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Introduction

The turn of the century witnesses a somewhat unprecedented situation in the study of
fundamental interactions. On one hand, we have a theory, the Standard Model, which
has been tested successfully to a few per mil: present data shows no deviation from
this theory. On the other hand, we have a symmetry, supersymmetry, which seems
to be the necessary ingredient to discuss the questions left aside by the Standard
Model: diversity of masse scales, vacuum energy, etc. Supersymmetry is obviously not
realized in the spectrum of fundamental particles. If it is realized at some deeper level,
it must therefore be spontaneously broken. But even though it might be hidden in
this way, there must be a level of precision to which experiments should be able to
test deviations from the Standard Model. Clearly, this has not happened yet. But the
ideas developed within the supersymmetric framework have lead to a general picture
which seems supported by recent experimental data: gauge coupling unification, small
neutrino masses, relatively light Higgs, a Universe with a density close to the critical
density, etc.

It is the purpose of this book to give the tools necessary to discuss these issues.
Because fundamental interactions provide, at some deeper level, a general picture of
our own world, these issues may be solved at different levels: consistency of the theory,
experimental discoveries, observation of the Universe. It would be preposterous to say
at this point which will be the most decisive approach. It is therefore important to
develop as much as possible a common language and to be able to follow the progress
of each path: this will ease the way to a very enriching and most probably fruitful
exchange between the different communities involved in the search for supersymme-
try. This is why this book is conceived for readers with different backgrounds and
varied interests: it may provide an introduction to the concepts and methods of super-
symmetry for theorists; it can also be used as an introduction to the phenomenology
of supersymmetric models for high energy experimentalists involved in supersymme-
try searches; finally it targets the community of cosmologists involved in unravelling
the properties of the early Universe. Of course supersymmetry, as we understand it
now, may not be found in the end but one may be confident that the theory that will
emerge eventually will feed upon the concepts, the methods and the results developed
in a supersymmetric context.

Regarding experimental results, the present times represent a turning point. The
precision tests at the LEP collider have successfully confronted the Standard Model
and have started constraining the bulk of the parameter space of supersymmetric mod-
els. If supersymmetry is realized as we think now, the discovery of supersymmetric
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particles should wait for the turning on of the LHC collider. This does not mean
that there is nothing to expect besides: searches at the Tevatron collider and precise
measurements in B factories have been confronted with supersymmetry. Moreover,
astrophysics and cosmology will most probably provide another perspective to study
supersymmetric models: searches for dark matter will reach their maturity and cos-
mology which has become a quantitative science will provide a unique window on the
very high mass scale regime of the theory.

On a parallel track, fundamental theories are being developed. It is probable that
string theories provide, as they did from the beginning, the logical framework for
supersymmetry. They are still under construction but it is important to be aware of the
general picture they present us with. For example, recent ideas about extra spacetime
dimensions have enriched the phenomenology of high energy colliders. Therefore, one
chapter of this book (Chapter 10) presents in a non-technical way the general string
and brane picture.

Roadmap
The text is organized in such a way that it can be read using different tracks
depending on the interests of the reader. It can provide: (i) a theoretical introduc-
tion to supersymmetry; (ii) a presentation of supersymmetric models for high energy
experimentalists; and (iii) an introduction to supersymmetry emphasizing its rôle in
the early Universe. The sections that should be read in each case are summarized in
the following table.

Theoretical Introduction High Energy Astrophysicist or
Experimentalist Cosmologist

1 1.1, 1.2, 1.3.1 1.1, 1.2, 1.3.1
2 2.1–2.3 2.1–2.3

3 and App. B, C 3 3
4 — —

5.1–5.4 5 5, esp. 5.5
D.1 and 6 D.1 and 6.1–6.8 6.1–6.4
7.1–7.4 7 7.4, 7.5

8 8.1 8.1
9 9 9.1, 9.4.1
10 10 (no box) 10.1–10.4.2 (no box)
— — 11
12 12.1 12.2

In the course of the general text, some comments intended solely for readers
who are following the “Theoretical introduction” track are put between square
brackets: [...].

One should note that some very elementary knowledge of quantum field theory is
assumed. Appendix A provides a sketch of the basic notions which are needed, which
might prove useful to some readers to refresh their memory. It also describes some more
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advanced notions which will be necessary to the more theoretically oriented reader,
and the bulk of the appendix is a presentation of the Standard Model of electroweak
unification. The reader is urged to browse through it in order to get acquainted with
the notation used throughout the book, as well as to make sure that he (she) feels at
ease with the notions discussed there.

In parallel, Appendix D provides a brief introduction to the Standard Model of cos-
mological evolution which should prove useful to the non-expert to follow the chapters
or sections on cosmology.

Appendices B and C introduce the notion of superfield and superspace. They lie
on the “Theoretical introduction” track.

Finally, Appendix E provides a summary of the renormalization group equations
which are scattered through the main text.

References and index
In addition to the general bibliography, a set of a few key references is presented at
the end of each chapter that may provide further reading material.

Use of this book in teaching
It is difficult to discuss the interest of supersymmetry in the context of extensions of
the Standard Model of electroweak interactions without having in mind the details
of this Model. This is why a rather extended presentation of this Standard Model is
presented in Appendix A. Depending on the origin and level of the students, it may
provide the basis for some introductory lectures. Indeed, this represents the bulk of a
half-semester course which I have given several times on the Standard Model.

Then, according to the nature of the audience, one of the three tracks described
in the table above, or a mixture of them, may be followed. Each chapter is followed
by exercises that develop some technical points or introduce applications not included
in the main text. Exercises with a larger scope are called “Problems.” They may
provide material for more extended homework. The purpose of most exercises is not
to challenge the students but rather to help them work out some details as well as to
open their perspectives. This is why hints of solutions, or sometimes detailed solutions,
are provided. They should also be of much help to the student who is studying this
book by her(him)self.

Acknowledgments
This book owes much to my collaborators on the subject. It is through their own
perception of the field that I have acquired some familiarity with the many methods
and tools necessary to grasp the central ideas. Let me mention in particular Mary K.
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Supérieure for several years. Let me thank all those who attended these various lectures
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Very warm thanks to Sonke Adlung, at Oxford University Press, whose patience
with the progress of the manuscript has been immense. His repeated encouragements
have been the main reason for my not dropping the seemingly impossible task, espe-
cially in the last few years when I was becoming increasingly busy.

Finally, I would like to pay tribute to my family and my friends for their heroic
patience over all these weekends, holidays, and vacations which were supposed to see
the book completed in a few weeks and then days. This book is dedicated to them:
they are the only ones who will not need to read it but will be satisfied with it being
there on the shelf.

Pierre Binétruy
Paris, December 2005



BINE: “CHAP01” — 2006/10/5 — 06:39 — PAGE 1 — #1

1
The problems of the Standard
Model

The Standard Model is a very satisfying theory of fundamental interactions: it has
been superbly confirmed by experimental data, especially precision tests at the LEP
collider. But it does not answer all the questions that one may raise about funda-
mental interactions. It is therefore believed to be the low energy limit of some deeper
theory. It is the purpose of this chapter to make this statement more explicit. We will
see that most of the questions which remain to be answered require new physics at
much larger mass scales than the typical Standard Model scale. Such masses, more
precisely quantum fluctuations associated with these heavy degrees of freedom, tend to
destabilize the Standard Model mass scales in contradiction with experimental data.
Supersymmetry provides the narrow path out of this trap by keeping these fluctua-
tions under control. Readers who do not need any incentive to study supersymmetry
may proceed directly to Chapter 2 and come back to this one if they ever lose faith.

1.1 General discussion
1.1.1 Full agreement with experimental data

Strictly speaking, the Standard Model of electroweak interactions has no problem
with data and has been tested, in particular at LEP, to better than a percent level1.
This means that it has been tested as a quantum theory. For example, the top quark
quantum fluctuations allowed the LEP collaborations to make a rather precise estimate
of the top quark mass even before it was discovered at the Tevatron collider. Similarly,
there are now some indications in the context of the Standard Model that the Higgs
particle is light [270].

Let us list in parallel the successes of the Standard Model from a theoretical point
of view:

• The abelian gauge symmetry of quantum electrodynamics U(1)QED is ensured
without any tuning of parameters.

• The chiral nature of the Standard Model, i.e. the property that the left and right
chiralities of its fermions have different quantum numbers, forbids any mass term:
mass generation arises through symmetry breaking. Thus fermion masses are at
most of the order of the electroweak scale.

1A review of the Standard Model and its precision tests is given in Appendix Appendix A.
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• The most general Lagrangian consistent with the gauge symmetry and the field
content of the Standard Model conserves baryon and lepton number, as observed
in nature.

One introduces a Higgs field with the same quantum numbers as the lepton doublets
(or more precisely their charge conjugates). There is however a fundamental difference
between them: quantum statistics. The leptons are fermions and should be counted as
matter whereas the Higgs, as a boson, participates in the interactions.

The only “smudge” in this picture is the recent realization, coming in particular
from the deficit of solar as well as atmospheric neutrinos, that neutrinos have a mass.
This leads in most cases2 to a minor modification of the Standard Model as it was pro-
posed initially: the introduction of right-handed neutrinos. One may note immediately
that, following the relation

q = t3 +
y

2

between charge q, weak isospin t3, and hypercharge y, the right-handed neutrino N
R

has vanishing quantum numbers under SU(3)×SU(2)×U(1), and is therefore a good
indicator of physics beyond the Standard Model.

Let us be more precise about this statement. One of the remarkable properties of
the Standard Model is that, given its field content, the Lagrangian is the most general
compatible with the gauge symmetry SU(3) × SU(2) × U(1). If we do not want to
include an extra symmetry, we must keep this principle once we introduce the right-
handed neutrino. Then, besides the Yukawa term λ

Y
φN̄

R
ν
L
(φ is the Higgs field and

we adopt a different notation for ν
L
and N

R
since they may not form the two helicity

eigenstates of a single Dirac fermion) which gives a Dirac mass term to the neutrino
after spontaneous symmetry breaking, we must include as well a Majorana mass term
MN̄ c

L
N

R
, where N c

L
= C

(
N

R

)T
(see Appendix B). A Majorana mass term ν̄c

R
ν
L
for

the left-handed neutrino (νc
R
= C (ν

L
)T ) is forbidden by the gauge symmetry and may

neither be generated by a Yukawa term if we do not extend the Higgs sector2.
One thus obtains the following mass matrix, written for a single neutrino species,

ν
L

N c
L 0 m

m M

 νc
R

N
R

The nondiagonal entry is fixed by SU(2) × U(1) spontaneous breaking: the scale m
is a typical electroweak scale (a few hundred GeV) if the Yukawa coupling λ

Y
is of

order 1. The nonvanishing diagonal entryM remains unconstrained by the electroweak
gauge symmetry: it may therefore be very large. In the case M � m, one obtains

2That is, if one does not extend the Higgs sector beyond doublets. Otherwise, a Majorana mass
term for the left-handed neutrino may arise from a Yukawa coupling to a isosinglet or isovector scalar
field. The Zee model [385] is an example of such a possibility.
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two eigenvalues: m1 ∼ M and m2 ∼ m2/M . This is the famous seesaw mechanism
[177, 383]. If we interpret the latter eigenvalue as the small neutrino mass observed
(mν ∼ 10−1 to 10−2 eV), this gives an indication that new physics appears at a scale
M ∼ 1014 GeV, under the form of a superheavy neutrino (the second eigenstate).

1.1.2 Theoretical issues

The Standard Model is in any case not completely satisfactory from a theoretical point
of view. For example, one may list the free parameters:
• three gauge couplings
• two parameters in the Higgs sector: m and λ

• nine quark (u, d, c, s, t, b) and charged lepton (e, µ, τ) masses
• three mixing angles and one CP-violating phase for the quark system
• the QCD parameter θ (coupling of the F a

µνF̃
aµν term)

which amounts to 19 free parameters. One may wish fewer parameters for a funda-
mental theory.

Indeed, extensions of the Standard Model are proposed which relate some of these
parameters. For example, grand unified theories unify the three gauge couplings at a
scale M

U
of order 1016 GeV. This works only approximately in a nonsupersymmetric

framework. They also classify the quark and lepton fields in larger representations,
which induces relations among the mass parameters. For example, grand unified the-
ories predict with success the ratio mb/mτ .

The theory is also determined by the quantum numbers of each field. There are
open questions in this respect: why are all the electric charges a multiple of e/3, where
−e is the electron charge? This is often called the problem of the quantization of
charge. Why are the quantum numbers of quarks and leptons such that all anomalies
cancel? Again, grand unified theories give a first answer to these problems by including
the electric charge among the nonabelian gauge symmetry generators.

The gap observed in quark and lepton masses when one goes from one family to
another is not satisfactorily explained in the Standard Model. This is often referred
to as the problem of mass or flavor problem. The Standard Model of electroweak
interactions clearly establishes the breaking of the SU(2)× U(1) gauge symmetry as
the origin of mass. This is summarized in the formula:

mf = λf 〈φ〉 (1.1)

where the mass mf of a fermion f is expressed in terms of the vacuum expectation
value (vev) of the Higgs field and of its Yukawa coupling λf to this field.

The vacuum expectation value of the scalar field 〈φ〉 ≡ v/
√
2 is fixed by the low

energy effective Fermi theory:

v =
(

1
G

F

√
2

)1/2

= 246 GeV, (1.2)

where G
F
is the Fermi constant. Thus (1.1) means that the only fermion with a

“natural” mass scale is the top quark of mass mt = 175 GeV: the corresponding
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Yukawa coupling is of order 1. But it does not account for the diversity of quark
and lepton masses, especially from one family of quarks and leptons to another. This
question must be addressed by a theory of Yukawa couplings yet to come. If complete,
this theory should also predict the number of families.

Similarly for mixing angle and phases. It is well-known that, in the quark sector,
mass eigenstates do not coincide with interaction eigenstates (i.e. the fields with def-
inite quantum numbers under SU(3) × SU(2) × U(1)). This results in mixing angles
and relative phases among the different quarks. The mixing angles are found to be
very different in size. Again, this diversity has yet to be explained in the framework
of a more fundamental theory. As for phases, the Standard Model provides a single
one, the Cabibbo–Kobayashi–Maskawa phase, and thus a unique source of CP viola-
tion. This, however, fails to explain the baryon number of the Universe. Similarly, the
strong CP problem seems to indicate that we are missing in the Standard Model some
important ingredient, whether the axion or some other solution.

The final question is how to treat gravity. Because Newton’s constant is dimen-
sionful ([G

N
] = M−2), the theory of gravity is nonrenormalizable. Quantum effects

become important at a scale (h̄c/G
N
)1/2 = M

P
∼ 1.22 × 1019 GeV, known as the

Planck scale. How does one obtain a quantum theory of gravity, that is how does one
put gravity on the same level as the theory of the other fundamental interactions?
Most probably, answering such a question requires some drastic changes, such as the
ones proposed in the string approach where the fundamental objects are no longer
pointlike.

We will return to these questions in later chapters. For the time being, we will
address the question of the coexistence at the quantum level of two vastly different
scales: the electroweak scale M

W
and the Planck scale M

P
(or for that matter any of

the superheavy scales we have discussed above:M ∼ 1014 GeV,M
U
∼ 1016 GeV, etc.).

1.2 Naturalness and the problem of hierarchy
The central question that we will address in this section is the existence of quadratic
divergences associated with the presence of a fundamental scalar field, such as the
Higgs field in the Standard Model. Before dealing with this, we must have a short
presentation of the notion of effective theory.

1.2.1 Effective theories

In the modern point of view, a given theory (e.g. the Standard Model) is always the
effective theory of a more complete underlying theory, which adequately describes
physics at a energy scale higher than a threshold M . This threshold is physical in the
sense that the complete physical spectrum includes particles with a mass of order M .
For example, in the case of the seesaw mechanism for neutrino masses, discussed in
Section 1.1.1, there is a neutrino field of mass M .

The description in terms of an effective theory, restricted to the light states, is
obviously valid only up to the scaleM . The heavy fields (of massM or larger) regulate
the theory and therefore the scale M acts as a cut-off Λ on loop momenta.

In quantum field theory, the renormalization procedure allows us to deal with
infinities, i.e. contributions that diverge when the cut-off is sent to infinity. However,
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the cut-offs that we consider here are physical and thus cannot be sent to arbitrary
values. There is then the possibility that the corrections due to the heavy fields (of
mass M) destabilize the low energy theory. As we will see in the next section, this is
indeed a possibility when we are working with fundamental scalars.

In some theories, we may infer some upper bound on the physical cut-off Λ (which
we identify from now on with the scale of new physics M) from the value of the low-
energy parameters. We will discuss briefly the three standard methods used (unitarity,
triviality, and vacuum stability) and illustrate them on the example of a complex scalar
field.

More precisely, we consider, as in the Standard Model, a complex scalar field Φ
with Lagrangian

L = ∂µΦ†∂µΦ− V
(
Φ†Φ

)
V
(
Φ†Φ

)
= −m2Φ†Φ+ λ

(
Φ†Φ

)2
. (1.3)

The minimization of this potential gives the background value 〈Φ†Φ〉 = v2/2 with

v2 ≡ m2/λ. (1.4)

We thus parametrize Φ as:

Φ =
(

φ+
1√
2
(v + h+ iφ0)

)
. (1.5)

The fields φ+ and φ0 are Goldstone bosons whereas the mass of the h field is

m2
h = 2m2 = 2λv2. (1.6)

This scalar field may have extra couplings to gauge fields or the top quark for example.

Unitarity ([268,282])3

Unitarity of the S-matrix, which is a consequence of the conservation of probabilities
at the quantum level, imposes some constraints on scattering cross-sections, espe-
cially on their high-energy behavior. This is usually expressed in terms of partial-wave
expansion: if M(s, θ) is the amplitude for a 2 → 2 scattering process with center of
mass energy

√
s and diffusion angle θ, one defines the Jth partial wave as:

aJ(s) =
1
32π

∫
d cos θ PJ(cos θ)M(s, θ), (1.7)

where PJ is the Jth Legendre polynomial. The constraint coming from unitarity reads

Im aJ ≥ |aJ |2 = (Re aJ)
2 + (Im aJ)

2
, (1.8)

from which we obtain
(Re aJ)

2 ≤ Im aJ (1− Im aJ) . (1.9)

3For a nice introduction to the Standard Model from the point of view of unitarity, see the lectures
of [252].
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Since the right-hand side of this equation is bounded by 1/4, it implies

|Re aJ | ≤
1
2
. (1.10)

Such limits were considered in the context of the Fermi model of weak interactions to
introduce an intermediate vector boson (see Section A.3 of Appendix Appendix A).
They may also be applied to the physics of the Standard Model. For example, in the
absence of a fundamental Higgs field, the J = 0 tree level amplitude for W+

L W
−
L →

ZLZL (W±
L , ZL are the longitudinal components of W± and Z respectively) simply

reads a0(s) = G
F

√
2 s/(16π). The tree level unitarity constraint (1.10) imposes that

new physics (the fundamental Higgs in the Standard Model) appears at a scale Λ <

ΛU =
√
8π/(G

F

√
2) ∼ 1.2 TeV.

If we include a Higgs doublet (1.5), we may use the equivalence theorem [73,268] to
identify φ± with W±

L and φ0 with ZL. Then a0 receives an extra contribution coming
from the Higgs field

a0(s) =
G

F

√
2 s

16π
− G

F

√
2 s

16π
s

s−m2
h

+O

(
M2

W

s

)
s�m2

h−→ −m2
h

G
F

√
2

16π
(1.11)

and the unitarity constraint (1.10) gives a constraint on the Higgs mass. It turns
out that the most stringent constraint comes from the mixed zero-isospin channel
2W+

L W
−
L +ZLZL and reads, in terms of the electroweak breaking scale v =

(
G

F

√
2
)−1/2

,

mh <

√
16π
5

v = 780 GeV. (1.12)

Triviality ([61,277])

In the renormalization group approach, the scalar self-coupling λ is turned into a
running coupling λ(µ) varying with the momentum scale µ characteristic of the process
considered. The study of one-loop radiative corrections allows us to compute to lowest
order (in λ) the evolution of λ(µ) with the scale µ, i.e. its beta function:

µ
dλ

dµ
=

3
2π2

λ2 + · · · (1.13)

where the dots refer to higher order contributions4.
We see that the coupling λ(µ) is monotonically increasing. If we want the theory

described by the Lagrangian (1.3) to make sense all the way up to the scale Λ, we
must impose that λ(µ) <∞ for scales µ < Λ. If Λ is known, this imposes some bound
on the value of λ at low energy, say λ(v). For example, if we send Λ to infinity, this
imposes λ(v) = 0. This is why a theory described by an action (1.3) which would be

4In the case of the Standard Model, there are further one-loop contributions, mainly due to the
couplings of the Higgs doublet to the gauge fields and the top. In the case of a large Higgs mass (i.e.
from (1.6), large λ), the term given here is the dominant one.
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valid at all energy scales is known as trivial, i.e. is a free field theory in the infrared
(low energy) regime. In practice, this only means that at some scale Λ smaller than
the scale ΛLandau where the coupling would explode (known as the Landau pole, see
below), some new physics appears.

The exact value of the Landau pole requires a nonperturbative computation since
the running coupling explodes at this scale. Complete calculations show that it is not
unreasonable to use the one-loop result (1.13) to obtain an order of magnitude for the
Landau pole. Thus, solving for λ the differential equation (1.13),

λ−1(µ) = λ−1 − 3
2π2

ln
µ

v
, (1.14)

where λ ≡ λ(v), one obtains, using λ−1(ΛLandau) = 0,

ΛLandau ∼ v e2π
2/(3λ). (1.15)

Since λ can be expressed in terms of mh itself through (1.6), this is used to put an
upper bound, a triviality bound, on the scale of new physics. Keeping the same level
of approximation as before, this gives roughly

Λ < v e4π
2v2/(3m2

h) ≡ ΛT (mh). (1.16)

The right-hand side is a monotonically decreasing function of mh. Alternatively, one
may say that, for a given value of Λ, the Higgs mass is bounded by

m2
h <

4π2v2

3 ln(Λ/v)
, (1.17)

a decreasing function of Λ.
The reader should be reminded that our expressions are only rough estimates which

give the general trend and that they can be refined. In any case, such limits should
be taken with a grain of salt: obviously, in the case where Λ is not much greater than
mh, the Higgs mass receives new corrections arising from effective operators (scaling
like some negative powers of Λ) which will induce possibly large corrections to the
triviality bound.

Vacuum stability

An ever-increasing λ(µ) coupling leads to the constraints just discussed. An ever-
decreasing λ(µ) coupling leads to difficulties of another kind: as soon as the quartic
coupling λ(µ) turns negative, the potential (1.3) becomes unbounded from below at
large values of the field φ and the theory suffers from an instability. Notwithstanding
considerations regarding the cosmological stability of the false vacuum, this instability
is a sign that some new physics will take charge.

This situation is faced in particular when the scalar field that we have considered is
light (λ is small) but has other interactions that contribute to lower λ(µ) as µ increases.
For example, if the Standard Model Higgs is light, the dominant term comes from the
top Yukawa interaction:

µ
dλ

dµ
= − 3

8π2
λ4t + · · · (1.18)
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If we neglect gauge interactions, as we did in (1.18), then the top Yukawa coupling
λt(µ) does not run and (1.18) is solved as:

λ(µ) = λ− 3
8π2

λ4t ln
µ

v
. (1.19)

Defining the scale ΛU at which the instability appears by the condition λ(ΛU ) = 0,
one obtains

ΛU = v e8π
2λ/(3λ4t ). (1.20)

Then the scale of new physics Λ is constrained by

Λ < ΛU = v eπ
2m2

hv
2/(3m4

t ) (1.21)

where we have used (1.6) and m2
t = λ2t v

2/2. Alternatively, for a given value of Λ,
we have

m2
h >

3m4
t

π2v2
ln

Λ
v
. (1.22)

Again, this formula just shows a trend (for example that the vacuum stability bound
increases with Λ, as well as with the top mass). For large enough Λ, it is not pos-
sible to neglect the running of λt due to gauge interactions: λt(µ) increases with µ,
which lowers the scale ΛU where the instability appears. This strengthens the bound
on mh.

1.2.2 The concept of naturalness

The presence of fundamental scalar fields leads to the well-known problem [186, 347,
359] of quadratic divergences as soon as one introduces a finite cut-off Λ in the theory.
Indeed a diagram of the type given in Fig. 1.1 generically gives a contribution

δm2 = λ

∫ Λ d4k

(2π)4
1
k2

∼ λ

16π2

∫ Λ

dk2,

which is of order λΛ2/16π2, to the scalar mass-squared m2.
Let us denote by m0 the bare mass (which, in this context, is the mass of the scalar

field in the absence of underlying physics); we obtain at the one-loop level a scalar
mass-squared

m2 = m2
0 + αλ

Λ2

16π2

k

Fig. 1.1 The scalar one-loop diagram giving rise to a quadratic divergence.
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where α is a positive or negative number of order one. Taking Λ as a fundamental
mass unit,

m2
0

Λ2 =
m2

Λ2 − α
λ

16π2
. (1.23)

Plugging typical numbers, say m ∼ 100 GeV and Λ ∼ M
P
∼ 1019 GeV, we see that

m2
0/Λ

2 must be adjusted to more than 30 orders of magnitude. This is to most people
an intolerable fine tuning.

Let us be more precise in the case of the Standard Model. Then, the Higgs mass
receives the following one-loop corrections:

δm2
h =

3Λ2

8π2v2

[(
4m2

t − 2M2
W
−M2

Z
−m2

h

)
+O

(
log

Λ
µ

)]
, (1.24)

where we recognize the contribution of the diagram of Fig. 1.1, proportional to
λ ∼ m2

h/v
2, as well as the contribution of the top quark loop, proportional to

λ2t ∼ m2
t/v

2. The latter is leading in the case of a light Higgs. One may also note
that the one-loop quadratically divergent contribution vanishes if we have the follow-
ing relation between the masses:

4m2
t = 2M2

W
+M2

Z
+m2

h (1.25)

This relation, known as the Veltman condition [352], is obviously not ensured to hold
at higher orders.

One may define the amount f of fine tuning discussed above by

δm2
h

m2
h

≡ 1
f
. (1.26)

Indeed, if δm2
h = 100m2

h, then one needs to fine tune the Higgs bare mass m2
0 to the

per cent level in order to recover the right physical Higgs mass m2
h. This amount of

fine-tuning is represented on a plot (mh, Λ) [257] in Fig. 1.2 for values of Λ smaller
than 100 TeV. The regions forbidden by the triviality and the vacuum stability bounds
discussed in the preceding sections are also presented. One may note that, in the region
corresponding to the Veltman condition (1.25), there is less need for fine tuning: this
region does not extend, however, to very large values of Λ because of the higher order
contributions.

In any case, it is clear that fine tunings larger than the per cent level are necessary
as soon as the scale of new physics Λ is larger than 100 TeV.

Such a fine tuning goes against the prejudice that the observable properties of
a theory (masses, charges,...) are stable under small variations of the fundamental
parameters (the bare parameters). One talks of the naturalness of a theory to describe
such behavior.

Let us see how this operates in quantum electrodynamics, which is the archetype
of a natural theory. Since QED is characterized by a dimensionless coupling, one may
wonder what is the fundamental scale. However, we are again in the situation of a
“trivial” theory with an ever increasing coupling (at least perturbatively) and thus
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Fig. 1.2 Plot in the mh–Λ plane showing the triviality (dark region at top) and stability
(dark region at bottom) constraints, as well as the tuning contours. The darkly hatched region
marked “1%” represents tunings of greater than 1 part in 100; the “10%” region means greater
than 1 part in 10. The empty region has less than 1 part in 10 fine tuning [257].

a Landau pole: the corresponding mass scale provides a dynamical scale for QED.
Again, we may use the one-loop beta function

µ
de2

dµ
=

Nf

6π2
e4, (1.27)

where Nf is the number of fermions, to obtain an order of magnitude for this scale.
Solving for e(µ)

1
e2

− 1
e2(µ)

=
Nf

6π2
ln

µ

me

we obtain (e2(ΛLandau)→∞)5

ΛLandau ∼ me e
6π2/(Nfe

2) �M
P
. (1.28)

Nevertheless, QED is a natural theory because its parameters such as the electron
mass me, are naturally small: they are protected from important radiative corrections
by a symmetry.

5The fact that the Landau pole lies beyond the Planck scale explains why the original result
of [267] was never considered as a severe problem for quantum electrodynamics.
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For example, the electron mass is protected by the chiral symmetry: in the limit
me → 0, the symmetry of the system is enhanced to include invariance under
ψe → eiαγ5ψe where ψe is the Dirac spinor describing the electron. The presence
of this symmetry imposes that the corrections to the electron mass are themselves
proportional to me. It follows that the coefficient of proportionality is dimensionless
and thus behaves like log Λ.

This leads to the formulation of naturalness by ’t Hooft [349]:
A theory is natural if, for all its parameters p which are small with respect to the
fundamental scale Λ, the limit p→ 0 corresponds to an enhancement of the symmetry
of the system.

1.2.3 The case of the scalar field

Let us return to the case of a complex scalar field with self-coupling λ which was
discussed in the previous section.

The fundamental high-energy scale of the theory is given again by its Landau pole
ΛLandau given in (1.15). But not all parameters are naturally small at this scale:
• λ may be small because λ = 0 corresponds to an enhancement of the symmetry
(conservation of the number of Φ particles).

• m2 is not naturally small because m2 = 0 does not correspond to any symmetry
enhancement at the quantum level. To be more precise, in the limit λ → 0 and
m2 → 0, the symmetry of the system is larger: Φ(x)→ Φ(x)+C, with C constant.
This could be the symmetry of a theory which would appear at a scale Λnat. At
low energy this symmetry would be broken by effects described by a parameter
ε: λ = 0(ε), m2 = 0(ε) Λ2

nat. Thus

Λnat ∼
m√
λ
.

In other words, a Φ4 theory is natural for a fundamental scale of order m/
√
λ.

If one applies this to the Standard Model, one obtains m/
√
λ ∼ v. Thus, strictly

speaking, the Standard Model is only natural up to a scale no larger than the TeV.

1.2.4 The case of asymptotically free gauge theories. Technicolor

Contrary to scalar field theories, asymptotically free gauge theories provide good can-
didates for natural theories. In the limit of vanishing gauge coupling (free theory!), the
conservation of the number of gauge bosons enhances the symmetry. One can easily
verify that there is no severe problem of fine-tuning.

Denote by Λ the fundamental scale, where the gauge coupling is, in some sense,
the bare coupling g0. Then keeping for simplicity only the first term in the beta
function

µ
dg

dµ
= − b

16π2
g3 +O(g5), (1.29)

we have
1

g2(µ)
=

1
g20

+
b

8π2
log

µ

Λ
(1.30)
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and the coupling explodes for µ = ΛIR given by

ΛIR

Λ
= e−8π2/(bg20). (1.31)

At this scale, gauge interactions become strong and typically generate physical
masses of this order. Taking the example of SU(3) (b = 11), one obtains ΛIR/Λ ∼
10−19 for g20 = 0.16: no need to adjust g20 intolerably! This is precisely the property
which is used in technicolor models to overcome the naturalness problem: scalars are
bound states and m2

scalar ∼ Λ2
IR � Λ2.

1.3 Supersymmetry as a solution to the problem of naturalness
We have seen that:
(i) setting the mass of a scalar field to zero does not enhance the symmetry;
(ii) setting the mass of a fermion field to zero enhances the symmetry (chiral

symmetry).
The idea is therefore to relate under a new symmetry a scalar field with a fermion field.
This symmetry – supersymmetry – must be such that the masses of the scalar and of
the fermion fields be equal. It is therefore related, in some sense to be defined, to the
invariance under the Poincaré group since it connects representations of different spin.
In such a scheme, the relation ms/Λ � 1 is natural because mf/Λ � 1 is natural and
because the scalar mass ms is related to the fermion mass mf .

Then, the contribution of fermions to the quadratic divergence cancels the contri-
bution of bosons.

1.3.1 An explicit example: the Wess–Zumino model

We will check this result explicitly, on a model known as the Wess–Zumino model.
This model might seem at first rather contrived. We will learn how to construct it
and to understand the beauty of it (see Chapter 3). For the time being, it will be an
opportunity to familiarize ourselves with some typical supersymmetric interactions.

The model contains:
• a complex scalar field (two degrees of freedom): φ = (A+ iB)/

√
2;

• a fermion field described by a Majorana spinor Ψ (two degrees of freedom): Ψc =
CΨ̄T = Ψ.
The Lagrangian decomposes into

(i) a kinetic term

Lk = ∂µφ∗∂µφ+
i

2
Ψ̄/∂Ψ =

1
2
∂µA∂µA+

1
2
∂µB∂µB +

i

2
Ψ̄/∂Ψ; (1.32)

(ii) an interaction term which is expressed in terms of a single function W (φ) known
as the superpotential

Li = −
∣∣∣∣dWdφ

∣∣∣∣2 − 1
2

(
d2W

dφ2
Ψ̄

R
Ψ

L
+
d2W ∗

dφ∗2 Ψ̄
L
Ψ

R

)
. (1.33)
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Explicitly

W (φ) =
1
2
mφ2 +

1
3
λφ3, (1.34)

Li = −|mφ+ λφ2|2 − 1
2
[
m
(
Ψ̄

R
Ψ

L
+ Ψ̄

L
Ψ

R

)
+ 2λ

(
φ Ψ̄

R
Ψ

L
+ φ∗ Ψ̄

L
Ψ

R

)]
= −1

2
m2 (A2 +B2)− mλ√

2
A
(
A2 +B2)− λ2

4
(
A2 +B2)2

−1
2
m Ψ̄Ψ− λ√

2
Ψ̄ (A− iB γ5)Ψ. (1.35)

The self-energy diagrams for the scalar field A which contribute at one loop to the
quadratic divergence are given in Fig. 1.3. This gives respectively:

(1) − iλ2

4
4× 3

∫
d4k

(2π)4
i

k2 −m2 = 3λ2
∫

d4k

(2π)4
1

k2 −m2

(2) − iλ2

2
2
∫

d4k

(2π)4
i

k2 −m2 = λ2
∫

d4k

(2π)4
1

k2 −m2

(3) (−)
(
− iλ√

2

)2

2
∫

d4k

(2π)4
Tr
[

i

/k −m

i

(/k − /p−m)

]
= −λ2

∫
d4k

(2π)4
Tr(/k +m)(/k − /p+m)

(k2 −m2)[(k − p)2 −m2]
.

Using Tr(/k + m)(/k − /p + m) = 4
[
k.(k − p) +m2

]
= 2

[
(k2 −m2) + ((k − p)2 −m2)

−p2 + 4m2
]
, one finds a total contribution

2λ2
{∫

d4k

(2π)4
1

k2 −m2 −
∫

d4k

(2π)4
1

(k − p)2 −m2

+
∫

d4k

(2π)4
p2 − 4m2

(k2 −m2)[(p− k)2 −m2]

}
,

A

(1) (2) (3)

A B

ψ 

A A A A A

Fig. 1.3 Quadratically divergent self-energy diagrams for the A scalar field.
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which shows that the quadratic divergences (still present in the first two terms)
cancel6.

One may show that the cancellation is even larger and that logarithmic divergences
are only present in wave function renormalization. There are no mass counterterms
and, more generally, the parameters of the superpotential are not renormalized (no
finite or infinite quantum corrections). This is an example of the famous nonrenormal-
ization theorems that have made the success of supersymmetry.

[The rest of this chapter is not necessary for reading the next chapters and may be
dealt with when reaching Chapter 5.]

1.3.2 A graphic method

Let us check it for the mass by using a graphic method which is particularly instructive.
We are going to show that the properties of chirality of the theory forbid any mass
counterterm for fermions (and by supersymmetry for bosons). The mass term for
fermions is written

Lm = − 1
2m
(
Ψ̄

R
Ψ

L
+ Ψ̄

L
Ψ

R

)

which we depict graphically by:

L� L�R� R�

Similarly for the Yukawa coupling

Ly = −λ
(
Φ Ψ̄

R
Ψ

L
+Φ∗ Ψ̄

L
Ψ

R

)

Lc LcRc Rc

Φ Φ+

6We are supposing here that the integrals are properly regularized and thus that there exists a
regularization procedure that respects supersymmetry.
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The convention is that all arrows are incoming or outgoing at the vertex. The scalar
propagator (associated with the contraction φ∗φ) is denoted:

Φ+ Φ

Indeed, we can define a direction on the propagator of the scalar field, a direction
conserved by interactions, because we may associate it by supersymmetry with the
chirality of its fermionic partner.

At the one-loop level, the self-energy of fermions is given by the diagram:

Let us represent chiralities in the case corresponding to a mass counterterm:

In either diagram, the two vertices impose contradictory directions for the arrow of
the scalar propagator. Hence, we cannot write a contribution at one loop: there is no
mass counterterm for fermions. This is a direct consequence of the chiral nature of the
interactions.

Let us note that:
(i) One can easily write a contribution for wave function renormalization(

Ψ̄
L
i/∂Ψ

L
+ Ψ̄

R
i/∂Ψ

R

)
:
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(ii) the argument was given in terms of the complex field φ because this field is
reminiscent, in its interactions, of the chirality of the spinor field associated. We
could have argued in terms of the real fields A and B:

A

+ =  0

B

The i2 = −1 in the pseudoscalar contribution plays the rôle of the minus sign in the
fermion loop, which is central in the cancellation of quadratic divergences. We check
here the importance of the fact that supersymmetry involves a complex scalar field
((A+ iB)/

√
2).

1.3.3 Soft breaking of supersymmetry
Nonrenormalization theorems are characteristic of global supersymmetry. But nature
is obviously nonsupersymmetric and if supersymmetry be, it must be broken. However,
for what concerns us here – the cancellation of quadratic divergences, supersymmetry
is not strictly speaking necessary.

Let us imagine for example that, in the Wess–Zumino model, we modify the mass
squared of scalar A by δm2

A
or B by δm2

B
:

δLSB = − 1
2δm

2
A
A2 − 1

2δm
2
B
B2. (1.36)

This is obviously not compatible with supersymmetry, as can be seen from the mass
spectrum. The scalar contributions become

3λ2
∫

d4k

(2π)4
1

k2 −m2 − δm2
A

= 3λ2
∫

d4k

(2π)4
1

k2 −m2

[
1 +

δm2
A

k2 −m2

]
+ finite

A

A A

λ2
∫

d4k

(2π)4
1

k2 −m2 − δm2
B

= λ2
∫

d4k

(2π)4
1

k2 −m2

[
1 +

δm2
B

k2 −m2

]
+ finite

B

A A
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and thus the cancellation of quadratic divergences (but not of logarithmic divergences)
follows without problem. One represents generically these terms breaking supersym-
metry by

δLSB = −δM2φ∗φ− δM ′2 (φ2 + φ∗2)
= − 1

2

(
δM2 + 2δM ′2)A2 − 1

2

(
δM2 − 2δM ′2)B2. (1.37)

Let us note that δM ′2 destroys the symmetry between A and B (hence as well the
cancellations between A and B just described).

On the other hand, a mass term for fermions

δL = − 1
2δm Ψ̄Ψ (1.38)

generates quadratic divergences:

A
δ m

The reason is that, in a supersymmetric theory, there is a cancellation between the
following tadpole diagrams (see Exercise 2):

A

A

A

B

A

(A) (B) (c)

c

This cancellation is destroyed by the mass term above. It might appear surprising
that one may shift scalar but not fermion masses. But one should not forget that it
is the relation between fermion masses and other couplings (for example of A(A2 +
B2)) in (1.35) which is responsible for the supersymmetric cancellation of quadratic
divergences.

Another possibility is a modification of the couplings of the form:

δLSB = A
(
φ3 + φ∗3) = A√

2

(
A3 − 3AB2) , (1.39)
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known as the A-term. Indeed such a term provides only cubic scalar interactions
which cannot lead to quadratically divergent two-point functions. And the combination
between A3 and AB2 is such that the contributions to tadpole diagrams (A) and (B)
above cancel. On the other hand, a term such as

δL = ρ A3 (1.40)

would lead to quadratic divergences.
The only other possibility lies in the gauge sector, if present: it is a mass term for

the gauginos, supersymmetric partners of the gauge fields,

δLSB = − 1
2Mλ λ̄λ. (1.41)

As we will see in Chapter 5, one can show that mass terms for scalars and pseu-
doscalars, A-terms, and mass terms for gauginos represent the only possible terms
breaking supersymmetry without generating quadratic divergences. One expresses this
property by saying that, under these conditions, supersymmetry is softly broken. The
terms just discussed are the only ones which may be induced through a soft breaking
of supersymmetry. A mass term for fermions corresponds on the other hand to a hard
breaking of supersymmetry.

Further reading
• G. ’t Hooft in Recent Developments in Gauge Theories, Cargèse 1979, NATO ASI
series B, Vol. 59, Plenum Press, p. 135–157.

Exercises
Exercise 1 Majorana and Dirac masses.

The purpose of this first exercise is to familiarize the reader with the notions of
Majorana, Weyl, and Dirac spinor. This is done here on the example of the neutrino,
as in Section 1.1.1, but will prove to be useful in the rest of the book when we deal
with supersymmetric particles.

Consider a spinor Ψ. One defines its chirality eigenstates

Ψ
L
=

1− γ5
2

Ψ, Ψ
R
=

1 + γ5
2

Ψ, (1.42)

with γ5 =
(
−I 0
0 I

)
and its charge conjugate as

Ψc ≡ CΨ
T

where C satisfies CγTµC
−1 = −γµ. In the representation chosen, CT = C† = −C and

CC† = C†C = 1.

(a) Show that

(Ψc)
L
(x) = C(Ψ

R
)
T
(x),

(Ψc)
R
(x) = C(Ψ

L
)
T
(x).
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(b) Consider a Weyl neutrino ν
L
of left-handed chirality and its charge conjugate νc

R

of opposite chirality. The following mass term

Lm = − 1
2mM

ν̄
L
νc
R
− 1

2mM
ν̄c
R
ν
L
,

is called a Majorana mass term. Write it in terms of the single field ν
M
≡ ν

L
+νc

R
,

which is called a Majorana neutrino. Can such a term arise in the Standard Model
from gauge symmetry breaking (by a Higgs doublet)?

(c) One introduces a neutral lepton described by a Weyl spinor N
R
of right-handed

chirality. What are its quantum numbers under SU(2) × U(1)? Introduce the
Dirac neutrino ν ≡ ν

L
+N

R
. Rewrite the Dirac mass term

Lm = − 1
2mD

ν̄ν

in terms of ν
L
and N

R
. Can it be obtained by gauge symmetry breaking (with a

Higgs doublet) in the context of the Standard Model?

Hints:

(a) CγT5 C
−1 = γ5, γ5 = γT5 = γ†

5, hence ΨR

T
= 1−γ5

2 Ψ
T
and CΨ

R

T
= 1−γ5

2 CΨ
T
.

(b) Lm = − 1
2mM

ν̄
M
ν
M
, m

M
∼ 〈φ〉 if φ is an isovector (t3 = 1/2 for ν

L
as well as ν̄c

R
).

(c) N
R
is a gauge singlet; Lm = − 1

2mD
ν̄
L
N

R
+ h.c.; m

D
∼ 〈φ〉 if φ is an isodoublet

(as in the Standard Model).

Exercise 2 Show that there is a cancellation between the tadpole diagrams (A), (B)
and (Ψ) in the last section.

Hints:

(A)
3mλ√

2

∫
d4k

(2π)4
1

k2 −m2

(B)
mλ√
2

∫
d4k

(2π)4
1

k2 −m2

(Ψ) (−)4mλ√
2

∫
d4k

(2π)4
1

k2 −m2 .
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2
The singular rôle of
supersymmetry

This chapter presents basic notions about supersymmetry and supersymmetry break-
ing. In particular, it underlines the way supersymmetry is a unique symmetry among
spacetime symmetries.

2.1 Why supersymmetry?
Supersymmetry is a symmetry between boson and fermion fields. Why should we try
to search for such a symmetry? One very fundamental reason is the following.

Bosons are the mediators of interaction: their statistics allows for a coherent
superposition and thus for a macroscopic force, such as the Coulomb force. On the
other hand, fermions are the constituents of matter: their statistics is translated at
the macroscopic level into the additive character of matter. It is certainly a very fun-
damental question to ask whether there exists a symmetry which unifies matter and
radiation.

The educated reader already knows that the present models of supersymmetry
applied to particle physics do not fulfill this goal. Should this be taken as an indication
that they are not yet complete? But let us put this aside and try to identify the general
properties of a symmetry between bosons and fermions.

First, the generators of such a symmetry must carry a spinorial index, since they
correspond to the transformation of an integer spin field into a spinor field. They
are thus not commuting with Lorentz transformations. This is much in contrast with
the behavior of generators of any internal symmetry, such as SU(3). In this sense,
supersymmetry is necessarily a spacetime symmetry.

The first attempts were faced with a no-go theorem due to Coleman and Mandula
[80] which we could rephrase in a non-technical way as:
The only conserved charges which transform as tensors under the Lorentz group are:

• Pµ, the generators of translations;
• Mµν , the generators of Lorentz transformations.

We recall (see Section A.1 of Appendix Appendix A) that the charges obtained in
the Noether procedure may be interpreted as the generators of the transformations
they are associated with. The Coleman–Mandula theorem implies that the charges
associated with symmetries besides those of Poincaré group are necessarily Lorentz
scalars.



BINE: “CHAP02” — 2006/10/5 — 06:39 — PAGE 21 — #2

Why supersymmetry? 21

Let us illustrate the physical limitations behind this no-go theorem on an example
due to E. Witten [374].

We consider two free scalar fields of vanishing mass φ1 and φ2. They are described
by the Lagrangian

L = 1
2∂

µφ1∂µφ1 + 1
2∂

µφ2∂µφ2 (2.1)

and the corresponding equation of motion

�φ1 = 0, �φ2 = 0, (2.2)

implies the conservation ∂µJµ = 0 of the current

Jµ = φ1∂µφ2 − φ2∂µφ1. (2.3)

But since one also has �∂αφ1,2 = 0 = �∂α∂βφ1,2, the currents

Jρµ = ∂ρφ1∂µφ2 − φ2∂µ∂
ρφ1

Jρσµ = ∂ρ∂σφ1∂µφ2 − φ2∂µ∂
ρ∂σφ1 (2.4)

are also conserved:
∂µJρµ = 0, ∂µJρσµ = 0. (2.5)

Thus, following the Noether procedure, the charges

Qρ =
∫

d3xJρ0 , Qρσ =
∫

d3xJρσ0 (2.6)

are conserved.
This does not mean much because φ1 and φ2 are free fields. To the question “can

one write an interaction term between φ1 and φ2 such that Qρ and Qρσ remain con-
served?”, Coleman and Mandula answer “no”. Indeed, following Witten, let us suppose
that it is possible. Then the value of the traceless part of Qρσ in a one (massless) par-
ticle state |p〉 of momentum p is

〈p|Qρσ|p〉 = A
(
pρpσ − 1

4p
2gρσ

)
(2.7)

where we have imposed the tracelessness condition gρσQ
ρσ = 0.

If we consider an interaction between two such massless particles on-shell: |p1 p2〉 →
|p3 p4〉, the tensorial charge in the initial state is A(pρ1p

σ
1 + pρ2p

σ
2 ) and in the final

state A(pρ3p
σ
3 + pρ4p

σ
4 ). Thus, if the charge is conserved in interactions, one obtains the

condition:

pρ1p
σ
1 + pρ2p

σ
2 = pρ3p

σ
3 + pρ4p

σ
4 . (2.8)

This yields, in the center of mass of the reaction (p1 = −p2,p3 = −p4, E1 = E2 =
E3 = E4), (p1

2)2 = (p1 · p3)2 or

E4
1(1− cos2 θ) = 0. (2.9)
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The scattering angle θ takes specific values: θ = 0 or π. This is only compatible with
the analyticity of the scattering amplitudes if the particles did not interact in the first
place (θ = 0).

This example, which may be generalized to particles with spin [239],
illustrates a very general fact. In a two-particle collision, conservation of Pµ and Mµν

leaves a scattering angle undetermined. If there existed another tensorial charge, scat-
tering would only be possible for discrete values of the angle, in contradiction with
observation, as well as the principles of quantum field theory (themselves based on
observation!).

The obstruction seems rather general. But the hypotheses of Coleman and Mandula
were too restrictive. More specifically, they considered the following algebra

[Pµ, Pν ] = 0
[Pµ,Mρσ] = i (ηµρ Pσ − ηµσ Pρ)
[Mµν ,Mρσ] = i (ηνρ Mµσ − ηνσ Mµρ − ηµρ Mνσ + ηµσ Mνρ) (2.10)
[T a, T b] = i Cabc T c

where the last line corresponds to a Lie algebra associated with the internal symmetry.
They conclude that the generators Ta are Lorentz scalars:

[T a, Pµ] = [T a,Mµν ] = 0. (2.11)

But we are looking here for a symmetry whose charges/generators are operators acting
on the Hilbert space which replace a fermion field by a boson field. They can be
written as

Q =
∑
ij

∫
d3k

∫
d3k′ fij(k, k′)a†

Bj
(k′)aFi

(k) (2.12)

where aFi(k) annihilates a fermion of type i and momentum k and a†
Bj
(k′) creates a

boson of type j and momentum k′. Due to the (anti)commutation rules of bosons and
fermions, Q must have anticommutation relations1.

This is what allows us to evade the conclusions of Coleman and Mandula. In order
to see that, let us consider a second example with a complex scalar field φ and a
fermion of left chirality Ψ

L
. The free field Lagrangian is

L = ∂µφ∗∂µφ+ Ψ̄
L
iγµ∂µΨL

. (2.13)

One easily checks, using the equations of motion

�φ = 0, γµ∂µΨL
= 0, (2.14)

that the current

Jrµ = ∂ρφ∗ (γργµΨL
)r (2.15)

1In mathematical terms, we must consider graded Lie algebras instead of the usual Lie algebras
whose definitions only involve commutators.
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is conserved. Indeed, using the Dirac equation,

∂µJrµ = (∂µ∂ρφ∗) (γργµΨL
)r

= (∂µ∂ρφ∗)
( 1
2{γρ, γµ}ΨL

)
r
= �φ∗ Ψ

Lr = 0. (2.16)

Thus Qr =
∫
d3xJr0 is conserved.

The surprise is that it is now possible to write an interaction term which leaves
intact the conservation of Qr. Indeed, consider

Lint = −λ2|φ|4 − λ
(
φ Ψc

R
Ψ

L
+ φ∗Ψ

L
Ψc

R

)
. (2.17)

Then Jrµ receives an extra contribution

Jrµ = ∂ρφ∗ (γργµΨL
)r + iλφ∗2 (γµΨc

R

)
r

(2.18)

but is still conserved. And thus Qr conservation follows.
Although the Coleman–Mandula no-go theorem can be evaded, it imposes severe

constraints on the possible ways out.
For example, the anticommutator {Qr, Qs} is an operator which is a symmetric

combination of two spin 1/2 objects. It is thus of bosonic type and obeys commuta-
tion relations. Moreover, being a symmetric combination of two Lorentz spinors, it is
a vector under Lorentz transformations ([(1/2)⊗ (1/2)]s = (1)). Coleman–Mandula
restrictions then apply to it and impose it to be proportional to the generator of
translations Pµ.

One may push this analysis [215] further and show (see for example [342]) that such
constraints basically fix the algebra of fermionic generators2. In this sense,
supersymmetry is unique.

2.2 The supersymmetry algebra
Let us write the supersymmetry charge Qr which, by convention, we choose to be a
Majorana spinor3. The basic supersymmetry algebra reads

{Qr, Q̄s} = 2γµrs Pµ (I)

[Qr, P
µ] = 0 (II)

[Qr,M
µν ] = iσµνrs Qs (III)

2[We will return to this in Chapter 4.]
3As stressed in Appendix B, a Majorana spinor has four real components in the Majorana basis

where the gamma matrices are purely imaginary. Useful relations involving Majorana spinors may be
found in equations (B.40) and (B.41) of this Appendix.
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where

Q̄r =
(
QT γ0

)
r

(2.19)

and

σµν = 1
4 [γ

µ, γν ]. (2.20)

The relation (III) simply means that Qr transforms as a spinor in spacetime rotations.
Before going further let us note that one may define N such supersymmetry

charges: Qi, i = 1, . . . , N . In this case, (I) is replaced by:

{Qi
r, Q̄

j
s} = 2δij γµrs Pµ. (2.21)

We will return to this more general case in Chapter 4, and show that interesting new
terms may appear.

The supersymmetry algebra has several important consequences. First from (II)
one infers

[Qr, P
µPµ] = 0. (2.22)

Let us then consider two states |b〉 and |f〉 of respective mass mb and mf which are
obtained from one another by supersymmetry:

Qr|b〉 = |f〉.

Then since PµPµ|b〉 = m2
b |b〉 and PµPµ|f〉 = m2

f |f〉,

PµPµ Qr|b〉 = PµPµ|f〉 = m2
f |f〉

= Qr P
µPµ|b〉 = m2

bQr|b〉 = m2
b |f〉,

hence mb = mf .
If supersymmetry is explicit in the particle spectrum, bosons and fermions which

are supersymmetric partners must have equal mass. However, we do not observe in
nature a boson field with the same mass as the electron. We conclude that, if the
Hamiltonian describing the fundamental interactions is supersymmetric, supersym-
metry is not explicit in the spectrum: it must be spontaneously broken.

Secondly, we may obtain from (I) an expression for the Hamiltonian of the system.
Indeed, (I) reads

{Qr, Qt}γ0ts = 2γµrs Pµ.

Contracting with γ0sr, one obtains∑
r,t

{Qr, Qt}
(
γ02
)
tr
= 2 Tr

(
γ0γµ

)
Pµ.
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Using γ02 = 1l and Tr(γ0γµ) = 4g0µ, one obtains∑
r

Q2
r = 4P 0 = 4P0

thus
H =

1
4

∑
r

Q2
r. (2.23)

In a (globally) supersymmetric theory, the energy of the states is positive. This has
some important consequences for supersymmetry breaking as we now see.

2.3 Supersymmetry breaking
Let |Ω〉 be the vacuum of the theory. If supersymmetry is a symmetry of the vacuum,
that is if there is no spontaneous breaking of supersymmetry,

Qr|Ω〉 = 0. (2.24)

In other words, the vacuum is invariant under eiQ. Then

H|Ω〉 = 1
4

∑
r

Q2
r|Ω〉 = 0

and the energy of the vacuum vanishes.
Reciprocally, if the vacuum energy vanishes,

〈Ω|H|Ω〉 = 0 =
1
4

∑
r

〈Ω|QrQr|Ω〉 =
1
4

∑
r

‖ Qr|Ω〉 ‖2

and

Qr|Ω〉 = 0,

i.e. supersymmetry is a symmetry of the vacuum.

We thus have proven the following statement: supersymmetry is spontaneously
broken (i.e. it is not a symmetry of the vacuum) if and only if

〈Ω|H|Ω〉 �= 0. (2.25)

Thus vacuum energy is the order parameter for global supersymmetry breaking.
The statement obviously differs from the corresponding one for gauge symmetry

breaking. Indeed let us consider a field φ, which is nonsinglet under a gauge group
G, and its potential V (φ). We denote by 〈φ〉 the value of φ at the minimum of V (φ).
Being space and time independent, it minimizes the kinetic energy (which vanishes)
and by definition the potential energy. Thus, the vacuum energy is given by V (〈φ〉).
(i) If 〈φ〉 = 0 and V (〈φ〉) = 0, neither gauge symmetry, nor supersymmetry is

broken.
(ii) If 〈φ〉 = 0 and V (〈φ〉) �= 0, supersymmetry is spontaneously broken but not

gauge symmetry.
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(iii) If 〈φ〉 �= 0 and V (〈φ〉) = 0, on the contrary gauge symmetry is spontaneously
broken but not supersymmetry.

(iv) If 〈φ〉 �= 0 and V (〈φ〉) �= 0, both supersymmetry and gauge symmetry are
spontaneously broken.

An important consequence of having vacuum energy as the order parameter of
supersymmetry breaking is that supersymmetry may be broken in a finite volume.
Indeed, we will discuss in the next section supersymmetry breaking in quantum
mechanical systems, i.e. systems with only “time” dependence. This puts again super-
symmetry on a fundamentally different status from an ordinary continuous symmetry.
It is well-known that there is in the latter case no possibility of spontaneous symme-
try breaking in a finite volume. Through superposition, the groundstate can always be
made invariant under the symmetry because mixing between states is always possible
in finite volume. It is only in the infinite volume limit that one may define unmixed
ground states with spontaneously broken symmetry.

If supersymmetry is a symmetry of the vacuum for any finite value of the volume,
then, obviously (the limit of zero being zero), in the infinite volume limit the vacuum
energy vanishes and supersymmetry is conserved. The converse is not true however:
it may well be that supersymmetry is spontaneously broken for any finite value of the
volume and restored in the infinite volume limit.

Let us also stress that the criterion (2.25) is a criterion of spontaneous breaking
of global symmetry. When we make supersymmetry local, we need to include gravity.
Indeed, the commutation relation (I) imposes to include “local” translations, which
are nothing but the local reparametrizations of spacetime which play a central rôle in
general relativity. The local version of supersymmetry is called supergravity, and the
inclusion of gravity modifies the criterion for spontaneous supersymmetry breaking. In
fact, we will see in Chapter 6 that local supersymmetry may be spontaneously broken
even when 〈Ω|H|Ω〉 = 0. This is welcome news since 〈Ω|H|Ω〉 is interpreted as the
cosmological constant which is observed to be either zero or very small.

Let us return to the pairing of boson–fermion states discussed in the previous sec-
tion. In the supersymmetric case, all states are paired except for the vacuum state
(since Qr|Ω〉 = 0). Once supersymmetry is spontaneously broken, the supersymmetry
algebra remains valid but Qr|Ω〉 �= 0. We conclude that all states should be paired.
What is then the fermionic state associated with the bosonic state |b〉 since there is
no longer a supersymmetric partner |f〉? It turns out that, as in any spontaneous
breaking of a global symmetry, there appears in the spectrum a massless Goldstone
excitation. Because of the fermionic nature of supersymmetry, it is a Goldstone fermion,
usually referred to as the Goldstino. This massless fermion, which we note G̃, can be
created from the vacuum by the supersymmetry current:

〈Ω|Jrµ|G̃s〉 ∝ (γµ)rs. (2.26)

It is described by a Majorana spinor.
Then, any bosonic state |b〉 is paired to (i.e. has the same energy as) the fermionic

state |bG̃〉 (since G̃ is massless). Since G̃ has two helicity states G̃ ↑ and G̃ ↓, the
number of bosonic and fermionic zero modes does not seem to match. It is only
because we are missing the bosonic state |bG̃ ↑ G̃ ↓〉 which completes the energy level.
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For example, the vacuum state |Ω〉 is now paired with the bosonic state |G̃ ↑ G̃ ↓〉
and the fermionic states |G̃ ↑〉 and |G̃ ↓〉. The rôle of this massless Goldstino field is
central in the discussions of supersymmetry breaking.

2.4 Supersymmetric quantum mechanics
We turn, in this section, to a topic which may seem to lie somewhat out of our
main track. It provides, however, a nice illustration of the notions introduced in the
previous sections and it has a wide range of applications. Moreover, some of the meth-
ods developed here will be used to discuss later the central issue of supersymmetry
breaking.

It proves to be useful to advocate the methods of supersymmetry to study one-
dimensional potential problems in quantum mechanics. Moreover, since finite volume
supersymmetric systems may be assimilated to quantum mechanical systems with a
finite number of degrees of freedom, such a study will allow us to discuss the issue of
supersymmetry breaking in finite volume. Before being more explicit, let us review a
few facts of one-dimensional quantum mechanics.

In one-dimensional potential problems, there is a deep connection between the
bound state wave function and the potential. Consider the ground state (of zero
energy) wave function ψ0(x) of the Schrödinger equation with potential V1(x)

H1ψ0(x) = − h̄2

2m
∂2x ψ0(x) + V1(x) ψ0(x) = 0. (2.27)

Then obviously

V1(x) =
h̄2

2m
ψ′′
0 (x)

ψ0(x)
(2.28)

and the potential can be reconstructed if the wave function has no node. One can in
fact factorize the Hamiltonian in the following form H1 = A+A with

A =
p√
2m

+ iw(x), A+ =
p√
2m

− iw(x) (2.29)

where p = ih̄∂x, and the identification

V1(x) = w2(x)− h̄√
2m

w′(x). (2.30)

The “superpotential” w(x) is given in terms of the ground state wave function as

w(x) = − h̄√
2m

ψ′
0(x)

ψ0(x)
. (2.31)

In other words, the ground state wave function satisfies Aψ0(x) = 0, since this implies
H1ψ0(x) = 0.
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There is obviously a companion Hamiltonian H2 = AA+:

H2 = − h̄2

2m
∂2x + V2(x), (2.32)

with
V2(x) = w2(x) +

h̄√
2m

w′(x). (2.33)

Note that the energy eigenstates of the two systems are related. If

H1|ψ(1)
n 〉 = E(1)

n |ψ(1)
n 〉

then
H2A|ψ(1)

n 〉 = AH1|ψ(1)
n 〉 = E(1)

n A|ψ(1)
n 〉.

Hence, apart from the ground state for which A|ψ0〉 = 0, the energy eigenstates of the
two systems are in one-to-one correspondence (see Fig. 2.1).

One may wonder why we end up with a dissymmetry when H1 and H2 seem to
play symmetric roles. The reason is that the zero energy ground states of H1 and H2

satisfy, respectively, A|ψ(1)
0 〉 = 0 and A+|ψ(2)

0 〉 = 0 and thus can be written as

ψ
(1)
0 (x) = N (1) exp

[
−
√
2m
h̄

∫ x

0
w(y)dy

]
, (2.34)

ψ
(2)
0 (x) = N (2) exp

[
+
√
2m
h̄

∫ x

0
w(y)dy

]
(2.35)

�E

0

E
(1)
1

E
(1)
2

E
(1)
3

E
(1)
4

H1 H2

�
�

A

A+

|ψ0〉

|ψ(1)
1 〉

|ψ(1)
2 〉

|ψ(1)
3 〉

Fig. 2.1 Energy spectrum of the two companion Hamiltonians H1 and H2, respectively
(2.27) and (2.32).
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where N (1), N (2) are normalization constants. Obviously, only one of them (if any) is a
normalizable state. We made the assumption that it is ψ(1)

0 (x) and we labelled it simply
ψ0(x). We will return later to the case where none of these states is normalizable.

Let us now make explicit the presence of the supersymmetry algebra. Define

Q1 =
(
0 A+

A 0

)
=

p√
2m

σ1 + w(x)σ2,

Q2 =
(

0 −iA+

iA 0

)
=

p√
2m

σ2 − w(x)σ1. (2.36)

One may easily check the algebra

{Q1, Q1} = {Q2, Q2} = 2H, {Q1, Q2} = 0, [Q1, H] = 0 = [Q2, H], (2.37)

with

H =
(
A+A 0
0 AA+

)
=
(
H1 0
0 H2

)
=

p2

2m
+ w2(x)− σ3

h̄√
2m

w′(x) (2.38)

One recognizes the supersymmetry algebra, this time with a single dimension (time).
The Hamiltonian (2.38) is found for example in the following one-dimensional

physical system: an electron moving along the z-axis in a x-dependent magnetic field
aligned along the z-axis. Indeed, the corresponding Hamiltonian reads:

H =
(p− eA)2

2m
+

ie

2m
div A+

|e|h̄
2m

σ.B, (2.39)

with

px = py = 0, pz = p,

Ax = Az = 0, Ay = −
√

2m
e2

w(x). (2.40)

The state of the system is described by a two-component spinor Ψ =
(
α
β

)
,
(
1
0

)
corresponding to spin up and

(
0
1

)
to spin down along the z-axis. Since [σ3, H] = 0,

the spin is conserved in interactions. Note that in the one-dimensional models that
we consider, the notion of spin is purely artificial (there is no rotation group). In fact,
fermions may be bosonized.

Since the Q’s obey anticommutation relations, one may interpret them, as well
as A and A+, as fermion type operators. We may call the eigenstates of H1, which
include the ground state |ψ0〉, the bosonic states of the system. The eigenstates of H2
are obtained from the previous ones by the action of A and are thus interpreted as
the fermion degrees of freedom. The ground state of the total system is described by

Ψ0(x) =
(
ψ0(x)
0

)
.
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We can go further and write a Lagrangian formulation of the system. There is a
single spacetime variable – the time t – and the Lagrangian reads [78,328]:

L =
1
2
m

(
dx(t)
dt

)2

− [W ′(x)]2 + ih̄ψ† dψ

dt
− h̄√

2m
W ′′(x)

[
ψ†, ψ

]
. (2.41)

We have introduced a fermion variable ψ in L because, in this form, L is invariant
under a supersymmetry transformation which relates x and ψ (see Exercise 2). We
need an explicit matrix representation of the fermion variable ψ which realizes the
standard anticommutation relations:

{ψ(t), ψ(t)} = {ψ†(t), ψ†(t)} = 0, {ψ(t), ψ†(t)} = 1. (2.42)

One may simply choose

ψ(t) =
(
0 1
0 0

)
, ψ†(t) =

(
0 0
1 0

)
. (2.43)

The corresponding Hamiltonian reads

H =
p2

2m
+ [W ′(x)]2 +

h̄√
2m

W ′′(x) [ψ†, ψ]. (2.44)

which coincides with (2.38) if one uses [ψ†, ψ] = −σ3 and one makes the identification4:

w(x) =W ′(x). (2.45)

It is interesting to note that the fermion number operator

NF = ψ†ψ =
(
0 0
0 1

)
=

1
2
(
1− σ3

)
(2.46)

is conserved through interactions, as can be checked using the ψ equation of motion.

Once again, one finds that states of the form
(
α
0

)
are of the boson type whereas

states of the form
(
0
β

)
are of the fermion type. For future reference, we note that

σ3 = (−)NF .
Let us now use such models to discuss the issue of spontaneous supersymmetry

breaking, following the seminal paper by [371]. We consider systems described by the
Hamiltonian (2.38). We assume that |w(x)| → ∞ when |x| → ∞ in order to have a
discrete spectrum.

4Note that, by analogy of (2.41) with equation (1.33) of Chapter 1, what we should call the
superpotential in this section is the function W (x), not w(x).
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In the weak coupling limit h̄ → 0, V = w2. Hence the number of supersymmetric
vacua is the number of zeros of w. Let us then consider corrections of order h̄. Assuming
that w has a simple zero at x = x0, we write

w(x) =
√
m

2
ω(x− x0) +O

[
(x− x0)2

]
. (2.47)

Then the Hamiltonian (2.38) reads

H =
1
2m

p2 +
1
2
mω2(x− x0)2 − h̄

ω

2
σ3. (2.48)

One recognizes in the first two terms (bosonic in the sense of the Hamiltonian (2.44))
the Hamiltonian of a harmonic oscillator with frequency ω: the zero point energy is
h̄ω/2. The third term has eigenvalues ∓h̄ω/2. The ground state thus corresponds to
the eigenvalue σ3 = +1 (a boson state) and has vanishing energy5: h̄ω/2− h̄ω/2 = 0.
One may check that the cancellation persists to higher orders in (x − x0). One can
also note that the fermion state (σ3 = −1) has energy h̄ω/2 + h̄ω/2 = h̄ω.

Let us now consider the exact spectrum of the theory and not rely on a perturbative
analysis. A supersymmetric ground state satisfies:

Q1|ψ〉 = Q2|ψ〉 = 0. (2.49)

Since H = Q2
1 = Q2

2, it suffices that Q1|ψ〉 = 0. Multiplying the first of equations
(2.36) by σ1, one obtains

h̄√
2m

∂ψ

∂x
= −w(x)σ3ψ. (2.50)

The solution of this first order differential equation is

ψ(x) = exp

[
−
∫ x

0
dy

√
2m
h̄

w(y)σ3
]
ψ(0). (2.51)

For this to be the ground state of the theory with quantized energy levels, it has to
be normalizable, which imposes that w(x) has opposite signs when x → +∞ and
x→ −∞. An equivalent statement is to require that w has an odd number of zeroes.

Let us take for example w(x) = λx3. Then
∫ x
0 dy w(y) = λx4/4, and the choice

σ3ψ(0) = + ψ(0) corresponds to a normalizable wave function. Note that this corre-
sponds to the spectrum described earlier, with bosonic degrees of freedom (including
the vacuum) associated with σ3 = +1.

On the other hand, if w has an even number of zeros, then it is not possible
to write a supersymmetric vacuum which is a normalizable state: supersymmetry is
spontaneously broken. If w has no zero, the perturbative analysis already told us so.
But if w has zeros (in even number) this contradicts the perturbative analysis above:
supersymmetry is broken at a nonperturbative level. One speaks of dynamical breaking
of supersymmetry. We will study in more detail this type of breaking in Chapter 8.

5This thus results from a cancellation between the bosonic terms and the fermionic terms in (2.44).
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2.5 Witten index
It is a remarkable fact that the issue of spontaneous supersymmetry breaking was set-
tled in the preceding section by discussing the behavior of a function at infinity or the
number of its zeroes. Such a property is, to some extent, stable under continuous defor-
mations of the parameters of the theory: it is, in some sense, topological. This has been
formalized by E. Witten [373] and connected with higher mathematics – the [14, 15]
index formula. Let us have a closer look at this from the physics point of view.

The problem is whether one can find a supersymmetric ground state, i.e. a nor-
malizable state of vanishing energy. This question can be settled in a finite volume:
if the energy of the state vanishes for all finite values of the volume, it vanishes as
well in the infinite volume limit. Since finite volume field theory amounts to quantum
mechanics with a finite number of degrees of freedom, the framework described in the
preceding section is sufficient to address the problem.

For example, the spectrum of the theory has necessarily – if there is a super-
symmetric ground state – the form shown in Fig. 2.1. Apart from the ground state,
bosonic and fermionic levels are paired. If we deform continuously the parameters
of the theory, levels move up or down, they might coalesce, reach zero energy or on
the contrary emerge from zero energy, but they remain paired. Thus the difference
between the number of bosons n

B
and the number of fermions n

F
at a given level

remains unchanged. This is of particular importance at the zero energy level where we
expect to find the ground state. Witten thus defines the index (a topological notion) as:

I = n
(E=0)

B
− n

(E=0)

F
. (2.52)

Introducing the operator
ΓF = (−)NF (2.53)

which commutes with the Hamiltonian and is equal to +1 for a boson and −1 for a
fermion, we have

I = TrΓF = Tr(−)NF (2.54)

where Tr means that we sum over all states. Clearly, if I �= 0, there exists one or more
states with vanishing energy: supersymmetry is a symmetry of the vacuum. If one is
looking for spontaneous symmetry breaking, one should thus restrict one’s attention
to theories with vanishing Witten index. However, I = 0 is obviously only a necessary
condition.

Let us take a few examples for the sake of illustration. First, consider as “super-
potential” w(x) a monotonic function such that w(x0) = 0. Then, we can deform the
parameters of the theory in order to have

w(x) = λ(x− x0). (2.55)

If λ > 0, then an analysis similar to the one of the preceding section that led to
(2.51) shows that the corresponding state is a boson (σ3|ψ〉 = +|ψ〉). If λ < 0, it
is a fermion (σ3|ψ〉 = −|ψ〉). In any case, I �= 0 and there is no chance to find the
spontaneous breaking of supersymmetry. On the other hand, if w(x) = λ(x−x1)(x−x2)
with x1 �= x2, then we find one boson state (by analogy with the preceding case, this
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corresponds to the zero where w is increasing) and one fermion state (corresponding to
the zero where w is decreasing). Thus I = 0: one may have spontaneous supersymmetry
breaking. We see that I is directly related to the parity of the number of zeroes of
w(x) (or just as well to the comparative sign between w(+∞) and w(−∞)).

As another example, we may consider the Wess–Zumino model discussed in Chap-
ter 1. To compute the Witten index, one may use perturbation theory since one is
allowed to change continuously the parameters. The potential of the model is given
by equation (1.35) in Chapter 1:

V = |mφ+ λφ2|2. (2.56)

Assuming m large and λ small in order to stay within perturbation theory, we have
two ground states φ0 = 0 and φ0 = −m/λ. On the other hand, we have seen that all
fields (bosons and fermions) are massive, of mass m. We thus have two bosonic states
of vanishing energy, the two vacua, and I = 2. This remains true when one reaches
the nonperturbative regime as well as when m goes to zero6.

The previous example should make clear which deformations of the theory are
permissible. If we add a term of order φ6 to the potential (2.56), we obviously change
the asymptotic behavior of the energy and there is no reason for the Witten index to
remain unchanged: states may be brought in or sent out to infinity. Thus, the Witten
index is only invariant under changes which do not modify the asymptotic (large field)
regime: adding a new coupling or setting an existing one to zero may require some
caution.

We end this section by showing how the Witten index can be formally computed
using functional methods. One needs to introduce a regulator β and write the regulated
Witten index as

I(β) = Tr(−)NF
e−βH/h̄. (2.57)

We will let the regulator β go to zero at the end of the computation.
If we consider the general system (2.38) with the two companion Hamiltonians H1

and H2, then we have:

I(β) = Tr
(
e−βH1/h̄ − e−βH2/h̄

)
. (2.58)

This may be written explicitly as

I(β) = Tr σ3
∫

[dpdx]
2πh̄

e−β[p2/(2m)+w2−σ3h̄w′/
√
2m]/h̄

=
∫

[dpdx]
πh̄

e−β[p2/(2m)+w2]/h̄ sinh
[

β√
2m

w′
]

∼
∫

[dpdx]
πh̄

e−β[p2/(2m)+w2]/h̄ β√
2m

w′, (2.59)

where, in the last line, we have used an expansion in β since we will send it to zero.
If we take w(x) = λx2n+1, we obtain I = 1 whereas for w(x) = λx2n (n integer),

the integrand is odd under x → −x and I = 0. We recover that it is only for an odd
number of zeros (here coinciding) that the Witten index vanishes, which allows for the
possibility of spontaneous supersymmetry breaking.

6In this limit, the fermion becomes massless. However, because I �= 0, this is not a Goldstino field.
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Further reading
• E. Witten, Introduction to Supersymmetry, in Proceedings of the International
School of Subnuclear Physics, Erice 1981, ed. by A. Zichichi, Plenum Press, 1983.

• F. Cooper, A. Khare and U. Sukhatme, Supersymmetry and quantum mechanics,
Phys. Rep. C 251 (1995) 267–385.

Exercises
Exercise 1

(a) Show that, for every spinor field Ψ,(
Ψc

R
Ψ

L

)
Ψ

L
= 0.

(b) Write the equations of motion for the theory described by the Lagrangians (2.13)
and (2.17).

(c) Deduce from these equations of motion that the current Jrµ defined in (2.18) is
conserved.

Hints:

(a) Ψ
L
is expressed in terms of two independent spinor components, Ψc

R
is expressed

in terms of the same components; hence the left-hand side is a cubic mono-
mial of only two independent spinor components: two are necessarily identical
and their product vanishes (because spinor components anticommute: ΨrΨr =
−ΨrΨr = 0).

(b) �φ∗ = −2λ2φ∗2φ− λΨc
R
Ψ

L
,

iγµ∂µΨL
= 2λφ∗Ψc

R
,

iγµ∂µΨc
R
= 2λφΨ

L
.

(c) Straightforward when using (a).

Exercise 2 Using the Euler equations for x(t) and ψ(t) derived from the Lagrangian L
in (2.41), show that L is invariant (up to a total derivative) under the supersymmetry
transformations:

δx = ε†ψ + ψ†ε,

δψ = ε

(
α
dx

dt
+ βW (x)

)
, (2.60)

δψ† = ε†
(
α∗ dx

dt
+ β∗W (x)

)
, (2.61)

where ε is a spinor, parameter of the supersymmetry transformation, and α, β are
complex numbers.
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Hints: The equations of motion read:

m
d2x

dt2
+ 2W ′W ′′ +

h̄√
2m

W ′′′[ψ†, ψ] = 0,

−ih̄dψ
dt

+ 2
h̄√
2m

W ′′ψ = 0,

−ih̄dψ
†

dt
− 2

h̄√
2m

W ′′ψ† = 0.

Using these equations,

δL =
d

dt

[
m
dx

dt

(
ε†ψ + ψ†ε

)
+ ih̄

(
a
dx

dt
+ βW

)
ψ†ε

]
. (2.62)

Compare the transformation (2.60) in one dimension with the supersymmetry trans-
formations in four dimensions, e.g. (3.26) of Chapter 3 with F = − (dW/dφ)∗.

Exercise 3 Consider a quantummechanical model with “superpotential” w(x) = λ(x2+
a2). For a2 > 0, supersymmetry is broken at tree level since, at the classical level
(h̄ → 0), V = w2(x) > 0. For a2 < 0, w has an even number of zeros and the argu-
ments of Section 2.4 show that supersymmetry is spontaneously broken. The purpose
of this exercise is to show that there exists a change of parameters which interpolates
between the two situations.
(a) Define Q± = (Q1 ± iQ2) /2. Express Q± in terms of A and A+. Show that

Q2
+ = Q2

− = 0
Q+Q− +Q−Q+ = H. (2.63)

(b) Explain why the zero energy eigenstates are the states |χ〉 such that Q+|χ〉 = 0
but |χ〉 �= Q+|ψ〉 for any |ψ〉.

(c) Determine P± such that
Q̃± = eP±xQ±e

−P±x

correspond to the “superpotential” w̃(x) = λ(x2 − a2).

(d) Using (c) and the criterion defined in (b), conclude that, if H corresponding
to w(x) = λ(x2 + a2) has no zero-energy eigenstates, then H̃ corresponding to
w̃(x) = λ(x2 − a2) has no zero-energy eigenstates.

Hints: See [373], Section 3.

Exercise 4 Show that the cancellation of the ground state energy still holds when one
considers terms of order (x− x0)2 in (2.47).

Hints: See [339], equation (14).

Exercise 5 We have studied in Section 2.4 only cases where the spectrum is discrete.
Supersymmetric quantum mechanical methods prove to be useful also with continuum
spectra. We illustrate this by studying the relations that exist between the reflection
and transmission coefficients of the two companion Hamiltonians H1 and H2.



BINE: “CHAP02” — 2006/10/5 — 06:39 — PAGE 36 — #17

36 The singular rôle of supersymmetry

In order to have a continuum spectrum, we must assume that the potential remains
finite as x→ −∞ or x→ +∞. We thus define w(x→ ±∞) ≡ w±.

(a) One considers an incident plane wave eikx of energy E coming from −∞. The scat-
tering on the potentials V1,2 induces reflection and transmission with respective
coefficients R1,2 and T1,2. One thus has:

ψ1,2(k, x→ −∞) → eikx +R1,2e
−ikx,

ψ1,2(k′, x→ +∞) → T1,2e
ik′x. (2.64)

Writing the “supersymmetry” relations between the wave functions of the two
Hamiltonian, show that

R1 =
(
w− + ik

w− − ik

)
R2 , T1 =

(
w+ − ik′

w− − ik

)
T2 (2.65)

and express k and k′ in terms of E, w+ and w−.
(b) Deduce that the companion potentials have identical reflection and transmission

probabilities. In which case is T1 = T2?
(c) Infer that, if one of the potentials is constant, the other one is necessarily reflec-

tionless. Using w(x) = µ tanhαx, show that the potential V (x) = λ sech2αx is
reflectionless.

Hint: See Cooper et al., (1995), p. 278ff.

Exercise 6 The methods of supersymmetric quantum mechanics are useful to dis-
cuss the problem of localization of four-dimensional gravity in models with extra
dimensions. In the five-dimensional model of Randall and Sundrum [319], the Kaluza–
Klein modes of the five-dimensional graviton (the mediator of five-dimensional gravity)
obey a standard Schrödinger equation (2.27):

Hψ = −∂2xψ(x) + V (x)ψ(x),

where the coordinate x parametrizes the fifth dimension (a factor h̄2/(2m) has been
absorbed) and

V (x) =
15

4(|x|+R)2
− 3
R
δ(x), (2.66)

where R is a constant (R is called the AdS5 curvature radius in this model).
(a) The potential V (x) is called the volcano potential. Draw it to understand this

name.
(b) Identify the function w(x) corresponding to this potential.
(c) Deduce from it the form of the ground state wave function (Kaluza–Klein zero

mode of the five-dimensional graviton). Show that it is localized around x = 0.
This zero mode is identified as the four-dimensional graviton field: four-dimensional
gravity is thus localized around x = 0 in the fifth dimension.

Hints: (b) w(x) = (3/2) (2θ(x)− 1)1/(|x|+R); (c) ψ0(x) ∼ 1/(|x|+R)3/2.
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Basic supermultiplets

We present here, in a hopefully nontechnical fashion, the two basic supermultiplets:
(spin 0/spin 1

2 ) and (spin 1/spin 1
2 ). The former involves a complex scalar field and a

spinor field chosen to be real (Majorana) or to have a given helicity (Weyl). It is called
a chiral supermultiplet. The latter involves a real vector field and a Majorana spinor
field. It is called a vector supermultiplet. If it is associated with a gauge symmetry,
the vector is a gauge field and its supersymmetric partner is called a gaugino. We will
review the form of the supersymmetry transformations for both multiplets and insist
on the need for auxiliary fields. Moreover, in both cases, we will discuss the issue of
supersymmetry breaking.

This chapter is self-contained. The more theoretically oriented reader may, however,
find it useful to read in parallel Appendix C where the use of superspace allows for a
more systematic approach. Appendix C uses two-component spinors and it might be
a useful exercise to translate its results back into four-component spinors as used in
this chapter.

3.1 Chiral supermultiplet
3.1.1 A first look

We consider here, as in the Wess–Zumino model of Chapter 1, a chiral supermultiplet
which consists of:
• a complex scalar field φ(x) = (A(x) + iB(x))/

√
2;

• a Majorana spinor field Ψ(x).
Obviously, the scalar field consists of two real degrees of freedom: A(x) and B(x).

On the other hand, the Majorana spinor has four real components. Its equation of
motion – the Dirac equation – fixes two of these degrees of freedom. To see this,
consider for simplicity a planar wave of energy k0 > 0 described by the spinor u(k)
which satisfies

(/k −m) u(k) = 0. (3.1)

In the center of mass, kµ = (m, 0, 0, 0) and (3.1) becomes(
γ0 − 1

)
u(k) = 0.

In the Dirac representation γ0 − 1 =
(

0 0
0 −2

)
. We are thus left with two degrees

of freedom.
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Thus, the number of bosonic and fermionic degrees of freedom of the chiral super-
multiplet seem to be only equal on-shell (that is, using the equations of motion).

Let us now consider the free field Lagrangian

L = ∂µφ∗∂µφ−m2φ∗φ+
1
2
Ψ̄ (iγµ∂µ −m)Ψ. (3.2)

It is invariant under the infinitesimal supersymmetry transformation

δA = ε̄Ψ, δB = iε̄γ5Ψ (3.3)
δΨr = − [iγµ∂µ (A+ iBγ5) +m (A+ iBγ5)]rs εs (3.4)

where εs is the (Majorana) spinor parameter of the transformation1.
There is, however, an undesirable problem with the transformations (3.3–3.4).

According to the supersymmetry algebra (I), one has

[ε̄1Q, ε̄2Q] =
[
ε̄1Q, Q̄ε2

]
= ε̄1r ε2s

{
Qr, Q̄s

}
= 2 (ε̄1γµε2)Pµ (3.5)

where we have used the relation ε̄2Q = Q̄ε2 (see Appendix B equation (B.40)) valid
for Majorana spinors. The commutators of two supersymmetry transformations of
parameters ε1 and ε2 is a translation of vector aµ = 2(ε̄1γµε2) and one should have

[δ1, δ2] Ψr = 2 (ε̄1γµε2) (i∂µΨr) (3.6)

whereas the transformations (3.3)–(3.4) yield

[δ1, δ2] Ψr = 2i (ε̄1γµε2)
[
∂µΨ+

i

2
γµ (iγν∂ν −m)Ψ

]
r

. (3.7)

This coincides with (3.6) only when we make use of the Dirac equation. In other words,
the algebra of supersymmetry only closes on-shell in this formulation.

3.1.2 Auxiliary fields
Luckily, by introducing auxiliary fields, J. Wess and B. Zumino (1974b) have provided
us with a formulation of supersymmetry where the algebra closes off-shell. Following
them, let us add a complex scalar field F (x) = (F1(x) + iF2(x))/

√
2 and consider the

Lagrangian

L = ∂µφ∗∂µφ+
1
2
Ψ̄ (iγµ∂µ −m)Ψ + Laux

Laux = F ∗F +m (Fφ+ F ∗φ∗) . (3.8)

Since F has no kinetic term, there is no dynamical degree of freedom associated with
it. One may solve for it using its equation of motion:

F = −mφ∗. (3.9)

Hence Laux = −m2φ∗φ and one recovers the Lagrangian (3.2): the theory is identical
to the previous one on-shell (that is, making use of the equations of motion).

1Let us note here the canonical dimension of ε. Since scalar fields (A,B) have canonical dimension
1 and spin 1/2 fields (Ψ) have canonical dimension 3/2, ε has dimension −1/2.
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But, in this formulation, the supersymmetry transformations read:

δ
S
A = ε̄Ψ, δ

S
B = iε̄γ5Ψ

δ
S
Ψ = [−iγµ∂µ (A+ iBγ5) + F1 − iF2γ5] ε,

δ
S
F1 = −iε̄γµ∂µΨ, δ

S
F2 = −ε̄γ5γµ∂µΨ. (3.10)

Note that the first two coincide with (3.3)–(3.4) when one makes use of the equation
of motion (3.9). The novel feature is that one recovers (3.6) (and similar relations for
φ and F ), without making use of any equation of motion: in this formulation the
supersymmetry algebra closes off-shell.

It is not so surprising that we now have an off-shell formulation of supersymmetry:
with the introduction of auxiliary fields, the number of off-shell bosonic degrees of
freedom (four: A, B, F1, F2) equals the number of off-shell fermionic degrees of freedom
(four: Ψr). We will see that this generalizes to all types of multiplets.

The supersymmetry transformations (3.10) call for several comments.
Let us first look for signs of spontaneous supersymmetry breaking. Since super-

symmetry is global (i.e. the parameter ε is constant), we should look for a Goldstone
field. As recalled in Section A.2.1 of Appendix Appendix A, in the case of a continuous
symmetry which is spontaneously broken through the vacuum expectation value v �= 0
of a scalar field, a constant term in the transformation law, i.e.

δφ = αv + · · · (3.11)

where α is the parameter of the transformation, characterizes φ as a Goldstone boson.
In our case, supersymmetry is of a fermionic nature and, as discussed in Chapter 2, we
expect the Goldstone field to be a fermion, the Goldstino, namely Ψ in our example.
A look at (3.10) shows that a vacuum value for φ (i.e. A or B) does not generate
a constant term in the transformation law of Ψ whereas a constant value for the
auxiliary field does. For example, if 〈F1〉 �= 0 (this is obviously not the case in the free
field theory that we consider here), then

δψ = 〈F1〉 ε+ · · · (3.12)

Thus a non-vanishing ground state value for the auxiliary field is a signature of spon-
taneous supersymmetry breakdown.

If a continuous bosonic symmetry is local, the finite version of (3.11) shows that
one can choose the parameter α(x) locally in such a way that it cancels the field
φ(x): this field disappears from the spectrum. This is the Higgs mechanism. We
will see in Chapter 6 that a similar phenomenon, the super-Higgs mechanism,
occurs when supersymmetry is local: the Goldstone fermion disappears from the
spectrum.

Finally, one should note that, since we are dealing with global supersymmetry,
both δF1 and δF2 are total derivatives. This is a characteristic property of auxiliary
fields, which will allow us to construct easily invariant action terms.



BINE: “CHAP03” — 2006/10/5 — 06:39 — PAGE 40 — #4

40 Basic supermultiplets

3.1.3 Interacting theory

There is no difficulty in adding interactions. As we have seen earlier, this is precisely
what makes supersymmetry special. Indeed, the Lagrangian

L = ∂µφ∗∂µφ+ 1
2 Ψ̄ (iγµ∂µ −m)Ψ− λ

(
φΨ̄

R
Ψ

L
+ φ∗Ψ̄

L
Ψ

R

)
+F ∗F + F

(
mφ+ λφ2

)
+ F ∗ (mφ∗ + λφ∗2) (3.13)

is invariant under the supersymmetry transformations (3.10).
Solving for F ,

F = −
(
mφ∗ + λφ∗2) (3.14)

yields

L = ∂µφ∗∂µφ+ 1
2 Ψ̄ (iγµ∂µ −m)Ψ− λ

(
φΨ̄

R
Ψ

L
+ φ∗Ψ̄

L
ψ

R

)
− V (φ) (3.15)

with
V (φ) =

∣∣mφ+ λφ2
∣∣2 . (3.16)

We may introduce the function

W (φ) = 1
2mφ2 + 1

3λφ
3 (3.17)

which is analytic in the field φ and is called the superpotential. All interaction terms
involve the superpotential and its derivatives

dW

dφ
= mφ+ λφ2,

d2W

dφ2
= m+ 2λφ. (3.18)

Let us write for the sake of completeness the Lagrangian describing n such super-
multiplets (φi, ψi, i = 1, . . . , n) with a general superpotential W (φi), analytic in the
fields φi:

L =
∑
i

∂µφ∗
i ∂µφi +

1
2

∑
i

Ψiiγ
µ∂µΨi

−1
2

∑
ij

[
∂2W

∂φi∂φj
ΨiRΨjL +

∂2W ∗

∂φ∗
i ∂φ

∗
j

ΨiLΨjR

]

+
∑
i

[
F ∗
i Fi + Fi

∂W

∂φi
+ F ∗

i

∂W ∗

∂φ∗
i

]
. (3.19)

Solving for Fi yields the scalar potential

V (φi) =
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 =∑

i

|Fi|2. (3.20)
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Let us stress that the analyticity of the superpotential W (it depends on the fields φi
but not on φ∗

i ) is a crucial ingredient for supersymmetry. As for supersymmetry break-
ing, we see that supersymmetry is broken spontaneously if and only if 〈∂W/∂φi〉 �= 0,
that is

〈Fi〉 �= 0. (3.21)

It is this criterion – an auxiliary field acquires a non-zero vacuum expectation value
(vev) – which will remain the basic one when we move to local supersymmetry. Indeed,
as discussed above, it is associated with the presence of a Goldstone fermion, and is a
necessary condition for the super-Higgs mechanism to take place.

3.1.4 An example of F -term spontaneous supersymmetry breaking:
O’Raifeartaigh mechanism

It is easy to see that, with a single field φ and a polynomial superpotential, it is
not possible to break supersymmetry spontaneously: since φ is complex, dW/dφ = 0
always has solutions, which are the ground states of the theory and 〈V 〉 = 0.

The simplest example of F-term supersymmetry breaking involves three scalar
fields and was devised by [300]. Let us indeed consider the superpotential

W (A,X, Y ) = m Y A+ λX
(
A2 −M2) (3.22)

where λ > 0, m and M are real parameters. The corresponding potential is given by
(3.20). It reads

V = m2 |A|2 + λ2 |A2 −M2|2 + |mY+ 2λAX|2

= |FY |2 + |FX |2 + |FA|2.

If M �= 0, one cannot set the three terms separately to zero. Thus 〈V 〉 �= 0 and
supersymmetry is spontaneously broken.

Let us see this in more detail. One may always choose 〈Y 〉 and 〈X〉 in order to
set 〈FA〉 = 0. Indeed, there is a direction in field space (mY + 2λAX = 0) where the
potential is flat for a fixed value of A: this is the first example that we encounter of a
flat direction of the scalar potential, a characteristic of supersymmetric models that
will have important phenomenological and cosmological consequences.

Once this is done, one is left with a potential depending solely on A. One finds the
following ground states:

• if M2 ≤ m2/(2λ2), 〈A〉 = 0 and 〈V 〉 = λ2M4 = F 2
X

• if M2 ≥ m2/(2λ2), 〈A2〉 =M2 −m2/(2λ2)

and 〈V 〉 = m2
(
M2 −m2/(4λ2)

)
.

One may check that the spectrum is no longer supersymmetric. Take the first case
〈A〉 = 0; we will take the opportunity of the flat direction to compute the spectrum
at 〈X〉 = 0. Note that X and ΨX are massless: ΨX is the Goldstone fermion asso-
ciated with the spontaneous breaking (〈FX〉 �= 0). On the other hand, the masses
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of the (A,ΨA) and (Y,ΨY ) supermultiplets are no longer supersymmetric: one finds√
m2 − 2λ2M2 for Re A,

√
m2 + 2λ2M2 for Im A and m for Y . The only nonva-

nishing fermion mass term mixes ΨA and ΨY . The corresponding eigenvectors are
(ΨA ± ΨY )/

√
2 with mass ±m (as in any fermion mass, the sign can be redefined

through phase redefinitions).
If one computes the supertrace of squared masses defined as

STr M2 =
1/2∑
J=0

(−1)2J (2J + 1) M2
J =

∑
M2

boson − 2
∑

M2
fermion (3.23)

one finds

STr M2 = 2m2 +m2 − 2λ2M2 +m2 + 2λ2M2 − 2(2m2) = 0. (3.24)

This relation is characteristic of F -type breaking. The nonrenormalization theorems
discussed in Chapter 1 ensure that it does not receive divergent contributions in
higher orders. Such a relation poses however some severe phenomenological problems:
it means that the average boson mass squared coincides with the average fermion mass
squared whereas limits on supersymmetric particles (mostly scalars) tend to show that,
on average, bosons are much heavier than fermions (mostly the quarks and leptons
that we know).

[We may check on this model the criterion for supersymmetry breaking based on
the use of the Witten index I (see Section 2.5 of Chapter 2). It is easiest to compute
I in the perturbative regime where m and λM2 are finite whereas λ � 1. Since
λM2 � m2/(2λ) in this regime, the minimum is at 〈A〉 = 0 and 〈V 〉 =

(
λM2

)2.
This vacuum energy must be added to all states: for example, the fermionic state with
one Goldstino ΨX has the same energy 〈V 〉 since the Goldstino is massless2. There
is therefore no state with vanishing energy and the Witten index I is zero, as in any
situation of spontaneous supersymmetry breaking.]

3.1.5 Chiral supermultiplet with a Weyl spinor

When we are to apply supersymmetry to the Standard Model of electroweak interac-
tions, we will not encounter Majorana spinors but spinors of definite chirality or Weyl
spinors: for example, the right-handed electron e

R
has specific quantum numbers, dif-

ferent from those of e
L
; this is indeed one of the characteristics of the Standard Model.

A Weyl spinor has two on-shell degrees of freedom, just like the Majorana spinor: out
of the four degrees of freedom of a Dirac spinor, two are projected out by performing
the chirality projection. This is the right number of on-shell fermionic degrees of free-
dom to match the two degrees of freedom of a complex scalar. Indeed, the free field
Lagrangian

L = ∂µφ∗∂µφ+ Ψ̄
L
iγµ∂µΨL

− 1
2
m
(
Ψc

R
Ψ

L
+Ψ

L
Ψc

R

)
+F ∗F +m (Fφ+ F ∗φ∗) , (3.25)

2As discussed in Section 2.3 of Chapter 2, this fermion state is degenerate with the vacuum and
with the bosonic state which consists of two Goldstinos of opposite helicities.
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is invariant under the supersymmetry transformation

δ
S
φ =

√
2 ε̄Ψ

L
,

δ
S
Ψ

L
=

1− γ5
2

[F − iγµ∂µφ] ε
√
2,

δ
S
F = −i

√
2 ε̄γµ∂µΨL

(3.26)

where ε is the Majorana spinor of the transformation.
This supersymmetry transformation is similar to the one found for a Majorana

spinor (3.10), except for the chirality projector L ≡ (1−γ5)/2 in the transformation law
of the fermion field: this ensures that it remains left-handed under a supersymmetry
transformation.

By taking the hermitian conjugate of (3.26), one may obtain, using formulas (B.36)
of Appendix B,

δ
S
φ∗ =

√
2 ε̄Ψc

R
,

δ
S
Ψc

R
=

1 + γ5
2

[F ∗ − iγµ∂µφ
∗] ε

√
2,

δ
S
F ∗ = −i

√
2 ε̄γµ∂µΨc

R
(3.27)

where, as usual, Ψc
R
= C

(
Ψ

L

)T
.

It is then straightforward to show that one may include interactions to our ori-
ginal free field Lagrangian, much in the way of (3.13) but with a special attention to
chiralities:

L = ∂µφ∗∂µφ+ Ψ̄
L
iγµ∂µΨL

− 1
2m
(
Ψ
c

RΨL
+Ψ

L
Ψc

R

)
−λ
(
φΨ

c

RΨL
+ φ∗Ψ

L
Ψc
R

)
+ F ∗F + F

(
mφ+ λφ2

)
+ F ∗ (mφ∗ + λφ∗2) .

(3.28)

One recognizes the first and second derivatives of the superpotential (3.17). The mass
term is a Majorana mass term and (once one solves for F ) the interaction term is
precisely the one which was given in (2.17) of Chapter 2 when we first discussed
supersymmetric interactions as a way of evading Coleman–Mandula no-go theorem.

Now, if we look closely at (3.27), we realize that, just as (φ, Ψ
L
, F ) transformed

as (3.26) with a left-handed chirality projector, (φ∗, Ψc
R
, F ∗) transform with a right-

handed chirality projector. By convention, the first transformation law (3.26) is the
one of a chiral supermultiplet, whereas a set of fields (φ̌, Ψ̌

R
, F̌ ) which transforms like

(3.27) forms an antichiral supermultiplet:

δ
S
φ̌ =

√
2 ε̄Ψ̌

R
,

δ
S
Ψ̌

R
=

1 + γ5
2

[
F̌ − iγµ∂µφ̌

]
ε
√
2,

δ
S
F̌ = −i

√
2 ε̄γµ∂µΨ̌R

. (3.29)
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Obviously then, (φ̌∗, Ψ̌c
L
, F̌ ∗) transforms as a chiral multiplet. When we come to

the Standard Model, we will use the relation just found to put all the fermion fields
into chiral supermultiplets. For example, denoting the complex scalar which is the
supersymmetric partner of e

R
by ẽ

R
, we will describe their supersymmetric interactions

in terms of ẽ∗
R
and ec

L
, members of the associate chiral supermultiplet.

For future use, we may write the general interaction of a set of chiral supermulti-
plets with Weyl spinor fields (φi, ΨiL , Fi)

3 (to be compared with the Majorana case
(3.19)4):

L =
∑
i

∂µφi∗∂µφi +
∑
i

Ψ
i

L
iγµ∂µΨiL

−1
2

∑
ij

[
∂2W

∂φi∂φj
Ψc
iR
ΨjL +

∂2W ∗

∂φ∗i∂φ∗jΨ
i

L
Ψcj

R

]

+
∑
i

[
F ∗iFi + Fi

∂W

∂φi
+ F ∗i ∂W

∗

∂φ∗i

]
. (3.30)

Let us take this opportunity to introduce the general notion of an F -term. Since
the kinetic terms of the free field theory are invariant under supersymmetry, the terms
depending on W should be invariant on their own. Indeed we have, using (3.26) and
(3.27) (ε = εc)

δ
S

∑
i

Fi
∂W

∂φi
− 1

2

∑
ij

∂2W

∂φi∂φj
Ψc

iRΨjL

 = ∂µ

[
−i

√
2
∑
i

ε̄γµΨiL

∂W

∂φi

]
. (3.31)

This transformation law is actually a consequence of the fact that this combination
may be considered as the auxiliary field of a composite chiral supermultiplet5. We thus
note, for any analytic function W of the fields φi,

[W (φ)]F ≡
∑
i

Fi
∂W

∂φi
− 1

2

∑
ij

∂2W

∂φi∂φj
Ψc

iRΨjL . (3.32)

We end this section by discussing some subtleties associated with the derivation
of the supersymmetric current. We start with the Lagrangian (3.28) which we write,
using the notation just introduced,

L = ∂µφ∗∂µφ+ Ψ̄
L
iγµ∂µΨL

+ F ∗F + [W (φ)]F + [W ∗(φ∗)]F . (3.33)

3In the following equation, we have adopted the convention to put lower index i for fields whose
supersymmetry transformation follows the chiral supermultiplet transformation rule (3.26), such as
φi,ΨiL , . . ., and upper index i to fields whose supersymmetry transformation follows the antichiral
supermultiplet transformation rule (3.29), such as φ∗i,Ψci

R
, . . ..

4Using (B.34) of Appendix B, one shows that for, for a Majorana spinor (Ψ = Ψc), ΨR iγ
µ∂µΨR =

ΨL iγ
µ∂µΨL , up to a total derivative. Hence the different normalization of the fermion kinetic term

in the two Lagrangians.
5[See Section C.2.2 of Appendix C for details.]
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The Noether current J (N)
µ associated with the supersymmetry transformations (3.26)

and (3.27) reads

ε̄J (N)
µ =

∑
X

δL
δ∂µX

δ
S
X , (3.34)

J (N)
µ =

√
2 ∂µφ∗Ψ

L
+
√
2 ∂ρφ (gρµ + γργµ)Ψc

R
− i

√
2FγµΨc

R
. (3.35)

This is, however, not the supersymmetry current Jµ because the supersymmetry trans-
formations are not an invariance of the Lagrangian (3.33). They transform it into a
total derivative

δ
S
L = ∂µ (ε̄Kµ) ,

Kµ =
√
2 ∂ρφ∗ (gρµ − γργµ)ΨL

+
√
2 ∂µφΨc

R
− i

√
2 FγµΨc

R

−i
√
2 γµΨ

L

∂W

∂φ
− i

√
2 γµΨc

R

∂W ∗

∂φ∗ , (3.36)

where we have used (3.31). The supersymmetry current is thus

Jµ ≡ J (N)
µ −Kµ

=
√
2 ∂ρφγργµΨc

R
+ i

√
2
∂W

∂φ
γµΨ

L
(3.37)

+
√
2 ∂ρφ∗γργµΨL

+ i
√
2
∂W ∗

∂φ∗ γµΨc
R
.

We recognize (up to a factor
√
2) the current constructed in equation (2.18) of

Chapter 2.

3.2 Vector supermultiplet and gauge interactions
We will be much briefer in this case since the discussion is parallel to the previous one.

3.2.1 Vector supermultiplet

The off-shell formulation of a vector supermultiplet uses a real vector field Aµ, a
Majorana spinor λ and a real auxiliary pseudoscalar field D. This makes 3+1 bosonic
degrees of freedom and 4 fermionic degrees of freedom in the off-shell formulation;
on-shell, the auxiliary field is no longer independent and we have two bosonic and two
fermionic degrees of freedom. The free field Lagrangian reads:

LV = − 1
4F

µνFµν + 1
2 λ̄iγ

µ∂µλ+ 1
2D

2 (3.38)
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where Fµν = ∂µAν − ∂µAν . It is invariant under the abelian gauge transformation:

δgAµ = −1
g
∂µθ,

δgλr = 0,
δgD = 0. (3.39)

And it is invariant under the supersymmetry transformation6

δ
S
Aµ = ε̄γµγ5λ,

δ
S
λr = −Dεr +

1
2
(σµνγ5ε)r Fµν ,

δ
S
D = −iε̄γµγ5∂µλ. (3.40)

Once again, if 〈D〉 �= 0, the supersymmetry transformation of the spinor field includes
a constant term, which is the trademark of a Goldstone fermion or Goldstino. Then,
the supersymmetry transformation of the auxiliary field D is a total derivative. This
means that the following Lagrangian

LFI = −ξD (3.41)

leads by itself to a supersymmetric term in the action7. This is the so-called Fayet-
Iliopoulos [145] term. If the vector field is an abelian gauge field, it turns out that this
term is gauge invariant and may be added to the Lagrangian (3.38).

Now that we have introduced auxiliary D fields, we may present the concept of a
D-term (which somewhat parallels the F -term introduced in the previous section). It
turns out8 that the kinetic terms of a chiral supermultiplet may be understood (up
to a total derivative) as the D auxiliary field of a composite supermultiplet which we
note φ†φ: (

φ†φ
)
D
= ∂µφ∗∂µφ+ Ψ̄

L
iγµ∂µΨL

+ F ∗F + total derivative. (3.42)

This is indeed the reason why this provides a supersymmetric invariant action (as an
auxiliary field, it transforms into a total derivative). The vector component (known as
the Kähler connection) of this composite supermultiplet is Aµ = −iφ∗∂µφ+ iφ∂µφ

∗ −
Ψ̄

L
γµΨL

. Such a construction can be generalized9 to any real functionK(φ†, φ) (called
a Kähler potental). We thus see that full supersymmetric actions may easily be con-
structed as F components (cf. (3.32)) or D components (cf. (3.42)) of some composite
supermultiplets.

6The γ5 in the transformation law of Aµ might seem surprising. However, as can be seen from
(B.41) of Appendix B, it ensures the reality of δSAµ. Following a standard convention [362], one
may redefine λL (λ̂L = iλL) and λR (λ̂R = −iλR) in such a way that ε̄γµγ5λ = ε̄γµλR − ε̄γµλL =
iε̄γµ(λ̂R + λ̂L) = iε̄γµλ̂. We will refrain from doing so because this introduces spurious i’s in gaugino
interactions.

7A similar term of the form aF + h.c. is in principle possible if the corresponding scalar field
φ is a gauge singlet. However, as can be seen from (3.19), it corresponds to a linear term in the
superpotential which can be absorbed through a redefinition of the field φ.

8[See Section 3.2.2 for details.]
9[See Section 3.2.4.]
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3.2.2 Coupling of a chiral supermultiplet to an abelian gauge
supermultiplet

We will consider here the case of a chiral supermultiplet with a Weyl spinor (see
Exercise 5 for the case of Majorana spinors). The following Lagrangian may be shown
to be invariant under supersymmetry transformations:

L = Dµφ∗Dµφ+ Ψ̄
L
iγµDµΨL

+ F ∗F

+gq
(
Dφ∗φ+

√
2λ̄Ψ

L
φ∗ +

√
2λ̄Ψc

R
φ
)

(3.43)

where Dµ = ∂µ − igqAµ is the covariant derivative, g is the gauge coupling and q the
U(1) charge. More precisely, it is invariant under (3.40) and a variation of (3.10) where
one replaces derivatives by covariant derivatives and one completes the auxiliary field
transformation:

δ
S
φ =

√
2 ε̄Ψ

L
,

δ
S
Ψ

L
=

1− γ5
2

[F − iγµDµφ] ε
√
2,

δ
S
F = −i

√
2 ε̄γµDµΨL

− 2gqφ ε̄
1 + γ5
2

λ. (3.44)

If we add LV given by (3.38) and possibly LFI in (3.41), we have a supersymmetric
theory of a chiral supermultiplet coupled with an abelian gauge supermultiplet. The
novel feature is that gauge interactions give a contribution to the scalar potential
through the D auxiliary field. Indeed solving for D yields

D = −gqφ∗φ+ ξ

and the scalar potential reads

V (φ) = 1
2 (gqφ

∗φ− ξ)2 = 1
2D

2. (3.45)

If there are several such chiral supermultiplets with scalar fields φi of charge qi,
the potential reads:

V (φi) =
1
2

(
g
∑
i

qiφ
∗iφi − ξ

)2

. (3.46)

If we apply this to the abelian U(1)Y hypercharge symmetry of the Standard Model,
then since the charges yi of the quarks and leptons (and of their scalar supersym-
metric partners) have both signs, the minimum of the potential corresponds to zero
energy and supersymmetry is not spontaneously broken. One is therefore tempted to
introduce another abelian symmetry under which all charges qi have the sign opposite
to the sign of ξ. Obviously, the minimum of the potential corresponds to all scalar
fields vanishing and 〈V 〉 = ξ2/2: supersymmetry is spontaneously broken. And, by
expanding the potential (3.46), we check that the scalar squared masses are simply
−gqiξ > 0: if ξ is large enough, they can be made much larger than typical quark and
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lepton masses. However, such an abelian gauge symmetry has potential problems with
quantum anomalies10.

We will see in Section 6.3.2 of Chapter 6 that the phenomenological problems
that we have encountered both with F -type breaking and D-type breaking leads one
to isolate the supersymmetry-breaking sector from the sector of quarks, leptons and
their supersymmetric partners.

3.2.3 Nonabelian gauge symmetries

The previous considerations are easily generalized to nonabelian gauge theories. Let
us consider a gauge group G with coupling constant g (G is a simple Lie group)
and structure constants Cabc (the index a runs over the adjoint representation of the
group): the generators of the group satisfy

[
ta, tb

]
= iCabctc. (3.47)

The gauge supermultiplet is simply (Aa
µ, λ

a, Da), where one introduces a gaugino λa

and a real auxiliary Da for each gauge vector field Aa
µ. The straightforward general-

ization of (3.38) reads

LV = − 1
4F

aµνF a
µν +

1
2 λ̄

aiγµDµλ
a + 1

2D
aDa, (3.48)

where

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gCabcAb

µA
c
ν

Dµλ
a = ∂µλ

a + gCabcAb
µλ

c (3.49)

are, respectively, the covariant field strength and the covariant derivative of the gaug-
ino field11. This action is invariant under the supersymmetry transformation (3.40)
where a superscript a should be added to all fields.

Likewise, the coupling of chiral supermultiplets to this gauge supermultiplet fol-
lows the same lines as before. Consider a set of chiral supermultiplets (φi, Ψi, Fi)
transforming under the gauge group G in a representation with hermitian matrices
(ta)i

j :

δgφi = −iαa (ta)i jφj ,
δgφ

∗i = iαaφj∗ (ta)j
i, (3.51)

10Remember that the triangle anomaly diagram with three abelian gauge bosons is proportional
to

∑
i q
3
i .

11The corresponding infinitesimal gauge transformations of the gauge supermultiplet are:

δgA
a
µ = −1

g
∂µα

a + CabcAbµα
c,

δgλ
a = Cabcλbαc,

δgD
a = CabcDbαc. (3.50)
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and similarly, respectively, for ΨiL , Fi and Ψci
R
, F ∗i. Then, the Lagrangian describing

the coupled gauge and chiral supermultiplets reads

L = LV +
∑
i

Dµφ∗iDµφi +
∑
i

Ψ
i

L
iγµDµΨiL

−1
2

∑
ij

[
∂2W

∂φi∂φj
Ψc

iRΨjL +
∂2W ∗

∂φ∗i∂φ∗jΨ
i

L
Ψcj

R

]

+
∑
i

[
F ∗iFi + Fi

∂W

∂φi
+ F ∗i ∂W

∗

∂φ∗i

]
+g

√
2
[
φ̄∗iλ̄a (ta)i

jΨjL + Ψ̄i
L
λa (ta)i

jφj
]
+ gDaφ∗i (ta)i

jφj (3.52)

where LV is given in (3.48); the rest of the first three lines corresponds to (3.19) where
we have just replaced the ordinary derivatives by covariant derivatives:

Dµφi = ∂µφi − igAa
µ (t

a)i
jφj

Dµφ
∗i = ∂µφ

∗i + igAa
µφ

∗j (ta)j
i

DµΨiL = ∂µΨiL − igAa
µ (t

a)i
jΨjL

DµΨci
R
= ∂µΨci

R
+ igAa

µΨ
cj
R
(ta)j

i. (3.53)

The last line of (3.52) should be compared with (3.43) where the abelian symmetry
allows a much lighter (and thus transparent) notation.

One can solve for the auxiliary fields Fi or F ∗i andDa to obtain the scalar potential.
One obtains

V
(
φi, φ

∗i) =∑
i

F ∗iFi +
1
2

∑
a

(Da)2 +
1
2

∑
m

(Dm)2

=
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 + 1

2

∑
a

g2a
[
φ∗i (ta)i

jφj
]2

+
1
2

∑
m

[
gm
∑
i

qmi φ
∗iφi − ξm

]2
. (3.54)

In this last equation, we have been slightly more general than previously:
• We have included the possibility of having a gauge group G which is a product
of simple groups: for all generators ta corresponding to the same simple group
factor, the coupling ga is identical. For example, in the case of the Standard Model
where G|nonabel. = SU(3) × SU(2), all the generators of SU(3) have coupling gs
and all generators of SU(2) have coupling g.

• We have included in the last line the possibility of having a certain number of
abelian U(1) gauge groups, labelled by m (qmi is the charge of the field φi under
U(1)m), with possible Fayet–Iliopoulos terms (labelled ξm for U(1)m). Let us note
that a Fayet–Iliopoulos term (3.41) is not allowed for a nonabelian symmetry
because it is not gauge invariant12.

12Compare the gauge transformations of the auxiliary fields in (3.39) and (3.50).
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The general scalar potential (3.54) with its F -terms andD-terms will be the central
object of study when we discuss gauge or supersymmetry breaking.

Exercises
Exercise 1

(a) Show that, under the supersymmetry transformation (3.3), (3.4), we have:

[δ1, δ2]A = 2i ε̄1γµε2 ∂µA
[δ1, δ2]B = 2i ε̄1γµε2 ∂µB

i.e. supersymmetry transformations on scalar fields close off-shell.
(b) Prove (3.7) using Fierz transformations (equation (B.29) of Appendix B).

Hints:

(a) Use (B.40) of Appendix B. The fact that supersymmetry transformations close
off-shell on scalar fields indicates that there is no need to introduce auxiliary fields
in the supersymmetry transformations of scalar fields.

(b) Use equation (B.29) of Appendix B to prove:

ε2ε̄1 − ε1ε̄2 − (γ5ε2) (ε̄1γ5) + (γ5ε1) (ε̄2γ5) = −γµ (ε̄1γµε2) .
Exercise 2 Compute the spectrum for the O’Raifeartaigh model of Section 3.1.4 in the
case 〈A〉 = 0 but for any value of 〈X〉 along the flat direction. Check that STrM2 = 0.
Hint: This time, the A and Y supermultiplets mix in the mass matrices. The eigenval-
ues are for the system (ΨA, ΨX):

√
m2 + λ2X2 ± λX, for the system (Re A, Re X):

m2 + λ2(2X2 −M2)± λ
√
λ2(2X2 −M2)2 + 4m2X2

and for the system (Re A, Re X):

m2 + λ2(2X2 +M2)± λ
√
λ2(2X2 +M2)2 + 4m2X2.

Exercise 3 We generalize here the O’Raifeartaigh model to make explicit the structure
that leads to supersymmetry breaking.

Let us consider a set of N supermultiplets (Ai, ΨAi) and P supermultiplets (Xm,
ΨXm

) whose interactions are described by the superpotential:

W (A,X) =
P∑

m=1

Xmfm(A), (3.55)

where fm are P analytic functions of the variables Ai.

(a) Write the scalar potential.
(b) Show that, when N < P , supersymmetry is spontaneously broken in the generic

case. The O’Raifeartaigh model (3.22) corresponds to N = 1 and P = 2.
[(c) Give an R-symmetry that would make natural the choice (3.55).]
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Hints:

(a) V =
∑

m |fm(A)|2 +
∑

i |
∑

mXm∂fm/∂Ai|2.
(b) Take 〈Xm〉 = 0 or any point on the flat directions defined by

∑
mXm∂fm/∂Ai =

0. Then 〈V 〉 = 0 requires fm(A) = 0, i.e. P conditions for N fields. If N < P ,
this is not possible in the general case: it would require specific values of the
parameters.

(c) R(Ai) = 0, R(Xm) = 2.

Exercise 4 Prove (3.27) from (3.26) using the formulas (B.36) of Appendix B.

Hint: To obtain δ
S
Ψc

R
, introduce a spinor Ψ1 and use

(
Ψ̄1δSΨL

)∗ = Ψ̄c
1δSΨ

c
R
.

Exercise 5 We write in this exercise the supersymmetric version of quantum electro-
dynamics as first introduced by [363].

If we want to couple a chiral supermultiplet with a Majorana spinor to an abelian
gauge supermultiplet, we face the problem that a gauge (phase) transformation is
incompatible with the reality imposed by the Majorana condition. We must thus
introduce two Majorana spinors Ψ1 and Ψ2 in order to form a complex Majorana
spinor Ψ± = (Ψ1±iΨ2)/

√
2 which undergoes a phase transformation under the abelian

symmetry.
We thus start from the Lagrangian (3.43) with two chiral supermultiplets (φ±,Ψ±,

F±) of charge ±q:

L = Dµφ∗
+Dµφ+ +Dµφ∗

−Dµφ− + 1
2Ψ+iγ

µDµΨ+

+ 1
2Ψ−iγ

µDµΨ− + F ∗
+F+ + F ∗

−F−

+gq
(
Dφ∗

+φ+ +
√
2 λ̄Ψ+L

φ∗
+ +

√
2 λ̄Ψc

+R
φ+

)
(3.56)

−gq
(
Dφ∗

−φ− +
√
2 λ̄Ψ−L

φ∗
− +

√
2 λ̄Ψc

−R
φ−
)
+ LV ,

where LV is given in (3.38). This Lagrangian is invariant under (3.40) and the following
transformations:

δ
S
φ± =

√
2 ε̄Ψ±L

,

δ
S
Ψ±L

=
1− γ5
2

[F± − iγµDµφ±] ε
√
2,

δ
S
F± = −i

√
2 ε̄γµDµΨ±L

∓ 2gqφ± ε̄
1 + γ5
2

λ. (3.57)

Introducing, as for the fermion fields,

φ±≡
1√
2
(φ1 ± iφ2) ≡

1√
2

(
A1 + iB1√

2
± i

A2 + iB2√
2

)
,

F±≡
1√
2
(F1 ± iF2) ≡

1√
2

(
F1 + iG1√

2
± i

F2 + iG2√
2

)
,
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show that the action (3.56) is written

L = − 1
4F

µνFµν + 1
2 λ̄iγ

µ∂µλ+ 1
2D

2

+ 1
2 (∂

µA1∂µA1 + ∂µB1∂µB1 + ∂µA2∂µA2 + ∂µB2∂µB2)− 1
2gqD(A1B2 −A2B1)

+ 1
2

(
Ψ̄1iγ

µ∂µΨ1 + Ψ̄2iγ
µ∂µΨ2

)
+ 1

2

(
F 2
1 +G2

1 + F 2
2 +G2

2
)

−gqAµ
(
A1∂µA2 −A2∂µA1 +B1∂µB2 −B2∂µB1 − iΨ̄1γµΨ2

)
+gq

[
λ̄ (B1 − iA1γ5)Ψ2 − λ̄ (B2 − iA2γ5)Ψ1

]
. (3.58)

The supersymmetry transformations corresponding to (3.57) are

δ
S
Ai = ε̄Ψi, δ

S
Bi = iε̄γ5Ψi, i = 1, 2,

δ
S
Ψ1 = [−iγµDµ (A1 + iB1γ5) + F1 − iG1γ5 − igqγµAµ (A2 + iB2γ5)] ε,

δ
S
Ψ2 = [−iγµDµ (A2 + iB2γ5) + F2 − iG2γ5 + igqγµAµ (A1 + iB1γ5)] ε,

δ
S
F1 = −iε̄γµDµΨ1 − igq ε̄ (A2 + iB2γ5)λ− igq ε̄γµAµΨ2,

δ
S
F2 = −iε̄γµDµΨ2 + igq ε̄ (A1 + iB1γ5)λ+ igq ε̄γµAµΨ1,

δ
S
G1 = −ε̄γ5γµDµΨ1 − igq ε̄ (B2 − iA2γ5)λ+ gq ε̄γµγ5AµΨ2,

δ
S
G2 = −ε̄γ5γµDµΨ2 + igq ε̄ (B1 − iA1γ5)λ− gq ε̄γµγ5AµΨ1.

Note that, out of the two Majorana spinors Ψ1 and Ψ2, one can form a Dirac spinor
which describes the electron in this super-QED theory.

Hint: Dµφ± = ∂µφ± ∓ igqAµφ± · · ·

Exercise 6
(a) Check that Dµλ

a defined in (3.49) transforms as a covariant derivative i.e. trans-
forms as λa in (3.50).

(b) Check that the derivatives (3.53) transform as covariant derivatives, i.e. transform
as in (3.51).

Hints:
(a) Use the relation CabeCcde + CbceCade + CcaeCbde = 0 which expresses noth-

ing but the commutation relations (3.47) in the adjoint representation, where
(T a)bc = −iCabc.

(b) Note that Hermitian conjugation raises or lowers the indices; thus, for example
from the first equation in (3.51), one obtains

δgφ
∗i = iαa (ta∗)i jφ∗j = iαa (ta)j

iφ∗j

where we used the fact that the matrix ta is hermitian: ta∗ = taT .
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4
The supersymmetry algebra and
its representations

Now that we have acquired some familiarity with supersymmetry and the techniques
involved, we may discuss more thoroughly the supersymmetry algebra and its rep-
resentations. As an example of application, we will then discuss in more details the
construction of the representations of N = 2 supersymmetry. Of great importance is
the appearance of short representations of supersymmetry, associated with the con-
cept of BPS states in soliton physics. Their study allows us to introduce such notions
as moduli, moduli space, etc. important when we discuss supersymmetry breaking or
string and brane theory. This chapter is intended for the more theoretically oriented
reader1.

4.1 Supersymmetry algebra
We use two-component notation (see Appendix B). The basic commutator of N = 1
supersymmetry algebra {

Qr, Q̄s

}
= 2γµrs Pµ

simply reads {
Qα, Q̄α̇

}
= 2σµαα̇ Pµ

{Qα, Qβ} =
{
Q̄α̇, Q̄β̇

}
= 0. (4.1)

Indeed {(
Qα

Q̄α̇

)
r

,
(
QβQ̄β̇

)
s

}
=

 {
Qα, Q

β
} {

Qα, Q̄β̇

}
{
Q̄α̇, Qβ

} {
Q̄α̇, Q̄β̇

} 
rs

=
(

0 2σµ
αβ̇

Pµ

2σ̄µα̇β Pµ 0

)
rs

= 2 (γµ)rs Pµ.

In the case of N supersymmetric (Majorana) charges Qi
r, that is Qiα, Q̄iα̇,

i = 1, . . . , N , one may use, as in Chapter 2, Coleman–Mandula restrictions to

1Since this chapter is on the Theorist track we will assume in Section 4.3 familiarity with the
superspace techniques developed in Appendix C. We also use the Van der Waerden notation for
spinors (see Appendix B).
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infer the general form of the supersymmetry algebra, thus following Haag,
�Lopuszanski and Sohnius [215]. Since {Qiα, Q̄

j

β̇
} belongs to the representation (1/2, 0)×

(0, 1/2) = (1/2, 1/2), it is proportional to Pµ times a matrix M j
i . The latter matrix

may be shown to be hermitian and positive definite and one may redefine the super-
symmetry charges so that M j

i be proportional to δji . In other words,

{Qiα, Q̄
j

β̇
} = 2δji σ

µ

αβ̇
Pµ. (4.2)

There is, however, something new with the anticommutator {Qiα, Qjβ}. In all general-
ity, it belongs to the representation (1/2, 0)×(1/2, 0) = (1, 0)+(0, 0) and, accordingly,
we may write

{Qiα, Qjβ} = (σµν)α
γ
εγβ Mµν Yij + εαβ Zij (4.3)

where (σµν)α
β = 1

4 (σ
µσ̄ν − σν σ̄µ)α

β , Y is symmetric (Yij = +Yji), and Z is anti-
symmetric (Zij = −Zji). Before going further, let us note that [Qiα, Pµ] belongs to
(1/2, 0)× (1/2, 1/2) = (0, 1/2) + (1, 1/2) and write therefore ((Qiα)† = Q̄i

α̇)

[Qiα, Pµ] = Xij σµαβ̇ Q̄jβ̇[
Q̄iα̇, Pµ

]
= (Xij)

∗
σ̄α̇βµ Qjβ .

Using the Jacobi identity2

[[Qiα, Pµ] , Pν ] + [[Pµ, Pν ] , Qiα] + [[Pν , Qiα] , Pµ] = 0

and [Pµ, Pν ] = 0, one obtains XX∗ = 0.
Then consider the other Jacobi identity

[{Qiα, Qjβ} , Pµ]− {[Qjβ , Pµ] , Qiα}+ {[Pµ, Qiα] , Qjβ} = 0. (4.5)

Contracting with εαβ yields3 Xij = Xji. Hence XX† = 0 and Xij = 0. We thus have

[Qiα, Pµ] = 0 =
[
Q̄j
α̇, Pµ

]
(4.6)

i.e. the N supersymmetry charges commute with the generator of translations (we
have already seen that this implies that the fields in a supermultiplet have a common

2The Jacobi identity familiar in Lie algebras

[[T1, T2] , T3] + [[T2, T3] , T1] + [[T3, T1] , T2] = 0

reads in the case of the graded Lie algebras that we consider

[[G1, G2} , G3} ± [[G2, G3} , G1} ± [[G3, G1} , G2} = 0 (4.4)

where [Gi, Gj} is an anticommutator if Gi and Gj are both fermionic operators, a commutator
otherwise. The signs are + or − depending on whether the number of permutations of fermionic
operators is even or odd, e.g.

[{F1, F2} , B] − {[F2, B] , F1} + {[B,F1] , F2} = 0.

3Zij being an internal generator commutes with Pµ.
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invariant mass since [Qiα, P
µPµ] = 0). Also, once we have proven that Xij = 0, it

follows from (4.5) that Yij = 0. Hence

{Qiα, Qjβ} = εαβ Zij{
Q̄i
α̇, Q̄

j

β̇

}
= εα̇β̇ (Zij)

∗
. (4.7)

The complex constants Zij are called central charges because they are shown to com-
mute with all generators (see Exercise 3). Note that the central charges have the
dimension of a mass.

The supersymmetry charges usually also transform under an internal compact
symmetry group G which is a product of a semisimple group and an abelian factor.
Denoting by Br the hermitian generators of this group, which satisfy

[Br, Bs] = iCrstBt (4.8)

we have

[Qiα, Br] = (br)ij Qjα[
Br, Q̄

i
α̇

]
= (b∗r)

i
j Q̄

j
α̇. (4.9)

The Jacobi identity[{
Qiα, Q̄

j

β̇

}
, Br

]
−
{[
Q̄j

β̇
, Br

]
, Qiα

}
+
{
[Br, Qiα] , Q̄

j

β̇

}
= 0

yields (b∗r)
j
i = (br)i

j . Hence the matrices Br are hermitian and the largest possible
internal symmetry group which acts on the supersymmetry generators is U(N).

In the case of N = 1 supersymmetry, one recovers (4.1) since Z, being antisymmet-
ric, vanishes (Z = −Z): there are no nonvanishing central charges. Also, by rescaling
the generators Br by (br)11, one obtains from (4.9)

[Qα, Br] = Qα[
Q̄α̇, Br

]
= −Q̄α̇.

There is only one independent combination R of the generators Br which acts non-
trivially on the supersymmetry charges

[Qα, R] = Qα[
Q̄α̇, R

]
= −Q̄α̇. (4.10)

Thus N = 1 supersymmetry possesses an internal global U(1) symmetry known as
the R-symmetry: Qα has R-charge +1 and Q̄α̇ has R-charge −1. We will see later
the important rôle played by this symmetry (see Section C.2.3 of Appendix C and
Chapter 8).

4.2 Supermultiplet of currents
The supersymmetry current plays an important rôle when we discuss the issue of
supersymmetry breaking. A key property is that it belongs itself to a supermultiplet,
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known as the supermultiplet of currents. This is related to the fact that supersym-
metry is a spacetime symmetry: since two supersymmetries give a translation, the
supersymmetry transformation of the supersymmetry current should give the space-
time translation current, i.e. the energy–momentum tensor.

To be more explicit, the supersymmetry transformation of the supersymmetry
current Jrµ reads (as in (A.17) of Appendix Appendix A)

δJrµ = iε̄s {Qs, Jrµ} . (4.11)

Integrating the zeroth component over space, we obtain∫
d3x δJr0 = iε̄s {Qs, Qr} = −i

{
Qr, Q̄s

}
εs

= −2i (γνε)r Pν =
∫
d3x [−2i (γνε)r Θ0ν ] . (4.12)

We deduce that the transformation of the supersymmetry current includes the follow-
ing term:

δJrµ = −2i (γνε)r Θµν + · · · (4.13)

This shows that the supersymmetry current belongs to the same multiplet as the
energy–momentum tensor. A simple count of the number of fermionic (Jrµ) and
bosonic (Θµν) degrees of freedom shows that one is missing some bosonic compo-
nents. One can then note that the algebra for the R-symmetry, which can be written
with Majorana spinors as

[Qr, R] = −γ5rsQs, (4.14)

gives, along the same reasoning as before, the supersymmetry transformation of the
R-current:

δJRµ = −iε̄rγ5rsJsµ + · · · (4.15)

Indeed, the currents (Θµν , Jrµ, J
R
µ ) form the supermultiplet of currents.

Let us note that the trace of the energy–momentum tensor transforms under
supersymmetry into γµJRµ : from (4.13), we deduce

δ
(
γµJRµ

)
= −2i (γµγνε)Θµν + · · · = −i {γµ, γν} ε Θµν + · · ·
= −2iε Θµ

µ + · · · (4.16)

As is recalled in Section A.5.1 of Appendix Appendix A, the tracelessness of the
energy–momentum tensor ensures conformal symmetry. In a supersymmetric context,
the two algebraic constraints

Θµ
µ = 0, γµJRµ = 0 (4.17)

lead to the superconformal algebra.
We first note that (Θµν , Jrµ, J

R
µ ) describe an equal number of bosonic and fermionic

degrees of freedom. The symmetric tensor Θµν has 10 independent components minus
4 for current conservation (∂µΘµν = 0) minus 1 for the tracelessness condition, that is



BINE: “CHAP04” — 2006/10/5 — 18:52 — PAGE 57 — #5

Representations of the supersymmetry algebra 57

five degrees of freedom. Similarly, Jrµ accounts for 16−4−4 = 8 and JRµ for 4−1 = 3.
The full supersymmetry transformations read

δJRµ = −iε̄rγ5rsJsµ,

δJrµ = −2i (γνε)r Θµν − (γνγ5ε)r ∂νJ
R
µ − i

2
εµνρσ (γνε)r ∂

ρJRσ,

δΘµν = −1
4
(ε̄ σµρ∂ρJν + ε̄ σνρ∂

ρJµ) . (4.18)

Introducing the currents (see (A.222) and (A.225) in Appendix Appendix A)

Dµ = xρΘµρ, Kµν = 2xµxρΘρν − x2Θλµ, Srµ = ixνγ
ν
rsJsµ, (4.19)

and the corresponding charges

D =
∫
d3x D0, Kµ =

∫
d3x Kµ0, Sr =

∫
d3x Sr0, (4.20)

we may derive the following (anti)commutation relations4

[Q,Mµν ] = iσµν Q, [S,Mµν ] = iσµν S,

[Q,D] =
i

2
Q, [S,D] = − i

2
S,

[Q,Pµ] = 0, [S, Pµ] = γµQ,

[Q,Kµ] = γµS, [S,Kµ] = 0, (4.21)
[Q,R] = −γ5Q, [S,R] = γ5S,{
Q, Q̄

}
= 2γµPµ,

{
S, S̄

}
= 2γµKµ,{

S, Q̄
}
= 2iD + 2iσµνMµν− 3γ5R. (4.22)

This, together with (2.10) of Chapter 2 and (A.230) of Appendix Appendix A, gives
the algebra of conformal supersymmetry.

4.3 Representations of the supersymmetry algebra
Remember that, in the case of the Poincaré algebra, representations are classified
according to the mass operator

P 2 = Pµ Pµ

and the spin operator which is built out of the Pauli–Ljubanski operator

Wµ = − 1
2 εµνρσ Pν Mρσ. (4.23)

W 2 has eigenvalues−m2j(j+1) for massive states of spin j = 0, 12 , 1, . . . andWµ = λPµ
for massless states of helicity λ.

Of the two “Casimir” operators, when we go supersymmetric, P 2 remains
unchanged since it commutes with supersymmetry, whereas W 2 includes some extra
contributions.

4We do not include the commutators of R with the generators of the algebra of the conformal
group (Pµ, Mµν , D and Kµ) since they all vanish.
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4.3.1 Massless states, in the absence of central charges
We choose a special frame where Pµ = (E, 0, 0, E). Then {Qiα, Q̄

j
α̇} = 2δji σµαα̇ Pµ

reads:

{Qi1, Q̄
j

1̇
} = 4 δjiE

{Qi2, Q̄
j

2̇
} = 0. (4.24)

Defining

ai ≡
Qi1

2
√
E
, aj† ≡

Q̄j

1̇

2
√
E
,

we have from (4.24)

{ai, aj†} = δji , {ai, aj} = 0 = {ai†, aj†}.
Note that aj† is in the representation (0, 1/2) ≡ 2R and carries helicity5 λ = +1/2,
whereas ai is in the representation (1/2, 0) ≡ 2L and carries helicity λ = −1/2.

Let us consider a state |Ω0〉 ≡ |E, λ0〉, of energy E and helicity λ0, “annihilated”
by the ai : ai|Ω0〉 = 0. By successive applications of the N “creation” operators aj†,
j = 1 · · ·N , one obtains the states

aj†|Ω0〉 = |E, λ0 +
1
2
, j〉 : N states

aj1† aj2†|Ω0〉 = |E, λ0 + 1; j1j2〉 :
1
2
N(N − 1) states

aj1† · · · ajk†|Ω0〉 = |E, λ0 +
k

2
; j1 · · · jk〉 :

(
N

k

)
=

N !
k!(N − k)!

states

a1† · · · aN†|Ω0〉 = |E, λ0 +
N

2
〉 :
(
N

N

)
= 1 state.

We thus have constructed a set of
N∑
k=0

(
N
k

)
= 2N states which form a representation of

supersymmetry6.

Let us consider several examples:
• N = 4 λ0 = −1 vector supermultiplet

λ −1 −1/2 0 +1/2 +1
no. of states 1 4 6 4 1

Note that for N > 4, there is at least one field of spin 3/2 which does not allow
renormalizable couplings: hence, renormalizable theories are found only forN ≤ 4.
Also for N > 8, there is at least one field of spin 5/2; such fields are not known to
have consistent couplings to gravity. Hence consistent theories of (super)gravity
require N ≤ 8.

5For massless states, Wµ = λPµ.
6Since, for any state |Φ〉, 0 = 〈Φ|{Qi2, Q̄i2̇}|Φ〉 = |Qi2|Φ〉|2 + |Q̄i

2̇
|Φ〉|2, we have Qi2|Φ〉 =

Q̄i
2̇
|Φ〉 = 0.
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• N = 2 λ0 = − 1
2 hypermultiplet

λ −1/2 0 1/2
no. of states 1 2 1

All the preceding supermultiplets meet the following CPT theorem requirement: for
every state of helicity λ, one should have a parity reflected state of helicity −λ. They
are CPT self-conjugate.
• N = 2 λ0 = −1

λ −1 −1/2 0
no. of states 1 2 1

This supermultiplets does not satisfy the requirement above. One must add to it
a supermultiplet built from |Ω′

0〉 = |E, λ0 = 0〉

λ 0 1/2 1
no. of states 1 2 1

In total, one obtains a N = 2 vector supermultiplet

λ −1 −1/2 0 1/2 1
no. of states 1 2 2 2 1

Hence a non-CPT self-conjugate supermultiplet has 2N+1 helicity states.

• N = 1, λ0 = − 1
2

Similarly, one obtains by including the CPT conjugate (λ0 = 0)

λ −1/2 0 1/2
no. of states 1 2 1

which describes the chiral supermultiplet.

• N = 1, λ0 = −1, 12 (to include the CPT conjugate)

λ −1 −1/2 1/2 1
no. of states 1 1 1 1

which describes the vector supermultiplet.

We should note that all the degrees of freedom discussed here are on-shell degrees
of freedom.
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4.3.2 Massive states, in the absence of central charges

In this case, one chooses a rest frame where Pµ = (m, 0, 0, 0) andW 2 = −m2J2, where
the Lorentz generators (Ji) = (M23,M31,M12) form a SO(3) ∼ SU(2) algebra.

The only nontrivial anticommutator relation is now

{Qiα, Q̄
j

β̇
} = 2m δji δαβ̇

which defines 2N “annihilation” and “creation” operators aiα = Qiα/
√
2m and aj†

β̇
=

Q̄j

β̇
/
√
2m satisfying

{aiα, aj†β̇ } = δij δαβ̇ .

Under the spin group SU(2), the creation operators behave like a doublet

aj†
1̇
∼ Q̄j

1̇
J = 1/2 J3 = −1/2,

aj†
2̇
∼ Q̄j

2̇
J = 1/2 J3 = +1/2.

In a way similar to the preceding case, one may therefore construct 22N states out
of a state |Ω0〉 of given spin j0.

Let us take the case N = 1 for simplicity and consider a state |Ω0〉 of total spin j0
annihilated by the Qα. One may therefore form

|Ω0〉 spin j0

a†
β̇
|Ω0〉 spin j0 ±

1
2

(
if j0 ≥

1
2

)
a†
β̇
a†
γ̇ |Ω0〉 = −1

2
εβ̇γ̇

(
a†
α̇ a†α̇

)
|Ω0〉 spin j0.

In the last line, we have used the fact that the indices β̇ and γ̇ are necessarily distinct
and that a†

α̇ a†α̇ is a scalar entity (spin 0) made out of two spin 1
2 objects.

We have for example constructed:

• a massive chiral supermultiplet (j0 = 0)

j 0 1/2
no. of states 2 1

no. of degrees of freedom 2 2

• a massive vector supermultiplet (j0 = 1
2 )

j 0 1/2 1
no. of states 1 2 1

no. of degrees of freedom 1 4 3
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Let us note that the latter field content is compatible with the supersymmetric
version of the Higgs mechanism. With a massless Higgs chiral superfield (two scalar
and two spin 1/2 degrees of freedom) and a massless vector superfield (two spin 1/2
and two spin 1 degrees of freedom), we can make a massive vector superfield where one
scalar component provides the missing longitudinal degree of freedom of the vector
particle.

In the case of general N , starting again from a state |Ω0〉 of total spin j0, we
construct a state of maximal spin j = j0 +N/2 in the form of a1†

2̇
· · · aN†

2̇
|Ω0〉. Thus,

in the absence of central charges, massive multiplets of N > 1 supersymmetry always
contain fields of spin larger or equal to 1.

4.3.3 Massive states in the presence of central charges

In this case, the supersymmetry charges cannot be straightforwardly interpreted as
creation and annihilation operators. We consider here only the case N even. Through
a unitary transformation [388], one first puts the antisymmetric matrix Zij into the
form

Z =
(

0 D
−D 0

)

where D =

 z1
zr

zN/2

, with all eigenvalues real and positive.

The index i of the supersymmetry charges is then substituted to (ar) where a = 1, 2
and r = 1, . . . , N/2. The supersymmetry algebra (4.2, 4.7) reads

{Qαar, Q̄
bs
β̇
} = 2 δba δ

s
r σ

µ

αβ̇
Pµ,

{Qαar, Qβbs} = εαβ εab δrs zr, (4.25)
{Q̄ar

α̇ , Q̄bs
β̇
} = εα̇β̇ εab δrs zr

where [εab] = [εab] = iσ2.
One easily checks that massless representations are only compatible with zr = 0

(see Exercise 6).
For massive representations, one works again in the frame where Pµ = (m, 0, 0, 0).

Introducing the combinations

A±
αr =

1√
2

(
Qα1r ± Q̄α̇2r) , (4.26)

the only nontrivial anticommutation relations are{
A±
αr,
(
A±
βs

)†}
= δαβ δrs (2m∓ zr). (4.27)

Hence necessarily zr ≤ 2m.

• When zr < 2m, the multiplicities are the same as in the case of no central charge,
i.e. 22N (2j + 1). One describes them as long multiplets.
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• When zr = 2m for some or all zr, the multiplicity is decreased. For example, if
there are n0 central charges that saturate the bound, i.e. such that zr = 2m, the
multiplicity is decreased to 22(N−n0)(2j + 1) and one speaks of short multiplets.
Such states are called BPS-saturated states because of their connection with BPS
monopoles, as we will see in the Section 4.5.

As an example, we may take for N = 2 supersymmetry n0 = 1, j = 0 which corre-
sponds to the hypermultiplet constructed in the next section.

4.4 Multiplets of N = 2 supersymmetry
Extended supersymmetries play an important rôle in the understanding of the nonper-
turbative aspects of supersymmetric theories, as well in supersymmetric models arising
from higher dimensional theories, such as string theories. In this section, we construct
the basic N = 2 supermultiplets [147, 327] by combining the N = 1 supermultiplets
that we are now acquainted with.

4.4.1 Vector supermultiplet

We have encountered the N = 2 vector supermultiplet in Section 4.3.1 above. It is
easy to check from the field content that it can be decomposed into a N = 1 vector
and N = 1 chiral supermultiplets:

λ −1 −1/2 0 1/2 1
N = 2 vector 1 2 2 2 1
N = 1 vector 1 1 0 1 1
N = 1 chiral 0 1 2 1 0

We may thus try to construct an N = 2 supersymmetric action out of a N = 1 vector
supermultiplet (Aa

µ, λ
a, Da) and a N = 1 chiral supermultiplet (φa, ψa, F a) in the

adjoint representation. We use equations (C.81) and (C.84) of Appendix C to write
the action

S =
∫
d4x

[∫
d2θ

1
4
Tr (WαWα) + h.c.

