
eral human samples and demonstrated promoter hypermethylation of major can-
cers: breast, colon, lung, and prostate (51,52). One hundred thirty two genes were 
identifi ed, which were hypermethylated in these cancers. The authors theorize that 
there is a common promoter methylation signature for major cancers although gene 
expression may vary for different genes in different tumor types.

The identifi cation and characterization of genetic and epigenetic changes that 
drive cancer development and progression is of high interest in order to better under-
stand carcinogenesis (28). Some investigators have studied genetic and epigenetic 
alterations in the same samples. In one such study Laird et al. evaluated microsat-
ellite instability (MSI), BRAFF mutations, and the methylation profi le of selected 
genes in colon cancer (40,53,54). Their results indicated a high risk of colon cancer 
in samples with high MSI that also had hypermethylation of genes. Thus, genomic 
instability correlates with epigenetic regulation (28). Whether some small noncod-
ing RNAs also contribute to this instability remains to be seen.

In one preliminary study, Belinsky’s group followed a methylation pattern 
of p162A, CDH13, and RASSF1a in the recurrence of nonsmall cell lung cancer 
(NSCLC) (55). Patients who underwent curative resection were followed for cancer 
recurrence within 40 months. An association was observed between the methylation 
profi le and recurrence of the disease.

Recently, T-cadherin levels and promoter methylation were followed during 
progression of hepatocellular carcinoma (56). Results were compared with results 
from a normal liver. Decreased levels of T-cadherin and hypermethylation of the 
gene correlated with cancer progression. Cell lines made from diseased tissue were 
responsive to 5-aza-2-deoxycytidine treatment in restoring T-cadherin activity. This 
could be an excellent screening marker to identify populations with high risk of 
liver cancer.

More than 90% of prostate cancer cases have GSP1 methylation and more than 
90% of esophageal adenocarcinoma cases have APC methylation (39,44,57,58). 
Laird’s group has demonstrated that targeted luminal sources of DNA are better 
than serum or plasma for methylation analysis in esophageal cancer samples (11). 
Methylation marker analysis, along with information about genomic makeup and 
lifestyle, are important for disease stratifi cation and treatment. For example, a thy-
midylate synthase homozygous patient with colorectal cancer shows better response 
to treatment with 5-fl uouracil than normal subjects (59). A number of cancer meth-
ylation markers have also been reported for prognosis of glioblastoma (60).

Environmental Factors and Epigenetics

Environmental exposure/agents include any environmental agent, to which there 
is signifi cant human exposure, including but not limited to metals, pesticides/
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herbicides, organics, plasticizers, endocrine-disrupting chemicals, and air pollut-
ants. Human gene expression is infl uenced by environmental components, which 
may be either toxic, carcinogenic, or both (61). Some exogenous mutagens or carcin-
ogens are from pollution of air, water, and soil (Table 28.3). The sources range from 
motor vehicle emissions, pesticides, industrial effl uents, radiation (radon, diagnostic 
X-rays), occupational exposure (petrochemicals), diet (substances in food preserva-
tives), and various consumer products (tobacco, smoke, cosmetics). Among exposure 
to known carcinogens, the most widely studied to date are asbestos and tobacco. The 
malignant mesothelia (MM) epidemic was reported in workers exposed to asbes-
tos (62,63). Increased genomic instability, disturbed apoptosis, poor DNA repair, 
increased genotoxicity (characterized by formation of aneuploid cells, abnormal 
anaphases, chromosomal aberrations, DNA single strand break), increased intra-
cellular oxidation, and epigenetic changes were observed (61). According to cur-
rent understanding, the interaction of asbestos with cells generates free radicals and 
deactivation of pathways for detoxifi cation of environmental carcinogens. Epigenetic 
mechanisms are involved in altered gene expression infl uenced by environmental 
factors (64,65).

Table 28.3 Potential environmental agents and their possible effects on human 
health

Name Possible Effect Reference

Aromatic amines Bladder cancer (179)

Air pollutants, such as carbon mon-
oxide (CO), sulfur dioxide (SO(2)), 
nitrogen oxides (NOx), volatile organic 
compounds (VOCs), ozone (O(3)), 
heavy metals, and respirable particu-
late matter (PM2.5 and PM10), arsenic

Upper respiratory irritation to chronic respi-
ratory and heart disease, lung cancer, acute 
respiratory infections in children and chronic 
bronchitis in adults, aggravating preexisting 
heart and lung disease, or asthmatic attacks

(3,180)

Asbestos Gastric and lung cancer (181,182)

Environmental estrogens Breast cancer (183)

Nickel Multiple cancers (184)

Pesticides, air pollutants, industrial 
chemicals, and heavy metals

Cancer, diabetes and obesity, infertility, 
respiratory diseases, allergies, and neurode-
generative disorders such as Parkinson and 
Alzheimer diseases

(185)

Polychlorinated biphenyls (PCBs) Exposure to PCBs suppresses the immune 
system, thereby increasing the risk of acquir-
ing several human diseases

(186)

Bisphenol A (BPA) Exposure to fetus in utero may contribute to 
disease development (proposed mechanism is 
hypomethylation)

(187)

Smoke and fumes Urothelial cancer (188)

Trichloroethylene Renal cancer (189)

Note: Activity of these environmental agents is regulated epigenetically.
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Tobacco and tobacco products are other carcinogens that affect human health. 
The cytochrome P450 family of enzymes are needed for the metabolism of such 
substances. Cytochrome P450 enzymes catalyze the oxidation of a large number 
of endogenous and exogenous chemicals. Endogenous chemicals include hormones 
and fatty acids, whereas exogenous chemicals include polycyclic aromatic hydrocar-
bons (PAH), aromatic amines, and mycotoxins. It could be argued that most cancers 
could be preventable because the factors that determine them are largely exogenous 
(66).

Environmental factors also include infectious agents (67–73). Infectious agents 
alter gene expression at the genetic, epigenetic, and proteomic levels. Epigenetic 
regulation has been reported in cancer-associated infectious agents (74,75). For 
example, infection of host cells by EBV and human papilloma virus (HPV) results 
in altered methylation patterns of a number of genes associated with cancer initia-
tion and progression (70,76). Involvement of histone modifi cations in viral latency 
has also been proposed (71). In gastric cancer, Helicobacter pylori (H.pylori) infec-
tion plays a crucial role and cancer development is regulated genetically as well as 
epigenetically (72,77–79). In one study, hypermethylation of six genes was observed 
in tissues from patients with gastric lymphoma and 80% of the cancer tissues from 
patients in the study were positive for H. pylori (80). However, the levels of methyla-
tion did not correlate with percent infection in this study. In the case of Burkitt’s lym-
phoma, the reversal of E-cadherin could be observed by Zebularine treatment but 
latency could not be converted to lytic phase (76). It is emphasized here that recur-
rent EBV infection is associated with increased incidence of Burkitt’s lymphoma.

A specifi c example of environmental exposures/agents that alter imprinting 
comes from an examination of the effects of maternal nutrition on offspring phe-
notypes. Dietary methyl supplementation of pregnant dams with extra folic acid, 
vitamin B12, choline, and betaine has been shown to alter the phenotype of off-
spring via increased CpG methylation at specifi c genetic loci (81). Another example 
of environmental disruption of imprinting comes from the study of in utero expo-
sure of pregnant rats to either methoxychlor or vinclozolin resulting in a phenotype 
of reduced sperm count and motility in the adult that is transmitted via the male 
germline through at least four generations (82–85). This remarkable effect occurs 
via epigenetic imprinting of unknown genes that affect the next generation(s) with-
out loss of penetrance. The transgenerational nature of this effect is specifi c to a 
window of exposure that coincides with the time of imprinting of the germline.

The second mechanism, gene silencing or activation in somatic cells, infl uences 
gene expression in a temporal and tissue-specifi c manner. Alterations in normal 
gene silencing or activation result in inappropriate gene activation or deactivation, 
leading to tissue dysfunction and disease. Indeed, there are signifi cant data show-
ing that inappropriate activation of oncogenes or inactivation of tumor suppressor 
genes may underlie many malignancies, including some ovarian and breast cancers 
(86–91). There is also mounting evidence that environmentally induced perturba-
tions in these epigenetic processes are involved in the development of a number of 
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diseases, for example, autoimmune disorders, reproductive disorders, and neurobe-
havioral and cognitive dysfunctions. In utero or neonatal exposures to environmental 
agents are particularly vulnerable periods for alterations in epigenetic programming 
due to tissue development and result in a permanently altered gene expression in a 
tissue-specifi c manner related to increased disease susceptibility (92). For example, 
neonatal exposure to diethylstilbestrol (DES) results in altered methylation of spe-
cifi c genes that result in their continued expression in the uterus. This occurrence 
has been related to increased uterine cancers in a rodent model (93).

There are also human data that reinforce the importance of epigenetics. The 
Barker hypothesis is based on the correlation of undernutrition during develop-
ment that results in lower birth weight and increased susceptibility to diseases later 
in life, including diabetes and cardiovascular diseases (94). It has been proposed 
that these effects are due to altered programming during development. In addition, 
human breast tumors have altered methylation of many genes that are related to 
tumor growth and promotion (86–91). Finally, recent data indicate that twins at a 
young age have similar gene methylation patterns across the genome. With age and 
exposure to different environments, including nutrition, the methylation pattern of 
their genomes diverges (7,95,96). This evidence suggests a need to examine human 
samples for epigenetic changes following exposure to environmental agents and the 
subsequent role this plays in human disease progression. It also indicates that epige-
netic modulation of gene expression can occur at any time throughout life (65,97).

While the mechanisms responsible for adding and removing the epigenetic marks 
are not clearly defi ned at this point, it is clear that this phenomenon is critically 
important in normal developmental biology and disease development/progression, 
and that epigenetic markers can be modifi ed by environmental exposures and lead 
to increased susceptibility to disease and dysfunction.

To better understand epigenetic mechanism and its role in disease and dysfunction 
due in part to environmental exposure, further investigations are needed to examine 
any and all aspects of epigenetic regulation. A greater understanding of epigenetics 
is needed in the following areas: imprinting, DNA methylation at promoter and other 
sites, chromatin modifi cations, gene silencing induced by small noncoding RNAs, 
and other novel epigenetic mechanisms (10,98–102). Additionally, state-of-the-art 
technologies should be employed to analyze the epigenetic changes in single genes, 
signaling pathways, or the entire genome in response to various exposures (61).

Epigenetics in Cancer Management

Epigenetic changes (sometimes called epimutations), such as the hypermethyla-
tion, histone deacetylation, and epigenetic silencing of tumor suppressor genes, 
have revealed a new area for cancer treatment using inhibitors of methylation and 
deacetylation (103). The precise anticancer mechanism of action of these inhibitors 
is not yet well defi ned and the rapid advancement of these classes of compounds 
in clinical trials, at least in part, refl ects the urgency for new mechanism-based 
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therapeutics for cancers that are not adequately treated by conventional therapies 
(10,104,105). These inhibitors can induce differentiation, cell cycle, growth arrest, 
and in certain cases apoptosis in cancer cells (105). A few examples are discussed 
in the following section and in Table 28.4. Studies using DNA methyltransferase 
inhibitors such as procaine, hydralazine, and RG108 have had promising outcomes 
against cancer.

Recently, melatonin, one of the most versatile molecules in nature, has been 
shown to have a potential role in the inhibition of DNA methyltransferase (106). 
Whether gene promoter hypermethylation is the cause or consequence for the tumor 
suppressor gene silencing is still a matter of controversy; nevertheless, these views 
are not mutually exclusive. That DNA methylation is causal has been shown by the 
ability of diverse pharmacologic compounds and molecular techniques to reactivate 
gene expression upon inhibition of DNA methylation in cancer cells.

Histone deacetylase inhibitors (HDACIs) represent one of the most promising epige-
netic treatments for cancer (107). HDACIs have emerged as promising targets for can-
cer therapy because they reactivate the transcription of multiple genes that are silenced 
in human tumors and they show pleiotropic antitumor effects selectively in cancer 

Table 28.4 Epigenetic inhibitors used in different cancers

Inhibitor Comments Reference

5-Azacytidine DNMT1 inhibitor (111)

Butyric acid Deacetylation inhibitor in gastric cancer (158)

Decitabine DNMT inhibitor (111)

Depsipeptide • HDAC inhibitor
• Tested in leukemia/lymphoma

(118,119)

Suberoylanilide 
Hydroxamic Acid 
(SAHA) 

• HDAC inhibitor
•  Promising results in cutaneous T-cell lymphoma 

(CTCL) phase II trial
• Also has been used in breast cancer
•  SAHA reacts with and blocks the catalytic site of 

HDAC

(104,107,116,120)

Trichostatin A (TSA) HDAC inhibitor (121)

Valproic acid (VPA) • HDAC inhibitor
• Induces differentiation
• Tested in leukemia
•  Potential to revert chemotherapy resistance in 

breast cancer patients (proof of principle study)

(109,121,125,126)

Zebularine 
(1-(®-D-ribofuranosyl)-
1,2-dihydropyrimidin-
2-one)

DNMT1 inhibitor
Compared to 5-azacytidine (5-Aza-CR) and 5-aza-2′-
deoxycytidine (5-Aza-CdR), Zebularine is less toxic 
and can be given orally to patients

(127,159,160)

Notes:
• Dietary HDAC inhibitors have weak ligands compared to pharmacologic agents.
•  Several other inhibitors, such as PXD101 (phase I), LBH589 (phase I), Pyroxamide (phase I), MS-275 (phase 

I, II), Cl-994 (phase I, II, III) are showing promising results as epigenetics inhibitors (161).
• A combination of HDAC inhibitors and methylation inhibitors has been successful in a few cases (161,162).
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cells. HDACIs are well tolerated and several show promising antitumor activity. While 
gene transcription has been considered to be the major target of HDACIs, inhibition 
of acetylation of nonhistone proteins is now emerging as a novel basis for their antitu-
mor effects (108). Table 28.4 presents selected epigenetic inhibitors. Suberoylanilide 
Hydroxamic Acid (SAHA) has shown anticancer activity and the Food and Drug 
Administration (FDA) has approved a new drug application for vorinostat to treat cuta-
neous T-cell lymphoma (104,107). In a proof-of-principle study of breast cancer, rever-
sion of chemotherapy resistant by valproic acid, a HDAC inhibitor, has been reported 
(109). RhoB has been identifi ed as a gene widely involved in lung carcinogenesis, which 
regulates diverse cellular processes including cytoskeletal organization, gene transcrip-
tion, cell cycle progression, and cytokinesis. A decrease in RhoB expression has been 
observed in lung cancer. When cells were treated with HDAC inhibitors, reexpression 
of RhoB was observed (110). Thus it may be proposed that RhoB regulation of expres-
sion occurs mainly by histone deacetylation rather than by promoter hypermethylation 
and that this process can be modulated by specifi c 5’ sequences within the promoter.

Optimum reexpression of most genes silenced through epigenetics requires 
sequential application of DNA methyl transferase inhibitors followed by HDAC 
inhibitors. Gore et al. (111) have demonstrated that treatment with aza-CR followed 
by sodium butyrate treatment results in activation of the p16 gene in myeloid neo-
plasms. In addition to the potential use of these inhibitors as standalone therapeutics 
for cancer, there is excitement about the possibility of combining these classes of 
drugs with other conventional chemotherapeutics and biologics (112–115). Examples 
where HDAC inhibitors have additive or synergistic effects include the following: 
anthracyclins, tumor necrosis factor-related apoptosis inducing ligand, and all-trans 
retinoic acid (116–121). In clinical settings, few compounds (SAHA, valproic acid, 
and depsipeptides) show promising results, whereas others (benzamide derivative in 
pancreatic cancer) need improvement, especially in effi cacy (122–126). Zebullarine 
is a stable compound that can be administered orally and shows higher effi ciency 
than all other existing inhibitors (127).

Areas of Research Opportunities

Some of the research opportunities within epigenetic gene regulation and disease 
development are described below:

Determination of epigenetic targets in the genome sensitive to modifi cation by  ●

environmental exposures;
Examination of the changes in epigenetic markers over time and correlation  ●

of these changes with environmental exposures;
Identifi cation of genes whose imprinting is modifi ed by environmental  ●

exposures on paternal or maternal genomes;
Determination of genes modulated by environmental exposures that are targets  ●

for activation/inactivation by DNA methylation and/or chromatin remodeling;
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Determination of predictive biomarkers of altered epigenetic regulation due  ●

to exposures to environmental chemicals;
Examination of the role of epigenetic modifi cation of gene expression due to  ●

environmental exposures in the etiology or progression of disease of cardio-
vascular, pulmonary, immune/autoimmune, reproductive, nervous systems and 
different cancers, obesity, and any other disease for which there is a known or 
suspected exposure component;

Examination of the impact of nutrition on imprinting and epigenetically  ●

regulated gene expression;
Examination of the associations between epigenetic modulation as a result  ●

of environmental exposures, such as low-dose radiation, and the anticancer 
properties of dietary constituents;
Examination of the role of epigenetic changes in the regulation of transcrip- ●

tion by environmental agents that mimic hormone or antagonists;
Examination of alterations in the normal imprinting of genes due to envi- ●

ronmental exposures, including diet and bioactive food components, and 
the subsequent effect on disease dysfunction;
Examination of the role of epigenetics in the transgenerational effects of  ●

exposure to environmental agents;
Examination of the role of epigenetics in  ● in utero or neonatal exposure to 
environmental agents and the subsequent increase in disease susceptibility 
later in life;
Examination and comparison of the windows of susceptibility to epigenetic  ●

changes, including neonatal, puberty, and adult;
Utilization of cell lines from diseased tissues to examine epigenetic mark- ●

ers that distinguish control from environmental exposures in animals or 
humans;

Utilization of existing tools or development of new tools to elucidate the role of  ●

epigenetic modifi cations of DNA or chromatin in the etiology of environmen-
tally induced disease;

Address development of bioinformatics resources and tools that aid in the  ●

analysis of epigenetic pathways;
Design therapeutic agents to modify environmentally induced epigenetic  ●

markers;
Determination of the mechanisms of environmentally induced alterations in  ●

epigenetic markers via examination of the epigenetic pathways of DNA methy-
lation and chromatin remodeling;

Study transcriptional gene silencing (TSG) induced by short interfering  ●

RNAs (siRNA) via DNA methylation;
Examination of the effects of environmental agents, including dietary fac- ●

tors, on the DNA methyltransferases (DNMTs), histone acetyltransferases 
(HATs), histone deacetylases (HDACs), and other critical enzymes;
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Determination of the role of physical, chemical, and infectious agents and behav- ●

ioral factors on the types and levels of epigenetic changes in human populations;
Determination of the role of epigenetic changes in the risk of cancer in human  ●

populations;
Identifi cation of genetic, environmental, and host susceptibility factors that  ●

modify the risk of cancer associated with epigenetic changes;
Improve sensitivity and specifi city of epigenetic markers in cohort and case- ●

control studies to identify high-risk populations;
Evaluate epigenetic factors and disparities in cancer incidence in various  ●

populations.

Cancer markers can be categorized into markers of risk assessment, early detec-
tion, progression, and prognosis. On the other hand, markers can be categorized into 
genetic, epigenetic, imaging, and metabolomic markers. A schematic representing 
environmental factors contributing to disease development is shown in Figure 28.2.

Conclusions and Perspectives: The Road Ahead

The fi eld of cancer epigenetics is evolving rapidly on several fronts, including can-
cer epidemiology. Now that the Human Genome Project is completed, the Human 
Epigenome project is underway. It is expected to generate genome-wide methylation 
and histone maps (http://nihroadmap.nih.gov/epigenomics/index.asp) (29). A com-
parison of such maps between healthy and diseased tissue will be made to identify 
specifi c genomic regions that are involved in development, tissue-specifi c expres-
sion, environmental susceptibility, and pathogenesis. Future epigenetic maps will 
help researchers and clinicians develop interventions and therapeutic strategies.

Figure 28.2 Environment infl uences genetics and epigenetics.
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Due to the development of high-throughput methods of detecting epigenetic mod-
ifi cations, it is now possible to identify high-risk populations, as discussed above, 
for colon cancer. Epigenetic markers could be used in clinics for classifi cation of a 
few cancer types. These markers also are useful for assessment of risk of developing 
cancer.