]
+
∫
d4x

∫
d4θ Φ†e2gV Φ

=
∫
d4xTr

(
−1
4
FµνF

µν + iλσµDµλ̄+
1
2
D2 +Dµφ†Dµφ+ iψσµDµψ̄ + F †F

)
−g Tr

(
D
[
φ†, φ

]
+
√
2ψ
[
λ, φ†]−√

2ψ̄
[
λ̄, φ

])
. (4.28)

We recall that the generators in the adjoint representation can be written as

(T a)bc = −iCabc (4.29)

where the Cabc are the structure constants defined, for any representation ta as[
ta, tb

]
= iCabctc. (4.30)
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Hence the covariant derivatives for λ ≡ λaT a, φ ≡ φaT a, ψ ≡ ψaT a read

Dµλ = ∂µλ− ig [Aµ, λ]
Dµφ = ∂µφ− ig [Aµ, φ] (4.31)
Dµψ = ∂µψ − ig [Aµ, ψ]

and the field strength Fµν ≡ F a
µνT

a

Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ] . (4.32)

Similarly, we have noted in (4.28) the auxiliary fields D ≡ DaT a and F ≡ F aT a.
We have chosen the normalizations of the vector and chiral actions in order to

normalize in the same way the λ and ψ fermion kinetic terms. In this way, the action
(4.28) has an O(2) symmetry which may be made more visible by writing λ ≡ λ1 and
ψ ≡ λ2.7

This is, however, not the U(2) symmetry that we expect (see Section 4.1 above). In
order to make the latter symmetry explicit, we must introduce symplectic Majorana
spinors. They are four-component spinors defined from two-component spinors λiα,
i = 1, 2, as

λi ≡
(
−iεijλjα
λ̄α̇i

)
, (4.33)

where εij is the antisymmetric tensor (ε12 = 1). They thus satisfy the condition

λi = iεijγ5Cλ̄
jT , (4.34)

where, as usual, C is the charge conjugation matrix, defined in (B.30) of Appendix B.
We may now rewrite the action (4.28) in an explicitly U(2) symmetric way. In

order to write later the supersymmetry transformations in a compact way, we redefine
the auxiliary fields as

F ≡ (P 1 − iP 2)/
√
2, D ≡ −P 3 + g

[
φ†, φ

]
, (4.35)

to form a triplet P r, r = 1, 2, 3 of U(2). Then, the action (4.28) reads

S =
∫
d4xTr

[
−1
4
FµνF

µν +
i

2
λ̄iγµDµλ

i +
1
2
DµADµA+

1
2
DµBDµB +

1
2

3∑
r=1

(P r)2
]

+
1
2
g2 Tr

(
[A,B]2

)
− i

2
g Tr

(
λ̄iγ5

[
λi, A

]
+ iλ̄i

[
λi, B

])
. (4.36)

where, as usual, we have denoted the scalar field φ = (A+ iB)/
√
2.

7Thus the interaction term in (4.28) involves for example
(
λ1aλ2b − λ2aλ1b)Cabc which is O(2)

invariant.
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This action is invariant under the followingN = 2 supersymmetry transformations:

δ
S
Aµ = ξ̄iγµγ5λ

i,

δ
S
A = i ξ̄iλi,

δ
S
B = −ξ̄iγ5λi, (4.37)

δ
S
λi = iσµνγ5ξ

iFµν − γµξiDµA− iγµγ5ξ
iDµB − igξi [A,B] + (P rσr)ij γ5ξj ,

δ
S
P r = −iξ̄i (σr)ij γµγ5Dµλ

j + igξ̄i (σr)ij
[
A+ iBγ5, λ

j
]
,

where the transformation parameter ξi, i = 1, 2, is a symplectic Majorana spinor:

ξi ≡
(
−iεijηjα
η̄α̇i

)
. (4.38)

The transformation with parameter η1α, η̄
1α̇ is simply the N = 1 supersymmetry trans-

formation that acts between the components of the chiral and vector supermultiplets
(see Exercise 7).

4.4.2 Hypermultiplet

Matter may be described by hypermultiplets which involve on-shell two complex scalar

fields φi, i = 1, 2, forming a doublet of U(2), and one Dirac fermion Ψ ≡
(
ψ1
α

ψ̄2α̇

)
.

Off-shell, this is complemented by two complex auxiliary fields F i, i = 1, 2, and the
supersymmetry transformation reads

δ
S
φi =

√
2 ξ̄iΨ,

δ
S
Ψ = −i

√
2 ξiF i − i

√
2γµξi ∂µφi, (4.39)

δ
S
F i =

√
2 ξ̄iγµ∂µΨ,

where the transformation parameter ξi, i = 1, 2, is again the symplectic Majorana
spinor of (4.38). Under the N = 1 supersymmetry transformation with parameter
η1α, η̄

1α̇, (φ1, ψ1
α, F

2) is a chiral supermultiplet whereas (iφ2, ψ̄2α̇,−iF 1) is antichiral.
The combination of two supersymmetry transformations takes the form

[δ1, δ2] = 2ξ̄k(1)γ
µξk(2) i∂µ + ξ̄k(1)ξ

k
(2) δz, (4.40)

where

δzφ
i = 2i F i

δzΨ = 2i γµ∂µΨ (4.41)
δzF

i = 2i �φi,

corresponds to a central charge:
[δ

S
, δz] = 0. (4.42)

The invariant Lagrangian is simply

L = ∂µφi∗∂µφ
i + F i∗F i + iΨ̄γµ∂µΨ−m

[
iφi∗F i − iF i∗φi + Ψ̄Ψ

]
. (4.43)
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We see that the supersymmetry algebra closes on shell only in the case of massless
fields (F i = 0, γµ∂µΨ = 0, �φi = 0). In the case of nonvanishing mass, one must take
into account the central charge. We note that

δ2z = −4� (4.44)

is the operator equivalent of the condition z2 = 4m2, or z = 2m found at the end of
the previous section to obtain short multiplets such as the hypermultiplet.

The U(2) symmetry is not compatible with any self-interactions of the hypermul-
tiplet. The only allowed interactions are gauge interactions. If we couple the hyper-
multiplet with the vector supermultiplet introduced in the previous subsection, the
Lagrangian (4.43) becomes, for m = 0,

L = Dµφi†Dµφ
i + F i†F i + iΨ̄γµDµΨ

+g
√
2 φi†λ̄iΨ+ g

√
2Ψ̄λiφi − gΨ̄(A− iγ5B)Ψ

−gφi† (σr)ij P rφj − g2φi†
(
A2 +B2)φi. (4.45)

The supersymmetry and central charge transformations (4.39) and (4.41) of the
hypermultiplet then include extra terms involving the gauge supermultiplet.

4.5 BPS states
Solitons, which can be defined as a (partially) localized and nondispersive concen-
tration of energy will play an increasingly important rôle in the remainder of this
book. Since they provide a beautiful illustration of the uses of short supermultiplets
we will take the opportunity to present some key notions using as examples kinks and
monopoles. This will allow us to illustrate important new notions such as BPS states,
moduli space, zero modes, duality, and their connection with supersymmetry.

4.5.1 Introduction: The kink solution and domain walls

We start by illustrating some of the basic methods used in this section by consider-
ing the simpler case of domain walls. Domain walls appear in models where a dis-
crete symmetry is broken: two regions of space which correspond to two different
ground states are separated by a sheet-like structure where energy is concentrated
(corresponding to the energy barrier between the two ground states). We take as
an example a real scalar field whose potential energy V (φ), being invariant under
the reflection φ ↔ −φ, has minima at φ = ± φ0 (φ0 > 0): when we need to be
more explicit, we choose V (φ) = 1

2λ(φ
2 − φ20)

2. We will assume that the domain
wall is flat and parallel to the y–z plane. The problem becomes 1 + 1 dimensional,
i.e. depends only on time t and on the spatial coordinate x and we can write the scalar
field action

S =
∫
dt

∫ +∞

−∞

{
1
2

(
∂φ

∂t

)2

− 1
2

(
∂φ

∂x

)2

− V (φ)

}
dx. (4.46)
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The corresponding energy per unit area reads:

E =
∫ +∞

−∞

[
1
2

(
∂φ

∂t

)2

+
1
2

(
∂φ

∂x

)2

+ V (φ)

]
dx. (4.47)

Finiteness requires |φ| → |φ0| for x→ ±∞. We will be focussing our attention on the
kink (resp. antikink) solution where φ → ±φ0 (resp. φ → ∓φ0) as x → ±∞. This
twisted boundary condition stabilizes the solution: changing for example from −φ0
to +φ0 all the way to x → −∞ in a finite time would require an infinite amount of
energy. In other words

T ≡
∫ +∞

−∞
dx

∂φ

∂x
= φ(+∞)− φ(−∞) (4.48)

may be interpreted as a topological charge: being the integral of a total divergence, it
vanishes for topologically trivial backgrounds8.

One may try to solve the static equation of motion

d2φ

dx2
=

dV

dφ
(4.49)

which is second order. [47] has introduced a trick which allows us to identify a first or-
der equation and simplifies the task of finding an explicit solution in more complicated
situations. One may write (4.47) for the static solution φ(x)

E =
∫ +∞

−∞

1
2

[
dφ

dx
±
√
2V (φ)

]2
dx∓

∫ φ(+∞)

φ(−∞)

√
2V (φ) dφ (4.50)

and conclude that

E ≥
∣∣∣∣∣
∫ φ(+∞)

φ(−∞)

√
2V (φ) dφ

∣∣∣∣∣ (4.51)

the equality being obtained for

dφ

dx
= ∓

√
2V (φ) (4.52)

where the sign is chosen in order to obtain the absolute value in (4.51) and depends
on the asymptotic values of φ: the choice φ(±∞) = ±φ0 yields a plus sign.

We have thus obtained a bound on the energy which depends only on the asymp-
totic values of the field. Moreover, any solution of (4.52) minimizes E and thus the

8More precisely, we may define a current jµ = εµν∂νφ where εµν is the antisymmetric tensor with
two indices (µ = 0 for t and 1 for x). This current is conserved by construction: ∂µjµ = εµν∂µ∂νφ = 0.
Thus the topological charge T is conserved: T =

∫
dx j0.
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action S in the static case: it is therefore a solution of the equation of motion (4.49)
as can be checked directly. In the specific case considered, one finds

φ(x) = φ0 tanh
[
m(x− x0)/

√
2
]

(4.53)

where we have introduced the mass of the φ excitation: m =
√
2λφ0. The energy (rest

mass) per unit area is obtained directly from the boundary value (4.51):

E =
4
3

√
λ φ30 =

√
2
3

m3

λ
. (4.54)

Note that, for a given value of the elementary excitation mass, the soliton rest mass is
inversely proportional to the coupling λ: the smaller the coupling, the larger the mass.
This is to be contrasted with the standard situation of the Higgs mechanism where
masses are proportional to couplings.

The kink is thus characterized by the unique collective coordinate x0 which fixes
the position of the domain wall (i.e. where energy is localized). One calls such a
collective coordinate a modulus and the space of solutions of minimal energy (for a
given topological charge) is referred to as the moduli space: in this case, since x0 ∈ R,
it is isomorphic to R.

A boost in the x direction may move this position to any arbitrary value. Thus, one
may turn the static solution into a dynamical one by letting x0 be time-dependent:
x0(t). This motion in moduli space corresponds to an adiabatic evolution through
the space of static solutions. Of course, other time dependent configurations of the
system may be considered but this motion dominates at long wavelength over all other
excitations: it corresponds to a massless fluctuation around the kink solution, what
we will call later a zero mode. If we want to quantize around the kink background, we
must first factor out this type of mode [316].

Replacing φ(x, t) by φ(x) in (4.53) with x0 = x0(t), one obtains for the action
(4.46)

S =
4
3

√
λ φ30

∫
dt

[
1
2

(
dx0
dt

)2

− 1

]
(4.55)

which is, up to an additive constant, the action of a nonrelativistic particle.
The analysis has been conducted until now at the classical level: for example, the

estimate of the rest mass of the soliton has been purely classical. We will now see that
one can go further in the context of supersymmetry. Indeed, if we turn supersymmet-
ric, we must replace the action (4.46) by a supersymmetric two-dimensional action.
For simplicity, in what follows, we simply ignore the two extra spatial dimensions
associated with the domain wall. The action reads:

S =
∫
d2x

[
1
2
(∂µφ)

2 +
1
2
ψ̄i/∂ψ − 1

2
W ′2(φ)− 1

2
W ′′(φ)ψ̄ψ

]
(4.56)

where µ = 0, 1 correspond to the variables x0 ≡ t and x1 ≡ x, respectively, and ψ is
a Majorana fermion in two dimensions. The scalar potential is, as usual, written in
terms of the superpotential V (φ) = W ′2(φ)/2. We recover the previous potential for
W (φ) =

√
λ(φφ20 − φ3/3).
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One can then define [368] (see Problem 1) a supersymmetry charge with compo-
nents Q+, Q− satisfying

Q2
+ = P+, Q2

− = P−

Q+Q− +Q−Q+ = Z (4.57)

where P± ≡ P0 ± P1 and

Z =
∫
dx 2W ′(φ)

∂φ

∂x
=
∫
dx

∂

∂x
[2W (φ)] . (4.58)

Note that Z is of a topological nature, much in the way of the charge T introduced
in (4.48). It vanishes for topologically trivial backgrounds but is nonzero for the kink:
for W (φ) =

√
λ(φφ20 − φ3/3), we have Z = 8

√
λφ30/3.

Now, using the algebra (4.57), one has

P+ + P− = (Q+ ±Q−)
2 ∓ Z ≥ |Z|. (4.59)

Thus at rest, since P+ = P− = E, we find

E ≥ 1
2
|Z| =

∣∣∣∣∫ √2V (φ) dφ
∣∣∣∣ (4.60)

just as in (4.51). This inequality is saturated for all states |α〉 satisfying

(Q+ ±Q−) |α〉 = 0. (4.61)

The kink solution satisfies this equation with a − sign. The orthogonal combination
is broken by the kink solution: indeed, the domain wall obviously breaks translational
invariance in the x direction.

We now turn to truly four-dimensional examples. In this case, the rôle of the
topological charge is played by the electric or magnetic charge. Indeed, the electric
charge can be written as a surface integral: using Gauss’ law, one may write for the
electric charge

Qe =
∫
d3x ∂iEi =

∫
dSiEi, (4.62)

which can be compared with the two-dimensional case just discussed, equation (4.58).
A discussion of the magnetic charge requires some background on magnetic monopoles
which we now present.

4.5.2 Monopoles and the Dirac quantization condition

Magnetic monopoles appear naturally when one tries to introduce sources that
respect the electric–magnetic duality observed in Maxwell equations in the vacuum.
We start by reviewing the argument: this notion of duality will play an important rôle
in subsequent chapters (see Chapter 8).
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Maxwell equations in the vacuum

∂µF
µν = 0, ∂µF̃

µν = 0, F̃µν ≡ 1
2εµνρσF

ρσ (4.63)

are invariant under the duality transformation

Fµν → F̃µν . (4.64)

This may be rephrased in terms of the electric F 0i = −Ei and magnetic F ij = −εijkBk

fields9:
E→ B, B→ −E, (4.65)

which may be generalized to the continuous transformation

E′ + iB′ = eiθ (E+ iB) . (4.66)

However, introducing charged matter through the current jµE

∂µF
µν = jνE , ∂µF̃

µν = 0 (4.67)

introduces an imbalance between electric and magnetic. At the classical level, the
obvious solution is to introduce magnetic sources through a magnetic current jνM
in the right-hand side of the second equation. This is not as straightforward in the
quantum theory because the wave equation for a charge particle involves the vector
potential Aµ which is ill-defined once one introduces magnetic charges; indeed, if the
vector potential A is uniquely defined, we can surround any magnetic charge Qm by
a closed surface S and write

Qm =
∫
S

B.dS =
∫
S

∇∧A.dS = 0. (4.68)

However, the description of the electromagnetic field by the potential Aµ is redundant:
it is the famous gauge invariance A′

µ = Aµ− ∂µα. Since Aµ and A′
µ describe the same

physical reality, we may use either of them in different parts of space, under the
condition that one makes sure that there is full compatibility in overlapping regions.
This is precisely what one does in the presence of magnetic charges since A cannot be
uniquely defined.

Let us consider a magnetic monopole Qm. As shown on Fig. 4.1, we draw a closed
surface around the monopole and consider a plane going through the monopole. The
vector potential is A(1) above the plane and A(2) below: in order that the electromag-
netic field be uniquely defined, we must have A(1) − A(2) = ∇α. The plane divides
the surface between an upper hemisphere S(1) and a lower sphere S(2): S(1) ∩ S(2) is
a curve C parametrized by an angle φ (0 ≤ φ ≤ 2π). Then

Qm =
∫
S(1)∪S(2)

B.dS =
∫
S(1)

B.dS+
∫
S(2)

B.dS

=
∫
C

(
A(1) −A(2)

)
.dl = α(2π)− α(0). (4.69)

9Note that the square of this transformation corresponds to charge conjugation.
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m

(1)

(2)

S

S

C
Q

φ

Fig. 4.1 Closed surface around a magnetic monopole

Under the gauge transformation, the wave function corresponding to a field of electric
charge Qe transforms as

ψ′(x) = eiQeα/�ψ(x). (4.70)

Requiring such wave functions to be single-valued (as φ→ φ+ 2π) implies that

QeQm = 2nπ�, n ∈ Z, (4.71)

which is the famous Dirac quantization condition [118, 381]: the presence of a single
monopole imposes that all electric charges are multiples of a given unit of charge
(2π�/Qm). This gives a rationale for the problem of the quantization of charge men-
tioned in Chapter 1. We will encounter a seemingly different reason when we discuss
grand unified theories in Chapter 9 but we will see that, at a deeper level, the two
solutions coincide.

Until now, we have only considered electric charges and magnetic monopoles. One
may envisage the presence of dyons [241], i.e. objects with both electric charge Qe

and magnetic charge Qm. If we have two dyons, the Dirac quantization condition
becomes [332,390]:

Qe1Qm2 −Qe2Qm1 = 2nπ�, n ∈ Z. (4.72)

We deduce that, if the theory has electrons of charges (−e, 0), then the quantization
reads, for any dyon field (Qe, Qm): Qm = 2nπ�/e. Let us consider for example the
dyon (Qe, 2π�/e) and assume that we have CP invariance. Under CP, the electric
charge is odd whereas the magnetic charge is even. We thus also have a dyon (−Qe,
2π�/e). Applying the quantization condition (4.72) to this pair, we obtain Qe = ne/2:
such dyons must have integer or half-integer charge.

Moreover, applying again the quantization condition to (Qe, 2π�/e) and (Q′
e,

2π�/e), we obtain Qe − Q′
e = ne. Hence all of them must have integer charges, or

have half-integer charges.
However, if there is a source of CP violation, we may expect that there will be

a departure from these quantized values. Witten [370] has in particular stressed the
importance of adding the CP violating term

δL = −θ e2

32π2
FµνF̃µν , (4.73)
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which gives a contribution of order θ to the dyon mass. We will return in more details
to this issue in Section 4.5.7.

4.5.3 Monopoles in the Georgi–Glashow model

In order to be able to consider the magnetic charge as a topological charge, we need
to unify the electromagnetic U(1) symmetry as part of a larger nonabelian symmetry.
The simplest case is the model of [180] (see also Exercise 9 of Appendix Appendix A)
with a SU(2) gauge symmetry. We note that, in such cases, the monopole is a solution
of the field equations and therefore must exist, in the context of these theories. From
now on, we set � = 1.

The Lagrangian of the Georgi–Glashow model reads

L = −1
4
F a
µνF

aµν − θ

32π2
g2F a

µνF̃
aµν +

1
2
DµφaDµφ

a − V (φ), (4.74)

where (a = 1, 2, 3)

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gεabcAb

µA
c
ν (4.75)

Dµφ
a = ∂µφ

a + gεabcAb
µφ

c, (4.76)

and
V (φ) =

λ

4
(
φaφa − a2

)2
. (4.77)

The corresponding Euler equations are

DµF
aµν = −gεabcφbDνφc

(DµDµφ)
a = −λφa

(
φbφb − a2

)
, (4.78)

where DµF
aµν is defined in (A.57) of Appendix Appendix A (as is well known, the

θ term does not contribute to the equation of motion thanks to the Bianchi identity
DµF̃

aµν = 0).
The symmetric energy–momentum tensor simply reads:

Θµν = −F aµρF aν
ρ +DµφaDνφa − gµνL. (4.79)

If we want to find the ground state, we must minimize the energy density

Θ00 =
1
2
(Ea

i E
a
i +Ba

i B
a
i +D0φ

aD0φ
a +Diφ

aDiφ
a) + V (φ), (4.80)

with standard definitions for the electric and magnetic fields (see the preceding section):
Ea
i = −F a0i, Ba

i = − 1
2εijkF

ajk. Hence the vacuum corresponds to a vanishing gauge
field and a constant scalar field value that minimizes the potential: 〈φaφa〉 ≡ a2,
which defines a two-sphere S2

vac. For example, φ
3 = a �= 0 and φ1 = φ2 = 0 breaks

SU(2) to U(1) and gives a mass ag to the fields W±
µ ≡

(
A1
µ ∓ iA2

µ

)
/
√
2, where the

index ± refers to the charge under the U(1) symmetry. The field Aµ ≡ A3
µ remains

massless.
We are interested in finite energy configurations. Obviously, for the energy to

remain finite, each term in (4.80) must fall off faster than 1/r2 at infinity. On the
surface at infinity, the two-sphere S2

∞, we must recover the vacuum. Hence a finite
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energy configuration defines a mapping φa: S2
∞ → S2

vac. Such a map is characterized
by an integer, the winding number n, which counts the number of times one wraps
one sphere around the other. This can be expressed as

n =
1
8π

∫
S2∞

dSiεijkε
abcφ̂a∂j φ̂

b∂kφ̂
c (4.81)

where φ̂a ≡ φa/a. Note that this expression is invariant under a small change δφ̂a of
the unit vector φ̂a: it is a topological invariant10.

We may express this in a more mathematical way. We first note that the vector φ̂a

which describes the vacuum parametrizes the coset group G/H = SU(2)/U(1) in the
breaking of G = SU(2) to H = U(1) (see Section A.2.3 of Appendix Appendix A).
We have thus defined a mapping from S2

∞ to SU(2)/U(1). The group of inequivalent
mappings (i.e. mappings which cannot be deformed continuously into one another)
from the k-sphere Sk to a manifoldM (such as G/H) is called its kth homotopy group
and noted πk(M). We have just established that π2(SU(2)/U(1)) is isomorphic to Z.

We must have in particular

Diφ̂
a = ∂iφ̂

a + gεabcAb
i φ̂

c ∼ 0 (4.82)

on the surface at infinity. This is solved by

Aa
i ∼ −1

g
εabcφ̂b∂iφ̂

c + φ̂aAi (4.83)

where Ai is a SU(2) invariant potential. We then deduce from (4.82) that, at large dis-
tances, the field strength is aligned along the scalar field11, that is along the direction
of unbroken U(1) symmetry:

F a
ij = φ̂aFij (4.84)

with
Fij = ∂iAj − ∂jAi −

1
g
εabcφ̂a∂iφ̂

b∂j φ̂
c. (4.85)

The magnetic charge corresponding to this field configuration is expressed in terms of
the winding number n given in (4.81) as:

Qm =
∫
S2∞

BidSi = −1
2

∫
S2∞

εijkdSiFjk =
1
2g

∫
S2∞

dSiεijkε
abcφ̂a∂j φ̂

b∂kφ̂
c =

4πn
g

.

(4.86)
which corresponds to the Dirac quantization condition (4.71) since, in this theory,
fields in the fundamental of SU(2) (not introduced here) would have an electric charge
Qe = g/2. We conclude that the finite energy configurations of the Georgi–Glashow
model are the magnetic monopoles.

10Since φ̂a is a unit vector, δφ̂a, and its spatial derivatives all lie in the plane perpendicular to φ̂a:
thus δn = 0.
11Using (A.51) of Appendix Appendix A and (Ta)bc = −iεabc in the adjoint representation of

SU(2), we have

0 = [Di, Dj ]ab φ̂b = −gεabcφ̂bF cij = −g
(
φ̂ ∧ Fij

)a
.
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More generally, if the symmetry group of a theory is G and the unbroken subgroup
H, then monopoles exist if the second homotopy group π2(G/H) is nontrivial, i.e. not
reduced to the identity. If G is simply connected (i.e. any loop can be continuously
deformed into a point: π1(G) is trivial) such as SU(n) or any simple compact connected
Lie group besides SO(n), then

π2(G/H) = π1(H). (4.87)

For example, if H = U(1), π1(U(1)) = Z, then monopoles exist and are characterized
by a integer n. This is what happens with the ’t Hooft–Polyakov model just discussed
or the breaking of the grand unified group SU(5) (see Chapter 9). If H = SO(n)
(n ≥ 3), π1(SO(n)) = Z2, there is a single type of monopole corresponding to the
nontrivial element −1 of Z2. If G is not simply connected, one may find useful the
following theorem: π2(G/H) is isomorphic to the kernel of the homomorphism of π1(H)
into π1(G) (a loop in H is naturally a loop in G).

4.5.4 BPS monopoles

We note that, according to (4.84), we may write the electric and magnetic charges
with respect to U(1) as

Qe =
1
a

∫
dSi E

a
i φ

a

Qm =
1
a

∫
dSi B

a
i φ

a. (4.88)

Following [47], we may derive a lower bound for the energy of the stationary config-
urations that we have just identified. For simplicity, we work in the temporal gauge12

Aa
0 = 0. We obtain for the energy density (4.80)

E = T + V,

T =
1
2

∫
d3x [∂0Aa

i ∂0A
a
i + ∂0φ

a∂0φ
a] , (4.90)

V =
1
2

∫
d3x [(Ba

i ∓Diφ
a)(Ba

i ∓Diφ
a) + 2V (φ)]±

∫
d3x Ba

i Diφ
a,

where we have separated the contribution which is quadratic in time derivatives
(“kinetic energy” T ) from the one which does not involve time derivatives (“potential”
V). Since, according to (4.88), aQm =

∫
d3x Ba

i Diφ
a, one obtains (choosing the upper,

respectively lower, sign for positive, respectively negative, magnetic charge):

E ≥ a |Qm| . (4.91)

12Accordingly, we must impose the Gauss law constraint, which corresponds to ensuring the A0
equation of motion (4.78):

Di (∂0Aai ) + gεabcφb∂0φc = 0. (4.89)
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The bound is saturated for states satisfying the Bogomol’nyi conditions

Ea
i = 0 , D0φ

a = 0 (4.92)
Ba
i = ± Diφ

a (4.93)

in the limit of vanishing potential V (φ). This limit is known as the Prasad–Sommerfield
limit [315] and the states which saturate the bound are thus known as BPS states.
The upper (lower) sign corresponds to the monopole (antimonopole) solution.

As we will emphasize later, the Prasad–Sommerfield condition of vanishing
potential is unstable under quantum fluctuations unless we are in a supersymmet-
ric context.

The Bogomol’nyi equations can be solved using the following static and spherically
symmetric ansatz:

φa(x) = aH(ξ)
xa

r
, Aa

0(x) = 0,

Aa
i (x) = εaij

xj

gr2
(1−K(ξ)) (4.94)

where r = |x| and H and K are functions of the rescaled radial variable ξ = agr.
Plugging this ansatz into the Bogomol’nyi equation (4.93) for the (anti)monopole
yields

H ′(ξ) = ∓ 1
ξ2
(K2 − 1)

K ′(ξ) = ∓ KH, (4.95)

the boundary conditions being H → 0, K → 1 as ξ → 0 and H → 1, K → 0 as ξ →∞.
The solution corresponding to the monopole (upper sign in the preceding equation)
reads:

H(ξ) = coth ξ − 1
ξ
, K(ξ) =

ξ

sinh ξ
. (4.96)

4.5.5 Moduli space

Before quantizing the monopole, we need to identify its collective coordinates.
The monopole solution which has been constructed in the previous subsection sits
at the origin but the translation invariance of the equations implies that a solution
with the same energy can be constructed at any point in space. Thus the spatial
coordinates of the monopole center of mass provide three collective coordinates.

Since the inclusion of these degrees of freedom does not change the (potential)
energy of the monopole, they are zero modes, or moduli, of the system and their
quantization requires a special treatment. Just as for the kink, the standard way [316]
is to start with the classical solution (4.94) which we denote φacl(x), A

a
i cl(x) and to

translate this solution to a time-dependent position X(t) to form the ansatz:

φa(x, t) = φacl (x−X(t)) , Aa
i (x, t) = Aa

i cl (x−X(t)) . (4.97)



BINE: “CHAP04” — 2006/10/5 — 18:52 — PAGE 75 — #23

BPS states 75

This represents, as long as the position X(t) is a slowly moving function, the
low energy ansatz obtained by integrating out the massive modes (i.e. ignoring in
the semiclassical approach contributions of order �ωi where ωi are the nonvanishing
frequencies associated with the eigenvalues of the double derivatives of the potential
energy, evaluated around the monopole solution). Substituting this ansatz into the
action yields

S =
∫
dtL =

∫
dt (T − V) = 4πa

g

∫
dt

[
1
2

(
dX(t)
dt

)2

− 1

]
. (4.98)

This is the moduli space approximation: the motion in moduli space is made at con-
stant potential energy since moduli are associated with the zero modes of the system.
One remains with a kinetic energy associated with the slow motion in moduli space
(here in position space).

In order to search for all the moduli fields, we adopt a more general strategy. We
start with the BPS monopole solution satisfying Ba

i = Diφ
a and deform it (Aa

i + δAa
i ,

φa+δφa) while keeping the potential energy fixed. Then, to first order, the Bogomol’nyi
equation yields:

−εijkDjδAak = Diδφ
a + gεabcδAb

iφ
c, (4.99)

where Di is the covariant derivative in the adjoint representation (DiX
a = ∂iX

a +
gεabcAb

iX
c).

This has to be complemented by the Gauss law constraint (4.89): writing for a
general modulus Z, as in (4.97),

φa(x, t) = φacl (x, Z(t)) , Aa
i (x, t) = Aa

i cl (x, Z(t)) , (4.100)

the constraint reads
Di (δAa

i ) + gεabcφbδφc = 0. (4.101)

A general deformation is a combination of spacetime translation and gauge trans-
formation (δAa

i = −(1/g)Diα
a, δφa = Cabcαbφc). We have already considered moduli

associated with spacetime translations. The only remaining modulus corresponds to
the gauge transformation exp [iχ(t)T aφa(x)/a]. We note that, since φa is nontriv-
ial at spatial infinity, this gauge transformation does not approach the identity: in
the standard language of gauge theories, this is a large gauge transformation which
relates two distinct physical points (by comparison, a small gauge transformation, i.e.
one that approaches the identity at spatial infinity, corresponds to a mere redundancy
in the description of physical states). Writing thus αa(x) = −χ(t)φa(x)/a, the new
modulus corresponds to the deformation13

δAa
i =

1
ga

Di [χ(t)φa(x)] , δφa = 0. (4.102)

It is straightforward to check that this satisfies the linearized Bogomol’nyi constraint
(4.99) (using the original equation Ba

i = Diφ
a) and the Gauss law constraint (4.101)

13In order to keep Aa0 = 0 we must complement the ansatz (4.100) with Aa0 = − 1
ga
χ̇(t)φa(x).
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(using the scalar field equation of motion (4.78) with vanishing scalar potential). We
see that the new coordinate is conjugate to the electric charge (just as the space
coordinates are conjugate to momentum): motion in moduli space generates momen-
tum and charge for the monopoles, which thus become dyons. We note that there are
no moduli corresponding to angular momentum: classical motion in moduli space does
not generate intrinsic angular momentum for the monopoles.

Since the unbroken U(1) gauge group is compact, χ has a compact range (typically
0 ≤ χ < 2π). Thus the corresponding space is the circle S1 and the full moduli space
for a single monopole14 is R

3 × S1. In the moduli space approximation, we now have

S =
4πa
g

∫
dt

[
1
2

(
dX(t)
dt

)2

+
1

2a2g2

(
dχ(t)
dt

)2

− 1

]
. (4.103)

We note that the corresponding plane waves are simply eiP·Xeineχ, with ne integer.
Charge is simply Qe = −ig∂χ: such plane waves correspond to dyons with charge Qe =
neg. We may also infer their masses in this approximation: since the corresponding
Hamiltonian is

H =
1
2

g

4πa
P2 +

1
2
ag3

4π
P 2
χ +

4πa
g

, (4.104)

where P and Pχ are the canonical momenta associated with X and χ, respectively,
the mass of the dyons is simply

M =
4πa
g

+
1
2
n2eag

3

4π
=

4πa
g

[
1 +

1
2
n2eg

4

16π2

]
. (4.105)

It can be showed [81] that the classical solutions of the equations of motion satisfy the
general Bogomol’nyi-type bound M ≥ a

√
Q2
e +Q2

m. We see that the dyons saturate
this bound: indeed, (4.105) is the expansion for g � 1 of the formula

M = a
√
Q2
e +Q2

m = a |Qe + iQm| , (4.106)

since Qm = 4π/g and Qe = neg.

4.5.6 Supersymmetry

The picture that emerged in the last section is likely to suffer some undesirable mod-
ifications once one includes quantum corrections. First, as already noted, radiative
corrections should generate a nonvanishing potential, thus contradicting the Prasad–
Sommerfield condition of vanishing potential. Similarly, the mass bounds should be
corrected by quantum fluctuations. Obviously, this makes such bounds less interesting.

We now know enough about supersymmetry to understand that it might provide
the extra ingredient required to control quantum corrections. Indeed, both vanishing
potentials and masses are protected by supersymmetry. Since we already have vector
(W±

µ and Aµ) and scalar (monopole) degrees of freedom, the natural set up, once one
includes fermionic degrees of freedom, is N = 2 supersymmetry.

14More generally, the moduli space of n monopoles is 4n-dimensional [357].
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We thus consider a N = 2 vector supermultiplet, whose action is written in (4.36)
(we will set P r = 0 and thus consider the on-shell action). We note that the condition
of vanishing potential requires [A,B] = 0, which may be satisfied for nonzero vacuum
expectation values of A and B. Supersymmetry ensures that this holds at the quantum
level.

Choosing the gauge symmetry group SU(2), as in the Georgi–Glashow model, we
may set the vacuum expectation value for B to zero. A nonzero value for A (say
〈A3〉 = a �= 0) breaks SU(2) to U(1). The supersymmetry current for the model
considered reads (see (3.37) in Chapter 3 and (C.73) in Appendix C):

Jµi = σρσFρσγµγ5λi +
1√
2
DρAγργµλi +

1√
2
DρBγργµγ5λi + gγµγ5 [A,B]λi. (4.107)

One may then deduce the supersymmetry charge anticommutation relations, with
special attention to the boundary terms. Introducing

U =
∫
d3x ∂i

(
AaF a

0i +Ba 1
2
εijkF

a
jk

)
V =

∫
d3x ∂i

(
Aa 1

2
εijkF

a
jk +BaF a

0i

)
, (4.108)

one obtains [369] {
Qri, Q̄sj

}
= δijγ

µ
rsPµ + εij

(
δrsU + γ5rsV

)
. (4.109)

Since we set B = 0, we have, using (4.88),

U = aQe, V = aQm. (4.110)

We see that, in (4.108), U and V play the rôle of central charges. We thus expect mass
bounds similar to the ones derived in subsection 4.3.3. Indeed, if we work in the frame
where Pµ = (M, 0, 0, 0), then (4.109) reads{

Qri, Q
†
sj

}
=Mδijδrs + aεij

[(
Qe + iγ5Qm

)
γ0
]
rs
. (4.111)

Since the left-hand side is positive definite, the eigenvalues of the right-hand side are
positive. But

[(
Qe + iγ5Qm

)
γ0
]2 =

(
Qe + iγ5Qm

) (
Qe − iγ5Qm

)
= Q2

e + Q2
m. The

eigenvalues are then M ±
√
Q2
e +Q2

m and one obtains the constraint

M ≥ a
√
Q2
e +Q2

m. (4.112)

Obviously states which saturate the bound are annihilated by at least one of the
supersymmetry generators.

We note that all states in the theory saturate the bound: for example, the photon
Aµ is massless whereas W±

µ has mass ga; and dyon masses are given by (4.106). This
explains what could have been seen as a puzzle otherwise. Indeed, we started with the
eight states of the (non-CPT self-conjugate) N = 2 vector supermultiplet: Aµ, λi, A,
B. Symmetry breaking gives mass to some of these states but does not provide the
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degrees of freedom necessary to form a (long) massive N = 2 vector supermultiplet,
which has 16 degrees of freedom. But these eight states form a short massive N = 2
supermultiplet, in presence of the central charges.

This also explains why the Bogomol’nyi bound remains unaffected by radiative
corrections or nonperturbative effects in this context. If it did, this would mean that
the mass spectrum departs from the one fixed by the central charges. The massive
states would then fall into long supermultiplets but we are lacking the necessary extra
degrees of freedom.

4.5.7 Montonen–Olive duality

Since magnetic monopoles carry magnetic charge, they generate a magnetic field which
should be described by a gauge theory. The coupling associated with this theory should
satisfy, according to (4.86),

gm =
4π
g
. (4.113)

A key property of this relation is that it exchanges strong and weak coupling regimes: if
the “electric” gauge symmetry is weakly coupled, then the “magnetic” gauge symmetry
is strongly coupled, and vice versa. This implies that the fundamental degrees of
freedom of both theories are not simultaneously accessible: in the electric description,
the degrees of freedom of magnetic charge qm ≡ Qm/gm = ±1 (i.e. the magnetic
monopoles) arise as solitons; conversely, the gauge fields of charge qe ≡ Qe/g = ±1
should arise as solitons of the magnetic theory. It might seem surprising to find here
topological solitons with spin. It is well-known [223, 236] that, in the context of the
quantum theory, monopoles convert isospin into spin.

Making full use of the mass spectrum derived above, i.e. M = a |Qe + iQm|, we
may represent the different fields on the lattice (qe, qm). The fundamental fields of the
electric gauge theory are located at points (0, 0) and (±1, 0) whereas the fundamental
fields of the magnetic gauge theory are found at (0, 0) and (0,±1). The sites off the
axis correspond to dyon states. The electric–magnetic duality encapsuled in (4.113)
appears in this diagram as the symmetry associated with a rotation of π/2. Such a
duality was conjectured by [288].

Besides the mass spectrum, a nontrivial check is provided by monopole interactions.
The force between two (positively charged) monopoles is velocity-dependent [281]: it
vanishes at rest. Duality would imply that the staticW+−W+ force vanishes as well. It
turns out that the standard Coulomb repulsion is cancelled by the force resulting from
Higgs exchange (note that, in the Prasad–Sommerfield limit, the Higgs is massless).

Obviously, it is crucial to the Montonen–Olive duality conjecture that the mass
formula does not receive contributions from radiative corrections or nonperturbative
effects. This is why it has to be considered in the supersymmetric context. We have
already discussed what N = 2 supersymmetry brings forth. It is only when one goes
to N = 4 supersymmetry that one finds monopole of spin 1 and thus a full realization
of Montonen–Olive duality [301]15. This goes beyond the scope of this chapter and we
refer the reader to the existing reviews on the subject (see for example [222]).

15Moreover the beta function of the N = 4 symmetric Yang–Mills theory vanishes, which settles
the question of whether the couplings that we have been using are running or not.



BINE: “CHAP04” — 2006/10/5 — 18:52 — PAGE 79 — #27

BPS states 79

Associated with the electric–magnetic duality, there is an interesting SL(2,Z) sym-
metry. To make it explicit, we must pay more attention to the θ-term (4.73). In the
Prasad–Sommerfield limit (V = 0), the Georgi–Glashow Lagrangian (4.74) may be
written

L = − 1
32π

Imτ
(
F aµν + iF̃ aµν

)(
F a
µν + iF̃ a

µν

)
+

1
2
DµΦaDµΦa, (4.114)

where we have rescaled the gauge fields by the coupling constant and

τ =
θ

2π
+

4πi
g2

. (4.115)

Since there is periodicity under θ → θ + 2π, the transformation τ → τ + 1 should
be a symmetry. Moreover, when θ = 0, the duality invariance ((4.113) with gm = g)
reads τ → −1/τ . These two transformations generate the group SL(2, Z) of projective
transformations:

τ → aτ + b

cτ + d
, a, b, c, d ∈ Z, ad− bc = 1. (4.116)

It has been noted by [370] that, once one restores a nonzero vacuum angle θ, the
monopole charge is shifted by an amount proportional to θ. To see this, we introduce
the charge N associated with the dyon collective coordinate χ introduced earlier.
Following (4.102), we have

N =
∫
d3x

1
ga

δL
δ∂0Aa

i

Diφ
a

=
1
ga

∫
d3xDiφ

aF a
0i +

θg

8π2a

∫
d3xDiφ

a 1
2
εijkF

a
jk

=
1
ga

∫
d3x∂i (φaF a

0i) +
θg

8π2a

∫
d3x∂i

(
φa

1
2
εijkF

a
jk

)
. (4.117)

This gives, using (4.88),

N =
1
g
Qe +

θg

8π2
Qm. (4.118)

Because n is associated with a gauge transformation about φa, and a SO(3) ∼
SU(2)/Z2 rotation of 2π is identity, we have the condition e2πN = 1. Hence N is
an integer ne and the charge is (Qm = 4π/g for a monopole)16

Qe = neg −
θg

2π
nm. (4.119)

16In the moduli space approximation, this gives Q = −ig∂χ − (gθ/2π)nm.
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We see that the BPS mass formula for a dyon (4.106) is now given by

M = a |ne + nmτ | , (4.120)

and the SL(2, Z) transformation acts on this integers as

(nm, ne)→ (nm, ne)
(
a b
c d

)−1

. (4.121)

Further reading
• M. Sohnius, Introducing supersymmetry, Phys. Rep. C 128 (1985) 39–204.
• J. A Harvey, Magnetic monopoles, Duality, and Supersymmetry, 1995 Trieste Sum-
mer School in High Energy Physics and Cosmology, p. 66–125.

Exercises
Exercise 1 Consider the quantity Tµν = ξασµνα

βξβ , where σµναβ is defined in (B.24)
of Appendix B. Show that (σµνε)αγ = (σµνε)γα. Infer that Tµν belongs to the repre-
sentation (1,0) of the Lorentz group.

This is what allowed us to write the decomposition (4.3).

Hint: Tµν = ξα (σµνε)αγ ξ
γ and [(1/2, 0)× (1/2, 0)]s = (1, 0).

Exercise 2 Use a Jacobi identity to prove that the matrices br defined in (4.9) provide
a representation of the internal symmetry algebra:

[br, bs] = iCrstbt.

Hints: Use [[Br, Bs], Qiα] + [[Bs, Qiα], Br] + [[Qiα, Br], Bs] = 0.

Exercise 3 We show in this exercise that the central charges Zij introduced in Sec-
tion 4.1 commute with all generators of the supersymmetry algebra; hence their name.
1. Prove that the subalgebra spanned by the Zij is invariant:

[Zij , Br] = (br)i
k Zkj + (br)j

k Zik. (4.122)

2. One decomposes the Zij on the internal symmetry generators:

Zij =
∑
r

arijBr. (4.123)

Use the relevant Jacobi identity to prove the following relation:∑
r

arij (b
∗
r)

k
l = 0. (4.124)
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3. Using in (4.124) the fact that Br is hermitian, prove that

[Zij , Qkα] = 0,
[
Zij , Q̄

k
α̇

]
= 0, (4.125)

[Zij , Zlm] = 0.

4. Deduce that
[Zij , Br] = 0. (4.126)

Hence Zij commutes with all generators.
5. Prove the following relation:∑

k

(br)i
kaskj + (br)j

kasik = 0. (4.127)

This relation shows that the N × N antisymmetric matrix as is invariant
under the internal symmetry group G. This imposes a symplectic structure on
the semisimple part of the corresponding algebra.

Using the fact that br is hermitian, equation (4.127) can be written as:∑
k

(br)i
kaskj = −

∑
k

asik (b
∗
r)

k
j . (4.128)

This is known as the intertwining relation since it shows that the matrix as

intertwines the representation br with its conjugate −b∗r .

Hints:

1. Use the Jacobi identity [{Qiα, Qjβ}, Br]−{[Qjβ , Br], Qiα}+{[Br, Qiα], Qjβ} = 0.
2.
[
{Qiα, Qjβ}, Q̄k

γ̇

]
+
[
{Qjβ , Q̄

k
γ̇}, Qiα

]
+
[
{Q̄k

γ̇ , Qiα}, Qjβ

]
= 0.

3. From (4.124),
∑

r a
r
ij (br)l

k = 0; and from (4.122),

[Zij , Zlm] =
∑
r

(br)i
karlmZkj + (br)j

karlmZik = 0.

4. The subalgebra spanned by the Zij is an invariant abelian subalgebra. It must
therefore belong to the abelian factor since the internal symmetry group G is the
product of a semisimple group (no abelian invariant subgroup) and an abelian
factor.

5. Write explicitly (4.122) using (4.126).
Exercise 4 In the construction of Section 4.3.1, show that there are 2N−1 bosonic states
(integer helicity) and 2N−1 fermionic states (half integer helicity).

Hint:

(1± 1)N =
[N/2]∑
k=0

(
N

2k

)
±

[N/2]−1∑
k=0

(
N

2k + 1

)
,

hence
[N/2]∑
k=0

(
N

2k

)
=

[N/2]−1∑
k=0

(
N

2k + 1

)
= 2N−1.
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Exercise 5 Write equation (III) of Section 2.2 of Chapter 2 in two-component notation:

[Qα,M
µν ] = i (σµν)α

βQβ ,[
Q̄α̇,Mµν

]
= i (σ̄µν)α̇ β̇Q̄

β̇ . (4.129)

Deduce the spin components of Q̄1̇ and Q̄2̇, i.e. the values of J3 ≡ M12 and J , as
indicated in Section 4.3.2.

Hint: Use (B.23) and (B.24) of Appendix B, as well as the explicit forms of σµ and σ̄µ.

Exercise 6 Prove that massless representations are only compatible with vanishing cen-
tral charges. For this purpose, choose the frame of Section 4.3.1 where Pµ = (E, 0, 0, E)
and show that Q2ar annihilates any state |Φ〉.
Hint: See the footnote 6 of Section 4.3.1; if Q2ar annihilates any state |Φ〉, then zr = 0
from (4.25).

Exercise 7 Show that the N = 2 supersymmetry transformations (4.37) include the
N = 1 supersymmetry transformations of the vector and chiral supermultiplets of
parameters η1α, η̄

1α̇ (given in equation (C.99) of Appendix C).

Hint: Using the fact that all fields belong to the adjoint representation and writing λ ≡
λ1, ψ ≡ λ2, φ ≡ (A+iB)/

√
2, F ≡ (F1+iF2))/

√
2, we obtain from the transformation

law (C.99) of Appendix C (with parameter η ≡ η1):

δ
S
A = η1λ2 + η̄1λ̄2,

δ
S
B = −i

(
η1λ2 − η̄1λ̄2

)
,

δ
S
λ2α =

√
2η1αF − i(σµη̄1)αDµA+ (σµη̄1)αDµB,

δ
S
F1 = −iη1σµDµλ̄

2 − iη̄1σ̄µDµλ
2 − g

[
A, η1λ1 − η̄1λ̄1

]
+ ig

[
B, η1λ1 + η̄1λ̄1

]
,

δ
S
F2 = η1σµDµλ̄

2 − η̄1σ̄µDµλ
2 − ig

[
A, η1λ1 + η̄1λ̄1

]
− g

[
B, η1λ1 − η̄1λ̄1

]
,

δ
S
Aµ = η1σµλ̄

1 − η̄1σ̄µλ
1

δ
S
λ1α = −η1αD − i

(
σµνη1

)
α
Fµν ,

δ
S
D = iη1σµDµλ̄

1 + iη̄1σ̄µDµλ
1,

which corresponds to the transformations (4.37) of parameter η1, once one uses the
four-component symplectic Majorana notation for spinors and the form (4.35) for the
auxiliary fields.

Exercise 8 Consider in electromagnetism the energy density 1
2 (E

2+B2) and Poynting
vector 1

4πE∧B. By expressing them in terms of E+ iB, show that they are invariant
under the duality transformation (4.66).

Hint: |E+ iB|2 = (E2 +B2), (E+ iB)∗ ∧ (E+ iB) = 2i E ∧B.

Exercise 9 Compute the winding number n in (4.81) when φ̂a → r̂a as r → ∞ (r̂a is
the unit vector in space).

Hint: n = 1.
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Problem 1 We study in this problem the two-dimensional supersymmetric model of
Section 4.5.1. Two-dimensional supersymmetry plays also an important rôle in string
models because the string, being a one-dimensional object, follows a two-dimensional
world-sheet in its motion: string theory can be understood as a two-dimensional quan-
tum theory on the world-sheet (see Section 10.1 of Chapter 10).

1. We first discuss spinors in d = 2 dimensions. Since the spacetime dimension falls
in the class d = 2 mod 8, we can impose at the same time the Majorana and
Weyl conditions. Moreover, the Lorentz group is simply SO(2) ∼ U(1) (or rather
SO(1, 1) in the Lorentz case that we consider here). Thus its representations
are characterized by a single quantum number. The spinor representation has
dimension 2; it can be decomposed into spinors of chirality ±1: a Majorana–Weyl
spinor is thus a one-dimensional object and chirality is the additive quantum
number just mentioned.
More precisely, we consider the two-dimensional gamma matrices:

ρ0 =
(
0 −i
i 0

)
, ρ1 =

(
0 i
i 0

)
, (4.130)

which satisfy
{ρµ, ρν} = 2gµν (4.131)

(the metric being (+,−)). We define also the two-dimensional analog of the γ5
matrix:

ρ3 = −ρ0ρ1 =
(
−1 0
0 1

)
. (4.132)

Then a two-dimensional spinor is written ψ =
(
ψ−
ψ+

)
where ψ± is the ± chirality

component:

ρ3
(
ψ−
ψ+

)
=
(
−ψ−
ψ+

)
. (4.133)

(a) Show that C = −ρ0 is the matrix that intertwines ρµ with −ρTµ :

CρµTC−1 = −ρµ. (4.134)

One defines as usual ψ̄ = ψ†ρ0 and ψc = Cψ̄T . Show that the Majorana
condition ψc = ψ is simply a reality condition with the gamma matrix basis
chosen here.

(b) Show that, for Majorana spinors ψ and χ,

ψ̄χ = χ̄ψ,

ψ̄ρµχ = −χ̄ρµψ, (4.135)
ψ̄ρµρνχ = χ̄ρνρµψ,

which are the analogs of the four-dimensional formulas (B.40) of Appendix B.
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2. We consider the action

S =
∫
d2x

[
1
2
(∂µφ)

2 +
1
2
ψ̄i/∂ψ +

1
2
F 2 + FW ′(φ)− 1

2
W ′′(φ)ψ̄ψ

]
, (4.136)

where φ, F are real scalar fields, ψ is a Majorana spinor and W = W (φ), W ′ =
dW/dφ. Solving for the auxiliary field F (no kinetic term), one recovers the action
(4.56).
(a) Show that S is invariant under the global supersymmetry transformations

(compare with the four-dimensional analog (3.10) of Chapter 3)

δφ = ε̄ψ,

δψ = −iρµε∂µφ+ Fε, (4.137)
δF = −iε̄ρµ∂µψ,

where ε is an anticommuting Majorana spinor.
(b) How many off-shell and on-shell bosonic degrees of freedom in the theory?

How many fermionic?
(c) Determine the Noether current jµ associated with the supersymmetry trans-

formation:
jµ = ∂νφρνρµψ + iW ′ρµψ. (4.138)

3. (a) Using the chiral decomposition introduced in 1 for ψ and jµ, show that the
chiral components of the supersymmetry charge are respectively:

Q+ =
∫

dx [∂+φ ψ+ −W ′(φ)ψ−]

Q− =
∫

dx [∂−φ ψ− +W ′(φ)ψ+] (4.139)

where ∂± ≡ ∂0 ± ∂1.
(b) Show that the energy–momentum tensor can be written as

Tµν = ∂µφ∂νφ−
1
2
gµν∂

σφ∂σφ+
1
2
W ′2gµν +

i

2
ψ̄ρµ∂νψ − gµν

×
[
1
2
ψ̄iγσ∂σψ − 1

2
W ′′ψ̄ψ

]
. (4.140)

Use the equations of motion to check that it is conserved: ∂µTµν = 0.
(c) Use the canonical commutation relations

[φ(t, x), ∂0φ(t, y)] = iδ(x− y)
{ψ+(t, x), ψ+(t, y)} = δ(x− y) (4.141)
{ψ−(t, x), ψ−(t, y)} = δ(x− y)

in order to check how the different fields behave under the translation gener-
ator Pµ =

∫
dx T0µ:

[φ(x), Pµ] = i∂µφ(x), [ψ+(x), Pµ] = i∂µψ+(x), [ψ−(x), Pµ] = i∂µψ−(x).
(4.142)
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4. (a) Prove that
Q2

± = P± ≡ P0 ± P1. (4.143)

(b) Show that

{Q+, Q−} =
∫

dx2W ′ [φ(x)] ∂xφ(x) ≡ Z. (4.144)

(c) Compute Z for the kink state when V (φ) =W ′2(φ)/2 = λ(φ2 − φ20)
2/2.

(d) Expressing Q+ ±Q− for a static solution (∂0φ = 0), show that one of these
combinations vanishes for the kink (antikink), i.e. for a solution of (4.52).

Hints: 1(b) Remember that spinors anticommute: hence transposition of a quadratic
combination of spinor fields introduces a minus sign.

2(a,c) δψ̄ = iε̄ρµ∂µφ+ F ε̄.
In order to compute the Noether current, it is advisable to introduce a space-
time dependent ε(x) spinor parameter and to make use of the relation

δS =
∫

d2x∂µε̄j
µ.

This allows us to take full account of the anticommuting nature of ε. One
finds the following variation for the Lagrangian L:

L = ∂µ

[
∂µφε̄ψ − 1

2
ε̄ρνρµψ∂νφ−

i

2
(F + 2W ′)ε̄ρµψ

]
+∂µε̄ [∂νφρνρµψ + iW ′ρµψ] .

(b) Off-shell, two scalar (φ, F ) and two spinor (ψ±) degrees of freedom. On-shell,
one must take into account the special nature of 1+1 dimensional spacetimes.
Indeed, the free field equations of motion ∂µ∂µφ = 0 and iρµ∂µψ = 0 are
solved by φ = φ+(x+ t)+φ−(x− t), ψ+ = ψ+(x+ t), ψ− = ψ−(x− t). Hence
one scalar and one spinor left-moving degrees of freedom. And the same for
right-movers.

3(c)

P0 =
∫

dx

[
1
2
(∂0φ)2 +

1
2
(∂1φ)2 +

1
2
W ′2 +

i

2
ψ+∂1ψ+ − i

2
ψ−∂1ψ− + iW ′′ψ+ψ−

]
P1 =

∫
dx

[
∂0φ ∂1φ+

i

2
ψ+∂1ψ+ +

i

2
ψ−∂1ψ−

]
.

To compute [ψ±(x), P0], use the equations of motion:

∂∓ψ± = ±W ′′ψ∓.

4 (a) P± =
∫
dx
[
1
2 (∂±φ)

2 + 1
2W

′2 ± iψ±∂xψ± + iW ′′ψ+ψ−
]
.

(b) Note that the commutator [∂+φ(x), ∂−φ(y)] at equal time vanishes.

(c) Z = 2
∣∣∣∫ +φ0−φ0

dφ
√
2V (φ)

∣∣∣ = 8
√
λφ30/3.

(d) For a static solution, Q+ ±Q− =
∫
dx(∂xφ±W ′)(ψ+ ∓ ψ−).
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model

As a part of the general effort to implement supersymmetry at the level of funda-
mental interactions, the minimal supersymmetric extension of the Standard Model
is motivated and described here at tree level. The presentation of its phenomenol-
ogy requires a discussion of radiative corrections which play here a central rôle ; it
is therefore postponed to Chapter 7. Of great interest for astrophysics is the lightest
supersymmetric particle (LSP) if it is stable: as a weakly interacting massive particle
(WIMP), it provides a candidate for dark matter. The last section of this chapter is
devoted to these considerations.

5.1 Why double the number of fundamental fields?
5.1.1 First attempts

If supersymmetry rules the microscopic world of elementary particles, then one should
be able to classify the known particles in supersymmetric multiplets or supermultiplets.
As is customary (cf. baryons in the SU(3) classification), some elements of the puzzle,
i.e. some components of the supermultiplets might be missing and experimental effort
should be looking for them.

In the years 1976–1977, P. Fayet undertook such an effort, to come to the conclusion
that half of the jigsaw puzzle is presently missing. This is such a sweeping statement
(although not such an implausible one: after all, the prediction of antiparticles which
also led to an almost doubling of the spectrum of known particles, was later confirmed
by experiment) that it is worth following P. Fayet’s early efforts to put known particles
in supermultiplets.

Obviously, the mass spectrum is not a reliable tool since supersymmetry is (at
best) spontaneously broken and thus not visible in the particle spectrum. However,
photon and neutrino are a boson–fermion pair of massless particles and it is tempting
to associate their charged electroweak partners W± and e±. Indeed a model could be
built along these lines [146].

This does not, however, solve the problem at hand: what to do with the other two
neutrinos? how to relate the colored particles: the bosons (gluons) are in a different
representation of SU(3) than the fermions (quarks)? etc.
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Table 5.1

BOSONS FERMIONS
gauge field gaugino
Higgs Higgsino
squark quark
slepton lepton

5.1.2 Squarks, sleptons, gauginos, higgsinos, and the Higgs sector

These considerations lead P. Fayet [148,149] to double the number of fields and intro-
duce a supersymmetric partner to each field of the Standard Model, as shown in Table
5.11. Obviously, this is a very large step backward in our goal of unifying matter and
radiation: we end up introducing new forms of matter and of radiation.

There is an extra complication: we need to enrich the gauge symmetry breaking
sector of the theory and to introduce two Higgs doublets. We will give two reasons
for this.

First, we must pay attention to the gauge anomalies of the new theory. In the
Standard Model, the compensation of chiral anomalies is ensured by the field content:
as recalled at the end of Section A.6 of Appendix Appendix A, the dangerous triangle
diagrams of Figure A.11, which jeopardize the local gauge symmetry at the quantum
level, add up to zero when one sums over all possible fermions (three colors of quarks,
leptons) in the loop. In the theory that we consider now, we have introduced new
fermions: gauginos and Higgsino. As far as chiral anomalies are concerned, gauginos
are not a problem since they couple vectorially. On the other hand, a unique Higsino
introduces anomalies: for example, a triangle diagram with three U(1)Y vector fields
attached to a Higgsino loop is proportional to y3H = (+1)3 = +1 and is nonvanishing.
Introducing a second Higgs doublet of opposite hypercharge solves the problem: y3H1

+
y3H2

= (−1)3 + (+1)3 = 0.
This second doublet is also needed for the purpose of breaking correctly the SU(2)×

U(1) gauge symmetry. We have seen in Chapter 4 that a massive vector supermultiplet
consists of one real scalar field, one massive vector field and two Majorana spinors.
This can be understood as well by reference to the Higgs mechanism: we start in
the Hamiltonian with a massless vector supermultiplet (one vector and one Majorana
spinor) and a chiral supermultiplet (two real scalars and one Majorana spinor); one
of the scalars provides the longitudinal massive vector degree of freedom and we find
in the spectrum precisely the massive vector supermultiplet just described.

The Z0 and W± supermultiplets thus require three longitudinal degrees of freedom
Z0L, W

±
L and three real scalars, respectively H0 and H±. A single complex doublet

provides four degrees of freedom, which is clearly insufficient. Two complex doublets
H1 and H2 have a total of eight degrees of freedom: the six above plus a scalar h0

and a pseudoscalar A0 which form a chiral supermultiplet (with a Majorana fermion).
Thus a supersymmetric version of the Higgs mechanism for breaking gauge invariance
requires the presence of two complex doublets.

1One uses the denomination photino, wino, zino, and gluino for the supersymmetric partner of
the photon, W, Z, or gluon.
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It will prove to be useful in what follows to remember this supersymmetric limit
in which mH0 →MZ , mH± →MW and mh0 → mA0 .

5.2 Model building
5.2.1 Chiral supermultiplets and their supersymmetric couplings

The Standard Model is chiral, in the sense that left-handed and right-handed compo-
nents transform differently under the gauge interactions. When discussing supersym-
metry, it is however more convenient to describe all fermions by spinors of the same
chirality, say left-handed. If necessary, we will use charge conjugation in order to do
so; for example we will trade u

R
for uc

L
. One thus introduces, for each generation of

quarks and leptons:

(SU(3), SU(2), Y )

Q =
(

U
D

)
∈
(
3, 2 ;

1
3

)

L =
(

N
E

)
∈ (1, 2 ; −1)

U c ∈
(
3, 1 ; −4

3

)

Dc ∈
(
3, 1 ;

2
3

)
Ec ∈ (1, 1 ; 2)

where the capital letter indicates the superfield. For example U contains the left-
handed quark u

L
and the squark field ũ

L
; whereas U c contains the left-handed anti-

quark uc
L
and the antisquark ũ∗

R
(respectively, charge conjugates of the right-handed

quark u
R
and of the squark ũ

R
). Note that ũ

L
and ũ

R
are completely independent

scalar fields and that the index refers to the chirality of their supersymmetric partners.
Moreover we have just seen that we must introduce two Higgs doublets:

H1 =
(

H0
1

H−
1

)
∈ (1, 2 ; −1)

H2 =
(

H+
2

H0
2

)
∈ (1, 2 ; 1) .

Since by definition, the Minimal SuperSymmetric Model (MSSM) has a minimal field
content, the former fields form the minimal set that we are looking for.

Their supersymmetric couplings are described by the superpotential, which is an
analytic function of the (super)fields. We may form quadratic terms using the Higgs
fields only

W (2) = −µ H1 ·H2 = µ H2 ·H1 (5.1)
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where H1 ·H2 ≡ εij H
i
1 H

j
2 selects the combination which is invariant under SU(2)L

(ε12 = −ε21 = 1). The parameter µ will turn out to be the only dimensionful supersym-
metric parameter2 (cubic terms in the superpotential have dimensionless couplings).
If the fundamental scale of the underlying theory is very large, unification scaleM

U
of

order 1016 GeV or Planck scale, one should explain why the scale µ is so much smaller
(as we will see, a superheavy µ would destabilize the electroweak vacuum). This is
known as the µ-problem.

Cubic terms in the superpotential yield the Yukawa couplings of the Standard
Model

W (3) = λd Q ·H1D
c + λu Q ·H2U

c + λe L ·H1E
c (5.2)

with notation similar to (5.1) and color indices suppressed. Indeed, plugging this
superpotential into equation (3.30) of Chapter 3 gives (beware of signs which arise
from the εij contractions denoted with a dot)

md = −λd 〈H0
1 〉, mu = λu 〈H0

2 〉, me = −λe 〈H0
1 〉. (5.3)

Let us stress that hypercharge conservation requires to use the Higgs doublet H2 in
the up-type quark coupling because the “chiral” nature of the superpotential forbids
to use H∗

1 . We thus need H1 to give nonvanishing mass to down-type quarks and
charged leptons, and H2 to give mass to up-type quarks3.

A very nice property of the Standard Model lies in the fact that its Yukawa
couplings form the most general set of couplings compatible with gauge invariance
and renormalizability. This is unfortunately not so in the case of its supersymmetric
extensions, because there are more scalar fields (the squarks and sleptons) and more
fermion fields (the Higgsinos). Indeed the following superpotential terms are allowed
by gauge invariance and renormalizability (which allows terms up to dimension three
in the superpotential):

L · L Ec, Q · L Dc, U cDcDc. (5.4)

They are potentially dangerous because they violate lepton or baryon number.
We will define the MSSM as the model with minimal field and coupling content.

Whereas the couplings in (5.2) are necessary in order to give quarks and leptons a
mass, the latter couplings are not. We therefore assume that they are absent in the
MSSM. But, before going further, we will give a rationale for such an absence.

5.2.2 R-parity

The presence of the couplings (5.4) in the theory leads through the exchange of a
squark or a slepton to effective four-fermion interactions in the low energy regime
which violate lepton number (for the first two) or baryon number (for the third one).
This was clearly undesirable, especially at a time when one thought that squarks and

2Beware that there is no general agreement on the convention for the sign of µ, i.e. on the sign in
front of (5.1). This is quite unfortunate because this sign turns out to play an important rôle in the
physical consequences, as we will see later. It is therefore important when comparing results to check
the authors’ convention on the sign of µ.

3This is why one often finds in the literature the notation: H1 ≡ Hd and H2 ≡ Hu.
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Table 5.2

Field B L S 3B + L+ 2S

quark 1/3 0 1/2 2
squark 1/3 0 0 1
lepton 0 1 1/2 2
slepton 0 1 0 1

sleptons might be fairly light. In order to avoid this, P. Fayet [148, 149] postulated
the existence of a discrete symmetry, known as R-parity. The fields of the Standard
Model have R-parity +1 and their supersymmetric partners R-parity −1.

As may be checked from Table 5.2, this can be summarized as

R = (−1)3B+L+2S (5.5)

which shows the connection of R-parity with baryon (B) and lepton (L) numbers.
Such a parity obviously forbids the single exchange of a squark or a slepton between
ordinary fermions

At the level of the superpotential, Q, L, U c, Dc and Ec have R-parity −1 whereas
H1 and H2 have R-parity +1 (in each case, the R-parity of the corresponding scalar
field). Then obviously terms in (5.2) are invariant whereas terms in (5.4) are not.

This R-parity may find its origin in a R-symmetry, a continuous U(1) symmetry
which treats differently a particle and its supersymmetric partner, i.e. a continuous
U(1) symmetry which does not commute with supersymmetry (see Chapter 4 for
details). Gaugino fields are for example charged under such a symmetry. Supersym-
metry breaking induces gaugino masses and thus breaks this continuous symmetry
down to a discrete symmetry, R-parity. We will see later that R-symmetries often
play a central rôle in supersymmetric theories.

For the time being, we remain at a phenomenological level. The assumption of
R-parity has some remarkable consequences:
(i) Supersymmetric partners are produced by pairs: since the initial state is formed

of ordinary matter, it has R-parity +1. A final state such as slepton–antislepton
or squark–antisquark pair has also R-parity (−1)2 = +1.

(ii) The lightest supersymmetric particle (LSP) is stable: since it has R = −1, it
cannot decay into ordinary matter; since it is the lightest, it cannot decay into
supersymmetric matter. We will see in Section 5.5 that this provides us in many
cases with an excellent candidate for dark matter.
Even though R-parity might be well motivated, there is nothing sacred with it,

all the more so with the existing limits on the supersymmetric spectrum. Indeed, a
single-sfermion exchange amplitude is typically of order λ2/R/m

2
f̃
where λ/R is aR-violating

coupling and mf̃ the sfermion mass. It is thus possible to include R-parity violations
under the condition that the R-violating coupling λ/R is not too large4. We will study in
detail this possibility in Section 7.6 of Chapter 7. Let us note here only that R-parity

4Similarly, Higgs exchange between electrons has an amplitude of order λ2e/m2
h ∼ m2

e/(v2m2
h) �

1/v2 ∼ GF , where λe is the electron Yukawa coupling. It is therefore a minor correction to weak
amplitudes.
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violation is connected with B or L violations. As long as both B and L are not violated
simultaneously, there is no problem with proton decay: proton decay channels (e.g.
p→ π0e+, p→ K0µ+, p→ K+ντ ) are forbidden by either B or L conservation.

5.2.3 Soft supersymmetry breaking terms

We have until now discussed the supersymmetric couplings. Supersymmetry breaking
will obviously generate new couplings. If we do not want to restrict ourselves to a
given scenario of supersymmetry breaking, we may just require that this mechanism is
chosen such that it does not generate quadratic divergences: otherwise the raison d’être
of supersymmetry is lost. One says that supersymmetry is only broken softly. [The
analysis at the end of Chapter 1 indicates which terms are allowed by this condition
of soft supersymmetry breaking that we impose.] It turns out that the allowed terms
have been classified by Girardello and Grisaru [188] and are remarkably simple. Soft
supersymmetry breaking terms are of three kinds:
• Scalar mass terms. These terms are of two different forms: for a complex scalar
field φ

δLSB = δm2φ∗φ+ δm′2 (φ2 + φ∗2)
=
(
δm2 + 2δm′2) (Re φ)2 + (δm2 − 2δm′2) (Im φ)2 . (5.6)

Thus one term (δm2) treats scalar (Re φ) and pseudoscalar (Im φ) of the super-
multiplet equivalently whereas the other term (δm′2) introduces a gap between
them.

• A-terms. These terms are (the real part of) cubic analytic functions:

δLSB = −A
(
φ3 + φ∗3) . (5.7)

If the term φ3 is allowed by the gauge symmetry, then in all generality, it is
also allowed in the superpotential. For reasons that will be more clear in the
case of supergravity, it has become customary to write A ≡ Aλ where λ is the
corresponding superpotential coupling. In other words,

δLSB = −Aλ
(
φ3 + φ∗3) . (5.8)

• Gaugino masses.

δLSB = −1
2
Mλλ̄λ. (5.9)

5.3 The Minimal SuperSymmetric Model (MSSM)
We study in this section the archetype of supersymmetric models, the Minimal
SuperSymmetric Model (MSSM). This is the linearly realized supersymmetric version
of the Standard Model with the minimal number of fields and the minimum number
of couplings. From the discussion of the previous sections, this means that the field
content is one of vector supermultiplets (gauge fields, gauginos) associated with the
gauge symmetry SU(3)×SU(2)×U(1) and chiral supermultiplets describing quarks,
leptons, the two Higgs doublets and their supersymmetric partners (squarks, slep-
tons, Higgsinos). As for the couplings, our minimality requirement leads us to impose
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R-parity; all other cubic couplings (5.2) are necessary in order to provide a mass for all
quarks and leptons. Soft supersymmetry breaking terms generate masses for squarks,
sleptons, and gauginos.

Obviously, the qualifier “minimal” is a misnomer. Besides the 19 parameters of
the Standard Model5, one counts 105 new parameters: five real parameters and three
CP-violating phases in the gaugino–Higgsino sector, 21 masses, 36 real mixing angles
and 40 CP-violating phases in the squark and slepton sector. Overall, this makes 124
parameters for this not so minimal MSSM! Underlying physics (grand unification, fam-
ily symmetries, string theory, etc.) usually provides additional relations between these
parameters. In the case of the minimal supergravity model introduced in Chapter 6,
we will be left with only five extra parameters besides those of the Standard Model.
For the time being, we will consider the MSSM as a low energy model which provides
the framework for many different underlying theories. We will start in the next chapter
to unravel the high energy dynamics which may constrain further the model.

In our description of the MSSM, we begin by studying the central issue of gauge
symmetry breaking and thus the Higgs sector.

5.3.1 Gauge symmetry breaking and the Higgs sector

In order to discuss gauge symmetry breaking, we should write the full scalar poten-
tial and discuss its minimization. Scalars include not only the Higgs fields but also
squarks and sleptons. But squarks and/or sleptons (other than the sneutrino) getting
a nonzero vacuum expectation value lead to the spontaneous breaking of charge or
color. And a sneutrino getting a nonzero vacuum expectation value leads to the spon-
taneous breaking of R-parity. We will exclude such possibilities. This obviously leads
to constraints on the parameters: we will return to this in Chapter 7. For the time
being, we assume that such constraints are satisfied and set all scalar fields besides
the Higgs fields to their vanishing vacuum expectation values.

The supersymmetric part of the potential consists of F -terms and D-terms. Since
the only term of the superpotential which involves H1 or H2 solely is (5.1), and since

∑
i

∣∣∣∣ ∂W∂Hi
1

∣∣∣∣2 =∑
ijk

|µ|2 εij Hj∗
2 εik Hk

2 =
∑
j

|µ|2 Hj∗
2 Hj

2 = |µ|2 H†
2H2

and similarly for H2, we have

VF = |µ|2
(
H†

1H1 +H†
2H2

)
. (5.10)

The D term involves contributions from the SU(2) as well as U(1) gauge vector
supermultiplets:

VD =
1
2
g2
(
H†

1
�τ

2
H1 +H†

2
�τ

2
H2

)2

+
1
2

(
g′

2

)2 (
−H†

1H1 +H†
2H2

)2
(5.11)

where g and g′/2 are, respectively, the couplings of SU(2) and U(1).

5The two scalar potential parameters m and λ are replaced by the two real parameters in µ (real
and imaginary part).
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The sum VF + VD represents the full supersymmetric contribution to the scalar
potential. We may make at this point two remarks:
• The quadratic couplings in (5.10) are obviously positive, which does not allow
at this stage gauge symmetry breaking. It is the supersymmetry breaking terms
that will induce gauge symmetry breaking.

• The quartic couplings in (5.11) are of order of the gauge couplings squared, and
thus small. In the Standard Model, a small quartic coupling λ is associated with
a rather light Higgs field (m2 ∼ λv2 ∼ g2v2 ∼M2

W
).

As discussed above, spontaneous supersymmetry breaking induces soft supersym-
metry breaking terms. Gauge invariance forbids any cubic A-terms since one cannot
form a gauge singlet out of three fields H1 and/or H2. Thus supersymmetry breaking
induces the following terms:

VSB = m2
H1

H†
1H1 +m2

H2
H†

2H2 + (Bµ H1 ·H2 + h.c.) (5.12)

where we assume Bµ to be real through a redefinition of the relative phase of H1
and H2.

One may check that the minimization of the complete scalar potential V ≡ VF +
VD + VSB leads to 〈H±

1 〉 = 0 = 〈H±
2 〉, i.e. , irrespective of the parameters6 (µ, m2

H1
,

m2
H2
, Bµ and the gauge couplings) charge is conserved in the Higgs sector. We will

leave the proof of this result as Exercise 2 and we will restrict from now on our
attention to the neutral scalars. The potential V then reads:

V (H0
1 , H

0
2 ) = m2

1|H0
1 |2 +m2

2|H0
2 |2 +Bµ

(
H0

1H
0
2 +H0∗

1 H0∗
2
)

+
g2 + g′2

8
(
|H0

1 |2 − |H0
2 |2
)2

(5.13)

where we have introduced the mass parameters

m2
1 ≡ m2

H1
+ |µ|2

m2
2 ≡ m2

H2
+ |µ|2. (5.14)

Thus, apart from the gauge couplings, V depends on three parameters : m2
1, m

2
2 and

Bµ. These parameters must satisfy two sets of conditions:

(i) Stability conditions: the potential should be stable (i.e. be bounded from below)
in all directions of field space. Since the coefficients of the quartic terms are
obviously positive, a nontrivial condition arises only in the direction of field space
where these terms vanish: H0

2 = H0∗
1 eiϕ, with ϕ an undetermined phase. Since

V
(
H0

1 , H
0∗
1 eiϕ

)
=
(
m2

1 +m2
2 + 2Bµ cosϕ

)
|H0

1 |2, (5.15)

the stability condition reads m2
1 +m2

2 + 2Bµ cosϕ > 0, that is

m2
1 +m2

2 > 2|Bµ|. (5.16)

6This property is specific to the MSSM and not found in immediate generalizations of this model.
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(ii) Gauge symmetry breaking condition: H0
1 = H0

2 = 0 should not be a minimum.
This translates into the condition∣∣∣∣∣∣∣∣∣∣

∂2V

∂H0
1 ∂H0∗

1

∂2V

∂H0
1 ∂H0

2

∂2V

∂H0∗
2 ∂H0∗

1

∂2V

∂H0∗
2 ∂H0

2

∣∣∣∣∣∣∣∣∣∣
H0
1=H

0
2=0

< 0 (5.17)

or

m2
1 m

2
2 < |Bµ|2. (5.18)

We note immediately that m2
1 = m2

2 is not compatible with (5.16) and (5.18)
simultaneously. This requires that the soft masses m2

H1
and m2

H2
differ. We will

see in Section 6.5 of Chapter 6 that this may be induced by radiative corrections:
top quark loops affect the H2 propagator but not H1 to first order (cf. (5.2)).

Mass eigenstates are obtained by performing independent rotations in the pseu-
doscalar and the scalar sectors: Im H0

1

Im H0
2

 =
1√
2

 cosβ sinβ

− sinβ cosβ

 Z0
L

A0

 , (5.19)

 Re H0
1

Re H0
2

 =
1√
2

 cosα − sinα

sinα cosα

 H0

h0

 , (5.20)

where the massless pseudoscalar field Z0
L provides the longitudinal degree of freedom

of the massive Z0 gauge boson. The three other fields are physical scalar fields; by
convention h0 is the lightest scalar: mh0 < mH0 . If we reintroduce the charged Higgs
fields H±

1 and H±
2 , one finds that the same rotation as in (5.19) leads to the charged

mass eigenstates:

 H±
1

H±
2

 =

 cosβ sinβ

− sinβ cosβ

 W±
L

H±

 . (5.21)

Again, the massless eigenstates W±
L are the longitudinal degrees of freedom of the

massive W± and H± is the physical charged Higgs.
One may replace the three parameters m2

1, m
2
2 and Bµ by the more physical set:

the vacuum expectation values

v1 ≡ 〈H0
1 〉,

v2 ≡ 〈H0
2 〉, (5.22)
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which can be chosen to be real through a SU(2) × U(1) rotation, and the mass of
the lightest scalar mh0 or of the pseudoscalar mA0 . But, a combination of v1 and v2,
namely v2/2 ≡ v21 + v22 , yields the Z

0 mass:

M2
Z
=

1
2
(
g2 + g′2) (v21 + v22

)
=

1
4
(
g2 + g′2) v2 (5.23)

(v corresponds to the vev of the Higgs field in the Standard Model; cf. (A.131) of
Appendix Appendix A: v = 246 GeV).

Hence, we remain with two new parameters:

tanβ ≡ v2
v1

(5.24)

and mh0 or mA0 . It turns out that the angle β thus defined is precisely the one that
appears in the pseudoscalar (5.19) or charged (5.21) scalar rotation matrix. This angle
β plays a central rôle in supersymmetric models.

Obviously one may express the new set of parameters in terms of the previous one;
for example:

sin 2β = −2 Bµ

m2
1 +m2

2
, (5.25)

m2
A0 = m2

1 +m2
2. (5.26)

Following (5.25), we note that, had we forgotten the Bµ term in (5.12), we would have
found sin 2β = 0, i.e. 〈H0

1 〉 = 0 or 〈H0
2 〉 = 0: up-type quarks or down-type quarks

would be massless.
Another relation of importance for the future discussion on the issue of fine-

tuning is
1
2
M2

Z
=

m2
1 −m2

2 tan
2 β

tan2 β − 1
. (5.27)

Of course, all physical Higgs masses and mixing angles can be expressed, at tree level,
in terms of tanβ and mh0 (or mA0). For instance, we have7

m2
H0 =M2

Z
cos2 2β

M2
Z
−m2

h0

M2
Z
cos2 2β −m2

h0
, (5.28)

m2
A0 = m2

h0
M2

Z
−m2

h0

M2
Z
cos2 2β −m2

h0
, (5.29)

m2
H0 +m2

h0 = m2
A0 +M2

Z
, (5.30)

m2
H± = m2

A0 +M2
W
, (5.31)

sin 2α = − sin 2β
m2

H0 +m2
h0

m2
H0 −m2

h0
, (5.32)

tan 2α = tan 2β
m2

A0 +M2
Z

m2
A0 −M2

Z

. (5.33)

7Note the two interesting limits: when m2
h0

→ M2
Z

cos2 2β, all other three masses become infinite;
when m2

h0
→ 0, then mH0 → MZ , mA0 → 0, mH± → MW and α → −β: one recovers the

supersymmetry limit discussed at the end of Section 5.1.2.



BINE: “CHAP05” — 2006/10/5 — 06:39 — PAGE 96 — #11

96 The minimal supersymmetric model

The stability and gauge symmetry breaking conditions lead to the following bound:

m2
h0 < M2

Z
cos2 2β < M2

Z
. (5.34)

As expected, the lightest scalar is found to be relatively light. Such a bound has led to
the hope that the lightest Higgs of the MSSM could be detected or ruled out by the
LEP collider at CERN. We will now see, however, that top/stop radiative corrections
modify the bound (5.34).

We will have a general discussion of the radiative corrections to the Higgs potential
in Chapter 7 but a simple argument [22] may be used to obtain the bulk of the one-loop
contributions to the lightest Higgs mass. It rests on an analysis of the standard Higgs
quartic coupling λ. We will make the simplifying hypothesis that the only relevant
degrees of freedom are the Higgs scalar (assimilated to the lightest scalar h0), the top
quark and its supersymmetric partner, the stop (of mass mt̃).

For mass scales µ larger than mt̃, the model is supersymmetric and, as we have
seen in (5.13) the quartic coupling λ(µ) is of the order of the gauge coupling squared
g2. For scales mt < µ < mt̃, the effective theory is no longer supersymmetric (the
stop decouples) and one typically recovers the Standard Model. The evolution of λ is
governed by the Standard Model renormalization group equation, which is dominated
by the top Yukawa coupling λt (of order 1, and thus much larger than λ: λ(mt̃) ∼ g2):

µ
dλ

dµ
∼ − 3

8π2
λ4t . (5.35)

This term is simply due to a diagram with four scalars attached to a top quark
loop.

The fact that the top quark is heavy, i.e. that λt is of order one, thus leads to a
sharp increase in the magnitude of λ when one goes down in scale from mt̃ to mt. For
scales M

Z
< µ < mt, the top has decoupled and the evolution of λ(µ) is milder.

The global effect on λ is thus of order (3λ4t/16π
2) ln(m2

t̃
/m2

t ). This gives for the
Higgs mass (m2

h = 2λv2 from (A.138) of Appendix Appendix A)

δm2
h ∼ 3λ4t

8π2
v2 ln

m2
t̃

m2
t

∼ 3g2

8π2
m4

t

M2
W

ln
m2

t̃

m2
t

(5.36)

where we have used M2
W

= 1
4g

2v2 and mt = −λtv/
√
2 (cf. (A.141) of Appendix Ap-

pendix A).
We see that the effect is negligible if mt is small with respect to M

W
(this is why

these corrections were assumed to be small at an early period when one expected the
top to have a typical quark mass) as well as if mt ∼ mt̃ (approximate supersymmetry
in the top sector). We will give in Chapter 7 a more detailed account of radiative
corrections, but (5.36) represents the bulk of these corrections. If one allows a generous
185 GeV for the top mass and 1 TeV for the stop mass, this gives an upper limit of
130 GeV for the lightest Higgs of the MSSM.
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Table 5.3 Couplings of fermions to the neutral scalars.

f λhff λHff λAff

u
gmu

2M
W

cosα
sinβ

gmu

2M
W

sinα
sinβ

gmu

2M
W

cotβ

d
gmd

2M
W

sinα
cosβ

gmd

2M
W

cosα
cosβ

gmd

2M
W

tanβ

e
gme

2M
W

sinα
cosβ

gme

2M
W

cosα
cosβ

gme

2M
W

tanβ

To conclude this section, we give here for future reference the couplings of the
fermion fields to the neutral Higgs. They are obtained straightforwardly from the
superpotential (5.2) using the decomposition (5.19)–(5.20):

L =
∑

f=u,d,e

λhff h0f̄f − λHff H0f̄f + iλAff A0f̄γ5f, (5.37)

where the couplings are given in Table 5.3.

5.3.2 The gaugino–Higgsino sector

The coupling of the Higgs fields to the gauge fields induces by supersymmetry a
Higgsino –Higgs–gaugino coupling. This in turn generates, once the Higgs field is set to
its vacuum expectation value, a mixed Higgsino –gaugino mass term. Mass eigenstates
are therefore mixed Higgsino –gaugino states. Since color is not broken, charged (resp.
neutral) fields mix among themselves: the mass eigenstates are called charginos (resp.
neutralinos).

In this respect, the gluino g̃, supersymmetric partner of the gluon, stands alone:
color conservation prevents it from mixing with Higgsino fields. Only soft supersym-
metry-breaking terms generate a mass term:

LSB = −1
2
M3 λg λg. (5.38)

As for the chargino mass matrix, supersymmetric contributions arise from:

• the term −µH1 ·H2 = µ
(
H−

1 H+
2 −H0

1 H0
2
)
in the superpotential which yields

a fermion term

L = −µ Ψc
H+
2

R
ΨH−

1 L
+ µ Ψc

H0
2
R
ΨH0

1 L
+ h.c. (5.39)

• the coupling gλ−ΨH−
2
H0

2 which is related by supersymmetry to the gauge coupling

gW+H−
2 H

0
2 gives a term (〈H0

2 〉 =
√
v21 + v22 sinβ =M

W

√
2 sinβ/g)

L =M
W

√
2 sinβ λ+R

ΨH+
2 L

+ h.c. (5.40)
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Thus the chargino mass matrix receives a supersymmetric contribution

MSUSY =

λ+ ΨH+
2(

0 −M
W

√
2 sinβ

−M
W

√
2 cosβ µ

)
λ−
ΨH−

1

. (5.41)

On the other hand, soft supersymmetry breaking only generates a gaugino mass (a
Higgsino mass would generate quadratic divergences)

MSB =
(
M2 0
0 0

)
. (5.42)

In total, the chargino mass term reads

Lc = −
(
λ+R

Ψc
H−
1 R

)
Mc

(
λ+L

ΨH+
2 L

)
+ h.c. (5.43)

with

Mc =
(

M2 −M
W

√
2 sinβ

−M
W

√
2 cosβ µ

)
. (5.44)

The mass eigenstates are traditionally written χ±
1 , χ

±
2 with mχ±

1
≤ mχ±

2
. More pre-

cisely, one defines(
χ+1L
χ+2L

)
= ZL

(
λ+L

ΨH+
2 L

)
,

(
χ+1R
χ+2R

)
= ZR

(
λ+R

Ψc
H−
1

R

)
, (5.45)

such that Lc = −mχ±
1
χ+1 R

χ+1L −mχ±
2
χ+2 R

χ+2L + h.c., i.e.

ZRMcZ
†
L =

(
mχ±

1
0

0 mχ±
2

)
. (5.46)

One has

m2
χ±
1,2

= 1
2 [µ

2 +M2
2 + 2M2

W

∓
√
(µ2 −M2

2 )
2 + 4M2

W
(µ2 + 2µM2 sinβ +M2

2 ) + 4M4
W
cos2 2β], (5.47)

and8 ZL,R =
(

cosφL,R sinφL,R
− sinφL,R cosφL,R

)
with

tan 2φL = 2M
W

√
2

µ cosβ +M2 sinβ
µ2 −M2

2 − 2M2
W
cos 2β

,

tan 2φR = 2M
W

√
2

µ sinβ +M2 cosβ
µ2 −M2

2 + 2M2
W
cos 2β

. (5.48)

8If det Mc < 0, write ZL as
(

cosφL sinφL
sinφL − cosφL

)
to have positive mass eigenvalues.
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Note that, in the case where the scales associated with supersymmetry are large
(M

W
�M2, |µ|), one of the charginos is predominantly wino whereas the other one is

mostly Higgsino (see Exercise 5).
Similarly, the neutralino mass term reads (with obvious notations, λB , resp. λ3, is

the gaugino associated with the U(1)Y gauge field Bµ, resp. the SU(2)L gauge field
A3
µ)

Ln = −1
2

(
λBR

λ3R
Ψc
H0
1
R
Ψc
H0
2
R

)
Mn


λBL

λ3L
ΨH0

1 L

ΨH0
2 L

+ h.c. (5.49)

with

Mn =


M1 0 M

Z
cosβ sin θ

W
−M

Z
sinβ sin θ

W

0 M2 −M
Z
cosβ cos θ

W
M

Z
sinβ cos θ

W

M
Z
cosβ sin θ

W
−M

Z
cosβ cos θ

W
0 −µ

−M
Z
sinβ sin θ

W
+M

Z
sinβ cos θ

W
−µ 0


(5.50)

where M1 and M2 are, respectively, the U(1)Y and SU(2)L soft supersymmetry brea-
king gaugino mass terms. The eigenstates are written χ01, χ

0
2, χ

0
3, χ

0
4 in increasing

mass order (we will often denote the lightest neutralino simply by χ0 or χ and other
neutralinos by χ′). More precisely, one writes


χ01L
χ02L
χ03L
χ04L

 = N


λBL

λ3L
ΨH0

1 L

ΨH0
2 L

 ,


χ01R
χ02R
χ03R
χ04R

 = N∗


λBR

λ3R
Ψc
H0
1
R

Ψc
H0
2
R

 , (5.51)

where N is a unitary matrix (the second equation derives from charge conjugation:
λ = λc) which satisfies:

N∗MnN
−1 = diag

(
mχ01

,mχ02
,mχ03

,mχ04

)
. (5.52)

By construction, the neutralinos are Majorana spinors.
We note that, in the limit M

Z
� M1 < M2 < |µ|, the lightest neutralino is

mostly bino (λB), the next to lightest mostly wino (λ3) and the heaviest are Higgsinos
(ΨH0

1
±ΨH0

2
) (see Exercise 5).

We see that, at tree level, the -ino sector depends on two supersymmetric parame-
ters (µ, tanβ) and three soft supersymmetry breaking mass terms (M1, M2, M3). We
will see in the next chapter that the assumption of gaugino mass universality at the
gauge unification scale yields relations among the latter three parameters.
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5.3.3 The squark and slepton sector

Assuming that the squark mass matrices can be diagonalized (in family space indexed
by i ∈ {1, 2, 3}) simultaneously with those of the corresponding quarks, we have

M̃2
ui

=

(
m̃2

uiLL
m̃2

uiLR

m̃2
uiRL

m̃2
uiRR

)

=

(
m2

Qi
+m2

ui
+ 1

6 (4M
2
W
−M2

Z
) cos 2β mui

(A∗
ui
− µ cotβ)

mui
(Aui

− µ∗ cotβ) m2
Ui

+m2
ui
+ 2

3 (−M2
W
+M2

Z
) cos 2β

)
,

(5.53)

M̃2
di =

(
m̃2

diLL
m̃2

diLR

m̃2
diRL

m̃2
diRR

)

=

(
m2

Qi
+m2

di
− 1

6 (2M
2
W
+M2

Z
) cos 2β mdi(A

∗
di
− µ tanβ)

mdi(Adi − µ∗ tanβ) m2
Di

+m2
di
+ 1

3 (M
2
W
−M2

Z
) cos 2β

)
,

(5.54)

where mui
= λui

v2, mdi = −λdiv1 are the fermion masses. Also m2
Qi
, m2

Ui
and m2

Di

are the soft masses, respectively, for the SU(2)L scalar doublet Qi and singlets Ui and
Di, and Aui

, Adi are the trilinear soft terms (defined as in (5.8)):

Lsoft = −m2
Qi

(
ũ∗
iL ũiL + d̃∗

iL d̃iL

)
−m2

Ui
ũ∗
iR ũiR −m2

Di
d̃∗
iR d̃iR

−
(
Adiλdi q̃iL ·H1 d̃

∗
iR +Aui

λui
q̃iL ·H2 ũ

∗
iR + h.c.

)
. (5.55)

We will identify in turn the origin of each term. This will provide a good illustration

of the different interactions obtained earlier. For simplicity, we consider only up-type
squarks. One finds in the entries of the mass-squared matrix (5.53):

• Supersymmetric mass terms arising from the superpotential after gauge symmetry
breaking. For example, the terms

−µH1 ·H2 + λuQ ·H2U
c

in the superpotential (5.2) yield a term |λuQ ·H2|2 in |dW/dU c|2 and∣∣λuUU c − µH0
1

∣∣2 in
∣∣dW/dH0

2

∣∣2. After gauge symmetry breaking (〈H0
1 〉 = v1,

〈H0
2 〉 = v2), this yields quadratic terms in the scalar potential, respectively,

λ2uv
2
2 ũL

ũ∗
L
= m2

uũL
ũ∗

L
and, arising from the cross-product in the second case,

−µ∗λuv1ũL
ũ∗

R
+ h.c. = −µ∗mu cotβ + h.c.
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• Supersymmetric mass terms arising from the D-terms after gauge symmetry
breaking. The D-term reads

VD =
1
2

g∑
i,j

φ∗it3i
jφj

2

+
1
2

(
g′

2

∑
i

φ∗iyiφi

)2

+ · · ·

= 1
2g

2 ( 1
2 ũ

∗
L
ũ

L
+ 1

2H
0∗
1 H0

1 − 1
2H

0∗
2 H0

2 + · · ·
)2

+ 1
2g

′2 ( 1
6 ũ

∗
L
ũ

L
− 1

2H
0∗
1 H0

1 +
1
2H

0∗
2 H0

2 + · · ·
)2
. (5.56)

After symmetry breaking (〈H0
1 〉 = v1, 〈H0

2 〉 = v2), the cross-terms yield:

1
2
(v21 − v22)

(
1
2
g2 − 1

6
g′2
)
ũ∗

L
ũ

L
,

or more generally
1
2 (v

2
1 − v22)

(
g2t3i − g′2yi/2

)
φ∗iφi,

which can be expressed in terms of M
Z
, M

W
and β using (5.23) and cos 2β =

(v21 − v22)/(v
2
1 + v22): [

qiM
2
W
− (yi/2)M2

Z

]
cos 2β φ∗iφi.

• Soft supersymmetry-breaking scalar mass terms, respectively, m2
Q and m2

U for ũ
L

and ũ
R
.

• Mass terms arising from the soft-supersymmetry-breaking A-terms in (5.55) after
gauge symmetry breaking.

Similarly for charged leptons, one has

M̃2
ei =

(
m̃2

eiLL
m̃2

eiLR

m̃2
eiLR

m̃2
eiRR

)

=

(
m2

Li
+m2

ei +
1
2 (M

2
Z
− 2M2

W
) cos 2β mei(A

∗
ei − µ tanβ)

mei(Aei − µ∗ tanβ) m2
Ei

+m2
ei + (M2

W
−M2

Z
) cos 2β

)
.

(5.57)

We note that, in all three cases (u, d, e-type sfermions), the nondiagonal terms are
proportional to the corresponding fermion mass. They are nonnegligible only in the
case of the third family. Thus, for f = t, b or τ , the mass eigenstates are(

f̃1
f̃2

)
=
(

cos θf sin θf
− sin θf cos θf

)
=
(
f̃
L

f̃
R

)
, (5.58)

with corresponding eigenvalues m̃2
f1 < m̃2

f2 and 0 < θf < π.
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5.4 Baryon and lepton number
Realizing supersymmetry by doubling the number of fundamental fields has the
immediate consequence of losing a remarkable property of the Standard Model: renor-
malizability and SU(3) × SU(2) × U(1) gauge symmetry impose automatic baryon
(B) and lepton (L) number conservation. Indeed, it is possible to generalize baryon
and lepton number to the supersymmetric particles (squarks, sleptons) but the intro-
duction of these new fields allows us to write new renormalizable couplings which are
B or L violating. These couplings were written in (5.4) and, if all are present, they
lead to rapid proton decay.

In order to prevent this, one may choose to impose B or L global symmetries. This
is not a favored solution of the problem because global symmetries, if not protected
by a local symmetry, tend to be broken by gravitational interactions. One prefers to
obtain them as a consequence of a broken local symmetry.

In Section 5.2.2, we have discussed the introduction of R-parity which may arise
from the breaking of a continuous R-symmetry. Such a R-parity allows us to set to zero
all renormalizable interactions breaking B or L number (cf. (5.4)) since Q,L,U c, Dc

and Ec have R-parity −1 whereas H1 and H2 have R-parity +1.
The question must however also be addressed at the level of nonrenormalizable

interactions. Since a supersymmetric generalization of the Standard Model usually
arises as a low energy effective theory of a more fundamental theory, nonrenormalizable
terms are expected, with coefficients of the order of the mass scaleM of the underlying
theory to some power. This power is fixed by the dimension of the corresponding term.
We will see later explicit examples in the context of grand unification or string theory.

A thorough discussion therefore requires to list all the possible terms according to
their dimensions. Since we are working in a supersymmetric set up, we write them as
F -terms or D-terms. We recall a few facts from Chapter 3:
• an F -term of a product of superfields with total dimension n is a term in the
Lagrangian with dimension n+ 1;

• a D-term of a product of superfields and possibly their hermitian conjugates, with
total dimension n, is a term in the Lagrangian with dimension n+ 2.

Then, imposing R-parity leaves us the possibility of writing the following gauge
invariant terms at dimension 5:

(LLH2H2)F , (QQU
cDc)F , (QU

cLEc)F , (QQQL)F , (U
cU cDcEc)F ,(

LEcH†
2

)
D
,
(
QDcH†

2

)
D
,
(
QU cH†

1

)
D
,

where SU(2) and SU(3) indices are contracted in order for the corresponding term to
be singlet under these groups. Each term has a coupling of order M−1. It is already
clear at this stage that R-parity is not sufficient to prevent baryon nor lepton violation:
the terms (QQQL)F and (U cU cDcEc)F violate both. It is thus important that either
the fundamental scale M be superheavy (as in grand unification) or extra symmetries
be imposed.

5.5 The LSP and dark matter
We have seen above that models with R-parity include a stable particle: the light-
est supersymmetric particle (LSP). We first show why this particle is an excellent
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candidate to account for cold dark matter. We then discuss its nature as well as its
properties.

5.5.1 The LSP as a WIMP

We will not recall here the arguments that lead to the need for dark matter. It suffices
to say that the total matter content ρ

M
of the energy density in the Universe is believed

to be
Ω

M
≡ ρ

M

ρc
∼ 0.3, (5.59)

where ρc = 3H2
0m

2
P
� 10−26kg/m3 is the critical density (corresponding to a spatially

flat spacetime)9. On the other hand, the density of baryonic matter ρ
B
is limited

to be
Ω

B
≡ ρ

B

ρc
≤ 0.02. (5.60)

This leaves a lot missing, under the form of nonbaryonic matter or of a more exotic
component.

Let us see under which conditions a given particle of mass m
X

might provide
the right amount of dark matter. We will suppose that this particle is neutral and
colorless, otherwise it would have some observable effects through scattering on matter.
There are two competing effects to modify the abundance of this species: annihilation
and expansion of the Universe. Indeed, the faster is the dilution associated with the
expansion, the least effective is the annihilation because the particles recede from
one another. This is summarized in the following Boltzmann equation which gives
the evolution with time of the particle number density n

X
:

dn
X

dt
+ 3Hn

X
= −〈σannv〉

(
n2

X
− n(eq)2

X

)
, (5.61)

where 〈σannv〉 is the thermal average of the XX̄ annihilation cross-section times the
relative velocity of the two particles annihilating, n(eq)

X
is the equilibrium density,

and H the Hubble parameter. When the temperature drops below the mass m
X
, the

annihilation rate becomes smaller than the expansion rate and there is a freezing of
the number of particles in a covolume. We study this freezing for a general species
in Section D.3.3 of Appendix D, to which we refer the reader. We find in the case of
cold relics (i.e. relics which are nonrelativistic at the time of freezing) that the freezing
temperature Tf is given in terms of the variable xf = m

X
/(kTf ) by equation (D.73)

of this appendix:

xf = ln

(
0.038

M
P
m

X
〈σannv〉
h̄2

g
X

g
1/2
∗

)
, (5.62)

where g
X
is the number of internal degrees of freedom of the particle and g∗ is the

total number of relativistic degrees of freedom present in the Universe at the time of
decoupling. One checks that xf is a quantity of order one (more precisely 20).

9See Appendix D for a more detailed treatment.
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The relic density of particles is given by

Ω
X
≡ m

X
n

X
(t0)

ρc
= 40

√
π

5
s0
k

h̄3

H2
0M

3
P

g
1/2
∗
gs

xf
〈σannv〉

(5.63)

where s0 is the present entropy density and gs an effective number of degrees of freedom
which enters in the expression of the entropy (see equation (D.64) of Appendix D).
Putting the explicit values, one finds

Ω
X
h20 ∼

1.07× 109 GeV−1

g
1/2
∗ M

P

xf
〈σannv〉

. (5.64)

We note for further reference that the smaller the annihilation cross-section is, the
larger is the relic density. We find Ω

X
∼ (100 TeV)−2(〈σannv〉)−1 ∼ 10−13 barn/〈σannv〉

(in units where /h = c = 1, 1 barn = 2.5× 103 GeV−2).
Thus Ω

X
will be of order 1 (more precisely a fraction of 1) if 〈σannv〉 is of the order

of a picobarn to a femtobarn, which is a typical size for an electroweak process. Also
writing dimensionally

〈σannv〉 ∼ α2

m2
X

, (5.65)

where α is a generic coupling strength, we find that Ω
X

is of order 1 for a mass
m

X
∼ α × 100 TeV, i.e. in the TeV range. This is why one is searching for a weakly

interacting massive particle (WIMP).
As we have seen earlier, in supersymmetric models with R-parity, the lightest

supersymmetric particle (LSP) is stable and provides a good candidate: supersym-
metric particles are massive (as it results from negative searches) and many of them
are weakly interacting (gauginos, Higgsinos and sleptons). In the following section, we
will discuss the possible nature of the LSP.

The simple analysis that we presented is somewhat more involved when the WIMP
appears within a system of particles with which it can annihilate, as is the case in the
supersymmetric set up that we study: such coannihilations are particularly helpful to
decrease the relic density in the case where the WIMP is almost degenerate with some
of the other particles [40,207].

To illustrate this, let us consider a system of two Majorana particles X1 and X2
of masses m1 < m2. Their abundance is determined by the following reactions:

annihilation XiXj → ff, i = 1, 2 (5.66)

scattering X2f → X1f, (5.67)

decay X2 → X1ff, (5.68)

where f and f stand for light Standard Model particles (we have assumed the
conservation of a X-parity). The Boltzmann equations describing the evolution
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with time of their respective number densities n1 and n2 read [40] (compare
with (5.61)):

dn1
dt

+ 3Hn1 =
∑
f

[
−〈σ11annv〉

(
n21 − n

(eq)2
1

)
− 〈σ12annv〉

(
n1n2 − n

(eq)
1 n

(eq)
2

)
+〈σ2→1

scat v〉n2n
(eq)
f − 〈σ1→2

scat v〉n1n
(eq)
f + Γ21

(
n2 − n

(eq)
2

)]
(5.69)

dn2
dt

+ 3Hn2 =
∑
f

[
−〈σ22annv〉

(
n22 − n

(eq)2
2

)
− 〈σ12annv〉

(
n1n2 − n

(eq)
1 n

(eq)
2

)
−〈σ2→1

scat v〉n2n
(eq)
f + 〈σ1→2

scat v〉n1n
(eq)
f − Γ21

(
n2 − n

(eq)
2

)]
(5.70)

with obvious notation: σijann = σ
(
XiXj → ff

)
, σi→j

scat = σ (Xif → Xjf) and Γij =
Γ
(
Xi → Xjff

)
. Since all the X2 which survive annihilation eventually decay into X1,

the relic density will be the present value of n
X
≡ n1+n2. Summing the previous two

equations, we obtain the evolution equation for n
X
:

dn
X

dt
+ 3Hn

X
= −

∑
i,j

〈σijannv〉
(
ninj − n

(eq)
i n

(eq)
j

)
. (5.71)

This analysis can straightforwardly be generalized to a system of N particles Xi (i =
1, . . . , N) with gi internal degrees of freedom and masses mi (m1 ≤ m2 ≤ · · · ≤ mN ).
Equation (5.71) applies to n

X
≡∑N

i=1 ni and allows us to determine the relic density
of the only stable particle of this system, i.e. X1.

To simplify (5.71), one notes [207] that the reaction rates are much faster for
(5.67) and (5.68) than for (5.66): this ensures that the relative number densities of
each species remain at their equilibrium value: ni/nX

∼ n
(eq)
i /n(eq)

X
. Then, (5.71)

simply reads, just as (5.61),

dn
X

dt
+ 3Hn

X
= −〈σeffannv〉

(
n2

X
− n(eq)2

X

)
, (5.72)

where we have defined

σeffann ≡
N∑

i,j=1

σijann
n
(eq)
i

n
(eq)
X

n
(eq)
j

n
(eq)
X

, (5.73)

with (see (D.60) of Appendix D)

n
(eq)
i

n
(eq)
X

=
gi
geff

(
mi

m1

)3/2

e(1−mi/m1)x1 , geff =
N∑
i=1

gi

(
mi

m1

)3/2

e(1−mi/m1)x1 , (5.74)

where x1 = m1/(kT ).
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The decoupling temperature Tf and relic density Ω
X1 are now given by

x1f ≡
m1

kTf
= ln

(
0.038

M
P
m1〈σeffannv〉
h̄2

geff

g
1/2
∗

)
,

Ω
X1h

2
0 ∼

1.07× 109 GeV−1

g
1/2
∗ M

P

x1f
〈σeffannv〉

. (5.75)

We see that, in the case of near degeneracy in mass, and equal degrees of free-
dom and cross-sections, geff ∼ Ng1 and Ω

X1/ΩX
= x1f/xf ∼ 1 + (lnN)/xf ∼

1 + (lnN)/20, where xf and Ω
X

are the quantities computed ignoring coannihila-
tions (i.e. using (5.62) and (5.63)). A more important effect arises if the coannihila-
tors Xi (i ≥ 2) have a larger annihilation cross-section: this increases 〈σeffannv〉 with
respect to 〈σannv〉 and may decrease Ω

X1 with respect to Ω
X

by several orders of
magnitude.

Another possible deviation from the simple analysis presented earlier arises when
one approaches poles in the annihilation cross-section [207]. Indeed, if the exchange of
a particle of mass mA and width ΓA is possible in the s-channel (in supersymmetric
models, this often turns out to be the pseudoscalar A, hence the notation), the estimate
(5.65) is more correctly written

〈σannv〉 ∼ 4α2s

(s−m2
A)

2 + Γ2Am
2
A

, (5.76)

where s = 4m2
X
in the limit of zero velocity. We see that, close to the pole i.e. for

m2
A ∼ 4m2

X
, the cross-section reaches the value 〈σannv〉|pole = 4α2/Γ2A. If the resonance

is narrow, this might lead to a significant increase in the cross-section and decrease in
the relic density.

5.5.2 Nature of the LSP

If the LSP had nonzero electric charge or color, it would have condensed with baryonic
matter and should be present today in anomalous heavy isotopes. The absence of such
isotopes puts very stringent bounds on such particles, which therefore could not play
the rôle of dark matter.

A possible candidate would be a sneutrino. Direct searches (see Figure 5.3) exclude
a LSP sneutrino in a mass window between 25 GeV and 5 TeV [28]. But lighter
sneutrinos have been excluded by searches at LEP and, on the other side of the allowed
spectrum, a mass larger than several TeV represents a rather unnatural value for a
LSP. In the context of the theories that we consider here, this discards the sneutrino
as a LSP.

We are thus left10 with the lightest neutralino χ01 ≡ χ which, as we have seen in
Section 5.3.2, is a combination of gauginos and Higgsinos.

10Another possibility is that the lightest supersymmetric particle is the supersymmetric partner of
the graviton, the gravitino (see Chapter 6).
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We list below for further use the main interactions of the lightest neutralino (for a
more complete treatment, see [242]). First, the coupling to the neutral vectors is given
by:

LχχZ = −1
4

g

cos θ
W

(
|N13|2 − |N14|2

)
χ̄γµγ5χ Zµ, (5.77)

or more generally

Lχχ0mZ =
1
4

g

cos θ
W

Zµ

[
χ̄γµLχ0m (N13N

∗
m3−N14N

∗
m4) − χ̄γµRχ0m (N∗

13Nm3−N∗
14Nm4)

]
,

(5.78)

where the N matrix is defined in (5.51), m = 1, . . . , 4, and L,R = (1∓γ5)/2. We note
that such interactions probe the Higgsino content of the neutralino LSP. The coupling
to charginos and W reads:

Lχχ±
r W∓ = −gχ̄γµ

[(
N12Z

∗
Lr1 −

1√
2
N14Z

∗
Lr2

)
L

+
(
N∗

12Z
∗
Rr1 +

1√
2
N∗

13Z
∗
Rr2

)
R

]
χ+r W

−
µ + h.c. (5.79)

where the ZL, ZR matrices are defined in (5.45).
Next, the couplings to the neutral Higgs system can be summarized in

LχχH =
g

2
(N12 − tan θ

W
N11)

[
(cosαN13 − sinαN14)H0 − (sinαN13 + cosαN14)h0

+i(sinβN13 − cosβN14)A0] χ̄Rχ+ h.c. (5.80)

We see that such couplings vanish when the lightest neutralino is purely gaugino
(N13 = N14 = 0) or purely Higgsino (N11 = N12 = 0). Moreover, if the N matrix
elements are real, the coupling of χ to h0 and H0 (resp. A0) is purely scalar (resp.
pseudoscalar).

Finally, the couplings to quarks and squarks are given by

Lχqq̃ = −q̄iLχ
(
Xiq̃iL + Zq∗

i q̃iR
)
− q̄iRχ (Y

∗
i q̃iR + Zq

i q̃iL) + h.c. (5.81)

where

Xi = −g
√
2
[
t3iN12 + (yi/2) tan θWN11

]
,

Yi = g
√
2 qi N11 tan θW , (5.82)

Zu
i =

g√
2
mui

N∗
14

M
W
sinβ

, Zd
i =

g√
2
mdiN

∗
13

M
W
cosβ

,

where i = 1, 2, 3 is a family index (we have neglected quark and squark mixings).

5.5.3 LSP annihilation

We assume from now on that the LSP is the lightest neutralino χ. We first give in
Table 5.4 the main annihilation channels for a neutralino at rest. We note that the
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Table 5.4 Main annihilation channels of the lightest neutralino χ at rest, with the indication
of the type of exchanged particle (and the corresponding channel). The couplings λAff are
given in Table 5.3.

Final state Exchanged Amplitude ∝
s t, u

ff̄ f̃ g2

[
1 +

(mf̃

mχ

)2
−

(
mf

mχ

)2
]−1

ff̄ A gλAff
(N12 − tan θWN11)(sinβN13 − cosβN14)

4 −m2
A/m

2
χ + iΓAmA/m2

χ

ff̄ Z
g2

cos2 θW

mfmχ

M2
Z

(|N13|2 − |N14|2
)

W+W− χ±
r g2

√
1 − M2

W

m2
χ

∣∣∣N12Z∗
Lr1 − 1√

2
N14Z∗

Lr2

∣∣∣2 +
∣∣∣N12ZRr1 + 1√

2
N13ZRr2

∣∣∣2
1 +m2

χ±
r
/m2

χ −M2
W
/m2

χ

ZZ χ0m
g2

cos2 θW

√
1 − M2

Z

m2
χ

(
N13N∗

m3 −N14N∗
m4

)2
1 +m2

χ0m
/m2

χ −M2
Z
/m2

χ

amplitudes for most channels behave dominantly as m2
χ/MSUSY where MSUSY is a

supersymmetric mass, except for the Z exchange (which dominates when it is open).
The Higgsino fraction N13 or N14 plays a significant rôle: it enhances the annihilation
cross-section and thus tends to decrease the relic density for a Higgsino-like LSP.
Finally, the annihilation amplitude into ff̄ is proportional to the fermion mass and
thus important only for the third family.

Other annihilation channels at rest include W±H∓ (through the exchange of A in
the s-channel or charginos in the t, u channels), ZH or AH and Zh or Ah (through
the exchange of Z or A in the s-channel or neutralinos in the t, u channels). They
turn out to be less relevant in explicit computations, except when one considers light
scalars. We also note that decays to photons or gluons arise only at the one loop
level.

As is clear from the considerations of Section 5.5.1, the neutralino χ is not at rest
at the time of freezing. Typically, its average velocity is given by 〈v2〉 = 6kT/m = 6/x.
One may then expand the averaged cross-section as 〈σv〉 = a+b〈v2〉+ · · · . The term a
is the S wave contribution already discussed, whereas the term b contains contributions
from S and P waves. New contributions appear when one considers the decay of a
neutralino LSP which is not at rest (for example s-channel exchange of Z0, h0 and
H0 for the decay into W+W− pairs), as well as new final states: Z0A0, A0A0, h0h0,
H0H0, H0h0 and H+H−.
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Fig. 5.1 Main annihilation channels of the lightest neutralino χ at rest.

5.5.4 LSP interaction with matter

It is important to be able to determine as precisely as possible the interaction of the
LSP neutralino with nonrelativistic matter in order to make predictions for its direct
detection as well as its capture by material bodies.

Since we are considering matter in the nonrelativistic limit, we first recall that

in this limit, solutions of the Dirac equation have the form11: Ψ =
(
ϕ
0

)
where ϕ

is a two-component spinor field. Then, Ψ̄Ψ and Ψ̄γµΨ yield the scalar ϕ†ϕ whereas

11We use here the Dirac representation for gamma matrices: γ0 = β =
(

1 0
0 −1

)
, γi = βαi with

αi =
(

0 σi

σi 0

)
and γ5 =

(
0 1
1 0

)
. For example, Ψ̄γ0Ψ = Ψ†Ψ = ϕ†ϕ whereas Ψ̄γiΨ = Ψ†αiΨ = 0.
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Ψ̄γµγ5Ψ and Ψ̄σµνΨ yield the vector ϕ†σiϕ and Ψ̄γ5Ψ vanishes in the nonrelativistic
limit.

Because of the Majorana nature of the neutralino (which implies χ̄γµχ = 0 and
χ̄σµνχ = 0, see (B.40) of Appendix B), the most general interaction is described at
the level of quarks, by the effective four-fermion Lagrangian:

L =
∑
i

[
di χ̄γ

µγ5χ q̄iγµγ
5qi + fi χ̄χ q̄iqi

]
. (5.83)

One is thus left with the axial-vector (also called spin dependent) interaction with coef-
ficient di and the scalar interaction (also called spin independent) with coefficient fi.

From the interactions derived in Section 5.5.2, we see that (cf. Fig. 5.2) scalar
(resp. spin-dependent) interactions arise through the exchange of H, h (resp. Z) in
the t channel. The exchange of a sfermion in the s or t channels leads through Fierz
reordering to both types of interactions.

It turns out that the scalar contribution is dynamically reduced with respect
to the spin-dependent one. As we will see in the next section, this is compensated
experimentally by the fact that it behaves coherently and the effects of all the nucle-
ons in a nucleus add up. For the time being, we will identify the origin of the dynamical
reduction at the level of a single nucleon.

We first consider squark exchange. A large contribution of this type would require
the lighter squarks of the third family and thus the implementation of sfermion mixing.
More precisely, the contributions to the couplings di and fi in (5.83) read

di|q̃ exch. =
1
4

2∑
r=1

a2ir + b2ir
m̃2

qir − (mχ +mqi)2
, (5.84)

fi|q̃ exch. = −1
4

2∑
r=1

a2ir − b2ir
m̃2

qir − (mχ +mqi)2
. (5.85)
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∼
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q

Fig. 5.2 Scalar (a), (b), (c) and spin-dependent (b), (c), (d) interactions of the lightest
neutralino χ with matter.
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The couplings air and bir describe scalar and pseudoscalar LSP–squark–quark inter-
actions:

Lχqq̃ =
∑
i

2∑
r=1

q̄ir
(
air + birγ

5)χq̃ir + h.c., (5.86)

where the index r refers to the two mass eigenstates in the case of sfermion mixing
(see (5.58)). They can be obtained from (5.81) and read explicitly

ai1 = − 1
2

[
cos θqi(Xi + Zq

i ) + sin θqi(Y
∗
i + Zq∗

i )
]
,

bi1 = − 1
2

[
cos θqi(Xi − Zq

i ) + sin θqi(Y
∗
i − Zq∗

i )
]
, (5.87)

with cos θqi replaced by − sin θqi and sin θqi replaced by cos θqi for r = 2.
Realizing that |air | = |bir | in the chiral limit (Zq

i goes to zero with the fermion
mass), we see that fi vanishes in this limit. This is true also for the contribution
coming from H,h exchange since their couplings to quarks are proportional to the
mass, see Table 5.3. The scalar contribution is thus naturally disfavored for the light
quarks that are abundant in nucleons. Heavy quarks couple to nucleons only through
a loop [123, 124]. The combined effects lead to a dynamical suppression of the scalar
interaction. We may note that, going to large values of tanβ may significantly increase
the cross-section because, as can be seen from Table 5.3, it enhances the couplings of
H,h to down-type quarks [123].

Regarding the spin-dependent cross-section, we infer from (5.77) that a large con-
tribution from Z exchange requires a large Higgsino component, which is disfavored
if we want a substantial relic abundance.

To give an order of magnitude, in models where the LSP is mostly a bino, one
typically obtains spin-dependent cross-sections σSDχ−p in the 10

−7 to 10−5 pb and scalar
cross-sections σSIχ−p in the range 10−10 to 10−7 pb range.

5.5.5 Direct detection

Goodman and Witten (1985) were the first to propose to use bolometers to detect dark
matter candidates. Typically, the event rate R is given by the number NN = NA/A of
nuclei in the target (NA is Avogadro’s number and A the atomic number) times the
flux F = ρχvχ/mχ (ρχ is the local WIMP density and vχ the average WIMP velocity)
times the cross-section σ. Putting typical numbers, this gives

R = 4.7 evts.kg−1.day−1 1
A

(
ρχ

0.3GeV/cm3

)(
vχ

300km/s

)(
100 GeV

mχ

)(
σ

1 pb

)
.

(5.88)
If the invariant amplitude M is a constant at low energy, the cross-section reads

σ =
µ2

π
|M|2 (5.89)

where µ is the reduced mass (µ−1 = M−1
A + m−1

χ ). For the processes discussed in
the preceding section,M is typically of the form g2/M2, where g is a gauge coupling and
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M a heavy scale (Z mass, Higgs mass or squark mass) which is larger than say 100GeV.
This gives, in the most optimistic case, a cross-section of the order of a picobarn, and
thus rates of a few events per kg and per day. This is typically the rate obtained by
present day experiments, which thus start to put some limits on the supersymmetric
parameter space. This is also the rate of radioactive or cosmic ray background, which
urges the need to perform these experiments in underground laboratories.

For a target nucleus of mass MA ∼ A GeV, the momentum transferred is |q2| =
2µ2v2χ(1 − cos θ∗) where θ∗ is the scattering angle in the center of mass frame. The
recoil energy is then

Q ≡ |q2|
2MA

=
m2

χMA

(mχ +MA)2
v2χ (1− cos θ∗). (5.90)

For example, if mχ �MA,

Q ∼
( mχ

1 GeV

)2( vχ
300 km/s

)2 1
A

keV. (5.91)

Hence, one expects an energy deposited in the detector in the range of a few keV.
We now discuss separately the spin-dependent and spin-independent contributions

to the cross-section. As alluded to above, the scalar interaction adds coherently among
the nucleons: this means that the invariant amplitude is proportional to A and the
cross-section (5.89) scales like µ2A2. This represents a large enhancement factor if
one uses heavy nuclei. Typical examples are germanium (Z = 32, A = 76) or xenon
(Z = 54, A = 136).

More precisely the scalar differential cross-section reads

dσSI

d|q|2 =
1
πv2χ

[Zfp + (A− Z)fn]
2
F 2(Q), (5.92)

where fp and fn are the effective neutralino couplings to proton and neutron respect-
ively [18] and F (Q) is the nuclear form factor.

For the spin-dependent contribution, ones introduces the nucleonic matrix element

〈N |q̄iγµγ5qi|N〉 ≡ 2sµ∆q
(N)
i (5.93)

where sµ is the spin vector of the nucleon N . The experimental values of the constants
thus introduced are ∆u(p) = ∆d(n) = 0.78, ∆d(p) = ∆u(n) = −0.5 and ∆s(p) =
∆s(n) = −0.16. Then, the relevant part of (5.83) reads

LSD = 2
√
2 χ̄γµγ5χ [app̄sµp+ ann̄sµn] ,

ap =
1√
2

∑
i=u,d,s

di∆q
(p)
i , an =

1√
2

∑
i=u,d,s

di∆q
(n)
i . (5.94)

Then the spin-dependent differential cross-section reads

dσSD

d|q|2 =
8
πv2χ

λ2J(J + 1)
S(|q|)
S(0)

, (5.95)
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where S(|q|)/S(0) is the nuclear spin form factor, J is the total spin of the nucleus,
and λ is a nucleonic matrix element that basically describes the fraction of the total
spin that is due to the spin of the nucleons:

λ =
1
J
[ap〈Sp〉+ an〈Sn〉] , (5.96)

where 〈Sp,n〉 is the expectation value of the proton (neutron) group spin content of
the nucleus.

To recapitulate, the differential detection rate is calculated to be

dR

dQ
=

4
π3/2

ρχ
mχvχ

T (Q)
{
[Zfp + (A− Z)fn]

2
F 2(Q)

+8λ2J(J + 1)
S(|q|)
S(0)

}
, (5.97)

where

T (Q) ≡
√
πvχ
2

∫ ∞

vmin

fχ(v)
v

dv (5.98)

integrates over the neutralino velocity distribution fχ(v) (vmin = µ−1
√
MAQ/2).

For the sake of illustration, let us take a simple Maxwellian distribution of velocities
in the halo (isothermal model):

fχ(v) =
4v2

v3χ
√
π
e−v2/v2χ . (5.99)

Then (5.98) gives simply

T (Q) = exp
(
−v2min

v2χ

)
= exp

(
−QMA

2µ2v2χ

)
. (5.100)

The total rate R is, in this case, easily computed. Assuming an experimental cut-off
ET for the recoil energy measured,

R =
∫ ∞

ET

dR

dQ
dQ ∼ ρχ

mχ
exp

(
−ETMA

2µ2v2χ

)
, (5.101)

where we have made explicit in the last term the dependence in the neutralino density
and mass. If an experiment puts an upper limit on R, this translates into a upper
limit on ρχ of the order of

mχ exp

[
ET

2MAv2χ

(
1 +

MA

mχ

)2
]
.

This behaves linearly with mχ for large mχ and grows exponentially for small mχ.
Thus, exclusion plots typically look like Fig. 5.3: assuming a given value of ρχ leads
to the exclusion of neutralino masses in a range [mmin

χ ,mmax
χ ].

Since the rate depends on the velocity of the incident WIMP, one expects an annual
modulation due to the motion of the Earth in the Galactic frame. More precisely, the
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Local galactic density of halo

mχmχ
min mχ

max

ρχ

Excluded

Fig. 5.3 Typical form of the exclusion plot for a WIMP in the plane local density
versus mass.

Earth motion is a superposition of its rotation around the Sun and of the rotation of
the Sun around the Galactic Center (with velocity v	 = 220 km/s):

v⊕ = v	 [1.05 + 0.07 cos (2π(t− tp)/year)] , (5.102)

where t is measured in days and tp ∼ 153 days (June 2) is the day when the direction of
the Earth’s motion around the Sun matches the direction of the Sun’s motion around
the Galactic Center [164]. The numerical coefficients reflect the 60◦ angle between the
two planes of rotation. The yearly modulation comes from the fact that, in the lab
(Earth) frame, one must shift the velocity distribution: f(v + v⊕).

5.5.6 Indirect detection

WIMPs annihilate and their annihilation products can be detected. The variety of
these particles (gamma rays, neutrinos, positrons, antiprotons, antinuclei) leads to
expect to extract rich information from correlated observations. Because the anni-
hilation rate is proportional to the square of dark matter density, one increases the
expected flux by looking at places where the dark matter accumulates. Typical places
are the center of the Earth or the Sun: WIMPs loose energy by scattering with the
nucleons of matter and sink to the center. Or the Galactic Center: the density profile
of the dark matter halo is expected to grow as a power law (ρ(r) ∝ r−γ); this effect
may even be enhanced by adiabatic accretion on the central massive black hole leading
to a central “spike” [201].

WIMPs which have accumulated in the Earth or the Sun annihilate into ordi-
nary particles. Most of the decay products of these particles will be absorbed, except
for high energy neutrinos (with typical energy 1

3 to 1
2 the WIMP mass) which pass

through the Earth or the Sun. Thus energetic neutrinos are a signature for dark matter.
Interactions of such neutrinos in the Earth give energetic muons which are detected
in large underwater (or ice) detectors such as AMANDA, ANTARES, or NESTOR.

The capture rate of neutralinos is proportional to the nucleus–neutralino elastic
scattering cross-section, and thus depends on σSI,SDχ−p,n. In the case of the Earth, scalar
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interactions are favored because of the zero spin of Fe56. For the Sun, the spin of
hydrogen allows spin-dependent interactions and capture is more efficient.

On general grounds, the annihilation cross-section of neutralinos at rest (a good
approximation in the case of neutralinos trapped in the center of a celestial body) into
massless fermions vanishes [195]. Indeed, Fermi statistics imposes that the spin of the
two neutralinos in the initial state (S-wave) are opposite. In the final state, the required
spin flip is ensured by a mass insertion; hence the cross-section is proportional to the
mass of the fermions. Direct annihilation into neutrinos is thus strongly disfavored and
neutrinos are produced as secondary particles: χχ → tt̄, bb̄, cc̄, τ+τ−,W+W−, ZZ →
Xν. The more energetic the neutrinos are, the better their conversion into muons
and the longer the distance they cover. Hence energetic neutrinos are more easy
to detect.

Annihilation of neutralinos in the halo also gives monoenergetic photons (through
the one-loop processes χχ → γγ, γZ) but also a continuous spectrum of photons
through the decay of annihilation products (mostly from the decay of π0 produced
in hadronization). Generally speaking, the annihilation flux is proportional to (i) the
number of annihilations per second in a unit volume 〈σannv〉ρ2(r)/M2 for dark matter
particles of mass M and annihilation cross-section σann, (ii) the spectrum dNi/dE
of secondary particles of type i. Performing an integration over the line of sight, one
obtains the observed flux of secondary particles of type i in a direction making an
angle ψ with the direction of the galactic center:

Φi(E,ψ) =
〈σannv〉
4πM2

dNi

dE

∫
line of sight

ds ρ2(r) (5.103)

where the galactocentric coordinate is expressed in terms of the coordinate s along
the line of sight and the angle ψ as: r2 = s2+R2

0−2sR0 cosψ (R0 ∼ 8 kpc is the solar
distance from the galactic center).

There is thus a strong dependence on the density profile of dark matter ρ(r) which
is poorly known. It is usually parametrized as

ρ(r) =
ρ0

(r/R)γ [1 + (r/R)α](β−γ)/α , (5.104)

where R is a characteristic length and α, β, and γ are parameters. Table 5.5 gives
their values obtained in typical models based on N -body simulations. Because of
the strong model dependence of the astrophysics input in the computation of the
flux, it proves useful to factorize it and to introduce J̄(∆Ω), the average of the
function

J(ψ) =
∫
line of sight

ds

8.5 kpc

(
ρ(r)

0.3 GeV/cm3

)2

(5.105)
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Table 5.5 Values of the parameters used to parametrize dark matter profiles for typical
models: Navarro–Frenk–White (NFW) [293], Moore et al. [289] and isothermal [31].

Model α β γ R (kpc) J̄(10−3)

NFW 1.0 3.0 1.0 20 1.35× 103

Moore 1.5 3.0 1.5 28 1.54× 105

Isothermal 2.0 2.0 0 3.5 2.87× 101

over a region of solid angle ∆Ω centered on ψ = 0. The values of J̄(10−3) are shown
in Table 5.5 for various models: they show that the prediction for the astrophysical
factor based on N -body simulations varies by several orders of magnitude!

Then the flux coming from a solid angle ∆Ω reads

Φi(E,∆Ω) = 5.6× 10−12 dNi

dE

( 〈σannv〉
1 pb

)(
1 TeV
M

)2

J̄(∆Ω)∆Ω cm−2s−1.

(5.106)

The typical energy of gamma rays from neutralino annihilations is in the GeV–TeV
range. Since the interaction length of photons with matter is of the order of 30 g cm−2

(to be compared with the thickness of the atmosphere 1030 g cm−2), only space
missions like GLAST, which follows EGRET launched in 1991, will be able to provide
a significant test for supersymmetric models. However ground Cherenkov telescopes
such as H.E.S.S, MAGIC, and VERITAS, which measure the Cherenkov light emitted
by the particles produced in the cosmic gamma ray shower, show some sensitivity to
models with a large neutralino mass.

The annihilation of neutralinos can also produce positrons. Moreover, the sec-
ondary electrons and positrons propagate in the galactic magnetic field, producing
synchrotron radiation. Typical frequencies are of the order of a few hundred MHz.
The corresponding observations provide significant constraints on the positron flux
expected. Other annihilation products include antiprotons and antideuterons. Given
the uncertainties on the astrophysical quantities, the level at which these particles are
expected in a given supersymmetric model is difficult to predict. On the other hand,
ratios of fluxes corresponding to different species are less sensitive to the details of
halo models.

5.5.7 Dark matter codes

Public codes exist which provide, for a given supersymmetric model, relic abundances,
as well as cross-sections, expected fluxes, etc. We refer the interested reader to the
webpage of two of these codes:

DARKSUSY [200]: http://www.physto.se/edsjo/darksusy/
MicrOMEGAs [29]: http://wwwlapp.in2p3.fr/lapth/micromegas

http://www.physto.se/edsjo/darksusy/
http://wwwlapp.in2p3.fr/lapth/micromegas
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5.6 Nonminimal models
We end this chapter with a discussion of the simplest extension of the MSSM, obtained
by adding a gauge singlet S and all its renormalizable interaction [129,295]. This model
is called the next-to-minimal supersymmetric model (NMSSM, sometimes also referred
to as the (M+1)SSM). We will see in Chapters 9 and 10 that singlets naturally appear
in the context of grand unified models or string models.

The most general superpotential compatible with the symmetries is:

W = 1
2µSS

2 + 1
6κSS

3 + λSSH2 ·H1 +W (2) +W (3), (5.107)

where W (2) and W (3) are the standard MSSM quadratic and cubic terms given in
equations (5.1) and (5.2).

One of the motivations for the NMSSM is that it provides a framework to account
for a dynamical origin of the µ term. Indeed, let us assume the existence of a discrete
symmetry that prohibits any quadratic term in the superpotential: µ = µS = 0. A
rationale behind this assumption is that the typical mass scale of the fundamental
theory underlying this effective low energy theory is very large: any dimensionful
parameter should be fixed by this superheavy scale or vanishing. The low energy theory
then has only dimensionless parameters such as κS , λS and the Yukawa couplings, and
its mass scale appears only through symmetry breaking. Indeed, if S acquires a vacuum
expectation value, then we obtain an effective µ-term with

µ = λS〈S〉. (5.108)

Correspondingly, soft terms read

VSB|NMSSM = VSB|MSSM +
( 1
6AκκSS

3 +AλλSSH2 ·H1 + h.c.
)
, (5.109)

which generates an effective Bµ term: Bµ = AλλS〈S〉.
The spectrum of the NMSSM is the one of the MSSM plus one scalar, one pseu-

doscalar, and one Weyl fermion (often referred to as the singlino). The scalar mixes
with h0 and H0, the pseudoscalar with A0. The singlino mixes with the other neutrali-
nos: the neutralino mass matrixMn is now five-dimensional. In most of the parameter
space, these mixings are small and the fields associated with the S superfield basically
decouple. Otherwise, one may encounter large differences with the phenomenology of
the MSSM [135].

Further reading
• H. Haber and G. Kane, The search for supersymmetry: probing physics beyond the
Standard Model, Physics Reports 117 (1985) 75.

• G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Physics
Reports 267 (1996) 195–373.
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Exercises
Exercise 1 Explain in detail why the MSSM has 105 real parameters besides the 19 of
the Standard Model, i.e. 124 real parameters in total.

Hints: See Chapter 12, Section 12.1.

Exercise 2 Show that the potential V ≡ VF +VD+VSB given by (5.10)-(5.12) has only
charge-conserving minima: 〈H±

1 〉 = 0 = 〈H±
2 〉.

Exercise 3 Compute the mass matrices corresponding to the scalar potential of the
MSSM (Section 5.3.1) for the neutral scalars (Re H0

i ) and pseudoscalars (Im H0
i ).

Deduce (5.28)–(5.30) and (5.32)–(5.33).

Hints:

M2
sc =

m2
1 +

g2 + g′2

4
(3v21 − v22) Bµ −

g2 + g′2

2
v1v2

Bµ −
g2 + g′2

2
v1v2 m2

2 +
g2 + g′2

4
(3v22 − v12)



M2
ps =

m2
1 +

g2 + g′2

4
(v21 − v22) −Bµ

−Bµ m2
2 +

g2 + g′2

4
(v22 − v12)

 .

Exercise 4 Using the Lagrangians presented in Chapter 3, prove (5.43)–(5.44) where
λ± ≡ (λ1 ∓ λ2)/

√
2 is the supersymmetric partner of W±

µ ≡ (A1
µ ∓A2

µ)/
√
2.

Hints: Use equations (3.30) and (3.52) of Chapter 3. Note that, because λ1 and λ2 are
Majorana spinors and because charge conjugation implies hermitian conjugation, one
has λc± = λ∓. Also λ± = (λ1 ± iλ2)/

√
2.

Exercise 5 Compute the spectrum of charginos and neutralinos in the limit case where
M

W
,M

Z
�M1 < M2 < |µ|.

Hints: To leading order in M2
W,Z

/µ,

mχ±
1
=M2 −M2

W

M2 + µ sin 2β
µ2 −M2

2
,mχ±

2
= |µ|+M2

W

|µ|+M2sgn(µ) sin 2β
µ2 −M2

2
,

mχ01
=M1 −M2

Z
sin2 θ

W

M1 + µ sin 2β
µ2 −M2

1
,mχ02

=M2 −M2
Z
cos2 θ

W

M2 + µ sin 2β
µ2 −M2

2
,

mχ03,4
= |µ|+M2

Z
(1∓ sgn(µ) sin 2β)

(
|µ| ±M1 cos2 θW ±M2 sin2 θW

)
2(|µ| ±M1)(|µ| ±M2)

. (5.110)

Exercise 6 Check the terms in the d-type squark mass matrix (5.54) or slepton mass
matrix (5.57).

Exercise 7 We wish to study the evolution with time of the number N of neutralinos
in the center of a celestial body under the influence of capture and annihilation.
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The annihilation rate in the center of the celestial body is

Γann = 1
2CannN

2, Cann = 〈σannv〉V2/V 2
1 , (5.111)

where the quantities Vj are effective volumes: Vj =
[

3M2
P
T

(2jmχρ)

]3/2
(ρ is the core density

and M
P
the Planck mass).12

(a) Write in terms of Γann and the capture rate C the differential equation expressing
the evolution of N with respect to time and solve it.

(b) Express then Γann in terms of time, C, and the critical time τ ≡ (CCann)
−1/2.

(c) Compare the values of τ for the Earth and for the Sun, given that the capture
rate in the Earth is some 10−9 smaller than in the Sun. If the age of the solar
system is larger than the critical time, show that the annihilation rate is only
determined by the elastic scattering cross-section.

Hints:
(a) Ṅ = C − 2Γann = C − CannN

2.

(b) Γann =
1
2
C tanh2(t/τ).

(c) τ⊕ < τ	; Γann =
1
2
C and C is fixed by the scattering cross-section.

Exercise 8 Show that in the NMSSM model of Section 5.6.1 with a discrete symmetry
prohibiting quadratic terms in the superpotential (µ = µS = 0), the lightest Higgs
mass satisfies the upper bound:

m2
h ≤M2

Z
+
( 1
2λ

2
Sv

2 −M2
Z

)
sin2 2β. (5.112)

12For the Sun [206], Vj = [jmχ/10 GeV]−3/2 6.5 × 1028 cm3 and for the Earth [204], Vj =
[jmχ/10 GeV]−3/2 2.0 × 1025cm3.
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6
Supergravity

There are two directions one might take to generalize supersymmetry and its mod-
els as we have presented them until this point: (a) to try to incorporate gravity as
the fourth fundamental interaction, or (b) by using our experience with gauge theo-
ries, to try to make supersymmetry local. It turns out that these two attempts con-
verge: local supersymmetry makes it necessary to introduce a graviton field (and its
supersymmetric partner the gravitino) and therefore gravity. Thus the theory of local
supersymmetry is called supergravity.

Let us note immediately that this is not yet a full quantum theory of gravity:
just as gravity, supergravity is nonrenormalizable; its coupling constant κ is still the
dimensionful Newton’s constant κ ∼ G1/2

N
and interactions scale like powers of κ.

It can thus be understood as an effective theory of a full-fledged quantum theory
of gravity whose fundamental scale is typically the Planck scale M

P
≡
√
h̄c/G

N
∼

1.22 ×1019 GeV. We will return to these considerations at the beginning of Chapter 10,
when we discuss string theory, which represents, to date, the most elaborate attempt
to write a quantum theory of gravity coupled with matter.

For the time being, we will content ourselves with this nonrenormalizable theory
of supergravity, which still represents major progress since it allows us to consider the
theory up to scales a few orders of magnitude smaller than the Planck scale. We recall
that it was precisely one of the motivations for supersymmetry to push the appearance
of new physics to superheavy scales, the hope being that the theory becomes simpler.
In this chapter, we will thus renormalize the low energy supersymmetric models up
to scales close to the Planck scale. This leads to a new way of envisaging model
building: a few assumptions on masses and couplings at this high energy scale, to be
discussed later, allow us to restrict the parameter space of the MSSM. This gives in
particular the so-called minimal supergravity model which has provided a benchmark
for discussing the phenomenology of supersymmetry at high energy colliders, especially
hadron colliders.

6.1 Local supersymmetry is supergravity
Let us start from global supersymmetry and make the supersymmetry transforma-
tions local. In other words, the parameter ε of the transformation is made spacetime
dependent: ε(x). Then following (3.5) of Chapter 3, we have

[ε̄1(x)Q, ε̄2(x)Q] = 2ε̄1(x)γµε2(x) Pµ. (6.1)
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Hence the commutator of two local supersymmetry transformations is a spacetime
dependent translation, what is known as a spacetime general coordinate transforma-
tion. It is precisely by making the relativity theory invariant under local coordinate
transformations that Einstein has derived the theory of general relativity. Thus one
expects, as immediately stressed by Wess and Zumino [364] in the first article on four-
dimensional supersymmetry, that local supersymmetry will lead to a theory of gravity.
This theory is known as supergravity.

We expect to find in the particle spectrum a graviton field (of spin 2) and its super-
symmetric partner, a field of spin 3/2, the gravitino. The gravitino plays a fundamental
rôle in supergravity, as we will now see.

Let us first recall how one makes a gauge symmetry local in order to follow the
same steps with supersymmetry (see Section A.1.3. of Appendix Appendix A for more
details). The simple action

S0 =
∫

d4x Ψ̄(x) iγµ∂µ Ψ(x)

is not invariant under the local transformation: Ψ(x)→ eiθ(x) Ψ(x). Infinitesimally

δS0 = −
∫

d4x ∂µθ(x) Jµ(x) (6.2)

where Jµ(x) is the Noether current: Jµ(x) = Ψ̄(x)γµΨ(x). The solution is to introduce
a vector field Aµ(x) which transforms as:

δAµ(x) = −1
g
∂µθ(x) (6.3)

and add a term S1 = −g
∫
d4xAµ(x) Jµ(x) in order that the full action

S = S0 + S1 =
∫

d4x Ψ̄(x) iγµ (∂µ + igAµ(x))Ψ(x) (6.4)

be invariant under local gauge transformations. Finally one includes a dynamics for
the gauge field by adding a kinetic term

S′ =
∫

d4x

[
−1
4
Fµν(x) Fµν(x)

]
. (6.5)

Let us now consider supersymmetry transformations. Since the parameter of the
transformation carries a spinor index r (εr(x)), the equivalent of (6.3) necessarily reads

δψµ
r (x) ∼ ∂µεr(x). (6.6)

There is therefore a need for a field carrying a spin 1 and a spin 1/2 index, which
amounts to a spin 3/2 (and spin 1/2) field: the gravitino field. As above, we follow the
Noether procedure to couple this field to matter and then give this field a dynamics.
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Let us start, as an example, with the kinetic terms of the Wess–Zumino model:

S0 =
∫

d4x

[
∂µφ∗∂µφ+

i

2
Ψ̄γµ∂µΨ

]
(6.7)

where φ = (A+ iB)/
√
2 and Ψ is a Majorana spinor. We have seen that S0 is invariant

under the global transformation (3.3), (3.4) of Chapter 3:

δA = ε̄Ψ,
δB = iε̄γ5Ψ,
δΨr = −i (γµ [∂µ(A+ iγ5B)] ε)r , (6.8)

the canonical dimension of the Majorana spinor εr being−1/2. If we make εr spacetime
dependent, S0 is no longer invariant:

δS0 =
∫

d4x ∂µε̄ γ
ργµ [∂ρ(A+ iγ5B)]Ψ ≡

∫
d4x ∂µε̄r J

µ
r (x). (6.9)

We thus introduce a new field ψµ
r (x) with vector and spinor indices and a new term

in the action

S1 = −κ

2

∫
d4x ψ̄µγ

ργµ [∂ρ(A+ iγ5B)]Ψ. (6.10)

Since ψµr is a spinor field, it has canonical dimension 3
2 , just as Ψ; and the coupling

κ has dimension −1. In other words, the theory has a dimensionful coupling and is
obviously nonrenormalizable. The supersymmetry transformation of ψr

µ is chosen in
order to cancel (6.9):

δψµ
r (x) =

2
κ
∂µεr(x). (6.11)

Note that dimensions match.
However, contrary to the previous case, the story does not end here since S0+S1 is

not invariant under local supersymmetry. The transformation of S1 yields for example
the following terms quadratic in A:

δS1 = iκ

∫
d4x ψ̄µ(x)γνε(x)

[
∂µA∂νA− 1

2
gµν∂ρA∂ρA+ · · ·

]
(6.12)

where one notices between the brackets the energy–momentum tensor Θµν for the
scalar field. Remembering that Θµν is obtained by varying the action with respect to
the metric

δS =
∫

d4x
1
2
δgµν Θµν , (6.13)

one introduces a local metric gµν(x) such that, under supersymmetry,

δgµν(x) = −iκ
(
ψ̄µγνε(x) + ψ̄νγµε(x)

)
. (6.14)

The corresponding spin 2 field – the graviton – is obviously the supersymmetric partner
of the gravitino, a spin 3/2 field, and the constant κ is nothing but the gravitational
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coupling; κ−1 is the reduced Planck scale:

κ−1 =

√
h̄c

8πG
N

=
M

P√
8π

≡ m
P
= 2.4× 1018 GeV. (6.15)

We could continue the procedure and show for example that the gravitino transforma-
tion law receives other contributions besides (6.11). It turns out however that we have
basically found the supersymmetry transformations of the (spin 2, spin 3/2) system
on shell, in the absence of matter:

δgµν(x) = −iκ
(
ψ̄µγνε(x) + ψ̄νγµε(x)

)
(6.16)

δψµ(x) =
2
κ
Dµε(x). (6.17)

The only modification is that, because we work in curved spacetime, we have written
a covariant derivative in the second equation: Dµε(x) = ∂µε(x)+ 1

2ωµ
abσabε(x) where

ωµ
ab is a spin connection (see Appendix D). The Lagrangian invariant under the

transformations (6.16), (6.17) is simply:

S =
∫

d4x
√
g

[
− 1
2κ2

R− i

2
εµνρσψ̄µγ5γν∂ρψσ

]
(6.18)

where g ≡ det gµν . The first term involves the curvature tensor built out of the metric
gµν : its variation with respect to the metric yields the Einstein tensor Rµν − 1

2gµνR
present in the Einstein equation. The second term is a kinetic term for the spin
3/2 field, the so-called Rarita-Schwinger [321] action (see Section 6.4). Thus the action
(6.18) provides a dynamics for the graviton–gravitino system.