An area of epigenetics that is less developed is that of histone modifi ers. For sev-
eral histone modifi ers, we do not know the mechanisms of action. Technological 
advancements in microarray technologies and proteomics may shed some light on 
this area. Genome-wide mapping approaches of histones provide new opportuni-
ties to decipher histone code. Integration of datasets and improved technologies will 
also provide future opportunities for research. The major challenge in the area of 
cancer diagnosis and epigenetic markers is validation of markers that have been 
studied by one or few groups. As always, this will be a very big project in which 
the collaborative efforts of biochemists, proteomic and genomic experts, clinicians, 
epidemiologists, and molecular biologists will be needed.

Additional research is needed in the area of developing new compounds or 
improving existing compounds that can inhibit methylation and histone deacety-
lation. It is important to remember that we cannot reverse mutations but we can 
reverse epigenetic changes and impact health. Inhibitors described in this article 
are not gene-specifi c. Use of inhibitors has the risk of inducing demethylation of 
normally methylated sequences, retrotransposons, resulting in retrotransposition. 
Furthermore, nonspecifi c methylation has the risk of inducing silencing of tumor 
suppressor genes. Efforts are underway to make epigenetic inhibitors gene-specifi c 
(116,128). The potential synergism between radiotherapy, chemotherapy, and bio-
logicals in cancer treatment is also a topic for future research.

DNA methylation could be useful for disease diagnosis in certain cancers, or 
for screening in body fl uids. DNA hypermethylated gene promoter sequences are 
extremely promising cancer markers. Their potential use for risk assessment, early 
diagnosis, or prognosis depends on the timing of gene expression changes during 
tumor progression. Technologies to follow up these markers with tumor progression 
studies are now well developed. A sensitive screening approach for cancer could 
markedly reduce the high mortality rate for this disease.

To investigate the effects of environmental agents and their effect on disease 
development via epigenetic gene regulation, it is recommended that researchers 
evaluate changes in methylation and histone profi les over time in the same set of 
individuals. Yet studies documenting epigenetic marker profi les over the lifespan, 
the vulnerability of these markers due to environmental insults, and the subsequent 
effects on cancer development, have been limited to date due to the absence of prop-
erly stored biospecimens.

Finally, current modalities of assessing patients at high risk of cancer are limited 
and the identifi cation of novel and robust biomarkers is an important next step in the 
clinical management of cancer.
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Introduction

With the advent of molecular genetics, the accelerated mapping of human genes to 
specifi c chromosome locations was made possible without the use of detailed pedi-
grees. Moreover, following the sequencing of the human genome, new techniques 
now allow for the scanning of entire genomes in search of genes or gene markers 
associated with a given trait, regardless of the pattern of inheritance. Among these 
major advances, however, it is not likely that an instrument as useful as family his-
tory will be rendered obsolete as a genomic tool. In this chapter we will argue not 
only that the use of family history will continue to be valid in clinical settings, 
but also that family history is poised to become a tool of widespread use in public 
health settings. Since our emphasis will be on the latter argument, we will address 
the clinical aspects of family history briefl y.

Family History in the Clinical Setting

A well-documented family history for a suspected genetic condition should include 
a standard pedigree with three generations of relatives, age and sex of each relative, 
age at onset of the condition for the affected relatives, and age at death and cause of 
death for the deceased relatives. Complementary information could include ethnic 
background, adoption, consanguinity, and reproductive history. Such information is 
rich in clinical applications (1). For example, it could help

establish the genetic nature of a condition and its pattern of inheritance ●

identify healthy family members at risk and to estimate their risk for a condition ●

diagnose some conditions ●

decide on type and frequency of screening and diagnostic tests ●

anticipate the development and decide on the management of a condition ●

assess the probability that future family members will inherit a condition ●

educate patients and their relatives about the probabilistic nature of genetic  ●

inheritance and the infl uence of environmental factors on inherited conditions.
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These applications of family history in the clinical setting will gain even more 
importance as the discovery of new genes and phenotypes accumulates at a rapid 
pace. For example, the pattern of inheritance of all these new genes and phenotypes 
will surely need clarifi cation and family history is a great tool for this task. Genes 
spread through families and their expression is ultimately affected by the environ-
ment shared by family members. The timely collection, interpretation, and trans-
lation of family history information into routine health care practice will be the 
domain of clinical genetics for the foreseeable future.

Family History in the Public Health Setting

Family History Captures the Joint Effect of Genes and 
Environment on Phenotypes
Several diseases of great public health importance for their high prevalence in the 
general population are thought to have a genetic component; however, they do not 
seem to follow Mendelian patterns of inheritance. And even if they did, the number 
of genetic loci involved would make it extremely diffi cult to discern these patterns. 
Moreover, additional genetic and nongenetic factors (i.e., gene–gene and gene–
environment interactions) may compound the diffi culty of unveiling these already 
intricate patterns. The high level of diffi culty, however, has not deterred efforts to 
bring to light the genetic component of major diseases such as cancer, heart disease, 
diabetes, and many other chronic diseases. Almost daily there are scientifi c reports 
of genes or genetic markers found associated with a major disease. Furthermore, 
meta-analyses and systematic reviews begin to show some consistency among a few 
gene–disease associations that have been replicated. But for major chronic diseases 
like diabetes, the effect sizes of these associations remain small, and therefore of 
uncertain utility in public health (2).

Family health history can be the tool of choice as a fi rst step toward examining 
the role that genes and environment play in the emergence of complex conditions in 
populations. Complex conditions that result from the interaction of genes and envi-
ronment are more likely to concur among close relatives for several reasons: fi rst, 
close relatives share a substantial proportion of their genes; second, close relatives 
might have been exposed to the same environment for prolonged periods of their 
lives; third, shared family life and culture bring the opportunity to acquire and prac-
tice long-lasting habits and behaviors that ultimately may affect health.

The observation that the risk for a condition is elevated among the close relatives 
of a person already affected with that condition has broad practical applications 
in public health. For example, the collection of family history from index cases 
became a very important tool to track and control infectious disease outbreaks 
early in the past century (3). Hence, the knowledge of the familial aggregation of 
a condition may help to control it, even when the mechanism of transmission is 
unknown.
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Family History as a Risk Assessment Tool
A large and growing body of evidence indicates that family history can in fact be 
counted as a risk factor that is signifi cantly and independently associated with sev-
eral diseases of public health importance (specifi c examples will be discussed later 
in this chapter). However, the widespread use of family history in preventive medi-
cine has been hindered by several factors, which include diffi culty in allocating time 
to collect the information during visits to health care providers, inadequate systems 
for data collection and decision support, limited knowledge and skill among health 
care personnel for interpreting family histories and for counseling patients accord-
ing to their familial risk, and unclear reimbursement policies (4).

In our opinion, a major obstacle for the widespread use of family history in public 
health is the lack of a standard approach to defi ne familial risk. A good defi nition 
should convey properly the health risks associated with having relatives affected 
with a condition. More often than not, family history is casually defi ned in epi-
demiologic studies as a dichotomous variable (positive/negative) depending on the 
presence or absence of one or more affected individuals among the close (fi rst- or 
second-degree) relatives of a healthy patient or proband. To fully realize the poten-
tial of family history as a public health tool, a more systematic approach to risk 
assessment is necessary. At a minimum, a family history collected to assess familial 
risk for a condition should include the following (5)

the type and degree of relationship among family members (pedigree) ●

age and sex of each relative ●

age at diagnosis for each family member affected with the condition ●

age, cause, and date of death if the relative has died ●

ethnicity and ancestry may be important in some cases ●

chronic habits and behaviors that might infl uence health among relatives. ●

There are tools designed to assess familial risk based on this type of information. 
The next step, their implementation in public health settings, should be subjected to 
the same standards required for genetic tests and other well-established risk assess-
ment tools. The current standards are known as the ACCE framework, fi rst designed 
to assess the benefi ts and risks of genetic tests (6). This framework includes four 
elements to be evaluated: (i) analytical validity (ability to identify the true health 
status); (ii) clinical validity (ability to accurately predict disease status); (iii) clinical 
utility (capability of motivating positive changes in health care systems and personal 
behaviors); and (iv) ethical, legal, and social issues (see Chapter 24).

Family History as a Risk Factor
In the next section we will present ample, current evidence supporting the asso-
ciation between family history and the risk of several major chronic diseases. Even 
though this evidence is highly suggestive of a distinct genetic infl uence on these 
diseases, it is virtually impossible to distinguish the genetic from the environmental 
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contributions to the development of these diseases. In any case, most studies were 
not designed to test the independence of these contributions.

In addition, family history has been used to detect preclinical signs of some 
 diseases. Table 29.1 presents examples of studies that report physiological altera-
tions, which may lead to chronic disease, among healthy individuals with diseased 
relatives. Despite differences in the defi nitions of family history, the implication 
that family history can detect early signs of disease is clear. And the public health 
implications of such detection are promising, as early detection is a desirable goal in 
disease prevention.

Recent Epidemiologic Findings Using Family History
Family history, alone or in combination with other risk factors, can identify indi-
viduals and families who are at increased risk for chronic diseases. Ultimately, we 
believe, family history can play a role in the prevention and management of common 
chronic diseases through risk assessment in populations and interventions in high-
risk groups. The assessment of familial risk can be the basis for recommendations 
that may include lifestyle changes, screening, chemoprevention, and genetic test-
ing (16). For example, the United States Preventive Services Task Force (USPSTF) 
has issued recommendations based on relevant family history. These recommenda-
tions include screening and the adoption of certain behaviors to prevent breast can-
cer, colorectal cancer, dyslipidemias, cardiovascular disease, and abdominal aortic 
aneurysm (17).

Cardiovascular Disease
Epidemiologic evidence indicates that family history is a signifi cant and prevalent 
risk factor for many common diseases such as cardiovascular disease (CVD), type 2 
diabetes, and cancer. One of the fi rst population-based studies to examine the asso-
ciation between family medical history and cardiovascular disease was the Health 
Family Tree Study in Utah (18). This study showed not only that family history 
of coronary heart disease (CHD) and the occurrence of the disease were strongly 
related but, perhaps more importantly, that the disease and associated risk factors 
were clustered in a small proportion of families (high risk). Data from 122,155 fami-
lies showed that 72% of early onset cases of CHD (aged < 55 years) in the popula-
tion was concentrated in just 14% of all families. Likewise, 86% of cases of early 
onset stroke was concentrated in just 11% of families. In the 20 years since fi nd-
ings from the Utah study were fi rst reported, hundreds of papers have been pub-
lished on the association between family history and CVD and the use of family 
history for predicting disease (19). Recent studies have focused on determining 
which characteristics of family history contribute most to the risk increase (e.g., 
number of affected relatives, lineage, age of onset, type of relative). Many studies 
have shown that the association gains strength as the number of affected fi rst-degree 
relatives increases (20–22) and the age at onset of the disease decreases (22–25). 
Interestingly, several studies have shown that having a sibling with CVD may confer 



Table 29.1 Sample of studies reporting the effect of family history on a trait that precedes a condition or disease

Condition Precursor Trait Defi nition of Family History Effect Attributed to Family History

Alzheimer 
disease

Rate of glucose metabo-
lism in the brain

Only mother or father diagnosed with 
the disease at age 65–80 years

Healthy adults (age: 48–80 years) with a maternal family history had a lower 
cerebral metabolic rate of glucose than comparable subjects with just paternal 
or no family history (7).

Cardiovascular 
disease

Endothelium-dependent 
vasodilation (EDV)

Both parents with type 2 diabetes Normal adults (average age around 38 years) with a family history had a sig-
nifi cantly lower EDV than comparable subjects with no family history (8).

Cardiovascular 
disease

Intimal-medial thickness 
of the common carotid 
artery (IMT CCA)

Diabetes family history score that 
includes only fi rst-degree relatives 
older than the participant (parents, 
siblings)

IMT CCA was increased among adult (average age around 40 years) Mexican 
Americans without diabetes but with a higher burden of the disease among 
their older fi rst-degree relatives (9).

Colorectal 
cancer

Colorectal polyps One or more fi rst-degree relatives 
reported to have had cancer of the 
colon, rectum, or large bowel

The risk of colon cancer among subjects who reported at least one fi rst-degree 
relative with colorectal polyps was approximately double the risk of those who 
did not (10).

Diabetes Insulin action Both parents with type 2 diabetes Normoglycemic adults (average age around 30 years) with a family history had 
signifi cantly reduced indicators of glucose disposal at baseline and devel-
oped diabetes, two decades later, at a rate 10–20 times the rate of comparable 
subjects with no family history (11).

(Continued)



Table 29.1 Continued

Condition Precursor Trait Defi nition of Family History Effect Attributed to Family History

Diabetes Beta cell function and 
insulin sensitivity

First- or second-degree relative with 
diabetes, confi rmed by treatment or 
by interview with other relatives if 
deceased

Healthy children (aged 12–15 years), mostly of Hispanic background, with 
a family history were more likely to have a lower insulin secretory capac-
ity and a lower rate of glucose disposal than comparable children with no 
family history (12).

Diabetes Impaired glucose 
 tolerance (IGT)

Type 2 diabetes in at least one parent, 
a sibling, or a grandparent

About one in three overweight Hispanic children (average age: 11 years) with 
a family history has IGT. The association is independent of the severity of 
overweight (13).

Diabetes Insulin sensitivity Presence of known family members 
with type 2 diabetes in any of three 
generations (siblings, parents, or 
grandparents)

Healthy white children (average age around 12 years) with a family history 
showed lower insulin sensitivity and insulin clearance capability than com-
parable children with no family history (14).

Obesity, dia-
betes

Expression of adiponec-
tin receptor genes and 
the concentration of 
adiponectin in plasma

At least two known fi rst-degree rela-
tives with diabetes

Healthy adult Mexican Americans (aged 30–40 years) with a family history 
showed a signifi cantly lower gene expression and lower plasma concentrations 
of adiponectin than comparable subjects with no family history (15).
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a greater risk for the disease than having an affected parent (20,26,27). For exam-
ple, data from the Framingham Offspring Study, a prospective study with validated 
CVD events, indicate that having a sibling with CVD resulted in greater risk for the 
disease (OR = 2.0) than having an affected parent (OR = 1.5), even after adjusting 
for age and traditional risk factors (26).

Less is known about stroke and family history, although several studies have 
shown increased risk for stroke associated with having parents and other fi rst-degree 
relatives with the disease (28–35). It has been reported that having a fi rst-degree 
relative diagnosed with any vascular event before age 65 years was associated with 
a two-fold increased risk of ischemic stroke (35). In a case-control study of women 
aged 18–44 years, the risk of hemorrhagic or ischemic stroke was double for the 
cases with parental or sibling history of stroke (32). Another study, using a three-
tiered familial risk stratifi cation method, found that people in the high familial risk 
stratum were about four times more likely to report having had a stroke compared to 
people in the moderate and average risk strata, independently of demographic fac-
tors and other health conditions (36). Among patients who suffered a transient isch-
emic attack, family history of stroke and family history of myocardial infarction 
were associated with hypertension (37). Hypertension is one of the strongest risk 
factors for stroke and has been found to aggregate in families (38–40). Despite the 
epidemiologic evidence that family history of stroke is an independent risk factor 
for stroke, its use for risk assessment, alone or in combination with other risk factors 
such as hypertension, has been limited.

Recent research on the association of family history of CHD and the risk for the 
disease supports the use of family history in the detection of intermediate phenotypes 
or subclinical signs of disease. The Johns Hopkins Sibling study identifi ed asymp-
tomatic women aged 30–59 years who were the sisters of women hospitalized with 
premature CHD (41). Framingham global coronary risk scores were then calculated 
for the asymptomatic sisters. Ninety-eight percent of these women were classifi ed as 
low risk, but one out of three of them had signifi cant coronary atherosclerosis based 
on their coronary artery calcifi cation (CAC) scores. Similarly, among asymptom-
atic individuals enrolled in the Multi-Ethnic Study of Atherosclerosis, a signifi cant 
association, which varied by type of relative, was found between family history and 
CAC (42). The association was strongest in participants reporting a family history in 
both a parent and a sibling (OR = 2.7), followed by a sibling only (OR = 2.1), and a 
parent only (OR = 1.5). This type of evidence has led to the modifi cation of existing 
risk algorithms to add family history and other novel risk factors (43,44). For exam-
ple, a modifi ed version of the Framingham Risk Score, the Reynolds Risk Score, 
includes the usual risk factors plus parental history of early myocardial infarction 
(age < 60 years) and C-reactive protein, an infl ammatory marker. When applied to a 
cohort of healthy women aged 45 years and older who had been followed up for 10 
years, the Reynolds score greatly improved the accuracy of the risk estimation com-
pared to the current ATP-III prediction scores. Nearly 50% of the women classifi ed 
at intermediate risk by the ATP-III scores were more accurately reclassifi ed into the 
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higher and lower risk categories by the Reynolds score. Obviously, more validation 
needs to be done for risk algorithms that include family history of CHD, but the 
evidence clearly suggests that individuals with a family history may benefi t from 
strategies to screen and treat early several risk factors for CHD.

Diabetes
It has been well established that the risk of diabetes among those with a family his-
tory of the disease is greater than the risk in the general population. Most studies 
report a two- to six-fold increased risk independent of other risk factors (45). And 
there seems to be a dose response effect: the risk is higher when both parents are 
affected than when only one parent is affected (46–49). A few studies have also 
suggested that a maternal history may be associated with greater risk than paternal 
history (50,51). Studies employing a familial risk stratifi cation methodology have 
shown that the association between familial risk and diabetes is graded and indepen-
dent of other major risk factors (49,52,53). Data from the 2004 HealthStyles national 
survey evaluated a three-tiered familial risk stratifi cation algorithm (52). For the 
stratifi cation, the algorithm considered the number of relatives with diabetes, their 
degree of relationship, the lineage or side of the family with cases of diabetes, and 
age at diagnosis. Diabetes was assessed by self-report. Compared to respondents 
with a weak familial risk for diabetes, moderate and strong familial risk categories 
were associated respectively with 3.6-fold (95% CI: 2.8, 4.7) and 7.6-fold (95% CI: 
5.9, 9.8) increase in diabetes after adjusting for common demographic factors. A 
more recent analysis (53), with 6-year data from the National Health and Nutrition 
Examination Survey (NHANES, 1999–2004, n = 16,388 adults), included three risk 
categories: (i) high: at least two fi rst-degree relatives, or one fi rst-degree and at least 
two second-degree relatives with diabetes from the same lineage; (ii) moderate: 
just one fi rst-degree and one second-degree relative with diabetes, or only one fi rst-
degree relative with diabetes, or at least two second-degree relatives with diabetes 
from the same maternal or paternal line; (iii) average: no family history of diabetes 
or, at most, one second-degree relative with diabetes. Diabetes was assessed by self-
report or a fasting plasma glucose measurement. Overall, 70% of the U.S. adults 
were in the average, 23% in the moderate, and 7% in the high familial risk category 
for diabetes. After accounting for sex, race/ethnicity, age, body mass index, hyper-
tension, income, and education, the odds of having diabetes for people in the moder-
ate and high familial risk categories, when compared to the average, were 2.3 and 
5.5 times higher, respectively. Another study (49), using NHANES data from 1999 
to 2002, showed a signifi cant association between high familial risk and the pres-
ence of diabetes among people who did not know they had the disease. Undiagnosed 
cases of diabetes were detected by fasting plasma glucose. Since, nationally, nearly 
one-third of people with diabetes are not aware they have the disease (54), family 
history is a potential screening tool to not only identify people with an intermediate 
phenotype of the disease (prediabetes), but to fi nd those who already have diabetes 
but have not been diagnosed.
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Many screening tools have been developed for early detection of type 2 diabetes. 
These tools include noninvasive measurements like age, gender, body mass index, 
and family history to facilitate their use in a primary care setting and even outside 
of a clinical setting (55–61). These tools may be of great value as a fi rst step in serial 
diagnostic strategies and for raising awareness of diabetes risk factors in community 
settings. However, studies have repeatedly shown that screening tools developed in 
one population rarely apply to others. Sensitivities, specifi cities, and predictive val-
ues are usually higher for the population where the tool was developed (62,63). This 
may be due to differences in population characteristics and in the distribution of risk 
factors. Risk assessment tools for diabetes may have to be adapted or recalibrated to 
the populations where they are being used.