As with the other supermultiplets that we have considered the off-shell description
of the gravity supermultiplet – which consists of the graviton and the gravitino –
involves the introduction of auxiliary fields. They consist in this case of a complex
scalar field M = (M1 + iM2)/

√
2 and a real vector field bµ. For example, whereas the

supersymmetry transformation of the graviton field (6.16) remains unmodified, the
gravitino transformation (6.17) includes extra terms of the form (γµγνε)bν , (γµε)M1
or (γµγ5ε)M2.

6.2 Coupling of matter to supergravity
We will just describe here the coupling of chiral supermultiplets Φi = (φi,Ψi, F i) to
supergravity1. This coupling is summarized by three basic functions:

• The superpotential which is an analytic function of the scalar fields W (φi): it
determines the self-interactions of the scalar fields as well as their Yukawa inter-
actions to fermions.

1Their complex conjugates are written Φ̄ı̄ = (φ̄ı̄, Ψ̄ı̄, F̄ ı̄).
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• The Kähler potential K(φi, φ̄̄), a real function of the scalar fields, determines in
particular the kinetic term of scalar fields:

Lkin = gī(φi, φ̄̄) ∂µφi∂µφ̄̄ (6.19)

where the function gī(φi, φ̄̄) called Kähler metric is defined as

gī =
∂2K

∂φi∂φ̄̄
. (6.20)

This is interpreted in a geometric way: the scalar fields φi, φ̄̄ parametrize a complex
manifold and the Kähler metric is the metric on this manifold. One speaks of a flat
Kähler metric if gī = δij . If the metric is nonflat, the nonnormalized kinetic term is
obviously not renormalizable. Nonrenormalizable interaction terms are also generated
besides the kinetic term, for example a four-fermion interaction: they are proportional
to derivatives of the Kähler metric. [A more technical introduction to Kähler potential
is given in Appendix C.]

The complete supergravity Lagrangian is invariant under the Kähler trans-
formation:

K
(
φi, φ̄̄

)
→ K

(
φi, φ̄̄

)
+ F

(
φi
)
+ F̄

(
φ̄ı̄
)
, (6.21)

W
(
φi
)
→ e−κ2F (φi) W

(
φi
)
, (6.22)

where F
(
φi
)
is an analytic function of the scalar fields φi. For example, the Kähler

metric is invariant under (6.21). The specific choice κ2F
(
φi
)
= lnW

(
φi
)
shows that

the supergravity Lagrangian only depends on the combination [91]:

G = κ2K + ln |W |2 . (6.23)

We refrain from using this function in what follows because the Kähler invariance of
the Lagrangian is no longer explicit.

Finally, we note that the Kähler transformation acts, in a way similar to a
R-symmetry, as a chiral U(1) rotation on the individual fermion fields. More precisely,
one has:

Ψ
L
→ e−iwImF/2Ψ

L
, Ψ

R
→ e+iwImF/2Ψ

R
(6.24)

where the chiral weight is w = 1 for the gravitino and gaugino fields, w = −1 for a
fermion in a chiral supermultiplet 2.
• A kinetic function f(φi) for the gauge fields which determines the gauge field
kinetic term:

Lkin = −1
4
Refab(φi) F aµνF b

µν +
1
4
Imfab(φi) F aµνF̃ b

µν . (6.25)

2We have assumed here that all scalar fields have vanishing chiral weights. [More precisely, using
the superfield language of Appendix C, one should note that the θ variables have chiral weight w = 1,
i.e. transform as θα → e−iImF/2θα. Thus, if a scalar fields has chiral weight w0, its fermion partner
has weight w0 − 1.]
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For complete expressions of the action describing matter coupled to supergravity,
we refer the reader to the references at the end of the chapter. We will concentrate
here on the scalar potential and will therefore write explicitly the nonderivative terms
involving scalar fields. They read:

1√
g
L = −1

3
MM̄ + F igīF̄

̄ + eκ
2K/2 {−κMW̄ − κM̄W

+ F k

(
∂W

∂φk
+ κ2

∂K

∂φk
W

)
+ F̄ k̄

(
∂W̄

∂φ̄k̄
+ κ2

∂K

∂φ̄k̄
W̄

)}
(6.26)

+
1
2
RefabDaDb +

1
2
Da
[
Ki (taφ)

i +
(
φ̄ta
)ı̄
Kı̄

]
,

where κ =
√
8π/M

P
= 1/m

p
and we suppressed the summation over repeated indices.

We recognize the auxiliary fields M of the gravity supermultiplet, F of the matter
supermultiplets and D of the gauge supermultiplets.

It is worth recalling that, whereas the superpotential W has canonical mass
dimension 3, the Kähler potential has dimension 2 (so that the Kähler metric (6.20)
is dimensionless); the auxiliary fields F i, F̄ ̄ and M have dimension 2.

In the limit of vanishing gravitational coupling (κ → 0), flat Kähler metric and
trivial kinetic function (f = 1/g2), one recovers the global supersymmetry Lagrangian
(3.52) of Chapter 3:

L = F iF̄ ı̄ + F i ∂W

∂φi
+ F̄ ı̄ ∂W̄

∂φ̄ı̄
+

1
2g2

DaDa +Da
(
φ̄taφ

)
. (6.27)

Solving for the auxiliary fields

F i = −∂W̄

∂φ̄ı̄
, Da = −g2φ̄taφ, (6.28)

we obtained the scalar potential

V = −L =
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 + 1

2
g2
∑
a

(
φ̄taφ

)2
. (6.29)

We follow the same steps in the case of supergravity. The auxiliary field equations of
motion read:

M = −3κ eκ
2K/2W, (6.30)

F i = −gī eκ2K/2D̄W̄ , (6.31)

F̄ ̄ = −ḡk eκ
2K/2DkW, (6.32)

Da = (Ref)−1
ab Ki (taφ)

i
, (6.33)

where we have used the inverse Kähler metric gī (gīḡk = δik) and we have introduced
the notation3

3We have also used the invariance of the Kähler potential under gauge transformations, i.e.
Ki (taφ)i − (

φ̄ ta
)ı̄
Kı̄ = 0.
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DiW =
∂W

∂φi
+ κ2

∂K

∂φi
W, (6.34)

D̄ı̄W̄ =
∂W̄

∂φ̄ı̄
+ κ2

∂K

∂φ̄ı̄
W̄ . (6.35)

The scalar potential thus reads:

V = − 1√
g
L = eκ

2K
[
DiWgīD̄W̄ − 3κ2 |W |2

]
+

1
2
(Ref)−1

ab Ki (taφ)
i (
φ̄ta
)̄
K̄

= F igīF̄
̄ − 1

3
MM̄ +

1
2
(Ref)abD

aDb. (6.36)

We note that, contrary to (6.29), the scalar potential is no longer positive definite.
If we use the generalized Kähler potential (6.23)

V = κ2eG [GiGīḠ − 3
]
+

1
2
(Ref)abD

aDb, (6.37)

where Gi = ∂G/∂φi, Gı̄ = ∂G/∂φ̄ı̄, ... and GīḠk = δik.

6.3 Supersymmetry breaking
We have seen in Chapter 3 that global supersymmetry is broken if and only if
the vacuum energy vanishes: vacuum energy is the order parameter for global
supersymmetry breaking. When we turn to local supersymmetry, gravity comes into
the game and strongly modifies the issue. As we have just seen, the scalar potential is
for example no longer positive definite. We will show however that one can trade the
vacuum energy for another order parameter.

6.3.1 Criterion for spontaneous local supersymmetry breaking
In order to see that, assume that the minimum of the potential energy corresponds to
a value V0 �= 0: global supersymmetry is spontaneously broken through this nonvan-
ishing vacuum energy. The full action now includes a “cosmological constant” term:

S0 =
∫

d4x
√
g [−V0] . (6.38)

Unlike the global case, this term involves some nontrivial dynamics because of the pres-
ence of the determinant g of the metric gµν : for example, V0 appears on the left-hand
side of the Einstein equations (obtained by the variation of the full action with respect
to the metric) as a contribution to the energy–momentum tensor. We recall that

√
g

appears in (6.38) to ensure reparametrization invariance: under a reparametrization
xµ → x′µ = x′µ(xρ), the metric transforms as

g′
µν = gρσ

∂xρ∂xσ

∂x′µ∂x′ν ⇒
√
g′ =

√
g det

(
∂xρ

∂x′µ

)
.

Thus d4x′ √g′ = d4x
√
g.

Obviously, a term such as (6.38) is non invariant under the supersymmetry trans-
formations (6.16)–(6.17). It must appear in connection with other dynamical terms. On
the other hand, there exists a cosmological constant term which is perfectly compatible
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with these supersymmetry transformations:

S̃0 =
∫

d4x
√
g

[
3
m2

3/2

κ2
−m3/2 ψ̄µσ

µνψν

]
. (6.39)

There are several comments to be made on this (locally) supersymmetric term in
the action.

First, the term quadratic in the gravitino field looks very much like a mass term:

−m3/2 ψ̄µσ
µνψν = − 1

4m3/2 ψ̄µ [γ
µ, γν ]ψν = 1

4m3/2 ψ̄µ {γµ, γν}ψν = 1
2m3/2 ψ̄

µψµ,

where we have used the gauge condition (see next Section) γµψµ = 0. But although
this resembles a gravitino mass term, this is not sufficient to identify it as such: if there
is only the term (6.39) besides (6.18), supersymmetry is conserved and the gravitino
is massless!

Second, the cosmological constant term in (6.39) corresponds to a negative vacuum
energy: E0 = −3m2

3/2
/κ2. The corresponding spacetime is no longer Minkowski but

it is known as an anti-de Sitter space4. [This is the first time, and not the last one,
that we encounter this type of space. It suffices to say that (anti)de Sitter space can
be described geometrically as the surface of equation(

x5
)2 ∓ ηµνx

µxν = R2, (6.40)

in the five-dimensional space with metric

ds2 = ηµνdx
µdxν ∓

(
dx5
)2
, (6.41)

with upper sign for de Sitter, lower sign for anti-de Sitter space.
The spacetime symmetries of such anti-de Sitter spaces are not described by the

Poincaré group O(1, 3) of translations and Lorentz transformations (as in Minkowski
spacetime), but rather by the group O(2, 3).5]

In anti-de Sitter space, the definition of mass from quadratic terms in the action
is subtle. Indeed, if one redefines the covariant derivatives and Riemann tensor in
the field equations to account for the symmetries specific of such spacetime, the two
terms coming from the action (6.39) are absorbed [348]. This solves the puzzle of the
seemingly spurious mass term discussed above.

However, if we combine (6.38) with (6.39) and assume cancellation of the vacuum
energy:

−V0 +
3m2

3/2

κ2
= 0 (6.42)

then we are back in Minkowski space and

S0 + S̃0 =
∫

d4x

[
i

2
m3/2 ψ̄µσ

µνψν

]
(6.43)

4The de Sitter space familiar in the inflation scenario would correspond to a positive vacuum
energy.

5The group O(m,n) is the group of linear transformations that leave invariant a metric with m
positive and n negative diagonal components. Clearly, m = 2 and n = 3 for the metric (6.41).
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now allows us to interpret m3/2 as the mass of the gravitino. From (6.42),

m3/2 = κ

√
V0
3
. (6.44)

We have thus traded the vacuum energy for the gravitino mass: the criterion for the
spontaneous breaking of local supersymmetry is a nonvanishing gravitino mass. The
physical meaning is obvious: since the graviton stays massless, a massive gravitino is
a clear sign of supersymmetry breaking in the spectrum.

This is quite similar to the situation in spontaneous gauge symmetry breaking:
the criterion is a non zero mass for the gauge vector field. One can in fact push
the analogy further and speak of a super-Higgs mechanism. Indeed, the longitudinal
degree of freedom of the massive vector field is provided by the Goldstone particle
associated with the spontaneous breaking of the continuous gauge symmetry. Similarly,
the missing degrees of freedom for the massive gravitino are provided by the massless
Goldstone fermion or Goldstino that was necessarily present in the spectrum when
we discussed the spontaneous breaking of global supersymmetry. The two degrees
of freedom of a massless gravitino and the two degrees of freedom of the Goldstino
make up the four degrees of freedom of the massive gravitino. Just as in the gauge
case, the Goldstino thus does not appear in the physical spectrum of the theory when
supersymmetry is local.

The previous analysis was obviously sketchy since it did not include the dynamics of
supersymmetry breaking. One may take a more realistic approach by using the explicit
coupling of matter to supergravity discussed in the preceding Section. This is relevant
if supersymmetry is broken by the F -component of some chiral supermultiplet.

Besides the scalar potential (6.36), the complete Lagrangian includes a term
quadratic in the gravitino field:

L =
i

2
κ2eκ

2K/2W (φ) ψ̄µσµνψν + h.c. (6.45)

If 〈eκ2K/2W (φ)〉 �= 0 in the ground state, then supersymmetry is spontaneously broken:

m3/2 = κ2〈eκ2K/2W 〉 = κ

3
〈M〉 (6.46)

where we have used (6.30).
Assuming a vanishing vacuum energy 〈V 〉 = 0, we have the following relation from

(6.36): √
〈DiWgīD̄W̄ 〉 = κ

√
3〈|W |〉 (6.47)

or in terms of the auxiliary fields√
〈FigīF̄〉 =

1√
3
〈|M |〉. (6.48)

We can thus write ∣∣m3/2

∣∣ = κ√
3

√
〈F igīF̄ ̄〉, (6.49)

which relates directly the gravitino mass to the measure of supersymmetry breaking,
i.e. the vacuum value of an auxiliary field. As discussed in Section 3.1.2 of Chapter 3,
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it is also this nonvanishing vacuum value which generates a field independent term in
the Goldstino supersymmetry transformation.

It is customary to introduce a supersymmetry breaking scale M
SB

and write on
dimensional grounds 〈F igīF̄

̄〉 ≡M4
SB
. Then,

m3/2 =
M2

SB

m
P

√
3
. (6.50)

6.3.2 Hidden sector

When discussing the issue of supersymmetry breaking in Chapter 3, we have
encountered difficulties when there is a direct coupling between the supersymmetry-
breaking fields and the quark and lepton fields. In the case of F -term breaking
(O’Raifeartaigh model of Section 3.1.4), the spectrum obtained is unrealistic (STr
M2 = 0). In the case of D-term breaking (see Section 3.2.2), one faces quantum
anomalies.

The idea is therefore to somewhat decouple the sector of supersymmetry breaking
from the observable sector of quarks, leptons and gauge interactions. One refers to
the former as a hidden sector. Obviously, one cannot totally “hide” this sector since
the information of supersymmetry breaking must reach the observable sector. But,
in the context of supergravity, gravity itself provides a necessary coupling between
the two sectors. As we will see, the gravitational coupling between the two sectors
tends to soften the divergences: whereas supersymmetry breaking effects are of order
〈F 〉 ∼ M2

SB
∼ m3/2mPl

in the hidden sector, they are damped by the gravitational
coupling κ ∼ m−1

Pl
in the observable sector and one expects there effects of order m3/2 .

We will see below that indeed soft supersymmetry breaking terms are of the order
of the gravitino mass (or smaller if more powers of κ are involved). This means that,
barring accidental cancellations, one expects STr M2 ≡ TrM2

0 − 2TrM2
1/2 to be of

order m2
3/2

. For example, for a single (gauge singlet) chiral superfield z coupled to
supergravity, the supertrace, including terms up to spin 3/2, reads [209]

STrM2 ≡
3/2∑
J=0

(−)2J(2J + 1) TrM2
J = 2eG GzGz̄

Gzz̄
Rzz̄

Gzz̄

∣∣∣∣
min

, (6.51)

where Rzz̄ is the curvature of the Kähler manifold: Rzz̄ = −∂z∂z̄ lnGzz̄ [see (C.57) of
Appendix C]. Then, for a flat Kähler manifold (Gzz̄ = 1 hence Rzz̄ = 0), we have, for
z = (A+ iB)/

√
2 (the corresponding fermion field is the Goldstino; it disappears from

the physical spectrum):
m2

A +m2
B = 4m2

3/2
. (6.52)

We have seen in Chapter 3, after equation (3.23) that STrM2 measures approximately
the difference between an average supersymmetric particle mass and an average quark/
lepton mass. As such, it should be of the order of the (TeV)2. This explains why a
gravitino mass of a few hundred GeV or a TeV is often quoted as a preferred value
(although there exists viable models with a superlight or superheavy gravitino).

We now illustrate these ideas on a very simple model, known as the Polonyi [313]
model, which has provided for a long time a guideline for this type of gravity-mediated
supersymmetry breaking.
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The hidden sector consists of a single chiral supermultiplet with scalar component
denoted by z and a superpotential

Wh(z) = µm
P
(z + β). (6.53)

Since Fz = dWh/dz = µm
P
�= 0, supersymmetry is broken (and arguments above

suggest to take µ in the 100 GeV to 1 TeV range); β is a real constant of order
m

P
to be fixed below. One then adds observable supermultiplets, with scalar field

components denoted by φi. If we assume that the complete potential has the form

W(z, φi) =Wh(z) +Wo(φi), (6.54)

then the scalar potential reads in the limit of global supersymmetry (i.e. for vanishing
gravitational coupling: κ→ 0)

V(z, φi) =
∣∣∣∣dWh

dz

∣∣∣∣2 +∑
i

∣∣∣∣∂Wo

∂φi

∣∣∣∣2 . (6.55)

Hence, the two sectors are completely decoupled. If we restore a nonvanishing κ, we
see that the two sectors are coupled only gravitationally.

In order to discuss such couplings, we must specify the Kähler potential; for sim-
plicity, we will choose a flat Kähler metric:

K(z, z̄, φi, φ̄ı̄) = z̄z + φiφ̄ı̄. (6.56)

The scalar potential (6.36) then reads

V(z, φi) = eκ
2(|z|2+φiφ̄ı̄)

[∣∣∣∣dWh

dz
+ κ2z∗(Wh +Wo)

∣∣∣∣2 + ∣∣∣∣∂Wo

∂φi
+ κ2φ̄ı̄(Wh +Wo)

∣∣∣∣2
−3κ2 |Wh +Wo|2

]
. (6.57)

Since only z acquires a vacuum expectation value of order m
Pl
, it is consistent to con-

sider first this field alone by setting the φi to zero. Requiring a vanishing cosmological
constant at the minimum 〈z〉 of V(z, 0) tunes the constant β:

κβ = ±2−
√
3

κ〈z〉 =
√
3∓ 1 (6.58)

and the gravitino mass reads from (6.46):

m3/2 = µe2∓
√
3. (6.59)

We note that〈
eκ

2|z|2/2
(
dWh

dz
+ κ2z∗Wh

)〉
= κ

√
3〈Whe

κ2|z|2/2〉 =
√
3
κ
m3/2 . (6.60)



BINE: “CHAP06” — 2006/10/5 — 19:01 — PAGE 131 — #12

Supersymmetry breaking 131

Hence, we can write

V(〈z〉, φi) = eκ
2|φi|2/2

{∣∣∣√3κ−1m3/2 + κ(
√
3∓ 1)W

∣∣∣2
+
∑
i

∣∣∣∣∂W∂φi + κ2φ̄ı̄W +m3/2 φ̄
ı̄

∣∣∣∣2
−3
∣∣κ−1m3/2 + κW

∣∣2} (6.61)

where

W (φi) ≡ eκ
2|〈z〉|2/2Wo(φi). (6.62)

In the limit κ→ 0, finite m3/2 and finite κ〈z〉, we have

V(〈z〉, φi) ∼
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 +m2

3/2

∑
i

∣∣φi∣∣2
+m3/2

[∑
i

φi
∂W

∂φi
+ (A− 3)W + h.c.

]
, (6.63)

with

A = 3∓
√
3. (6.64)

We recognize:

• in the first term the standard scalar potential of global supersymmetry;
• in the second term, scalar masses of order m3/2 ;
• in the third term, analytic terms in φi plus their hermitian conjugates. The con-
stant A has been introduced because for a cubic potential W (φ) = λφ3, these
terms simply read Am3/2λ

(
φ3 + φ∗3). This is a standard A-term of the type

discussed in Section 5.2.3 of Chapter 5.

We see that we have generated through gravitational interactions soft supersymmetry-
breaking terms in the observable sector precisely of the order of the gravitino mass
m3/2 : scalar masses

6 and A-terms. One may wonder about the last type of soft terms,
gaugino masses. It turns out that the full supergravity Lagrangian includes a term:

L|quad λ = Re
[
f(z, φi)

] i

4
λ̄γµ∂µλ−

1
4
∂f

∂z
Fzλ̄R

λ
L
+ h.c. (6.65)

where the gauge kinetic function f(z, φi) is defined in (6.25). Using (6.32), we find
〈Fz〉 of order m3/2κ

−1. Thus, we obtain gaugino masses of order m3/2 as well if the
gauge kinetic function depends on z.

6The other type of analytic mass term in equation (5.6) of Chapter 5 may be recovered from the
last line in (6.63) if W (φ) includes a quadratic term ρφ2: then δm′2 = (A− 1)ρm3/2 .
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6.4 The gravitino and Goldstino fields
It is time to pause and to discuss in some more detail the physics associated with
this spin 3/2 field which provides the supersymmetric partner of the graviton: the
gravitino.

We first consider the massless gravitino described by the Majorana spin-vector ψrµ
(r spinor index and µ vector index). The free field equation of motion simply reads in
flat space:

ελµνργ5γµ∂νψρ = 0, (6.66)

which is invariant under the gauge transformation ψµ → ψµ + ∂µη, with η a
Majorana spinor. Equation (6.66) is known as the Rarita–Schwinger [321] equation.

It can also be written, using (B.21) of Appendix B:

iγ[µγνγρ]∂νψρ = 0, (6.67)
which has the advantage of being suitable for generalization to higher dimensions (see
Chapter 10).

We make the standard gauge choice of the harmonic gauge:

γρψ
ρ = 0. (6.68)

This leaves us with a residual gauge symmetry ψµ → ψµ + ∂µη with γρ∂ρη = 0.
With this gauge choice, (6.67) reads γν∂νψµ − γµ∂νψ

ν = 0. Contracting with γµ
gives

∂νψ
ν = 0 (6.69)

and thus
γρ∂ρψµ = 0 (6.70)

which is the Dirac equation for a massless fermion field.
The spin-vector ψrµ belongs a priori to the representation (1/2) ⊗ (1) = (1/2) ⊕

(3/2). The condition γρψρ = 0 above selects the (3/2) representation: it is an
irreducibility condition. To see this, we decompose ψµ in momentum (p) space us-
ing the complete set provided by the vector (e.g. photon) polarization states7 ε±

µ

associated with helicity ±1, the momentum pµ and a conjugate momentum p̄µ such
that p̄2 = p2 = 0 and pµp̄µ = 1:

ψrµ = ε+µ u
+
r + ε−

µ u
−
r + pµur + p̄µvr, (6.71)

where u±, u and v are spinor fields. From (6.69), we have pρψρ = 0 and thus v = 0,
whereas (6.70) yields γρ∂ρu± = γρ∂ρu = 0. We then use the residual gauge symmetry
(see the comment following equation (6.68)) to absorb the term pµur:

ψrµ = ε+µ u
+
r + ε−

µ u
−
r . (6.72)

Then the irreducibility condition (6.68) yields:

0 = γρε−
ρ γ

σψσ = γρε−
ρ γ

σε+σ u
+ =

(
1− piΣi

|p|

)
u+, (6.73)

7They satisfy ε±µ pµ = 0 (transverse polarization) and ε+µ εµ+ = 0 = ε−µ εµ−.
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where Σi is the spin matrix which takes the form
(
σi 0
0 σi

)
in the basis described

in footnote 11 of Chapter 5. Hence u+ has helicity +1/2 and ε+µ u
+ represents the

component of helicity +3/2; similarly ε−
µ u

− is the component of helicity −3/2.
Let us recapitulate the counting of the number of on-shell degrees of freedom for

a massless gravitino: it has the degrees of freedom of a massless vector field (2) times
those of a Majorana spinor (2) but the gauge condition γρψρ = 0 kills those of the
spin 1/2 part (2); we are left with 2× 2− 2 = 2 degrees of freedom.

This should be put in parallel with the counting of on-shell degrees of freedom
of a graviton. The graviton field is obtained as a fluctuation of the metric gµν =
ηµν + hµν and is thus described by the symmetric traceless tensor hµν which has
(4×5)/2−1 (for the trace), that is nine independent components. The gauge freedom
δhµν = ∂µξν + ∂νξµ is partly fixed by four gauge conditions which specify ∂µhµν ; but
there is, as usual, a residual gauge invariance corresponding to ξµ satisfying ∂µξµ = 0
and �ξµ = 0, which eliminates another three degrees of freedom (four massless scalars
minus one condition). We are left with two on-shell degrees of freedom for the graviton.

It is thus perfectly consistent to have a gravity supermultiplet with only the gravi-
ton and the gravitino. As we have seen in Chapter 3 for other supermultiplets, the
counting of off-shell degrees of freedom, on the other hand, imposes the presence of
auxiliary fields, as described at the end of Section 6.1.

We now turn to the massive gravitino case. The equation of motion reads:

− i

2
εµνρσγ5γν∂ρψσ −m3/2σ

µρψρ = 0. (6.74)

Contracting with ∂µ yields, in the case of nonvanishing gravitino mass,

[γσ∂σ, γρ] ψρ = 0. (6.75)

Then, contracting (6.74) with γµ and using the equation just obtained gives, again for
m3/2 �= 0,

γρψρ = 0. (6.76)

Thus the gauge condition of the massless case is obtained as a consequence of the
equations of motion (a similar situation is found for the case of a massive vector field,
see the comment following equation (A.95) of Appendix Appendix A). One obtains:

∂ρψρ =
1
2
{γσ∂σ, γρ}ψρ = −1

2
[γσ∂σ, γρ]ψρ = 0 (6.77)

from (6.75) and (6.76). Also the equation of motion simply reads:

iεµνρσγ5γν∂ρψσ = m3/2ψµ. (6.78)

Contracting this with γµγλ, one finally obtains[
γρ∂ρ −m3/2

]
ψλ = 0 (6.79)

which is the standard Dirac equation for a massive spinor field.
Whereas the MSSM was strictly speaking a low energy theory, the inclusion of

gravity, even at the level of the nonrenormalizable theory that is supergravity, allows



BINE: “CHAP06” — 2006/10/5 — 19:01 — PAGE 134 — #15

134 Supergravity

us to consider supersymmetric models up to scales close to the Planck scale. The
hope is that, as one renormalizes the model up to higher scales, it becomes simpler,
reflecting a symmetry principle that becomes transparent at a high fundamental scale
(we will study for example in later chapters grand unification theories or string theories
which provide explicit examples of such paradigms). In the remaining sections, we will
therefore use renormalization group techniques to bring the low energy supersymmetric
models discussed in the previous chapter to higher scales, and before considering more
elaborate high energy models, we will make some simplifying assumptions at a scale
close to the Planck scale to introduce a toy model known as minimal supergravity
which will represent our first attempt at writing a simple high energy paradigm.

6.5 Radiative breaking of SU(2)×U(1)

We start by studying the breaking of the electroweak symmetry. We have seen in
Chapter 5, equation (5.13) that, in the Higgs sector, the scalar potential

V = m2
1|H0

1 |2 +m2
2|H0

2 |2 +Bµ

(
H0

1H
0
2 +H0∗

1 H0∗
2
)

+
g2 + g′2

8
(
|H0

1 |2 − |H0
2 |2
)2

has a nontrivial minimum under the conditions

m2
1 +m2

2 > 2|Bµ|
m2

1m
2
2 < |Bµ|2

which are not compatible with m2
1 = m2

2. Luckily enough, because H1 and H2 couple
to different fields, radiative corrections give a different treatment to H1 and H2, even
if supersymmetry breaking yields the same contribution of order m3/2. Let us see in
more detail how this arises.

The main difference between H1 and H2 is that H2 couples to the top quark.
Restricting therefore our attention to the heavy quark loops, we must consider the
diagrams of Fig. 6.1 which contribute to the renormalization of the soft scalar mass
m2

H2
≡ m2

2 − |µ|2.
The first three diagrams come from the term λtQ3 ·H2T

c where Q3 =
(
T
B

)
in the

superpotential. Each individual diagram contributes a quadratic divergence – which is
cancelled in the sum, since supersymmetry is spontaneously broken– and a logarith-
mic divergence. The fourth diagram arises from an A-term proportional to the same
term λtQ3 ·H2T

c in the superpotential: Atλtq̃3L ·H2t̃
∗
R+h.c. and the last term arises

from the Higgs gauge interactions. One obtains (see Appendix E for a more complete
formula)

8π2
dm2

H2

dt
= 3λ2t

(
m2

H2
+m2

T +m2
Q +A2

t

)
− 3g2M2

2 (6.80)

where t = ln(µ/µ0), µ being the renormalization scale (not to be confused with the
supersymmetric parameter µ!) This should be solved with the boundary condition

m2
H2
(µ = m

P
) = m2

3/2.



BINE: “CHAP06” — 2006/10/5 — 19:01 — PAGE 135 — #16

Radiative breaking of SU(2)× U(1) 135

H2

H2 H2 H2

H2

H2

H2 H2 H2 H2

H2

QL

QL

QL

tR

tR

tR

λt

λt

λt
2 λt

2λt

W

g gλt

Fig. 6.1 One-loop diagrams contributing to the renormalization of m2
H2 . Q, tR solid (resp.

dashed) lines are quark (resp. squark) lines, solid W or H2 lines are gaugino or Higgsino lines.

We see that the term proportional to λt tends to decrease m2
H2

as µ decreases. One
should remember the relation (5.27) of Chapter 5 which we rewrite

1
2
M2

Z
=

m2
H1

−m2
H2

tan2 β
tan2 β − 1

− |µ|2 > 0. (6.81)

This gives the condition that the soft supersymmetry breaking parameters m2
H1

and
m2

H2
must fulfill at low energy in order to have the right breaking: the smaller m2

H2
is

(and possibly negative), the easier it is to fulfill.
Similar equations are obtained for the evolution of m2

T and m2
Q

8π2
dm2

T

dt
= 2λ2t

(
m2

H2
+m2

T +m2
Q +A2

t

)
− 16

3
g23 M

2
3 (6.82)

8π2
dm2

Q

dt
= λ2t

(
m2

H2
+m2

T +m2
Q +A2

t

)
− 16

3
g23 M

2
3 . (6.83)

If we can neglect the effect of the gaugino masses M2, M3, we see that, as µ decreases,
all threem2

H2
,m2

T andm2
Q decrease butm2

H2
faster than the other two: hence SU(2)×

U(1) is broken before there is a danger that SU(3) gets broken (through m2
T < 0 or

m2
Q < 0). If the effect of M3 is nonnegligible, it will tend to slow down the evolution

of m2
T , m

2
Q, which in turn enhances the effect on m2

H2
.

To get a crude estimate of the scale µ
EW

at which the electroweak symmetry
is broken, we may neglect the running of all quantities besides mH2 . The leading
contribution to the renormalization of mH2 is then, from (6.80),

δm2
H2

∼ −3λ2t
8π2

m2
Q ln

µ

m
P

. (6.84)
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If we start with a boundary condition where m2
H2
(m

P
) ∼ m2

Q, then the scale µ
EW

at
which m2

H2
+ δm2

H2
becomes negative is then

µ
EW

∼ m
P
e−O(1)×4π/λ2t . (6.85)

Hence, a large Yukawa coupling induces a scale for electroweak symmetry breaking
which is exponentially small compared to the Planck scale.

In principle, however, a large top mass is not compulsory: at the time when the top
mass was thought to be around 40 GeV, electroweak symmetry breaking was shown to
be consistent with such a mass, although this involved some fine-tuning of the gaugino
mass [48,230].

6.6 Gaugino masses
In a similar way, one should let the gaugino masses evolve from a scale of order mPl

where they are typically equal to m3/2 to a low energy scale. Their renormalization
group evolution is particularly simple:

dMi

dt
= −αi

2π
bi Mi (6.86)

where αi is the corresponding gauge coupling constant which evolves as:
dαi
dt

= − bi
2π

α2
i (6.87)

and bi is thus the beta function coefficient at one loop (see Appendix E). One obtains

d(Mi/αi)
dt

= 0 (6.88)

which shows that Mi/αi is not renormalized.
Thus, if we assume equality of gauge couplings at some unification scale M

U

α1(MU
) = α2(MU

) = α3(MU
) (6.89)

and correspondingly (confusing M
U
and m

P
for that purpose) equality of gaugino

masses at this scale8

M1(MU
) =M2(MU

) =M3(MU
) =M1/2, (6.90)

where M1/2 is a constant of the order of the gravitino mass, the gaugino masses and
gauge couplings at low energy are related:

M1

α1
=

M2

α2
=

M3

α3
. (6.91)

In other words, the gaugino mass termsM1 andM2 which appear in the chargino/neu-
tralino mass matrices can be expressed in terms of the single gluino massM3. We have
the following relations (see last footnote)

M3 =
α3
α

sin2 θ
W
M2 =

3
5
α3
α

cos2 θ
W
M1. (6.92)

Hence, at the electroweak scale, M3 :M2 :M1 ∼ 7 : 2 : 1.

8Note that, as usual, α1 corresponds to the normalization of the U(1) hypercharge imposed by
grand unification: the U(1)Y gauge coupling used traditionally in the Standard Model is g′ such that
α′ ≡ g′2/(4π) = 3α1/5 (see Chapter 9, equations (9.26) and (9.30)).



BINE: “CHAP06” — 2006/10/5 — 19:01 — PAGE 137 — #18

Scalar masses 137

Wehaveseenthat theequationof evolutions for the scalarmassesare rathermorecom-
plicated. Ifwe assume that scalarmasses are smaller than gauginomasses at all scales, the
gaugino loop contribution dominates in equations such as (6.82–6.83) and the renormal-
ization group evolutions are easy to solve. One finds, to a good approximation,

M2
3 (MZ

) � 9.8 M2
1/2,

m2
Q(MZ

) � m2
Q(MU

) + 8.3 M2
1/2,

m2
U,D(MZ

) � m2
U,D(MU

) + 8 M2
1/2, (6.93)

m2
L(MZ

) � m2
L(MU

) + 0.7 M2
1/2,

m2
E(MZ

) � m2
E(MU

) + 0.23 M2
1/2.

6.7 Scalar masses
There is however a severe problem connected with scalar masses arising from super-
symmetry breaking: the problem of flavor changing neutral currents (FCNC). The
origin of these FCNC is similar to the Standard Model but there is, in general, no
equivalent to the GIM cancellation mechanism (see Section A.3.4 of Appendix Ap-
pendix A).

Let us recall that, in general, the nondiagonal nature of Yukawa couplings leads,
after gauge symmetry breaking, to nondiagonal quark and lepton mass matrices. One
thus needs to diagonalize them through some matrices V q,�.

Similarly, we have seen earlier that supersymmetry breaking leads to nondiagonal
squark and slepton mass matrices, which may be diagonalized through some matrices
Ṽ q,�.

As long as the two issues – supersymmetry breaking and Yukawa couplings – are
not connected, there is no reason to relate V q,� with Ṽ q,�, i.e. the rotations among
quarks and leptons and the rotation of squarks and sleptons. This leads to undesirable
FCNC’s. Let us consider for example the squark–quark–gluino coupling: q̃†λ̄gq, where
q and q̃ are, respectively, the quark and squark fields which are interaction eigenstates
(i.e. the original fields in the interaction Lagrangian).

If one wants to express this coupling in terms of the mass eigenstates one needs
to make the rotations just introduced: q̃†Ṽ q†

λ̄gV
qq. In other words, we have a flavor

mixing matrix

W ≡ Ṽ q†
V q.

In general, W �= 1, which generates FCNC. Let us consider for example the fa-
mous sd̄→ s̄d amplitude which contributes to the KL–KS mass difference ∆mK (see
Fig. A.6 of Appendix Appendix A). As long asW �= 1, there is a new contribution com-
ing from the following box diagram involving gluinos and squarks as shown in Fig. 6.2.

The corresponding contribution reads typically

∆mK

mK
∼ α2

3

∑
ij

W †
di Wis W

†
dj Wjs f

(
m̃2

i

M2
3
,
m̃2

j

M2
3

)
(6.94)

where m̃i is the ũi squark mass. For a generic W matrix, this is much too large.
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S

Sd

Wis
Wdj

+

Wdi
+ Wjs

d

squa        r    k squa        r k

glu i     no

glu   i     no

ui                   uj

Fig. 6.2 Box diagram of supersymmetric contribution to sd̄ → s̄d amplitude.

We will return in detail to this problem in Chapter 12. Let us say here only that
there are several ways of accounting for it:
(i) Universality. To first order, all squarks and sleptons are degenerate. One can then

choose Ṽ q = V q, in which case W = 1 and the supersymmetric box diagram
vanishes. Of course, one can only make this assumption at a given scale, of order
mPl or M

U
for supergravity models, and renormalization to low energies will

tend to generate nondiagonal terms in the mass matrices and thus FCNC at low
energy.

(ii) Effective supersymmetry [79]. FCNC constraints are only crucial for the first two
families, whereas the fine-tuning associated with the hierarchy problem concerns
mostly the third family in the radiative breaking scenario (since the breaking of
SU(2)×U(1) and thus the scale M

Z
arises through the top Yukawa coupling). A

possible solution is therefore to make the squarks of the first two families heavy
(TeV scale), whereas the third family squarks remain relatively light in order to
avoid an unwanted fine-tuning. In this case, because of the squark propagators,
the function f(m̃2

i /M
2
3 , m̃

2
j/M

2
3 ) is very small.

(iii) Quark–squark alignment. If one “aligns” the squark flavors along the quark fla-
vors, that is if the same matrix may diagonalize quark and squark mass matrices,
then V q = Ṽ q and W = 1. This obviously requires a theory of flavor. It may
indeed be obtained by imposing flavor symmetries known as horizontal symme-
tries (in contrast with the ordinary gauge symmetries of the Standard Model
which are vertical, i.e. act within a given family of quarks and leptons).

6.8 The minimal supergravity model
In the case of the minimal supergravity model, one therefore assumes, besides (6.90),
that all scalar masses are equal at unification scale, as well as all A-terms:

mH1(MU
) = mH2(MU

) = m0 (6.95)
mQ(MU

) = mU (MU
) = mE(MU

) = m0 (6.96)
mD(MU

) = mL(MU
) = m0 (6.97)
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AQH2Uc(M
U
) = · · · = A0 (6.98)

where m0 and A0 are typically of order m3/2.
The original motivation was that gravity is the messenger of supersymmetry break-

ing and that gravity is “flavor blind”. For example, the Polonyi model which illustrated
in Section 6.3.2 the simplest example of gravitationally hidden sector yields univer-
sal soft terms. However, this turns out to be often an undue simplification: in many
explicit models of supersymmetry breaking in a gravitationally hidden sector (such as
those inspired by superstring theories), the soft supersymmetry breaking terms are not
flavor blind. It remains however true that this property is recovered in some special
limits: the minimal supergravity model thus addresses such cases.

As stressed earlier, such a universality of scalar masses is not stable under quantum
fluctuations and renormalization down to low energies leads to nonuniversalities and
thus FCNCs.

The attractiveness of the minimal supergravity model is its small number of
parameters, besides those of the Standard Model:

m0, M1/2, tanβ, A0, sign µ.

Let us note in particular that |µ| is determined through the condition (6.81) of SU(2)×
U(1) breaking. The low energy parameters m2

1 and m2
2 may be expressed in terms of

the high energy parametersm0, A0 andM1/2, which gives for example for tan β = 1.65

M2
Z
= 5.9 m2

0 + 0.1 A2
0 − 0.3 A0 M1/2 + 15 M2

1/2 − 2|µ|2. (6.99)

This already shows that, for small tanβ, the minimal supergravity model requires
some level of fine-tuning: as the experimental limits on squark, slepton and gaugino
masses are raised, this pushes higher m0, M1/2 and thus (6.99) requires some fine-
tuning among large parameters. We return to this issue in Section 6.10. We also see
that this requires to have |µ| > M1/2.

Generally speaking for the minimal supergravity model, when |µ| > M1/2, the
LSP χ̃01 is predominantly a bino B̃ with mass M1 = M2α1/α2 = 5

3 M2g
′2/g2 =

5
3 tan

2 θ
W
M2 and the lightest chargino–neutralino spectrum is approximately: mχ̃01

∼
1
2 mχ̃±

1
∼ 1

2 mχ̃02
∼ 1

6 M3 where M3 is the gluino mass.
The remaining sections, which lie in the “Theoretical Introduction” track, are

somewhat technical, although they deal with important issues: dynamical determina-
tion of key parameters, and fine tuning. The phenomenology oriented readers may
have interest to skip these sections and return to them at a later stage.

6.9 Infrared fixed points, quasi-infrared fixed points and
focus points

If the fundamental theory underlying the Standard Model lies at a scale which is close
to the Planck scale, this means that, by studying today the Standard Model, we are
looking at the deep infrared regime of the theory. The renormalization group flow
might thus lead us to some specific corners of the parameter space. We will illustrate
in this section this possibility with a few examples.
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6.9.1 The top quark and the infrared fixed point
Among the Yukawa couplings, the top coupling is the only one which is of order 1. In
other words, it is the only one which is of the order of some of the gauge couplings, say
the strong coupling g3. Is this a coincidence? Pendleton and Ross [306] showed that
this might be expected in the infrared regime of the theory because of the presence
of a fixed point in the low energy evolution of the renormalization group equations.
Before being more specific, let us note that fixing dynamically the top quark Yukawa
coupling would allow us to determine the key parameter tanβ through the relation:

sinβ =
tanβ√

1 + tan2 β
=

√
2

λt

mt

v
, (6.100)

where we have used the relation mt = λtv2.
Let us indeed consider the renormalization group equation for the top Yukawa

coupling, given in equation (E.13) of Appendix E. We will for simplicity neglect all
Yukawa couplings but the top quark one and all gauge couplings but the QCD one.
The relevant renormalization group equations are then:

µ

λt

dλt
dµ

=
1

16π2

(
6λ2t −

16
3
g23

)
(6.101)

µ

g3

dg3
dµ

= − 3
16π2

g23 .

We thus deduce the following equation for the ratio of these two couplings:

µ
d ln

(
λ2t/g

2
3
)

dµ
=

3g23
4π2

(
λ2t
g23

− 7
18

)
. (6.102)

It is easy to check that the ratio
λ2t
g23

=
7
18

(6.103)

is an infrared fixed point: as one goes down in scale, one is attracted to this value. This
is the Pendleton–Ross fixed point, or quasifixed point, since the top Yukawa coupling
continues to evolve: it only tracks closer and closer the strong gauge coupling as one
goes down in energy.

It was, however, emphasized by Hill [224] that, as large as the 16 orders of mag-
nitude between the Planck scale and the top or W mass might seem to be, they are
not sufficient to allow the top Yukawa coupling to significantly approach its quasi-
fixed point value given by (6.103). Since we can solve exactly the system of equations
(6.101) [224, 231], we can check this explicitly. The reader who is only interested in
the result may proceed directly to equation (6.111). For the sake of completeness, we
will reinstate all the gauge couplings. Then, introducing the standard notation

Yt ≡
λ2t
16π2

, Yb ≡
λ2b
16π2

, (6.104)

we may write the renormalization equation for the top Yukawa coupling as

µ
dY −1

t

dµ
= Y −1

t

(
32
3

g23
16π2

+ 6
g22
16π2

+
25
15

g21
16π2

)
− 12. (6.105)
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The linear equation is readily solved by writing it in the form (using (E.2)–(E.4) of
Appendix E)

µ

Y −1
t

dY −1
t

dµ
= −32

9
µ

g3

dg3
dµ

+ 6
µ

g2

dg2
dµ

+
26
99

µ

g1

dg1
dµ

. (6.106)

The solution is Yt(µ) = α−1
t Et(µ) with αt constant and

Et(µ) =
(
g3(µ)
g3(µ0)

)32/9(
g2(µ)
g2(µ0)

)−6(
g1(µ)
g1(µ0)

)−26/99

. (6.107)

The solution to the full equation is solved by the method of variation of the constant.
Namely, we let αt depend on µ. Then the solution satisfies the equation (6.105) if
µ dαt/dµ = −12Et(µ) which is readily solved. Since αt(µ0) = Y −1

t (µ0), we may
finally write the solution of (6.105) as [231]

Yt(µ) =
Yt(µ0)Et(µ)

1− 12Yt(µ0)Ft(µ)
, (6.108)

with

Ft(µ) ≡
∫ µ

µ0

Et(µ′)
dµ′

µ′ . (6.109)

We note that, for large values of Yt(µ0)9, that is for large values of the top Yukawa
coupling at the fundamental scale (the grand unified scale M

U
or the Planck scale

M
P
), the low energy value becomes independent of this high energy value:

Yt(µ) = − 1
12

Et(µ)
Ft(µ)

. (6.110)

Is this the Pendleton–Ross fixed point? Not quite. In order to compare the two, let us
disregard again the evolution of g1 and g2. Then, using the explicit form:

g3(µ)
g3(µ0)

=
(
1 +

3
8π2

g23(µ0) ln
µ

µ0

)−1/2

,

we may compute explicitly Ft(µ) and we obtain for (6.110)

Yt(µ) =
7
18

g23(µ)
16π2

1[
1−

(
g3(µ0)
g3(µ)

)14/9] , (6.111)

which coincides with the Pendleton–Ross fixed point (6.103) only in the limit where
g3(µ)/g3(µ0)� 1. As we stressed earlier, there is often not enough energy span for the
top coupling to fall into the fixed point: for example g3(MZ

)/g3(MU
) ∼ 1.7. However,

the solution (6.111) is independent of the initial conditions. By a slight variation over
the previous denomination, it has become known in the literature as the quasi-infrared

9Strictly speaking large values of 12Yt(µ0)Ft(µ), which leaves us some margin before we enter the
nonperturbative regime for the top coupling Yt(µ0) > 1.
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fixed point, probably to stress that, although the behavior has become universal, the
couplings have not completely fallen yet into the Pendleton–Ross (quasi-)fixed point.

If the value of the top Yukawa coupling is large at some superheavy scale such as
the grand unification scale, then we just saw that we can estimate the value of tanβ
through (6.100). The top mass which is present in this equation is the running mass
mt(mt). This should be distinguished from the physical top mass Mt, which receives
two important corrections at one-loop: QCD gluon corrections10 and stop/gluino cor-
rections. Taking these corrections into account [69], one obtains a value of tanβ of
the order of 1.5. As we will see in Chapter 7, such a value is not favored by data
because it gives too light a Higgs. For tanβ ≥ 30, the bottom Yukawa coupling
λb = λt(mb/mt) tanβ cannot be neglected and the previous analysis must be changed:
it turns out that, for values of tanβ larger than 30, mt is decreasing with tanβ.

6.9.2 Focus points

Besides fixed points, there is the possibility of renormalization group trajectories
focussing towards a given point: the evolution does not stop there and, as in the
focussing of light, the trajectories diverge again beyond the focus point. It has been
pointed out [153–155] that such focus points could be of interest if they correspond
to the electroweak scale. Then, the low energy physics would be less dependent on
the boundary values of parameters at high energy. This puts in a different perspective
the discussion of naturalness which we will undertake in the next section. We will
therefore discuss in some details the nature of such focus points.

The set of renormalization group equations that one has to solve at the one loop
level is presented in Appendix E. They turn out to have a very specific structure which
allows us to solve them, at least formally. We start by solving for the gauge couplings
from which we can infer the evolution of the gaugino masses (see (6.88) above). This
allows us to solve for the A-terms. In parallel, we may obtain the evolution of the
Yukawa couplings following the methods developed in the previous section (we will
apply it in Section 9.3.3 of Chapter 9 to obtain the evolution of λb).

Finally, there remains mainly to solve the evolution equations of the soft scalar
squared masses, i.e. equations (E.17)–(E.23) of Appendix E. They turn out to involve
only the following combinations

Xt ≡ m2
Q +m2

T +m2
H2
,

Xb ≡ m2
Q +m2

B +m2
H1
, (6.112)

Xτ ≡ m2
L +m2

E +m2
H1
.

The evolution equations can thus be transformed into a set of equations for these
variables, and by adding to each mass squared m2

i (i = H1, H2, B, . . .) an appropriate
combination of Xt, Xb and Xτ , we obtain a new variable m̂i whose evolution depends
only on gauge couplings and gaugino masses. We will illustrate this below.

10In the relevant renormalization scheme (DR), described in Section E.8 of Appendix E,

Mt −mt(mt)
mt(mt)

∣∣∣∣
QCD

=
5g23

12π2
.

See Section 9.3.3 of Chapter 9 for a discussion of similar corrections in the case of the bottom quark.
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Now, from the point of view of electroweak symmetry breaking and naturalness, we
will be especially interested in the Higgs soft masses, in particular m2

H2
. Consider two

distinct solutions (m(1)2
i ) and (m(2)2

i ) of the renormalization group equations, with the
same boundary conditions for the A-terms and gaugino masses, but different ones for
the scalar masses. Then, given the structure of the renormalization group equations
described above, the differences (∆m2

i ≡ m
(1)2
i −m

(2)2
i ) satisfy a linear system which

is easy to solve. If there is a scale µi0F for which ∆m2
i0
(µi0F ) = 0, then all solutions

will converge at this scale to the same value for the particular mass-squared m2
i0
. If

this happens for m2
H2

at a scale close to the electroweak scale, then the low energy
value of m2

H2
is insensitive to its boundary value at the superheavy scale.

Let us show this analytically. For simplicity, we will neglect the lepton evolution
and thus the Xτ variable, as well as the electroweak gauge interactions. Then, one
obtains from equations (E.17)–(E.23) of Appendix E the evolution equation for Xt

and Xb:

8π2
d

dt

(
Xt

Xb

)
=
(
6λ2t λ2b
λ2t 6λ2b

)[(
Xt

Xb

)
+
(
A2
t

A2
b

)]
− 32

3

(
1
1

)
g23M

2
3 , (6.113)

where t = lnµ. In order to define the variables m̂i, it is convenient to introduce the
following combinations:

Zt = − 6
35
Xt +

1
35
Xb Xt = − (6Zt + Zb)

Zb =
1
35
Xt −

6
35
Xb Xb = − (Zt + 6Zb) . (6.114)

Then the following combinations satisfy the simple equations11:

m̂2
H1

≡ m2
H1

+ 3Zb, 8π2dm̂2
H1
/dt =

32
7
g23M

2
3 ,

m̂2
H2

≡ m2
H2

+ 3Zt, 8π2dm̂2
H2
/dt =

32
7
g23M

2
3 , (6.116)

m̂2
Q ≡ m2

Q + Zt + Zb, 8π2dm̂2
Q/dt = −16

7
g23M

2
3 ,

m̂2
T ≡ m2

T + 2Zt, 8π2dm̂2
T /dt = −16

7
g23M

2
3 ,

m̂2
B ≡ m2

B + 2Zb, 8π2dm̂2
B/dt = −16

7
g23M

2
3 .

11In the case of universal boundary conditions as in (6.95)–(6.97), we have

Xt = Xb = 3m2
0, Zt = Zb = −3

7
m2
0

m̂2
H1

= m̂2
H2

= −2
7
m2
0, m̂2

Q = m̂2
T = m̂2

B =
1
7
m2
0. (6.115)
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If we have two sets of solutions (1) and (2) to these equations, which differ only by
the scalar mass boundary conditions, then defining as above ∆Zt,b ≡ Z

(1)
t,b −Z

(2)
t,b , . . .,

we obtain from (6.113), using the notation (6.104)

d

dt
∆Zt = 2Yt (6∆Zt +∆Zb) ,

d

dt
∆Zb = 2Yb (∆Zt + 6∆Zb) , (6.117)

whereas the combinations ∆m̂2
i corresponding to (6.116) do not evolve.

The solution to (6.117) reads (see Exercise 3)

∆Zt(t) = ∆Zt(t0) + Yt(t)e2
∫ t
0 dt1g

2
3(t1)/(3π

2)

×
{
2 (6∆Zt(t0) + ∆Zb(t0))

∫ t

0
dt1e

−2
∫ t1
0 dt2g

2
3(t2)/(3π

2) (6.118)

−20 (∆Zt(t0) − ∆Zb(t0))
∫ t

0
dt1Yb(t1)e−2

∫ t1
0 dt2Y (t2)

×
∫ t1

0
dt2e

2
∫ t2
0 dt3[Y (t3)−g23(t3)/(3π

2)]
}
,

with Y ≡ Yb+Yt, and similarly for ∆Zb(t) with the exchange b↔ t. The explicit solu-
tion for Yt(t) was given in (6.108). The solution for Yb(t) may be found in Chapter 9,
equation (9.77).

We deduce from (6.116) that the focus scale tF = lnµF for m2
H2

satisfies the
condition

∆m2
H2
(µF ) = 0 = ∆m̂2

H2
(µ0)− 3∆Zt(µF ), (6.119)

where we have used the fact that ∆m̂2
H2

is not renormalized. In the case of universal
boundary conditions (6.115), an overall factor ∆m2

0 drops out of this equation, which
reads using (6.118),

Yt(tF )e2
∫ tF
0 dtg23(t)/(3π

2)
∫ tF

0
dte−2

∫ t
0 dt1g

2
3(t1)/(3π

2) = − 1
18
. (6.120)

We note that this depends only on the value of the top Yukawa coupling at the focus
scale Yt(tF ). It turns out that, for mt ∼ 174 GeV and tanβ ∼ 5, this scale is the
electroweak weak scale [154]. For larger values of tanβ, we see from (6.100) that Yt, or
λt, is fixed by the top mass. Since the condition (6.100) does not depend on the bottom
Yukawa coupling, one deduces that it stills corresponds to a focus at the electroweak
scale.

6.10 The issue of fine tuning
We have already stressed that, as the scale of supersymmetry breaking becomes higher
(because of the nondiscovery of supersymmetric partners), the parameters of the the-
ory get more fine tuned. The basic relation is equation (6.81) which we rewrite here:

1
2
M2

Z
=

1
tan2 β − 1

m2
H1

− tan2 β
tan2 β − 1

m2
H2

− |µ|2. (6.121)
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It expresses the scale of electroweak symmetry breaking in terms of the parame-
ters of the low energy theory (say at µ = M

Z
). In the approach that we adopt in

this chapter and the following ones, the relevant parameters are rather the ones at
the high energy scale (µ0 = m

P
or M

U
or the string scale). One should therefore

express m2
H1,2

and |µ|2 in terms of the high energy parameters. This is what we did
in (6.99) for the minimal supergravity model. More generally it takes the following
form:

M2
Z
=
∑
i

Ci m
2
i (µ0) +

∑
ij

Cij mi(µ0) mj(µ0), (6.122)

where mi represents a generic parameter of the softly broken supersymmetric
Lagrangian (scalar mass, gaugino mass, A-term or |µ|). Obviously, the parameters
corresponding to the largest coefficients Ci or Cij will have the most impact on
the discussion of fine tuning: a small variation of these parameters induces large
corrections which must be compensated by other terms in the sum (6.122). More-
over, the nonobservation of supersymmetric partners imposes lower limits on these
parameters which are often much higher than M

Z
: the sum on the right-hand side

thus equals M
Z
at the expense of delicately balancing large numbers one against

another.
It turns out that, quite generically, it is the gluino mass M3 which appears in

the sum with the largest coefficient. We are going to show this analytically by using
the methods developed in the previous sections. We make the following simplifying
assumptions: we neglect in the renormalization group equations terms proportional
to g21 , g

2
2 , λ

2
b and λ2τ ; we also set the A-terms to zero. Then from (E.5), (E.17), and

(E.18) of Appendix E, m2
H1

is not renormalized whereas we have

1
µ

dµ

dt
= 3Yt,

dm2
H2

dt
= 6YtXt, (6.123)

where Yt and Xt are defined in (6.104) and (6.112), and t = lnµ/µ0. The solution for
Yt is written in (6.108). The equation of evolution for Xt is given in (6.113). We see
that it involves a term in g23(t)M

2
3 (t) = g63(t)M

2
3 (0)/g

4
3(0) (we have used (6.88)): it is

this contribution that induces a term proportional to M2
3 (0). Solving (6.113) for Xt

(see Exercise 4), one obtains, in the limit λt(0)� g3(0):

m2
H2
(t) =

1
2
(
m2

H2
(0)−m2

Q(0)−m2
T (0)

)
−M2

3 (0)
391γ43 − 1400 + 1009γ−14/9

3

1575
(
1− γ

−14/9
3

) ,

µ(t) = µ(0)
[
1 +

36
7
8π2Yt(0)
g23(0)

(
γ
14/9
3 − 1

)]−1/4

, (6.124)
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where γ3 ≡ g3(t)/g3(0) ∼ 1.7. Replacing these into (6.121), this gives

M2
Z
=

1
tan2 β − 1

2m2
H1
(0)− tan2 β

tan2 β − 1
m2

H2
(0)

+
tan2 β

tan2 β − 1
(
m2

Q(0) +m2
T (0)

)
+

tan2 β
tan2 β − 1

5.2M2
3 (0)− 1.1

g3(0)
λt(0)

|µ(0)|2. (6.125)

We see that the fine tuning gets larger for values of tanβ close to one (the coefficients
Ci behave as (tan2 β−1)−1). On the other hand, the fine tuning becomes independent
of tanβ for values significantly larger than 1 (but not too large, otherwise the λb
coupling may not be neglected).

Our approximate result may be compared with complete computations. For exam-
ple, for tanβ = 2.5, one obtains [246]

M2
Z
= 0.38 m2

H1
(0)− 1.42 m2

H2
(0) + 0.96

(
m2

Q(0) +m2
T (0)

)
+7.2 M2

3 (0)− 0.24 M2
2 (0) + 0.01 M2

1 (0)− 1.74 |µ(0)|2

+0.18At(0)2 − 0.68At(0)M3(0)− 0.14At(0)M2(0)− 0.02At(0)M1(0)

+0.5 M2(0)M3(0) + 0.06 M1(0)M3(0) + 0.01 M1(0)M2(0). (6.126)

The large coefficient of the M2
3 (0) term (and the nondiscovery so far of the gluino,

which sets a lower limit for M3) imposes to envisage a cancellation among large num-
bers, in order to obtain the right scaleM

Z
. We note on the other hand that neitherM1

nor M2 play a significant rôle in this discussion about fine tuning, except obviously if
they are related to M3 as in the minimal supergravity model.

Several authors [23, 128] have tried to quantify the amount of fine tuning in the
following way: writing M2

Z
=M2

Z
(m1 · · ·mn) as above, they define

∆max = max
i

∣∣∣∣ mi

M2
Z

∂M2
Z

∂mi

∣∣∣∣ . (6.127)

One obtains, at the tree level, ∆max > 100 for tanβ = 1.65 or ∆max > 40 for tanβ < 4.
But including one-loop corrections [25] stabilizes the model and the fine-tuning is only
∆max > 8 for tan β < 4.

One may note that correlations between the different parameters arising from a
given supersymmetry breaking mechanism may decrease the degree of fine tuning.
Obviously, a correlation between M3 and µ would serve this purpose but might be
difficult to realize. Otherwise, one may envisage correlations between M3 and mH2 or
between the gaugino masses (which would then imply M3 < M1 or M2).

If we return to the Higgs mass, we may note an apparent paradox. As the
experimental limits on the lightest Higgs mass are larger than M

Z
cos 2β, one must

take into account loop corrections to the mass (all the more as tanβ is closer to 1).
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These corrections given in equation (5.36) of Chapter 5, depend logarithmically on the
stop mass. They may be increased by exponentially increasing the stop mass, i.e. by
increasing accordingly the values of the soft parameters, in particular M3(0) [246].
This is obviously at the expense of increasing the amount of fine tuning.

6.11 The µ problem
We have seen in Chapter 5 that the only mass scale of the low energy supersymmetric
theory is the µ parameter: all other mass scales are provided by supersymmetry break-
ing. If the energy scale of the underlying fundamental theory is superheavy (grand
unification, string or Planck scale), it is difficult to understand why µ is not of this
order. This has been called the µ problem [250].

Of course, a symmetry could ensure that µ vanishes at the large scale. But this
has to be broken at low energy, otherwise the low energy theory has a U(1) Peccei–
Quinn symmetry [303] which is broken by the vacuum expectation values of H1 and
H2, leading to an unwanted axion. Moreover, in the simplest supergravity models, the
soft parameter Bµ turns out to be proportional to µ and Bµ = 0 implies 〈H0

1 〉 = 0 or
〈H0

2 〉 = 0 (see (5.25) of Chapter 5).
It is thus important to find at low energy a dynamical origin for the µ term. One

possibility is the one discussed in Section 5.6 of Chapter 5: a cubic term λSH2 · H1
gives rise to the µ term when the singlet field S acquires a vacuum expectation value
at low energy (µ = λ〈S〉). The µ term may also be generated by radiative corrections
or by nonrenormalizable interactions.

To date, the most elegant solution has been given by Giudice and Masiero [190]
who have shown that, in a supersymmetric theory with no dimensional parameters
(besides the fundamental scale), the µ parameter may be generated by supersymmetry
breaking. Of course, the fundamental problem of how to generate a scale of supersym-
metry breaking much smaller than the fundamental scale remains open. We will return
to it in Chapter 8.

To illustrate the Giudice–Masiero mechanism, we consider a supergravity model
along the lines of Section 6.3.2: the hidden sector consists of Nh chiral superfields
with scalar component zp and the observable sector of No chiral superfields with
scalar component φi (and their conjugates). We now make the assumption that there
is no mass scale in the observable sector: observable fields have only renormalizable
couplings among themselves and gravitational couplings (suppressed by powers of κ)
with the hidden sector. Introducing the dimensionless hidden fields ξp ≡ κzp, we thus
write the superpotential

W = κ−2W (1)(ξp) + κ−1W (2)(ξp) +W (3)(ξp, φi), (6.128)

W (3)(ξp, φi) =
1
3!

∑
ijk

λijk(ξp)φiφjφk,

and the Kähler potential

K = κ−2K(0)(ξp, ξ̄p̄) + κ−1K(1)(ξp, ξ̄p̄) +K(2)(ξp, ξ̄p̄, φi, φ̄ı̄), (6.129)

K(2)(ξp, ξ̄p̄, φi, φ̄ı̄) =
∑
i

φiφ̄ī +
1
2

∑
ij

[
αij(ξp, ξ̄p̄)φiφj + h.c.

]
,
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where the index in parenthesis gives the mass dimension of the function (for simplicity,
we have assumed a flat Kähler metric for the observable fields). As in Section 6.3.2,
the hidden sector involves mass scales (M

SB
) such that, in the low energy limit κ→ 0,

the gravitino mass

m3/2 = eK
(0)/2W (1) (6.130)

is a low energy scale.
Precisely, in the low energy limit κ → 0, the theory in the observable sector is

described by a supersymmetric Lagrangian and soft supersymmetry breaking terms
whose magnitude is fixed by the scalem3/2 . More precisely, the effective superpotential
Ŵ of the low energy effective theory reads

Ŵ (φi) = Ŵ3 +

[
1−

∑
q̄

Y q̄ ∂

∂ξ̄q̄

]
m3/2Ŵ2,

Ŵ3 =W (3)eK
(0)/2, Ŵ2 =

1
2

∑
i,j

αij(ξp, ξ̄p̄) φiφj , (6.131)

Y q̄ = g(0)q̄p
(

1
W (1)

∂W (1)

∂ξp
+
∂K(0)

∂ξp

)
,

where g(0) q̄p is the inverse Kähler metric associated with the Kähler potential K(0).
We note that it is holomorphic in the low energy dynamical fields φi but it depends
on the vacuum expectation values of the hidden sector (superheavy) fields ξp and
ξ̄p. We see that the terms quadratic in the observable fields in the Kähler potential
K(2)(ξp, ξ̄p̄, φi, φ̄ī) induce quadratic terms (Ŵ 2) in the effective superpotential with
scale fixed by the supersymmetry breaking scale m3/2 . One of them may be the µ
term.

The low energy scalar interactions are described by the Lagrangian (see
Exercise 5)

Leff =
∑
i

∣∣∣∣∣∂Ŵ∂φi
∣∣∣∣∣
2

+m2
3/2

∑
i

∣∣φi∣∣2
+m3/2

{∑
i

φi
∂Ŵ

∂φi
+
[
Y p

(
∂K(0)

∂ξp
+

1
W (3)

∂W (3)

∂ξp

)
− 3
]
Ŵ3

+
(
Y p ∂

∂ξp
+ Y p̄ ∂

∂ξ̄p̄
− Y pY q̄ ∂2

∂ξp∂ξ̄q̄

)
m3/2Ŵ2 + h.c.

}
. (6.132)

We see that soft supersymmetry breaking terms cubic (A-terms) and quadratic (like
the Bµ term) are naturally generated. The scale is fixed, as in the simpler example
of (6.63), by the gravitino mass but this time the coefficients may take very diverse
values, depending on the specific form of the hidden sector.
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6.12 No-scale models
In the context of electroweak symmetry radiative breaking, we have seen that the elec-
troweak symmetry breaking scale comes out naturally small compared to the Planck
scale. This however does not determine the gravitino mass which fixes the masses of
the supersymmetric partners. Indeed, only dimensionless quantities such as mass ra-
tios (e.g. gaugino mass over m3/2) or A-terms play a rôle in the determination of the
electroweak scale. However, if we do not want to destabilize the electroweak vacuum
through radiative corrections, the overall supersymmetric mass should be a low energy
scale. It is thus desirable to look for a determination of the scale m3/2 through low
energy physics.

Obviously, in this case, the gravitino mass should remain undetermined by the
hidden sector: in other words, it should correspond to a flat direction of the scalar
potential. Let us get some orientation with a hidden sector reduced to a single field z
[92]. For the time being, we ignore low energy observable fields. The scalar potential
may be written from (6.37)

V (z, z̄) = 9 e4G/3G−1
zz̄ ∂z∂z̄e

−G/3. (6.133)

It vanishes for ∂z∂z̄e−G/3 = 0, i.e.

G(z, z̄) = K(z, z̄) = −3 ln
(
f(z) + f̄(z̄)

)
. (6.134)

One notes that the corresponding curvature, defined in (6.51), is proportional to the
Kähler metric, i.e. Rzz̄ = − 2

3Gzz̄. This property defines an Einstein–Kähler manifold.
One may redefine the coordinates on the Kähler manifold by performing the

replacement f(z)→ z. Then,

K(z, z̄) = −3 ln (z + z̄) . (6.135)

The corresponding Lagrangian is restricted to a nontrivial kinetic term:

L = 3
1

(z + z̄)2
∂µz∂µz̄. (6.136)

In order to discuss the symmetries associated with such a Lagrangian, we define z =
(y + 1)/(y − 1) such that L = 3 ∂µy∂µȳ/

(
1− |y|2

)2, which is invariant under:

y → ay + b

b̄y + ā
, |a|2 − |b|2 = 1. (6.137)

This defines the noncompact group SU(1, 1) [72,92,131,132]12

In terms of the variable z, this SU(1, 1) symmetry reads

z → αz + iβ

iγz + δ
, αδ + βγ = 1, α, β, γ, δ ∈ R. (6.138)

12A representation of this group is provided by the matrices
(
a b
b̄ ā

)
which, acting on vectors

(
y1
y2

)
,

leave invariant the quadratic form |y1|2 − |y2|2 (to be compared with |y1|2 + |y2|2 for the compact
group SO(2)).
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This includes:
(i) imaginary translations, forming a noncompact Ũ(1)a group: z → z + iα;
(ii) dilatations: z → β2z;
(iii) conformal transformations: z → (z + i tan θ)/(i tan θ + 1).

The complete supergravity Lagrangian is invariant under this symmetry, except
the gravitino mass term (6.45):

L =
i

2
eG/2ψ̄µσ

µνψν + h.c. (6.139)

This is invariant under Ũa(1) but not under dilatations since it has dimension d = 3
(see Section A.5.1 of Appendix Appendix A), nor on conformal transformations (under
which the gravitino and the Goldstino transform differently). This term thus breaks
SU(1, 1) down to the noncompact Ũa(1).

Because, by construction, the tree level scalar potential is flat, we must rely on
quantum fluctuations to determine m2

3/2
= eG : since supersymmetry is broken, these

radiative corrections should lift the flat direction. If only light fields (with a mass of
order M

W
or µ

EW
as defined in (6.85)) contribute, then one expects m3/2 to be of the

same order. On the other hand, if superheavy supermultiplets of mass of order M
U

(with mass splittings of order m3/2) contribute, then one expects a vacuum energy
(M2

U
+ m2

3/2
)2 − M4

U
of order m2

3/2
M2

U
. This would destabilize the gravitino mass

towards M
U
.

We thus need to find models where superheavy matter supermultiplets do not
feel supersymmetry breaking. We construct in what follows such models [130]. Let us
consider for this purpose the following generalized Kähler potential

G = −3 ln
[
z + z̄ + h

(
φi, φ̄ı̄

)]
, (6.140)

where h is a real function of n chiral supermultiplets (i = 1, . . . , n). We note φI ,
I = 0, . . . , n the scalar fields φ0 ≡ z and φI=i ≡ φi. The scalar potential then reads,
from (6.37), setting κ = 1,

V = eG
[
GIGIJ̄GJ̄ − 3

]
+

1
2
(Ref)abD

aDb. (6.141)

From the explicit form of the Kähler potential, we deduce that Gi = G0hi, Gı̄ = G0hı̄
and

GIJ̄ =
1
G0

(
3

G0 + hkh
kl̄hl̄ −hkhk̄

−hik̄hk̄ hī

)
, (6.142)

where hīh̄k = δik. One thus obtains

GIGIJ̄ =
3
G0

δJ̄0 , GIJ̄GJ̄ =
3
G0

δI0 , (6.143)

GIGIJ̄GJ̄ = 3. (6.144)

Hence the scalar potential (6.141) is reduced to its D-terms and is flat along the D-flat
directions.
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One may check that there is no mass splitting between the bosonic and fermionic
components of the chiral supermultiplets. In order to see this, one may compute the
supertrace (6.51), which reads, in this case where we have n+1 chiral supermultiplets
[209],

STrM2 = 2 eG [n+ GIGIJ̄RJK̄GKL̄GL̄], RJK̄ ≡ − ∂

∂φJ
∂

∂φ̄K̄
log detGIJ̄ . (6.145)

Using the explicit form (6.140) of the Kähler potential, one obtains (see Exercise 6)
STrM2 = −4eG = −4m2

3/2
. In other words, STrM2 ≡ TrM2

0 − 2TrM2
1/2 = 0 for this

theory, which confirms the absence of splitting between the supersymmetric partners
of the chiral supermultiplets.

Of course, this situation is not completely satisfactory since we wish to see some
sign of supersymmetry breaking at low energy, in order to fix the gravitino mass
through radiative corrections. This is done by giving a mass to gauginos through
supersymmetry breaking: this communicates a nonzero mass to scalars at low energy
through the renormalization group evolution.

In the case where h(φi, φ̄ı̄) = φiφ̄ı̄, one may easily identify the noncompact sym-
metry that is responsible for the F -flat direction [130]. Indeed, writing

z =
1
2
1− y0

1 + y0
, φi =

yi

1 + y0
, (6.146)

the Kähler potential reads (6.140) reads

G = −3 ln
(
1− yI ȳĪ

)
+ 3 ln

(
1 + y0

)
+ 3 ln

(
1 + ȳ0̄

)
, (6.147)

where the last two terms can be cancelled by a Kähler transformation. The corre-
sponding Kähler metric shows that the scalar fields yI , I = 0, . . . , n parametrize the
coset space SU(n, 1)/SU(n)× U(1).

Further reading
• P. van Nieuwenhuizen, Supergravity, Physics Reports 68 (1981) 189.
• P. Binétruy, G. Girardi and R. Grimm, Supergravity couplings: a geometric formu-
lation, Physics Reports 343 (2001) 255.

Exercises
Exercise 1 Compute the number of on-shell degrees of freedom for a massless gravitino
and a massless graviton field in a D-dimensional spacetime (D even), following the
counting performed in Section 6.4 for D = 4.

Hints: In a D-dimensional spacetime, a Majorana spinor has 2D/2 × (1/2) degrees of
freedom; a massless vector has (D − 2) degrees of freedom; hence for the gravitino
(D − 2)2D/2/2 minus 2D/2/2 since the gauge condition γ.ψ = 0 suppresses the spin
1/2 component, i.e. (D − 3)2D/2/2.

For the graviton, the symmetric and traceless hµν has D(D+1)/2−1 components;
the gauge conditions fix the D components ∂µhµν ; the residual gauge symmetry takes
care of another D−1 components. Hence D(D+1)/2−1−D−(D−1) = D(D−3)/2.
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Take D = 10: the gravitino has 112 degrees and the graviton 35. The mismatch
indicates that the gravity supermultiplet must include other dynamical fields (see
Chapter 10).

Exercise 2 One consider a single (gauge singlet) chiral superfield z coupled to super-
gravity, with generalized Kähler potential G as in (6.23) (κ = 1).

(a) Writing its scalar component z = (A+ iB)/
√
2, show that

TrM2
0 ≡ m2

A +m2
B = 2G−1

zz̄

∂2V

∂z∂z̄

∣∣∣∣
min

where V is the scalar potential.
(b) Using the explicit form (6.37) for the scalar potential and the minimization con-

dition, show that

TrM2
0 = 2eG GzGz̄

Gzz̄
Rzz̄

Gzz̄

∣∣∣∣
min

+ 4eG∣∣
min .

(c) Deduce the formula (6.51).

Hints: (c) Because the Goldstino does not appear in the physical spectrum, the super-
trace is simply Tr M2

0 − 4m2
3/2

.

Exercise 3 We wish to show that the solution to the system (6.117) is given by (6.118).

(a) Introduce the functions fb,t(t) defined by

∆Zb,t(t) = ∆Zb,t(t0) + Yb,t(t)ft,b(t).

Deduce from (6.117) the differential equations satisfied by ft(t) and fb(t).
(b) Solve for ft(t)− fb(t) and then for ft(t) and fb(t) separately.

Hints: (b) (ft − fb) (t) =

10 (∆Zt(t0)−∆Zb(t0)) e−2
∫ t
0 dt1[Y (t1)−g23(t1)/(3π

2)]
∫ t

0
dt1e

2
∫ t1
0 dt2[Y (t2)−g23(t2)/(3π

2)].

Exercise 4 Using the methods of Section 6.9, prove equation (6.124).

Hints: start by solving (6.113) for Zb and Zt. For Yt(0)� g23(0)/(16π
2),

Zb(t) = Zb(0)−
16
63
M2

3 (0)
(
γ43 − 1

)
,

Zt(t) = −1
6
Zb(0)−

1
756

M2
3 (0)

[
3236(γ50/93 − 1)

25(γ14/93 − 1)
+ 32− 192

(γ43 − 1)

(γ14/93 − 1)

]
.

Then extract m2
H2

from m̂2
H2

in (6.116).
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Exercise 5 In the model described by the superpotential (6.128) and the Kähler po-
tential (6.129), show that, in the limit κ → 0, the effective scalar interactions are
described by the Lagrangian (6.132).

Hints: Start from the supergravity scalar potential (6.36). Writing the full Kähler
metric

G =
(

gpq̄ κXp̄

κXiq̄ δī

)
, Xp̄ =

∑
ı̄

∂ᾱı̄̄
∂ξp

φ̄ı̄, Xiq̄ =
∑
j

∂αij
∂ξ̄q̄

φj .

where gpq̄ = g
(0)
pq̄ +κg

(1)
pq̄ +κ2g

(2)
pq̄ (g(i)pq̄ is the metric associated with the Kähler potential

K(i)). The inverse metric then reads:

G−1 =

(
gq̄r + κ2

(
gq̄pXp̄δ

̄iXis̄g
s̄r +O(κ2)

)
κ
(
−gq̄pXp̄δ

̄l +O(κ2)
)

κ
(
−δ̄iXiq̄g

q̄r +O(κ2)
)

δ̄l + κ2
(
δ̄iXiq̄g

q̄pXpk̄δ
k̄l +O(κ2)

))
,

where gq̄p is the inverse metric of gpq̄:

gq̄p = g(0)q̄p − κg(0)q̄rg
(1)
rs̄ g

(0)s̄p − κ2
(
g(0)q̄rg

(2)
rs̄ g

(0)s̄p − g(0)q̄rg
(1)
rs̄ g

(0)s̄tg
(1)
tū g

(0)ūp
)
.

Exercise 6 For the no-scale model described by the Kähler potential (6.140),
(a) Show that

detGIJ̄ = 1
3 (G0)

n+2 det [hī] . (6.148)

and thus
RIJ̄ = − ∂

∂φI
∂

∂φ̄J̄
log det [hkl̄]−

1
3
(n+ 2)GIJ̄ . (6.149)

(b) Deduce that STrM2 = −4eG .

Hints: (b) Use (6.143) to show that the first term in (6.149) does not contribute to
STrM2.
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7
Phenomenology of
supersymmetric models:
supersymmetry at the
quantum level

Since the Standard Model has been tested to a level where quantum corrections play
an important rôle, it is expected that any theory beyond it will have to be tested
at the same level. From this point of view, the odds are in favor of supersymmetric
theories since supersymmetry has been constructed from the start to control quantum
corrections. Since this chapter deals with the confrontation of supersymmetry with
the real world, we first discuss in some detail this important issue of stability under
quantum corrections.

Obviously, supersymmetry is broken. The way supersymmetry is broken should
have some decisive impact on the search of supersymmetric particles. We thus review
the main scenarios of supersymmetry breaking, mostly from a phenomenological point
of view. More theoretically oriented issues are postponed till Chapter 8.

We conclude this chapter by a concise review of the search for supersymmetric
particles. Since this is constantly evolving with the accumulation of new data and the
progress on collider energies, I have taken the conservative approach to give the limits
obtained at the LEP collider, except otherwise stated. The reader is referred to the
proceedings of recent summer conferences for updated values.

7.1 Why does the MSSM survive the electroweak precision
tests?

In view of the many successes of the Standard Model under precision tests (see
Section A.4 of Appendix Appendix A), it might come as a surprise to realize that
the MSSM is also surviving these tests. Indeed, most of the theories beyond the Stan-
dard Model fail to do so because the extra heavy fields that one introduces induce
undesirable radiative corrections. Supersymmetry has been introduced in order to bet-
ter control these radiative corrections. It is thus not completely surprising that it fares
better in this respect. It actually does so much better than other theories that it is
often stated that the more standard the theory of fundamental interactions seems to
be, the more likely it is to be supersymmetric (spontaneously broken). Although we
will see in Chapter 12 that such a statement has its limits, this is the reason why
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supersymmetry is considered as the most serious candidate for a theory beyond the
Standard Model.

One of the predictions of the Standard Model that is most difficult to reproduce
is the fact that the ρ parameter defined as

ρ =
M2

W

M2
Z
cos2 θ

W

, (7.1)

has a value very close to 1. Indeed, this value of 1 is predicted at tree level (see equa-
tion (A.136) of Appendix Appendix A) and receives only corrections of a few per cent
from radiative corrections (see Section A.4 of Appendix Appendix A). To discuss de-
partures
from the tree level value ρ = 1 it proves to be useful to use a global symmetry known
as the custodial SU(2) symmetry. This concept was developed [341] in the context of
technicolor theories for which this test proved to be very damaging. It can be used
to discuss radiative corrections to the ρ parameter in the framework of the Standard
Model as well as of any theory beyond the Standard Model.

This custodial SU(2) symmetry is a global symmetry under which the gauge fields
Aa
µ, a = 1, 2, 3 of the SU(2) symmetry of the Standard Model transform as a triplet:

as we will see in the next Section, the presence of such a symmetry ensures that the
parameter ρ is 1. Deviations from 1 are associated with the breaking of this symmetry:
for example, (t, b) is a doublet of custodial SU(2), and the fact that the top mass is
much larger than the bottom mass is a major source of breaking. The precision tests
from the LEP collider have taught us that the breaking of custodial SU(2) in the
Standard Model is in good agreement with the one observed in the data. We develop
these considerations in the next two sections.

7.1.1 Custodial symmetry
We first prove the following statement:

In any theory of electroweak interactions which conserves charge and a global
SU(2) symmetry under which the gauge fields Aa

µ, a = 1, 2, 3 of the SU(2) symmetry
of the Standard Model transform as a triplet, one has ρ = 1.

A mass term for the gauge bosons Aa
µ necessarily transforms under this custodial

SU(2) as1 (3× 3)s = 1 + 5. In order not to break the global SU(2) the mass term
must be a SU(2) singlet and the corresponding mass matrix is simply of the form
M2δab.

We then add the U(1)Y gauge field Bµ. Since charge is conserved, there is no mixed
term of the form Aa

µB
µ, a = 1, 2, in the mass matrix (cf. (A.114) of Appendix Ap-

pendix A). Thus the complete mass matrix for the electroweak gauge bosons in the
basis A1

µ, A
2
µ, A

3
µ, Bµ is of the form:

M2 0 0 0
0 M2 0 0
0 0 M2 m′2

0 0 m′2 m2

 . (7.2)

1If we consider two triplets φa1 and φa2 of SU(2), then
∑

a φ
a
1φ

a
2 ∼ 1, φa1φ

b
2 +φb1φ

a
2 −∑

a φ
a
1φ

a
2 ∼ 5

and φa1φ
b
2 − φb1φa2 ∼ 3. Thus (3 × 3)s = 1 + 5 and (3 × 3)a = 3.
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Clearly, M2 =M2
W
the mass of the charged gauge bosons W±

µ = (A1
µ∓A2

µ)/
√
2. Since

charge is assumed to be conserved, we expect one massless neutral field, the photon,
the other neutral field being Z0

µ of mass M
Z
. Thus the 2×2 neutral gauge boson mass

matrix M2
neutral has vanishing determinant and a trace equal to M2

Z
. This allows us to

express m2 and m′2 in terms of M
Z
and M =M

W
. One obtains(

M2
W

±M
W

√
M2

Z
−M2

W

±M
W

√
M2

Z
−M2

W
M2

Z
−M2

W

)
. (7.3)

The eigenvector of vanishing mass is the photon field

Aµ =
1
M

Z

√
M2

Z
−M2

W
A3
µ ∓

M
W

M
Z

Bµ. (7.4)

Comparison with equation (A.135) of Appendix Appendix A gives

cos2 θ
W
=

M2
W

M2
Z

→ ρ = 1. (7.5)

This proves the statement above.
This has many interesting applications:

(i) Strong interactions conserve electric charge and strong isospin. We may thus
choose strong isospin as our global SU(2). For it to be a symmetry in the pres-
ence of the gauge fields Aa

µ, we must transform these fields under this global
symmetry. We conclude that the relation ρ = 1 remains true to all orders of
strong interaction. On the other hand, weak interactions violate strong isospin
and we expect violations of order g2 ∼ G

F
M2

W
.

(ii) Let us consider the Higgs potential ((A.127) of Appendix Appendix A):

V
(
Φ†Φ

)
= −m2Φ†Φ+ λ

(
Φ†Φ

)2
. (7.6)

We may write

Φ ≡
(

φ2 + iφ1
φ0 − iφ3

)
(7.7)

Φ†Φ = φ20 + φ21 + φ22 + φ23 = �φ · �φ with �φ =


φ0
φ1
φ2
φ3


which shows that V is invariant under O(4) ∼ SU(2) × SU(2). This symmetry
is spontaneously broken into O(3) ∼ SU(2) by 〈φa〉 = δa0 v/

√
2. Thus ρ = 1 to

all orders of scalar field interactions. This remains true for any number of Higgs
doublets (since one can redefine them in such a way that a single one acquires a
vacuum expectation value). On the other hand, in presence of a triplet of Higgs,
O(3) is broken down to O(2), which is insufficient as a custodial symmetry: ρ �= 1.
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(iii) We next turn to Yukawa couplings. We will consider only the third generation
since it corresponds to the largest Yukawa couplings and thus to the largest
source of violation of custodial symmetry. We have, following equation (A.139) of
Appendix Appendix A,

LY = λbψ̄tΦbR + λtψ̄tΦ̃tR + h.c. (7.8)

where ψt =
(

t
L

b
L

)
. Writing Φ as in (7.7), in the case where λb = λt = λ, we

may put (7.8) in the form

LY = λ
(
t̄
L
b̄
L

)
(φ0 + iσaφa)

(
t
R

b
R

)
+ h.c. (7.9)

which is explicitly invariant under SU(2) × SU(2) (as in the sigma model, see
equation (A.208) of Appendix Appendix A). Spontaneous breaking leaves intact
the custodial SU(2). Thus, in the limit λt = λb, we have ρ = 1 to all orders in
the Yukawa couplings.
However, because the top quark is heavy, its Yukawa coupling λt is expected
to be larger than λb, which leads to violations of SU(2) custodial symmetry of
order2 λ2t − λ2b ∼ G

F
(m2

t −m2
b), where we have used v−2 ∼ G

F
(cf. (A.151) of

Appendix Appendix A).

To recapitulate, we expect that, in the Standard Model, the main violations of
custodial SU(2) symmetry are of order:

ρ− 1 = O
(
G

F
M2

W

)
+O

(
G

F
(m2

t −m2
b)
)
. (7.10)

This can be compared with the result of an exact calculation, as given in equa-
tion (A.205) of Appendix Appendix A, where we have neglected the bottom mass.

7.1.2 Electroweak precision tests in supersymmetric theories

If one considers radiative corrections to the propagators (oblique corrections), the
most significant contributions come from the third generation, through the left-handed
squark mass difference m2

t̃L
−m2

b̃L
= m2

t −m2
b +M2

W
cos 2β and the trilinear At term

and they are usually down by some powers of the squark masses (thus decoupling for
large squark masses).

Thus if the squarks of the third generation are not too large, one may obtain
predictions for sin2 θ

W
or M

W
which are sensibly different from their Standard Model

values. Hence the interest of obtaining more precision on the W mass in order to start
discriminating between the Standard Model and the MSSM. However if the squarks of
the third generation are heavy enough (the squarks of the first two generations and the
sleptons being within their experimental limits), the MSSM is difficult to distinguish
from the Standard Model.

2The violations are quadratic in the Yukawa couplings because in the gauge field propagators,
such as Fig. A.8 of Appendix Appendix A, the fermions appear in loops, which involve two Yukawa
couplings.
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To conclude, the MSSM with heavy enough squarks of the third generation, chargino
and stop masses beyond the experimental limit and heavy enough pseudoscalar A0

(that is heavy enough charged Higgs) looks very similar to the Standard Model in
electroweak precision tests.

7.1.3 b → sγ

The rare decay b → sγ is a good test of the FCNC structure of the Standard Model:
it vanishes at tree level and appears only at one loop; see Fig. 7.1, diagram (a). It is
of order G2

F
α whereas most of the other FCNC processes involving leptons or photons

are of order G2
F
α2. It thus provides as well a key test of theories beyond the Standard

Model.
The corresponding inclusive decay B → Xsγ has now been measured precisely: its

branching ratio is found to be B [B → Xsγ] = (3.55± 0.32)× 10−4 (Belle Collabora-
tion, [261]) or (3.27±0.18)×10−4 (BABAR Collaboration, [16]). The Standard Model
prediction, including next to leading order QCD contributions, electroweak and power
corrections is B [B → Xsγ]SM = (3.70± 0.30)× 10−4. This does not leave much room
for new physics.

In fact, supersymmetry prevents any magnetic operator, i.e. any operator of the
form Ψ̄σµνΨFµν [159]. For example, in the case of supersymmetric QED [363], the
one-loop contribution present in the Standard Model (see Fig. 7.2 a) is cancelled by
new graphs involving sfermions and gauginos (see Fig. 7.2b,c and Exercise 1). Thus, in
the supersymmetric limit B [B → Xsγ]SUSY = 0. In the more realistic case of broken
supersymmetry, this leaves open the possibility of partial cancellations.

In a general supersymmetric model, the one-loop contributions to the b→ s tran-
sition can be distinguished according to the type of particles running in the loop (see
Fig. 7.1) [32]:

s b s

χ
j g, χ j

0

uk
~

dk
~

~

b s

,g

W H

γ

sbuk uk

b

–

–

–

(a) (b)

(d)(c)

Fig. 7.1 Penguin diagrams inducing a (b → s) transition (a) in the Standard Model and
(a)–(d) in supersymmetric models (the vector line, which represents a photon or a gluon, is
to be attached in all possible ways).
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B

Ψ Ψ Ψ Ψ Ψ Ψλ λ

A A B

(b) (c)(a)

Fig. 7.2 Graphs contributing to the magnetic form factor in the case of super-
symmetric QED.

(a) W− and up-type quark;
(b) charged Higgs H− and up-type quark;
(c) chargino χ− and up-type squark;
(d) gluino g̃ (or neutralino χ0) and down-type squark.
Before reviewing these different contributions, we provide the reader with a little
background on the computation of the weak radiative B-meson decay at the leading
order [60]3. The starting point is the low energy effective Hamiltonian

Heff = −4G
F√
2
V ∗
tsVtb

8∑
i=1

Ci(µ)Pi(µ), (7.11)

where Vij are the elements of the CKM matrix, Pi(µ) are the relevant physical oper-
ators and Ci(µ) the corresponding Wilson coefficients. We are particularly interested
in the magnetic and chromomagnetic operators

P7 =
e

16π2
mb (s̄Lσ

µνb
R
)Fµν ,

P8 =
g3

16π2
mb (s̄Lσ

µνtab
R
)Ga

µν , (7.12)

where Ga
µν is a gluon field and ta the corresponding SU(3) generator. The other

Pi, i = 1, . . . , 6, are four-fermion operators.
It proves useful [60] to turn the Wilson coefficients C7(µ) and C8(µ) into renor-

malization scheme independent coefficients Ceff
7 (µ) and Ceff

8 (µ), by adding to them a
specific combination of the first six Ci(µ).

The decay rate for the transition b→ sγ then reads, to leading order:

Γ [b→ sγ] =
G2

F
α

32π4
|V ∗

tsVtb|2m3
bm̄

2
b(mb)

∣∣Ceff
7 (mb)

∣∣2 , (7.13)

where mb is the bottom quark pole mass and m̄b is the running mass in the MS
scheme: m̄b(mb) = mb

(
1− 4

3α3(mb)/π
)
.

One thus has to renormalize the Wilson coefficients from the scale M
W

where they
can be computed (within the Standard Model or its supersymmetric extensions) down
to the scale mb. To leading order,

3For a presentation of the complete next to leading order, see [74].
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Ceff
7 (mb) = η16/23C7(MW

) +
8
3

(
η14/23 − η16/23

)
C8(MW

) +
8∑

i=1

hiη
a
i , (7.14)

where η ≡ α3(MW
)/α3(mb) ∼ 0.548 and

∑8
i=1 hiη

a
i is given in [74].

The decay rate (7.13) suffers from large uncertainties because of the m5
b factor.

One may improve this by normalizing it to the b→ ceν̄e decay rate:

Γ [b→ ceν̄e] =
G2

F
m5

b

192π3
|Vcb|2 g(mc/mb)

[
1− 2

3π
α3(mb)f(mc/mb)

]
, (7.15)

where g(x) = 1−8x2+8x6−x8−24x4 lnx is the phase space factor, and the last factor is
the next-to-leading QCD correction to the semileptonic decay (f(mc/mb) ∼ 2.41) [62].

We have, to a good approximation,

B [b→ Xsγ]
B [b→ Xceν̄e]

∼ Γ [b→ sγ]
Γ [b→ ceν̄e]

, (7.16)

where the corrections (of the order of 10 %) can be computed in the context of the
Heavy Quark Effective Theory (HQET). Thus, one obtains

B [b→ Xsγ]
B [b→ Xceν̄e]

∼
∣∣∣∣V ∗

tsVtb
Vcb

∣∣∣∣2 6α
πg(mc/mb)

(m̄b(mb)/mb)
2[

1− 2
3πα3(mb)f(mc/mb)

] (7.17)

×
∣∣∣∣∣η16/23C7(MW

) +
8
3

(
η14/23 − η16/23

)
C8(MW

) +
8∑

i=1

hiη
a
i

∣∣∣∣∣
2

,

where the last factor of the first line includes some of the most important next to
leading order contributions. The diagram of Fig. 7.1(a) gives

C
(SM)
7,8 (M

W
) = F

(1)
7,8

(
m2

t (MW
)/M2

W

)
,

F
(1)
7 (x) =

x(7− 5x− 8x2)
24(x− 1)3

+
x2(3x− 2)
4(x− 1)4

lnx, (7.18)

F
(1)
8 (x) =

x(2 + 5x− x2)
8(x− 1)3

− 3x2

4(x− 1)4
lnx.

We now allow physics beyond the Standard Model. There is a significant contri-
bution from charged Higgs exchange (Fig. 7.1b):

C
(H±)
7,8 (M

W
) =

1
3 tan2 β

F
(1)
7,8

(
m2

t (MW
)/M2

H

)
+ F

(2)
7,8

(
m2

t (MW
)/M2

H

)
,

F
(2)
7 (x) =

x(3− 5x)
12(x− 1)2

+
x(3x− 2)
6(x− 1)3

lnx, (7.19)

F
(2)
8 (x) =

x(3− x)
4(x− 1)2

− x

2(x− 1)2
lnx.

This, for example, puts a stringent lower bound on the charged Higgs mass in the
context of the two Higgs doublet model [174]. However, in a supersymmetric context,
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the cancellation observed in the supersymmetric limit leads us to expect some amount
of cancellation between the charged Higgs contribution and the supersymmetric par-
ticle exchange diagrams [24]4. Moreover, as discussed in Chapter 6, Section 6.7, one
expects new sources of flavor violations from the misalignment between quark and
squark eigenstates.

From now on, we focus the discussion on a minimal flavor violation scenario where
the only source of violation at the electroweak scale is the CKM matrix [24].

There are two sources that possibly enhance the chargino contribution [100]:

• Large tanβ corrections.
The relation between the bottom Yukawa coupling and the bottom mass receives
at one loop in this limit a large correction [220]:

mb = −M
W

√
2
λb
g
cosβ (1 + εb tanβ) , (7.20)

where εb is obtained from gluino–sbottom and chargino–stop diagrams. Such an
effect is taken into account by dividing the expressions for C(χ±)

7,8 by (1+εb tanβ).
Thus, the leading chargino contribution at two loops is of order (tanβ)2.

• Large ratio between the scale of supersymmetric particle masses MSUSY and the
electroweak scale M

W
.

The Higgsino–stop–bottom supersymmetric coupling λt̃ b̄L t̃RH̃
− is related to the

Yukawa coupling λt through supersymmetry. But below the scale MSUSY, it be-
comes frozen whereas λt continues evolving. Large logs of the ratio MSUSY/MW

are thus generated when expressing λt̃ in term of λt. In practice, they can be
taken into account by replacing mt in the chargino contribution by mt(MSUSY).
Similarly, the effective operators of (7.11) should be evolved from M

W
to MSUSY.

In practice, most of the effect can be taken into account by taking directly the
value of α3 at MSUSY.

7.1.4 The muon anomalous magnetic moment

It is well-known in quantum electrodynamics that the magnetic moment of the electron
(or, for what concerns us here, the muon) is expressed in terms of the spin operator as
µ = egS/(2mc) and that the gyromagnetic ratio g is equal to 2, up to small quantum
corrections. Departure from this value induces an electromagnetic coupling

a
e

4m
Ψ̄σµνΨFµν ,

where a ≡ (g − 2)/2.

4Thus, the heavier the superpartners (squarks and charginos) are, the heavier the charged Higgs
must be in order to reproduce the successes of the Standard Model. This is why a key experimental
result is the limit on chargino masses.
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The anomalous moment of the muon has been measured by the experiment E821
at Brookhaven [30]

aµ = 11 659 208(6)× 10−10. (7.21)

This has to be compared with the prediction of the Standard Model, which depends
mostly, at this level of precision, on the correct evaluation of the hadronic vacuum
polarization and on the hadronic light-by-light contribution5. Depending on this one
finds

aµ|exp − aµ|SM = (6 to 25)× 10−10, (7.22)

which represents a departure of 1–2.8 standard deviation.
If there is indeed a deviation, is it a sign of new physics? There are many possible

candidates: anomalous couplings, lepton flavor violations, muon substructure, etc. But
one should stress that, starting with [150], such a deviation has been heralded by many
as a possible signature of supersymmetry.

Indeed, in the case of supersymmetry, there are new loop corrections involving
neutralino–smuon or chargino–sneutrino mu. To have an idea of these new contribu-
tions, one may consider the simple situation where all superpartners have the same
mass MSUSY, in which case, at one loop, one has approximately

aµ|SUSY − aµ|SM ∼ 13× 10−10
(
100 GeV
MSUSY

)2

tanβ sign(µ). (7.23)

One thus expects significant corrections for large tanβ or a light supersymmetric
spectrum. Moreover, a positive value of the supersymmetric parameter µ is strongly
favored by the (gµ − 2) data.

One should however note that the simplicity of the rule of thumb (7.23) is somewhat
misleading: it does not apply, even approximately, in the case where supersymmetric
partners are nondegenerate.

7.1.5 Constraints on minimal supergravity

We now illustrate on a specific model the constraints discussed in the preceding
subsections. We follow the standard choice of the minimal supergravity model de-
scribed in Section 6.8 of Chapter 6, not so much because it is well motivated but
because it has a small number of parameters: m0,M1/2, tanβ,A0 and the sign of µ. In
fact, we choose µ > 0 in order to satisfy the constraint imposed by data on the muon
magnetic moment.

We give in Figures 7.3 and 7.4 the different constraints in the plane (M =M1/2,m =
m0) for A0 = 0 and three values of tanβ : 5, 35 and 50. On each plot, the region to
the left of the light grey dashed line is excluded by the lower bound on the lightest
Higgs h0 mass(se next section). The region to the left of the dotted line is excluded
by the lower bound on the chargino mass mχ±

1
> 103 GeV. The region to the left of

the solid line is excluded by b→ sγ. The region at the bottom (Stau LSP) is excluded
because the lightest stau is the LSP.

5The latter contribution corresponds to the matrix element 〈µ|ejρ|µ〉 where jρ = (2ūγρu− d̄γρd−
s̄γρs)/3 is the light quark electromagnetic current. It took some time before its sign was determined
correctly [253].
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Stau LSP

Stau LSP

Fig. 7.3 Constraints on the mSUGRA parameter space for tanβ = 5 (left) and tanβ = 35
(right).

Stau LSP

Fig. 7.4 Constraints on the mSUGRA parameter space for tanβ = 50.

The region between grey contours fulfils 0.1 ≤ Ωχh
2 ≤ 0.3, whereas that between

black contours indicates the WMAP range 0.094 < ωχh
2
0 ≤ 0.129 [141]. We see that the

region favored by dark matter relic density is one of light scalars and gauginos, which
is excluded by the negative searches of light supersymmetric particles. The bulk of
the remaining parameter space yields too large a neutralino relic density. One remains
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with three zones where specific circumstances help to decrease this density:
• a narrow band along the “Stau LSP” region, where τ̃χ coannihilations are at work
(see the discussion in subsection 5.5.1 of Chapter 5);

• for large tanβ, a region of intermediatem0 andM1/2 where Ωχh
2 becomes smaller

due to near-resonant s channel annihilation through the heavy Higgs states A or
H (see equation (5.76) of Chapter 5): here mA and mH become smaller and their
couplings to the b quark and τ lepton increase6;

• a very thin strip almost along the vertical which corresponds to the focus points
discussed in subsection 6.9.2 of Chapter 6. There are the lightest neutralino and
chargino are relatively light and have a significant Higgsino content: the couplings
to W and Z are large enough to increase the efficiency of the annihilation into
W or Z pairs.

7.2 The Higgs sector
The prediction that there exists a light scalar is central in the search of low energy
supersymmetry. It is obvious that this is not specific to supersymmetry. It is also by
now clear that the (lightest) Higgs is heavier than the Z particle, and thus, in a MSSM
context, that a significant contribution to its mass comes from radiative corrections.
But it remains true that the vast majority of supersymmetric models predict a Higgs
lighter than say 200 GeV. Given the importance of such a result, we give in what
follows details on the precise determination of the Higgs scalar masses.

7.2.1 Precise estimate of the Higgs masses

We gave in Section 5.3.1 of Chapter 5 a heuristic argument to explain why one-loop
corrections to the lightest Higgs h0 may be large because they scale likem4

t . We discuss
in this section methods that allow a full determination of the one (and possibly higher)
loop contribution.

The first method is based on the use of the effective potential approximation,
presented in Section A.5.3 of Appendix Appendix A. The effective potential reads

Veff ≡ V (0) +∆V = V
(0)
eff (µ) + V

(1)
eff (µ) + · · · (7.24)

In this expression, V (0)
eff is the tree level potential V (0), which is given, if we restrict

our attention to the neutral scalars, by equation (5.13) of Chapter 5:

V (0) = m2
1|H0

1 |2 +m2
2|H0

2 |2 +Bµ

(
H0

1H
0
2 +H0∗

1 H0∗
2
)
+
g2 + g′2

8
(
|H0

1 |2 − |H0
2 |2
)2
.

(7.25)
It depends on the renormalization scale µ through the couplings. The µ dependence
of the mass eigenvalues is softened by the inclusion of the one-loop corrections [173]:

V
(1)
eff (µ) =

1
64π2

STrM4
(
ln
M2

µ2
− 3

2

)
, (7.26)

6Note that this region is very sensitive to the way radiative corrections to the bottom mass are
implemented.
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where we have made profit of the assumption of soft supersymmetry breaking to
disregard field-independent contributions proportional to STrM2.

We recall, from Appendix Appendix A, equation (A.247) that Veff is the non-
derivative term in the effective action Γ

[
φ̄
]
. We consider the proper Green’s function

Γ(2)(p) = δ2Γ/δφ̄2, which is the inverse propagator,

Γ(2)(p) = p2 −m2 +Σ(p). (7.27)

The physical mass is the zero of this function:

m2
phys = m2 − Σ(m2

phys). (7.28)

Thus we have [
∂2Veff
∂φ2

]
φ=0

= −Γ(2)(0) = m2
phys +Σ(m2

phys)− Σ(0). (7.29)

If the physical mass is much smaller than the masses of particles running in the loops,
one may take Σ(m2

phys) ∼ Σ(0).
Thus, at the one-loop level, masses are given by the matrix of double derivatives of

the effective potential, evaluated at its minimum. Let us check that one thus recovers
the preliminary results obtained in Section 5.2.1 of Chapter 5. We keep only in the
supertrace (7.26) the top quark (of mass mt = λtH

0
2 ) and the stop squarks (assumed

to be degenerate in mass: m̃2
t = m2

t + m̃2, where m̃ arises form the soft breaking of
supersymmetry):

V
(1)
eff (µ) =

3
32π2

[
m̃4

t

(
ln
m̃2

t

µ2
− 3

2

)
−m4

t

(
ln
m2

t

µ2
− 3

2

)]
. (7.30)

We may choose the scale µ = µ̂ such that ∂V (0)
eff /∂µ = 0, in which case

∂V
(1)
eff

∂µ

∣∣∣∣∣
µ=µ̂

∝ m̃2
t

(
ln
m̃2

t

µ̂2
− 1
)
−m2

t

(
ln
m2

t

µ̂2
− 1
)
= 0. (7.31)

Then, using this condition, one finds

∂2V
(1)
eff

(∂H0
2 )2

(µ̂)

∣∣∣∣∣
min

=
3
4π2

λ4t v
2
2 ln

m̃2
t

m2
t

=
3g2

8π2
m4

t

M2
W

ln
m̃2

t

m2
t

, (7.32)

where we have used M2
W

= 1
2g

2v22 (v1 ∼ 0 in the limit that we consider here). This
gives a contribution to the Higgs mass which coincides with the one obtained in (5.36)
of Chapter 5).

If we take into account the mixing in the stop sector (see (5.53) of Chapter 5),
then a more accurate estimate is

δm2
h =

3g2

8π2
m4

t

M2
W

[
ln
m̃2

t1 + m̃2
t2

2m2
t

+
2X2

t

m̃2
t1 + m̃2

t2

(
1− 1

6
X2
t

m̃2
t1 + m̃2

t2

)]
, (7.33)

where Xt ≡ At − µ cotβ.
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More generally, writing

H0
i ≡ vi +

Si + iPi√
2

, i = 1, 2, (7.34)

one may obtain, in the effective potential approximation, the mass matrices from the
second derivatives of the effective potential (7.24) evaluated at the minimum:

(
M2

S

)eff
ij

=
∂2Veff
∂Si∂Sj

∣∣∣∣
min

,
(
M2

P

)eff
ij

=
∂2Veff
∂Pi∂Pj

∣∣∣∣
min

, i, j = 1, 2 . (7.35)

As stressed earlier, Veff is expressed in terms of renormalized fields and couplings. One
traditionally uses the DR scheme (see Appendix E): the corresponding quantities will
be written in what follows with a bar (M̄Z ,...). Using the decomposition (7.24) with
V (0) given by (7.25), one may write for example (see Exercise 4):(

M2
S

)eff
=
(
M2

S

)(0)eff
+
(
∆M2

S

)eff
, (7.36)

(
M2

S

)(0)eff
=
(

M̄2
Z
cos2 β + m̄2

A sin2 β −(M̄2
Z
+ m̄2

A) sinβ cosβ
−(M̄2

Z
+ m̄2

A) sinβ cosβ M̄2
Z
sin2 β + m̄2

A cos2 β

)
,

(
∆M2

S

)eff
ij

=
∂2∆V
∂Si∂Sj

∣∣∣∣
min

− (−1)i+j ∂2∆V
∂Pi∂Pj

∣∣∣∣
min

.

However, as is clear from (7.29), the effective potential describes Green’s functions at
vanishing momentum. The effective potential approximation thus misses some possibly
important momentum corrections. This is why a purely diagrammatic approach has
been developed in parallel [52]. In this approach, the physical masses m2

h and m2
H are

defined as the poles of the propagator
(
Γ(2)(p)

)−1
. In other words, writing the proper

Green’s function for the scalars

Γ(2)S (p) = p2 −M2
S(p

2), (7.37)

the physical masses are the solutions of

det
[
p2 −M2

S(p
2)
]
= 0. (7.38)

They can be expressed in terms of the physical masses M2
Z
and m2

A. To compare the
two approaches, one may write [50,52]

MS(p2) =
(
M2

S

)(0)
+
(
∆M2

S

)eff
+
(
∆M2

S

)p2
, (7.39)

where
(
M2

S

)(0) is obtained from
(
M2

S

)(0)eff by replacing the DR masses by physical
masses.

Whereas, at one loop [134,216,299], the full corrections are known, only the leading
contributions at two loops have been computed. These include corrections of order λ4t ,
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λ2bα3 and λ
2
bα3. Let us take this opportunity to answer a question which is often asked:

if the one-loop corrections to the lightest Higgs are so large, should we not expect large
corrections at even higher orders? The answer is no: two-loop and higher corrections
are expected to be small. The reason is that, in contrary to the one-loop level where
new terms with a dependence in λ4t appear, we do not expect any surprise at higher
orders, as can be seen for example from the list of the leading two-loop corrections
just given.

7.2.2 Upper limit on the mass of the lightest Higgs
In the late 1990s, a significant amount of theoretical activity has been spent in trying
to derive a precise upper limit for the lightest Higgs mass in the context of the MSSM.
The main reason was that the available energy at the LEP collider allowed searches
of the lightest Higgs only in a restricted range. In the present decade, that should see
the first runs of the LHC collider, this question is of less importance since LHC should
cover the whole range of mass for h0 in the MSSM.

We have seen that the one-loop radiative corrections to the lightest Higgs mass
depend mostly on the precise value of the top mass, on tanβ and on the masses of
the stops (and sbottoms if tanβ is large). Obviously, if one increases the soft scalar
mass parameter, one increases the squark masses and thus the corrections to the Higgs
mass. Pushing to the extreme case where this mass parameter is 10 TeV, one obtains
mh0 < 150 GeV in the MSSM. Taking values of this soft mass scale more in line with
a reasonable fine tuning of the parameters significantly decreases this upper limit: one
finds mh0 < 110 GeV if the stops have a common mass of 1 TeV (often referred in the
literature as the “no mixing” scenario) and mh0 < 130 GeV if there is a large splitting
between the two (the “maximal mixing” scenario).

Let us note that, in the context of the MSSM model, the Higgs is light at tree
level because the quartic coupling λ is of order g2 + g′2 (see 7.25): as in the Standard
Model, the mass is of order λv2. But this property is lost in extensions of the MSSM.
For example, in the NMSSM model described in Section 5.6 of Chapter 5, the super-
potential coupling λSSH2 · H1 induces in the potential a quartic term of order λ2S
which is not necessarily small. Thus, in principle the lightest Higgs could be heavy.

However, if we put the low energy supersymmetric theory in the context of a more
fundamental theory with a typical scale in the M

U
or M

P
range, then the triviality

arguments presented in Section 1.2.1 of Chapter 1 apply and one does not expect the
lighter scalar mass to be above 200 GeV. Let us illustrate this on the NMSSM model.

In the framework of the NMSSM model, the lightest Higgs mass satisfies the upper
bound (see (5.112) of Chapter 5)

m2
h ≤M2

Z
+
(
1
2
λ2Sv

2 −M2
Z

)
sin2 2β, (7.40)

where λS is one of the cubic couplings in the superpotential:

W =
1
6
κSS

3 + λSSH2 ·H1 + λtQ3 ·H2T
c. (7.41)

We have assumed a discrete symmetry forbidding any quadratic term and we have
kept only the top Yukawa coupling. We see that, if λS is allowed to be as large as
possible, there is no absolute upper bound to the Higgs mass.
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One can however apply triviality bounds to λS [45]. We will give here a simpli-
fied discussion of these bounds. The renormalization group equations describing the
evolution of the superpotential couplings read [102]

16π2
dλS
dt

= λS

(
4λ2S + 2κ2S + 3λ2t − 3g22 −

3
5
g21

)
,

16π2
dκS
dt

= κS
(
6λ2S + 6κ2S

)
, (7.42)

16π2
dλt
dt

= λt

(
λ2S + 6λ2t −

16
3
g23 − 3g22 −

13
15
g21

)
.

Neglecting the gauge couplings, one obtains, for λt �= 0

8π2
d
(
λ2S/λ

2
t

)
dt

= λ2S

(
3
λ2S
λ2t

+ 2
κ2S
λ2t

− 3
)
, (7.43)

8π2
d
(
κ2S/λ

2
t

)
dt

= κ2S

(
5
λ2S
λ2t

+ 6
κ2S
λ2t

− 6
)
. (7.44)

This system of differential equations has three fixed points: (a) λ2S/λ
2
t = 3/4, κ2S/λ

2
t =

3/8, (b) λ2S/λ
2
t = 1, κS = 0, (c) κ2S/λ

2
t = 1, λS = 0. Only (a) corresponds to an

infrared attractive fixed point.
The presence of this attractive fixed point suggests that, if we start with random

boundary conditions for the couplings λS , κS and λt at some superheavy scale Λ, they
will tend to converge towards values which respect the ratios (a). If we thus assume
that we are in a region of parameter space where the fixed point (a) is quickly reached
as the scale µ decreases from Λ, then equation (7.42) for λS reads, using (a) and
neglecting gauge couplings,

16π2
dλS
dt

= 9λ3S , (7.45)

which is solved as
1

λ2S(µ)
=

1
λ2S(Λ)

+
9
8π2

ln(Λ/µ). (7.46)

Thus

λ2S(µ) ≤
8π2

9 ln(Λ/µ)
. (7.47)

This upper bound induces an upper bound on the value of m2
h at tree level. One must

add, as in the MSSM, the radiative corrections to this mass.

7.2.3 Searching for the supersymmetric Higgs

The supersymmetric Higgs have been extensively searched for at the LEP collider. It
is particularly convenient to discuss h0 searches using the parameters tanβ and mA.
In the case of large mA, or for tanβ close to one, the lighter scalar h0 tends to be
similar to the Higgs of the Standard Model. It is thus searched for using the standard
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Fig. 7.5 Exclusion plots formh at 95% confidence level in the MSSM for the no mixing (left)
and the maximal mixing (right) scenarios. Shown in light grey is the theoretically inaccessible
region and in dark grey the experimentally excluded region. The dashed lines indicate the
boundaries of the regions expected to be excluded on the basis of Monte Carlo simulations
with no signal [271].

Higgstrahlung process e+e− → h0Z0. For lighter mA, the modification of couplings
compared to the standard case leads to a reduction of the Higgstrahlung process. This
is compensated by an increase of the so-called associated production e+e− → h0A0.

Negative results from the search of both of these processes at LEP have led to the
exclusion plots presented in Fig. 7.5 in the plane (mh, tanβ). As is traditional, one
has separated the two cases of “maximal mixing” and “no mixing”, the latter being
the more constraining one. For low values of tanβ above 1, the Higgstrahlung process
is the decisive one: it excludes values of mh lower than 114 GeV. For higher values
of tanβ, the associated production takes over but it excludes only values of mh lower
than 91 GeV.

7.3 Avoiding instabilities in the flat directions of the scalar
potential

The most remarkable feature of a supersymmetric potential is the presence of flat
directions. These are valleys where the potential vanishes and thus where global su-
persymmetry is not broken. Since in global supersymmetry, the potential is a sum of
F -terms and D-terms, one refers to them as F -flat or D-flat directions. For example,
if W (φi) is the superpotential, the equation Fi = ∂W/∂φi = 0 defines a direction in
scalar field space which is a F -flat direction.

Flat directions are characteristic of supersymmetric theories and they have many
interesting properties which we will discuss in the following chapters. But they repre-
sent a potential danger for phenomenology. Indeed, they are lifted once supersymme-
try is broken, in particular by scalar mass terms which may lead to instabilities (if a
squared mass turns negative). Such instabilities are used to spontaneously break the
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electroweak symmetry but they might lead also to undesirable charge or color break-
ing minima (we know that the quantum electrodynamics U(1) or the color SU(3) are
good symmetries).

To simplify the discussion, we disregard the family structure and consider a single
family (which could be any of the three; but since Yukawa couplings are larger for the
third family, we choose it for illustration). The superpotential reads (cf. equations (5.1)
and (5.2) of Chapter 5)

W = µH2 ·H1 + λb Q3 ·H1B
c + λt Q3 ·H2T

c + λτ L3 ·H1T c (7.48)

with obvious notation: Q3 =
(
T
B

)
, L3 =

(
Nτ

T

)
and as seen earlier H1 =

(
H0

1
H−

1

)
,

H2 =
(
H+

2
H0

2

)
. One easily extracts the F -term part of the potential: V

F
=
∑

i |∂W/∂Φi|2.
The D-term part of the scalar potential reads explicitly7

V
D
=

g′2

8

[
1
3

(
|t̃

L
|2 + |b̃

L
|2
)
− 4

3
|t̃

R
|2 + 2

3
|b̃

R
|2 −

(
|ν̃τL |2 + |τ̃

L
|2
)
+ 2|τ̃

R
|2

+|H0
2 |2 +H+

2 H
−
2 − |H0

1 |2 −H+
1 H

−
1

]
+

g2

8

(
q̃†
3L�τ q̃3L + l̃†3L�τ l̃3L +H†

1�τH1 +H†
2�τH2

)2
+

g23
8

∑
a

(
q̃†
3Lλ

aq3L − t̃∗
R
λat̃

R
− b̃∗

R
λab̃

R

)2
. (7.49)

Finally, the soft terms read, as in equations (5.12) and (5.55) of Chapter 5,

Vsoft = m2
H1
H†

1H1 +m2
H2
H†

2H2 + (BµH1 ·H2 + h.c.)

+m2
Q3

(
t̃∗
L
t̃
L
+ b̃∗

L
b̃
L

)
+m2

T t̃
∗
R
t̃
R
+m2

B b̃
∗
R
b̃
R

+m2
L3

(
ν̃∗
τL ν̃τL + τ̃∗

L
τ̃
L

)
+m2

T τ̃
∗
R
τ̃
R

(7.50)

+
(
Atλtq̃3L ·H2t̃

∗
R
+Abλbq̃3L ·H1b̃

∗
R
+Aτλτ l̃3L ·H1τ̃

∗
R
+ h.c.

)
.

The tree-level potential V (0) = V
F
+V

D
+Vsoft must be complemented at least by the

one-loop corrections. As we have seen in the preceding section, the complete one-loop
potential reads, in the effective potential approximation,

V1(Q) = V (0)(Q) + V
(1)
eff (Q), (7.51)

V
(1)
eff (Q) =

1
64π2

∑
i

(−1)2si(2si + 1) m4
i

(
ln
m2

i

Q2 − 3
2

)
, (7.52)

7Note that in the last term, the generators of SU(3) for the charge conjugate scalars are −λa∗/2
since, e.g. t̃∗

R
→ e−iα

aλa∗/2 t̃∗
R

. We then use the hermiticity of the Gell-Mann matrices to write:

−
(
t̃∗
R

)∗
λa∗ t̃∗

R
= −t̃∗

R
λa t̃R .
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where m2
i is the field-dependent eigenvalue corresponding to a particle of spin si and

Q is the renormalization scale8.
We will identify a F orD flat direction by specifying the supermultiplets which have

a nonzero vev along the direction. In other words, along the direction (Φ1,Φ2, ...,Φn),
the scalar components φ1, φ2, . . . , φn acquire a (possibly) nonvanishing vev.

Including the one-loop corrections is important in order to minimize the depen-
dence on the renormalization scale Q : most of the dependence cancels between the
running scalar masses which are present in the tree-level potential V (0) and the one-
loop correction V

(1)
eff [173]. However, instead of using the full one-loop potential, we

will use the following approximation scheme [71]: we take as a scale Q the largest
field-dependent mass m̂(φi) present in (7.52) in order to minimize the value of the
one-loop correction. We then use the tree-level “improved” potential V (0) (m̂(φi)).

We note that m̂ is in general the largest of the following two scales: a typical
supersymmetric mass mSUSY (usually a squark mass) or a field-dependent mass in the
form of a (gauge or Yukawa) coupling times the nonzero vev along the flat direction
considered. For example, in the case of a direction which involves the field H0

2 , we
would have m̂ = λt〈H0

2 〉 if we consider very large H0
2 vevs, and squark mass mSUSY

otherwise (i.e. if 〈H0
2 〉 < mSUSY/λt).

Before discussing the potentially dangerous flat directions, let us review the case of
the direction (H0

1 , H
0
2 ). This direction has already been considered in equation (5.15)

of Chapter 5 for the discussion of electroweak symmetry breaking at tree level. The
condition of D-flatness imposes that

∣∣H0
1

∣∣2 =
∣∣H0

2

∣∣2 ≡ a2 and the potential then
simply reads along this direction

V (0)(Q = m̂) =
(
m2

1 +m2
2 + 2Bµ cosϕ

)
a2, (7.53)

as in equation (5.15) of Chapter 5 (m2
1 and m2

2 are defined as in (5.14) there and ϕ =
Arg

(
H0

2/H
0∗
1
)
). The condition for stability in this direction is the positivity condition:

S ≡ m2
1 +m2

2 − 2 |Bµ| > 0. (7.54)

Remember that this is evaluated at a scale Q of order λta (as long as Q is larger than
mSUSY). If we start at the unification scale (or the scale of the underlying theory)
M

U
, this constraint should be valid (otherwise the breaking occurs already in the

underlying theory). When we go down in scale, we will eventually encounter the scale
Qs where S becomes negative; we then have 〈a〉 ∼ Qs/hT .

Let us note that, if we were working solely with the tree level potential, the con-
dition S < 0 would be the sign of a potential unbounded from below9. But this is
obviously not the case here: for larger values of a (hence of the renormalization scale
Q) the condition (7.54) is no longer satisfied. This is just a reflection of the fact that,
had we worked with the complete one-loop potential (7.51), the large logs coming from
(7.52) would prevent the field vev from going to infinitely large values.

8For obvious reasons we refrain from calling it µ in this Section
9This is why the type of direction that we study is often called an “unbounded from below

direction” and denoted UFB [71]. We will refrain from doing so here.
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We will consider here only two of the better known and most constraining flat
directions. We start with the direction (T,H0

2 , T
c) [165]. In order to cancel theD-terms

in (7.49), we must have |t̃
L
|2 = |t̃

R
|2 = |H0

2 |2 = a2. Then the potential reads

V (0)(a) =M2a2 − 2 |Atλt| a3 + 3λ2ta
4, (7.55)

whereM2 ≡ m2
Q3

+m2
T+m

2
2 and we have chosen the field phases in such a way that the

coefficient of the A-term is negative. One easily checks that, when |At|2 > 8M2/3 > 0,
a nontrivial minimum appears:

a0 =
3 |At|+

√
3(3A2

t − 8M2)
12 |λt|

. (7.56)

This represents the true ground state if V (a0) < 0, i.e. |At|2 > 3M2. We must thus
impose the condition

|At|2 < 3
(
m2

Q3
+m2

T +m2
2
)
. (7.57)

Next we consider the direction10 (B,Bc, H0
2 , Nτ ) [258]. The conditions ofD-flatness

read: ∣∣∣b̃L∣∣∣2 = ∣∣∣b̃R ∣∣∣2 ,∣∣∣b̃L∣∣∣2 + ∣∣∣H̃0
2

∣∣∣2 = |ν̃τL |
2
, (7.58)

and the condition of F -flatness (FH0
1
= 0):

µH0
2 + λbb̃L b̃

∗
R
= 0. (7.59)

Up to some phases, it is solved as follows:

b̃
L
= b̃

R
=

aµ

λb

H0
2 = −a2µ∗

λb

ν̃τL =
|µ|
λb

a
√
1 + a2. (7.60)

We then have

V =
a2 |µ|2
λ2b

[(
m2

H2
+m2

L3

)
a2 +m2

Q3
+m2

B +m2
L3

]
. (7.61)

The potential is stabilized at large values of a if:

m2
H2

+m2
L3

> 0. (7.62)

This turns out to be the most constraining relation arising from this type of
constraints.

10Often referred to as UFB-3 [71].
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Finally, a word about cosmological arguments. It has been argued that, even in
the cases where a charge or color breaking minimum deeper than the electroweak
minimum appears, the time it takes to decay into this true vacuum ground state
might be longer than the age of the Universe [77]. This indeed would make most
of the problems discussed in this section innocuous and the corresponding bounds
nonapplicable. One should, however, be guarded against cosmological arguments in
the context of this discussion. In fact, as long as the cosmological constant problem
is not solved, it is unadvisable to take at face value the expression of the potential in
a (global or local) minimum. Whatever is the mechanism that is flushing (most of)
the vacuum energy, it is difficult to imagine that it would distinguish between the
electroweak symmetry breaking minimum and any other charge or color breaking
minimum. Of course, this puts the whole issue of comparing ground states on somewhat
shaky grounds. But, in the preceding analysis, we did not rely on any specific value
of the vacuum energy whereas estimates of tunnelling effects do. Other arguments
that the system might choose the right minimum in the early Universe because of
temperature corrections [265] would however be more reliable.

7.4 High-energy vs. low-energy supersymmetry breaking
7.4.1 Issues

As emphasized many times earlier, the issue of spontaneous supersymmetry breaking
is central to this field: supersymmetry is not observed in the spectrum of fundamen-
tal particles. This means that, should supersymmetric particles be observed in high
energy colliders, the focus of high energy physics would be to unravel the origin of
supersymmetry breaking. We are not at this point yet but it is important to prepare
the ground for such a task by studying general classes of supersymmetry breaking in
order to understand their main experimental signatures, and how one can discriminate
between them.

There are already quite a few constraints that a supersymmetry breaking scenario
must obey. One may thus see how each scenario fares with respect to them. It is fair to
say that not a single scenario passes all these tests magnum cum laude. We will return
to this in more details in Chapter 12 and will only comment here on the possibly
sensitive issues for each class of models.

7.4.2 Gravity mediation. The example of gaugino condensation

We have seen in Chapter 3 that it is phenomenologically undesirable to couple directly
the source of supersymmetry-breaking to the quark and lepton fields. One is thus led to
the general picture drawn in Fig. 7.6: an observable sector of quarks, leptons and their
superpartners, a sector of supersymmetry breaking and an interaction that mediates
between the two sectors.

In Chapter 6, the mediating interaction chosen was gravity. This has the advantage
of really hiding the supersymmetry breaking sector: the coupling to the observable
sector is the gravitational coupling κ−1 = m−2

Pl
. A standard example is provided by

the simple Polonyi model described in Section 6.3.2 of Chapter 6. In this model,
the soft supersymmetry breaking terms are universal, i.e. they do not depend on the
flavor. This is a welcome property because this satisfies more easily the constraints on
flavor-changing neutral currents discussed in Section 6.7 of Chapter 6.
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Fig. 7.6 General picture of supersymmetry breaking.

The rationale behind universality is the fact that gravity is flavor blind. In explicit
theories that unify gravity with the standard gauge interactions, this is often not the
case. We will return to this below. For the moment, we will describe a rather generic
model of gravity mediation where supersymmetry is broken in the hidden sector by
gaugino condensation.

Let us consider a theory where the gauge kinetic term fab is dynamical. To
ensure universality (and gauge coupling unification), we assume that it is diagonal
and expressed in terms of a single field S: fab = Sδab. In other words, the gauge
kinetic terms read, from equation (6.25) of Chapter 6,

Lkin = − 1
4Re S F aµνF a

µν +
1
4 Im S F aµνF̃ a

µν . (7.63)

We will encounter such a field in the context of string models: it is the famous string
dilaton. As in the string case, we assume that S does not appear in the superpotential.
For the time being, we just note a few facts:
• The interaction terms (7.63) are of dimension 5. This means that there is a power
m−1

P
present which has been included in the definition of S (S is thus dimension-

less). In other words, the S field has only gravitational couplings to the gauge
fields, and to the other fields through radiative corrections.

• The gauge coupling is fixed by the vacuum expectation value of Re S:

1
g2

=
〈S + S̄〉

2
. (7.64)

Obviously, this only provides the value of the running gauge coupling at a given
scale, typically the scale of the fundamental theory where the field S appears.
Because of our assumptions, this corresponds also to the scale where the gauge
couplings all have the same value, i.e. are unified, and we will denote this scale
by M

U
.

• Since S does not appear in the superpotential, any minimum of the scalar poten-
tial is valid for any value of S: it corresponds to a flat direction of the potential.
Hence the ground state value 〈S〉 remains undetermined: we may as well write it
S, as long as some dynamics does not fix it.

We then assume that the theory considered involves a asymptotically free gauge inter-
action of group Gh under which the observable fields are neutral: the corresponding
gauge fields Aµ

h and gauginos λh are part of the hidden sector.
As shown on Fig. 7.7, the associated gauge coupling explodes at a scale which is

approximately given by

Λc =M
U
e−8π2/(b0g2) =M

U
e−4π2(S+S̄)/b0 , (7.65)
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Fig. 7.7 Evolution of the hidden sector gauge coupling with energy.

where b0 is the one-loop beta function coefficient associated with the hidden sector
gauge symmetry considered and we have used (7.64). At this scale, the gauginos are
strongly interacting and one expects that they will condense (we will develop in Chap-
ter 8 more elaborate tools to study such dynamical effects). On dimensional grounds,
one expects the gaugino condensates of the hidden sector to be of order

∣∣〈λ̄hλh〉∣∣2 ∼ Λ6
c ∼M6

U
e−24π2〈S+S̄〉/b0 . (7.66)

It is clear that the replacement (7.66) in the supergravity Lagrangian induces some
nontrivial potential for the S field: typically the four gaugino interaction present in
the supergravity Lagrangian yields an exponentially decreasing potential for S. A safe
way to infer the effective theory below the condensation scale is to make use of the
invariances of the complete theory [2, 353].

The symmetry that we use is Kähler invariance. We have seen in Chapter 6 that the
full supergravity Lagrangian is invariant under the Kähler transformation K → F + F̄
if one performs a chiral U(1)K rotation (6.24) on the fermion fields. Choosing simply
F = −2iα, this simply amounts to a R-symmetry11 where

ψ′
µL

= eiαψµL
, λ′

L
= eiαλ

L
, Ψ′

L
= e−iαΨ

L
. (7.67)

This is, however, not a true invariance of the theory because it is anomalous. If we
consider only the hidden sector, the divergence of the U(1)K current receives a con-
tribution from the triangle anomaly associated with the gaugino fields:

∂µJKµ =
1
3

b0
16π2

FhµνF̃
µν
h + · · · (7.68)

11R-symmetries are global U(1) symmetries which do not commute with supersymmetry: supersym-
metric partners transform differently under R-symmetries. We have encountered them in Section 4.1
of Chapter 4 and will discuss them in more details in the next chapter, since they play, as we already
see here, a central rôle in the study of supersymmetry breaking. The transformation laws of the fields
of a chiral supermultiplet are given in equation (C.43) of Appendix C (we take here r = 0).
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where b0 has been defined in (7.65) and the dots refer to the contributions of the
observable sector. Performing a Kähler rotation thus induces an extra term in the
Lagrangian

δL =
1
3

b0
16π2

α FhµνF̃
µν
h . (7.69)

This may be cancelled by making a Peccei–Quinn translation on the field S

S → S − i
1
3
b0
4π2

α (7.70)

since ImS couples to FhµνF̃
µν
h through (7.63)

δ′L = −1
3

b0
16π2

α FhµνF̃
µν
h , δL+ δ′L = 0. (7.71)

Hence the full quantum theory is invariant under the combination of the R-symmetry
U(1)K and the Peccei–Quinn transformation (7.70). This symmetry should remain
intact through the condensation process. This allows us to determine the effective
superpotentialW (S) below the condensation scale: just as for a standard R-symmetry,
it must transform as W → e2iαW . Hence, in the effective theory, the superpotential
includes an extra term

W (S) = he−24π2S/b0 . (7.72)

Thus spontaneous supersymmetry breaking lifts the degeneracy associated with the
field S, i.e. the flat direction of the scalar potential.

Unfortunately, this leads to a potential for S which is monotonically decreasing
towards S → ∞ where supersymmetry is restored (〈FS〉 ∼ e−24π2〈S〉/b0 → 0). We
thus have to stabilize the S field since we need a determination of the gauge coupling
(7.64). As we will see in Chapter 10, this problem is very general to string models, to
which we borrow this example, and is known as the stabilization of moduli.

A first solution, known as the racetrack model, is to consider multiple gaugino
condensation [262]. If the gauginos of two gauge groups (with respective beta function
coefficients b1 and b2) condense, then the superpotential of the effective theory includes
the terms:

W (S) = α1b1e
−24π2S/b1 − α2b2e

−24π2S/b2 , (7.73)

with α1 and α2 constants of order 1. This superpotential has a stationary point at:

S =
1

24π2
b1b2

b1 − b2
ln
α2
α1

. (7.74)

At this point, the superpotential is nonvanishing:

W = (b1 − b2)
√
α1α2

(
α1
α2

) 1
2

b1+b2

b1−b2
. (7.75)



BINE: “CHAP07” — 2006/10/5 — 19:55 — PAGE 177 — #24

High-energy vs. low-energy supersymmetry breaking 177

Supersymmetry is broken through FS ∼ KSW �= 0: the scale of supersymmetry
breaking is m3/2 = eK/2|W |. One thus still has to specify the Kähler potential. In
the case of the string models, to which we borrow this example, the S dependent part
is simply K(S) = − ln

(
S + S̄

)
.

One sees from (7.75) that one may generate a large hierarchy between m3/2 and
M

U
or M

P
by having for example, if α1 < α2,

0 < b1 − b2 � b1 + b2. (7.76)

For example, in the case where there is no matter in the hidden sector and the gauge
groups are respectively SU(N1) and SU(N2), the beta function coefficients are simply
bi = 3Ni (see equation (9.42) of Chapter 9). Writing N1,2 = N ± ∆N , we see from
(7.73) that m3/2/MU

scales as exp(−8π2S/N). Since the condition (7.76) imposes to
take large values of N (∆N is an integer), we see that one generates a low energy
scale if S is large, i.e. if the gauge coupling at unification is small. This is difficult to
reconcile with indications that the coupling at unification is of the order of unity. One
thus has to appeal to more elaborate models [70] (see for example Exercise 2).

Another way to stabilize the field S is to advocate the presence of a constant term
in the effective superpotential [115]:

W = c+ he−24π2S/b0 . (7.77)

The origin of this constant could be:

• The field strength hMNP of the antisymmetric tensor bMN present in the massless
sector of any closed string [see Chapter 10, equation (10.116) ff]. In the context of
the weakly coupled heterotic string, one may associate the constant term c with
the condensation of the “compact” part of hMNP [103]:

〈hijk〉 = cM
P
εijk, (7.78)

where the indices run over the three complex dimensions of the six-dimensional
manifold. It should be noted that c obeys in this case a quantization condition
found by topological arguments similar to the ones that lead to the quantization
of a Dirac monopole [324].

• The contribution to the superpotential of a gauge singlet scalar field acquiring a
large vacuum expectation value [89].

In any case, the superpotential (7.77) yields a contribution V (S) ≡ FSgSS̄F̄
S̄ to the

scalar potential which reads (using (6.31) of Chapter 6)

V (S) = eK
[
c+ h

(
1 +

24π2

b0
(S + S̄)

)
e−24π2S/b0

]
. (7.79)

This contribution has a supersymmetry-breaking ground state at a finite value 〈S〉:
V (〈S〉) = 0 but m3/2(〈S〉) �= 0. The potential vanishes also for S → ∞ where global
supersymmetry is restored. It turns out [34, 35] that, in the case of a no-scale model
where V (S) is the only contribution to the scalar potential once the other fields are
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set to their ground state values, all soft supersymmetry-breaking terms vanish at tree
level. One then has to go to the one-loop level to compute the soft terms, which thus
arise through radiative corrections.

Finally, it has been proposed to use a nontrivial Kähler potential to stabilize the
S field. In string theories, the simple dependance K = − ln

(
S + S̄

)
receives nonper-

turbative corrections which may play a rôle in dilaton stabilization [20].
Let us return to a discussion of the universality of the boundary values for

soft supersymmetry breaking terms. We take the example of the gaugino masses.
Quite generally, the gauge kinetic terms (7.63) are related by supersymmetry to the
terms

Lm =
1
4
FS λ̄

a
R
λa

L
+ h.c. (7.80)

which yield a universal contribution of order 〈FS〉 to the gaugino masses. The univer-
sality of this contribution is due to the fact that there is a single field which couples
in the same way to all gauge supermultiplets.

However, it is absolutely possible to have gravitational corrections through terms
which involve a set of nonsinglet fields Φab (to stress the gravitational character of
this interaction term, we write the Planck scale explicitly):

L′
kin = −1

4
ReΦab

M
P

F aµνF b
µν +

1
4
ImΦab

M
P

F aµνF̃ b
µν (7.81)

and their supersymmetric completion:

L′
m =

1
4
FΦab

M
P

λ̄a
R
λb

L
+ h.c. (7.82)

which obviously gives a nonuniversal contribution to gaugino masses12.
A second example is more directly related to superstring models. Indeed, in most

models, the dilaton coupling (7.63) receives corrections from superheavy thresholds
and takes the general form:

−1
4
[
Re S +∆a

(
T, T̄

)]
F aµνF a

µν , (7.83)

where ∆a is a function of a generic modulus field13 T . By supersymmetric completion,
one obtains

1
4

[
FS +

∂∆a

∂T
FT

]
λ̄a

R
λa

L
+ h.c. (7.84)

which thus leads to nonuniversalities.

12As an example, take a SU(5) grand unification theory (see Chapter 9): the gauge fields belong
to a 24 of SU(5) and thus gauge invariance of (7.81) implies that Φab belongs to 1 + 24 + 75 + 200.
The case of a singlet Φab (1) corresponds to universality whereas the others (24,75,200) generate
nonuniversal masses.
13As we will see in Chapter 10, an example of a modulus field is a radius modulus whose value

fixes the radius of a higher dimensional compact manifold. The masses of heavy Kaluza–Klein states
are then radius-dependent, which explains the presence of T in formulas of the effective low energy
theory such as (7.83). See Section 10.4.4 of Chapter 10 for details.
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Brignole, Ibáñez and Muñoz [51] have proposed to parametrize the supersymmetry
breaking effects as follows:

〈FS〉 = Cm3/2 sin θ, 〈FT 〉 = Cm3/2 cos θ. (7.85)

Thus, θ = π/2 corresponds to gaugino mass universality (the so-called dilaton domi-
nated scenario) whereas θ � 1 (moduli dominated) leads to large nonuniversalities.

Universality remains in any case a preferred option from a phenomenological
perspective because of the dangerous flavor-changing neutral currents (FCNC) that
nonuniversalities generate. As mentioned in Section 6.8 of Chapter 6, even in the uni-
versal case, some care should be taken since renormalization to the electroweak scale
induces some nonuniversalities.

7.4.3 Anomaly mediation

In the context of a locally supersymmetric theory, attention must be paid to the reg-
ularization procedure. It induces a generic contribution to the gaugino masses and
the A-terms, known as the (conformal) anomaly mediated contribution. Such a con-
tribution is dominant in models where there are no singlet fields present in the hidden
sector (such as the S field of the preceding section) to generate a significant mass
to gauginos. In such cases, this source of supersymmetry breaking in the observable
sector is called anomaly mediation [189, 320]. But it must be stressed that this con-
tribution is always present, although often nonleading. Let us now see more precisely
how it arises.

The low energy theory may be considered as an effective theory of a deeper theory
which sets boundary values at a fundamental scale Λ. Care must be taken at the
cut-off scale Λ because the procedure of cutting off momenta in an integral is not
consistent with local supersymmetry. Inspiration may be found in the case where the
scale Λ is related to the expectation value of a scalar field, i.e. the superheavy masses
are determined by a scalar vev (as in the Higgs mechanism). In a supersymmetric
context, the scalar field is merged into a chiral superfield and the supersymmetry
breaking effects trigger a F -term of order m3/2 . In other words, to the cut-off scale Λ
must be associated an effective F -term FΛ = Λm3/2 .

If we now consider the observable sector gauge kinetic term

L = −1
4

[
1
g2

+
b(1)

8π2
log

Λ
µ

]
FµνFµν , (7.86)

where we have included one-loop renormalization effects, the preceding considerations
lead us to introduce for supersymmetric completion, according to (6.65),

L′ =
1
4
b(1)

8π2
1
Λ
FΛλ̄R

λ
L
+ h.c. =

1
4
b(1)

8π2
m3/2 λ̄R

λ
L
+ h.c. (7.87)

Taking into account the factor g2 in front of the kinetic term for gauginos, this gives
a universal gaugino mass:

M1/2 = −b(1)g2

16π2
m3/2 . (7.88)
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As discussed in Section A.5.4 of Appendix Appendix A, the type of renormalization
effects that we have taken into account here are directly related to the (super)conformal
anomaly. Hence the name anomaly mediation14.