Even the recommendations to screen for diabetes with glucose measurements 
are not uniform. The USPSTF recommends screening for type 2 diabetes in adults 
with hypertension or dyslipidemias (64). The USPSTF does not recommend univer-
sal diabetes screening for adults. The American Diabetes Association recommends 
screening every 3 years for adults beginning at age 45. But adults with a family 
history of diabetes, obesity, or other characteristics should be screened at younger 
ages and more frequently, every 1–2 years (65). Although screening criteria differ, 
there is evidence that family history infl uences screening practices in the primary 
care setting. It has been reported that having a family history of diabetes is strongly 
associated with providers ordering a plasma glucose test even after adjusting for the 
patient’s age, weight, and blood pressure (OR =2.9; 95% CI: 1.3, 6.7). However, hav-
ing a fi rst-degree relative with diabetes did not infl uence the providers recommend-
ing diet or exercise counseling (66). A few population-based studies have found that 
family history of diabetes was associated with greater awareness of risk and higher 
reporting of risk-reducing behaviors (67,68). The prevention of type 2 diabetes in 
high-risk individuals involves the adoption of lifestyle behaviors that have proven 
diffi cult to change and maintain. It remains to be seen whether using family history 
to personalize risk might empower people at above average risk to seek medical 
advice and practice healthy behaviors.

Cancer
Based on substantial epidemiologic evidence, family history is already a key com-
ponent of risk assessment for many cancers. It is estimated that 5–10% of cancers 
have a strong hereditary basis. Examples of these include hereditary nonpolyposis 
colorectal cancer (HNPCC) (69) and breast and ovarian cancers associated with the 
BRCA1 and BRCA2 genes (70). Approximately 10–30% of cancers are considered 
familial. These cancers cluster in families but the genetic mutations that may cause 
them are not known. Familial cancers may be due to shared susceptibility genes 
and common environments and behaviors. Much work has been done on developing 
cancer risk assessment tools based on family history. Clinicians and genetic coun-
selors have been using self-administered questionnaires for many years to gather 
detailed information about cancer among fi rst- and second-degree relatives. A more 
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recent trend is the use of computerized assessment tools that include sophisticated 
algorithms that assign risk categories, and in some cases recommend strategies 
for disease prevention, early detection, and genetic testing (71,72). Automating the 
risk assessment process has highlighted the need to validate and standardize the 
risk assessment algorithms being used in these tools. Recently the USPSTF issued 
a clinical guideline defi ning family history criteria that could be used to identify 
women who should be referred for genetic risk assessment and testing for breast and 
ovarian cancer susceptibility (73). Much of the evidence for creating risk algorithms 
based on family history, including the USPSTF guidelines, comes from clinical data 
sets and case-control studies that have used registries of cancer patients. Population-
based studies are needed to evaluate the effectiveness of these algorithms in other 
settings. The need for the evaluation of the clinical validity of these algorithms is 
exemplifi ed by a recent study in which six different cancer family history screening 
protocols were applied to the same cohort of women aged 21–55 years. The propor-
tion of women who met the criteria for genetic testing ranged from 4.4% to 7.8%, 
depending on the protocol used. Based on the Kappa statistic, the protocols had only 
low to fair agreement (74).

From a public health perspective, it is hoped that awareness of family history 
of cancer might motivate people to adhere to screening guidelines. In 2004, only 
51.8% of U.S. adults aged 50 years or older had recently undergone a sigmoidoscopy 
or colonoscopy or a fecal occult blood test (FOBT). This fi gure varied by state: from 
42.5% in Mississippi to 64.6% in Rhode Island (75). Barriers are numerous, but any 
strategy that could improve participation in colorectal cancer screening would likely 
have an impact on morbidity and mortality from this disease. As with CVD and 
diabetes, there are few data describing the impact of familial risk assessment for 
cancer on the adoption of health-related behaviors (76). As an alternative, decision 
analysis methods have been used to estimate the impact of family-based screening 
(77,78). The clinical and economic impact of using family history to identify per-
sons for colorectal cancer screening younger than age 50 years has been estimated: 
for the year 2004 approximately one million people would have been eligible for 
early colonoscopy, resulting in 2,800 invasive cancers detected and 29,300 life years 
gained, at a total cost of $900 million. This works out to a discounted cost per life 
year gained of about $58,000. While results from these simulation studies are prom-
ising, further data are needed to determine the effectiveness of this strategy for dis-
ease prevention and the social burden of the disease.

Summary and Conclusion

The use of family history and pedigrees has a venerable history in genetics. This use 
long precedes the discoveries that fi rmly established the rules of inheritance; how-
ever, those discoveries and more recent advances in genetics and genomics have not 
weakened and actually may have strengthened the role that this simple but informa-
tive tool can play in medicine and public health. On the one hand, the fast pace of 
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current gene discoveries has created new and exciting challenges for clinical geneti-
cists who must rely on family histories for many aspects of their work. On the other 
hand, family history appears to act as a good proxy for the genetic component of 
some diseases of major public health importance. This is not to deny that family 
history also refl ects the actions of environments that family members have shared 
totally or partially—genes don’t operate in a vacuum, after all. It is rather to affi rm 
that, at least for some diseases, family history can be interpreted as a risk expo-
sure that starts at birth. It is then expected that individuals with a family history for 
these diseases will show intermediate phenotypes or preclinical signs of the disease 
earlier in life than individuals without such family history. This interpretation has 
obvious implications for public health. Indeed, many guidelines consider family his-
tory of a disease as a relevant criterion for early screening and as a trigger of more 
aggressive approaches to prevention.

Despite its importance, family history still faces many barriers to becoming fully 
established as a clinical and public health tool. The initial barrier is the lack of 
a systematic approach to collecting and interpreting family history as a risk fac-
tor. Fortunately, in the past few years there has been a renewed interest in doing 
research aimed at overcoming this barrier. As a result of this renewed interest, we 
should expect in the near future great improvements in the following areas: (i) the 
collection, storage, and retrieval of family history information through the use of 
computers; (ii) the interpretation of the health risks associated with family history 
for major diseases; (iii) the development of algorithms to capture the distribution 
of familial risk in populations; (iv) the incorporation of familial risk into electronic 
medical records; (v) the organization and delivery of evidence-based advice for the 
prevention of major diseases where familial risk is elevated; (vi) the performance of 
cost-effectiveness studies to evaluate the use of family history in the clinical and the 
public health settings.
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Objective

Personalized medicine has been the leading concept in the evolution and maturation 
of “pharmacogenetics”—a scientifi c discipline fi rst conceived over half a decade 
ago (1) and centered around genetic variation and its impact on pharmacology and 
toxicology. The notion of “individually tailoring” treatment to patients according to 
their genetic makeup is particularly sought after in disease models that lack clear 
drug prescription guidelines and thus default into “trial-and-error” treatment para-
digms. Psychiatry has been one of the leading fi elds to employ pharmacogenetic 
research to assist in the management of chronic, common, suboptimally managed 
conditions, the most publicly relevant of which is depression (only about 60% of 
patients respond favorably (2)). In the years 2006–2007 alone several comprehen-
sive review papers were published on the pharmacogenetics of antidepressants, 
suggesting an imminent application in daily practice (3–6). Furthermore, Roche 
announced in January 2005 that the microarray-based AmpliChip® CYP450 Test 
was cleared by the U.S. Food and Drug Administration (FDA) for diagnostic use 
in the United States, with direct indication for antidepressant treatment in the diag-
nostic test insert: “The enzyme encoded by CYP2D6 metabolizes many antide-
pressants . . .” “The impact of these polymorphisms upon the pharmacokinetics of 
antidepressants . . .” also was exemplifi ed on their website at the time by a case study 
of a patient treated with selective serotonin reuptake inhibitors (SSRIs) to support 
the use of CYP450 testing to guide SSRI prescriptions. While the latter milestone 
recognizes the potential signifi cance of genetics in drug response and safety mod-
ifi cation, critical review of the available evidence supporting these statements was 
clearly required, and motivated the Evaluation of Genomic Applications in Practice 
and Prevention (EGAPP) Working Group to request an evidence review, which was 
funded by the Offi ce of Public Health Genomics at the Centers for Disease Control 
and Prevention (CDC), and commissioned to us through the Agency for Healthcare 
Research and Quality (AHRQ). We composed an evidence report entitled “Testing 
for cytochrome P450 polymorphisms in adults with nonpsychotic depression treated 
with selective serotonin reuptake inhibitors (SSRIs)” (7). The overarching question 
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identifi ed by EGAPP was focused on the clinical utility of CYP450 genotyping, and 
the usefulness of genetic predictors in this therapeutic area relating to medical, per-
sonal, and/or public health decision making.

Background

Major Depressive Disorder and Selective Serotonin 
Reuptake Inhibitors
Major depressive disorder (MDD) is widely distributed in the population and is 
usually associated with substantial symptom severity and role impairment (7). It is 
estimated to be the second leading cause of death and disability by the year 2020 
worldwide (8). Despite available therapies, this burden remains enormous, mainly 
due to high rates of nonresponse and resistance to available treatments (9). In the 
recently completed landmark STAR*D trial, the response rate (rate of improvement 
in symptoms) was 47% and the remission rate (rate of substantial improvement, 
with only minimal residual symptoms) only 33% after 14 weeks of treatment with a 
selective serotonin reuptake inhibitor (SSRI) (10).

First-line treatment for MDD is currently composed of agents in the SSRI class. 
These have quickly dominated the antidepressant market, offering improved tol-
erability and relative safety in overdose in comparison with the older generation 
tricyclic antidepressants (TCAs). However, treatment of MDD with SSRIs is not 
without challenges. The suggested dosing schedules for individual SSRIs may lead 
to adverse effects in some patients, and longer time to response in others. Thus a 
trial and error approach is often required when prescribing SSRIs to patients.

Cytochrome P450 Enzyme Family and Its Potential Impact 
on Clinical Practice
The cytochrome P450 (CYP) enzyme system is responsible for the phase I metabo-
lism of most drugs, including both antidepressants and antipsychotics. CYP2D6 is 
the enzyme for which genetic variation has been best characterized and investigated 
in relation to subsequent phenotypic and clinical association in various therapeu-
tic areas and for a multitude of pharmaceutical agents. Sixty-seven genetic vari-
ants of the CYP2D6 gene and over 100 total subvariants have been characterized 
thus far (11). In vitro and in vivo studies indicate the translation of diploid combina-
tions of these alleles into one of four phenotypic classes: (i) Poor Metabolizers (PM, 
comprising ~2–8% of most ethnic groups) exhibit complete defi ciency of enzyme 
activity and demonstrate the most clinically signifi cant phenotype; (ii) Intermediate 
Metabolizers (IM, comprising ~10–15% of most ethnic groups) display reduced 
enzyme activity; (iii) Extensive Metabolizers (EM, comprising ~70–80% of most 
ethnic groups) exhibit normal enzyme activity; and (iv) Ultra-rapid Metabolizers 
(UM, comprising ~2–5% of most ethnic groups) demonstrate extremely high enzy-
matic activity. The CYP2C family comprises CYP2C8, CYP2C9, CYP2C18, and 
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CYP2C19. The variant allele CYP2C9*2 includes a genetic sequence polymorphism 
that leads to an amino acid change in position 144 of the protein, where Cysteine 
in CYP2C9*2 replaces Arginine in the wild-type (normal activity) CYP2C9 
enzyme (also referred to as CYP2C9*1). This Arg144Cys alteration leads to various 
degrees of impaired CYP2C9 catalytic activity, while the CYP2C9*3 allele exhibits 
reduced catalytic activity across the majority of tested substrates (12). The mark-
edly decreased activity alleles CYP2C19*2 and CYP2C19*3 lead to various degrees 
of impaired enzymatic activity, depending on the ethnic background of carriers: 
in Japanese, three distinct levels of activity have been reported (13) (i.e., PM, IM, 
and EM), while in Caucasians only two levels of activity have been reported (i.e., 
EM and PM). The CYP2C19*17 allele translates into ultrarapid enzymatic activity, 
depending on substrate (14).

Of note, there are racial differences in the frequency of function-altering poly-
morphisms. Table 30.1 registers the frequency of the major alleles in select world 
populations. It should be mentioned that the PM, IM, EM, and UM phenotypes 
of enzymatic activity comprise two-allele combinations (i.e., genotypes) that each 
individual carries. These genotypes may include homozygous combinations (i.e., 
carriage of identical alleles, such as CYP2D6*1/CYP2D6*1) or heterozygous (i.e., 
carriage of nonidentical alleles, such as CYP2D6*1/CYP2D6*4). Additionally, the 
same enzyme variant may have different activity levels toward different drugs. 
For example, the enzyme product of the CYP2D6*17 allele, which demonstrates 
“reduced” activity toward dextromethorphan, bufuralol, and debrisoquine, rela-
tive to the reference normal activity homozygous CYP2D6*1 genotype, has been 

Table 30.1 Allele frequencies of CYP2D6 variants in select populations

CYP2D6 
variant

Predicted enzy-
matic function*

Caucasian 
(Europe) (15)

Caucasian 
(U.S.) (15)

African- 
American (15)

Swedish (16)

*1 Normal 33–36% 27–40% 29–35% 36.7%

*2 (35*) Normal 22–33% 26–34% 18–27% 32.4%

*3 Defi cient 1–4% 1–1.4% <1% 1.4%

*4 Defi cient 12–23% 18–23% 6–9% 24.4%

*5 Defi cient 2–7% 2–4% 6–7% 4.3%

*6 Defi cient 1–1.4% 1% <1% 0.9%

*9 Decreased activity 0–2.6% 2–3% <1% —

*10 Decreased activity 1.4–2% 2–8% 3–8% —

*17 Decreased activity <1% <1% 15–26% —

*41 Decreased activity 20% — — —

*1×N Increased activity <1% <1% 1.3% —

*2×N Increased activity 1.5% <1% 1.3% —

*4×N Defi cient <1% <1% 2.3% —

Source: Adopted from Matchar et al. (7).
*Predicted enzymatic activity is listed as demonstrated toward most relevant substrates in most ethnic groups.
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reported to have increased metabolic activity with other medications, such as halo-
peridol (17) and risperidone (18) in specifi c populations.

CYP450 enzymes—primarily CYP2D6, CYP2C19, and CYP2C9—are involved 
in the metabolism of all of the SSRIs (19), and for a given SSRI, more than one 
CYP450 enzyme may be involved in its metabolism (20,21). It is important to note 
that enzymes other than CYP450 enzymes are also involved in SSRI metabolism 
(22,23). Additionally, it is noteworthy that CYP2D6 with identical pharmaco-
logic and molecular properties to those of the hepatic CYP2D6 enzyme has been 
identifi ed in microsomal fractions in the brain. Hence, CYP2D6 may potentially 
contribute to local clearance of psychotropics at the site of action. Differences in 
personality traits between CYP2D6 EMs and PMs were noted in both Swedish and 
Spanish healthy white subjects, also suggesting that there may be an endogenous 
substrate for CYP2D6 in the brain (24).

Genetic Testing for Key CYP450 Polymorphisms in MDD
Currently there are no proven methods to ensure selection of a clinically effective 
SSRI agent for the individual patient, resulting in low response rates, subsequent low 
compliance, and an increased risk of side effects. Genetic CYP450 polymorphisms, 
if proven to directly affect clinical outcomes, could potentially aid the selection of 
an effective SSRI and/or guide decisions about appropriate dosing to optimize effi -
cacy and tolerability for each patient. Numerous laboratories offer genetic testing 
for CYP450 polymorphisms, mainly supporting clinical trials and a growing market 
of patient management and direct-to-consumer selling. A signifi cant recent devel-
opment was the approval by the U.S. Food and Drug Administration (FDA) of the 
Roche AmpliChip CYP450 Test for this purpose (25,26). However, whether such 
testing produces any real benefi ts at all, is controversial at best. We carried out a 
systematic review of the available literature using standard methods of evidence-
based medicine to inform the future use of genetic testing in the treatment of MDD 
with SSRIs, as well as to guide research priorities in service of optimal patient 
care. While several broad reviews have been published on this topic in the years 
2006–2007 (3–6), none has analytically applied a systematic survey of all available 
evidence to address the usefulness and benefi t of this diagnostic tool, weighing all 
relevant analytical, laboratory, and medical aspects of its application. In order to 
inform the establishment of treatment guidelines, the principles of evidence-based 
medicine (EBM) guided us through: (i) establishing key questions relevant to clin-
ical management (such as whether patients with specifi c characteristics are likely 
to benefi t from testing in terms of time to improvement or avoidance of adverse 
effects); (ii) constructing an analytic framework for examining the questions, here 
linking the use of a test to establishment of genotype, to prediction of phenotype, 
to therapeutic decision making, to clinical outcome (i.e., analytic validity, clinical 
validity, and clinical utility); (iii) identifying and synthesizing soundly designed 
published studies; and (iv) interpreting the evidence. We applied this approach to 
evaluating CYP2D6 diagnostic testing as a potential clinical aid supporting a safer 
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or/and more effi cient SSRI prescription for MDD management in routine clinical 
practice.

Materials and Methods

Full details on the literature search, methodology, and strategy have been pre-
sented elsewhere (7,27,28). Briefl y, the primary source of literature was MEDLINE 
(1966–May 2006). In addition, data from the FDA website describing the operating 
characteristics of the Roche AmpliChip CYP450 Test (25,26) were included. Paired 
researchers independently reviewed all abstracts. The methodological approach 
adopted was designed to address each component relevant to future formulation 
of evidence-based recommendations by the EGAPP Working Group for the use 
of genetic testing in depression treatment decision making. To this end an analytic 
framework was developed and is presented in Figure 30.1.

Overall, each fully reviewed article was evaluated for methodological quality. 
For the question regarding analytic validity, we assessed quality of studies based on 
questions in the “Analytic validity, Clinical validity, Clinical utility and associated 
Ethical, legal and social implications” (ACCE) model for evaluation of genetic test-
ing (29). For all other questions for which we could identify data that was not cov-
ered by the ACCE framework, we elected to use criteria developed by the Oxford 
Centre for Evidence-based Medicine (30). These included evaluations of individ-
ual studies based on type of study (therapy versus prognosis versus prevalence) and 
strength of study design.

It is notable that the defi nitions of sensitivity and specifi city in their classical sense 
are most directly applicable to tests with dichotomous results (mutation present or 
absent). Because there are multiple CYP450 polymorphisms that can be assessed, 
and each study may provide information on only a subset of polymorphisms, ana-
lytic sensitivity was defi ned operationally as the proportion of known genotype chal-
lenge samples that are correctly identifi ed by the test under evaluation. Similarly, 
analytic specifi city was defi ned operationally as the proportion of known wild-type 
challenge samples that are correctly identifi ed by the test under evaluation.

An additional search was performed at the end of 2007 using the exact same cri-
teria reported above. None of the newly identifi ed articles contributed substantially 
to the body of evidence pertaining to the current investigation, and the conclusions 
thus remain unchanged.

Results

Literature Search
A total of 1,200 abstracts were identifi ed, of which 140 met criteria for full-text eval-
uation. Thirty-seven articles met the fi nal inclusion criteria and addressed the rela-
tionship between CYP450 polymorphisms and SSRI metabolism, safety, effi cacy, 
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Figure 30.1 Analytic framework guiding evidence review on CYP450 genotyping in SSRI treatment of major depression.

Within the domain of testing and depression management, the analytic framework depicted in Figure 30.1 provides an explicit link between the use 
of the test and the various health outcomes of importance to decision makers. Such a framework also clarifi es the relevant key questions posed by the 
EGAPP:
•  Question 1 (overarching question): Does testing for cytochrome P450 (CYP450) polymorphisms in adults entering SSRI treatment for nonpsychotic 

depression lead to improvement in outcomes, or are testing results useful in medical, personal, or public health decision making?
• Question 2: What is the analytic validity of tests that identify key CYP450 polymorphisms?



•  Question 3a: How well do particular CYP450 genotypes predict metabolism of particular SSRIs? Do factors such as race/ethnicity, diet, or other 
medications, affect this association?