Similarly [189,320], A-terms are generated:

Aijk =
1
2
(γi + γj + γk)m3/2 , (7.89)

where the γ’s are the anomalous dimensions (see Section E.3 of Appendix E) of the
corresponding cubic term in the superpotential: λijkφiφjφk. Finally, scalar masses
receive a contribution

m2
i = −1

4
dγi
dt

m2
3/2
, (7.90)

Since γi is a function of gauge couplings gj and Yukawa couplings λk, dγi/dt =∑
j(∂γi/∂gj)βj +

∑
k(∂γi/∂λk)dλk/dt. It should be stressed that scalar masses are

expected to receive other contributions than (7.90) from the superheavy fields of the
fundamental theory15.

In the situation where the anomaly mediated contribution dominates, the predic-
tion for gaugino masses is strikingly different from gravity mediation. For example,
in the case of the minimal supersymmetric model, one obtains from (7.88), using
b
(1)
1 = −33/5, b(1)2 = −1, b(1)3 = 3 (see Section E.1 of Appendix E) and g21 = 5g′2/3,

M1 =
11α

4π cos2 θ
W

m3/2 = 8.9× 10−3m3/2 ,

M2 =
α

4π sin2 θ
W

m3/2 = 2.7× 10−3m3/2 , (7.91)

M3 = −3α3
4π

m3/2 = −2.8× 10−3m3/2 ,

where the right-hand sides give the values at the electroweak scale (we have neglected
here for M1 and M2 finite contributions coming from the Higgs sector).

This set of values implies an unexpected feature: the wino Ã3 is lighter than the
bino B̃ and becomes the LSP. Moreover, neutral (Ã3) and charged (W̃±) winos are
almost degenerate. This is due to the fact that the splitting between the two arises from
electroweak breaking and is of order M4

W
. For example, in the limit µ � M1,2,MW

,
one finds respectively for the neutral and charged wino mass

mχ0 = M2 −
M2

W

µ
sin 2β − M4

W
tan2 θ

W

(M1 −M2)µ2
sin2 2β,

mχ± = M2 −
M2

W

µ
sin 2β +

M4
W

µ3
sin 2β, (7.92)

14In more technical terms, the contribution given here is related to the super-Weyl anomaly. It
should be stressed [19, 172] that there exists other contributions associated with the Kähler and
sigma model anomalies. They depend explicitly on the form of the Kähler potential.
15In the case of scalar masses, the following counterterm is allowed:

∫
d4θ Z†ZΦ†Φ/m2

P
, where Z

is a superfield of the hidden sector.
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where the notation makes it clear that these are the lightest neutralino and chargino.
Because wino annihilation is very efficient, the thermal relic density of such a LSP
is insufficient to account for dark matter. One may appeal to nonthermal production
mechanisms.

Regarding scalar masses, one obtains from (7.90) and the expressions of anomalous
dimensions given in Appendix E:

m2
Q =

(
8

g43
16π2

− 3
2

g42
16π2

− 11
50

g41
16π2

+ λt
dλt
dt

+ λb
dλb
dt

)
m2

3/2

16π2
,

m2
T =

(
8

g43
16π2

− 88
25

g41
16π2

+ 2λt
dλt
dt

)
m2

3/2

16π2
,

m2
B =

(
8

g43
16π2

− 22
25

g41
16π2

+ 2λb
dλb
dt

)
m2

3/2

16π2
,

m2
L =

(
−3
2

g42
16π2

− 99
50

g41
16π2

+ λτ
dλτ
dt

)
m2

3/2

16π2
,

m2
τ =

(
−198

25
g41
16π2

+ 2λτ
dλτ
dt

)
m2

3/2

16π2
,

m2
H2

=
(
−3
2

g42
16π2

− 99
50

g41
16π2

+ 3λt
dλt
dt

)
m2

3/2

16π2
,

m2
H1

=
(
−3
2

g42
16π2

− 99
50

g41
16π2

+ 3λb
dλb
dt

+ λτ
dλτ
dt

)
m2

3/2

16π2
, (7.93)

and similarly for squarks and sleptons of the first two families. We note that, because
the lepton Yukawa couplings are small, this contribution to slepton squared masses
are negative. This would indicate an instability but we have noted above that that
the hidden sector may give extra contributions. For phenomenological purposes, one
usually introduces a universal contribution m0 to represent these contributions.

7.4.4 Gauge mediation

The potential problems of gravity-messenger models with FCNC together with devel-
opments in dynamical supersymmetry breaking have led a certain number of authors
to reconsider models with “low energy” messengers. These are the gauge-mediated
models [112,113] which rely on standard gauge interactions as the mediator [109,111]:
since “standard gauge interactions are flavor-blind”, soft masses are universal.

One can discuss the nature of messenger fields on general grounds. These fields
are charged under SU(3) × SU(2) × U(1) and since their masses are larger than
the electroweak scale they must appear in vectorlike pairs. One can parametrize this
through a (renormalizable) coupling to a singlet field N , fundamental or composite:
W � λNMM̄ with λ〈N〉 �M

W
,M

Z
. SinceM, M̄ must feel supersymmetry breaking,

〈FN 〉 �= 0.In other words, the Goldstino field overlaps with the supersymmetric partner
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Fig. 7.8 Diagram giving rise to a gaugino mass in gauge-mediated models.

of N . In the simplest models that we consider here, it coincides with it. In order not to
spoil perturbative gauge coupling unification, the messengers must appear in complete
representations of SU(5) (see Chapter 9). In what follows, we will use the Dynkin index
n of the messenger representation: n = 1 for a 5 and n = 3 for a 10 of SU(5).

Messenger fermion masses are simply M = λ〈N〉 whereas the scalar mass terms
receive a nondiagonal supersymmetric contribution:

(
M†M̄

)( (λ〈N〉)† (λ〈N〉) (λ〈FN 〉)†
(λ〈FN 〉) (λ〈N〉) (λ〈N〉)†

)(
M
M̄†

)
. (7.94)

Hence scalar messenger mass eigenvalues are
√
|λ〈N〉|2 ± |λ〈FN 〉|. Stability requires:

|〈FN 〉| < λ |〈N〉|2 =M2.
Gaugino masses appear at one loop from the diagram of Fig. 7.8 whereas scalar

masses appear at two loops (see Fig. 7.9). In the limit where 〈FN 〉 � λ〈N〉2,

Ma = n
αa
4π

〈FN 〉
〈N〉 (7.95)

m̃2 = 2n
( 〈FN 〉
〈N〉

)2
[∑

a

Ca
i

(αa
4π

)2]
, (7.96)

where the index a refers to the gauge group, C3,2
i is the Casimir of order 2 of the

sfermion representation16, C1
i = 3y2i /20 and α1 ≡ g21/(4π) ≡ (5/3)g′2/(4π). There

are no significant contributions to A-terms. As advertized, squark masses are family
independent because the SU(3) × SU(2) × U(1) quantum numbers are so. This is
welcome to suppress flavor changing neutral currents.

Since squarks and sleptons must be heavy enough, the scale Λ ≡ 〈FN 〉/〈N〉 must
be larger than 30 TeV. Since 〈FN 〉 < λ〈N〉2, the messenger fermion mass M = λ〈N〉
is larger than Λ.

In the minimal model with a 5+ 5̄ of messenger fields, one typically obtains m2
q̃ ∼

8M2
3 /3, m

2
l̃L

∼ 3M2
2 /2, m

2
l̃R

∼ 6M2
1 /5. Also, if the gaugino masses obey a unification

16This is (N2 − 1)/2N for a fundamental of SU(N), i.e. C3i = 4/3, C2i = 3/4.
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Fig. 7.9 Diagrams contributing to scalar masses in gauge-mediated models.

constraint (such as (6.90) of Chapter 6), they are in the ratios M1 : M2 : M3 = α1 :
α2 : α3 whereas m2

q̃ : m
2
l̃L
: m2

l̃R
= 4

3α
2
3 :

3
4α

2
2 :

3
5α

2
1. This leads to large squark masses,

which has consequences on electroweak breaking, as we will see below. In any case,
one expects strong correlations in the supersymmetric spectrum [106]. But there are
possible modifications: presence of several singlet fields, nonzero D-term for U(1)Y ,
direct couplings of messengers to the observable sector [114].

One of the reasons for the success of gauge-mediated models is that they yield
a phenomenology quite different from the standard gravity-mediated approach. This
has generated a lot of activity. The most notable differences come from the fact that,
quite often, the gravitino is the lightest supersymmetric particle (LSP): for example
〈FN 〉 = (105 GeV)2 givesm3/2 = 〈FN 〉/mP

∼ 10 eV. It is then important to determine
which is the next lightest (NLSP). Since typically the NLSP decays into gravitino
plus photon, the signatures will involve missing transverse energy and one or several
photons.

On the theoretical side, gauge-mediated models face several problems. One con-
cerns the radiative breaking of SU(2) × U(1). In standard supergravity models, as
discussed in Section 6.5 of Chapter 6, it is the coupling to the top quark and large
lnm

P
/M

Z
which are responsible for this breaking. In gauge-mediated models, it is the

large stop mass: as can be inferred from the renormalization group equation (E.18) of
Appendix E,

m2
2(mt̃) ∼ m2

2(M)− 3
8π2

λ2t (m
2
t̃L
+m2

t̃R
) lnM/mt̃. (7.97)

Indeed this mechanism works so well that it involves some undesirable fine-tuning [75].
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The worst problem faced by gauge-mediated models is however the µ/Bµ problem:
since all soft supersymmetry-breaking terms scale as Λ, it is very difficult to avoid the
relation:

Bµ ∼ µΛ. (7.98)

Given the value of Λ, this is obviously incompatible with a relation such as (5.25) of
Chapter 5. There has been attempts to decouple the origin of µ and ofBµ [112,114]. For
instance, one may introduce a new singlet N ′ with coupling λ′N ′H2 ·H1: µ = λ′〈N ′〉.
But it is then extremely difficult to decouple N and N ′. There does not seem to be a
completely satisfactory solution to this µ/Bµ problem.

[An interesting development is the elaboration of gauge-mediated models with-
out messengers. These models take more advantage of the developments in dynamical
symmetry breaking that we will describe in the next chapter (the corresponding DSB
sector was often a black box in the previous models): the rôle of the messengers is
played by effective degrees of freedom of the DSB sector. This implies that the gauge
symmetry of the Standard Model is a subgroup of the flavor symmetry group of the
DSB sector. This group is therefore rather large and there are many effective messen-
gers. Unless they are heavy, this spoils the perturbative unification of gauge couplings.
How then to make effective messengers heavy? Remember that the messenger mass is
λ〈N〉 whereas 〈FN 〉/〈N〉 is fixed by supersymmetry breaking; since 〈N〉 itself is not
fixed, the idea is to require 〈N〉 � 〈FN 〉1/2. Explicit realizations involve nonrenormal-
isable terms [10,314] or inverted hierarchy [291].]

7.5 Limits on supersymmetric particles
Generally speaking, in the R-parity conserving scenarios that we will consider in this
section, the typical supersymmetric signature is missing energy carried away by the
decay LSP (which is assumed to be here the lightest neutralino).

7.5.1 Sleptons and squarks

Supersymmetric particles have been searched at the LEP collider and not been found,
which allows us to put a limit on their mass. Since the limit is somewhat less model
dependent for smuons than for others, we will first detail the procedure in this case.

Smuon mass limits

At LEP, the production of a pair of right-handed17 smuons e+e− → µ̃+
R
µ̃−

R
goes

through the exchange of a photon or a Z: thus the production cross-section depends
only on the smuon mass. Then, the smuon decays into a muon and the LSP: µ̃

R
→ µχ.

Thus, besides the missing energy, one is searching for an observable final state with
muons which are acoplanar with the beam (because of the momentum taken away by
the LSP). As the mass of the LSP decreases, the smuons become less acoplanar and
the signal becomes similar to e+e− →W+W− → µνµν (although it would provide an
anomalously large W → µν branching ratio). Thus the limit is expected to degrade
for smaller LSP masses.

17For a given smuon mass, the µ̃L production cross-section is larger than the µ̃R one: the µ̃R mass
limit provides a conservative smuon mass limit.
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This is what is shown in Fig. 7.10 which gives the domain excluded experimentally
by the search for acoplanar muons in the plane (mµ̃R

,mχ) assuming 100% branching
ratio for the decay µ̃−

R
→ µχ: the dotted line gives the expected limit, i.e. the limit

which would a priori be obtained if no signal was found in the data; it becomes less
stringent as one goes to lower mχ. Thanks to a welcome statistical fluctuation, the
actual limit does not follow this trend however. As the mass difference mµ̃R

− mχ

becomes very small, the limit also degrades rapidly: there is not enough final state
visible energy to allow a good detection efficiency.

If the branching ratio µ̃−
R

→ µχ turns out not to be 100%, one must allow for
decay chains, such as µ̃−

R
→ µ(χ′ → γχ).This reduces the efficiency of the acoplanar

muon search in the region of light χ.
Other slepton limits are more model dependent. In the case of stau, mixing may be

important as for the stop and the most conservative limit corresponds to a vanishing
coupling of the lightest stau to Z. For the selectron, there is an extra contribution
(neutralino exchange in the t channel) which leads to a higher limit as can be seen
from Figure 7.10.

Stop mass limit

As emphasized in Section 5.3.3 of Chapter 5, the large mixing term in the stop mass
matrix (5.53) allows for light stop mass eigenstates. Light stops have been searched
for at LEP: their decay t̃ → cχ arises through a loop and the decay time may be
longer than the stop hadronization time, in which case stop-hadrons are first produced.
Fig. 7.11 gives the exclusion plot in the (mt̃,mχ) plane coming from LEP experiments
as well as the Tevatron Run I.

Generic squarks and gluinos have also been searched for at the Tevatron where
there is a strong production of q̃q̃ or g̃g̃ pairs. In the case where squarks are lighter
than gluinos, squarks decay predominantly as q̃ → qχ and the final state is a pair
of acoplanar jets plus missing transverse energy. However, other decay modes such
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G
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/c
2 )

˜
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Fig. 7.10 Domain excluded at 95% CL by the four LEP experiments in the plane (m�̃R
,mχ)

resp. from left to right for τ̃R , µ̃R and ẽR (LEP SUSY working group).
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Fig. 7.11 Domain excluded by the LEP experiments in the (mt̃,mχ) plane from t̃ → cχ

decays: inner (resp. outer) contour corresponds to vanishing (resp. maximal) Zt̃t̃ couplings.
Also indicated is the domain excluded by CDF at Tevatron Run I [211].

as cascade decays (q̃ → qχ′, q′χ± with subsequent decay of χ′ or χ±) are also pos-
sible which lead to different topologies. Since the decay branching ratios are model
dependent, it is difficult to obtain generic mass limits.

7.5.2 Neutralinos and charginos

Charginos (resp. neutralinos) are pair produced at LEP through s-channel γ/Z (resp.
Z) exchange and t-channel sneutrino (resp. selectron) exchange: the two channels
interfere destructively (resp. constructively). If sleptons are too heavy to be produced
in the subsequent decays, the relevant parameters areM2, µ and tanβ (plusM1 in the
case of neutralinos). Typical decays are χ+ → χW ∗ and χ′ → χZ∗, which make the
signatures rather straightforward: the kinematic limit of 104 GeV is basically reached
for the chargino at LEP [380]. For lighter sleptons, invisible final states such as χ′ → ν̃ν
open up.

In the case where the chargino χ+ and the neutralino χ become almost degenerate
(Higgsino-like for large M2 or wino-like in the case of anomaly mediation, see (7.92)),
the above mentioned search loses its sensitivity. One has to resort to more elaborate
techniques such as tagging on a low energy photon radiated from the initial state.

7.5.3 Constraints on the LSP mass

The limits on the LSP arising from LEP searches are more intricate because they
result from different channels: the direct production e+e− → χ̃0χ̃0 cannot be used
since it gives an invisible final state. The mass limit in terms of tanβ is given in
Fig. 7.12. We have already seen that negative Higgs boson searches give a lower limit
to the value of tanβ. For values within this bond, the main constraint comes from
the chargino channel: e+e− → χ̃+χ̃−. However, when chargino and sneutrino become
almost degenerate, this channel looses its sensitivity because the decay χ̃± → �ν
becomes invisible. Such a configuration is called the corridor in Fig. 7.12. This is
where slepton searches take over, giving an absolute mass lower limit of 45 GeV/c2.
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Fig. 7.12 LSP mass limit as a function of tan β obtained by a combination of the four LEP
experiments.

In the more constrained case of the minimal SUGRA model, there are fewer patho-
logical mass configurations, which yields a better limit of 60 GeV/c2.

7.6 R-parity breaking
Violations of R-parity are often associated with violations of baryon or lepton number
and are thus bounded by experimental results on baryon or lepton violating interac-
tions. The weakest constraints are obtained when one assumes that a single R-violating
coupling dominates, typically 10−1 to 10−2 times (m̃/100 GeV), where m̃ is the mass of
the superpartner involved. Much more stringent constraints may arise on the product
of some specific couplings.

The R-parity violating renormalizable superpotential reads (see equation (5.4) of
Chapter 5)

W �R = µiH2 · Li + 1
2λijkLi · LjE

c
k + λ′

ijkLi ·QjD
c
k +

1
2λ

′′
ijkU

c
iD

c
jD

c
k, (7.99)

where U c
iD

c
jD

c
k ≡ εαβγU c

iαD
c
jβD

c
kγ (α, β, γ color indices). It is straightforward to show

that
λijk = −λjik, λ′′

ijk = −λ′′
ikj . (7.100)

At this level, it is possible to redefine the fields in order to absorb the quadratic term
into the µ term: H1 → H ′

1 ∝ µH1 + µiLi. However, this is no longer equivalent once
one includes soft supersymmetry breaking terms.

Let us illustrate how constraints arise on specific couplings λijk.
We first assume that a single coupling λ12k dominates. The corresponding R-parity

violating operator yields an extra contribution to the muon lifetime as can be seen
from Fig. 7.13.
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λ12k

µL

λ12k

νe

eL

νµ

ekR
~

Fig. 7.13 Contribution to the muon lifetime from the R-parity violating operator L1 ·L2Ec
k.

At tree level, one thus finds for the Fermi coupling measured in µ decay:

Gµ√
2
=

g2

8M2
W

[
1 +

M2
W

g2m2
ẽkR

|λ12k|2
]
. (7.101)

This in turn induces an effect on the CKM matrix element Vud determined by com-
paring the nuclear beta decay to muon beta decay:

|Vud|2 =
∣∣V SM

ud

∣∣2∣∣1 + (M2
W
/g2m2

ẽkR
)|λ12k|2

∣∣2 . (7.102)

One infers from this the 2σ limit: λ12k < 0.05
(
mẽkR

/100 GeV
)
[Vud].

Muon decay also allows for other tests, especially through its decay rate. The
precise measurement of the ratio

Rτµ ≡ Γ(τ → µνν̄)/Γ(µ→ eνν̄) (7.103)

is sensitive to both λ12k and λ23k through the modification of the τ leptonic decay via
ẽkR exchange (similar to Fig. 7.13). More precisely, we have

Rτµ � RSM
τµ

[
1 +

2M2
W

g2m2
ẽkR

(
|λ23k|2 − |λ12k|2

)]
. (7.104)

Comparison with the measured value gives

λ12k < 0.07
( mẽkR

100 GeV

)
[Rτµ], λ23k < 0.07

( mẽkR

100 GeV

)
[Rτµ]. (7.105)

Similarly, the ratio of leptonic decay widths

Rτ ≡
Γ(τ → eν̄eντ )
Γ(τ → µν̄µ̄ντ )

= RSM
τ

[
1 +

2M2
W

g2m2
ẽkR

(
|λ13k|2 − |λ23k|2

)]
(7.106)

yields the following constraints

λ13k < 0.07
( mẽkR

100 GeV

)
[Rτ ], λ23k < 0.07

( mẽkR

100 GeV

)
[Rτ ]. (7.107)
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Table 7.1 Best limits on some of the couplings λ′
ijk. The bounds are obtained from

experimental results on the following processes: neutrinoless double beta decay [ββ0ν], charge
current universality in the quark sector [Vud], semileptonic decays of mesons [B− →Xqτ

−ν̄],
atomic parity violation [QW (Cs)].

Coupling Constraint Process

λ′
111 3.3 10−4(mq̃/100 GeV)2(mg̃/100 GeV)1/2 ββ0ν

λ′
11k, k = 2, 3 0.02(md̃kR

/100 GeV) Vud

λ′
333 0.12(mb̃kR

/100 GeV) B− →Xqτ
−ν̄

λ′
1j1 0.04(mũjL

/100 GeV) QW (Cs)

We refer the reader to more extensive reviews on the subject (see for example [27]) for
complete lists of constraints. It should be stressed that, whereas the bounds on the λijk
couplings scale like mẽkR

, other bounds may have a more complicated dependence on
the masses of the supersymmetric particles, as can be seen for example from Table 7.1
in the case of λ′

ijk.
The main phenomenological consequences of allowing for R-parity violations are

as follows.
First, supersymmetric particles need not be produced in pairs, which lowers the

threshold for supersymmetric particle production. This is certainly a welcome feature
for experimental searches. On the other hand, the fact that, at the time of writing, no
supersymmetric particle has been found thus finds a more natural explanation in the
context of R-parity conservation.

Table 7.2 gives, for each class of high energy colliders, the resonant production
mechanisms allowed by the different types of R-parity breaking couplings.

Second, the LSP is not stable and can decay in the detector. We note that, since
the LSP is not stable, cosmological arguments about it being charge and color neutral
drop. It could for example be a squark, a slepton, a chargino... We give in Table 7.3
the direct decays of supersymmetric fermions through R-parity violating couplings.
Charginos and neutralinos decay into a fermion and a virtual sfermion which subse-
quently decays into standard fermions through R-parity violating couplings: this yields
a three-fermion final state.

For example, in the case of a nonvanishing λijk coupling, the sneutrino R-parity
violating partial width reads18

Γ
(
ν̃i → �+j �

−
k

)
=

1
16π

λ2ijkmν̃i . (7.108)

The corresponding mean decay length L reads

L

1 cm
= βγ

(
100 GeV
mν̃i

)(
10−7

λijk

)2

, (7.109)

where γ is the Lorentz boost factor.

18If the dominant coupling is λ′
ijk, replace in the following formulas λ2ijk with 3λ′2

ijk, where
3 accounts for color summation.
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Table 7.2 s-channel resonant production of sfermions at colliders in the case of R-parity
violation.

Collider Coupling Sfermion Process

e+e− λ1j1 ν̃µ, ν̃τ �+1 �
−
1 → ν̃j j = 2, 3

ep λ′
1jk d̃

R
, s̃

R
, b̃

R
�−1 uj → d̃kR j = 1, 2

ũ
L
, c̃

L
, t̃

L
�+1 dk → ũjL

pp̄ λ′
ijk ν̃e, ν̃µ, ν̃τ dkd̄j → ν̃i

ẽ, µ̃, τ̃ uj d̄k → �̃iL j = 1, 2
λ′′
ijk d̃, s̃, b̃ ūid̄j → d̃k j �= k

ũ, c̃, t̃ d̄j d̄k → ũi j �= k

Table 7.3 Direct decays of supersymmetric particles via R-parity violating couplings.

Supersymmetric Couplings
particles λijk λ′

ijk λ′′
ijk

ν̃iL �+jL�
−
kR

d̄jLdkR
�̃−iL ν̄jL�

−
kR

ūjLdkR
ν̃jL �+iL�

−
kR

�̃−jL ν̄iL�
−
kR

�̃−kR νiL�
−
jL
, �−iLνjL

ũiR d̄jR d̄kR
ũjL �+iLdkR
d̃jL ν̄iLdkR
d̃jR ūiR d̄kR
d̃kR νiLdjL , �

−
iL
ujL ūiR d̄jR

χ0 �+i ν̄j�
−
k , �

−
i νj�

+
k , �+i ūjdk, �

−
i uj d̄k, ūid̄j d̄k, uidjdk

ν̄i�
+
j �

−
k , νi�

−
j �

+
k ν̄id̄jdk, νidj d̄k

χ+ �+i �
+
j �

−
k , �

+
i ν̄jνk, �+i d̄jdk, �

+
i ūjuk, uidjuk, uiujdk,

ν̄i�
+
j νk, νiνj�

+
k ν̄id̄juk, νiuj d̄k d̄id̄j d̄k

Similarly, the partial width for a pure photino neutralino decaying with λijk is [99]

Γ = λ2ijk
α

128π2
M5

γ̃

m4
�̃

, (7.110)

where m�̃ is the mass of the virtual slepton. The corresponding decay length is then
found to be

L

1 cm
= 0.3γ

( m�̃

100 GeV

)4(100 GeV
Mγ̃

)5(10−5

λijk

)2

. (7.111)
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Table 7.4 Charges of the fields and of the parameters under the symmetries U(1)′ and
U(1)′R of the minimal supergravity model.

Fields Parameters

H1 H2 QU c QDc LEc λ M1/2 A0 Bµ µ

U(1)′ 1 1 −1 −1 −1 0 0 0 −2 −2
U(1)′R 1 1 1 1 1 1 −2 −2 −2 0

Thus, for couplings of order 10−5, one expects displaced vertices in the detector. For
much smaller couplings, the neutralino decays outside the detector whereas for larger
couplings, the primary and displaced vertices cannot be separated.

7.7 The issue of phases
In our discussions above, we have not paid sufficient attention to the fact that the pa-
rameters of a supersymmetric theory are complex. The presence of nontrivial complex
phases leads to possible deviations from the standard phenomenology that has been
presented until now.

These phases appear already at the level of the minimal supergravity model. We
may take as parameters of this model19 M1/2, m0, A0 , Bµ and µ. One can redefine
the gaugino and Higgs fields in order to make M1/2 and Bµ real. One is then left with
two independent complex phases for A0 and µ, which one defines traditionally as

ϕA ≡ arg
(
A∗
0M1/2

)
, ϕB ≡ arg

(
µB∗

µM1/2
)
. (7.112)

One may alternatively note [110] that, in the limit where both µ and the soft
parameters Bµ, M1/2 and A0 vanish, the model acquires new abelian symmetries
U(1)′ and U(1)′R: the charges of the different superfields are given in Table 7.4. We
note that the second symmetry is of a type known as R-symmetry, encountered in
Chapter 4 or in Section 7.4.2: it does not commute with supersymmetry. Thus it is
a symmetry of the scalar potential but not of the superpotential; similarly, gauginos
transform whereas vector gauge fields are invariant. We will study in more details such
symmetries in the next chapter.

If one allows the parameters of the model to transform as (spurion) fields, with
charges given in Table 7.4, we may turn U(1)′ and U(1)′R as symmetries of the full
model. We note that we have the following invariant combinations:

M1/2µB
∗
µ, A0µB

∗
µ, A∗

0M1/2.

Two of their phases are independent: they are ϕA and ϕB .

19This list is somewhat different from the usual one given for example in Section 6.8 of Chapter 6.
We have replaced tan β by Bµ. Moreover, in Chapter 6, we assumed implicitly Bµ to be real and |µ|
was fixed by electroweak radiative breaking: we were thus left only with an ambiguity with the sign
of µ. Here it is the phase of µ which remains to be fixed.
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These phases are constrained by experimental data, such as the electric dipole
moment of the neutron. As an example, the down quark electric dipole moment receives
a one-loop gluino contribution which is computed to be [56,309]:

dN = md
eα3
18π

|mg̃|
m4

q̃

[|A| sinϕA + |µ| tanβ sinϕB ] (7.113)

∼ 2
(
100 GeV

m̃

)2

sinϕA,B × 10−23e.cm ≤ 6.3× 10−26e.cm,

where m̃ is a mass scale of the order of the gluino mass mg̃ or a squark mass mq̃,
and A is the low energy value of the A-term (the experimental constraint is found
in [144]). This shows that the ϕA,B have to be small. This need not be accidental. For
example, if A0 and M1/2 arise from a single source of supersymmetry breaking, their
phases might be identical, in which case ϕA = 0.

In the case of nonminimal models, other phases appear in the squark and slepton
mass matrices. We will return to this question in Chapter 12 and see that a generic
supersymmetric extension of the Standard Model has 44 CP violating complex phases!

Further reading
• G.F. Giudice and R. Rattazzi, Theories with gauge-mediated supersymmetry break-
ing, Physics Reports 322 (1999) 419.

• R. Barbier et al., R-parity violating supersymmetry, Physics Reports 420 (2005) 1.

Exercises
Exercise 1 We prove the cancellation of the one loop contributions to the magnetic
operator in the supersymmetric QED model of Wess and Wess and Zumino [363],
studied in Exercise 5 of Chapter 3.

Using Lorentz covariance, charge conservation and hermiticity, one may write the
matrix element of the electromagnetic current in the Dirac theory in terms of

ū2(p2)Mµu1(p1) = ū2

[
γµF1(q2)− σµν

qν
m
F2(q2) + iγ5σ

µν qν
m
F3(q2)

]
u1, (7.114)

where qµ = pµ2 − pµ1 and p21 = p22 = m2.
(a) Show that parity conservation implies under F3 = 0. We will assume that parity

is conserved from now on (hence we do not take into account weak interactions).
(b) Since (/p − m)u(p) = 0, one may use the projectors (/p ± m)/2m and write the

decomposition above as

(/p2 +m)Mµ(/p1 +m) = (/p2 +m)
[
γµF1(q2)− σµν

qν
m
F2(q2)

]
(/p1 +m). (7.115)

Deduce that one can write the Pauli form factor F2(q2) as

F2(q2) =
m2

q2(−q2 + 4m2)
Tr
[(

γµ −
q2 + 2m2

−q2 + 4m2

Pµ
m

)
(/p2 +m)Mµ(/p1 +m)

]
,

(7.116)
where P ≡ p1 + p2.
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(c) We now consider the supersymmetric QED model studied in Exercise 5 of Chap-
ter 3. The Lagrangian is given by its equation (3.58) in terms of the two Majorana
spinors Ψ1 and Ψ2 and their supersymmetric partners (we add mass terms to give
these fields a common mass m). Show that the magnetic operator is necessary of
the form Ψ̄1σµνΨ2F

µν + h.c. in this model and write explicitly the indices (1 or
2) on the fermion and scalar lines of the Feynman graphs of Fig. 7.2.

(d) Compute the respective contributions of diagrams (a), (b), and (c) of Fig. 7.2 to
the Pauli form factor (7.116) and show that they cancel.

Hints:
(a) Under parity ui(p̃i) = γ0ui(pi) up to a phase (see equation (A.107) of Appendix A).
(b) Use (7.116) to compute Tr [γµ(/p2+m)Mµ(/p1+m)] and Tr [Pµ(/p2+m)Mµ(/p1+m)].
(c) Because of the Majorana nature (see (B.40) of Appendix B), Ψ̄iσµνΨi = 0.
(d)

F2(q2)
∣∣
(a) = −2 F2(q2)

∣∣
(b) = −2 F2(q2)

∣∣
(c) = · · ·

Exercise 2 Show that, in the case where the hidden sector gauge symmetry is broken
at an intermediate scale M

I
, the expression (7.66) for the gaugino condensates is

replaced by ∣∣〈λ̄hλh〉∣∣2 ∼M6e−24π2〈S+S̄〉/b′
0 , (7.117)

where one will express the scaleM in terms ofM
U
,M

I
, and the one-loop beta function

coefficient b0 (resp. b′0) of the corresponding gauge group above (resp. below) the
scale M

I
.

Hints: Write

0 =
1

g2(M
I
)
+

b′0
8π2

ln
Λc

M
I

,

1
g2(M

I
)
=

1
g2(M

U
)
+

b0
8π2

ln
M

I

M
U

,

to obtain M/M
U
= (M

I
/M

U
)1−(b0/b′

0).

Exercise 3 Using Appendix C, write in components the Lagrangian

S =
1
4

∫
d4y

∫
d2θ S WαWα + h.c.,

where S = S +
√
2θψS + θ2FS is a chiral superfield.

Hints: Use for example Exercise 4, question (a) of Appendix C.

L = −1
8
SFµνFµν −

i

8
SFµνF̃µν +

i

2
Sλσµ∂µλ̄+

1
4
SD2

+
1
4
FSλλ+

1
2
√
2
ψSλD +

i

2
√
2
(ψSσµνλ)Fµν + h.c.
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Exercise 4 : Consider the potential Veff of (7.24) where V (0) is given by (5.13).
(a) Express ∂∆V/∂Si|min, i = 1, 2 in terms of the parameters of V (0), v1, v2 (vi and

Si are defined in (7.34); the minimum considered is the one of Veff).

(b) Express
(
M2

S

)eff and
(
M2

P

)eff in (7.35) in terms of these parameters and the

derivatives ∂∆V
∂Si

∣∣∣
min

, ∂2∆V
∂Si∂Sj

∣∣∣
min

and ∂2∆V
∂Pi∂Pj

∣∣∣
min

.

(c) Show that (
M2

P

)eff
=
(

sin2 β sinβ cosβ
sinβ cosβ cos2 β

)
m̄2

A ,

where m̄A is the loop-corrected pseudoscalar mass.
(d) Deduce (7.36).

Hints:
(b)

∂2Veff
∂Pi∂Pj

∣∣∣∣
min

= −Bµ
v1v2
vivj

− 1√
2
δij
vi

∂∆V
∂Si

∣∣∣∣
min

+
∂2∆V
∂Pi∂Pj

∣∣∣∣
min

.

(c)

(
M2

S

)eff
ij

=
∂2∆V
∂Si∂Sj

∣∣∣∣
min

+ (−1)i+j
[(
M2

P

)eff
ij

− ∂2∆V
∂Pi∂Pj

∣∣∣∣
min

+
g2 + g′2

2
vivj

]
.
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A motivation for supersymmetry is the stability of the electroweak breaking scale
under quantum corrections arising from fundamental physics at a much higher scale
(naturalness problem). One may however turn the argument around: in a theory with
a very large fundamental scale, how does one generate a scale as low as the super-
symmetry breaking scale (hierarchy problem)? Again, the supersymmetry breaking
mechanism should be devised in order to provide a rationale for such a behavior.

We will argue in what follows that nonperturbative dynamics may be the answer:
there are several examples where nonperturbative phenomena account for the gen-
eration of very large ratios of scales. This is referred to under the generic name of
dynamical breaking. As we will see, supersymmetry provides new tools to control
quantum fluctuations in the nonperturbative regime. One will uncover some duality
relations between two regimes of a given theory, or two regimes of two different theo-
ries. This duality is often of a strong/weak coupling nature and is thus very promising
to study strongly interacting theories.

The theories that we will consider have a dynamical scale below which some of
the symmetries are broken. In the low energy regime, below this scale, the fields are
usually composite bound states of the fundamental fields. This leaves the possibility
that the fields of the supersymmetric theory at low energy (such as the MSSM studied
in Chapter 5) are not fundamental. Supersymmetry may thus be realized at a preonic
level.

8.1 Dynamical supersymmetry breaking: an overview
8.1.1 Introduction
The expression “dynamical breaking of a symmetry” refers to the spontaneous break-
ing of this symmetry when it is generated by a nonperturbative dynamics.

The standard example is quantum chromodynamics: keeping only the three light
quark flavors u, d and s, QCD is described by the action

S =
∫

d4x

−1
4
Tr Fµν Fµν +

3∑
f=1

q̄f
(
iγµDµ −mqf

)
qf

 (8.1)

where Fµν is the gluon field strength and Dµqf the SU(3) covariant derivative of the
quark field qf . In the limit of vanishing quark masses mqf → 0, this action is invariant
under a global symmetry SU(3)L×SU(3)R, known as the chiral symmetry (indepen-
dent SU(3) rotations respectively on the left and the right chirality quark fields). Such
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a symmetry is not observed in the spectrum: it would predict either a massless proton
or a chiral partner for the proton. It is therefore spontaneously broken: the QCD vac-
uum breaks SU(3)L × SU(3)R. It is indeed believed that the nonperturbative QCD
dynamics yields nonvanishing quark condensates Ufg ≡ 〈q̄fLqgR〉 which break sponta-
neously SU(3)L×SU(3)R into a diagonal SU(3)V (identical SU(3) rotations for both
quark chiralities), the symmetry which allowed Gell-Mann to classify hadrons. The
octet of pseudoscalar mesons, π±, π0, K0, K̄0, K± and η, yields the corresponding
Goldstone bosons1. They may be interpreted as a variation in space and time of the
background values and are thus described by the SU(3) spacetime-dependent matrix
Ufg(xµ).

The proton mass mp is a consequence of the nonperturbative QCD dynamics:

mp ∝ Λ =M
P
e−8π2/(bg2s) (8.2)

where b is the one-loop beta function and gs the value of the strong coupling at the
Planck scale M

P
. As noted in Chapter 1, this allows us to explain the hierarchy of

scale between Λ (or mp) andMP
. We note that the QCD Lagrangian does not contain

any dimensionful parameter in the limit of vanishing quark masses. It is only at the
quantum level that a low energy mass scale is generated.

In the case of supersymmetric models, we must face a similar problem, i.e. gener-
ate, through spontaneous supersymmetry breaking, masses for supersymmetric par-
ticles which are much smaller than the Planck scale (otherwise, the prime reason for
introducing supersymmetry in the Hamiltonian – the problem of naturalness – is lost).
It is thus natural to study thoroughly the possible rôle of dynamical breaking.

As we will now see, supersymmetry turns out to be an advantage, in the sense
that it helps to control nonperturbative effects. This should not be seen as a complete
surprise since supersymmetry was precisely devised to get a better handle on quantum
fluctuations.

8.1.2 The power of holomorphy

We have seen in the preceding chapters that holomorphy is a fundamental property
of the superpotential which summarizes the interactions of chiral supermultiplets (the
scalar components of which are denoted here generically by φ): W depends on φ but
not on φ∗. This is related to the chiral nature of the fermion fields associated with the
scalars φ. One may generalize this property to account also for the dependence in the
couplings.

To be explicit, let us consider the traditional Wess–Zumino model discussed in
some details in Chapters 1 and 3. The superpotential reads (cf. (3.17) of Chapter 3)

W (φ) = 1
2mφ2 + 1

2λφ
3. (8.3)

We will extend the notion of holomorphy by considering the couplings themselves as
background fields. In other words, we write m = 〈M〉 and λ = 〈L〉 and require W to
be a holomorphic function of the scalar fields M and L as well as of φ.

1Restoring quark mass terms, which explicitly break the symmetry, generates a nonvanishing mass
for these bosons.
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The justification may be found in string theory where, as we will see in
Chapter 10, there is a single fundamental scale, the string scale M

S
and all dimen-

sionless parameters may be expressed in terms of vacuum expectation values of scalar
fields. For example, in the weakly coupled heterotic string theory, the gauge coupling
g and the Planck scale M

P
are expressed in terms of the vacuum expectation value of

the string dilaton S:
1
g2

= 〈S〉, (8.4)

M2
P
= 〈S〉M2

S
. (8.5)

More generally, our requirement of generalized holomorphy for the superpotential is
simply a translation of the fact that, in a supersymmetric Feynman diagram which
involves the interactions described by the superpotential, there is no possibility to find
a coupling λ∗ or a mass m∗.

Once couplings are interpreted on the same footing as fields, one may attribute
them quantum numbers. For example, the superpotential (8.3) is invariant under the
abelian symmetries U(1)× U(1)R, with quantum numbers given in Table 8.1.

Let us pause for a moment to discuss the difference of status of the two abelian
symmetries. The U(1) symmetry is of a standard nature and commutes with super-
symmetry: if (φi,ΨiL) are the bosonic and fermionic components of a chiral multiplet
of charge qi, they both transform under U(1) as:

φi → eiqiαφi, ΨiL → eiqiα ΨiL . (8.6)

The superpotential W must be invariant under such a symmetry. On the other hand,
U(1)R is known as a R-symmetry, a concept which we have encountered several
times: it does not commute with supersymmetry and, as such, plays a central rôle
in all discussions of supersymmetry and supersymmetry breaking. One can show [see
Section 4.1 of Chapter 4] that, in the case of N = 1 supersymmetry, the only sym-
metries which may not commute with supersymmetry are abelian symmetries. Under
such a symmetry, fermion and boson components of a given multiplet (φi,ΨiL) of
charge ri transform differently:

φi → eiriα φi , φ∗
i → e−iriα φ∗

i

ΨiL → ei(ri−1)α ΨiL , Ψc
iR → e−i(ri−1)αΨc

iR (8.7)

and the superpotential W has nonzero charge r = 2.

Table 8.1

U(1) U(1)R
φ 1 1
m −2 0
λ −3 −1
W 0 2
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This can be checked on the full Lagrangian (3.30) of Chapter 3. For example2, the
term

−1
2

∂2W

∂φi∂φj
Ψc

iR ΨjL → −1
2

e2iα

ei(ri+rj)α
∂2W

∂φi∂φj
ei(ri+rj−2)α Ψc

iR ΨjL

is invariant because the superpotential W has a charge r = 2.
The superpotential (8.3) that we started with is the tree level form. One may expect

quantum corrections, in particular at the nonperturbative level, that would completely
change this form. However, quantum fluctuations respect the U(1)×U(1)R symmetry
and thus W (φ) has the general form

Wnp(φ) =
∑
n

cn
λnφn+2

mn−1 ≡ mφ2
∑
n

cn

(
λφ

m

)n

. (8.8)

We may take the limit λ → 0, m → 0 with λ/m fixed. Since λ → 0, the perturbative
result (8.3) holds:

Wnp(φ) = mφ2
[
1
2
+

1
3
λφ

m

]
(8.9)

to all orders in λ/m. Hence c0 = 1/2, c1 = 1/3 and cn = 0 for n ≥ 2,

Wnp(φ) = 1
2 mφ2 + 1

3 λφ2. (8.10)

Thus, the superpotential is nonrenormalized, a well-known result which is shown to
hold even at the nonperturbative level. Let us stress that holomorphy, extended to
masses and couplings, has been the key assumption to prove this result, and R-
symmetries are an important tool that can be used because the superpotential trans-
forms nontrivially under them.

It is through such arguments, specific to supersymmetry, that one gets a better
handle on nonperturbative dynamics. This is why dynamical breaking may be studied
more thoroughly in the context of supersymmetry, as we will see in the following
sections. Before doing so, let us stress that, in the context of N = 1 supersymmetry,
arguments of holomorphy apply only to interactions (i.e. superpotential) and not to
kinetic terms: there is still much freedom arising from wave function renormalization
of the fields. One has to go to N = 2 supersymmetry in order to get a handle on this
wave function renormalization as well, and to prove much more stringent results. This
is what we will do at the end of this chapter.

8.1.3 Flat directions and moduli space

We have stressed in Chapter 7 (Section 7.3) the importance of flat directions of
the potential, i.e. valleys where the scalar potential vanishes. Since along these di-
rections global supersymmetry is not broken, the corresponding degeneracy is not
lifted by perturbative quantum effects. Only nonperturbative effects may lift these flat
directions.

2[For a general treatment using superfields, see Section C.2.3 of Appendix C.]
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As a first example consider a U(1) supersymmetric gauge theory with two super-
multiplets of charge ±1. We denote their scalar components by φ±. In the case of a
vanishing superpotential, the scalar potential is simply given by the D-term

V =
1
2
g2
(
φ†
+φ+ − φ†

−φ−
)2

. (8.11)

where g is the gauge coupling. The D-flat direction is reached for φ± = ρeiθ± . By a
suitable gauge transformation, one may choose θ+ = θ− ≡ θ. Thus

φ+ = φ− = a, a = ρeiθ ∈ C (8.12)
characterizes the flat direction. This flat direction consists of all the degenerate vacua;
borrowing the terminology to solitons, in particular monopoles (see Chapter 4), one
often refers to this set of all degenerate vacua as the classical moduli space.

For any nonvanishing value of a, the U(1) gauge symmetry is spontaneously broken
and the vector field becomes massive. In fact, because supersymmetry is not broken
(the D-term vanishes), a whole vector supermultiplet becomes massive. As we have
seen several times earlier (for example, in Section 5.1.2 of Chapter 5), such a supermul-
tiplet has the same number of degrees of freedom as a massless vector supermultiplet
plus a chiral supermultiplet (three vector, four spinor and one scalar): this may be
interpreted as the supersymmetric version of the Higgs mechanism. Since we intro-
duced in the theory one vector and two chiral supermultiplets, we are left with a
single chiral superfield to describe the light degrees of freedom of the effective theory
much below the scale of gauge symmetry breaking. The light scalar degree of freedom
is obviously X = φ+φ−, since it must be gauge invariant. In the vacuum which is
labelled by a, one has simply 〈X〉 = a2. The field X is called a modulus: its vac-
uum expectation value labels the classical moduli space. The dynamical field X(xµ)
corresponds to a continuous variation through the space of vacua as one moves in
spacetime.

There is obviously no classical potential for X and no strong interaction present
to generate it dynamically: W (X) = 0.

The Kähler potential, which fixes the normalization of the kinetic term, is obtained
from the Kähler potential in the original theory. Assuming normalized kinetic terms
for φ+ and φ−, we have

K (φ+, φ−) = φ†
+φ+ + φ†

−φ−. (8.13)

SinceX†X = φ†
+φ+ φ†

−φ−, along the flat direction φ+ = φ−, we have φ
†
+φ+ = φ†

−φ− =√
X†X and thus

K(X) = 2
√
X†X. (8.14)

The corresponding Kähler metric gives the kinetic for X

∂2K

∂X∂X† ∂µX†∂µX =
1

2
√
X†X

∂µX†∂µX. (8.15)

We see that the theory is singular as X → 0. This generally means that one is missing
degrees of freedom in the effective theory. Indeed, as a → 0, the symmetry remains
unbroken and the low energy theory involves the two chiral supermultiplets.

The rest of this chapter lies in the “Theoretical Introduction” track.
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8.2 Perturbative nonrenormalization theorems
8.2.1 Wilson effective action

Requiring holomorphy with respect to some parameters of a supersymmetric theory
seems to be in contradiction with the renormalization program. Indeed, in the context
of supersymmetry, all renormalization effects appear through the wave function renor-
malization factors Z. Since these are intrinsically nonholomorphic (recall that scalar
kinetic terms are given by a real function, the Kähler potential), it seems that the
relation between renormalized and tree-level couplings introduces nonholomorphicity
which endangers any of the arguments presented above. The solution to this puzzle
has been explained by [337,338].

Let us illustrate this on the example of massive supersymmetric QED [338] (see
Section C.3 of Appendix C or Exercise 5 of Chapter 3):

S =
1
4g20

∫
d4xd2θW 2 +

1
4ḡ20

∫
d4xd2θ̄W̄ 2 +

∫
d4xd4θ

(
Φ†
+e

−V Φ+ +Φ†
−e

V Φ−
)

+
∫

d4xd2θ m0Φ+Φ− +
∫

d4xd2θ̄ m̄0Φ
†
+Φ

†
−. (8.16)

The low energy limit of this theory (i.e. the theory at a scale smaller to the mass
scale m0) is a theory of free massless gauge boson and gaugino. The associated gauge
coupling is simply given by the exact formula [337]

1
g2

=
1
g20

+
1
4π2

ln
Λ

UV

m0
, (8.17)

where Λ
UV

is the ultraviolet cut-off. Since the superpotentialm0Φ+Φ− is not renormal-
ized, one obtains for the low energy physical mass m = Zm0, where Z is the common
field renormalization factor. One can thus express the low energy gauge coupling in
terms of the physical mass as3:

1
g2

=
1
g20

+
1
4π2

ln
Λ

UV

m
+

1
4π2

lnZ. (8.19)

The factor Z is by essence nonholomorphic: it can be computed through the D-term
renormalization and is a real function of ln |Λ

UV
/m|. Its presence accounts for the

multiloop contribution.
It turns out that this nonholomorphic contribution is due to the presence of mass-

less fields. The approach to effective theories that we have implicitly followed is based
on the effective action formalism described in Section A.5.3 of Appendix Appendix A.
The effective action Γ, which generates proper Green’s functions, is expressed as a
series in �, which corresponds to an expansion in the number of loops. Because loop

3For a scale µ � m, this becomes

1
g2

=
1
g20

+
1

4π2
ln

ΛUV

µ
+

1
4π2

lnZ, (8.18)

which gives the standard super-QED relation β(α) = α2 (1 − γ(α)) /π with β(α) = ∂α/∂ lnµ and
γ(α) = ∂ lnZ/∂ lnµ (see, for a similar relation in the Wess–Zumino model, (8.39)).
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integration is performed down to zero momentum, infrared effects due to the presence
of massless fields are naturally included into the effective action.

An alternative approach has been pursued by [367] and [310]. If one is interested
in studying the effects of a theory at a scale µ, one decomposes the quantum fields
into a high frequency part (E > µ) and a low frequency part (E < µ). The Wilson
effective action is then obtained by integrating over the high frequency modes. At a
scale µ� m, it simply reads

SW =
1

4g2W

∫
d4xd2θ W 2 + h.c. (8.20)

with
1
g2W

=
1
g20

+
1
4π2

ln
Λ

UV

µ
, g20 = g2W (Λ

UV
), (8.21)

which does not contain higher powers of g i.e. it is renormalized only at one loop. Thus,
the relation between the gauge coupling (8.19) appearing in the effective action Γ and
the one appearing in the Wilson effective action SW is

1
g2Γ

=
1
g2W

+
1
4π2

lnZ. (8.22)

The last term may be interpreted in terms of the [259]. The parameters of the Wilson
effective action are free from infrared contributions, and one-loop contributions ex-
haust all renormalization effects (see (8.21)), which saves holomorphicity. This is not
so for the effective action Γ parameters. Infrared contributions lead to ln p2 terms at
the loop level, which results in nonholomorphicity of the nonlocal action.

One may now turn to nonabelian gauge theories. In the case of a supersymmetric
SU(N) gauge theory, direct instanton calculations give the following result for the
gluino condensate

〈λλ〉 = CΛ3
UV

1
g20

exp
(
− 8π2

Ng20

)
, (8.23)

where C is a constant and the prefactor 1/g20 accounts for zero modes (infrared effects).
Since we are discussing holomorphy, one may allow a θFµνF̃

µν term which has a
physical effect in an instanton background. Introducing thus the complex parameter

τ ≡ θ

2π
+ i

4π
g2

, (8.24)

the gauge action simply reads

S =
1
16π

Im
[
τ

∫
d4xd2θ WαWα

]
. (8.25)

However, if we replace all factors 1/g20 in (8.23) by −iτ/4π, we find a dependence
which is not periodic in the vacuum angle θ. Hence, the expression (8.23) does not
seem to allow for a complex gauge coupling, i.e. to be consistent with holomorphy.
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Again, the way out of this dilemma is to go to the Wilson effective action, whose
coupling is given in terms of the coupling in the effective action as:

1
g2W

=
1
g20

− N

8π2
ln

1
g20
, (8.26)

when θ = 0. Then, (8.23) simply reads 〈λλ〉 = CΛ3
UV

exp
(
−8π2/(Ng2W )

)
, which, once

the θ term is restored, reads

〈λλ〉 = CΛ3
UV

exp (2iπτ/N) = CΛ3
UV

exp
(
− 8π2

Ng2W

)
exp (iθ/N) . (8.27)

We see that, as θ changes continuously from 0 to 2π, the N distinct vacua (with a
phase dependence e2iπk/N , k = 0, . . . , N−1) are covered. Finally, just as in the abelian
case, the evolution of the Wilson effective action gauge coupling is purely one-loop:

1
g2W (µ)

=
1
g2W

− 3N
8π2

ln
Λ

UV

µ
, (8.28)

which allows us to write the θ-independent part of the condensate (8.27) as Cµ3 exp(
−8π2/Ng2W (µ)

)
.

One may note that, in the Wilson approach, cut-offs play a central rôle. Just as
parameters can be viewed as the vevs of chiral fields, one may consider the cut-offs
as field-dependent. In order to have a holomorphic description in the effective theory,
one may need to introduce different field-dependent regulators for the different sectors
of the theory.

8.2.2 Flat directions

To discuss the rôle played by flat directions of the scalar potential, we have relied
mostly on the tree level potential. A key property is that flat directions remain flat to
all orders of perturbation theory [371]. We will prove here this statement in the context
of global supersymmetry since this is the relevant framework when one discusses flat
directions (see, for example, Section 6.12 of Chapter 6).

Flat directions are associated with the vanishing of auxiliary fields and are thus
referred to as F -flat or D-flat directions. They are lifted if one of the auxiliary fields
acquires a vacuum expectation value. The tree level potential is quadratic in these
fields. In the context of renormalizable theories, a nontrivial vacuum appears if a
linear term is generated at higher orders.

A term linear in F would necessarily be of the form
∫
d4xd2θR(x, θ) where R is a

superfield which depends only on x and θα. The nonrenormalization theorems [210,235]
discussed in Chapter 1 precisely forbid the generation of such terms at higher orders.

If a nonvanishing D-term is to lead to spontaneous supersymmetry breaking, it
must be associated with a massless fermion (the Goldstino). This is only possible
if the corresponding gauge symmetry is not broken. If the gauge symmetry group
is semisimple (no U(1) factor), a term linear in D always appears multiplied with
fields which transform nontrivially under the gauge symmetry. Since the symmetry
must remain unbroken, these fields have a vanishing vacuum expectation value, which
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forbids a nontrivial value for D. If the gauge symmetry is abelian, then a Fayet–
Iliopoulos term is allowed and will be generated at higher orders, unless forbidden by
symmetries (D is pseudoscalar). It has to be included from the start when discussing
D-flat directions (see next section).

Thus, global supersymmetry remains unbroken to any finite order if it is unbroken
at tree level. In other words, vanishing vacuum energy at tree level ensures vanishing
vacuum energy at all finite orders: flat directions remain flat to all orders.

8.2.3 More on holomorphy

We emphasized the rôle of holomorphy in discussing F -flat directions. Surprisingly as
it may seem, holomorphy also helps in classifying D-flat directions [1, 2, 55].

For example, when we considered in Section 8.1.3 the example of super-QED with
two chiral superfields φ± of charge ±1, we concluded that the classical modulus space
is parametrized by the holomorphic gauge invariant monomial X ≡ φ+φ−.

A second example may be borrowed to the lepton sector of the MSSM. The D-term
restricted to the lepton superfields reads:

VD =
1
2
g2
(
D2

1 +D2
2 +D2

3
)
+

1
2

(
g′

2

)2

D2
Y , (8.29)

D1 =
1
2

∑
i

(E∗
iNi +N∗

i Ei) , D2 =
i

2

∑
i

(E∗
iNi −N∗

i Ei)

D3 =
1
2

∑
i

(
|Ni|2 − |Ei|2

)
, DY =

∑
i

(
2 |Ec

i |
2 − |Ei|2 − |Ni|2

)
.

For any given set i0, j0, k0 (i0 �= j0) in (1, 2, 3), the class of solutions:

Li0 ≡
(
Ni0

Ei0

)
=
(
a
0

)
, Lj0 =

(
0
a

)
, Ec

k0 = a (8.30)

corresponds to a flat direction of the potential VD. It may be parametrized by the
gauge invariant monomial Li0 · Lj0E

c
k0

= a3, which is a holomorphic function of
the superfields in the MSSM. This can obviously be generalized: every class of
D-flat directions (see Exercise 1 for the MSSM) may be associated with a holomorphic
gauge invariant monomial. Since this combination is allowed by gauge symmetry, it
should be present in the superpotential and play a rôle in the discussion of F -flat
directions.

We see that the moduli space of D-flat directions is parametrized by a finite set
of gauge-invariant polynomials holomorphic in the chiral superfields of the theory4.
More precisely, the classical set of vacua can be parametrized in terms of holomorphic

4In a supersymmetric context, the gauge transformation Φ → e2igqΛΦ promotes the real gauge
parameter to a complex parameter and thus the gauge symmetry group G to its complex extension
Gc. In this context, the D-flatness condition may be seen as a gauge-fixing condition which breaks
Gc down to G. Gauge-invariant holomorphic polynomials distinguish any two distinct Gc extended
orbit [278].
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monomials subject to polynomial constraints. In the case of a nonvanishing superpo-
tential, F -flatness conditions induce additional constraints, which are also obviously
holomorphic in the fields.

The presence of a Fayet–Iliopoulos term tends to lift some of the flat directions
(some fields acquire a vacuum expectation value of order the Fayet–Iliopoulos coupling;
see for example Exercise 2) but remains usually insufficient to lift completely the
degeneracy. In any case, the corresponding vacua are still associated with holomorphic
polynomials.

As an important example for the rest of this chapter, we illustrate the above consid-
erations by considering in some details a SU(3) gauge theory with two quark/antiquark
flavors [2]. We denote respectively by Qαi ∈ 3 and Q̄αi ∈ 3̄ the quark and antiquark
superfields as well as their scalar field components: α = 1, 2, 3 is a color index and
i = 1, 2 refers to flavor. The D-term reads5

VD =
1
2
g2

8∑
a=1

(
Q†αiλ

a β
α

2
Qβi − Q̄†

βi

λa∗β
α

2
Q̄αi

)2

=
1
8
g2

8∑
a=1

(
λa β

α Dβ
α
)2

(8.31)

with
Dβ

α = Qβi Q
†αi − Q̄†

βi Q̄
αi. (8.32)

We have used the fact that the Gell-Mann matrices are hermitian: λa = λa† = (λa∗)T .
Then it is easy to show that the flat direction corresponds to

VD = 0↔ Dβ
α = ρ0 δ

α
β , ρ0 ∈ R. (8.33)

To prove this, write D =
8∑

b=0
ρbλ

b with λ0 ≡ 1l. Then the flat direction VD = 0

corresponds to λa β
α Dβ

α = 0 for all 1 ≤ a ≤ 8. Hence
8∑

b=0
Tr(λaλb)ρb = 2ρa = 0 and

D = ρ01l.
We next try to find a solution to (8.33). If we define Rα

β ≡ Q†αiQβi, then

det(Rα
β) = Q†1i Q†2j Q†3k εαβγ Qαi Qβj Qγk = 0,

since the latter part of the expression is antisymmetric under the exchange of i, j, k ∈
{1, 2}. Hence Rα

β is a positive semidefinite hermitian matrix of rank 2. Diagonalizing
by a SU(3) rotation yields:

Q†αi Qβi =

 v21
v22

0

 . (8.34)

5Note that, if φ → eiα
aλaφ, then φ∗ → e−iα

aλa∗
φ∗.
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A similar reasoning for Q̄αiQ̄†
βi shows that ρ0 = 0 and thus Q̄αiQ̄†

βi is also given by
(8.34). Using the symmetries to redefine the fields, one concludes that the vacuum
solution is given by

Qβi = Q̄†
βi =

∣∣∣∣ viδβi β = 1, 2
0 β = 3

which we may write, using a matrix notation,

Q = Q̄ =
(
v1 0 0
0 v2 0

)
. (8.35)

The fields of the low energy effective theory should be SU(3) singlets. Thus the classical
moduli space is labelled by the vacuum expectation values of the meson fields described
by the gauge invariant monomial Mi

j ≡ QαiQ̄
αj :

〈M〉 =
(
v21 0
0 v22

)
. (8.36)

This is easily generalized to a gauge symmetry SU(Nc) with Nf flavors of quarks
(Qαi, α = 1, . . . , Nc, i = 1, . . . , Nf ) and antiquarks (Q̄αi, α = 1, . . . , Nc, i = 1, . . . , Nf ).
The classical moduli space is then given by:

• if Nf < Nc, Q = Q̄ =

Nc v1
. . .

vNf

∣∣∣∣∣∣∣ 0
 Nf

The effective theory consists of meson fields Mi
j = QαiQ̄

αj .

• if Nf > Nc, Q =

Nc
v1

. . .
vNc

0

 Nf Q̄ =

Nc
v1

. . .
vNc

0

 Nf

with |vf |2 − |v̄f |2 independent of f .
The effective theory consists of:

• meson fields Mi
j = QαiQ̄

αj ,
• baryon fields Bi1···iNc

= εα1···αNc Qα1i1 · · ·QαNc iNc
,

• antibaryon fields B̄i1···iNc = εα1···αNc
Q̄α1i1 · · · Q̄αNc iNc .

8.3 Key issues in dynamical breaking
We continue this presentation of the main aspects of dynamical symmetry breaking
by discussing the variety of phases in gauge theories. We then describe some of the key
tools necessary for a detailed analysis: renormalisation group, anomalies, decoupling.
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8.3.1 Phases of gauge theories

The simplicity of gauge theories is somewhat misleading. They can represent very
diverse regimes with strikingly different properties (mass gap, confinement, etc.) as
one probes deeper into the infrared, i.e. larger distances. Let us consider two test
charges separated by a large distance r.

If we are in a regime where there are unconfined massless gauge fields, the inter-
action potential V (r) is typically of the form g2(r)/r, where the gauge coupling is
evaluated at the distance r. The gauge theory in this regime is not asymptotically free
and the gauge coupling diverges at some ultraviolet scale Λ: g2(r) ∼ 1/ log (rΛ). Thus
V (r) ∼ 1/ (r log(rΛ)). This is referred to as the free electric phase. But, it is possible
that g2 is constant (free abelian gauge theory or renormalization group fixed point of
a nonabelian gauge theory): this is the Coulomb phase where V (r) ∼ 1/r. The third
possibility is the presence of massless magnetic monopoles. It is now 4π/g2 which is
renormalized and V (r) ∼ log(rΛ)/r. This is known as the free magnetic phase.

There is, however, the further possibility that the gauge symmetry be sponta-
neously broken, in which case the gauge bosons become massive through the Higgs
mechanism. The vacuum condensate provides a constant contribution to the potential,
whereas the Higgs field exchange yields a Yukawa interaction, which is exponentially
decreasing at large distances. Thus V (r) is constant in the Higgs phase.

Finally, in the case of asymptotically free nonabelian gauge theories, the interaction
potential is confining at large distance: V (r) ∼ r.

8.3.2 Renormalization group fixed points

In the renormalization group evolution, fixed points correspond to values of the cou-
pling for which the beta function vanishes. The presence of nontrivial fixed points may
enhance the symmetries of the theory. Indeed, at a fixed point, a nonsupersymmetric
theory has conformal invariance. One may use this to prove general results [279]. For
example, the scaling dimension d of a scalar field satisfies d ≥ 1, with equality only
for a free field.

Supersymmetry may provide useful constraints on possible fixed points. As a first
example, we consider the Wess–Zumino model and show that the nonrenormalization
theorems discussed above forbid the existence of nontrivial fixed points [158]. We have
seen in Section 8.1.2 that the superpotential (8.3) is not renormalized. This leaves us
only with wave function renormalization. Adding the appropriate counterterm to the
scalar field kinetic term in the renormalized Lagrangian yields

Lkin = 1
2Z ∂µφ∂µφ, (8.37)

where Z is the wave function renormalization constant: the bare field is φ0 = Z1/2φ.
Then, expressing the superpotential (8.3) in terms of φ0,

W (φ) = 1
2mZ−1 φ20 +

1
3λZ

−3/2 φ30 (8.38)

gives the renormalized coupling λ in terms of the bare coupling λ0: λ = Z3/2λ0. We
deduce a relation between the beta function β(λ) and the anomalous dimension γ(λ)
of the field φ:

β(λ) = µ
dλ

dµ
= 3

2λµ
d lnZ
dµ

= 3
2λγ(λ). (8.39)
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This relation is obviously a mere consequence of the nonrenormalization theorems. It
forbids any nontrivial fixed point. Indeed if λ∗ �= 0 was such a point (β(λ∗) = 0), it
would follow that γ(λ∗) = 0. Since its anomalous dimension vanishes, the scalar field
has its scaling dimension d coinciding with its canonical dimension: d = 1. Conformal
symmetry implies that the field is free, in contradiction with our starting assumption
that we are in a nontrivial fixed point regime.

For our next example, let us turn to nonabelian gauge theories. We suppose that
the beta function reads

β(g) =
1

16π2
(
−b1g3 + b2g

5 +O(g7)
)

(8.40)

with b1 > 0, b2 > 0 and b1 � b2. There is then a nontrivial infrared fixed point
g∗ ∼

√
b1/b2 in the perturbative regime (see Fig. 8.1).

If we take the example of nonsupersymmetric SU(Nc) with Nf flavors, then b1 =
11
3 Nc− 2

3Nf whereas b2 is of order N2
c in the limit of largeNc. Thus if we choose enough

flavors to almost compensate the one-loop beta function (Nf ∼ 11Nc/2), then b1 is of
order 1 and g∗ is or order 1/Nc at large Nc, hence in the perturbative regime [21].

In the supersymmetric case, we have [298]

β(g) = − g3

16π2
3Nc −Nf +Nfγ(g2)

1−Ncg2/(8π2)
, (8.41)

γ(g) = − g2

8π2
N2
c − 1
Nc

+O(g4),

where γ(g) is the anomalous mass dimension. If again we choose a regime of large Nc

where the one-loop beta coefficient almost cancels, i.e. Nf/Nc = 3−ε with ε� 1, then
we have a zero of the beta function for γ = 1− 3Nc/Nf ∼ −ε/3: we find a nontrivial
infrared fixed point at

g∗2Nc =
8π2

3
ε+O(ε2). (8.42)

The theory is then in a Coulomb phase, which is very different from the confining
phase observed with a smaller number of flavors, e.g. QCD with three flavors.

(g)

gg ∗

β

Fig. 8.1 The beta function of equation (8.40): the arrows denote how g(µ) varies as one
goes into the infrared, i.e. for decreasing µ.
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In the case of supersymmetric theories, the fixed point regime has superconformal
invariance, which has some nontrivial consequences. For example, if we consider the
supermultiplet of currents (Tµν , Jrµ, JRµ ) which consists of the energy–momentum
tensor, the supersymmetric current and the R-symmetry current (see Section 4.2 of
Chapter 4), superconformal invariance implies:

Θµ
µ = 0, γµrsJsµ = 0, ∂µJRµ = 0. (8.43)

Hence, at the fixed point, the R-symmetry is conserved. Moreover scaling dimensions
of superfields satisfy

d ≥ 3
2 |R|, (8.44)

where R is the R-charge, with equality for chiral or antichiral superfields. We will
make use of these results below.

8.3.3 Symmetries and anomalies. The ’t Hooft consistency condition

In a confining regime (such as in QCD), it is important to identify correctly the light
(massless) degrees of freedom. This is not a problem for QCD since we observe them:
they are for example the nucleons. When we consider other theories, identifying them
might be a challenge.

’t Hooft [349] has devised a general consistency condition which has proved to be
a very powerful tool to identify massless fermionic bound states. It rests on a clever
use of the cancellation of anomalies.

Following ’t Hooft, we consider a Yang–Mills theory with gauge symmetry group G,
coupled to chiral fermions in various representations ofG. These massless fermions form
multiplets of a global symmetry groupGF . If we now consider the low energy theory, one
encountersmassless composite bound states. Ifwenowconsider three currents associated
with the global symmetry GF , the corresponding triangle anomalies may be computed
using the elementary fermions of the short-distance description or using the composite
massless bound states. Consistency requires that the two computations coincide.

The proof is rather straightforward. Let us gauge GF by introducing weakly-
coupled “spectator” gauge bosons. In order to cancel the anomalies of the short dis-
tance theory, one must introduce massless “spectator” fermions. At low energy (large
distance), one finds the gauge symmetry GF with the massless bound states and the
“spectator” fermions: anomalies must cancel i.e. the contribution of spectators must
cancel that of bound states. Hence the latter coincides with the anomalies computed
at short distance with the elementary (nonspectator) fermions.

8.3.4 Effective theories and decoupling

Another way of extracting information is based on the decoupling of heavy flavors [8].
If we make one of the fundamental fermions massive, then, in the limit of large mass,
this flavor decouples: in the low energy theory, all bound states containing this fermion
disappear. In the context of supersymmetric theories, this means that if we start with
a theory with Nf +1 massless flavors with superpotential W (Φ1, . . . ,Φn+1) and make
the (n+1)th flavor heavy by adding a mass term mΦ2

n+1, one may solve the F -flatness
condition for Φn+1 and thus eliminate this field from the low energy action, recovering
an effective theory with Nf fundamental flavors.
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We take this opportunity to note that, in order to integrate out a heavy degree of
freedom in a supersymmetric way, one has to work at the level of the superpotential,
and not at the level of the Lagrangian (potential).

8.4 Example of supersymmetric SU(Nc) with Nf flavors.
The rôle of R-symmetries

We use the methods introduced in the preceding sections to study the case of
supersymmetric QCD, or more generally of a SU(Nc) gauge theory with Nf flavors of
quarks and antiquarks. As we will see, the discussion depends on whether the number
of flavors Nc is smaller or larger than the number of colors.

8.4.1 Nf < Nc

If at some large scale M0, the gauge coupling has a perturbative value g, then the
running coupling g(µ) evolves, at one loop, as

1
g2(µ)

=
1
g2

+
b

8π2
ln

µ

M0
(8.45)

where b = 3Nc −Nf is the coefficient of the one-loop beta function (see Chapter 9).
Due to asymptotic freedom, or rather asymptotic slavery (b > 0), it explodes at a
scale

Λ =M0 e
−8π2/(bg2). (8.46)

Above the scale Λ, we have a theory of elementary excitations, the quarks and
antiquarks, whereas, below, the effective theory is a theory of mesons. We wish to
study the symmetries of the original theory in order to identify the dynamical interac-
tions of the meson fields. Under independent global rotations of left and right chirali-
ties, SU(Nf )L × SU(Nf )R, the quark superfields Q transform as (Nf ,1) (since they
include the left-handed quark field), whereas the antiquark superfields Q̄ transform
as (1, N̄f ) (they include the right-handed chirality). Similarly, baryon number con-
servation is associated with a global U(1)B symmetry: Q (resp. Q̄) has charge +1
(resp. −1).

We now identify a R-symmetry which is nonanomalous. We have seen in (8.7)
that the fermionic component of a superfield of R-charge r (the charge of its scalar
component) transforms with charge r − 1. Thus if Q and Q̄ transform with same
R-charge r, then the quark and antiquark fields transform as:

ψ′
Q = ei(r−1)α ψQ

ψ′
Q̄ = ei(r−1)α ψQ̄. (8.47)

Also gaugino fields transform with charge +1 (see equation (C.77) of Appendix C):

λ′ = eiα λ. (8.48)
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One computes the mixed U(1)−SU(Nc)−SU(Nc) triangle anomalies. The goal is to
choose r in order to cancel these mixed anomalies. Writing T a (resp. ta) the generators
of SU(Nc) in the adjoint (resp. fundamental) representation, we have:

Tr T aT b = C2(G) δab C2(G) = Nc, (8.49)

Tr tatb = T (R) δab T (R) =
1
2
. (8.50)

Then the condition of anomaly cancellation reads:

Nc + 1
2 (r − 1)Nf + 1

2 (r − 1)Nf = 0.

Hence
r =

Nf −Nc

Nf
. (8.51)

The meson superfields Mi
j of the effective theory transform under the nonanomalous

U(1)R symmetry as:

Mi
j ≡ Qαi Q̄

αj → e
2i

Nf −Nc

Nf
α
Mi

j . (8.52)

We now use the full symmetries in order to extract the dynamical interactions of
these effective mesonic degrees of freedom. They are described by a superpotential
Wdyn(Mi

j). Since this superpotential cannot have a matrix structure – indeed it must
be invariant under SU(Nf )L×SU(Nf )R – it must depend on det(M). We summarize
in Table 8.2 the transformation properties of the different, fundamental or effective,
fields.

Since Wdyn(M) must have R-charge +2, we conclude that it must be proportional
to (detM)1/(Nf−Nc). Using dimensional analysis ([W ] = 3 and [detM ] = 2Nf ) and
the fact that the only dynamical scale available is the scale Λ, we conclude that the
dynamical effective potential is

Wdyn(M) = CNc,Nf

(
Λ3Nc−Nf

detM

) 1
Nc−Nf

(8.53)

where CNc,Nf
is a dimensionless constant. This result may be tested in several different

regimes and the constant computed to depend on Nc and Nf as CNc,Nf
= (Nc −

Nf )C1/(Nc−Nf ), with C constant (see Exercise 3).

Table 8.2

SU(Nf )L SU(Nf )R U(1)B U(1)R

Q Nf 1 +1 (Nf −Nc)/Nf

Q̄ 1 N̄f −1 (Nf −Nc)/Nf

M Nf N̄f 0 2(Nf −Nc)/Nf

detM 1 1 0 2(Nf −Nc)
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In the special case Nf = Nc − 1, we may then write (8.53) as

Wdyn(M) = C

(
Λb

detM

)
=

CM b
0

detM
e−8π2/g2 , (8.54)

where we have used (8.46). We recognize in the last factor the standard one-instanton
contribution. Indeed, a direct instanton calculation provides the same answer and
allows us to compute the remaining constant: C = 1 in the DR scheme [163].

Finally, taking Nf = 0 yields Wdyn(M) = Λ3. This is obviously related to gaugino
condensation: the dynamical potential being a function of 〈λλ〉 alone, dimensional
analysis imposes that Wdyn(M) ∝ 〈λλ〉. It follows from (8.27) and the remark below
it that Wdyn(M) is proportional to M3

0 exp
(
−8π2/Ncg

2(M0)
)
, i.e. Λ3.

8.4.2 Nf = Nc or Nc + 1

Let us start with Nf = Nc. Then, according to Table 8.2, the quark superfields Q
and Q̄ have vanishing R-charge and it is not possible to use them only to write a
superpotential of R-charge 2. However, there are now enough flavors to be able to
form baryonic states:

B = εα1···αNcQα11 · · ·QαNcNc

B̄ = εα1···αNc
Q̄α11 · · · Q̄αNcNc .

Since we may write in shortened notation B = det[Qαi], where [Qαi] is a Nc × Nf

square matrix and similarly B̄ = det[Q̄αi], we see that the low energy fields are not
independent:

BB̄ = det[QαiQ̄
αj ] = det[Mi

j ]. (8.55)

[335] has, however, argued that this relation is only valid at the classical level. At the
quantum level, he proposes to include a nonperturbative contribution:

det[Mi
j ]−BB̄ = Λ2Nc , (8.56)

where Λ is the dynamical scale.
One may first check that the new term Λ2Nc has the right dimension (2Nc) and

R-charge (0). But the main argument in favour of this addition is that it yields the
right theory when one flavor decouples. Let us see this in detail. As discussed above
in Section 8.3.4, we make the Nf th flavor decouple by introducing the following tree
level term in the superpotential:

Wtree = m QαNf
Q̄αNf . (8.57)
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We expect that the theory at scales much below m is supersymmetric SU(Nc) with
Nc − 1 flavors. Thus the low energy superpotential should simply read, according to
(8.53),

W ∼ Λ̃2Nc+1

detNc−1M
, (8.58)

where Λ̃ is the dynamical scale of this effective theory with Nc − 1 flavors. It can be
easily related to Λ by matching the two theories at scale m: since

0 =
1

g2(m)
+

b

8π2
ln

Λ
m
,

0 =
1

g2(m)
+

b̃

8π2
ln

Λ̃
m
,

where b = 2Nc is the one-loop beta function coefficient of the theory with Nc fla-
vors and b̃ = 2Nc + 1 is the same coefficient for the theory with Nc − 1 flavors,
we have

Λ̃2Nc+1 = mΛ2Nc . (8.59)

To extract the low energy theory, we must place ourselves in the F -flat direction cor-
responding to QαNf

and Q̄αNf . Since for example dWtree/dQ̄
αNf = mQαNf

, this di-
rection corresponds to 〈QαNf

〉 = 〈Q̄αNf 〉 = 0 (but possibly 〈QαNf
Q̄αNf 〉 �= 0). Hence

〈B〉 = 〈B̄〉 = 〈MNf
j〉 = 0 and detM = detNc−1M ×MNf

Nf . Then, the quantum con-
straint (8.56) yields MNf

Nf = Λ2Nc/detNc−1M and we obtain from (8.57) and (8.59)

Wtree = mMNf

Nf =
mΛ2Nc

detNc−1M
=

Λ̃2Nc+1

detNc−1M
, (8.60)

in agreement with (8.58).
Another nontrivial check is provided by the ’t Hooft anomaly condition (see Sec-

tion 8.3.3 above). The complete global symmetry SU(Nf = Nc)L×SU(Nf = Nc)R×
U(1)B ×U(1)R is partially broken by the vacua which satisfy the quantum constraint
(8.56). The ’t Hooft consistency condition is all the more useful that the residual
symmetry is richer. One may for example consider the vacuum 〈B〉 = 〈B̄〉 = 0,
〈Mi

j〉 = Λ2δji . The symmetry is then SU(Nf = Nc)V ×U(1)B×U(1)R. The quantum
numbers of the fundamental fermion fields (quarks ψQ, antiquarks ψQ̄ and gauginos
λ) as well as composite fermion fields (supersymmetric partners of the meson scalars
ψM , baryons ψB and antibaryons ψB̄) are given in Table 8.3.

We note that among the effective degrees of freedom, the mesons form an
adjoint representation of dimension N2

f − 1 of SU(Nf = Nc)V : one component of the
matrix Mi

j is not independent because of the quantum constraint (8.56) which fixes
detM .
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Table 8.3

SU(Nf = Nc)V U(1)B U(1)R

ψQ Nf +1 −1

ψQ̄ Nf −1 −1

λ 1 0 +1

ψM N2
f − 1 0 −1

ψB 1 Nf −1

ψB̄ 1 −Nf −1

One may then compute (see Exercise 4) the following mixed anomalies using either
the fundamental degrees of freedom or the composite degrees of freedom of the low
energy theory. The two results coincide:

SU(Nf )− SU(Nf )− U(1)R −Nf

U(1)B − U(1)B − U(1)R −2N2
f (8.61)

U(1)R − U(1)R − U(1)R −
(
N2
f + 1

)
.

In the case where Nf = Nc + 1, the (anti)baryon fields carry a flavor index:

Bi = εij1···jNc εα1···αNcQα1j1 · · ·QαNc jNc

B̄i = εij1···jNc
εα1···αNc

Q̄α1j1 · · · Q̄αNc jNc .

The following superpotential

W =
1
Λb

(
detM −BiMi

jB̄j

)
(8.62)

allows us to recover the quantum constraint (8.56) when decoupling one flavor: it
corresponds to the F -flatness condition for the decoupled flavor. Again, one may check
in this case the ’t Hooft consistency conditions.

8.4.3 Nf > Nc + 1: nonabelian electric–magnetic duality

When one reaches the value Nf = Nc + 2 and beyond, one encounters a growing
disagreement between the computation of anomalies from the fundamental fields and
from the system of baryons and mesons. This is a sign that one is misidentifying the
effective theory.
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We note, however, that baryon fields, having Ñc = Nf − Nc indices could be
interpreted as bound states of Ñc component fields which we note q:

Bi1···iÑc
≡ εα1···αÑc qα1i1 · · · qαÑc

iÑc
, (8.63)

and similarly for B̄. This has led [336] to propose that supersymmetric QCD with Nc

colors and Nf flavors could be described, for Nf ≥ Nc + 2 as supersymmetric QCD
with Ñc colors, Nf flavors of quark and antiquark supermultiplets and a field Mi

j

(∼ QαiQ̄
αj) which is a gauge singlet coupling to the quarks through

W =
1
µ
q̄αiMi

jqαj . (8.64)

As we will see, the relation between these two theories is somewhat reminiscent of the
electric–magnetic duality discussed in Section 4.5.2 of Chapter 4: the original SU(Nc)
theory provides the electric description whereas the SU(Ñc) theory is the equivalent
magnetic formulation. This is why Seiberg has called this relation the nonabelian
electric–magnetic duality.

One may first check that this is indeed a duality. If we start with the latter theory
and perform another duality transformation, one obtains supersymmetric QCD with
Nf − Ñc = Nc colors, Nf flavors Qαi and Q̄αi, and the singlet fields Mi

j and M̃i
j

(∼ qαiq̄
αj) with superpotential

W =
1
µ
Mi

jM̃j
i +

1
µ̃
Q̄αiM̃i

jQαj . (8.65)

The F -flatness condition for M ensures that M̃ = 0 and thus a vanishing superpoten-
tial. We recover the original theory.

Again, ’t Hooft consistency condition provides a highly nontrivial check on the
conjecture. The quantum numbers of the various superfields are given in Table 8.46.
Using this information, on may for example compute the U(1)R3 anomaly in the
original picture (N2

c − 1 gauginos of charge +1, Nf quarks ψQ and antiquarks ψQ̄
of charge Ñc/Nf − 1 = −Nc/Nf ) or in the dual picture (Ñ2

c − 1 gauginos of charge
+1, Nf quarks ψq and antiquarks ψq̄ of charge −Ñc/Nf , N2

f fermions ψM of charge
1− 2Nc/Nf ). In both cases one finds N2

c − 1− 2N4
c /N

2
f .

Let us complicate somewhat the picture by noting that, for Nf ≥ 3Nc, the original
“electric” theory is no longer asymptotically free: as one goes deeper into the infrared
(i.e. to larger distances), the coupling becomes smaller. The infrared regime is thus one
of weakly coupled massless quarks and gluons: it is a free electric phase. On the other
hand, we have seen in Section 8.3.2 that, for Nf just below 3Nc, appears a nontrivial
infrared fixed point: the coupling tends in the infrared to the finite value g∗ given in
(8.42).

6The U(1) quantum numbers of q and q̄ are obtained by noting that baryons can be made with
Nc quarks Q or, in the dual picture, Ñc quarks q.
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Table 8.4

SU(Nf )L SU(Nf )R U(1)B U(1)R

Q Nf 1 +1 Ñc/Nf

Q̄ 1 N̄f −1 Ñc/Nf

q Nf 1 Nc/Ñc Nc/Nf

q̄ 1 N̄f −Nc/Ñc Nc/Nf

M Nf N̄f 0 2Ñc/Nf

Similarly, on the “magnetic side”, for Nf ≥ 3Ñc, i.e. Nf ≤ 3Nc/2, the theory
becomes free in the infrared: we are in the free magnetic phase. And for Nf just above
3Nc/2, we identify a nontrivial infrared fixed point.

One can show that nontrivial infrared fixed points may only appear for values ofNf

larger than 3Nc/2. Indeed, let us suppose that we have such a fixed point: as we have
seen in Section 8.3.2, the theory has superconformal invariance. The corresponding R
symmetry is nothing but the nonanomalous one that we identified in Table 8.4. Since
the field Mi

j of the magnetic theory has R-charge 2(Nf − Nc)/Nf and is in a chiral
multiplet, we conclude from (8.44) that its scaling dimension is7 d = 3(Nf −Nc)/Nf .
The condition d ≥ 1 imposes Nf ≥ 3Nc/2.

These considerations have led Seiberg to conjecture the existence of a nontrivial
infrared fixed point for 3Nc/2 < Nf < 3Nc. The corresponding theory has super-
conformal invariance. Quarks and gluons are not confined but appear as interacting
massless particles: this is referred to as the nonabelian Coulomb phase.

8.5 N = 2 supersymmetry and the Seiberg–Witten model
We consider in this section a N = 2 supersymmetric SU(2) gauge theory. The funda-
mental fields in the ultraviolet limit are the fields of a N = 2 vector supermultiplet.
We study the infrared regime of this theory.

As we have seen in Section 4.4.1 of Chapter 4, the fundamental fields of this
theory can be arranged into a N = 1 vector supermultiplet (Aµ, λα) and a N = 1
chiral supermultiplet (φ, ψα) in the adjoint representation. The action can then be
written as a sum of the relevant N = 1 actions with adequate normalizations. We will
slightly generalize the case studied in Chapter 4 by allowing a θFµνF̃µν term. We thus
write the full N = 2 action

S =
1
16π

Im
[
τ

∫
d4xd2θWαWα

]
+

1
g2

∫
d4xd4 θΦ†e2V Φ, (8.66)

7Note that, for Nf = 3Nc/2, d = 1. In other words, the field Mi
j is free.
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where Wα and Φ are respectively the gauge and chiral superfields and τ has been
defined in (8.24) as

τ =
θ

2π
+ i

4π
g2

. (8.67)

The normalization of the chiral action is different from the one chosen in equa-
tion (4.28) of Chapter 4 because the normalization of the gauge fields is different (Aµ

has been rescaled by 1/g). This can be checked on the Lagrangian written in terms of
the component fields, which is obtained as in Chapter 4 using (C.81) of Appendix C:

L = Tr
(
− 1
4g2

FµνF
µν − θ

32π2
FµνF̃

µν +
i

g2
λσµDµλ̄+

1
2g2

D2

+
1
g2
Dµφ†Dµφ+

i

g2
ψσµDµψ̄ +

1
g2
F †F

)
(8.68)

− 1
g2

Tr
(
D
[
φ†, φ

]
+
√
2ψ
[
λ, φ†]−√

2ψ̄
[
λ̄, φ

])
,

where the covariant derivatives are defined as:

Dµλ = ∂µλ− i [Aµ, λ] ,

Dµφ = ∂µφ− i [Aµ, φ] ,

Dµψ = ∂µψ − i [Aµ, ψ] , (8.69)

Fµν = ∂µAν − ∂νAµ − i [Aµ, Aν ] . (8.70)

Solving for the auxiliary fields gives the corresponding scalar potential, which is a
D-term:

V (φ) =
1
2g2

Tr
(
[φ†, φ]

)2
. (8.71)

The ground state is obtained for φ and φ† commuting. Since φ ≡ φaσa/2, this means
that one can put it, through a gauge transformation, under the form

〈φ〉 = a
σ3

2
. (8.72)

It is straightforward to compute the spectrum of the theory in such a vacuum. The
fields Aa

µ, λ
a, φa, ψa with a = 1, 2 all have mass a

√
2 whereas the corresponding a = 3

component has vanishing mass: in other words Aµ ≡ A3
µ is the U(1) gauge potential

and, since supersymmetry is not broken by the vacuum (8.72) (Da = F a = 0), it
appears in a full N = 2 massless multiplet, of vanishing U(1) electric charge.

Let us check these results explicitly on the bosonic fields. As usual (see
Appendix Appendix A), the gauge field mass terms arise from the scalar kinetic terms
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once the gauge symmetry is spontaneously broken. Defining A(±)
µ ≡

(
A1
µ ∓ iA2

µ

)
/
√
2,

the mass term simply reads
a2

g2
Aµ(+)A(−)

µ ,

whereas the kinetic terms fix the normalization

− 1
8g2

F (+)
µν F (−)µν +

1
2g2

m2Aµ(+)A(−)
µ .

Hence m = a
√
2.

The scalar fields also form two combinations φ(±) ≡
(
φ1 ∓ iφ2

)
/
√
2 of common

mass m = a
√
2 and respective electric charge Qe = ±1.

We conclude that the massive states can be organized in two multiplets of re-
spective charge ±1 but same mass a

√
2. Each multiplet has eight degrees of freedom.

But since supersymmetry is not broken in the vacuum (8.72), these multiplets must
be N = 2 supermultiplets. This seems in contradiction with what we have seen in
Section 4.3.2 of Chapter 4: massive representations of N supersymmetry theories have
a multiplicity of 22N (2j + 1), which gives for N = 2 a minimum of 16 (for j = 0),
unless there are central charges.

This necessarily means that the theory has a central charge and that the super-
multiplets that we consider are the short supermultiplets discussed in Section 4.3.3 of
Chapter 4. The mass of these supermultiplets is directly related to the central charge
of the theory: m = z/2. Let us recall that the central charge is an operator which com-
mutes with all the generators of the supersymmetry algebra. We deduce an expression
for this central charge:

z = 2
√
2 |aQe| . (8.73)

Let us note that this expression might be incomplete since it has been obtained
in the ultraviolet regime of the theory where the degrees of freedom have only elec-
tric charge. As expected from the considerations of Chapter 4, and as seen below,
we expect that, in other regimes of the theory, appear solitons which carry magnetic
charge.

We now try to identify the effective low energy action. In the regime where we
have easily access to it, it corresponds to a N = 2 supersymmetric U(1) theory, which
we may describe in terms of a N = 1 abelian gauge supermultiplet Wα and a N = 1
chiral supermultiplet Φ of vanishing electric charge. The action reads:

S =
1
16π

Im
[∫

d4xd2θ F ′′(Φ)WαWα +
∫

d4x

∫
d4θ Φ†F ′(Φ)

]
, (8.74)

where the holomorphic function F(Φ) is a N = 2 prepotential which generalizes the
discussion of Section 4.4.1 of Chapter 4: it determines simultaneously the holomorphic
gauge kinetic function f(Φ) ∼ iF ′′(Φ) and the Kähler potential K(Φ,Φ†) = ImF ′′(Φ)
which fixes the normalization of the scalar kinetic term.

We have already noted that the zeroes of the Kähler potential represent singular
points in the scalar field parameter space where the parametrization is inadequate,
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usually because the light degrees of freedom have not been identified properly. Indeed,
because F(Φ) is holomorphic, K(Φ,Φ†) = ImF ′′(Φ) is harmonic and has thus no
minimum in the complex plane. If it is not constant, it should reach zero at some
point.

We will see however that the effective action (8.74) has alternate descriptions which
may thus describe other regimes of the theory. We start by performing what is known
as a duality transformation.

We define

ΦD = F ′(Φ) (8.75)
FD(ΦD) = F(Φ)− ΦΦD, (8.76)

which allows us to make a Legendre transformation since

Φ = −F ′
D(ΦD). (8.77)

We thus have

Im
∫

d4x

∫
d4θ Φ†F ′(Φ) = −Im

∫
d4x

∫
d4θ [F ′

D(ΦD)]
† ΦD

= Im
∫

d4x

∫
d4θ Φ†

DF ′
D(ΦD). (8.78)

Hence the second term of (8.74) allows us to identify FD as the prepotential in the
dual formulation. Before checking this with the first term, let us note that

F ′′
D(ΦD) = − dΦ

dΦD
= − 1

F ′′(Φ)
. (8.79)

Hence the duality transformation yields an alternative description where the parameter
τ introduced in (8.66) transforms as

τD(aD) = − 1
τ(a)

(8.80)

in moduli space where

〈φD〉 = aDσ
3/2 (8.81)

as in (8.72). Moreover (8.67) tells us that this is a duality relation of the weak cou-
pling/strong coupling type, i.e. g2 ↔ 1/g2, that we have encountered when discussing
electric–magnetic duality.

Before dwelling more on this, let us show that the gauge part of the action (8.74) is
invariant under the duality transformation. For this we recall that the gauge superfield
Wα can be defined as a generic chiral superfield which satisfies the constraint (C.68) of
Appendix C: DαWα = D̄α̇W̄

α̇ which we may write Im DαWα = 0. Thus, performing
a functional integration in superspace, we may write∫

DV exp
[

i

16π
Im
∫

d4xd2θF ′′(Φ)WαWα

]
=
∫

DWDVD exp
[

i

16π
Im
(∫

d4xd2θF ′′(Φ)WαWα + 2
∫

d4xd4θVDD
αWα

)]
,
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where VD is a real superfield which plays the rôle of a Lagrange multiplier that ensures
the constraint onWα. We may perform an integration by part in the last term (on Dα)
and use the property of Grassmann variables discussed in Section C.2.2 of Appendix C
(
∫
d2θ̄ ∼ − 1

4D̄
2) to write (8.81)

∫
DWDVD exp

[
i

16π
Im
(∫

d4xd2θF ′′(Φ)WαWα − 2
∫

d4xd2θWα
DWα

)]
, (8.82)

where WDα ≡ − 1
4D̄

2DαVD. Thus the integral over the unconstrained W is a simple
Gaussian integral which is easily performed. One finally obtains:∫

DVD exp
[

i

16π
Im
∫

d4xd2θ

(
− 1
F ′′(Φ)

)
Wα

DWDα

]
, (8.83)

which, according to (8.79) has the expected form.
One may make the duality transformation more transparent by rewriting

(8.74) as

S =
1
16π

Im
∫

d4xd2θ
dΦD

dΦ
WαWα +

1
32πi

∫
d4xd4θ

(
Φ†ΦD − Φ†

DΦ
)
, (8.84)

where we have used (8.75). The duality transformation (8.80) amounts to:(
Φ′
D

Φ′

)
=
(
0 −1
1 0

)(
ΦD

Φ

)
. (8.85)

It can be supplemented by the following transformation (β ∈ Z):(
Φ′
D

Φ′

)
=
(
1 β
0 1

)(
ΦD

Φ

)
. (8.86)

Indeed, under such a transformation, the action (8.84) receives an additional term

β

16π

∫
d4xd2θ WαWα =

β

16π

∫
d4x FµνF̃

µν = 2πβν, (8.87)

where ν is an integer. Hence, S is translated by a multiple of 2π.
The two transformations (8.85) and (8.86) generate the group SL(2,Z) of trans-

formations (
Φ′
D

Φ′

)
=
(
α β
γ δ

)(
ΦD

Φ

)
, αδ − βγ ∈ Z. (8.88)

Now we may return to (8.73) and complete it. We have introduced a duality trans-
formation (8.85) which takes us to the magnetic regime where we expect that (8.73)
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is replaced by z = 2
√
2 |aDQm|, with aD defined as in (8.81). But more generally, we

expect the complete formula to read

z = 2
√
2 |aQe + aDQm| = 2

√
2
∣∣∣∣(QmQe)

(
aD
a

)∣∣∣∣ . (8.89)

Under a SL(2,Z) transformation, the charges transform as

(Q′
mQ

′
e) = (QmQe)

(
α β
γ δ

)
. (8.90)

The duality transformation (8.85) precisely exchanges electric and magnetic charges.
Seiberg andWitten [333,334] were able to determine the behavior of a(u) and aD(u)

where the complex variable u ≡ 1
2Trφ

2 describes the moduli space of the theory. By
studying the way these functions vary as u is taken around a closed contour, they
could identify the singular points which correspond to a nontrivial behavior of these
functions along the closed loop. There are in fact only three such singularities: u→∞
(weak coupling) and u = ±u0 �= 0 (strong coupling). As discussed earlier, one expects
that these singularities are associated with the appearance of massless fields. The
surprise here is that, in the case of the strong coupling singularities ±u0, these fields
are found among the collective excitations, monopoles or dyons, of the underlying
SU(2) supersymmetric theory.

Further reading
• M. E. Peskin, Duality in supersymmetric Yang–Mills theory, Proceedings of the
1996 Theoretical Advanced Institute, Boulder, Colorado.

• A. Bilal, Duality in N = 2 SUSY SU(2) Yang–Mills theory, Proceedings of the “61.
Rencontre entre Physiciens Théoriciens et Mathématiciens”, Strasbourg, France,
December 1995.

Exercises
Exercise 1 We identify the D-flat directions of the MSSM using the correspondence
between such flat directions and gauge invariant polynomials of chiral superfields, as
discussed in Section 8.2.3.
(a) What is the complex dimension dS of the configuration space of the scalar fields in

the MSSM? How manyD-term constraints must be satisfied? Deduce the complex
dimension dD of the configuration space reduced to the D-flat directions.
We now wish to identify a basis B of gauge-invariant monomials with the property
that any gauge-invariant polynomial in the chiral superfields of the MSSM can
be written as a polynomial in elements of B.

(b) First show that a basis B3 of such monomials invariant only under the color SU(3)
gauge symmetry is given by Ec

i , Li,H1,H2; U cU cU c, U cU cDc, U cDcDc,DcDcDc

(more precisely U cα
i U cβ

j U cγ
k εαβγε

ijk with α, β, γ color indices, and so on); QiU
c
j ,

QiD
c
j , Q

bα
i Qcβ

j Qaγ
k εbcεαβγ , Qaα

i Qbβ
j Qcγ

k εαβγε
ijk (the latter is symmetric in the
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SU(2) indices a, b and c). What are their quantum numbers under SU(2) ×
U(1)?

(c) Deduce a basis B32 of monomials invariant under SU(3)× SU(2).

(d) Finally deduce a basis B321 invariant under SU(3)× SU(2)× U(1).

Hints:
(a) dS = 49; 12 D-term constraints and 12 phases which may be gauge fixed leave

dD = 37 complex dimensions.
(b) see [184].
Exercise 2 One considers an extension of the MSSM with two fields singlet under
SU(3)× SU(2)× U(1):
• a right-handed neutrino N c;
• a Froggatt–Nielsen scalar θ (see Section 12.1.4 of Chapter 12).

These fields have respective charges xN and xθ under an abelian family symmetry
U(1)X . Because this symmetry is pseudo-anomalous, its D-term includes a Fayet–
Iliopoulos term ξ:

DX = xθ |θ|2 + xN |N c|2 − ξ2. (8.91)

The scalar potential should be such that 〈θ〉 �= 0 (to generate family hierarchies) and
〈N c〉 = 0.

(a) How should one choose the signs of xθ and xN? What is then a dangerous flat
direction?

(b) Which terms should be present in the superpotential in order to prevent this flat
direction?

Hints:
(a) xθ > 0 and xN < 0; since xθxN < 0, one can form a holomorphic invariant using

both θ and N c: θ and N c could be both nonvanishing;
(b) N cθn would forbid 〈θ〉 �= 0; hence (N c)p θn, p ≥ 2 and n �= 0 mod p (see [41]).

Exercise 3 In the case of SU(Nc) with Nf < Nc flavors (Section 8.4.1), we probe
formula (8.53) for the dynamical superpotential in various regimes of the theory.
1. We first assume that 〈QαNf

〉 = vNf
δαNf

(see end of Section 8.2.3) and study the
effective theory at a scale much smaller than vNf

. At scale vNf
, SU(Nc) is broken

to SU(Nc − 1). Thus the effective theory is SU(Nc − 1) with Nf − 1 flavors.
(a) The SU(Nc − 1) gauge coupling diverges at a scale Λ̃. Neglecting threshold

effects, express Λ̃ in terms of the scale Λ (dynamical scale of the original
SU(Nc) theory), the symmetry breaking scale vNf

, and the numbers Nc and
Nf .

(b) Write Wdyn(M) in (8.53) in the limit 〈QαNf
〉 = vNf

δαNf
to show that

CNc,Nf
= CNc−1,Nf−1.

2. Alternatively, we give a large mass to the pair QNf
, Q̄Nf :

Wtree = m QαNf
Q̄αNf .
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(a) What is the U(1)R charge of m? Deduce that the following combination is
dimensionless and has vanishing U(1)R charge:

X = m MNf

Nf

(
Λ3Nc−Nf

detM

)−1/(Nc−Nf )

.

(b) Write the most general superpotential compatible with the symmetries. By
considering the limit of small mass m and small gauge coupling, deduce that:

Wdyn = CNc,Nf

(
Λ3Nc−Nf

detM

)1/(Nc−Nf )

+ mMNf

Nf . (8.92)

(c) The effective theory at scales much smaller than m is SU(Nc) with Nf − 1
flavors. Express the corresponding dynamical scale Λ̂ in terms of Λ, m, Nc

and Nf .
(d) Starting from (8.53), obtain the effective low energy superpotential and derive

thus a relation between CNc,Nf−1 and CNc,Nf
(depending on Nc and Nf ).

3. Use the preceding results to show that

CNc,Nf
= (Nc −Nf )C1/(Nc−Nf ),

where C is a constant.

Hints:

1. (a) Define b(Nc,Nf ) = 3Nc − Nf . By matching the couplings of the full theory
and of the effective theory at the scale µ = vNf

, one obtains

(
Λ
vNf

)b(Nc,Nf )

=

(
Λ̃
vNf

)b(Nc−1,Nf −1)

,

or
Λ3Nc−Nf

v2Nf

= Λ3(Nc−1)−(Nf−1). (8.93)

Note that the exact scale where the matching occurs is renormalization
scheme dependent. It is precisely vNf

in the DR scheme (see Section E.8
of Appendix E).

(b) Following (8.53),

Wdyn(M) = CNc,Nf

(
Λ3Nc−Nf

v2Nf
detN−1M

) 1
Nc−Nf

.

Use (8.93) to show that this corresponds to the formula for the (Nc−1, Nf−1)
theory.
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2. (a) One obtains the U(1)R charge ofm from the tree level superpotential: 2Nc/Nf .
(b) We have

Wdyn = F (X)
(
Λ3Nc−Nf

detM

)1/(Nc−Nf )

.

Consider the limitm→ 0, Λ→ 0 but X fixed, to obtain F (X) = CNc,Nf
+X.

(c) Λ̂3Nc−(Nf−1) = m Λ3Nc−Nf .
(d) Solve forMNf

Nf by using its equation of motion derived from (8.92): dWdyn/
dMNf

Nf = 0. One obtains:(
CNc,Nf−1

Nc − (Nf − 1)

)Nc−(Nf−1)

=
(

CNc,Nf

Nc −Nf

)Nc−Nf

.

Exercise 4 Check the anomalies (8.61) using first the fundamental degrees of freedom,
then the composite degrees of freedom of the low energy theory.

Hint: Remember that the quarks ψQ and antiquarks ψQ̄ come in Nc colors and
that there are N2

c − 1 gaugino fields. Thus the U(1)3R anomaly computed with these

fields reads 2NfNc(−1) +N2
c − 1 = −

(
N2
f + 1

)
since Nf = Nc. On the other hand,

the N2
f − 1 mesons, the baryon and antibaryon fields contribute −

(
N2
f − 1

)
− 2.
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Supersymmetric grand
unification

With all its successes, the Standard Model does not really achieve complete uni-
fication. Indeed, it trades the two couplings αe.m. and G

F
describing respectively

electromagnetic and weak interactions for the two gauge couplings g and g′. More-
over, even if one disregards gravitational interactions which are so much weaker, one
should at some point take into account the remaining fundamental gauge interac-
tion, namely quantum chromodynamics (QCD), which describes strong interactions.
Indeed, as one goes to higher energies, the QCD running coupling becomes weaker, and
thus closer in magnitude to the electroweak couplings. Earlier work on quark–lepton
unification [302] helped to bridge the gap towards a real unification of all known
gauge interactions and in 1973 Georgi and Glashow proposed the first such grand
unified model based on the gauge group SU(5) [181].

The most spectacular consequence of this unification is the presence of new gauge
interactions which would mediate proton decay: the corresponding gauge bosons have
to be very heavy in order to make the proton almost stable. On the more technical
side, grand unified models provide a clue to one of the most intriguing aspects of the
Standard Model: the cancellation of gauge anomalies. Quarks and leptons are arranged
in larger representations of the grand unified symmetry which are anomaly-free [179]
(as we will see, this is actually only partially true in minimal SU(5) but is completely
realized in the case of SO(10) or larger groups).

We noted above that strong interactions become weaker as one increases the
energy. Georgi, Quinn and Weinberg [183] showed that indeed strong and electroweak
interactions reach the same coupling regime at a mass scale M

U
of order 1015 GeV.

The three couplings g3 for color SU(3), g and g′ have approximately the same value:
they are unified in the single coupling of the grand unified theory and the corre-
sponding symmetry is effective above 1015 GeV. This value proved to be a bless-
ing: it ensured that the gauge bosons which mediated proton decay were superheavy,
which put (at that time) proton decay in a safe range. Also, the fundamental scale
of the grand unified theory was only a few orders of magnitude away from the fun-
damental scale of quantum gravity, i.e. the Planck scale M

P
: this led to possible

hopes of an ultimate unification of all known fundamental unifications; it will be
the subject of the next chapter.

The next step was to go supersymmetric [108] and the supersymmetric version of
the minimal SU(5) model was proposed by Dimopoulos and Georgi [107]. We stress
that the move to supersymmetry was necessary because the fundamental scale of
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grand unified theories was found to be so large. In a nonsupersymmetric theory, the
superheavy scale would destabilize the electroweak scale. This is the hierarchy or
naturalness problem discussed in Chapter 1.

Moreover, the unification of couplings turned out to be in better agreement with
the values measured for the low energy couplings [108]. Some 20 years later, with an
impressive increase in the precision of measurements, this remains true and contributes
significantly to the success of the grand unification scenario. In what follows, after a
presentation of grand unified theories, we will thus start by discussing gauge cou-
pling unification. We will then study some aspects specific to supersymmetric grand
unification.

9.1 An overview of grand unification
9.1.1 The minimal SU(5) model

The minimal simple gauge group that incorporates SU(3) × SU(2) × U(1) is SU(5).
This is why particular attention has been paid to grand unified models based on SU(5).

The gauge fields transform under the adjoint of SU(5) which has the same dimen-
sion 24 as the group. Under SU(3)× SU(2)× U(1) this 24 transforms as follows:

24 = (8,1, 0) + (1,3, 0) + (1,1, 0) + (3,2, 53 ) + (3̄,2,− 5
3 ). (9.1)

We recognize on the right-hand side: the gluon fields (8,1, 0), the triplet Aa
µ of

SU(2) gauge bosons (1,3, 0), the hypercharge gauge boson Bµ (1,1, 0). We note the
remaining gauge fields in (3,2, 5/3) as Xαµ, α = 1, 2, 3 color index, for the t3 = 1/2
component of charge 4/3 and Yαµ for the t3 = −1/2 component of charge 1/3 (their
antiparticles X̄αµ and Ȳαµ are found in (3̄,2,−5/3)). They will play an important rôle
in what follows since their exchange is a source of proton decay.

The Xαµ and Yαµ gauge bosons acquire a mass of the order of the scale of break-
ing of the grand unified theory. This spontaneous breaking is realized minimally by
introducing a set of scalar fields H transforming as a 24 of SU(5): this breaks SU(5)
into SU(3)× SU(2)× U(1).

In order to ensure the electroweak breaking, we must also incorporate the Standard
Model Higgs into this framework. This is done minimally by introducing a set of scalar
fields that transform as the 5 of SU(5). After SU(5) breaking, this splits as

5 = (3,1,−2
3 ) + (1,2, 1). (9.2)

We recognize in (1,2), which we note Φ, the Standard Model SU(2)× U(1) doublet:
〈Φ〉 ∼ 250 GeV. The color triplet (3,1), noted ΦT , must have a vanishing vacuum
expectation value in order not to break color: 〈ΦT 〉 = 0. However a severe problem
arises in this arrangement: the mass scales of the two fields Φ and ΦT must be vastly
different. Indeed, the doublet mass is constrained to be of the order of the electroweak
scale, whereas the triplet must be superheavy because it mediates proton decay. This
difficulty is known as the “doublet–triplet splitting problem”. In some sense, it is
another disguise of the hierarchy problem discussed in Chapter 1.
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The fermions of each generation are minimally grouped into two representations:
(anti)fundamental 5̄ and antisymmetric 10 of SU(5).

The antisymmetric representation is described by a tensor χij (i, j = 1, . . . , 5) such
that χij = −χji. It decomposes under SU(3)× SU(2) as

10 = (1,1) + (3̄,1) + (3,2). (9.3)

In matrix notation, it reads explicitly

[χij ] =


0 uc3 −uc2 −u1 −d1

−uc3 0 uc1 −u2 −d2
uc2 −uc1 0 −u3 −d3
u1 u2 u3 0 −ec
d1 d2 d3 ec 0


L

. (9.4)

We are left with dc1L , d
c
2L , d

c
3L , eL and νeL which have precisely the quantum numbers

of the antifundamental representation 5̄ (cf. (9.2))

5̄ = (3̄,1) + (1,2). (9.5)

We denote it by ηi, i = 1, . . . , 5. More precisely1

ηi = (dc1, d
c
2, d

c
3, e,−νe)L . (9.6)

9.1.2 Simple gauge groups and Lie algebras

The idea behind grand unification is to find a unifying principle encompassing the
different manifestations of gauge symmetry at low energy. The corresponding mathe-
matical notion is the concept of a simple group. By definition a group is simple if it has
no invariant subgroup (H is an invariant subgroup of G if, for every g ∈ G and h ∈ H,
ghg−1 ∈ H). For example, SU(3) and SU(2) are simple groups but SU(3)× SU(2) is
not (since SU(3) or SU(2) are invariant subgroups). From the point of view of gauge
symmetry, a single gauge coupling is associated with a simple group.

The definition follows for algebras since a group element g ∈ G is associated with
an element Tg of the associated algebra G through the exponential function: g = eiTg .
An algebra G is simple if it has no invariant subalgebra, i.e. no subalgebra H such that
[G,H] ⊂ H.

Cartan has classified all simple Lie algebras. Their definitions are summarized in
Table 9.1, together with some of their properties. The rank is defined as the maximal
number of generators that commute with all the others: in a way, this is the maximal
number of quantum numbers that one can fix independently. In the case of grand
unification, taking into account the two generators of color SU(3) (λ3 and λ8), the
weak isospin t3 and the hypercharge, this makes a total of four. Hence one must look
for simple algebras of rank r ≥ 4. This is why we give in Table 9.1 the explicit examples
of r = 4, 5 and 6.

1The charge conjugates ηi ≡ (d1, d2, d3, ec,−νc)R transform as the fundamental representation 5
of SU(5). Note that iσ2

(νc
ec

)
=

( ec

−νc
)

transforms as a doublet (cf. (A.121) of Appendix Appendix A).
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Table 9.1 Cartan classification of simple Lie algebras

Cartan Name Leaves invariant Definition Dimension Rank: 4 5 6
classification the product

U†U = 1

An SU(n+ 1)
n+1∑
i=1

y∗
i xi U = (n+ 1) × (n+ 1) n(n+ 2) SU(5) SU(6) SU(7)

complex matrix

OTO = 1

Bn SO(2n+ 1)
2n+1∑
i=1

yixi O = (2n+ 1) × (2n+ 1) n(2n+ 1) S0(9) SO(11) SO(13)

real matrix

Cn Sp(2n) (y1 · · · y2n)


0 1

−1 0 . . .
0 1

−1 0


 x1

:
:

x2n

 n(2n+ 1) Sp(8) Sp(10) Sp(12)

OTO = 1

Dn SO(2n)
2n∑
i=1

yixi O = (2n) × (2n) n(2n− 1) SO(8) SO(10) SO(12)

real matrix
G2 14
F4 Exceptional 52 F4
E6 Lie 78 E6
E7 algebras 133
E8 248
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How do we discriminate between these simple algebras? One criterion is the pos-
sibility of having complex representations. If there is no such possibility, then a mass
term is always allowed by the grand unified symmetry and this mass is naturally
superheavy: there is no reason why any field would survive at low energy.

Let us see in more detail how this works. If a left chirality fermion ψ
L
transforms

under a representation fL of the gauge group, then ψ
R
= C(ψ̄

L
)T transforms as the

conjugate representation f̄L. A kinetic term (ψ̄
L
/∂ψ

L
or ψ̄

R
/∂ψ

R
) is always allowed by the

gauge symmetry since fL× f̄L ⊃ 1, where 1 is the singlet representation. On the other
hand, a mass term (ψ̄

L
ψ

R
or ψ̄

R
ψ

L
) is only allowed if fL × fL ⊃ 1. If fL is equivalent

to f̄L (meaning the generators in the two representations are related by a unitary
transformation U : T̄ = −UTU†), then the two criteria coincide fL × fL ∼ fL × f̄L ⊃ 1
and a mass term is always allowed. The theory is said to be vectorlike. The Standard
Model avoids this problem: it is a chiral (i.e. not vectorlike) theory and mass terms
arise only through a Yukawa coupling to a nonsinglet scalar and gauge symmetry
breaking.

Requiring not to have a vectorlike theory leaves us only with SU(n) (n > 2),
SO(4n+ 2) and E6.

Another criterion is the absence of gauge anomalies. In order to have a cancella-
tion of the triangle anomalies, one must require that (see the end of Section A.6 of
Appendix Appendix A)

Aabc ∝ Tr T a
L

{
T b
L, T

c
L

}
= 0 (9.7)

where the T a
L are the generators in the representation fL. All representations of SO(n)

satisfy this (n �= 6). But this is not so for the representations of SU(n) (n ≥ 3). When
we restrict the rank to be less than 6, we are left with SO(10) and E6. It must be said
that the case of SU(5) discussed in the previous section is atypical. Fermions fit into
two representations 5̄ and 10 which individually have anomalies A(5̄) and A(10). But

A(5̄) = −A(10). (9.8)

We may finally stress that all the groups that we are considering here are compact.
This implies that all the abelian subgroups that we will obtain, including the U(1)
gauge symmetry of quantum electrodynamics, are compact too. This is an important
property if we want to account for charge quantization: if q is a multiple nq0 of a unit
charge, then the gauge transformation

ψ(x)→ ψ′(x) = e−iqθψ(x) (9.9)

is identical for θ and θ+2π/q0. In other words, the range of the abelian gauge parameter
θ is compact.

9.2 Gauge coupling unification
Gauge coupling unification is one of the key predictions of grand unified theories and,
as we have already emphasized in the introduction to this chapter, it is, to date, its
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greatest success. We will discuss how the precise measurement of the gauge couplings
at low energy allows us to determine the main parameters of the theory and to check
to some degree the concept of unification. Our starting point will thus be the measure
of the low energy couplings. In the MS scheme, they are

α3(MZ
) = 0.1185± 0.002, (9.10)

sin2 θW (M
Z
) = 0.23117± 0.00016, (9.11)

α−1
e.m.(MZ

) = 127.943± 0.027. (9.12)

9.2.1 Renormalization group equations for the gauge couplings of
SU(3)× SU(2)× U(1)

The diagrams which contribute to the renormalization of a gauge coupling gi (i = 1, 2, 3
respectively, for U(1), SU(2) and SU(3)) are given, at one loop, by the diagrams of
Fig. 9.1. These diagrams allow us to compute the beta functions to lowest order:

β(gi) = µ
dgi
dµ

= − bi
16π2

g3i +O(g5). (9.13)

The solution is written in terms of αi = g2i /(4π):

1
αi(µ)

=
1

αi(µ0)
+

bi
2π

ln
µ

µ0
+O

(αi
π

)
. (9.14)

+

+

+

++ +

+

+

+

Fig. 9.1 Diagram contributing at one loop to the renormalization of the gauge coupling.
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Let us consider more closely the computation of bi, in particular concerning the group
factors.
(i) Let (ta)ij be the generators of the gauge group in the representation R of the

fermion fields. The diagram

l

j

b

i

a

k

has a group factor
(
tb
)
ij

Tr
(
tatb

)
. We have

Tr
(
tatb

)
= T (R) δab (9.15)

and T (R) = 1/2 if R is the (anti)fundamental (N or N̄) of SU(N). The group
factor is thus T (R) (ta)ij .

(ii) Let (T a)bc be the generators of the gauge group in the adjoint representation. If
Cabc are the structure constants

[T a, T b] = iCabcT c, (9.16)

then
(T a)bc = −iCabc (9.17)

and
Tr T aT b = C2(G)δab = CacdCbcd. (9.18)

C2(G) is the Casimir of order 2 of the group G: C2(G) = N for SU(N) and C2(G)
vanishes for an abelian group (no gauge vector self-coupling).
The diagram

c
j

b

i

a

d

has a group factor
(
tb
)
ij
CacdCbcd = (ta)ij C2(G).

In total,

b = 11
3 C2(G)− 2

3T (R)
∣∣Weyl fermions − 1

3T (R)
∣∣
complex scalars . (9.19)

A Dirac spinor contributes with its two chirality states (−4/3) T (R) to this beta
function coefficient. A Majorana spinor contributes as a Weyl spinor.
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We find, for the evolution of SU(3) and SU(2) couplings above M
Z
, with NF

families of quarks and leptons,

b3 = 11
3 × 3− 4

3 × 2× 1
2NF = 11− 4

3NF (9.20)

b2 = 11
3 × 2− 2

3 × 4× 1
2NF − 1

3 × 1
2 = 22

3 − 4
3NF − 1

6 (9.21)

where −1/6 is the Higgs contribution.
The case of the abelian hypercharge symmetry U(1)Y requires special attention.

Indeed, we have defined (see Section A.3.2 of Appendix Appendix A) the gauge cou-
pling g′ through the minimal coupling of a field Φ of hypercharge y:

DµΦ =
(
∂µ − i

g′

2
yBµ

)
Φ, (9.22)

where y is related to the field charge and weak isospin through the relation:

q = t3 +
y

2
. (9.23)

In the case of an abelian group, it is not possible to use the commutation relations to
normalize the generators. One may thus replace y by ky if one substitutes g′/k for g′.
To make this explicit, let us write y ≡ 2Ct0:

q = t3 + Ct0, (9.24)
DµΦ =

(
∂µ − ig′Ct0Bµ

)
Φ. (9.25)

One then defines
g1 ≡ C g′, g2 ≡ g. (9.26)

Since e = g sin θ
W
= gg′/

√
g2 + g′2, we have

1
e2

=
1
g2

+
C2

g21
, (9.27)

or
α−1
e.m. = α−1

2 + C2α−1
1 , (9.28)

where αe.m. ≡ e2/(4π).
If there is an underlying theory where U(1)Y is imbedded in a nonabelian group

G, then C is fixed by the normalization imposed by the commutation relations.
One can obtain a simple expression for the normalization constant C under such
an assumption.

Indeed, if t3 and t0 are the generators of a simple nonabelian group G in a represen-
tation R, then, using (9.15), we have Tr

R

(
t3
)2 = Tr

R

(
t0
)2 = T (R) and Tr

R
t3t0 = 0.

Then, from (9.24),

Tr
R
q2 = (1 + C2)Tr

R

(
t3
)2
. (9.29)
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For example, if we assume that all known fermions form one or more full represen-
tations R of the group G, then

Tr
R
q2 = 2(1 + 1 + 1) + 3× 2

(
3× 4

9 + 3× 1
9

)
= 16,

where we have counted the contributions of the leptons e, µ, τ (and their antipar-
ticles) and of the three colors of quarks u, c, t and d, s, b (and their antiparticles).
Also

Tr
R

(
t3
)2

= 1
2 (3 + 3× 3) = 6

to account for all the fermion doublets (T (R) = 1/2): three leptons and three quarks
in three colors. Hence,

C2 = 5
3 . (9.30)

This can be checked directly on the example of SU(5) by identifying the explicit form
of the hypercharge generator t0 (see Exercise 1).

We then obtain the one-loop coefficient for the g1 beta function:

b1 = −2
3

∑
f

(
t0
)2

f −
1
3
(
t0
)2

φ

= − 1
4C2

2
3

∑
f

y2f +
1
3
y2
φ


= −4

3
NF − 1

10
, (9.31)

where −1/10 is the contribution from the Higgs, and we recall that NF is the number
of families.

9.2.2 The nonsupersymmetric case

We suppose the existence of an underlying gauge symmetry described by a simple
gauge group G, which is broken at a superheavy scale M

U
much larger than the

TeV scale. This gauge invariance is only explicit above the scale M
U
. This theory

contains superheavy fields, such as gauge fields, with mass of order M
U
. We note two

important properties of the renormalization group equations for the gauge couplings
αi (i = 1, 2, 3) [183]:

(i) any representation R which contains only superheavy fields decouples from these
equations;

(ii) any representation R which contains only light fields contributes equally to b1, b2
and b3.

For example, the generators of SU(3) t(3)i are generators of G in the representation
R: δijT (3)(R) ≡ Tr t(3)it(3)j = δijT (R). Similarly, the generators of SU(2) t(2)a are
generators of G in R and δabT (2)(R) ≡ Tr t(2)at(2)b = δabT (R). Hence, they contribute
equally to b2 and b3. This is why the coefficients of NF in (9.20), (9.21), and (9.31)
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are identical: a family of quarks and leptons yields complete representations of the
minimal SU(5) group.

Let us thus suppose that the only multiplet which contains both light and super-
heavy fields is the gauge multiplet. Then, using (9.19), we have2 b3 = b1 + 11 and
b2 = b1 + 22/3. Hence

b1 − 3b2 + 2b3 = 0, (9.32)

and we see, using (9.14), that the combination of couplings α−1
1 (µ)−3α−1

2 (µ)+2α−1
3 (µ)

is not renormalized at one loop, i.e. is independent of the renormalization scale µ at
this order.

If we suppose that these couplings are equal at the scale M
U
, as expected since

they unify into the single coupling g corresponding to the simple group G, then

α−1
1 (µ)− 3α−1

2 (µ) + 2α−1
3 (µ) = 0. (9.33)

We then obtain from (9.28) and (9.33)

(1 + 3C2)α−1
2 (µ) = α−1

e.m.(µ) + 2C2α−1
3 (µ),

(1 + 3C2)α−1
1 (µ) = 3α−1

e.m.(µ)− 2α−1
3 (µ), (9.34)

from which we extract the value of sin2 θ
W
= g′2/(g2 + g′2) = α−1

2 /(α−1
2 + C2α−1

1 )

sin2 θ
W
(µ) =

1
1 + 3C2

(
1 + 2C2αe.m.(µ)

α3(µ)

)
. (9.35)

Thus, since C has a computable value for any given theory, (9.35) yields a testable
relation between quantities measurable at µ = M

Z
. We note the value of sin2 θ

W
at

unification: (1 + C2)−1 that is 3/8 for C2 = 5/3.
One can also determine the scale of unification M

U
and the common value α

U
of

the gauge couplings at unification. Indeed, since

5α−1
1 (µ)− 3α−1

2 (µ)− 2α−1
3 (µ) =

44
π
ln
M

U

µ
, (9.36)

we deduce from (9.34)

ln
M

U

M
Z

=
6π

11(1 + 3C2)
[
α−1
e.m.(MZ

)− (1 + C2)α−1
3 (M

Z
)
]
. (9.37)

Let us take the example of NF = 3 and C2 = 5/3 as in SU(5). We have, using (9.10)
and (9.12),

M
U
∼ M

Z
e30 ∼ 1015 GeV, (9.38)

α−1
U

= α−1
3 (M

Z
) +

b3
2π

ln
M

U

M
Z

∼ 42. (9.39)

It is a remarkable coincidence that one obtains such a superheavy scale for grand
unification. Indeed, any lower scale would be catastrophic for the theory since it would

2Note that this agrees with (9.20), (9.21), and (9.31), if we disregard the Higgs contribution.
Indeed, the Higgs representation contains both light and heavy fields (cf. the doublet–triplet splitting
problem discussed above for SU(5)).
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induce rapid proton decay, the gauge bosons Xµ and Y µ being too light. We will see
that even such a large scale puts in jeopardy the minimal SU(5) model.

As for the relation (9.35), it reads

0.23117± 0.00016 = 0.2029± 0.0018. (9.40)

The order of magnitude comes out right and this is a second success of the grand unifi-
cation picture. This seems to indicate that there is at least an approximate unification
of couplings at a scale much larger than we might have expected. Indeed, this does
not leave much room for physics in the range between M

Z
and M

U
: this has become

known as the “grand desert hypothesis”.
There is, however, still a discrepancy of some 10 standard deviations in (9.40)

between the experimental result (first number) and the prediction (second number).
Where could such a disagreement come from?
• Higher orders in the evolution of the renormalization group equations. One may
include the two-loop contribution to the beta functions. This gives an extra con-
tribution δh.o. ∼ 0.0029 on the right-hand side of (9.40).

• Threshold effects. One needs to be more quantitative to account for the decoupling
of heavy particles in the evolution of the gauge couplings. One might also include
possible intermediate thresholds. We call δth the corresponding contribution.

• Mixed representations. It is also possible to have representations which mix light
and superheavy fields. We have seen for example that the representation for the
Higgs doublet falls in such a category in the case of SU(5) since the corresponding
triplet must be superheavy to prevent too rapid proton decay. We call δm such a
contribution.
In total, one must replace (9.35) by

sin2 θ
W
(M

Z
) =

1
1 + 3C2

(
1 + 2C2α

−1
e.m.(MZ

)
α−1
3 (M

Z
)

)
+ δh.o. + δth + δm. (9.41)

The precision measurements in (9.10)–(9.12) provide useful indications on the
magnitude of the last terms. In any case, they show that the minimal SU(5) model
is not compatible with gauge unification. In other words, given their allowed range of
values, the gauge couplings of the minimal SU(5) model do not intersect at a single
point.

9.2.3 The supersymmetric case

We now turn to the supersymmetric case. We will describe supersymmetric models of
grand unification in the next section. For the time being, it suffices to stress that, for
scales µ larger than the supersymmetric thresholds, one must take into account the
supersymmetric partners in the evolution of the running gauge couplings. There is no
need for further computations, since equation (9.19) summarizes it all.

Indeed, for a gauge vector supermultiplet (adjoint representation), gauge bosons
contribute − 11

3 C2(G) whereas (Majorana) gaugino fields contribute 2
3T (Radj.) =

2
3C2(G); this adds up to a total of −3C2(G).

For a chiral supermultiplet in a representation R of the group G (complex) scalars
contribute 1

3T (R) and the Weyl fermion 2
3T (R), adding up to T (R).
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Thus, (9.19) reads, in the supersymmetric case,

b = 3C2(G)− T (R)|chiral supermultiplet (9.42)

which gives for NF families and two Higgs doublets:

b1 = −2NF − 3
5

b2 = 6− 2NF − 1 (9.43)
b3 = 9− 2NF

where −3/5 and −1 are the contributions of the two doublets of Higgs supermultiplets.
If we make the hypothesis that the only multiplets which contain light and super-

heavy fields are the gauge vector supermultiplets, then one recovers in the supersym-
metric case, the relation (9.32) and thus (9.41) follows.

What is new is that in δm, the contribution of mixed light–superheavy repre-
sentations, there are now two complete chiral supermultiplets corresponding to the
representations of H1 and H2, instead of a single Higgs doublet in the nonsupersym-
metric case.

A more complete analysis is performed by assuming that all supersymmetric par-
ticles have a common mass MSUSY . Since squarks and sleptons form complete repre-
sentations of SU(5), they modify in the same way the evolution of all couplings. Also,
the contribution of gauginos does not change the relation (9.33). In the case of Higgs,
in the simplest approach, one is taken with a mass M

Z
whereas the other has mass

MSUSY . Hence the determination of δm may be turned into a determination of MSUSY .
It is a remarkable feature that for a value of MSUSY in the TeV range, a region which
was favored earlier by the naturalness criterion, there is unification of the three gauge
couplings at a scale of order 1016GeV (see Fig. 9.2).
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Fig. 9.2 Unification of gauge couplings in the supersymmetric case for MSUSY ∼ 1TeV.
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9.3 The minimal supersymmetric SU(5) model
Following the procedure developed in Chapter 5 which is to introduce supersymmetric
partners for every field of the nonsupersymmetric model, we introduce:

• a vector supermultiplet in the representation 24 of SU(5);
• NF chiral supermultiplets in the representations 5̄ and 10 to accomodate the NF

families of quarks and leptons; as above, we denote them, respectively, ηi and χij ;
• a chiral supermultiplet Σ in the representation 24 to break the grand unified
symmetry SU(5);

• two chiral supermultiplets, one Hi
1 in the 5̄ and the other H2i in the 5 of SU(5).

Among the scalar components, one recovers the SU(2) doublet H1 in the 5̄ and
the SU(2) doublet H2 in the 5: they have opposite hypercharge.

We note at this stage why we cannot identify the 5̄ of Higgs with one of the 5̄ of the
leptons (and hence consider the Higgs doublet as the supersymmetric partner of one
of the lepton doublets): the fermionic component of the corresponding 3̄ would be the
light dc whereas the prevention of rapid proton decay imposes it to be superheavy (see
Section 9.3.4 below).

The superpotential for the field Σ responsible for SU(5) breaking is

W (Σ) =
M

2
Tr Σ2 +

Λ
3
Tr Σ3. (9.44)

The corresponding scalar potential reads

V =
∑
ij

∣∣∣∣∣∂W∂Σi
j

− 1
5
δji Tr

(
∂W

∂Σ

)∣∣∣∣∣
2

, (9.45)

the unusual form being due to the implementation of the constraint Tr Σ = 0 (see
Exercise 2).

The minimum corresponds to

MΣi
j + Λ

[(
Σ2)i

j
− 1

5
δij Tr Σ

2
]
= 0. (9.46)

There are three solutions:

• unbroken SU(5),
Σi
j = 0. (9.47)

• SU(5) broken into SU(4)× U(1),

Σi
j =

M

3Λ


1
1
1
1
−4

 . (9.48)
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• SU(5) broken into SU(3)× SU(2)× U(1),

Σi
j =

M

Λ


2
2
2
−3

−3

 . (9.49)

9.3.1 Gauge coupling unification

We illustrate the general discussion of supersymmetric gauge coupling unification with
the case of minimal SU(5). For simplicity, we assume that the scalar fields in the 24
have the same mass M

U
as the superheavy vector fields, whereas the superheavy

triplets have a mass denoted by M
T
. We also take all supersymmetric particles and

one of the two Higgs doublet to have a common massMSUSY . Finally, we limit ourselves
to one-loop renormalization group equations, in the DR scheme where thresholds can
be crossed with step functions (see Appendix E).

Using the results of Section 9.2, we may write the renormalization group equations
for the gauge couplings:

α−1
3 (MZ ) = α−1

U
+

1
2π

[(
11 − 4

3
NF

)
ln

MZ

MSUSY

+ (9 − 2NF ) ln
MSUSY

MU

− ln
MT

MU

]
,

α−1
2 (MZ ) = α−1

U
+

1
2π

[(
43
6

− 4
3
NF

)
ln

MZ

MSUSY

+ (5 − 2NF ) ln
MSUSY

MU

]
, (9.50)

α−1
1 (MZ ) = α−1

U
+

1
2π

[(
− 1
10

− 4
3
NF

)
ln

MZ

MSUSY

+
(

−3
5

− 2NF

)
ln
MSUSY

MU

− 2
5
ln

MT

MU

]
.

Then, one may consider the same combinations as in (9.33) and (9.36):

[
3α−1

2 − 2α−1
3 − α−1

1

]
(M

Z
) =

1
2π

[
12
5
ln
M

T

M
Z

− 2 ln
MSUSY

M
Z

]
, (9.51)

[
5α−1

1 − 3α−1
2 − 2α−1

3

]
(M

Z
) =

1
2π

[
36 ln

M
U

M
Z

+ 8 ln
MSUSY

M
Z

]
. (9.52)

Once the supersymmetric threshold MSUSY is chosen, the first relation fixes the triplet
mass, or vice versa. The success of the model is associated with the fact that, for
values of MSUSY compatible with the requirement of naturalness, one finds values of
M

T
of the order of the superheavy scale M

U
, thus preventing rapid proton decay

(we will see however below that this is not sufficient in the case of minimal SU(5)).
Taking for example MSUSY = 1 TeV, and including two-loop renormalization group
equations and one-loop threshold contributions, one obtains [290]:

3.5× 1014 GeV ≤M
T
≤ 3.6× 1015 GeV,

1.7× 1016 GeV ≤M
U
≤ 2.0× 1016 GeV. (9.53)

Finally, we note the value of α
U
at unification: α

U
∼ 1/24 which is somewhat larger

than in the non-supersymmetric case.
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9.3.2 Back to the naturalness and hierarchy problem

Let us come back for a moment to the doublet–triplet splitting problem in the context
of the nonsupersymmetric minimal SU(5) model. The dangerous terms in the scalar
potential are those which mix the 24 of Higgs (Σ) with the 5 (H):

V (Σ, H) = αH†H Tr
(
Σ2)+ βH†Σ2H. (9.54)

These terms are in any case present because they are induced by radiative corrections,
as given in Fig. 9.3. They give a mass of order 〈Σ〉 to the triplet of Higgs within H,
which prevents too fast a proton decay but a severe fine tuning is necessary in order
not to give the same mass to the remaining doublet.

When we turn to the symmetric case, such terms appear already at the tree level
because of the gauge interactions: the D-term of the potential necessarily involves such
terms. Indeed, since the SU(5) D-term is written

Da = g
(
Σ†T aΣ+H†

1t
aH1 +H†

2t
aH2

)
, (9.55)

and the corresponding term (Da)2 in the potential involves the mixed term

g2
(
Σ†T aΣ

) (
H†

i t
aHi

)
, i = 1, 2, (9.56)

which is a specific form of (9.54). We expect this property to be stable under radiative
corrections because of the nonrenormalization theorems characteristic of supersym-
metry. We have seen that the parameters of the superpotential are not renormalized:
radiative corrections are not expected to produce F -terms in the potential, but only
D-terms. Hence their contribution must be of the form (9.56). Indeed, there are new
contributions in the form of the diagrams of Fig. 9.4: adding them to those of Fig. 9.3
yields a total contribution in the form of (9.56).

Now, with the ground state (9.49), one can easily check that 〈Σ†T aΣ〉 = 0: for
generators of SU(3)×SU(2)×U(1) this amounts to Tr T a = 0, whereas the remaining

H

H
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H
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X X X
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Σ

Fig. 9.3
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ones have vanishing terms on the diagonal. Thus, the mixed terms (9.56) do not
generate a mass term for the Hi superfields.

We still have not shown that we can generate a mass term for the triplets of Higgs
while keeping the doublets light. But the preceding discussion shows that, if we succeed
to do that at tree level, then we can count on supersymmetry to ensure that radiative
corrections will follow the same pattern. Let us show how this may be realized in
practice.

If we consider the following superpotential for H1 and H2:

W = H1 (µ+ λΣ)H2, (9.57)

the scalar potential reads

V = |(µ+ λΣ)H2|2 + |H1(µ+ λΣ)|2 + · · · (9.58)

where the minimization of the extra terms is supposed to fix 〈Σ〉 to its value (9.49).
Then,

µ+ λΣ =
(
(µ+ 2λσ)1l3 0

0 (µ− 3λσ)1l2

)
,

with σ = M/Λ. Thus, the mass of the doublet is m2 = µ − 3λσ whereas the mass of
the triplets is M

T
= µ+ 2λσ. If we impose that

µ ∼ 3λσ (9.59)

which is of the order of the grand unification scale, then one may realize a doublet–
triplet splitting. This condition may seem at this point ad hoc but, as long as super-
symmetry is unbroken, it is natural in the technical sense3.

It remains to see which dynamics might be responsible for the condition (9.59).
In the sliding singlet approach [292,372], one introduces a chiral superfield S which

is a gauge singlet and one modifies the superpotential (9.57) as follows:

W = H1 (κS + λΣ)H2. (9.61)

3Using the fact that the terms in the superpotential (9.57) are not renormalized and defining the
wave function renormalization constant Z as Hi = Z1/2HiR , we have

µR = Zµ, λRσR = Zλσ, (9.60)

and thus µR ∼ 3λRσR follows from (9.59).
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The potential is now of the form (9.58) with µ replaced by κS. Its minimization leads
to the conditions (κs − 3λσ)vi = 0, i = 1, 2 where s ≡ 〈S〉. Hence, once SU(2) ×
U(1) is broken (v1 or v2 �= 0), we have automatically κs − 3λσ = 0, which ensures
massless doublets at this order. In other words, the vev of the gauge singlet slides in
order to minimize the ground state energy, and correspondingly the mass of the dou-
blets. Obviously, supersymmetry breaking will modify the analysis: it is thus important
to make sure that the scale of supersymmetry breaking in this sector remains low.

Another line of attack when the scale of supersymmetry breaking is not small is
to introduce a Higgs representation which contains triplets of SU(3) (i.e. (3,1) under
SU(3)×SU(2)) but no doublet of SU(2) (i.e. (1,2) under SU(3)×SU(2)). Coupling
this representation to H1 and H2, one thus gives a mass to the triplets but not to the
doublets. This is the missing doublet mechanism [178,208,284].

An example is provided by the representation 50 of SU(5). Its decomposition under
SU(3)× SU(2) reads:

50 = (8,2) + (6̄,3) + (6,1) + (3̄,2) + (3,1) + (1,1).

One chooses to break SU(5) down to SU(3) × SU(2) × U(1) with a 75 of SU(5)
which we note Σ̃. Then we introduce a 50 (C) and a 50 (C̄); using the fact that
50× 75× 5̄ � 1, we may write the superpotential as

W = ρ CΣ̃H1 + ρ′ C̄Σ̃H2 +M ′C̄C. (9.62)

Then, replacing Σ̃ by its vev of orderM
X
, we may write the part of the superpotential

relevant for the triplets (T ) and antitriplets (T̄ ) as

W = ρM
X
T̄

H1
T

C
+ ρ′M

X
T̄

C̄
T

H2
+M ′T̄

C̄
T

C

= M ′
(
T̄

C̄
+ ρ

M
X

M ′ T̄H1

)(
T

C
+ ρ′MX

M ′ TH2

)
− ρρ′M

2
X

M ′ T̄H1
T

H2
. (9.63)

Hence the triplets acquire a mass of order M2
X
/M ′ whereas the doublets remain

massless.

9.3.3 Fermion masses

Fermion masses arise from Yukawa interactions which are derived directly from the
superpotential. Denoting, as above, by χmn and ηm the superfields in representations
10 and 5̄, the superpotential reads:

W = −λd ηmχmnH
n
1 − λuε

mnpqrχmnχpqH2r, (9.64)
5̄× 10× 5̄ 10× 10× 5

where Hp
1 and H2r are respectively the Higgs superfields in representations 5̄ and 5

of SU(5) and ε is the completely antisymmetric tensor.
One easily deduces the Yukawa couplings and, setting the Higgs fields at their

vacuum expectation values 〈Hm
1 〉 = −v1δm5 and 〈H2m〉 = v2δm5, one obtains

Lm = −λdv1 ΨηmΨχm5 + λuv2 ε
mnpq5Ψχmn

Ψχpq
+ h.c. (9.65)
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with obvious notation. Reading in (9.4) and (9.6) the fermion content of the quark–
lepton representations, we conclude that

md = me = −λdv1, mu = λuv2. (9.66)

If we restore the three families, we conclude that SU(5) grand unification (supersym-
metric or not, as a matter of fact) makes the following extra prediction as compared
to the Standard Model:

mb = mτ , (9.67)
ms = mµ, (9.68)
md = me. (9.69)

These relations are valid at the scale of grand unification and must be renormalized
down to low energies.

[Bottom–tau unification

We first study bottom–tau unification: the renormalization group evolution is compli-
cated by the fact that the top Yukawa coupling is not small. In fact, we have already
solved the evolution equation for the top coupling in Section 6.9.1 of Chapter 6 and
we will follow the same method here. Neglecting all other Yukawa couplings than λt
in the evolution, the renormalization group equations for the bottom and tau Yukawa
couplings read:

µ

λb

dλb
dµ

= − 1
16π2

(
16
3
g23 + 3g22 +

7
15
g21

)
+

λ2t
16π2

(9.70)

µ

λτ

dλτ
dµ

= − 1
16π2

(
3g22 +

9
5
g21

)
. (9.71)

Defining as in Chapter 6, equation (6.104),

Yb ≡
λ2b
16π2

, Yt ≡
λ2t
16π2

, (9.72)

the renormalization equation for λb is written

µ

Yb

dYb
dµ

= − 1
16π2

(
32
3
g23 + 6g22 +

14
15
g21

)
+ 2Yt, (9.73)

where Yt(µ) is given explicitly in equation (6.108) of Chapter 6. In the absence of the
Yt term, this would read:

µ

Yb

dYb
dµ

=
32
9
µ

g3

dg3
dµ

− 6
µ

g2

dg2
dµ

− 14
99

µ

g1

dg1
dµ

(9.74)

which is readily solved as

Yb(µ) =
1
αb

Eb(µ) with Eb(µ) =
(
g3(µ)
g3(µ0)

)32/9(
g2(µ)
g2(µ0)

)−6(
g1(µ)
g1(µ0)

)−14/99

. (9.75)
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The complete equation is solved by turning the constant αb into a function αb(µ)
which satisfies (µ/αb)(dαb/dµ) = −2Yt. Using (6.108) of Chapter 6, this is solved as:

αb(µ) = αb(µ0) [1− 12Yt(µ0)Ft(µ)]
1/6 (9.76)

where Ft(µ) is given in equation (6.109) of the same chapter. Hence

Yb(µ) =
Yb(µ0)Eb(µ)

[1− 12Yt(µ0)Ft(µ)]
1/6 . (9.77)

Choosing µ0 =M
U
, we thus have for the bottom mass

mb(µ) = mb(MU
)
(

g3(µ)
g3(MU

)

)16/9(
g2(µ)
g2(MU

)

)−3

×
(

g1(µ)
g1(MU

)

)−7/99 1

[1− 3λ2t (MU
)Ft(µ)/(4π2)]

1/12 (9.78)

and we would obtain along the same lines from (9.71)

mτ (µ) = mτ (MU
)
(

g2(µ)
g2(MU

)

)−3(
g1(µ)
g1(MU

)

)−3/11

. (9.79)

Using the unification constraint mb(MU
) = mτ (MU

), we deduce

mb(mb) = mτ (mb)
(
g3(mb)
g3(MU

)

)16/9(
g1(mb)
g1(MU

)

)20/99 1

[1− 3λ2t (MU
)Ft(mb))/(4π2)]

1/12 .

(9.80)
In this equation, we can safely approximate mτ (mb) with the physical mass mτ = 1.78
GeV. On the other hand, QCD corrections introduce a significant difference between
the running bottom quark mass and its physical mass which we will denote by Mb.
More precisely, we have at one loop in the DR renormalization scheme4:

Mb = mb(Mb)DR
[
1 +

5g23
12π2

]
. (9.82)

For a physical mass Mb = 4.7 GeV, this gives a current mass mb(Mb)DR = 4.14 GeV
or mb(Mb)MS = 4.24 GeV (we use α3(Mb) = 0.2246).

Putting these numbers in (9.80) shows that the correction due to the top Yukawa
coupling (i.e. the last factor) should reduce the ratios of gauge coupling constants
by an approximate factor of 2. It is thus necessary to take λt(MU

) rather large. As
discussed in Section 6.9.1 of Chapter 6, this drives the low energy evolution of the top
coupling towards the quasi-infrared fixed points.]

4As explained above, we are working in the dimensional reduction scheme DR. The translation to
the standard MS scheme is given by:

mb(µ)DR = mb(µ)MS

[
1 − g23(µ)

3π

]
. (9.81)
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First and second family unification
The same procedure can be applied to the first two families, following (9.68) and
(9.69). The formulas obtained are similar to (9.80) without the correction due to the
top Yukawa coupling. This gives a s quark mass of order 500 MeV, which is difficult
to reconcile with estimates based on chiral symmetry breaking.

This becomes even worse when one realizes that one may get rid of most of the
renormalization effects by considering the ratios:

md

ms
∼ me

mµ
=

1
207

, (9.83)

which is in gross contradiction with the current algebra value ofmd/ms ∼ m2
π/(2m

2
K−

m2
π) = 1/24 [176].
The latter problem has led to reconsider partially the problem of fermion masses

in SU(5). One attitude is to consider that d being a light quark, its mass is sensitive to
nonrenormalizable interactions which arise from the fundamental theory behind the
grand unified model (string, gravity, etc.).

Alternatively, one may envisage enlarging the scalar structure of the model. Fol-
lowing Georgi and Jarlskog [182], one introduces a representation 45, Φm

np, m,n, p =
1, . . . , 5, which satisfies Φm

np = −Φm
pn and Φm

mp = 0, and a 45, Φ
np

m of SU(5). If the
corresponding scalar fields develop a SU(3) × U(1)Y invariant vacuum expectation
value:

〈Φm
n5〉 = a

(
δmn − 4δm4 δ

4
n

)
, (9.84)

and similarly for 〈Φn5
m 〉, this generates mass terms for quarks and leptons through the

Yukawa couplings:

W ′ = λ′
d η

mχnpΦ
np

m + λ′
uε

mnprsχmnχpqΦq
rs. (9.85)

5̄× 10× 45 10× 10× 45

Now, if we restrict our attention to the charged leptons and charge −1/3 quarks of the
first two families, we may use discrete symmetries to keep only the following terms in
the superpotential:

W |family (1) and (2) = −λd
(
η(1)mχ(2)mnH

n
1 + η(2)mχ(1)mnH

n
1

)
+ λ′

d η
(2)mχ(2)npΦ

np

m + h.c.
(9.86)

This gives a matrix structure of the form:(
0 λdv1

λdv1 3λ′
da

)
for (e, µ),(

0 λdv1
λdv1 λ′

da

)
for (d, s),

which naturally yields memµ ∼ mdms whereas mµ +me = 3(ms +md). Hence, since
me � mµ and md � ms

md

ms
∼ 9

me

mµ
(9.87)

which is in much better agreement with estimates.
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Table 9.2 Charges under U(1)Y and U(1)χ of the low energy fields.

Q L U c Dc Ec H1 H2

y 1/3 −1 −4/3 2/3 2 −1 1
yχ −1 3 −1 3 −1 −2 2

(2y − yχ)/5 1/3 −1 −1/3 −1/3 1 0 0

Global symmetries

Before closing this section, let us note that the superpotential which consists of (9.57)
and (9.64) has a global abelian symmetry U(1)χ with charges:

y(Σ)χ = 0, y(H1)
χ = −2, y(H2)

χ = +2, y(η)χ = 3, y(χ)χ = −1. (9.88)

Such a symmetry seems to lead to a disaster since it is broken by 〈H1〉 and 〈H2〉.
However, the combination (2y−yχ)/5 remains unbroken: considering H1 for example,
its doublet component, which acquires a nonzero vev, has y = −1. Using (9.4) and
(9.6), we deduce from the charges (9.88) the value of (2y − yχ)/5 for the low energy
fields (see Table 9.2).

We recognize in the last line of Table 9.2 the quantum number B−L. Hence the
SU(5) model has a global B−L symmetry.

9.3.4 Proton decay

Since quarks and leptons are in the same representations of the unified group, one
expects quark–lepton transitions and thus the possibility of proton decay. Writing the
coupling of fermions (of the first family for the time being) to the SU(5) vector bosons
Xαµ or Yαµ (α = 1, 2, 3 is a color index)

g√
2
Xαµ

[
εαβγ ū

c
Lγγ

µuLβ + d̄Lαγ
µecL − ēLγ

µdcLα
]

+
g√
2
Yαµ

[
εαβγ ū

c
Lγγ

µdLβ − ūLαγ
µecL + ν̄Lγ

µdcLα
]
, (9.89)

one infers that the following decays are allowed5: X → uu, d̄e+, Y → ud, ūe+.
Thus, the exchange of X or Y , as in Fig. 9.5, provides an effective interaction of
dimension 6:

Heff =
g2

2M2
X

εαβγ
(
ūcLγγ

µuLβ
) (
d̄cLαγµeL − ēcLγ

µdLα
)

− g2

2M2
Y

εαβγ
(
ūcLγγ

µdLβ
) (
d̄cLαγµνL − ēcLγ

µuLα
)
, (9.90)

which contributes to the decay channels p→ e+π0 and n→ e+π−.
The corresponding amplitude includes: (i) a renormalization factor due to the

fact that the effective interaction (9.89) must be renormalized from M
Z
down to the

5One may note that, whereas the final states have various values of B and L, they have the same
value B−L = 2/3; thus we can define B−L for X and Y .
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+e u

dd

e

u

YX

+u

u
– –

Fig. 9.5 Example of amplitude contributing to the decay p → e+π0 (left) and n → e+π−

(right).

proton mass, say 1 GeV, (ii) a flavor factor, and (ii) a hadronization factor due to
the fact that the amplitude is measured between hadrons, not between quarks. One
obtains:

A ∼
(
α3(1 GeV)
α3(mc)

)2/9(
α3(mc)
α3(mb)

)6/25(
α3(mb)
α3(MZ

)

)6/23

Fflavorαlat
1

M2
X,Y

, (9.91)

where αlat = 〈0
∣∣εαβγdα

R
uβ

R
uγ

L

∣∣ p〉/N
L
(N

L
is is the wave function of the left-handed

proton) is computed on the lattice. This yields:

τ
(
p→ e+π0

)
∼ 8× 1034 years

(
0.015 GeV3

αlat

)2(
M

X,Y

1016 GeV

)2

. (9.92)

This lies approximately one order of magnitude beyond the present experimental
limit.

However, we have seen in Section 5.4 that, even when assuming R-parity, one
remains with the possibility of dangerous B and L violating processes. In the context
of grand unification, the exchange of color triplet fermions of mass MT generates the
following dimension-5 operators (see Fig. 9.6):

W = − 1
MT

εαβγ

[
1
2
Cijkl
5L QiαQjβQkγLl + Cijkl

5R U c
iαD

c
jβU

c
kγE

c
l

]
, (9.93)

with α, β, γ color indices and i, j, k, l family indices.
This is why such color triplet supermultiplets must have a superheavy mass M

T
.

For example, the effective operator 1
M

T
Q1Q1Q2Li (i = 1, 2, 3) generates the ∆B =

∆L = −1 process ũ
L
d̃
L
→ ν̄is̄ with coupling of order 1/M

T
, whereas 1

M
T
U c
1U

c
3D

c
1E

c
3

generates ud → τ̃
R
t̃
R
. Through gaugino or Higgsino exchange, such as in the

amplitudes given in Fig. 9.7, this induces, respectively, the transitions p → K+ν̄i
(or n→ K0ν̄i) and p→ K+ν̄τ .

The amplitude now reads

A ∼
(
α3(1 GeV)
α3(mc)

)2/9(
α3(mc)
α3(mb)

)6/25(
α3(mb)
α3(MZ

)

)6/23

Fflavor Floopβlat
1
M

T

, (9.94)
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di

~
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XX

H1 H2 H1 H2
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~

Fig. 9.6 Dimension-5 operators generated by color triplet exchange.

− tR
∼

τR
∼

R τ
dL

uL

χ χ

s dR

uν− ν−

s−

uL
∼

dL

∼

Fig. 9.7 Amplitude contributing to the decay p → K+ν̄eµτ or n → K0ν̄eµτ (left) and
p → K+ν̄τ (right) through dimension-5 operators.

where the loop factor is of orderM1/2/m
2
0 forM1/2 � m0 and βlat=〈0

∣∣εαβγdα
L
uβ

L
uγ

L

∣∣ 0〉/
NL. This gives a lower limit on the mass of the Higgs triplet, which reads typically,
for tanβ ≥ 5:

M
T

5.0× 1017 GeV
≥
(

τ(p→ K+ν̄)
5.5× 1032 years

)1/2(
βlat

0.003 GeV3

)(
1 TeV
mf̃

)(
tanβ
10

)2

.

(9.95)
The negative search performed by the Super-Kamiokande Cherenkov detector sets a
limit of 6.7 × 1032 years (90% confidence level) for the partial lifetime of the proton
in the decay channel K+ν̄ [138]. This puts M

T
in a mass range incompatible with the

data on the gauge coupling unification (9.53). It thus rules out the minimal SU(5)
model [203].

This, however, does not exclude a more general SU(5) unification. One may for
example include more superheavy multiplets in order to push gauge unification to
higher scales through threshold corrections. Alternatively, one may try to suppress
the dimension-5 operators, as in the flipped SU(5) model. Finally, one may enlarge
the grand unification symmetry, as we will now see.

9.4 The SO(10) model
The SU(5) model does not truly unify the matter fields since one has to advocate
two representations: 5̄ and 10. It turns out that, if we view SU(5) as a subgroup of
SO(10), these two representations make a single one of SO(10): 16 = 5̄+10+1. The
SU(5) singlet that is required to make the sixteenth field is singlet under SU(3) ×
SU(2) × U(1): it is interpreted as a right-handed neutrino. This provides a natural
explanation for the cancellation of gauge anomalies: as explained in Section 9.1.2,
anomalies naturally cancel for representations of SO(10).
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Since SO(10) has rank 5, we expect to be able to define an extra gauge quantum
number. In fact, the global B − L symmetry of SU(5) is promoted to the status of
a gauge symmetry in the context of SO(10). Noting that Tr(B − L)|5̄ = −3 and
Tr(B − L)|10 = 2, we see that the presence of the right-handed neutrino gives the
missing contribution to ensure a vanishing total contribution for Tr(B−L)|16, as is fit
for a gauge generator. Moreover, SO(10) incorporates a natural left-right symmetry
and thus a spontaneous breaking of parity may be implemented. We will see below
that the two issues are somewhat linked.

All these properties, compared with the mixed success of the SU(5) model make
SO(10) unification a very interesting candidate for a grand unified theory.

9.4.1 Symmetry breaking

Among the subgroups of SO(10), we first focus on SU(5)× U(1). One can easily see
why, on general grounds, SU(n) × U(1) is a subgroup of SO(2n). A transformation
of SU(n) leaves invariant the scalar product of two complex n-component vectors U
and V :

U† · V = Re U · Re V + Im U · Im V + i Re U · Im V − i Im U · Re V. (9.96)

Using instead the real 2n-component fields U = (Re U, Im U) and V = (Re V, Im V ),
one sees that the following scalar product is conserved:

U · V = Re U · Re V + Im U · Im V. (9.97)

Hence, a transformation of SU(n) is also a transformation of SO(2n). Moreover, under
the U(1) transformation U → eiφU , which commutes with SU(n), U = (Re U, Im U)
transforms into (Re U cosφ−Im U sinφ,Re U sinφ+Im U cosφ). This transformation
preserves the scalar product (9.97). One concludes that SU(n) × U(1) is indeed a
subgroup of SO(2n).

It is thus possible that, at some scale larger than the scale obtained earlier for
SU(5) unification, SO(10) is broken into SU(5) × U(1)χ. Quarks, leptons and their
supersymmetric partners form NF chiral supermultiplets in 16 of SO(10), which are
decomposed under SU(5)× U(1)χ as:

16 = 5̄3 + 10−1 + 1−5 (9.98)
(Dc, E,N) (D,U,U c, Ec) (N c)

where we have indicated as subscript for each SU(5) representation its charge yχ under
U(1)χ. Similarly, gauge supermultiplets transform as 45 with the decomposition:

45 = 240 + 10 + 10−4 + 104, (9.99)

where we recognize in the first places the gauge bosons of SU(5) and U(1)χ.
The first breaking (SO(10) to SU(5)) may be realized through a 16 of Higgs,

whereas the second breaking (SU(5) to the Standard Model) uses a 45, since 45
includes the necessary 24 of SU(5). There is no constraint on the scale of U(1)χ
breaking and the corresponding gauge boson Zχ could thus be a low energy field.
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Alternatively, since the group SO(m+ n) contains SO(m)× SO(n), and SO(6) ∼
SU(4) whereas SO(4) ∼ SU(2) × SU(2), we may consider the breaking of SO(10)
to SU(4)× SU(2)× SU(2). One of the SU(2) symmetries may be interpreted as the
SU(2)L symmetry of the Standard Model and the other one is identified as its parity
counterpart SU(2)R. Moreover, SU(4) naturally incorporates the color SU(3) and the
abelian group U(1)B−L associated with the B − L quantum number.

The 16 and 45 of SO(10) transform under SU(4)× SU(2)L × SU(2)R as

16 = (4,2,1) + (4̄,1,2), (9.100)[(
U
D

)
,

(
N
E

)] [(
Dc

U c

)
,

(
Ec

N c

)]
45 = (15,1,1) + (1,3,1) + (1,1,3) + (6,2,2). (9.101)

The breaking of SO(10) is realized through a 54 = (6,2,2)+(20′,1,1)+(1,3,3)+
(1,1,1) and the final breaking to the Standard Model uses 16+ 16 or 126+ 126.

We note the following relation:

q = t3L + t3R +
B − L

2
, (9.102)

which shows that B−L is a generator of SO(10) (since the others are). This provides
also a nice interpretation of hypercharge, which had a somewhat mysterious origin in
the context of the Standard Model:

y = 2t3R +B − L. (9.103)

We note also the relation with the charge yχ introduced earlier:

yχ = 2
[
5t3R + 3(t3L − q)

]
= 2y − 5(B − L). (9.104)

9.4.2 Fermion masses

Since Yukawa couplings are trilinear, one expects to find the Higgs representations (or
rather their conjugates) in the product 16×16 = (10+126)s+120a (the subscripts
refer, respectively, to the symmetric and the antisymmetric combination). The Higgs
are thus searched for in 10, 120, or 126 (the first two are self-conjugates).

[We note that 16 is the spinor representation of SO(10) constructed in Sec-
tion B.2.1 of Appendix B. We thus see that matter supermultiplets are in spinor
representations of SO(10) whereas Higgs and gauge supermultiplets are in tensor rep-
resentations (they appear in even products of spinor representations). This allows us
to define a matter parity: −1 for spinors and +1 for tensors.]

If we take the Higgs in the representation 10H which decomposes under SU(5)×
U(1)χ as 10 = 52 + 5̄−2, the trilinear coupling yields the following decomposition
under SU(5):

(16× 16)× 10→ (5̄× 10)× 5̄H + (10× 10)× 5H + (1× 5̄)× 5H . (9.105)
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The first two terms were already considered in (9.64) and they yield the usual SU(5)
mass relations6. The last term yields a Dirac mass for the neutrino, equal to the
up quark mass at grand unification. In other words, the SU(5) prediction (9.66) is
replaced by

md = me = −λv1, mu = mν = λv2, (9.107)

where λ is the (16× 16)× 10H Yukawa coupling. The last prediction is obviously in
contradiction with the small neutrino mass.

It is precisely in this context that Gell-Mann, Ramond and Slansky [177] and
Yanagida [383] proposed the seesaw mechanism. Indeed, if one breaks SO(10) down to
SU(5) with a 126 (which contains a SU(5) singlet φ(126) of charge yχ = 10 or B−L =
−2, as seen from (9.106)), a Yukawa coupling of the form (16× 16)× 126 includes a
term (1−5 × 1−5)× 110, i.e. λN

N̄ c
L
N

R
φ(126). Gauge symmetry breaking thus yields a

Majorana mass for the right-handed neutrino of the order of the unification scale (i.e.
fixed by the B−L breaking scale 〈φ(126)〉). This combined with the electroweak Dirac
mass yields the mass matrix of the seesaw mechanism, as discussed in Section 1.1.1 of
Chapter 1: mν ∼ m2

u/
(
λ

N
〈φ(126)〉

)
. We note that R-parity remains conserved since

the scalar field φ(126) has even (B − L) value: R = (−1)3(B−L)+2S .
In the case of theories where a 126 representation is not available, one may also use

higher-dimensional operators of the type 16i × 16j × 16H × 16H/MP
(i, j are family

indices). This yields a right-handed neutrino mass proportional to 〈φ(16)〉2/M
P
, where

φ(16) is the singlet of 16H with yχ = 5 i.e. B − L = −1. For 〈φ(16)〉 ∼M
U
, this gives

a right-handed mass of order 1013 GeV. This time R-parity is broken since φ(16) has
odd (B − L).

It may also be necessary to introduce terms of the type 16i×16j×16H×16H/MP

in order to generate CKM mixings.

9.4.3 [Doublet–triplet splitting

The SO(10) theory allows for a nice implementation of the missing doublet mechanism
(see Section 9.3.2) to generate the doublet–triplet splitting. Indeed, the 45 involves
triplets (3,1) but no doublet (1,2) of SU(3)× SU(2) as can be readily checked from
(9.99). In a model with two representations 10H and 10′

H , the coupling 10H · 45 ·
10′

H leaves four doublets in the light spectrum. This is too many and one has to
somewhat complicate the scheme to remain with only two doublets at low energy. A
superpotential that achieves this [17] involves also 16H and 16H :

W = λ10H45H10′
H + λ′16H16H10H +M1010′

H
2 +M1616H16H . (9.108)

6Since both 120 and 126 include a 45 of SU(5), one may invoke the Georgi–Jarlskog mechanism
to modify these. More precisely,

120 = 52 + 5̄−2 + 10−6 + 106 + 452 + 45−2,

126 = 1−10 + 5̄−2 + 10−6 + 156 + 452 + 50−2. (9.106)
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Table 9.3 Quantum numbers of the components (3,3,1), (3̄,1, 3̄), and (1, 3̄,3) of the 27
of E6. The first column gives the decomposition under SU(3)c × SU(2)L × SU(2)R: the
subscripts are respectively yL and yR.

SU(3)c × SU(2)L × SU(2)R t3L t3R qL qR q y yη (yψ, yχ)

(3,21/3,10) U + 1
2 0 + 2

3 0 + 2
3 + 1

3 − 2
3 (+1,−1)

D − 1
2 0 − 1

3 0 − 1
3 + 1

3 − 2
3 (+1,−1)

(3,1−2/3,10) G 0 0 − 1
3 0 − 1

3 − 2
3 + 4

3 (−2,+2)

(3̄,10,2−1/3) Dc 0 + 1
2 0 + 1

3 + 1
3 + 2

3 + 1
3 (+1,+3)

U c 0 − 1
2 0 − 2

3 − 2
3 − 4

3 − 2
3 (+1,−1)

(3̄,10,12/3) Gc 0 0 0 + 1
3 + 1

3 + 2
3 + 1

3 (−2,−2)

(1,2−1/3,21/3) H0
1 + 1

2 − 1
2

1
3 − 1

3 0 −1 + 1
3 (−2,−2)

H−
1 − 1

2 − 1
2 − 2

3 − 1
3 −1 −1 + 1

3 (−2,−2)

H+
2 + 1

2 + 1
2 + 1

3 + 2
3 1 1 + 4

3 (−2,+2)

H0
2 − 1

2 + 1
2 − 2

3 + 2
3 0 1 + 4

3 (−2,+2)

(1,2−1/3,1−2/3) N + 1
2 0 + 1

3 − 1
3 0 −1 + 1

3 (+1,+3)

E − 1
2 0 − 2

3 − 1
3 −1 −1 + 1

3 (+1,+3)

(1,12/3,21/3) Ec 0 + 1
2 + 1

3 + 2
3 1 2 − 2

3 (+1,−1)

N c 0 − 1
2 + 1

3 − 1
3 0 0 − 5

3 (+1,−5)

(1,12/3,1−2/3) N ′c 0 0 + 1
3 − 1

3 0 0 − 5
3 (+4, 0)

In SU(5) notation, this yields the following mass matrix:

(
510H 510′

H
516H

) 0 λ〈45H〉 λ′〈16H〉
−λ〈45H〉 M10 0

0 0 M16

510H
510′

H

516H

 . (9.109)
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As expected, the nonvanishing vacuum expectation value 〈45H〉 in the (B−L) direc-
tion does not contribute to the doublet mass matrix. Introducing D(10)

1 and D
(10)
2 the

two doublets in 10H (with, respectively, yχ = −2 and yχ = 2), D(16) the doublet and
φ(16) the SU(5) singlet in 16H (with, respectively, yχ = 5 and yχ = −3), the doublet
mass matrix simply reads:

(
D

(10)
2 D

(10)
1 D

(16)
)0 0 0

0 0 λ′〈φ(16)〉
0 0 M16


D

(10)
2

D
(10)
1

D(16)

 . (9.110)

Thus the two MSSM doublets are

H2 ≡ D
(10)
2 , H1 ≡ cos γD(10)

1 + sin γD(16), (9.111)

with tan γ = λ′〈φ(16)〉/M16. We have thus 〈D(10)
1 〉 = v1 cos γ and 〈D(16)〉 = v1 sin γ.

We finally note that, in the case where nonrenormalizable terms involving 16H
and 16H are also introduced to generate right-handed Majorana masses and CKM
mixings, one generates new dimension-5 operators of the form

δW ∼ 16i16j16k16l〈16H〉〈16H〉/(M2
P
M16) (9.112)

which may lead to proton decay.]

9.5 E6

If one further enhances the gauge symmetry, the next simple gauge group encountered
is E6, the exceptional gauge group of rank 6 with 78 generators. As we will see in
more details in the next chapter, this group is naturally encountered in the context of
the weakly heterotic string theory.

The fundamental representation of E6 is complex and 27-dimensional. It decom-
poses under the subgroup SO(10)× U(1)ψ as

27 = 161 + 10−2 + 14, (9.113)

where we have indicated as subscript the charge yψ associated with the abelian factor,
noted U(1)ψ. This provides new fields: the 10 transforming under SU(5) as 5 + 5̄
yields new charge −1/3 (weak isosinglet) quarks and new (weak isodoublet) leptons;
the 1 is a new neutral lepton.

The maximal subgroup SU(3)× SU(3)× SU(3) of E6 plays an important rôle in
discussions of superstring models. One identifies the first group with color SU(3)c, the
second one with the SU(3)L group containing the electroweak symmetry SU(2)L and
the third one with its parity counterpart SU(3)R.

For example, we will consider in Section 10.4.3 of Chapter 10 the breaking of E6
with an adjoint 78 representation which decomposes as:

78 = (8,1,1) + (1,8,1) + (1,1,8) + (3,3,3) + (3̄, 3̄, 3̄). (9.114)

Since SU(3)c remains unbroken, one must use (1,8,1) to break SU(3)L. But breaking
SU(3) down to SU(2) with an octet always leaves an extra U(1) factor. We thus write
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the residual symmetry SU(2)L × U(1)YL
. Since the corresponding abelian charge yL

cannot coincide with hypercharge (otherwise right-handed fields would have vanishing
hypercharge), one must invoke a second conserved abelian charge qR, where U(1)QR

is a subgroup of SU(3)R. Hypercharge is a linear combination of yL and qR. The
orthogonal combination, noted yη, is also conserved. The low energy symmetry is
SU(3)c × SU(2)L × U(1)Y × U(1)η.

For definiteness, let us consider the fundamental representation, which decom-
poses as:

27 = (3,3,1) + (3̄,1, 3̄) + (1, 3̄,3). (9.115)

The first representation includes quark superfields, the second antiquarks and the third
leptons. One may decompose SU(3)L,R into SU(2)L,R × U(1)YL,YR

(both SU(2)L,R
groups have been encountered above with SO(10)). Then Table 9.3 gives the full
content of the 27 representation. One has

qL,R = t3L,R +
yL,R
2

, q = qL + qR,

y = yL + 2qR, B − L = yL + yR. (9.116)

The U(1) charges defined above are

yψ = 3(yL − yR), yχ = 4t3R − 3(yL + yR),

yη = qR − 2yL = t3R +
yR
2

− 2yL. (9.117)

Obviously, the U(1)η charge is a combination of the other two: yη = (3yχ − 5yψ)/12.

Exercises
Exercise 1 We determine explicitly in this exercise the form of the generator of SU(5)
associated with hypercharge in the fundamental representation 5 and check that its
normalization agrees with the result obtained in (9.30).

Since t0, the generator of SU(5) which corresponds to hypercharge, must commute
with the generators of SU(3) and SU(2), we write it, in the fundamental representation
of SU(5), as

t0 =


α
α
α
β
β

 . (9.118)

(a) Determine α and β.
(b) Deduce the value of the normalization constant C defined in (9.24).

Hints:
(a) Use Tr t0 = 0 and Tr

(
t0
)2 = 1/2 to find α = ±1/

√
15 and β = ∓

√
3/20.

(b) Apply (9.24) to dR for example (see footnote to (9.6)). One obtains C = ∓
√
5/3

in agreement with (9.30).
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Exercise 2 Show that, in the case where the N × N matrix field Σi
j is traceless, the

potential that derives from the superpotential W (Σ) takes the form:

V (Σ) =
∑
ij

∣∣∣∣∣∂W∂Σi
j

− 1
N
δji Tr

(
∂W

∂Σ

)∣∣∣∣∣
2

.

Hints: Introduce the superpotential Ŵ (Σ) = W (Σ) + ρ TrΣ where ρ is a Lagrange
multiplier. Then

V =
∑
ij

∣∣∣∣∣∂W∂Σi
j

+ ρδji

∣∣∣∣∣
2

+ |TrΣ|2 .

Minimization ensures that TrΣ = 0 and Nρ = −Tr (∂W/∂Σ).

Exercise 3 : Writing the two Higgs supermultiplets 5 and 5 as H1 =
(
T̄H1 , H

−
1 ,−H0

1
)

and H2 =
(
TH2 , H

+
2 , H

0
2
)
(see (9.6) and the corresponding footnote), show that the

µ parameter defined in (9.57) and the Yukawa couplings defined in (9.64) coincide
with the low energy definitions given in Chapter 5, equations (5.1) and (5.2).
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An overview of string theory
and string models

It is widely believed that string theory provides the consistent framework which lies
behind low energy supersymmetry. The purpose of this chapter is to provide a non-
technical overview of the main ideas of string theory1, as well as to present some of
the new concepts which arise and which might lead to new developments in the study
of the low energy theory. Due to lack of space, there is no room for doing justice to the
richness of the complete string picture and we refer the reader to other monographs
for a more thorough treatment e.g. [312]. However, string models are to be considered
very seriously because they provide a complete picture of fundamental physics, includ-
ing gravity. As such, they should be considered in their entirety because they have an
internal coherence. Thus using them for low energy phenomenology (or cosmology)
requires us at least to be aware of the general consistency of the string picture.

10.1 The general string picture
There is a well-known contradiction between the two fundamental theories which
emerged in the first half of the twentieth century: quantum theory and general rel-
ativity. General relativity is a classical theory. When one tries to quantize it, one
encounters divergences which prevent us from making predictions once the quantum
regime of the theory is reached. As was discussed in Chapter 1, the fundamental scale
of quantum gravity is obtained from Newton’s constant G

N
and Planck’s constant �.

This gives the Planck mass2

M
P
≡
√

�c

G
N

= 1.221 1019 GeV/c2, (10.1)

1Some of the more technical developments are placed in boxes in this chapter. The reader interested
in a nontechnical overview may skip them.

2A word of caution: absolute lab measurements of Newton’s constant have only been conducted
on distance scales in the 100 µ to m range (GN = 6.673 × 10−11 m3 kg−1. s−2) whereas Planck’s
constant is by essence a microscopic scale. We are thus making the implicit assumption that gravity at
the microscopic level is still described by the Newton’s constant which is measured macroscopically.
We will return to this in Section 10.2.1.
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or the Planck length

�
P
≡ �c

M
P
c2

=

√
�G

N

c3
= 1.616 10−20 fm. (10.2)

The discussion is somewhat reminiscent of the one that we had for the low energy
Fermi theory of weak interactions (see the introduction to Section A.3 of Appendix Ap-
pendix A). For a process with center of mass energy E, such as the graviton exchange
in Fig. 10.1, the dimensionless coupling is G

N
E2. Hence for energies E ∼ G−1/2

N
∼M

P

(we now set � = c = 1), we expect to be in the regime where quantum gravity effects
are of order one (unitarity bounds lead us to expect new degrees of freedom).

The nonrenormalizability of gravity (or for that matter supergravity) is also linked
to the presence of the dimensionful coupling G

N
: it leads to the appearance in the

computation of quantum processes of divergences which cannot be absorbed in a re-
definition of the theory parameters (as in a renormalizable theory). These divergences
arise from the very short distance behavior of the theory: they correspond to a diver-
gent behavior of the loop integrals in the ultraviolet regime. These integrals should be
cut off at an energy scale of order G−1/2

N
∼ M

P
(a distance scale of order �

P
), where

we expect that a more fundamental theory takes over. But which theory?
The changes to be made are somewhat more drastic than the ones that were

necessary in order to cure the high energy behavior of weak processes in Fermi theory.
They involve either modifying the nature of classical spacetime or the pointlike nature
of fundamental particles. String theory follows the second route and assumes that the
fundamental building blocks are one-dimensional objects called strings (open if they
have end points or closed if they are loops).

The quantization of extended objects is notoriously difficult because such objects
have an infinite number of degrees of freedom. However, in the case of one-dimensional
objects, one may use the very large symmetry group of the theory in order to keep
it under control. To understand where these symmetries come from, it is necessary to
realize that a string covers in its motion a two-dimensional world surface known as the
world-sheet (see Fig. 10.2). One may then describe the string theory as a field theory
on this world-sheet. But two-dimensional surfaces have a large symmetry group which
is the conformal symmetry group (well-known to anybody who has studied electromag-
netic problems on two-dimensional surfaces). One may use this conformal symmetry
to eliminate most of the degrees of freedom. It is thus important for the consistency of
the approach to make sure that this conformal symmetry remains valid at each step.

κκ

Fig. 10.1 Graviton exchange (κ = (8πGN )1/2 = 1/mP )
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0

σ

π

Fig. 10.2 World-sheet for an open string parametrized by the spatial coordinate σ,
0 ≤ σ ≤ π, and time τ .

Let us note immediately that this type of approach does not treat spacetime in
a truly quantum mechanical fashion. The string propagates in a background space-
time which is often taken to be flat and is in any case classical. In other words, the
two-dimensional world-sheet is plunged into a classical background spacetime, often
referred to as the target space. We will see momentarily in which sense one may still
say that string theory is a quantum theory of gravity.

The “fundamental particles” appear as oscillation modes of the string. Indeed,
these string vibrate and each oscillation mode is an eigenstate of the energy, and
thus a particle. Just as we may reconstruct a violin string out of the sequence of its
harmonics, one may reconstruct a fundamental string out of the particles which form
its oscillation modes. In the low energy limit, one can only reach the fundamental
mode. Similarly, our low energy world (much below M

P
) has only access to the zero

modes of the fundamental strings, i.e. the point particles that we observe.
Among these massless particles one encounters a spin 2 resonance which is

interpreted as the graviton field: its long wavelength interactions are found to be in
agreement with general relativity. Thus, string theory is a quantum theory of gravity
(even though spacetime is treated as a classical background).

The closed string

Parametrizing the coordinate along the string as σ, 0 ≤ σ ≤ π, and time along
the world-line of any point of the string as τ (in a way similar to the open
string of Fig. 10.2), the world-sheet is described in D-dimensional spacetime
by the coordinates XM (σ, τ), M = 0, . . . , D− 1. Making use of the symmetries
of the problem, one may write the string equation of motion as a simple wave
equation: [

∂2

∂τ2
− ∂2

∂σ2

]
XM (σ, τ) = 0. (10.3)

The standard solution is a superposition of left-moving and right-moving waves:

XM = XM
L
(τ + σ) +XM

R
(τ − σ). (10.4)
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Introducing the notation z ≡ exp 2i(τ + σ), z̄ ≡ exp 2i(τ − σ) (complex conju-
gates if we perform a Wick rotation τ → iτ), we may write them XM

L
(z) and

XM
R
(z̄). In this language, the conformal transformations are the holomorphic

and antiholomorphic reparametrizations z → f(z) and z̄ → f̄(z̄): they do not
mix left and right movers.
Since the string is closed, we must impose the periodicity conditions

XM (τ, π) = XM (τ, 0), ∂σX
M (τ, π) = ∂σX

M (τ, 0). (10.5)

The general solution of (10.3) is obtained as a Fourier series:

XM (z, z̄) = XM
L
(z) +XM

R
(z̄) (10.6)

XM
L
(z) =

1
2
xM − i

α′

2
pM ln z + i

√
α′

2

∑
n �=0

1
n
αMn z−n

XM
R
(z̄) =

1
2
xM − i

α′

2
pM ln z̄ + i

√
α′

2

∑
n �=0

1
n
α̃Mn z̄−n,

where α′, which has the dimension of a length squared, can be related to the
string tension T = 1/(2πα′).
The usual canonical quantization yields commutation relations reminiscent of
(an infinite set of) harmonic oscillators:[

xM , pN
]
= iδMN ,

[
αMm , α̃Nn

]
= 0,[

αMm , αNn
]
= mδMNδm+n,0,

[
α̃Mm , α̃Nn

]
= mδMNδm+n,0. (10.7)

In order to obtain the mass spectrum, it is easiest to work in a light-cone
formalisma which is free from ghosts although not manifestly covariant. The
mass formula reads

α′M2 = 4

( ∞∑
n=1

: αI−nα
I
n : −a

)
, (10.8)

where a summation over the transverse degrees of freedom I = 1, . . . , D − 2 is
understood and a = (D − 2)/24 is the zero-point energy.b We have the extra
condition N ≡∑∞

n=1 : α
I
−nα

I
n :=

∑∞
n=1 : α̃

I
−nα̃

I
n :≡ Ñ which expresses the fact

that the theory is invariant under translations along the string.
One constructs the Fock space of quantum states just as in the case of the

harmonic oscillator. Introducing a vacuum state |0〉 annihilated by the αIn, we
see from (10.8) that this state corresponds to a tachyon of negative squared

aOne defines X± ≡ (X0 ±XD−1)/
√

2. Residual symmetries allow us to determine X±.
One is left with the quantization of the transverse degrees of freedom XI , I = 1, . . . ,
D − 2.

bWe use the standard notation of normal ordering (: . . . :).
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mass −4a/α′. The next level appears at mass squared 4(1 − a)/α′ and
involves:
• hIJ = 1

2

(
αI−1α̃

J
−1 + αJ−1α̃

I
−1 − 2

D−2δ
IJ
∑

K αK−1α̃
K
−1

)
|0〉, a symmetric

traceless tensor (spin 2) field interpreted as the graviton field (i.e. the
fluctuation of the metric: gIJ = ηIJ + hIJ);

• bIJ = 1
2

(
αI−1α̃

J
−1 − αJ−1α̃

I
−1
)
|0〉, an antisymmetric tensor field;

• eφ =
∑

K αK−1α̃
K
−1|0〉, a scalar field known as the string dilaton. The dilaton

plays a central rôle since it determines the value of the string coupling
λ = 〈eφ〉.

Note that when a = 1, i.e. D = 26, these fields, which fall into representations
of the transverse Lorentz group SO(D − 2), are massless (see below).

Indeed, it is the presence of this spin 2 particle among the massless modes of the
closed string which prompted the interpretation of string theories as a quantum theory
of gravity [329]. Strings take their origin from the dual models of hadron dynamics
which were devised in order to reconcile the property of scattering amplitudes known as
crossing symmetry with the observation of narrow hadronic resonances with increasing
spin. This was realized explicitly in the Veneziano amplitude [354] which turns out to
be a string amplitude. In this context, the open string may be thought as an effective
description of the (chromo-)electric flux tube which joins a quark and an antiquark
when one increases their distance. The energy scale is then typically 1 GeV. It was
the realization that open string theory is only consistent when one includes closed
strings, and that the closed string spectrum incorporates a spin 2 particle that led to
dramatically reconsider the fundamental mass scale M

S
≡ α′−1/2 and to push it all

the way to the Planck scale.
This interpretation of the string leads to one possible way of introducing quan-

tum numbers into string theory. Indeed the open string of hadrodynamics links two
quarks and thus carries color quantum numbers at both ends, labelled respectively by i
and j, i, j = 1, 2, 3 in Fig. 10.3. This string may emit mesons qq̄ which fall into
singlet (1) or octet (8) representations of SU(3)c (the corresponding color factor
being λaij , where λ0 is the identity matrix and λa, a = 1, . . . , 8, are the Gell-Mann
matrices).

qi

qj

Fig. 10.3
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The open string

There are two possible boundary conditions for an open string

Dirichlet XM = constant (10.9)

Neumann
∂XM

∂σ
= 0. (10.10)

For the time being we choose the latter, which reads ∂σX
M (τ, 0) = 0 =

∂σX
M (τ, π) for the string of Fig. 10.2. The solution of (10.3) reads:

XM (z, z̄) = xM − i
α′

2
pM ln(zz̄) + i

√
α′

2

∑
n �=0

1
n
αMn

(
z−n + z̄−n

)
. (10.11)

The spectrum is again obtained in the light-cone formalism from a formula
similar to (10.8): α′M2 = N − a. The lowest-lying states are:
• α′M2 = −a, the ground state |0〉 which is a tachyon;

• α′M2 = (1− a), a set of D− 2 fields αI−1|0〉 which form a vector represen-
tation of the transverse group SO(D − 2).

Again, when a = 1, i.e. D = 26, everything falls into place and the latter field
is a massless vector field, with D − 2 transverse degrees of freedom.
Generalizing the case of the color string, one may add nondynamical degrees
of freedom (called Chan–Paton degrees of freedom) at both ends of the open
string and describe them with indices i and j which run from 1 to N . There
are then N2 states at each mass level (tachyon, vector, etc.). One may go to
a different basis (corresponding to the meson states in the case of the color
string) by using the matrices λaij , a = 0, . . . , N2 − 1:

|k; a〉 =
∑
ij

λaij |k; ij〉. (10.12)

The string diagram of Fig. 10.4 represents the tree-level interaction of two
open strings. The corresponding amplitude then includes a Chan–Paton
factor

N∑
i,j,k,l=1

λaijλ
b
jkλ

c
klλ

d
li = Tr

(
λaλbλcλd

)
. (10.13)

It is invariant under the U(N) transformations: λ → UλU−1. Since the cor-
responding N2 massless vector fields transform as the adjoint representation
of this U(N) symmetry, this global world-sheet symmetry appears as a local
gauge symmetry in spacetime.
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j

i

l

ki

j

a b

l

k

d
c

–

–

–

–

Fig. 10.4

Fig. 10.5

In the string context, the graviton exchange diagram of Fig. 10.1 is now repre-
sented by the string diagram of Fig. 10.5 which may be thought as representing the
corresponding world-sheet (in as much as the Feynman diagram of Fig. 10.1 represents
world-lines): from left to right two closed strings join to make a single closed string
and then disjoin and get apart. Conformal invariance tells us that this surface can
be deformed at will; the corresponding amplitude is not modified, as in the original
Veneziano amplitude. One may then understand qualitatively how string theory avoids
the small distance (ultraviolet) infinities: small distance singularities are smeared out
by the process which turns Feynman diagrams for point particles into surface diagrams
for extended one-dimensional objects. Indeed, string theory proves to be ultraviolet
finite.

The spectrum of string oscillation modes is very rich. One may wonder how one
can ever get oscillation modes which are spacetime fermions. The solution is to intro-
duce internal (two-dimensional) “fermionic”3 degrees of freedom on the world-sheet4.
Depending on their (even or odd) boundary conditions along the strings, the corre-
sponding oscillation modes are spacetime bosons or fermions [317]. It is then possible

3In two dimensions, the distinction between fermions and bosons is artificial. In fact, one can
“bosonize” the fermion fields.

4The theory on the world-sheet then has two-dimensional supersymmetry: this was in fact the first
supersymmetric theory ever written. It prompted searches for a four-dimensional supersymmetric
theory.
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to write a string theory which has spacetime supersymmetry [194], i.e. a superstring
theory.

Superstring theories are favored because they cure one problem of nonsupersym-
metric theories: the requirement of supersymmetry projects out a tachyon field (i.e.
a field of negative mass squared). The tachyon present in nonsupersymmetric string
theories is presumably a sign of an instability of the theory.

Superstrings

Let us introduce D two-dimensional fermions ψM =
(

ψM
−

ψM
+

)
, M = 0, . . . ,

D−1, on the world-sheet (± refers to the two-dimensional chirality ±1). Their
equation of motion imposes that ψM

+ = ψM
+ (τ + σ) and ψM

− = ψM
− (τ − σ).

We consider first the case of a closed string. A fermion ψM
± may have periodic

boundary conditions
ψM

± (τ, σ + π) = ψM
± (τ, σ). (10.14)

It is then said to be in the [317] sector (R) and its expansion involves integer
modes

ψM
± (τ, σ) =

√
2α′

∑
n∈Z

dMn e−2in(τ±σ). (10.15)

A fermion with antiperiodic boundary conditions

ψM
± (τ, σ + π) = −ψM

± (τ, σ) (10.16)

is said to be in the [294] sector (NS) and has a half-integer mode expansion

ψM
± (τ, σ) =

√
2α′

∑
r∈Z+1/2

bMr e−2ir(τ±σ). (10.17)

Standard quantization yields the following anticommutation relations:

{dMm , dNn } = −ηMNδm+n,0, (10.18)

{bMr , bNs } = −ηMNδr+s,0. (10.19)

Since left- and right-moving modes are independent in the closed string,
one may choose for each either boundary conditions. We thus have four pos-
sible sectors for the closed string: (R,R), (R,NS),(NS,R) and (NS,NS). In
the case of an open string, the necessary boundary conditions are simply
ψM
+ (τ, π) = ±ψM

− (τ, π). Then fields in the Ramond sector (+ sign) have the
following expansion:

ψM
± (τ, σ) =

1√
2

√
2α′

∑
n∈Z

dMn e−in(τ±σ). (10.20)
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Fields in the Neveu–Schwarz sector (− sign) have the expansion

ψM
± (τ, σ) =

1√
2

√
2α′

∑
r∈Z+1/2

bMr e−ir(τ±σ). (10.21)

We have, in the open string case, only the sectors (R, R) and (NS, NS). The
mass spectrum of the theory is then given bya

α′M2 = N − a, (10.22)

where (we work in the light-cone formalism and I = 1, . . . , D − 2)

N =
{ ∑∞

n=1 : α
I
−nα

I
n : +

∑∞
n=1 n : d

I
−nd

I
n : (R)∑∞

n=1 : α
I
−nα

I
n : +

∑∞
r=1/2 r : b

I
−rb

I
r : (NS). (10.23)

The zero-point energy is aR = 0 in the R sector and aNS = (D − 2)/16 in the
NS sector.
The Ramond ground state |0〉R is therefore massless. It is not unique: since dI0
does not appear in (10.23), [dI0, α

′M2] = 0 and dI0|0〉 is also a ground state. In
fact, since from (10.18) the dI0 satisfy a Clifford algebra{

dI0, d
J
0
}
= δIJ , (10.24)

they play the rôle of gamma matrices in theD−2 transverse space: their dimen-
sion is 2(D−2)/2 and they act as spinor representations of SO(D − 2). Thus, we
see that the Ramond vacuum is in a (massless) spinor representation, and corre-
spondingly all the quantum states built on it: states in the R sector are spacetime
fermions whereas states in the NS sector are spacetime bosons. The lowest-lying
states are given in Table 10.1 for the case aNS = 1/2 i.e. D = 10 in which the
states fall into consistent representations of the transverse SO(D − 2) group.

There exists a consistent truncation of the spectrum which projects out
the tachyon |0〉NS. This so-called GSO projection, for Gliozzi, Scherk, and
Olive [194], keeps states in the NS sector with an odd two-dimensional fermion
number and states in the R sector with given spacetime chirality (see Table 10.1
where these states are indicated as bold-faced). The spectrum obtained is su-
persymmetric and indeed spacetime supersymmetry is the rationale behind the
consistency of the GSO truncation.

aThe corresponding formula for the closed string is α′M2/4 = N − a = Ñ − ã, with
obvious notation for the left- and right-moving sectors.

We have seen above the importance of ensuring that string theory has conformal
invariance. This puts stringent constraints on the nature of the theory. Indeed, one has
to check that conformal invariance remains valid at the quantum level: the presence of a
conformal anomaly arising through quantum fluctuations would ruin the whole picture.
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Table 10.1 The lowest-lying states of the Ramond–Neveu–Schwarz model for the open
string. GSO projection keeps those states indicated as bold-faced.

M2

↓ chirality + chirality -

1/α′ ··· αI
−1d

I
−1|0〉R+ αI

−1d
I
−1|0〉R−

1/2α′ αI
−1|0〉NS,bI−1/2b

J
−1/2|0〉NS

0 bI
−1/2|0〉NS |0〉R+ |0〉R−

−1/2α′ |0〉NS

Neveu–Schwarz Ramond

It turns out that the conformal anomaly depends on the number D of spacetime
dimensions; more precisely it is proportional to D − 26 in the case of the bosonic
string and to D− 10 in the case of the superstring. Thus the dimension is fixed to be
26 for the bosonic string and 10 for the superstring. All but four of these dimensions
should be compact5.

In fact, conformal invariance can be even more constraining. If we choose to work
in a nontrivial background (i.e. a background with a nontrivial metric, etc.), then
requiring conformal invariance induces some constraints on the background. More
precisely, the violations of conformal invariance appear through the renormalization
group beta functions, which depend on the background field values. Setting these beta
functions to zero to restore conformal invariance imposes differential equations on the
background fields which are nothing else than the equations of general relativity (or
supergravity in the superstring case) with the addition of the dilaton field eφ and the
antisymmetric tensor field bIJ present in the gravity supermultiplet [65].

10.2 Compactification
There seems to be an interesting connection between the efforts to unify fundamen-
tal interactions and the need for extra spatial dimensions. We have just seen that a
quantum theory of strings seems to call for such dimensions. Already in the 1920s,
T. Kaluza and O. Klein proposed to consider an extra dimension to unify the theories
of electromagnetism and gravitation. This work is the basis of theories of compactifi-
cation on a torus and we will start reviewing it before moving to the specific case of
string theory. We will then consider a variant of compactification, known as orbifold
compactification, which allows us to break more symmetries of the underlying theory.

5As we will see later, there is little difference between a compact spatial dimension and an
internal dimension: in the latter case, the quantized momentum is interpreted as a quantum number.
Hence, these string theories may be interpreted as four-dimensional theories with 22 (or 10) internal
dimensions (i.e. quantum numbers).
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10.2.1 Kaluza–Klein compactification

T. [245] and O. [251] proposed to unify geometrically electromagnetism with gravita-
tion by introducing the electromagnetic field as a component of the metric of a five-
dimensional spacetime. To be slightly more general, let us consider a theory of gravity
in (D ≡ d+1)-dimensional spacetime, described by the coordinates xM ,M = 0, . . . , d.
The metric is gMN .

We single out the spatial coordinate xd ≡ y and assume that the corresponding
dimension is compact of size L = 2πR; the other d dimensions corresponding to xµ,
µ = 0, . . . , d − 1 are noncompact. From the point of view of d dimensions, gµν is
a symmetric tensor interpreted as the metric, gµd is a vector field and gdd a scalar
field. Correspondingly, we may write the D-dimensional metric as the following ansatz
matrix:

gMN ≡
(

gµν(x) Aµ(x)
Aν(x) −e2σ(x)

)
, (10.25)

where we have restricted the spacetime dependence of the components to the noncom-
pact dimensions (xµ).

It turns out that part of the reparametrization invariance of the original
D-dimensional theory may be interpreted as a gauge invariance associated with the
vector field Aµ(x) ∼ gµd. Thus the D-dimensional gravitational theory provides a
geometric unification of d-dimensional gravity and of an abelian gauge symmetry such
as the one present in the theory of electrodynamics.

As for the component gdd of the metric, it measures distances in the compact
dimension in (higher-dimensional) Planck units. Thus the d-dimensional field eσ(x), or
more precisely its vacuum value, provides a measure of the size of the compact dimen-
sion6. It is often called a breathing mode. From this point of view, its x-dependence
reflects the fluctuations of the compact dimension (along y) in directions transverse
to it (measured by xµ). As we will see later, the purely gravitational D-dimensional
action yields a vanishing potential for this scalar field: it corresponds to a flat direction
of the scalar potential. In a supersymmetric set-up this real field becomes part of a
complex scalar field associated with this flat direction. Such a complex field is called a
modulus and traditionally written as T in four dimensions. Of course, compactification
requires the size of the compact dimension to be determined: some extra dynamics
must be included in order to lift the degeneracy associated with the flat direction and
to determine the vacuum expectation value of the modulus field.

One may expect that, in a D-dimensional spacetime, the gravitational force
between two masses m1 and m2 decreases as r−(D−2):

F (r) ∼ G(D)
m1m2

rD−2 . (10.26)

6To be accurate, in our notation, the radius of the compact dimension is R〈eσ〉. One may alter-
natively set R = 1 in Planck units, in which case the metric coefficient fixes the radius; or normalize
〈eσ〉 to 1: R is then the radius.
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Indeed, a sphere in (D−1)-dimensional space (D-dimensional spacetime) has a surface
which varies as its radius to the power D − 2; we thus expect any action at distance
from a point source to behave as r−(D−2). This should in principle be enough to discard
the possibility of extra dimensions.

However, care must be taken in the case of compact dimensions when the dis-
tance r is large compared with the size L of the compact dimension(s). Let us see
in more detail what happens. We model such a Universe by the infinite torus of
Fig. 10.6a: the infinite dimension represents any of the d noncompact dimensions,
whereas the compact dimension is visualized by the circle of length L = 2πR. As
usual, this torus may be represented as in Fig. 10.6b by a series of strips with proper
identification:

y ≡ y + 2πR. (10.27)

We consider two masses m1 and m2 separated by a distance r on this torus. A gravi-
tational field line may join them directly, or may make one (or more) turns round the
torus. Hence the mass m1 feels the effect of mass m2 and of all its images (Fig. 10.6b).
If r is much larger than L then these images form a continuous line. In the case of D−d
such compact dimensions, one obtains a (D − d)-dimensional continuum of masses.
Then the gravitational force exerted by this continuum on m1 reads

F (r) ∼ G(D)

m1m2

rd−2 LD−d
(10.28)

which has the standard form for d noncompact dimensions. For example, if d = 4,
Newton’s constant GN is obtained from the D-dimensional gravitational constant
G(D):

G
N
=

G(D)

LD−4 . (10.29)

Of course, when distances become of the order or smaller than L, one recovers the law
of higher-dimensional gravity in r−(D−2). Thus one still expects deviations from the
standard law at small enough distances.

(b)

R

1

2

2

2

2

Fifth dim
ension

Three spatial dimensions

1 2

(a)

Fig. 10.6 (a) Infinite torus; (b) same torus represented by strips with opposite sides
identified.
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Note that we can introduce a fundamental Planck scale M(D) for the higher-
dimensional theory, as in (10.1),

G(D) ≡
(�c)D−3

c2(D−4)MD−2
(D)

. (10.30)

Then (10.29) reads

M2
P
=MD−2

(D)

(
Lc

�

)D−4

. (10.31)

Thus, the larger the compact dimension is, the smaller the fundamental scale.

Effective actions

Let us consider the action of gravity in D ≡ d+1 dimensions (see Appendix D,
Section D.1):

S = − 1
16πG(D)

∫
dDx

√
|g| R(D) (10.32)

where R(D) is the curvature scalar associated with the D-dimensional metric.
Following (10.25), we write the D-dimensional line element as (y ≡ xd):

ds2 = gMNdx
MdxN = g(d)µν dx

µdxν − e2σ(x) (dy +Aµdx
µ)2 . (10.33)

Reparametrizations of the form y → y + α(xµ) lead to gauge transformations
for the field Aµ(x): Aµ(x)→ Aµ(x)− ∂µα.

With the ansatz (10.33), we have (see (10.103))

R(D) = R(d) − 2Dµ (∂µσ)− 2∂µσ∂µσ + 1
4e

2σFµνFµν , (10.34)

where R(d) is the curvature scalar built out of the metric g(d)µν . Hence, introduc-
ing

1
G(d)

≡ 1
G(D)

∫ L

0
dy =

L

G(D)

, (10.35)

as in (10.29), we obtain after integrating by parts

Seff = − 1
16πG(d)

∫
ddx

√
|g(d)| eσ

[
R(d) +

1
4
e2σFµνFµν

]
. (10.36)

The absence of a kinetic term for the modulus field σ(x) in (10.36) does not
mean that it is nondynamical: the kinetic term is present in the Einstein framea.
The presence of the modulus flat direction may be traced back to the dilatation
symmetry y → e−λy, Aµ(x) → e−λAµ(x), σ(x) → σ(x) + λ, which leaves the
line element (10.33) invariant.

ai.e. in a frame with a standard Einstein term
√
gR, obtained by a Weyl rescaling of the

metric: g(d)µν = e2σ/(2−d)gµν .
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We may also introduce matter fields in these higher-dimensional spacetimes. Since
particles may be associated with waves, and extra compact dimensions with a multi-
dimensional box, we expect standing waves in this higher-dimensional box. These are
called Kaluza–Klein modes; they should be observed in our four-dimensional world as
particles.

Let us illustrate this on the case of a particle of zero spin and mass m0 in D = 5
dimensions (we use the same notation as above with d = 4). It is described by a scalar
field Φ(xM ) with equation of motion:

∂M∂MΦ = ∂µ∂µΦ+ ∂y∂yΦ = −m2
0Φ. (10.37)

We may decompose Φ(xµ, y) on the basis of plane waves in the compact dimension
eip5y: because of the identification (10.27), we have p5 = n/R, n ∈ Z. Thus

Φ(xµ, y) =
1

2πR

∑
n∈Z

φn(xµ)einy/R (10.38)

and the equation of motion yields (we set here g55 = 1 for simplicity)

∂µ∂µφn = −
(
m2

0 +
n2

R2

)
φn. (10.39)

Thus the five-dimensional field is seen as a tower of four-dimensional particles with a
spectrum characteristic of extra dimensions: particles with the same quantum numbers
at regular mass-squared intervals. The spectrum has a typical mass scale M

C
which

is given by the inverse of the radius of the compact manifold

M
C
∼ R−1. (10.40)

Clearly a multidimensional manifold may have several “radii” and thus several T
moduli associated.

The fact that no sign of extra dimensions has been found experimentally indicates
thatM

C
is large. In this context, it is thus important to determine the effective theory

at energies much smaller than M
C
. Since all massive fields (m ∼ M

C
) decouple, the

task is to find out which are the “massless” fields (m0 = 0 or m0 � M
C
) which

are present at low energy. In the simple example that we have chosen, a massless
(m0 = 0) scalar field in D dimensions yields one and only one massless scalar field in
four dimensions.7

10.2.2 String toroidal compactification

When we go from a point particle to a string, the physics of compactification becomes
incomparably richer. We still find that momenta in the compact dimensions are quan-
tized in units of 1/R: this yields Kaluza–Klein modes with energies proportional to
1/R. But compact dimensions allow the possibility of the string winding around them

7The higher-dimensional graviton also has Kaluza–Klein modes. The ansatz that we have chosen
for the metric in (10.25) corresponds to neglecting the massive modes – they have a nontrivial y
dependence – and restricting our attention to the zero modes.
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(think of the string wrapped N times around a circle of radius R). The stable config-
uration thus obtained is called a winding mode. It has an energy proportional to R,
since it would vanish for zero radius, and to the number m of wrappings: E ∼ mR.

Hence, when R is large, the Kaluza–Klein modes are light whereas the winding
modes are heavy. An effective low energy theory would include only the Kaluza–Klein
states. It is the contrary when R is small8.

It turns out that the two corresponding theories are equivalent. This can be exp-
ressed as a symmetry of the theory associated with the transformation of the modulus
field T ↔ 1/T . Under the large/small compactification radius duality, a theory A with
a large compact dimension is equivalent to a theory B with a small compact dimension.
Such a duality is known as T -duality. It plays a central rôle in identifying the web of
duality relations that exist between the different string theories (see next section).

Kaluza–Klein modes, winding modes, and T -duality

Let us consider a closed string on a circle C of radius R. As is well-known, we
can describe this circle as a line with a periodic identification such as (10.27).
Since a string may wind several times around the circle, we should allow for a
new type of boundary condition

X(σ + π, τ) = X(σ, τ) + 2πmR, (10.41)

and we have to change slightly the normal mode expansion (10.6):

X
L
(z) =x

L
− i

α′

2

(
p+m

R

α′

)
ln z + i

√
α′

2

∑
l �=0

1
l
αlz

−l,

XR(z̄) =xR− i
α′

2

(
p−m

R

α′

)
ln z̄ + i

√
α′

2

∑
l �=0

1
l
α̃lz̄

−l. (10.42)

Comparison with (10.6) reveals two new features: (i) the term linear in σ
allows for a nonzero winding number m; (ii) the fact that the coordinate X
obeys periodic boundary conditions – or equivalently, space is compact in this
direction – imposes a quantization of the momentum p = n/R.
Then the string mass spectrum (10.8) is modified toa

α′M2 = 2(N + Ñ)− 4 + n2
α′

R2 +m2R
2

α′ , (10.43)

with the condition
N = Ñ + nm. (10.44)

aWe have restored the 25 noncompact dimensions (XM ,M = 0, . . . , 24) besides the compact

dimension denoted X25 ≡ X here. Then N =
∑∞

l=1

(
αM−lαlM + α−lαl

)
, and similarly for Ñ .

8One must obviously specify with respect to which scale R should be considered as large or small.
If MS ≡ α′−1/2 is the fundamental string scale, then �S ≡ �c/(MS c

2) is the reference length scale.
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Notice that the term n2/R2 in (10.43) corresponds to the Kaluza–Klein modes
as expected. The new term m2R2 comes from the winding sectors.
The mass spectrum above is invariant under the following transformation:b

R ↔ α′/R, m↔ n. (10.46)
This transformation thus exchanges large and small radius compact manifolds.
In the process, Kaluza–Klein modes are exchanged with winding modes: the
light modes of one theory become the heavy modes of the other theory.

We note that the transformation (10.46) does not change the term in ln z of
X

L
(z) whereas it reverses the sign of the term in ln z̄ of XR(z̄) in (10.42). We

may add the transformation α̃l ↔ −α̃l (note that Ñ and thus the spectrum
formula (10.43) is invariant) to write the T -duality transformation simply as

X(z, z̄) = X
L
(z) +XR(z̄)→ X ′(z, z̄) = X

L
(z)−XR(z̄). (10.47)

Since we have the mass spectrum (10.43), we will take the opportunity to show
that, for some special values of the compactification radius R, the massless
spectrum is much richer.

First for each sector labelled by m and n, we have a ground state |m,n〉
which is annihilated by αMk , α̃Mk , αk, α̃k (k ≥ 0). The ground state of the theory
is the same as in the uncompactified theory |m = 0, n = 0〉 and corresponds to
a tachyon:

α′M2|m = 0, n = 0〉 = −4. (10.48)

At the M2 = 0 level, we have as usual

α̃M−1 α−1|m = 0, n = 0〉, αM−1 α̃−1|m = 0, n = 0〉 (10.49)

but if we choose the radius as R = (α′)1/2 we also find

αM−1|m = 1, n = +1〉, α̃M−1|m = 1, n = −1〉
αM−1|m = −1, n = −1〉, α̃M−1|m = −1, n = +1〉. (10.50)

The states (10.49) and (10.50) form two triplets of massless vector bosons
(notice the vector index M). These are the gauge fields of SU(2) × SU(2)
(T3 = m = n for the first set and T3 = m = −n for the second) which can
be checked to be a symmetry of the complete spectrum. Hence for some values
of the compactification radius, one finds an enhanced gauge symmetry for the
compactified string theory. This is how the E8 × E8 gauge symmetry of the
heterotic string arises.

bThe string coupling λ = 〈eφ〉 – hence the dilaton φ – is also modified. Indeed the tree
level scattering amplitude for gravitons is of order 1/λ2. In the compactified theory, this
amplitude is of order R/λ2 (cf. (10.35)). It should be invariant (gravitons have m = n = 0).
Hence λ′ = λα′1/2/R and the dilaton transforms as

eφ
′

=
α′1/2

R
eφ. (10.45)
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Fig. 10.7 Schematic set-up of the Aharonov–Bohm experiment.

10.2.3 Wilson lines
It is a well-known fact that nontrivial topologies may lead to interesting effects in
gauge theories. One of the most striking ones is the Aharonov–Bohm effect [4] which
shows that, in situations where space is not simply connected, one can have observable
effects in regions where the field is zero (B = 0 or Fµν = 0) if the vector potential is
nonzero (A �= 0 or Aµ �= 0).

More explicitly, consider a standard interference experiment: electrons emitted by a
coherent source of wavelength λ are diffracted by two slits distant by d; an interference
pattern is observed on a screen at a distance L of the slits (L� d). The phase difference
between the two waves, observed at a distance x from the axis of symmetry is

δ = 2π
x

L

d

λ
. (10.51)

In a region where the vector potential A is nonzero, the phase picks up an extra
contribution9:

δφ =
q

�

∫
A · dl (10.52)

where q is the electric charge. Such a situation arises outside an infinitely long solenoid
S : B = 0 but A �= 0 (B �= 0 inside of course). The idea is therefore to put a small
solenoid of infinite length between the two slits (Fig. 10.7) and see whether the presence
of a nonzero vector potential perturbs the interference pattern.

A simple use of Stokes’ theorem yields the new phase difference

δ′ = 2π
x

L

δ

λ
+
q

�

∫
γI−γII

A · dl = 2π
x

L

δ

λ
+
q

�

∫
B · n ds. (10.53)

The contour γ = γI − γII is a closed curve which can be squeezed around the solenoid
(B = 0 outside) but not more. Clearly, the interference pattern is shifted by a constant
amount x0.

This is generalized into the notion of a Wilson line: if the coordinate x25 is com-
pactified on a circle, then one may consider the gauge configuration

A25(x) = − θ

2πR
= −iU−1∂25U, U(x25) = exp

(
− iθx25

2πR

)
, (10.54)

with θ constant. This is locally a pure gauge (FMN = 0). But it has physical effects
because, as in (10.52), the gauge potential has a nonvanishing circulation due to the

9Remember the gauge-invariant substitution p → p + qA.
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nontrivial topology of the compact dimension. This is measured by the gauge-invariant
Wilson line:

exp
(
iq

∫
dx25A25

)
= exp (−iqθ) . (10.55)

In such a configuration, the canonical momentum p25 becomes p25 + qA25 = p25 −
qθ/(2πR) and the quantification condition now reads:

p25 =
2πn+ qθ

2πR
. (10.56)

Thus a 26-dimensional field of charge q and mass m0 (pMpM = pµpµ − p25p25 = m2
0)

appears as a tower of Kaluza–Klein states with a mass spectrum

m2 = m2
0 +

(2πn+ qθ)2

4π2R2 . (10.57)

[If we now consider an open string with U(N) Chan–Paton degrees of freedom at both
ends, the constant U(N) gauge potential A25 may be diagonalized as

A25 = − 1
2πR

diag(θ1, θ2, . . . , θN ). (10.58)

The open string spectrum shows that the Wilson line breaks the U(N) gauge symmetry
to U(n1)× · · · × U(nr),

∑r
i=1 ni = N , if the θ’s appear in successive sets of ni equal

eigenvalues10.]

Topological gauge symmetry breaking

The nontrivial nature of the topology of the Aharonov–Bohm set up or of the
circle of compactification can be described using the notion of fundamental
group. In both cases this group is nontrivial (Π1 = Z): space is multiply con-
nected. In the following, we will often consider multiply-connected compact
spaces K, most of the time of the form K = K0/G with K0 simply connected
and G a finite group of order n, in which case Π1(K) ∼= G. For example, we can
distinguish three classes of curves in K = K0/Z3; (a) [1]: curves closed in K0;
(b) [g]: curves closed up to a g ∈ Z3 transformation, (c) [g2]: curves closed up
to a g2 transformation. These classes are the homotopy classes and they form
the fundamental group of the manifold K : Π1(K) =

(
[1], [g], [g2]

)
≡ Z3.

10Let us consider a string in Chan–Paton state |i, j〉. Then, the quantification condition (10.56)
yields the following mass spectrum:

m2 =
(2πn+ θi − θj)2

4π2R2
+

1
α′ (N − 1). (10.59)

Consider as above the massless vector fields (n = 0, N = 1). If all the θ’s are different, out of the N2

vectors only N are massless and the Wilson line has broken the U(N) symmetry down to U(1)N . If
n of the θ’s are equal, there correspond n2 massless vector fields and thus a residual gauge symmetry
U(n).
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If we consider a multiply connected compact space, then a nonvanishing
Wilson line can develop along which 〈Ak〉 ≡ 〈Aa

kT
a〉 �= 0 whereas 〈Fkl〉 = 0.

In other words, along a noncontractible loop γ (γ /∈ [1]), this solution corres-
ponds to

〈U(γ)〉 = 〈P exp i
∫
γ

Ak dyk〉 �= 1 (10.60)

where P is a path ordering operator. Such a matrix has the following properties:

(i) U(γ1) U(γ2) = U(γ1γ2).

(ii) U(γ) is identical for all γ in the same homotopy class. Take for example
γ1, γ2 ∈ [gp]: γ1 and γ2 are curves between y and gpy (g ∈ G) closed in
K0/G. Using Stokes’ theorem, we have∫

γ1

Ak dyk −
∫
γ2

Ak dyk =
∫
γ=γ1−γ2

Ak dyk =
∫

Fij ds
ij = 0. (10.61)

Thus, if Π1(K) = G ∼= Zn, [U(γ)]n = 1.
It is possible to set U(γ) to 1, but at the price of modifying the boundary
conditions. Take for example a curve γ ∈ [g] that goes from y to gy. It is
possible to perform a gauge transformation (exp−i

∫
γ
Akdy

k) at the point gy
such that it sets U(γ) to 1. In other words, as we go along the curve γ (closed
in K0/G) we perform a gauge rotation that undoes the nonzero gauge field
circulation

∫
Akdy

k. Of course, this gauge transformation does not act only on
the gauge fields and we have to gauge transform all the fields. Take for example
a scalar field φ(y). Since K = K0/G is obtained by identifying y and gy, φ must
obey the boundary condition φ(y) = φ(gy) in order not to be multivalued. In
the gauge rotated picture this becomes

φ(y) = U−1
g φ(gy). (10.62)

To account for that, U−1
g is also called a twist in the boundary condition.

10.2.4 Orbifold compactification

Torus compactification is straightforward but it is often insufficient because it yields
too many supersymmetries. Indeed, if we start with a 10-dimensional supersymmetric
theory, the supersymmetric charge transforms as a Majorana spinor; hence it falls
into a spinor representation 16 of the Lorentz group SO(10) (see Section B.2.2 of
Appendix B). When we compactify six dimensions, this yields eight four-dimensional
Majorana spinors (two degrees of freedom each). Thus, one supersymmetry charge in
10 dimensions yields N = 8 supersymmetry charges in four dimensions. We have seen
that only N = 1 supersymmetry is compatible with the chiral nature of the Standard
Model. One must therefore look for compactifications which leave less supersymmetry
charges intact.
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The simplest possibility is to require further invariance under discrete symmetries
of the compact manifold. For example, if we start with the circle described by the
identification (10.27), we may impose a Z2 symmetry, often referred to as a twist,

y ↔ −y. (10.63)

This then describes the segment [0, πR[. On such a compact space, strings may be
closed up to the identification (10.27) as in torus compactification (X(σ + π, τ) =
X(σ, τ)+2πmR), or closed up to the identification (10.63) (X(σ+π, τ) = −X(σ, τ)).
The latter strings are called twisted.

Such spaces obtained from manifolds by identifications based on discrete symme-
tries are called orbifolds. They are not as smooth as manifolds because the identifi-
cations lead to singularities of curvature. Let us illustrate this on the example of a
tetrahedron which turns out ot be a two-dimensional orbifold.

We start with a torus obtained by identifying the opposite sides of a lozenge of
angle π/3 (see Fig. 10.8a: AC ∼ OB, AO ∼ CB). This torus may thus be identified to
a plane with periodic identifications of the type (10.27) in the directions corresponding
to the two sides of the lozenge. Such a set-up is invariant under a rotation of π around
the origin O (see Fig. 10.8b). Thanks to the periodic identifications, the points E, F ,
G are fixed points under this rotation.

We use this discrete symmetry to construct an orbifold out of this torus with only
scissors and glue. Take the flat triangle AOB in Fig. 10.8c. The symmetry around
O allows the following identifications: EA ∼ EO, GO ∼ GB, FA ∼ FB. By folding
along the dashed lines, one obtains a tetrahedron with vertices E, F , G, A ∼ B ∼ O.
Now a tetrahedron is flat everywhere except at each apex where there is a conical
singularity of deficit angle π (the sum of angles is 3×π/3 = π instead of 2π). In other
words, curvature is zero everywhere except in E, F , G, O where it is infinite. For this
reason, it is not a manifold and it falls into the class of orbifolds.

Obviously we have several classes of closed strings on such a space: closed strings
which can shrink to a point by continuous deformations and closed strings which loop
around one apex of the tetrahedron, i.e. one fixed point of the discrete symmetry
which allowed us to construct the orbifold. The former are standard closed strings and

π/3

CA

O

A

O B
O B

E F

G

(a) (b) (c)

EF

G G B

A

FEF

Fig. 10.8 Constructing an orbifold (a) and manifold: torus (b) same torus represented as a
plane with periodic identifications (c) orbifold: tetrahedron.
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are called untwisted in this context. The latter are closed only up to the identification
associated with the discrete symmetry. They are the twisted strings. There is one
twisted sector for each fixed point of the discrete symmetry.

Because of the curvature singularities associated with the fixed points, orbifolds
were first considered only as toy models on which conjectures could be tested. It
turns out that the presence of isolated singularities does not prevent from computing
physical quantities in a string context, and orbifolds are now thought to be viable
candidates for string compactification. Indeed, these singularities play an important
rôle because they allow us to combine the simplicity of a flat metric with the richness
of a curved background (curvature is located at these singularities). Moreover, it is
also possible to blow up these singularities by replacing the conical singularity by some
smooth surface. One obtains in this way a manifold.

Twisted sectors

Let us consider first the example of the segment [0, πR[. A closed string twisted
around the origin satisfies

X(σ + π, τ) = −X(σ, τ) or X
(
ze2iπ, z̄e−2iπ) = −X(z, z̄). (10.64)

Its expansion thus reads

X(z, z̄) = i

√
α′

2

+∞∑
n=−∞

1
n+ 1/2

(
αn+1/2

zn+1/2 +
α̃n+1/2

z̄n+1/2

)
. (10.65)

Comparison with the untwisted case (10.42) shows the absence of terms relative
to the center of mass: it is fixed at the fixed point considered herea i.e. x = 0.
The oscillators satisfy the commutation relations:[

αm+1/2, αn−1/2
]
= (m+ 1/2)δm+n,0, (10.66)

and the mass formula reads:

α′M2 = 4
(
N − 15

16

)
= 4

(
Ñ − 15

16

)
. (10.67)

The lowest levels are tachyonicb: the vacuum state |0〉0 of mass squared
−15/(4α′) and the first excited state α−1/2α̃−1/2|0〉0 of mass squared −7/(4α′).
The same procedure can be followed for the tetrahedron of Fig. 10.8 where
the discrete symmetry used for orbifold identification is Z2. We may note
that the torus of Fig. 10.8b is also invariant under rotations of angle 2π/3
around the origin. The corresponding identifications lead to a Z3 orbifold. In
this case, the oscillators of any given twisted sector are of the form αn±1/3 (see
Exercise 3).

aA closed string twisted around the other fixed point would have the same expansion with
an extra additive term πR (the coordinate of the fixed point).

bThe indices 0 refer to the fixed point considered. We have similar states with index πR
for the other fixed point.
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10.3 String dualities and branes
The ultimate goal of the unification program is to find eventually a single string
theory. There are actually five distinct superstring theories in 10 dimensions. But very
detailed relations – known as duality relations – exist between these theories, which
may be compatible with having finally a single mother theory, the elusive M-theory.

Let us start by identifying the five superstring theories. We have already stressed
that, for the closed string, the oscillation modes in one direction along the string
decouple from the modes in the other direction. These are respectively the left-movers
and the right-movers. Once one introduces fermions, the left-moving fermions may
have an opposite or the same chirality as the right-moving fermions. A closed super-
string theory on which left and right-moving fermions have opposite (resp. the same)
chirality, is called a type IIA (resp. IIB) superstring. Type IIA or IIB strings have
N = 2 supersymmetry as can be checked on the massless mode spectrum: it contains
two gravitinos.

One may also consider open strings together with closed strings (for consistency
and in order to obtain a graviton among the massless modes). In this case only one
supersymmetry charge is allowed and the corresponding theory is referred to as type
I. As we have seen, open strings may carry gauge charges at their ends, which allows
them to describe gauge theories.

Orientifolds

One way to obtain N = 1 supersymmetry from type IIB theories is to correlate
left and right movers by requiring invariance under a world-sheet symmetry.
Let us introduce the world-sheet parity Ω : σ ↔ π−σ or z ↔ z̄, then we obtain
from (10.6)

ΩαInΩ
−1 = α̃In, Ωα̃InΩ

−1 = αIn. (10.68)

If we gauge this discrete symmetry, only states invariant under the symmetry
remain in the spectrum of this by now unoriented string. This means for
example that we must discard the antisymmetric tensor field among the
massless modes of the closed string. This procedure is somewhat reminiscent
of the orbifold twist except that we have used a Z2 world-sheet symmetry
instead of a spacetime symmetry. The corresponding string theory is called a
type IIB orientifold. As in the orbifold case, consistency of the theory requires
the addition of twisted strings with respect to Ω. These are nothing else but
the type I open strings.

Finally, since left-movers and right-movers may be quantized independently, it has
been realized that one can describe simultaneously the right-movers by a superstring
theory (and thus obtain N = 1 spacetime supersymmetry) in 10 dimensions and the
left-movers by a standard bosonic string theory in 26 dimensions. Spacetime obviously
has only the standard 10 dimensions. The extra 16 compact dimensions found in the
right-movers are considered as internal: the corresponding momenta are quantized
(because the dimensions are compact) and can thus be interpreted as quantum num-
bers. Indeed, it was shown that they can describe a nonabelian gauge symmetry with a
gauge group of rank 16. These form the so-called heterotic string theories. The cancella-
tion of quantum anomalies imposes that the gauge groups are either SO(32) or E8×E8.
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The heterotic string theory

We have seen in Section 10.2.2 that it is possible to generate gauge symmetry by
compactifying some coordinates on the torus. More precisely, we found that,
by requiring the coordinates X25 = X25

L + X25
R to lie on a circle of radius

R = (α′)1/2, one generates a gauge symmetry SU(2) × SU(2). Here we have
separated the left- and right-moving coordinate because a closer look at (10.50)
shows that each SU(2) is associated with one sector (αM−1 are the creation
operators for the left-moving sector, and α̃M−1 for the right-moving sector). The
rank of the group (the rank of SU(2) is one: t3 is the only diagonal generator)
is equal to the number of compactified coordinates in each sector.

In the context of the heterotic string, one thus expects a gauge symmetry
group of rank 16 (i.e. 16 gauge quantum numbers) from the available degrees
of freedom in the left-moving sector. One finds in fact SO(32) or E8 ×E8. We
describe here briefly the E8 × E8 heterotic string construction of [212,213].

We start with the right-moving sector. It is constructed along the lines of
the superstring theory described in Section 10.1. We work in the light-cone
formalism. Besides the bosonic degrees of freedom XI

R
(z̄), I = 1, . . . , 8, we have

fermions ψI(z̄) in the Ramond sector or in the Neveu–Schwarz sector.
The mass spectrum is given by

α′

4
M2 = N − a = Ñ − ã, (10.69)

where ãR = 0 in the R case, ãNS = 1/2 in the NS case. The Ramond vacuum
is a spinor which we write |A〉, where A = 1, . . . , 16 are indices in the spinor
representation 8+ + 8− of the transverse Lorentz group SO(8). In the NS
sector, the vacuum |0〉NS is a tachyon (M2 = −2/α′) whereas the massless
state is |I〉 = b̃I−1/2|0〉NS, i.e. a state in the vector representation of SO(8).
We conclude that we have spacetime vectors |I〉 ⊗ · · · and spacetime spinors
|A〉 ⊗ · · · , where · · · represents the left-moving state that we now proceed to
determine.

The left-moving sector consists of 24 transverse coordinates, 16 of which
are internal degrees of freedoma. For these 16 coordinates, we use the follow-
ing property: in two dimensions, one boson is equivalent to two Majorana
fermionsb. We therefore replace the 16 internal coordinates by 2× 16 fermions
λi. In the same way that the coordinates XM , M = 1, . . . , 2n, are in the vector
representation of SO(2n), these fermions form a vector representation of a
SO(16) × SO(16)′ group. They can have periodic or antiperiodic boundary
conditions. However modular invariance imposes restrictions on the possible
choices. If all 32 fermions have the same boundary conditions, one obtains

aThe remaining eight spacetime coordinates XI(z) provide the N = 1 supergravity mul-
tiplet which consists of |I〉 ⊗ αJ−1|0〉 (graviton [35 degrees of freedom], antisymmetric tensor
[28] and dilaton [1]) and |A〉 ⊗ αJ−1|0〉 (gravitino [56] and a spinor field called the dilatino
[8]).

bSchematically, the correspondence reads at the level of currents: ∂zX ≡ ψ1ψ2.
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SO(32) gauge symmetry. If one divides them into two sets of 16 fermions, and
allow for each set R or NS boundary conditions, one finds, as we will now see,
E8 × E8.

We note in the left-moving sector: XI
L
(z), I = 1, . . . , 8; λi(z), i = 1, . . . , 16,

in the vector representation of SO(16); λi(z), i = 17, . . . , 32, in the vec-
tor representation of SO(16)′. For each possible choice of boundary condi-
tions on the two sets of fermions, we have the following zero-point energy:
a(R,R) = −1, a(R,NS) = a(NS,R) = 0, a(NS,NS) = +1. We obtain the mass
spectrum from (10.69). The lowest-lying state in the (R, R) sector is at level
M2 = 4/α′. For the mixed R, NS sectors, it is massless. Take for example
(R, NS), which corresponds to

λi(z) =
√
2α′

∑
n∈Z

dinz
−n, i = 1, . . . , 16,

λi(z) =
√
2α′

∑
r∈Z+1/2

birz
−r, i = 17, . . . , 32. (10.70)

The R vacuum is annihilated by the di0, i = 1, . . . , 16, whose commutation
relations show that they are 28-dimensional gamma matrices. Hence the R
vacuum is in the spinorial representation 128+ + 128− of SO(16) (the NS
vacuum is a singlet). Similarly, in the (NS, R) case, the ground state is in
128+ + 128− of SO(16)′, corresponding to the indices i = 17, . . . , 32. Finally,
in the (NS, NS) sector, the ground state (a singlet) is at level M2 = −4/α′.
The massless states are bi−1/2b

j
−1/2|0 >, i, j = 1, . . . , 16, and bi−1/2b

j
−1/2|0 >,

i, j = 17, . . . , 32, which are respectively in representationsa (120,1) and
(1,120) of SO(16) × SO(16)′. The states with M2 ≤ 0 are represented in
Table 10.2.

All that is left to do is to perform the GSO projection. In the NS sectors, it
removes the half-integer |α′M2/4| levels and in the R sectors, it projects onto
one definite chirality. The (NS, NS) ground state at mass level −4/α′ must be
removed because it has no corresponding state in the left-moving sector (we
must satisfy (10.69)). Hence all tachyons are projected out of the spectrum and
the massless fields are

[|I〉+ |A〉]⊗ [(120+ 128+,1) + (1,120+ 128+)] . (10.71)

We thus obtain a 10-dimensional gauge supermultiplet, i.e. states in the vector
representation 8v and in the spinor representation 8s of SO(8). It turns out that
the adjoint representation 248 of the exceptional group E8 decomposes under
SO(16) exactly as 120 + 128. We therefore find the gauge fields of E8 × E′

8
gauge symmetry.

aNote that the bi−1/2 anticommute; there are therefore (16×15)/2 different states in each
case.
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Table 10.2 The lowest-lying states of the E8 × E8 heterotic string theory.

M2

↓
0 |A〉 |I〉 (120, 1) + (1, 120) (1, 128+ + 128−) (128+ + 128−, 1)

−2/α′ |0〉 (16, 1) + (1, 16)

−4/α′ (1, 1)

R NS (NS, NS) (R, NS) (NS, R)

R-moving sector L-moving sector

Type IIA, IIB, I, heterotic SO(32) and E8 × E8 form the five known types of
superstring theories. There are some unexpected equivalences between them. These
equivalences are basically of two types:

• Large/small compactification radius duality (the T -duality discussed in
Section 10.2.2). Under the large/small compactification radius duality, a theory
T1 with a large compact dimension is equivalent to a theory T2 with a small
compact dimension. For example, type IIA superstring theory compactified on a
circle of radius R is equivalent to type IIB compactified on a circle of radius �2

S
/R.

Similarly, the two heterotic string theories are related by this duality.
• Strong/weak coupling duality (or S-duality). The five string theories discussed
above have been defined in their perturbative regimes. In other words, if λ

S
is

the string coupling for one of these theories, the theory is defined by its pertur-
bative expansion: corresponding amplitudes are expressed as power series in λ

S
.

Nonperturbative effects appear to vanish at small coupling, as for example an in-
stanton contribution of order e−1/g2 in a gauge theory of coupling g. Strong/weak
coupling duality relates a theory T1 in its strong coupling regime to a theory T2
in its weak coupling regime: an amplitude M(1)(λ(1)

S
) in theory T1 can be un-

derstood as amplitude M(2)(λ(2)
S

= 1/λ(1)
S
). [This is somewhat reminiscent of

the electric–magnetic duality that we have discussed in Chapter 4. As discussed
there, supersymmetry is a key ingredient to prove powerful results.] Such a type
of duality relates for example type I superstring to the SO(32) heterotic string
theory whereas type IIB string theory is self-dual.

The name S-duality refers to a four-dimensional scalar field which is present
in string theory. The field S is the four-dimensional massless mode of the string
dilaton encountered among the massless states of the closed string. Its value
determines the value of the string coupling (which in turn fixes the value of the
gauge couplings): 〈S〉/m

P
= 1/g2. Hence strong/weak duality corresponds to the

duality S ↔ 1/S.

As long as supersymmetry is not broken, S and T correspond to flat directions
of the scalar potential. Their value thus specifies a given fundamental state among a
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Fig. 10.9 M-theory and the five known string theories.

continuum. As such, they can be considered as moduli fields11. The low energy physics
obviously depends on the explicit values of these fields (through the gauge coupling
or through the value of the compactification radii). It is thus important to devise
supersymmetry breaking schemes which completely lift the degeneracy associated with
these moduli.

Duality relations allow us to have access to nonperturbative effects in a given super-
string theory by studying perturbatively its dual theory. The most striking discovery in
this respect was the realization that there exists an eleventh dimension. More precisely,
the spectrum of type IIA superstring theory was found to include states with mass
M

S
/λ

S
at weak coupling. Supersymmetry helped to solve the problem of the bound

state of N such particles which was found to have precisely a mass of NM
S
/λ

S
. This

is strongly reminiscent of the mass spectrum of Kaluza–Klein modes with a radius of
compactification R(11) ≡ λ

S
/M

S
.

The reason why this eleventh dimension was not found in the perturbative string
approach is that perturbation precisely means an expansion around λ

S
= 0 and thus,

at fixed string scale M
S
, around R(11) = 0. This is why a perturbative expansion does

not “see” this eleventh dimension. In all generality, one expects the ultimate M-theory
to be eleven dimensional (at least). It is connected with the five known superstring
theories as shown in Fig. 10.9 (HO and HE denote the two heterotic string theories).

There is therefore another limit of the superstring ultimate theory which is simply
11-dimensional supergravity. This solution does not have string excitations. Instead,
it has branes. Branes are extended membranes with one time dimension and p spatial
dimensions: one then talks of a p-brane. They appear in string theory at the nonper-
turbative level. For example, they describe the locus of the extremities of open strings.
We have seen above that open string ends carry nontrivial charges. Hence gauge
degrees of freedom can be localized on branes. To be precise, the branes encoun-
tered in the context of strings are Dirichlet p-branes or Dp-branes: Dirichlet refers to
the type of boundary condition imposed to open strings which end on the brane.

It is believed [227,228] that the strong coupling limit of the 10-dimensional E8×E8
heterotic string theory is 11-dimensional M-theory compactified on a line segment
[0, πR(11) ] (i.e. a S1/Z2 orbifold, to use the notions introduced above). The gauge

11Sometimes, in the literature, the term “modulus” is reserved in this context for the T fields.
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fields belong to 10-dimensional supermultiplets that propagate on the boundaries of
spacetime, that is on the 10-dimensional surfaces at 0 and πR(11) . The effective field
theory is a version of 11-dimensional supergravity on a manifold with boundaries,
known as Hořava–Witten supergravity. Eleven-dimensional supergravity also contains
D2-branes and D5-branes.

Open strings, T -duality, and branes

Branes were encountered [311] by studying the behavior of open strings under
T -duality. Let us see this in more details.

There does not seem to be any winding mode associated with an open string
since, in principle, an open string can always unwind itself. On the other hand,
under a duality transformation (10.47), the Neumann boundary condition is
turned into a Dirichlet condition: since z = e2i(τ+σ), z̄ = e2i(τ−σ) we have

∂σX(z, z̄) = ∂τX
′(z, z̄). (10.72)

Hence in the dual theory, the end of the open string is fixed (in the associated
compact dimension). One can go one step further and show that all endpoints
lie on the same hyperplane. For example we have

X ′(π)−X ′(0) =
∫ π

0
dσ∂σX

′(z, z̄) =
∫ π

0
dσ∂τX(z, z̄)

=
2πα′n

R
= 2πnR′. (10.73)

In other words, the corresponding open string winds n times around the dual
dimension. This corresponds to a stable configuration because the ends of the
string are attached to the hyperplane (the open string cannot unwind itself).

It is reasonable to expect that this hyperplane is a dynamical object which
can fluctuate in shape and position. Indeed, one finds among the massless string
states a scalar field which describes the position of this plane. This dynamical
object is called a Dirichlet brane or D-brane.

We have seen that open strings allow us to introduce a gauge symmetry
through the Chan–Paton degrees of freedom. Let us consider a Wilson line with
a constant gauge potential (10.58). Following the discussion of Section 10.2.3,
in particular (10.56), we see that a string state |ij〉 has momentum p25 =
(2πn+ qθi − qθj)/(2πR). Thus (10.73) reads in this case

X ′(π)−X ′(0) = (2πn+ θi − θj) R′. (10.74)

Thus the end points of the open string |ij〉 lie at branes located at θiR′ and
θjR

′ respectively (up to a constant). If n values of θ are equal, that is if n
branes are coincident, we have seen in Section 10.2.3 that there is an enhanced
gauge symmetry U(n).
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We have discussed compactification from the point of view of duality relations
between string theories. Of course, we need to compactify six out of the 10 dimensions
of the perturbative superstring (or seven out of 11 in the strongly interacting case).
This is unfortunately where we lose the uniqueness of the string picture (if indeed
M-theory provides a unique framework): the vast number of compactification schemes
leads to an equally vast number of low energy models. It is only a complete under-
standing of the nonperturbative dynamics of compactification which would determine
which four-dimensional model corresponds to the true ground state. Meanwhile, how-
ever, the string picture gets richer.

We have already encountered orbifolds: they provide standard examples of six or
seven-dimensional spaces on which to compactify string theories. For instance, one
may take the product of three two-dimensional orbifolds such as the ones constructed
in Section 10.2.4 (a classic example uses the Z3 orbifold studied in Exercise 3). Another
type of compact space which is widely used are Calabi–Yau spaces. They are devised
in such a way that compactification on these six-dimensional spaces yields N = 1
supersymmetry in four dimensions, as well as scalar fields charged under the gauge
symmetry.

New gauge symmetries find their origin in the symmetries of the six or seven-
dimensional compact manifold. As stressed before, symmetries, including supersym-
metry, can also be broken by the boundary conditions that one chooses to impose on
the fields for each of the compact coordinates. In the case of brane models, we have
just seen that nonabelian gauge symmetries arise at the place where several branes
coincide.

Some low energy observables which remain unexplained by the Standard Model
find a new interpretation in the context of compactified string models. For ex-
ample, in the context of compactification of the heterotic string model on a
Calabi–Yau manifold, the number of families is interpreted as a topological num-
ber which can be computed for each Calabi–Yau manifold. Models with three
families have been found, which resemble closely the Standard Model at low en-
ergy. Similar determination of the number of families exists also in the context
of brane models.

In the context of the Kaluza–Klein compactification, the size of the compact di-
mensions is microscopic: the nonobservation of Kaluza–Klein modes at high energy
colliders implies a bound of approximately (1 TeV)−1. The constraint is different in
the context of brane models. There, if the standard matter and gauge interactions
are localized on the brane (or coincident branes), one must distinguish compact di-
mensions along the brane and orthogonal to the brane. The previous limit holds for
dimensions along the brane. Compact dimensions orthogonal to the brane only sup-
port excitations with gravitational-type forces. The experimental limits then only arise
from Cavendish-type experiments and give a bound of a few fractions of a millime-
ter for R. We will see in what follows that such macroscopic values for the radius of
compactification allow us to decrease dramatically the string scale MS

, or the Planck
scale of the higher-dimensional theory, down to a few TeV. This opens the remark-
able possibility that the next high energy colliders probe directly the quantum gravity
regime.
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Calabi–Yau manifolds

Our starting point is the heterotic string theory which has been discussed
above. Our discussion here is purely field theoretical and for this purpose we
consider that, to a first approximation, the heterotic string theory yields a
10-dimensional supersymmetric Yang–Mills theory with gauge group E8 × E8
coupled to N = 1 supergravity.
More precisely, this means that, in the Yang–Mills sector, the massless fields are
the gauge fields and their supersymmetric partners, the gauginos, in the adjoint
representation of E8 × E8, (1,248) + (248,1). These are the only massless
fields with gauge degrees of freedom. The algebra of N = 1 supersymmetry in
10 dimensions reads:

{QA, QB} = 2ΓMAB PM (10.75)

where A, B are SO(1, 9) spinor indices. Q is a Majorana–Weyl spinor. Indeed,
it is possible to impose both conditions in 2n = 2 mod 8 dimensions, hence
in 10 dimensions (see Section B.2.2 of Appendix B). As such, Q represents
25−2 = 8 degrees of freedom.
We now need to compactify the theory on M4 × K where K is a com-
pact manifold. We narrow down the possible choices by making the following
requirements:

(i) N = 1 supergravity in four dimensions;

(ii) the low energy four-dimensional theory includes some scalar fields with
nonzero gauge quantum numbers (typically Higgs fields).

We now follow the general strategy of Candelas, Horowitz, Strominger and
Witten [66].We want to find a vacuum solution |Ω〉 which is the solution of the
equations of motion and which respects one four-dimensional supersymmetry
charge Q. Clearly, the vacuum must be Lorentz invariant which implies, for any
fermion F ,

〈Ω|F |Ω〉 = 0. (10.76)

To determine 〈Ω|B|Ω〉 for the boson fields, we use the supersymmetry trans-
formations in the following way: denoting by δF the transformation of F under
supersymmetry, it follows from the fact that the vacuum is supersymmetric
(Q|Ω〉 = 0) that

〈Ω|δF |Ω〉 = 〈Ω|{Q,F}|Ω〉 = 0. (10.77)

Explicitly, δF can be expressed as a function of the boson fields B. Hence the
system of constraints (10.77) can be used to determine the bosonic expectation
values 〈Ω|B|Ω〉 [66].
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We can now write the supersymmetry transformations of the fermion fieldsa:

δψM =
1
κ10

DMη

δλa = − 1
4g
√
φ
ΓM ΓN F a

MNη (10.78)

where φ is the dilaton field, η is the 10-dimensional supersymmetry transfor-
mation parameter (a Majorana–Weyl spinor), DMη its covariant derivative and
κ10 is the 10-dimensional gravitational constant. We have made in (10.78) the
simplifying assumptionsb that φ is constant and the antisymmetric tensor field
bMN has vanishing field strength hMNP . The latter hypothesis imposes (dh =
tr R ∧R− tr F ∧ F )

F a
[MNF

a
PQ] = RKL

[MNRPQ]KL. (10.79)

Then (10.77) reads

Dkη = 0, (10.80)

Γk Γl F a
klη = 0. (10.81)

where k, l = 4, . . . , 9 (F a
µν = 0 in the vacuum |Ω〉 to ensure Lorentz invariance).

First look at (10.80) which expresses the fact that there exists a covariantly
constant spinor. One can show that this implies that the manifold K is a
complex Kähler manifold (cf. equation (C.55) of Appendix C). We recall in
Section D.1 of Appendix D the notion of holonomy group and mention that for
a general six-dimensional complex manifold, the holonomy group H is SO(6).
But (10.80) expresses the fact that there is one direction in tangent space which
remains untouched by the action of H

(∀ hγ ∈ H) hγη = η. (10.82)

The spinor η is Majorana–Weyl and is therefore in the 4 of SO(6). The holon-
omy group H is the subgroup of SO(6) ∼= SU(4) that leaves invariant a 4;
hence H = SU(3). This is where Calabi–Yau manifolds enter the game.

A Calabi–Yau manifold is a complex Kähler manifold with a metric of
SU(3) holonomy (we will denote the holonomy group by SU(3)H).

We may now write the decomposition of QA under the subgroup SO(2) ×
SU(3)H of the transverse Lorentz group SO(2)×SO(6) (the quantum number
associated with the four-dimensional SO(2) is the helicity):

QA = (h = +1/2,1) + (h = −1/2,1) + (h = +1/2,3) + (h = −1/2,3).
(10.83)

aSince we only consider values of the fields in the vacuum |Ω〉, we will write from now on
F or B instead of 〈Ω|F |Ω〉 and 〈Ω|B|Ω〉 and we use (10.76) to set F to zero.

bThe dilatino variation δλ is identically zero under these assumptions.
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The residual charges at low energy are those which leave invariant the back-
ground fields, which are in SU(3)H . As expected, the only supersymmetry
charge that survives is the singlet under SU(3)H which gives two degrees of
freedom, i.e. N = 1 supergravity in four dimensionsa.
We also want to fulfill condition (ii) and must therefore take a closer look at the
only nonsinglet bosons available, the gauge fields. Their decomposition under
SO(2)× [SO(6) ≡ SU(4)] is given by

8v = (h = +1,1) + (h = −1,1) + (h = 0,6). (10.84)

Since 6 ≡ 3 + 3 under SU(3)H , the decomposition of a 10-dimensional gauge
field under SO(2)× SU(3)H reads:

8v = (h± 1,1) + (h = 0,3) + (h = 0,3). (10.85)

Hence the only fields invariant under SU(3)H are gauge fields (h = ±1) and
there does not seem to be any four-dimensional scalar with gauge interactions.
However proper care must be taken of the condition (10.79). The easiest way to
satisfy this condition is to identify the spin connection (Christoffel symbol, see
(D.5) of Appendix D) with some of the Yang–Mills fields (gauge connection).We
therefore choose one of the two E8 (refer to the other one as E′

8), decompose
it into E6 × SU(3)YM and set

AM = Aa
M T a =

(
0 0
0 ΓiMj

)
}E6
}SU(3)YM (10.86)

(remember that AM stands for 〈Ω|AM |Ω〉). For M = 4, . . . , 9, the (AM )ij are
(four-dimensional) scalar fields in the adjoint of SU(3)YM, with a nonzero vac-
uum expectation value through (10.86) (if K is not flat, the spin connection
ΓiMj cannot be set to zero globally). They therefore break the E8 gauge sym-
metry to E6.
A Yang–Mills field Aa

M a = 1, . . . ,dim E8 = 248 transforms under SO(8) and
E8 as (8v,248), with the following decomposition:

E6 SU(3)YM
↑ ↑

248 = (78, 1) + (1,8) + (27,3) + (27,3)
!

8v = (h = ±1, 1) + (h = 0,3) + (h = 0,3)
↓

SU(3)H

aOne may alternatively count the number of (Weyl–Majorana) supersymmetry charges
on the two-dimensional world-sheet. Just by counting the number of degrees of freedom,
one concludes that two charges are needed in the world-sheet to make N = 1 spacetime
supersymmetry. In the context of the heterotic string, they come from the right-moving sector
and the minimal model has (0, 2) supersymmetry, i.e. 0 left-moving charges and two right-
moving ones. In the case of Calabi–Yau supersymmetry, the identifications made enhance the
system of two-dimensional supersymmetry charges to (2, 2) world-sheet supersymmetry.
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The arrow ! connects representations for which a SU(3)H rotation can be
undone by a SU(3)YM rotation. Hence, the fields which commute with the
nontrivial background are in the representations:

(h = ±1,78) + (h = 0,27) + (h = 0,27), (10.87)

where the second entry is the E6 representation content. We find gauge fields
(h = ±1) in the adjoint of E6 (78) and scalar fields in 27 and 27. We also have
gauge fields in the adjoint representation 248 of E′

8.
For completeness we give the four-dimensional decomposition of the 10-dim-
ensional Yang–Mills supermultiplet in Table 10.3 and of the 10-dimensional
supergravity multiplet in Table 10.4. The numbers hp,q are topological num-
bers called Hodge numbers. They count the number of (p, q)-forms (that is
differential forms with p holomorphic indices and q antiholomorphic indices;
remember that a Calabi–Yau manifold is a complex manifold) that are an-
nihilated by the Laplacian. For a manifold of complex dimension 3 (hence
p, q ≤ 3), the property of SU(3) holonomy implies h0,0 = h3,3 = h0,3 = 1 and
h0,1 = h0,2 = h1,3 = h2,3 = 0. Since hp,q = hq,p, the only Hodge numbers to
determine for a specific Calabi–Yau manifold are h1,1 and h2,1. We note that
the Euler characteristics (see Section 10.4.1) of the compact manifold is given
in terms of the Hodge numbers by the relation

χ(K) =
∑
p,q

(−)p+qhp,q = 2(h1,1 − h2,1). (10.88)

A closer look at Table 10.3 shows that the combination h2,1 − h1,1 is the
number of fermions in 27 of E6 minus the number of fermions in 27, that
is the net number of families (as seen in Chapter 9, a representation 27 of
E6 encompasses a full family of the Standard Model). Thus, in the context
of Calabi–Yau models, the number of families is directly related to the Eu-
ler characteristics of the manifold. Manifolds with χ = −6 have been actively
searched for.
Looking at Table 10.4, one notes the presence of real scalar fields. In
order to fall into chiral supermultiplets, they should pair up to form com-
plex scalar fields. Indeed, the spin 0 component of the chiral supermultiplets
reads:

S =
1

(2π)7
e−2φ+6σ + ia , T =

1
(2π)7

e2σ − i
√
2β(h1,1),

T (j) = α(j) + iβ(j) , j = 1, . . . , h1,1 − 1, (10.89)

where a is the pseudoscalar field obtained by duality transformation from the
antisymmetric tensor field bµν (see Section 10.4.2 below).
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Table 10.3 Decomposition of the 10-dimensional Yang–Mills supermultiplet.

D = 10 D = 4

(E8, E′
8) representation (E6, E′

8) representation

Aa
µ(x, y) (78,1) h0,0 = 1 gauge fields

(248,1) Aa
M (x, y) Aa

K(x, y)

{
(27,1) h2,1 complex scalar fields A(i)

α (x)
(27,1) h1,1 complex scalar fields A(j)

α (x)

(1,1) nE (not topological number)
complex scalar fields

(78,1) h0,0 = 1 Majorana spinor

(248,1) λaA(x, y)

{
(27,1) h2,1 L-handed spinors ψ(i)α (x)
(27,1) h1,1 L-handed spinors ψ(j)α (x)

(1,1) nE L-handed spinors

(1,248) Aa′
M (x, y) (1,248) 1 gauge field

(1,248) λa
′
A (x, y) (1,248) 1 Majorana spinor

10.4 Phenomenological aspects of superstring models
We discuss in this section the most salient features of string theory applied to the
description of fundamental interactions. We have seen in preceding sections that string
models generically have a gauge symmetry large enough to include the Standard Model
interactions, and thus provide a scheme unifying all known interactions, including
gravity. However, the gravitational sector is richer than in standard Einstein gravity:
it involves moduli fields, the value of which determines the low energy physics. The
determination of these values thus puts, once again, the issue of supersymmetry break-
ing center stage.

Before we address these questions, it is important to discuss the energy scales
present in these models, and their possible range, since this determines the possible
ways to put these issues to the experimental test.

10.4.1 Scales

The different string theories that we have discussed in Section 10.3 involve various
relations between the mass scales and couplings [378]. This is best seen by looking at
some key terms in the effective field theory action. The different regimes are partly due
to the fact that, depending on the string theory considered, the relevant terms appear
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Table 10.4 Decomposition of the 10-dimensional supergravity supermultiplet.

D = 10 D = 4

gµν gµν(x) graviton

gµk
gMN (x, y) gab h1,1 real scalar fields eσ, α(j) j = 1, . . . , h1,1 − 1

gkl
gab, gab h2,1 complex scalar fields (moduli) U (i) i = 1, . . . , h2,1

bµν bµν(x) ↔ 1 real scalar field a

bµk h0,1 = 0 spin 1 field

bMN (x, y) bab h1,1 real scalar fields β(j) j = 1, . . . , h1,1
bkl

bab, bab, h0,2 complex scalar field

φ(x, y) 1 real scalar field φ

ψµ gravitino

ψM (x, y) h2,1 Majorana spinors ψ(i) i = 1, . . . , h2,1
ψk

h1,1 Majorana spinors χ(j) j = 1, . . . , h1,1

ψ(x, y) 1 Majorana spinor ψ(0)

at different orders of string perturbation theory. We recall that the string coupling is
given by the vacuum expectation value of the string dilaton

λ = 〈eφ〉. (10.90)

It is well-known that, in the case of the Yang–Mills action
∫
d4xFµνFµν , one can

redefine the gauge fields in order to have an overall factor g−2 as only gauge coupling
dependence. Then propagators appear with a factor g2 and vertices with a factor g−2.
Thus a diagram with L loops12 appears with an overall factor g2(L−1).

The same property is valid in string theory if we work with the fields which appear
on the world-sheet: the corresponding metric is called the string frame metric and
the only mass scale appearing in the action is the string scale M

S
= (α′)1/2. If we

consider a closed string, a tree-level diagram (L = 0) has the topology of a sphere

12We have the standard relation L− 1 = I − V between L, the number I of internal lines, and the
number V of vertices.
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(c)(a) (b)

Fig. 10.10 (a) Topology of a tree-level closed string diagram such as in Fig. 10.5 (the crosses
indicate vertices of particle emission corresponding to the incoming and outgoing strings of
Fig. 10.5); (b) topology of a one-loop closed string diagram; (c) topology of a tree-level open
string diagram such as in Fig. 10.4.

(Euler characteristics χ = 2), a one-loop diagram the topology of a torus (χ = 0),
and so on (see Fig. 10.10). Thus a general diagram has an overall coupling factor λ−χ,
hence an overall dilaton dependence e−χφ. This result extends to the open string case:
a tree-level diagram has the topology of a disk (χ = 1) and thus a dependence e−φ.

Euler characteristics

The Euler characteristics is easily computed in the case of simple compact
surfaces. A standard method uses the triangulation of the compact manifold.
In the case of a two-dimensional surface, it consists in dividing the surface into
triangles, making sure that any two distinct triangles either are disjoint, have
a single vertex or an entire edge in common. Examples of triangulations are
given in Fig. 10.11.
The Euler characteristic is then given by

χ = b0 − b1 + b2 (10.91)

where b0, b1, b2 are respectively the number of vertices, edges, and trian-
gles. From looking at Fig. 10.11a,c, one obtains χ(S1) = 3 − 3 and χ(S2) =
5− 9+ 6 = 2. This generalizes to χ(Sn) = 1+ (−1)n for a sphere Sn in (n+1)
dimensions. We also obtain for a disk (Fig. 10.11b), χ(D2) = 4 − 6 + 3 = 1.
From this last result, one can infer another very convenient formula for the
Euler characteristics of a two-dimensional surface:

χ = 2− 2h− b (10.92)

where h is the number of handles and b the number of boundaries. Indeed, a sur-
face with neither handles nor boundaries is the sphere S2. Adding a boundary
amounts to puncturing a hole in this sphere, that is removing a disk (δχ = −1).
Adding a handle amounts to puncturing two holes (δχ = −2) and gluing their
boundaries. We deduce that χ = 0 for the torus: by deforming a torus, one
easily obtains a sphere with one handle.
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Fig. 10.11 Examples of triangulation: (a) circle S1; (b) disk D2; (c) sphere S2; (d) Möbius
band.

We start with the weakly coupled heterotic string. The 10-dimensional effective
supergravity action includes the following terms which all appear at closed string tree
level (hence the overall dependence in e−2φ in the string frame):

S = −
∫

d10x

(2π)7
√
|g|e−2φ

[
1

(α′)4
(
R(10) + 4∂µφ∂µφ

)
+

1
(α′)3

1
4
TrF 2 + · · ·

]
. (10.93)

Once one compactifies on a six-dimensional manifold of volume V6, one obtains

S = −
∫

d4x

(2π)7
√
|g|
(

V6
(α′)4

e−2φR(4) +
V6

(α′)3
e−2φ 1

4
TrF 2 + · · ·

)
,

= −
∫
d4x
√
|g|
(
1
2
m2

P
R(4) +

1
16πα

U

TrF 2 + · · ·
)
, (10.94)

from which we read the four-dimensional Planck scale as well as the value of the
gauge coupling α

U
at the string scale. Introducing the string scale M

H
≡ α′−1/2 (the

subscript H for heterotic) and the compactification scale M
C
≡ V

−1/6
6 , we obtain an

expression for the string scale and the string coupling λ
H
:

M2
H
= 2πα

U
m2

P
, λ

H
= 〈eφ〉 = α2

U

2π3/2
m3

P

M3
C

. (10.95)
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This shows that the string scale is of the order of the Planck scale (taking for α
U

the value at unification: 1/24). Moreover, if the compact manifold is isotropic, M
C

represents, to a first approximation, the scale where the theory becomes truly unified
and is thus interpreted as the gauge coupling unification scale M

U
. It is clear in this

context that (10.95) implies a large string scale M
H
.

We next turn to the strongly coupled SO(32) heterotic string which is equivalent
to the weakly coupled type I open string. We now note the string scale MI = (α′)1/2

and the string coupling λI . The effective supergravity action reads

S = −
∫

d10x

(2π)7
√
|g|e−2φ 1

(α′)4
R(10) −

∫
dp+1x

(2π)p−2

√
|g|e−φ 1

(α′)(p−3)/2

1
4
TrF 2

(p) + · · · ,
(10.96)

where the gauge symmetry arises from p-branes (p = 3, 5, 7 or 9) [312]: the dilaton
dependence is e−φ because the gauge term corresponds to an open string tree level
amplitude (disk of Fig. 10.10c). One obtains after compactification

S = −
∫

d4x

(2π)7
√
|g|
(
e−2φ V6

(α′)4
R(4) + e−φ(2π)9−p Vp−3

(α′)(p−3)/2

1
4
TrF 2 + · · ·

)
.

(10.97)
Writing V6 =M−6

C
and Vp−3 =M−(p−3)

C
, we obtain

MI = 2π
(√

π

α
U

Mp−6
C

m
P

)1/(p−7)

, λI =
√
4π

[
π2

α4
U

(
M

C

m
P

)p−3
]1/(p−7)

. (10.98)

We infer

MI

m
P

=
√
π
(
8α3

U
λp−6
I

)1/(p−3)
. (10.99)

Thus, at least for p = 9 or 7, the string scale can be as low as the type I string
coupling λI can be taken small. In the case of 9-branes, whose world-volume fills the
10-dimensional spacetime, we simply have MI = m

P
(2πα

U
λI)

1/2.
Finally, we may write the effective 11-dimensional Hořava–Witten [227, 228]

supergravity action for M-theory compactified on the orbifold S1/Z2 or line segment
[0, πR(11) ]

S = −
∫

M11

d11x

(2π)8
√
|g|M9

M
R(11) −

2∑
i=1

(
3
2

)1/3 ∫
M10

i

d10x

(2π)7
√
|g| M6

M
TrF 2

i + · · ·

(10.100)
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where M10
i , i = 1, 2, are the two boundaries of spacetime located at the two ends of

the line segment, 0 and πR(11) , and we have introduced the fundamental scale M
M

(2κ211 ≡ (2π)8/M9
M
). We obtain, after compactification on a six-dimensional manifold,

M
M
= π

√
2
(
2
3

)1/18
M

C

α
1/6
U

, πR(11) =
4
√
3

π
α3/2

U

m2
P

M3
C

. (10.101)

Clearly then, the M -theory scale is of the order of the gauge coupling unification scale
M

U
∼M

C
.

10.4.2 Dilaton and moduli fields

Our discussion of mass scales shows the pre-eminent rôle played by fundamental scalar
fields in string theory: the dilaton fixes the string coupling, other fields determine the
radii and shape of the compact manifold (hence its volume V ). More generally, because
there is only one fundamental scale, all other scales are fixed in terms of it by vacuum
expectation values of scalar fields. In many instances such as the ones listed above,
the scalar field corresponds to a flat direction of the scalar potential. We have already
stressed the importance of flat directions in supersymmetric theories. We have seen
that such fields are called moduli: contrary to the case of Goldstone bosons, different
values of the moduli fields lead to different physical situations. For example, different
values of the dilaton lead to different values of the gauge coupling, hence possibly
different regimes of the gauge interaction.

Before we explain why dilaton and radii correspond to flat directions, we have to
show how these real scalar fields fit into supersymmetric multiplets. The antisymmetric
tensor bMN which is present among the massless modes of the closed string plays a
crucial rôle to provide the missing bosonic degrees of freedom (remember for example
that the scalar component of a chiral supermultiplet is complex).

For example, to form the complex modulus field T , the radius-squared R2 of the
compact manifold is paired up with an imaginary part which is related to the an-
tisymmetric tensor field bkl (with k and l six-dimensional compact indices; hence
the corresponding components are four-dimensional scalars). Similar interpretations
apply to the other radii moduli, known as Kähler moduli. The gauge invariance of the
antisymmetric tensor (δbMN = ∂MΛN − ∂NΛM ) induces a Peccei–Quinn symmetry
for Im T (Im T → Im T+ constant) which has only derivative couplings, just like the
axion. Hence the superpotential cannot depend on Im T , and being analytic in the
fields, cannot depend on T as a whole [377].

Through supersymmetry, the string dilaton φ is related to the antisymmetric tensor
bµν (this time with four-dimensional indices). Together with a Majorana fermion, the
dilatino, they form what is known as a linear supermultiplet L, which is real. The
superpotential, being analytic in the fields, cannot depend on L. This is related again
to the gauge invariance associated with the antisymmetric tensor. This in turn ensures
that the superpotential cannot depend on φ.

The latter result may be interpreted from the point of view of standard nonrenor-
malization theorems [117,283]. Indeed, since eφ is the string coupling, it ensures that
the superpotential is not renormalized, to all orders of string perturbation theory.
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Before we proceed, let us be more explicit on the way the string dilaton and the
T modulus appear in four dimensions. We work here in the string frame and the
corresponding fundamental mass scale is the string scale M

S
. In order to introduce

the degree of freedom associated with the overall size of the compact manifold, we
introduce the “breathing mode” eσ through the compact space part of the metric:

gkl(x, y) = e2σ(x)g
(0)
kl (y), k, l = 4, . . . , 9,

∫
d6y
√
|g(0)| =M−6

S
. (10.102)

Thus the volume of the 6-dimensional compact manifold is V6 =
∫
d6y
√
|g| =M−6

S
〈e6σ〉

and 〈e2σ〉 measures R2 in string units.
If we consider specifically the weakly coupled heterotic string, then the terms

in (10.93) give, after compactification13,

S =
∫

d4x
√
|g(4)| 1

(2π)7
e−2φ+6σ

[
M2

S

(
−R(4) + 12Dµ∂µσ + 42∂µσ∂µσ − 4∂µσ∂µφ

)
−1
4
TrFµνFµν

]
. (10.104)

In terms of the real fields

s =
1

(2π)7
e−2φ+6σ, t =

1
(2π)7

e2σ, (10.105)

the action reads, after integrating by parts,

S =
∫

d4x
√
|g(4)| s

[
M2

S

(
−R(4) +

3
2
∂µt∂µt

t2
− ∂µs∂µs

s2

)
− 1

4
TrFµνFµν

]
. (10.106)

We conclude that

m2
P
= 2〈s〉M2

S
, g−2 = 〈s〉. (10.107)

The couplings of the s field are reminiscent of the Wess–Zumino terms which restore
scale invariance through a dilaton field (see (A.268) of Appendix Appendix A).

13We use the following useful formula which is a generalization of (10.34): we start with a (D =
d+N)-dimensional theory with metric g(D)MN and scalar curvature R(D) and compactify N coordinates.
Then writing

g
(D)
µν = eaσ(x

µ)g
(d)
µν , µ, ν = 1, . . . , d,

g
(D)
kl = −ebσ(xµ)δkl, k, l = d+ 1, . . . , d+N = D,

which defines the d-dimensional metric g(d)µν (scalar curvature R(d)), we have

eaσR(D) = R(d)−[a(d− 1) + bN ]Dµ∂µσ−
[
a2

4
(d− 1)(d− 2) +

Nab

2
(d− 2) +

b2

4
N(N + 1)

]
∂µσ∂µσ.

(10.103)
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The sign of the kinetic term for s is not a problem because s is coupled to the
spacetime curvature in the string frame metric g(4)µν . If we go to the Einstein frame by
performing a Weyl transformation on the four-dimensional metric:

g(4)µν ≡ 1
2s

m2
P

M2
S

gµν , (10.108)

the action takes the standard form

S =
∫

d4x
√
|g|
[
−1
2
m2

P
R+

1
4
∂µs∂µs

s2
+

3
4
∂µt∂µt

t2
− 1

4
s TrFµνFµν

]
. (10.109)

The fields s and t appear to be the real parts of complex scalar fields S and T (see
(10.89)) with Kähler potential

K(S, T ) = − ln
(
S + S†)− 3 ln

(
T + T †) . (10.110)

One readily checks that the corresponding kinetic terms (see (6.19) of Chapter 6) yield
the kinetic terms for s and t just found.

The Lagrangian (10.109) is invariant under the group SL(2, Z) of modular trans-
formations

T → aT − ib

icT + d
, ad− bc = 1, a, b, c, d ∈ Z, (10.111)

among which we recognize T -duality (T → 1/T )14. Indeed, such a transformation
corresponds to a Kähler transformation for K:

K → K + F + F̄ , F = 3 ln (icT + d) . (10.112)

Chiral supermultiplets describing matter may be added: as we have seen earlier, they
arise from the components of the 10-dimensional gauge supermultiplet with compact
space indices. In the simplest compactification scheme [375], the Kähler potential is
then generalized into

K(S, T ) = − ln
(
S + S†)− 3 ln

(
T + T † −

∑
i

ΦiΦi†
)
, (10.113)

where Φi are the matter fields. The modular transformations (10.111) must thus be
complemented by

Φi → Φi

icT + d
. (10.114)

Their interactions are described through the cubic superpotential

W = dijkΦiΦjΦk. (10.115)

[We recognize in the structure thus unravelled the no-scale supergravity discussed in
Section 6.12 of Chapter 6.]

14[The S field does not transform under T -duality because of the transformation law of the string
dilaton (cf. (10.45)).]
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The antisymmetric tensor field

We have seen in Section 10.1 that an antisymmetric tensor bMN = −bNM

is present among the massless modes of the closed string. There is a gauge
invariance associated with such a tensor, namely

δbMN = ∂MΛN − ∂NΛM . (10.116)

The gauge invariant field strength correspondingly reads

hMNP = ∂MbNP + ∂NbPM + ∂P bMN , (10.117)

and the Lagrangian is simply (compare with a Yang–Mills field)

L =
1
4
hMNPhMNP . (10.118)

An antisymmetric tensor in D dimensions corresponds to (D − 2)(D − 3)/2
degrees of freedoma. If we restrict our attention to four dimensions, this gives
a single degree of freedom. Indeed, an antisymmetric tensor field is equivalent
on-shell to a pseudoscalar field.
In order to prove this equivalence, we start with the generalized action

S =
∫

d4x

[
1
4
hµνρhµνρ −

1√
12
θεµνρσ∂µhνρσ

]
, (10.119)

where hµνρ is a general 3-index antisymmetric tensor and θ(x) a real scalar.
This field θ plays the rôle of a Lagrange multiplier: its equation of motion simply
yields εµνρσ∂µhνρσ = 0 which is the Bianchi identity, i.e. the necessary condition
for hµνρ to be considered as the field strength of a 2-index antisymmetric tensor
(cf. (10.117)).
Alternatively, we may minimize with respect to hµνρ. This is easier to do after
having performed an integration by parts on the second term. One obtains the
Hodge duality relation

hµνρ =
1√
3
εµνρσ∂σθ, (10.120)

which establishes the equivalence. After replacement, the action (10.119) is
simply the action of a free real scalar field.

aWe first recall the counting for a vector field. Out of the D components AM , 1 is fixed by
the gauge condition ∂MAM = 0; we are left with the residual symmetry AM → AM − ∂MΛ
with �Λ = 0 which corresponds to one degree of freedom (just as a massless scalar field).
Hence we find D − 1 − 1 = D − 2 degrees of freedom.

For the tensor bMN , which has D(D − 1)/2 components, we fix D − 1 of them by the
gauge condition ∂M bMN = 0 (note that the vector tN ≡ ∂M bMN is transverse: ∂N tN = 0);
we are left with a residual symmetry (10.116) which satisfies ∂M (∂MΛN − ∂NΛM ) = 0 i.e.
the equation of motion of a massless vector field. Hence D(D − 1)/2 − (D − 1) − (D − 2) =
(D − 2)(D − 3)/2.
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This equivalence is generalized to the corresponding supermultiplets: a linear
supermultiplet is equivalent on-shell to a chiral supermultiplet. For example
the linear supermultiplet with bosonic components s and bµν is equivalent to
a chiral supermultiplet with scalar field S (see Section C.4 of Appendix C).
In the case of the heterotic string, it turns out that the antisymmetric tensor
transforms nontrivially under Yang–Mills gauge transformations:

δbMN = − κ√
2
Tr (αFMN ) , (10.121)

if δAM = −∂Mα. We may introduce the 3-index antisymmetric tensor, called
the Chern–Simons 3-forma

ωMNP = Tr
(
A[M∂NAP ] +

2
3
gA[MANAP ]

)
(10.122)

which satisfies

∂[MωNPQ] = Tr
(
F[MNFPQ]

)
, δωMNP = ∂[MTr

(
α∂NAP ]

)
. (10.123)

The gauge invariant field strength of the antisymmetric tensor is then

ĥMNP ≡ 3∂[MbNP ] − κ√
2
ωMNP . (10.124)

This extra term plays a central rôle in the cancellation of gauge anomalies in 10
dimensions. Indeed, the hexagonal diagram of Fig. 10.12a, which is responsible
of the anomaly in 10 dimensions (just as a triangular diagram is responsible of
the anomaly in four dimensions, see Section A.6 of Appendix Appendix A), is
cancelled by the diagram of Fig. 10.12b which represents the tree level exchange
of a bMN field. The vertex on the left-hand side originates from the kinetic
term ĥMNP ĥMNP which includes a term ∂[MbNP ]A[M∂NAP ]. The vertex on
the right-hand side is associated with the counterterm introduced by [205]

SGS =
∫

d10xεM1···M10bM1M2Tr (FM3M4FM5M6FM7M8FM9M10) . (10.125)

We note that the gauge completion of the 3-index field strength in (10.124)
induces, after a Hodge duality transformation, a coupling of the pseudoscalar
field θ to the gauge fields. More precisely, the kinetic term ĥMNP ĥMNP /4
induces in four dimensions∫

− κ

2
√
2
∂[µbνρ] Tr

(
A[µ∂νAρ] −

2
3
gA[µAνAρ]

)
=
∫

− κ

2
√
6
εµνρσ∂σθ Tr

(
A[µ∂νAρ] −

2
3
gA[µAνAρ]

)
aFor N indices between brackets, we average (factor 1/N !) the sum of the terms obtained

by permutations of the N indices, with ±1 for even or odd perturbations.
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=
∫

κ

2
√
6
θ TrFµνF̃µν . (10.126)

This is a Wess–Zumino term of the type encountered in anomaly cancellation
mechanisms. Since this is reminiscent of the way the axion field couples to
the gauge fields, the field a ≡

√
2/3θ is called the string axion. The S field

introduced earlier is S = s + ia and the action term (10.126) is simply a
supersymmetric completion of the last term in (10.109).

(a) (b)

bµν

Fig. 10.12 Hexagonal anomaly diagram (a) and antisymmetric tensor field exchange tree
diagram (b).

In realistic compactifications, the situation is of course more involved than the one
that we have presented. Let us illustrate this on the example of Calabi–Yau compacti-
fication. Matter fields appear in representations 27 and 27 of gauge group E6. As can
be checked from Tables 10.3 and 10.4, there are as many T fields, i.e. radius or Kähler
moduli, as there are 27 representations (their number is given by the Hodge number
h1,1).

There exists another class of moduli (noted U (i) in Table 10.4) which describes
the complex structure of the compact manifold. Let us illustrate the difference on the
example of a torus. We may represent a torus in the complex plane by the square of
unit length (0, 1, i, 1 + i) with opposite sides identified. Changing the radius of this
torus amounts to multiply all its dimensions by a factor λ. On the other hand, the
case where only the imaginary direction is dilated cannot be described in the complex
plane by a holomorphic transformation z → λz: it corresponds to a change in the
complex structure of the torus. In Calabi–Yau compactification, there are as many
complex structure moduli as there are 27 (h2,1).

[One may show in this context that the same holomorphic function determines the
superpotential of the matter fields and the Kähler potential of the moduli15. More

15Such a relation between superpotential and Kähler potential is reminiscent of a N = 2 super-
symmetry which lies in the background of this type of compactification.
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explicitly, both the Kähler potential for the T fields and the superpotential W for the
matter fields Φ̄ in 27 are fixed by the same function F1(T ):

K1(T ) = − lnY1, W =
1
3
∂�∂m∂nF1Φ̄�Φ̄mΦ̄n,

Y1 =
h1,1∑
�=1

(
∂�F1 + ∂�F̄1

) (
T � + T �†)− 2

(
F1 + F̄1

)
. (10.127)

Note that for h1,1 = 1 and F1 = λT 3, one recovers the expressions found above in
(10.110) and (10.115)16.

A similar expression exists between the Kähler potential K2(U) for the U moduli
and the superpotential for the matter fields in 27. Finally, the normalization of the
kinetic terms for the matter fields can be expressed in terms of K1(T ) and K2(U).]

10.4.3 Symmetries
One remarkable property of string theories is the absence of continuous global sym-
metries: any continuous symmetry must be a gauge symmetry. This is certainly a
welcome property for a theory of gravity since it is believed that quantum gravity
effects (wormholes) tend to break any kind of global symmetry (continuous or dis-
crete) [263]. The underlying reason for this property is that there exists a deep con-
nection between global symmetries on the world-sheet and local symmetries in space-
time17.

Discrete symmetries may also be viewed in string theory as local, in the sense
that, at certain points of moduli space, they give rise to full blown local gauge theo-
ries. In other words they may be seen as resulting from the breakdown of continuous
local theories as the field measuring the departure from the point of enhanced sym-
metry becomes nonvanishing. Such symmetries play an important rôle in taking care
of the dangerous baryon and lepton violating interactions discussed in Section 5.4 of
Chapter 5. They may be of the general matter parity type, i.e. ZN , N > 2, and could
be R-symmetries [232].

Returning to continuous gauge symmetries, we may find a grand unified gauge
group but the use of Wilson lines could also break it directly to a product of simple
groups, in which case there is no grand unified symmetry but just partial unification.
As we will see in the next section, there remains usually a unification of the gauge
couplings.

Let us illustrate this on the example of the E6 gauge symmetry obtained by
Calabi–Yau compactification of the heterotic string theory. We assume, as in
Section 10.2.3 (you may have interest to browse through the box “Topological gauge
symmetry breaking”), that the compact manifold is of the form K = K0/G with K0
simply connected and G a finite group of order n. Then, a Wilson line corresponds
to a nontrivial pure gauge configuration such that U(γ) ∼= exp i

∫
γ
Aa
kT

adyk �= 1 for
a noncontractible loop γ. Since Ak = Aa

kT
a is in the adjoint representation of the

algebra E6, U(γ) is in the adjoint representation of the group E6. The situation is

16In this case, the index runs over the component of the single 27.
17Using complex variables z and z̄ to parametrize the world-sheet, we see that a world-sheet

Noether current jz allows us to construct a spacetime operator jz∂zXµ which may be associated
with a massless gauge field.
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therefore very similar to the case of a Higgs field φ in the adjoint representation of
the gauge group (U ∼= eiφ) with a nonzero vacuum expectation value18. Indeed, in
much the same way, E6 is broken to the gauge group that commutes with 〈U〉. This
is sometimes called the Hosotani mechanism [226].

Gauge symmetry is broken to the gauge group that commutes with U . Since we
want the residual symmetry to contain at least SU(3)c×SU(2)L×U(1)Y , this imposes
constraints on the form of U .

To derive them, it is easier to consider the SU(3)c × SU(3)L × SU(3)R subgroup
of E6 considered in Section 9.5 of Chapter 9 and to write U as

U = Uc ⊗ UL ⊗ UR (10.128)

where Uc,L,R are 3 × 3 matrices, elements of the gauge groups SU(3)c,L,R. To fully
fix our notation, we have to say which SU(2) subgroup of SU(3) is SU(2)L. We will
therefore suppose that the t3L element of the algebra SU(2)L is

t3L =
1
2

 1
−1

0

 . (10.129)

Now, from the fact that all the generators of SU(3)c × SU(2)L commute with U , one
easily infers that

Uc =

 η
η
η

 , UL =

β
β
β−2

 (10.130)

where detUc = η3 = 1. For simplicity we will take in the following η = 1.

The case of U(1)Y is a little less straightforward. Remember that y = 1/3, 4/3,
−2/3 for (u, d)

L
, uR and dR respectively. This means that the (algebra) generator

corresponding to y reads

[Y ] = (0)c ⊕

 1/3
1/3

−2/3


L

⊕

 4/3
−2/3

−2/3


R

. (10.131)

But any matrix that commutes with [Y ] will commute with the two matrices (notation
follows from Section 9.5 of Chapter 9):

[YL] = (0)c ⊕

 1/3
1/3

−2/3


L

⊕ (0)R,

[QR] = (0)c ⊕ (0)L ⊕

 2/3
−1/3

−1/3


R

. (10.132)

Therefore the gauge symmetry is broken by topological breaking at most to SU(3)c×
SU(2)L×U(1)YL

×U(1)QR . One combination of the two U(1) charges yields the weak
hypercharge y = yL + 2qR; the orthogonal combination is yη = qR − 2yL.

18Except that, since [U(γ)]n = 1, the eigenvalues of U are quantized.
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Thus, an extra U(1)η appears in the gauge symmetry pattern at the scale of com-
pactification. It remains to be seen whether this extra U(1) remains unbroken down
to the low energies where it could be observed.

Since U must commute with [YL] and [YR], we find

UR =
(
γ
V

)
(10.133)

where V is 2 × 2 matrix and γ detV = 1. If Π1(K) = G is commutative, then all
matrices Ug, g ∈ G must commute and V is diagonal. In this case

U = (1)c ⊗

β
β
β−2

⊗

γ
δ
ε


R

, γδε = 1. (10.134)

For example if G ∼= Zn, βn = γn = δn = εn = 1.
Let us turn to a specific example where G ∼= Z3. To build UR, it is easy to convince

oneself that only two cases arise: (I) all its entries are equal, (II) all its entries are
different.

In case (I), we have

U = (1)c ⊗

α2
α2

α2


L

⊗

 α̃2
α̃2

α̃2


R

α2, α̃2 ∈ Z3. (10.135)

To see which gauge symmetry remains unbroken, we consider the generators in the
adjoint representation of E6. Their decomposition under SU(3)c × SU(3)L × SU(3)R
was given in Chapter 9, equation (9.114):

78 = (8,1,1) + (1,8,1) + (1,1,8) + (3,3,3) + (3,3,3). (10.136)

Clearly, all the generators in the adjoint representation of SU(3)c×SU(3)L×SU(3)R
(the first three terms) are invariant ([T,U ] = 0). For the remaining ones, we have

U(3, 3, 3) = 1× α2 × α̃2 (3, 3, 3)

U(3, 3, 3) = 1× α2 × α̃2 (3, 3, 3).

Therefore if α̃2 �= α−1
2 , E6 is broken to SU(3)c × SU(3)L × SU(3)R and if α̃2 = α−1

2 ,
E6 remains unbroken.

In case (II), all entries are different in UR; for example

U = (1)c ⊗

α
α
α


L

⊗

α
α−1

1


R

. (10.137)
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Among the generators of SU(3)c×SU(3)L×SU(3)R only (8,1,1), (1,8,1) and the two
diagonal generators λ3, λ8 in (1,1,8) are invariant. Among the rest, only (3c,3L, t3R =
−1/2) and (3c,3L, t3R = +1/2) are invariant; for example U(3c,3L, t3R = −1/2) =
1 × α × α−1(3c,3L, t3R = −1/2). One can check that these 8 + 8 + 2 + 9 + 9 = 36
generators are the generators of SU(6)×U(1). This last example is interesting because
it shows that although we chose to represent U under the maximal subgroup SU(3)3

of E6, it does not mean that the residual symmetry has to be a subgroup of SU(3)3.
We have seen that in the case of a compactification on a Calabi–Yau manifold

matter fields fall into full representations 27 and 27 of E6, the net number of families
being fixed by the Euler characteristics of the manifold. This is modified when E6 is
broken by topological gauge symmetry breaking: matter fields fall in representations
of the residual gauge symmetry group – the subgroup of E6 that commutes with 〈U〉.
Indeed we saw that matter fields survive compactification if they obey the twisted
boundary conditions (10.62).

10.4.4 Gauge coupling unification

There is no guaranteed unification of the gauge couplings in string theory. For example
in type I models the couplings of gauge groups which correspond to different stacks of
D-branes have no a priori reason to be equal. Because of the apparent success of the
gauge coupling unification one might therefore be inclined to search for string models
with gauge coupling unification.

One should stress at this point that string theories yield more possibilities of gauge
coupling unification than standard grand unified theories. In fact the relation (10.107)
may be generalized to

1
g2i

= ki〈s〉 = ki
m2

P

2M2
S

≡ ki
g2
S

, (10.138)

where ki is known as a Kač–Moody level. Crudely speaking, in the case of a nonabelian
symmetry, it represents the relative strength between the gravitational coupling and
the trilinear self-coupling of the gauge bosons19; it is an integer. In the case of an
abelian symmetry, ki is simply a real number necessary to account for the normaliza-
tion fixed by (10.138). Thus the unification condition reads

k1g
2
1(M) = k2g

2
2(M) = k3g

2
3(M). (10.140)

The successes of coupling unification do impose to take k2 = k3.

19[This may be expressed more quantitatively through the operator product expansion between
two world-sheet currents associated with the gauge symmetry:

jai (z)jbi (w) ∼ ki
�αi

2
δab

(z − w)2
+
iCabc

z − wj
c
i (w) + · · · (10.139)

where �αi is the longest root. The double pole term corresponds to a gravitational coupling whereas
the single pole term is associated with the trilinear self-coupling.]
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There are reasons to go beyond k = 1. Indeed, the choice k = 1 puts some restric-
tions on the possible representations. Such restrictions are welcome in the case of the
Standard Model since they yield as only possible representations 1 and 2 for SU(2)
and 1, 3 and 3 for SU(3). But, in the case of grand unified groups, they limit the
representations (e.g. 1, 5 and 5, 10 and 10 for SU(5), 1, 27 and 27 for E6) in such a
way as to prevent further breaking. In this case one should go to higher Kač–Moody
level or resort to partial unification.

Regarding the running of couplings at scales below M , it is important to note the
following: since string theory amplitudes are finite, there are no ultraviolet divergences
and thus no renormalization group type of running. The couplings that we have defined
above are couplings of the effective field theory which describes the interactions of
the massless string modes; this effective theory has ultraviolet divergences and thus
running couplings. Thus, in a sense, the running of these couplings is associated with
the infrared properties of the underlying string theory.

The effective theory is obtained by integrating out the massive string modes. One
thus expects some corresponding threshold contributions at the string scale:

16π2

g2i (µ)
= ki

16π2

g2
S

+ bi ln
M2

S

µ2
+∆i, (10.141)

where the second (resp. third) term on the right-hand side is due to massless (resp.
massive) string modes running in loops. The massive string threshold corrections ∆i

depend on the precise distribution of the massive string spectrum; they are generally
moduli-dependent.

They have been computed in some explicit cases. We will take the example of four-
dimensional string models which haveN = 2 spacetime supersymmetry [121,247]: they
are obtained through the toroidal compactification of six-dimensional string models
with N = 1 spacetime supersymmetry. One obtains

∆i(T,U) = −bi log
[
(ReT ) |η (iT )|4 (ReU) |η (iU)|4

]
+ biX, (10.142)

where X is a numerical constant, T,U are the complex moduli that parametrize the
two-dimensional compactification from six dimensions, and the Dedekind η function
is defined as: η(τ) = eiπτ/12

∏∞
n=1

(
1− e2iπnτ

)
. Under the modular transformation

(10.111), η(iT ) transforms into (icT + d)1/2 η(iT ); threshold corrections are thus in-
variant under modular transformations for the T (and U) field.

We note that, in the limit of large moduli (T →∞), we have log
[
(ReT ) |η (iT )|4

]
∼

−π
3ReT and

∆i ∼
π

3
bi (ReT +ReU) , (10.143)

which thus behaves like the radius squared. Hence, in the decompactification limit,
such threshold corrections may become large (in the N = 2 case considered here, they
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may in fact be absorbed into the definition of the unification scale20). However, in
realistic cases, moduli are found at or near the self-dual point T = 1 where threshold
corrections are small. In the context of heterotic string models for example, it is thus
difficult to reconcile through string threshold corrections the factor of 20 between the
string scale (10.95) and the grand unification scale M

U
obtained in Chapter 9.

10.4.5 Axions and pseudo-anomalous U(1) symmetries

The coupling of the string axion to the gauge fields allows in many string models the
presence of a seemingly anomalous abelian symmetry, which we note here U(1)X . We
have seen in (10.126) that the introduction of the Green-Schwarz [205] counterterm
leads in four dimensions to a coupling of the string axion to the gauge fields:

L = −1
4
s(x)

∑
i

kiFiµνF
i
µν +

1
4
a(x)

∑
i

kiFiµνF̃
i
µν + · · · (10.144)

where s(x) and a(x) are the dilaton and the axion fields, and ki is the Kač–Moody
level of the corresponding gauge group Gi (taken to be 1 in (10.126)).

The anomaly cancellation mechanism is based on this coupling. Performing a
U(1)X gauge transformation: AX

µ (x)→ AX
µ (x)− ∂µθ(x) yields

δL =
1
8

∑
i

Ciθ(x)F iµνF̃ i
µν , (10.145)

where Ci is the mixed U(1)XGiGi anomaly coefficient. We can complement this with
a Peccei–Quinn transformation of the axion: a(x)→ a(x)− θ(x)δGS/2 where δGS is a
number,

δ′L = −1
8
δGSθ

∑
i

kiF
iµν F̃ i

µν . (10.146)

The total transformation is an invariance of the Lagrangian if Ci = δGSki. Hence
the necessary condition for the cancellation of anomalies with the Green–Schwarz
counterterm is

C1

k1
=

C2

k2
=

C3

k3
=

CX

kX
= δGS. (10.147)

Such a symmetry is often present in string models. As we will see in the next chapters
it may play an important phenomenological rôle.

20This is not so in a more general N = 1 case because bi in the formulas above should then be
replaced by some b(N=2)ia which no longer coincides with the beta function coefficient: bi = b

(N=1)
i +∑

a b
(N=2)
ia .
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Couplings of the pseudo-anomalous U(1)

We use the superfield formalism described in Appendix C to obtain the bosonic
couplings of a pseudo-anomalous U(1)X gauge supermultiplet [116]. We note
VX the gauge vector superfield and S = s + ia the dilaton chiral superfield.
The usual sigma model term

LS =
∫

d4θK, (10.148)

with K = − ln
(
S + S†) is not invariant under the nonanomalous symmetry

discussed above: VX → VX + i
(
Λ− Λ†), S → S + iδGSΛ. The obvious modifi-

cation is to take
K = − ln

(
S + S† − δGSVX

)
. (10.149)

Adding the standard kinetic term for the gauge fields

LV =
∫

d2θ

[
1
4
kXSW

αWα + h.c.
]
, (10.150)

gives explicitly the following terms:

LS + LV

=
1
4s2

(∂µs∂µs+ ∂µa∂µa)−
δGS

4s2
Aµ
X∂µa+

δGS

4s
DX

− δGS

16s2
Aµ
XAXµ −

1
4
kXsF

µν
X FXµν +

1
4
kXaF

µν
X F̃Xµν +

1
2
kXsD

2
X .

(10.151)

We note the presence of a term which is a remnant of the Green–Schwarz coun-
terterm (10.125) in four dimensions (by integration by parts εµνρσbµνF

ρσ
X ∼

εµνρσh
µνρAσ

X ∼ ∂σaA
σ
X) as well as a mass term for the gauge fields: the pseudo-

anomalous gauge symmetry is broken by the gauge anomalies. We note that
the corresponding mass, being of order 1/s = g2, is a loop effect.
Adding a standard D-term coupling DX

(∑
i xiΦ

†
iΦi

)
, the full D-term

Lagrangian reads

LD =
1
2
kXs

[
DX +

1
kXs

(∑
i

xiΦ
†
iΦi +

δGS

4s

)]2

− 1
2kXs

(∑
i

xiΦ
†
iΦi +

δGS

4s

)2

. (10.152)

Once we solve for DX , we obtain a scalar potential in the form of a D-term:

V =
1
2
g2X

(∑
i

xiΦ
†
iΦi + ξX

)2

, ξX ≡ 1
4
kXg

2
XδGSm

2
P
=

1
2
δGSM

2
S
, (10.153)



BINE: “CHAP10” — 2006/10/5 — 06:39 — PAGE 304 — #51

304 An overview of string theory and string models

where we have have restored the Planck scale and used (10.107) and (10.138):
1/s = kXg

2
X . The presence of the field-dependent Fayet–Iliopoulos term usually

induces a nonzero vacuum expectation value for one or more field of x charge
opposite to δGS. The scale

√
|ξX | determines the energy scale at which the

U(1)X symmetry is broken. A string computation gives in the context of the
heterotic string [13]

δGS =
1

192π2
TrX, (10.154)

which is of the form Cg/kg as in (10.147), Cg being the mixed gravitational
anomaly proportional to TrX. In this case, the scale

√
|ξX | is at most one order

of magnitude smaller than M
S
.

We finally note that the dilaton supermultiplet consists of the dilaton, dilatino,
and antisymmetric tensor and, strictly speaking, fits into a linear supermultiplet
(dual to the chiral supermultiplet S used above). The corresponding real linear
superfield L is introduced in Section C.4 of Appendix Ca. The Green–Schwarz
counterterm then takes in this formulation the following form

LGS =
1
2
δGS

∫
d4θLVX =

1
4
δGS�D +

1
24
εµνρσA

µ
X ĥ

νρσ (10.155)

where ĥνρσ is defined in (10.124).

aMore precisely, the linear multiplet L̂ that we must consider here includes Chern–
Simons forms, as discussed in Section 10.4.2 and satisfies the generalized constraints
D2L̂ = −TrW̄α̇W̄

α̇ and D̄2L̂ = −TrWαWα.

The set of relations (10.147) allowed L. [234] to relate the value of the Weinberg
angle to the mixed anomaly coefficients of the anomalous U(1). Indeed, using (10.140),
one finds:

tan2 θ
W
(M) =

g21(M)
g22(M)

=
k2
k1

=
C2

C1
. (10.156)

We finally note that, in the context of type I or type IIB strings, pseudo-anomalous
U(1) symmetries also appear (the corresponding axion field is not the string axion
but may be provided by the imaginary part of moduli fields). The scale is no longer
restricted to be of the order of the string scale and may be much smaller. Moreover,
there may be several such symmetries in a given string model.