•  Question 3b: How well does CYP450 testing predict drug effi cacy? Do factors such as race/ethnicity, diet, or other medications, affect this 
association?

•  Question 3c: How well does CYP450 testing predict adverse drug reactions? Do factors such as race/ethnicity, diet, or other medications, affect this 
association?

•  Question 4a: Does CYP450 testing infl uence depression management decisions by patients and providers in ways that could improve or worsen 
outcomes?

•  Question 4b: Does the identifi cation of the CYP450 genotypes in adults entering SSRI treatment for nonpsychotic depression lead to improved clini-
cal outcomes compared to not testing?

•  Question 4c: Are the testing results useful in medical, personal, or public health decision making?
•  Question 5: What are the harms associated with testing for CYP450 polymorphisms and subsequent management options?



Assessing the Use of Genetic Information604

and clinical outcomes. The interrater agreement for inclusion of abstracts (kappa 
statistic) ranged from -0.037 to 0.613.

The sections ahead include our fi ndings regarding analytic validity, clinical valid-
ity, and clinical utility.

Analytic Validity
Analytic validity assessment refers to analytic sensitivity, specifi city, laboratory 
quality control, and assay robustness (i.e., how resistant is the assay to changes in 
pre-analytic and analytic variables?). We calculated these parameters for CYP2D6 
and CYP2C19 and other relevant CYP450 enzymes.

CYP2D6. We identifi ed nine reports that compared clinical methods for genotyping 
CYP2D6 polymorphisms to a reference standard. Of these, only two (26,31) pro-
vided a comparison to the gold standard, DNA sequencing.

Combining all studies, the analytic sensitivity and specifi city results for each 
tested genotype were 100% and ≥94.12%, respectively (with the exception of 
Schaffeler et al. (32) reporting a sensitivity of 91.67% to detect the genotype com-
bination of a duplication allele with a single copy allele). However, only 26 of about 
100 known CYP2D6 polymorphisms (http://www.cypalleles.ki.se/) were evaluated 
in the included studies (detailed tables are provided elsewhere (7)).

Quality control methods were utilized, but there was no standard procedure fol-
lowed, no consistent testing of assay robustness, and little investigation of pre-ana-
lytic and analytic bias. New studies published in 2007 add virtually no new data 
to the established analytic properties of CYP2D6 genotyping. Unfortunately, even 
recent studies lack basic details on this component: for example, Crescenti et al. 
(33) evaluated only a small subset of the polymorphisms (*3, *4, *5, and *6) in 
a Spanish population of 290 individuals recruited in trauma centers. They did not 
employ comparison to the gold standard.

Gene deletion and duplication studies had lower sensitivity and specifi city, further 
compounded by the limitation that there is no accepted gold standard for such tests (33).

CYP2C19. We identifi ed three reports that compared clinical methods for genotyp-
ing CYP2C19 polymorphisms to a reference standard. Only one study provided a 
comparison to the gold standard, DNA sequencing (25).

All three studies reported a high sensitivity and specifi city (96.43–100%). 
However, each study focused on detection of two out of the three common CYP2C19 
alleles (*2, *3, and *4). Quality control procedures varied across studies.

Other CYPs. We identifi ed one report that compared clinical methods for genotyp-
ing CYP2C9 polymorphisms to a reference standard (34). We identifi ed two studies 
that compared methods for CYP2C8 polymorphisms (35,36), and one for CYP1A1 
polymorphisms (37), to a reference standard. All of these studies had very high sen-
sitivity (100%) and specifi city (100%).

Melis et al. (38) recently reported employing the Tag-IT technology (FDA-
approved (2005) currently only for CFTR genotyping as a diagnostic for cystic 
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fi brosis) in determination of CYP2D6, CYP2C9, and CYP2C19 genotyping. One 
strength of their paper was the fact that assay calibration utilized DNA samples 
from the Coriell Institute for Medical Research (NJ, U.S.A.) on an array of ethnici-
ties: Caucasian, Japanese, Chinese, Southeast Asian, African American, and Middle 
Eastern ancestry. The report concludes that the CYP2C9 and CYP2C19 assays were 
particularly robust and were easily implemented in the clinical laboratory. The 
CYP2D6 assay was “somewhat less robust” due to challenges with interpretation 
of the genotypes, including the nucleotide variation from C to T in position 2850 
of the genetic sequence, as well as the inability to characterize the number and the 
allele type involved when gene duplication occurs. The greatest methodological fl aw 
of this paper is the fact that no comparator methods were employed, nor were the 
samples cross identifi ed by independent investigators.

Clinical Validity
Clinical validity defi nes how well do particular CYP genotypes detect or predict the 
associated phenotype(s) of interest: metabolism (serving as an intermediate endo-
phenotype), effi cacy (positive response), and induced adverse effects of particular 
SSRIs.

(i) Evidence pertaining to the relationship between CYP450 polymor-
phisms and SSRI metabolism: Data extracted from prolonged drug exposure 
studies in clinical populations was reviewed and calculations of confi dence inter-
vals for differences in mean SSRI levels between homozygous EM and comparator 
groups (PM, heterozygous EM, etc.) were performed when available. Comparison 
across studies showed little consistency (7), including a total of 11 studies, which 
were conducted in clinical populations who had achieved steady state after multiple 
doses, and which were cross-sectional in design. It should be mentioned, however, 
that a trend toward signifi cant differences in the level of total active metabolites 
in fl uoxetine treated patients were seen between CYP2C9 EMs and PMs (39,40). 
Overall, these were based on small population sizes (ranging from 11 to 124 sub-
jects) (7) and are thus underpowered to draw any defi nitive conclusions.

Since the original evidence report, several additional studies were identifi ed that 
tested the relationship between CYP polymorphisms and SSRI metabolism. Three 
of these enhance the body of evidence associating CYP450 genotypes with meta-
bolic effects. In a study by Shams et al. (41), serum concentrations of venlafaxine 
and its metabolites were investigated in 100 patients and genotyping was per-
formed if the ratios were abnormal. Extremely low metabolite/parent drug ratios 
were 100% correlated with CYP2D6 PM genotypes (n = 4), extremely high ratios 
were 100% correlated with UM (n = 6), and IM correlated with carriers of a sin-
gle functional allele (n = 5). In a different study CYP2C19 PM genotypes were 
reported as associated with signifi cantly reduced oral clearance of citalopram in 53 
Chinese adult patients (42).
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Of interest, Zourkova et al. (43) reported a shift in the actual metabolic phenotype 
in 55 CYP2D6 genotyped Czech anxiety and/or depressive disorder patients treated 
with paroxetine 10–40 mg daily for long periods of time (2–16 months). Transition 
from extensive to slower phenotype was detected in about 60% of patients.

(ii) Evidence pertaining to the relationship between CYP450 polymor-
phisms and SSRI treatment effi cacy: Overall, only eight studies were identi-
fi ed that examined the association between CYP450 genotypes and SSRI effi cacy. 
Effi cacy was largely defi ned as response rate based on the improvement in depres-
sion measures, which varied across studies. The most commonly used measures 
were Montgomery-Asberg Depression Rating Scale (MADRS), Hamilton depres-
sion scale (HAM-D), and Clinical Global Impression (CGI) scale. Six of the studies 
investigated CYP2D6 polymorphisms alone, one study also tested 2C9 and 2C19 
polymorphisms, and the most comprehensive analysis of drug metabolizing enzyme 
variants examined 2D6, 2C19, 3A4, 3A5 as well as the gene encoding the Pgp 
transporter (ABCB1 or MDR1) in the Sequenced Treatment Alternatives to Relieve 
Depression (STAR*D) cohort (44). On the whole, the studies did not show a consis-
tent relationship between CYP450 genotype and antidepressant effi cacy (7). Results 
from studies employing comparison groups (n = 5) are provided in Table 30.2.

Recently, Peters et al. (44) tested 15 functional polymorphisms in 5 pharmacoki-
netic genes relevant to the metabolism and elimination of the SSRI citalopram in the 
largest study yet evaluated in this fi eld. MDD patients enrolled in the STAR*D trial 
were analyzed in a discovery set (n = 831) and a validation set (n = 1,046). Results 
showed no association of SSRI metabolic enzyme polymorphisms with either effi -
cacy or tolerability, illustrating lack of clinical validity and further suggesting little 
likelihood of clinical utility of genetic testing for the management of depression 
with citalopram.

(iii) Evidence pertaining to the relationship between CYP450 polymor-
phisms and SSRI treatment tolerability: Adverse SSRI reactions were the most 
commonly included and most extensively analyzed endpoint in CYP genetic studies, 
yet limited number of subjects, substantial heterogeneity in study design, measure-
ments, reported parameters, and patients’ characteristics limit the extent of conclusions 
that can be drawn regarding CYP polymorphisms and SSRI treatment tolerability. A 
summary of results is given in Table 30.3 for studies employing comparison groups.

The most comprehensive evidence reported thus far of genetic variants associated 
with SSRI tolerability was recently published based on the STAR*D trial and employed 
a sizable tested marker list that did not include CYP variants (45) (see below).

Clinical Utility

Evidence pertaining to the use of CYP450 polymorphism testing to 
select SSRI drug and/or dose and its subsequent treatment outcomes



Table 30.2 CYP450 predicted phenotypes and effi cacy of SSRIs in MDD patients

Study Patient characteristics SSRI(s) Alleles of interest Predicted phenotypes Results

Shams et al., 
2006 (41)

25 depressive patients 
(selected out of 100 
based on metabolic rate)

Venlafaxine 2D6 *1, *3, *4, *5, 
*6 and *9, as well as 
duplications

PM: 16%; IM: 20%; 
EM: 36%
UM: 28%

No association was detected with effi cacy 
defi ned as improvement in CGI scale score.

Peters et al., 
2008 (44)

831 depressive patients 
in the discovery set, 
~300 Caucasians and 
~60 African-American 
(dependent on response 
defi nition)

Citalopram 2D6 *1, *3, *4, *5, *6, 
*7, *8, *9; 3A4 *1B; 
3A5 *3C; 2C19 *2, *3, 
*17; ABCB1 C1236T, 
G2677T, C3435T

2D6 PM = 5% 
(Caucasian), 2% 
(African-American); 
2C19 PM = 2% 
(Caucasians and 
African-American)

No association was detected and replicated 
between metabolizer status or genotype of 
any of the tested variants and response to 
treatment defi ned as at least 50% reduction in 
QIDS-SR score, dosage or length of treatment 
period in trial.

Gerstenberg 
et al., 2003 
(46)

49 depressive Japanese 
patients

Fluvoxamine 2D6 *1, *3, *4, *5, *10 EMs = 25%; IMs = 
55%; PMs = 20%

Final MADRS score, and proportion of 
responders defi ned as MADRS score < 10 
was not signifi cantly different in the three 
metabolic status groups.

Grasmader et 
al., 2004 (47)

70 depressive patients 
(refers to Caucasians in 
conclusion)

Fluvoxamine, 
paroxetine, 
sertraline, 
citalopram

CYP2C9 *1, *2, *3, 
CYP2C19*1 and *2, 
2D6 *1 to *9 and gene 
duplication

NR Plasma concentration above or below lower 
limit of presumed therapeutic levels did not 
predict improvement in CGI scores.

Murphy et al., 
2003 (48)

246 depressive patients Paroxetine (and 
mirtazapine)

2D6: 16 alleles, dele-
tion, duplication, and 
*41 allele

PMs = 6.5%; IMs = 
10.5%; UMs = 4%; 
EMs = 79%

No differences between PM + IM vs. EM + 
UM groups in depression outcomes defi ned 
by improvement in CGI scores.

Abbreviations: CGI = Clinical Global Impressions Scale; EM(s) = extensive metabolizer(s); HAM-D = Hamilton Rating Scale for Depression; IM(s) = intermediate metabolizer(s); 
MADRS = Montgomery-Åsberg Depression Rating Scale; NR = not reported; PMs = poor metabolizer(s); SSRI(s) = selective serotonin reuptake inhibitor(s); UM(s) = ultrarapid metabolizer(s); 
QIDS-SR = Quick Inventory of Depressive Symptomatology (Self-Report version).



Table 30.3 CYP450 predicted phenotypes and adverse effects associated with SSRIs in MDD patients

Study/
design

Patient characteristics SSRI(s) Alleles of interest Predicted 
phenotypes

Results

Chen et al., 
1996 (49)

74 patients Paroxetine, 
fl uoxetine, 
sertraline, 
fl uvoxamine, 
(also TCAs)

2D6–A, B, D, E, 
and T alleles

NR PM phenotype was signifi cantly more frequent in depressed 
patients (n = 18; 44%) reporting adverse effects to substrate 
of 2D6 compared to a random group (n = 56; 21%) of 
depressed patients (p < 0.05), or compared to the general 
population.

Rau et al., 
2004 (50)

28 patients with adverse 
effects to SSRIs (9 
patients), SNRIs

Various 
SSRIs

2D6 *1, *3, *4, 
*6, *2, *8, *10, 
*14, *41, *5

PM: 29%
IM: 7%
EM: 64%
UM: 0

29% PMs compared to 7% in the German population (p < 
0.0001).
There were no differences across groups in frequency of 
dose reduction, stopping treatment, reducing or terminating 
antidepressant, or number of adverse effects.

Gerstenberg 
et al., 2003 
(46)

49 depressive Japanese 
patients

Fluvoxamine 2D6 *1, *3, *4, 
*5, *10

PM: 20%
EM: 25%
IM: 55%

Incidence of adverse effects (nausea) was not signifi cantly 
different across the three groups.

Murphy et 
al., 2003 
(48) 

246 depressive patients Paroxetine 2D6: 16 alleles, 
deletion, dupli-
cation, and *41 
allele

PM: 6.5%
IM: 10.5%
UM: 4%
EM: 79%

No differences between PM + IM vs EM + UM groups in 
severity of adverse effects or frequency of discontinuation.

Roberts et 
al., 2004 
(51)

65 depressive patients Fluoxetine 2D6 *1-*16, *19, 
*20

PM: 9%
EM: 91%

PMs were no more likely to experience adverse effects than 
EMs and were no more likely to drop out of the study than 
EMs.

Suzuki et 
al., 2006 
(52)

97 depressive Japanese 
patients

Fluvoxamine 2D6 *1, *5, *10 PM: 22.7%
EM: 77.3%

Greater prevalence of GI side effects in PMs compared to 
EMs (p = 0.043; CI 1.019–3.254). Discontinuation rates 
similar between PMs and EMs.

McAlpine 
et al., 2007 
(53)

38 patients identifi ed out 
of 199 study patients with 
no therapeutic response

Venlafaxine 2D6 *1, *2A, *3, 
*4, *5, *6, *7, *8, 
*9, *10, *11, *12, 
*17, and *41

EM+IM: 87%; 
PM: 13%

A difference in dosage level between patients with no fully 
active allele (<75 mg) and those with at least 1 fully active 
allele (>150 mg) was statistically signifi cant (p < .002).



Peters et al., 
2008 (44)

831 depressive patients 
in the discovery set, 
565 Caucasians and 98 
African-Americans, 
validation set: 679 
Caucasians and 99 
African-Americans

Citalopram 2D6 *1, *3, *4, 
*5, *6, *7, *8, *9; 
3A4 *1B; 3A5 
*3C; 2C19 *2, 
*3, *17; ABCB1 
C1236T, G2677T, 
C3435T

2D6 PM: 5% 
(Caucasian), 
2% (African-
American); 
2C19 PM: 2% 
(Caucasians and 
African-American)

No association was detected and replicated between 
metabolizer status or genotype of any of the tested variants 
and treatment tolerance.

Zourkova 
et al., 2007 
(43)

55 Czech anxiety and 
depressive patients

Paroxetine 2D6 *1, *3, *4, 
*5, *6

EM: 65%;
IM/PM: 35%

It is unclear whether the results reported relate to genotype-
derived metabolic status or actual measures. Several sexual 
dysfunction items in ASEX were nominally signifi cant 
when contrasted between EM and PM in female alone.

Shams et 
al., 2006 
(41)

25 depressive patients 
(selected out of 100 based 
on metabolic rate)

Venlafaxine 2D6 *1, *3, *4, *5, 
*6, and *9, as well 
as duplications

PM: 16%;
IM: 20%;
EM: 36%
UM: 28%

PMs had signifi cantly more side effects (p < 0.005) as com-
pared with EMs.

Yin et al., 
2006 (42)

53 Chinese mood and 
anxiety patients

Citalopram 2C19 *1, *2, *3 EMHM: 40%;
EMHT: 47%;
PM: 13%

No statistically signifi cant association was found between 
genotype groups and TSES, despite signifi cant association 
between oral clearance and both genotype and TSES.

Kropp et al., 
2006 (54)

229 depressive and 
schizophrenic patients

 2C19 *2; 2D6 *1, 
*3, *4, *5, and *6

 HT and HM patients for the defective alleles required longer 
hospitalization (median 57.5 vs 40 days).

Abbreviations: CI = confi dence interval; DSM-IV = Diagnostic and Statistical Manual for Mental Disorders, 4th edition; EM(s) = extensive metabolizer(s); GI = gastrointestinal; 
HAM-D = Hamilton Rating Scale for Depression; IM(s) = intermediate metabolizer(s); MADRS = Montgomery-Åsberg Depression Rating Scale; NR = not reported; PMs = poor metabolizer(s); 
SNRI(s) = serotonin/norepinephrine reuptake inhibitors; SSRI(s) = selective serotonin reuptake inhibitor(s); TCAs = tricyclic antidepressants; UM(s) = ultrarapid metabolizer(s); HT = heterozy-
gous; HM = Homozygous; TSES = Toronto Side Effects Scale; SNPs = single nucleotide polymorphisms; ASEX = Arizona Sexual Experience Scale.
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No studies were identifi ed that examined the clinical utility and cost-effectiveness 
of CYP450 testing for the management of SSRI treatment in the clinic.

Other Plausible Candidates for Improving Clinical 
Management of SSRI Treatment
Publications in very recent years overwhelmingly suggest that genetic variation 
related to various aspects of the SSRI mode-of-action and the underlying patho-
physiology of depression are plausible candidates for use in improving clinical man-
agement of depression. Binder and Holsboer determine in their 2006 review (4) that 
“it is clear, that non-CYP450 candidate systems have to be considered in the phar-
macogenetics of antidepressant drugs, such as neuropeptidergic systems, the hypo-
thalamus-pituitary adrenal (HPA) axis and neurotrophic systems.” While a detailed 
evaluation is outside of the scope of the current chapter, a brief review of recent 
developments pertaining to pharmacogenetic non-CYP markers is provided below.

Other drug metabolizing enzymes and transporters (DMETs) interacting with 
SSRIs may display genetic variability that is predictive of clinically relevant end-
points. A striking example was published recently in Neuron (55). In this study, 
antidepressants were fi rst tested and screened for transport across the blood-brain-
barrier (BBB) through the active effl ux pump p-glycoprotein (P-gp) in knockout 
mice. Thereafter, polymorphic sites across the entire ABCB1 gene region (encoding 
P-gp) were genotyped in an MDD patient population and tested for association with 
remission after 4–6 weeks of treatment. Several single nucleotide polymorphisms 
(SNPs) were identifi ed and confi rmed in a follow-up case-control study. However, 
the small sample sizes and confl icting fi ndings by others (e.g., the STAR*D cohort 
(44)) indicate that further investigation will be crucial before such testing can be 
advocated clinically.

The most comprehensive pharmacogenetic study yet performed in MDD patients 
was the STAR*D trial (10). Four major discoveries have been made, replicated, and 
published based on the careful analysis of this sizable cohort, which increase our 
understanding of MDD pathophysiology and PGx substantially. First, McMahon et 
al. (56) identifi ed a marker in HTR2A, which was robustly and consistently asso-
ciated with both response and remission phenotypes after 3–6 weeks of therapy. 
This association was signifi cant in Caucasian and overall populations but not in the 
African-American subpopulation (n= 170–261, depending on phenotype). In a fol-
low-up report, Paddock et al. (57) used the full set of 1,816 genotyped individuals 
in STAR*D (33% increase in sample size) with 634 psychiatrically healthy controls. 
Two SNPs passed the signifi cance threshold in both the discovery and replica-
tion groups: the previously identifi ed HTR2A polymorphism and a SNP in GRIK4. 
However, no clinical specifi city or sensitivity calculation was reported, and appro-
priately designed studies would need to be conducted to assess the predictive value 
of these variants as response markers.