10.4.6 Supersymmetry breaking

As for any supersymmetric scenario, supersymmetry breaking is a key issue in string
models. A favoured mechanism is gaugino condensation in a hidden sector which
we have discussed in some details in subsection 7.4.2. But gaugino condensation is
formulated in the context of the effective field theory and is not strictly speaking of a
stringy nature (although it is largely motivated by string models).
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Other mechanisms are more directly relevant to the string context, in the sense
that identifying them within the experimental spectrum of supersymmetric particles
would be a clear sign of some of the more typical aspects of string models. We will
discuss briefly here the Scherk–Schwarz mechanism, the role of the pseudo-anomalous
U(1) and fluxes.

Scherk–Schwarz mechanism

This mechanism, proposed by Scherk and Schwarz [330], makes use of the symme-
tries of the higher dimensional theory to break supersymmetry through the boundary
conditions imposed on fields in the compact dimensions. These symmetries are symme-
tries that do not commute with supersymmetry, e.g. R-symmetries or fermion number
(−1)F .

Let us illustrate this on the example of a single compact dimension of radius R:
0 ≤ y ≤ 2πR. We consider bosonic and fermionic fields Φi(xµ, y) which obey the
following boundary conditions:

Φi(xµ, 2πR) = Uij(ω)Φj(xµ, 0) , (10.157)

where the matrix U is associated with a symmetry that does not commute with super-
symmetry (and is thus different for bosons and fermions). The corresponding expansion
is thus (compare with (10.38))

Φi(xµ, y) = Uij(ω, y/R)
∑
n∈Z

Φjn(xµ)einy/R . (10.158)

Scherk and Schwarz take U = exp (ωMy/R) where M is an anti-Hermitian matrix.
Kinetic terms in the compact direction generate fermion-boson splittings of order ω/R.

Let us apply this to the case of one massless hypermultiplet, introduced in Section
4.4.2 of Chapter 4 [151,152]. As can be seen from the Lagrangian (4.43)

L = ∂µφi∗∂µφ
i + iΨ̄γµ∂µΨ , (10.159)

there is a R-symmetry that leaves the fermion field Ψ invariant and rotates the two
complex scalar fields. We thus chooseM = iσ2. The decomposition (10.158) then gives
the following four-dimensional Lagrangian

L =
∑
n

[
iψ1

nσ
µ∂µψ̄

1
n + iψ2

nσ
µ∂µψ̄

2
n + ∂µφ1∗

n ∂µφ
1
n + ∂µφ2∗

n ∂µφ
2
n

− n

R

(
ψ1
nψ

2
n + ψ̄1

nψ̄
2
n

)
− n2 + ω2

R2

(
|φ1n|2 + |φ1n|2

)]
, (10.160)

where we have introduced two-component spinors Ψn ≡
(
ψ1
n

ψ̄2
n

)
. We see that this

mechanism generates soft masses of order ω/R.
Supergravity versions of this mechanism may be worked out using for example the

string dilaton and Kähler moduli (see for example [126]). They show that, although
in the strict sense supersymmetry is broken explicitly, Scherk–Schwarz breaking is in
many ways similar to an F -type spontaneous breaking.
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Pseudo-anomalous U(1)

Pseudo-anomalous U(1)X symmetries may play a significant rôle in supersymmetry
breaking. Since they have mixed anomalies with the other gauge symmetries –those of
the Standard Model as well as of the hidden sector–, it is not surprising that the whole
issue of supersymmetry breaking through gaugino condensation is modifed in such
models. Moreover, because in the Green–Schwarz mechanism all the mixed anomalies
are non-vanishing and proportional to one another, there must exist fields charged
under U(1)X in the observable as well as in the hidden sector. The U(1)X gauge
symmetry thus serves as a messenger interaction competitive with the gravitational
interaction.

We will give an explicit example to stress the modifications that the presence
of such an anomalous U(1)X symmetry is bringing to the scenario of a dynamical
supersymmetry breaking through gaugino condensation.

The model that we consider [33] is an extension of the model of Section 8.4.1:
supersymmetric SU(Nc) with Nf < Nc flavors. Quarks Qi in the fundamental of
SU(Nc) have U(1)X charge q and antiquarks Q̄i in the antifundamental of SU(Nc)
have charge q̃.

Since we want to avoid SU(Nc) breaking in the U(1)X flat direction, we require
that the charges q and q̃ are positive. We then need at least one field of negative charge
in order to cancel the D-term. For simplicity we introduce a single field φ of U(1)X
charge normalized to −1.

We write the classical Lagrangian compatible with the symmetries in the superfield
language of Appendix C. The reader interested only in the phenomenological results
may go directly to equation (10.171).

[We write L = Lkin + Lcouplings, where we assume a flat Kähler potential for the
matter fields and (10.149) for the dilaton field S:

Lkin =
∫

d4θ
[
Q+e2qVX+VNQ+ Q̄e2q̃VX−VN Q̃+ + φ+e−2VXφ

]
+
∫

d4θ K +
∫

d2θ
1
4
S [kXWαWα + kNTrWαWα] (10.161)

Lcouplings =
∫

d2θ

(
φ

M
P

)q+q̃

mi
jQiQ̄

j + h.c. , (10.162)

where kX and kN are the respective Kač–Moody levels of U(1)X and SU(Nc).
The mixed anomaly U(1)X [SU(Nc)]2 which fixes, through (10.147), all the mixed

anomalies in the model is given by

CN =
1
4π2

Nf (q + q̃) = kNδGS . (10.163)

We thus require q + q̃ > 0, which in turn justifies the presence of the superpotential
term (10.162).

The two scales present in the problem are:
• the scale at which the anomalous U(1)X symmetry is broken which is set by√

ξ =
1
2
k
1/2
X gXδ

1/2
GSMP

. (10.164)
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• the scale at which the gauge group SU(Nc) enters in a strong coupling regime:

Λ =M
P
e−8π2kNS/(3Nc−Nf ) , (10.165)

where we have used (8.46) with b = (3Nc −Nf ).
We suppose that Λ �

√
ξ. Below the scale Λ, the appropriate degrees of freedom

are the field φ and the mesons Mi
j = QiQ̄

j . The effective superpotential is fixed
uniquely by the global symmetries as in (8.53):

W = (Nc −Nf )
(
Λ3Nc−Nf

detM

) 1

Nc−N
f

+
(

φ

M
P

)q+q̃

mi
jMi

j (10.166)

and is seen to be automatically U(1)X invariant. Similarly for the gaugino condensa-
tion scale

〈λλ〉 =
(
Λ3Nc−Nf /detM

) 1

Nc−N
f . (10.167)

The gauge contributions to the scalar potential can be computed along the SU(Nc)
classical flat directions. The result is

VD =
g2X
2

[
(q + q̃)Tr(M†M)1/2 − φ†φ+ ξ

]2
. (10.168)

Auxiliary fields FS , FM , Fφ and DX may easily be computed from (10.166) and
(10.168).

In order to obtain analytic solutions, one may make a few simplifying asumptions
[36]. First, since we are only interested in orders of magnitude, we make the assumption
that mi

j = mδij and search for solutions Mi
j = Mδji of the equations of motion.

Secondly, we linearize the minimization procedure by looking for a minimum in the
vicinity of:

a) φ0 =
√
ξ, the field value which minimizes VD in the absence of condensates;

b) M0, the solution of FM = 0:

M0 = m
Nf−Nc

Nc Λ
3Nc−Nf

Nc

(
ξ

M2
P

)Nf−Nc

2Nc
(q+q̃)

. (10.169)

The minimum is obtained by making around the field configuration M0 an expan-
sion in the parameter

ε ≡ M0

ξ
=
(

Λ√
ξ

) 3Nc−Nf

Nc

[
m

MP

( √
ξ

M
P

)q+q̃−1
]Nf−Nc

Nc

. (10.170)

One finds that all auxiliary fields are all of the same order:

〈D1/2
X 〉 ∼

〈
Fφ
φ

〉
∼
〈
FM
M

〉
∼ εm

( √
ξ

M
P

)q+q̃

.

]
(10.171)

The magnitude of the soft terms in the observable sector is fixed by the val-
ues of the auxiliary fields Fφ, FM and DX . At the tree level of the Lagrangian of
our model, we find soft scalar masses m̃2

i and trilinear soft terms Aijk given by the



BINE: “CHAP10” — 2006/10/5 — 06:39 — PAGE 308 — #55

308 An overview of string theory and string models

expressions21:

m̃2
i = Xi〈DX〉, Aijk = (Xi +Xj +Xk)

〈
Fφ
φ

〉
, (10.172)

where Xi is the U(1)X charge of the corresponding field Φi. Gaugino masses in the hid-
den sector are also induced: Mλ ∼ Nf 〈FM/M〉. The gaugino masses in the observable
sector are absent at tree level and are induced by standard gauge loops.

From (10.171) one obtains

m̃ ∼ Nf (q + q̃)
Λ3

ξ

[
m

Λ

( √
ξ

M
P

)q+q̃
]Nf/Nc

= Nf (q + q̃)
〈λλ〉
ξ

, (10.173)

where m̃ generically denotes a soft-breaking term (10.172) and we have used (10.167)
in order to derive the last relation. This relation is indeed central to the kind of
models described here and stresses the connected role of the relevant scales: ξ as the
scale of messenger interaction and the gaugino condensate as the seed of supersym-
metry breaking (although, as stressed earlier, the chiral nature of the U(1)X plays an
important role: q �= −q̃).

Fluxes

We have insisted several times on the fact that supersymmetry breaking scenarios in
the context of string models need to address the question of the stabilization of moduli.
It has been realized that fluxes may play an important rôle in this stabilisation.

These fluxes are generalizations of the familiar electromagnetic fluxes. More pre-
cisely, we have encountered above fully antisymmetric tensor fields Aµ1µ2···µq−1 . Their
field strengths

Fµ1µ2···µq = ∂µ1Aµ2···µq ± permutations of (µ1, · · · , µq) . (10.174)

are antisymmetric in their q indices, and are therefore associated with q-forms, which
turn out to be generated by D-branes. These fluxes obey quantization conditions. If
they encompass d compact dimensions described by a generic parameter R, their en-
ergy Eq =

∫
F 2
q scales like Rd.R−2q, where the first factor is a volume element and the

second finds its origin in the quantization condition. If p-branes are wrapped around
some of these dimensions (as well as extend over the three infinite dimensions), their
energy Ep scales like Rp−3. These two contributions lead, in the four dimensional
effective theory, to a potential V (R) ∝ Eq(R) + Ep(R), the minimization of which
may lead to a dynamical determination of the corresponding modulus, not necessarily
a Kähler modulus. Indeed, in the simplest case, the dilaton and the complex struc-
ture moduli [185] are thus stabilized whereas the stabilisation of the Kähler modulus
requires non-perturbative effects as well as explicit supersymmetry breaking [243].

In any case, it is not surprising that field strength fluxes play a rôle in supersym-
metry breaking. In fact, a generic choice of fluxes often leads to a nonsupersymmetric
model. This is presently a very active field, still under development, and we refer the
reader to the rapidly expanding literature on the subject.

21We assume the presence in the superpotential of terms of the form (φ/MP )Xi+Xj+XkΦiΦjΦk,
as allowed by the U(1)X symmetry.
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Further reading
• J. Polchinski, String theory, volume 1, Cambridge University Press.
• M.B. Green, J.H. Schwarz and E. Witten, Superstring theory, volume 2, Cambridge
monographs in mathematical physics, Cambridge University Press.

Exercises
Exercise 1 Compute, in a D-dimensional spacetime with d− 1 infinite spatial dimen-
sions and D−d spatial dimensions of finite size L, the gravitational force between two
masses m1 and m2 placed at a distance r much larger than L (cf. (10.28)).

Exercise 2 We generalize the analysis of the Kaluza–Klein modes of a scalar field
performed in Section 10.2.1 to the case of several compact dimensions. We analyze the
problem using this time the action (instead of the equation of motion).

Let us consider a massive real scalar field Φ in D = 4 +N dimensions. Its action
in flat (4 +N)-dimensional spacetime reads

S =
∫

d4+Nx

[
1
2
∂MΦ∂MΦ− 1

2
m2

0 Φ
2
]

=
∫

d4x

N∏
k=1

dyk
[
1
2
∂µΦ∂µΦ+

1
2
∂kΦ∂kΦ− 1

2
m2

0 Φ
2
]

(10.175)

where henceforth µ = 0, . . . , 3, M = 0 · · · (3 + N), k = 1, . . . , N . The N dimen-
sions parametrized by yk are compactified on circles of radius R; we thus have the
identification:

yk = yk + 2πR.

(a) Show that the field Φ can be decomposed as:

Φ
(
xµ, yk

)
=

1
(2πR)N/2

∑
nk∈Z

φ{nk} (xµ) ei
∑

k nky
k/R (10.176)

where {nk} is a set of N integers (one for each compact coordinate).
(b) How does the reality condition on Φ translate on the components φ{nk}?
(c) Using the decomposition (10.176), show that the action (10.175) can be written

as:

S =
∫

d4x
∑
nk

1
2
∂µφ∗

{nk}∂µφ{nk} −
1
2
m2

{nk}φ
∗
{nk}φ{nk}

and determine m2
{nk}.

(d) Show that all mass levels except the lowest one are degenerate.
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Hints:
(b) Φ{−nk} = Φ∗

{nk}.

(c) Use
∫
dyei(n+n)y/R = (2πR)1/2 δn+n,0, to prove∫ (∏

k

dyk

)
∂kΦ∂kΦ =

∑
nk

φ{nk}φ{−nk}
n2k
R2 .

m2
{nk} = m2

0 +
∑N

k=1 n
2
k/R

2.

(d) There is only one state of mass m0({nk} = {0, . . . , 0}); all other mass levels are
degenerate (for example {nk} = {1, 0, . . . , 0}, {0, 1, 0, . . . , 0}, {0, 0, 1, . . . , 0},...
correspond to the first such level, with degeneracy N).

Exercise 3 Let us consider the torus T2 represented in Fig. 10.8b. We construct in
this exercise the orbifold T2/Z3 which is obtained by identifying points which are
transformed into one another by a rotation of 2π/3 around the origin.
(a) Draw the fixed points of the transformation.
(b) It is more convenient to use complex notations and to represent the torus of

Fig. 10.8b as the complex plane w = x1 + ix2 with identification w ≡ w +
n ≡ w + meiπ/3 (m, n ∈ Z). The orbifold group Z3 is then generated by the
transformation:

g : w → we2iπ/3.

What are the complex coordinates of the fixed points?
(c) Explain why there are two twisted sectors for each fixed point.
(d) One defines the complex string coordinates X(z, z̄) ≡ X1(z, z̄) + iX2(z, z̄),

X̄(z, z̄) ≡ X1(z, z̄)− iX2(z, z̄). Give the oscillator expansion and the correspond-
ing oscillator commutation relations.

Hints:
(b) w = 0, w = 1√

3
eiπ/6, w = 2√

3
eiπ/6.

(c) Strings may be twisted by g or g2.
(d) For a string twisted by g for example, we have

X(z, z̄) = x0 + i

√
α′

2

∑
n∈Z

[
1

n+ 1/3
αn+1/3

zn+1/3 +
1

n− 1/3
α̃n−1/3

z̄n−1/3

]
,

X̄(z, z̄) = x̄0 + i

√
α′

2

∑
n∈Z

[
1

n− 1/3

α†
−n+1/3

zn−1/3 +
1

n+ 1/3

α̃†
−n−1/3

z̄n+1/3

]
,

where x0 is the coordinate of the fixed point considered. The commutation rela-
tions are of the form:[

αm+1/3, α
†
−n+1/3

]
= (m+ 1/3)δm+n,0. (10.177)
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Exercise 4 In D dimensions, how many degrees of freedom are associated with a
symmetric traceless tensor hMN , such as the metric fluctuation tensor22 with gauge
transformation δhMN = ∂MΛN + ∂NΛM? Compare with the computation for an
antisymmetric tensor (see footnote following (10.118)).

Hints: D(D + 1)/2 − 1 independent components; gauge condition ∂MhMN = 0 elim-
inates D. Residual gauge transformations satisfy ∂MΛM = 0 and �ΛM = 0. Hence
D(D+1)/2−1−D− (D−1) = D(D−3)/2. Note that (D ≤ 3)-dimensional gravities
are very different from four-dimensional gravity.

22We write the metric tensor gMN = ηMN + hMN , with ηMN the Minkowski metric. The gauge
transformation is then obtained by linearizing the general transformation law, equation (D.3) of
Appendix D: x′M = xM − ΛM (x).
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Supersymmetry and the early
Universe

11.1 The ultimate laboratory
The introduction of supersymmetry allows us to introduce new physics with a funda-
mental mass scale which is very large. A certain number of observations plead for such
a possibility, among which the value of gauge couplings compatible with unification
and the scale of neutrino masses. More generally the fact that fundamental physics
is described by gauge theories, which are known to dominate in the infrared (i.e. low
energy) limit, tends to accommodate the idea that the scale of underlying physics is
much higher.

There are indirect ways to test at low energy a theory with a large fundamental
scale, through effective interactions which scale like inverse powers of the fundamental
scale. The best-known example is proton decay: an excessively rare event because the
corresponding amplitude scales like the inverse of the square of the grand unification
scale.

On the other hand, there is no hope to construct accelerators that would reach the
desired mass scales to test these theories directly. One has to resort to natural cosmic
accelerators or to the study of the early Universe , in which, at least in the hot Big-
Bang scenario, temperatures have reached high enough values to excite superheavy
degrees of freedom.

From this point of view, the recent successes of observational cosmology, which have
turned it into a quantitative science, are a strong encouragement. It is fair however to
say that we have, until now, tested quantitatively the evolution of our Universe up to
nucleosynthesis (see Appendix D and Table D.1), which corresponds to an energy scale
which is a fraction of MeV. The physics at higher scales thus merely provides boundary
conditions for the observationally testable cosmological evolution. But this is sufficient
to test indirectly the evolution in the very early Universe. The most famous example
is inflation: inflationary expansion takes place at a very early stage of the expansion
of the Universe but provides fluctuations that develop in later stages of the evolution
to show up in the cosmic microwave background.

Supersymmetric models provide a wealth of new fields and new mechanisms that
may play a significant rôle in cosmology. In particular, fundamental scalar fields, which
are one of the building blocks of supersymmetry, have played an increasing rôle in
cosmology. They are nowadays called upon to solve all kinds of problems from the
time variation of constants to dark energy or inflation. If the associated energy scale is
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much larger than the TeV, they should be definitely considered in a supersymmetric
context.

Of particular interest for cosmology are light scalar fields. There are two types of
fields which are naturally light: pseudo-Goldstone bosons and moduli. In the latter
case, different values of the fields lead to different physics. This makes them especially
valuable in a cosmological context. As we have seen throughout this book, they are
typical of supersymmetric theories. For example, superstring theories lead to a large
number of them with properties which can be precisely evaluated in the context of a
specific string model (see Section 10.4.2 of Chapter 10). We will start this chapter by
discussing what has been dubbed as “modular cosmology”.

Since flat directions are a natural property for a modulus and a desired feature for
inflation, this will lead us naturally to discussing inflationary scenarios in a supersym-
metric context. Other topics considered here are topological defects and baryogenesis.

11.2 Cosmological relevance of moduli fields
11.2.1 Dilaton and scalar-tensor theories

We have encountered in the preceding chapter moduli fields which couple to matter
with gravitational strength. Examples are, in the context of Kaluza–Klein compactifi-
cation, the radius modulus eσ (see equation (10.36) of Chapter 10) or, in string theory,
the dilaton eφ or its four-dimensional counterpart, the S field (see equation (10.106)
of Chapter 10). If these fields remain light they induce a long rang force similar to
gravity which might lead to difficulties when confronting observation.

One of the stringent constraints on gravitational-type interactions comes from the
high accuracy at which the equivalence principle has been tested1. In its weak form,
the equivalence principle states the universality of free fall: two test bodies at the same
location and at rest with respect to each other, fall in the same way in an external
gravitational field, independently of their mass and composition (hence inertial and
gravitational masses are identical). In the Einstein formulation, at every point of an
arbitrary gravitational field, it is possible to define locally a coordinate system such
that the laws of nature take the same form as in special relativity (see the book by
C. Will [366] for a more detailed formulation).

Let us consider for example the string dilaton coupling to gauge fields, as obtained
in Chapter 10 (equation (10.106)),

S = −1
4

∫
d4x
√
|g(4)| s FµνFµν . (11.1)

As long as the dilaton s is not stabilized, the gauge coupling constants depend on
space and time (1/g2 = s). Since the mass of hadrons is mostly gluon field energy, it
follows that these masses also depend on space and time and we lose the universality
of free fall.

1To give an idea of the orders of magnitude involved, the relative difference in acceleration |∆a|/|a|
between two bodies of different composition in the Earth’s gravitational field is presently measured
to be smaller than 10−12.
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It should be noted that the scalar field dependence in (11.1) cannot be absorbed
in a Weyl transformation of the metric,

g(4)µν = A2(φ)gµν , (11.2)

because
√
|g(4)|g(4)µρg(4)νσ is Weyl invariant. A contrario the easiest way to satisfy the

stringent constraints imposed by the apparent absence of violations of the equivalence
principle is to consider a scalar-tensor theory for which the matter fields couple to a
universal metric of the form (11.2) where φ stands for one or several (φa, a = 1, . . . , n)
scalar fields: lengths and times are measured by rods and clocks in the frame defined
by this unique metric.

Let us thus consider the following action

S = Sgravity + Smatter

(
g(4)µν ,Ψm

)
, (11.3)

Sgravity =
1

8πG

∫
d4x
√
|g(4)|A−2(φ)

[
−1
2
R(4) +

1
2
γ
(4)
ab (φ)g

(4)µν∂µφ
a∂νφ

b − v(φ)
]
.

The Weyl transformation (11.2) gives the following action in the Einstein frame2:

Sgravity =
1

8πG

∫
d4x
√
|g|
[
−1
2
R+

1
2
γab(φ)gµν∂µφa∂νφb − V (φ)

]
, (11.4)

γab(φ) ≡ γ
(4)
ab (φ) + 6αa(φ)αb(φ), αa(φ) ≡

∂ lnA
∂φa

, V (φ) = A(φ)4v(φ).

The functions αa(φ) just defined play an important rôle since they measure in the equa-
tions of motion the strength of the coupling of the fields φa to the energy–momentum
of matter. Indeed,

1√
|g|

δSmatter
(
A2(φ)gµν ,Ψm

)
δφa

=
1√
|g|

gµν
δSmatter

δgµν

∂ lnA2(φ)
∂φa

= αa(φ)gµνTµν ,

(11.5)
where the matter energy–momentum tensor is defined as

Tµν =
2√
|g|

δSmatter

δgµν
. (11.6)

Actually, if one considers this theory in the Newtonian limit (which corresponds
to the limit where velocities are much smaller than c), one finds for the interaction
between two pointlike bodies of mass m1 and m2 distant by r

F (r) = G
m1m2

r2

[
1 +

n∑
a=1

αa(φ0)γab(φ0)αb(φ0)e−mar

]
, (11.7)

where φa0 is the minimum of the potential (one assumes V (φ0) = 0 and A(φ0) = 1),
ma the mass of φa and γab the inverse of γab.

2One may use (10.103) of Chapter 10, with N = 0 to perform the Weyl transformation on the
metric.
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For the case of a single scalar field, this gives limits on |α(φ0)|2 which depend on
the range λ = 1/m of the interaction, from 10−3 in the (10 m, 10 km) range to 10−8

in the (104, 105) km range. As we have stressed in Chapter 10, the law of gravity is
poorly determined below the mm region.

In the case of massless fields, the expression (11.7) does not modify the 1/r2 law;
it simply leads to a rescaling of Newton’s constant. One has then to resort to the post-
Newtonian limit (terms smaller by a factor v2/c2 or Gm/(rc2)) to put constraints on
such theories). The limit obtained on |α|2 is typically 10−3.

It is also possible to appeal to the cosmological evolution to account for the small-
ness of such coefficients in scalar-tensor theories. For example, [95] have found an
attractor mechanism towards general relativity.

This mechanism exploits the stabilization of the dilaton-type scalar through its
conformal coupling to matter. Indeed, assuming that this scalar field φ couples to
matter with equation of state parameter wB through the action (11.3)–(11.4) (with
γ(φ) = 1), then its equation of motion takes the form:

2
3− φ′2φ

′′ + (1− wB)φ′ = −(1− 3wB)α(φ), (11.8)

where φ′ = dφ/d ln a. This equation can be interpreted as the motion of a particle
of velocity-dependent mass 2/(3 − φ′2) subject to a damping force (1 − wB)φ′ in an
external force deriving from a potential veff(φ) = (1 − 3wB) lnA2(φ). If this effective
potential has a minimum, the field quickly settles there.

An efficient mechanism of this type has been devised for the string dilaton by
Damour and Polyakov [96] under the assumption that the dilaton dependent coupling
functions terms entering the effective string action have a common extremum (cf. the
tree level action (10.93) of Chapter 10 where these functions are a universal e−2φ).

11.2.2 Time variation of fundamental constants

Since couplings and scales are often given in terms of moduli fields, it is tempting
to consider that, since some moduli may not have been stabilized, some of these
quantities are still presently varying with time or have been doing so in the course of
the cosmological evolution. This leads to the fascinating possibility that some of the
fundamental constants of nature are time-dependent.

Such an idea was put forward by Dirac [119,120]. According to him, a fundamen-
tal theory should not involve fundamental dimensionless parameters (i.e. dimension-
less ratios of fundamental parameters) which are very large numbers. Such numbers
should instead be considered as resulting from the evolution of the Universe and the
corresponding dimensionless parameters be variables characterizing the evolving
state of the Universe. Obviously this leads to some time-dependent fundamental
parameters.

To illustrate Dirac’s approach, one may consider, besides dimensionless parameters
such as the fine structure constant α = e2/(4π�c) or the strong gauge coupling α3:

• the ratio of the electromagnetic to gravitational force between a proton and an
electron e2/(G

N
mpme) ∼ 1039;
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• the age of the Universe (of the order of H−1
0 ) in microscopic time units (a typical

atomic time scale is �
3/(mee

4), as can be checked on Bohr’s model of the hydrogen
atom) me4/(�3H0) ∼ 1034h−1

0 .
The second ratio obviously evolves linearly with time (just replace the Hubble constant
H0 by the Hubble parameter H ∝ t−1). The dependence of the first one with time
would involve for example the time dependence of Newton’s constant.

In the context of supersymmetric theories where many of these dimensionless ratios
are fixed by the values of moduli fields, one may expect some time dependence. For
example, in heterotic string theory we have seen that the Planck scale (hence Newton’s
constant) is given in terms of the string scale by the vacuum expectation value of the
string dilaton. Similarly for the four-dimensional coupling, evaluated at the string scale
(close to unification scale). If the dilaton is not properly stabilized at low energy, that
is if the flat direction is not lifted or if its minimum remains too shallow, one thus
expects a possible time dependence of the dimensionless ratio M

P
/M

S
or of the fine

structure constant.
There are, however, some stringent bounds on the possible time evolution of funda-

mental constants [350]. For example, present limits on
∣∣∣ĠN

/G
N

∣∣∣ are in the 10−12 yr−1

region whereas the presence in the Oklo uranium in Gabon of a natural fission re-
actor which operated some 109 yr ago puts a limit [94] on |α̇/α| in the 10−17 yr−1

region.

11.2.3 Moduli and gravitino problems

Because moduli are light and have gravitational interactions, they are long lived.
There are then two potential dangers. If their lifetime is smaller than the age of
our Universe, their decay might have released a very large amount of entropy in
the Universe and diluted its content. If their lifetime is larger than the age of our
Universe, they might presently still be oscillating around their minimum and the
energy stored in these oscillations may overclose the Universe. One refers to these
problems as the moduli problem or sometimes as the Polonyi problem since they
were first discussed in the context of the Polonyi model described in Section 6.3.2 of
Chapter 6 [90,133,199]. Taken at their face values, such constraints forbid any modulus
field which is not superlight or very heavy. We now proceed to make these statements
quantitative.

We first define two quantities which play a central rôle in this discussion. A modulus
field φ has typically gravitational interactions and thus its decay constant Γφ scales
like κ2 ∼ m−2

P
. Since the only available scale is the scalar field mass mφ, one infers

from simple dimensional analysis that

Γφ =
m3

φ

m2
P

. (11.9)

One thus deduces that the modulus will decay at present times if Γφ ∼ H0, that is if
its mass mφ is of order

(
H0m

2
P

)1/3 ∼ 20 MeV.
The other relevant quantity is the initial value fφ of the scalar field with respect

to its ground state value φ0. Presumably at very high energy (that is above the phase
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transition associated with dynamical supersymmetry breaking) where the flat direction
is restored, one expects generically that fφ ∼ m

P
since this is the only scale available.

Let us first consider the case where mφ < 20 MeV, that is a field which has not
yet decayed at present time. The equation of evolution for the field φ reads (compare
with (D.103) of Appendix D)

φ̈+ 3Hφ̇+ V ′(φ) = −Γφφ̇, (11.10)

where the last term accounts from particle creation due to the time variation of φ.
If we assume that the Universe is initially radiation dominated, then H ∼ T 2/m

P

(see (D.62) of Appendix D). As long as H > mφ, the friction term 3Hφ̇ dominates
in the equation of motion and the field φ remains frozen at its initial value fφ. When
H ∼ mφ, i.e. for TI ∼ (mφmP

)1/2, the field φ starts oscillating around the minimum
φ0 of its potential which we approximate as:

V (φ) = 1
2m

2
φ(φ− φ0)2 +O

[
(φ− φ0)3

]
. (11.11)

Thus one looks for a solution of the form

φ = φ0 +A(t) cos (mφt) , (11.12)

with |Ȧ/A| � mφ and A(tI) ∼ fφ. Since Γφ < H0 < H, one may neglect the right-
hand side term in equation (11.10) which simply reads, within our approximations,
Ȧ = −3HA/2. Since the energy density stored in the φ field is ρφ = φ̇2/2 + V (φ) ∼
A2m2

φ, one can write this equation as:

ρ̇φ = −3Hρφ. (11.13)

We recover the standard result that coherent oscillations behave like nonrelativistic
matter i.e.

ρφ(T ) = ρφ(TI)
(
T

TI

)3

∼ m2
φf

2
φ

(
T

TI

)3

. (11.14)

Since the radiation energy density ρR(T ) behaves as T 4, ρφ/ρR increases as the tem-
perature of the Universe decreases and one reaches a time where the energy of the
scalar field oscillations dominates the energy density of the Universe. One should then
make sure that ρφ(T0) < ρc. Using (11.14) and TI = (mφmP

)1/2, one may write this
condition as

mφ < m
P

(
ρcmP

f2φT
3
0

)2

∼ 10−26 eV, (11.15)

where we have set fφ ∼ m
P
. Thus, if 10−26 eV < mφ < 20 MeV, there is too much

energy stored in the φ field (which has not yet decayed in present times).
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We next consider the case where mφ > 20 MeV, that is the scalar field has already
decayed at present times. Decay occurs at a temperature TD when H(TD) ∼ Γφ, i.e.

Γ2φ ∼ ρφ(TD)
m2

P

=
ρφ(TI)
m2

P

(
TD
TI

)3

, (11.16)

where we have used (11.14), assuming that, at TD, the scalar field energy density dom-
inates over radiation; ρφ(TI) ∼ m2

φf
2
φ. At decay, all energy density is transferred into

radiation. Thus, the reheating temperature TRH , that is the temperature of radiation
issued from the decay, is given by the condition

ρφ(TD) ∼ g∗T
4
RH (11.17)

where we have used (D.61) of Appendix D. Using (11.16) to express ρφ(TD), we obtain

TRH ∼ m1/2
P

Γ1/2φ ∼
m

3/2
φ

m
1/2
P

. (11.18)

The entropy release is, according to (D.64) of Appendix D,

σ ≡ SRH
SD

=
(
TRH
TD

)3

∼ 1

m
1/2
P Γ1/2φ

ρφ(TI)
T 3
I

. (11.19)

This gives, using TI ∼ m
1/2
φ m1/2

P
and ρφ(TI) ∼ m2

φf
2
φ, σ ∼ f2φ/(mφmP

). With fφ ∼ m
P
,

this gives a very large entropy release as long as the modulus mass remains much
smaller than the Planck scale.

This entropy release must necessarily precede nucleosynthesis since otherwise it
would dilute away its effects. This condition, namely TRH > 1 MeV, gives mφ > 10
TeV. Thus for 20 MeV < mφ < 10 TeV, the entropy release following the decay of the
modulus field is too large to be consistent with present observations.

In the absence of other effects, we are left with only superlight moduli fields (mφ <
10−26 eV) or heavy ones (mφ > 10 TeV).

This moduli problem may be discussed in parallel with a similar problem associ-
ated with gravitinos [360]. Indeed gravitinos are also fields with gravitational inter-
actions and thus a decay constant given by (11.9) with mφ replaced by m3/2 . The
formula (11.19) for entropy release remains valid with ρφ(TI) replaced by ρ3/2(TI) =
m3/2n3/2(TI). Using (D.74) and (D.77) of Appendix D which give the number density of
a particle species which is relativistic at freezing (as is the gravitino),
we obtain

σ ∼
m3/2

m
1/2
P Γ1/2φ

∼ m1/2
P

m
1/2
3/2

. (11.20)

Again, if 20 MeV < m3/2 < 10 TeV, this gives too large an entropy release which
dilutes away the products of nucleosynthesis.

The preferred value of the order of a TeV thus seems ruled out by such a con-
straint. This was also a theoretically preferred value for the moduli mass since m3/2 is
the characteristic mass scale describing the effects of supersymmetry breaking at low
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energy (and modulus mass arises through supersymmetry breaking). It is, however,
possible to ease the bound by allowing for a late period of inflation. This requires a
rather low reheat temperature, estimated to be smaller than 108 or 109 GeV [248] (or
even lower if the gravitino has hadronic decay modes).

11.3 Inflation scenarios
Since the central prediction of inflation, namely that the total energy density of the
Universe is very close to the critical energy density ρc for which space is flat (i.e.
Ω ≡ ρ/ρc ∼ 1), seems to be in good agreement with observation, any theory of
fundamental interactions should provide an inflation scenario.

Such a scenario was first imagined by Guth [214] in the context of the phase
transition associated with grand unification. There is thus an obvious connection with
supersymmetry. Let us see indeed why supersymmetry provides a natural setting for
inflation scenarios.

We recall in Section D.4 of Appendix D that a standard scenario for inflation
involves a scalar field φ evolving slowly in its potential V (φ). This is obtained by
requiring two conditions on the form of the potential:

ε ≡ 1
2

(
m

P
V ′

V

)2

� 1, (11.21)

η ≡ m2
P
V ′′

V
� 1. (11.22)

In the de Sitter Phase, i.e. in the phase of exponential growth of the cosmic scale factor,
quantum fluctuations of the scalar field value are transmitted to the metric. Because
the size of the horizon is fixed (toH−1) in this phase, the comoving scale a/k associated
with these fluctuations eventually outgrows the horizon, at which time the fluctuations
become frozen. It is only much later when the Universe has recovered a radiation or
matter dominated regime that these scales reenter the horizon and evolve again. They
have thus been protected from any type of evolution throughout most of the evolution
of the Universe (this is in particular the case for the fluctuations on a scale which
reenters the horizon now). Fluctuations in the cosmic microwave background provide
detailed information on the fluctuations of the metric. In particular, the observation
by the COBE satellite of the largest scales puts a important constraint on inflationary
models. Specifically, in terms of the scalar potential, this constraint known as COBE
normalization, reads:

1
m3

P

V 3/2

V ′ = 5.3× 10−4. (11.23)

Using the slow-roll parameter introduced above, this can be written as

V 1/4 ∼ ε1/4 6.7× 1016 GeV. (11.24)

In most of the models that we will be discussing, ε is very small. However as long as
ε � 10−52, we have V 1/4 � 1 TeV. In other words, the typical scale associated with
inflation is then much larger than the TeV, in which case it makes little sense to work
outside a supersymmetric context.
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From the point of view of supersymmetry, one might expect that the presence of
numerous flat directions may ease the search for an inflating potential3. One possible
difficulty arises from the condition (11.22) which may be written as a condition on the
mass of the inflation field

m2 � H2. (11.25)

Since supersymmetry breaking is expected to set the scale that characterizes depar-
tures from flatness, it should control both m and V 1/4. For example, in the case of
gravity mediation, we expect both m2 and H2 ∼ V/m2

P
to be of the order of m2

3/2
.

If one does not want to be playing with numbers of order one to explain the N = 50
e-foldings of exponential evolution necessary to a satisfactory inflation scenario, one
should be ready to introduce a second scale into the theory.

Since supersymmetric scalar potentials consist of F -terms and D-terms, the discus-
sion of suitable potentials for inflation naturally follows this classification. As we will
see in the following, they naturally provide models for what is known as hybrid infla-
tion (see Appendix D) which involves two directions in field space: one is slow-rolling
whereas the other ensures the exit from inflation (and is fixed during slow-roll).

11.3.1 F term inflation

Let us start with a simple illustrative model [86]. We consider two chiral supermulti-
plets of respective scalar components σ and χ with superpotential

W (σ, χ) = σ
(
λψ2 − µ2

)
. (11.26)

Writing |σ| ≡ φ/
√
2, one obtains for the scalar potential

V = 2λ2φ2 |ψ|2 +
∣∣λψ2 − µ2

∣∣2 . (11.27)

The global supersymmetric minimum is found for ψ2 = µ2/λ and φ = 0 but, for fixed
φ, we may write the potential as (ψ ≡ A+ iB)

V = µ4 + 2λ(λφ2 − µ2)A2 + 2λ(λφ2 + µ2)B2 + λ2(A2 +B2)2. (11.28)

We conclude that, for φ2 > φ2c ≡ µ2/λ, there is a local minimum at A = B = 0 for
which V = µ4. In other words, the φ direction is flat for φ > φc with a nonvanish-
ing potential energy. This may lead to inflation if one is trapped there. Since global
supersymmetry is broken along this direction, one expects that loop corrections yield
some slope which allows slow-roll . Once φ reaches φc, ψ starts picking up a vacuum
expectation value and one quickly falls into the global minimum.

This simple example of F -term hybrid inflation may easily be generalized. However
F -term inflation suffers from a major drawback when one tries to consider it in the

3although we have seen that this leads to new problems, the solution of which may require late
inflation.
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context of supergravity [86, 345]. We recall the form of the scalar potential in super-
gravity, as obtained in Section 6.2 of Chapter 6,

V = eK/m2
P

[
DiWgīD̄W̄ − 3

|W |2
m2

P

]
+
g2

2
Ref−1

ab D
aDb (11.29)

where
DiW =

∂W

∂φi
+

1
m2

P

∂K

∂φi
W (11.30)

and
Da = −∂K

∂φi
(ta)ijφj + ξa. (11.31)

Here ξa is a Fayet–Iliopoulos term which is present only in the case of a U(1) symmetry.
In what follows the crucial rôle is played by the exponential factor eK/m2

P in front
of the F -terms. Inflation necessarily breaks supersymmetry. Let us assume for a mo-
ment that the inflation is dominated by some of the F -terms and that the D-terms
are vanishing or negligible. Then the slow-roll conditions (11.21) and (11.22) can be
written as

ε =
1
2

(
KI

m
P

+ · · ·
)2

� 1, η = KIĪ + · · · � 1. (11.32)

Here the subscript I denotes a derivative with respect to the inflation denoted φI .
The extra terms denoted · · · in these expressions are typically of the same order as
the ones written explicitly. Their precise value is model dependent. They might lead
to cancellations but generically, this requires a fine tuning.

During inflation, unless a very special form is chosen, KI is typically of the order
of φI . Thus, in principle, one can satisfy the ε constraint if the inflation scenario is
of the small field type (φI � 1, see Section D.4 of Appendix D). But the η condition
is more severe. The quantity KIĪ stands in front of the kinetic term and therefore in
the true vacuum it should be normalized to one. Then it is very unlikely to expect it
to be much smaller during inflation. Indeed, this condition can be written as (11.25)
since the mass of the inflaton m2 receives a contribution KIĪV/m

2
P
∼ KIĪH

2.
These arguments indicate that it is not easy to implement F -type inflation in

supergravity theories. All the solutions proposed involve specific nonminimal forms of
the Kähler potential [345].

11.3.2 D term inflation

What is interesting about inflation supported by D-terms is that the problems dis-
cussed above can be automatically avoided because of the absence of a factor eK/m2

P

in front of them. Indeed for inflation dominated by some of the D-terms the slow-roll
conditions can be easily satisfied.

Let us show how such a scenario can naturally emerge in a theory with a U(1)
gauge symmetry [37, 221]4. We first consider an example with global supersymme-
try and a nonanomalous U(1) symmetry. We introduce three chiral superfields

4An earlier version was proposed in [345] which uses F -terms to let the fields roll down the flat
direction.
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Φ0, Φ+ and Φ− with charges equal to 0, +1 and −1, respectively. The superpotential
has the form

W = λΦ0Φ+Φ− (11.33)

which can be justified by several choices of discrete or continuous symmetries and
in particular by R-symmetry. The scalar potential in the global supersymmetry limit
reads:

V = λ2|φ0|2
(
|φ−|2 + |φ+|2

)
+ λ2|φ+φ−|2 +

g2

2
(
|φ+|2 − |φ−|2 − ξ

)2
(11.34)

where g is the gauge coupling and ξ is a Fayet–Iliopoulos D-term (which we choose
to be positive). This system has a unique supersymmetric vacuum with broken gauge
symmetry

φ0 = φ− = 0, |φ+| =
√
ξ. (11.35)

Minimizing the potential, for fixed values of φ0, with respect to other fields, we find
that for |φ0| > φc ≡ g

√
ξ/λ, the minimum is at φ+ = φ− = 0. Thus, for |φ0| > φc and

φ+ = φ− = 0 the tree level potential has a vanishing curvature in the φ0 direction
and large positive curvature in the remaining two directions (m2

± = λ2|φ0|2 ∓ g2ξ).
Along the φ0 direction (|φ0| > φc, φ+ = φ− = 0), the tree level value of the potential
remains constant: V = g2ξ2/2 ≡ V0. Thus φ0 provides a natural candidate for the
inflaton field.

Along the inflationary trajectory all the F -terms vanish and the universe is dom-
inated by the D-term which splits the masses of the Fermi–Bose components in
the φ+ and φ− superfields. Such splitting results in a one-loop effective potential
(see Section A.5.3 of Appendix Appendix A). In the present case this potential can
be easily evaluated and for large φ0 it behaves as

Veff =
g2

2
ξ2
(
1 +

g2

16π2
ln
λ2|φ0|2
Λ2

)
≡ V0

(
1 +

Cg2

8π2
ln
λϕ

Λ

)
, (11.36)

where ϕ ≡ |φ0| and C ∼ 1.
Along this potential, the value of ϕ that leads to the right number N ∼ 50 of

e-foldings can be directly obtained from (D.112) of Appendix D:

ϕ

m
P

=

√
NCg2

4π2
. (11.37)

This is safely of order g in the model that we consider but might be dangerously close
to 1 for models which yield a larger value for C (see below). The values of the slow-roll
parameters (11.21) and (11.22) are correspondingly

ε =
Cg2

32Nπ2
, η = − 1

2N
, (11.38)

which yields a spectral index ((D.116) of Appendix D)

1− nS =
1
N

(
1 +

3Cg2

32π2

)
. (11.39)
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Finally, the COBE normalization (11.24) fixes the overall scale:

ξ1/2 ∼
(
C

N

)1/4

× 1.9 1016GeV. (11.40)

Let us now consider the supergravity extension of our model. For definiteness we
will assume canonical normalization for the gauge kinetic function f and the Kähler
potential (i.e. K = |φ−|2 + |φ+|2 + |φ0|2; note that this form maximizes the problems
for the F -type inflation). The scalar potential reads

V = e(|φ−|2+|φ+|2+|φ0|2)/m2
P λ2

[
|φ+φ−|2

(
1 +

|φ0|4
m4

P

)

+|φ+φ0|2
(
1 +

|φ−|4
m4

P

)
+ |φ−φ0|2

(
1 +

|φ+|4
m4

P

)
− 3

|φ+φ−φ0|2
M2

]

+
g2

2
(
|φ+|2 − |φ−|2 − ξ

)2
(11.41)

Again for values of |φ0| > φc, other fields than φ0 vanish and the behavior is much simi-
lar to the global supersymmetry case. The zero tree level curvature of the
inflaton potential is not affected by the exponential factor in front of the first term
since this term is vanishing during inflation. This solves the problems of the F -type
inflation.

Let us now consider the case of a pseudo-anomalous U(1) symmetry. Such sym-
metries usually appear in the context of string theories and have been discussed in
Section 10.4.5 of Chapter 10: the anomaly is cancelled by the Green–Schwarz mech-
anism [205]. To see how D-term inflation is realized in this case, let us consider the
simple example of such a U(1) symmetry under which n+ chiral superfields Φi

+ and
n− superfields ΦA

− carry one unit of positive and negative charges, respectively. For
definiteness let us assume that n− > n+, so that the symmetry is anomalous and Tr
Q �= 0. We assume that some of the fields transform under other gauge symmetries,
since the Green–Schwarz mechanism requires nonzero mixed anomalies. Let us intro-
duce a single gauge-singlet superfield Φ0. Then the most general trilinear coupling of
Φ0 with the charged superfields can be put in the form:

W =
n+∑
A=1

λAΦ0ΦA
+Φ

A
− (11.42)

(for simplicity we assume additional symmetries that forbid direct mass terms). Thus
there are n− − n+ superfields Φi

− with negative charge that are left out of the super-
potential. The potential has the form

V = λ2A|φ0|2
(
|φA−|2 + |φA+|2

)
+ λ2A|φA+φA−|2 +

g2

2
(
|φA+|2 − |φA−|2 − |φi−|2 − ξGS

)2
(11.43)

where summation over A = 1, 2, . . . , n+ and i = 1, 2, . . . , (n− − n+) is assumed.
Again, minimizing this potential for fixed values of φ0 we find that for
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|φ0| > φc = ξ
1/2
GS maxA (g/λA), the minimum for all φ+ and φ− fields is at zero.

Thus, the tree level curvature in the φ0 direction is zero and inflation can occur.
During inflation masses of 2n+ scalars are m2

A± = λ2A|φ0|2 ∓ g2ξGS and the remain-
ing n− − n+ negatively charged scalars have masses squared equal to g2ξGS. We see
that inflation proceeds much in the same way as for the nonanomalous U(1) exam-
ple discussed above. The interesting difference is that in the latter case the scale of
inflation is an arbitrary input parameter (although in concrete cases it can be deter-
mined by the grand unified scale), whereas in the anomalous case it is predicted by
the Green–Schwarz mechanism.

11.4 Cosmic strings
In the context of supersymmetry, cosmic strings have a remarkable property: they
carry currents. This tends to stabilize them, which turns out to be a mixed blessing,
since their relic density might overclose the Universe. As stressed in Section D.5 of
Appendix D, which presents a short introduction to cosmic strings, an advantage of
strings over other types of defects is that they interact and may thus disappear with
time. This is lost in the context of supersymmetry and one must take into account the
corresponding constraints on parameters, for each phase transition that may lead to
the formation of strings.

Just as for inflation, the form of the scalar potential as a sum of F -terms and
D-terms leads to the two main types of supersymmetric cosmic strings: F -strings and
D-strings. We review their construction and some of their properties.

11.4.1 F -term string

We consider a U(1) supersymmetric gauge theory with two charged superfields Φ±
(of respective charge ±1) and a neutral superfield Φ0. The superpotential is chosen to
be [98]

W = ρΦ0
(
Φ+Φ− − η2

)
, (11.44)

with η and ρ real. The scalar potential (F and D terms) vanishes for φ0 = 0, φ± =
ηe±iα.

We look for a solution of the equations of motion corresponding to a string
extending over the z axis. Following Section D.5 of Appendix D, we thus consider
the following ansatz in cylindrical coordinates (r, θ, z)

φ0 = 0, φ± = ηe±inθf(r), Aµ =
n

g

a(r)
r

δθµ, (11.45)

with the boundary conditions:

f(0) = a(0) = 0, lim
r→∞

f(r) = lim
r→∞

a(r) = 1. (11.46)

We note that, whereas the ground state of the theory (which coincides here with the
state far away from the string) conserves supersymmetry and breaks gauge symmetry,
supersymmetry is broken in the core of the string (F0 = ρη2(1 − f2)) and gauge
symmetry is restored (φ± = 0).
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The equations of motion are then written

f ′′ +
f ′

r
− n2

(1− a)2

r2
= ρ2η2(f2 − 1)f,

a′′ − a′

r
= −4g2η2(1− a)f2, (11.47)

which allows us to determine the profile functions f(r) and a(r).
We then turn our attention to the fermionic degrees of freedom: zero-energy

solutions Ψi(r, θ) (i = 0,±) and λ(r, θ) exist in the string core. According to stan-
dard index theorems [97,237,358], there are 2n of them. As in the nonsupersymmetric
superconducting string [376], such solutions may be turned into more general solutions
propagating along the string. Indeed, let us write the ansatz

Ψ̃i(r, θ, z, t) = ΨiL(r, θ)α(t, z) (11.48)

(and similarly for λ). The Dirac operator can be written as /D = γ0D0 + γ3D3 + /DT .
In the interior of the strings, the Yukawa couplings vanish since all scalar fields are
zero and /DTΨiL(r, θ) = 0. One infers from the Dirac equation for Ψ̃i

[
γ0

∂

∂t
+ γ3

∂

∂z

]
α(t, z) = 0. (11.49)

If ΨiL satisfies (see below)

iγ1γ2ΨiL = ±ΨiL , iγ1γ2 =
(
σ3 0
0 σ3

)
, (11.50)

then, using iγ0γ1γ2γ3Ψ̃i = −Ψ̃i, we have γ0γ3α = ∓α and

[
∂

∂t
∓ ∂

∂z

]
α(t, z) = 0, (11.51)

i.e. α(t, z) = f(t± z).
Thus fermions which are trapped in the transverse zero modes (satisfying (11.50)

travel at the speed of light along the string (in the ∓z direction). The presence
of these excitations is responsible for turning the string into a superconducting
wire.

[For the sake of completeness, we derive here the explicit form of the fermion zero
modes. We use two-component spinors (see Appendix B) and write

ψi(r, θ) =
(
ψi1(r, θ)
ψi2(r, θ)

)
, λ(r, θ) =

(
λ1(r, θ)
λ2(r, θ)

)
. (11.52)
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We note that setting the second (resp. first) components to zero, ΨiL satisfies (11.50)
with a plus (resp. minus) sign. We proceed with the first choice. Equations of motion
read

e−iθ

(
∂r −

i

r
∂θ

)
λ̄1 + g

√
2ηf

(
einθψ−1 − e−inθψ+1

)
= 0,

e−iθ

(
∂r −

i

r
∂θ

)
ψ̄01 + iρηf

(
einθψ−1 + e−inθψ+1

)
= 0, (11.53)

e−iθ

(
∂r −

i

r
∂θ ± n

a

r

)
ψ̄±1 + ηfe∓inθ

(
iρψ01 ∓ g

√
2λ1
)
= 0.

A shortcut that allows us to find two of the zero modes (i.e. all of them if n = 1) makes
direct use of the supersymmetry transformations: one acts through supersymmetry
on the bosonic zero modes to obtain fermionic zero modes. Using equations (C.29)
and (C.70) of Appendix C, one obtains in the bosonic background considered:

δψ±α = −i
√
2σµαα̇ξ̄α̇Dµφ± = −iη

√
2e±inθ

[
f ′σr ± in

(1− a)f
r

σθ
]
αα̇

ξ̄α̇,

δψ0α =
√
2ξαF0 =

√
2ρη2(1− f2)ξα, (11.54)

δλα = − i

2
(σµσ̄ν)α

βξβFµν = −n

g

a′(r)
r

(σ3)αβξβ ,

where we have used F12 = (n/g)a′(r)/r and defined

σr ≡ σ1 cos θ + σ2 sin θ =
(

0 e−iθ

eiθ 0

)
,

σθ ≡ −σ1 sin θ + σ2 cos θ =
(

0 −ie−iθ

ieiθ 0

)
. (11.55)

We thus obtain (we set the supersymmetry transformation parameter ξ2 to zero and
note ξ1 as the complex number α)

λ1 = −αn
g

a′

r
,

(ψ±)1 = iη
√
2α∗

[
f ′ ± n

(1− a)f
r

]
e±i(n∓1)θ,

(ψ0)1 = αρη2
√
2(1− f2). (11.56)

We note that theses modes remain confined in the core of the string: f ′, a′, 1− a and
1 − f2 vanish away from the string. Similar expressions can be obtained by setting
ξ1 = 0: as discussed above, they correspond to modes propagating along the string in
the other direction.]



BINE: “CHAP11” — 2006/10/5 — 06:39 — PAGE 327 — #16

Cosmic strings 327

11.4.2 D-term string

We now turn to the case of a phase transition where the gauge symmetry breaking
occurs through a D-term:

V =
g2

2

(
|φ|2 − ξ

)2
. (11.57)

For convenience, we disregard other scalar fields than the one responsible for gauge
symmetry breaking and we write ξ ≡ η2. The local string ansatz

φ = ηeinθf(r), Aµ =
n

g

a(r)
r

δθµ, (11.58)

with the same boundary conditions as in (11.46), leads to the equations of motion:

f ′ = n
(1− a)

r
f, n

a′

r
= g2η2(1− f2). (11.59)

Again, supersymmetry is broken (D = gη2(1− f2)) and gauge symmetry restored in
the string core.

The surprise comes from the fermionic zero modes: they only travel in one direction,
which expresses the fact that supersymmetry is only half broken. [As above, we find the
fermionic zero modes by performing a supersymmetry transformation on the bosonic
background (11.58). Using (11.58), we find

δψα = −i
√
2σµαα̇ξ̄α̇Dµφ

= −i
√
2ηneinθ

f(1− a)
r

(
σr + iσθ

)
αα̇

ξ̄α̇,

δλα = −ξαD − i

2
(σµσ̄ν)α

βξβFµν

= −gη2(1− f2)
[
1 + σ3

]
α
βξβ . (11.60)

We see that, if we set ξ1 = 0, the two expressions vanish. We thus only obtain zero
modes by considering the case ξ1 = α and ξ2 = 0:

λ1 = −2gαη2(1− f2),

ψ1 = 2i
√
2nηα∗ (1− a)f

r
ei(n−1)θ. (11.61)

According to the discussion in the preceding section, only modes moving in one direc-
tion are present.]
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11.5 Baryogenesis
Any complete cosmological scenario should give a satisfactory explanation as to why
matter dominates over antimatter in the observable Universe. This is summarized in
the following observational constraint (see Section D.3.5 of Appendix D):

ηB ≡ nB − nB̄
nγ

=
(
6.1+0.3

−0.2

)
× 10−10. (11.62)

We recall in Appendix D that, in the context of the Standard Model, the electroweak
phase transition has some difficulty to fulfill the Sakharov requirements necessary to
generate a baryon asymmetry: it is not sufficiently first order and CP violation is not
strong enough to generate enough baryons.

In the supersymmetric framework of the MSSM, the source of CP violation comes
from the chargino sector. If we consider the chargino mass matrix given in equa-
tion (5.44) of Chapter 5, the complex phase φµ of the µ parameter5 leads to the dom-
inant contribution to the baryon asymmetry: the scattering of charginos against the
expanding bubble wall creates an asymmetry between Higgsinos which is converted
into a chiral quark asymmetry through Higgsino scattering off gluinos and stops;
this chiral quark asymmetry is then translated into a baryon asymmetry through
sphaleron processes [67,229]. Regarding the order of the transition, it has been recog-
nized that the lighter the right-handed stop, the more first order the phase transition
is. It turns out that this is becoming marginally consistent with the present limit on
the stop mass (a little room is left because the experimental limit is somewhat model
dependent).

Grand unification has also been the framework for one of the first models of baryon
generation proposed in the context of gauge theories. In this case, the departure from
equilibrium is achieved through the decay of superheavy particles. Such particles are
coupled to the superheavy gauge fields which ensures that they have B and CP vio-
lating interactions. Thus all three Sakharov conditions are fulfilled. This scenario is,
however, difficult to realize in practice because any baryon asymmetry produced at the
grand unification transition is washed away by a subsequent inflation period and limits
on the reheat temperature (see the end of Section 11.2.3) prevent from producing the
superheavy particles after reheating.

We thus present below the two scenarios which seem to be favored in the context
of supersymmetric theories.

11.5.1 Leptogenesis

One may combine some of the ingredients used above (decay of heavy particles, B and
L violating sphaleron process) to overcome the difficulties encountered so far.

Because a sphaleron interaction (see (D.93) in Appendix D) violates both B and
L but not B − L, a nonzero value of B + L is not washed out in the high tem-
perature symmetric phase (i.e. between 100 GeV and 1012 GeV) if we start with

5See also the discussion of Section 7.7 of Chapter 7.
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nonvanishing B − L. A study of the chemical potential of all particle species present
in this phase yields the following relation between B, L and B − L:

YB = aYB−L =
a

a− 1
YL, (11.63)

where a is a number of order one depending on the other processes at equilibrium
and YB = (nB −nB̄)/s (s is the entropy density as defined in (D.64) of Appendix D),
with similar definitions for YL and YB−L. Thus a baryon asymmetry can be generated
from a lepton asymmetry: lepton violating interactions, such as the ones encountered
in grand unified theories, may lead to the generation of the baryon asymmetry. This
is the scenario of leptogenesis [169].

In thermal leptogenesis, one obtains the departure from equilibrium from the
decay of heavy weakly interacting particles. The favored model considers Majorana
neutrino6 decays into a lepton–Higgs pair: N → �φ, �̄φ̄. If the corresponding couplings
are CP violating, a lepton asymmetry arises through the unbalance between the decay
rates:

Γ(N → �φ) =
1
2
(1 + ε)Γ, Γ(N → �̄φ̄) =

1
2
(1− ε)Γ. (11.64)

If we consider the lightest of the heavy Majorana neutrinos N1 of mass M1, then the
CP asymmetry parameter ε, which arises through interference between tree level and
one loop diagrams, reads explicitly:

ε =
3
16π

M1(
λ†
νλν

)
11
〈φ〉2

Im
(
λ†
νmνλ

∗
ν

)
11 . (11.65)

In the case of a hierarchical spectrum for neutrinos (with mν3 the largest neutrino
mass), we have typically

ε ∼ 3
16π

M1mν3

〈φ〉2 ∼ 0.1
M1

M3
. (11.66)

Hence, leptogenesis is a direct window over neutrino Majorana masses [57]. Sphaleron
processes then transform the lepton asymmetry into a baryon asymmetry. Typically,
one finds

ηB =
κ

f
cSε ∼ 10−4M1

M3
, (11.67)

where cS is the sphaleron conversion factor of order 1, f ∼ 102 is a dilution factor to
account for the increase of photons in a comoving volume between baryogenesis and
today, and κ is a washout factor of order 0.1 which depends on neutrino masses. Thus
M1/M3 ∼ 10−5 gives the right order of magnitude.

6We recall (see Chapter 1, Section 1.1.1) that Majorana neutrinos appear in the seesaw mechanism:
if the right-handed Majorana neutrino 3 × 3 mass matrix is M , then the light neutrino mass matrix
is mν = −λν 1

M
λTν 〈φ〉2, where λν is the 3 × 3 matrix of Yukawa couplings.
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We note that the baryogenesis temperature is typically

TB ∼M1 ∼ 1010 GeV. (11.68)

Just as in the grand unification scenario, it remains necessary to produce these heavy
Majorana particles after the reheating phase of inflation, which sets an upper limit on
their mass of the order of 108 to 109 GeV. This might be difficult to reconcile with
standard neutrino mass scales.

Ways to circumvent this difficulty have been proposed. Interestingly enough, they
depend on the scenario for supersymmetry breaking and on the nature of the LSP. For
example in gauge mediation, we have seen that the gravitino is the LSP: in the case
wherem3/2 ∼ 10 eV, there is no gravitino problem7. In anomaly mediation, a gravitino
with mass greater than 100 TeV has no cosmological problem. Since gravitino decay
products include a LSP, there is a nonthermal production of LSP through gravitino
decay which must be taken into account.

One may also consider nonthermal leptogenesis. For example, inflaton decay may
be the source of Majorana particles [12,191,264]. In this type of scenario, the inflaton
decays into a pair of N1 Majorana neutrinos, which subsequently decay into �φ and
�̄φ̄. The condition on the reheating temperature TR < M1 ensures that one is out of
equilibrium, as required by Sakharov conditions.

11.5.2 Affleck–Dine mechanism

Another mechanism for generating the baryon asymmetry has been proposed by
[3]. It makes use of the presence of numerous flat directions in the scalar potential
of supersymmetric theories.

Indeed, let us consider one of these flat directions, labelled by the field φ. We
assume that the fundamental high energy theory, characterized by a scale M , violates
baryon number (as for example grand unified theories). At high energies, that is at
an early stage of the evolution of the Universe, the field φ sits along the flat direction
at an arbitrary value φ0 ∼ M . As temperature lowers, one reaches the energy scale
associated with supersymmetry breaking. The degeneracy associated with the flat
direction is lifted and the field direction acquires a nontrivial structure V (φ). There is
a priori no reason to have φ0 as a minimum of V (φ). Hence the field φ starts oscillating
around the minimum of V (φ), with a frequency of the order of its mass mφ.

In this way, one fulfills the three Sakharov requirements:
• baryon number violation from the fundamental theory;
• CP violation through the CP-violating phases ϕ of the soft terms (as discussed
in Section 7.7 of Chapter 7),

• departure from equilibrium because of the oscillations.
It is thus not surprising that one generates some net baryon number. One obtains [3]:

nB ∼ ϕmφ |A(t)|2
(
φ20
M2

)
, (11.69)

7Axions may provide the dark matter candidate.
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where A(t) is the amplitude of oscillations at time t. The energy of oscillations is thus
m2

φ |A(t)|
2: it can be viewed as a coherent state of particles of mass mφ and number

density m2
φ |A(t)|

2. The baryon number per particle is thus of order ϕ φ20/M
2. More

precisely one finds

nB
nγ

∼ 102ϕ
(
φ20
M2

)
. (11.70)

This shows that the Affleck–Dine mechanism is very efficient to generate a baryon
asymmetry.

Further reading
• T. Damour, Gravitation, experiment and cosmology, Proceedings of the 5th Hellenic
School of Elementary Particle Physics (arXiv:gr-qc/9606079).

• D. Lyth and A. Riotto, Particle physics models of inflation and the cosmological
density perturbation, Phys. Rep. 314 (1999) 1.
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The challenges of
supersymmetry

Although supersymmetry provides a satisfactory, and probably necessary, framework
to address the questions left aside by the Standard Model, it is facing some diffi-
cult challenges. We take the opportunity in this last chapter to discuss two of the
most difficult questions: the flavor problem and the cosmological constant problem.
The lack of a clear solution to either of these problems would be (is?) probably a
sign that we are missing an important piece of the jigsaw puzzle and that, if there
is supersymmetry, it is probably not realized in the exact way that we presently
think it is.

12.1 The flavor problem
One of the motivations for going beyond the Standard Model is to try to explain
the variety of masses, i.e. the variety of Yukawa couplings. Any theory of mass, in
fact any theory beyond the Standard Model, introduces new degrees of freedom.
The quantum corrections associated with these new degrees of freedom tend to spoil
the delicate balance achieved by the Standard Model in the flavor sector: mainly the
strong suppression of Flavor Changing Neutral Currents (FCNC) and the presence of
a single CP-violating parameter, the phase δCKM (besides the poorly understood θQCD

parameter).
The latter property has been successfully verified in recent years. A useful tool

to describe these experimental results is the unitary triangle. We refer the reader
to Section A.3.4 of Appendix Appendix A for the definition of this triangle in the
context of the Standard Model and we give here in Fig. 12.1 the experimental status
in 2005. The parameters ρ and η appear in the Wolfenstein parametrization [379] of
the Cabibbo–Kobayashi–Maskawa matrix:

VCKM ∼


1− 1

2λ
2 λ Aλ3(ρ− iη)

−λ 1− 1
2λ

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 (12.1)

The fact that all experimental data available are consistent with a small region
with nonvanishing η shows that CP is violated and that its violation is consistent with
a single origin, the phase of the CKM matrix.
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Fig. 12.1 Unitarity triangle and the experimental limits obtained in 2005 [76].

We note that the question of CP violation is intimately connected with the question
of mass. For example, the condition for CP violation in the Standard Model may be
summarized as (see (A.171) of Appendix Appendix A)

(m2
t −m2

c)(m
2
t −m2

u)(m
2
c −m2

u)(m
2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d)JCKM �= 0,
(12.2)

which clearly involves the fermion mass spectrum besides the complex phases encap-
sulated in the quantity JCKM. CP violation has been a recurring theme in the last
chapters. We know that all experimental results are in agreement with the CKM
framework of the Standard Model. On the other hand, we expect other sources of CP
violation to explain how baryon number was generated in the Universe. This is one of
the basis for expecting physics beyond the Standard Model.

The natural procedure to account for the diversity of fermion masses is to introduce
family symmetries. Such symmetries are not observed in the spectrum and thus must
be broken at some large scale. A possible hint about this scale may be found in the
seesaw mechanism for neutrino masses. In any case, fine tuning arguments require us
to discuss such symmetries in a supersymmetric context.

But supersymmetry introduces many new fields, in particular sfermions, and thus
many new sources of FCNC and CP violation. As discussed below [217], a generic
extension has 44 CP-violating phases! This poses a severe problem and ways to con-
trol these sources have to be devised. There is thus a necessary connection between
the discussion of supersymmetry breaking and the resolution of the (s)fermion mass
problem.
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In a supersymmetric framework, the Yukawa coupling matrices appear in the
superpotential

W (3) = ΛdijQi ·H1D
c
j + Λuij

Qi ·H2U
c
j + ΛeijLi ·H1E

c
j , (12.3)

generalizing the one-family superpotential considered in (5.2) of Chapter 5.
If we organize quark and lepton fields in columns associated with family and lines

associated with Standard Model quantum numbers

u c t
d s b
e µ τ
νe νµ ντ

we can distinguish

• vertical symmetries, such as the symmetries of the Standard Model or grand
unification; such symmetries may be advocated to explain the intragenerational
hierarchies of masses. Infrared fixed points or grand unified relations provide
examples of how such vertical symmetries can be used.

• horizontal (or family) symmetries; such symmetries address the question of
intergenerational hierarchies, in particular the question of why the first family
is lighter than the second which is lighter than the third.

We will review the possible uses of both types of symmetries in what follows. Before
doing this, we will recall where we stand experimentally to try to evaluate the serious-
ness of the mass problem in the context of supersymmetric extensions of the Standard
Model.

We conclude this section by computing, as promised, the number of independent
phases in a generic supersymmetric Standard Model. The three Yukawa 3×3 complex
matrices in (12.3) involve 3 × 9 complex parameters. Similarly for the A-terms. The
five 3×3 hermitian mass-squared sfermion masses involve 5×3 real and 5×3 complex
parameters. Finally in the gauge sector, we count four real parameters (g1, g2, g3 and
θQCD) and three complex (M1,M2,M3); in the Higgs sector, two real (m2

H1
,m2

H2
)

and two complex (µ,Bµ) parameters. In total, 95 real parameters and 74 imaginary
phases.

We have not yet taken into account the possible field redefinitions. We follow the
method already used in Section 7.7 of Chapter 7: the various couplings are spurion
fields that break the global symmetry U(3)5 × U(1)′ × U(1)′R (the charges under the
latter two symmetries are given in Table 7.4 of Chapter 7) into U(1)B×U(1)L. We can
thus remove 15 complex parameters and 15 phases. We are left with 80 real parameters
and 44 imaginary phases.

12.1.1 The supersymmetric CP problem

When we consider supersymmetric extensions of the Standard Model, new sources of
CP violation appear both in flavor diagonal and flavor violating interactions.

We have encountered the first case when we discussed the neutron electric dipole
moment in Section 7.7 of Chapter 7. Even in a universal model (with two residual
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CP violating phases ϕA,B), one computes a neutron electric dipole moment of the
order of

dN ∼ 2
(
100 GeV

m̃

)2

sinϕA,B × 10−23ecm, (12.4)

which misses the experimental bound [144] by two orders of magnitude for m̃ ∼ 100
GeV and ϕA,B ∼ 1.

As for flavor violating interactions, sfermion mixing leads to new sources of
FCNC processes both CP conserving and CP violating. It has become customary to
parametrize these flavor violations in the so-called mass insertion approximation [219].
The idea is to work in the basis for fermion and sfermion states where all couplings
to neutral gauginos are diagonal: flavor violating effects appear through the nondiag-
onality of mass matrices for sfermions of the same electric charge. Denoting by m̃2δ
such nondiagonal terms (m̃ is an average sfermion mass), one may parametrize the
main CP conserving and CP violating flavor violations by considering only the first
term in an expansion in the δ matrix elements.

Thus, writing the squark mass matrix obtained in Section 5.3.3 of Chapter 5 as

M̃2
q =

 M̃2
q,LL M̃2

q,LR

M̃2
q,RL M̃2

q,RR

 (12.5)

where each entry is a 3× 3 matrix in flavor space, we introduce

(δqMN )ij =
(
V q
M M̃2

q,MN V q†
N

)
ij
/m̃2 (12.6)

where M,N ∈ {L,R}. In this parametrization, gluino–quark–squark couplings are
diagonal but squark mass matrices are not. If V q was equal to Ṽ q

L,R, δ
q
MN would be

diagonal1.
We illustrate how these parameters are constrained by the experimental data on

εK : εK = (2.28± 0.02)× 10−3eiπ/4.
The supersymmetric contribution to εK is dominated by box diagrams involving

s̃
L,R

and d̃
L,R

squarks in the loop. Assuming mg̃ = mq̃ ≡ m̃, we obtain for the
contributions of the first two families [170]:

εK∆mK =
1√
2
Im 〈K0

∣∣H∆S=2
eff

∣∣ K̄0〉 (12.7)

=
5α2

3

162
√
2
f2KmK

m̃2

[(
mK

ms +md

)2

+
3
25

]
Im
[(
δdLL

)
12

(
δdRR

)
12

]
.

Thus

(εK∆mK)
SUSY

(εK∆mK)
EXP = 4× 106

(
500 GeV

m̃

)2

Im
[(
δdLL

)
12

(
δdRR

)
12

]
. (12.8)

1In Chapter 6, Section 6.7, we had passed over the fact that there are different rotation matrices
Ṽ qL and Ṽ qR for L and R squarks.
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More precise limits are given in Table 12.1. One sees that the experimental constraint
imposes fine tunings on the imaginary part of

(
δdLL

)
12

(
δdRR

)
12 of a few parts to 108.

The constraint on the real part arising from ∆mK = 2Re 〈K0
∣∣H∆S=2

eff

∣∣ K̄0〉 is less
stringent.

As for the ∆F = 1 processes, experimental data on ε′ and B(B → Xsγ) put more
stringent limits on δdLR than on δdLL. In the case of ε′, this is because of a cancellation
between the contributions of the box and the penguin diagrams to δdLL. In the case
of b → sγ, the helicity flip needed with a δdLR mass insertion is found in the internal
gluino line, which leads to an enhancement factor of mg̃/mb over the amplitude with
a δdLL insertion.

We give also in Table 12.1 limits on the flavor-conserving CP-violating mass
insertions

(
δu,dLR

)
11

which arise from the limit on the electric dipole moment of the

neutron already discussed at the end of Chapter 7: dN ≤ 6.3 × 10−26 e cm. Indeed,
the corresponding contribution is [170] dN = (4dd − du)/3 with

du =
e

27π
αs
m̃
Im (δuLR)11 , dd = − e

54π
αs
m̃
Im
(
δdLR

)
11 , (12.9)

in the limit mg̃ = mq̃ ≡ m̃.

12.1.2 Supersymmetry breaking versus flavor dynamics

Obviously the spectrum of masses and mixing angles in the supersymmetric sector
plays a key rôle in the solution to the supersymmetric FCNC and CP problem.

If we go to the basis of squark mass eigenstates, we have for example

(
δdLL

)
12 =

δm2
Q

m2
Q

∣∣KdL
12

∣∣ , (
δdRR

)
12 =

δm2
D

m2
D

∣∣KdR
12

∣∣ , (12.10)

where δmQ(D) is the mass difference between the two left (right) down squarks and
K

dL(R)
12 the gluino couplings to left (right) handed down quarks and squarks.
We have seen in Section 6.7 of Chapter 6 that there are three possible solutions to

the supersymmetric flavor problem which requires small mass insertions:
• universality (e.g. δm2

Q � m2
Q);

• effective supersymmetry (e.g. m2
Q �M2

W
);

• quark-squark alignment (e.g.
∣∣Kd

12

∣∣� 1);
Regarding CP violations specifically, an approximate CP symmetry which would
ensure all CP-violating phases to be small is no longer a valid possibility since the
phase measured in B → ψKS is of order one [136,137].

A general discussion of these issues relies on two scales: the scale Λ
S
of super-

symmetry breaking and Λ
F
the scale of flavor dynamics. If Λ

F
� Λ

S
, one expects a

sparticle spectrum which is approximately flavor-free. Universality is thus favored. On
the other hand, if Λ

F
≤ Λ

S
, supersymmetry breaking and flavor dynamics are inti-

mately connected: one has to resort to other solutions such as heavy supersymmetric
partners or alignment.

We now discuss models illustrating the different possibilities.
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Table 12.1 Experimental constraints on mass insertions parameters coming from experi-
mental data on flavor-changing CP-conserving and CP-violating interactions [143, 170]. One
assumes mg̃ = mq̃ = 500 GeV.

∆mK

√∣∣∣Re (δdLL)212∣∣∣ 4.6× 10−2√∣∣∣Re (δdLR)212∣∣∣ for ∣∣(δdLR)12∣∣� ∣∣(δdRL)12∣∣ 2.8× 10−3√∣∣∣Re (δdLR)212∣∣∣ for ∣∣(δdLR)12∣∣ = ∣∣(δdRL)12∣∣ 2.8× 10−2

√∣∣Re (δdLL)12 (δdRR)12∣∣ 9.6× 10−4

εK

√∣∣∣Im (δdLL)212∣∣∣ 6.1× 10−3√∣∣∣Im (δdLR)212∣∣∣ for ∣∣(δdLR)12∣∣� ∣∣(δdRL)12∣∣ 3.7× 10−4√∣∣∣Im (δdLR)212∣∣∣ for ∣∣(δdLR)12∣∣ = ∣∣(δdRL)12∣∣ 3.7× 10−3

√∣∣Im (δdLL)12 (δdRR)12∣∣ 1.3× 10−4

B0 − B̄0

√∣∣∣Re (δdLL)213∣∣∣ 9.8× 10−2√∣∣∣Re (δdLR)213∣∣∣ for ∣∣(δdLR)13∣∣ = ∣∣(δdRL)13∣∣ 3.3× 10−2

√∣∣Re (δdLL)13 (δdRR)13∣∣ 1.8× 10−2

ε′/ε
∣∣Im (δdLL)12∣∣ 4.8× 10−1

∣∣Im (δdLR)12∣∣ for ∣∣(δdLR)12∣∣ = ∣∣(δdRL)12∣∣ 2.0× 10−5

b→ sγ
∣∣(δdLL)23∣∣ 8.2∣∣(δdLR)23∣∣ for ∣∣(δdLR)23∣∣ = ∣∣(δdRL)23∣∣ 1.6× 10−2

dN
∣∣Im (δdLR)11∣∣ 1.8× 10−6

∣∣Im (δuLR)11
∣∣ 3.6× 10−6
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12.1.3 Minimal flavor violation

In the case where Λ
F

� Λ
S
, one may expect that the Yukawa couplings are the

only source of flavor and CP violation. This is the so-called minimal flavor violation
hypothesis [93].

Let us consider again the gauge group U(3)5 of unitary transformations that com-
mutes with the gauge symmetry group. One may write it as

SU(3)QL
× SU(3)UR

× SU(3)DR
× SU(3)LL

× SU(3)ER

× U(1)B × U(1)L × U(1)Y × U(1)DE × U(1)E

where the horizontal nonabelian SU(3) symmetries refer to the different types of
fermions (i.e. different sets of gauge quantum numbers) and U(1)DE transforms only
DR and ER (in the same way) whereas U(1)E transforms only ER. This symmetry
is broken by the Yukawa couplings (12.3). As usual, one may restore it by treating
the Yukawa couplings as spurion fields transforming under SU(3)QL

× SU(3)UR
×

SU(3)DR
× SU(3)LL

× SU(3)ER
as

Λu ∼ (3, 3̄,1;1,1), Λd ∼ (3,1, 3̄;1,1), Λ� ∼ (1,1,1;3, 3̄). (12.11)

One may note that the leading flavor-changing corrections arise from ΛuΛ†
u ∼ (8,1,1;

1,1) since
(
ΛuΛ†

u

)
ij
∼ λ2tV

u
Li3V

u∗
Lj3 (in the case of large tanβ, one should also include

ΛdΛ
†
d).
One may, in this context, discuss corrections to the soft supersymmetry break-

ing parameters. We generalize the squark mass matrix formulas (5.53) and (5.54) of
Chapter 5 to include flavor nonconservation

M̃2
u =

 M̃2
u,LL M̃2

u,LR

M̃2
u,RL M̃2

u,RR



=

M2
Q + ΛuΛ†

uv
2
2 + 1

6 (4M
2
W

−M2
Z
) cos 2β v2 (Au − µΛu cotβ)

v2 (Au − µΛu cotβ)† M2
U + Λ†

uΛuv22 + 2
3 (−M2

W
+M2

Z
) cos 2β

 ,

M̃2
d =

 M̃2
d,LL M̃2

d,LR

M̃2
d,RL M̃2

d,RR



=

M2
Q + ΛdΛ†

dv
2
1 − 1

6 (2M
2
W

+M2
Z
) cos 2β v1 (Ad − µΛd tanβ)

v1 (Ad − µΛd tanβ)† M2
D + Λ†

dΛdv
2
1 + 1

3 (M
2
W

−M2
Z
) cos 2β

 .
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The soft terms are defined by (cf. (5.55) of Chapter 5)

Lsoft = −
(
ũ∗
iL

[
M2

Q

]
ij
ũjL + d̃∗

iL

[
M2

Q

]
ij
d̃jL

)
− ũ∗

iR

[
M2

U

]
ij
ũjR − d̃∗

iR

[
M2

D

]
ij
d̃jR

−
(
q̃iL ·H1 [Ad]ij d̃

∗
jR + q̃iL ·H2 [Au]ij ũ

∗
jR + h.c.

)
. (12.12)

Now, using the transformation properties of the spurions, one may easily infer that
the leading corrections to these soft terms are as follows [93]

M2
Q = m̃2

(
a1 + b1ΛuΛ†

u + b2ΛdΛ
†
d + b3ΛdΛ

†
dΛuΛ†

u + b4ΛuΛ†
uΛdΛ

†
d

)
,

M2
U = m̃2 (a2 + b5Λ†

uΛu

)
,

M2
D = m̃2

(
a3 + b6Λ

†
dΛd

)
, (12.13)

Au = A
(
a4 + b7ΛdΛ

†
d

)
Λu,

Ad = A
(
a5 + b8ΛuΛ†

u

)
Λd.

At tree level (all bi vanish), one recovers universality. Other terms arise through quan-
tum corrections (see, for example, Fig. 12.2 for b1 or b2). We note that the condition
Λ

F
� Λ

S
is rather constraining, especially in the case of gravity mediation: it imposes

that the high energy dynamics up to scale Λ
S
satisfies minimal flavor violation.

In the case of minimal flavor violation, the unitarity triangle may be determined
on the basis of |Vub/Vcb|, γ, ACP

(
B → J/ΨK(∗)), β (from BB → D0h0), α and

∆ms/∆md [58,139]. We see from Fig. 12.3 that basically the same region is obtained
as in the Standard Model. One may then extract upper bounds on new physics effects.

12.1.4 Alignment: family symmetries

An alternative way to solve the supersymmetric flavor problem is to make the case for
small mixing angles. Indeed, a remarkable feature of the CKM mixing matrix (12.1)
is its hierarchical structure: mixing angles appear in increasing powers of the small
coupling λ ≡ sin θc ∼ 0.22. One may go a step further since a hierarchical pattern is
also observed among the masses of the quarks and the charged leptons. For example,

Q

m2

Uc (Dc)

Q

Λu(d) Λ+
u(d)

Uc* (D c* ) 

*

~

Fig. 12.2 Radiative contribution to M2
Q through squark field loops.
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–1
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0

0.5

1

–1 –0.5
ρ

Fig. 12.3 Selected region in (ρ̄, η̄) plane in the case of the minimal flavor violation extension
of the Standard Model [139].

when one renormalizes the quark and charged lepton masses up to the scale of grand
unification, one observes the following hierarchical structure:

mu : mc : mt ∼ λ8 : λ4 : 1
md : ms : mb ∼ λ4 : λ2 : 1 (12.14)
me : mµ : mτ ∼ λ4 : λ2 : 1

where only orders of magnitude are given2. One may extract for future use from (12.14)
the following constraint

mdmsmb

memµmτ
∼ O(1). (12.15)

The obvious question is whether one can explain such structures with the help of a
family or horizontal symmetry.

How such a symmetry would work was explained by C. Froggatt and H. Nielsen
[167, 168] more than 20 years ago, when they proposed an illustrative example which
remains the prototype of such models. They assume the existence of a symmetry which
requires some quark and lepton masses to be zero: a finite mass is generated at some
order in a symmetry breaking interaction.

2In other words, constants of order one are not written explicitly; because the value of λ is not
very small compared to one, the exponents in (12.14) are to be understood up to one unit.
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Let us illustrate here this line of reasoning on an example [44]. We consider an
abelian gauge symmetry U(1)X which forbids any renormalizable Yukawa coupling
except the top quark coupling. Hence the Yukawa coupling matrix Λu in (12.3) has
the form:

Λu =

0 0 0
0 0 0
0 0 1

 (12.16)

where 1 in the last entry means a matrix element of order one. The presence of such
a nonzero entry means that the charges under U(1)X obey the relation:

xQ3 + xUc
3
+ xH2 = 0 (12.17)

whereas similar combinations for the other field are nonvanishing and prevent the
presence of a nonzero entry elsewhere in the matrix Λu.

We assume that this symmetry is spontaneously broken through the vacuum
expectation value of a field θ of charge xθ normalized to −1: 〈θ〉 �= 0. The pres-
ence of nonrenormalizable terms of the form QiU

c
jH2(θ/M)nij induces in the effective

theory below the scale of U(1)X breaking an effective Yukawa matrix of the form:

Λu =

λn11 λn12 λn13

λn21 λn22 λn23

λn31 λn32 1

 (12.18)

where λ = 〈θ〉/M and

nij = xQi
+ xUc

j
+ xH2 (12.19)

(n33=0). Such nonrenormalizable interactions may arise through integrating out heavy
fermions of mass M as in the Froggatt–Nielsen model or appear if the underlying
theory incorporates gravity, e.g. in string theories, in which case the scale M is the
Planck scale m

P
.

We note however that the form (12.18) is valid only if all nij are positive. If one
nij is strictly negative, the corresponding entry vanishes: barring nonperturbative
effects, fields appear only in the superpotential with positive exponents and holo-
morphicity prevents us from using θ∗ in the superpotential (and thus from writing a
term of the form QiU

c
jH2(θ∗/M)−nij ). Such zero entries are thus called holomorphic

zeros3.

3Alternatively, one may introduce a vectorlike couple of scalars θ and θ̄ with opposite U(1)X
charges ±1 [233]. They acquire equal vacuum expectation values along a D-flat direction and we may
write λ ≡ 〈θ〉/M = 〈θ̄〉/M . In this case, there are no holomorphic zeros and (Λu)ij ∼ λ|nij |.
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Let us denote for example the X-charges of the standard supermultiplets as given
in Table 12.2 (we assume that 3a8 + b8 > a3 + b3 > 0 and 3a8 + b8 > a3 + b3 > 0 and
similarly for b3,8 replaced by c3,8).

Then the CKM matrix reads [43]

V =


1 λ2a3 λ3a8+a3

λ2a3 1 λ3a8−a3

λ3a8+a3 λ3a8−a3 1


. (12.20)

One has in particular VusVcb = Vub. As for the mass ratios, one finds (use the result
proven in Exercise 1)

mu

mt
∼ λ3(a8+b8)+a3+b3 ,

mc

mt
∼ λ3(a8+b8)−a3−b3

md

mb
∼ λ3(a8+c8)+a3+c3 ,

ms

mb
∼ λ3(a8+c8)−a3−c3 . (12.21)

For example, if a3 = c3, one obtains

Vus ∼ λ2a3 ∼
√
md

ms
, (12.22)

which is a classical relation [175].
It might seem on this example that, by choosing the charges of the different fields,

one may accommodate any observed pattern of masses. There are however constraints
on the symmetry: in particular those coming from the cancellation of anomalies. This
is indeed one of the reasons to choose a local gauge symmetry. We will see that this
gives very interesting constraints on the model.

Table 12.2 U(1)X charges for the standard supermultiplets (e.g. the charge ofQ3 is a0−2a8).

Q1 Q2 Q3

x = a0+ a8 + a3 a8 − a3 −2a8
U c Cc T c

x = b0+ b8 + b3 b8 − b3 −2b8
Dc Sc Bc

x = c0+ c8 + c3 c8 − c3 −2c8
L1 L2 L3

x = d0+ d8 + d3 d8 − d3 −2d8
Ec M c T c

x = e0+ e8 + e3 e8 − e3 −2e8
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Anomalies

In order to make sense of the horizontal symmetry, one must make sure that the
anomalies are cancelled: not only the anomaly CX corresponding to the triangle dia-
gram with three U(1)X gauge bosons, but also the mixed anomalies Ci corresponding
with triangle diagrams with one U(1)X gauge boson and two gauge bosons of the Stan-
dard Model gauge symmetry: U(1)Y , SU(2) and SU(3) for i ∈ {1, 2, 3}, respectively.

Since they are linear in the U(1)X charges the coefficients Ci depend only on the
family independent part of the quantum numbers, respectively a0, b0, c0, d0 and e0
for Qi, U c

i , D
c
i , Li and Ec

i . They read explicitly

C1 = a0 + 8b0 + 2c0 + 3d0 + 6e0 + h1 + h2

C2 = 3(3a0 + d0) + h1 + h2 (12.23)

C3 = 3(2a0 + b0 + c0)

where h1 and h2 are the x-charges of H1 and H2.
On the other hand, mass ratios are also given by the X-charges. In the example

given above, which is fairly general, one finds:

mumcmt = v32 detΛu ∼ λ3(a0+b0+h2) (12.24)

mdmsmb = v31 detΛd ∼ λ3(a0+c0+h1) (12.25)

memµmτ = v31 detΛe ∼ λ3(d0+e0+h1). (12.26)

Anomaly cancellation would require C1 = C2 = C3 = · · · = 0 which gives, after a
redefinition of the x charge (see Exercise 2), a0 + b0 = a0 + c0 = 0 and 3(d0 + e0) =
−(h1 + h2). Then comparing (12.24) and (12.25) with the data (12.14) yields h1 = 2
and h2 = 4. The last equation (12.26) is then incompatible with the same data. This
shows that the observed pattern of masses is incompatible with a nonanomalous family
symmetry: the U(1)X symmetry must be anomalous [33, 44, 233]. Is this the end of
the story?

Before we address this question, let us derive from the mass spectrum (12.14) a
relation among the anomaly coefficients. We have

mdmsmb

memµmτ
= λ3(a0+c0−d0−e0) = λh1+h2−(C1+C2− 8

3C3)/2. (12.27)

Assuming the presence of a mu-term µH2 · H1 imposes that h1 + h2 = 0. Since the
data (12.15) imposes this ratio of masses to be of order one, one then finds:

C1 + C2 −
8
3
C3 = 0. (12.28)
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We have encountered in Section 10.4.5 of Chapter 10 a seemingly anomalous sym-
metry: in superstring models, there is a U(1) symmetry whose anomaly is compensated
by the four-dimensional version [116] of the Green–Schwarz mechanism [205]. This is
possible through the couplings of the gauge fields to a dilaton–axion–dilatino super-
multiplet: the anomalous terms that arise when we perform a gauge transformation
are cancelled by a Peccei–Quinn transformation of the axion. The necessary condition
for the cancellation of anomalies à la Green–Schwarz is

C1

k1
=

C2

k2
=

C3

k3
=

CX

kX
= δGS , (12.29)

where the ki are the Kač–Moody levels. Combined with the gauge unification condition
k1g

2
1(M) = k2g

2
2(M) = k3g

2
3(M) = kXg

2
X(M), this gives

tan2 θ
W
(M) =

g21(M)
g22(M)

=
k2
k1

=
C2

C1
. (12.30)

The relation (12.28) can now be discussed in this context. For example, in the
standard case where all the nonabelian symmetries appear at the same Kac–Moody
level, k2 = k3 and thus C2 = C3, we find:

C1 =
5
3
C2 (12.31)

and
sin2 θ

W
(M) =

3
8
. (12.32)

Thus, if the horizontal abelian symmetry is precisely the pseudo-anomalous U(1)X ,
observed hierarchies of fermion masses are compatible with the standard value of
sin2 θ

W
at gauge coupling unification (see (9.35)). And this result is obtained without

ever making reference to a grand unified gauge group (which is rarely present in
superstring models).

There is another advantage of working in the context of string models. Indeed,
in this case, the properties of the anomalous U(1)X are constrained. For example in
the case of the weakly coupled heterotic string model, the absolute normalization is
fixed [13] and

λ2 =
〈θ〉2
M2 =

g2

192π2
Tr X ∼ 10−2 to 10−1. (12.33)

Hence, one naturally obtains the small parameter (the Cabibbo angle) that was nec-
essary for the whole picture to make sense.

Let us stress, however, the main drawback of this approach. In all the preced-
ing formulas we have neglected factors of order one and discussed only the orders of
magnitude as powers of the small parameter λ ∼ sin θc ∼ 1/5. But since this is not
such a small parameter, the actual value of the factor of order one introduces some
uncertainties: for example λn/2 ∼ 3λn+1.

Now, returning to our original motivation: does this help to align sfermion and
fermion mass eigenstates? Obviously, sfermion masses are also constrained by the
symmetry U(1)X ( [272,273,297]).
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Let us consider the LL squark mass matrix. If xQi
> xQj

, the following mass term
is allowed:

m̃2q̃iq̃
∗
j

(
θ

M

)xQi
−xQj

+ h.c. (12.34)

where m̃ is an overall supersymmetry-breaking scale, and if xQj > xQi ,

m̃2q̃iq̃
∗
j

(
θ†

M

)xQj
−xQi

+ h.c. (12.35)

(the use of hermitian conjugates of fields is allowed since this is a supersymmetry-
breaking contribution).

Thus, after U(1)X breaking, this yields m̃2q̃iq̃
∗
jλ

|xQi
−xQj

| +h.c., where λ = 〈θ〉/M =
〈θ†〉/M and the scalar squared mass matrix reads:

M̃2
q,LL ∼ m̃2


1 λ|xQ1−xQ2 | λ|xQ1−xQ3 |

λ|xQ2−xQ1 | 1 λ|xQ2−xQ3 |

λ|xQ3−xQ1 | λ|xQ3−xQ2 | 1


. (12.36)

Thus the squark mass matrices are approximately diagonal: the family symmetry
induces a partial alignment [297].

One finds for the parameters introduced in (12.6)

(δqLR)ij ∼
√
mqimqj

m̃
� 1, (12.37)

and more constraining conditions for δLL and δRR. Typically [125],(
δd12
)2

= (xQ1 − xQ2)(xDc
1
− xDc

2
)
(
V Q
L

)
12

(
V Dc

L

)
12

md

ms
(12.38)

where the matrix elements on the right-hand side are to be renormalized down to low
energies where they tend to decrease.

This still gives some severe constraints on the models that do not seem to be satis-
fied without the presence of holomorphic zeros in the down quark mass
matrix [296].

Neutrino masses

The neutrino sector is specific since both Dirac and Majorana mass terms are allowed
for neutral leptons (see Appendix Appendix A, Section A.3). Introducing a right-
handed neutrino N

R
, we write the Dirac mass term as

LDirac = − m
D
ν̄
L
N

R
+ h.c. (12.39)

where m
D
arises through SU(2)×U(1) breaking and is of the order of the electroweak

scale. On the other hand, a Majorana mass term involves a single chirality. Standard
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Model gauge symmetry forbids such a term for the left-handed neutrino but not for
the right-handed neutrino:

LMajorana = − 1
2M(N c)

L
N

R
+ h.c. (12.40)

where M is not constrained by electroweak symmetry. The seesaw model [177, 383],
which represents the prototype of neutrino mass models in all theories which involve
large scales such as grand unified or superstring theories, includes both Dirac and
Majorana mass terms:

L = − 1
2 (νL

(N c)
L
)

 0 m
D

m
D

M


 (νc)

R

N
R

+ h.c. (12.41)

In the case where M � m
D
, the eigenvalues are respectively:

m1 ∼
m2

D

M
, m2 ∼M (12.42)

and, due to the presence of a zero in the matrix, the mixing angle is given in terms of
mass ratios:

tan θ ∼
√
m1

m2
∼ m

D

M
. (12.43)

We have discussed the case of one family but the discussion easily generalizes to
the three-family case with a mass matrix of the form:

M =

 0 M
D

M
D
M

M

 , (12.44)

where the Dirac and Majorana mass matrices, respectively M
D
and M

M
, are 3 × 3

matrices. Then the light neutrino mass matrix reads:

Mν = −M
D
M−1

M
MT

D
. (12.45)

Of course, given the freedom we have on each of the specific entries in M
D
and M

M
,

seesaw models really form a class of models and one has to go to specifics in order to
discuss their phenomenology. This is precisely what a family symmetry provides us
with.

In order to discuss neutrino masses in this context, we introduce one right-handed
neutrino for each family: N c

i , i ∈ {1, 2, 3}. The neutrino Dirac mass term is generated
from the nonrenormalizable couplings:

Li ·H2N
c
j

(
θ

M

)pij

(12.46)
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where Li is the left-handed lepton doublet and pij = xLi
+ xNc

j
+ xH2 is assumed to

be positive (otherwise, this coupling is absent, which leads to a supersymmetric zero
in the mass matrix). This yields a Dirac mass matrix:

(M
D
)ij ∼ 〈H2〉

( 〈θ〉
M

) pij

. (12.47)

The entries of the Majorana matrix M
M

are generated in the same way, with
nonrenormalizable interactions of the form:

MN c
iN

c
j

(
θ

M

)qij

(12.48)

giving rise to effective Majorana masses

(M
M
)ij ∼M

( 〈θ〉
M

) qij

(12.49)

provided that qij = xNc
i
+ xNc

j
is a positive integer (see above).

The order of magnitude of the entries of the light neutrino mass matrix
Mν = −M

D
M−1

M MT
D
are therefore fixed by the U(1)X symmetry.

Let us suppose that all entries of M
D
and M

M
are nonzero (i.e. pij , qij ≥ 0); one

obtains [43]:

(Mν)ij ∼
〈H2〉2
M

λxLi
+xLj

+2xH2 (12.50)

which leads to the following light neutrino masses and lepton mixing matrix:

mνi ∼
〈H2〉2
M

λ2xLi
+2xH2 , Uij ∼ λ|xLi

−xLj
|. (12.51)

One therefore finds that the neutrino spectrum is hierarchical. Moreover, the structure
of the lepton mixing matrix is very similar to the CKM matrix (12.1) with generically
small mixing angles: U2

ij ∼ mνi/mνj for mνi < mνj . This is in disagreement with the
experimental evidence for large angles both for µ− τ mixing (atmospheric neutrinos)
and µ− e mixing (solar neutrinos).

It would be wrong, however, to consider that a hierarchical spectrum is a generic
feature of this type of models. Indeed, one can work out models which allow for
degeneracies in the light neutrino spectrum [42]. It is easy to see that such degeneracies
are associated in these models with large mixings.

One may note that the situation in the neutrino sector might be very different
from the quark and charged lepton sector where one Yukawa coupling (the top) dom-
inates over all the rest, thus providing a clear starting point for the U(1)X symmetric
situation, summarized in (12.16). In the case of neutrinos, the U(1)X symmetry, even
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though it is abelian, may induce some degeneracies. Consider for example the following
matrix:

Mν =

 0 0 0
0 0 a

0 a 0

 (12.52)

where a is a number of order one. This pattern corresponds to the conservation of
a combination of lepton number à la Zeldovich-Konopinsky–Mahmoud ( [260, 386]):
indeed Le and Lµ + Lτ are separately conserved. It has two degenerate eigenvalues
and the corresponding diagonalizing matrix Rν has one large mixing angle:

Dν =

 0 0 0
0 −a 0
0 0 a

 Rν =


1 0 0

0 1√
2

1√
2

0 − 1√
2

1√
2

 (12.53)

where Dν = RT
νMνRν .

Of course, as soon as the U(1)X symmetry is broken, the vanishing entries in
(12.52) are filled by powers of the small parameter λ. This lifts the degeneracy at a
level which is fixed by the charges under the U(1)X symmetry.

The large mixing angles observed in the neutrino sector may also point towards a
nonabelian nature of the family symmetry, for example SU(3). This goes beyond the
scope of this book and we refer the reader to reviews on the subject such as [325].

12.1.5 Split supersymmetry

If one is ready to raise the mass of the supersymmetric particles to alleviate the flavor
and CP problem, one may wonder how far one can go. Obviously, the fine tuning prob-
lem becomes more acute. However, we will see in the next section that supersymmetric
theories have to deal with an even more severe problem of fine tuning associated with
the vacuum energy. This has recently led several groups to propose to set aside the
naturalness problem that was one of the bases of low energy supersymmetry: if the
supersymmetric spectrum is heavy enough, one may expect to ease problems with
flavor and CP violation, fast proton decay through dimension-5 operators, tight Higgs
mass limits etc.

The next issue is obviously the status of gauge coupling unification. Arkani-Hamed
and Dimopoulos [9] have shown that unification can still be achieved in a supersym-
metric model, now referred to as split supersymmetry [192], where all scalars but one
Higgs doublet are much heavier than the electroweak scale. Next comes the question
of a dark matter candidate: if the presence of such a “light” state is imposed on the
theory, this leaves hope to find some direct or indirect signal of this type of models at
high energy colliders.
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12.2 Cosmological constant
As is well known, the cosmological constant appears as a constant in Einstein’s
equations:

Rµν − 1
2gµνR = 8πG

N
Tµν + λgµν , (12.54)

where G
N

is Newton’s constant, Tµν is the energy–momentum tensor and Rµν the
Ricci tensor, which is obtained from the Riemann tensor measuring the curvature
of spacetime (see Appendix D). The cosmological constant λ is thus of the dimen-
sion of an inverse length squared. It was introduced by [127] in order to build a
static Universe model, its repulsive effect compensating the gravitational
attraction, but, as we will now see, constraints on the expansion of the Universe
impose for it a very small upper limit.

It is more convenient to work in the specific context of a homogeneous and isotropic
Friedmann–Lemâıtre universe, with a Robertson–Walker metric:

ds2 = dt2 − a2(t)
[

dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (12.55)

where a(t) is the cosmic scale factor, which is time dependent in an expanding or con-
tracting Universe . Implementing energy conservation into the Einstein equations then
leads to the Friedmann equation, which gives an expression for the Hubble parameter
H measuring the rate of the expansion of the Universe:

H2 ≡ ȧ2(t)
a2(t)

=
1
3
(λ+ 8πG

N
ρ)− k

a2
. (12.56)

In this equation, we use standard notation: ȧ is the time derivative of the cosmic
scale factor, ρ = T 0

0 is the energy density and the term proportional to k is a spatial
curvature term (see (12.55)). Note that the cosmological constant appears as a constant
contribution to the Hubble parameter.

Evaluating each term of the Friedmann equation at present time t0 allows for
a rapid estimation of an upper limit on λ (for a more precise determination see
Appendix D). Indeed, we have for the Hubble constant H0 i.e. the present value of the
Hubble parameter, H0 = h0 × 100 km.s−1Mpc−1 with h0 of order one, whereas the
present energy density ρ0 is certainly within one order of magnitude of the critical en-
ergy density ρc = 3H2

0/(8πGN
) = h20 2.10

−26 kg m−3; moreover the spatial curvature
term certainly does not represent presently a dominant contribution to the expan-
sion of the Universe. Thus, (12.56) considered at present time implies the following
constraint on λ:

|λ| ≤ H2
0 . (12.57)
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In other words, the length scale �Λ ≡ |λ|−1/2 associated with the cosmological constant
must be larger than the Hubble length �H0 ≡ cH−1

0 = h−1
0 1026 m, and thus be a

cosmological distance.
This is not a problem as long as one remains classical: �H0 provides a natu-

ral cosmological scale for our present Universe. The problem arises when one tries
to combine gravity with quantum theory. Indeed, from Newton’s constant and the
Planck constant h̄, we have seen that we can construct the Planck mass scale m

P
=√

h̄c/(8πG
N
) = 2.4 × 1018 GeV/c2. The corresponding length scale is the Planck

length

�
P
=

h̄

m
P
c
= 8.1× 10−35 m. (12.58)

The above constraint now reads:

�Λ ≡ |λ|−1/2 ≥ �H0 =
c

H0
∼ 1060 �

P
. (12.59)

In other words, there are more than 60 orders of magnitude between the scale associ-
ated with the cosmological constant and the scale of quantum gravity.

A rather obvious solution is to take λ = 0. This is as valid a choice as any other
in a pure gravity theory. Unfortunately, it is an unnatural one when one introduces
any kind of matter. Indeed, set λ to zero but assume that there is a nonvanishing
vacuum (i.e. ground state) energy: 〈Tµν〉 = ρvacgµν ; then the Einstein equations
(12.54) read

Rµν − 1
2gµνR = 8πG

N
Tµν + 8πG

N
ρvacgµν . (12.60)

The last term is interpreted as an effective cosmological constant (from now on,
we set h̄ = c = 1):

λeff = 8πG
N
ρvac ≡

Λ4

m2
P

. (12.61)

Generically, ρvac receives a nonzero contribution from symmetry breaking: for instance,
the scale Λ would be typically of the order of 100 GeV in the case of the electroweak
gauge symmetry breaking or 1 TeV in the case of supersymmetry breaking. But the
constraint (12.59) now reads:

Λ ≤ 10−30 m
P
∼ 10−3 eV. (12.62)

It is this very unnatural fine tuning of parameters (in explicit cases ρvac and thus Λ
are functions of the parameters of the theory) that is referred to as the cosmological
constant problem, or more accurately the vacuum energy problem.

The most natural reason why vacuum energy would be vanishing is a symmetry
argument. We have seen in Section 2.3 of Chapter 2 that global supersymmetry indeed
provides such a rationale. The problem is that, at the same time, supersymmetry
predicts equal boson and fermion masses and therefore needs to be broken. The amount
of breaking necessary to push the supersymmetric partners high enough not to have
been observed yet, is incompatible with the limit (12.62).
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Moreover, in the context of cosmology, we should consider supersymmetry in a
gravity context and thus work with its local version, supergravity. We have seen in
Section 6.3.1 of Chapter 6 that, in this context, the criterion of vanishing vacuum
energy is traded for one of vanishing gravitino mass. Local supersymmetry is then
absolutely compatible with a nonvanishing vacuum energy, preferably a negative one
(although possibly also a positive one). This is both a blessing and a problem: super-
symmetry may be broken while the cosmological constant remains small, but we have
lost our rationale for a vanishing, or very small, cosmological constant and fine tuning
raises again its ugly head.

In some supergravity theories, however, one may recover the vanishing vacuum
energy criterion.

Over the last few years, there has been an increasing number of indications that
the Universe is presently undergoing accelerated expansion. This appears to be a
strong departure from the standard picture of a matter-dominated universe. Indeed,
the standard equation for the conservation of energy,

ρ̇ = −3(p+ ρ)H, (12.63)

allows us to derive from the Friedmann equation (12.56), written in the case of a
Universe dominated by a component with energy density ρ and pressure p:

ä

a
= −4πGN

3
(ρ+ 3p). (12.64)

Obviously, a matter-dominated (p ∼ 0) Universe is decelerating. One needs instead a
component with a negative pressure.

A cosmological constant is associated with a contribution to the energy–momentum
tensor as in (12.60), (12.61):

Tµ
ν = Λ4δµν = (ρ,−p,−p,−p). (12.65)

The associated equation of motion is therefore

p = −ρ. (12.66)

It follows from (12.64) that a cosmological constant tends to accelerate expansion.
As explained in Appendix D, recent cosmological observation expressed in the

plane (ΩM , ΩΛ) leads to the constraint given in the plot of Fig. D.2. It is certainly
remarkable that a very diverse set of data singles out the same region in this parameter
space: ΩM ∼ 0.2 to 0.3 and ΩΛ ∼ 0.7 to 0.8.

This raises a new problem. Since matter and a cosmological constant evolve very
differently, why should they be of the same order at present times? Indeed, for a
component of equation of state p = wρ, we may rewrite (12.63) as

ρ̇

ρ
= −3 ȧ

a
(1 + w). (12.67)

Thus matter (p ∼ 0) energy density evolves as a−3 whereas a cosmological constant
stays constant, as expected. Why should they be presently of similar magnitude (see
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Fig. 12.4)? This is known as the cosmic coincidence problem. In order to avoid any
reference to us (and hence any anthropic interpretation, see below), we may rephrase
the problem as follows: why does the vacuum energy starts to dominate at a time tΛ
(redshift zΛ ∼ 1) which almost coincides with the epoch tG (redshift zG ∼ 3 to 5) of
galaxy formation?

12.2.1 Relaxation mechanisms

From the point of view of high energy physics, it is however difficult to imagine a
rationale for a pure cosmological constant, especially if it is nonzero but small com-
pared to the typical fundamental scales (electroweak, strong, grand unified, or Planck
scale). There should be some dynamics associated with this form of energy.

For example, we have seen in Chapter 10 that, in the context of string models,
any dimensionful parameter is expressed in terms of the fundamental string scale M

S

and of vacuum expectation values of scalar fields. The physics of the cosmological
constant would then be the physics of the corresponding scalar fields. Indeed, it is
difficult to envisage string theory in the context of a true cosmological constant. The
corresponding spacetime is known as de Sitter spacetime and has an event horizon (see
Appendix D). This is difficult to reconcile with the S-matrix approach of string theory
in the context of conformal invariance. More precisely, in the S-matrix approach, states
are asymptotically (i.e. at times t → ±∞) free and interact only at finite times: the
S-matrix element between an incoming set of free states and an outgoing set yields the
probability associated with such a transition. In string theory, the states are strings
and a diagram such as the one given in Fig. 10.5 of Chapter 10 gives a contribution
to the S-matrix element. But conformal invariance, which we noted in Chapter 10
to be a key element, imposes that the string world-sheet can be deformed at will:
this is difficult to reconcile with the presence of a horizon and the requirement of
asymptotically free states. Recent advances have been obtained in this domain by the
use of fluxes.
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Fig. 12.4 Evolution of radiation, matter and vacuum energy densities with temperature.
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Steven Weinberg [361] has constrained the possible mechanisms for the relaxation
of the cosmological constant by proving the following “no-go” theorem: it is not pos-
sible to obtain a vanishing cosmological constant as a consequence of the equations of
motion of a finite number of fields.

Indeed, let us consider N such fields ϕn, n = 1, . . . , N . In the equilibrium config-
uration these fields are constant and their equations of motion simply read

δL
δϕn

= 0. (12.68)

Remembering that λeff ∼ 〈Tµ
µ〉 where the energy-momentum tensor may be obtained

from the metric4, we see that the vanishing of the cosmological constant is a conse-
quence of the equations (12.68) if we can find N functions fn(ϕ) such that

2gµν
δL
δgµν

=
∑
n

δL
δϕn

fn(ϕ). (12.69)

This amounts to a symmetry condition, the invariance of the Lagrangian L under

δgµν = 2αgµν , δϕn = −αfn(ϕ). (12.70)

However, one can redefine the fields ϕn, n = 1, . . . , N , into σa, a = 1, . . . , N − 1, and
ϕ in such a way that the invariance reads

δgµν = 2αgµν , δσa = 0, δϕ = −α. (12.71)

The Lagrangian which satisfies this invariance is written

L =
√
Det (e2ϕgµν)L0(σ) = e4ϕ

√
|g| L0(σ) (12.72)

which does not provide a solution to the relaxation of the cosmological constant, as
can be seen by redefining the metric: ĝµν = e2ϕgµν (in the new metric, the field ϕ has
only derivative couplings).

Obviously, Weinberg’s no-go theorem relies on a series of assumptions: Lorentz
invariance, finite number of constant fields, possibility of globally redefining these
fields, etc.

An example of a relaxation mechanism is provided by the Brown–Teitelboim mech-
anism [53, 54] where the quantum creation of closed membranes leads to a reduction
of the vacuum energy inside. This is easier to understand on a toy model with a single
spatial dimension.

Let us thus consider a line and establish along it a constant electric field E0 > 0:
the corresponding (vacuum) energy is E2

0/2. Quantum creation of a pair of ±q-charged
particles (q > 0) leads to the formation of a region (between the two charges) where
the electric field is partially screened to the value E0− q and thus the vacuum energy
is decreased to the value (E0−q)2/2. Quantum creation of pairs in the new region will

4See equation (D.15).
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subsequently decrease the value of the vacuum energy. The process ends in flat space
when the electric field reaches the value E ≤ q/2 because it then becomes insufficient
to separate the pairs created.

In a truly three-dimensional universe, the quantum creation of pairs is replaced by
the quantum creation of membranes and the one-dimensional electric field is replaced
by a tensor field Aµνρ.There are two potential problems with such a relaxation of the
cosmological constant.

First, since the region of small cosmological constant originates from regions with
large vacuum energies, hence exponential expansion, it is virtually empty: matter has
to be produced through some mechanism yet to be specified. The second problem has
to do with the multiplicity of regions with different vacuum energies: why should we be
in the region with the smallest value? Such questions are crying for an anthropic type
of answer: some regions of spacetime are preferred because they allow the existence of
observers.

More generally, the anthropic principle approach can be sketched as follows. We
consider regions of spacetime with different values of tG (time of galaxy formation)
and tΛ, the time when the cosmological constant starts to dominate, i.e. when the
Universe enters a de Sitter phase of exponential expansion. Clearly galaxy formation
must precede this phase otherwise no observer (similar to us) would be able to witness
it. Thus tG ≤ tΛ. On the other hand, regions with tΛ � tG have not yet undergone
any de Sitter phase of reacceleration and are thus “phase-space suppressed” compared
with regions with tΛ ∼ tG. Hence the regions favored have tΛ

>∼ tG and thus ρΛ ∼ ρM .

12.2.2 Dark energy
In this section, we will take a slightly different route. We assume that some unknown
mechanism relaxes the vacuum energy to zero or to a very small value. We then
introduce some new dynamical component which accounts for the present observations.
Introducing dynamics generally modifies the equation of state (12.66) of this new
component of the energy density to the more general form with negative pressure5:

p = wρ, w < 0. (12.73)

For example, a network of light, nonintercommuting topological defects [343,355] gives
w = −n/3 where n is the dimension of the defect, i.e. 1 for a string and 2 for a domain
wall. The equation of state for a minimally coupled scalar field necessarily satisfies the
condition w ≥ −1.

Experimental data may constrain such a dynamical component, referred to in the
literature as dark energy, just as it did with the cosmological constant. For example,
in a spatially flat Universe with only matter and an unknown component X with
equation of state pX = wXρX , one obtains from (12.64) with ρ = ρM +ρX , p = wXρX
the following form for the deceleration parameter (see Section D.2.1 of Appendix D)

q0 = − ä0a0
ȧ20

=
ΩM

2
+ (1 + 3wX)

ΩX

2
, (12.74)

where ΩX = ρX/ρc. Supernovae results give a constraint on the parameter wX .

5We recall that nonrelativistic matter (dust) has an equation of state p ∼ 0 whereas p = ρ/3
corresponds to radiation.
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Another important property of dark energy is that it does not appear to be clus-
tered (just as a cosmological constant). Otherwise, its effects would have been detected
locally, as for the case of dark matter.

A particularly interesting candidate in the context of fundamental theories is a
scalar6 field φ slowly evolving in its potential V (φ). Indeed, since the corresponding
energy density and pressure are, for a minimally coupled scalar field,

ρφ = 1
2 φ̇

2 + V (φ) (12.75)

pφ = 1
2 φ̇

2 − V (φ), (12.76)

we have

wφ =
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
. (12.77)

If the kinetic energy is subdominant (φ̇2/2� V (φ)), we clearly obtain −1 ≤ wφ ≤ 0.
A consequence is that the corresponding speed of sound cs = δp/δρ is of the order

of the speed of light: the scalar field pressure resists gravitational clustering.
We will see below that the scalar field must be extremely light. Two situations

have been considered:

• A scalar potential slowly decreasing to zero as φ goes to infinity ( [63, 322, 365]).
This is often referred to as quintessence or runaway quintessence.

• A very light field (pseudo-Goldstone boson) which is presently relaxing to its
vacuum state [166].

In both cases one is relaxing to a position where the vacuum energy is zero. This is
associated with our assumption that some unknown mechanism wipes the cosmological
constant out. We discuss the two cases in turn.

Runaway quintessence

A runaway potential is frequently present in models where supersymmetry is dynami-
cally broken. We have seen that supersymmetric theories are characterized by a scalar
potential with many flat directions, i.e. directions φ in field space for which the
potential vanishes. The corresponding degeneracy is lifted through dynamical super-
symmetry breaking. In some instances (dilaton or compactification radius), the field
expectation value 〈φ〉 actually provides the value of the strong interaction coupling.
Then at infinite φ value, the coupling effectively goes to zero together with the super-
symmetry breaking effects and the flat direction is restored: the potential decreases
monotonically to zero as φ goes to infinity.

Let us take the example of supersymmetry breaking by gaugino condensation in
effective superstring theories. We recall briefly the discussion of Section 7.4.2. The
value g0 of the gauge coupling at the string scale M

S
is provided by the vacuum

expectation value of the dilaton field s (taken to be dimensionless by dividing by m
P
)

6A vector field or any field which is not a Lorentz scalar must have settled down to a vanishing
value, otherwise, Lorentz invariance would be spontaneously broken.
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present among the massless string modes: g20 = 〈s〉−1. If the gauge group has a one-
loop beta function coefficient b > 0, then the running gauge coupling becomes strong
at the scale

Λ ∼M
S
e−8π2/(bg20) =M

S
e−8π2s/b. (12.78)

At this scale, the gaugino fields are expected to condense. Through dimensional analy-
sis, the gaugino condensate 〈λ̄λ〉 is expected to be of order Λ3. Terms quadratic in the
gaugino fields thus yield in the effective theory below condensation scale a potential
for the dilaton:

V ∼
∣∣〈λ̄λ〉∣∣2 ∝ e−48π2s/b. (12.79)

The s-dependence of the potential is of course more complicated and one usually looks
for stable minima with vanishing cosmological constant. But the behavior (12.78) is
characteristic of the large s region and provides a potential slopping down to zero
at infinity as required in the quintessence approach. Similar behavior is observed for
moduli fields whose vev describes the radius of the compact manifolds which appear
from the compactification from 10 or 11 dimensions to four in superstring theories.

Let us take therefore the example of an exponentially decreasing potential. More
explicitly, we consider the following action

S =
∫

d4x
√
g

[
−m2

P

2
R+

1
2
∂µφ∂µφ− V (φ)

]
, (12.80)

which describes a real scalar field φ minimally coupled with gravity and the self-
interactions of which are described by the potential:

V (φ) = V0e
−λφ/m

P , (12.81)

where V0 is a positive constant.
The energy density and pressure stored in the scalar field are given by (12.75) and

(12.76). We will assume that the background (matter and radiation) energy density
ρB and pressure pB obey a standard equation of state

pB = wBρB . (12.82)

If one neglects the spatial curvature (k ∼ 0), the equation of motion for φ simply
reads

φ̈+ 3Hφ̇ = −dV

dφ
, (12.83)

with

H2 =
1

3m2
P

(ρB + ρφ). (12.84)

This can be rewritten as

ρ̇φ = −3Hφ̇2. (12.85)

We are looking for scaling solutions, i.e. solutions where the φ energy density scales as
a power of the cosmic scale factor: ρφ ∝ a−nφ or ρ̇φ/ρφ = −nφH (nφ being constant).
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In this case, one easily obtains from (12.75), (12.76), and (12.85) that the φ field obeys
a standard equation of state

pφ = wφρφ, (12.86)

with

wφ =
nφ
3

− 1. (12.87)

Hence

ρφ ∝ a−3(1+wφ). (12.88)

If one can neglect the background energy ρB , then (12.84) yields a simple differential
equation for a(t) which is solved as:

a ∝ t2/[3(1+wφ)]. (12.89)

Since φ̇2 = (1 + wφ)ρφ ∼ t−2, one deduces that φ varies logarithmically with time.
One then easily obtains from (12.83,12.84) that

φ = φ0 +
2
λ
m

P
ln(t/t0). (12.90)

and7

wφ =
λ2

3
− 1, (12.91)

It is clear from (12.91) that, for λ sufficiently small, the field φ can play the rôle of
quintessence. We note that, even if we started with a small value φ0, φ reaches a value
of order m

P
.

But the successes of the standard Big Bang scenario indicate that clearly ρφ cannot
have always dominated: it must have emerged from the background energy density
ρB . Let us thus now consider the case where ρB dominates. It turns out that the
solution just discussed with ρφ � ρB and (12.91) is a late time attractor [218] only
if λ2 < 3(1 + wB). If λ2 > 3(1 + wB), the global attractor turns out to be a scaling
solution [87,160,365] with the following properties:

Ωφ ≡ ρφ
ρφ + ρB

=
3
λ2

(1 + wB) (12.92)

wφ = wB . (12.93)

The second equation (12.93) clearly indicates that this does not correspond to a dark
energy solution (12.73).

The semirealistic models discussed earlier tend to give large values of λ and thus
the latter scaling solution as an attractor. For example, in the case (12.79) where the
scalar field is the dilaton, λ = 48π2/b with b = 90 for a E8 gauge symmetry down
to b = 9 for SU(3). Moreover [161], on the observational side, the condition that

7Under the condition λ2 ≤ 6 (wφ ≤ 1 since V (φ) ≥ 0).
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ρφ should be subdominant during nucleosynthesis (in the radiation-dominated era)
imposes to take rather large values of λ. Typically requiring ρφ/(ρφ + ρB) to be then
smaller than 0.2 imposes λ2 > 20.

Ways to obtain a quintessence component have been proposed however. Let us
sketch some of them in turn.

One is the notion of tracker field8 [387]. This idea also rests on the existence of
scaling solutions of the equations of motion which play the rôle of late time attractors,
as illustrated above. An example is provided by a scalar field described by the action
(12.80) with a potential

V (φ) = λ
Λ4+α

φα
(12.94)

with α > 0. In the case where the background density dominates, one finds an
attractor scaling solution [304, 322] φ ∝ a3(1+wB)/(2+α), ρφ ∝ a−3α(1+wB)/(2+α) (see
Exercise 1). Thus ρφ decreases at a slower rate than the background density (ρB ∝
a−3(1+wB)) and tracks it until it becomes of the same order at a given value aQ. We
thus have:

φ

m
P

∼
(

a

aQ

)3(1+wB)/(2+α)

, (12.95)

ρφ
ρB

∼
(

a

aQ

)6(1+wB)/(2+α)

. (12.96)

One finds

wφ = −1 + α(1 + wB)
2 + α

. (12.97)

Shortly after φ has reached for a = aQ a value of order mP , it satisfies the standard
slow-roll conditions (equations (D.109) and (D.110) of Appendix D) and therefore
(12.97) provides a good approximation to the present value of wφ. Thus, at the end
of the matter-dominated era, this field may provide the quintessence component that
we are looking for.

Two features are interesting in this respect. One is that this scaling solution is
reached for rather general initial conditions, i.e. whether ρφ starts of the same order
or much smaller than the background energy density [387]. Regarding the cosmic
coincidence problem, it can be rephrased here as follows (since φ is of order m

P
in

this scenario): why is V (m
P
) of the order of the critical energy density ρc? It is thus

the scale Λ which determines the time when the scalar field starts to emerge and the
Universe expansion reaccelerates. Indeed, using (12.94), the constraint reads:

Λ ∼
(
H2

0m
2+α
P

)1/(4+α)
. (12.98)

We may note that this gives for α = 2, Λ ∼ 10 MeV, not such an atypical scale for
high energy physics.

8Somewhat of a misnomer since in this solution, as we see below, the field φ energy density
tracks the radiation-matter energy density before overcoming it, in contradistinction with (12.92).
One should rather describe it as a transient tracker field.
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A model [11] has been proposed which goes one step further: the dynamical compo-
nent, a scalar field, is called k-essence and the model is based on the property observed
in string models that scalar kinetic terms may have a nontrivial structure. Tracking oc-
curs only in the radiation-dominated era; a new attractor solution where quintessence
acts as a cosmological constant is activated by the onset of matter domination.

Models of dynamical supersymmetry breaking easily provide a model of the tracker
field type just discussed [46]. Let us consider supersymmetric QCD with gauge group
SU(Nc) and Nf < Nc flavors, i.e. Nf quarks Qg (resp. antiquarks Q̄g), g = 1, . . . , Nf ,
in the fundamental Nc (resp. antifundamental N̄c) of SU(Nc) (as studied in Sec-
tion 8.4.1 of Chapter 8). At the scale of dynamical symmetry breaking Λ where the
gauge coupling becomes strong, bound states of the meson type form: Mf

g = Qf Q̄
g.

The dynamics is described by a superpotential which can be computed nonperturba-
tively using standard methods, see equation (8.53) of Chapter 8:

W = (Nc −Nf )
Λ(3Nc−Nf )/(Nc−Nf )

(det M)1/(Nc−Nf )
. (12.99)

Such a superpotential has been used in the past but with the addition of a mass or
interaction term (i.e. a positive power of M) in order to stabilize the condensate. One
does not wish to do that here if M is to be interpreted as a runaway quintessence
component. For illustration purpose, let us consider a condensate diagonal in flavor
space: Mf

g ≡ φ2δgf . Then the potential for φ has the form (12.94), with α = 2(Nc +
Nf )/(Nc −Nf ). Thus,

wφ = −1 + Nc +Nf

2Nc
(1 + wB), (12.100)

which clearly indicates that the meson condensate is a potential candidate for a
quintessence component.

One may note that, in the tracker model, when φ reaches values of order m
P
,

it satisfies the slow-roll conditions of an inflation model. The last possibility that I
will discuss goes in this direction one step further. It is known under several names:
deflation [344], kination [240], quintessential inflation [305]. It is based on the remark
that, if a field φ is to provide a dynamical cosmological constant under the form
of quintessence, it is a good candidate to account for an inflationary era where the
evolution is dominated by the vacuum energy. In other words, are the quintessence
component and the inflaton the same unique field?

In this kind of scenario, inflation (where the energy density of the Universe is
dominated by the φ field potential energy) is followed by reheating where matter-
radiation is created by gravitational coupling during an era where the evolution is
driven by the φ field kinetic energy (which decreases as a−6). Since matter-radiation
energy density is decreasing more slowly, this turns into a radiation-dominated era
until the φ energy density eventually emerges as in the quintessence scenarios described
above.
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Quintessential problems

However appealing, the quintessence idea is difficult to implement in the context of
realistic models [68,256]. The main problem lies in the fact that the quintessence field
must be extremely weakly coupled to ordinary matter. This problem can take several
forms:
• We have assumed until now that the quintessence potential monotonically
decreases to zero at infinity. In realistic cases, this is difficult to achieve because
the couplings of the field to ordinary matter generate higher order corrections that
are increasing with larger field values, unless forbidden by a symmetry argument.
For example, in the case of the potential (12.94), the generation of a correction
term λd m4−d

P
φd puts in jeopardy the slow-roll constraints on the quintessence

field, unless very stringent constraints are imposed on the coupling λd. But one
typically expects from supersymmetry breaking λd ∼M4

SB/m
4
P
where MSB is the

supersymmetry breaking scale.
Similarly, because the vev of φ is of order m

P
, one must take into account

the full supergravity corrections. One may then argue [49] that this could put in
jeopardy the positive definiteness of the scalar potential, a key property of the
quintessence potential. This may point towards models where 〈W 〉 = 0 (but not its
derivatives, see (6.36) of Chapter 6) or to no-scale type models: in the latter case,
the presence of three moduli fields T i with Kähler potential K = −∑i ln(T

i+T̄ i)
cancels the negative contribution −3|W |2 in the scalar potential (see (6.36) of
Chapter 6).

• The quintessence field must be very light. If we return to our example of
supersymmetric QCD in (12.94), V ′′(mP ) provides an order of magnitude for
the mass-squared of the quintessence component:

mφ ∼ Λ
(

Λ
mP

)1+α/2

∼ H0 ∼ 10−33 eV (12.101)

using (12.98). This might argue for a pseudo-Goldstone boson nature of the scalar
field that plays the rôle of quintessence. This field must in any case be very weakly
coupled to matter; otherwise its exchange would generate observable long range
forces. Eötvös-type experiments put very severe constraints on such couplings.
Again, for the case of supersymmetric QCD, higher order corrections to the Kähler
potential of the type

κ(φi, φ
†
j)
[
βij

(
Q†Q

m2
P

)
+ β̄ij

(
Q̄Q̄†

m2
P

)]
(12.102)

will generate couplings of order 1 to the standard matter fields φi, φ
†
j since 〈Q〉

is of order m
P
.

• It is difficult to find a symmetry that would prevent any coupling of the form
β(φ/mP )nFµνFµν to the gauge field kinetic term. Since the quintessence behavior
is associated with time-dependent values of the field of order mP , this would gen-
erate, in the absence of fine tuning, corrections of order one to the gauge coupling.
But we have seen in Chapter 11 that the time dependence of the fine structure
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constant for example is very strongly constrained: |α̇/α| < 5 × 10−17yr−1. This
yields a limit [68]:

|β| ≤ 10−6mPH0

〈φ̇〉
, (12.103)

where 〈φ̇〉 is the average over the last 2× 109 years.

Pseudo-Goldstone boson

There exists a class of models [166] very close in spirit to the case of runaway quintessence:
they correspond to a situation where a scalar field has not yet reached its stable
groundstate and is still evolving in its potential.

More specifically, let us consider a potential of the form:

V (φ) =M4v

(
φ

f

)
, (12.104)

where M is the overall scale, f is the vacuum expectation value 〈φ〉 and the function
v is expected to have coefficients of order one. If we want the potential energy of the
field (assumed to be close to its vev f) to give a substantial fraction of the energy
density at present time, we must set

M4 ∼ ρc ∼ H2
0m

2
P
. (12.105)

However, requiring that the evolution of the field φ around its minimum has been
overdamped by the expansion of the Universe until recently imposes

m2
φ =

1
2
V ′′(f) ∼ M4

f2
≤ H2

0 . (12.106)

Let us note that this is again one of the slow-roll conditions familiar to the inflation
scenarios.

From (12.105) and (12.106), we conclude that f is of order m
P
(as the value of the

field φ in runaway quintessence) and that M ∼ 10−3 eV (not surprisingly, this is the
scale Λ typical of the cosmological constant, see (12.62)). As we have seen, the field
φ must be very light: mφ ∼ h0 × 10−60mP ∼ h0 × 10−33 eV. Such a small value is
only natural in the context of an approximate symmetry: the field φ is then a pseudo-
Goldstone boson. A typical example of such a field is provided by the string axion
field. In this case, the potential simply reads:

V (φ) =M4 [1 + cos(φ/f)] . (12.107)

All the preceding shows that there is extreme fine tuning in the couplings of the
quintessence field to matter, unless they are forbidden by some symmetry. This is
somewhat reminiscent of the fine tuning associated with the cosmological constant.
In fact, the quintessence solution does not claim to solve the cosmological constant
(vacuum energy) problem described above. If we take the example of a supersymmetric
theory, the dynamical cosmological constant provided by the quintessence component
clearly does not provide enough amount of supersymmetry breaking to account for
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the mass difference between scalars (sfermions) and fermions (quarks and leptons): at
least 100 GeV. There must be other sources of supersymmetry breaking and one must
fine tune the parameters of the theory in order not to generate a vacuum energy that
would completely drown ρφ.

However, the quintessence solution shows that, once this fundamental problem is
solved, one can find explicit fundamental models that effectively provide the small
amount of cosmological constant that seems required by experimental data.

Further reading
• Y. Nir, B Physics and CP violation, Proceedings of the 2005 Les Houches summer
school, ed. by D. Kazakov and S. Lavignac.

• S. Weinberg, The cosmological constant, Rev. Mod. Phys. 61 (1989) 1.

Exercises
Exercise 1 Consider a 3× 3 matrix Λ where the entries Λij are of order λnij , λ being
a small parameter and nij ≥ 0. Defining

p ≡ min (n11, n22, n12, n21), q ≡ min (n11 + n22, n12 + n21), (12.108)

show that we have the following eigenvalue patterns:

p ≥ q

2
: O(1),±O(λp)

p ≤ q

2
: O(1), O(λp), O(λq−p).

Hints: Consider the characteristic equation of the hermitian combination Λ†Λ
([43,44]).

Exercise 2 Introducing the mixed U(1)X gravitational anomaly Cg = Tr x, express the
charges a0, b0, c0, d0 and e0 defined in Table 12.2, in terms of the anomaly coefficients
C1, C2, C3 in (12.23), Cg and a0 + b0. Show that one can redefine the x charge by
combining it to the y charge in order to obtain a0+ b0 = a0+ c0 = 0 and 3(d0+ e0) =
−(h1 + h2) in the absence of anomalies.

Hints: Cg = 3(6a0 + 3b0 + 3c0 + 2d0 + e0)

a0 = + 1
3 (a0 + c0) + 1

3CD

b0 = − 4
3 (a0 + c0)− 1

3CD +
1
3
C3

c0 = +
2
3
(a0 + c0)−

1
3
CD
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d0 = −1(a0 + c0)− 1CD +
1
3
C2 −

1
3
(h1 + h2)

e0 = +2(a0 + c0) + 1CD − 1
3
C2 +

1
6
(C1 + C2 −

8
3
C3).

with CD = −Cg/3 + C1/6 + C2/2 + 5C3/9.

Exercise 3 Tracker field solution.
In the case where the evolution of the Universe is driven by the background (matter or
radiation) energy, we search a scaling solution to the set of equations (12.83), (12.84)
and (12.75), for the potential (12.94), i.e. V (φ) = λΛ4+α/φα, with α > 0. In other
words, we are looking for a solution such that

ρφ = ρ0a
x, φ = φ0a

y. (12.109)

1. One assumes that the background has equation of state pB = wBρB . If this
background energy determines the evolution of the Universe, how does a(t) evolves
with time?

2. By plugging the scaling solution (12.109) into (12.75) and (12.83), express x and
y in terms of α and wB .

3. Show that ρφ/ρB increases in time until it reaches the value aQ where it becomes
of order 1 (and where our starting assumptions are no longer valid).

4. Compute φ/m
P
and ρφ/(λΛ4+α/mα

P
) in terms of a/aQ, wB and α.

5. Compute the pressure pφ and deduce (12.97).
6. Show that, as long as φ � φ(aQ), one reaches the slow-roll regime ε, η � 1 (cf.

equations (D.109) and (D.110) of Appendix D). Solve the equations of motion in
this context (note that ρφ � ρB then).

Hints:
1. a(t) ∝ t2/[3(1+wB)] (see the beginning of Section D.3 of Appendix D)

2. All terms in a given equation should have the same time dependence:

y =
3

2 + α
(1 + wB), x = − 3α

2 + α
(1 + wB).

4. One obtains:

φ = m
P

√
α(2 + α)
3(1 + wB)

(
a

aQ

)3(1+wB)/(2+α)

,

ρφ =
2 + α

2 + α(1− wB)/2

(
3
α

1 + wB

2 + α

)α/2

λ
Λ4+α

mα
P

(
a

aQ

)−3α(1+wB)/(2+α)

.

6. ε = (α/2)(m
P
/φ)2, η = α(α+ 1)(m

P
/φ)2.
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A review of the Standard Model
and of various notions of
quantum field theory

We review in this appendix the basics of the Standard Model of electroweak inter-
actions. We will take this opportunity to recall some basic notions of quantum field
theory, especially in connection with the concepts of symmetry, spontaneous symmetry
breaking, and quantum anomalies.

A.1 Symmetries
A.1.1 Currents and charges

We consider a general action

S =
∫

d4x L (Φ(x), ∂µΦ(x)) (A.1)

which depends on a generic field Φ(x) and its spacetime derivatives. The equations of
motion for the field Φ(x) are expressed by the Euler–Lagrange equation:

∂µ

(
δL

δ(∂µΦ)

)
− δL
δΦ

= 0. (A.2)

We suppose that the action is invariant under a transformation Φ(x) → Φ′(x′) which
depends on a continuous parameter α (or a collection of such parameters). If this
parameter has an infinitesimal value δα, one may write the transformation as:

Φ(x)→ Φ′(x′) = Φ(x) + δΦ(x). (A.3)

For each given transformation, δΦ(x) will be expressed explicitly in terms of Φ(x)
and ∂µΦ(x). Let us illustrate this on two examples, a spacetime symmetry (x′µ �= xµ)
and an internal symmetry (x′µ = xµ).

If the transformation is a translation of infinitesimal vector δaµ (xµ → xµ+ δxµ =
xµ + δaµ), then

Φ (xµ)→ Φ′ (x′µ) = Φ (xµ + δaµ) = Φ (xµ) + δaµ ∂µΦ(x). (A.4)

We see that in the case of spacetime transformations, δΦ(x) depends on the spacetime
derivatives of the field: δΦ(x) = δaµ∂µΦ(x).



BINE: “APPA” — 2006/10/5 — 06:39 — PAGE 365 — #2

Symmetries 365

Next, we consider a (global) phase transformation:

Φ (xµ)→ Φ′ (x′µ) = Φ′ (xµ) = e−iθΦ (xµ) . (A.5)

Infinitesimally,
Φ′ (xµ) = (1− iδθ)Φ (xµ) (A.6)

and δΦ(x) = −iδθΦ(x): for an internal symmetry, δΦ(x) only depends on the field
Φ(x) itself.

Whenever the action has a continuous symmetry, there is a procedure, known as
the Niether procedure (see for example [318]), which allows us to construct a conserved
current Jµ:

∂µJ
µ = 0. (A.7)

Explicitly, the current reads

Jµ(x) =
[
Lgµρ −

δL
δ (∂µΦ(x))

∂ρΦ
]
δxρ

δα
+

δL
δ (∂µΦ(x))

δΦ(x)
δα

. (A.8)

Note that, in the case where the transformation is internal, i.e. leaves spacetime
unchanged (δxµ = 0),

Jµ(x) =
δL

δ (∂µΦ(x))
δΦ(x)
δα

. (A.9)

In this case, if the transformation is not a symmetry of the Lagrangian, the current is
no longer conserved but one may still write a simple equation:

∂µJ
µ =

δL
δα

. (A.10)

If the current is conserved, then the associated charge

Q ≡
∫

d3x J0(x) (A.11)

is a constant of motion. Indeed

dQ

dt
=
∫

d3x ∂0J
0 =

∫
d3x

(
∂0J

0 + ∂iJ
i
)
=
∫

d3x ∂µJ
µ = 0 (A.12)

where we have assumed that the fields vanish at infinity (and thus the integral of a
total spatial divergence vanishes). Since in the quantum theory dQ/dt = i[H,Q], we
have

[H,Q] = 0. (A.13)

The transformation is said to be a symmetry of the Hamiltonian. We recall the stan-
dard equal-time commutation relations (assuming from now on that the field Φ(x) is
a scalar field φ(x)):

[φ(t,x), φ(t,y)] = 0 (A.14)
[φ(t,x), π(t,y)] = i δ3(x− y) (A.15)
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where π is the canonical conjugate momentum

π(x) =
δL

δ∂0φ(x)
. (A.16)

We note therefore that the time component of the Noether current (A.9) is simply
expressed in terms of the conjugate momentum as J0 = πδφ/δα. In the case of an in-
ternal symmetry, where δφ is a function of φ only (and not of its spacetime derivatives),
one may deduce an interesting commutation relation. Indeed, from (A.14), (A.15)

[J0(y), φ(x)]x0=y0 = [π(y), φ(x)]x0=y0
δφ

δα
(y)

= −iδ3(x− y)
δφ

δα
(x).

Hence, using the fact that the charge is a constant of motion (i.e. time independent)

[Q,φ(x)] =
[
Q
(
x0
)
, φ
(
x0,x

)]
=
∫

d3y
[
J0 (x0,y) , φ (x0,x)]

= −i δφ
δα

(x)

and we have
δφ(x) = iδα [Q,φ(x)]. (A.17)

In other words, once we have the charge operator, we can reconstruct the infinites-
imal transformation, and even the finite transformation. Indeed the unitary transfor-
mation U ≡ e−iαQ acts infinitesimally on φ as follows:

U−1φ(x)U = eiδαQφ(x)e−iδαQ = φ(x) + iδα[Q,φ(x)] = φ(x) + δφ(x). (A.18)

It thus corresponds to the finite transformation.
We now illustrate these notions on several examples.

A.1.2 Isospin symmetry

The Lagrangian describing a Dirac spinor field

L = ψ (iγµ∂µ −m)ψ (A.19)

has the well-known global phase invariance

T0 : ψ(x)→ e−iθ ψ(x). (A.20)

These transformations form an abelian group: Tθ1Tθ2 = Tθ1+θ2 = Tθ2Tθ1 . The associ-
ated charge just counts the number of ψ fields (if ψ is the quark, it can be interpreted
as the baryon number).

Such abelian global transformations have a nonabelian generalization. The simplest
case is provided by the formalism of isospin which we now describe. From the point of
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view of strong interactions, protons and neutrons have identical properties. This can
be formalized by saying that physics should remain the same if one makes a unitary
rotation on these states. Let us thus write a doublet

ψN =
(
ψp
ψn

)
(A.21)

which we call the nucleon. Physics should be invariant under the SU(2) transformation

ψN → ψ′
N =

(
ψp′

ψ′
n

)
= UψN = U

(
ψp
ψn

)
. (A.22)

where U is a unitary 2× 2 matrix of determinant unity.
This is obviously reminiscent of the spin formalism. It is why such a transformation

is called an isospin transformation. The two components of the doublet (A.21) have
respectively I3 = +1/2 for the proton and I3 = −1/2 for the neutron. We may write
the SU(2) matrix U as:

U (αa) = e−iαaσa/2

= cos
|α|
2
1l− i sin

|α|
2

αa

|α| σ
a (A.23)

where |α| ≡
√
(α1)2 + (α2)2 + (α3)2. The Pauli matrices σa, a = 1, 2, 3, are explicitly

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.24)

For future reference, we note that they satisfy the trace formula

Tr
(
σa

2
σb

2

)
=

1
2
δab, (A.25)

and the (anti)commutation relations[
σa

2
,
σb

2

]
= iεabc

σc

2
,

{
σa

2
,
σb

2

}
=

1
2
δab, (A.26)

where εabc is the completely antisymmetric tensor (ε123 = 1).
The following Lagrangian is invariant under the isospin transformation:

L = ψN (iγµ∂µ −m)ψN (A.27)

because the transformation ψN → UψN is global and the unitary matrix commutes
with the spacetime derivatives ∂µ. One may develop (A.27)

L =
(
ψpsψns

)
(iγµst∂µ −mδst)

(
ψpt
ψnt

)
= ψp (iγ

µ∂µ −m)ψp + ψn (iγ
µ∂µ −m)ψn (A.28)

where we have written explicitly spinor indices (s, t) to distinguish them from the
indices of the internal symmetry (p, n).
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Thus, proton and neutron must have the same mass if isospin is to be a symmetry
(see Exercise 1): this is the standard way of identifying a symmetry (such as isospin)
in the spectrum of a theory.

A.1.3 Local abelian gauge transformation. Quantum electrodynamics

It is well known that, in the case of quantum electrodynamics, the phase invariance
(A.20) is promoted to the level of a local transformation, i.e. the phase θ depends on
the spacetime point considered

ψ(x)→ ψ′(x) = e−iqθ(x) ψ(x) (A.29)

(we introduce a charge coupling q for future use).
Obviously the Dirac Lagrangian (A.19) is not invariant since

∂µψ
′(x) = e−iqθ(x) [∂µψ(x)− iq∂µθ(x)ψ(x)] . (A.30)

However, introducing a vector field Aµ(x) (the photon field) which transforms simul-
taneously as

Aµ(x)→ A′
µ(x) = Aµ(x)−

1
g
∂µθ(x) (A.31)

i.e. as under a gauge transformation, we may build a new derivative

Dµψ(x) = ∂µψ(x)− igqAµ(x) ψ(x) (A.32)

which transforms under (A.29) and (A.31) as

(Dµψ)
′ = ∂µψ

′(x)− igqA′
µ(x)ψ

′(x) = e−iqθ(x)Dµψ. (A.33)

It is called a covariant derivative to express the fact that it transforms as the field
itself. Then obviously the generalized Lagrangian

L = ψ(x) (iγµDµ −m)ψ(x) (A.34)

is invariant under the local gauge transformation, i.e. (A.29) and (A.31).
In the case of quantum electrodynamics (QED), one sets g = e and q = −1 (the

electron charge) and one introduces a dynamics for the photon field

Lγ = −1
4
Fµν Fµν (A.35)

where Fµν = ∂µAν − ∂νAµ is the field strength invariant under the gauge transforma-
tion (A.31). The complete Lagrangian is the QED Lagrangian

L = − 1
4Fµν Fµν + ψ(x) (iγµ∂µ −m)ψ(x)− eψ(x)γµψ(x)Aµ(x). (A.36)

The electron–photon coupling is called minimal coupling since it has been obtained by
a purely geometric argument: completing the spacetime derivative into the covariant
derivative to ensure invariance under local gauge transformations. We note that this
coupling is of the form Jµ(x)Aµ(x) where Jµ is the Noether current (cf. (A.9)).
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Note that a mass term for the vector field is forbidden by the gauge symmetry
(A.31).