The third STAR*D publication reported an association between genetic vari-
ants in KCNK2 (TREK1) and resistance to antidepressant treatment, regardless of 
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class (58). In rodents, TREK1 is inhibited by therapeutic doses of SSRIs, and in its 
absence mice express a depression-resistant phenotype, insensitive to SSRI treat-
ment (59). However, this has not yet been independently validated.

In the STAR*D analysis of citalopram-induced suicide ideation (45), case-control 
analysis was performed between 120 treatment emergent suicidal ideation patients 
and 1,742 patients without this adverse event, both ascertained by self-reported 
questionnaire responses. A logistic regression stepwise selection model including 
two markers (in GRIK2 and GRIA3), remission and race was highly and consis-
tently associated with treatment emergent suicidal ideation both in women (likeli-
hood ratio χ2 = 20.7, p = 0.0009) and in men (likelihood ratio χ2 = 34.8, p < 0.0001). 
Shortly after this publication, NeuroMark designed the Mark-C genetic test for sui-
cidal ideation in patients treated with citalopram. The product is intended fi rst for 
investigational use only, pending results from two confi rmatory trials, appropriately 
powered to assess specifi city, sensitivity, and predictive value.

It can be argued that the combined effects of multiple genes, encoding molecules 
that function in various aspects of a drug’s mode-of-action and downstream path-
ways, would serve as better markers for drug response and safety. Several examples 
in the fi eld of psychiatry already suggest synergistic effect of CYP2D6 and 5-HT2A 
SNPs on fl uvoxamine-induced side effects in Japanese depressed patients (52); or 
an increased predisposition to citalopram-induced suicidal ideation by markers in 
both GRIA3 and GRIK2 (45). Moreover, the biological roles that drug-metabolizing 
enzymes play in physiology and pathophysiology may further confound investiga-
tions focused on pharmacogenetic endpoints. To this end it may be important to 
take into consideration the reported increased susceptibility for MDD by carriers of 
CYP2C9*3 and 5-HTTLPR-S (60), as well as the fact that CYP2D6 may contribute 
to regeneration of serotonin from 5-methoxytryptamine in the brain. These associa-
tions, if confi rmed and shown to convey large effects, could introduce bias into ret-
rospective pharmacogenetic studies.

Lastly, Binder and Holsboer (4) indicate that studies of 5-HTTLPR genotype and 
response to antidepressant drugs provide promising evidence for the potential utility 
of pharmacogenetics in MDD (61). Further research is warranted, however, in order 
to reconcile discrepancies in fi ndings across different ethnic groups (4), a potential 
involvement of this gene in the placebo response (62), potential bias of publication, 
allelic heterogeneity in this gene (63), as well as combined effects with other rel-
evant variants (60). To this end, a Dutch study published in 2007 employed a deci-
sion-analytical model to assess whether pretreatment genetic testing for 5-HTTLPR 
could be an effi cient tool in the treatment of depression (64). The study compared 
empirical SSRI treatment assignment to a genetic testing approach prior to drug 
class prescription. Predicted nonresponders to SSRI could be assigned to receive 
serotonin-norepinephrine reuptake inhibitors (SNRIs) or TCAs. The simulated 
allele frequencies and response rates were based on previously published reports. 
The results suggested a potential benefi t in clinical outcomes, as predicted by remis-
sion rates in each of the treatment arms after 6 weeks, and more so during 12 weeks 
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of follow-up. While these are encouraging fi ndings, they were based on a theoretical 
model and did not take into account cost assessments and the reimbursement and 
clinical guidelines employed in each country specifi cally.

Discussion

There is a paucity of evidence regarding the use of CYP450 genotyping as a guide to 
the management of SSRIs for patients with depression. While studies of the technical 
characteristics of tests are generally adequate (albeit incomplete), very few reliable 
and meaningful clinical studies address the key questions related to clinical utility.

Comparison of the results of available tests for CYP450 genotype with a refer-
ence standard suggests that the analytic sensitivity and specifi city of available 
tests are generally high, although some serious concerns remain. In the evaluation 
of gene deletions and duplications, assessing the magnitude of the potential error 
in these analytic parameters is limited by the lack of an established gold standard 
for gene copy number. Another concern is that few CYP450 variants were inter-
rogated by the studies we identifi ed, which focused particularly on the more com-
mon variants in Caucasians. Only a few studies reported performance relative to the 
gold  standard of DNA sequencing; all were applied to a limited number of samples 
(resulting in wide confi dence intervals for analytic sensitivity and specifi city); and 
there was no standard assessment report scheme for evaluation of quality control or 
assay robustness, preventing an objective performance evaluation of each method, 
as well as comparison between reports.

In depressed patients who have reached a steady-state concentration of an SSRI, 
the limited existing data do not demonstrate a clear correlation between CYP450 
metabolizer status and (i) SSRI concentrations (an intermediate outcome), (ii) effi -
cacy of SSRIs, or (iii) tolerability of SSRIs. There were several limitations to the 
studies addressing these questions. In addition to having small sample sizes, many 
reports did not take into account concurrent medications that may inhibit or induce 
certain CYP450 enzymes thus affecting metabolism of CYP450 metabolized drugs. 
Additionally, we did not identify any studies that examined effects of CYP450 
inhibition/induction together with genetic polymorphisms of CYP450 enzymes (e.g., 
is there an additive effect of a CYP2D6 inhibitor medication in a CYP2D6 poor 
metabolizer [PM] subject such that SSRI levels are higher than the levels without 
such an inhibitor medication in a CYP2D6 PM subject?). Several studies looked 
at limited genotypes and did not account for the fact that more than one CYP450 
enzyme may be involved in the metabolism of a specifi c SSRI. Most studies exam-
ining the clinical outcomes of effi cacy or adverse effects did not comment on blind-
ing between treating clinicians and those responsible for interpreting results of 
genetic testing, or patient blinding. Many studies grouped together multiple SSRIs, 
or SSRIs and other antidepressants. This approach can potentially confound results 
because of variability in contribution of different CYP450 enzymes to metabolism 
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of different SSRIs and other antidepressants, and variability in CYP450 inhibition 
by different SSRIs.

We did not identify any studies that addressed whether testing for CYP450 poly-
morphisms in adults entering SSRI treatment of depression leads to improved clin-
ical outcomes compared to not testing. An alternative to clinical trials of testing 
versus no-testing strategies is the use of decision modeling. This approach has been 
used in order to model some of the decisions that may be involved in genetic testing 
and the actions required based on the genetic information. The inferences of such 
models may illustrate some of the problems that may be faced by randomized clin-
ical trials in these areas, including their utility in specifi c populations. While these 
would require strong assumptions—in particular that the association between geno-
type and response to treatment refl ects cause and effect—decision analytic models 
such as the one published by Smits et al. (64) could provide a useful guide to the 
selection and design of further clinical studies.

Future Research

We propose the following types of studies to fi ll in the gaps in existing knowledge 
regarding CYP450 genotyping in the treatment of depression with SSRIs:

Studies of 1. CYP450 genotyping in a large variety of populations to ascertain 
analytic sensitivity and specifi city of genotyping in real-world settings:

   It is essential that such studies explore a large range of the known possible 
polymorphisms functionally affecting each enzyme, refraining from focusing 
solely on the detection of the major alleles relevant to Caucasians and African-
Americans. In order to reliably assess the performance of these tests, the 
sample sizes employed must demonstrate suffi cient statistical power to report 
results within narrow margins of confi dence intervals, repeatedly and consis-
tently concluding identical genotype calls.
Studies that better describe the 2. CYP450 polymorphism-associated differences 
in the rate of metabolism of each individual SSRI in different ethnic groups:

   These should overcome the limitations of current literature addressing this 
issue, such that they are adequately powered, address individual SSRIs, and 
account for diet and comedications, particularly CYP450 inhibiting or induc-
ing drugs.
Multigenic pathway analysis studies that provide guidance regarding extent of 3. 
variation in depression treatment response attributable to CYP450 enzymes 
and other pharmacokinetic and pharmacodynamic molecules of relevance:

   These studies will be challenging due to the number of potential inter
actions and the large samples needed to unravel the gene–gene interactions, 
as well as gene–environment interactions. As our technological and ana -
lytical abilities improve, whole genome scans will be useful tools in further 
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elucidating relevant mechanisms and guiding hypothesis-free exploratory 
analyses in a standardized fashion (65).
Studies that ascertain the predictive value of 4. CYP450 genotyping in depression 
treatment outcomes, and its impact on medical or personal decision making:

   The ideal study would be a large randomized trial of prospective CYP450 
genotyping-guided treatment versus treatment as usual (66). Such a trial 
should be in keeping with design standards aimed at minimizing bias (e.g., 
using intent-to-treat analysis, blinding of physicians and patients), maximiz-
ing generalizability (e.g., representative of individuals with severe depres-
sion), and including meaningful outcomes (e.g., short-term treatment success, 
satisfaction, resource utilization). Such a study would provide answers about 
rates of dropouts/nonresponse in individuals who were genotyped versus those 
who were not. It would also provide data about treatment decisions by pro-
viders and patients, based on genotyping, and the outcome of such genotyp-
ing-guided treatment (e.g., different SSRI choices, higher starting doses in 
ultrarapid metabolizers or lower doses in poor metabolizers) in comparison to 
the current practice of “trial and error.” It may also provide valuable informa-
tion about harms (such as inaccurate testing, poor or incorrect interpretation 
of test results, inappropriate employment by healthcare providers, privacy and 
confi dentiality liabilities, etc.).
Studies that examine the importance to patients of potential outcomes, such as 5. 
time to response or quality of life during the early treatment of depression:

   Appropriate measures in such a study would be utility measures, including 
“willingness-to-pay.”
Studies that address how genotyping affects actual decision making and 6. 
clinical outcomes. Possible designs would be cohort studies that monitor 
how specifi c genotypes relate to treatment choices and subsequent resource 
utilization.

Summary

In summary, although there is evidence demonstrating high analytic sensitivity and 
specifi city of CYP450 genotyping for common variants, the available data fail to sup-
port a clear correlation between CYP polymorphisms and SSRI levels, SSRI effi cacy, 
or tolerability. There are no data regarding whether testing leads to improved out-
comes as against not testing in the treatment of depression. There is a critical need to 
design research studies to fi ll these knowledge gaps. If shown to be useful, CYP450 
genotyping will make the most impact by reducing the trial and error currently 
inherent in SSRI treatment, thereby decreasing morbidity and improving quality of 
life in patients with depression. The results of our comprehensive review were sub-
mitted to CDC and the EGAPP Working Group in January 2007. A recommendation 
statement (28) from the independent EGAPP Working Group, based on the fi ndings 
of our review as well as complementary and confi rmatory analyses, reinforced the 
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authors’ recommendations. Moreover, the NIH’s Secretary’s Advisory Committee 
on Genetics, Health and Society (SACGHS) published their fi nal draft report on the 
overall usefulness of genetic tests in the USA in 2008 (67). The 15-member expert 
panel concluded that federal regulation and oversight of genetic tests is inadequate 
and a growing number of the tests are being marketed with unproven, ambiguous, 
false or misleading claims (68). The panel noted that “there is currently no require-
ment that test providers disclose information to support claims about the accuracy 
and validity of testing”, and physicians and patients cannot be sure a test will provide 
the promised results in daily clinical practice settings.” Thus the overarching ques-
tion addressed in this report may be broadly applied to other pharmaceuticals: “what 
is the clinical utility of genetic tests, and what is the usefulness of genetic predictors 
relating to medical, personal and/or public health decision-making”. The answer is, 
in most cases, a resounding “not yet” (with a small but growing list of genetic bio-
markers approved by the FDA for personalized medicine application (69).

Considering the high prevalence of depressive disorders and the length of time 
required to determine whether a given antidepressant is successful or not, there may 
be a valuable benefi t at the population level if even a small benefi t can be demon-
strated at the individual level. As a whole, the herein proposed translational study 
designs are required to indisputably proof the utility, cost effectiveness, robustness 
and predictive value in daily health care settings (warfarin (70), abacavir (71)).

Note: This chapter is largely based on the evidence report published by the 
authors (see Reference 7).
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Introduction

This chapter describes the results from a Rapid-ACCE review (Analytic valid-
ity, Clinical validity, Clinical utility, and Ethical, legal, and social implications), 
designed to facilitate the transition of genetic tests from investigational settings to 
clinical and public health practice (1,2). The ACCE model is composed of a standard 
set of 44 questions, and builds on the methodologies and terminology introduced by 
the Secretary’s Advisory Committee on Genetic Testing (3). A Rapid-ACCE review 
will usually address all 44 questions, but may be used when the literature base is 
limited, resources (e.g., time, funds) are limited, and/or a specifi c limited applica-
tion is being considered for evaluation. Rapid-ACCE reviews are discussed in more 
detail in Chapter 24. Prior to evaluating the components of ACCE, the genetic test, 
clinical disorder, clinical scenario/intended use must be defi ned.

In this review, the genetic test is CYP2C9 and VKORC1 genotyping, the disorder 
is serious bleeding, and the clinical scenario is adults at elevated risk for thrombotic 
events who are candidates for warfarin. These two genes are responsible for much of 
the observed differences in drug metabolism between individuals. The full Rapid-
ACCE review is available online (www.acmg.net) and a summary has been published 
(4). This chapter has been updated with recently published studies. Understanding 
the extent of benefi t to be gained by testing is important, because: (i) up to 2 million 
new warfarin patients per year might have genetic tests performed, (ii) a yearly aver-
age of 870 adverse drug events due to warfarin were reported to the Food and Drug 
Administration (FDA) between 1998 and 2005 (5), and over 30,000 admissions to 
emergency rooms associated with anticoagulant usage per year occur in the United 
States (6), (iii) the FDA has recently revised the Coumadin label (and will revise 
the generic warfarin label) to include genomic test information without mandating 
genetic testing, and (iv) CYP2C9/VKORC1 testing services are readily available.

31
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Warfarin (Coumadin) is a widely used oral anticoagulant that acts by inhibiting 
vitamin K-dependent coagulation factors. Indications include prophylaxis and/or treat-
ment of atrial fi brillation, myocardial infarction, cardiac valve replacement, venous 
thrombosis, and pulmonary embolism. Hemorrhagic events are a complication of war-
farin drug treatment due to the narrow therapeutic range. Thrombotic events are also 
a consequence of the narrow therapeutic range, but this chapter is limited to the hem-
orrhagic events. The target range for monitoring warfarin therapy is defi ned by the 
International Normalized Ratio (INR) value being between 2.0 and 3.0 (slightly lower 
or higher for some conditions). The INR is a standardized measure of the patient’s 
prothrombin time (PT). This allows for results to be compared across laboratories and 
test reagents (7). INR monitoring usually begins 2–3 days after the initial dosing (8). 
In a hospital setting, patients may be monitored daily, while in an outpatient setting, 
monitoring may be reduced to two or three times each week. If the INR is stable, the 
interval between testing can be gradually increased up to every 4 weeks. The risk for 
serious bleeding increases when INR values reach 4.0 or higher. Such elevations are 
more likely to occur within the fi rst few weeks, before a stable INR is achieved. The 
goal of long-term anticoagulation monitoring is to maintain the patient in the INR tar-
get range; success is measured as percent time in the therapeutic range and avoidance 
of adverse events. The stability of therapy over time may be infl uenced by changes in 
other medications (including over-the-counter medications and nutraceuticals), health 
status changes that affect warfarin metabolism or vitamin K-dependent coagulation 
factors, dietary or gastrointestinal factors affecting vitamin K (e.g., alcohol use, irreg-
ular ingestion of vitamin K-rich foods, changes in intestinal absorption capacity). The 
health care provider should monitor, at appropriate intervals, any changes in status, 
and make necessary and appropriate dose adjustments to maintain the target INR. In 
addition, patient communication, education, and compliance are important determi-
nants of success. Finally, active intervention may be required when the INR is exces-
sively prolonged and the patient has active bleeding or is at high risk for bleeding.

The recently FDA-approved change in the warfarin label provides information on 
how people with certain genetic differences may respond to warfarin. This use of 
genetic information to inform the prescribing of drugs is known as pharmacogenet-
ics or pharmacogenomics. Variations in two genes are known to be associated with 
the warfarin dose that results in a patient maintaining a stable INR. These genes are 
CYP2C9 and VKORC1. It is likely that maintenance doses of warfarin will continue 
to be primarily based on INR measurements, but genotyping may be of help with 
initial dosing and obtaining stable INR more quickly. The intended use of CYP2C9 
and VKORC1 genotyping is to predict an individual’s maintenance warfarin dose 
by incorporating demographic, clinical, and gene variant data (both CYP2C9 and 
VKORC1). This can be used as the initial dose to limit high INR values (overantico-
agulation) that are associated with serious bleeding events, and to decrease the time 
required to reach the target INR. There are limited data on whether this intervention 
can reduce the incidence of high INR values, the time to stable INR, or the occur-
rence of serious bleeding events.
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Analytic Validity

Analytic validity refers to the ability of a test to measure the genotype of interest 
both accurately and reliably.

The cytochrome P450 complex is a group of hepatic microsomal enzymes 
responsible for the oxidative metabolism of various substrates (pharmacokinetics). 
Thirty-seven CYP2C9 haplotypes containing over 100 sequence variants have been 
identifi ed. However, the literature tends to focus on only two of these, which are 
designated as *2 (R144C, 3608C>T) and *3 (I359L, 42614A>C). The *1 designation 
is reserved for the wild-type allele. In the European Caucasian population, the fre-
quencies of the *2 and *3 variants are approximately 12.2% and 7.9%, respectively 
(9). Using these allele frequencies, we calculated the genotype frequencies found in 
Table 31.1. Individuals with the wild genotype reach a warfarin steady state in 3–5 
days. Heterozygotes for *2 and *3 require 6–8 days and 12–15 days, respectively 
(10). Three additional variants (*4 [I359T, 42615T>C]; *5 [D360E, 42619C>G]; and 
*6 [10601delA, 818delA]) are sometimes mentioned for inclusion in a testing panel 
for African-Americans or Asian-Americans. However, even in these populations, 
the allele frequencies for *4, *5, and *6 are less than 1% (11). Table 31.2 shows the 
most common CYP2C9 genotypes, their associated warfarin metabolic rates and 
associated nomenclature.

Variants in the gene encoding VKORC1 also infl uence the response to warfarin 
via reduced enzyme activity (pharmacodynamics). The clinically relevant variants 
(-1639G>A, 1173C>T, 1542G>C, 2255T>C, 3730G>A) in non-Hispanic Caucasians 
are in strong linkage disequilibrium. The literature uses confl icting nomenclatures 

Table 31.1 CYP2C9 and VKORC1 common allele designations and associated 
single nucleotide polymorphisms (SNPs) in European Caucasians

Genotype 
CYP2C9 (9)

Nucleotide Position (2 alleles) Prevalence (%)1

*1/*1 (no variant) wild + wild 63.8

*1/*2 wild + 3608C>T 19.5

*1/*3 wild + 42614A>C 12.6

*2/*2 3608C>T + 3608C>T 1.9

*2/*3 3608C>T + 42614A>C 1.5

*3/*3 42614A>C + 42614A>C 0.6

VKORC1 (12–15)

BB (no variant) wild + wild 35

AB wild + (−1639G>A, 1173C>T, 1542G>C, 
2255T>C, 3730G>A2)

47

AA 2 * (−1639G>A, 1173C>T, 1542G>C, 2255T>C, 
3730G>A)

18

1 In non-Hispanic Caucasians when testing is restricted to the *2 and *3 variants 
2 These fi ve SNPs are in strong linkage disequilibrium. Therefore, we have combined them.
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to refer to these variants. We have chosen that used by Rieder et al. (16). Table 31.2 
shows the relationship between VKORC1 genotype and warfarin dose. The frequen-
cies of these genotypes have been estimated from data reported by several studies, 
using a random effects model (12–15). Among non-Hispanic Caucasians, these fre-
quencies are 35%, 47%, and 18% for the BB, AB, and AA genotypes, respectively 
(Table 31.1). The frequencies of these genotypes vary by race/ethnicity (17–23). 
While VKORC1 variants are considerably more common than those of CYP2C9, 
there are fewer data available that characterize their analytic validity and clinical 
validity.