A.1.4 Nonabelian local gauge transformations: Yang–Mills theory

Following Yang and Mills [384], we now try to make the SU(2) isospin symmetry local.
For future reference, we will adopt slightly more general notations than in Section A.1.2
and consider a general doublet Ψ(x) =

(
ψ1(x)
ψ2(x)

)
which transforms under SU(2) as

Ψ(x)→ Ψ′(x) = e−iαa(x)taΨ(x) = U (αa(x))Ψ(x) (A.37)

where ta = σa/2 and the three parameters αa(x) a = 1, 2, 3, are now position de-
pendent. Everything which follows in this section will be equally valid for a general
symmetry group G: the ta are the generators of the group (a = 1, . . . , n = dimG) in
an N -dimensional matrix representation; Ψ(x) is then an N -dimensional vector. In
the case of SU(2) specifically considered here, n = 3 and N = 2.

Since ∂µΨ(x) → U(α)∂µΨ(x) + [∂µU(α)]ψ(x), we must complete the spacetime
derivative to make it covariant. By analogy with the abelian case, we introduce n
vector fields Aa

µ(x) (because there are n independent transformations associated with
the n parameters αa(x)) and we define the derivative as

DµΨ(x) = ∂µΨ(x)− igAa
µ(x)t

aΨ(x). (A.38)

It is a covariant derivative if it transforms like Ψ itself, i.e. if

(DµΨ(x))
′ = U(α) DµΨ(x). (A.39)

It is straightforward to check that this corresponds to transforming the gauge fields
as follows (beware of noncommuting matrices!)

A
′a
µ t

a = U(α)Aa
µt

aU(α)−1 − i

g
[∂µU(α)]U(α)−1. (A.40)

From now on, we will introduce the N ×N matrix:

Aµ ≡ Aa
µt

a. (A.41)

More specifically, in our SU(2) example,

Aµ ≡ Aa
µ

σa

2
=

 A3
µ

2
A1

µ−iA2
µ

2

A1
µ+iA

2
µ

2 −A3
µ

2

 . (A.42)

Then the transformation law (A.40) reads

A′
µ = UAµU

−1 − i

g
∂µU U−1. (A.43)
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Comparison with the abelian case is more transparent in the case of infinitesimal
transformations:

U(α) � 1− iαa(x)ta + · · · (A.44)

In order to expand (A.43) we need the commutator of two generators. In the general
case, we have [

ta, tb
]
= iCabctc, (A.45)

where the Cabc are the structure constants of the group G. Comparison with (A.26)
shows that, in the case of SU(2), Cabc = εabc. One then easily obtains from expanding
(A.43) to linear order in αa,

A
′a
µ = Aa

µ + Cabc αbAc
µ −

1
g
∂µα

a + · · · (A.46)

The last term is similar to the abelian case in (A.31). The second term is specific to
the nonabelian situation: it involves the nonvanishing structure constants Cabc of the
nonabelian gauge group. Introducing the generators T a in the adjoint representation
((T a)bc = −iCabc), one may write the infinitesimal transformation (A.46) as

δAa
µ = −1

g

[
∂µα

a − igAc
µ (T

c)ab αb
]
≡ −1

g
Dµα

a. (A.47)

It remains to write a dynamics for the vector fields, and thus to define a field
strength. By analogy with the abelian case, we may consider ∂µAν −∂νAµ. Using (see
exercise 2)

∂µU
−1 = −U−1 [∂µU ]U−1, (A.48)

we obtain from (A.43)

∂µA
′
ν − ∂νA

′
µ = U (∂µAν − ∂νAµ)U−1

+
[
∂µUAνU

−1 − UAνU
−1∂µUU

−1

+
i

g
∂νUU

−1∂µUU
−1 − (µ↔ ν)

]
.

From the form of the first term on the right-hand side, it is clearly hopeless to expect
a gauge invariant field strength as in the abelian case. We may at best expect that
Fµν transforms as UFµνU−1: a covariant field strength. Indeed, because

−ig
[
A′
µA

′
ν

]
= −ig U [AµAν ]U−1

+
{
−
[
∂µUU

−1, UAνU
−1]+ i

g
∂µUU

−1∂νUU
−1 − (µ↔ ν)

}
,

we check that
Fµν = ∂µAν − ∂νAµ − ig [AµAν ] (A.49)

transforms covariantly:
F ′
µν = U Fµν U−1. (A.50)
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We could have obtained directly the field strength from the commutation of two co-
variant derivatives (as in the abelian case):

[Dµ, Dν ] = −igFµν . (A.51)

We also note that Tr FµνFµν is invariant. Since Fµν is a N ×N matrix, we may
write it Fµν = F a

µνt
a where, from (A.45) and (A.49)

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gCabcAb

µA
c
ν . (A.52)

The complete Lagrangian reads

L = − 1
2Tr (F

µν Fµν) + ψiγµDµψ −mψψ. (A.53)

Normalizing the generators ta as

Tr
(
tatb

)
= 1

2δ
ab (A.54)

as in (A.25), we have 1
2Tr(F

µν Fµν) = 1
4F

aµν F a
µν . As in the abelian case, the fermion–

gauge field coupling is of the form

Lint = gJaµAa
µ, (A.55)

where Jaµ = Ψ̄γµtaΨ is the fermionic part of the Noether current.
The corresponding equation of motion is obtained by varying with respect to Aa

µ.
It reads

DµF
aµν = ∂µF

aµν − gCbacAb
µF

cµν = −gJaν , (A.56)

where we have introduced the covariant derivative in the adjoint representation:

DρF
b
µν = ∂ρF

b
µν − igAa

ρ (T
a)bc F c

µν , (T a)bc = −iCabc. (A.57)

One important difference between abelian and nonabelian gauge theories is the
notion of charge or quantum number. In (A.29) and (A.32), we have included a real
number q whose value is not fixed by the symmetry. If we try to introduce such a
number in the nonabelian case and replace (A.37) and (A.38), respectively, by

Ψ′(x) = e−iXαa(x)ta Ψ(x) (A.58)

and
DµΨ(x) = ∂µΨ(x)− ig X Aa

µ(x)t
aΨ(x), (A.59)

then it is easy to show that DµΨ is covariant under an infinitesimal transformation
only if X = 0 or 1. This shows that, in a nonabelian gauge theory, charges (i.e.
quantum numbers) can only take quantized values fixed by group theory (i.e. matrix
elements of generators ta). This will be one of the motivations for embedding the quan-
tum electrodynamics U(1) symmetry into a nonabelian grand unified gauge symmetry
group.
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A.2 Spontaneous breaking of symmetry
A.2.1 Example of a global symmetry

We start with the simplest example of a global abelian symmetry and consider a
complex scalar field φ(x) with a Lagrangian density

L = ∂µφ†∂µφ− V (φ†φ). (A.60)

This has a global phase invariance φ(x) → φ′(x) = e−iθφ(x) ; and the associated
conserved Noether current is Jµ = −iφ∂µφ†+iφ†∂µφ. Requirement of renormalizability
imposes to limit the interaction potential V to quartic terms:

V (φ†φ) = a φ†φ+
λ

2
(φ†φ)2, (A.61)

where λ > 0 to avoid instability at large values of the field. The corresponding equation
of motion reads:

(�+ a)φ = −λφ(φ†φ). (A.62)

If a > 0, we may write a ≡ m2 and the equation of motion

(�+m2)φ = j(φ) (A.63)

where j(φ) ≡ −λφ(φ†φ) describes the self-interaction of the field φ. It is then possible
to quantize the theory: first quantize the free field theory corresponding to vanishing
self-interaction (the field obeys the Klein–Gordon equation (�+m2)φ = 0) and then
use perturbation theory in λ.

We are interested in the vacuum structure of the theory, i.e. in identifying its
ground state. Using Noether formalism, one may compute the energy of the system

P0 =
∫

d3x H(x)

H(x) = π∂0φ(x) + π†∂0φ
†(x)− L (A.64)

where π (resp. π†) is the canonical conjugate momentum of φ(x) (resp. φ†(x)) as in
(A.16). This gives in the present case:

H(x) = ∂0φ
†(x)∂0φ(x) + ∂iφ

†(x)∂iφ(x) + V (φ†φ). (A.65)

Since the first two terms are positive definite, minimization of the energy density is
obtained by setting them to zero, i.e. by taking a constant value for the field φ, and
by minimizing the potential energy. In other words, we minimize the energy density
by choosing a constant value φ0 which corresponds to the minimum of V . If a ≥ 0, the
minimum is at φ = 0 (see Fig. A.1) i.e. for vanishing field. We are familiar with this
situation: for example, the electromagnetic energy density 1

8π (E
2 +B2) is minimized

for E = B = 0. In this latter case, a nonvanishing electric or magnetic field in the
vacuum (i.e. the ground state) would obviously break the isotropy of space. There is
no such risk with a scalar field.
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Im φ

V (φ)

Re φ

Fig. A.1

Indeed, when a < 0, the ground state corresponds to a nonvanishing value for the
scalar field: φ†

0φ0 = −a/λ. If we set a ≡ −m2, the equation of motion reads

(� −m2)φ = j(φ). (A.66)

In the limit of vanishing self-interaction (j → 0), the equation is not the standard
Klein–Gordon equation because of the sign of m2 and we thus do not know how to
quantize the theory. Writing −m2 = (im)2, we may identify the origin of this sign
as the instability of the system for small values of the field, i.e. around φ = 0 (see
Fig. A.2). In other words, the problem might be that we evaluate the scalar field φ
around an unstable value. It is then preferable to evaluate it around one of its stable
values defined by φ†

0φ0 = m2/λ.
We note that the potential has a rotation symmetry corresponding to φ→ e−iθφ.

On the other hand, the ground state of the system (which corresponds to the choice
of one point on the set of degenerate minima) necessarily breaks this symmetry. We
are in a situation of spontaneous symmetry breaking:
• the Lagrangian (the Hamiltonian) is invariant under the symmetry;
• the ground state (the vacuum) is not left invariant by the symmetry.
Such a situation is often encountered in classical physics with macroscopic objects

(a ball at the top of a Mexican hat falls into the bottom of the hat, a vertical force down
a column will shatter it into pieces). In ordinary quantum mechanics, one can always
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φ

φ

V (φ)

0

Fig. A.2

form linear combinations of ground states which are invariant under the symmetry.
This is not possible in the case of quantum field theory because of the infinite number of
degrees of freedom (infinite volume): the mixed Hamiltonian matrix elements between
two different ground states vanish.

Now, following our remark above, let us return to our example and express the
scalar field around its ground state value, say eiθ0

√
m2/λ. We write

φ = eiθ0

(√
m2

λ
+
ϕ1 + iϕ2√

2

)
. (A.67)

Then

V (φ†φ) = −m4

2λ
+m2ϕ2

1 + cubic and quartic terms. (A.68)

We conclude that the field ϕ1 has mass squared 2m2 (beware of the normalization of
the kinetic term 1

2∂
µϕ1∂µϕ1) whereas ϕ2 is massless. Thus the mass spectrum does

not reflect the symmetry: even though ϕ1 and ϕ2 are interchanged in the symme-
try transformation, they are not degenerate in mass. This is a consequence of the
spontaneous breaking of the symmetry. Moreover, the fact that ϕ2 is massless is not
a coincidence. Indeed, it is a general theorem due to [198] that to every continuous
global symmetry spontaneously broken, there corresponds a massless particle. In the
case of internal symmetries such as considered here, it is a boson called the Goldstone
boson.
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Before proceeding to prove and discuss Goldstone’s theorem, let us stress one
important property of a Goldstone boson. If we write the infinitesimal transformation
δφ = −iθφ in the parametrization (A.67), we obtain

δϕ1 = θϕ2, δϕ2 = −θ
√

2m2

λ
− θϕ1. (A.69)

The Goldstone transformation is nonhomogeneous and is characterized by a constant
term proportional to the field vacuum expectation value.

This is even better seen by using the following more appropriate parametrization
of the scalar field φ:

φ(x) = ei(θ0+γ(x))

[√
m2

λ
+ ρ(x)

]
. (A.70)

Since V (φ†φ) = V ([ρ +
√
m2/λ]2), the field γ(x) does not appear in the potential

and is thus massless: it is the Goldstone boson, i.e. the massless excitation along the
continuum of vacua. Under a gauge transformation we simply have γ(x) → γ(x)− θ.
We will see that, when the symmetry is local (θ(x)), this allows us to gauge away the
corresponding degree of freedom.

A.2.2 Goldstone theorem

We have defined two distinct notions of a symmetry:

• A symmetry of the Hamiltonian: the corresponding charge commutes with the
Hamiltonian

[Q,H] = 0 (A.71)

which is a statement of the conservation of the associated current

∂µjµ = 0. (A.72)

It also implies that the finite transformation U ≡ e−iαQ leaves the Hamiltonian
invariant:

UHU† = H = U†HU. (A.73)

• A symmetry of the vacuum, i.e. a symmetry which leaves the ground state |0〉
invariant:

U |0〉 = |0〉 (A.74)

or

Q |0〉 = 0. (A.75)
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[83] has shown that a symmetry of the vacuum is a symmetry of the Hamiltonian1.
But the converse is not true. If [Q,H] = 0 or ∂µjµ = 0, then one may distinguish two
cases:
(a) Wigner realization Q|0〉 = 0

This has well-known properties. Two states which transform into one another under
the symmetry are degenerate in energy. Indeed, if φ′ = U†φU , then

〈0|φ′†Hφ′|0〉 = 〈0|U†φ†UHU†φ U |0〉 = 〈0|φ†Hφ|0〉,

using both (A.73) and (A.74).
Also, Green’s functions (i.e. the vacuum values of chronological products of fields

〈0|Tφ(x1) · · ·φ(xn)|0〉) are invariant under the symmetry: this leads to Ward identities
which translate the symmetry at the level of Green’s functions. Indeed, under an
infinitesimal transformation, using (A.17) (which is derived from (A.13) or (A.71)),
we have, for x01 > x02 > · · · > x0n,

δ〈0|Tφ(x1) · · ·φ(xn)|0〉 = 〈0|δφ(x1)φ(x2) · · ·φ(xn)|0〉

+〈0|φ(x1)δφ(x2) · · ·φ(xn)|0〉+ · · ·

= iδα〈0|(Qφ(x1)− φ(x1)Q)φ(x2) · · ·φ(xn)|0〉

+iδα〈0|φ(x1)(Qφ(x2)− φ(x2)Q) · · ·φ(xn)|0〉+ · · ·

= 0.

(b) Goldstone realization Q|0〉 �= 0
Two states which are exchanged under the symmetry are not necessarily degen-

erate. Hence the symmetry is not manifest in the energy (mass) spectrum. We have
seen an explicit example of this in the previous Section. The symmetry is said2 to be
spontaneously broken.

According to case (a), it suffices to prove that at least one Green’s function is
not invariant: δ〈0|Tφ(x1) · · ·φ(xn)|0〉 �= 0. In most cases, it is the one-field Green’s
function 〈0|φ(x)|0〉 which is not invariant: in other words, the vacuum expectation
value of a field is not invariant. This was precisely the case of the explicit example
presented in the previous Section. We now prove Goldstone’s theorem in this case.

Defining

η ≡ 〈0|[Q(t), φ(0)]|0〉 =
∫

d3x〈0| [J0(t,x), φ(0)] |0〉 (A.76)

we see that η �= 0 because the symmetry is not an invariance of the vacuum (expressed
as 0 �= 〈0|δφ(x)|0〉 = i〈0[Q,φ(x)]|0〉 using (A.17)) whereas dη/dt = 0 because the
symmetry is an invariance of the Hamiltonian (i.e. the charge is a constant of motion:
dQ/dt = i[H,Q] = 0).

1In terms of the current jµ, (A.75) reads
∫
d3xj0(t,x)|0〉 = 0. If |n〉 is a state of vanishing

3-momentum, one may apply the bra 〈n| to the previous relation. Thus, 〈n| ∫ d3xe−ik·xj0(t,x)|0〉 = 0
and 〈n|j0(x)|0〉 = 0 from which follows 〈n|∂µjµ(x)|0〉 = 0. Lorentz invariance implies that this is true
for any state |n〉 and thus ∂µjµ(x)|0〉 = 0 from which (A.72) follows.

2Somewhat improperly since the symmetry remains an invariance of the Hamiltonian.
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We introduce a complete basis of eigenstates |n〉 of energy (H|n〉 = En|n〉) and
3-momentum (P|n〉 = pn|n〉). The zero of energy is taken at the ground state: H|0〉 =
E0|0〉 = 0, P|0〉 = p0|0〉 = 0. Then using the closure relation

∑
n |n〉〈n| = 1l, and

translation operators:

J0(t,x) = e−ip·xeiHtJ0(0)e−iHteip·x,

we may write η as:

η =
∑
n

∫
d3x [〈0|J0(t,x)|n〉〈n|φ(0)|0〉 − 〈0|φ(0)|n〉〈n|J0(t,x)|0〉]

=
∑
n

∫
d3x
[
e−iEnteipn·x〈0|J0|n〉〈n|φ(0)|0〉

−eiEnte−ipn·x〈0|φ(0)|n〉〈n|J0)|0〉
]

=
∑
n

(2π)3δ3(pn)
[
e−iEnt〈0|J0|n〉〈n|φ(0)|0〉

−eiEnt〈0|φ(0)|n〉〈n|J0(0)|0〉
]
. (A.77)

Obviously,

dη

dt
= −i

∑
n

(2π)3Enδ
3(pn)

[
e−iEnt〈0|J0(0)|n〉〈n|φ(0)|0〉

+ eiEnt〈0|φ(0)|n〉〈n|J0(0)|n〉
]
. (A.78)

For this to be identically vanishing, whereas η �= 0, there must be a state |n0〉 such
that En0δ

3(pn0) = 0 (i.e. the state |n0〉 is a massless excitation of the system) and

〈0|J0(0)|n0〉 �= 0 and 〈n0|φ(0)|0〉 �= 0. (A.79)

This massless excitation is the Goldstone boson.

A.2.3 General discussion in the case of global symmetries

We now consider the general case of a group G of continuous global transformations.
The scalar fields are taken to be real and transform under G as:

φ′(x) = e−iαata φ(x) (A.80)

where the ta are the generators of the group, in a n-dimensional representation3.
Infinitesimally

φ′
m(x) = φm(x)− iαatamnφn(x) (A.81)

where m = 1, . . . , n.

3The ta are taken to be hermitian, ta
†

= ta. Since φ is real, (ita)∗ = ita. Hence ta∗ = −ta and
taT = −ta: the generators are antisymmetric.
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Since the potential V (φ) is invariant, we have

∂V

∂φm
αa tamn φn = 0 (A.82)

from which we obtain, by differentiating with respect to φ�,

∂2V

∂φm∂φ�
αa tamn φn +

∂V

∂φm
αa tam� = 0. (A.83)

At the minimum φ0 of the potential, we thus have

M2
�m αa tamn φ0n = 0 (A.84)

where

M2
�m =

∂2V

∂φ�∂φm

∣∣∣∣
φ0

(A.85)

is the scalar squared mass matrix. In the case of spontaneous breaking, the vacuum
φ0 is not invariant and thus αatamnφ0n is a nonzero eigenvector of the squared mass
matrix with vanishing eigenvalue: it corresponds to a Goldstone boson.

It is possible to separate the generators ta (a = 1 · · ·dim G) into:
• Generators ti which leave the vacuum invariant: tiφ0 = 0. These generators cor-
respond to the residual symmetry of gauge group H and i = 1, . . . ,dim H.

• Generators θα which do not leave the vacuum invariant: θαφ0 �= 0 (α = 1, . . . ,
dim G − dim H). Let us show that the vectors θαφ0 are independent and thus
generate a vector space of dimension dim G−dim H. We introduce a scalar prod-
uct (x, y) =

∑n
i=1 x

∗
i yi and consider the matrix Xαβ = (θαφ0, θβφ0). Since X is

symmetric, it can be diagonalized: D = OXOT with

Dαα =
(
Oαγ θγ φ0, O

αδ θδ φ0
)
. (A.86)

But Oαγθγφ0 �= 0. Hence all diagonal elements are positive definite and the vector
space generated by the Oαγθγ or the θγ is (dim G− dim H) dimensional.
[We may parametrize nonlinearly the scalar degrees of freedom as in (A.70) to

make explicit the rôle of the Goldstone bosons. Indeed, let us consider the function

F (g, x) = (φ(x), gφ0), (A.87)

where g = eiα
ata is an element ofG. Since, for every element h of the residual symmetry

group H (hφ0 = φ0), we have F (g, x) = F (gh, x), F is in fact a function on right cosets
of G with respect to H, i.e. on G/H.4 Since G is compact, the continuous function

4One defines the right coset with respect to H of any element in G as the equivalence class
ġ = {γ ∈ G; ∃h ∈ H, γ = gh} = gH. If H is an invariant subgroup of G, the set of these right cosets
has a group structure, the quotient group G/H.
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F is bounded and reaches a maximum for some element ĝ(x). Using δg = iαagta, we
have

0 = δF (ĝ, x) = iαa (φ(x), ĝ(x)taφ0) = iαa
(
ĝ−1(x)φ(x), taφ0

)
. (A.88)

Hence φ̂(x) ≡ ĝ−1(x)φ(x) is orthogonal to the directions θαφ0 in field space: it
parametrizes the (in general) massive excitations.

Since any element of G can be written as eiγ
αθαeiβ

iti and since ĝ(x) is in fact a
right coset, we may choose to represent it by

ĝ(x) = eiγ
α(x) θα . (A.89)

Correspondingly, the field φ(x) is parametrized as

φ(x) = ĝ(x)φ̂(x) = eiγ
α(x) θα φ̂(x), (A.90)

which generalizes (A.70): the (dim G−dim H) fields γα(x) are the Goldstone bosons.
We note [82] that they transform nonlinearly under G: γα → γα′(x) defined by

g eiγ
α(x) θα = eiγ

α′(x) θαeiβ
i(γα,g) ti .] (A.91)

A.2.4 Spontaneous breaking of a local symmetry. Higgs mechanism

The conclusions that we have reached in the preceding section, especially the Gold-
stone theorem, are drastically changed when we turn to local transformations. Let us
illustrate this on the case of a complex scalar field minimally coupled to an abelian
gauge symmetry, a theory known as scalar electrodynamics. The Lagrangian reads

L = − 1
4F

µνFµν +Dµφ†Dµφ− V (φ†φ) (A.92)

with Dµφ = ∂µφ − igqAµφ and V (φ†φ) given by (A.61) with a = −m2. The scalar
field kinetic term thus yields a term quadratic in the vector field:

Dµφ†Dµφ = ∂µφ†∂µφ− igq
(
φ∂µφ† − φ†∂µφ

)
Aµ + g2q2φ†φAµAµ. (A.93)

Expressing the scalar field around its vacuum expectation value φ0 = eiθ0
√
m2/λ as in

(A.67) thus yields what seems to be a mass term for the vector field: g2q2φ†
0φ0A

µAµ.
Let us pause for a while to discuss massive vector bosons. The free field action is

S =
∫

d4x

[
−1
4
FµνFµν +

1
2
M2AµAµ

]
. (A.94)

Gauge invariance is only recovered in the limit of vanishing massM . The corresponding
equation of motion is the Proca equation:

∂µF
µν +M2Aν = 0. (A.95)
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Acting with a derivative ∂ν and using the antisymmetry of Fµν , we infer from the
Proca equation the Lorentz condition ∂νA

ν = 0. Thus the massive vector field has
4− 1 = 3 degrees of freedom: more precisely two transverse (as the massless photon)
and one longitudinal. Using the Lorentz condition, we may finally write the Proca
equation

(�+M2)Aν = 0, (A.96)

which shows that, indeed, M is the mass of the gauge field.
Returning to our case of interest, we deduce that, once the gauge symmetry is

spontaneously broken (φ0 �= 0), the gauge field acquires a mass

M2
A = 2g2q2φ†

0φ0 = 2g2q2
m2

λ
. (A.97)

There seems, however, to be a discrepancy when we count the number of degrees
of freedom. Using the gauge invariance built in the Lagrangian, we count two scalar
degrees of freedom and two vector (transverse) degrees of freedom. However, once one
translates the scalar field around its vev φ0 �= 0, one seems to identify:

• a massless Goldstone boson ϕ2 and a real scalar ϕ1 of mass 2m2 (as in Sec-
tion A.2.1);

• a vector field of mass MA, with three degrees of freedom (two transverse and one
longitudinal).

It turns out that making the symmetry local has changed one of the scalar fields
into a spurious degree of freedom. This is most easily seen by using the nonlinear
parametrization (A.70) of the scalar degrees of freedom. We see that, in the local case,
one can gauge away the field γ(x) by performing a local gauge transformation:

φ(x)→ φ′(x) = e−iqθ(x)φ(x) =

[
ρ(x) +

√
m2

λ

]
eiθ0 (A.98)

with the choice θ(x) = γ(x)/q. In other words, because the symmetry is local, the
would be Goldstone boson is now a gauge artifact. It reappears in the theory as
the longitudinal component of the massive vector particle. This is the famous Higgs
mechanism.

The choice (A.98) corresponds to a gauge choice known as the unitary gauge:
with this choice of gauge, all fields are physical and the S-matrix is unitary, but gauge
symmetry is no longer apparent. One often prefers covariant gauges which retain some
of the gauge invariance (through the dependence on some gauge parameters, which
should drop from physical results) but include the spurious boson.

We may generalize this analysis to nonabelian gauge symmetries and will illustrate
it on the example of SU(2) which provides the basis for the Standard Model. We
introduce a complex scalar field Φ(x) =

(
φ1(x)
φ2(x)

)
which transforms as a doublet under

SU(2) (cf. (A.37))

Φ(x)→ Φ′(x) = e−iαa(x)ta Φ(x). (A.99)
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Then the full Lagrangian reads:

L = DµΦ† DµΦ− V (Φ†Φ)− 1
4F

aµνF a
µν (A.100)

where F a
µν is given in (A.52), and the potential is given by

V (Φ†Φ) = −m2Φ†Φ+ λ(Φ†Φ)2. (A.101)

The ground state is reached for Φ†
0Φ0 = m2/(2λ). We choose to orient it along the

second component of the doublet:

Φ0 =

 0
v√
2

 , v =

√
m2

λ
. (A.102)

Then, studying as before the quadratic terms Aa
µA

aµ coming from the termDµΦ†DµΦ,
one concludes that all three gauge fields Aa

µ, a = 1, 2, 3, acquire a mass

MA =
gv

2
(A.103)

through the Higgs mechanism. This requires three longitudinal degrees of freedom.
Reexpressing the scalar field around its vev as Φ = Φ̃ + Φ0, and inspecting the scalar
potential, one finds three would be Goldstone bosons: (φ̃1 + φ̃∗

1)/
√
2, (φ̃j − φ̃∗

j )/(i
√
2)

with j = 1, 2. A more transparent parametrization is the nonlinear one:

Φ(x) = eiγ
a(x)ta

 0
v + η(x)√

2

 . (A.104)

Since V (Φ†Φ) = V ([v + η]2/2), the three fields γa(x) are the would-be Goldstone
bosons. But a gauge transformation (A.99) with αa(x) = γa(x) shows that they are
spurious degrees of freedom.

A.3 The Standard Model of electroweak interactions
From the very beginning, electrodynamics has inspired the theory of weak interactions.
In electrodynamics, a vector current of matter fields couples to the photon. Electro-
magnetic interactions through photon exchange is thus described by a current–current
interaction with a photon propagator to account for the action at distance. In nuclear
beta decay, which we write here at the level of nucleons n → p + e− + νe, the range
seemed to be zero or very small and [156, 157] proposed to keep a current–current
structure but to make it a local one (in order to account for the zero range):

H =
G

F√
2
[p(x)γµn(x)] [e(x)γµνe(x)] + h.c. (A.105)

where the letters p, n, . . . denote the corresponding spinor fields (proton, neutron, . . .)
and G

F
is the Fermi constant:

G
F
� 10−5

m2
p

, (A.106)

where mp is the proton mass.
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It was soon realized that the interaction (A.105) does not account for all nuclear
beta decays (in particular, the so-called Gamow–Teller transitions) and that other
processes are of the same type: in particular, the constant involved in the muon decay
µ+ → e++ νe+ νµ is basically the Fermi constant. Weak interactions were discovered
to be universal.

It was during the 1950s and 1960s that the full structure of low energy weak interac-
tions was unravelled. A key stage was the discovery of parity violation [269,382] which
showed that one had to include an axial vector into the current–current interaction.
This was complemented by the measurement of the neutrino helicity by [197].

We take this opportunity to recall that under parity a spinor transforms as:

Pψ(x)P† = ηpγ
0ψ(x̃) (A.107)

where ηp is a phase and x̃µ ≡ xµ. One deduces

scalar (S) Pψ(x)ψ(x)P† = ψ(x̃)ψ(x̃)

pseudoscalar (P) Pψ(x)γ5ψ(x)P† = −ψ(x̃)γ5ψ(x̃)
vector (V) Pψ(x)γµψ(x)P† = ψ(x̃)γµψ(x̃)

axial (A) Pψ(x)γµγ5ψ(x)P† = −ψ(x̃)γµγ5ψ(x̃). (A.108)

Finally, the V-A theory was proposed by [346] and by [162]. It reads for the beta
decay

H =
G

F√
2

[p(x)γµ (g
V
+ g

A
γ5)n(x)] [e(x)γµ(1− γ5)νe(x)] + h.c. (A.109)

where g
V
� 1 (the conservation of the vector current – the so-called CVC hypothesis –

ensures that strong interaction do not renormalize this coupling) whereas g
A
/g

V
�

−1.262 ± 0.005 (an effect of strong interactions). Taking into account other weak
processes such as muon decay and turning off strong interactions, one may write the
pure weak interaction Hamiltonian density (this time at the quark level) as:

H =
G

F√
2
J†
µ Jµ + h.c. (A.110)

where

Jµ(x) = J (h)
µ (x) + J (�)

µ (x) (A.111)

J (h)
µ (x) = u(x)γµ(1− γ5)d(x) + c(x)γµ(1− γ5)s(x) + · · ·
J (�)
µ (x) = νe(x)γµ(1− γ5)e(x) + νµ(x)γµ(1− γ5)µ(x) + · · ·

The main problem with the theory of weak interactions described by (A.111) is that
it is nonrenormalizable: the Fermi coupling G

F
has negative mass dimension. This has

some undesirable consequences at high energies: cross-sections increase monotonically
with the energy available in the center of mass. There is thus an energy where the cross
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Fig. A.3 Tree-level Fermi interaction for nuclear beta decay.

sections have become so large that they are no longer compatible with the unitarity
of the S-matrix (which expresses the conservation of probability). At such an energy
the fundamental theory must be modified.

Since this type of reasoning will be repeated for gravity (another nonrenormalizable
theory where the coupling, Newton’s constant G

N
, has also mass dimension −2), let

us sketch the argument more precisely.
If we consider the tree-level process depicted in Fig. A.3, then, on purely dimensional

grounds, we may deduce that the corresponding cross-section σ (given by the square of
the amplitude, and thus proportional to G2

F
) behaves as G2

F
E2, where E is the energy

available in the center of mass. But conservation of probability
(expressed through the unitarity of the S-matrix) imposes that σ ∼ E−2. Thus at
energies E ∼ G−1/2

F
, the theory is no longer compatible with first principles and must

be replaced by a more complete theory (which involves new fields whose exchange
modifies the high energy behavior of the cross-section). This is the so-called unitarity
limit that we consider in more details in Section 1.2.1 of Chapter 1.

This behavior of the cross-sections for tree-level processes may be related here to
the nonrenormalizable character of the theory. If we compute the one-loop (second
order) amplitude given in Fig. A.4, we obtain a contribution of order G2

F

∫∞
EdE

(to be compared with the tree-level G
F
as in Fig. A.3) which is infinite if we assume

that the theory remains valid up to arbitrarily large energies, i.e. to arbitrarily small
distances. The renormalization procedure may take care of a finite number of such
infinities but, in the case considered, new infinities appear at each order of perturbation
theory and thus perturbative renormalization cannot help.

These considerations show that, because the coupling G
F
of the weak theory has

mass dimension −2, the theory at energy E is characterized by the dimensionless
combination5 G

F
E2. When E reaches a scale of order G−1/2

F
∼ 300 GeV, the dimen-

sionless combination is of order one and the low energy weakly coupled theory is no
longer valid: it must be replaced by a more complete fundamental theory6.

Since the problem occurs at short distance (i.e. when the two vertices of the graph
of Fig. A.4 become arbitrarily close), an obvious way of curing the problem is to replace

5For example, one may write the tree-level cross-section as
(
GF E

2)2 /E2 whereas the ratio of
the one-loop amplitude to the tree-level amplitude reads GF E

2
max where Emax is the cut-off in the

integral over the energy.
6The precise value of scale may be found by imposing the unitarity bound on varied processes.

The best limit thus obtained is 630 GeV.
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Fig. A.4 One-loop contribution to beta decay.

the contact interaction between the four fermions in the Fermi interaction by a vector
particle exchange as in Fig. A.5, much in the spirit of quantum electrodynamics.
This (charged) vector particle was introduced long before the days of the Standard
Model and called the intermediate vector boson. It had to be be massive in order to
account for the short range interaction. The above arguments showed that its mass
was expected to be smaller than a few hundred GeVs. Once it was realized that a
nonvanishing mass for a vector boson was compatible with gauge symmetry (although
spontaneously broken), it was natural to try to fit weak interactions into a gauge
theory. We will now see that the minimal nontrivial possibility leads to the Standard
Model.

A.3.1 Identifying the gauge structure and quantum numbers

We will try here to fit the current–current theory of weak interactions just described
with the structure of a gauge theory. In other words, pursuing the analogy with QED
which motivated Fermi, we try to identify the intermediate vector boson W± as a
gauge field. Our guiding principle will be here minimality: there is no a priori reason
that the theory of weak interactions should be the minimal one but, as we will see, it
turns out to be the case.

From the graph of Fig. A.5 (and a similar one for muon beta decay), we infer that
the couplings of the intermediate vector boson to the quarks u and d and the leptons
e, νe, µ, νµ must be of the form

L ∼ g ū γµ
1− γ5
2

d W+
µ + g d̄ γµ

1− γ5
2

u W−
µ

+ g ν̄e γ
µ 1− γ5

2
e W+

µ + g ē γµ
1− γ5
2

νe W
−
µ

+ g ν̄µ γµ
1− γ5
2

µ W+
µ + g µ̄ γµ

1− γ5
2

νµ W−
µ . (A.112)

Since a charged field is complex, we need to introduce two real gauge fields; mini-
mality leads to consider an abelian symmetry U(1) × U(1), with a global symmetry
between the two U(1), or a nonabelian gauge symmetry SU(2). The first choice is
very close to QED. Since the physics of weak interactions seems quite different from
electrodynamics, we pursue the second possibility.



BINE: “APPA” — 2006/10/5 — 06:39 — PAGE 385 — #22

The Standard Model of electroweak interactions 385

Fig. A.5 Intermediate vector boson exchange.

Following (A.55), we may rewrite the interaction term between a SU(2) gauge field
Aa
µ(x) and a doublet fermion Ψ(x) =

(
ψ1(x)
ψ2(x)

)
as

Lint = g Ψ̄γµAa
µ

σa

2
Ψ = g Jaµ Aa

µ

=
g

2
(
J1µ + iJ2µ) (A1

µ − iA2
µ

)
+
g

2
(
J1µ − iJ2µ) (A1

µ + iA2
µ

)
+ g J3µA3

µ

(A.113)

where we have introduced the complex gauge fields:

A1
µ ∓ iA2

µ√
2

≡W±
µ . (A.114)

The associated currents are Jµ± ≡ J1µ ± iJ2µ and we have

Lint =
g√
2

(
Jµ+W

+
µ + Jµ−W

−
µ

)
+ g J3µA3

µ. (A.115)

Since Jµ+ = ψ̄1γ
µψ2 and Jµ− = ψ̄2γ

µψ1, comparison with (A.112) tells us how the
quarks and leptons must be grouped into SU(2) doublets. Indeed since, for example

ū γµ
1− γ5
2

d = ū
1 + γ5
2

γµ
1− γ5
2

d = ū
L
γµ d

L
,

we conclude that only left-handed components of quarks and leptons behave as SU(2)
doublets:

Ψ(x) =
(
u

L
(x)

d
L
(x)

)
,

(
νeL(x)
e
L
(x)

)
,

(
νuL

(x)
µ

L
(x)

)
.

The right-handed chiralities do not transform under SU(2): they are singlets under
SU(2).

We note immediately that this local SU(2) symmetry has nothing to do with the
global SU(2) isospin symmetry of strong interactions that Yang and Mills attempted
to make local. Strong isospin is a global symmetry of strong interactions and it does not
apply to leptons for example. It is true however that

(
u(x)
d(x)

)
form a strong interaction
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doublet (note the absence of chiral indices though!). This has let to the regrettable
use of the expression “weak isospin” for the SU(2) symmetry that we consider here :
weak isospin is a local symmetry of (electro)weak interactions and leptons transform
under it.

It remains to identify the nature of the real field A3
µ which completes the gauge

multiplet. Since it cannot be paired to another real gauge field, it is obviously neutral.
The natural candidate would be the photon but the corresponding charge operator can
be written now that we have identified the content of the doublets (J3

µ = 1
2 ψ̄1γµψ1 −

1
2 ψ̄2γµψ2):

Q3 ≡
∫

d3x J3
0 =

∫
d3x

1
2
[
u†

L
u

L
− d†

L
d
L
+ ν†

eLνeL − e†
L
e
L
+ ν†

µL
νµL

− µ†
L
µ

L

]
(A.116)

which has nothing to do with the electric charge operator7 (JQµ =
∑

i qiψ̄iγµψi, with
qi the charge of fermion ψi):

Q ≡
∫

d3x JQ0 =
∫

d3x

[
2
3
u†u− 1

3
d†d− e†e− µ†µ

]
. (A.117)

However, we may note that

Y ≡ 2(Q−Q3) =
∫

d3x
[1
3
(
u†

L
u

L
+ d†

L
d
L

)
+

4
3
u†

R
u

R
− 2

3
d†
R
d
R

−
(
ν†
eLνeL + e†

L
e
L

)
− 2e†

R
e
R

−
(
ν†
µL
νµL

+ µ†
L
µ

L

)
− 2µ†

R
µ

R

]
. (A.118)

In other words, all the elements of a given representation of SU(2) – whether a doublet
of two left-handed fields, say u

L
and d

L
, or a singlet right-handed field, say u

R
– appear

in the sum with the same coefficient. This means that out of the SU(2) gauge symmetry
associated with the generator t3 and the U(1) QED gauge symmetry, one may form an
abelian U(1) symmetry which commutes with the weak isospin SU(2) symmetry. The
associated quantum number is noted y and called the weak hypercharge ; the gauge
group is noted U(1)Y to distinguish it from quantum electrodynamics. From (A.118),
we infer the following relation between the charge q, the weak isospin t3 and the weak
hypercharge y of a fermion

q = t3 +
y

2
. (A.119)

Table A.1 gives the quantum numbers of the low energy quarks and leptons.
We have introduced a right-handed neutrino which did not appear in the earliest

formulations of the Standard Model, since neutrino were assumed to be massless. As
noted in Chapter 1, this field is a gauge singlet under SU(2)× U(1)Y .

7Indeed, if the photon field Aµ is one of the gauge fields of SU(2), then the corresponding generator
is traceless and the electric charges in a given representation must add to zero. One then needs to
introduce extra leptons (and quarks) as in the Georgi and Glashow model [180] (see Exercise 9).
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Table A.1

Field q t3 y

u
L

+2/3 +1/2 +1/3
d
L

−1/3 −1/2 +1/3
u

R
+2/3 0 +4/3

d
R

−1/3 0 −2/3
νeL 0 +1/2 −1
e
L

−1 −1/2 −1
e
R

−1 0 −2
N

R
0 0 0

The total gauge symmetry has now four gauge bosons: Aa
µ, a = 1, 2, 3, for SU(2)

and the abelian gauge field of U(1)Y which we will note Bµ. It follows from our
construction that the photon field Aµ (associated with the charge operator Q) is a
combination of A3

µ and Bµ. The orthogonal combination is a real, thus neutral, vector
field denoted by Z0

µ. Its exchange leads to new low energy weak interactions known
as neutral currents. It is their discovery in 1973 at CERN which led to the first
experimental verification of the Standard Model.

In order to give a mass to the intermediate vector boson W±
µ (and to the new Z0

µ

since there does not seem to exist a long range force associated with it), we must break
spontaneously the gauge symmetry, while keeping the photon Aµ massless. In other
words, we must break SU(2)× U(1)Y down to the U(1) symmetry of QED. We need
at least three real scalar fields to provide for the three longitudinal degrees of freedom
W±

L , Z0
L. The most economical choice is provided by a complex doublet Φ =

(
φ+

φ0

)
with

quantum numbers given in Table A.2.
After spontaneous breaking, there remains 4−3 = 1 degree of freedom: the neutral

scalar field known as Higgs and actively searched at high energy colliders.
For future reference, we note that, since Φ transforms under SU(2) as a doublet

Φ(x)→ e−iαa(x)ta Φ(x). (A.120)

Φ∗ which describes the charge conjugate does not transform as a doublet. It is the
field

Φ̃ = iσ2 Φ∗ =
(
φ0∗

−φ−

)
(A.121)

which transforms as (A.120), as can be seen by using

σ2
σa∗

2
σ2 = −σa

2
. (A.122)

This shows that, under SU(2), the representation 2 is equivalent to the conjugate
representation 2̄. We note also that Φ̃ has hypercharge y = −1.

We are now in a position to write the Lagrangian of the Standard Model and
extract its consequences.
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Table A.2

Field q t3 y

φ+ +1 +1/2 +1
φ0 0 −1/2 +1

A.3.2 The Glashow–Weinberg–Salam or SU(2) × U(1) model

We start with the gauge and scalar sector of the theory. The Lagrangian simply reads

L = − 1
4F

aµνF a
µν − 1

4B
µνBµν +DµΦ†DµΦ− V (Φ†Φ) (A.123)

where F a
µν (a = 1, 2, 3) is the SU(2) covariant field strength given in (A.52), Bµν =

∂µBν − ∂νBµ is the U(1)Y invariant field strength and Φ is the Higgs doublet. Its
derivative DµΦ is covariant under both SU(2) and U(1)Y :

DµΦ = ∂µΦ− ig Aa
µ

σa

2
Φ− i

g′

2
yφ BµΦ, (A.124)

where g is the SU(2) gauge coupling, g′/2 is the U(1)Y gauge coupling and yφ = +1
is the Higgs hypercharge. This Lagrangian is invariant under local transformations of
SU(2)× U(1)Y , i.e. infinitesimally, following (A.46), (A.31), (A.98) and (A.99),

δAa
µ = −1

g
∂µα

a + εabc αb Ac
µ

δBµ = − 2
g′ ∂µβ

δΦ = −i αaσ
a

2
Φ− iyφβΦ (A.125)

where αa, a = 1, 2, 3, are the parameters of the SU(2) transformation and β of the
abelian U(1)Y . We note that the choice α1 = α2 = 0 and α3 = 2β = θ corresponds to
the U(1) QED gauge transformation (A.29):

δφ+ = −iθφ+, δφ0 = 0. (A.126)

We take as usual a scalar potential

V (Φ†Φ) = −m2Φ†Φ+ λ(Φ†Φ)2, (A.127)

with the ground state8

〈Φ〉 ≡ Φ0 =
(

0
v√
2

)
, v =

√
m2

λ
. (A.128)

8We note that it is this choice of orientation which determines the exact nature of the residual
symmetry, U(1)QED, and thus the electric charge of the fields. In order to remain simple in the
presentation, we have worked backwards here.
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As usual, the gauge field mass matrix is obtained from the covariant completion of
the scalar kinetic term. Setting φ at its ground state value, we obtain from (A.124):

〈DµΦ〉 =


−ig v√

2

A1
µ − iA2

µ

2

+i
v√
2

gA3
µ − g′Bµ

2

 (A.129)

and we read the mass terms directly from 〈DµΦ†DµΦ〉, following (A.93). The mass
eigenstates are:

W±
µ =

A1
µ ∓ iA2

µ√
2

, M
W
=

1
2
gv, (A.130)

Z0
µ =

gA3
µ − g′Bµ√
g2 + g′2

, M
Z
=

1
2

√
g2 + g′2 v, (A.131)

Aµ =
g′A3

µ + gBµ√
g2 + g′2

, M
A
= 0. (A.132)

We thus check that the SU(2) × U(1)Y symmetry is spontaneously broken down
to U(1)QED: only the photon field Aµ remains massless. Correspondingly, the Higgs
doublet can be parametrized as in (A.104):

Φ(x) = eiγ
a(x)ta

(
0

v+h(x)√
2

)
. (A.133)

The three fields γa(x) can be set to zero through a gauge transformation (unitary
gauge): they provide the longitudinal degrees of freedom of W± and Z0.

One defines the mixing angle, called the Weinberg angle, between the neutral gauge
bosons as:

sin θ
W
=

g′√
g2 + g′2

, cos θ
W
=

g√
g2 + g′2

, tg θ
W
=

g′

g
. (A.134)

Then

Zµ = cos θ
W

A3
µ − sin θ

W
Bµ,

Aµ = sin θ
W

A3
µ + cos θ

W
Bµ. (A.135)

We also note the important relation between the gauge boson masses and the mixing
angle:

ρ ≡ M2
W

M2
Z
cos2 θ

W

= 1. (A.136)

We will see that this tree-level prediction of the Standard Model is a key test of the
theory, and a major source of problems for theories beyond the Standard Model.
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We now turn to the fermion sector. We will only consider here a single family of
quarks and leptons: e, νe, u, and d. We have identified in the previous section the
quantum numbers of these fields. Restoring the color SU(3) degrees of freedom, we
thus define

SU(3) SU(2) U(1)Y
ψ� =

(
νL
eL

)
∈ (3, 2, y = −1)

N
R

∈ (1, 1, y = 0)
e
R

∈ (1, 1, y = −2)
ψq =

(
uL

dL

)
∈ (3, 2, y = 1/3)

u
R

∈ (3, 1, y = 4/3)
d
R

∈ (3, 1, y = −2/3).

The minimal coupling to gauge fields is obtained from a standard action of the
type (A.53), i.e. ψ̄iγµDµψ with the covariant derivatives:

Dµψ� =
(
∂µ − ig Aa

µ

σa

2
+ i

g′

2
Bµ

)
ψ�,

DµNR
= ∂µNR

, DµeR = (∂µ + ig′ Bµ) eR ,

Dµψq =
(
∂µ − ig Aa

µ

σa

2
− i

g′

6
Bµ

)
ψq, (A.137)

DµuR
=
(
∂µ −

2ig′

3
Bµ

)
u

R
, DµdR

=
(
∂µ + i

g′

3
Bµ

)
d
R
.

On the other hand, a mass term −m(ψ̄
L
ψ

R
+ ψ̄

R
ψ

L
) is not allowed by the gauge

symmetry because the left and right chiralities transform differently.
This chiral nature of the Standard Model is one of its key properties: fermion masses

as well as gauge boson masses only appear once the symmetry is spontaneously broken.
This is especially important when one considers the Standard Model as a low energy
effective theory of an underlying fundamental theory with a very high mass scale Λ. If
the Standard Model was vectorlike, i.e. if left and right chiralities were transforming
the same way, then masses of order Λ would be allowed. Because the Standard Model
is chiral, only masses of order v are allowed.

We note also that the only dimensionful parameter (mass scale) in the Standard
Model is the scale m in the scalar potential (A.127): it is this scale which fixes the
scale of electroweak symmetry breaking v in (A.128). It is also this scale which fixes, at
tree-level, the Higgs mass. This can easily be seen by considering the scalar potential
in the unitary gauge V [(v + h(x))2/2]:

m2
h = 2m2 = 2λv2. (A.138)

This establishes the key rôle of the Higgs mass parameter in the Standard Model. As
discussed in Chapter 1, this is one of the most sensitive issues when one tries to go
beyond the Standard Model.
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Fermion mass terms arise from the coupling of fermions to the scalar sector. One
may check that the following renormalizable couplings, known as Yukawa couplings,
are the most general couplings allowed by the SU(2)× U(1)Y local gauge symmetry:

LY = λe ψ̄� Φ e
R
+ λν ψ̄� Φ̃ N

R
+ λd ψ̄q Φ d

R
+ λu ψ̄q Φ̃ u

R
+ h.c. (A.139)

where Φ̃ ≡ iτ2Φ∗ has been defined in (A.121). We note that such couplings automati-
cally satisfy baryon (B) and lepton (L) number conservation.

If we set the scalar field at its ground state value (A.128), we obtain the following
mass terms:

Lm = 〈LY 〉 = λe
v√
2
ē
L
e
R
+ λν

v√
2
ν̄
L
N

R
+ λd

v√
2
d̄
L
d
R
+ λu

v√
2
ū

L
u

R
+ h.c. (A.140)

Thus
me = −λe

v√
2
, md = −λd

v√
2
, mu = −λu

v√
2
. (A.141)

The case of the neutrino mass is complicated by the possible presence of a Majorana
mass term which is not constrained by the SU(2)× U(1)Y symmetry since NR is an
electroweak singlet:

LM = − 1
2 M N c

L
N

R
+ h.c. (A.142)

As discussed in Chapter 1, this leads in a fairly straightforward way to the seesaw
mechanism for neutrino masses9.

It remains for us to check that the low energy limit of the Standard Model is
indeed the Fermi theory described by the current–current interaction (A.110). This
will provide some important information on the mass scales involved.

A.3.3 Low energy effective theory

Let us identify the currents coupled to the different gauge bosons of the Standard
Model. We have already done this in (A.115): it suffices to add the coupling to the
U(1)Y gauge boson Bµ. Thus

Lint =
g√
2

(
Jµ+ W+

µ + Jµ− W−
µ

)
+ g J3µ A3

µ +
g′

2
JBµBµ (A.144)

with

Jµ+ = ν̄e γ
µ 1− γ5

2
e+ ū γµ

1− γ5
2

d, Jµ− = (Jµ+)
† (A.145)

J3
µ =

∑
i

t3i ψ̄i γµ ψi, JBµ =
∑
i

yi ψ̄i γµ ψi, (A.146)

9Alternatively, if one does not introduce NR at all, one obtains a nonvanishing Majorana neutrino
mass by allowing the following nonrenormalizable coupling:

LM =
λ̂ν

M
ψc�ψ�φφ+ h.c. (A.143)

This term is interpreted as arising in the context of an effective theory valid at energies smaller than
the scale M of a more fundamental theory.
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where ψi = (ψ�, eR , NR
, ψq, uR

, d
R
). One may express A3

µ and Bµ in terms of the mass
eigenstates Aµ and Z0

µ using (A.135). Using further (A.119) and (A.134), we obtain

gJ3µA3
µ +

g′

2
JBµBµ = g sin θ

W

∑
i

qi ψ̄iγ
µψi Aµ (A.147)

+
g

cos θ
W

∑
i

[
t3i − qisin

2θW
]
ψ̄iγ

µψiZ
0
µ.

We conclude that the QED coupling e is simply given by

e = g sin θ
W
=

gg′√
g2 + g′2

. (A.148)

On the weak interaction side, the W exchange in the diagram of figure A.5 leads
at low energy to the current–current interaction

LW
eff = − g2

2M2
W

J+µ J−µ (A.149)

since each vertex contributes a factor (−ig/
√
2) and the W propagator −igµν/(k2 −

M2
W
) ∼ igµν/M

2
W

at low momentum transfer (k2 � M2
W
). Comparison with (A.110)

thus gives
G

F√
2
=

g2

8M2
W

. (A.150)

Expressing the W mass in terms of the Higgs vacuum expectation value as in
(A.130), we obtain the important result:

v =
(

1
G

F

√
2

)1/2

� 246 GeV. (A.151)

Thus the electroweak symmetry breaking scale is completely fixed by the low energy
Fermi theory. We have seen earlier that this scale is related to the mass parameter in
the Higgs potential, and thus to the Higgs mass. We conclude from (A.138) that, if
the Higgs is light compared to the scale υ, the symmetry breaking (Higgs) sector is
weakly coupled (λ < 1), whereas it becomes strongly coupled for Higgs masses much
larger than υ, i.e. in the TeV range.

The Z0 exchange also leads to low energy effective four-fermion interaction. One
sees from (A.147) that one can write the fermionic current JZµ coupled with Z0 as

JZµ = J3
µ − sin2 θ

W
JQµ , JQµ =

∑
i

qi ψ̄iγµψi, (A.152)

with coupling constant g/ cos θ
W
. The exchange of Z0 at low energy thus leads to the

effective “neutral current” interaction:

LZ
eff = −1

2
g2

cos2 θ
W
M2

Z

JZµ JZµ = − g2

2M2
W

JZµJZµ , (A.153)

where we have included a symmetry factor of 1/2 (absent in the charged current
effective interaction because J+

µ �= J−
µ ). Such an interaction scales like the Fermi
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constant G
F
but was much more difficult to detect because it does not correspond

to a change in the nature of the quarks (as in the beta decay). It was discovered at
CERN in 1973, following the prediction of the Standard Model.

A.3.4 Flavor structure

The Standard Model has a very simple family structure which leads to specific predic-
tions, such as the quasi-absence of flavor changing neutral currents, which are difficult
to reproduce in the context of its extensions. We will thus first review the main results.

In the Standard Model, we are in presence of three families which are replicas
(from the point of view of gauge quantum numbers) of the set (νe, e, u, d). We will
thus denote the fermions of each three family as

(νi, ei, ui, di)
i = 1 (νe, e, u, d)
i = 2 (νµ, µ, c, s)
i = 3 (ντ , τ, t, b)

where color indices have been suppressed on the quark fields. We call the index i a
family index. If we include the three families, then the Yukawa couplings have a matrix
structure in family space: all couplings in

LY = Λ�ij ψ̄�iΦeRj
+ Λνij ψ̄�iΦ̃NRj

+ Λdij ψ̄qiΦdRj
+ Λuij ψ̄qiΦ̃uRj

+ h.c. (A.154)

are allowed by the gauge symmetries of the Standard Model (since these are horizontal,
i.e. do not depend on the family of the quark or lepton). In (A.154), ψ�i =

(
ν
Li
e
Li

)
and

ψqi =
(u

Li
d
Li

)
.

The Yukawa matrices Λ�, Λd, and Λu are generic complex 3 × 3 matrices. In all
generality, a complex matrix has a polar decomposition, i.e. it can be written as a
product of a hermitian matrix H and a unitary matrix U (see Exercise 3)

Λ = HU. (A.155)

The matrix H, being hermitian , can be diagonalized with a unitary matrix VL: H =
VLDV

†
L . Then the general complex matrix Λ is diagonalized with the help of two

unitary matrices VL and VR ≡ U†VL

V †
LΛVR = D =

λ1
λ2

λ3

 . (A.156)

Using this general result, one may then write for example the electron mass term
which arises from (A.154) as

Lm = ē
L
Λ�

v√
2
e
R
= ē

L
V �
LD�V

�†
R

v√
2
e
R

=
(
V �†
L e

L

)
i
λi

v√
2

(
V �†
R e

R

)
i
, (A.157)

where we have suppressed some of the summed family indices. Thus, charge eigen-
states, i.e. fields belonging to definite representations of the gauge group such as (u, d)
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or (ντ , τ), should not be confused with mass eigenstates i.e. fields which are observed
in the detectors:

ê
L
= V �†

L e
L
, ê

R
= V �†

R e
R
,

ν̂
L
= V ν†

L ν
L
, ν̂

R
= V ν†

R ν
R
,

û
L
= V u†

L u
L
, û

R
= V u†

R u
R
, (A.158)

d̂
L
= V d†

L d
L
, d̂

R
= V d†

R d
R
.

Charged and neutral currents should be expressed in terms of the observable fields,
that is in terms of the mass eigenstates. This induces some new structure. For example,
the charged current reads

Jµ+ =
∑
i

ū
Li
γµd

Li
+ ν̄

Li
γµe

Li

=
∑
kl

û
Lk

(
V u†
L V d

L

)
kl
γµ d̂

Ll
+ ν̂

Lk

(
V ν†
L V �

L

)
kl
γµ ê

Ll
. (A.159)

Hence the quark charged current coupled to the W+ is not diagonal. It involves the
mixing matrix

VCKM ≡ V u†
L V d

L (A.160)

known as the Cabibbo–Kobayashi–Maskawa matrix. And similarly for the leptons

VMNS ≡ V ν†
L V �

L (A.161)

where VMNS is the Maki–Nakagawa–Sakata [280] matrix.
On the other hand, neutral currents, because they are flavor diagonal, remain

diagonal when expressed in terms of mass eigenstates. For example, J3
µ which appears

in JZµ = J3
µ − sin2 θ

W
JQµ (see equation (A.152)), is written:

J3
µ =

∑
i

1
2
ū

Li
γµuLi

− 1
2
d̄LiγµdLi + · · ·

=
∑
i

1
2
û

Li
γµûLi

− 1
2
d̂
Li
γµd̂Li

+ · · · (A.162)

since the diagonalization matrices cancel (V u†
L V u

L = 1, . . .). Thus neutral current inter-
actions proceed without any change of flavor (i.e. type of quarks). This is why neutral
currents were so much more difficult to detect experimentally than charged currents
(nuclear beta decay), although they are of the same strength (see (A.181) below).

The absence of flavor changing neutral currents extends to the one-loop level
through a cancellation known as the GIM mechanism [193]. We illustrate it here on
the simpler case of two families where the quark mixing matrix can be written (see
below) as the 2× 2 orthogonal Cabibbo matrix

V
C
=
(

cos θ
C

sin θ
C

− sin θ
C
cos θ

C

)
, (A.163)

where θ
C
is the Cabibbo angle (sin θ

C
∼ 0.2). Since charged currents are flavor chang-

ing, we should expect that the simultaneous exchange of aW+ and aW− in a one-loop
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c

s

d

u

W

sin θc

–sin θc

cos θc

cos θc

u u

Ws

d s

d

s

d W

W

Fig. A.6 Two contributions to K0(sd̄) − K̄0(ds̄) oscillations.

process (box diagram) yields a flavor-changing neutral current. Take for example two
of the diagrams which contribute to the K0 − K̄0 oscillation, as shown in Fig. A.6
(there are two other diagrams with the u quark internal line on the left replaced by a
c quark).

In the limit of vanishing masses or equal masses, it is clear that the two diagrams
have the same contribution apart from the couplings of the internal quark line on the
right, which is cos θ

C
sin θ

C
for the first diagram and − sin θ

C
cos θ

C
for the second

diagram. Thus they cancel and this flavor-changing process vanishes in the limit of
equal masses: it is at most of the order of the quark mass differences and thus small. A
careful study of the size of the effect allowed [171] to estimate the charm quark mass.

We close this presentation of the flavor sector of the Standard Model by a discussion
of CP violation: it turns out that the only source of CP violation in the Standard Model
is a single phase in the fermion sector.

Generally speaking, invariance under CP of a fermion mass term

−ψ̄
L
Mψ

R
+ h.c. = − 1

2 ψ̄
[(
M +M†)+ (M −M†) γ5]ψ (A.164)

requires that the mass matrix is real: M = M∗. Indeed, invariance under parity P
(under which ψ̄1ψ2 is invariant whereas ψ̄1γ5ψ2 changes sign, cf. (A.108)) imposes
M = M†; invariance under charge conjugation C (under which ψ̄1ψ2 → ψ̄2ψ1 and
ψ̄1γ5ψ2 → ψ̄2γ5ψ1) imposes M =MT .
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Thus, we will have a natural violation of the CP symmetry if there exists at least
one physical phase in the fermion mass matrix or, if we are working with the mass
eigenstates, in the Cabibbo–Kobayashi–Maskawa matrix [254]. By “physical” we mean
a phase which cannot be set to zero by a redefinition of the fermion fields. Let us count
the number of physical phases of VCKM in the general case of NF families of quarks:
VCKM being a complex NF ×NF matrix which satisfies the unitarity condition, it has
N2
F real parameters. Out of these, 2NF − 1 can be absorbed by redefining the phases

of the quark fields10 which leaves (NF − 1)2 physical parameters. If VCKM was real, it
would be a NF×NF orthogonal matrix and would have NF (NF−1)/2 real parameters.
The remaining (NF − 1)(NF − 2)/2 parameters are complex phases.

Thus, with NF = 2 families of quarks, there is no source of CP violation and the
Cabibbo matrix (A.163) can be made real by redefining the phases of the quark fields.
And NF = 3 corresponds to the minimum number of families necessary to have a CP
violating phase in the Standard Model, as noted first by Kobayashi and Maskawa.
This single phase is generically referred to as δCKM .

We may for example write the Cabibbo–Kobayashi–Maskawa matrix in the
Wolfenstein parametrization [379]11:

VCKM ≡ V =

 1− 1
2λ

2 λ Aλ3(ρ− iη)
−λ 1− 1

2λ
2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 , (A.165)

where the CP-violating phase is now parametrized by η.
The unitarity relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (A.166)

may be represented geometrically in the complex plane and is called a unitarity tri-
angle. It has become customary to rescale the length of one side, i.e. |VcdV ∗

cb| which is
well-known, to 1 and to align it along the real axis. The unitarity triangle thus looks
like Fig. A.7.

The angles α, β, γ are defined as:

α ≡ arg
(
− VtdV

∗
tb

VudV ∗
ub

)
, β ≡ arg

(
−VcdV

∗
cb

VtdV ∗
tb

)
, γ ≡ arg

(
−VudV

∗
ub

VcdV ∗
cb

)
, (A.167)

and the lengths

Rt ≡
∣∣∣∣ VtdV ∗

tb

VcdV ∗
cb

∣∣∣∣ , Ru ≡
∣∣∣∣VudV ∗

ub

VcdV ∗
cb

∣∣∣∣ . (A.168)

Fig. 12.1 of Chapter 12 shows how the experimental limits obtained in 2005 constrain
the unitarity triangle. The fact that all data is consistent with a small region with
nonvanishing η shows that CP is violated and that its violation is consistent with a
single origin: the phase of the CKM matrix.

10A global phase redefinition would have no effect; hence the −1.
11We neglect terms of order λ4 and higher [59]; in the same spirit, we use in what follows the

variables ρ̄ and η̄ which are precisely defined as ρ̄ ≡ ρ(1 − λ2/2) and η̄ ≡ η(1 − λ2/2).
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β
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(0,0) (1,0)

(ρ,η)
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Rtα

Fig. A.7 Unitarity triangle

More quantitatively, one may show that CP is violated if and only if [238]

Im
(
det
[
ΛdΛ

†
d,ΛuΛ†

u

])
�= 0. (A.169)

Introducing the quantity

Im
(
VijVklV

∗
ilV

∗
kj

)
= JCKM

3∑
m,n=1

εikmεjln (A.170)

(JCKM ∼ λ6A2η in the Wolfenstein parametrization), one may write the condition
(A.169) in the mass eigenstate basis as

(m2
t −m2

c)(m
2
t −m2

u)(m
2
c −m2

u)(m
2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d)JCKM �= 0. (A.171)

A.4 Electroweak precision tests
The Standard Model has been tested at the CERN electron–positron collider LEP to
a precision of the order of the per mil (‰). Such a precision allows us to go beyond the
tree-level which has been described above and to test the theory at the quantum level.
Indeed, if quantum fluctuations were not included, the Standard Model would be in
disagreement with experimental data. We review in this section how these quantum
corrections are included in order to confront the theory with experiment.

A.4.1 Principle of the analysis of the radiative corrections in the
Standard Model

As soon as renormalization is involved, it is important to rest the discussion on
observables: only observable quantities are free of the arbitrariness inherent to the
renormalization procedure.

Let us consider for example the three parameters which, besides the Higgs mass,
describe the gauge sector of the Standard Model: the SU(2) gauge coupling g, the
hypercharge U(1) gauge coupling g′/2, and the Higgs vacuum expectation value v/

√
2.

Since they are not directly measurable, one prefers to replace them by observable
quantities:
• α, the fine structure constant;
• Gµ, the Fermi constant measured in µ decay;
• M

Z
, the Z boson mass.
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They are presently measured to be:

α−1 = 137.0359895(61) (A.172)
Gµ = 1.16637(2)× 10−5 GeV−2 (A.173)
M

Z
= 91.1872± 0.0021 GeV. (A.174)

The relation between the theory parameters g, g′, v, and these observable quantities
is, at tree-level of the theory, given by (A.148), (A.151) and (A.131):

α =
e2

4π
=

1
4π

g2g′2

g2 + g′2 , (A.175)

Gµ =
1

v2
√
2
, (A.176)

M
Z
=

1
2

√
g2 + g′2 v. (A.177)

Given this set of data, it is interesting to ask how to define the central parameter of the
electroweak theory, sin2 θ

W
. There are several equivalent ways to do it at tree-level:

• Using the relation M2
W
=M2

Z
cos2 θ

W
, we may write

sin2 θ
W
= 1− M2

W

M2
Z

≡ s2
W
. (A.178)

• We could use α and Gµ instead of M
Z
. Indeed, using (A.134) we have

α

Gµ
= g2v2 sin2 θ

W

√
2

4π
, (A.179)

and, since M2
W
= g2v2/4,

sin2 θ
W
=

A

M2
W

, A ≡ πα√
2Gµ

. (A.180)

• One may also use the ratio between the charged and neutral current effective
interactions. According to (A.149) and (A.153), they read, in the limit of vanishing
transfer momentum q:

GNC

GCC

∣∣∣∣
q2=0

=
M2

W

M2
Z
cos2 θ

W

= ρ. (A.181)

In other words, we could define

sin2 θ
W
= 1− M2

W

M2
Z

GCC

GNC

. (A.182)

These three definitions are obviously equivalent at tree-level but are affected by differ-
ent corrections at higher orders. Thus, if one wants to define a consistent procedure,



BINE: “APPA” — 2006/10/5 — 06:39 — PAGE 399 — #36

Electroweak precision tests 399

one must decide on a single definition. We will choose here (A.178): in other words, we
define sin2 θ

W
, and note s2

W
, the function 1 −M2

W
/M2

Z
, to all orders of perturbation

theory. When one uses this definition, then (A.180) reads

M2
W
s2
W
=

A

1− δr
(A.183)

and (A.181)

ρ ≡ GNC

GCC

∣∣∣∣
q2=0

= 1 + δρ, (A.184)

where δr and δρ account for radiative corrections.
It is easy to obtain first order expressions for these quantities. Denoting bare

quantities with a superscript 0, we may write for example (A.180) as

M0
W

2 =
πα0

√
2G0

µ sin
2 θ0W

. (A.185)

We then replace bared quantities by renormalized ones:

α0 = α

(
1− δα

α

)
,

G0
µ = Gµ

(
1− δGµ

Gµ

)
, . . . (A.186)

Then (A.185) reads, in terms of renormalized quantities, and to first order,

M2
W
=

πα√
2Gµ sin2 θW

[
1− δα

α
+
δGµ

Gµ
+
δ sin2 θ

W

sin2 θ
W

+
δM2

W

M2
W

]
(A.187)

and, since we have defined sin2 θ
W

through (A.178),

δ sin2 θ
W
= −δM2

W

M2
Z

+
M2

W

M4
Z

δM2
Z
. (A.188)

Hence

δr = −δα

α
+
δGµ

Gµ
+
c2
W

s2
W

δM2
Z

M2
Z

+
(
1− c2

W

s2
W

)
δM2

W

M2
W

(A.189)

with c2
W
= 1− s2

W
. Similarly, from (A.184),

δρ =
δGNC

GNC

− δGµ

Gµ
, (A.190)

where we have used ρ = 1 at zeroth order (GCC ≡ Gµ).
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One may distinguish three types of radiative corrections in the Standard Model:
(i) α and Gµ are measured at low energy and must be renormalized up to the scale

at which present measurements are performed (typically M
Z
). For example, sum-

ming the large (lnM
Z
/me)n contributions into a running coupling α(M

Z
), one

obtains from the boundary value (A.172) at a scale me

α−1(M
Z
) = 127.934± 0.027, (A.191)

where the error quoted is mainly due to the uncertainty on the low energy hadronic
contribution to vacuum polarization.
On the other hand, Gµ does not receive large ln (M

Z
/mµ) corrections because of

a nonrenormalization theorem12.
(ii) Large corrections due to the top or the Higgs may appear through vacuum

polarization diagrams. These are traditionally called oblique corrections. There is
a well-defined procedure to take them into account.
One may introduce in general the two point-function:

µ q q ν

Πµν

(
q2
)
= −igµν

[
A+ Fq2 +Gq4 + · · ·

]
+O (qµqν) . (A.192)

Since this is usually contracted with external fermionic currents, the terms O (qµqν)
give contributions of the order of the light fermion masses, which we neglect (see
however below). If we denote by M the mass of the heavy field (Z, top or Higgs), then
dimensional analysis tells us that A ∼M2, F ∼M0 and G ∼M−2 and thus the term
in q4 is negligible for q2 �M2.

We thus have to consider

ΠWW
µν

(
q2
)
= −igµν

[
AWW + q2FWW

]
,

ΠZZ
µν

(
q2
)
= −igµν

[
AZZ + q2FZZ

]
,

Πγγ
µν

(
q2
)
= −igµν

[
0 + q2Fγγ

]
,

ΠγZ
µν

(
q2
)
= −igµν

[
0 + q2FγZ

]
, (A.193)

where Aγγ = AγZ = 0 because the electromagnetic current is conserved: qµΠγγ
µν = 0 =

qµΠγZ
µν for q2 = 0.

12Through Fierz reordering, one may write the effective current–current interaction responsible for
muon decay as

Leff =
Gµ√

2
[ēγµ(1 − γ5)µ] [ν̄µγµ(1 − γ5)νe] .

The lepton-changing (e → µ) vector and axial currents that appear satisfy a nonrenormaliza-
tion theorem that allows only finite corrections and hence forbid any dependence in the effective
cut-off MZ .
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Fig. A.8

Now, if we consider the diagrams of Fig. A.8, only the tree-level and γγ propagator
contribute to the pole in q2. Thus the pole part of the amplitude reads

M|pole = − i

q2
gµνe20 (1− Fγγ) = − i

q2
gµν

(
e2 − δe2

)
(1− Fγγ)

≡ − i

q2
gµνe2, (A.194)

where we have introduced, as in (A.186), the bare e0 and renormalized e couplings.
Thus, to first order, δe2/e2 = −Fγγ .

We obtain, with similar analyses for Gµ and M
Z
,

δα

α
= −Fγγ , (A.195)

δGµ

Gµ
=

AWW

M2
W

, (A.196)

δM2
Z

M2
Z

= −AZZ

M2
Z

− FZZ . (A.197)

Thus, three out of six of the independent quantities that we have introduced in (A.193)
are used to renormalize the variables α, Gµ and M

Z
. We are left with three variables

which fully describe the oblique corrections [6, 307].
One prefers to work in the original SU(2) × U(1) basis (A3

µ, Bµ) for the gauge
fields. One then introduces13:

ε1 =
A33 −AWW

M2
W

, (A.200)

13Alternatively, in the language of [307,308], one introduces the three variables S, T and U which,
to lowest order, are related to the variables of [6] by

ε1 = α T,

ε2 = − α

4s2
W

U, (A.198)

ε3 =
α

4s2
W

S. (A.199)
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ε2 = FWW − F33, (A.201)

ε3 =
c
W

s
W

F3B . (A.202)

Using (A.196) and its neutral current equivalent (δGNC/GNC = AZZ/M
2
Z
), we obtain

from (A.190)

δρ =
AZZ

M2
Z

− AWW

M2
W

= ε1, (A.203)

where we have used (A.285). Hence ε1 represents the departure of the ρ parameter
from the value 1. Similarly (see Exercise 4),

δr = − c2
W

s2
W

ε1 −
(
1− c2

W

s2
W

)
ε2 + 2ε3. (A.204)

It is rather easy to guess the order of magnitude of the dimensionless parameters εi.
At one loop, which is the first order at which they are nonvanishing, the corresponding
diagrams involve two gauge couplings, and thus are of order G

F
M2

W
. Take first the

example of ε3. Clearly F3B �= 0 requires the breaking of SU(2)×U(1) which confirms
that ε3 ∼M2

W
. Moreover, the presence of F3B requires to factor q out (as in (A.192)):

we are left with a logarithmic dependence on the high scales, typically ln (mt/MZ
) or

ln (m
H
/M

Z
). The case is somewhat different with ε1. The same argument as just given

tells us that A33−AWW ∼ G
F
M2

W
m2 where dimensional analysis tells us that we are

still missing a squared mass factor m2 which turns out to be the top mass-squared.
Hence ε1 ∼ G

F
m2

t .
A complete calculation gives:

ε1 =
3G

F
m2

t

8π2
√
2
− 3G

F
M2

W

4π2
√
2

tan2 θ
W
ln
m

H

M
Z

+ · · · (A.205)

ε2 = −G
F
M2

W

2π2
√
2
ln

mt

M
Z

+ · · · (A.206)

ε3 =
G

F
M2

W

12π2
√
2
ln
m

H

M
Z

− G
F
M2

W

6π2
√
2
ln

mt

M
Z

+ · · · (A.207)

Hence, ε1 � ε2, ε3 and, for example, δr ∼ −
(
c2
W
/s2

W

)
δρ.

We also note that there is no term of order G
F
m2

H
. The absence of such terms may

be attributed to the symmetries of the theory in the limit of large Higgs mass. In this
limit, the Higgs sector has the structure of a nonlinear sigma-model coupled to gauge
fields. Indeed, setting for a moment the gauge fields to zero, one may write the scalar
Lagrangian as (We write φ+ ≡ φ2 + iφ1, φ

0 ≡ h− iφ3 and M ≡ h+ iσaφa)

L =
1
4
Tr ∂µM†∂µM − V (M,M†), (A.208)

V (M,M†) =
λ

4
[
Tr M†M − v2

]2
,
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where M ≡ h + iτ · ξ. This Lagrangian has an invariance SU(2)L × SU(2)R: M →
ULMU†

R, where UL, UR are 2× 2 unitary matrices (to understand the meaning of the
L,R subscripts, see Equation (7.9) of Chapter 7). When we restore the gauge fields,
there remains a SU(2)R invariance in the limit θ

W
→ 0 (g′ → 0). When m

H
→∞, the

model becomes nonlinear with the constraint Tr M†M = v2. The SU(2)R symmetry
still constrains the structure of the counterterms and forbids terms of the form G

F
m2

H

(m
H
is the physical cut-off).

This result is known as the screening theorem [351]. The sensitivity of low energy
physics in the Higgs mass is only logarithmic. But tests at the LEP collider have
achieved such a precision that they now allow us to put limits on the Higgs mass
within the Standard Model.

(iii) In the case of processes involving the third generation of quarks, one has a possible
large dependence in mt through vertex corrections (e.g. Z → bb̄).

A.5 Dilatations and renormalization group
Scale invariance and its violations as described by the renormalization group approach
play an important rôle in the study of supersymmetry. We present the basic notions
in this section. We also review the notion of effective potential which is used in the
main text to discuss quantum corrections.

A.5.1 Dilatations and conformal transformations

A dilatation or scaling transformation is a spacetime transformation of the form

x→ x′ = e−αx. (A.209)

It acts linearly on the fields:

Φ(x)→ Φ′(x′) = eαdΦ(x), (A.210)

which we may write by keeping spacetime fixed

Φ(x)→ Φ′(x) = eαdΦ(eαx). (A.211)

The number d is characteristic of the field Φ and is called its scaling dimension.
Infinitesimally,

δΦ(x) = α (d+ xµ∂µ)Φ(x). (A.212)

At the classical level, the scaling dimension coincides with the canonical dimension:
d = 1 for the scalar fields, 3

2 for spin 1
2 or 3

2 fermions.
We may consider as an example the following action involving a scalar field φ(x)

and a Dirac spinor field Ψ(x):

S = S0 + S1 =
∫

d4xL0(x) +
∫

d4xL1(x), (A.213)

L0 =
1
2
∂µφ∂µφ+

i

2
Ψ̄γµ∂µΨ+ λ

Y
φΨ̄Ψ− λ0

4!
φ4, (A.214)

L1 = −1
2
m2

0φ
2. (A.215)
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Under the dilatation transformation (A.212), we have

δL0 = α (4 + xµ∂µ)L0. (A.216)

and thus, by integration by parts,

δS0 = α

∫
d4x ∂µ (xµL0) . (A.217)

Thus S0 is invariant by dilatation. On the other hand,

1
α
δS1 =

∫
d4x (−m2

0)φ (1 + xµ∂µ)φ =
∫

d4x (−m2
0)
(
1 +

1
2
xµ∂µ

)
φ2

=
∫

d4x (−m2
0)
(
1− 1

2
∂µx

µ

)
φ2 =

∫
d4x m2

0φ
2.

Hence

δS = α

∫
d4x ∆ with ∆ = m2

0φ
2. (A.218)

It follows that the dilatation current, or scaling current, Dµ is not conserved: from
(A.10) we obtain

∂µDµ = ∆. (A.219)

Using (A.8), one obtains from (A.209) and (A.210) the general explicit form for the
dilatation current

Dµ = −xρ
[
Lgµρ −

δL
δ (∂µΦ(x))

∂ρΦ
]
+

δL
δ (∂µΦ(x))

dΦ(x)

= xρTρµ +
δL

δ (∂µΦ(x))
dΦ(x), (A.220)

where Tµν is the canonical energy–momentum tensor:

Tµν =
δL

δ (∂µΦ(x))
∂νΦ− gµνL. (A.221)

It is, however, possible to define [64], without affecting the construction of the Lorentz
generators Pµ and Mµν , a symmetric energy–momentum tensor Θµν such that

Dµ = xρΘρµ. (A.222)

Explicitly, in our example (A.213) above (see Exercise 7),

Θµν = Tµν − 1
6 (∂µ∂ν − gµν∂

ρ∂ρ)φ2. (A.223)

However, the construction of Θµν is only possible under some conditions which
are easily identified in the limit ∆ → 0. Indeed, in this case, the conservation of the
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dilatation current (A.222) is expressed by the condition of tracelessness for the new
energy–momentum tensor:

∂µDµ = Θµ
µ = 0. (A.224)

It then follows that the following four (λ = 0, 1, 2, 3) currents are conserved:

Kλµ ≡ 2xλxν Θνµ − x2 Θλµ. (A.225)

These are actually the four currents associated with the four generators of conformal
transformations Kλ ≡

∫
d4xKλ0. The corresponding transformations are obtained by

combining the four translations xµ → xµ − aµ with the inversion xµ → −xµ/x2:

xµ → x′µ = e−α(x) (xµ + cµx2
)
, eα(x) ≡ 1 + 2c · x+ c2x2. (A.226)

We note that x′µ/x′2 = xµ/x2 + cµ. By construction, an invariant line element trans-
forms as

gµνdx
µdxν → (gµνdxµdxν)

′ = e−2α(x)gµνdx
µdxν . (A.227)

The possibility of defining a tensor Θµν is associated with the presence of conformal
invariance in the limit ∆ → 0. One may note here the close link between conformal
and dilatation invariance. Thus, any Lorentz invariant theory which is also invariant
under conformal transformations has dilatation invariance. This can be seen from the
general relation

∂µKλµ = 2xλ∂µDµ. (A.228)

This can also be obtained from the algebra. Indeed, defining the charges

D =
∫

d3x D0, Kµ =
∫

d3xKµ0, (A.229)

we have the following algebra

[D,Mρσ] = 0 , [Kµ,Mρσ] = i (ηµρKσ − ηµσKρ) ,
[Pµ, D] = iPµ , [Kµ, D] = −iKµ, (A.230)
[Kµ,Kν ] = 0 , [Pµ,Kν ] = 2i (ηµνD −Mµν) ,

which complements the Poincaré algebra (given in (2.10) of Chapter 2) to form the
algebra of the conformal group. According to the last relation, invariance under Pµ,
Mµν , and Kµ implies dilatation invariance.

We end this section with a few words on the conformal group in D dimensions.
As we just saw in (A.227) for the case D = 4, the conformal group is the subgroup
of coordinate transformations or reparametrizations such that the metric transforms
as14

gµν(x)→ g′
µν(x) = e−2α(x)gµν(x). (A.231)

This group obviously includes the Poincaré group since it leaves the metric invariant.

14This transformation preserves the angle between two vectors aµ and bµ: gµνaµbν/√
gµνaµaνgρσbρbσ .



BINE: “APPA” — 2006/10/5 — 06:39 — PAGE 406 — #43

406 A review of the Standard Model and of various notions of quantum field theory

Writing infinitesimally x′µ = xµ − ξµ(x), this becomes, following (D.3) of
Appendix D, ∇µξν + ∇νξµ = −2αgµν . Contraction with gµν yields ∇µξ

µ = −4α,
and it follows

∇µξν +∇νξµ = 1
2gµν∇ρξ

ρ. (A.232)

A vector ξµ satisfying this equation is called a conformal Killing vector.
We now restrict ourselves to flat spacetime. One obtains from this equation that,

for D > 2, ξµ is at most quadratic in x (see Exercise 8). In increasing order in x, one
finds:

• translations ξµ = aµ;
• rotations ξµ = ωµνx

ν ;
• dilatations ξµ = αxµ;
• special conformal transformations ξµ = cµx2 − 2xµc · x.

The corresponding algebra has dimensionD+ 1
2D(D−1)+1+D = 1

2 (D+1)(D+2) and
is locally isomorphic to SO(2, D). Conformal invariance imposes severe constraints on
the N -point functions of a quantum theory. In particular, it determines completely,
up to a constant, the two and three point functions [187]. The special case D = 2 is
considered in Section 10.1 of Chapter 10. We only note here that it is very specific
since in D = 2, the conformal group is infinitely dimensional.

A.5.2 The dilaton

It is possible to modify the Lagrangian in order to break dilatation symmetry sponta-
neously rather than explicitly, as with a mass term. One must make the Lagrangian
invariant: only the fundamental state breaks the invariance. According to Goldstone’s
theorem, a massless boson appears in the spectrum. This Goldstone boson associated
with dilatations is called dilaton. We denote it by σ(x).

In order to construct an invariant Lagrangian describing the interactions of the
dilaton with other fields, one may use a method which is inspired from the construction
of chiral Lagrangians describing the pion interactions (the pion is the Goldstone boson
associated with chiral symmetry breaking).

We consider a scalar field Φ(x) which we write:

Φ(x) = f eσ(x)/f . (A.233)

The field σ(x) corresponds to fluctuations of Φ(x) around its vacuum value f , which
determines the scale of spontaneous breaking of dilatation symmetry. Since under
dilatations, the scalar field Φ(x) transforms as (A.211), the field σ(x) transforms as:

σ(x)→ σ′(x) = σ (eαx) + αf, (A.234)

or infinitesimally

δσ(x) = α (f + xµ∂µσ) . (A.235)

We note that the symmetry is realized nonlinearly: as we have seen in Section A.2.1,
the constant term is a sign that σ(x) is a Goldstone boson.
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One may use factors eσ(x)/f to make dilatation-breaking terms invariant. Thus
m2

0φ
2 is replaced by m2

0φ
2e2σ/f since δ

(
φ2e2σ/f

)
= (4 + xµ∂µ)

(
φ2e2σ/f

)
. One also

introduces a kinetic term for σ(x):

L(σ)
kin = 1

2∂
µΦ∂µΦ = 1

2e
2σ/f∂µσ∂µσ. (A.236)

Then the action corresponding to the Lagrangian

L = L0 + 1
2e

2σ/f∂µσ∂µσ − 1
2m

2
0φ

2e2σ/f , (A.237)

with L0, given in (A.213), is dilatation invariant. Under these conditions, the dilatation
current is conserved:

∂µDµ = 0. (A.238)

A.5.3 Effective potential

We first recall how the effective action is introduced. We consider for simplicity the
theory of a scalar field in interaction. One defines the functional of the current J

Z [J ] = 〈Ω
∣∣∣Tei ∫

d4xJ(x)φ(x)
∣∣∣Ω〉, (A.239)

where |Ω〉 is the vacuum of the interacting theory, φ(x) the scalar field (in Heisenberg
representation) and the symbol T denotes as usual the chronological product. Z [J ]
is the generating functional of Green’s functions, in the sense that a general Green’s
function is given by

g(x1, . . . , xn) ≡ 〈Ω |Tφ(x1) · · ·φ(xn)|Ω〉 = (−i)n δnZ [J ]
δJ(x1) · · · δJ(xn)

∣∣∣∣
J=0

. (A.240)

The functional W [J ] = lnZ [J ] is the generating functional of the connected
Green’s functions:

gc(x1, . . . , xn) = (−i)n δnW [J ]
δJ(x1) · · · δJ(xn)

∣∣∣∣
J=0

. (A.241)

One then defines
φ(x) ≡ −i δW

δJ(x)
. (A.242)

φ(x) is itself a functional of J(x) but its value at J = 0 gives the value of the field
φ(x) in the ground state (vacuum):

−i δW

δJ(x)
= φ(x)

∣∣
J=0 = gc(x) = 〈Ω|φ(x)|Ω〉|

connected
. (A.243)

One is then looking for a functional Γ
[
φ
]
such that

J(x) = −δΓ
[
φ
]

δφ(x)
. (A.244)
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Γ
[
φ
]
is obtained by a Legendre transformation:

Γ
[
φ
]
+ iW [J ] = −

∫
d4yφ(y)J(y), (A.245)

as can be verified explicitly by functionally differentiating this relation with respect
to φ(x).

The functional Γ
[
φ
]
is called the effective action. Two of its properties will be of

special interest to us here:

(i) The analog of the relation (A.243) for Γ is written

δΓ
δφ(x)

∣∣∣∣
φ(x)=〈Ω|φ|Ω〉

= 0. (A.246)

In other words, the extrema of the effective action allow us to determine the
values of the fields in the fundamental state of the interacting theory (the vac-
uum |Ω〉). This turns out to be useful when studying the spontaneous breaking
of a symmetry. If this aspect alone is of interest to us, one may restrict one’s
attention to the nonderivative terms in the effective action which define the effec-
tive potential. More precisely, on may write Γ

[
φ
]
as a series with an increasing

number of derivatives of φ:

Γ
[
φ
]
=
∫

d4x

[
−Veff

(
φ
)
+

1
2
∂µφ∂µφ Z

(
φ
)
+ · · ·

]
. (A.247)

(ii) The effective action is also the generating functional of proper Green’s func-
tions (i.e. one-particle irreducible and truncated Green’s functions). In momen-
tum space,

Γ(n)(p1, . . . , pn) =
δnΓ

[
φ
]

δφ(p1) · · · δφ(pn)
(A.248)

yields proper Green’s functions. This allows us to compute the effective action
from truncated Green’s functions. In particular, the effective potential corre-
sponds to vanishing momentum on external legs:

−Veff
[
φ(x)

]
=
∑
n

1
n!

φ(x)n Γ(n)(p1 = 0, . . . , pn = 0). (A.249)

The effective action is usually computed in powers of h̄, which corresponds to an
expansion in the number L of loops. Let us illustrate, in the example of a theory
in λφ4, how one determines the effective potential. We consider the theory of a real
massless scalar field with action:

L =
1
2
∂µφ∂µφ−

λ

4!
φ4 +

1
2
Z∂µφ∂µφ+

1
2
δm2 φ2 +

1
4!
δλ φ4, (A.250)

where we have included counterterms in the second line.
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At tree level (L = 0), the one-particle irreducible Green’s function is simply the
one given in Fig. A.9(a) iΓ(4)(0, 0, 0, 0) = −iλ and

V
(0)
eff

(
φ
)
=

λ

4!
φ
4 − 1

2
δm2 φ

2 − 1
4!
δλ φ

4
. (A.251)

The one-loop diagrams of Fig. A.9(b) contribute

iΓ(2n)(0, . . . , 0) =
(−iλ

2

)n
n!
2n

∫
d4k

(2π)4

(
i

k2

)n

,

where we have included a factor n! for the exchange of the n vertices and a symmetry
factor 2n (left-right symmetry and rotation of an angle which is a multiple of 2π/n).
Then, after a Wick rotation,

V
(1)
eff

(
φ
)
= −

∫
d4k

(2π)4

∞∑
n=1

(−)n
2n

(
λφ

2
/2

k2

)n

=
1
2

∫
d4k

(2π)4
ln

(
1 +

λφ
2

2k2

)
. (A.252)

Cutting off the integral at momentum Λ, we obtain from (A.251) and (A.252) the
effective potential to one-loop order:

Veff
(
φ
)
=

λ

4!
φ
4 − 1

2
δm2φ

2 − 1
4!
δλ φ

4

+
λΛ2

64π2
φ
2
+

λ2φ
4

256π2

(
ln
λφ

2

2Λ2 −
1
2

)
+O

(
φ
2

Λ2

)
. (A.253)

We choose renormalization conditions for the mass and the coupling:

d2Veff

dφ
2

∣∣∣∣∣
φ=0

= 0,
d4Veff

dφ
4

∣∣∣∣∣
φ=µ

= λ, (A.254)

(b)(a)

Fig. A.9 Zero and one-loop contributions to the effective potential.
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the first corresponding to the requirement of the scalar field being massless, the second
introducing a renormalization scale µ. These determine δm2 and δλ. It then follows
that

Veff
(
φ
)
=

λ

4!
φ
4
++

λΛ2

64π2
φ
2
+

λ2φ
4

256π2

(
ln
λφ

2

2Λ2 −
25
6

)
. (A.255)

We note that the bare coupling is, to this order,

λ0 = λ− δλ = λ

[
1− 3λ2

32π2

(
ln
λµ2

2Λ2 +
11
3

)]
(A.256)

or alternatively, the renormalized coupling is expressed in terms of the bare coupling
as

λ = λ0

[
1 +

3λ20
32π2

(
ln
λ0µ

2

2Λ2 +
11
3

)]
. (A.257)

Thus, the beta function, which describes the dependence of the renormalized cou-
pling with respect to the renormalization scale, reads

β(λ) = µ
dλ

dµ
=

3λ2

16π2
+O(λ3). (A.258)

More generally, in a theory involving fields of various spins, the effective potential
reads at one loop Veff

(
φ
)
= V

(0)
eff

(
φ
)
+ V

(1)
eff

(
φ
)
where V (0)

eff is the tree level potential
and

V
(1)
eff

(
φ
)
=

1
32π2

Λ2STrM2 (φ)+ 1
64π2

STrM4 (φ) [ln M2
(
φ
)

Λ2 − 3
2

]
. (A.259)

In this expression, M
(
φ
)
are field-dependent masses and the supertrace is defined as:

STrF
[
M2 (φ)] ≡∑

J

(−1)2J(2J + 1)F
[
M2

J

(
φ
)]
. (A.260)

A.5.4 Conformal anomaly

As we have seen in the previous example, renormalization introduces a scale µ. The
question of scale invariance must therefore be revisited at the quantum level.

For example, we see from (A.255) that the logarithmic correction breaks dilatation
invariance: indeed, under φ→ φ

′
= eαφ, the effective potential is modified as

δVeff(φ) = α
3λ
16π2

λ

4!
φ
4
, (A.261)

or

δΓ = α
3λ
16π2

∫
d4x

(
− λ

4!
φ(x)4

)
. (A.262)
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Thus, the dilatation current is no longer conserved:

∂µDµ =
3λ
16π2

(
− λ

4!
φ(x)4

)
. (A.263)

This is interpreted as an anomaly, called the conformal anomaly: quantum corrections
perturb the naive scaling laws of the classical theory. We note that we may rewrite
the latter equation as

∂µDµ =
β(λ)
λ

(
− λ

4!
φ(x)4

)
, (A.264)

where the beta function is defined in (A.258). The beta function is thus interpreted
as the coefficient of the conformal anomaly.

More generally, when one computes the quantum corrections to the action through
the effective action Γ, the necessity of introducing a renormalization scale µ induces a
fundamental breaking of scale invariance. Since the dilatation transformation (A.209)
corresponds to a renormalization scale (momentum) transformation µ′ = eαµ, we may
write that, under dilatations, the variation of the effective action due to renormaliza-
tion is

δΓ|ren = µ
∂Γ
∂µ

≡
∫

d4x A(x), (A.265)

where A(x) is called the conformal anomaly. The divergence of the dilatation current
then reads:

∂µDµ = A(x) + · · · (A.266)

where the extra terms would come from dilatation breaking terms in the classical
action. The general form of the conformal anomaly involves the beta functions
associated with the different couplings:

A(x) = − λ

4!
φ4(x)

β(λ)
λ

− 1
4
FµνFµν

2β(g)
g

+ · · · (A.267)

This equation may indeed serve as a definition for beta functions.
If we have introduced a dilaton σ(x) in the theory, it is possible to restore the

dilatation invariance by adding the following Wess–Zumino term in the action:

SWZ = −
∫

d4x A(x) σ(x)
f

. (A.268)

Indeed, using the nonlinear transformation of the dilaton field (A.235), we have

δ (S + SWZ) = 0. (A.269)

A.6 Axial anomaly
We have seen that a key property of the Standard Model is that it is chiral: left
and right chirality fermions transform independently. In fact, in the limit of vanishing
mass or Yukawa couplings, left and right chiralities completely decouple from one
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another. This can be interpreted at the level of symmetries by considering the axial
transformation:

ψ(x)→ e−iαγ5ψ(x) or
{
ψ

L
(x)→ eiαψ

L
(x)

ψ
R
(x)→ e−iαψ

R
(x). (A.270)

The corresponding axial current

Jµ
A
(x) = ψ̄(x)γµγ5ψ(x) (A.271)

is conserved.
However, this axial symmetry is, generally speaking, not compatible at the quan-

tum level, with a vector symmetry. Such a symmetry may arise from a continuous
invariance of the action. The Noether procedure then allows us to construct a con-
served vector current:

Jµ
V
(x) = ψ̄(x)γµψ(x). (A.272)

This may for example be the electromagnetic current.
If we insist on conserving the vector current, then there generically appears a source

of nonconservation for the axial current. In the case of quantum electrodynamics, we
have, in the limit of massless fermions,

∂µJ
µ
A
(x) =

α

2π
FµνF̃µν (A.273)

where α is the fine structure constant and Fµν is the photon field strength. Thus the
axial current is not conserved and axial symmetry is not a good symmetry at the
quantum level. The physical reason is that, even in the limit of vanishing fermion
mass, left and right chirality remain coupled through the emission of virtual photons.

Before considering the case of the Standard Model, where this issue is a key one
because chiral symmetry is built into the gauge symmetry, we will compute the anoma-
lous term and discuss in more details the origin of this axial anomaly on the simple
theory of a single massless fermion ψ(x) with a conserved vector current Jµ

V
(x) given

in (A.272). For illustration purpose, we will couple this vector current to the photon.
We define the Green’s function

Tµνλ(p1, p2) = i

∫
d4x1d

4x2e
i(p1x1+p2x2)〈0|TJµ

V
(x1)JνV (x2)J

λ
A
(0)|0〉. (A.274)

Then the conservation of currents ∂µJµV = 0 and ∂µJµA = 0 translate, respectively, into
the Ward identities15

pµ1Tµνλ = pν2Tµνλ = 0, (A.275)
(p1 + p2)λTµνλ = 0. (A.276)

At one loop, Tµνλ is given by the diagrams of Fig. A.10.

15Changing variables (x′
i = x + xi) and using translation invariance of the Green’s function, one

may rewrite (A.274) as

Tµνλ(p1, p2) = i

∫
d4x′

1d
4x′

2e
i[p1x′

1+p2x
′
2−(p1+p2)x)]〈0|TJµ

V
(x′
1)Jν

V
(x′
2)Jλ

A
(x)|0〉.



BINE: “APPA” — 2006/10/5 — 06:39 — PAGE 413 — #50

Axial anomaly 413

(a)

k+p1+p2 k+p1+p2

(b)

k k

k+p2 k+p1

p1+p2 p1+p2

p1

p1p2

p2

Jλ
A Jλ

A

Jν
V

Jν
V

Jµ
V

Jµ
V

Fig. A.10 Triangle diagrams contributing to the axial anomaly.

Their contribution reads

Tµνλ
(1) = (−)i3

∫
d4k

(2π)4
Tr
[
γµ

i

/k + /p1 + /p2
γλγ5

i

/k
γν

i

/k + /p2

]
+ (µ↔ ν, p1 ↔ p2).

(A.277)
When computing p1µTµνλ, one writes in the numerator /p1 = (/k + /p1 + /p2) − (/k + /p2)
to obtain

p1µT
µνλ
(1) =

∫
d4k

(2π)4
Tr
[
γλγ5

1
/k
γν

1
/k + /p2

]
− Tr

[
1

/k + /p1 + /p2
γλγ5

1
/k
γν
]
+ · · · (A.278)

Each of the terms depends on a single momentum (pµ2 or (p1 + p2)
µ). It is easy to

convince oneself, given the properties under parity (p1µTµνλ → −pµ1Tµνλ according
to (A.108)), that each term vanishes after integration16.

For the axial current Ward identity, one writes (/p1+ /p2)γ5 = (/k+ /p1+ /p2)γ5+ γ5/k:

(p1+ p2)λT
µνλ
(1) =

∫
d4k

(2π)4
Tr
[
γµγ5

1
/k
γν

1
/k+ /p2

]
+Tr

[
γµ

1
/k+ /p1+ /p2

γ5γ
ν 1
/k+ /p2

]
+ · · ·

(A.279)

One would be tempted to change the integration variable in the second term to k′
µ =

kµ+ p2µ and conclude that this vanishes. However the integrals are divergent and one
must be extremely careful with changes of variables. Indeed, if we consider a linearly
divergent integral, such as Tµνλ

(1) , I =
∫
d4kF (k) with F (k) ∼ k−3 for k → ∞, then

under the change of variables k′ = k + a

I =
∫

d4k′F (k′ − a) =
∫

d4k′
[
F (k′)− aµ

∂F

∂k′µ + · · ·
]

=
∫

d4k′F (k′)− aµ
∫
Σ∞

d3σµF (k), (A.280)

16For example, the only possible form for the first term is ενλρσp
ρ
2p
σ
2 which vanishes identically.
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where the last term is nonzero because on the surface at infinity Σ∞, d3σµ ∼ k3 and
F (k) ∼ k−3 (on the other hand, the terms denoted · · · are of order k−4 and do not
contribute)17.

If we apply this to the divergent integral in Tµνλ
(1)

Dµνλ =
∫

d4k

(2π)4
Tr
[
γµ/kγλγ5/kγ

ν/k
]

k6
= 4iεµνλρ

∫
d4k

(2π)4
kρ
k4
, (A.281)

we obtain, after a change of variable k′µ = kµ + aµ,

Dµνλ = D(a)µνλ − aσ4iεµνλρ
∫

d4k

(2π)4
∂

∂kσ

(
kρ
k4

)
= D(a)µνλ +

1
8π2

εµνλσaσ. (A.282)

If we change the variable kµ into k′µ = kµ+pµ2 , we may prove that the contribution of
Fig. A.10(a) to (p1+p2)λTµνλ vanishes. Similarly for Fig. A.10(b) with k′µ = kµ+pµ1
(and exchange of µ and ν). Hence

(p1 + p2)λTµνλ = − 1
8π2

εµνλσ(p1 + p2)λ(p1 − p2)σ =
1
4π2

εµνλσp
λ
1p

σ
2 .

This corresponds to an anomalous conservation law for the axial current18:

∂λJ
λ
A
=

1
8π2

FµνF̃µν , (A.283)

where Fµν = ∂µJV ν−∂νJV µ and F̃µν = 1
2ε

µνρσFρσ. If one couples the electromagnetic
current to the vector current, one may write

∂λJ
λ
A
=

1
8π2

FµνF̃
µν , (A.284)

which corresponds to triangle diagrams similar to Fig. A.10 with one axial current
and two photons (Fµν is the photon field strength).

We may now return to a discussion of axial anomalies in the Standard Model.
Since SU(2) and U(1)Y have an axial character, there is a danger to have an anomaly
that would destroy the symmetry at the quantum level. For example, the diagrams
of Fig. A.11 may lead respectively to a (a) SU(2) (b) mixed U(1)Y − SU(2) and
(c) U(1)Y anomaly. However, the SU(2) anomaly (a) has an overall group factor

Tr
(
ta{tb, tc}

)
= 1

2δ
bcTr(ta) = 0,

17More precisely,
∫
d3σµF (k) = lim|K|→+∞

Kµ

K
iS3(|K|)F (|K|) where S3(K) = 2π2K3.

18We note in this computation the important rôle played by chirality and the matrix γ5. If we
were working in dimensional regularization where there is no linear divergence, we would encounter
a difficulty defining γ5 in 4 + ε dimensions. Proper treatment [84] leads to the same result.
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(c)

+ +Bµ

Bµ

Bν

Bρ

+

Aa
µ

Ab
ν Ab

ν

Ac
ρ Ac

ρ

(b)(a)

Fig. A.11 Triangle anomalies for the Standard Model.

where we have used (A.26). Similarly, the mixed U(1)Y − SU(2) anomaly is propor-
tional to Tr

(
Y {tb, tc}

)
∼ δbcTr(Y ) and Tr(Y ) =

∑
j yj summed over the fermion

doublets of the Standard Model vanishes between quarks and leptons of a given fam-
ily. Finally, the U(1) anomaly is proportional to Tr(Y 3) =

∑
i y

3
i summed over all

fermions, which is also computed to vanish: 2/9−2−64/9+8/9+8 (resp. for (u
L
, d

L
),

(ν
L
, e

L
), uc

L
, dc

L
, ec

L
; note that the axial charges are opposite for the two chiralities).

Thus, the Standard Model is free of axial anomalies and its symmetries remain good
symmetries at the quantum level. It remains to understand the origin of this somewhat
miraculous cancellation (see Chapter 9).

Further reading
• P. Ramond, Field theory: a modern primer, 2nd edition, Frontiers in physics,
Addison-Wesley publishing company 1990.

• S. Coleman, Secret symmetry in Laws of hadronic matter, Proceedings of the 1973
International School of Subnuclear Physics, Erice, ed. A. Zichichi, pp. 138-223.

Exercises
Exercise 1 Experimentally, the neutron and proton are not degenerate in mass:mnc

2−
mpc

2 ∼ 1.29 MeV. We have seen that isospin, which is a symmetry of strong interac-
tions, imposes the same mass. Is the observed mass difference an effect of electromag-
netic or weak interactions?

Hint: If the main effect was electromagnetic, one would havemp > mn since the proton,
being charged, has a larger electromagnetic mass. Thus the effect comes mainly from
weak interactions which are at the origin of quark masses: the d quark is heavier than
the u and thus the neutron (ddu) is heavier than the proton (uud). Let us note that
most of the nucleon mass comes from the strong interaction that confines the quarks.
Quark masses only account for a small fraction of the nucleon mass.

Exercise 2 Prove (A.48).

Hint: Expand ∂µ
(
UU−1

)
= ∂µ1l = 0.



BINE: “APPA” — 2006/10/5 — 06:39 — PAGE 416 — #53

416 A review of the Standard Model and of various notions of quantum field theory

Exercise 3 Polar decomposition: any complex matrix may be written as the product
of a hermitian matrix and a unitary matrix. Let Λ be a general complex matrix. Since
ΛΛ† is hermitian, we can introduce a unitary matrix V such that V † (ΛΛ†)V = D2,
a real diagonal matrix. We note H ≡ V DV †, a hermitian matrix, and U ≡ H−1Λ.
(a) Prove that U = HΛ†−1.
(b) Show that U is unitary.

Exercise 4 We define two-point functions Π33
µν , Π

3B
µν , and ΠBB

µν for the SU(2) × U(1)
gauge fields A3

µ and Bµ as in (A.192).
(a) Express the corresponding quantities A and F in terms of the original quantities

in (A.193). One will show in particular that

A3B = − c
W

s
W

A33, ABB =
s2
W

c2
W

A33, AZZ =
A33

c2
W

. (A.285)

(b) Use these relations to obtain from (A.189) the value of δr, as given in (A.204).

Hints:
(a) To prove (A.285), use Aγγ = AγZ = 0 to obtain two relations between A3B , ABB

and A33.

Exercise 5 Compute explicitly the leading contribution to the electroweak parameter
ε1 in the Standard Model (i.e. the first term in (A.205)).

Exercise 6
(a) Prove that ∂µΦ has scaling dimension d+ 1 if Φ is a field of scaling dimension d.
(b) Prove (A.216).

Hints:
(a) ∂′

µΦ
′(x′) = ∂

∂(e−αxµ)e
αdΦ(x) = eα(d+1)∂µΦ(x).

(b) We have from (a) the infinitesimal transformation: δ∂λφ = α(2+xµ∂µ)∂λφ. Hence,
for example,

1
α
δ
(
∂λφ∂λφ

)
= 2∂λφ(2 + xµ∂µ)∂λφ = 2

(
2 +

1
2
xµ∂µ

)(
∂λφ∂λφ

)
= (4 + xµ∂µ)

(
∂λφ∂λφ

)
.

Exercise 7 We consider the theory described by the action (A.214) setting for simplicity
the fermion field to zero and we derive some of the properties of the energy–momentum
Θµν .
(a) Check that Θµν is conserved if and only if Tµν is. Prove that the generators Pµ

and Mµν are identical, whether constructed from Tµν or Θµν .
(b) We write

Θµν = Tµν − 1
6∂λ∂τX

λτµν , Xλτµν =
(
gλµgτν − gλτgµν

)
φ2.
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Infer from (A.220) that

Dµ = xνΘµν + 1
6∂λ∂τ

(
xνX

λτµν
)
.

(c) The second term on the right-hand side of the last equation reads ∂τAτµ with
Aτµ = −Aµτ . Show that such a term does not modify the conservation of current
or the charge and that it can thus be ignored. One then recovers (A.224).

Hints:

(a) For example, Θ00 = T 00 − 1
6∂i∂iφ

2 and Θi0 = T i0 − 1
6∂i∂0φ

2. The generators
P 0 and P i are obtained by taking the spatial integrals: the second terms in each
expression do not contribute, being total divergences.

(b) Dµ = xνT
µν + 1

2∂
µφ2

= xνΘµν + 1
6∂λ∂τ

(
xνX

λτµν
)
− 1

6 (gλν∂τ + gτν∂λ)Xλτµν + 1
2∂

µφ2.
The last two terms cancel.

(c) ∂µ∂τA
τµ = 0 and ∂τA

τ0 = ∂iA
i0 does not contribute to an integral over space.

Exercise 8 We wish to show that infinitesimal coordinate transformations x′µ = xµ −
ξµ(x) which belong to the conformal group of a d-dimensional spacetime (d > 2) are
such that ξµ is at most quadratic in x. We assume that spacetime is flat with metric
ηµν .

(a) Deduce from (A.232) that

[ηµν�+ (d− 2)∂µ∂ν ] (∂ρξρ) = 0.

(b) Conclude that ξ is at most quadratic in x.

Hints: For example, if ξ was cubic in x, it would be of the form ξµ = λx2xµ + · · ·
where λ is infinitesimal.

Exercise 9 We study in this exercise the model of unification of [180]. This model pro-
vides a unification of electroweak interactions within the simple gauge group SO(3).
It does not require the introduction of neutral currents but of extra leptons, and was
not confirmed by experiment. But it provides the simplest example where the electro-
magnetic U(1) symmetry is part of a larger nonabelian symmetry which allows us to
consider the magnetic charge as a topological charge (see Section 4.5.3 of Chapter 4).

We consider a gauge theory with gauge group SO(3) ∼ SU(2). In the standard
basis for the generators of the adjoint representation (T a)bc = −iεabc, the gauge fields
are Aa

µ, a = 1, 2, 3. We want to interpret these fields as the intermediate vector boson
W±

µ and the photon Aµ:W+
µ

Aµ

W−
µ

 =

 1/
√
2 −i/

√
2 0

0 0 1
1/
√
2 i/

√
2 0

A1
µ

A2
µ

A3
µ

 ≡ U

A1
µ

A2
µ

A3
µ

 . (A.286)
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1. Write the adjoint (vector) representation 3 in the charge eigenstate basis (A.286),
which we will denote T̂ a.

2. We consider a fermion field (ψ+, ψ0, ψ−) in the representation T̂ a (the superscript
gives the electric charge). Write the minimal coupling to the intermediate vector
boson and to the photon. Show that the gauge coupling g must be equal to the
electromagnetic coupling e.

3. In the Georgi–Glashow model (1972b), one introduces charged E+ and neutral
E0 leptons besides the electron and the neutrino in the following representations
of SO(3):
• (E+

L
, ν

L
sin θ

GG
+N0

L
cos θ

GG
, e−

L
) ∈ 3

• (E+
R
, N0

R
, e−

R
) ∈ 3

• N0
L
sin θ

GG
− ν

L
cos θ

GG
∈ 1

• ν
R
∈ 1.

Explain why by writing explicitly the couplings to the gauge bosons. Show that
the coupling constant to the intermediate vector boson is g

W
= e sin θ

GG
.

4. One introduces a real scalar field φa, a = 1, 2, 3, in the vector representation T a

with the following action (with summation over repeated indices):

L =
1
2
DµφaDµφ

a − V (φaφa) (A.287)

where the potential V is assumed to have a nontrivial ground state for 〈φaφa〉 = φ20
(see Section 4.5.3 of Chapter 4). Aligning the vev of φ along φ3 and defining

φ± =
φ1 ∓ φ2√

2
, φ0 = φ3

compute Dµφ
±,0 and show that SU(2) is broken down to U(1). What is the

physical spectrum of the theory?

Hints:
1. T̂ a = UT aU†. For example, T̂ 3 = diag(1, 0,−1).
2. L = g(−ψ̄+γµψ0 + ψ̄0γµψ−)W+

µ + h.c.+ g(ψ̄+γµψ+ − ψ̄−γµψ−)Aµ.

3. L = −g ēγµe Aµ + g sin θ
GG

(
ē
L
γµν

L
W−

µ + ν̄
L
γµe

L
W+

µ

)
+ · · · .

Hence g = e and g
W
= e sin θ

GG
.

4. Dµφ
± = ∂µφ

± ∓ ieAµφ
± ± ieW±

µ φ
0,

Dµφ
0 = ∂µφ

0 − ieW+
µ φ

− + ieW−
µ φ

+.

Since 1
2D

µφaDµφ
a � e2φ20 W+

µ W
−µ, SO(3) is broken down to U(1) and the

photon field remains massless. Out of the scalar degrees of freedom, φ± provide
W±

L
and φ0 is the physical Higgs.
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Appendix B

Spinors

B.1 Spinors in four dimensions
In this appendix, we first discuss spinors in four dimensions and introduce
two-component spinors, a notation that we heavily use in the superspace formulation
of supersymmetry. We then review spinors in higher dimensional spacetime, which
are in spinor representations of a general SO(1, D − 1) Lorentz group. This is rele-
vant when we discuss higher dimensions, for example in the context of string theories
(chapter 10).

B.1.1 Van der Waerden notation

The metric used is ηµν = (1,−1,−1,−1). Let us consider the spinor representation of
the Lorentz group SO(1, 3) which decomposes into irreducible representations of given
chiralities: 4 = 2L + 2R. The corresponding spinor fields are called Weyl spinors. We
will denote the representation 2L ≡ (ξα, α = 1, 2) by (1/2, 0). Under a proper Lorentz
transformation1

ξα
′
=Mα

β ξβ , detM = 1. (B.1)

One can then check that, introducing a second such spinor ηα, ξ2η1−ξ1η2 is invariant
under M .

Let us note
ξα = εαβ ξβ (B.2)

where εαβ is the antisymmetric tensor (εαβ = −εβα, we choose ε21 = 1), invariant
under a Lorentz transformation:

εαβM
α
γ Mβ

δ = εγδ detM = εγδ. (B.3)

One may write also
ξα = εαβ ξβ (B.4)

where εαβ is the invariant antisymmetric tensor which is the inverse of εαβ :

εαβ εβγ = δαγ

(ε12 = 1).

1Since the dimension of space time is different from 2 mod 8, ξα being of definite chirality cannot
be chosen real (otherwise it would be a Majorana–Weyl spinor) and M ∈ SL(2, C).
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Then using η1 = η2 and η2 = −η1, one may write, using the Einstein convention

ξ2η1 − ξ1η2 = ξ1η1 + ξ2η2 ≡ ξαηα.

Let us note that the spinor ξα introduced in (B.2) transforms as:

ξ′
α = εαβ ξβ

′
= εαβ Mβ

δ ξ
δ = εγδ(M−1)γα ξδ

=
(
M−1T )

α

γ
ξγ (B.5)

where we have used (B.3).
One may then check that ξαηα is invariant under a Lorentz transformation:

ξ′αη′
α =Mα

β ξβ
(
M−1T )

α
γ ηγ =

(
M−1M

)γ
β
ξβ ηγ = ξβηβ .

We will use from now on the following notation:

ξαηα ≡ ξη, ξξ ≡ ξ2. (B.6)

Our convention is that spinors always anticommute. It follows that

ξη = ηξ. (B.7)

The complex conjugate (ξα)∗ transforms with the matrix M∗. To make the differ-
ence explicit, one introduces a different notation

ξ̄α̇
′
= (M∗)α̇β̇ ξ̄β̇ . (B.8)

The ξ̄α̇ form an inequivalent spinor representation:
(
ξ̄α̇, α̇ = 1, 2

)
= 2R = (0, 1/2).

We use the antisymmetric tensors εα̇β̇ and εα̇β̇ to raise and lower dotted indices

(ε2̇1̇ = 1 = ε1̇2̇), and we note:

ξ̄α̇ η̄α̇ ≡ ξ̄ η̄, ξ̄ξ̄ ≡ ξ̄2. (B.9)

The convention is the following: when indices are not written, undotted indices are
descending and dotted indices are ascending.

We will also take as a convention to reverse the order of spinors when performing
complex conjugation:

(ξη)† = (ξαηα)† = η̄α̇ξ̄
α̇ = η̄ξ̄ = ξ̄η̄. (B.10)

B.1.2 Relation of spinors with vectors

As we have just seen, one may form a spin-zero object ξη out of two spinors. One may
also form a spin-one object. In order to do so, let us introduce the Pauli matrices σµ,
µ = 0, . . . , 3,

σ0 =
(
1 0
0 1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(B.11)

and form the vector V µ ≡ ξα σµαα̇ ξ̄α̇.
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The matrices σµ, being hermitian, satisfy:

(σµ
αβ̇
)∗ = (σµ∗)α̇β = (σµ†)βα̇ = (σµ)βα̇ . (B.12)

One introduces also the matrices σ̄µ defined by:

σ̄µ α̇α = εα̇β̇ εαβ σµ
ββ̇

(B.13)

(σ̄0 = σ0, σ̄i = −σi). They have the property

σµαα̇σ̄
να̇β + σναα̇σ̄

µα̇β = 2ηµνδβα

σ̄µα̇ασν
αβ̇

+ σ̄να̇ασµ
αβ̇

= 2ηµνδα̇
β̇
, (B.14)

from which one deduces
Tr (σµσ̄ν) = 2 ηµν . (B.15)

One may then show using (B.61) and (B.15) that

V µVµ = 2 ξ2ξ̄2.

Hence V µVµ is invariant under the transformations (B.1) and (B.8) and V µ → V ′µ =
ξ′α σµαα̇ ξ̄

′α̇ is a Lorentz transformation. The vector representation may thus be referred
to as (1/2, 1/2).

B.1.3 Dirac spinors

A four-component Dirac spinor describes two Weyl spinors:

Ψ =
(
χα
ξ̄α̇

)
. (B.16)

One may introduce the following basis for gamma matrices, called the Weyl basis:

γµ =
(
0 σµ

αβ̇

σ̄µα̇β 0

)
, γ5 = γ5 = iγ0γ1γ2γ3 = − i

4!
εµνρσγµγνγργσ =

(
−I 0
0 I

)
(B.17)

where εµνρσ is the fully antisymmetric tensor with the convention:

ε0123 = 1 = −ε0123. (B.18)

Indeed one checks, using (B.14), that

{γµ, γν} = 2ηµν . (B.19)

If we define

γ[µγνγρ] =
1
3!
(γµγνγρ + γργµγν + γνγργµ − γνγµγρ − γµγργν − γργνγµ) , (B.20)

antisymmetric in µνρ, it must necessarily be of the form εµνρσAσ where Aσ can be
determined by taking specific values of µ, ν, ρ:

γ[µγνγρ] = −i εµνρσγ5γσ. (B.21)
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Similarly, with obvious notation,

γ[µγνγργσ] = −iεµνρσγ5. (B.22)

We will also use

σµν =
1
4
[γµ, γν ] =

(
σµνα

β 0
0 σ̄µνα̇β̇

)
, (B.23)

where

σµνα
β =

1
4
(
σµαα̇σ̄

να̇β − σναα̇σ̄
µα̇β
)

σ̄µνα̇β̇ =
1
4

(
σ̄µα̇ασν

αβ̇
− σ̄να̇ασµ

αβ̇

)
. (B.24)

We have
σµν = − i

4
εµνρσγ5γργσ. (B.25)

The chirality eigenstates are:

Ψ
L
=

1− γ5

2
Ψ =

(
χα
0

)
and Ψ

R
=

1 + γ5
2

Ψ =
(
0
ξ̄α̇

)
.

Since we have Ψ̄ = Ψ†A where2 A =
(

0 δα̇
β̇

δβα 0

)
,

Ψ̄ = (χ̄α̇ ξα)
(

0 δα̇
β̇

δβα 0

)
= (ξβ χ̄β̇). (B.27)

One then easily proves that, for two Dirac spinors Ψ1 and Ψ2:

Ψ̄1 Ψ2 = ξ1 χ2 + χ̄1 ξ̄2

Ψ̄1 γ5 Ψ2 = −ξ1 χ2 + χ̄1 ξ̄2

Ψ̄1 γ
µ Ψ2 = ξ1 σ

µ ξ̄2 − χ2 σ
µ χ̄1

Ψ̄1 γ
µγ5 Ψ2 = ξ1σ

µ ξ̄2 + χ2 σ
µ χ̄1. (B.28)

The completeness of the 16 Dirac matrices can be used to derive the Fierz rearrange-
ment formula for two anticommuting spinors

Ψ2Ψ̄1 = −1
4
1
(
Ψ̄1Ψ2

)
− 1

4
γµ
(
Ψ̄1γ

µΨ2
)
− 1

8
σµν

(
Ψ̄1σ

µνΨ2
)

+
1
4
γµγ5

(
Ψ̄1γ

µγ5Ψ2
)
− 1

4
γ5
(
Ψ̄1γ

5Ψ2
)
. (B.29)

2A is the matrix that intertwines the representation γµ with the equivalent representation γ†
µ:

AγµA
−1 = γ†

µ (B.26)

(C plays a similar rôle between γµ and −γTµ , as seen from (B.31)). As is well known, A coincides
numerically with γ0. We refrain from using the same notation because the two-component indices do
not match as can be seen by comparing the explicit form of A with (B.17).
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The charge conjugation matrix C reads, in this notation,

C =
(
εαβ 0
0 εα̇β̇

)
, C−1 =

(
εαβ 0
0 εα̇β̇

)
(B.30)

and satisfies
C γTµ C−1 = −γµ. (B.31)

The charge conjugate spinor Ψc is thus simply:

Ψc = CΨ̄T =
(
ξα
χ̄α̇

)
. (B.32)

Thus a Majorana mass term reads:

Ψ̄cΨ = χαχα + ξ̄α̇ξ̄
α̇ = Ψ

c

R
Ψ

L
+Ψ

c

L
Ψ

R
. (B.33)

The following properties may be checked from (B.28) and (B.64):

Ψ̄c
1Ψ

c
2 = Ψ̄2Ψ1,

Ψ̄c
1γ5Ψ

c
2 = Ψ̄2γ5Ψ1,

Ψ̄c
1γµΨ

c
2 = −Ψ̄2γµΨ1,

Ψ̄c
1γµγ5Ψ

c
2 = Ψ̄2γµγ5Ψ1, (B.34)

and more generally

Ψ̄c
1γµ1 · · · γµnΨ

c
2 = (−)nΨ̄2γµn · · · γµ1Ψ1,

Ψ̄c
1γµ1 · · · γµnγ5Ψ

c
2 = Ψ̄2γµn · · · γµ1γ5Ψ1, (B.35)

and (
Ψ̄1γµ1 · · · γµn

Ψ2
)∗ = (−)nΨ̄c

1γµ1 · · · γµn
Ψc
2,(

Ψ̄1γµ1 · · · γµnγ5Ψ2
)∗ = (−)n+1Ψ̄c

1γµ1 · · · γµnγ5Ψ
c
2. (B.36)

The Majorana condition
Ψ = CΨ̄T (B.37)

reads simply
χα = ξα. (B.38)

Thus a Majorana spinor Ψ
M

is expressed in terms of a single two-dimensional spinor
as

Ψ
M
=
(
χα
χ̄α̇

)
. (B.39)

Majorana spinors have the following properties, as can be checked from (B.35) and
(B.36):

Ψ̄1γµ1 · · · γµn
Ψ2 = (−)nΨ̄2γµn

· · · γµ1Ψ1,

Ψ̄1γµ1 · · · γµn
γ5Ψ2 = Ψ̄2γµn

· · · γµ1γ5Ψ1, (B.40)

and (
Ψ̄1γµ1 · · · γµn

Ψ2
)∗ = (−)nΨ̄1γµ1 · · · γµn

Ψ2,(
Ψ̄1γµ1 · · · γµn

γ5Ψ2
)∗ = (−)n+1Ψ̄1γµ1 · · · γµn

γ5Ψ2. (B.41)
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B.2 Spinors in higher dimensions
We first review the representations of the group SO(2n) before defining spinors in D
dimensions.

B.2.1 Representations of SO(2n)

SO(2n) is defined as the group of 2n-dimensional orthogonal matrices Λ of determinant
unity, i.e.

ΛTΛ = 1, Det Λ = 1. (B.42)

Turning to the algebra, Λ = eJ ∼ 1 + J + · · · , these two conditions become

JT = −J. (B.43)

There are 2n(2n − 1)/2 independent 2n-dimensional matrices satisfying (B.43).
Hence the dimension of the SO(2n) algebra is n(2n − 1). A basis of generators is
(1 ≤ K,L ≤ 2n)

JKL =


· ·

· · · · · · · · · 1 · · ·
· ·

· · · 1 · · · · · · · · ·
· ·


K

L

K L

. (B.44)

From this one obtains the commutation relations

[JIJ , JKL] = δJKJIL − δJLJIK + δILJJK − δIKJJL , (B.45)

which define the SO(2n) algebra.
A maximal set of commuting generators (known as the Cartan subalgebra) is given

by the n generators3 Nk ≡ J2k−1,2k, k = 1, . . . , n. The number of such generators is
the rank of the algebra, hence the rank of SO(2n) is n.

The representation (B.44) is the vector representation of dimension 2n. The
dimension of the algebra gives the dimension of the adjoint representation: n(2n− 1).
In the following, we build the spinor representations of dimension 2n−1.

The standard procedure is to consider a set of n fermion creation and annihilation
operators a†

k, ak, k = 1, . . . , n:[
ak, a

†
l

]
= δkl, [ak, al] = 0 =

[
a†
k, a

†
l

]
. (B.46)

One then constructs a Fock space by defining a vacuum |0〉 and acting on it with
creation operators:

|0〉, a†
k|0〉, a†

ka
†
l |0〉, . . . , a

†
1 · · · a†

n|0〉 (B.47)

form a set of 2n independent states.

3Each of them is a block diagonal matrix with only nonzero block
(

0 1
−1 0

)
in the (2k − 1, 2k)

entry.
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The following 2n matrices

ΓK ≡ aK + a†
K , K = 1, . . . , n

ΓK ≡
aK−n − a†

K−n

ı
, K = n+ 1, . . . , 2n (B.48)

act on this 2n-dimensional Fock space. They satisfy the Clifford algebra

{ΓK ,ΓL} = 2δKL , (B.49)

and are therefore generalizations of the gamma matrices to dimensions higher than
four. The point of interest to us is that the Σ matrices built out of them have precisely
the commutation relations (B.45) of SO(2n):

ΣKL ≡ 1
4
[ΓK ,ΓL]

[ΣIJ ,ΣKL] = δJKΣIL − δJLΣIK + δILΣJK − δIKΣJL . (B.50)

Since the ΣKL matrices act on the 2n-dimensional Fock space, we have constructed a
(2n)-dimensional representation known as the spinor representation.

This representation is not irreducible, however. Indeed, define

Γ(2n+1) ≡ ın(2n−1)Γ1 · · ·Γ2n,
(
Γ(2n+1)

)2
= 1 . (B.51)

Let us choose a Fock vacuum of definite chirality, i.e. Γ(2n+1)|0〉 = +|0〉. Then, since{
Γ2n+1, a†

k

}
= 0,

Γ(2n+1)a†
k1
· · · a†

kp
|0〉 = (−1)pa†

k1
· · · a†

kp
|0〉 , (B.52)

and we can divide our Fock space (B.47) into states of opposite chirality. We have
therefore built two (2n−1)-dimensional irreducible representations, the spinor repre-
sentations of SO(2n) of opposite chirality.

B.2.2 Spinors in D-dimensional spacetimes

Consider a D-dimensional Riemannian4 manifold. We need to introduce the tangent
space Tp, the set of tangent vectors at point p which is generated by the infinitesimal
displacements dxM ,M = 1, . . . , D, at this point. The discussion will rest on the notion
of tangent space group, the set of orthogonal transformations on Tp. Writing such a
transformation as dxM = ΛM

Ndx
N , the property of orthogonality is expressed as

usual by (gMN is the metric of the manifold)

gMN dxM dxN = gMN ΛM
P ΛN

S dxP dxS = gPS dxP dxS

that is
gMN ΛM

P ΛN
S = gPS . (B.53)

4A Riemannian manifold is a smooth manifold with a symmetric metric tensor gMN such that the
bilinear form gMNV

MWN (V,W ∈ Tp) is nondegenerate (gMNV
MWN = 0 for all V iff W = 0).
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In the case of Minkowski spacetime M4, with gµν = (+1,−1,−1,−1), this tangent
space group is the proper Lorentz group SO(1, 3) (if we restrict to detΛ = +1). For a
D-dimensional manifold, with metric gMN = (+1,−1,−1, . . . ,−1), the tangent space
group is SO(1, D − 1).

The corresponding Clifford algebra reads

{ΓM ,ΓN} = 2gMN , (B.54)

where the gamma matrices have dimension 2[D/2], with [D/2] the integral part of D/2.
As in the previous section, the generators of SO(1, 9) are the ΣMN = 1/4[ΓM ,ΓN ].

Just as before, one may introduce for even spacetime dimension D, the matrix
Γ(D+1) which anticommutes with all gamma matrices5:

Γ(D+1) ≡ ı(D−2)/2Γ0Γ1 · · ·ΓD−1 . (B.55)

We note that γ5 defined in (B.17) is precisely Γ(5) for D = 4. One then defines the
chirality eigenstates by the condition:

Γ(D+1)Ψ
L,R

= ∓Ψ
L,R

. (B.56)

Thus, a Dirac spinor has 2D/2 degrees of freedom whereas a Weyl6 fermion has
2(D−2)/2.

Can we always define a Majorana spinor? In order to answer this question, let
us define the matrix B which intertwines the representation ΓM with the equivalent
representation −ΓM∗:

BΓMB−1 = −ΓM∗ . (B.57)

We have BB∗ = ηI with η = ±1. Clearly, B = CΓ0 where C is defined as in (B.31)
by

C−1ΓMC = −ΓMT . (B.58)

If a spinor field Ψ of charge q satisfies the Dirac equation coupled with the electromag-
netic field, one easily checks that B−1Ψ∗ satisfies it with charge −q: it is associated
with the antiparticle. One defines a Majorana spinor by the condition that particle
and antiparticle are identical:

Ψ∗ = BΨ . (B.59)

This Majorana condition is easily shown (see Exercise 6) to be equivalent to the
condition (B.32) given above. It obviously implies η = 1.

It turns out that η can be computed as a function of the dimension D (see [331]
for a proof):

η = −
√
2 cos

[π
4
(D + 1)

]
. (B.60)

5The difference in the overall factor between (B.51) and (B.55) is due to the change of metric
between Euclidean and Minkowski. In both cases, it is chosen in such a way that

(
Γ(D+1)

)2 = 1.
6In the case of odd dimension D′, there are no Weyl spinors. If we write D′ = D + 1 where D

is even, then Γ0,Γ1, . . . ,ΓD−1 and iΓ(D+1) given in (B.55) yield a set of gamma matrices. In what
follows, we only consider the case of even D.
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Thus η = 1 for D = 2, 4 mod 8. One can then show that there exists a representation
of the gamma matrices which is purely imaginary, in which case B = 1 and C = Γ0:
the Majorana condition reads Ψ∗ = Ψ. A Weyl condition (B.56) is then only possible
if Γ(D+1) in (B.42) is real i.e. for D/2 odd. Hence one can define a Majorana–Weyl
spinor only in D = 2 mod. 8 dimensions.

Further reading
• J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton series in physics,
Appendix A (note the opposite metric signature in this reference).

• J. Scherk, Extended supersymmetry and supergravity theories, in Advanced Study
Institute on Gravitation: Recent Developments, Cargèse, 1978.

Exercises
Exercise 1 Prove the following relations which you will find to be very useful

ξα ξβ = −1
2
εαβ ξ2, ξα ξβ =

1
2
εαβ ξ2,

ξ̄α̇ ξ̄β̇ =
1
2
εα̇β̇ ξ̄2, ξ̄α̇ ξ̄β̇ = −1

2
εα̇β̇ ξ̄2. (B.61)

Deduce that (
θσµθ̄

) (
θσν θ̄

)
=

1
2
ηµνθ2θ̄2. (B.62)

Exercise 2 Prove that

χ σµ ψ̄ = −ψ̄ σ̄µ χ, (B.63)(
χ σµ ψ̄

)∗ = ψ σµ χ̄. (B.64)

Exercise 3 Use

σµαα̇σµββ̇ = 2εαβεα̇β̇ (B.65)

to show the following Fierz reordering formula:

(ψ1ψ2) (χ̄1χ̄2) =
1
2
(ψ1σ

µχ̄1) (ψ2σµχ̄2) . (B.66)

Exercise 4 Show the following useful relations:

(σµν)α
β =

i

2
εµνρσ (σρσ)α

β ,

(σ̄µν)α̇ β̇ = − i

2
εµνρσ (σ̄ρσ)

α̇
β̇ , (B.67)
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(σµνσρ)αβ̇ =
1
2
(
gνρgµλ − gµρgνλ − iεµνρλ

)
σλαβ̇ ,

(σµσ̄νρ)αβ̇ =
1
2
(
gµνgρλ − gµρgνλ − iεµνρλ

)
σλαβ̇ ,

(σ̄µν σ̄ρ)α̇β =
1
2
(
gνρgµλ − gµρgνλ + iεµνρλ

)
σ̄λ

α̇β ,

(σ̄µσνρ)α̇β =
1
2
(
gµνgρλ − gµρgνλ + iεµνρλ

)
σ̄λ

α̇β . (B.68)

Hints: To derive (B.67), use (B.25).

Exercise 5 We construct the generators of the Lorentz group in the spinor
representation.

Let Pµ be a covariant vector. Define Pαα̇ ≡ Pµσ
µ
αα̇ or alternatively

Pµ =
1
2
σ̄α̇αµ Pαα̇. (B.69)

(a) Using (B.69), express the Lorentz transformation Lµ
ν in the vector representation

in terms of
(
M−1T

)
α

β , (M∗)α̇ β̇ and σ matrices.
(b) Making these transformations infinitesimal :

Lµ
ν = δνµ + ωµ

ν(
M−1T )

α
β = δβα + ηα

β

(M∗)α̇ β̇ = δα̇
β̇
+ η̄α̇ β̇

show that (
M−1T )

α
β = δβα + ωµν (σνµ)α

β . (B.70)

Exercise 6 Show that the Majorana condition (B.59) is equivalent to the condition (cf.
(B.32) and (B.37) in four dimensions)

Ψ = Ψc ≡ CΨ̄T , (B.71)

where Ψ̄ = Ψ†Γ0.

Hints: Using (B.59) and C2 = −1, we have

CΨ̄T = CΓ0TΨ∗ = CΓ0TBΨ = −Γ0CBΨ = −Γ0C2Γ0Ψ = Ψ .
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Superfields

In this appendix, we construct representations of the supersymmetry algebra by us-
ing a trick that allows us to put under the rug the difficulty that arises from having
anticommutation relations. Supersymmetry transformations are understood as trans-
lations in a generalized space, known as superspace, where one adds to the standard
spacetime coordinates anticommuting (Grassmann) variables. Fields in this super-
space, known as superfields, then describe general supermultiplets. Specific covariant
constraints on these superfields yield irreducible representations of the supersymmetry
algebra.

Since this appendix lies on the theorist’s track, we use throughout two-component
spinor notation, as introduced in appendix B.

C.1 Superspace and superfields
Let us first consider translations. A translation of vector yµ on a scalar field φ(x)
reads:

φ(x)→ eiy
µPµφ(x)e−iyµPµ , (C.1)

where Pµ is the generator of translations. We can write φ(x) as the value of φ translated
from the origin:

φ(x)→ eix
µPµφ(0)e−ixµPµ . (C.2)

Thus, under a translation,

φ(x)→ ei(x
µ+yµ)Pµφ(0)e−i(xµ+yµ)Pµ . (C.3)

If the translation is infinitesimal, then according to (C.2) and (C.3), we have

δφ = −iyµ[φ, Pµ] = yµ
∂

∂xµ
φ(x), (C.4)

which we can write
δφ = −iyµPµφ, (C.5)

with

Pµ = i
∂

∂xµ
. (C.6)
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In other words, Pµ is the representation of the translation generator Pµ as a differen-
tial operator. For the simplicity of notation, we will denote it simply by Pµ in what
follows.

To obtain a similar representation of supersymmetry transformations in terms of
differential operators, we have to introduce Grassmann variables. Let us recall that a
Grassmann variable θ is an anticommuting variable

{θ, θ} = 0⇐⇒ θ2 = 0.

A general function F (θ) can be expanded in series

F (θ) =
∞∑
n=0

an θn = a0 + a1 θ.

The derivative is simply
dF

dθ
= a1.

One may introduce two Grassmann variables θα, α = 1, 2:

F (θα) = a0 + θ1 a1 + θ2 a2 + θ2θ1 a3

= a0 + θα aα + 1
2 θθ a3.

where we used the notation introduced in Appendix B (equation (B.6)) since α is to
be interpreted as a spinor index. In fact, we will need two sets θα, α = 1, 2, and θ̄α̇,
α̇ = 1, 2, of Grassmann variables:

{θα, θβ} = {θ̄α̇, θ̄β̇} = {θα, θ̄α̇} = 0,

corresponding to the supersymmetry charges Qα and Q̄α̇. One may then multiply the
supersymmetry algebra

{Qα, Q̄α̇} = 2σµαα̇ Pµ, {Qα, Qβ} = 0 = {Q̄α̇, Q̄β̇} (C.7)

by θαθ̄α̇ and sum over α , α̇ to obtain

[θQ, θ̄Q̄] = 2
(
θσµθ̄

)
Pµ, [θQ, θ′Q] = 0 = [θ̄Q̄, θ̄′Q̄] (C.8)

thus recovering commutation relations (because the θ’s anticommute with the super-
symmetry charges).

Using the standard procedure described above, we now realize the algebra (C.8)
through differential operators acting on a “superspace” described by the spacetime
variable xµ and the Grassmann variables θα, θ̄α̇. An object in this superspace is a
superfield F(x, θ, θ̄).
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We consider the “superspace translation” generalizing (C.1):

F(x, θ, θ̄)→ S (yµ, η, η̄)F(x, θ, θ̄)S−1 (yµ, η, η̄) , (C.9)

with
S (yµ, η, η̄) = ei(y

µPµ+ηQ+η̄Q̄). (C.10)

Using the Hausdorff formula

eA eB = eA+B+ 1
2 [A,B]

if [A,B] commutes with A and B, we obtain from the supersymmetry algebra (C.8):

S (yµ, η, η̄) S
(
xµ, θ, θ̄

)
= S

(
xµ + yµ + iησµθ̄ − iθσµη̄, θ + η, θ̄ + η̄

)
. (C.11)

Since any point can be obtained from the origin by translation, one may always write

F(x, θ, θ̄) = S(x, θ, θ̄) F(0, 0, 0)S−1(x, θ, θ̄). (C.12)

Thus using (C.11), a superspace translation of parameters yµ, η, and η̄ acts as follows
on the superfield:

F(xµ, θ, θ̄)→ F
(
xµ + yµ + iησµθ̄ − iθσµη̄, θ + η, θ̄ + η̄

)
. (C.13)

Infinitesimally,

δ
S
F
(
xµ, θ, θ̄

)
=
[
F
(
xµ, θ, θ̄

)
,−i

(
yµPµ + ηQ+ η̄Q̄

)]
(C.14)

=
[
ηα

∂

∂θα
+ η̄α̇

∂

∂θ̄α̇
+
(
yµ + iησµθ̄ + iη̄σ̄µθ

) ∂

∂xµ

]
F .

This explicitly shows the action of the different generators on the superfield F :

δ
S
F
(
xµ, θ, θ̄

)
= −iyµPµF − iηQF − iη̄Q̄F (C.15)

with

Pµ = i ∂µ,

Qα = i

[
∂

∂θα
+ i σµαα̇ θ̄α̇ ∂µ

]
,

Q̄α̇ = −i
[

∂

∂θ̄α̇
+ i θασµαα̇ ∂µ

]
, (C.16)

Q̄α̇ = i

[
∂

∂θ̄α̇
+ i σ̄µα̇αθα ∂µ

]
.

(C.16) gives a representation of the supersymmetry algebra in terms of differential
operators. One may check directly that

{Qα, Q̄α̇} = 2i σµαα̇ ∂µ

{Qα, Qβ} = 0 = {Q̄α̇, Q̄β̇}. (C.17)
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One may expand the superfield F(xµ, θ, θ̄) in terms of the Grassmann variables. The
series stops at the term

θ2 θ1 θ̄2̇ θ̄1̇ ∝ (θα θα)
(
θ̄α̇ θ̄α̇

)
.

One has

F
(
x, θ, θ̄

)
= f(x) + θ ρ(x) + θ̄ χ̄(x) + θ2 m(x) + θ̄2 n(x)

+
(
θσµθ̄

)
vµ(x) + θ2 θ̄λ̄(x) + θ̄2 θψ(x) + θ2θ̄2d(x) (C.18)

with f , m, n, d complex scalar fields, ρα, χ̄α̇, λ̄α̇, and ψα spinor fields and vµ complex
vector field. These fields form a representation of the supersymmetry algebra since
one can write the explicit transformations using (C.15):

δ
S
F(x, θ, θ̄) =

[
−iηαQα − iη̄α̇Q̄

α̇
]
F(x, θ, θ̄)

= δ
S
f(x) + θ δ

S
ρ(x) + θ̄ δ

S
χ̄(x) + · · · (C.19)

But this representation is obviously reducible: there is more to it than simply a chiral
supermultiplet, or a vector supermultiplet. The problem will be to impose constraints
that reduce the representation and make it irreducible.

For that matter, we will need to introduce covariant spinor derivatives on super-
fields, that is spinor derivatives such that

Dα[δS F ] = δ
S
[Dα F ]. (C.20)

In other words, covariant derivatives are spinor derivatives which commute with
supersymmetry transformations.

It is easy to show that

Dα =
∂

∂θα
− i σµαα̇ θ̄α̇ ∂µ (C.21)

D̄α̇ =
∂

∂θ̄α̇
− i θασµαα̇ ∂µ

D̄α̇ = − ∂

∂θ̄α̇
+ iσ̄µα̇αθα ∂µ (C.22)

satisfy

{Dα, D̄α̇} = −2i σµαα̇ ∂µ {Dα, Dβ} = 0 = {D̄α̇, D̄β̇}
{Dα, Qβ} = {Dα, Q̄β̇} = {D̄α̇, Qβ} = {D̄α̇, Q̄β̇} = 0. (C.23)

C.2 The chiral superfield
C.2.1 Definition

We want to reduce the field content of a general superfield to the content of a chiral
supermultiplet (φ, ψα, F ). Let us take this opportunity to note that we are dealing
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with the off-shell formulation here because the supersymmetry transformations are
obviously linear. Hence some of the fields in the general decomposition (C.18) of the
superfield F are auxiliary fields.