Nearly all available data for analytic validity refer to the detection of two variants 
in the CYP2C9 gene; few data are available on detecting the variants in the VKORC1 
gene. Based on seven studies reporting performance in the analytic phase of testing 
(Table 31.3), assays for the common CYP2C9 genotypes (*1/*2 and *1/*3) have an 
analytic sensitivity of 100% (95% CI 96.7–100%) (24). The analytic specifi city is 
also 100% (95% CI 98.2–100%). Based on sparse data for the less common CYP2C9 
genotypes (*2/*2, *2/*3, and *3/*3) the analytic sensitivity of selected assay sys-
tems is still 100%, but the confi dence interval is wider (95% CI 75–100%) (17). The 
bottom of Table 31.3 also contains information from the gray literature regarding 
both CYP2C9 and VKORC1 testing. There is one publication that reported the ana-
lytic sensitivity of a VKORC1 variant (-1639) by three genotyping platforms (25); 
however, there were insuffi cient data given to include this information in Table 31.3. 
The analytic sensitivity was reported to be 99% (95% CI 96–100%), 99% (95% CI 
96–100%), and 100% (95% CI 97–100%), for the INFINITI analyzer, Invader assay, 
and Tag-It assay, respectively. No published information is available from which 
pre- or postanalytic errors can be estimated. Depending on the methodology, sample 
type, and sample condition, 1–5% of samples may experience repeated assay failures 

Table 31.2 CYP2C9 variants and their relationship to warfarin metab-
olism and a VKORC1 variant and its relationship to gene expression

CYP2C9

Genotype Metabolism Nomenclature

*1/*1 Extensive, rapid, ultrametabolizer Normal, wild

*1/*2 Intermediate Heterozygote

*1/*3 Poor, slow Heterozygote

*2/*3 Poor, slow Compound heterozygote

*2/*2 Poor, slow Homozygote

*3/*3 Poor, slow, extremely slow Homozygote

VKORC1

Genotype Enzyme production Nomenclature

BB Low (patient needs higher warfarin dose) Normal, Wild

AB Medium Heterozygote

AA High (patient needs lower warfarin dose) Homozygote



Table 31.3 Analytic validity of CYP2C9 (restricted to the *2 and *3 variants) and VKORC1 testing

CYP2C9
ANALYTIC SENSITIVITY (TEST RESULT/REFERENT RESULT)

ANALYTIC 
SPECIFICITY

Reference Year Assay Method Referent Method (*1/*2) (*2/*2) (*1/*3) (*3/*3) (*2/*3) (*1/*1)

Hillman M, et al. 2004 LightCycler Sequencing 2/2 1/1 — 1/1 1/1 4/4

Pickering J, et al. 2004 Luminex, eSensor Sequencing 15/15 1/1 13/13 — 2/2 70/70

Wen S, et al. 2003 Microarray Sequencing — — 7/7 — — 13/13

Zainuddin A, et al. 2003 Nested PCR Sequencing 3/3 — 5/5 2/2 2/2 28/28

Eriksson S, et al. 2002 Pyrosequencing PCR-RFLP 9/9 — 5/5 — — 9/9

Aquilante C, et al. 2004 Pyrosequencing PCR-RFLP — — — — — —

Burian M, et al. 2002 LightCycler PCR-RFLP 27/27 1/1 10/10 1/1 1/1 79/79

Total 56/56 3/3 40/40 4/4 6/6 203/203

Third Wave Tech 2006 Invader, Tag-It, Pyro Sequencing 9/9 3/3 6/6 2/2 6/6 9/9

ARUP Laboratory 2006 Invader, Tag-It Sequencing 9/9 — 1/1 — — 21/21

LabCorp 2006 Invader, Tag-It PCR-RFLP 6/6 1/1 5/5 1/1 4/4 5/5

VKORC1

(AB) (AA) (BB)

Third Wave Tech 2006 Invader, Pyro Sequencing 16/16 12/12 7/7

ARUP 2006 Invader Sequencing 10/10 4/4 17/17

LabCorp 2006 Invader PCR-RFLP, 
Sequencing

10/10 5/5   7/7

ARUP, Associated Regional and University Pathologists.
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resulting in inconclusive test results (26) (see Question 16 in the full review for per-
sonal communications containing additional data). These failures can be viewed as 
reducing the analytic sensitivity and specifi city.

Based on other molecular tests that have been studied in more detail (CFTR (27,28) 
and HFE (29)), working estimates of overall analytic sensitivity and specifi city for 
the common CYP2C9 genotypes are 98–99% and 99.5–99.75%, respectively. Too few 
data exist to estimate these rates for VKORC1 genotyping. Nearly all available data 
are based on DNA extracted from whole blood samples. Other sample types (e.g., 
mouthwash) have been mentioned (30), but data are sparse. Using these estimates for 
CYP2C9, incorrect genotype assignments would be expected to be relatively rare (1 in 
50 to 1 in 200) among any genotype group. At least 12 laboratories in the United 
States now offer CYP2C9 and/or VKORC1 genotyping for clinical use (see full review, 
Table 31.4). Several manufacturers offer reagents to test for variants in both genes.

It appears that the methodologies used to identify CYP2C9 and VKORC1 variants 
can easily be completed in a day. Thus, turnaround time greater than 2 or 3 days 
will be because of slow transport of samples, because laboratory does not run the 
assay every day. Neither of these issues would be expected to impact analytic valid-
ity (other than to perhaps improve the quality of samples by shortening transport 
time). On at least one website offering testing, the laboratory turnaround time is 
stated to be 1 day (http://www.kimballgenetics.com/tests.html).

The Genetic Testing Quality Control Materials Program at the CDC assists genetic 
testing laboratories in obtaining validated quality control materials. As part of this 
program, 96 samples from Coriell Cell Repositories (Camden, NJ) were genotyped 
for CYP2C9 and VKORC1 variants (http://wwwn.cdc.gov/dls/genetics/rmmaterials/
MaterialsAvailability.aspx). Two laboratories used the Tag-It (TM Bioscience) meth-
odology to analyze the CYP2C9 gene, and both identifi ed the same genotypes in all 
samples. Two other laboratories sequenced the VKORC1 gene, and both identifi ed 
the same genotypes in all samples. Laboratories validating new assays can purchase 
these samples with known genotypes.

The College of American Pathologists (CAP) has established a working group 
consisting of members from the CAP/ACMG Biochemical and Molecular Genetics, 
Special Chemistry, Toxicology and Coagulation Committees, to develop a 
Pharmacogenetics (PGx) Survey. This PGx Survey began in 2008, with two ship-
ments (April and September). Each shipment will contain two different vials of 
25 µg each of extracted DNA, which participants will be able to test for genetic 
variations in the CYP2C19, CYP2C9, CYP2D6, UGT1A1, and VKORC1 genes.

Missing or incomplete data in the literature are identifi ed as gaps in knowledge in 
the Rapid-ACCE review. Missing or incomplete data pertaining to analytic validity 
include:

which  ● CYP2C9/VKORC1 variants should be part of a clinical panel
poorly defi ned analytic validity for the less common  ● CYP2C9 genotype (e.g., 
*3/*3)
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lack of published data on analytic validity for  ● VKORC1 against a “gold 
standard”
whether clinical laboratories are able to offer an appropriately validated test  ●

(e.g., variants included, turnaround time, costs, sample types, internal analytic 
validity studies)
limited information on long-term performance/consistency of methods (within- ●

laboratory variability)
data showing between-laboratory consistency ●

overall estimate of analytic performance including pre- and postanalytic error  ●

rates
method-specifi c and sample-specifi c failure rates ●

data from the external profi ciency testing program. ●

Clinical Validity

Clinical validity refers to the ability of a test to detect or predict the disorder/pheno-
type of interest.

CYP2C9 Genotypes and INR Values
Clinical validity was examined using one intermediate outcome (elevated 
International Normalized Ratios, INRs), as well as the health outcome of severe 
bleeding. INR values above 3.0 are twice as likely among CYP2C9 heterozygotes 
(relative risk of 2.0 or higher), and are more likely to occur in the fi rst and sec-
ond week (induction phase) after warfarin initiation than in the third week or later 
(Table 31.4). This information is based on only two studies that were designed and 
analyzed differently (31). A third study found a weak correlation between the rate of 

Table 31.4 Relative risk of INR values above 3.0 during warfarin induction, 
stratifi ed by CYP2C9 genotype

 Week After Induction Lindh et al., 2005 Peyvandi et al., 2004 All

Relative risk 
(*2 versus *1/*1)

1 2.8 (1.2–6.7)*

2 2.1 (1.2–3.7) 1 9 (1.3–2.9) 1.8 
(1.3–2.3)

3 1.0 (0.5–1.8)

Relative risk 
(*3 versus *1/*1)

1 5.4 (2.5–12)

2 3.5 (2.1–5.8) 2.0 (1.3–3.1) 2.5 
(1.3–4.5)

 3 1.1 (0.6–2.0)    

*95% confi dence interval.
*2 includes *1/*2 and *2/*2.
*3 includes *1/*3, *3/*3, and *2/*3.
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change in the INR values (slope) and CYP2C9 genotype (nonwild genotypes had a 
higher slope, p = 0.05) (32).

CYP2C9 Genotypes and Severe Bleeding
Clinical sensitivity is defi ned as the proportion of individuals with the outcome of 
interest (severe bleeding) that has a genotype other than wild (i.e., *1/*2, *2/*2, 
*2/*3, *1/*3, *3/*3). This is synonymous with the detection rate. With nonwild 
CYP2C9 genotypes grouped together from three studies, the clinical sensitivity of 
CYP2C9 to identify serious bleeding events is 45% (95% CI 34–55%) (33), indicat-
ing that about half of all serious bleeding events occur among CYP2C9 wild-type 
individuals (Table 31.5). Clinical specifi city is defi ned as the proportion of indi-
viduals with no severe bleeding that has the wild (*1/*1) genotype. One minus the 
clinical specifi city is the false-positive rate. The false-positive rate indicates the pro-
portion of individuals without a bleeding event that has a nonwild genotype. Overall, 
the clinical specifi city of CYP2C9 is 68% (95% CI 57–77%). The correspondingly 
high false-positive rate (32%) is because nonwild CYP2C9 genotypes are relatively 
common and most will not experience serious bleeding. The relative risk for serious 
bleeding in nonwild versus *1/*1 individuals is 1.4 (95% CI 0.9–3.1%, not signifi -
cant). The attributable risk is estimated to be 3.1%.

Figure 31.1 shows the relationship between these parameters in a population with 
a serious bleeding rate of 5%. The prevalence of serious bleeding among popula-
tions varies widely (<1–17%) depending on many factors (11,12,14,15) (e.g., indica-
tion for warfarin, age, comorbidities, defi nition of serious bleeding and other drug 
use). The positive predictive value (PPV) is estimated to be 7% (95% CI 0.2–33.9%) 
(i.e., 1 of every 15 patients with a nonwild CYP2C9 genotype will suffer a bleeding 
event). Because nonwild CYP2C9 genotypes are relatively common and the preva-
lence of serious bleeding is low, most will not experience serious bleeding. When 

Table 31.5 Clinical sensitivity, clinical specifi city, relative risk, and attributable 
risk for severe bleeding events (wild versus nonwild CYP2C9 genotype)

Study Clinical 
Sensitivity (%)

Clinical 
Specifi city (%)

Relative 
Risk (%)

Attributable 
Risk (%)

Ogg et al. (33)* 23 87 1.85  7

Margaglione et al. (10)† 67 53 1.91 12

Higashi et al. (12–16,34) 50 78 2.19 15

Wadelius et al. (20) 33 66 0.96 0

Limdi et al. (12–16,34) 43 60 1.12 0

Summary (Higashi, Wadelius, 
and Limdi) (95% CI)

45 (34–55) 68 (57–77) 1.4 (0.9–2.4) 3.1 (0–10)

*Considered only *3 genotypes (these estimates are not included in the summary line).
†Wild CYP2C9 genotype frequency in Italy is low (these estimates are not included in the summary line).
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the prevalence of serious bleeding is allowed to range from 1% to 17%, the PPV 
ranges from 1.4% to 33.3%, respectively. Figure 31.1 also shows that the negative 
predictive value (NPV) is estimated to be 96% (95% CI 79.6–99.9%) (i.e., 24 of 
every 25 patients with a wild CYP2C9 genotype will not suffer a bleeding event). 
Again, allowing the prevalence of serious bleeding to range from 1% to 17%, the 
NPV ranges from 99.2% (95% CI 95.5–100.0%) to 83.3% (95% CI 35.9–99.6%), 
respectively.

VKORC1 Genotypes and Severe Bleeding
One study has reported the association of VKORC1 genotype and risk of hemor-
rhagic complications among African-Americans and European-Americans on war-
farin therapy (35,36). The incident rate for minor or major hemorrhage was not 
signifi cantly different for patients with a VKORC1 variant compared to the wild-
type genotype (sensitivity [95% CI] = 43% [39–44]; specifi city [95% CI] = 60% 
[58–61]; relative risk [95% CI] = 1.1 [0.6–2.0]; attributable risk = <1%).

CYP2C9 Genotype and Steady State Warfarin Modeling
In addition to warfarin dose requirements, CYP2C9 genotyping also provides infor-
mation concerning time to steady state of warfarin plasma levels. The results of 

Figure 31.1 Flow diagram showing episodes of severe bleeding in a hypothetical cohort 
of 10,000 individuals initiating warfarin treatment, stratifi ed by CYP2C9 genotype. The 
estimates used in this fi gure were derived from published literature summarized in this 
evidence-based review. The solid bordered boxes are used to calculate the odds of being 
affected, given a positive result (nonwild genotype), while the dotted bordered boxes are 
used to calculate the odds of being affected given a negative result (wild genotype).
OAPR = odds of being affected given a positive result (nonwild genotypes)
OANR = odds of being affected given a negative result (wild genotype)

10,000 patients initiating
warfarin therapy

9,500 patients without
bleeding 

(10,000–500)

500 with severe
bleeding 

(assuming a 5% prevalence)

OAPR = 225:3040 = 1:14 
1 in every 15 patients on

warfarin
with a nonwild CYP2C9  

will suffer a bleeding event

OANR = 275:6040 = 1:24 
1 in every 25 patients on

warfarin
with a nonwild CYP2C9  

will suffer a bleeding event

225 patients with
nonwild
CYP2C9
genotype 

(500 x clinical  
sensitivity of 45%)

3040 patients
with nonwild

CYP2C9
genotype 

(9,500–6,460)

6040 patients
with wild
CYP2C9
genotype 

(9,500 x clinical  
specificity of 68%)

275 patients with
wild CYP2C9

genotype 
(500–225)
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modeling time to steady state warfarin in three genotypes (*1/*1, *1/*2, and *1/*3) 
have been reported (35). Each genotype is provided with a targeted dose (5, 3, and 
1.6 mg, respectively). Wild-type individuals reach steady state within 3–5 days. This 
is much faster than the 6–8 days for those with a *1/*2 genotype or the 12–15 days 
for a *1/*3 genotype (35). This delay may have long-term INR monitoring implica-
tions when warfarin doses are being modifi ed.

CYP2C9 and VKORC1 Genotype and 
Warfarin Steady State Dose
Although not considered a direct measure of clinical validity, CYP2C9 genotypes 
are strongly related to warfarin dose, once the INR has stabilized. Compared with 
the wild genotype (*1/*1), warfarin dose is reduced by 22%, 36%, 43%, 53%, and 
76% among individuals with the *1/*2, *1/*3, *2/*2, *2/*3, and *3/*3 genotypes, 
respectively (Figure 31.2) (37). Compared with the heterozygote VKORC1 geno-
type (indicated by AB), warfarin dose is increased by 35% among individuals with 
the BB genotype and reduced by 32% among those with the AA genotype (38). 
Figure 31.3 displays modeled distributions of stable warfarin dose for the three most 
common CYP2C9 genotypes, derived using data from one study (39). Although 
there are clear reductions in the average levels, there is considerable overlap among 
these three groups. The three VKORC1 genotypes also have considerable overlap of 
stable warfarin dose (data not shown). CYP2C9 and VKORC1 genotypes contribute 

Figure 31.2 Change in warfarin dose at stable INR by CYP2C9 or VKORC1 genotype. 
This meta-analysis includes ten data sets for CYP2C9 genotyping and seven data sets for 
VKORC1 genotyping. The referent categories (horizontal dotted line) were chosen because 
they included the largest proportion of the population for each gene. The numbers above 
each genotype indicate the number of samples included in the analysis. For the CYP2C9 
reference category, the number varied from a high of 1,757 for the comparison with the 
*1/*3 genotype to a low of 476 for the *3/*3 genotype comparison.
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relatively independent information about stable warfarin dose (Figure 31.4) (40–42). 
Based on six studies that involved testing for both genes in a population with a steady 
state INR, VKORC1 genotyping explains a slightly higher proportion of overall vari-
ability in warfarin dose (23%) than CYP2C9 genotyping (17%) (42). This is because 
the VKORC1 genotypes associated with changes in dosage are more common in the 
Caucasian population. Other important factors in predicting warfarin dose are body 
weight (9% of variability) and age (7% of variability).

Figure 31.3 Overlapping distributions of warfarin dose at stable INR for three CYP2C9 
genotypes. The modeled distributions of oral warfarin dose are shown on a logarithmic 
horizontal axis. The areas of the three distributions are in direct relation to their preva-
lence (*1/*1 being the most common). Although the reduction in stable warfarin dose is 
clearly visible for the *1/*2 and *1/*3 genotype, there is considerable overlap of the three 
distributions.

1 2 3
Warfarin dose (mg/day)

*1/*2

*1/*1

*1/*3

5 7 10 15 20

Figure 31.4 Pie chart showing the known sources of variability in warfarin dose needed 
for a stable INR. Each estimate is based on a summary analysis of partial r2 values from 
multivariate regression analysis reported in six studies that included genotyping on both 
CYP2C9 and VKORC1.
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Two recent studies have been published that provide warfarin-dosing models 
incorporating both CYP2C9 and VKORC1 variants (35,36). Both of these models 
include logarithmic transformation for warfarin dose and both CYP2C9 *2 and *3 
genotypes. In addition, one of these models includes prior warfarin doses and INR 
values (35). Table 31.6 shows the variations in warfarin dose that were computed by 
a comprehensive (but unpublished) warfarin-dosing model (www.WarfarinDosing.
org) that accounts for both CYP2C9 and VKORC1 genotyping, as well as several 
other known covariates. Table 31.7 shows warfarin doses relative to the most com-
mon subgroup (CYP2C9 = *1/*1, and VKORC1 = AB) comprising 30% of the 
Caucasian population. The display highlights that individuals with certain geno-
types will actually receive a higher warfarin dose (e.g., 40% higher dose in *1/*1, 
BB), compared to those with the most common genotype. Four dosing models have 
been published that do not include both an appropriate transformation for warfarin 
dose (e.g., logarithmic) and allow for observed difference in warfarin doses for the 

*1/*2 versus *1/*3 genotypes (11,12,14,15). Missing or incomplete data pertaining 
to clinical validity include:

the clinical sensitivity, clinical specifi city, relative risk, and attributable risk of  ●

severe bleeding in the VKORC1 genotypes and in CYP2C9 and VKORC1 geno-
types combined
the contribution of genetic versus other infl uences toward bleeding in various  ●

racial/ethnic populations
the positive and negative predictive values (PPV and NPV) for severe bleeding  ●

in the VKORC1 genotypes, and CYP2C9 and VKORC1 genotypes combined
how the difference in dosage would be best presented to clinicians who are ini- ●

tiating treatment in warfarin-naïve individuals to ensure that a targeted dose 
will account for all known important sources of variation
the roles of other genes in the pharmacokinetics and pharmacodynamics of  ●

warfarin and their impact on warfarin dosage requirements

Table 31.6 Estimates of warfarin dose (mg) at stable INR, stratifi ed by 
CYP2C9 and VKORC1 genotype

VKORCI
Genotype

cyp2c9 Genotype

Rapid Inter Poor

*1/*1 *1/*2 *1/*3 *2/*2 *2/*3 *3/*3

High (BB) 6.7 5.4 4.5 4.4 3.6 3.0

Medium (AB) 4.8 3.9 3.2 3.2 2.6 2.2

Low (AA) 3.5 2.8 2.3 2.3 1.9 1.6

Source: From www.WarfarinDosing.org, for a 65-year-old Caucasian non-Hispanic male with a body surface 
area of 1.96 m2 (weight = 180 lbs, height = 5′ 8″) with an initial INR of 0.75 and a target INR of 2.75. He is a non-
smoker with no liver disease and is taking no relevant drugs (e.g., amiodarone, statin). The indication for warfarin 
is atrial fi brillation.
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Clinical Utility

Clinical utility is defi ned as the benefi ts and risks associated with the introduction of 
a test into clinical practice, and includes economic analyses to determine the fi nan-
cial impact of such testing. One small pilot randomized trial enrolled 38 patients 
and found six serious bleeding events among the 20 patients with standard warfa-
rin dosing versus two bleeding events among the 18 receiving model-based dosing 
using CYP2C9 genotyping (37). These results are not statistically signifi cant, but 
show acceptability of the randomized design.

A recent prospective randomized controlled study in Israel reported that patients 
who received CYP2C9 genotype-guided warfarin dosing (n = 93) reached their fi rst 
therapeutic INR 2.7 days earlier than those patients who received standard warfarin 
dosing (n = 93) (HR 2.89, 95% CI 2.1–4.0, p < 0.001) (38). The *2 and *3 variants 
were included in the dosing model. The time spent in the therapeutic range during 
the induction phase was 45% versus 24% for the genotype-guided dose group and 
the standard dose group, respectively (p < 0.001). The time required to reach stable 
anticoagulation phase was 14 days for the genotype-guided dose group compared 
with 32 days for the standard dose group (HR 4.23, 95% CI 2.9–6.1, p < 0.001). The 
time spent in the therapeutic range from induction to stable anticoagulation phase 
was 80% versus 63% for the genotype-guided dose group and the standard dose 
group, respectively (p < 0.001). A single serious bleeding event occurred in a control 
group patient, whose INR was within target range.

Table 31.7 Relative adjustments to warfarin dose at stable INR, stratifi ed 
by CYP2C9 and VKORC1 genotype and estimated frequency per 1000

VKORCI
Genotype

cyp2c9 Genotype

Rapid Inter Poor Frequency

*1/*1 *1/*2 *1/*3 *2/*2 *2/*3 *3/*3 / 1000

High (BB) 140%
(223)

113%
(68)

94%
(44)

92%
(5)

75%
(7)

63%
(2)

(350)

Medium (AB) 100%
(300)

81%
(92)

67%
(59)

67%
(7)

54%
(9)

46%
(3)

(470)

Low (AA) 73%
(115)

58%
(35)

48%
(23)

48%
(3)

40%
(3)

33%
(1)

(180)

Frequency/1,000 (638) (195) (126) (15) (19) (6) (1,000)

The boxed entry (*1/*1; AB) is the most common combination of CYP2C9/VKORC1 genotypes (300 per 
1,000) and is considered the referent group (100% dose). Other entries are represented as a percentage of this 
dose (e.g., 140% indicates a 40% increase in predicted dose to achieve a stable INR).

Frequencies are derived from the allele frequencies for CYP2C9 of 12.2% and 7.9% for *2 and *3, respec-
tively, and for the BB, AB, and AA genotype frequencies of 35%, 47%, and 18%, respectively. The two sets of 
allele frequencies are considered to be independent.

Source: From www.warfarindosing.org, for a 65-year old Caucasian with a body surface area of 1.96 m2 
(weight = 180 lbs, height = 5′ 8″) with a target INR of 2.75, who is a nonsmoker and is taking no other rele-
vant drugs.
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A second randomized trial in Utah also compared outcomes between patients 
who received genotype-guided warfarin dosing (n = 101) and those who received 
standard dosing (n = 99) (39). The genotype-guided warfarin dosing took into 
account the *2 and *3 variants in the CYP2C9 gene and the 1173C>T variant in 
the VKORC1 gene. This study found no signifi cant difference between the groups 
in time within therapeutic range (69.7% versus 68.6%, for genotype-guided dos-
ing and standard dosing, respectively, p = 0.74). The number of serious adverse 
events was nearly equal for the genotype-guided group (n = 4) and the standard 
dose group (n = 5) (OR 0.78, 95% CI 0.2–2.98, p = 0.71), and were unrelated to out-
of-range INRs.

Additional randomized trials are underway to provide further information regard-
ing the clinical effectiveness of CYP2C9 and VKORC1 genotyping to inform war-
farin dosing. Some of these trials are using severe bleeding as the outcome, while 
others are targeting intermediate measures such as reducing the time to achieve sta-
ble INR, and the percentage of time in range during dose stabilization.

Using estimates of clinical validity described earlier (Figure 31.1), along with sev-
eral assumptions of clinical utility (e.g., cost of testing and the effectiveness of tar-
geted warfarin dose to avoid serious bleeding), the number of individuals that must 
be tested to avoid one serious bleeding event ranges from 48 to 385. The cost per 
serious bleeding event averted ranges from $14,500 to $95,900. Key assumptions 
that strongly infl uence this cost estimate are the effectiveness of targeted warfarin 
dose (range 80–20% in a sensitivity analysis) and the cost of genetic testing (range 
$300–$500).

Economic outcomes and decision analysis studies on genetic and pharma-
cogenetic testing have been published (40–42). One recently released analysis 
suggests that genetic testing prior to warfarin dosing will avoid many severe 
bleeding events and result in large cost savings (42). However, close examina-
tion of this study reveals that the authors made several assumptions that may not 
be valid. These assumptions include: targeted dosing by genotype will be 100% 
effective in reducing bleeding events to the level of that in individuals with the 
wild genotype; more effective dosing will reduce the rate of strokes; the rate 
of bleeding events is higher than expected; and the estimate of new warfarin 
users per year is high. Missing or incomplete data pertaining to clinical utility 
include:

the clinical utility of genotyping prior to warfarin dosing (e.g., is there  ●

a reduction in time to stable INR, is there a reduction in severe bleeding 
events?)
cost-effectiveness of  ● VKORC1 testing alone, or in combination with CYP2C9
the impact of the timing of genotyping (e.g., prior to initial dose or 2–3 days  ●

after initial warfarin treatment)
validated educational materials for patients and providers ●

long-term monitoring plans ●

guidelines for evaluating program performance. ●
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Ethical, Legal, and Social Implications (ELSI)

Pharmacogenetic testing might be perceived as carrying less serious ELSI than other 
types of genetic testing. For example, a variant that alters response to a drug (e.g., a 
CYP2C9 or VKORC1 genotype) might carry less potential for discrimination, pri-
vacy/confi dentiality, and stigmatization than a mutation that is predictive of a debil-
itating and/or fatal disease (e.g., Huntington disease). However, a premise does exist 
that pharmacogenetic tests may be used to classify groups that face discrimination 
in health care, resulting in prejudice and stigmatization. Furthermore, stratifying the 
population into genetic subgroups could mean that the costs of developing new drugs 
tailored to the needs of a given small subgroup might be prohibitively expensive and 
might not be developed. Even if this premise should be validated, an individual will 
still avoid harm, if found to be in a genetic subgroup for which an existing therapy is 
known to be harmful, in that inappropriate treatment will be avoided.

The Nuffi eld Council on Bioethics Report suggests that “the likelihood that phar-
macogenomic data will be of relevance to family members is low” (43). However, since 
single nucleotide polymorphism (SNP) testing has not been widely studied and SNPs 
are heritable, it may be too early to decide defi nitively if this statement will be upheld.

Pharmacogenetic testing for CYP2D6, in the context of tamoxifen use, is already 
being marketed directly to consumers (www.DNAdirect.com). Standalone CYP2D6 
testing for generalized drug metabolism is advertised, but not yet available. The 
issues of direct-to-consumer marketing of genetic tests have been discussed else-
where. It is likely that CYP2C9 and VKORC1 testing will also be offered directly to 
consumers in the near future.

It has been recommended that, if information about unrelated medicines or dis-
eases is likely to be obtained from pharmacogenetic testing, or if the results of the 
test will have a signifi cant impact on the health or lifestyle of the patient, written 
consent may be appropriate. Even if it is decided that consent is not required, writ-
ten information (e.g., education materials) should be supplied.

Legal implications may arise as pharmacogenetic testing becomes widespread. 
For instance, will providers and drug companies be held liable for not considering 
genetic information? Should pharmacies store genotype information obtained for 
one application and use it when dispensing other drugs utilizing the same metabolic 
pathway? Finally, the new FDA-revised warfarin label may make conducting ran-
domized controlled trials more diffi cult.

The issues discussed in this section are all considered gaps in knowledge and will 
require further monitoring and documentation to further describe the ethical, legal, 
and social implications of pharmacogenetic testing.

Summary

There exists compelling evidence for the association between CYP2C9 and VKORC1 
genotypes and stable warfarin dose. Based on the recommendation by the Clinical 



A Rapid-ACCE Review of CYP2C9 and VKORC1 Allele Testing 635

Pharmacology Subcommittee of the Advisory Committee for Pharmaceutical 
Sciences, the FDA updated the warfarin label to include information on how people 
with certain genetic differences may respond to warfarin. Specifi cally, people with 
CYP2C9 and VKORC1 variants may need lower warfarin doses than those without 
variants. However, due to the absence of evidence from a randomized trial showing 
that genotype-based warfarin dosing improves clinical outcomes (e.g., severe bleed-
ing), the updated label does not recommend or require pharmacogenetic testing.

Few data are available to evaluate the association between CYP2C9 genotype and 
stable INR during the induction phase, when the risk of severe bleeding is highest. 
There are limited data on the clinical validity of CYP2C9 genotyping to predict 
severe bleeding events, and even fewer data for VKORC1 genotypes. The clinical 
utility of DNA testing in this clinical scenario is to “personalize” an individual’s 
initial warfarin dose by incorporating demographic, clinical, and genotype data 
(CYP2C9 and VKORC1) as a way to limit high INR values (overanticoagulation) 
that are associated with an increased risk of serious bleeding events. No large study 
has yet shown this to be acceptable or effective. Several randomized trials are under-
way addressing various components related to clinical effectiveness of CYP2C9 and 
VKORC1 genotyping to inform warfarin dosing as a way to reduce serious bleeding. 
It is possible that the trial setting may infl uence study outcomes. For example, in 
the setting of a warfarin clinic that is highly focused on achieving and maintaining 
appropriate target INR levels, the introduction of genotyping might not result in any 
real benefi t. Alternatively, if the setting were less structured, without stringent mon-
itoring of INR levels, genotyping might result in a large net benefi t. This highlights 
the need for genotyping to be put into the context of existing efforts to “personalize” 
warfarin dosage based on demographic and clinical factors.

In the meantime, there may be selected circumstances in which CYP2C9 and 
VKORC1 genotyping might be warranted. The American College of Medical Genetics 
has issued a policy statement regarding the use of CYP2C9 and VKORC1 testing to 
inform warfarin dosing (44). Routine testing in a population of warfarin-naïve patients 
would, of course, be necessary in the context of any organized clinical trial. Outside 
of this setting, selective testing might be useful as part of individual patient care 
in the relatively uncommon situations when stabilizing the INR is found to be par-
ticularly diffi cult and/or time consuming or when the warfarin dose is surprisingly 
high, or low. Several ethical, legal, and social implications were identifi ed as part 
of this evidence review that would need to be monitored if testing were to become 
widespread, in order to help ensure equitable, nondiscriminatory, and confi dential 
CYP2C9 and VKORC1 testing.
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Introduction

A summary of the state of knowledge about hereditary hemochromatosis written 15 
years ago would read thus:

Hemochromatosis, characterized by cirrhosis, diabetes, and bronzing of the 
skin, is an autosomal recessive condition due to mutation of the gene that 
regulates intestinal iron absorption. The genetic mutation, when present in the 
homozygous state, leads to the progressive deposition of excess iron in the liver, 
pancreas, heart, pituitary gland, and joints. Iron overload ultimately causes 
organ failure, principally liver failure, and death. The gene mutation causing 
hemochromatosis is highly prevalent in the United States, enough to warrant a 
program of universal screening of adults in primary care settings.

Today’s scenario is much more complex for hereditary hemochromatosis. More 
importantly, experience with hereditary hemochromatosis shows that screening 
for genetic mutations requires evidence that permits certainty about three things: 
(i) the prevalence of the mutation(s) of the gene in diverse populations; (ii) the likeli-
hood of development of disease in those with the mutation(s); and (iii) the ability of 
interventions to alter favorably the natural history of the disease in those with the 
mutation(s). Early anticipation of the need for research to address these issues could 
reduce the time between the discovery of a gene–disease association and the benefi -
cial application of this knowledge to population health.

History

Trousseau, a French physician, is credited with the fi rst published description, in 
1865, of cases of a syndrome characterized by the triad of diabetes, cirrhosis, and 
a generalized darkening to “bronze” in skin color (1). In 1889, von Recklinghausen 
established that the discoloration of the skin and tissues in patients with this syn-
drome was accompanied by the deposition of iron (2). He named the iron-storage 
pigment in patients with the syndrome “hemosiderin” from the Greek síderos for 
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iron and haima for blood because he thought the pigment came from blood. The 
clinical condition was named “hemochromatosis” from the Greek haima for blood 
and chrôma for color.

Over the next fi ve decades, numerous case reports and case series were published 
describing this syndrome. It was variously considered to be a complication of diabe-
tes, a complication of cirrhosis or, because of the similarity of its liver pathology to 
that in Wilson’s disease, a result of chronic copper poisoning. There was, however, 
no consensus about the cause.

In 1935, in a “meta-series,” Sheldon summarized information on more than 300 
cases of hemochromatosis reported in the world literature (3). He concluded that the 
hallmark of hemochromatosis was deposition of iron in tissues throughout the body. 
He was the fi rst to suggest that hemochromatosis was a familial disorder.

By the mid-1960s, clinical cases of the triad of diabetes, cirrhosis, and skin dis-
coloration with increased tissue iron were virtually universally called “hemochro-
matosis,” or “idiopathic hemochromatosis.” Its familial nature was recognized, but 
controversy about whether it was a genetic disease persisted.

In the 1960s, MacDonald and colleagues provided epidemiologic evidence to sup-
port a genetic basis for idiopathic hemochromatosis (4). In 1976, French researchers 
showed an association of idiopathic hemochromatosis with HLA-A3 and HLA-B4 
(5). In 1996, Feder et al. (6) identifi ed two specifi c mutations of a single gene, the 
HFE gene, in more than 90% of patients with the clinical features of idiopathic 
hemochromatosis. Beutler et al. (7) reported virtually identical fi ndings in an inde-
pendent analysis of 147 clinically diagnosed cases. The contribution of mutations 
in a specifi c gene to the clinical condition originally described by Trousseau was 
established.

Terminology

Confusion
In the period from Sheldon’s publication until the late 1970s, the term “hemochro-
matosis” denoted the clinical disease characterized by diabetes, cirrhosis, and skin 
discoloration due to tissue iron deposition. The term “hemosiderosis” was used to 
describe the presence of an increase in iron stores with or without tissue damage.

Starting in the late 1970s, the term “hemochromatosis” began to be used in dif-
ferent ways by different people. Most importantly, it began to be used not only to 
describe clinical cases of classical hemochromatosis, but also to describe an increase 
in iron stores whether or not accompanied by tissue damage. That is, what was pre-
viously called hemosiderosis became hemochromatosis!

In 1996, after identifi cation of specifi c gene mutations in patients with the triad 
of features seen in the cases originally reported by Trousseau (6,7), the term “hemo-
chromatosis” began to be used often to describe having a genotype that could poten-
tially lead to disease with these features. It also was sometimes used to refer to any 
genotype that could potentially lead to increased iron stores.
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Different authors, and even the same authors writing at different times, have used 
the term “hemochromatosis” in different ways. Understandably, the lack of clarity 
of terms causes confusion and makes it somewhat diffi cult to read the literature.

Terminology and Scope
This chapter uses the term “hemochromatosis” to describe both (i) the presence of 
increased iron stores from any cause, and (ii) the presence of any gene mutation 
that has been found to lead or potentially lead to an increase in iron stores. This 
terminology is the same as that used by Beutler in his chapter on Disorders of Iron 
Metabolism in the 2006 edition of the textbook, Williams Hematology (8). “Iron 
overload” is used to describe increases in iron stores measured in either serum or 
tissue.

Hemochromatosis is usually divided into primary and secondary hemochroma-
tosis (8). Secondary hemochromatosis is defi ned as iron overload from extrinsic 
causes such as exposure to red cell blood products from, for example, repeated red 
cell transfusions to treat anemia. All other hemochromatoses are primary (nonsec-
ondary). This chapter is limited to primary hemochromatoses. More specifi cally, 
the chapter deals only with “hereditary hemochromatosis” (HHC), which is defi ned 
as primary iron overload associated with (known) gene mutations.

Primary Hemochromatosis Classifi cation

Overview
Table 32.1 summarizes the classifi cation of hemochromatosis and iron overload syn-
drome and what is known (February 2008) about the genes and mutations that have 
been found in people with clinical disease due to iron overload (8,9).

It is now known that there is more than one gene whose mutation(s) can cause 
iron overload and widespread tissue damage as a consequence of iron overload. That 
is, there is not a single condition of HHC. Rather, there are multiple HHCs.

Hereditary Hemochromatosis Type 1
The clinical disease consisting of the triad of diabetes, cirrhosis, and skin dis-
coloration with widespread tissue iron deposition described by Trousseau is now 
called HHC type 1 or “classical” hemochromatosis. Two single-base substitutions 
(C282Y and H63D) in a single gene—the HFE gene—were found in 90% of clini-
cally diagnosed HHC type 1 cases in the fi rst two reports about the gene mutation 
(6,7). In both of these series, C282Y homozygosity was found in 83% of clinical 
cases.

Later research confi rmed that about 80–90% of white patients with clinical HHC 
are homozygous for the C282Y mutation of the HFE gene; an additional 3–6% are 
compound C282Y/H63D heterozygotes (8,9). A third mutation of the HFE gene, the 
S65C mutation, is also associated with clinically manifest HHC type 1 in whites, 
accounting for about 1% of clinical cases in patients without either a C182Y or H63D 



Table 32.1 Primary hemochromatosis

Name of Condition 
or Syndrome

Type 
Designation

Clinical Features Pathophysiology Chromosome 
OMIM Number

Encoded 
Protein (Gene)

Detection

Classical 
hemochromatosis

HHC Type 1 Accumulation of iron in tissues with 
organ damage leading to diabetes, 
cirrhosis, bronze skin color in 
middle age; M > F

Increased intestinal 
iron absorption

6p3
235200

???
(HFE)

Gene mutation 
C282Y/C282Y
C282Y/H63D
Elevated transferrin
Elevated ferritin

Juvenile 
hemochromatosis

HHC Type 2
Subtype A

HHC Type 2
Subtype B

Rapid accumulation of iron in tis-
sues starting from birth with types 
of organ damage as in HHC type 1 
but organ failure is observed at ages 
less than 30 years; hypogonadism is 
common at presentation; M = F

Increased intestinal 
iron absorption

Increased intestinal 
iron absorption

1q21
602390

19q13.1
606464

hemojuvelin
(HJV)

Hepcidin anti-
microbial pep-
tide (HAMP)

Elevated transferrin
Elevated ferritin

Elevated transferrin
Elevated ferritin

TfR2 
hemochromatosis

HHC Type 3 Same as HHC Type 1 Increased intestinal 
iron absorption

7q
604250

transferrin 
receptor-2 
(TFR2)

Elevated transferrin
Elevated ferritin

Ferroportin-related 
iron overload

HHC Type 4 Abnormal retention 
of iron

2q32
606069

ferroportin
(SLC11A3)

Low or normal 
transferrin
Elevated ferritin



Other Genetic

Aceruloplasminemia None Accumulation of iron prominently 
in the brain but also in liver and in 
pancreas

Reduced iron trans-
port due to ferrioxi-
dase defi ciency

604290 ceruloplasmin Elevated ferritin
Anemia

Neonatal 
hemochromatosis

None 231100 Unknown None

OTHER

African iron over-
load syndrome

None Hepatomegaly, cirrhosis, impo-
tence, diabetes; anemia 

Increased iron 
absorption in 
response to dietary 
exposure

601105 ?ferroportin?
(SCL40A1)?