There is unfortunately no straightforward procedure for, given a specific super-
multiplet (of the type constructed in Chapter 4), identifying the relevant constraint.
One often adopts a trial and error process which sometimes leaves the nonexpert
bewildered.

One possibility is to use the covariant derivative which has just been introduced
and impose the constraint

D̄α̇ Φ
(
xµ, θ, θ̄

)
= 0. (C.24)

Such a superfield Φ is called chiral and, as we will show below, describes the fields
of a chiral supermultiplet. The constraint (C.24) is chosen because it is invariant by
supersymmetry. Indeed, using (C.20),

D̄α̇ (δ
S
Φ) = δ

S
D̄α̇ Φ = 0.

It is easy to see how the constraint (C.24) reduces the representation of the supersym-
metry algebra. One notes that

D̄α̇ θα = 0
D̄α̇

(
xµ − i θσµθ̄

)
= D̄α̇

(
xµ + i θ̄σ̄µθ

)
=
(
− ∂

∂θ̄α̇
+ i σ̄να̇α θα ∂ν

)(
xµ + i θ̄β̇ σ̄µβ̇β θβ

)
= i σ̄µα̇α θα − i σ̄µα̇β θβ = 0.

Hence any function of θα and yµ = xµ− iθσµθ̄ automatically satisfies the constraint1.
This can also be seen trivially by expressing everything in terms of θ, θ̄ and yµ:

Dα =
∂

∂θα
− 2i σµαα̇ θ̄α̇

∂

∂yµ

D̄α̇ = − ∂

∂θ̄α̇
(C.25)

and therefore the solution of D̄α̇Φ = 0 is Φ = Φ(yµ, θ). A chiral superfield is thus
written as:

Φ(y, θ) = φ(y) +
√
2 θα ψα(y) + θ2 F (y). (C.26)

We are left with three independent fields. Counting dimensions may suggest that F
is an auxiliary field: taking φ as a scalar field of canonical dimension 1, we find a
dimension −1/2 for θα (so that ψα be of dimension 3/2) and a dimension +2 for F ;
the latter dimension suggests that F gives a total divergence under a supersymmetry
transformation and thus, as explained in Chapter 3, that it is an auxiliary field.

1Note that, strictly speaking, the variable yµ is complex (use (B.64)). This is one of the many
illustrations that supersymmetry “complexifies” spacetime.
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One may rewrite (C.26) in terms of the variables θ, θ̄, and xµ, using (B.15) and
(B.61),

Φ
(
xµ, θ, θ̄

)
= φ(x)− i θσµθ̄ ∂µφ(x)−

1
4
θ2 θ̄2 �φ(x)

+
√
2 θαψα(x) +

i√
2
θ2 ∂µψ(x)σµθ̄ + θ2F (x) (C.27)

which clearly shows how the condition (C.24) constrains the component fields of a
general superfield (C.18).

Note that we can define the component fields of the chiral superfield as:

φ = Φ|0 , χα =
1√
2
DαΦ

∣∣∣∣
0
, F = −1

4
D2Φ

∣∣∣∣
0
, (C.28)

where the index 0 means that we take θ = θ̄ = 0.
The supersymmetry transformations are easily obtained by expressing Qα and Q̄α̇

in terms of θ, θ̄ and yµ

Qα = i
∂

∂θα
,

Q̄α̇ = i

[
∂

∂θ̄α̇
+ 2i σ̄µα̇α θα

∂

∂yµ

]
,

and using (C.19). Indeed

−iηα Qα Φ =
√
2 η ψ(y) + 2 ηθ F (y)

−iηα̇ Q̄α̇ Φ = 2i η̄σ̄µθ ∂µφ+ 2i
√
2 (η̄σ̄µθ) θβ ∂µψβ

= −2i θσµη̄ ∂µφ− 2i
√
2 θασµαα̇θ

β ∂µψβ η̄α̇

= −2i θσµη̄ ∂µφ+ i
√
2 θ2 ∂µψσµη̄

where we have used θαθβ = − 1
2 εαβ θ2 (see (B.61) of Appendix B). Hence

δ
S
φ =

√
2 η ψ

δ
S
ψα =

√
2 ηα F − i

√
2 σµαα̇η̄

α̇ ∂µφ

δ
S
ψ̄α̇ =

√
2 η̄α̇ F ∗ − i

√
2 σ̄µα̇αηα ∂µφ

∗

δ
S
F = i

√
2 ∂µψσµη̄ = −i

√
2 η̄σ̄µ∂µψ (C.29)

which are the familiar supersymmetry transformations of a chiral supermultiplet. We
check that F is indeed the auxiliary field: it transforms into a total derivative.

C.2.2 Actions

Just as in Minkowski spacetime where we obtain actions invariant under translations
by integrating over all spacetime, we will obtain supersymmetric actions by integrat-
ing over all superspace. In order to fulfill this program, we first have to discuss the
integration of a Grassmann variable.
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We start with one variable θ. We want to define an integration law for a general
function f(θ) = a0+ a1θ such that one has the standard property of linearity and one
recovers the rule ∫

df

dθ
dθ = 0.

Clearly this requires
∫
1 · dθ = 0 and, if we want the integral to be nonvanishing,∫

θ dθ �= 0. Choosing the overall normalization, we thus set∫
dθ = 0

∫
θ dθ = 1. (C.30)

Hence
df

dθ
= a1 =

∫
f(θ) dθ. (C.31)

For two variables θα, α = 1, 2, we define∫
d2θ ≡ −1

4

∫
εαβ dθα dθβ =

1
2

∫
dθ1 dθ2.

Hence ∫
d2θ · 1 = 0

∫
d2θ θα = 0∫

d2θ θθ =
1
2

∫
dθ1 dθ2 2θ2θ1 = 1. (C.32)

It is then straightforward to write a supersymmetric action using a chiral superfield Φ:

S =
∫

d4yF =
∫

d4y

∫
d2θ Φ =

∫
d4y Φ

∣∣∣∣
θ2

= −1
4

∫
d4y D2Φ

∣∣∣∣
0

(C.33)

where Φ|θ2 is the θ2 component of Φ and D2Φ|0 is the scalar component of D2Φ
(we have DαDαΦ|0 = εαβDβDαΦ|0 = εαβ ∂

∂θβ
∂

∂θαΦ|0 = −4F using the results of
Exercise 1).

Indeed since δ
S
F is a total derivative

δ
S
S =

∫
d4y δ

S
F = 0.

Hence any F component of a chiral superfield provides a good supersymmetric action.
Let us note, as an aside, that, as in (C.31), an integration over a Grassmann variable

is equivalent to a differentiation. In supersymmetric covariant notation, d2θ ∼ − 1
4D

2.
We may now use the previous remark in order to derive supersymmetric

Lagrangians. Let us consider a set of n chiral superfields Φi, i = 1, . . . , n. Any prod-
uct of these (and thus any analytic function W (Φi)) is also a chiral superfield. For
example,

Φi = φi +
√
2 θ ψi + θ2 Fi

Φi Φj = φi φj +
√
2 θ (ψi φj + ψj φi) + θ2 (φi Fj + φj Fi − ψiψj)

Φi Φj Φk = φi φj φk +
√
2 θ (ψi φj φk + perm.) + θ2 (Fi φj φk − ψiψj φk + perm.)
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and more generally for a general analytic function W (Φi)

W (Φi)|θ2 = Σi
∂W

∂Φi
(φ) Fi −

1
2

∑
ij

∂2W

∂Φi∂Φj
(φ) ψiψj . (C.34)

We thus recover the terms of a supersymmetric Lagrangian which arise from the
superpotential. Let us note that the analyticity of the superpotential is intrinsically
connected with the requirement of supersymmetry: a product of Φi and Φ†

i fields is
not a chiral superfield; thus in this construction we must restrict ourselves to sums of
products of Φi’s and thus to analytic functions.

This, however, does not provide us with kinetic terms for the component fields.
Let us therefore consider more closely Φ†: Φ† is not chiral since it satisfies

Dα Φ† = 0. (C.35)

This is known as an antichiral superfield. In any case, Φ† is not a function of y and θ
only (it is in fact a function of y∗ and θ̄) and it is better to revert to the x variable.

Using (C.27) (and (B.64) of Appendix B)

Φ†(x) = φ∗(x) + iθσµθ̄ ∂µφ
∗(x)− 1

4
θ2 θ̄2 � φ∗(x)

+
√
2 θ̄α̇ψ̄α̇(x)− i√

2
θ̄2 θσµ∂µψ̄(x) + θ̄2 F ∗(x) . (C.36)

We may now consider the real superfield F = Φ†Φ. The highest component of such
a real superfield (known as a vector superfield) transforms under supersymmetry into
a total derivative. This may be guessed since this component has the highest mass
dimension and must therefore transform into derivatives of the other fields (of lower
dimensions). Thus F|θ2θ̄2 provides us with a good supersymmetric action

S =
∫

d4x F
∣∣∣∣θ2θ̄2 = ∫ d4x d2θd2θ̄ F =

1
16

∫
d4x D2D̄2F

∣∣∣∣
0

(C.37)

with obvious notation for d2θ̄ (
∫
d2θ̄ θ̄2 = 1). Indeed

δ
S
S = −i

∫
d4x d2θ d2θ̄

(
ηQ+ η̄Q̄

)
F = 0

since Qα and Q̄α̇ involve only derivatives ∂
∂xµ , ∂

∂θα or ∂
∂θ̄α̇

. Again, integrating over all
superspace provides an action invariant under superspace translations, i.e. supersym-
metry transformations.

But using (C.27) and (C.36)

F|θ2θ̄2 = −1
4
φ�φ∗ − 1

4
φ∗�φ+ 1

2
∂µφ∗∂µφ+ F ∗F

+
i

2
ψσµ∂µψ̄ − i

2
∂µψσ

µψ̄

= ∂µφ∗∂µφ+ iψσµ∂µψ̄ + F ∗F + total derivatives. (C.38)
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To recapitulate, we may write the following supersymmetric action in the case of a
single chiral superfield Φ

S =
∫

d4x d2θ d2θ̄ Φ†(x, θ, θ̄) Φ(x, θ, θ̄) +
[∫

d4y d2θ W (Φ(y, θ)) + h.c.
]

=
∫

d4x
{
∂µφ∗∂µφ+ i ψσµ∂µψ̄ + F ∗F +

∂W

∂Φ
(φ)F +

[
∂W

∂Φ
(φ)
]∗

F ∗

−1
2
∂2W

∂Φ2 (φ)ψψ − 1
2

[
∂2W

∂Φ2 (φ)
]∗

ψ̄ψ̄
}
. (C.39)

This is by construction invariant under the supersymmetry transformations (C.29).
The field F has no kinetic term: we may solve for this auxiliary field:

F = −
[
∂W

∂Φ
(φ)
]∗

to obtain

S =
∫

d4x

{
∂µφ∗∂µφ+ iψσµ∂µψ̄ −

∣∣∣∣∂W∂Φ (φ)
∣∣∣∣2 − (12 ∂2W∂Φ2 (φ) ψψ + h.c.

)}
.

(C.40)

C.2.3 R-symmetry

We saw in Section 4.1 of Chapter 4 that N = 1 supersymmetry allows for a global
U(1) symmetry which does not commute with supersymmetry: the R-symmetry whose
generator satisfies

[Qα, R] = Qα

[Q̄α̇, R] = −Q̄α̇. (C.41)

Let us illustrate on the example of a single chiral superfield how this R-symmetry can
be realized. Because the R-symmetry does not commute with supersymmetry, it must
act differently on the different components of the superfield and thus cannot leave the
Grassmann variable θ invariant. The R-symmetry thus acts generically on the chiral
superfield Φ(y, θ) as

R Φ(y, θ) = eirα Φ
(
y, e−iαθ

)
R Φ†(y∗, θ̄) = e−irα Φ† (y∗, eiαθ̄

)
(C.42)

where r is the R-charge of the supermultiplet.
In terms of the component fields, this reads

R φ(x) = eirα φ(x)
R ψ(x) = ei(r−1)α ψ(x)
R F (x) = ei(r−2)α F (x). (C.43)
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Let us note that, because of the Grassmann nature of the θ variable, if θ′ = e−iαθ,
d2θ′ = e2iαd2θ (cf. (C.32)). Obviously, the kinetic term

∫
d2θ d2θ̄ Φ†Φ is R-invariant;

the superpotential term
∫
d2θ W (Φ) is invariant if

R W (Φ(y, θ)) = e2iα W
(
Φ(y, e−iαθ)

)
(C.44)

in which case ∫
d2θR W (Φ(y, θ)) =

∫
d2θ e2iα W

(
Φ(y, e−iαθ)

)
=
∫

d2θ′ W (Φ(y, θ′)) . (C.45)

This is the case ifW (Φ) is a monomial in Φ and the R-charges add up to 2: for example
W (Φ) = λΦ3 with Φ of R-charge r = 2

3 . This is not the case if W (Φ) is a general
polynomial in Φ.

C.2.4 Supersymmetric nonlinear sigma models and Kähler invariance

If one considers several chiral superfields Φi, the kinetic term for each of them is
provided by Φ†

iΦi. But one may try to be more general and consider a generic real
function K of the Φi and Φ†

i [389]:

S =
∫

d4x d2θ d2θ̄ K(Φi,Φ
†
i ). (C.46)

Obviously, this leads to nonnormalized kinetic terms for the scalar fields. Indeed,
following the same steps as before, one obtains

S =
∫

d4x
∂2K

∂Φi∂Φ
†
j

(φ, φ∗) ∂µφi∂µφ∗
j + · · · (C.47)

A field redefinition φi → φ̂i(φj) may lead in some cases to a normalized kinetic term
∂µφ̂∗

i ∂µφ̂i but this is not general. This is reminiscent of the situation encountered in
the nonlinear sigma model. Let us recall that this model is obtained as a limit of the
linear sigma model whose Lagrangian is described in terms of a triplet of ‘pion’ fields
πi, i = 1, 2, 3, and a σ field by:

L = 1
2

(
∂µσ∂µσ + ∂µπi∂µπ

i
)
− 1

4λ
(
σ2 + πiπi − v2

)2
. (C.48)

In the limit λ→ +∞, we must impose the constraint σ2+πiπi = v2 to keep the energy
of the configuration finite. Differentiation of this constraint yields σ∂µσ = −πi∂µπi
and (C.48) can be rewritten as

L =
1
2

[
δij +

πiπj

v2 − πkπk

]
∂µπi∂µπ

j , (C.49)

which is the Lagrangian of the nonlinear sigma model: the fields πi cannot be redefined
to give a normalized kinetic term.
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Indeed, the Lagrangian (C.46) provides the supersymmetric generalization of a
generic nonlinear sigma model. We now show that supersymmetry provides a very
nice geometrical description. Let us first rewrite the complete component form of
(C.46):

S =
1
16

∫
d4x D2D̄2K

∣∣
0

=
∫

d4x Kī(φ, φ∗)
(
∂µφi∂µφ

∗
j −

i

2
ψiσµ∂

µψ̄j +
i

2
∂µψiσµψ̄j + FiF

∗
j

)
− 1

2Kīk(φ, φ∗)
(
ψiψkF

∗
j − iψiσ

µψ̄j∂µφk
)

(C.50)

− 1
2Kīk̄(φ, φ

∗)
(
ψ̄jψ̄kFi + iψiσ

µψ̄j∂µφ
∗
k

)
+ 1

4Kīkl̄(φ, φ
∗) (ψiψk)

(
ψ̄jψ̄l

)
,

where we have used the notation

Kī =
∂2K

∂Φi∂Φ
†
j

, Kīk̄ =
∂2K

∂Φi∂Φ
†
j∂Φ

†
k

, · · · (C.51)

All these seemingly complicated terms have a beautiful geometric interpretation which
we now present. Indeed, one may note that the transformation

K(Φ,Φ†)→ K(Φ,Φ†) + F (Φ) + F̄ (Φ†), (C.52)

where F (Φ) is an analytic function of the Φ fields (F̄ (Φ†) is the complex conjugate in
order that the total expression remains real), is an invariance of the action (C.46):∫

d4xd2θd2θ̄ F
(
Φ(x, θ, θ̄)

)
=
∫

d4y

∫
d2θ

∫
d2θ̄ F (Φ(y, θ)) = 0. (C.53)

An invariance such as (C.52) is known as a Kähler invariance and K(Φ,Φ†) is called
a Kähler potential. Let us note that it is a transformation on functions of fields and
it may not be realized as a transformation on the fields themselves2.

The space parametrized by the complex scalar fields φi ≡ φi, φ̄̄ ≡ φ∗
j is a complex

manifold. The kinetic term (C.47) may be rewritten

S =
∫

d4x gī ∂
µφi∂µφ̄

̄ + · · · (C.54)

where

gī = ḡi ≡
∂K

∂Φi∂Φ
†
j

(φ, φ∗), gij = 0, gı̄̄ = 0 (C.55)

2although it does in some well-known cases (see Exercise 9).
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is interpreted as a metric on the complex manifold. It is said that the metric derives
from the Kähler potential K and a complex manifold with such a metric is called a
Kähler manifold3.

Kähler manifolds have very specific properties; for example, the only nonzero com-
ponents of the Christoffel symbol (see Section D.1 of Appendix D) are

Γijk = gil̄∂jgkl̄,

Γı̄ ̄k̄ = gı̄l∂̄gk̄l, (C.56)

where gī is the inverse metric (gīḡk = δik) and ∂i ≡ ∂/∂Φi, ∂̄ ≡ ∂/∂Φ†
j . We have used

the fact that, since the metric derives from a Kähler potential, ∂jgkl̄ = Kjkl̄ = ∂kgjl̄.
Similarly, the Ricci tensor is simply

Rī = −∂i∂̄ log [det g] . (C.57)

Finally, the action (C.50) may be written as:

S =
∫

d4x gī

[
∂µφi∂µφ̄

̄ − i

2
ψiσµDµψ̄̄ +

i

2
Dµψiσµψ̄

̄ + F̂ i ˆ̄F ̄

]
+
1
4
Riı̄j̄

(
ψiψj

) (
ψ̄ı̄ψ̄̄

)
, (C.58)

where we have defined the Kähler covariant derivatives:

Dµψ
i
α ≡

(
∂µδ

i
l + Γikl∂µφk

)
ψl
α,

Dµψ̄
̄α̇ ≡

(
∂µδ

̄

l̄
+ Γ̄k̄l̄∂µφ̄

k̄
)
ψ̄l̄α̇, (C.59)

which expresses the fact that the fermion fields transform as contravariant vectors
under a reparametrization of the Kähler manifold (see Exercise 8); the Riemann tensor

Riı̄j̄ = ∂j∂̄giı̄ − gkk̄Γ
k
ijΓk̄ ı̄̄, (C.60)

and we have redefined the auxiliary fields

F̂ i = F i − 1
2Γ

i
jkψ

iψj , ˆ̄F ̄ = F̄ ̄ − 1
2Γ

̄
k̄l̄ψ̄

k̄ψ̄l̄ (C.61)

in order that the solution of the corresponding equation of motion is simply
F̂ i = 0 = ˆ̄F ̄.

The action (C.58) is invariant under the supersymmetry transformations:

δ
S
φi =

√
2 η ψi

δ
S
ψi
α =

√
2 ηα F̂ i − i

√
2σµαα̇η̄

α̇ Dµφ
i (C.62)

δ
S
F̂ i = i

√
2 Dµψ

iσµη̄

3For a mathematical introduction to Kähler manifolds, see Section 5.3 of the book by [196].



BINE: “APPC” — 2006/10/5 — 06:39 — PAGE 441 — #13

The vector superfield 441

which are basically (C.29) up to the replacement of standard derivatives with Kähler
covariant ones and a redefinition of the auxiliary fields. This shows that the structure of
superspace may be accommodated with the Kähler invariance: this leads to the notion
of Kähler superspace where Kähler invariance is built in the superspace geometry
[38,39].

The presence of nonrenormalizable terms in (C.50) or (C.58) makes it necessary
to consider nonlinear sigma models in the context of supergravity (if we consider that
the underlying physics responsible for such nonrenormalizable terms appears at a scale
close to the Planck scale).

C.3 The vector superfield
Let us identify the superfield which describes the vector supermultiplet (Aµ(x), λ(x),
D(x)) introduced in Chapter 3. Since Aµ(x) is a real field, we must impose a reality
condition on the general superfield F , whose decomposition was written in (C.18) (so
that its vector component is real). From now on, we will denote it by V :

V (x, θ, θ̄) = V †(x, θ, θ̄). (C.63)

We will then write the field decomposition in a slightly different way (and justify it
immediately):

V (x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x) +
i

2
θ2[M(x) + iN(x)]

− i

2
θ̄2[M(x)− iN(x)] + θσµθ̄Aµ(x)

+θ2θ̄α̇

[
λ̄α̇(x) +

1
2
(σ̄µ∂µχ(x))

α̇

]
(C.64)

+θ̄2θα
[
λα(x)−

1
2
(σµ∂µχ̄(x))α

]
−1
2
θ2θ̄2

[
D(x) +

1
2
�C(x)

]
.

A vector field is associated with a gauge transformation: Aµ(x) → Aµ(x) + ∂µα(x)
in the abelian case. In order to write it in a supersymmetric way, let us introduce a
chiral superfield

Λ(y, θ) = a(y) +
√
2θψ(y) + θ2F (y) (C.65)

and recall (C.27) and (C.36):

Λ(x, θ, θ̄)− Λ†(x, θ, θ̄) = [a(x)− a∗(x)] +
√
2
[
θψ(x)− θ̄ψ̄(x)

]
−iθσµθ̄ ∂µ [a(x) + a∗(x)] + θ2F (x)− θ̄2F ∗(x)

− i√
2
θ2
[
θ̄σ̄µ∂µψ(x)

]
+

i√
2
θ̄2
[
θσµ∂µψ̄(x)

]
−1
4
θ2θ̄2� [a(x)− a∗(x)] .
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Note therefore that the transformation

V → V + i(Λ− Λ†) (C.66)

corresponds to a gauge transformation with parameter α(x) ≡ −g(a(x) + a∗(x)) for
the vector component (cf. (A.31) of Appendix Appendix A). The complete gauge
transformation reads

C(x) → C(x) + i[a(x)− a∗(x)]

χ(x) → χ(x) +
√
2ψ(x)

M(x) + iN(x) → M(x) + iN(x) + 2F (x)

Aµ(x) → Aµ(x)−
1
g
∂µα(x)

λ(x) → λ(x)

D(x) → D(x).

We see that, through a choice of the parameters i[a(x) − a∗(x)], ψα(x) and F (x),
we may set the components C(x), χα(x), M(x) and N(x) to zero. This is the so-
called Wess–Zumino gauge, which is obviously not consistent with supersymmetry
transformations. The gauge invariant degrees of freedom on the other hand are: the
gauge field strength Fµν = ∂µAν − ∂νAµ, the gaugino field λ(x), and the auxiliary
field D(x). They turn out to be the component fields of the chiral superfield:

Wα = − 1
4 D̄α̇D̄

α̇DαV. (C.67)

It is obvious that Wα is chiral4

D̄β̇Wα = 0

and gauge invariant since:

D̄α̇D̄
α̇Dα(Λ− Λ†) = D̄α̇D̄

α̇DαΛ = −D̄α̇{D̄α̇, Dα}Λ
= 2i σµαα̇D̄

α̇∂µΛ = 2i σµαα̇∂µD̄
α̇Λ = 0

where we used the fact that Λ is chiral and Λ† antichiral. We note that Wα satisfies
the condition

DαWα = D̄α̇W̄
α̇. (C.68)

In fact, Wα can be defined as the chiral superfield which satisfies this constraint. It
is reminiscent of a similar property in nonsupersymmetric gauge theories: Fµν can be
defined from the gauge potential as ∂µAν−∂νAµ or as a generic antisymmetric tensor
field which satisfies the Bianchi identity εµνρσ∂νFρσ = 0 (see Exercise 6).

4Since the covariant derivatives D̄α̇ anticommute between themselves and α̇ , β̇ can only take two
values 1̇ or 2̇: D̄β̇D̄α̇D̄

α̇ = 0.
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One can check that

Wα = λα(y)−
[
δβαD(y) +

i

2
(σµσ̄ν)αβFµν(y)

]
θβ + iθ2σµαα̇∂µλ̄

α̇(y). (C.69)

Note that one may avoid altogether to work in the Wess–Zumino gauge and take
(C.69) as defining the gauge invariant degrees of freedom λα, λ̄α̇, D and Fµν .

One infers the supersymmetry transformations from (C.29)

δ
S
Fµν =

[
ησν∂µλ̄− η̄σ̄ν∂µλ

]
− (µ↔ ν)

δ
S
λα = −ηαD − i

2
(σµσ̄ν)α

β
ηβFµν (C.70)

δ
S
D = iησµ∂µλ̄+ iη̄σ̄µ∂µλ.

A supersymmetric action must involve a term FµνFµν and therefore be quadratic in
Wα. An obvious candidate is

S =
1
4

∫
d4y d2θ WαWα + h.c (C.71)

which reads in terms of component fields after some partial integration

S =
∫

d4x

[
−1
4
FµνFµν + iλσµ∂µλ̄+

1
2
D2
]
. (C.72)

Thus one recovers the Lagrangian described in Chapter 3.
One may construct the supersymmetry current associated with this system (as

we saw in Section 3.1.5 of Chapter 3, this should not be confused with the Noether
current associated with the transformation (C.70)):

jµα = F ρσ (σρσσµ)αβ̇ λ̄
β̇ ,

̄α̇µ = −F ρσ (σ̄ρσσ̄µ)
α̇β

λβ . (C.73)

If we want to couple this to matter described by a chiral supermultiplet φ, we must
implement a gauge transformation at the superfield level. Since Λ in (C.65) is a chiral
superfield and its scalar component gives the gauge parameter (α(x) = −2gRe a(x)),
an obvious candidate is

Φ→ Φ′ = e2igqΛ Φ

which preserves the chirality of the superfield.
Then a term such as Φ†Φ is not gauge invariant and must be replaced by Φ†e−2gqV Φ

since

Φ† e−2gqV Φ → Φ† e−2igqΛ†
e−2gq[V+i(Λ−Λ†)] e2igqΛ Φ = Φ† e−2gqV Φ.

Hence the action (see (C.39)) is replaced by

S =
∫

d4x d2θ d2θ̄ Φ† e−2gqV Φ (C.74)
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which reads in terms of component fields

S =
∫

d4x
[
Dµφ∗Dµφ+ iψσµDµψ̄ + F ∗F

+ gq
(
Dφ∗φ+

√
2 λψφ∗ +

√
2 λ̄ψ̄φ

) ]
(C.75)

where Dµφ ≡ ∂µφ− igqAµφ and Dµψ ≡ ∂µψ− igqAµψ are the covariant derivatives.
Returning to R-symmetry, we see that V being real does not transform. Thus since

θ′ = e−iαθ, θ̄′ = eiαθ̄ and Dα ∼ ∂/∂θα, D̄α̇ ∼ ∂/∂θ̄α̇, Wα has R-charge +1:

RWα(y, θ) = eiα Wα(y, e−iα θ) (C.76)

and WαWα has R-charge + 2: the action (C.71) is invariant under R-symmetry.
At the component field level, let us note that the gaugino λα being the lowest

component has R-charge + 1 as well:

R λα(x) = eiα λα(x). (C.77)

The action (C.74) is obviously R-symmetric at the superfield level. One checks that as
well, at the component field level, a term such as λψϕ∗ has R-charge 1+(r−1)−r = 0.

For the case of nonabelian gauge symmetry, we refer the reader to the references
below (see for example [362]) and only sketch the results. The vector superfield has
a matrix structure V = V ata, where ta are the generators of the gauge group. The
gauge transformation (C.66) takes the form

e−V ′
= eiΛ

†
e−V e−iΛ (C.78)

where, similarly, Λ ≡ Λata.
The supersymmetric field strength Wα is now written5

Wα = −1
4
D̄α̇D̄

α̇egVDαe
−gV . (C.79)

It transforms as
W ′

α = eigΛWαe
−igΛ. (C.80)

We have

1
4g2

∫
d4xd2θWaαWa

α =
∫

d4x

[
−1
8
F aµνF a

µν −
i

8
F aµνF̃ a

µν +
i

2
λaσµDµλ̄

a +
1
4
DaDa

]
(C.81)

where
F a
µν =

1
2εµνρσF

aρσ, (C.82)

5Note that in the limit of abelian symmetry, Wα = −gWα. We have restored the gauge coupling
in the nonabelian case because of the self-couplings of the gauge sector.
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and6

Dµλ
a = ∂µλ

a + gCabcAb
µλ

c, (C.83)

g being the gauge coupling.
Finally, the coupling of the chiral field to the vector field is given as in (C.74) by∫

d4xd4θ Φ†e−2gV Φ =
∫

d4x
[
Dµφi∗Dµφi + iψiσ

µDµψ̄
i + F ∗iFi (C.84)

+ g
(
φi∗Datai

jφj +
√
2φi∗λatai

jψj +
√
2λ̄aψ̄itai

jφj

)]
,

where

Dµφi = ∂µφi − igAa
µt

a
i
jφj

Dµψi = ∂µψi − igAa
µt

a
i
jψj . (C.85)

C.4 The linear superfield
We conclude this appendix by introducing another example of a superfield, which
describes the supermultiplet associated with an antisymmetric tensor field bµν (known
as a Kalb-Ramond field [244]). Such a field is present in string theory where it plays
a central rôle in cancelling anomalies (see Section 10.4.2 of Chapter 10).

The linear superfield is a real superfield L which satisfies the covariant constraints:

D2L = 0, D̄2L = 0. (C.86)

Its nonvanishing components are therefore:

L|0 = �(x),

DαL|0 = Λα(x) , D̄α̇L
∣∣
0 = Λ̄α̇, (C.87)[

Dα, D̄α̇

]
L
∣∣
0 =

1
3σλαα̇ε

λµνρhµνρ.

In the last equation,hµνρ is the field strength of the antisymmetric tensor

hµνρ = ∂µbνρ + ∂νbρµ + ∂ρbµν , (C.88)

invariant under the gauge transformation δbµν = ∂µΛν − ∂νΛµ.
The action simply reads

L = −
∫

d4θL2 = − 1
32
(
D2D̄2 + D̄2D2)L2

∣∣
0 (C.89)

=
1
12
hµνρhµνρ +

1
2
∂µ�∂µ�−

i

2
Λασµαα̇∂µΛ̄

α̇ +
i

2
∂µΛασµαα̇Λ̄

α̇.

We note that none of the fields of the linear multiplet are auxiliary fields.

6The Cabc are the structure functions:
[
ta, tb

]
= iCabctc.
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We show in equation (10.120) of Chapter 10 that an antisymmetric tensor field is
Hodge dual to a pseudoscalar field. This equivalence extends to the full supermultiplets
and a linear superfield is dual to a chiral supermultiplet. Indeed, consider the following
Lagrangian:

L = −
∫
d4θ

[
X2 +

√
2X(S + S†)

]
, (C.90)

where X is a real superfield, S is chiral (and thus S† antichiral).
We may vary the action with respect to S, or better since S is a constrained (chiral)

superfield, we may write it as S = D̄2Σ with Σ unconstrained7 and minimize with
respect to Σ. Similarly for S†. This gives D2X = D̄2X = 0 which shows that X is a
linear superfield L. Thus the action (C.90) coincides with (C.89).

Alternatively, one may minimize with respect to X, which gives the superfield
equation of motion

X = − 1√
2
(S + S†). (C.91)

Then (C.90) is equivalent to the action

L =
∫
d4θS†S. (C.92)

Thus (C.89) and (C.92) describe two theories equivalent on-shell (we have used equa-
tions of motion).

Further reading
• J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton series in physics.
• J.-P. Derendinger, Lecture notes on globally supersymmetric theories in four and
two dimensions, preprint ETH-YH/90-21.

Exercises
Exercise 1 Show that

εαβ
∂

∂θβ
= − ∂

∂θα
, εαβ

∂

∂θα
∂

∂θβ
θθ = 4, εα̇β̇

∂

∂θ̄α̇

∂

∂θ̄β̇
θ̄θ̄ = 4.

Exercise 2 Derive from (C.29) and (C.39) the supersymmetry transformations and
Lagrangian for a chiral superfield in four-component notation, i.e. (3.10) and (3.19) in

Chapter 3: define φ = (A+ iB) /
√
2, F = (F1 + iF2) /

√
2, Ψ =

(
ψα
ψ̄α̇

)
and ε =

(
ηα
η̄α̇

)
.

7One may show that any chiral superfield may be written in this way. The unconstrained superfield
Σ is known as a prepotential.
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Exercise 3 Show that, in the Wess–Zumino gauge

V (y, θ, θ̄) = θσθ̄Aµ(y) + θ2θ̄λ̄(y) + θ̄2θλ(y)− 1
2θ

2θ̄2 (D(y)− i∂µAµ(y))

and prove (C.69).

Hints: Use (σµσ̄ν + σν σ̄µ)α
β = 2ηµνδβα.

Exercise 4
(a) Using (C.69), show that (C.71) is written in terms of the component fields as

(C.72).
(b) Prove similarly (C.75).
(c) Show that the four-component spinor versions of (C.72), (C.70), and (C.75) are

given by the equations (3.38), (3.40), and (3.43) of Chapter 3.

Hints:
(a) Use Tr(σµνσρσ) = − 1

2 (η
µρηνσ − ηµσηνρ + iεµνρσ) where (σµν)α

β = 1
4 (σ

µσ̄ν−
σν σ̄µ)α

β as defined in (B.24) of Appendix B.
(b) Compute Φ†V Φ

∣∣
θ2θ̄2

and Φ†V 2Φ
∣∣
θ2θ̄2

in the Wess–Zumino gauge. Obviously
Φ†V nΦ vanishes for n ≥ 3.

Exercise 5 Prove, using (C.19), that the components of the full vector supermultiplet
transform under supersymmetry as:

δ
S
C = i(ηχ− η̄χ̄)

δ
S
χα = ηα(M + iN)− i (σµη̄)α (Aµ − i∂µC),

δ
S
Aµ = (λσµη̄ + ησµλ̄) + η∂µχ+ η̄∂µχ̄,

δ
S
M = i(ηλ− η̄λ̄)− i(ησµ∂µχ̄− ∂µχσ

µη̄), (C.93)
δ
S
N = −(ηλ+ η̄λ̄) + (ησµ∂µχ̄+ ∂µχσ

µη̄),

δ
S
λα = −ηαD − i

2
(σµσ̄ν)α

β
ηβFµν

δ
S
D = i(ησµ∂µλ̄+ η̄σ̄µ∂µλ).

Exercise 6 Express the constraint (C.68) in terms of the component fields using the
decomposition (C.69).

Exercise 7
(a) Express D2D̄2K(Φi,Φ

†
j) in terms of derivatives of K with respect to Φi and/or

Φ†
j and covariant derivatives of Φi or Φ

†
j .

(b) Express DαD̄α̇Φ
†
i

∣∣∣
0
, DαD̄2Φ†

i

∣∣∣
0
, and D2D̄2Φ†

i

∣∣∣
0
in terms of the component fields.

(c) Use (C.28) and the previous results to prove (C.50).

Hint: (b)

DαD̄α̇Φ
†
i

∣∣∣
0
= −2iσµαα̇∂µφ∗

i , D
αD̄2Φ†

i

∣∣∣
0
= 4i

√
2
(
∂µψ̄iσ̄

µ
)α

, D2D̄2Φ†
i

∣∣∣
0
= −16�φ∗

i .
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Exercise 8 We discuss in this exercise the reparametrization invariance of the Kähler
manifold associated with a supersymmetric nonlinear sigma model.

Let us redefine the scalar fields according to φ = φ(φ′), φ̄ = φ̄(φ̄′). The kinetic
term (C.54) is invariant if the Kähler metric transforms as:

g′
mn̄ = gī

∂φi

∂φ′m
∂φ̄̄

∂φ̄′n̄ . (C.94)

(a) How does the inverse metric gī transform? Show that the Christoffel symbol
(C.56) transforms as:

Γ′i
jk =

∂φ′i

∂φl

{
Γlmn

∂φm

∂φ′j
∂φn

∂φ′k +
∂2φl

∂φ′j∂φ′k

}
. (C.95)

(b) Show that in order that the kinetic term for the fermion fields in (C.58) be
invariant, one must impose

ψi = ψ′j ∂φ
i

∂φ′j , ψ̄ı̄ = ψ̄′ ̄ ∂φ̄
ı̄

∂φ̄′ ̄ (C.96)

i.e. as contravariant vectors, and similarly Dµψ
i, Dµψ̄

ı̄.
(c) Using (a) show explicitly that, if ψi transforms as (C.96), then Dµψ

i, as defined
in (C.59), transforms as a contravariant vector.

(d) Show that:

[Dµ,Dν ]ψi
α = −gīRj̄kk̄

(
∂µφ

k∂ν φ̄
k̄ − ∂νφ

k∂µφ̄
k̄
)
ψj
α. (C.97)

where the Riemann tensor Rj̄kk̄ is defined in (C.60).

Exercise 9 Consider a chiral superfield S with a Kähler potential K = − ln
(
S + S†).

Show that the transformation:

S → aS − ib

icS + d
(C.98)

with ad− bc = 1 amounts to a Kähler transformation (C.52). Such a chiral superfield
appears in string theory: its scalar component is the string dilaton whose vacuum
expectation value provides the gauge coupling g (〈S〉 = 1/g2). Thus, the ‘S-duality’
transformation (C.98) with the choice a = d = 0 and b = −c = 1 corresponds to a
strong/weak coupling duality (see Chapter 10).

Hints: F (S) = ln (icS + d).
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Exercise 10 Show that (C.81) and (C.84) are invariant under:

δ
S
φi =

√
2 η ψi

δ
S
ψiα =

√
2 ηαFi − i

√
2 σµαα̇η̄

α̇ Dµφi

δ
S
Fi = −i

√
2 η̄σ̄µDµψi − 2gη̄λ̄ataji φj

δ
S
Aa
µ = ησµλ̄

a − η̄σ̄µλ
a

δ
S
λaα = −ηαDa − i

2
(σµσ̄ν)α

β
ηβF

a
µν (C.99)

δ
S
Da = iησµDµλ̄

a + iη̄σ̄µDµλ
a.

Hints: If one compares with the individual transformations of the chiral and vector
supermultiplets (i.e. (C.29) and (C.70) with ordinary derivatives replaced by covariant
derivatives), one identifies a single extra term (the second term in δ

S
Fi). To check its

form, cancel all terms proportional to F ∗i in the supersymmetry transformation of the
Lagrangian. They originate from only two terms: F ∗iδ

S
Fi + g

√
2λ̄aδ

S
ψ̄i t

aj
i φj .

Problem 1 One of the problems of supersymmetry is the absence of conventions to
which all authors would adhere. In this exercise, we will reformulate some of the
expressions in the appendix to make explicit the conventions chosen here and in other
textbooks. You may choose to prove part or all of the following equations, or just use
them when you try to compare with other textbooks.

The first convention is one of metric signature. We introduce here a sign ε which is
+1 for a metric signature (+,−,−,−) (our convention) and −1 for a metric signature
(−,+,+,+). In the computations necessary for what follows, the main consequence
of the choice of metric signature is the formula:

{γµ, γν} = 2εηµν (C.100)

which may be written

(σµσ̄ν + σν σ̄µ)α
β = 2ε ηµνδβα,

(σ̄µσν + σ̄νσµ)α̇ β̇ = 2ε ηµνδα̇
β̇
. (C.101)

Thus, one has
Tr (σµσ̄ν) = 2εηµν , (C.102)

and, using (B.61) of Appendix B,

(θσµθ̄)(θσν θ̄) = 1
2εθ

2 θ̄2. (C.103)

We start by constructing supersymmetry charges which satisfy:

{Qα, Q̄α̇} = 2ε
Q
σµαα̇ i∂µ (C.104)

{Qα, Qβ} = 0 = {Q̄α̇, Q̄β̇} (C.105)

where ε
Q
is ±1.
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The translation generator has the general form:

Pµ =
i

γ
P

∂µ, (C.106)

with γ
P
a normalization factor8.

Following the method of Section C.1, we define the superspace translation by:

S (yµ, η, η̄) = exp i
(
γ
P
yµPµ + γ

Q
ηQ+ γ

Q̄
η̄Q̄
)
. (C.107)

Then, one obtains, besides (C.106),

Qα =
i

γ
Q

[
∂

∂θα
+ iρ

Q
σµαα̇ θ̄α̇ ∂µ

]
Q̄α̇ = − i

γ
Q̄

[
∂

∂θ̄α̇
+ iρ

Q
θασµαα̇ ∂µ

]
(C.108)

where we have defined
ρ
Q
≡ ε

Q
γ
Q
γ
Q̄
, (C.109)

which we will take to be real.
The supersymmetry transformation on a superfield F(x, θ, θ̄) reads

δ
S
F(x, θ, θ̄) =

[
−iγ

Q
ηαQα − iγ

Q̄
η̄α̇Q̄

α̇
]
F(x, θ, θ̄). (C.110)

The next step is to find covariant derivatives which satisfy:

{Dα, D̄α̇} = 2ε
D
σµαα̇ i∂µ {Dα, Dβ} = 0 = {D̄α̇, D̄β̇}

{Dα, Qβ} = {Dα, Q̄β̇} = {D̄α̇, Qβ} = {D̄α̇, Q̄β̇} = 0, (C.111)

with ε
D
= ±1. One finds:

Dα =
λ

D

γ
Q

(
∂

∂θα
− iρ

Q
σµαα̇ θ̄α̇ ∂µ

)
,

D̄α̇ = −λ
D̄

γ
Q̄

(
∂

∂θ̄α̇
− iρ

Q
θασµαα̇ ∂µ

)
, (C.112)

where λ
D
and λ

D̄
are two normalization constants which satisfy:

λ
D
λ

D̄
=

ε
D

ε
Q

. (C.113)

We now turn to the chiral superfield. Defining the variable

yµ = xµ − iρ
Q
θσµθ̄, (C.114)

8Note that, depending on the respective values of εQ and γP , one sometimes does not recover
from (C.105) the standard anticommutation relations (C.7), i.e. if εQγP �= 1. This is indeed the case
of the most common convention, the one of Wess and Bagger [362].
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we have

Qα =
i

γ
Q

∂

∂θα
,

Q̄α̇ =
i

γ
Q

[
∂

∂θ̄α̇
+ 2iρ

Q
(σ̄µθ)α̇

∂

∂yµ

]
, (C.115)

Dα =
λ

D

γ
Q

[
∂

∂θα
− 2iρ

Q

(
σµθ̄

)
α

∂

∂yµ

]
,

D̄α̇ =
λ

D̄

γ
Q̄

∂

∂θ̄α̇
. (C.116)

Thus, we can write a chiral superfield Φ which satisfies the condition D̄α̇Φ = 0 as

Φ = φ(y) + α
ψ

√
2 θψ(y) + α

F
θ2 F (y), (C.117)

where α
ψ
and α

F
are real normalization constants.

The supersymmetry transformations (C.110) read in terms of component fields:

δ
S
φ = α

ψ

√
2 η ψ

α
ψ
δ
S
ψα =

√
2 α

F
Fηα − i

√
2 ρ

Q
(σµη̄)α ∂µφ

α
ψ
δ
S
ψ̄α̇ =

√
2 α

F
F ∗η̄α̇ − i

√
2 ρ

Q
(σ̄µη)α̇ ∂µφ

∗

α
F
δ
S
F = i

√
2ρ

Q
α

ψ
∂µψσ

µη̄ = −i
√
2ρ

Q
α

ψ
η̄σ̄µ∂µψ (C.118)

or in four-component notation (see Exercise 2 for notation and Appendix B for our
conventions on gamma matrices):

δ
S
A = α

ψ
ε̄Ψ, δ

S
B = α

ψ
ε̄iγ5Ψ,

α
ψ
δ
S
Ψ = α

F
(F1 − iγ5F2) ε−iρQ

γµ∂µ (A+ iγ5B) ε, (C.119)

α
F
δ
S
F1 = −ρ

Q
αψ ε̄γµi∂µψ, α

F
δ
S
F2 = −ρ

Q
αψ ε̄γ5γ

µ∂µΨ.

As for the Lagrangian, we have

Φ†(x)Φ(x)
∣∣
θ2θ̄2

= α2
F
F ∗(x)F (x) + ερ2

Q

[ 1
2 ∂µφ∗(x)∂µφ(x)− 1

4 φ(x)�φ∗(x)

− 1
4 φ∗(x)�φ(x)

]
+

i

2
ρ
Q
α2

ψ

(
ψσµ∂µψ̄ − ∂µψσ

µψ̄
)
,

and

W (Φ))|θ2 = α
F
F

∂W

∂Φ
(φ(y))− α2

ψ

1
2
∂2W

∂Φ2 (φ(y)) ψα(y)ψα(y). (C.120)
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Thus the action for the scalar field reads (up to total derivatives which do not
contribute)

S =
∫
d4xd2θd2θ̄ Φ†(x, θ, θ̄)Φ(x, θ, θ̄) +

[∫
d4y d2θ W (Φ(y, θ)) + h.c.

]
=
∫
d4x

{
ερ2

Q
∂µφ∂

µφ∗ −
∣∣∣∣dWdφ

∣∣∣∣2 (C.121)

+
1
2
α2

ψ

[
iρ

Q

(
ψσµ∂µψ̄ + ψ̄σ̄µ∂µψ

)
−
(
d2W

dφ2
ψ2 +

d2W ∗

dφ∗2 ψ̄2
)]}

,

where we have solved for the auxiliary field:

F = − 1
α

F

(
dW

dφ

)∗
. (C.122)

One may write the preceding action using four-component spinors (see Exercise 2 for
notation). For example, in the case where

W (Φ) = 1
2mΦ2 + 1

3λΦ
3, (C.123)

we have9

S =
∫

d4x
{
ερ2

Q
∂µφ∂

µφ∗ −
∣∣mφ+ λφ2

∣∣2
+ α2

ψ

[
1
2
iρ

Q
Ψ̄γµ∂µΨ− 1

2
mΨ̄Ψ− λΨ̄

R
φΨ

L
− λΨ̄

L
φ∗Ψ

R

]}
. (C.124)

This can be shown directly to be invariant under the supersymmetry transformations
(C.119).

Finally, we write the abelian vector superfield decomposition as:

V = C + iθχ− iθ̄χ̄+
i

2
θ2 [M + iN ]− i

2
θ̄2 [M − iN ]

+α
A
ρ
Q
θσµθ̄Aµ − iρ

Q
θ2θ̄α̇

[
α∗

λ
λ̄α̇ +

i

2
(σ̄µ∂µχ)

α̇

]
(C.125)

+ iρ
Q
θ̄2θα

[
α

λ
λα +

i

2
(σµ∂µχ̄)α

]
− 1

2
ερ2

Q
θ2θ̄2

[
D +

1
2
�C
]
.

The corresponding gauge invariant superfield reads

Wα = ε
D

λ
D̄

γ
Q̄

[
iα

λ
λα − ρ

Q

(
ε δβαD + iα

A
(σµν)αβFµν

)
θβ

+ ρ
Q
α∗

λ
θ2σµαα̇∂µλ̄

α̇
]
, (C.126)

9Note that, for ρQ = −1 (as in Wess and Bagger [362]), we obtain an unusual form for the Dirac
equation: iγµ∂µΨ = −mΨ. It is to recover the standard Dirac equation that we have chosen ρQ = +1,
and thus real γQ , γ

Q̄
(see (C.109)).
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whereas the complete supersymmetry transformations are

δ
S
C = i (ηχ− η̄χ̄) ,

δ
S
χα = ηα(M + iN)− iρ

Q
(σµη̄)α (αA

Aµ − i∂µC) ,

α
A
δ
S
Aµ = iε

(
α

λ
λσµη̄ − α∗

λ
ησµλ̄

)
+ η∂µχ+ η̄∂µχ̄,

δ
S
M = −ρ

Q

[
α

λ
ηλ+ α∗

λ
η̄λ̄+ i (ησµ∂µχ̄− ∂µχσ

µη̄)
]
, (C.127)

δ
S
N = −iρ

Q

[
α

λ
ηλ− α∗

λ
η̄λ̄+ i (ησµ∂µχ̄+ ∂µχσ

µη̄)
]
,

α
λ
δ
S
λα = iερ

Q
ηαD − ρ

Q
α

A
(σµνη)α Fµν ,

δ
S
D = ε

(
α∗

λ
ησµ∂µλ̄− α

λ
η̄σ̄µ∂µλ

)
.

The conventions followed by various authors are summarized in the following table.

Authors: HERE Wess-Bagger Sohnius Derendinger YOUR
[362] [342] [101] CONVENTIONS

ε +1 −1 +1 +1
ε5 +1 i i
ε
Q

+1 +1 +1 +1
γ
P

+1 −1 +1 −1
γ
Q

+1 i +1 −1
γ
Q̄

+1 i +1 −1
ρ
Q

+1 −1 +1 +1
ε
D

−1 −1 +1 −1
λ

D
+1 i +1 +1

λ
D̄

−1 i +1 −1
α

ψ
+1 +1

√
2 +1

α
F

+1 +1 −1 −1
α

A
+1 +1 −1

α
λ

−i +1 +1
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An introduction to cosmology

Since the metric signature often chosen in general relativity is different from the one
adopted in this book, we introduce in this appendix a sign ε which is +1 for a metric
signature (+,−,−,−) (our convention) and −1 for a metric signature (−,+,+,+).1

D.1 Elements of general relativity
In general relativity, matter curves spacetime and the central dynamical object is the
metric gµν(x) which depends on the spacetime coordinates x0, x1, . . . , xD−1 (to be
general, we consider in this section D-dimensional spacetimes). Physics should not
depend on the way we define the spacetime coordinates; in other words, it should be
invariant under general coordinate transformations xµ → x′µ(x). Since the elementary
line element

ds2 = gµνdx
µdxν (D.1)

should be invariant, the infinitesimal transformation

dx′µ =
∂x′µ

∂xν
dxν (D.2)

implies the following transformation law for the metric tensor gµν and its inverse gµν

g′
µν(x

′) =
∂xρ

∂x′µ
∂xσ

∂x′ν gρσ(x), g′µν(x′) =
∂x′µ

∂xρ
∂x′ν

∂xσ
gρσ(x), (D.3)

which are the respective transformation laws of a covariant and a contravariant tensor.
One may define similarly the transformation laws of a contravariant vector V ν or

covariant vector Vν :

V ′ν =
∂x′ν

∂xρ
V ρ, V ′

ν =
∂xρ

∂x′ν Vρ, (D.4)

However, the spacetime derivatives of vectors do not transform covariantly. For
example,

∂V ′ν

∂x′µ =
∂x′ν

∂xρ
∂xσ

∂x′µ
∂V ρ

∂xσ
+

∂2x′ν

∂xρ∂xσ
∂xσ

∂x′µV
ρ.

1In the notation of Misner, Thorne and Wheeler [287], our conventions are as follows: −ε for g
sign, +1 for Riemann sign, and +1 for Einstein sign.
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The situation is reminiscent of the one encountered in gauge theories. An ordinary
derivative ∂µΨ of a gauge nonsinglet field Ψ does not transform covariantly
under a gauge transformation. One has to introduce the covariant derivative DµΨ =
∂µΨ− igAa

µt
aΨ which has the same gauge transformation as Ψ (see Section A.1.4 of

Appendix Appendix A).
Similarly here one defines the covariant derivatives

DµV
ν = ∂µV

ν + ΓνµλV λ, DµVν = ∂µVν − ΓρµνVρ, (D.5)

where Γρµν , the analog of the gauge field, is called a Christoffel symbol or spin con-
nection (it does not transform as a tensor under general coordinate transformations)
and is defined in terms of the metric as:

Γρµν = 1
2g

ρσ [∂µgνσ + ∂νgµσ − ∂σgµν ] . (D.6)

One can then check that DµV
ν transforms as a (mixed) tensor:

(DµV
ν)′ =

∂xρ

∂x′µ
∂x′ν

∂xσ
DρV

σ. (D.7)

In the same way that one defines the field strength by differentiating the gauge
field (Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ]), one introduces the Riemann curvature
tensor:

Rµ
ναβ = ∂αΓµνβ − ∂βΓµνα + ΓµασΓσνβ − ΓµβσΓσνα. (D.8)

By contracting indices, one also defines the Ricci tensor Rµν and the curvature
scalar R

Rµν ≡ Rα
µαν , R ≡ gµνRµν . (D.9)

It is easy to show that

[Dµ, Dν ]V ρ = Rρ
σµνV

σ, (D.10)

which is reminiscent of a similar equation in gauge theories (see (A.51) of Appendix Ap-
pendix A).

An important notion connected with covariant differentiation is the notion of par-
allel transport. A vector is said to be parallel-transported along a curve parametrized
by τ if its covariant derivative projected along the curve is zero:

DV µ

Dτ
≡ DλV

µ dx
λ

dτ
= 0. (D.11)

For example, the velocity Uµ = dxµ/dτ (τ proper time: dτ2 = εgµνdx
µdxν) of a freely

falling object is parallel-transported along the free fall trajectory (this generalizes the
notion of zero acceleration in flat space). Such a path is called a geodesic. In other
words, a geodesic is a curve that parallel transports its tangent vector along itself. On
a sphere the geodesics are the great circles.
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Let us now restrict to a 2n-dimensional compact manifold K with metric gij and
consider a small loop γ in the (xi, xj) plane at a point P . Take a vector V k at P and
parallel transport it along γ. If the space is flat, when one reaches P again the vector
recovers its previous value. This is not true in curved space and V k is changed by the
amount (cf. (D.10)):

δV k ∝ Rk
lijV

l. (D.12)

Let us restrict our attention to vectors tangent to K and note TP the tangent space
at point P . The holonomy group at point P is the set of transformations hγ that
associate to V ∈ TP the tangent vector V ′ ∈ TP obtained by parallel transporting V
along the loop γ through P (each loop determines one element of HP ).

Using the equation of parallel transport (D.11) together with (D.5), one can write
(δV k = −dxiΓkijV j), using Stokes’ theorem,

V ′ = hγV =
(
exp−

∫
γ

Γdx
)
V =

(
exp−

∫
S

Rds

)
V, (D.13)

where S is a surface delimited by the loop γ. It is straightforward to check the group
structure ofHP (take two loops γ1 and γ2 through P : hγ1hγ2 = hγ1γ2). Let us note that
(D.13) shows that the spin connection can be interpreted as the gauge field associated
with the holonomy group (Γkij =

(
Ai
)k
j
).

Generally, for a complex manifold, HP ∼ SO(2n), independently of P . Take the
example of the sphere S2 and consider first the loops γ which consist of a triangle
made of (parts of) three great circles. Since these are geodesics it is easy to parallel
transport a tangent vector V . By changing the angles of this triangle, one may generate
any rotation in the tangent plane, hence any transformation of SO(2).

The action of general relativity in D dimensions has the form

S =
∫

dDx
√
|g|
[
− 1
2κ2

D

(R− 2ελ)
]
+ Smatter (gµν ,Ψ · · · ) (D.14)

where κ2
D
= 8πG(D) (κ

2 = 8πG
N
in the four-dimensional case), g is the determinant

of gµν , Ψ stands for the matter fields and λ is the cosmological constant. Using

2√
|g|

δSmatter

δgµν
= Tµν , (D.15)

one derives (see Exercise 1) from the Lagrangian (D.14) the equations of motion of
the metric components, i.e. Einstein’s equations:

Gµν ≡ Rµν − 1
2gµνR = κ2

D
Tµν + ελgµν , (D.16)

where the tensor Gµν thus defined is called the Einstein tensor. In four dimensions,

Gµν = 8πG
N
Tµν + ελgµν . (D.17)
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D.2 Friedmann–Robertson–Walker Universes
Under the assumption that the Universe is homogeneous and isotropic on scales of
order 100 Mpc (1 pc = 3.262 light-year = 3.086 × 1016 m)2, one may try to find
an homogeneous and isotropic metric as a solution of Einstein equations. The most
general ansatz is, up to coordinate redefinitions, the Robertson–Walker metric:

ε ds2 = c2dt2 − a2(t) γijdxidxj , (D.18)

γijdx
idxj =

dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)
, (D.19)

where a(t) is the cosmic scale factor, which is time-dependent in an expanding or
contracting Universe. The constant k which appears in the spatial metric γij can
be chosen to be equal to ±1 or 0: the value 0 corresponds to flat space, i.e. usual
Minkowski spacetime; the value +1 to closed space (r2 < 1) and the value −1 to open
space. Note that r is dimensionless whereas a has the dimension of a length. Physical
distances (we will say proper distances) may be measured at time t along rays of
constant θ and φ as

d(t) =
∫ r

0

√
|grr|dr′ = a(t)

∫ r

0

dr′
√
1− kr′2 . (D.20)

The components of the Einstein tensor now read (see Exercise 2):

G00 = 3
(
ȧ2

a2
+

k

a2

)
, (D.21)

Gij = −γij
(
ȧ2 + 2aä+ k

)
, (D.22)

where we use standard notation: ȧ is the first time derivative of the cosmic scale factor,
ä the second time derivative.

For the energy–momentum tensor, we follow our assumption of homogeneity and
isotropy and assimilate the content of the Universe to a perfect fluid:

Tµν = −εpgµν + (p+ ρ)UµUν , (D.23)

where Uµ is the velocity 4-vector (U0 = 1, U i = 0). It follows from (D.23) that T00 = ρ
and Tij = a2pγij . The pressure p and energy density ρ usually satisfy the equation of
state:

p = wρ. (D.24)

The constant w takes the value w ∼ 0 for nonrelativistic matter (negligible pressure)
and w = 1/3 for relativistic matter (radiation). In all generality, the perfect fluid
consists of several components with different values of w.

2To keep in mind orders of magnitude, the visible disk of a typical spiral galaxy has radius 10 kpc,
a typical halo has radius larger than 50 kpc, and a typical intergalactic distance is 6 Mpc.
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One now obtains from the (0, 0) and (i, j) components of the Einstein equations
(D.17):

3
(
ȧ2

a2
+

k

a2

)
= 8πG

N
ρ+ λ, (D.25)

ȧ2 + 2aä+ k = −8πG
N
a2p+ a2λ. (D.26)

D.2.1 Friedmann equation

The first of the preceding equations can be written as the Friedmann equation, which
gives an expression for the Hubble parameter H ≡ ȧ/a measuring the rate of the
expansion of the Universe:

H2 ≡ ȧ2

a2
=

1
3
(λ+ 8πG

N
ρ)− k

a2
. (D.27)

Note that the cosmological constant appears as a constant contribution to the Hubble
parameter.

This equation should be supplemented by the conservation of the energy–momentum
tensor which simply yields:

ρ̇ = −3H(p+ ρ). (D.28)

Hence a component with equation of state (D.24) has its energy density scaling as
ρ ∼ a(t)−3(1+w). Thus nonrelativistic matter (often referred to as matter) energy
density scales as a−3. In other words, the energy density of matter evolves in such a
way that ρa3 remains constant. Radiation scales as a−4 and a component with equation
of state p = −ρ (w = −1) has constant energy density. The latter case corresponds
to a cosmological constant as can be seen from (D.26)–(D.27) where the cosmological
constant can be replaced by a component with ρΛ = −pΛ = λ/(8πG

N
).

The Friedmann equation allows us to define the Hubble constantH0, i.e. the present
value of the Hubble parameter, which sets the scale of our Universe at present time.
Because of the troubled history of the measurement of the Hubble constant, it has
become customary to express it in units of 100 km s−1 Mpc−1 which gives its order
of magnitude. Present measurements give

h0 ≡
H0

100 km s−1 Mpc−1 = 0.7± 0.1.

The corresponding length and time scales are:

�H0 ≡
c

H0
= 3000 h−1

0 Mpc = 9.25× 1025 h−1
0 m, (D.29)

tH0 ≡
1
H0

= 3.1× 1017 h−1
0 s = 9.8 h−1

0 Gyr. (D.30)
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A reference energy density at present time t0 is obtained from the Friedmann equation
for vanishing cosmological (λ = 0) and flat space (k = 0):

ρc ≡
3H2

0

8πG
N

= 1.9 10−26 h20 kg m
−3. (D.31)

This corresponds to approximately one galaxy per Mpc3 or 5 protons per m3. In
fundamental units where h̄ = c = 1, this is of the order of

(
10−3eV

)4. In the case of
a vanishing cosmological constant, it follows from (D.27) that, depending on whether
the present energy density of the Universe ρ0 is larger, equal or smaller than ρc, the
present Universe is spatially open (k > 0), flat (k = 0) or closed (k < 0). Hence the
name critical density for ρc.

It has become customary to normalize the different forms of energy density in the
present Universe in terms of this critical density. Separating the energy density ρ

M0

presently stored in nonrelativistic matter (baryons, neutrinos, dark matter, etc.) from
the density ρ

R0 presently stored in radiation (photons, relativistic neutrino, if any),
one defines:

Ω
M
≡ ρ

M0

ρc
, Ω

R
≡ ρ

R0

ρc
, ΩΛ ≡ λ

3H2
0
, Ωk ≡ − k

a20H
2
0
. (D.32)

The last term comes from the spatial curvature and is not strictly speaking a contri-
bution to the energy density.

Then the Friedmann equation taken at time t0 simply reads

Ω
M
+Ω

R
+ΩΛ +Ωk = 1. (D.33)

Since matter dominates over radiation in the present Universe, we may neglect Ω
R

in the preceding equation. Using the dependence of the different components with
the scale factor a(t), one may then rewrite the Friedmann equation at any time
as:

H2(t) = H2
0

[
ΩΛ +Ω

M

(
a0
a(t)

)3

+Ω
R

(
a0
a(t)

)4

+Ωk

(
a0
a(t)

)2
]
, (D.34)

where a0 is the present value of the cosmic scale factor and all time dependences
have been written explicitly. We note that, even if Ω

R
is negligible in (D.33), this

is not so in the early Universe because the radiation term increases faster than the
matter term in (D.34) as one gets back in time (i.e. as a(t) decreases). If we add an
extra component X with equation of state p

X
= w

X
ρ
X
, it contributes an extra term

Ω
X
(a0/a(t))

3(1+w
X
) where Ω

X
= ρ

X
/ρc.

Important information about the evolution of the Universe at a given time is
whether its expansion is accelerating or decelerating. This is obtained by studying the
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second derivative of the cosmic scale factor, which is easily extracted from (D.25) and
(D.26):

ä

a
= −4πG

N

3
(3p+ ρ) +

λ

3
. (D.35)

The acceleration of our Universe is usually measured by the deceleration parameter q
which is defined as:

q ≡ − äa

ȧ2
. (D.36)

Using (D.35) and separating again matter and radiation, we may write it at present
time t0 as:

q0 = − 1
H2

0

(
ä

a

)
t=t0

=
1
2
Ω

M
+Ω

R
− ΩΛ. (D.37)

Once again, the radiation term Ω
R
can be neglected in this relation. We see that in

order to have an acceleration of the expansion (q0 < 0), we need the cosmological con-
stant to dominate over the other terms. We can also write the deceleration parameter
(D.36) at a given time t as

q(t) =
1

H2(t)

[
1
2
Ω

M

(
a0
a(t)

)3

+Ω
R

(
a0
a(t)

)4

− ΩΛ

]
. (D.38)

If we introduce an extra component X as above, it contributes a term Ω
X
(a0/

a(t))3(1+wX
)(1 + 3w

X
)/2: only components with equation of state parameter w

X
<

−1/3 tend to accelerate the expansion of the Universe.
The measurement of the Hubble constant and of the deceleration parameter allows

us to obtain the behavior of the cosmic scale factor in the last stages of the evolution
of the Universe:

a(t) = a0

[
1 +

t− t0
tH0

− q0
2
(t− t0)2

t2H0

+ · · ·
]
. (D.39)

D.2.2 Measure of distances

Measuring cosmological distances allows us to study the geometry of spacetime.
Depending on the type of observation, one may define several distances.

In an expanding or contracting Universe, the light emitted by a distant source
undergoes a frequency shift which gives a direct information on the time dependence
of the cosmic scale factor a(t). To obtain the explicit relation, we consider a photon
propagating in a fixed direction (θ and φ fixed). Its equation of motion is given as in
special relativity by setting ds2 = 0 in (D.18):

c2dt2 = a2(t)
dr2

1− kr2
. (D.40)
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Thus, if a photon (an electromagnetic wave) leaves at time t a galaxy located at
distance r from us, it will reach us at time t0 such that∫ t0

t

cdt

a(t)
=
∫ r

0

dr√
1− kr2

. (D.41)

The electromagnetic wave is emitted with the same amplitude at a time t+ T where
the period T is related to the wavelength of the emitted wave λ by the relation λ = cT .
It is thus received with the same amplitude at the time t0 + T0 given by∫ t0+T0

t+T

cdt

a(t)
=
∫ r

0

dr√
1− kr2

, (D.42)

the wavelength of the received wave being simply λ0 = cT0. Since T0, T � t0, t, we
obtain from comparing (D.41) and (D.42)

cT0
a0

=
cT

a(t)
, i.e.

λ0
λ

=
a0
a(t)

. (D.43)

Defining the redshift parameter z as the fractional increase in wavelength
z = (λ0 − λ)/λ, we have

1 + z =
a0
a(t)

. (D.44)

One may thus replace time by redshift since time decreases monotonically as redshift
increases. For example, the expression of the Hubble parameter in (D.34) can be turned
into

H2(z) = H2
0
[
Ω

M
(1 + z)3 +Ω

R
(1 + z)4 +Ωk(1 + z)2 +ΩΛ

]
. (D.45)

Using ∫ t0

t

cdt

a(t)
=
∫ a0

a(t)

cda

aȧ
=
∫ a0

a(t)

cda

a2H
=
∫ z

0

cdz

H(z)

we may extract from (D.34) and (D.41) the proper distance (D.20) at time t0:

a0

∫ r

0

dr√
1− kr2

= a0


sin−1 r k = +1
r k = 0
sinh−1 r k = −1

(D.46)

= a0

∫ t0

t

cdt′

a(t′)

= �H0

∫ z

0

dz

[Ω
M
(1 + z)3 +Ω

R
(1 + z)4 +Ωk(1 + z)2 +ΩΛ]

1/2
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where �H0 = cH−1
0 . We can also write the deceleration parameter in (D.38) as

q =
1

H(z)2

[
1
2
Ω

M
(1 + z)3 +Ω

R
(1 + z)4 − ΩΛ

]
. (D.47)

This shows that the Universe starts accelerating at redshift values 1+z ∼ (2ΩΛ/ΩM
)1/3

(neglecting Ω
R
), that is typically redshifts of order 1.

If a photon source of luminosity L (energy per unit time) is placed at a distance r
from the observer, then the energy flux φ (energy per unit time and unit area) received
by the observer is given by

φ =
L

4πa20r2(1 + z)2
≡ L

4πd2L
. (D.48)

The two powers of 1 + z account for the photon energy redshift and the time dilata-
tion between emission and observation. The quantity dL ≡ a0r(1 + z) is called the
luminosity distance.

If the source is at a redshift z of order one or smaller, then we can approximate
the integral

∫ r
0 dr/

√
1− kr2 in (D.41) by simply r and this equation gives

a0r ∼
∫ t0

t

a0cdt

a(t)
=
∫ a0

a

a0cda

aȧ
∼ �H0

∫ a0

a

da

a [1− q0H0(t− t0)]
(D.49)

where we have used the development (D.39) with tH0 = �H0/c = H−1
0 . Using

H0(t− t0) ∼ (a− a0)/a0 � 1 and a = a0/(1 + z), we obtain for z � 1

a0r = �H0z

(
1− 1 + q0

2
z + · · ·

)
. (D.50)

This result can be obtained directly from (D.46) (see Exercise 3). Thus, the luminosity
distance reads, for z � 1,

dL = �H0z

(
1− 1 + q0

2
z + · · ·

)
(1 + z) = �H0z

(
1 +

1− q0
2

z + · · ·
)
. (D.51)

Hence measurement of deviations to the Hubble law (dL = �H0z) at moderate redshift
allow us to measure the combination Ω

M
/2− ΩΛ (see (D.37)).

Another distance is defined in cases where one measures the angular diameter δ
of a source in the sky. If D is the diameter of the source, then D/δ would be the
distance of the source in Euclidean geometry. In a Universe with a Robertson–Walker
metric, it turns out to be a(t)r = a0r/(1 + z). This defines the angular diameter
distance dA

dA = a(t)r =
dL

(1 + z)2
. (D.52)
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Several distance measurements tend to point towards an evolution of the present
Universe dominated by the cosmological constant contribution3 and thus a late accel-
eration of its expansion.

The approach that has made the first strong case for such an hypothesis uses
supernovae of type Ia as standard candles4. Two groups, the Supernova Cosmology
Project [88] and the High-z Supernova Search [140] have found that distant supernovae
appear to be fainter than expected in a flat matter-dominated Universe. If this is
to have a cosmological origin, this means that, at fixed redshift, they are at larger
distances than expected in such a context and thus that the Universe is accelerating
its expansion.

More precisely, one uses the relation (D.48) between the flux φ received on Earth
and the luminosity L of the supernova. Traditionally, flux and luminosity are expressed
on a log scale as apparent magnitude mB and absolute magnitude M (magnitude is
−2.5 log10 luminosity + constant). The relation then reads

mB = 5 log(H0dL) +M − 5 logH0 + 25. (D.53)

The last terms are z-independent, if one assumes that supernovae of type Ia are stan-
dard candles; they are then measured by using low z supernovae. The first term,
which involves the luminosity distance dL, varies logarithmically with z up to correc-
tions which depend on the geometry, more precisely on q0 = Ω

M
/2 − ΩΛ for small z

as can be seen from (D.51). This allows us to compare with data cosmological models
with different components participating to the energy budget, as can be seen from
Fig. D.1.

This can be turned into a limit in the ΩM − ΩΛ plane for the model considered
here (see Fig. D.2).

Of course, such type of measurement is sensitive to many possible systematic effects
(extra corrections besides the phenomenological stretch factor applied to the light-
curves, presence of dust, etc.), and this has fueled a healthy debate on the significance
of supernova data, as well as a thorough study of possible systematic effects by the
observational groups concerned.

Let us note that the combination Ω
M
/2 − ΩΛ is ‘orthogonal’ to the combination

ΩM +ΩΛ measured in CMB experiments (see Section D.3.4). The two measurements
are therefore complementary: this is sometimes referred to as ‘cosmic
complementarity’.

Other results come from gravitational lensing. The deviation of light rays by an
accumulation of matter along the line of sight depends on the distance to the source
(D.50), and thus on the cosmological parameters ΩM and ΩΛ. As q0 decreases (i.e.
as the Universe accelerates), there is more volume and thus more lenses between the
observer and the object at redshift z. Several methods are used: abundance of multiply-
imaged quasar sources [255], strong lensing by massive clusters of galaxies (providing
multiple images or arcs) [356], and weak lensing [286].

3At least when analyzed in the framework of the model discussed in this section, i.e. includ-
ing nonrelativistic matter, radiation and a cosmological constant. As discussed in Section 12.2.2 of
Chapter 12, the cosmological constant may be replaced by a dynamical component.

4By calibrating them according to the timescale of their brightening and fading.
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Fig. D.1 Hubble plot (magnitude versus redshift) for Type Ia supernovae observed at low
redshift by the Calan–Tololo Supernova Survey and at moderate redshift by the Supernova
Cosmology Project.

D.2.3 Age of the Universe

Since 1 + z = a0/a(t), we can write (D.45) as

H2(z) =
1

(1 + z)2

(
dz

dt

)2

= H2
0
[
Ω

M
(1 + z)3 +Ω

R
(1 + z)4 +Ωk(1 + z)2 +ΩΛ

]
.

(D.54)
This is easily integrated to obtain the time–redshift relation. Sending z to infinity (or,
for that matter, to the value of z corresponding to nucleosynthesis, up to which we
think we understand the evolution of the Universe), we obtain the age of the Universe:

t0 = tH0

∫ ∞

0

dz

(1 + z) [Ω
M
(1 + z)3 +Ω

R
(1 + z)4 +Ωk(1 + z)2 +ΩΛ]

1/2 (D.55)

(we have set t = 0 at the Big Bang singularity; hence t0 is the age of the Universe).
One may neglect the radiation dominated era since it is short on the scale of the age
of the Universe (see Table D.1 below). One can check, using (D.33) to express Ωk, that
t0 increases with ΩΛ at fixed Ω

M
. Thus a nonvanishing cosmological constant helps

to solve what was once known as the “age of Universe crisis”: the Universe should
be older than the oldest globular clusters in the Milky way whose age is estimated at
10 Gyr. Present data on (Ω

M
,ΩΛ) favors an age of the Universe around 15 Gyr.
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Fig. D.2 Best-fit coincidence regions in the (ΩM ,ΩΛ) plane, based on the analysis of 42
type Ia supernovae discovered by the Supernova Cosmology Project [88].

D.3 The hot Big Bang scenario
We summarize in Table D.1 the main stages of the evolution of the Universe which
we will describe in this section. Before undertaking this task, let us recall a few facts
about equilibrium distributions.

D.3.1 Equilibrium distributions
For a species in kinetic equilibrium, the phase space distribution functions are of the
standard Fermi–Dirac or Bose–Einstein form5:

f(p) =
1

exp [E/(kT )]± 1
, E =

√
p2 +m2, (D.56)

where the + sign refers to Fermi–Dirac and the − sign to Bose–Einstein. One can
easily infer the number density n, energy density ρ, and pressure p of the corresponding
species:

n =
g

(2πh̄)3

∫
f(p) d3p,

ρ =
g

(2πh̄)3

∫
E f(p) d3p, (D.57)

p =
g

(2πh̄)3

∫
p2

3E
f(p) d3p,

5We disregard here any chemical potential.
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t kTγ (eV) z

t0 ∼ 15 Gyr 2.35× 10−4 0 now

∼ Gyr ∼ 10−3 ∼ 4 formation of galaxies

trec ∼ 4× 105 yr 0.26 1100 recombination

teq ∼ 4× 104 yr 0.83 3500 matter-radiation equality

3 min 6× 104 2× 108 nucleosynthesis

1 s 106 3× 109 e+e− annihilation

4× 10−6 s 4× 108 1012 QCD phase transition

< 4× 10−6 s > 109 baryogenesis

inflation

t = 0 ∞ Big Bang

Table D.1 The different stages of the cosmological evolution in the standard scenario, given
in terms of time t since the Big Bang singularity, the energy kT of the background photons,
and the redshift z. The line following nucleosynthesis indicates the part of the evolution which
has been tested through observation. The values (h0 = 0.7,ΩM = 0.3,ΩΛ = 0.7) are adopted
to compute explicit values.

where g is the number of internal degrees of freedom (g = 1 for a neutrino or an
antineutrino and g = 2 for a massless vector field such as the photon, for an electron
or a positron). We will need the explicit form in the relativistic limit (kT � m):

n =
(
3
4

)
F

ζ(3)
π2

g

(
kT

h̄

)3

,

ρ =
(
7
8

)
F

1
2
g aBBT

4, (D.58)

p = ρ/3,

where the parenthesis (· · · )
F
indicates the extra factor to be taken into account in the

case of the Fermi–Dirac distribution and aBB is the blackbody constant (we restore
here the powers of c):

aBB ≡ π2k4

15c3h̄3
= 7.56× 10−16 J m−3 K−4 = 4.72 keV m−3 K−4. (D.59)

For example we have at present time (T0 = 2.725 K) nγ0 = 411 cm−3.
In the nonrelativistic limit (kT � m), n and ρ = mn are exponentially small:

n = g

(
mkT

2πh̄2

)3/2

exp [−m/(kT )] . (D.60)
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We conclude that, as long as some species remain relativistic, the matter energy density
is dominated by this radiation and takes the form:

ρR = 1
2g∗aBBT

4,

g∗ =
∑

bosons i

gi

(
Ti
T

)4

+
7
8

∑
fermions i

gi

(
Ti
T

)4

, (D.61)

where we have taken into account the possibility that the species i may have a thermal
distribution at a temperature Ti different from the temperature T of the photons. If
radiation dominates the energy density of the Universe, one obtains from (D.27)

H =
2π
3h̄

√
π

5
g
1/2
∗

(kT )2

M
P

. (D.62)

It is possible to show, using the second law of thermodynamics (TdS = dE+pdV ),
that the entropy per unit volume is simply the quantity

s ≡ S

V
=

ρ+ p

T
(D.63)

and that the entropy in a covolume sa3 remains constant. The entropy density is
dominated by relativistic particles and reads

s = 2
3gsaBBT

3,

gs =
∑

bosons i

gi

(
Ti
T

)3

+
7
8

∑
fermions i

gi

(
Ti
T

)3

, (D.64)

where the sum extends only to the species in thermal equilibrium. Note that, when
all species have the temperature of the photons T , which is true through most of the
history of the Universe, gs = g∗.

We deduce from the constancy of sa3 that gs (aT )
3 remains constant. Hence the

temperature T of the Universe behaves as a−1 whenever gs remains constant. This is
so except when some species drop out of equilibrium. Indeed, a given species drops out
of equilibrium when its interaction rate Γ drops below the expansion rate H. We will
return to this question in Section D.3.3 and see for example that neutrinos decouple at
temperatures below 1 MeV. Their temperature continues to decrease as a−1 and thus
remains equal to T . However when kT drops below 2me, electrons annihilate against
positrons with no possibility of being regenerated and the entropy of the electron–
positron pairs is transferred to the photons. Since gs|γ,e± = 2 + 4 · 7/8 = 11/2 and
gs|γ = 2, the temperature of the photons becomes multiplied by a factor (11/4)1/3.
Since the neutrinos have already decoupled, they are not affected by this entropy
release and their temperature remains untouched. Thus we have

T

Tν
=
(
11
4

)1/3

∼ 1.40. (D.65)

We can now compute the value of gs for temperatures much smaller than me: gs =
2+ (7/8)6(4/11) = 3.91. We deduce that, at the present time (T0 = 2.725 K), s0/k =
2890 cm−3.
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D.3.2 The evolution of the universe

It follows from the Friedmann equation (D.27) that if the Universe is dominated by
a component of equation of state p = wρ (as we have seen following (D.28) ρ(t) ∼
a(t)−3(1+w)), then the cosmic scale factor a(t) varies with time as t2/[3(1+w)]. We
start at present time t0 with the energy budget discussed in Section D.2.2, say Ω

M
=

0.3,ΩΛ = 0.7,Ωk ∼ 0. Radiation consists of photons and relativistic neutrinos:

ρR(t) = ργ(t)

[
1 +

7
8

(
4
11

)4/3

N rel
ν (t)

]
, (D.66)

whereN rel
ν (t) is the number of relativistic neutrinos at time t. We have Ωγ = ργ(t0)/ρc =

2.48 × 10−5 h−2
0 and the mass limits on neutrinos imply N rel

ν (t0) ≤ 1. In any case,
Ω

R
� Ω

M
.

For redshifts larger than 1, the vacuum energy is subdominant and the Universe
is matter-dominated (a(t) ∼ t2/3). However radiation energy density increases more
rapidly (as a(t)−4) than matter (a(t)−3) as one goes back in time (as a(t) decreases).
At time teq, there is equality. This corresponds to

1
1 + zeq

=
a(teq)
a0

=
1.68 Ωγ

Ω
M

=
4.17× 10−5

Ω
M
h20

, (D.67)

where we have assumed three relativistic neutrinos at this time.
However, at trec > teq i.e. still in the matter-dominated epoch, electrons recombine

with the protons to form atoms of hydrogen and, because hydrogen is neutral, this
induces the decoupling of matter and photon: from then on (trec < t < t0), the Universe
becomes transparent6. This is the important recombination stage. After decoupling
the energy density ργ ∼ T 4 of the primordial photons is redshifted according to the
law

T (t)
T0

=
a0
a(t)

= 1 + z. (D.68)

One observes presently this cosmic microwave background (CMB) as a radiation with
a blackbody spectrum at temperature T0 = 2.725 K or energy kT0 = 2.35× 10−4 eV.
The fact that the spectrum observed is very precisely a blackbody spectrum indicates
that (D.68) applies even for periods earlier than recombination.

Since the binding energy of the ground state of atomic hydrogen is Eb = 13.6 eV,
one may expect that the energy kTrec is of the same order. It is substantially smaller
because of the smallness of the ratio of baryons to photons η = nb/nγ ∼ 5 × 10−10.
Indeed, according to the Saha equation, the fraction x of ionized atoms is given by

npne
nHnγ

=
x2

(1− x)
η =

4.05c3

π2

( me

2πkT

)3/2
e−Eb/kT . (D.69)

Hence, because η � 1, the ionized fraction x becomes negligible only for energies much
smaller than Eb. A careful treatment gives kTrec ∼ 0.26 eV. We return to CMB in a
more detailed analysis in Section D.3.4 below.

6It is believed that hydrogen is later reionized by the photons produced by the first stars or quasars
but the Universe is then sufficiently dilute to prevent recoupling.
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D.3.3 Relics

In this book, we pay specific attention to the evolution of the abundance of stable or
quasistable massive particles. They may provide good candidates for dark matter (see
Chapter 5) or alternatively could become too abundant at present times to be consis-
tent with observations (see Chapter 11). We have noted that the number densities of
massive particles in thermal equilibrium become exponentially small for temperatures
smaller than their mass. This is, however, under the assumption of thermal equilib-
rium. Because we are in an expanding Universe, particles may drop out of thermal
equilibrium and their abundance be frozen at the corresponding temperature.

Let us consider the evolution of a given stable particle species of mass m
X
. There

are two competing effects which modify the abundance of this species: annihilation
and expansion of the Universe. Indeed, the faster is the dilution associated with the
expansion, the least effective is the annihilation because the particles recede from one
another. This is illustrated by the following equation which gives the evolution with
time of the particle number density n

X
:

dn
X

dt
+ 3Hn

X
= −〈σannv〉

(
n2

X
− n(eq)2

X

)
, (D.70)

where 〈σannv〉 is the thermal average of the XX̄ annihilation cross-section times the
relative velocity of the two particles annihilating, n(eq)

X
is the equilibrium density,

as given in (D.57). The friction term 3Hn
X

in (D.70) represents the effect of the
expansion of the Universe: in the absence of the annihilation process, the number of
particles in a covolume n

X
a3 or (since the temperature T behaves as a−1) n

X
/T 3

would be constant. Indeed, one can rewrite (D.70) as

d

dt

(n
X

T 3

)
= −〈σannv〉T 3

(nX

T 3

)2
−
(
n(eq)

X

T 3

)2
 . (D.71)

Because of annihilation, the evolution equation has two regimes:
• As long as the expansion rate H is smaller than the annihilation rate Γ

X
≡

n
X
〈σannv〉, one may solve (D.70) disregarding the expansion: nX

/T 3 ∼ n(eq)
X

/T 3 ∼
exp (−m

X
/kT ). Obviously, as time goes on, T decreases, the energy density n

X

decreases and so does the annihilation rate.
• Once the expansion rate H becomes larger than the annihilation rate Γ

X
, there

is freezing of the number of particles in a covolume and n/T 3 becomes constant.
This occurs at a freezing temperature Tf such that

n
X
(Tf )〈σannv〉 ∼ H(Tf ). (D.72)

The explicit form of n
X
(Tf ) depends crucially on whether the species is still relativistic

at the time of freezing. We start with the case of cold relics, which are nonrelativistic
at the time of freezing. Let us define xf ≡ m

X
/(kTf ). Using (D.60), with g

X
number

of degrees of freedom of the X particle, and (D.62), one obtains

x
−1/2
f exp(xf ) =

3
4π3

√
5
2

g
X

g
1/2
∗

m
X
M

P
〈σannv〉
h̄2

,
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or, neglecting a subleading term in lnxf ,

xf = ln

(
0.038

g
X

g
1/2
∗

m
X
M

P
〈σannv〉
h̄2

)
. (D.73)

We note that xf is increasing with the mass m
X

or the annihilation cross-section
〈σannv〉. As xf increases, the freezing occurs later and the particle density follows
longer the equilibrium distribution: the relic density is reduced. Thus, the more massive
the particle, or the larger the annihilation cross-section , the smaller the relic density.

For T < Tf ,
n

X
(T )
T 3 ∼ n

X
(Tf )
T 3
f

. (D.74)

We can deduce an estimate of the present X species abundance. Using (D.72), we have

n
X
(T0) ∼

T 3
0

T 3
f

n
X
(Tf ) ∼

(kT0)3

(kTf )3
H(Tf )
〈σannv〉

.

Thus, using (D.62) to express H(Tf ) and (D.64) to express (kT0)3, we may write the
present X particle energy density ρ

X
(T0) = n

X
(T0)mX

as

ρ
X
(T0) =

15
π

√
π

5
s0
k

xf
M

P
〈σannv〉

g
1/2
∗
gs

h̄2, (D.75)

where s0 is the present entropy density of the Universe. Then

Ω
X
≡ ρ

X
(T0)
ρc

=
8πh̄
3M2

P

ρ
X
(T0)
H2

0

reads

Ω
X
h20 = 40

√
π

5
xf

h20
H2

0

s0
k

h̄3

M3
P
〈σannv〉

g
1/2
∗
gs

∼ 30 fbarn
xf

〈σannv/c〉
g
1/2
∗
gs

. (D.76)

In the alternative case of hot relics, i.e. species which are relativistic at the time
of freezing, we obtain from (D.58)

n
X
(Tf )
T 3
f

=
(
3
4

)
F

ζ(3)
π2

g
k3

h̄3
(D.77)

which does not depend on the details of freezing. Then using (D.64) and (D.74), one
obtains for Ω

X
= n

X
(T0)mX

/ρc:

Ω
X
h20 =

60
π3

ζ(3)
h̄c

M2
P

h20
H2

0

s0
k
m

X

g

gs

(
3
4

)
F

∼ 7.6× 10−2 m
X

1 eV/c2
g

gs

(
3
4

)
F

. (D.78)
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D.3.4 Cosmic microwave background

Before discussing the spectrum of CMB fluctuations, we introduce the important no-
tion of a particle horizon in cosmology.

Because of the speed of light, a photon which is emitted at the Big Bang (t = 0)
will have travelled a finite distance at time t. The proper distance (D.20) measured at
time t is simply given as in (D.41) by the integral:

dh(t) = a(t)
∫ t

0

cdt′

a(t′)
(D.79)

=
�H0

1 + z

∫ ∞

z

dz

[Ω
M
(1 + z)3 +Ω

R
(1 + z)4 +Ωk(1 + z)2 +ΩΛ]

1/2 ,

where, in the second line, we have used (D.46). This is the maximal distance that a
photon (or any particle) could have travelled at time t since the Big Bang . In other
words, it is possible to receive signals at a time t only from comoving particles within
a sphere of radius dh(t). This distance is known as the particle horizon at time t.

A quantity of relevance for our discussion of CMB fluctuations is the horizon at
the time of the recombination i.e. zrec ∼ 1100. We note that the integral on the second
line of (D.79) is dominated by the lowest values of z: z ∼ zrec where the Universe is
still matter dominated. Hence

dh(trec) ∼
2�H0

Ω1/2
M z3/2

rec

∼ 0.3 Mpc. (D.80)

We note that this is simply twice the Hubble radius at recombination H−1(zrec), as
can be checked from (D.45):

RH(trec) ∼
�H0

Ω1/2
M z3/2

rec

. (D.81)

This radius is seen from an observer at present time under an angle

θH(trec) =
RH(trec)
dA(trec)

, (D.82)

where the angular distance has been defined in (D.52). We can compute analytically
this angular distance under the assumption that the Universe is matter dominated
(see Exercise 4). Using (D.133), we have

dA(trec) =
a0r

1 + zrec
∼ 2�H0

Ω
M
zrec

. (D.83)

Thus, since, in our approximation, the total energy density Ω
T
is given by Ω

M
,

θH(trec) ∼ Ω1/2
T

/(2z1/2
rec

) ∼ 0.015 rad Ω1/2
T

∼ 1◦ Ω1/2
T

. (D.84)

We have written in the latter equation Ω
T
instead of Ω

M
because numerical computa-

tions show that, in case where ΩΛ is nonnegligible, the angle depends on Ω
M
+ΩΛ=Ω

T
.
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Fig. D.3 Evolution of the photon temperature fluctuations before the recombination. This
diagram illustrates that oscillations start once the corresponding Fourier mode enters the
Hubble radius (these oscillations are fluctuations in temperature, along a vertical axis
orthogonal to the two axes that are drawn on the figure). They are frozen at trec.

We can now discuss the evolution of photon temperature fluctuations. For simplic-
ity, we will assume a flat primordial spectrum of fluctuations: this leads to predictions
in good agreement with experiment; moreover, as we will see in the next section, it is
naturally explained in the context of inflation scenarios.

Before decoupling, the photons are strongly coupled with the baryons. In a grav-
itational potential well, gravity tends to pull this baryon–photon fluid down the well
whereas radiation pressure tends to push it out. Thus, the fluid undergoes a series of
acoustic oscillations. These oscillations can obviously only proceed if they are com-
patible with causality, i.e. if the corresponding wavelength is smaller than the horizon
scale or the Hubble radius: λ = 2πa(t)/k < RH(t) or

k > 2π
a(t)
RH(t)

∼ t−1/3. (D.85)

Starting with a flat primordial spectrum, we see that the first oscillation peak
corresponds to λ ∼ RH(trec), followed by other compression peaks at RH(trec)/n (see
Fig. D.3). They correspond to an angular scale on the sky:

θn ∼ RH(trec)
dA(trec)

1
n
=

θH(trec)
n

. (D.86)

Since photons decouple at trec , we observe the same spectrum presently (up to a
redshift in the photon temperature)7.

Experiments usually measure the temperature difference of photons received by two
antennas separated by an angle θ, averaged over a large fraction of the sky. Defining
the correlation function

C(θ) =
〈
∆T
T0

(n1)
∆T
T0

(n2)
〉

(D.87)

7A more careful analysis indicates the presence of Doppler effects besides the gravitational effects
that we have taken into account here (see for example [323]). Such Doppler effects turn out to be
nonleading for odd values of n.
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Fig. D.4 This figure compares the best-fit power law ΛCDM model to the temperature
angular power spectrum observed by WMAP [225].

averaged over all n1 and n2 satisfying the condition n1 · n2 = cos θ, we have indeed〈(
T (n1)− T (n2)

T0

)2
〉
= 2 (C(0)− C(θ)) . (D.88)

We may decompose C(θ) over Legendre polynomials:

C(θ) =
1
4π

∞∑
l

(2l + 1)ClPl(cos θ). (D.89)

The monopole (l = 0) related to the overall temperature T0, and the dipole (l = 1) due
to the Solar system peculiar velocity bring no information on the primordial fluctua-
tions. A given coefficient Cl characterizes the contribution of the multipole component
l to the correlation function. If θ � 1, the main contribution to Cl corresponds to an
angular scale8 θ ∼ π/l ∼ 200◦/l. The previous discussion (see (D.84) and (D.86))
implies that we expect the first acoustic peak at a value l ∼ 200Ω−1/2

T
.

The power spectrum obtained by the WMAP experiment is shown in Fig. D.4.
One finds the first acoustic peak at l ∼ 200, which constrains the ΛCDM model used
to perform the fit to Ω

T
= Ω

M
+ ΩΛ ∼ 1. Many other constraints may be inferred

from a detailed study of the power spectrum.

8The Cl are related to the coefficients alm in the expansion of ∆T/T in terms of the spherical
harmonic Ylm: Cl = 〈|alm|2〉m. The relation between the value of l and the angle comes from the
observation that Ylm has (l −m) zeros for −1 < cos θ < 1 and Re(Ylm) m zeros for 0 < φ < 2π.
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D.3.5 Baryogenesis

It is obvious to note that the observed Universe contains much more matter than
antimatter. This can be expressed in a more quantitative way. The success of the
standard cosmological model predictions regarding the abundances of light elements
(D, 3He, 4He and 7Li), rests on the following hypothesis on the ratio of baryon density
to photon density [142]:

ηB ≡ nB
nγ

= (2.6− 6.2)× 10−10. (D.90)

We have seen earlier that the present value for nγ is 411 cm−3. Since no significant
amount of antimatter has been detected in our Universe, we have

ηB =
nB − nB̄

nγ
. (D.91)

We note that the photon is its own antiparticle, and thus this ratio is a measure of
the unbalance between matter and antimatter. The precision on ηB has recently been
improved by CMB experiments. The WMAP collaboration has measured it to be [141]:

ηB =
(
6.1+0.3

−0.2

)
× 10−10. (D.92)

A.D. [326] has listed the conditions necessary to dynamically generate a matter–
antimatter asymmetry in an expanding Universe:
• baryon number violation;
• C and CP violation;
• deviation from thermal equilibrium.

The Standard Model fulfills in principle all these requirements. Indeed there are elec-
troweak field configurations (sphalerons) [266] which violate B and L because the
corresponding currents are anomalous in the presence of background W boson fields.
The presence of sphalerons leads to effective interactions involving left-handed fields

O =
3∑

i=1

qiLqiLqiL liL (D.93)

which violate B and L by three units each (and preserve B−L). This has no effect at
zero temperature because of the small electroweak coupling but B and L-violating pro-
cesses come into thermal equilibrium as one reaches the electroweak phase transition.
Between the corresponding temperature (∼ 100 GeV) and 1012 GeV, the processes
(D.93) tend to wash out any nonzero value of B + L, except if there exists a nonvan-
ishing B − L asymmetry.

The last of the Sakharov conditions requires a first order phase transition. As
the Universe undergoes this phase transition, bubbles of the true vacuum nucleate.
Particles in the high temperature plasma are partially reflected when they encounter
the bubble walls; these interactions can be CP violating. To avoid the washout of the
baryons thus created inside the bubble, the mass of the sphaleron (given by the height
of the barrier between two true vacua) must be large compared to the temperature.
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The rate of sphaleron interactions inside the bubble goes as e−const.(vc/Tc), where vc
is the Higgs vacuum expectation value at the critical temperature Tc when nucleation
takes place (v at T = 0). The transition is thus sufficiently first order if

vc
Tc

≥ 1. (D.94)

Since this ratio is inversely proportional to the quartic coupling, this can be translated
into an upper value on the Higgs mass, which is incompatible with LEP limits: the
electroweak phase transition is too weakly first order in the context of the Standard
Model. We see in Chapter 11 that the situation is marginally improved in the MSSM
model.

D.4 Inflationary cosmology
The inflation scenario has been proposed to solve a certain number of problems faced
by the cosmology of the early Universe [214]. Among these one may cite:
• The flatness problem. If the total energy density ρ

T
of the Universe is presently

close to the critical density, it should have been even more so in the primordial
Universe. Indeed, we can write (D.27) as

ρ
T
(t)

ρc(t)
− 1 =

k

ȧ2
, (D.95)

where ρc(t) = 3H2(t)/(8πG
N
) and the total energy density ρT includes the vac-

uum energy. If we take for example the radiation-dominated era where a(t) ∼ t1/2,
then (D.95) can be written as (ȧ ∼ t−1/2 ∼ a−1)

ρ
T
(t)

ρc(t)
− 1 =

[
ρ
T
(t

U
)

ρc(tU )
− 1
](

a(t)
a(t

U
)

)2

=
[
ρ
T
(t

U
)

ρc(tU )
− 1
](

kT
U

kT

)2

, (D.96)

where we have used (D.68) and taken as a reference point the epoch t
U
of the

grand unification phase transition. This means that, if the total energy density is
close to the critical density at matter–radiation equality (as can be inferred from
the present value), it must be even more so at the time of the grand unification
phase transition: by a factor

(
1eV/1016GeV

)2 ∼ 10−50! Obviously, the choice
k = 0 in the spatial metric ensures ρ

T
= ρc but the previous estimate shows that

this corresponds to initial conditions which are highly fine tuned.
• The horizon problem. We have stressed in the previous sections the isotropy and
homogeneity of the cosmic microwave background and identified its primordial
origin. It remains that the horizon at recombination is seen on the present sky
under an angle of 2◦. This means that two points opposite on the sky were sepa-
rated by about 100 horizons at the time of recombination, and thus not causally
connected. It is then extremely difficult to understand why the cosmic microwave
background should be isotropic and homogeneous over the whole sky.

• The monopole problem. As we have seen in Section 4.5.3 of Chapter 4 on the
example of the Georgi–Glashow model, monopoles occur whenever a simple gauge
group is broken to a group with a U(1) factor. This is precisely what happens
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in grand unified theories. In this case their mass is of order M
U
/g2 where g is

the value of the coupling at grand unification. Because we are dealing with stable
particles with a superheavy mass, there is a danger to overclose the Universe, i.e.
to have an energy density much larger than the critical density.
Indeed, if we assume the presence of at least one monopole per horizon at the
time t

U
of their formation, the number nM of monopoles satisfies

nM ≥ dh(tU )
−3 ∼ H3(T

U
) ∼

(
T 2

U

m
P

)3

(D.97)

where we have used the fact that in a radiation-dominated Universe ρ ∼ a−4 ∼ T 4.
For nM near the lower bound, monopoles are too scarce to annihilate among
themselves. Realistic values of the parameters in (D.97) lead to a monopole energy
density which is orders of magnitude larger than the critical density. We thus need
some mechanism to dilute the relic density of monopoles.

Inflation provides a remarkably simple solution to these problems: it consists in a
period of the evolution of the Universe where the expansion is exponential. Indeed,
if the energy density of the Universe is dominated by the vacuum energy ρvac, then
(D.27) reads

H2 =
ȧ2

a2
=

ρ0
3m2

P

− k

a2
. (D.98)

If ρvac > 0, this is readily solved as

a(t) =


H−1

vac coshHvact if k = +1

H−1
vace

Hvact if k = 0

H−1
vac sinhHvact if k = −1

with Hvac ≡
√

ρvac
3m2

P

, (D.99)

which corresponds to an exponential expansion at late times (t� H−1
vac). Such behavior

is in fact observed whenever the magnitude of the Hubble parameter changes slowly
with time, i.e. is such that

∣∣∣Ḣ∣∣∣� H2.
Such a space was first proposed by [104,105] with very different motivations and is

thus called de Sitter space (described in Equations (6.40) and (6.41) of Chapter 6)9.
An important property of de Sitter space is the fact that the particle horizon size

is exponentially increasing in time. Indeed, we have for the horizon size, following
(D.79),

dh(t)|de Sitter = a(t)
∫ t

0

cdt′

a(t′)
=

c

Hvac
eHvact for Hvact� 1. (D.100)

Obviously a period of inflation will ease the horizon problem. It follows from the
previous equation that a period of inflation extending from ti to tf = ti+∆t contributes
to the horizon size a value ceHvac∆t/Hvac, which can be very large.

9It turns out that the three choices in (D.99) correspond to the same choice as can be shown by
a redefinition of the spacetime coordinates (see Chapter 7 of [275]). In what follows we will take the
flat k = 0 formulation when we discuss pure de Sitter space. This is obviously no longer true when
one adds matter to de Sitter space.
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We note that de Sitter space also has a finite event horizon. This is the maximal
distance that comoving particles can travel between the time t where they are produced
and t =∞ (compare with (D.79):

deh(t) = a(t)
∫ ∞

t

cdt′

a(t′)
. (D.101)

In the case of de Sitter space, this is simply

deh(t)|de Sitter =
c

Hvac
= RH , (D.102)

i.e. it corresponds to the Hubble radius (constant for de Sitter spacetime). This allows
us to make an analogy between de Sitter spacetime and a black hole: a black hole of
mass M has an event horizon at the Schwarzschild radius Rg = 2G

N
M . For example,

just as black holes evaporate by emitting radiation at Hawking temperature TH =
1/(4πRg), an observer in de Sitter spacetime feels a thermal bath at temperature
TH = H/(2π).

We see that it is the event horizon that fixes here the cut-off scale of microphysics.
Since it is equal here to the Hubble radius, and since the Hubble radius is of the order
of the particle horizon for matter or radiation-dominated Universe10, it has become
customary to compare the comoving scale associated to physical processes with the
Hubble radius (we already did so in our discussion of acoustic peaks in CMB spectrum;
see Fig. D.3, and D.5 below).

A period of exponential expansion of the Universe may also solve the monopole
problem by diluting the concentration of monopoles by a very large factor. It also
dilutes any kind of matter. Indeed, a sufficiently long period of inflation “empties” the
Universe. However matter and radiation may be produced at the end of inflation by
converting the energy stored in the vacuum. This conversion is known as reheating
(because the temperature of the matter present in the initial stage of inflation behaves
as a−1(t) ∝ e−Hvact, it is very cold at the end of inflation; the new matter produced
is hotter). If the reheating temperature is lower than the scale of grand unification,
monopoles are not thermally produced and remain very scarce.

Finally, it is not surprising that the Universe comes out very flat after a period of
exponential inflation. Indeed, the spatial curvature term in the Friedmann equation
(D.98) is then damped by a factor a−2 ∝ e−2Hvac∆t. For example, a value Hvac∆t ∼ 60
(one refers to it as 60 e-foldings) would easily account for the huge factor 1050 of
adjustment that we found earlier.

Most inflation models rely on the dynamics of a scalar field in its potential. Inflation
occurs whenever the scalar field evolves slowly enough in a region where the potential
energy is large. The set up necessary to realize this situation has evolved with time:
from the initial proposition of [214] where the field was trapped in a local minimum to
“new inflation” with a plateau in the scalar potential, chaotic inflation [5, 274] where
the field is trapped at values much larger than the Planck scale and more recently the
hybrid inflation scenario [276] with at least two scalar fields, one allowing an easy exit
from the inflation period.

10In an open or flat Universe, the event horizon (D.101) is infinite.
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The equation of motion of a homogeneous scalar field φ(t) with potential V (φ)
evolving in a Friedmann–Robertson–Walker Universe is:

φ̈+ 3Hφ̇ = −V ′(φ). (D.103)

where V ′(φ) ≡ dV/dφ. The term 3Hφ̇ is a friction term due to the expansion. The
corresponding energy density and pressure are:

ρ = 1
2 φ̇

2 + V (φ), (D.104)

p = 1
2 φ̇

2 − V (φ). (D.105)

We may note that the equation of conservation of energy ρ̇ = −3H(p + ρ) takes
here simply the form of the equation of motion (D.103). These equations should be
complemented with the Friedmann equation (D.98).

When the field is slowly moving in its potential, the friction term dominates over
the acceleration term in the equation of motion (D.103) which reads:

3Hφ̇ � −V ′(φ). (D.106)

The curvature term may then be neglected in the Friedmann equation (D.98) which
gives

H2 � ρ

3m2
P

� V

3m2
P

. (D.107)

Then the equation of conservation ρ̇ = −3H(p+ ρ) = −3Hφ̇2 simply gives

Ḣ � − φ̇2

2m2
P

. (D.108)

It is easy to see that the condition |Ḣ| � H2 amounts to φ̇2/2 � ρ/3 ∼ V (φ)/3,
i.e. a kinetic energy for the scalar field much smaller than its potential energy. Using
(D.106) and (D.107), the latter condition then reads

ε ≡ 1
2

(
m

P
V ′

V

)2

� 1. (D.109)

The so-called slow-roll regime is characterized by the two equations (D.106) and
(D.107), as well as the condition (D.109). It is customary to introduce another small
parameter:

η ≡ m2
P
V ′′

V
� 1, (D.110)

which is easily seen to be a consequence of the previous equations11.

11Differentiating (D.106), one obtains η = ε− φ̈/(Hφ̇).
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An important quantity to be determined is the number of Hubble times elapsed
during inflation. From some arbitrary time t to the time te marking the end of inflation
(i.e. of the slow-roll regime), this number is given by

N(t) =
∫ te

t

H(t)dt. (D.111)

It gives the number of e-foldings undergone by the scale factor a(t) during this period
(see (D.99)). Since dN = −Hdt = −Hdφ/φ̇, one obtains from (D.106)) and (D.107)

N(φ) =
∫ φ

φe

1
m2

P

V

V ′ dφ. (D.112)

During the inflationary phase, the scalar fluctuations of the metric may be written
in a conformal Newtonian coordinate system as:

εds2 = a2
[
(1 + 2Φ)dη2 − (1− 2Φ)δijdxidxj

]
, (D.113)

where η is conformal time (adη = dt = da/ȧ). We may write the correlation function
in Fourier space PS(k) by

〈ΦkΦ∗
k′〉 = 2π2k−3PS(k)δ3 (k− k′) . (D.114)

The origin of fluctuations is found in the quantum fluctuations of the scalar field
during the de Sitter phase. Indeed, if we follow a given comoving scale a(t)/k with
time (see Fig. D.5), we have seen in Section D.3.4 that, some time during the matter-
dominated phase, it enters the Hubble radius. Since the Hubble radius is constant
during inflation, this means that at a much earlier time, it has emerged from the
Hubble radius of the de Sitter phase. In this scenario, the origin of the fluctuations
is thus found in the heart of the de Sitter event horizon: using quantum field theory
in curved space, one may compute the amplitude of the quantum fluctuations of the
scalar field; their wavelengths evolve as a(t)/k until they outgrow the event horizon, i.e.

Inflation Radiation Matter t

a(t)/k

RH

Fig. D.5 Evolution of a physical comoving fluctuation scale with respect to the Hubble
radius during the inflation phase (RH(t) = H−1

vac), the radiation-dominated phase
(RH(t) = 2t), and matter-dominated phases (RH(t) = 3t/2).
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the Hubble radius; they freeze out and continue to evolve classically. The fluctuation
spectrum produced is given by

PS(k) =

[(
H2

φ̇2

)(
H

2π

)2
]
k=aH

=
128π
3M6

P

(
V 3

V ′2

)
k=aH

, (D.115)

where the subscript k = aH means that the quantities are evaluated at Hubble radius
crossing, as expected. We also note that H sets the scale of quantum fluctuations in
the de Sitter phase.

The scalar spectral index nS(k) is computed to be:

nS(k)− 1 ≡ d lnPS(k)
d ln k

= −6ε+ 2η. (D.116)

Thus, because of the slow-roll , the fluctuation spectrum is almost scale invariant, a
result that we have alluded to when we discussed the origin of CMB fluctuations.

Besides scalar fluctuations, inflation produces fluctuations which have a tensor
structure, i.e. primordial gravitational waves. They can be written as perturbations of
the metric of the form

ds2 = a2
[
ηµν + hTTµν

]
, (D.117)

where hTTµν is a traceless transverse tensor (which has two physical degrees of freedom,
i.e. two polarizations). The corresponding tensor spectrum is given by

PT (k) =
64π
M2

P

(
H

2π

)2

, (D.118)

with a corresponding spectral index

nT (k) ≡
d lnPT (k)
d ln k

= −2ε. (D.119)

We note that the ratio PT /PS depends only on (V ′/V ) and thus on ε, which yields a
consistency condition: PT /PS = −8nT .

We conclude this discussion by reviewing briefly the three main classes of inflation
models:
• Large field models (0 < η < 2ε). This corresponds to the chaotic inflation scenario
[274] where a field φ of value of the order of a few M

P
slowly rolls down a power

law potential typically V (φ) = λφ4. One drawback is the large value of the field
which makes it necessary to include all nonrenormalizable corrections of order
(φ/M

P
)n.

• Small field models (η < 0). In this class, illustrated first by the new inflation
scenario, the field φ starts at a small value and rolls along an almost flat plateau
(where V ′′(φ) < 0) before falling to its ground state.

• Hybrid models (0 < 2ε < η). The field rolls down to a minimum of large vacuum
energy (where V ′′(φ) < 0) from a small initial value. Inflation ends because, close
to this minimum, another direction in field space takes over and brings the system
to a minimum of vanishing energy [276]. We will see examples of such a scenario
in Chapter 11.
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Small field:
η < –�

Fig. D.6 Regions corresponding to the different inflation models in the plot
r = Ctensor

2 /Cscalar
2 versus ns [122].

These models make different predictions for scalar and tensor perturbations, as
can be seen from Fig. D.6.

D.5 Cosmic strings
Among the topological defects, cosmic strings have the most interesting cosmological
evolution: because of their interactions they may disappear with time and thus do not
necessarily overclose the Universe.

Let us first illustrate what is a cosmic string on the simplest example of a quartic
potential:

V (Φ†Φ) = 1
2λ
(
Φ†Φ− η2

)2
, (D.120)

which is invariant under the global U(1) transformation: Φ→ e−iαΦ. Let us consider
the field configuration (in cylindrical coordinates z, r, θ) away from the region where
r ∼ 0:

Φ(z, r, θ) = ηeiθ. (D.121)

Obviously, at r = 0, one must have Φ(z, 0, θ) = 0. Thus some potential energy V ∼ λη4

is localized around r = 0, typically on a distance ρ ∼ m−1 = λ−1/2η−1 (the Compton
wavelength of the scalar field).

This finite energy configuration extending along the z axis is called a global string.
Its energy per unit length is accordingly:

µ(R) ∼ λη4 × λ−1η−2 +
∫ R

ρ

∣∣∣∣1r ∂Φ∂θ
∣∣∣∣2 2πrdr,

∼ η2 + 2πη2
∫ R

ρ

dr

r
∼ η2 + 2πη2 ln(Rm), (D.122)
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where we have introduced a cut-off distance R which is the distance between two
strings or the diameter of the loop, in the case of a closed string. We deduce that
there is an interaction at long distance due to the presence of a Goldstone boson: the
force per unit length is simply dµ/dR ∼ η2/R. This is analogous to the case of vortex
lines in liquid helium.

In the case of a gauge symmetry, the structure is richer since the solution (D.121)
has to be associated with a gauge configuration. We take the example of an abelian
gauge symmetry (identified with electrodynamics):

L = − 1
4F

µνFµν +DµΦ†DµΦ− V (Φ†Φ), (D.123)
DµΦ = ∂µΦ− igAµΦ,

where V is still given by (D.120).
At the center of the string, Φ = 0 and V = 1

2λη
4. Far from the center, we have

Φ = ηeinθ. (D.124)

In order to minimize also the kinetic energy, we choose a gauge configuration

Aµ = − i

g
∂µ lnΦ =

n

g
∂µθ =

n

g

1
r
δθµ (D.125)

which ensures both DµΦ = 0 and Fµν = 0. Thus, the energy density vanishes outside
the core of the string: this local string corresponds truly to a localized configuration
of energy. The potential energy per unit length is then simply

µΦ ∼ λη4 ×
(
m−1)2 ∼ η2. (D.126)

Also, if S is a surface delimited by a curve C around the string, we have∫
S
B · dS =

∫
C
A · dl = n

g

∫
C
dθ =

2πn
g

. (D.127)

Hence the string carries n units of elementary magnetic flux 2π/g. The size of the
surface through which B is nonvanishing is typically its Compton wavelength M−1

A =
(gη)−1. Thus, using (D.127), we have

B
(
M−1

A

)2 ∼ 2πn
g

or B ∼ 2πngη2. (D.128)

The corresponding energy per unit length is

µA ∼ B2 (M−1
A

)2 ∼ η2, (D.129)

hence of the same order as µΦ: the total energy per unit length µ scales as η2.
Cosmic strings interact [249]: if two strings cross each other, the four ends have a

probability (close to one for the structureless strings that we have considered so far)
to change partners, leaving a pair of sharply kinked strings which straighten with time
through gravitational wave emission. Occasionally, a string crosses itself, which leads
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to the formation of a loop. This loop shrinks until it vanishes. This has the effect of
reducing the size of strings (and loops).

In realistic models, scalar fields couple to fermions, for example through Yukawa
couplings:

L = Ψ̄iγµDµΨ+ λΨ̄
L
ΦΨ

R
+ h.c. (D.130)

Since Φ vanishes in the core of the string, the fermions become massless. We thus have
zero modes which may move along the string: currents propagate along the string which
is thus called a superconducting string [376]. Such currents may stabilize the loops: it
remains then to check how the stabilized loops, sometimes called vortons, contribute
to the energy density of the Universe. Supersymmetric models provide examples of
such configurations, as we see in Section 11.4 of Chapter 11.

Further reading
• S. Weinberg, Gravitation and cosmology: principles and applications of the general
theory of relativity, John Wiley and Sons 1972.

• J. Rich, Fundamentals of Cosmology, Springer 2001.

Exercises
Exercise 1 We detail here the derivation of Einstein’s equations by varying the action
(D.14) with respect to the metric gµν .
(a) Show that δgµν = −gµρgνσδgρσ.
(b) Show that δ

√
|g| = 1

2

√
|g|gµνδgµν .

(c) Prove that
√
|g|gµνδRµν is a total derivative.

(d) Vary the action (D.14) with respect to the metric gµν to obtain Einstein’s equa-
tions (D.16).

Hints:
(a) gµνgνρ = δµρ yields δgµνgνρ + gµνδgνρ = 0.

(b) Use det A = exp (Tr lnA) to obtain δg = ggµνδgµν .

(c) Check that δRµν = Dα (δΓαµν)−Dν (δΓαµα). Then the metric tensor in gµνδRµν

can be written inside the covariant derivatives since Dαgµν = 0. Finally, use the

property DµV
µ = |g|−1/2∂µ

(√
|g|V µ

)
valid for any vector V µ to prove that√

|g|gµνδRµν = ∂α

(√
|g|gµνδΓαµν

)
− ∂ν

(√
|g|gµνδΓαµα

)
.

Exercise 2 In the case of the Robertson–Walker metric (D.18):
(a) compute the nonvanishing Christoffel symbols;

(b) using the fact that the Ricci tensor associated with the three-dimensional metric
γij is simply Rij(γ) = 2kγij , compute the components of the Ricci tensor and the
scalar curvature;

(c) deduce the components of the Einstein tensor (D.25) and (D.26).
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Hints:
(a) Γij0 = δij ȧ/a, Γ

0
ij = aȧγij , Γijk = Γijk(γ).

(b) R00 = −3ä/a, Rij =
(
2k + äa+ 2ȧ2

)
γij , R = −6ε

(
k + äa+ ȧ2

)
/a2.

Exercise 3 Prove (D.50) from (D.46).

Hint: Using (D.46) with (D.33), we obtain, for z � 1,

a0r ∼ �H0

∫ z

0
dz/ [1 + z(2 + Ω

M
+ 2Ω

R
− 2ΩΛ)]

1/2
.

Then integrate and use (D.37).

Exercise 4 We compute exactly the luminosity distance dL = a0r(1 + z) or angular
distance dA = a0r/(1 + z) in the case of a matter-dominated Universe.

Defining

ζk(r) ≡


sin−1 r k = +1
r k = 0
sinh−1 r k = −1.

(D.131)

use (D.46) which reads, in the case of a matter-dominated Universe,

a0ζk(r) = �H0

∫ z

0

dz

[Ω
M
(1 + z)3 + (1− Ω

M
)(1 + z)2]1/2

(D.132)

to prove Mattig’s formula [285]:

a0r = 2�H0

Ω
M
z + (Ω

M
− 2)

[√
1 + Ω

M
z − 1

]
Ω2

M
(1 + z)

. (D.133)

Hints: For k �= 0, change to the coordinate u2 = k(Ω − 1)/ [Ω(1 + z)] in order to
compute the integral (D.132). Using the last of equations (D.32), which reads �2H0

/a20 =
k(Ω− 1), one obtains

ζk(r) = 2

(
ζk

[√
k(Ω− 1)

Ω

]
− ζk

[√
k(Ω− 1)
(1 + z)Ω

])
,

from which (D.133) can be inferred.
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Appendix E

Renormalization group
equations

We gather here a set of renormalization group equations [102] which are scattered in
the book. The notations are the ones used in the main text. In the case of Yukawa
couplings, soft scalar masses, and A-terms, we give the third family couplings. To
obtain the corresponding formulas for the other two families, one should just neglect
the Yukawa coupling terms on the right-hand side.

Throughout this appendix, we define t ≡ ln(µ/µ0) where µ is the renormalization
scale.

E.1 Gauge couplings
In the supersymmetric case,

16π2
dgi
dt

= −b(1)i g3i +O(g5) (E.1)

where, for NF families and ND Higgs doublets (the minimal model has ND = 2), we
have

b
(1)
1 = −2NF − 3

10
ND, (E.2)

b
(1)
2 = 6− 2NF − 1

2
ND, (E.3)

b
(1)
3 = 9− 2NF . (E.4)

The U(1) gauge coupling has the standard SU(5) normalization (g21 = 5g′2/3).

E.2 µ parameter
We note that the µ parameter does not appear in the evolution equations of the other
mass parameters.

16π2
dµ

dt
= µ

(
3|λt|2 + 3|λb|2 + |λτ |2 − 3g22 −

3
5
g21

)
. (E.5)
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E.3 Anomalous dimensions
At one loop, we have the following anomalous dimensions γi = d lnZi/dt:

16π2γQ = −2|λt|2 − 2|λb|2 +
16
3
g23 + 3g22 +

1
15
g21 , (E.6)

16π2γT = −4|λt|2 +
16
3
g23 +

16
15
g21 , (E.7)

16π2γB = −4|λb|2 +
16
3
g23 +

4
15
g21 , (E.8)

16π2γL = −2|λτ |2 + 3g22 +
3
5
g21 , (E.9)

16π2γT = −4|λτ |2 +
12
5
g21 , (E.10)

16π2γH2 = −6|λt|2 + 3g22 +
3
5
g21 , (E.11)

16π2γH1 = −2|λτ |2 − 6|λb|2 + 3g22 +
3
5
g21 . (E.12)

E.4 Yukawa couplings
For the third generation, we have, in the case of R-parity conservation,

16π2
dλt
dt

= λt

(
6|λt|2 + |λb|2 −

16
3
g23 − 3g22 −

13
15
g21

)
, (E.13)

16π2
dλb
dt

= λb

(
|λt|2 + 6|λb|2 + |λτ |2 −

16
3
g23 − 3g22 −

7
15
g21

)
, (E.14)

16π2
dλτ
dt

= λτ

(
3|λb|2 + 4|λτ |2 − 3g22 −

9
5
g21

)
. (E.15)

E.5 Gaugino masses
We have, for i = 1, 2, 3,

8π2
dMi

dt
= −b(1)i g2iMi, (E.16)

where the one-loop coefficients are given in (E.2)–(E.4): b(1)1 = −33/5, b(1)2 = −1 and
b
(1)
3 = 3 for NF = 3 and ND = 2.
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E.6 Soft scalar masses
We have for the Higgs soft scalar mass terms:

8π2
dm2

H1

dt
= 3|λb|2

(
m2

Q +m2
B +m2

H1
+ |Ab|2

)
+ |λτ |2

(
m2

L +m2
T +m2

H1
+ |Aτ |2

)
−
(
3g22 |M2|2 +

3
5
g21 |M1|2

)
− 3

5
g21ξ1, (E.17)

8π2
dm2

H2

dt
= 3|λt|2

(
m2

Q +m2
T +m2

H2
+ |At|2

)
−
(
3g22 |M2|2 +

3
5
g21 |M1|2

)
+

3
5
g21ξ1, (E.18)

and for the soft sfermion masses of the third family

8π2
dm2

Q

dt
= |λt|2

(
m2

Q +m2
T +m2

H2
+ |At|2

)
+ |λb|2

(
m2

Q +m2
B +m2

H1
+ |Ab|2

)
−
(
16
3
g23 |M3|2 + 3g22 |M2|2 +

1
15
g21 |M1|2

)
+

1
5
g21ξ1, (E.19)

8π2
dm2

T

dt
= 2|λt|2

(
m2

Q +m2
T +m2

H2
+ |At|2

)
−
(
16
3
g23 |M3|2 +

16
15
g21 |M1|2

)
− 4

5
g21ξ1, (E.20)

8π2
dm2

B

dt
= 2|λb|2

(
m2

Q +m2
B +m2

H1
+ |Ab|2

)
−
(
16
3
g23 |M3|2 +

4
15
g21 |M1|2

)
+

2
5
g21ξ1, (E.21)

8π2
dm2

L

dt
= |λτ |2

(
m2

L +m2
T +m2

H1
+ |Aτ |2

)
−
(
3g22 |M2|2 +

3
5
g21 |M1|2

)
− 3

5
g21ξ1, (E.22)

8π2
dm2

T
dt

= 2|λτ |2
(
m2

L +m2
T +m2

H1
+ |Aτ |2

)
−12

5
g21 |M1|2 +

6
5
g21ξ1, (E.23)

where1

ξ1 ≡
∑

scalar j

yjm
2
j (E.24)

=
1
2
m2

H2
− 1

2
m2

H1
+

3∑
i=1

(
1
2
m2

Qi
−m2

Ui
+

1
2
m2

Di

)
−
(
1
2
m2

Li
− 1

2
m2

Ei

)
.

1Note that similar terms for nonabelian gauge symmetry would be of the form ξa = Tr (Tam) = 0.
This is why such a term appears only for the abelian U(1) symmetry.
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E.7 A-terms
As for the Yukawa couplings, we give only the equations for the third family:

8π2
dAt

dt
= 6λ2tAt + λ2bAb −

16
3
g23M3 − 3g22M2 −

13
15
g21M1, (E.25)

8π2
dAb

dt
= λ2tAt + 6λ2bAb + λ2τAτ −

16
3
g23M3 − 3g22M2 −

7
15
g21M1, (E.26)

8π2
dAτ

dt
= 3λ2bAb + 4λ2τAτ − 3g22M2 −

9
5
g21M1. (E.27)

Also, for B ≡ Bµ/µ, we have:

8π2
dB

dt
= 3λ2tAt + 3λ2bAb + λ2τAτ − 3g22M2 −

3
5
g21M1. (E.28)

E.8 Dimensional reduction

All preceding equations are understood in the so-called DR renormalization, where
DR stands for Dimensional Reduction. Let us explain how this scheme is defined.

In usual gauge theories, the standard renormalisation scheme is based on dimen-
sional regularization: divergent integrals are computed by performing an analytic con-
tinuation to D = 4 − 2ε spacetime dimensions. Since Ward identities do not depend
on the dimension of spacetime, this procedure does not spoil gauge symmetries. The
most remarkable consequence of such a continuation is that the gauge coupling is
no longer dimensionless: one may write the bare gauge coupling g0 in terms of the
(dimensionless) renormalized one gR

g0 = µε
1

Z1/2 gR , (E.29)

where Z is the wave function renormalization constant and the scale µ plays the rôle
of renormalization scale in dimensional regularization. When computing integrals over
loop momenta, divergences appear as poles 1/εk.

In the minimal subtraction (noted MS), renormalized quantities are obtained by
subtracting these poles (in the MS scheme, one also subtracts a generic additive
constant ln 4π − γ, where γ is the Euler constant).

It turns out that dimensional regularization is not compatible with the supersym-
metry algebra. A straightforward way to see this is to note that, in D �= 4 dimensions,
the number of on-shell degrees of freedom of a gauge field (D− 2) does not match the
one of a gaugino Majorana field (2(D−2)/2).

One illustration of the fact that the MS scheme does not respect supersymmetry
is the fact that the renormalized gauge coupling g measured in gauge boson inter-
actions no longer coincides with the coupling ĝ of a gaugino to the fields of a chiral
supermultiplet (cf. (3.43)):

L = ĝq
√
2
(
λ̄Ψ

L
φ∗ + λ̄Ψc

R
φ
)
. (E.30)

This has led to modify the regularization prescription in the following way: keep the
algebra of fields four dimensional while still performing the dimensional continuation
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in loop momenta. This is the dimensional reduction scheme (DR corresponding to
MS) [85,340].

Since DR is compatible with supersymmetry, we have as expected g = ĝ in this
scheme. On the other hand,

gMS = gDR

[
1− g2

96π2
C2(G)

]
, (E.31)

ĝMS = gDR

[
1 +

g2

96π2
(C2(G)− C2(R))

]
, (E.32)

where C2(G) is defined in (9.18) and C2(R)δij =
∑

a (t
ata)ij (R is the representation

of the chiral supermultiplet of (E.30) under the gauge group G).
We also note the following relation for the gaugino mass parameters:

MλMS =MλDR

[
1 +

g2

16π2
C2(G)

]
. (E.33)

A complication arises in dimensional reduction: from the point of view of D
dimensions, local invariance applies only to the components Aa

0 , · · · , Aa
D−1 of the vec-

tor fields. The remaining 2ε components Aa
D, · · · , Aa

3 are scalars under the Lorentz
group in D dimensions: they are called ε-scalars. They induce additional renormaliza-
tion counter terms and care must be taken at higher orders to take these fields into
account.

Finally, we note that, in the DR scheme, heavy thresholds effects are very simply
taken into account in renormalization group analyses: they are properly described by
a simple step function localized precisely at the mass of the heavy field [7].

Exercises
Exercise 1 Show that ξ1 defined in (E.24) satisfies

8π2
dξ1
dt

= −b1g21ξ1 (E.34)

and solve this equation.

Hints: The equations for the first two families are read from (E.19)–(E.23) by neglect-
ing the Yukawa couplings.

Solution: ξ1(µ) = g21(µ)ξ1(µ0)/g
2
1(µ0).
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Friedmann–Lemâıtre universe 349
Friedmann–Robertson–Walker

universes 457–465
Froggat–Nielsen model 340–341
fundamental constants, time variation

of 315–316



BINE: “INDEX” — 2006/10/5 — 19:26 — PAGE 513 — #5

Index 513

Gamow–Teller transitions 382
gauge coupling unification 229–235
in string theory 300–302
naturalness and hierarchy problem

238–240
nonsupersymmetric case 232–234
supersymmetric case 234–235, 237

gauge coupling renormalization 229–231,
485

gauge groups, simple 226
gauge mediation 181–184
µ/Bµ problem 184
gangino mass 182f
scalar mass 183f

gauge symmetry breaking
spontaneous breaking 379–381
topological 271–272

gauge theories, phases of 205–206
gaugino 37, 87
gaugino condensation 174–177, 201–202,

304, 306–308, 356
gaugino masses 18, 91, 98
nonuniversal 178
renormalization group 135–137, 486
universal in anomaly mediation 179

gaugino–Higgsino sector 97–99
Gauss law constraint 73
Gell-Mann matrices 204, 258
general relativity 254
attractor mechanism towards 315
elements of 454–456

geodesics 455
Georgi–Glashow model 386n, 417–418
monopoles in the 71–73

GIM mechanism 394–395, 395f
Giudice–Masiero mechanism 147–148
Glashow–Weinberg–Salam model

388–397
global string 481
global symmetry 366–368
B–L 244
spontaneous breaking 26, 372–379

gluino 97
Goldstino 26–27, 39, 46, 92, 128, 129,

132–133, 150, 202

Goldstone boson 5, 39, 291, 374, 375,
406

Goldstone fermion, see Goldstino
Goldstone realization 376
Goldstone theorem 375–377
graded Lie algebra 54n
grand desert hypothesis 234
grand unification 224–253, 328
E6 model 251–252
and monopoles 475–476
SU (5) model 225–226, 236–246
SO(10) model 246–251

Grassmann variables 430
gravitational coupling 122
gravitational lensing 463
gravitino 121, 123
and Goldstino field 132–133
degrees of freedom 132–133
LSP 106, 183
mass as criterion of supersymmetry

breaking 128
gravitino problem 316–319
graviton 121–122, 255f , 256
degrees of freedom 133

gravity mediation 173–179
Green–Schwarz counterterm 295, 296f,

302, 323, 344
Green’s functions 165, 166, 376

407–409
GSO projection 262, 263f

Hausdorff formula 431
Heavy Quark Effective Theory (HQET)

160
helicity 132–133
heterotic string theory 275, 276–277,

278t, 278–279, 282
hexagonal anomaly diagram 296f
hidden sector 129–131, 173, 174f
gauge coupling, evolution of

174–175
hierarchy problem 195, 238–240
Higgs doublets 156
Higgs mass 96, 164–168
naturalness 8–9
triviality 6–7



BINE: “INDEX” — 2006/10/5 — 19:26 — PAGE 514 — #6

514 Index

Higgs mass (Contd.)
unitarity 5–6
vacuum stability 7–8

Higgs mechanism 379–381
Higgs phase 206
Higgs sector (supersymmetric) 87–88,

164–169
gauge symmetry breaking and the

92–97
masses 94, 164–167
searching for 168–169
upper limit on the mass of the

lightest Higgs 167–168
Higgs (Standard Model) 6, 387, 388–

390, 402–403
Higgsino 87, 97–101, 108, 161
Higgstrahlung process 169
Hodge duality relation 294, 446
Hodge number 285
holomorphic zeros 341
holomorphy 40, 196–198, 203–205
holonomy 283, 456
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nonabelian gauge 48–49
pseudo-anomalous U (1) 303–304
QED 51
scalar 40, 44
supergravity 123
Wess–Zumino 12–13

supersymmetric CP problem 334–336
supersymmetric grand unification

224–253
supersymmetric Higgs 91–97, 164–169
supersymmetric models phenomenology

154–193
supersymmetric nonlinear sigma

models 438–441
supersymmetric quantum mechanics

27–31
supersymmetric SU (N c) theory with

N f flavors 209–215
Nf = Nc or Nc + 1 211–213
Nf greater than Nc + 1 213–215
Nf less than Nc 209–211

supersymmetry algebra 23–25, 53–55
representations of 57–62

supersymmetry breaking 25–27,
126–131, 308–309

and parameter fine-tuning 144–147
by gaugino condensation 174–179
dynamical 195–223
flux 308
general picture of 174f
high energy vs. low energy 173–184
in presence of pseudo-anomalousU (1)

306–308

Scherk-Schwarz mechanism 305
spontaneous (global) 25–27
spontaneous (local) 126–129
versus flavor dynamics 336

supersymmetry challenges 332–363
supersymmetry current 45, 208, 443
symmetries 364–371
symmetry breaking
E6, 251–252
SO(10), 247–248
SU(5), 236–237
SU(2)× U(1), 388–389
spontaneous, see spontaneous

symmetry breaking
Wilson line, 297–300

’t Hooft consistency condition 208, 212,
214

T -duality 268–269, 278–279, 280
tachyon 257–258, 259, 261
target space 256
technicolor models 12
thermal leptogenesis 329
threshold corrections 178, 234,

301, 489
time variation, of fundamental constants

315–316
top quark, and the infrared fixed point

139–142
topological gauge symmetry breaking

271–272
tracker field 358, 363
tree-level closed string, topology of 288f
tree-level open string, topology of 288f
triangle anomalies, Standard Model

414–415
triangulation of a compact manifold

288, 289f
triviality constraint 6–7, 10f
twisted sectors 274
twisted strings 274
two-dimensional supersymmetry 83,

260, 284n
type IIA superstring 275
type IIB orientifold 275
type IIB superstring 275
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unitarity, of the S-matrix 5–6
unitarity limit 6, 255, 383
unitarity triangle 332, 333f, 396, 397f
unitary gauge 380, 389
universality 138, 139, 178, 179
Universe
age of 464
evolution of 465–475
expansion of 349, 458–460, 463–464,

476
supersymmetry and the early

312–331

V-A theory 382
vacuum energy 25, 26, 126–129
vacuum energy problem 350
vacuum stability 7–8, 10f
Van der Waerden notation 419–420
vector superfield 441–445
vector supermultiplet 45–50
abelian gauge symmetry 45–46
coupling chiral supermultiplet 47–48,

49–50
nonabelian gauge symmetry 48
N = 1 59, 60
N = 2 62–64

vectors, relation of spinors with
420–421

Veltman condition 9
Veneziano amplitude 258
vertical symmetries 334

wave function renormalization 206, 207
weak isospin 386
weakly interacting massive particle

(WIMP) 104
direct detection 111–114

indirect detection 114–116
LSP as a 103–106

Weinberg angle 389
Weinberg no-go theorem 352–353
Wess–Zumino gauge 442
Wess–Zumino model 12–14, 16–17, 33,

37–41
121–122, 196–198, 206–207

Wess–Zumino term 296, 411
Weyl spinor 230, 419–420
chiral supermultiplets with 42–45, 47

Wigner realization 376
Wilson coefficients 159
Wilson effective action 200–202
Wilson lines 270–272
WIMP see weakly interacting massive

particle (WIMP)
winding modes 268–269
Witten index 32–34
WMAP experiment
constraint on minimal supergravity

163f
temperature angular power spectrum

473f
Wolfenstein parametrization 332, 396
world-sheet 255, 256f, 260, 288
supersymmetry on 260n, 284n
Z2 symmetry 275

Yang–Mills supermultiplet, decomposi-
tion of the 10-dimensional
286t

Yang–Mills theory 369–371
Yukawa couplings 14, 89, 157, 334, 391,

393, 486
in SU(5) 240–241
in SO(10) 248–249


	Preface_0000
	Preface_0001
	Preface_0002
	Preface_0003
	Preface_0004
	Preface_0005
	Preface_0006
	Preface_0007
	Preface_0008
	Preface_0009
	Preface_0010
	Preface_0011
	Preface_0012
	Text_0001
	Text_0002
	Text_0003
	Text_0004
	Text_0005
	Text_0006
	Text_0007
	Text_0008
	Text_0009
	Text_0010
	Text_0011
	Text_0012
	Text_0013
	Text_0014
	Text_0015
	Text_0016
	Text_0017
	Text_0018
	Text_0019
	Text_0020
	Text_0021
	Text_0022
	Text_0023
	Text_0024
	Text_0025
	Text_0026
	Text_0027
	Text_0028
	Text_0029
	Text_0030
	Text_0031
	Text_0032
	Text_0033
	Text_0034
	Text_0035
	Text_0036
	Text_0037
	Text_0038
	Text_0039
	Text_0040
	Text_0041
	Text_0042
	Text_0043
	Text_0044
	Text_0045
	Text_0046
	Text_0047
	Text_0048
	Text_0049
	Text_0050
	Text_0051
	Text_0052
	Text_0053
	Text_0054
	Text_0055
	Text_0056
	Text_0057
	Text_0058
	Text_0059
	Text_0060
	Text_0061
	Text_0062
	Text_0063
	Text_0064
	Text_0065
	Text_0066
	Text_0067
	Text_0068
	Text_0069
	Text_0070
	Text_0071
	Text_0072
	Text_0073
	Text_0074
	Text_0075
	Text_0076
	Text_0077
	Text_0078
	Text_0079
	Text_0080
	Text_0081
	Text_0082
	Text_0083
	Text_0084
	Text_0085
	Text_0086
	Text_0087
	Text_0088
	Text_0089
	Text_0090
	Text_0091
	Text_0092
	Text_0093
	Text_0094
	Text_0095
	Text_0096
	Text_0097
	Text_0098
	Text_0099
	Text_0100
	Text_0101
	Text_0102
	Text_0103
	Text_0104
	Text_0105
	Text_0106
	Text_0107
	Text_0108
	Text_0109
	Text_0110
	Text_0111
	Text_0112
	Text_0113
	Text_0114
	Text_0115
	Text_0116
	Text_0117
	Text_0118
	Text_0119
	Text_0120
	Text_0121
	Text_0122
	Text_0123
	Text_0124
	Text_0125
	Text_0126
	Text_0127
	Text_0128
	Text_0129
	Text_0130
	Text_0131
	Text_0132
	Text_0133
	Text_0134
	Text_0135
	Text_0136
	Text_0137
	Text_0138
	Text_0139
	Text_0140
	Text_0141
	Text_0142
	Text_0143
	Text_0144
	Text_0145
	Text_0146
	Text_0147
	Text_0148
	Text_0149
	Text_0150
	Text_0151
	Text_0152
	Text_0153
	Text_0154
	Text_0155
	Text_0156
	Text_0157
	Text_0158
	Text_0159
	Text_0160
	Text_0161
	Text_0162
	Text_0163
	Text_0164
	Text_0165
	Text_0166
	Text_0167
	Text_0168
	Text_0169
	Text_0170
	Text_0171
	Text_0172
	Text_0173
	Text_0174
	Text_0175
	Text_0176
	Text_0177
	Text_0178
	Text_0179
	Text_0180
	Text_0181
	Text_0182
	Text_0183
	Text_0184
	Text_0185
	Text_0186
	Text_0187
	Text_0188
	Text_0189
	Text_0190
	Text_0191
	Text_0192
	Text_0193
	Text_0194
	Text_0195
	Text_0196
	Text_0197
	Text_0198
	Text_0199
	Text_0200
	Text_0201
	Text_0202
	Text_0203
	Text_0204
	Text_0205
	Text_0206
	Text_0207
	Text_0208
	Text_0209
	Text_0210
	Text_0211
	Text_0212
	Text_0213
	Text_0214
	Text_0215
	Text_0216
	Text_0217
	Text_0218
	Text_0219
	Text_0220
	Text_0221
	Text_0222
	Text_0223
	Text_0224
	Text_0225
	Text_0226
	Text_0227
	Text_0228
	Text_0229
	Text_0230
	Text_0231
	Text_0232
	Text_0233
	Text_0234
	Text_0235
	Text_0236
	Text_0237
	Text_0238
	Text_0239
	Text_0240
	Text_0241
	Text_0242
	Text_0243
	Text_0244
	Text_0245
	Text_0246
	Text_0247
	Text_0248
	Text_0249
	Text_0250
	Text_0251
	Text_0252
	Text_0253
	Text_0254
	Text_0255
	Text_0256
	Text_0257
	Text_0258
	Text_0259
	Text_0260
	Text_0261
	Text_0262
	Text_0263
	Text_0264
	Text_0265
	Text_0266
	Text_0267
	Text_0268
	Text_0269
	Text_0270
	Text_0271
	Text_0272
	Text_0273
	Text_0274
	Text_0275
	Text_0276
	Text_0277
	Text_0278
	Text_0279
	Text_0280
	Text_0281
	Text_0282
	Text_0283
	Text_0284
	Text_0285
	Text_0286
	Text_0287
	Text_0288
	Text_0289
	Text_0290
	Text_0291
	Text_0292
	Text_0293
	Text_0294
	Text_0295
	Text_0296
	Text_0297
	Text_0298
	Text_0299
	Text_0300
	Text_0301
	Text_0302
	Text_0303
	Text_0304
	Text_0305
	Text_0306
	Text_0307
	Text_0308
	Text_0309
	Text_0310
	Text_0311
	Text_0312
	Text_0313
	Text_0314
	Text_0315
	Text_0316
	Text_0317
	Text_0318
	Text_0319
	Text_0320
	Text_0321
	Text_0322
	Text_0323
	Text_0324
	Text_0325
	Text_0326
	Text_0327
	Text_0328
	Text_0329
	Text_0330
	Text_0331
	Text_0332
	Text_0333
	Text_0334
	Text_0335
	Text_0336
	Text_0337
	Text_0338
	Text_0339
	Text_0340
	Text_0341
	Text_0342
	Text_0343
	Text_0344
	Text_0345
	Text_0346
	Text_0347
	Text_0348
	Text_0349
	Text_0350
	Text_0351
	Text_0352
	Text_0353
	Text_0354
	Text_0355
	Text_0356
	Text_0357
	Text_0358
	Text_0359
	Text_0360
	Text_0361
	Text_0362
	Text_0363
	Text_0364
	Text_0365
	Text_0366
	Text_0367
	Text_0368
	Text_0369
	Text_0370
	Text_0371
	Text_0372
	Text_0373
	Text_0374
	Text_0375
	Text_0376
	Text_0377
	Text_0378
	Text_0379
	Text_0380
	Text_0381
	Text_0382
	Text_0383
	Text_0384
	Text_0385
	Text_0386
	Text_0387
	Text_0388
	Text_0389
	Text_0390
	Text_0391
	Text_0392
	Text_0393
	Text_0394
	Text_0395
	Text_0396
	Text_0397
	Text_0398
	Text_0399
	Text_0400
	Text_0401
	Text_0402
	Text_0403
	Text_0404
	Text_0405
	Text_0406
	Text_0407
	Text_0408
	Text_0409
	Text_0410
	Text_0411
	Text_0412
	Text_0413
	Text_0414
	Text_0415
	Text_0416
	Text_0417
	Text_0418
	Text_0419
	Text_0420
	Text_0421
	Text_0422
	Text_0423
	Text_0424
	Text_0425
	Text_0426
	Text_0427
	Text_0428
	Text_0429
	Text_0430
	Text_0431
	Text_0432
	Text_0433
	Text_0434
	Text_0435
	Text_0436
	Text_0437
	Text_0438
	Text_0439
	Text_0440
	Text_0441
	Text_0442
	Text_0443
	Text_0444
	Text_0445
	Text_0446
	Text_0447
	Text_0448
	Text_0449
	Text_0450
	Text_0451
	Text_0452
	Text_0453
	Text_0454
	Text_0455
	Text_0456
	Text_0457
	Text_0458
	Text_0459
	Text_0460
	Text_0461
	Text_0462
	Text_0463
	Text_0464
	Text_0465
	Text_0466
	Text_0467
	Text_0468
	Text_0469
	Text_0470
	Text_0471
	Text_0472
	Text_0473
	Text_0474
	Text_0475
	Text_0476
	Text_0477
	Text_0478
	Text_0479
	Text_0480
	Text_0481
	Text_0482
	Text_0483
	Text_0484
	Text_0485
	Text_0486
	Text_0487
	Text_0488
	Text_0489
	Text_0490
	Text_0491
	Text_0492
	Text_0493
	Text_0494
	Text_0495
	Text_0496
	Text_0497
	Text_0498
	Text_0499
	Text_0500
	Text_0501
	Text_0502
	Text_0503
	Text_0504
	Text_0505
	Text_0506
	Text_0507
	Text_0508
	Text_0509
	Text_0510
	Text_0511
	Text_0512
	Text_0513
	Text_0514
	Text_0515
	Text_0516
	Text_0517
	Text_0518
	Text_0519
	Text_0520