Elevated transferrin
Elevated ferritin
Mild anemia

Modifi ed from Beutler (8) and Pietrangelo (9).
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mutation (10). Other variations of the HFE gene have been reported in clinical cases 
of HHC type 1 (11) and the general population.

In HHC type 1, iron absorption from the gastrointestinal tract is increased, caus-
ing higher than average levels of serum iron and increased iron storage. A conse-
quence is deposition of iron in the liver, pancreas, heart, joints, and the pituitary 
gland, leading to organ failure in middle age in some people.

Men are more likely to be observed in clinical series of HHC type 1. In one large 
series of clinical HC cases in Brittany (n = 711, all presumably whites), the ratio of 
men to women was 3:1 in clinical HC cases that were C282Y homozygotes and 7:1 
in clinical cases that were non-C282Y homozygotes (10). The interaction of muta-
tions of the HFE gene was suggested as an explanation for the difference in the sex 
ratio between C282Y homozygotes and nonhomozygotes. Emerging data indicates 
that HHC is determined by complex mutation–mutation, gene–gene, and gene–
environment interactions.

Hereditary Hemochromatosis Type 2A, Type 2B, Type 3, 
and Type 4
Juvenile hemochromatosis, now called HHC type 2, is a rare autosomal recessive 
condition that results in rapid accumulation of iron beginning in early life (8,9). The 
clinical features of the condition are the same as in HHC type 1 except that organ 
failure occurs before age 30, hypogonadism is a common clinical presentation, and 
males and females are equally affected. HHC type 2 is subdivided into HHC type 
2A and HHC type 2B. HHC type 2A is associated with mutations in the JVC gene 
that encodes hemojuvelin and maps to chromosome 1 (12). HHC type 2B is associ-
ated with mutations in the HAMP gene that encodes hepcidin and maps to chromo-
some 19 (13).

Hepcidin is believed to affect the intestinal absorption; hemojuvelin modulates 
hepcidin expression (9). Increased iron absorption is observed in both HHC type 2A 
and type 2B.

The clinical condition observed in HHC type 3 is indistinguishable from that in 
HHC type 1. It is also characterized by increased intestinal iron absorption (8,9). 
It is inherited as an autosomal recessive condition. HHC type 3 is associated with 
mutations in the transferrin receptor-2 gene (14).

HHC type 4 differs from the other HHCs in that it is inherited in an autosomal 
dominant pattern (8). Iron accumulates in the reticuloendothelial space. The clinical 
condition in patients with HHC type 4 is the same as in patients with HHC type 1, 
but milder. The condition is associated with a mutation in the SLC40A1 gene (15), 
which encodes ferroportin, a main iron export protein.

Other Hemochromatoses with a Known Genetic 
Contribution
Iron overload occurs in a number of hereditary conditions including atransferrinemia, 
aceruloplasminemia, X-linked hereditary sideroblastic anemia, thalassemia major, 
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congenital dyserythropoietic anemia, various red cell defi ciencies, Friederich’s 
ataxia, and Hallervorden–Spatz syndrome (16,17). In some of these, iron deposition 
may lead to a clinical condition that is like hereditary hemochromatosis, although 
subtle differences may be found on closer examination. Aceruloplasminemia, for 
example, is a rare autosomal recessive disorder that results from defi ciency in ceru-
loplasmin ferrioxidase activity due to a mutation in the ceruloplasmin gene (18). 
Accumulation of iron in the central nervous system is a prominent feature.

Neonatal hemochromatosis is a rare gestational condition in which iron accumu-
lates in fetal tissues in a distribution similar to that seen in HHC type 1 (8). Although 
the condition is suspected to have a genetic basis, neither HHC type 1 nor other iron 
storage diseases have been identifi ed in siblings or parents of probands (19), and no 
pathologic mutations have been found in genes implicated in iron metabolism (beta-
2-microglobulin, HFE, and haem oxygenases 1 and 2 (20)). Maternal factors may be 
important in at least some cases (21).

African Iron Overload
African iron overload was fi rst observed in Africans in South Africa. The condition 
was considered to be due solely to high dietary intake of iron due to consumption 
of homemade beer brewed in iron barrels (22). Once considered benign, it is now 
known that iron overload in Africans can lead to cirrhosis, diabetes, and widespread 
deposition of iron in tissues and cause a clinical condition that is indistinguishable 
from HHC type 1 (23). Iron overload unexplained by diet, supplements, or transfu-
sion is also found in black African Americans (24,25).

As early as 1992, it was considered that African iron overload might be due to an 
interaction of one or more genes with dietary iron intake (26). The C282Y mutation 
in the HFE gene does not explain iron overload in Africans (27).

Two reports have linked higher ferritin levels in both Africans and African 
Americans with a mutation (G248H) in the ferroportin 1 gene (28,29). However, in 
one study, only 2 of 13 African American patients with severe clinical disease due to 
iron overload were heterozygous for this mutation (30). In another study in African 
Americans (31), the Q248H-associated risk of iron overload in African Americans 
was 1.57 (95% CI 0.52, 4.72), which was not statistically signifi cant.

The contributions of genes, environment, and their interactions to iron absorp-
tion, transport, and the development of hemochromatosis in African Americans are 
not well understood and are being actively investigated.

Population Screening for Mutations That Cause 
Hereditary Hemochromatosis

Overview
Population screening for hemochromatosis has been discussed many times over the 
past 20 years (32–38). The possibility of screening for the gene mutation that is asso-
ciated with most clinical cases of HHC type 1 became a reality after identifi cation 



Assessing the Use of Genetic Information646

of the HFE gene and development of a test. Treatment with periodic phlebotomy 
reduces iron stores and probably prevents progression to clinical disease in those 
with iron overload. Importantly, the gene mutation associated with HHC type 1 has 
a high prevalence in some populations.

In 2005, the United States Preventive Services Task Force (USPSTF) recom-
mended against population screening for HFE gene mutations that cause HHC (39). 
This organization recommended against population screening for gene mutation 
because of the low prevalence of unexplained liver disease in the general population 
and uncertainty about how often clinically important disease develops in people 
homozygous for the C282Y mutation. Uncertainty about the ability of phlebotomy 
treatment to prevent the consequences of iron overload in people homozygous for 
the mutation was also a consideration.

In 2006, the Clinical Molecular Genetics Society published a guideline that 
stated that “population screening is not currently recommended primarily due 
to the penetrance issue surrounding the C282Y mutation” (40). In 2008, the 
Swedish Council on Technology Assessment in Health Care joined the USPSTF 
in recommending against screening for hemochromatosis in Sweden using genetic 
testing (41).

Prevalence of Mutations Associated with Clinical Disease
The prevalence of homozygosity for the C282Y and H63D mutation of the HFE 
gene varies by race and, within whites, by geography. Table 32.2 shows data from 
the Hemochromatosis and Iron Overload Study (HEIRS (42)), which was conducted 
in the United States and Canada and involved more than 100,000 participants. In 
HEIRS, the prevalence of C282Y homozygosity was very low in blacks and Native 
Americans (<1 per 1,000). In Asians in the United States (42) and elsewhere (43), 
the mutation is almost nonexistent. The prevalence of C282Y homozygosity in 
non- Hispanic whites in HEIRS was 4.4 per 1,000. However, the best estimate of 
prevalence of C282Y homozygosity in whites in the United States—3.3 per 1,000—
comes from Steinberg et al. (44), who assessed a representative population of whites 
in the United States. The prevalence of the C282Y homozygosity varies from 2 to 
8 per 1,000 in white European populations and whites of European origin living in 
Australia and New Zealand (43).

In populations where the prevalence of the C282Y mutation is negligible or 
zero, the value of screening to identify C282Y heterozygotes is also negligible or 
zero. Thus, mutation screening in Asians, Africans, African Americans, Native 
Americans, Pacifi c Islanders, and Hispanics would have no value.

Natural History of C282Y Homozygosity
The natural history of C282Y homozygosity remains uncertain. It is a critical issue 
in deciding whether and whom to screen. The best evidence to address the ques-
tion of disease development in C282Y homozygotes derives from population-based 
cohort studies with long follow-up and systematic examination of individuals who 



Table 32.2 Prevalence per 1,000 of C282Y and H63D homozygosity and C282Y/H63D compound heterozygosity by 
 ethnicity in the United States

Place Number C282Y/C282Y C282Y/H63D H63D/H63D

  Prevalence / 1,000 (95% CI) Prevalence / 1,000 (95% CI) Prevalence / 1,000 (95% CI)

United States

White 44,082 4.4 (4.2, 4.7) 20 (20, 21) 24 (23, 24)

Native American 648 1.1 (0.61, 2.0) 7.7 (0.6, 1.1) 13 (10, 18)

Hispanic 12,459 0.27 (0.22, 0.32) 3.3 (0.3, –0.4) 11 (10, 11)

Black 21,124 0.14 (0.12, 0.17) 0.71 (0.1, 0.1) 0.89 (0.81, 0.97)

Pacifi c Islander 698 0.12 (0.043, 0.32) 0.96 (0.55,1.7) 2 (1.2, 3.2)

Asian 12,772 0.00039 (0.00015, 0.0010) 0.055 (0.029, 0.093) 2 (1.7, 2.2)

Table data are adapted from the Hemochromatosis and Iron-Overload Screening (HEIRS) study (Adams et al.) (42)
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are C282Y homozygotes. Ascertainment of liver disease is important because it 
is the most serious documented consequence of iron overload due to the C282Y 
mutation.

In their systematic evidence review conducted for the USPSTF, Whitlock et al. 
(45) identifi ed two population-based cohort studies that assessed the risk of clini-
cal hemochromatosis (46,47). Both studies were rated as fair to good in quality. A 
third population-based cohort study published in 2008 (48) provides evidence on 
this issue. It would likely be rated fair to good. Table 32.3 summarizes these three 
studies and their fi ndings.

All three studies were done either in almost exclusively white and European pop-
ulations (e.g., Australia and Copenhagen before the 1990s) or enrolled only white 
people of European lineage. All of them assessed C282Y mutations in participants 
and attempted to determine whether the C282Y homozygotes developed serious 
clinical disease putatively related to iron overload, including but not limited to liver 
disease and diabetes. Two of the studies (47,48) assessed iron overload using trans-
ferrin saturation and ferritin in C282Y homozygotes and/or evaluated the trajectory 
of serum iron parameters in the C282Y homozygotes.

The prevalence of C282Y homozygosity was 5.2 per 1,000 in one Australian 
study (46) and 6.8 per 1,000 in the other (48). The prevalence of C282Y homozygos-
ity was 2.5 per 1,000 in the Copenhagen study (46). In the two studies with serum 
iron measures (46,47), C282Y homozygous men were much more likely to have or 
to develop possible iron overload based on serum tests.

Serious clinical disease developed in 14% of C282Y male homozygotes (1 in 7) 
men in the Copenhagen study followed for 25 years (46), 50% of men (2 in 6) in 
the Brusselton study followed for 17 years (47), and 28.4% of the men (21 in 74) in 
the Melbourne study followed for 12 years (48). Aggregating across the three stud-
ies, only 1% of women (1 in 106) who were C282Y homozygotes developed serious 
clinical disease.

In all three studies, follow-up was incomplete and information on clinically mani-
fest disease in C282Y homozygotes was poor or missing. People with a clinical 
diagnosis of hemochromatosis at the time of entry into the study were sometimes 
not counted as having serious clinical disease unless they were examined in the 
study. The results of the Melbourne study (48) were affected by the use of phle-
botomy to treat people identifi ed as C282Y homozygotes because of participation 
in the study. Finally, the age of subjects at entry and their attained ages at the end 
of follow-up varied. In none of the studies was there more than 70% of subjects 65+ 
years of age at the end of published follow-up. Because the development of clinical 
liver disease increases with age, none of the studies has yet to provide a complete 
picture of serious morbidity developing over the entire lifespan in people who are 
C282Y homozygotes.

Using data from the two studies published at the time of the review (46,47), 
Whitlock et al. (45) estimated that 25–60% of C282Y homozygotes would develop 
clinical disease. The upper bound of this estimate was based on an assumption that 



Table 32.3 Population-based follow-up studies of C282Y homozygosity

Author and Reference Place 
Duration of Follow-up

Number 
Tested

% White/Northern 
European

Number C282Y 
Homozygotes

Prevalence of C282Y 
Homozygosity

Elevated Iron 
Parameters in C282Y 
Homozygotes

Serious Clinical Disease* 
in C282Y Homozygotes 
with Follow-up

Andersen et al. (46)
Copenhagen, Denmark
25 years

9,174 >95% n=23 2.5/1,000 No data Female 0/16
0%
Male 1/7
14%

Olynyk et al. (47)
Brusselton, Australia
17 years

3,011 100% n=16 5.3/1,000 Both transferrin and fer-
ritin elevated
Female 2/6
33%
Male 4/4
100%

Female 0/6
0%
Male 3/6
50%

Allen et al. (48)
Melbourne, Australia
12 years

29,676 100% n=203 6.8/1,000 Ferritin >1000 μg/L
Female 7/84
8.3%
Male 33/74
44.6%

Female 1/84
1.2%
Male 21/74
28.4%

* Clinical diagnosis of hemochromatosis; liver fi brosis or cirrhosis at examination; diabetes mellitus attributed to hemochromatosis in Andersen et al. (46) and Olynyk et al. (47). Allen et al. 
(48) also considered joint disease and elevated liver enzymes as serious clinical conditions attributed to hemochromatosis.
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all 3 of the 23 participants in the Copenhagen study known to be C282Y homozy-
gotes who died before examination and all 25 of the nonparticipants in the genetic 
screening component of the study who were expected to be C282Y homozygotes 
would have developed clinical disease. Sixty percent is thus the extreme upper 
bound for development of clinical disease in C282Y homozygotes. The estimate 
applies only to men even as an extreme upper bound. This conclusion is not altered 
by fi ndings in the Allen et al. study (48).

The low likelihood of development of clinical disease in European and American 
white women with C282Y homozygosity argues strongly against mutation screening 
of women of any race/ethnicity.

Alteration of Progression to Disease in C282Y Homozygotes
There is no point in fi nding people who have mutations associated with disease 
unless the progression to disease in people with the mutation can be favorably 
altered. Phlebotomy reduces iron stores. It is a clinically accepted approach for the 
treatment of hemochromatosis and is widely believed to improve outcomes in peo-
ple with documented iron overload and/or clinical disease. Phlebotomy is also used 
to decrease iron stores in people who are identifi ed as C282Y/C282Y homozygotes 
to prevent progression to clinical disease.

The 2004 American College of Physicians systematic review of hemochromato-
sis screening (49) identifi ed 409 potentially relevant publications about the effect 
of phlebotomy on outcomes in clinical hemochromatosis. After screening the 409 
studies and judging them against explicit quality standards, only two—Milman 
et al. (50) and Niederau et al. (51)—met the American College of Physicians stan-
dards. A third study published in 2006 (52) provides outcome information based on 
liver biopsies and is discussed here.

The fi rst study (50) involved patients with clinical HC who were not genotyped 
but who probably had HHC type 1 based on clinical signs and the geography and 
timeframe (Denmark from 1951 to 1975). It compared survival after an average of 
8.5 years in the 128 patients who were adequately phlebotomized with survival in 
those who were inadequately phlebotomized. At 5 years, the estimated survival of 
adequately phlebotomized patients (n = 66) was 93% compared with 48% for inad-
equately phlebotomized patients (n = 62). At 10 years, estimated survival was 78% 
for adequately phlebotomized patients compared with 32% for inadequately phle-
botomized patients.

The second study (51) involved 185 patients with clinical HC who were not geno-
typed but who probably had HHC type 1 based on clinical signs and symptoms and 
geography and time (Dusseldorf, Germany 1982–1991). It assessed the results of 
baseline and repeat biopsies before and after the use of phlebotomy treatment that 
lasted an average of 14 years. Forty-two patients (23%) had improved liver histology, 
two (1%) had liver pathology that deteriorated, and 141 (76%) had liver histology 
that did not change. The fi ndings are interpreted as evidence of an effect of phle-
botomy in halting progression of liver damage.
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The third study (52) evaluated longitudinal changes in hepatic fi brosis in 20 
patients (of 25 who had two biopsies) who were C282Y homozygotes. It showed 
decreases in hepatic fi brosis after phlebotomy in C282Y homozygotes.

The evidence on the effectiveness of phlebotomy for treatment of clinical HC 
has limitations. No study involved randomization, but randomization might not be 
possible because of the strongly held belief in treatment effi cacy. On the other hand, 
the studies are consistent in fi nding a benefi cial effect of phlebotomy; harms have 
not been identifi ed; cost and inconvenience are unmeasured. The beginning age for 
phlebotomy in people with mutations, the best phlebotomy regimen, and the precise 
risks remain undefi ned.

Gene–Environment Interactions in HHC Type 1
The suggested explanation for the lower rate of serious clinical disease in female 
C282Y homozygotes is menstrual blood loss. Anecdotal reports and some data 
from longitudinal studies of C282Y homozygotes and clinical studies link C282Y 
homozygosity with drinking alcohol. In both of the longitudinal Australian studies 
that followed C282Y homozygotes, men drank more alcohol than women (47,48). 
The possibility that differences in alcohol consumption contribute to the higher risk 
of developing clinical disease in male compared with female C282Y homozygotes 
should be studied.

Data from the Brusselton study suggest that the trajectory of serum iron param-
eters is highly variable between individuals over time (47). Factors other than blood 
loss and alcohol use, both genetic and environmental, could affect the development 
of clinical disease in C282Y homozygotes. Dietary iron intake and exposure to iron 
through ingestion of supplements and in water may modify the development of dis-
ease in C282Y homozygotes. This is another important avenue for further research.

Selective Screening of High-Risk Groups

Early enthusiasm for universal population-based screening for genetic mutations in 
the HFE gene has waned. Targeted screening of high-risk groups (e.g., white men of 
Celtic origin) remains an option. Targeted screening for most diseases is an effi cient 
way to make screening programs less costly and to minimize screening harms due 
to false positives.

Iron overload defi ned as high serum ferritin and/or cirrhosis has been found in 
a high proportion of C282Y homozygotes identifi ed through family screening of 
probands—patients who are C282Y homozygotes and have clinical disease (53). The 
prevalence of C282Y homozygosity among family members of probands is higher 
than in the general population (54).

Screening family members of probands has been recommended by some experts 
(55,56). The USPSTF made no specifi c recommendation against screening the fam-
ily member of probands (40).
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There is a strong case for screening the brothers of male and female probands 
(clinical cases of HHC type 1) for iron overload based on serum tests of iron over-
load at age 35–40 years. The likelihood of the proband being a C282Y homozygote 
is at least 80%, and 40% of brothers are likely to be C282Y homozygotes. Even if 
only 20% of homozygotes develop clinically manifest disease, as many as 8% of the 
brothers of probands might have a poor clinical course. The consequences of failure 
to detect iron overload in a male relative of a documented case of clinically manifest 
HHC type 1 are potentially large.

Screening for the C282Y mutation in other groups that have been suggested as 
being at high risk of clinical disease that can be caused by the mutation—for exam-
ple, people with diabetes, arthritis, cirrhosis—is discussed in detail by Whitlock 
et al. (45). The evidence provides no support for screening for the C282Y mutation 
in any population group except male relatives of HHC type 1 probands.

Summary and Conclusion

Hemochromatosis continues to fascinate and puzzle. It encompasses issues of 
importance to basic scientists, clinical researchers, clinicians, epidemiologists, pub-
lic health professionals, and policy makers. Understanding its history, the evolution 
of our knowledge about it, and the current state of knowledge provides rich insights 
into the genetics of disease and the complexity of the genetic determinants of dis-
ease and health in humans. This chapter touches only briefl y on the many lessons 
that can be learned by considering hemochromatosis in historical context.
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